Platinum Group Metal Recycling Technology Development - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence Shore
BASF Catalysts LLC, formerly Engelhard Corporation, has completed a project to recover Pt from PEM fuel cell membrane electrode assemblies. The project, which began in 2003, has met the project objective of an environmentally-friendly, cost-effective method for recovery of platinum without release of hydrogen fluoride. This has been achieved using a combination of milling, dispersion and acid leaching. 99% recovery of Pt was achieved, and this high yield can be scaled up using one vessel for a single leach and rinse. Leaching was been successfully achieved using a 10% solids level, double the original target. At this solids content, themore » reagent and utility costs represent ~0.35% of the Pt value of a lot, using very conservative assumptions. The main cost of the process is capital depreciation, followed by labor.« less
Martínez-Aires, María Dolores; Rubio Gámez, María Carmen; Gibb, Alistair
2015-01-01
Since the mid-1990 s, Prevention through Design (PtD) has become increasingly prevalent in the built environment. The acceptance of PtD has largely been due to the removal or reduction of risks during the execution phase of construction projects. European States have had the added impetus of national legislation. This paper analyzes the influence of European Union Directive 92/57/EEC on occupational safety and health injury prevention in the project design phase. Qualitative methods comprised individual semi-structured interviews and focus groups with a panel of experts. Sixty individuals from construction and related professions (architects, engineers, constructors, developers, and other construction experts) answered 17 key questions to establish national perceptions of the effectiveness of Directive 92/57/EEC in Spain and the United Kingdom (UK). The implementation of PtD in the project design phase in the UK is clearer since the regulations explicitly state the obligations of project designers as well as those of the coordinator. Interviews with Spanish experts show that, in Spain, the prevention culture is less frequently realized. The most significant differences between the European Directive and national regulations which influence PtD are linked to the Health and Safety Coordinator, and Health and Safety documents.
Harju, Kirsi; Rapinoja, Marja-Leena; Avondet, Marc-André; Arnold, Werner; Schär, Martin; Luginbühl, Werner; Kremp, Anke; Suikkanen, Sanna; Kankaanpää, Harri; Burrell, Stephen; Söderström, Martin; Vanninen, Paula
2015-01-01
A saxitoxin (STX) proficiency test (PT) was organized as part of the Establishment of Quality Assurance for the Detection of Biological Toxins of Potential Bioterrorism Risk (EQuATox) project. The aim of this PT was to provide an evaluation of existing methods and the European laboratories’ capabilities for the analysis of STX and some of its analogues in real samples. Homogenized mussel material and algal cell materials containing paralytic shellfish poisoning (PSP) toxins were produced as reference sample matrices. The reference material was characterized using various analytical methods. Acidified algal extract samples at two concentration levels were prepared from a bulk culture of PSP toxins producing dinoflagellate Alexandrium ostenfeldii. The homogeneity and stability of the prepared PT samples were studied and found to be fit-for-purpose. Thereafter, eight STX PT samples were sent to ten participating laboratories from eight countries. The PT offered the participating laboratories the possibility to assess their performance regarding the qualitative and quantitative detection of PSP toxins. Various techniques such as official Association of Official Analytical Chemists (AOAC) methods, immunoassays, and liquid chromatography-mass spectrometry were used for sample analyses. PMID:26602927
Development of Pt-Au-Graphene-Carbon Nanotube Composite for Fuel Cells and Biosensors Applications
2011-02-11
1 Project Title:- Development of Pt-Au- Graphene -Carbon nanotube composites for fuel cells and biosensors applications Objectives:- This...project addresses the architectures needed for the processing of Pt-Au- graphene -carbon nanotube (Pt-Au/f-G/f-CNT) nanocomposites and aims at the...cells:- Graphene and nitrogen doped graphene as catalyst support materials:- Graphene and nitrogen doped graphene have been used as a catalyst
Lacey, Courtney; Scodras, Stephanie; Ardron, Julie; Sellan, Ryan; Garbaczewska, Martyna; O'Brien, Kelly K; Salbach, Nancy M
2018-01-01
Purpose: This study's aim was to characterize the nature of students' research conducted for a Master of Science in Physical Therapy (MScPT) degree programme at a Canadian university and evaluate the lead advisors' perspectives of its impact on their research capacity, education, clinical practice, knowledge translation, and health policy. Methods: We conducted a quantitative, cross-sectional, retrospective review of research reports from 2003 to 2014 to characterize the MScPT students' research and a quantitative, cross-sectional e-survey of lead research advisors to evaluate the impact of this research. Results: Data were abstracted from reports of 201 research projects completed between 2003 and 2014. Projects were conducted primarily in university-affiliated hospitals (41.6%) or the university's physical therapy department (41.1%), and the majority (52.5%) had a clinical focus. Of the 95 lead advisors of 201 projects, 59 advisors (response rate 62.1%) of 119 projects completed the survey questionnaire. The respondents most frequently identified clinical practice (45.1%) and advisors' research capacity (31.4%) as areas positively affected by the students' research. Conclusions: The MScPT students' research projects facilitate the conduct of extensive research internally and across affiliated hospitals. This research appears to advance not only clinical practice but also the ability of lead advisors to undertake research.
77 FR 47075 - Proposed Data Collections Submitted for Public Comment and Recommendations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-07
... days of this notice. Proposed Project Proficiency Testing in U.S. Clinical Laboratories: Perception... would impact their costs, PT practices, and perceived risk of failing PT. The goal of this project is to...
Audette, Jennifer Gail; Baldew, Se-Sergio; Chang, Tony C M S; de Vries, Jessica; Ho A Tham, Nancy; Janssen, Johanna; Vyt, Andre
2017-01-01
To describe how a multinational team worked together to transition a physical therapy (PT) educational program in Paramaribo, Suriname, from a Bachelor level to a Master of Science in Physical Therapy (MSPT) level. The team was made up of PT faculty from Anton De Kom Universiteit van Suriname (AdeKUS), the Flemish Interuniversity Council University Development Cooperation (VLIR-UOS) leadership, and Health Volunteers Overseas volunteers. In this case study, the process for curricular assessment, redesign, and upgrade is described retrospectively using a Plan, Do, Study, Act (PDSA) framework. PT educational programs in developing countries are eager for upgrade to meet international expectations and to better meet community health-care needs. An ongoing process which included baseline assessment of all aspects of the existing bachelor's program in PT, development of a plan for a MSPT, implementation of the master's program, and evaluation following implementation is described. Curricular assessment and upgrade in resource-limited countries requires the implementation of process-oriented methods. The PDSA process is a useful tool to explore curricular development. The international collaboration described in this paper provides an example of the diligence, consistency, and dedication required to see a project through and achieve success while providing adequate support to the host site. This project might provide valuable insights for those involved in curricular redesign in similar settings.
Development and test of an HTSMA supersonic inlet ramp actuator
NASA Astrophysics Data System (ADS)
Quackenbush, Todd R.; Carpenter, Bernie F.; Boschitsch, Alexander H.; Danilov, Pavel V.
2008-03-01
Use of Shape Memory Alloy (SMA) actuation technology is a candidate method for reducing weight and power requirements for inlet flow control actuators in prospective supersonic passenger aircraft. The high speed/high Mach operating points of such aircraft can also call for the use of High Temperature SMAs, with transition temperatures beyond those of typical binary NiTi alloys. This paper outlines a demonstration project that entailed both testing and assessment of newly developed NiTiPt HTSMAs, as well as their use in an actuation application representative of inlet configurations. The project featured benchtop testing of an HTSMA-actuated ramp model as well as experiments in a high speed wind tunnel at loads representative of supersonic conditions. The ability of the model to generate adequate force and actuation stroke for this application is encouraging evidence the feasibility of NiTiPt-based devices for inlet flow control.
2009-12-01
Management Pilot Project.” NRSW E -Notes, No. 132, January 30, 2008. http://secnavportal.donhq.navy.mil/ portal /server.pt/gateway/PTARGS_0_0_2426...CONSERVATION.........................................................................................52 E . MATERIAL AND SOCIAL INCENTIVES IMPACT BEHAVIOR...73 E . SUPPORT AN INTEGRATED COMMUNICATION PROCESS...........75 VI. METHODS
Corticostriatal connectivity and its role in disease
Shepherd, Gordon M. G.
2014-01-01
Corticostriatal projections are essential components of forebrain circuits widely involved in motivated behavior. These axonal projections are formed by two distinct classes of cortical neurons, intratelencephalic (IT) and pyramidal tract (PT) type neurons. Convergent evidence points to IT/PT differentiation of the corticostriatal system at all levels of functional organization, from cellular signaling mechanisms to circuit topology. There is also growing evidence for IT/PT imbalance as an etiological factor in neurodevelopmental, neuropsychiatric, and movement disorders – autism, amyotrophic lateral sclerosis, obsessive-compulsive disorder, schizophrenia, Huntington’s and Parkinson’s diseases, and major depression are highlighted here. PMID:23511908
Synaptic Circuit Organization of Motor Corticothalamic Neurons
Yamawaki, Naoki
2015-01-01
Corticothalamic (CT) neurons in layer 6 constitute a large but enigmatic class of cortical projection neurons. How they are integrated into intracortical and thalamo-cortico-thalamic circuits is incompletely understood, especially outside of sensory cortex. Here, we investigated CT circuits in mouse forelimb motor cortex (M1) using multiple circuit-analysis methods. Stimulating and recording from CT, intratelencephalic (IT), and pyramidal tract (PT) projection neurons, we found strong CT↔ CT and CT↔ IT connections; however, CT→IT connections were limited to IT neurons in layer 6, not 5B. There was strikingly little CT↔ PT excitatory connectivity. Disynaptic inhibition systematically accompanied excitation in these pathways, scaling with the amplitude of excitation according to both presynaptic (class-specific) and postsynaptic (cell-by-cell) factors. In particular, CT neurons evoked proportionally more inhibition relative to excitation (I/E ratio) than IT neurons. Furthermore, the amplitude of inhibition was tuned to match the amount of excitation at the level of individual neurons; in the extreme, neurons receiving no excitation received no inhibition either. Extending these studies to dissect the connectivity between cortex and thalamus, we found that M1-CT neurons and thalamocortical neurons in the ventrolateral (VL) nucleus were remarkably unconnected in either direction. Instead, VL axons in the cortex excited both IT and PT neurons, and CT axons in the thalamus excited other thalamic neurons, including those in the posterior nucleus, which additionally received PT excitation. These findings, which contrast in several ways with previous observations in sensory areas, illuminate the basic circuit organization of CT neurons within M1 and between M1 and thalamus. PMID:25653383
Advanced Catalysts for Fuel Cells
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram R.; Whitacre, Jay; Valdez, T. I.
2006-01-01
This viewgraph presentation reviews the development of catalyst for Fuel Cells. The objectives of the project are to reduce the cost of stack components and reduce the amount of precious metal used in fuel cell construction. A rapid combinatorial screening technique based on multi-electrode thin film array has been developed and validated for identifying catalysts for oxygen reduction; focus shifted from methanol oxidation in FY05 to oxygen reduction in FY06. Multi-electrode arrays of thin film catalysts of Pt-Ni and Pt-Ni-Zr have been deposited. Pt-Ni and have been characterized electrochemically and structurally. Pt-Ni-Zr and Pt-Ni films show higher current density and onset potential compared to Pt. Electrocatalytic activity and onset potential are found to be strong function of the lattice constant. Thin film Pt(59)Ni(39)Zr(2) can provide 10 times the current density of thin film Pt. Thin film Pt(59)Ni(39)Zr(2) also shows 65mV higher onset potential than Pt.
Jackisch, C; Funk, A; König, K; Lubbe, D; Misselwitz, B; Wagner, U
2014-03-01
Introduction: The Disease Management Project Breast Cancer (DMP Breast Cancer) was first launched in Hesse in 2004. The project is supported by the health insurance companies in Hesse and the Professional Association of Gynaecologists in Hesse. The aim is to offer structured treatment programmes to all women diagnosed with breast cancer in Hesse by creating intersectoral cooperations between coordinating clinics, associated hospitals and gynaecologists in private practice who registered in the DMP programme. Method: Between 1 January 2005 and 30 June 2011, 13 973 women were enrolled in the DMP programme. Results: After data cleansing, survival rates were calculated for a total of 11 214 women. The 5-year overall survival (OS) rate was 86.3 %; survival rates according to tumour stage on presentation were 92.2 % (pT1) and 82.3 % (pT2), respectively. The impact of steroid hormone receptor status on survival (87.8 % for receptor-positive cancers vs. 78.9 % for receptor-negative cancers) and of age at first diagnosis on survival (≤ 35 years = 91 %) were calculated. Conclusion: The project showed that intersectoral cooperation led to significant improvements in the quality of treatment over time, as measured by quality indicators and outcomes after treatment.
Miniature Cavity-Enhanced Diamond Magnetometer
NASA Astrophysics Data System (ADS)
Chatzidrosos, Georgios; Wickenbrock, Arne; Bougas, Lykourgos; Leefer, Nathan; Wu, Teng; Jensen, Kasper; Dumeige, Yannick; Budker, Dmitry
2017-10-01
We present a highly sensitive miniaturized cavity-enhanced room-temperature magnetic-field sensor based on nitrogen-vacancy centers in diamond. The magnetic resonance signal is detected by probing absorption on the 1042-nm spin-singlet transition. To improve the absorptive signal the diamond is placed in an optical resonator. The device has a magnetic-field sensitivity of 28 pT /√{Hz } , a projected photon shot-noise-limited sensitivity of 22 pT /√{Hz } , and an estimated quantum projection-noise-limited sensitivity of 0.43 pT /√{Hz } with the sensing volume of ˜390 μ m ×4500 μ m2 . The presented miniaturized device is the basis for an endoscopic magnetic-field sensor for biomedical applications.
Packaging and Transportation Support at LANL CTMA 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salazar, Nick
2012-06-08
Operations Support Packaging and Transportation (OS-PT) supports LANL in various functions. Some highlights of the past year have been with the work relating to environmental remediation, type B packaging, non-DOT compliant transfers, and special permit training. The TA-21 remediation project was part of the ARRA funding that LANL received. The $212 million in funding was used to demolish 24 buildings at TA-21, excavate the lab's oldest waste disposal site, and install 16 groundwater monitoring wells. The project was completed ahead of schedule and under budget. More than 300 tons of metal was recycled and all the soil excavated from MDA-Bmore » was replaced with clean fill. OS-PT supported this projected by transporting more than 7 million pounds of waste to TA-54 Area G with an addendum to their TSD. Because of the public access on the transfer route, Los Alamos County restricted the transfer to happen from 2:00 AM to 4:00 AM. OS-PT conducted 8 transfers in support of this project. Some concerns included the contaminated trailers at receipt facilities when transferring filled Super Sacks. Future Super Sacks were over packed into new IP-2 Super Sacks before shipping. OS-PT is also supporting the remediation of TA-54 Area G. LANL has an agreement with the State of New Mexico to remove all TRU waste currently stored above ground from at Area G. OS-PT supports this initiative with transfers of TRU waste under LANL's TSD and support of TRU shipments to WIPP. Another project supported by our organization is gas cylinder/dewar recycling and remediation. We are focusing on reducing risk associated with unneeded gasses at LANL. To minimized excessive ordering, to save money and time, and to minimize hazards OS-PT is supporting a gas recycling program. This program will allow programmatic organization across LANL to share unused/unneeded gasses. Instead of old dewars being disposed of, OS-PT has began identifying these dewars and sending them for refurbishment. To date, this effort has saved LANL $450K and estimated saving for future efforts will be more than $1.5 million. Some Projects that are happening here at LANL are offsite source recovery, weapon component transfers, and isotope science production. There are specific packages that help support these projects for the shipment of related materials. OS-PT provides support to these packages to ensure they are and will be available to continue this support. The Areva 435-B Overpack will help the Offsite Source Recovery Project recover high activity gamma sources from various locations across the globe. The Safety Analysis for Packaging is scheduled for initial completion June of 2012. The DPP-1 package is designed to replace the Model FL, which was designed by Rocky Flats and began service in 1990. LANL has collaborated on package design with LLNL, Pantex, Y-12, and KCP. LANL is supporting LLNL on component fixture development. Testing to 10 CFR 71 is to be completed in the Fall of 2012 and scheduled for NA-174 approval in 2014. The SAFESHIELD package helps supports LANL's Isotope production projects. This package can transfer highly irradiated materials from LANL's accelerator to material processing facilities. LANL worked to renew the SAFESHEILD's Certification for 5 more years.« less
The NIEHS Predictive-Toxicology Evaluation Project.
Bristol, D W; Wachsman, J T; Greenwell, A
1996-01-01
The Predictive-Toxicology Evaluation (PTE) project conducts collaborative experiments that subject the performance of predictive-toxicology (PT) methods to rigorous, objective evaluation in a uniquely informative manner. Sponsored by the National Institute of Environmental Health Sciences, it takes advantage of the ongoing testing conducted by the U.S. National Toxicology Program (NTP) to estimate the true error of models that have been applied to make prospective predictions on previously untested, noncongeneric-chemical substances. The PTE project first identifies a group of standardized NTP chemical bioassays either scheduled to be conducted or are ongoing, but not yet complete. The project then announces and advertises the evaluation experiment, disseminates information about the chemical bioassays, and encourages researchers from a wide variety of disciplines to publish their predictions in peer-reviewed journals, using whatever approaches and methods they feel are best. A collection of such papers is published in this Environmental Health Perspectives Supplement, providing readers the opportunity to compare and contrast PT approaches and models, within the context of their prospective application to an actual-use situation. This introduction to this collection of papers on predictive toxicology summarizes the predictions made and the final results obtained for the 44 chemical carcinogenesis bioassays of the first PTE experiment (PTE-1) and presents information that identifies the 30 chemical carcinogenesis bioassays of PTE-2, along with a table of prediction sets that have been published to date. It also provides background about the origin and goals of the PTE project, outlines the special challenge associated with estimating the true error of models that aspire to predict open-system behavior, and summarizes what has been learned to date. PMID:8933048
Development of a press and drag method for hyperlink selection on smartphones.
Chang, Joonho; Jung, Kihyo
2017-11-01
The present study developed a novel touch method for hyperlink selection on smartphones consisting of two sequential finger interactions: press and drag motions. The novel method requires a user to press a target hyperlink, and if a touch error occurs he/she can immediately correct the touch error by dragging the finger without releasing it in the middle. The method was compared with two existing methods in terms of completion time, error rate, and subjective rating. Forty college students participated in the experiments with different hyperlink sizes (4-pt, 6-pt, 8-pt, and 10-pt) on a touch-screen device. When hyperlink size was small (4-pt and 6-pt), the novel method (time: 826 msec; error: 0.6%) demonstrated better completion time and error rate than the current method (time: 1194 msec; error: 22%). In addition, the novel method (1.15, slightly satisfied, in 7-pt bipolar scale) had significantly higher satisfaction scores than the two existing methods (0.06, neutral). Copyright © 2017 Elsevier Ltd. All rights reserved.
Windows on Our Universe: Breakthroughs in Observational Cosmology
NASA Astrophysics Data System (ADS)
Ruhl, John; Faber, Sandy; Weinberg, David
2009-03-01
Clusters and Cosmology with the South Pole Telescope[0pt] John Ruhl, Case Western Reserve University[4pt] The Formation of Galaxies[0pt] Sandra Faber, University of California, Santa Cruz[4pt] Cosmology from the Sloan Digital Sky Survey[0pt] David Weinberg, The Ohio State University[4pt] In the past decade, the study of our Universe has entered a data- driven era. Indeed, observational advances indicate that cosmologists can understand the evolution of our Universe in exquisite detail and use our Universe as a laboratory with which to make profound statements about the laws of physics. Cosmologists have mapped out the relic radiation from the big bang itself and have succeeded in enormous projects to map the patterns of galaxies and the evolution of galaxies over ten billion years. Researchers are beginning to understand how the initial conditions depicted in the relic radiation evolve to form such rich galactic structure. And of course, with new data new mysteries have arisen that strike at the heart of fundamental physics and drive another generation of ambitious observational projects. The three speakers will discuss recent breakthroughs in observational cosmology: what has been learned about our Universe, the mysteries that have been uncovered, and what they see for the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bian, Bao-An; Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875; Di, Yao-Min
2007-01-15
The systematics of g factor of the first excited 2{sup +} state vs neutron number N is studied by the projected shell model. The study covers the even-even nuclei of all isotopic chains from Gd to Pt. g factors are calculated by using the many-body wave functions that well reproduce the energy levels and B(E2)s of the ground-state bands. For Gd to W isotopes the characteristic feature of the g factor data along an isotopic chain is described by the present model. Deficiency of the model in the g factor description for the heavier Os and Pt isotopes is discussed.
Alloy catalysts for fuel cell-based alcohol sensors
NASA Astrophysics Data System (ADS)
Ghavidel, Mohammadreza Zamanzad
Direct ethanol fuel cells (DEFCs) are attractive from both economic and environmental standpoints for generating renewable energy and powering vehicles and portable electronic devices. There is a great interest recently in developing DEFC systems. The cost and performance of the DEFCs are mainly controlled by the Pt-base catalysts used at each electrode. In addition to energy conversion, DEFC technology is commonly employed in the fuel-cell based breath alcohol sensors (BrAS). BrAS is a device commonly used to measure blood alcohol concentration (BAC) and enforce drinking and driving laws. The BrAS is non-invasive and has a fast respond time. However, one of the most important drawback of the commercially available BrAS is the very high loading of Pt employed. One well-known and cost effective method to reduce the Pt loading is developing Pt-alloy catalysts. Recent studies have shown that Pt-transition metal alloy catalysts enhanced the electroactivity while decreasing the required loadings of the Pt catalysts. In this thesis, carbon supported Pt-Mn and Pt-Cu electrocatalysts were synthesized by different methods and the effects of heat treatment and structural modification on the ethanol oxidation reaction (EOR) activity, oxygen reduction reaction (ORR) activity and durability of these samples were thoroughly studied. Finally, the selected Pt-Mn and Pt-Cu samples with the highest EOR activity were examined in a prototype BrAS system and compared to the Pt/C and Pt 3Sn/C commercial electrocatalysts. Studies on the Pt-Mn catalysts produced with and without additives indicate that adding trisodium citrate (SC) to the impregnation solution improved the particle dispersion, decreased particle sizes and reduced the time required for heat treatment. Further studies show that the optimum weight ratio of SC to the metal loading in the impregnation solution was 2:1 and optimum results achieved at pH lower than 4. In addition, powder X-ray diffraction (XRD) analyses indicate that the optimum heat treatment temperature was 700 °C where a uniform ordered PtMn intermetallic phase was formed. Although the electrochemical active surface area (ECSA) decreased due to the heat treatment, the EOR activity of Pt-Mn samples was improved. Moreover, it was shown that the heat-treated samples prepared in the presence of SC showed superior the EOR activity compared to the samples made without SC. The Pt-Cu/C alloys were produced by three different methods: impregnation, impregnation in the presence of sodium citrate and microwave assisted polyol methods. These studies showed that the polyol method was the optimum method to produce the Pt-Cu alloy. The XRD analysis indicates that the heat treatment at 700 °C developed catalysts rich in the PtCu and PtCu3 ordered phases. The highest EOR activity was measured for the Pt-Cu/C-POL (sample made by the polyol method) and heat treated at 700 °C for 1h. Comparing the EOR activity of the Pt-Cu and Pt-Mn samples also demonstrates that the heat treated Pt-Cu/C-POL sample showed higher EOR activity compared to the Pt-Mn samples. These results indicate that the benefits of thermally treating alloy nanoparticles could outweigh any activity losses that may occur due to the particle size growth and the ECSA loss. Besides, accelerated stress tests (ASTs) illustrate that the heat treatment improved the durability of the Pt-Mn and Pt-Cu samples. The durability and EOR activity of the heat treated Pt-Mn and Pt-Cu samples was similar or better than commercial samples. On the other hand, the ORR activity of Pt-Mn and Pt-Cu after the heat treatment was slightly lower than the commercial samples but the ORR activity loss can be compensated by the economic benefits from using the lower Pt loading. Finally, studying the alcohol sensing characteristic of different samples shows that the heat treated Pt-Mn and Pt-Cu catalysts could be used for the ethanol sensing. Additionally, among the different commercial samples tested for ethanol sensing, Pt-Sn/C showed the highest sensitivity but with slightly higher standard deviation. Further studies on the Pt- Cu/C and Pt-Mn/C samples indicate that the heat treatment improved the sensitivity of these samples and the highest normalized sensitivity among all the samples belonged to the Pt- Cu/C-POL (sample produced by polyol method) and heat treated at 700 °C. It can be concluded that the heat treated Pt-Mn and Pt-Cu samples could be used as an alternative to replace Pt black in commercial sensors which would dramatically decrease the Pt loading. This could reduce the price and increase the sensitivity of commercial alcohol sensors.
Moran-Gilad, Jacob; Sintchenko, Vitali; Pedersen, Susanne Karlsmose; Wolfgang, William J; Pettengill, James; Strain, Errol; Hendriksen, Rene S
2015-04-03
The advent of next-generation sequencing (NGS) has revolutionised public health microbiology. Given the potential impact of NGS, it is paramount to ensure standardisation of 'wet' laboratory and bioinformatic protocols and promote comparability of methods employed by different laboratories and their outputs. Therefore, one of the ambitious goals of the Global Microbial Identifier (GMI) initiative (http://www.globalmicrobialidentifier.org/) has been to establish a mechanism for inter-laboratory NGS proficiency testing (PT). This report presents findings from the survey recently conducted by Working Group 4 among GMI members in order to ascertain NGS end-use requirements and attitudes towards NGS PT. The survey identified the high professional diversity of laboratories engaged in NGS-based public health projects and the wide range of capabilities within institutions, at a notable range of costs. The priority pathogens reported by respondents reflected the key drivers for NGS use (high burden disease and 'high profile' pathogens). The performance of and participation in PT was perceived as important by most respondents. The wide range of sequencing and bioinformatics practices reported by end-users highlights the importance of standardisation and harmonisation of NGS in public health and underpins the use of PT as a means to assuring quality. The findings of this survey will guide the design of the GMI PT program in relation to the spectrum of pathogens included, testing frequency and volume as well as technical requirements. The PT program for external quality assurance will evolve and inform the introduction of NGS into clinical and public health microbiology practice in the post-genomic era.
Study on the failure temperature of Ti/Pt/Au and Pt5Si2-Ti/Pt/Au metallization systems
NASA Astrophysics Data System (ADS)
Zhang, Jie; Han, Jianqiang; Yin, Yijun; Dong, Lizhen; Niu, Wenju
2017-09-01
The Ti/Pt/Au metallization system has an advantage of resisting KOH or TMAH solution etching. To form a good ohmic contact, the Ti/Pt/Au metallization system must be alloyed at 400 °C. However, the process temperatures of typical MEMS packaging technologies, such as anodic bonding, glass solder bonding and eutectic bonding, generally exceed 400 °C. It is puzzling if the Ti/Pt/Au system is destroyed during the subsequent packaging process. In the present work, the resistance of doped polysilicon resistors contacted by the Ti/Pt/Au metallization system that have undergone different temperatures and time are measured. The experimental results show that the ohmic contacts will be destroyed if heated to 500 °C. But if a 20 nm Pt film is sputtered on heavily doped polysilicon and alloyed at 700 °C before sputtering Ti/Pt/Au films, the Pt5Si2-Ti/Pt/Au metallization system has a higher service temperature of 500 °C, which exceeds process temperatures of most typical MEMS packaging technologies. Project supported by the National Natural Science Foundation of China (No. 61376114).
Magnetic-optical bifunctional CoPt3/Co multilayered nanowire arrays
NASA Astrophysics Data System (ADS)
Su, Yi-Kun; Yan, Zhi-Long; Wu, Xi-Ming; Liu, Huan; Ren, Xiao; Yang, Hai-Tao
2015-10-01
CoPt3/Co multilayered nanowire (NW) arrays are synthesized by pulsed electrodeposition into nanoporous anodic aluminum oxide (AAO) templates. The electrochemistry deposition parameters are determined by cyclic voltammetry to realize the well control of the ratio of Co to Pt and the length of every segment. The x-ray diffraction (XRD) patterns show that both Co and CoPt3 NWs exhibit face-centered cubic (fcc) structures. In the UV-visible absorption spectra, CoPt3/Co NW arrays show a red-shift with respect to pure CoPt3NWs. Compared with the pure Co nanowire arrays, the CoPt3/Co multilayered nanowire arrays show a weak shape anisotropy and well-modulated magnetic properties. CoPt3/Co multilayered nanowires are highly encouraging that new families of bimetallic nanosystems may be developed to meet the needs of nanomaterials in emerging multifunctional nanotechnologies. Project supported by the National Natural Science Foundation of China (Grant Nos. 51472165, 51471185, and 11274370).
Second Generation Organometallic Materials for Non-Linear Optical Application
2009-05-26
University of Florida I . Project Objectives, Significance and Overview During the past several years in an AFOSR sponsored project our group has...Ar i PR3 rr\\3 PR 3 Pt—=— Ar- PRs n Pt-acetylide oligomer Pt-acetylide polymer Figure 1. Structure of platinum-acetylide materials. Work...Solvent - CH,C1 Energyu»» i /J Figure 9. Top: Structures of TPA-M complexes. Bottom: Nonlinear transmission for 10 and 20 mM, CH2C12 solutions of
NASA Astrophysics Data System (ADS)
Xue, Xinzhong; Ge, Junjie; Tian, Tian; Liu, Changpeng; Xing, Wei; Lu, Tianhong
In this paper, five Pt 3Sn 1/C catalysts have been prepared using three different methods. It was found that phosphorus deposited on the surface of carbon with Pt and Sn when sodium hypophosphite was used as reducing agent by optimization of synthetic conditions such as pH in the synthetic solution and temperature. The deposition of phosphorus should be effective on the size reduction and markedly reduces PtSn nanoparticle size, and raise electrochemical active surface (EAS) area of catalyst and improve the catalytic performance. TEM images show PtSnP nanoparticles are highly dispersed on the carbon surface with average diameters of 2 nm. The optimum composition is Pt 3Sn 1P 2/C (note PtSn/C-3) catalyst in my work. With this composition, it shows very high activity for the electrooxidation of ethanol and exhibit enhanced performance compared with other two Pt 3Sn 1/C catalysts that prepared using ethylene glycol reduction method (note PtSn/C-EG) and borohydride reduction method (note PtSn/-B). The maximum power densities of direct ethanol fuel cell (DEFC) were 61 mW cm -2 that is 150 and 170% higher than that of the PtSn/C-EG and PtSn/C-B catalyst.
Kim, Chang-Eun; Lim, Dong-Hee; Jang, Jong Hyun; Kim, Hyoung Juhn; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo; Hong, Seong-Ahn; Soon, Aloysius; Ham, Hyung Chul
2015-01-21
The effect of a subsurface hetero layer (thin gold) on the activity and stability of Pt skin surface in Pt3M system (M = 3d transition metals) is investigated using the spin-polarized density functional theory calculation. First, we find that the heterometallic interaction between the Pt skin surface and the gold subsurface in Pt/Au/Pt3M system can significantly modify the electronic structure of the Pt skin surface. In particular, the local density of states projected onto the d states of Pt skin surface near the Fermi level is drastically decreased compared to the Pt/Pt/Pt3M case, leading to the reduction of the oxygen binding strength of the Pt skin surface. This modification is related to the increase of surface charge polarization of outmost Pt skin atoms by the electron transfer from the gold subsurface atoms. Furthermore, a subsurface gold layer is found to cast the energetic barrier to the segregation loss of metal atoms from the bulk (inside) region, which can enhance the durability of Pt3M based catalytic system in oxygen reduction condition at fuel cell devices. This study highlights that a gold subsurface hetero layer can provide an additional mean to tune the surface activity toward oxygen species and in turn the oxygen reduction reaction, where the utilization of geometric strain already reaches its practical limit.
Method of preparing high specific activity platinum-195m
Mirzadeh, Saed; Du, Miting; Beets, Arnold L.; Knapp, Jr., Furn F.
2004-06-15
A method of preparing high-specific-activity .sup.195m Pt includes the steps of: exposing .sup.193 Ir to a flux of neutrons sufficient to convert a portion of the .sup.193 Ir to .sup.195m Pt to form an irradiated material; dissolving the irradiated material to form an intermediate solution comprising Ir and Pt; and separating the Pt from the Ir by cation exchange chromatography to produce .sup.195m Pt.
USER-FRIENDLY SOLAR OVENS FOR OUTDOOR AND INDOOR USE
Harju, Kirsi; Rapinoja, Marja-Leena; Avondet, Marc-André; Arnold, Werner; Schär, Martin; Burrell, Stephen; Luginbühl, Werner; Vanninen, Paula
2015-01-01
Saxitoxin (STX) and some selected paralytic shellfish poisoning (PSP) analogues in mussel samples were identified and quantified with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Sample extraction and purification methods of mussel sample were optimized for LC-MS/MS analysis. The developed method was applied to the analysis of the homogenized mussel samples in the proficiency test (PT) within the EQuATox project (Establishment of Quality Assurance for the Detection of Biological Toxins of Potential Bioterrorism Risk). Ten laboratories from eight countries participated in the STX PT. Identification of PSP toxins in naturally contaminated mussel samples was performed by comparison of product ion spectra and retention times with those of reference standards. The quantitative results were obtained with LC-MS/MS by spiking reference standards in toxic mussel extracts. The results were within the z-score of ±1 when compared to the results measured with the official AOAC (Association of Official Analytical Chemists) method 2005.06, pre-column oxidation high-performance liquid chromatography with fluorescence detection (HPLC-FLD). PMID:26610567
Semi-stochastic full configuration interaction quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Holmes, Adam; Petruzielo, Frank; Khadilkar, Mihir; Changlani, Hitesh; Nightingale, M. P.; Umrigar, C. J.
2012-02-01
In the recently proposed full configuration interaction quantum Monte Carlo (FCIQMC) [1,2], the ground state is projected out stochastically, using a population of walkers each of which represents a basis state in the Hilbert space spanned by Slater determinants. The infamous fermion sign problem manifests itself in the fact that walkers of either sign can be spawned on a given determinant. We propose an improvement on this method in the form of a hybrid stochastic/deterministic technique, which we expect will improve the efficiency of the algorithm by ameliorating the sign problem. We test the method on atoms and molecules, e.g., carbon, carbon dimer, N2 molecule, and stretched N2. [4pt] [1] Fermion Monte Carlo without fixed nodes: a Game of Life, death and annihilation in Slater Determinant space. George Booth, Alex Thom, Ali Alavi. J Chem Phys 131, 050106, (2009).[0pt] [2] Survival of the fittest: Accelerating convergence in full configuration-interaction quantum Monte Carlo. Deidre Cleland, George Booth, and Ali Alavi. J Chem Phys 132, 041103 (2010).
Dynamical Evolution of an Effective Two-Level System with {\\mathscr{P}}{\\mathscr{T}} Symmetry
NASA Astrophysics Data System (ADS)
Du, Lei; Xu, Zhihao; Yin, Chuanhao; Guo, Liping
2018-05-01
We investigate the dynamics of parity- and time-reversal (PT ) symmetric two-energy-level atoms in the presence of two optical and a radio-frequency (rf) fields. The strength and relative phase of fields can drive the system from unbroken to broken PT symmetric regions. Compared with the Hermitian model, Rabi-type oscillation is still observed, and the oscillation characteristics are also adjusted by the strength and relative phase in the region of unbroken PT symmetry. At exception point (EP), the oscillation breaks down. To better understand the underlying properties we study the effective Bloch dynamics and find the emergence of the z components of the fixed points is the feature of the PT symmetry breaking and the projections in x-y plane can be controlled with high flexibility compared with the standard two-level system with PT symmetry. It helps to study the dynamic behavior of the complex PT symmetric model.
NASA Astrophysics Data System (ADS)
Fu, Tao; Huang, Jianxing; Lai, Shaobo; Zhang, Size; Fang, Jun; Zhao, Jinbao
2017-10-01
The catalytic activity and stability of electrocatalyst is critical for the commercialization of fuel cells, and recent reports reveal the great potential of the hollow structures with Pt skin coat for developing high-powered electrocatalysts due to their highly efficient utilization of the Pt atoms. Here, we provide a novel strategy to prepare the Pt skin coated hollow Ag-Pt structure (Ag-Pt@Pt) of ∼8 nm size at room temperature. As loaded on the graphene, the Ag-Pt@Pt exhibits a remarkable mass activity of 0.864 A/mgPt (at 0.9 V, vs. reversible hydrogen electrode (RHE)) towards oxygen reduction reaction (ORR), which is 5.30 times of the commercial Pt/C catalyst, and the Ag-Pt@Pt also shows a better stability during the ORR catalytic process. The mechanism of this significant enhancement can be attributed to the higher Pt utilization and the unique Pt on Ag-Pt surface structure, which is confirmed by the density functional theory (DFT) calculations and other characterization methods. In conclusion, this original work offers a low-cost and environment-friendly method to prepare a high active electrocatalyst with cheaper price, and this work also discloses the correlation between surface structures and ORR catalytic activity for the hollow structures with Pt skin coat, which can be instructive for designing novel advanced electrocatalysts for fuel cells.
NASA Astrophysics Data System (ADS)
Zhong, Yi; Xu, Cai-Ling; Kong, Ling-Bin; Li, Hu-Lin
2008-12-01
A novel conjunct template method for fabricating mesoporous Pt nanowire array through direct current (DC) electrodeposition of Pt into the pores of anodic aluminum oxide (AAO) template on Ti/Si substrate from hexagonal structured lyotropic liquid crystalline phase is demonstrated in this paper. The morphology and structure of as-prepared Pt nanowire array are characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrocatalytic properties of Pt nanowire array for methanol are also investigated in detail. The results indicate that Pt nanowire array has the unique mesoporous structure of approximate 40-50 nm in diameter, which resulted in the high surface area and greatly improved electrocatalytic activity for methanol. The mesoporous Pt nanowire array synthesized by the new conjunct template method has a very promising application in portable fuel cell power sources.
Modulated spin orbit torque in a Pt/Co/Pt/YIG multilayer by nonequilibrium proximity effect
NASA Astrophysics Data System (ADS)
Liu, Q. B.; Meng, K. K.; Cai, Y. Z.; Qian, X. H.; Wu, Y. C.; Zheng, S. Q.; Jiang, Y.
2018-01-01
We have compared the spin orbit torque (SOT) induced magnetization switching in Pt/Co/Pt/Y3Fe5O12 (YIG) and Pt/Co/Pt/SiO2 multilayers. The critical switching current in Pt/Co/Pt/YIG is almost half of that in Pt/Co/Pt/SiO2. Through harmonic measurements, we demonstrated the enhancement of the effective spin Hall angle in Pt/Co/Pt/YIG. The increased efficiency of SOT is ascribed to the nonequilibrium proximity effect at the Pt/YIG interface, which suppresses the spin current reflection and enhances the effective spin accumulation at the Co/Pt interface. Our method can effectively reduce the switching current density and provide another way to modulate SOT.
NASA Astrophysics Data System (ADS)
Huang, Huihong; Hu, Xiulan; Zhang, Jianbo; Su, Nan; Cheng, Jiexu
2017-03-01
Decreasing the cost associated with platinum-based catalysts along with improving their catalytic properties is a major challenge for commercial direct methanol fuel cells. In this work, a simple and facile strategy was developed for the more efficient preparation of multi-walled carbon nanotube (MWCNT) -supported Pt/CoPt composite nanoparticles (NPs) via solution plasma sputtering with subsequent thermal annealing. Quite different from general wet synthesis methods, Pt/CoPt composite NPs were directly derived from metal wire electrodes without any additions. The obtained Pt/CoPt/MWCNTs composite catalysts exhibited tremendous improvement in the electro-oxidation of methanol in acidic media with mass activities of 1719 mA mg-1Pt. This value is much higher than that of previous reports of Pt-Co alloy and commercial Pt/C (3.16 times) because of the many active sites and clean surface of the catalysts. The catalysts showed good stability due to the special synergistic effects of the CoPt alloy. Pt/CoPt/MWCNTs can be used as a promising catalyst for direct methanol fuel cells. In addition, this solution plasma sputtering-assisted synthesis method introduces a general and feasible route for the synthesis of binary alloys.
Huang, Huihong; Hu, Xiulan; Zhang, Jianbo; Su, Nan; Cheng, JieXu
2017-03-30
Decreasing the cost associated with platinum-based catalysts along with improving their catalytic properties is a major challenge for commercial direct methanol fuel cells. In this work, a simple and facile strategy was developed for the more efficient preparation of multi-walled carbon nanotube (MWCNT) -supported Pt/CoPt composite nanoparticles (NPs) via solution plasma sputtering with subsequent thermal annealing. Quite different from general wet synthesis methods, Pt/CoPt composite NPs were directly derived from metal wire electrodes without any additions. The obtained Pt/CoPt/MWCNTs composite catalysts exhibited tremendous improvement in the electro-oxidation of methanol in acidic media with mass activities of 1719 mA mg -1 Pt . This value is much higher than that of previous reports of Pt-Co alloy and commercial Pt/C (3.16 times) because of the many active sites and clean surface of the catalysts. The catalysts showed good stability due to the special synergistic effects of the CoPt alloy. Pt/CoPt/MWCNTs can be used as a promising catalyst for direct methanol fuel cells. In addition, this solution plasma sputtering-assisted synthesis method introduces a general and feasible route for the synthesis of binary alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jana, Rajkumar; Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in
Ordered intermetallic Pt{sub 2}In{sub 3} nanoparticles have been synthesized by superhydride reduction of K{sub 2}PtCl{sub 4} and InCl{sub 3}.xH{sub 2}O precursors using facile, one-pot solvothermal method. We report surfactant free solvothermal synthesis of a novel ordered Pt{sub 2}In{sub 3} intermetallic nanoparticles for the first time. The structure and morphology of the catalyst has been confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. The electrocatalytic properties of the catalysts have been investigated by cyclic voltammetry and chronoamperometry. The as prepared Pt{sub 2}In{sub 3} catalyst exhibit far superior electrocatalytic activity andmore » stability towards alcohol oxidation over commercial Pt/C. The specific activity of as synthesized catalyst was found to be ~3.2 and ~2.3 times higher than commercial Pt/C for methanol and ethanol oxidation, respectively. This improved activity and durability of the Pt{sub 2}In{sub 3} nanoparticles can make the catalyst an ideal catalyst candidate for direct alcohol fuel cell. - Graphical abstract: The ordered structure of Pt{sub 2}In{sub 3} nanoparticles synthesized by solvothermal method has confirmed through XRD and TEM. Cyclic voltametry and chronoamperometry showed improved catalytic activity and stability compared to commercial Pt/C. - Highlights: • Ordered Pt{sub 2}In{sub 3} nanoparticles were synthesized by solvothermal method. • Electrooxidation of alcohols on Pt{sub 2}In{sub 3} catalyst was investigated in acidic medium. • Pt{sub 2}In{sub 3} catalyst has superior catalytic activity compared to commercial Pt/C. • Pt{sub 2}In{sub 3} catalyst exhibited much higher stability than commercial Pt/C.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapp, Aliya S.; Duan, Zhiyao; Marcella, Nicholas
In this report we examine the structure of bimetallic nanomaterials prepared by an electrochemical approach known as hydride-terminated (HT) electrodeposition. It has been shown previously that this method can lead to deposition of a single Pt monolayer on bulk-phase Au surfaces. Specifically, under appropriate electrochemical conditions and using a solution containing PtCl 4 2-, a monolayer of Pt atoms electrodeposits onto bulk-phase Au immediately followed by a monolayer of H atoms. The H-atom capping layer prevents deposition of Pt multilayers. We applied this method to ~1.6 nm Au nanoparticles (AuNPs) immobilized on an inert electrode surface. In contrast to themore » well-defined, segregated Au/Pt structure of the bulk-phase surface, we observe that HT electrodeposition leads to the formation of AuPt quasi-random alloy NPs rather than the core@shell structure anticipated from earlier reports relating to deposition onto bulk phases. The results provide a good example of how the phase behavior of macro materials does not always translate to the nano world. A key component of this study was the structure determination of the AuPt NPs, which required a combination of electrochemical methods, electron microscopy, X-ray absorption spectroscopy, and theory (DFT and MD).« less
Lapp, Aliya S.; Duan, Zhiyao; Marcella, Nicholas; ...
2018-06-01
In this report we examine the structure of bimetallic nanomaterials prepared by an electrochemical approach known as hydride-terminated (HT) electrodeposition. It has been shown previously that this method can lead to deposition of a single Pt monolayer on bulk-phase Au surfaces. Specifically, under appropriate electrochemical conditions and using a solution containing PtCl 4 2-, a monolayer of Pt atoms electrodeposits onto bulk-phase Au immediately followed by a monolayer of H atoms. The H-atom capping layer prevents deposition of Pt multilayers. We applied this method to ~1.6 nm Au nanoparticles (AuNPs) immobilized on an inert electrode surface. In contrast to themore » well-defined, segregated Au/Pt structure of the bulk-phase surface, we observe that HT electrodeposition leads to the formation of AuPt quasi-random alloy NPs rather than the core@shell structure anticipated from earlier reports relating to deposition onto bulk phases. The results provide a good example of how the phase behavior of macro materials does not always translate to the nano world. A key component of this study was the structure determination of the AuPt NPs, which required a combination of electrochemical methods, electron microscopy, X-ray absorption spectroscopy, and theory (DFT and MD).« less
Lapp, Aliya S; Duan, Zhiyao; Marcella, Nicholas; Luo, Long; Genc, Arda; Ringnalda, Jan; Frenkel, Anatoly I; Henkelman, Graeme; Crooks, Richard M
2018-05-11
In this report, we examine the structure of bimetallic nanomaterials prepared by an electrochemical approach known as hydride-terminated (HT) electrodeposition. It has been shown previously that this method can lead to deposition of a single Pt monolayer on bulk-phase Au surfaces. Specifically, under appropriate electrochemical conditions and using a solution containing PtCl 4 2- , a monolayer of Pt atoms electrodeposits onto bulk-phase Au immediately followed by a monolayer of H atoms. The H atom capping layer prevents deposition of Pt multilayers. We applied this method to ∼1.6 nm Au nanoparticles (AuNPs) immobilized on an inert electrode surface. In contrast to the well-defined, segregated Au/Pt structure of the bulk-phase surface, we observe that HT electrodeposition leads to the formation of AuPt quasi-random alloy NPs rather than the core@shell structure anticipated from earlier reports relating to deposition onto bulk phases. The results provide a good example of how the phase behavior of macro materials does not always translate to the nano world. A key component of this study was the structure determination of the AuPt NPs, which required a combination of electrochemical methods, electron microscopy, X-ray absorption spectroscopy, and theory (DFT and MD).
NASA Astrophysics Data System (ADS)
Gao, Wei; Shi, Liqin; Hasegawa, Yuki; Katsube, Teruaki
In order to develop a high temperature (200°C˜400°C) and high sensitive NOx gas sensor, we developed a new structure of SiC-based hetero-junction device Pt/SnO2/SiC/Ni, Pt/In2O3/SiC/Ni and Pt/WO3/SiC/Ni using a laser ablation method for the preparation of both metal (Pt) electrode and metal-oxide film. It was found that Pt/In2O3/SiC/Ni sensor shows higher sensitivity to NO2 gas compared with the Pt/SnO2/SiC/Ni and Pt/WO3/SiC/Ni sensor, whereas the Pt/WO3/SiC/Ni sensor had better sensitivity to NO gas. These results suggest that selective detection of NO and NO2 gases may be obtained by choosing different metal oxide films.
Pomfret, Michael B; Pietron, Jeremy J; Owrutsky, Jeffrey C
2010-05-04
Raman spectroscopy and electrochemical methods were used to study the behavior of the model adsorbate benzenethiol (BT) on nanostructured Pt, Pd, and PtPd electrodes as a function of applied potential. Benzenethiol adsorbs out of ethanolic solutions as the corresponding thiolate, and voltammetric stripping data reveal that BT is oxidatively removed from all of the nanostructured metals upon repeated oxidative and reductive cycling. Oxidative stripping potentials for BT increase in the order Pt < PtPd < Pd, indicating that BT adsorbs most strongly to nanoscale Pd. Yet, BT Raman scattering intensities, measured in situ over time scales of minutes to hours, are most persistent on the film of nanostructured Pt. Raman spectra indicate that adsorbed BT desorbs from nanoscale Pt at oxidizing potentials via cleavage of the Pt-S bond. In contrast, on nanoscale Pd and PtPd, BT is irreversibly lost due to cleavage of BT C-S bonds at oxidizing potentials, which leaves adsorbed sulfur oxides on Pd and PtPd films and effects the desulfurization of BT. While Pd and PtPd films are less sulfur-resistant than Pt films, palladium oxides, which form at higher potentials than Pt oxides, oxidatively desulfurize BT. In situ spectroelectrochemical Raman spectroscopy provides real-time, chemically specific information that complements the cyclic voltammetric data. The combination of these techniques affords a powerful and convenient method for guiding the development of sulfur-tolerant PEMFC catalysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lulu; Su, Dong; Zhu, Shangqian
Core–shell structure is a promising alternative to solid platinum (Pt) nanoparticles as electrocatalyst for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). A simple method of preparing palladium (Pd)–platinum (Pt) core–shell catalysts (Pd@Pt/C) in a gram-batch was developed with the assistance of citric acid. The Pt shell deposition involves three different pathways: galvanic displacement reaction between Pd atoms and Pt cations, chemical reduction by citric acid, and reduction by negative charges on Pd surfaces. The uniform ultrathin (~0.4 nm) Pt shell was characterized by in situ X-ray diffraction (XRD) and high-angle annular dark-field scanning transmission electron microscopymore » (HAADF-STEM) images combined with electron energy loss spectroscopy (EELS). Compared with state-of-the-art Pt/C, the Pd@Pt/C core–shell catalyst showed 4 times higher Pt mass activity and much better durability upon potential cycling. As a result, both the mass activity and durability were comparable to that of Pd@Pt/C synthesized by a Cu-mediated-Pt-displacement method, which is more complicated and difficult for mass production.« less
Zhang, Lulu; Su, Dong; Zhu, Shangqian; ...
2016-04-26
Core–shell structure is a promising alternative to solid platinum (Pt) nanoparticles as electrocatalyst for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). A simple method of preparing palladium (Pd)–platinum (Pt) core–shell catalysts (Pd@Pt/C) in a gram-batch was developed with the assistance of citric acid. The Pt shell deposition involves three different pathways: galvanic displacement reaction between Pd atoms and Pt cations, chemical reduction by citric acid, and reduction by negative charges on Pd surfaces. The uniform ultrathin (~0.4 nm) Pt shell was characterized by in situ X-ray diffraction (XRD) and high-angle annular dark-field scanning transmission electron microscopymore » (HAADF-STEM) images combined with electron energy loss spectroscopy (EELS). Compared with state-of-the-art Pt/C, the Pd@Pt/C core–shell catalyst showed 4 times higher Pt mass activity and much better durability upon potential cycling. As a result, both the mass activity and durability were comparable to that of Pd@Pt/C synthesized by a Cu-mediated-Pt-displacement method, which is more complicated and difficult for mass production.« less
Kang, Eunae; Jung, Hyunok; Park, Je-Geun; Kwon, Seungchul; Shim, Jongmin; Sai, Hiroaki; Wiesner, Ulich; Kim, Jin Kon; Lee, Jinwoo
2011-02-22
A "one-pot" synthetic method was developed to produce L1(0)-phase FePt nanoparticles in ordered mesostructured aluminosilicate/carbon composites using polyisoprene-block-poly(ethylene oxide) (PI-b-PEO) as a structure-directing agent. PI-b-PEO block copolymers with aluminosilicate sols are self-assembled with a hydrophobic iron precursor (dimethylaminomethyl-ferrocene) and a hydrophobic platinum precursor (dimethyl(1,5-cyclooctadiene)platinum(II)) to obtain mesostructured composites. The as-synthesized material was heat-treated to 800 °C under an Ar/H(2) mixture (5% v/v), resulting in the formation of fct FePt nanocrystals encapsulated in ordered mesopores. By changing the quantities of the Fe and Pt precursors in the composite materials, the average particle size of the resulting fct FePt, estimated using the Debye-Scherer equation with X-ray diffraction patterns, can be easily controlled to be 2.6-10.4 nm. Using this simple synthetic method, we can extend the size of directly synthesized fct FePt up to ∼10 nm, which cannot be achieved directly in the colloidal synthetic method. All fct FePt nanoparticles show hysteresis behavior at room temperature, which indicates that ferromagnetic particles are obtained inside mesostructued channels. Well-isolated, ∼10 nm fct FePt have a coercivity of 1100 Oe at 300 K. This coercivity value is higher than values of fct FePt nanoparticles synthesized through the tedious hard template method by employing SBA-15 as a host material. The coercivity value for FePt-1 (2.6 nm) at 5 K is as high as 11 900 Oe, which is one of the largest values reported for FePt nanoparticles, or any other magnetic nanoparticles. The fct FePt nanoparticles also showed exchange-bias behavior.
Xia, Tianyu; Liu, Jialong; Wang, Shouguo; Wang, Chao; Sun, Young; Gu, Lin; Wang, Rongming
2016-05-04
The high cost and poor durability of Pt nanoparticles (NPs) are great limits for the proton exchange membrane fuel cells (PEMFCs) from being scaled-up for commercial applications. Pt-based bimetallic NPs together with a uniform distribution can effectively reduce the usage of expensive Pt while increasing poison resistance of intermediates. In this work, a simple one-pot method was used to successfully synthesize ultrafine (about 7.5 nm) uniform NiPt truncated octahedral nanoparticles (TONPs) in dimethylformamid (DMF) without any seeds or templates. The as-prepared NiPt TONPs with Pt-rich surfaces exhibit greatly improved catalytic activities together with good tolerance and better stability for ethylene glycol oxidation reaction (EGOR) and oxygen reduction reaction (ORR) in comparison with NiPt NPs and commercial Pt/C catalysts in alkaline electrolyte. For example, the value of mass and specific activities for EGOR are 23.2 and 17.6 times higher comparing with those of commercial Pt/C, respectively. Our results demonstrate that the dramatic enhancement is mainly attributed to Pt-rich surface, larger specific surface area, together with coupling between Ni and Pt atoms. This developed method provides a promising pathway for simple preparation of highly efficient electrocatalysts for PEMFCs in the near future.
Huang, Huihong; Hu, Xiulan; Zhang, Jianbo; Su, Nan; Cheng, JieXu
2017-01-01
Decreasing the cost associated with platinum-based catalysts along with improving their catalytic properties is a major challenge for commercial direct methanol fuel cells. In this work, a simple and facile strategy was developed for the more efficient preparation of multi-walled carbon nanotube (MWCNT) -supported Pt/CoPt composite nanoparticles (NPs) via solution plasma sputtering with subsequent thermal annealing. Quite different from general wet synthesis methods, Pt/CoPt composite NPs were directly derived from metal wire electrodes without any additions. The obtained Pt/CoPt/MWCNTs composite catalysts exhibited tremendous improvement in the electro-oxidation of methanol in acidic media with mass activities of 1719 mA mg−1Pt. This value is much higher than that of previous reports of Pt-Co alloy and commercial Pt/C (3.16 times) because of the many active sites and clean surface of the catalysts. The catalysts showed good stability due to the special synergistic effects of the CoPt alloy. Pt/CoPt/MWCNTs can be used as a promising catalyst for direct methanol fuel cells. In addition, this solution plasma sputtering-assisted synthesis method introduces a general and feasible route for the synthesis of binary alloys. PMID:28358143
Social service robots to support independent living : Experiences from a field trial.
Pripfl, J; Körtner, T; Batko-Klein, D; Hebesberger, D; Weninger, M; Gisinger, C
2016-06-01
Assistive robots could be a future means to support independent living for seniors. This article provides insights into the latest developments in social service robots (SSR) based on the recently finished HOBBIT project. The idea of the HOBBIT project was to develop a low-cost SSR which is able to reduce the risk of falling, to detect falls and handle emergencies in private homes. The main objective of the project was to raise the technology to a level that allows the robot to be fully autonomously deployed in the private homes of older users and to evaluate technology market readiness, utility, usability and affordability under real-world conditions. During the initial phase of the project, a first prototype (PT1) was developed. The results of laboratory tests with PT1 were used for the development of a second prototype (PT2), which was finally tested in seven households of senior adults (mean age 79 years) for 3 weeks each, i.e. in total more than 5 months. The results showed that PT2 is intuitive to handle and that the functions offered meet the needs of older users; however, the robot was considered more as a toy than a supportive device for independent living. Furthermore, despite an emergency function of the robot, perceived security did not increase. Reasons for this might be a lack of technological robustness and slow performance of the prototype and also the good health conditions of the users; however, users believed that a market-ready version of the robot would be vital for supporting people who are more fragile and more socially isolated. Thus, SSRs have the potential to support independent living of older people although the technology has to be considerably improved to reach market readiness.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Forms Used in Permits and Licenses for Hydroelectric Projects Navigation and Navigable Waters CORPS OF... hydropower projects under the Federal Power Act (ER 1140-2-4). Pt. 221, List List of FPC Standard Articles Forms Used in Permits and Licenses for Hydroelectric Projects The following FPC standard articles Forms...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Forms Used in Permits and Licenses for Hydroelectric Projects Navigation and Navigable Waters CORPS OF... hydropower projects under the Federal Power Act (ER 1140-2-4). Pt. 221, List List of FPC Standard Articles Forms Used in Permits and Licenses for Hydroelectric Projects The following FPC standard articles Forms...
Characterizing Electrolyte and Platinum Interface in PEM Fuel Cells Using CO Displacement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrick, Taylor R.; Moylan, Thomas E.; Yarlagadda, Venkata
Relatively large O 2 transport resistance at the ionomer and Pt interface has been thought to be responsible for the large performance loss at high power for a low Pt loading proton-exchange-membrane fuel cell. A facile method to characterize the interface in the fuel cell electrode is needed. In this study, the CO displacement method was explored on polycrystalline Pt and carbon-supported Pt nanoparticles. The displacement charge coverages were used to quantify the adsorption of perchlorate, sulfate, and perfluorosulfonic acid ionomer. The application of this method in a fuel cell electrode was demonstrated.
Characterizing Electrolyte and Platinum Interface in PEM Fuel Cells Using CO Displacement
Garrick, Taylor R.; Moylan, Thomas E.; Yarlagadda, Venkata; ...
2016-12-13
Relatively large O 2 transport resistance at the ionomer and Pt interface has been thought to be responsible for the large performance loss at high power for a low Pt loading proton-exchange-membrane fuel cell. A facile method to characterize the interface in the fuel cell electrode is needed. In this study, the CO displacement method was explored on polycrystalline Pt and carbon-supported Pt nanoparticles. The displacement charge coverages were used to quantify the adsorption of perchlorate, sulfate, and perfluorosulfonic acid ionomer. The application of this method in a fuel cell electrode was demonstrated.
Methanol and ethanol electroxidation using Pt electrodes prepared by the polymeric precursor method
NASA Astrophysics Data System (ADS)
Freitas, R. G.; Santos, M. C.; Oliveira, R. T. S.; Bulhões, L. O. S.; Pereira, E. C.
The results of methanol and ethanol oxidation in acidic medium on Pt electrodes deposited on Ti substrate using the Pechini method are presented. In this route the metallic salts were dissolved in a mixture of ethylene glycol (EG) and citric acid (CA) forming a polyester network, which is painted onto a Ti substrate and then heat treated at 600 °C in order to obtain the metallic Pt thin films. The X-ray diffraction analysis showed the presence of Pt pattern peaks. The presence of the (4 2 0) plane in a higher amount compared to bulk Pt was observed and the peak position of the planes (2 0 0) and (4 2 0) were displaced by approximately -0.3°. The roughness data presented almost the same values for Ti and Ti/Pt. The electrochemical characterization of the electrodes in 0.1 M HClO 4 showed a typical Pt voltammetric profile. Although the voltammetric profiles of Ti/Pt and bulk Pt were the same, the electrocatalytical behavior for methanol oxidation showed an enhancement of the oxidation current density peak, which increased by 170% compared to bulk platinum. Although, the current density peak for ethanol oxidation on Ti/Pt is smaller than for Pt, it began at 0.11 V less positive than the same process on bulk Pt. The chronoamperometric experiments for methanol and ethanol oxidation on Ti/Pt increased by almost 934% and 440%, respectively, compared with Pt bulk.
Bai, Juan; Xiao, Xue; Xue, Yuan-Yuan; Jiang, Jia-Xing; Zeng, Jing-Hui; Li, Xi-Fei; Chen, Yu
2018-06-13
Rationally designing and manipulating composition and morphology of precious metal-based bimetallic nanostructures can markedly enhance their electrocatalytic performance, including selectivity, activity, and durability. We herein report the synthesis of bimetallic PtRh alloy nanodendrites (ANDs) with tunable composition by a facile complex-reduction synthetic method under hydrothermal conditions. The structural/morphologic features, formation mechanism, and electrocatalytic performance of PtRh ANDs are investigated thoroughly by various physical characterization and electrochemical methods. The preformed Rh crystal nuclei effectively catalyze the reduction of Pt 2+ precursor, resulting in PtRh alloy generation due to the catalytic growth and atoms interdiffusion process. The Pt atoms deposition distinctly interferes in Rh atoms deposition on Rh crystal nuclei, resulting in dendritic morphology of PtRh ANDs. For the ethanol oxidation reaction (EOR), PtRh ANDs display the chemical composition and solution pH co-dependent electrocatalytic activity. Because of the alloy effect and particular morphologic feature, Pt 1 Rh 1 ANDs with optimized composition exhibit better reactivity and stability for the EOR than commercial Pt nanocrystals electrocatalyst.
Soma, Shogo; Saiki, Akiko; Yoshida, Junichi; Ríos, Alain; Kawabata, Masanori; Sakai, Yutaka; Isomura, Yoshikazu
2017-11-08
Two distinct motor areas, the primary and secondary motor cortices (M1 and M2), play crucial roles in voluntary movement in rodents. The aim of this study was to characterize the laterality in motor cortical representations of right and left forelimb movements. To achieve this goal, we developed a novel behavioral task, the Right-Left Pedal task, in which a head-restrained male rat manipulates a right or left pedal with the corresponding forelimb. This task enabled us to monitor independent movements of both forelimbs with high spatiotemporal resolution. We observed phasic movement-related neuronal activity (Go-type) and tonic hold-related activity (Hold-type) in isolated unilateral movements. In both M1 and M2, Go-type neurons exhibited bias toward contralateral preference, whereas Hold-type neurons exhibited no bias. The contralateral bias was weaker in M2 than M1. Moreover, we differentiated between intratelencephalic (IT) and pyramidal tract (PT) neurons using optogenetically evoked spike collision in rats expressing channelrhodopsin-2. Even in identified PT and IT neurons, Hold-type neurons exhibited no lateral bias. Go-type PT neurons exhibited bias toward contralateral preference, whereas IT neurons exhibited no bias. Our findings suggest a different laterality of movement representations of M1 and M2, in each of which IT neurons are involved in cooperation of bilateral movements, whereas PT neurons control contralateral movements. SIGNIFICANCE STATEMENT In rodents, the primary and secondary motor cortices (M1 and M2) are involved in voluntary movements via distinct projection neurons: intratelencephalic (IT) neurons and pyramidal tract (PT) neurons. However, it remains unclear whether the two motor cortices (M1 vs M2) and the two classes of projection neurons (IT vs PT) have different laterality of movement representations. We optogenetically identified these neurons and analyzed their functional activity using a novel behavioral task to monitor movements of the right and left forelimbs separately. We found that contralateral bias was reduced in M2 relative to M1, and in IT relative to PT neurons. Our findings suggest that the motor information processing that controls forelimb movement is coordinated by a distinct cell population. Copyright © 2017 the authors 0270-6474/17/3710904-13$15.00/0.
Corradini, Patricia Gon; Antolini, Ermete; Perez, Joelma
2013-07-28
Pt-Pr/C electrocatalysts were prepared using a modified formic acid method, and their activity for carbon monoxide and ethanol oxidation was compared to Pt/C. No appreciable alloy formation was detected by XRD analysis. By TEM measurements it was found that Pt particle size increases with an increasing Pr content in the catalysts and with decreasing metal precursor addition time. XPS measurements indicated Pt segregation on the catalyst surface and the presence of Pr2O3 and PrO2 oxides. The addition of Pr increased the electro-catalytic activity of Pt for both CO and CH3CH2OH oxidation. The enhanced activity of Pt-Pr/C catalysts was ascribed to both an electronic effect, caused by the presence of Pr2O3, and the bi-functional mechanism, caused by the presence of PrO2.
The Faulkes Telescope Project at school
NASA Astrophysics Data System (ADS)
Neta, Miguel
2014-05-01
The Faulkes Telescope Project [1] was started in 2000 and is currently managed by the Las Cumbres Observatory Global Telescope Network (LCOGT) [2]. Allows student access to two remote telescopes (in Hawaii and in Australia), allowing you to capture images of the sky. Since January 2012 I conduct monthly observations with students: first with students from Escola Secundária de Loulé (ESL) [3] and starting from September 2013 with students from Agrupamento de Escolas Dra Laura Ayres [4], in Quarteira. Each session is previously prepared in order to make the best of the time available. For that we use a virtual planetarium that allows us to see the sky in place and time of the scheduled session. After the start of each session a student takes control in real time of one of the telescopes from a computer connected to the internet. This project is a tool that gives the students the feeling of doing science and meet the sky step by step. The observations made by my students can be found at www.miguelneta.pt/faulkestelescope. [1] http://www.faulkes-telescope.com [2] http://lcogt.net [3] https://www.es-loule.edu.pt [4] http://www.esla.edu.pt
Bragança, Luís
2014-01-01
This paper analyses the current trends in sustainability assessment. After about 15 years from the launch of sustainability assessment tools, focused on buildings evaluation, the paradigm of sustainability assessment tools is changing from the building scale to the built environment scale. Currently European cities and cities around the world are concerned with sustainable development, as well as its evolution. Cities seek a way to adapt to contemporary changes, in order to meet the required needs and ensure population's well-being. Considering this, the new generations of sustainability assessment tools are being developed to be used to guide and help cities and urban areas to become more sustainable. Following the trend of the most important sustainability assessment tools, the sustainability assessment tool SBToolPT is also developing its version for assessing the sustainability of the built environment, namely, the urban planning projects and the urban regeneration projects, to be developed in Portugal, the SBToolPT-UP. The application of the methodology to three case studies will demonstrate its feasibility; at the same time this will identify the best practices which will serve as reference for new projects, thereby assisting the development of the tool. PMID:24592171
Castanheira, Guilherme; Bragança, Luís
2014-01-01
This paper analyses the current trends in sustainability assessment. After about 15 years from the launch of sustainability assessment tools, focused on buildings evaluation, the paradigm of sustainability assessment tools is changing from the building scale to the built environment scale. Currently European cities and cities around the world are concerned with sustainable development, as well as its evolution. Cities seek a way to adapt to contemporary changes, in order to meet the required needs and ensure population's well-being. Considering this, the new generations of sustainability assessment tools are being developed to be used to guide and help cities and urban areas to become more sustainable. Following the trend of the most important sustainability assessment tools, the sustainability assessment tool SBTool(PT) is also developing its version for assessing the sustainability of the built environment, namely, the urban planning projects and the urban regeneration projects, to be developed in Portugal, the SBTool(PT)-UP. The application of the methodology to three case studies will demonstrate its feasibility; at the same time this will identify the best practices which will serve as reference for new projects, thereby assisting the development of the tool.
Liu, Sufen; Han, Lili; Zhu, Jing; ...
2015-09-14
In this study, carbon supported Pd 3V bimetallic alloy nanoparticles (Pd 3V/C) have been successfully synthesized via a simple impregnation–reduction method, followed by high temperature treatment under a H 2 atmosphere. Electrochemical tests reveal that the half-wave potential of Pd 3V/C-500 shifts positively 40 mV compared with Pd/C. However, the catalytic activity of Pd 3V/C-500 suffers from serious degradation after 1k cycles. By a spontaneous displacement reaction or co-reduction method, a trace amount of Pt was decorated on the surface or inside of the Pd 3V/C nanoparticles. The catalytic activity and stability of the Pd 3V@Pt/C and Pt-Pd 3V/C catalystsmore » for the oxygen reduction reaction (ORR) are enhanced significantly, and are comparable to commercial Pt/C. In addition, the Pt mass activity of Pd 3V@Pt/C and Pt-Pd 3V/C improves by factors of 10.9 and 6.5 at 0.80 V relative to Pt/C. Moreover, Pt-decorated Pd 3V/C nanoparticles show almost no obvious morphology change after durability tests, because the Pt-rich shell plays an important role in preventing degradation.« less
Teeter, Laura; Gassaway, Julie; Taylor, Sally; LaBarbera, Jacqueline; McDowell, Shari; Backus, Deborah; Zanca, Jeanne M.; Natale, Audrey; Cabrera, Jordan; Smout, Randall J.; Kreider, Scott E. D.; Whiteneck, Gale
2012-01-01
Background/objective Examine associations of type and quantity of physical therapy (PT) interventions delivered during inpatient spinal cord injury (SCI) rehabilitation and patient characteristics with outcomes at the time of discharge and at 1 year post-injury. Methods Physical therapists delivering routine care documented details of PT interventions provided. Regression modeling was used to predict outcomes at discharge and 1 year post-injury for a 75% subset; models were validated with the remaining 25%. Injury subgroups also were examined: motor complete low tetraplegia, motor complete paraplegia, and American Spinal Injury Association (ASIA) Impairment Scale (AIS) D motor incomplete tetra-/paraplegia. Results PT treatment variables explain more variation in three functionally homogeneous subgroups than in the total sample. Among patients with motor complete low tetraplegia, higher scores for the transfer component of the discharge motor Functional Independence Measure () are strongly associated with more time spent working on manual wheelchair skills. Being male is the most predictive variable for the motor FIM score at discharge for patients with motor complete paraplegia. Admission ASIA lower extremity motor score (LEMS) and change in LEMS were the factors most predictive for having the primary locomotion mode of “walk” or “both (walk and wheelchair)” on the discharge motor FIM for patients with AIS D injuries. Conclusion Injury classification influences type and quantity of PT interventions during inpatient SCI rehabilitation and is a strong predictor of outcomes at discharge and 1 year post-injury. The impact of PT treatment increases when patient groupings become more homogeneous and outcomes become specific to the groupings. Note This is the second of nine articles in the SCIRehab series. PMID:23318034
NASA Astrophysics Data System (ADS)
Zhang, Yan; Zang, Jianbing; Jia, Shaopei; Tian, Pengfei; Han, Chan; Wang, Yanhui
2017-08-01
Nickel and molybdenum carbide modified carbon black (Ni-MoCx/C) was synthesized by a two-step microwave-assisted deposition/carbonthermal reduction method and characterized by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The as-prepared Ni-MoCx/C supported Pt (10 wt%) electrocatalyst (10Pt/Ni-MoCx/C) was synthesized through a microwave-assisted reduction method and 10Pt/Ni-MoCx/C exhibited high electrocatalytic activity for methanol oxidation, oxygen reduction and hydrogen evolution reactions. Results showed that 10Pt/Ni-MoCx/C electrocatalyst had better electrocatalytic activity and stability performance than 20 wt% Pt/C (20Pt/C) electrocatalyst. Among them, the electrochemical surface area of 10Pt/Ni-MoCx/C reached 68.4 m2 g-1, which was higher than that of 20Pt/C (63.2 m2 g-1). The enhanced stability and activity of 10Pt/Ni-MoCx/C electrocatalyst were attributed to: (1) an anchoring effect of Ni and MoCx formed during carbonthermal reduction process; (2) a synergistic effect among Pt, Ni, MoOx and MoCx. These findings indicated that 10Pt/Ni-MoCx/C was a promising electrocatalyst for direct methanol fuel cells.
High-resolution brain SPECT imaging by combination of parallel and tilted detector heads.
Suzuki, Atsuro; Takeuchi, Wataru; Ishitsu, Takafumi; Morimoto, Yuichi; Kobashi, Keiji; Ueno, Yuichiro
2015-10-01
To improve the spatial resolution of brain single-photon emission computed tomography (SPECT), we propose a new brain SPECT system in which the detector heads are tilted towards the rotation axis so that they are closer to the brain. In addition, parallel detector heads are used to obtain the complete projection data set. We evaluated this parallel and tilted detector head system (PT-SPECT) in simulations. In the simulation study, the tilt angle of the detector heads relative to the axis was 45°. The distance from the collimator surface of the parallel detector heads to the axis was 130 mm. The distance from the collimator surface of the tilted detector heads to the origin on the axis was 110 mm. A CdTe semiconductor panel with a 1.4 mm detector pitch and a parallel-hole collimator were employed in both types of detector head. A line source phantom, cold-rod brain-shaped phantom, and cerebral blood flow phantom were evaluated. The projection data were generated by forward-projection of the phantom images using physics models, and Poisson noise at clinical levels was applied to the projection data. The ordered-subsets expectation maximization algorithm with physics models was used. We also evaluated conventional SPECT using four parallel detector heads for the sake of comparison. The evaluation of the line source phantom showed that the transaxial FWHM in the central slice for conventional SPECT ranged from 6.1 to 8.5 mm, while that for PT-SPECT ranged from 5.3 to 6.9 mm. The cold-rod brain-shaped phantom image showed that conventional SPECT could visualize up to 8-mm-diameter rods. By contrast, PT-SPECT could visualize up to 6-mm-diameter rods in upper slices of a cerebrum. The cerebral blood flow phantom image showed that the PT-SPECT system provided higher resolution at the thalamus and caudate nucleus as well as at the longitudinal fissure of the cerebrum compared with conventional SPECT. PT-SPECT provides improved image resolution at not only upper but also at central slices of the cerebrum.
Liu, Jie; Fan, Xiayue; Liu, Xiaorui; Song, Zhishuang; Deng, Yida; Han, Xiaopeng; Hu, Wenbin; Zhong, Cheng
2017-06-07
A new approach has been developed for in situ preparing cubic-shaped Pt particles with (100) preferential orientation on the surface of the conductive support by using a quick, one-step, and clean electrochemical method with periodic square-wave potential. The whole electrochemical deposition process is very quick (only 6 min is required to produce cubic Pt particles), without the use of particular capping agents. The shape and the surface structure of deposited Pt particles can be controlled by the lower and upper potential limits of the square-wave potential. For a frequency of 5 Hz and an upper potential limit of 1.0 V (vs saturated calomel electrode), as the lower potential limit decreases to the H adsorption potential region, the Pt deposits are changed from nearly spherical particles to cubic-shaped (100)-oriented Pt particles. High-resolution transmission electron microscopy and selected-area electron diffraction reveal that the formed cubic Pt particles are single-crystalline and enclosed by (100) facets. Cubic Pt particles exhibit characteristic H adsorption/desorption peaks corresponding to the (100) preferential orientation. Ge irreversible adsorption indicates that the fraction of wide Pt(100) surface domains is 47.8%. The electrocatalytic activities of different Pt particles are investigated by ammonia electro-oxidation, which is particularly sensitive to the amount of Pt(100) sites, especially larger (100) domains. The specific activity of cubic Pt particles is 3.6 times as high as that of polycrystalline spherical Pt particles, again confirming the (100) preferential orientation of Pt cubes. The formation of cubic-shaped Pt particles is related with the preferential electrochemical deposition and dissolution processes of Pt, which are coupled with the periodic desorption and adsorption processes of O-containing species and H adatoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jezierski, Andrzej, E-mail: andrzej.jezierski@ifmpan.poznan.pl; Szytuła, Andrzej
2016-02-15
The electronic structures and thermodynamic properties of LaPtIn and CePtIn are studied by means of ab-initio full-relativistic full-potential local orbital basis (FPLO) method within densities functional (DFT) methodologies. We have also examined the influence of hydrogen on the electronic structure and stability of CePtInH and LaPtInH systems. The positions of the hydrogen atoms have been found from the minimum of the total energy. Our calculations have shown that band structure and topology of the Fermi surfaces changed significantly during the hydrogenation. The thermodynamic properties (bulk modulus, Debye temperatures, constant pressure heat capacity) calculated in quasi-harmonic Debye-Grüneisen model are in amore » good agreement with the experimental data. We have applied different methods of the calculation of the equation of states (EOS) (Murnaghan, Birch-Murnaghan, Poirier–Tarantola, Vinet). The thermodynamic properties are presented for the pressure 0« less
ERIC Educational Resources Information Center
Kurubacak, Gulsun; Baptiste, H. Prentice
Through the Preparing Tomorrow's Teachers to Use Technology (PT3) project, online distance courses in College of Education at New Mexico State University (NMSU) have become an essential component of the Teacher Education Program. Pre-service teachers have been engaged in the process of learning with and about technology. The main purpose of this…
2010-01-01
Background The overall objective of this study was to develop a nanoparticle formulation for dual modality imaging of head and neck cancer. Here, we report the synthesis and characterization of polymeric phospholipid-based nanomicelles encapsulating near-infrared (NIR) phosphorescent molecules of Pt(II)-tetraphenyltetranaphthoporphyrin [Pt(TPNP)] and surface functionalized with gadolinium [Pt(TPNP)-Gd] for combined magnetic resonance imaging (MRI) and NIR optical imaging applications. Methods Dynamic light scattering, electron microscopy, optical spectroscopy and MR relaxometric measurements were performed to characterize the optical and magnetic properties of nanoparticles in vitro. Subsequently, in vivo imaging experiments were carried out using nude mice bearing primary patient tumor-derived human head and neck squamous cell carcinoma xenografts. Results The nanomicelles were ~100 nm in size and stable in aqueous suspension. T1-weighted MRI and relaxation rate (R1 = 1/T1) measurements carried out at 4.7 T revealed enhancement in the tumor immediately post injection with nanomicelles, particularly in the tumor periphery which persisted up to 24 hours post administration. Maximum intensity projections (MIPs) generated from 3D T1-weighted images also demonstrated visible enhancement in contrast within the tumor, liver and blood vessels. NIR optical imaging performed (in vivo and ex vivo) following completion of MRI at the 24 h time point confirmed tumor localization of the nanoparticles. The large spectral separation between the Pt(TPNP) absorption (~700 nm) and phosphorescence emission (~900 nm) provided a dramatic decrease in the level of background, resulting in high contrast optical (NIR phosphorescence) imaging. Conclusions In conclusion, Pt(TPNP)-Gd nanomicelles exhibit a high degree of tumor-avidity and favorable imaging properties that allow for combined MR and optical imaging of head and neck tumors. Further investigation into the potential of Pt(TPNP)-Gd nanomicelles for combined imaging and therapy of cancer is currently underway. PMID:21110873
Liu, Wenhui; Wang, Qi; Zheng, Yan; Wang, Shubin; Yan, Yan; Yang, Yanzhao
2017-06-06
In this study, a method of one-step separation and recycling of high purity Pd(ii) and Pt(iv) using an ionic liquid, 1-butyl-3-benzimidazolium bromate ([HBBIm]Br), was investigated. The effects of [HBBIm]Br concentration, initial metal concentration, and loading capacity of [HBBIm]Br were examined in detail. It was observed that [HBBIm]Br was a very effective extractant for selectively extracting Pd(ii) and precipitating Pt(iv). Through selectively extracting Pd(ii) and precipitating Pt(iv), each metal with high purity was separately obtained from mixed Pd(ii) and Pt(iv) multi-metal solution. The method of one-step separation of Pd(ii) and Pt(iv) is simple and convenient. The anion exchange mechanism between [HBBIm]Br and Pt(iv) was proven through Job's method and FTIR and 1 H NMR spectroscopies. The coordination mechanism between [HBBIm]Br and Pd(ii) was demonstrated via single X-ray diffraction and was found to be robust and distinct, as supported by the ab initio quantum-chemical studies. The crystals of the [PdBr 2 ·2BBIm] complex were formed first. Moreover, the influence of the concentrations of hydrochloric acid, sodium chloride, and sodium nitrate on the precipitation of Pt(iv) and extraction of Pd(ii) was studied herein. It was found that only the concentration of H + could inhibit the separation of Pt(iv) because H + could attract the anion PtCl 6 2- ; thus, the exchange (anion exchange mechanism) between the anions PtCl 6 2- and Br - was prevented. However, both the concentration of H + and Cl - can obviously inhibit the extraction of Pd(ii) because H + and Cl - are the reaction products and increasing their concentration can inhibit the progress of the reaction (coordination mechanism).
Low Pt content direct methanol fuel cell anode catalyst: nanophase PtRuNiZr
NASA Technical Reports Server (NTRS)
Whitacre, Jay F. (Inventor); Narayanan, Sekharipuram R. (Inventor)
2010-01-01
A method for the preparation of a metallic material having catalytic activity that includes synthesizing a material composition comprising a metal content with a lower Pt content than a binary alloy containing Pt but that displays at least a comparable catalytic activity on a per mole Pt basis as the binary alloy containing Pt; and evaluating a representative sample of the material composition to ensure that the material composition displays a property of at least a comparable catalytic activity on a per mole Pt basis as a representative binary alloy containing Pt. Furthermore, metallic compositions are disclosed that possess substantial resistance to corrosive acids.
NASA Astrophysics Data System (ADS)
Barr, Jordan A.; Lin, Fang-Yin; Ashton, Michael; Hennig, Richard G.; Sinnott, Susan B.
2018-02-01
High-throughput density functional theory calculations are conducted to search through 1572 A B O3 compounds to find a potential replacement material for lead zirconate titanate (PZT) that exhibits the same excellent piezoelectric properties as PZT and lacks both its use of the toxic element lead (Pb) and the formation of secondary alloy phases with platinum (Pt) electrodes. The first screening criterion employed a search through the Materials Project database to find A -B combinations that do not form ternary compounds with Pt. The second screening criterion aimed to eliminate potential candidates through first-principles calculations of their electronic structure, in which compounds with a band gap of 0.25 eV or higher were retained. Third, thermodynamic stability calculations were used to compare the candidates in a Pt environment to compounds already calculated to be stable within the Materials Project. Formation energies below or equal to 100 meV/atom were considered to be thermodynamically stable. The fourth screening criterion employed lattice misfit to identify those candidate perovskites that have low misfit with the Pt electrode and high misfit of potential secondary phases that can be formed when Pt alloys with the different A and B components. To aid in the final analysis, dynamic stability calculations were used to determine those perovskites that have dynamic instabilities that favor the ferroelectric distortion. Analysis of the data finds three perovskites warranting further investigation: CsNb O3 , RbNb O3 , and CsTa O3 .
Choi, Woong Kirl; Baek, Seung Yub
2015-09-22
In recent years, nanomachining has attracted increasing attention in advanced manufacturing science and technologies as a value-added processes to control material structures, components, devices, and nanoscale systems. To make sub-micro patterns on these products, micro/nanoscale single-crystal diamond cutting tools are essential. Popular non-contact methods for the macro/micro processing of diamond composites are pulsed laser ablation (PLA) and electric discharge machining (EDM). However, for manufacturing nanoscale diamond tools, these machining methods are not appropriate. Despite diamond's extreme physical properties, diamond can be micro/nano machined relatively easily using a focused ion beam (FIB) technique. In the FIB milling process, the surface properties of the diamond cutting tool is affected by the amorphous damage layer caused by the FIB gallium ion collision and implantation and these influence the diamond cutting tool edge sharpness and increase the processing procedures. To protect the diamond substrate, a protection layer-platinum (Pt) coating is essential in diamond FIB milling. In this study, the depth of Pt coating layer which could decrease process-induced damage during FIB fabrication is investigated, along with methods for removing the Pt coating layer on diamond tools. The optimum Pt coating depth has been confirmed, which is very important for maintaining cutting tool edge sharpness and decreasing processing procedures. The ultra-precision grinding method and etching with aqua regia method have been investigated for removing the Pt coating layer. Experimental results show that when the diamond cutting tool width is bigger than 500 nm, ultra-precision grinding method is appropriate for removing Pt coating layer on diamond tool. However, the ultra-precision grinding method is not recommended for removing the Pt coating layer when the cutting tool width is smaller than 500 nm, because the possibility that the diamond cutting tool is damaged by the grinding process will be increased. Despite the etching method requiring more procedures to remove the Pt coating layer after FIB milling, it is a feasible method for diamond tools with under 500 nm width.
Hosseini, Mir Ghasem; Mahmoodi, Raana
2017-08-15
The Ni@Pt/C electrocatalysts were synthesized using two different methods: with sodium dodecyl sulfate (SDS) and without SDS. The metal loading in synthesized nanocatalysts was 20wt% and the molar ratio of Ni: Pt was 1:1. The structural characterizations of Ni@Pt/C electrocatalysts were investigated by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM). The electrocatalytic activity of Ni@Pt/C electrocatalysts toward BH 4 - oxidation in alkaline medium was studied by means of cyclic voltammetry (CV), chronopotentiometry (CP), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). The results showed that Ni@Pt/C electrocatalyst synthesized without SDS has superior catalytic activity toward borohydride oxidation (22016.92Ag Pt -1 ) in comparison with a catalyst prepared in the presence of SDS (17766.15Ag Pt -1 ) in NaBH 4 0.1M at 25°C. The Membrane Electrode Assembly (MEA) used in fuel cell set-up was fabricated with catalyst-coated membrane (CCM) technique. The effect of Ni@Pt/C catalysts prepared with two methods as anode catalyst on the performance of direct borohydride-hydrogen peroxide fuel cell was studied. The maximum power density was obtained using Ni@Pt/C catalyst synthesized without SDS at 60°C, 1M NaBH 4 and 2M H 2 O 2 (133.38mWcm -2 ). Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Han-Chun; Ernst, Siegfried; Baltruschat, Helmut
2010-03-07
The apparent transfer coefficient, which gives the magnitude of the potential dependence of the electrochemical reaction rates, is the key quantity for the elucidation of electrochemical reaction mechanisms. We introduce the application of an ac method to determine the apparent transfer coefficient alpha' for the oxidation of pre-adsorbed CO at polycrystalline and single-crystalline Pt electrodes in sulfuric acid. The method allows to record alpha' quasi continuously as a function of potential (and time) in cyclic voltammetry or at a fixed potential, with the reaction rate varying with time. At all surfaces (Pt(poly), Pt(111), Pt(665), and Pt(332)) we clearly observed a transition of the apparent transfer coefficient from values around 1.5 at low potentials to values around 0.5 at higher potentials. Changes of the apparent transfer coefficients for the CO oxidation with potential were observed previously, but only from around 0.7 to values as low as 0.2. In contrast, our experimental findings completely agree with the simulation by Koper et al., J. Chem. Phys., 1998, 109, 6051-6062. They can be understood in the framework of a Langmuir-Hinshelwood mechanism. The transition occurs when the sum of the rate constants for the forward reaction (first step: potential dependent OH adsorption, second step: potential dependent oxidation of CO(ad) with OH(ad)) exceeds the rate constant for the back-reaction of the first step. We expect that the ac method for the determination of the apparent transfer coefficient, which we used here, will be of great help also in many other cases, especially under steady conditions, where the major limitations of the method are avoided.
Kim, Sun Mi; Park, Dahee; Yuk, Youngji; Kim, Sang Hoon; Park, Jeong Young
2013-01-01
We report the hot carrier-driven catalytic activity of two-dimensional arrays of Pt nanoparticles on GaN substrate under light irradiation. In order to elucidate the effect of a hot carrier in a catalytic chemical reaction, the CO oxidation reaction was carried out on Pt nanoparticles on p- and n-type GaN under light irradiation. Metal catalysts composed of Pt nanoparticles were prepared using two different preparation methods: the one-pot polyol reduction and are plasma deposition methods. Under light irradiation, the catalytic activity of the Pt nanoparticles supported on GaN exhibited a distinct change depending on the doping type. The catalytic activity of the Pt nanoparticles on the n-doped GaN wafer decreased by 8-28% under light irradiation, compared to no irradiation (i.e., in the dark), while the Pt nanoparticles on the p-doped GaN wafer increased by 11-33% under light irradiation, compared to no irradiation. The catalytic activity increased on the smaller Pt nanoparticles, compared to the larger nanoparticles, presumably due to the mean free path of hot carriers. Based on these results, we conclude that the flow of hot carriers generated at the Pt-GaN interface during light irradiation is responsible for the change in catalytic activity on the Pt nanoparticles.
Functionalized graphene-Pt composites for fuel cells and photoelectrochemical cells
Diankov, Georgi; An, Jihwan; Park, Joonsuk; Goldhaber, David J. K.; Prinz, Friedrich B.
2017-08-29
A method of growing crystals on two-dimensional layered material is provided that includes reversibly hydrogenating a two-dimensional layered material, using a controlled radio-frequency hydrogen plasma, depositing Pt atoms on the reversibly hydrogenated two-dimensional layered material, using Atomic Layer Deposition (ALD), where the reversibly hydrogenated two-dimensional layered material promotes loss of methyl groups in an ALD Pt precursor, and forming Pt-O on the reversibly hydrogenated two-dimensional layered material, using combustion by O.sub.2, where the Pt-O is used for subsequent Pt half-cycles of the ALD process, where growth of Pt crystals occurs.
NASA Astrophysics Data System (ADS)
Du Nguyen, Huy; Thuy Luyen Nguyen, T.; Nguyen, Khac Manh; Ha, Thuc Huy; Hien Nguyen, Quoc
2015-01-01
Pt nanoparticles on vulcan XC-72R support (Pt/vulcan XC-72R) were prepared by the impregnation-reduction method. The Pt content, the morphological properties and the electrochemical catalysis of the Pt/vulcan XC 72R materials have been investigated by ICP-OES analysis, FESEM, TEM, and cyclic voltammetry. These materials were then used as catalyst for hydrogen evolution reaction at the cathode of proton exchange membrane (PEM) water electrolysers. The best catalyst was Pt/vulcan XC-72R prepared by the impregnation-reduction method which is conducted in two reducing steps with the reductants of sodium borohydride and ethylene glycol, respectively. The current density of PEM water electrolysers reached 1.0 A cm-2 when applying a voltage of 2.0 V at 25 °C.
A facile method utilizing microwave irradiation is described that accomplishes the cross-linking reaction of PVA with metallic and bimetallic systems. Nanocomposites of PVA-cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-Pt, Pt-Fe, Cu...
Wan, Chieh-Hao; Wu, Chun-Lin; Lin, Meng-Tsun; Shih, Chihhsiong
2010-07-01
In this paper, a modified technique to prepare Pt-Ir catalyst layer on the proton exchange membrane (PEM) surface using the impregnation-reduction (IR) method is proposed to improve the electrocatalytic activity as well as the life cycle of the bifunctional oxygen electrode (BOE). The resulted electrocatalysts were characterized by the Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Electron Probe Micro-Analysis (EPMA), and Transmission Electron Microscope (TEM). The electrocatalytic properties of the Pt-Ir layer on PEM surface for the oxygen reduction and water oxidation reactions as well as the life cycle of MEA were investigated. Experimental results showed that the Ir particles were dispersed densely in the platinum layer through the modified IR technique. The atomic ratio of Pt over Ir elements was 9:1, and the resulted thickness of the obtained Pt-Ir catalyst layer was about 1.0 microm. The Pt-Ir catalyst layer was composed of Pt layer doped with Ir nano-particles comprising nano Pt-Ir alloy phase. The large surface area of Ir core with Pt shell particles and the presence of nano Pt-Ir alloy phase led to a higher electrocatalytic activity of BOE. Due to the good binding between the Nafion membrane and the Pt-Ir alloy catalyst, as well as the composite structure of the resulted Pt-Ir, the life cycle of Unitized Regenerative Fuel Cell (URFC) is improved through this novel BOE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paal, Z.; Gyory, A.; Uszkurat, I.
Pt-Sn/Al{sub 2}O{sub 3} catalysts were prepared using two different methods, namely, by {open_quotes}traditional{close_quotes} coimpregnation with H{sub 2}PtCl{sub 6} and SnCl{sub 4} and by a {open_quotes}new{close_quotes} method in which the bimetallic complex precursor [Pt(NH{sub 3}){sub 4}] [SnCl{sub 6}] is prepared on the support. Their catalytic activity and selectivity in n-hexane reactions were studied as a function of the hydrogen pressure (60-480 Torr) and compared with those of monometallic Pt/Al{sub 2}O{sub 3} catalysts using H{sub 2}PtCl{sub 6} or [Pt(NH{sub 3}){sub 4}]Cl{sub 2} as Pt precursors. Pt/Al{sub 2}O{sub 3} ex [Pt(NH{sub 3}){sub 4}]Cl{sub 2} showed very low dispersion and exhibited high selectivity inmore » reactions attributed to multiatomic ensembles. The results with bimetallic catalysts can be rationalized in terms of two phases being present, a PtSn alloy phase plus Pt in fine distribution. The {open_quotes}new{close_quotes} Pt-Sn/Al{sub 2}O{sub 3} from the bimetallic precursor contains the two metals in a better dispersion, resulting in a larger number of atomically dispersed surface Pt active sites. This catalyst gave more isomers (and methylcyclopentane) and fewer fragments and less benzene than the {open_quotes}traditional{close_quotes} sample. The {open_quotes}new{close_quotes} Pt-Sn/Al{sub 2}O{sub 3} sample possessed good long-term stability. The {open_quotes}traditional{close_quotes} sample lost some of its activity and its high hydrogenolysis selectivity during long use; i.e., it approached the catalytic properties of the {open_quotes}new{close_quotes} sample. Both samples are potential candidates as catalysts with high isomerizing and low aromatic selectivities (up to 75% isohexanes plus methylcyclopentane as opposed to a maximum of 20%, benzene). The results could be explained sufficiently with a geometric model, electronic interactions playing a less important role in the catalytic phenomena observed. 59 refs., 9 figs., 5 tabs.« less
2016-12-01
Universal Test Machine. .................. 7 Figure 2.2. Pull-test results of PT seven-wire strand cable surrounded by a quickset, steel - reinforced epoxy...13 Figure 2.7. Pull-test results of PT seven-wire strand cable surrounded by a quickset, steel - reinforced...surrounded by a thick layer of quickset, steel -reinforced epoxy and with 40% reduced wedges. ....................................................... 15
Mass Casualty Incident Primary Triage Methods in China.
Chen, Jin-Hong; Yang, Jun; Yang, Yu; Zheng, Jing-Chen
2015-10-05
To evaluate the technical characteristics and application of mass casualty incident (MCI) primary triage (PT) methods applied in China. Chinese literature was searched by Chinese Academic Journal Network Publishing Database (founded in June 2014). The English literature was searched by PubMed (MEDLINE) (1950 to June 2014). We also searched Official Websites of Chinese Central Government's (http://www.gov.cn/), National Health and Family Planning Commission of China (http://www.nhfpc.gov.cn/), and China Earthquake Information (http://www.csi.ac.cn/). We included studies associated with mass casualty events related to China, the PT applied in China, guidelines and standards, and application and development of the carding PT method in China. From 3976 potentially relevant articles, 22 met the inclusion criteria, 20 Chinese, and 2 English. These articles included 13 case reports, 3 retrospective analyses of MCI, two methods introductions, three national or sectoral criteria, and one simulated field testing and validation. There were a total of 19 kinds of MCI PT methods that have been reported in China from 1950 to 2014. In addition, there were 15 kinds of PT methods reported in the literature from the instance of the application. The national and sectoral current triage criteria are developed mainly for earthquake relief. Classification is not clear. Vague criteria (especially between moderate and severe injuries) operability are not practical. There are no triage methods and research for children and special populations. There is no data and evidence supported triage method. We should revise our existing classification and criteria so it is clearer and easier to be grasped in order to build a real, practical, and efficient PT method.
Moore, Christopher R.; West, Allen; LeCompte, Malcolm A.; Brooks, Mark J.; Daniel, I. Randolph; Goodyear, Albert C.; Ferguson, Terry A.; Ivester, Andrew H.; Feathers, James K.; Kennett, James P.; Tankersley, Kenneth B.; Adedeji, A. Victor; Bunch, Ted E.
2017-01-01
Previously, a large platinum (Pt) anomaly was reported in the Greenland ice sheet at the Younger Dryas boundary (YDB) (12,800 Cal B.P.). In order to evaluate its geographic extent, fire-assay and inductively coupled plasma mass spectrometry (FA and ICP-MS) elemental analyses were performed on 11 widely separated archaeological bulk sedimentary sequences. We document discovery of a distinct Pt anomaly spread widely across North America and dating to the Younger Dryas (YD) onset. The apparent synchroneity of this widespread YDB Pt anomaly is consistent with Greenland Ice Sheet Project 2 (GISP2) data that indicated atmospheric input of platinum-rich dust. We expect the Pt anomaly to serve as a widely-distributed time marker horizon (datum) for identification and correlation of the onset of the YD climatic episode at 12,800 Cal B.P. This Pt datum will facilitate the dating and correlating of archaeological, paleontological, and paleoenvironmental data between sequences, especially those with limited age control. PMID:28276513
NASA Astrophysics Data System (ADS)
Moore, Christopher R.; West, Allen; Lecompte, Malcolm A.; Brooks, Mark J.; Daniel, I. Randolph; Goodyear, Albert C.; Ferguson, Terry A.; Ivester, Andrew H.; Feathers, James K.; Kennett, James P.; Tankersley, Kenneth B.; Adedeji, A. Victor; Bunch, Ted E.
2017-03-01
Previously, a large platinum (Pt) anomaly was reported in the Greenland ice sheet at the Younger Dryas boundary (YDB) (12,800 Cal B.P.). In order to evaluate its geographic extent, fire-assay and inductively coupled plasma mass spectrometry (FA and ICP-MS) elemental analyses were performed on 11 widely separated archaeological bulk sedimentary sequences. We document discovery of a distinct Pt anomaly spread widely across North America and dating to the Younger Dryas (YD) onset. The apparent synchroneity of this widespread YDB Pt anomaly is consistent with Greenland Ice Sheet Project 2 (GISP2) data that indicated atmospheric input of platinum-rich dust. We expect the Pt anomaly to serve as a widely-distributed time marker horizon (datum) for identification and correlation of the onset of the YD climatic episode at 12,800 Cal B.P. This Pt datum will facilitate the dating and correlating of archaeological, paleontological, and paleoenvironmental data between sequences, especially those with limited age control.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE CONTINUING AUTHORITIES PROGRAMS Pt. 263, App. A Appendix A to Part 263—History of Program and Project Limitations Continuing Authorities Program Section... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false History of Program and Project...
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE CONTINUING AUTHORITIES PROGRAMS Pt. 263, App. A Appendix A to Part 263—History of Program and Project Limitations Continuing Authorities Program Section... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false History of Program and Project...
Code of Federal Regulations, 2013 CFR
2013-07-01
... ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE CONTINUING AUTHORITIES PROGRAMS Pt. 263, App. A Appendix A to Part 263—History of Program and Project Limitations Continuing Authorities Program Section... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false History of Program and Project...
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE CONTINUING AUTHORITIES PROGRAMS Pt. 263, App. A Appendix A to Part 263—History of Program and Project Limitations Continuing Authorities Program Section... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false History of Program and Project...
7 CFR Exhibit D to Subpart N of... - Project Selection Criteria-Outline Rating Form
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 13 2011-01-01 2009-01-01 true Project Selection Criteria-Outline Rating Form D Exhibit D to Subpart N of Part 1944 Agriculture Regulations of the Department of Agriculture (Continued... Preservation Grants Pt. 1944, Subpt. N, Exh. D Exhibit D to Subpart N of Part 1944—Project Selection Criteria...
Design as a Focus for Technology Integration: Lessons Learned from a PT3 Project
ERIC Educational Resources Information Center
Nelson, Wayne A.; Thomeczek, Melissa
2007-01-01
Plugging in to L.I.T.E.S. project (Leaders in Technology Enhanced Schools--a previously funded Technology Innovation Challenge grant project) at Southern Illinois University Edwardsville (SIUE) has been very successful in its attempts to enhance the technology integration skills of teacher education students, and to improve the capabilities of our…
7 CFR Exhibit D to Subpart N of... - Project Selection Criteria-Outline Rating Form
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 13 2010-01-01 2009-01-01 true Project Selection Criteria-Outline Rating Form D Exhibit D to Subpart N of Part 1944 Agriculture Regulations of the Department of Agriculture (Continued... Preservation Grants Pt. 1944, Subpt. N, Exh. D Exhibit D to Subpart N of Part 1944—Project Selection Criteria...
Maurer, M; Mesters, R; Schneppenheim, R; Knoefler, R; Streif, W
2015-05-01
Primary haemostasis defects comprise von Willebrand disease (VWD) and platelet disorders (PD). Although presenting with mild to moderate bleeding tendency in most cases, severe bleeding and blood loss may occur unexpectedly in trauma and surgery. Diagnosis of VWD and PD often remains difficult owing to the wide spectrum of clinical and laboratory manifestations. Platelet-type von Willebrand disease (PT-VWD) is frequently misdiagnosed as type 2B VWD. Discrimination between type 2B VWD and PT-VWD is crucial as treatment differs. A literature review revealed difficulties in diagnostic work-up and choice of optimal treatment of PT-VWD. Guidelines favour the therapeutic use of platelet concentrates. A telephone survey of diagnostic practice with regard to type 2B VWD/PT-VWD was conducted. The prevalence and incidence of type 2B and PT-VWD remained unclear, but PT-VWD may be underestimated. An international study estimated that PT-VWD constitutes up to 15% of the total number of patients diagnosed with type 2B VWD. Our survey confirmed difficulties with diagnosis and showed that some centres did not exclude PT-VWD in type 2B patients. Some authors emphasize that genetic testing is the gold standard for diagnosis, but functional testing allows immediate diagnosis. Due to the important therapeutic implications we suggest that type 2B VWD be confirmed by genetic testing and that in case of a negative result PT-VWD should be excluded. PT-VWD should be excluded in all suspected cases of type 2B. PT-VWD should be treated with platelet concentrates. © Georg Thieme Verlag KG Stuttgart · New York.
High specific activity platinum-195m
Mirzadeh, Saed; Du, Miting; Beets, Arnold L.; Knapp, Jr., Furn F.
2004-10-12
A new composition of matter includes .sup.195m Pt characterized by a specific activity of at least 30 mCi/mg Pt, generally made by method that includes the steps of: exposing .sup.193 Ir to a flux of neutrons sufficient to convert a portion of the .sup.193 Ir to .sup.195m Pt to form an irradiated material; dissolving the irradiated material to form an intermediate solution comprising Ir and Pt; and separating the Pt from the Ir by cation exchange chromatography to produce .sup.195m Pt.
Martins, Jéssica G; de Oliveira, Ariel C; Garcia, Patrícia S; Kipper, Matt J; Martins, Alessandro F
2018-05-15
Processing water-soluble polysaccharides, like pectin (PT), into materials with desirable stability and mechanical properties has been challenging. Here we report a new method to create water stable and mechanical resistant polyelectrolyte complex (PEC) membranes from PT and chitosan (CS) assemblies, without covalent crosslinking. This new method overcomes challenges of obtaining stable and durable complexes, by performing the complexation at low pH, enabling complex formation even when using an excess of PT, and when using PT with high degree of O-methoxylation. By performing the complexation at low pH, the complexes form with a high degree of intermolecular association, instead of forming by electrostatic complexation. This method avoids precipitation, and overcomes the aqueous instability typical of PT/CS complexes. After neutralization, the PEC membranes display features characteristic of a high degree of intermolecular association because of the self-assembling of polymer chains. The PT/CS ratio can be tuned to enhance the mechanical strength (σ = 39 MPa) of the membranes. These polysaccharide-based materials can demonstrate advantages over synthetic materials for technological applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Photothermal technique in cell microscopy studies
NASA Astrophysics Data System (ADS)
Lapotko, Dmitry; Chebot'ko, Igor; Kutchinsky, Georgy; Cherenkevitch, Sergey
1995-01-01
Photothermal (PT) method is applied for a cell imaging and quantitative studies. The techniques for cell monitoring, imaging and cell viability test are developed. The method and experimental set up for optical and PT-image acquisition and analysis is described. Dual- pulsed laser set up combined with phase contrast illumination of a sample provides visualization of temperature field or absorption structure of a sample with spatial resolution 0.5 micrometers . The experimental optics, hardware and software are designed using the modular principle, so the whole set up can be adjusted for various experiments: PT-response monitoring or photothermal spectroscopy studies. Sensitivity of PT-method provides the imaging of the structural elements of live (non-stained) white blood cells. The results of experiments with normal and subnormal blood cells (red blood cells, lymphocytes, neutrophyles and lymphoblasts) are reported. Obtained PT-images are different from optical analogs and deliver additional information about cell structure. The quantitative analysis of images was used for cell population comparative diagnostic. The viability test for red blood cell differentiation is described. During the study of neutrophyles in norma and sarcoidosis disease the differences in PT-images of cells were found.
Evaluation of MOSFET-type glucose sensor using platinum electrode with glucose oxidase
NASA Astrophysics Data System (ADS)
Ooe, Katsutoshi; Hamamoto, Yasutaro; Hirano, Yoshiaki
2005-02-01
As the population ages, health management will be one of the important issues. The development of a safe medical machine based on MEMS technologies for the human body will be the primary research project in the future. We have developed the glucose sensor, as one of the medical based devices, for use in the Health Monitoring System (HMS). HMS is the device that continuously monitors human health conditions. For example, blood is the monitoring target of HMS. The glucose sensor specifically detects the glucose levels of the blood and monitors the glucose concentration as the blood sugar level. This glucose sensor has a "separated Au electrode", which immobilizes GOx. In our previous work, GOx was immobilized onto Au electrode by the SAMs (Self-Assembled Monolayer) method, and the sensor, using this working electrode, detected the glucose concentration of an aqueous glucose solution. In this report, we used a Pt electrode, which immobilized GOx, as a working electrode. Au electrode, which was used previously, was dissolved by the application of current in the presence of chloride ions. Based on the above-mentioned fact, a new working electrode, which immobilized GOx, was produced using Pt, which did not possess such characteristics. These Pt working electrodes were produced using the covalent binding method and the cross-link method, and both the electrodes displayed a good sensing property. In addition, the electrode using glutaraldehyde (GA) and bovine serum albumin (BSA) as crosslinking agents was produced, and it displayed better characteristics as compared with those displayed by the electrode that used only GA. Based on the above-mentioned techniques, the improvement in performance of the sensor was confirmed.
Commutability of food microbiology proficiency testing samples.
Abdelmassih, M; Polet, M; Goffaux, M-J; Planchon, V; Dierick, K; Mahillon, J
2014-03-01
Food microbiology proficiency testing (PT) is a useful tool to assess the analytical performances among laboratories. PT items should be close to routine samples to accurately evaluate the acceptability of the methods. However, most PT providers distribute exclusively artificial samples such as reference materials or irradiated foods. This raises the issue of the suitability of these samples because the equivalence-or 'commutability'-between results obtained on artificial vs. authentic food samples has not been demonstrated. In the clinical field, the use of noncommutable PT samples has led to erroneous evaluation of the performances when different analytical methods were used. This study aimed to provide a first assessment of the commutability of samples distributed in food microbiology PT. REQUASUD and IPH organized 13 food microbiology PTs including 10-28 participants. Three types of PT items were used: genuine food samples, sterile food samples and reference materials. The commutability of the artificial samples (reference material or sterile samples) was assessed by plotting the distribution of the results on natural and artificial PT samples. This comparison highlighted matrix-correlated issues when nonfood matrices, such as reference materials, were used. Artificially inoculated food samples, on the other hand, raised only isolated commutability issues. In the organization of a PT-scheme, authentic or artificially inoculated food samples are necessary to accurately evaluate the analytical performances. Reference materials, used as PT items because of their convenience, may present commutability issues leading to inaccurate penalizing conclusions for methods that would have provided accurate results on food samples. For the first time, the commutability of food microbiology PT samples was investigated. The nature of the samples provided by the organizer turned out to be an important factor because matrix effects can impact on the analytical results. © 2013 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Jelínek, Miroslav; Drahokoupil, Jan; Jurek, Karel; Kocourek, Tomáš; Vaněk, Přemysl
2017-09-01
The thin-films of BaTiO3 (BTO)/Pt were prepared to test their potential as coatings for titanium-alloy implants. The nanocrystalline BTO/Pt bi-layers were successfully synthesized using fused silica as substrates. The bi-layers were prepared using KrF excimer laser ablation at substrate temperatures (Ts) ranging from 650 °C to 750 °C. The microstructure and composition of the deposits were investigated by scanning electron microscope, x-ray diffraction and wavelength dispersive x-ray spectroscopy methods. The electrical characterization of the Pt/BTO/Pt capacitors indicated ferroelectric-type response in BTO films containing (40-140) nm-sized grains. The technology, microstructure, and functional response of the layers are presented in detail.
Bacterial toxicity/compatibility of platinum nanospheres, nanocuboids and nanoflowers
Gopal, Judy; Hasan, Nazim; Manikandan, M.; Wu, Hui-Fen
2013-01-01
For the first time, we have investigated the bacterial toxicity or compatibility properties of Pt nanoparticles (NPs) with different sizes (P1, P2, P3, P4 and P5). The bacterio-toxic or compatible properties of these five different sized Pt NPs with the clinical pathogen, Pseudomonas aeruginosa were explored by many analytical methods such as the conventional plate count method, matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS), fluorescence microscopy and fluorescence sensoring techniques. The results revealed that the 1–3 nm sized (P1 and P2) Pt NPs showed bacterio-toxic properties while the 4–21 nm (P3, P4 and P5) Pt NPs exhibited bacterio-compatible properties. This is the first study which reports the bacterial toxicity of Pt NPs. The information released from this study is significantly important to future clinical, medical, biological and biomedical applications of Pt NPs. PMID:23405274
Hunt, Alison C; Ek, Mattias; Schönbächler, Maria
2017-12-01
This study presents a new measurement procedure for the isolation of Pt from iron meteorite samples. The method also allows for the separation of Pd from the same sample aliquot. The separation entails a two-stage anion-exchange procedure. In the first stage, Pt and Pd are separated from each other and from major matrix constituents including Fe and Ni. In the second stage, Ir is reduced with ascorbic acid and eluted from the column before Pt collection. Platinum yields for the total procedure were typically 50-70%. After purification, high-precision Pt isotope determinations were performed by multi-collector ICP-MS. The precision of the new method was assessed using the IIAB iron meteorite North Chile. Replicate analyses of multiple digestions of this material yielded an intermediate precision for the measurement results of 0.73 for ε 192 Pt, 0.15 for ε 194 Pt and 0.09 for ε 196 Pt (2 standard deviations). The NIST SRM 3140 Pt solution reference material was passed through the measurement procedure and yielded an isotopic composition that is identical to the unprocessed Pt reference material. This indicates that the new technique is unbiased within the limit of the estimated uncertainties. Data for three iron meteorites support that Pt isotope variations in these samples are due to exposure to galactic cosmic rays in space.
de Miguel, Dunia; Burgaleta, Carmen; Reyes, Eduardo; Pascual, Teresa
2003-07-01
We evaluated a new portable monitor (AvoSure PT PRO, Menarini Diagnostics, Firenze, Italy) developed to test the prothrombin time in capillary blood and plasma by comparing it with the standard laboratory determination. We studied 62 patients receiving acenocoumarol therapy. The international normalized ratio (INR) in capillary blood was analyzed by 2 methods: AvoSure PT PRO and Thrombotrack Nycomed Analyzer (Axis-Shield, Dundee, Scotland). Parallel studies were performed in plasma samples by a reference method using the Behring Coagulation Timer (Behring Diagnostics, Marburg, Germany). Plasma samples also were tested with the AvoSure PT PRO. Correlation was good for INR values for capillary blood and plasma samples by AvoSure PT PRO and our reference method (R2 = 0.8596) and for capillary blood samples tested by the AvoSure PT PRO and Thrombotrack Nycomed Analyzer (R2 = 0.8875). The correlation for INR in capillary blood and plasma samples by AvoSure PT PRO was 0.6939 (P < .0004). Capillary blood determinations are rapid and effective for monitoring oral anticoagulation therapy and have a high correlation to plasma determinations. AvoSure PT PRO is accurate for controlling INR in plasma and capillary blood samples, may be used in outpatient clinics, and has advantages over previous portable monitors.
NASA Astrophysics Data System (ADS)
Taurino, Irene; Sanzó, Gabriella; Mazzei, Franco; Favero, Gabriele; de Micheli, Giovanni; Carrara, Sandro
2015-10-01
Novel methods to obtain Pt nanostructured electrodes have raised particular interest due to their high performance in electrochemistry. Several nanostructuration methods proposed in the literature use costly and bulky equipment or are time-consuming due to the numerous steps they involve. Here, Pt nanostructures were produced for the first time by one-step template-free electrodeposition on Pt bare electrodes. The change in size and shape of the nanostructures is proven to be dependent on the deposition parameters and on the ratio between sulphuric acid and chloride-complexes (i.e., hexachloroplatinate or tetrachloroplatinate). To further improve the electrochemical properties of electrodes, depositions of Pt nanostructures on previously synthesised Pt nanostructures are also performed. The electroactive surface areas exhibit a two order of magnitude improvement when Pt nanostructures with the smallest size are used. All the biosensors based on Pt nanostructures and immobilised glucose oxidase display higher sensitivity as compared to bare Pt electrodes. Pt nanostructures retained an excellent electrocatalytic activity towards the direct oxidation of glucose. Finally, the nanodeposits were proven to be an excellent solid contact for ion measurements, significantly improving the time-stability of the potential. The use of these new nanostructured coatings in electrochemical sensors opens new perspectives for multipanel monitoring of human metabolism.
Green synthesis and characterization of Au@Pt core-shell bimetallic nanoparticles using gallic acid
NASA Astrophysics Data System (ADS)
Zhang, Guojun; Zheng, Hongmei; Shen, Ming; Wang, Lei; Wang, Xiaosan
2015-06-01
In this study, we developed a facile and benign green synthesis approach for the successful fabrication of well-dispersed urchin-like Au@Pt core-shell nanoparticles (NPs) using gallic acid (GA) as both a reducing and protecting agent. The proposed one-step synthesis exploits the differences in the reduction potentials of AuCl4- and PtCl62-, where the AuCl4- ions are preferentially reduced to Au cores and the PtCl62- ions are then deposited continuously onto the Au core surface as a Pt shell. The as-prepared Au@Pt NPs were characterized by transmission electron microscope (TEM); high-resolution transmission electron microscope (HR-TEM); scanning electron microscope (SEM); UV-vis absorption spectra (UV-vis); X-ray diffraction (XRD); Fourier transmission infrared spectra (FT-IR). We systematically investigated the effects of some experimental parameters on the formation of the Au@Pt NPs, i.e., the reaction temperature, the molar ratios of HAuCl4/H2PtCl6, and the amount of GA. When polyvinylpyrrolidone K-30 (PVP) was used as a protecting agent, the Au@Pt core-shell NPs obtained using this green synthesis method were better dispersed and smaller in size. The as-prepared Au@Pt NPs exhibited better catalytic activity in the reaction where NaBH4 reduced p-nitrophenol to p-aminophenol. However, the results showed that the Au@Pt bimetallic NPs had a lower catalytic activity than the pure Au NPs obtained by the same method, which confirmed the formation of Au@Pt core-shell nanostructures because the active sites on the surfaces of the Au NPs were covered with a Pt shell.
Photoactivation of Diiodido-Pt(IV) Complexes Coupled to Upconverting Nanoparticles.
Perfahl, Stefanie; Natile, Marta M; Mohamad, Heba S; Helm, Christiane A; Schulzke, Carola; Natile, Giovanni; Bednarski, Patrick J
2016-07-05
The preparation, characterization, and surface modification of upconverting lanthanide-doped hexagonal NaGdF4 nanocrystals attached to light sensitive diiodido-Pt(IV) complexes is presented. The evaluation for photoactivation and cytotoxicity of the novel carboxylated diiodido-Pt(IV) cytotoxic prodrugs by near-infrared (NIR) light (λ = 980 nm) is also reported. We attempted two different strategies for attachment of light-sensitive diiodido-Pt(IV) complexes to Yb,Er- and Yb,Tm-doped β-NaGdF4 upconverting nanoparticles (UCNPs) in order to provide nanohybrids, which offer unique opportunities for selective drug activation within the tumor cells and subsequent spatiotemporal controlled drug release by NIR-to-visible light-upconversion: (A) covalent attachment of the Pt(IV) complex via amide bond formation and (B) carboxylate exchange of oleate on the surface of the UCNPs with diiodido-Pt(IV) carboxylato complexes. Initial feasibility studies showed that NIR applied by a 980 nm laser had only a slight effect on the stability of the various diiodido-Pt(IV) complexes, but when UCNPs were present more rapid loss of the ligand-metal-charge transfer (LMCT) bands of the diiodido-Pt(IV) complexes was observed. Furthermore, Pt released from the Pt(IV) complexes platinated calf-thymus DNA (ct-DNA) more rapidly when NIR was applied compared to dark controls. Of the two attachment strategies, method A with the covalently attached diiodido-Pt(IV) carboxylates via amide bond formation proved to be the most effective method for generating UCNPs that release Pt when irradiated with NIR; the released Pt was also able to bind irreversibly to calf thymus DNA. Nonetheless, only ca. 20% of the Pt on the surface of the UCNPs was in the Pt(IV) oxidation state, the rest was Pt(II), indicating chemical reduction of the diiodido-Pt(IV) prodrug by the UCNPs. Cytotoxicity studies with the various UCNP-Pt conjugates and constructs, tested on human leukemia HL60 cells in culture, indicated a substantial increase in cytotoxicity when modified UCNPs were combined with five rounds of 30 min irradiation with NIR compared to dark controls, but NIR alone also had a significant cytotoxic effect at this duration.
MYC RNAi-PT Combination Nanotherapy for Metastatic Prostate Cancer Treatment
2017-10-01
Department of the Army position, policy or decision unless so designated by other documentation. REPORT DOCUMENTATION PAGE Form Approved OMB No ...Suite 1204, Arlington, VA 22202- 4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to...of the NPs loaded with MYC siRNA and cisplatin prodrug (synthesized in Year 1 of this project) against the Pt-resistant PCa cells. In parallel, we
Xi, Zheng; Lv, Haifeng; Erdosy, Daniel P.; ...
2017-05-07
Here, we report an electrochemical method to deposit atomic scale Pt on a 5 nm Au nanoparticle (NP) surface in N 2-saturated 0.5 M H 2SO 4. Furthermore, Pt is provided by the Pt wire counter electrode via one-step Pt wire oxidation, dissolution, and deposition realized by controlled electrochemical scanning. Scanning from 0.6–1.0 V (vs. RHE) for 10 000 cycles gives Au 98.2Pt 1.8, which serves as an excellent catalyst for the formic acid oxidation reaction, showing 41 times higher specific activity (20.19 mA cm -2) and 25 times higher mass activity (10.80 A mg Pt -1) with much bettermore » CO-tolerance and stability than commercial Pt. This work demonstrates a unique strategy to minimize the use of Pt as a catalyst for electrochemical reactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Zheng; Lv, Haifeng; Erdosy, Daniel P.
Here, we report an electrochemical method to deposit atomic scale Pt on a 5 nm Au nanoparticle (NP) surface in N 2-saturated 0.5 M H 2SO 4. Furthermore, Pt is provided by the Pt wire counter electrode via one-step Pt wire oxidation, dissolution, and deposition realized by controlled electrochemical scanning. Scanning from 0.6–1.0 V (vs. RHE) for 10 000 cycles gives Au 98.2Pt 1.8, which serves as an excellent catalyst for the formic acid oxidation reaction, showing 41 times higher specific activity (20.19 mA cm -2) and 25 times higher mass activity (10.80 A mg Pt -1) with much bettermore » CO-tolerance and stability than commercial Pt. This work demonstrates a unique strategy to minimize the use of Pt as a catalyst for electrochemical reactions.« less
Facile Synthesis of Nanoporous Pt-Y alloy with Enhanced Electrocatalytic Activity and Durability
NASA Astrophysics Data System (ADS)
Cui, Rongjing; Mei, Ling; Han, Guangjie; Chen, Jiyun; Zhang, Genhua; Quan, Ying; Gu, Ning; Zhang, Lei; Fang, Yong; Qian, Bin; Jiang, Xuefan; Han, Zhida
2017-02-01
Recently, Pt-Y alloy has displayed an excellent electrocatalytic activity for oxygen reduction reaction (ORR), and is regarded as a promising cathode catalyst for fuel cells. However, the bulk production of nanoscaled Pt-Y alloy with outstanding catalytic performance remains a great challenge. Here, we address the challenge through a simple dealloying method to synthesize nanoporous Pt-Y alloy (NP-PtY) with a typical ligament size of ~5 nm. By combining the intrinsic superior electrocatalytic activity of Pt-Y alloy with the special nanoporous structure, the NP-PtY bimetallic catalyst presents higher activity for ORR and ethanol oxidation reaction, and better electrocatalytic stability than the commercial Pt/C catalyst and nanoporous Pt alloy. The as-made NP-PtY holds great application potential as a promising electrocatalyst in proton exchange membrane fuel cells due to the advantages of facile preparation and excellent catalytic performance.
A pathway for the growth of core-shell Pt-Pd nanoparticles
Narula, Chaitanya Kumar; Yang, Xiaofan; Li, Chen; ...
2015-10-12
In this study, the aging of both Pt-Pd nanoparticles and core-shell Pt-Pd nanoparticles has been reported to result in alloying of Pt with Pd. In comparison to monometallic Pt catalysts, the growth of Pd-Pt bimetallics is slower; however, the mechanism of growth of particles and the mechanism by which Pd improves the hydrothermal durability of bimetallic Pd-Pt particles remains uncertain. In our work on hydrothermal aging of core-shell Pt-Pd nanoparticles, synthesized by solution methods, with varying Pd:Pt ratio of 1:4, 1:1, and 4:1, we compare the growth of core-shell Pt-Pd nanoparticles and find that particles grow by migrating and joiningmore » together. The unique feature of the observed growth is that Pd shells from both particles open up and join, allowing the cores to merge. At high temperatures, alloying occurs in good agreement with reports by other workers.« less
Mass Casualty Incident Primary Triage Methods in China
Chen, Jin-Hong; Yang, Jun; Yang, Yu; Zheng, Jing-Chen
2015-01-01
Objective: To evaluate the technical characteristics and application of mass casualty incident (MCI) primary triage (PT) methods applied in China. Data Sources: Chinese literature was searched by Chinese Academic Journal Network Publishing Database (founded in June 2014). The English literature was searched by PubMed (MEDLINE) (1950 to June 2014). We also searched Official Websites of Chinese Central Government's (http://www.gov.cn/), National Health and Family Planning Commission of China (http://www.nhfpc.gov.cn/), and China Earthquake Information (http://www.csi.ac.cn/). Study Selection: We included studies associated with mass casualty events related to China, the PT applied in China, guidelines and standards, and application and development of the carding PT method in China. Results: From 3976 potentially relevant articles, 22 met the inclusion criteria, 20 Chinese, and 2 English. These articles included 13 case reports, 3 retrospective analyses of MCI, two methods introductions, three national or sectoral criteria, and one simulated field testing and validation. There were a total of 19 kinds of MCI PT methods that have been reported in China from 1950 to 2014. In addition, there were 15 kinds of PT methods reported in the literature from the instance of the application. Conclusions: The national and sectoral current triage criteria are developed mainly for earthquake relief. Classification is not clear. Vague criteria (especially between moderate and severe injuries) operability are not practical. There are no triage methods and research for children and special populations. There is no data and evidence supported triage method. We should revise our existing classification and criteria so it is clearer and easier to be grasped in order to build a real, practical, and efficient PT method. PMID:26415807
NASA Astrophysics Data System (ADS)
Xiao, R. C.; Cheung, C. H.; Gong, P. L.; Lu, W. J.; Si, J. G.; Sun, Y. P.
2018-06-01
k paths exactly with symmetry allow to find triply degenerate points (TDPs) in band structures. The paths that host the type-II Dirac points in PtSe2 family materials also have the spatial symmetry. However, due to Kramers degeneracy (the systems have both inversion symmetry and time reversal symmetry), the crossing points in them are Dirac ones. In this work, based on symmetry analysis, first-principles calculations, and method, we predict that PtSe2 family materials should undergo topological transitions if the inversion symmetry is broken, i.e. the Dirac fermions in PtSe2 family materials split into TDPs in PtSeTe family materials (PtSSe, PtSeTe, and PdSeTe) with orderly arranged S/Se (Se/Te). It is different from the case in high-energy physics that breaking inversion symmetry I leads to the splitting of Dirac fermion into Weyl fermions. We also address a possible method to achieve the orderly arranged in PtSeTe family materials in experiments. Our study provides a real example that Dirac points transform into TDPs, and is helpful to investigate the topological transition between Dirac fermions and TDP fermions.
One-Pot Polyol Synthesis of Pt/CeO2 and Au/CeO2 Nanopowders as Catalysts for CO Oxidation.
Pilger, Frank; Testino, Andrea; Lucchini, Mattia Alberto; Kambolis, Anastasios; Tarik, Mohammed; El Kazzi, Mario; Arroyo, Yadira; Rossell, Marta D; Ludwig, Christian
2015-05-01
The facile one-pot synthesis of CeO2-based catalysts has been developed to prepare a relatively large amount of nanopowders with relevant catalytic activity towards CO oxidation. The method consists of a two-steps process carried out in ethylene glycol: in the first step, 5 nm well-crystallized pure CeO2 is prepared. In a subsequent second step, a salt of a noble metal is added to the CeO2 suspension and the deposition of the noble metal on the nanocrystalline CeO2 is induced by heating. Two catalysts were prepared: Pt/CeO2 and Au/CeO2. The as-prepared catalysts, the thermally treated catalysts, as well as the pure CeO2, are characterized by XRD, TGA, XPS, FTIR, HR-TEM, STEM, particle size distribution, and N2-physisorption. In spite of the identical preparation protocol, Au and Pt behave in a completely different way: Au forms rather large particles, most of them with triangular shape, easily identifiable and dispersed in the CeO2 matrix. In contrast, Pt was not identified as isolated particles. The high resolution X-ray diffraction carried out on the Pt/CeO2 thermally treated sample (500 degrees C for 1 h) shows a significant CeO2 lattice shrinkage, which can be interpreted as an at least partial incorporation of Pt into the CeO2 crystal lattice. Moreover, only Pt2+ and Pt4+ species were identified by XPS. In literature, the incorporation of Pt into the CeO2 lattice is supported by first-principle calculations and experimentally demonstrated only by combustion synthesis methods. To the best of our knowledge this is the first report where ionically dispersed Pt into the CeO2 lattice is obtained via a liquid synthesis method. The thermally treated Pt/CeO2 sample revealed good activity with 50% CO conversion at almost room temperature.
Roos, Lilian; Hofstetter, Marie-Claire; Mäder, Urs; Wyss, Thomas
2015-11-01
Adequate physical fitness is essential for successful military service. Military organizations worldwide therefore make continuous efforts to improve their army's physical training (PT) programs. To investigate the effect of the training methods and the qualification of PT instructors on the development of recruits' physical fitness, the present study compared the outcomes of 2 training groups. Both study groups participated in approximately 145 minutes per week of PT. The control group executed the standard army PT prepared and supervised by army PT instructors. Content of the PT in the intervention group was similar to that of the control group, but their training sessions' methods were different. Their training sessions were organized, prepared, and delivered by more and better-qualified supervisors (tertiary-educated physical education teachers). After 10 weeks of training, the participants of the intervention group experienced a significantly greater physical fitness improvement than those of the control group (positive change in endurance 32 and 17%, balance 30 and 21%, and core strength 74 and 45%, respectively). In both groups, the recruits with the lowest initial fitness levels significantly increased their performance. In the intervention group, but not the control, one-third of the recruits with the highest initial fitness levels were able to further improve their general fitness performance. This study demonstrates that the training methods and quality of instruction during PT sessions are relevant for recruits' fitness development in basic military training.
Analysis of forecasting and inventory control of raw material supplies in PT INDAC INT’L
NASA Astrophysics Data System (ADS)
Lesmana, E.; Subartini, B.; Riaman; Jabar, D. A.
2018-03-01
This study discusses the data forecasting sales of carbon electrodes at PT. INDAC INT L uses winters and double moving average methods, while for predicting the amount of inventory and cost required in ordering raw material of carbon electrode next period using Economic Order Quantity (EOQ) model. The result of error analysis shows that winters method for next period gives result of MAE, MSE, and MAPE, the winters method is a better forecasting method for forecasting sales of carbon electrode products. So that PT. INDAC INT L is advised to provide products that will be sold following the sales amount by the winters method.
Tri-metallic PtPdAu mesoporous nanoelectrocatalysts.
Li, Chunjie; Wang, Hongjing; Li, Yinghao; Yu, Hongjie; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang
2018-06-22
The design of mesoporous materials with multi-metallic compositions is highly important for various electrocatalytic applications. In this paper, we demonstrate an efficient method to directly fabricate tri-metallic PtPdAu mesoporous nanoparticles (PtPdAu MNs) in a high yield, which is simply performed by heating treatment of the reaction mixture aqueous solution at 40 °C for 4 h. Profiting from its mesoporous structure and multi-metallic components, the as-prepared PtPdAu MNs exhibit enhanced electrocatalytic activities toward both methanol oxidation reaction and oxygen reduction reaction in comparison with bi-metallic PtPd MNs and commercial Pt/C catalyst.
Tri-metallic PtPdAu mesoporous nanoelectrocatalysts
NASA Astrophysics Data System (ADS)
Li, Chunjie; Wang, Hongjing; Li, Yinghao; Yu, Hongjie; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang
2018-06-01
The design of mesoporous materials with multi-metallic compositions is highly important for various electrocatalytic applications. In this paper, we demonstrate an efficient method to directly fabricate tri-metallic PtPdAu mesoporous nanoparticles (PtPdAu MNs) in a high yield, which is simply performed by heating treatment of the reaction mixture aqueous solution at 40 °C for 4 h. Profiting from its mesoporous structure and multi-metallic components, the as-prepared PtPdAu MNs exhibit enhanced electrocatalytic activities toward both methanol oxidation reaction and oxygen reduction reaction in comparison with bi-metallic PtPd MNs and commercial Pt/C catalyst.
Purely substitutional nitrogen on graphene/Pt(111) unveiled by STM and first principles calculations
NASA Astrophysics Data System (ADS)
Gomez-Rodriguez, Jose M.; Martin-Recio, Ana; Romero-Muniz, Carlos; Pou, Pablo; Perez, Ruben
Nitrogen doping of graphene can be an efficient way of tuning its pristine electronic properties. Several techniques have been used to introduce nitrogen atoms on graphene layers. The main problem in most of them is the formation of a variety of C-N species that produce different electronic and structural changes on the 2D layer. Here we report on a method to obtain purely substitutional nitrogen on graphene on Pt(111) surfaces. A detailed experimental study performed in situ, under ultra-high vacuum conditions with scanning tunneling microscopy, low energy electron diffraction and Auger electron spectroscopy of the different steps on the preparation of the sample, has allowed us to gain insight into the optimal parameters for this growth method, that combines ion bombardment and annealing. This experimental work is complemented by first-principles calculations that provide the variation of the projected density of states due to both the metallic substrate and the nitrogen atoms. These calculations enlighten the experimental findings and prove that the species found are graphitic nitrogen. This easy and effective technique leads to the possibility of playing with the amount of dopants and the metallic substrate to obtain the desired doping of the graphene layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yazhou; Cheng, Xiaonong; Yen, Clive H.
Graphene cellular monolith (GCM) can be used as an excellent support for nanoparticles in widespread applications. However, it's still a great challenge to deposit the desirable nanoparticles in GCM that have small size, controllable structure, composition, and high dispersion using the current methods. Here we demonstrate a green, efficient and large-scale method to address this challenge using supercritical fluid (SCF). By this superior method, graphene hydrogel can be transferred into GCM while being deposited with ultrafine and highly dispersive nanoparticles. Specifically, the bimetallic PtFe/GCM and the trimetallic PtFeCo/GCM catalysts are successfully synthesized, and their electrocatalytic performances toward oxygen reduction reactionmore » (ORR) are also studied. The resultant PtFe/GCM shows the significant enhancement in ORR activity, including a factor of 8.47 enhancement in mass activity (0.72 A mgPt-1), and a factor of 7.67 enhancement in specific activity (0.92 mA cm-2), comparing with those of the commercial Pt/C catalyst (0.085 A mgPt-1, 0.12 mA cm-2). Importantly, by introducing the Co, the trimetallic PtFeCo/GCM exhibits the further improved ORR activities (1.28 A mgPt-1, 1.80 mA cm-2). The high ORR activity is probably attributed to the alloying structure, ultrafine size, highly dispersive, well-defined, and a better interface with 3D porous graphene support.« less
NASA Astrophysics Data System (ADS)
Zhou, Yazhou; Cheng, Xiaonong; Yen, Clive H.; Wai, Chien M.; Wang, Chongmin; Yang, Juan; Lin, Yuehe
2017-04-01
Graphene cellular monolith (GCM) can be used as an excellent support for nanoparticles in widespread applications. However, it's still a great challenge to deposit the desirable nanoparticles in GCM that have small size, controllable structure, composition, and high dispersion using the current methods. Here we demonstrate a green, efficient and large-scale method to address this challenge using supercritical fluid (SCF). By this superior method, graphene hydrogel can be transferred into GCM while being deposited with ultrafine and highly dispersive nanoparticles. Specifically, the bimetallic PtFe/GCM and the trimetallic PtFeCo/GCM catalysts are successfully synthesized, and their electrocatalytic performances toward oxygen reduction reaction (ORR) are also studied. The resultant PtFe/GCM shows the significant enhancement in ORR activity, including a factor of 8.47 enhancement in mass activity (0.72 A mgPt-1), and a factor of 7.67 enhancement in specific activity (0.92 mA cm-2), comparing with those of the commercial Pt/C catalyst (0.085 A mgPt-1, 0.12 mA cm-2). Importantly, by introducing the Co, the trimetallic PtFeCo/GCM exhibits the further improved ORR activities (1.28 A mgPt-1, 1.80 mA cm-2). The high ORR activity is probably attributed to the alloying structure, ultrafine size, highly dispersive, well-defined, and a better interface with 3D porous graphene support.
Lengths of nephron tubule segments and collecting ducts in the CD-1 mouse kidney: an ontogeny study.
Walton, Sarah L; Moritz, Karen M; Bertram, John F; Singh, Reetu R
2016-11-01
The kidney continues to mature postnatally, with significant elongation of nephron tubules and collecting ducts to maintain fluid/electrolyte homeostasis. The aim of this project was to develop methodology to estimate lengths of specific segments of nephron tubules and collecting ducts in the CD-1 mouse kidney using a combination of immunohistochemistry and design-based stereology (vertical uniform random sections with cycloid arc test system). Lengths of tubules were determined at postnatal day 21 (P21) and 2 and 12 mo of age and also in mice fed a high-salt diet throughout adulthood. Immunohistochemistry was performed to identify individual tubule segments [aquaporin-1, proximal tubules (PT) and thin descending limbs of Henle (TDLH); uromodulin, distal tubules (DT); aquaporin-2, collecting ducts (CD)]. All tubular segments increased significantly in length between P21 and 2 mo of age (PT, 602% increase; DT, 200% increase; TDLH, 35% increase; CD, 53% increase). However, between 2 and 12 mo, a significant increase in length was only observed for PT (76% increase in length). At 12 mo of age, kidneys of mice on a high-salt diet demonstrated a 27% greater length of the TDLH, but no significant change in length was detected for PT, DT, and CD compared with the normal-salt group. Our study demonstrates an efficient method of estimating lengths of specific segments of the renal tubular system. This technique can be applied to examine structure of the renal tubules in combination with the number of glomeruli in the kidney in models of altered renal phenotype. Copyright © 2016 the American Physiological Society.
Theoretical Calculation of the Gas-Sensing Properties of Pt-Decorated Carbon Nanotubes
Zhang, Xiaoxing; Dai, Ziqiang; Wei, Li; Liang, Naifeng; Wu, Xiaoqing
2013-01-01
The gas-sensing properties of Pt-decorated carbon nanotubes (CNTs), which provide a foundation for the fabrication of sensors, have been evaluated. In this study, we calculated the gas adsorption of Pt-decorated (8,0) single-wall CNTs (Pt-SWCNTs) with SO2, H2S, and CO using GGA/PW91 method based on density functional theory. The adsorption energies and the changes in geometric and electronic structures after absorption were comprehensively analyzed to estimate the responses of Pt-SWCNTs. Results indicated that Pt-SWCNTs can respond to the three gases. The electrical characteristics of Pt-SWCNTs show different changes after adsorption. Pt-SWCNTs donate electrons and increase the number of hole carriers after adsorbing SO2, thereby enhancing its conductivity. When H2S is adsorbed on CNTs, electrons are transferred from H2S to Pt-SWCNTs, converting Pt-SWCNTs from p-type to n-type sensors with improved conductivity. However, Pt-SWCNTs obtain electrons and show decreased conductivity when reacted with CO gas. PMID:24201317
NASA Astrophysics Data System (ADS)
Chen, De-Jun; Zhang, Qian-Li; Feng, Jin-Xia; Ju, Ke-Jian; Wang, Ai-Jun; Wei, Jie; Feng, Jiu-Ju
2015-08-01
In this work, a simple, rapid and facile one-pot wet-chemical co-reduction method is developed for synthesis of bimetallic Au-Pt alloyed nanochains supported on reduced graphene oxide (Au-Pt NCs/RGO), in which caffeine is acted as a capping agent and a structure-directing agent, while no any seed, template, surfactant or polymer involved. The as-prepared nanocomposites display enlarged electrochemical active surface area, significantly enhanced catalytic activity and better stability for methanol and ethylene glycol oxidation, compared with commercial Pt-C (Pt 50 wt%), PtRu-C (Pt 30 wt% and Ru 15 wt%) and Pt black.
Catalytic activity of platinum on ruthenium electrodes with modified (electro)chemical states.
Park, Kyung-Won; Sung, Yung-Eun
2005-07-21
Using Pt on Ru thin-film electrodes with various (electro)chemical states designed by the sputtering method, the effect of Ru states on the catalytic activity of Pt was investigated. The chemical and electrochemical properties of Pt/Ru thin-film samples were confirmed by X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry. In addition, Pt nanoparticles on Ru metal or oxide for an actual fuel cell system showed an effect of Ru states on the catalytic activity of Pt in methanol electrooxidation. Finally, it was concluded that such an enhancement of methanol electrooxidation on the Pt is responsible for Ru metallic and/or oxidation sites compared to pure Pt without any Ru state.
Synthesis of PtRu/Ru heterostructure for efficient methanol electrooxidation: The role of extra Ru
NASA Astrophysics Data System (ADS)
Bai, Lei
2018-03-01
Platinum-ruthenium (PtRu) nanocubes and PtRu/Ru heterostructure via epitaxial growth were synthesized by varying the amount of Ru precursor. As model catalysts, the PtRu/Ru heterostructure demonstrated the highest catalytic performance in electrooxidation of methanol, which was possibly due to the more hydroxyl species produced from the extra Ru nanoparticles as well as enhanced adsorption of methanol of PtRu alloys in the PtRu/Ru heterostructure. The catalytic performance of the catalysts was closely related with the structure, which was well characterized by a series of methods. It was expected that the present work could provide a new insight for the synthesis of PtRu based nanocatalysts.
In situ SAXS study on size changes of platinum nanoparticles with temperature
NASA Astrophysics Data System (ADS)
Wang, W.; Chen, X.; Cai, Q.; Mo, G.; Jiang, L. S.; Zhang, K.; Chen, Z. J.; Wu, Z. H.; Pan, W.
2008-09-01
Poly(vinylpyrrolidone) (PVP)-coated platinum (Pt) nanoparticles were prepared in methanol-water reduction method. In situ small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD) techniques were used to probe the size change of particles and crystallites with temperature. Tangent-by-tangent (TBT) method of SAXS data analysis was improved and used to get the particle size distribution (PSD) from SAXS intensity. Scherrer’s equation was used to derive the crystallite size from XRD pattern. Combining SAXS and XRD results, a step-like characteristic of the Pt nanoparticle growth has been found. Three stages (diffusion, aggregation, and agglomeration) can be used to describe the growth of the Pt nanoparticles and nanocrystallites. Aggregation was found to be the main growth mode of the Pt nanoparticles during heating. The maximum growth rates of Pt nanoparticles and Pt nanocrystallites, as well as the maximum aggregation degree of Pt nanocrystallites were found, respectively, at 250 °C, 350 °C and 300 °C. These results are helpful to understanding the growth mode of nanoparticles, as well as controlling the nanoparticle size.
Probing Single Pt Atoms in Complex Intermetallic Al13Fe4.
Yamada, Tsunetomo; Kojima, Takayuki; Abe, Eiji; Kameoka, Satoshi; Murakami, Yumi; Gille, Peter; Tsai, An Pang
2018-03-21
The atomic structure of a 0.2 atom % Pt-doped complex metallic alloy, monoclinic Al 13 Fe 4 , was investigated using a single crystal prepared by the Czochralski method. High-angle annular dark-field scanning transmission electron microscopy showed that the Pt atoms were dispersed as single atoms and substituted at Fe sites in Al 13 Fe 4 . Single-crystal X-ray structural analysis revealed that the Pt atoms preferentially substitute at Fe(1). Unlike those that have been reported, Pt single atoms in the surface layers showed lower activity and selectivity than those of Al 2 Pt and bulk Pt for propyne hydrogenation, indicating that the active state of a given single-atom Pt site is strongly dominated by the bonding to surrounding Al atoms.
Formation of Platinum Catalyst on Carbon Black Using an In-Liquid Plasma Method for Fuel Cells.
Show, Yoshiyuki; Ueno, Yutaro
2017-01-31
Platinum (Pt) catalyst was formed on the surface of carbon black using an in-liquid plasma method. The formed Pt catalyst showed the average particle size of 4.1 nm. This Pt catalyst was applied to a polymer electrolyte membrane fuel cell (PEMFC). The PEMFC showed an open voltage of 0.85 V and a maximum output power density of 216 mW/cm2.
Formation of Platinum Catalyst on Carbon Black Using an In-Liquid Plasma Method for Fuel Cells
Show, Yoshiyuki; Ueno, Yutaro
2017-01-01
Platinum (Pt) catalyst was formed on the surface of carbon black using an in-liquid plasma method. The formed Pt catalyst showed the average particle size of 4.1 nm. This Pt catalyst was applied to a polymer electrolyte membrane fuel cell (PEMFC). The PEMFC showed an open voltage of 0.85 V and a maximum output power density of 216 mW/cm2. PMID:28336864
Bias and variance reduction in estimating the proportion of true-null hypotheses
Cheng, Yebin; Gao, Dexiang; Tong, Tiejun
2015-01-01
When testing a large number of hypotheses, estimating the proportion of true nulls, denoted by \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\pi _0$\\end{document}, becomes increasingly important. This quantity has many applications in practice. For instance, a reliable estimate of \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\pi _0$\\end{document} can eliminate the conservative bias of the Benjamini–Hochberg procedure on controlling the false discovery rate. It is known that most methods in the literature for estimating \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\pi _0$\\end{document} are conservative. Recently, some attempts have been paid to reduce such estimation bias. Nevertheless, they are either over bias corrected or suffering from an unacceptably large estimation variance. In this paper, we propose a new method for estimating \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\pi _0$\\end{document} that aims to reduce the bias and variance of the estimation simultaneously. To achieve this, we first utilize the probability density functions of false-null \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$p$\\end{document}-values and then propose a novel algorithm to estimate the quantity of \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\pi _0$\\end{document}. The statistical behavior of the proposed estimator is also investigated. Finally, we carry out extensive simulation studies and several real data analysis to evaluate the performance of the proposed estimator. Both simulated and real data demonstrate that the proposed method may improve the existing literature significantly. PMID:24963010
Improving the secrecy rate by turning foes to allies: An auction scheme
NASA Astrophysics Data System (ADS)
Ma, Ya-Yan; Wang, Bao-Yun
2015-09-01
Security against eavesdroppers is a critical issue in cognitive radio networks (CRNs). In this paper, a scenario consisting of one primary pair and multiple secondary pairs is considered. The secondary transmitters (STs) work in half-duplex mode and they are potential eavesdroppers on the primary transmission unless they are allowed to simultaneously transmit with the primary transmitter (PT). A modified second-price sealed-bid auction scheme is employed to model the interaction between the PT and STs. With the proposed auction scheme, the hostile relationship between the PT and STs is transformed into a cooperative relationship. An iterative algorithm based on the max-min criteria is proposed to find the optimal bidding power of the STs for an access chance in the presence of multiple eavesdroppers. Numerical results show that the proposed auction scheme not only improves the PT’s security but also increases the access opportunities of the STs. Project supported by the National Natural Science Foundation of China (Grant Nos. 61271232 and 61372126) and the University Postgraduate Research and Innovation Project in Jiangsu Province, China (Grant No. CXZZ12-0472).
NASA Astrophysics Data System (ADS)
Jeena, S. E.; Gnanaprakasam, P.; Selvaraju, T.
2017-01-01
A simple and an efficient tool for the direct growth of bimetallic Ag@Pt nanorods (NRDs) on electrochemically reduced graphene oxide (ERGO) nanosheets was developed at glassy carbon electrode (GCE). Initially, Cu shell was grown on Ag core as Ag@Cu NRD by the seed-mediated growth method. Accordingly, Cu shell has been successfully replaced by Pt using the electroless galvanic replacement method with ease by effective functionalization of L-tryptophan on ERGO surface (L-ERGO), which eventually plays an important role in the direct growth of one-dimensional bimetallic NRDs. As a result, the synthesized Ag@Pt NRD-supported L-ERGO nanosheets (Ag@Pt NRDs/L-ERGO/GCE) were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDAX) and Raman spectroscopy. Anodic stripping voltammetry was used to explore its electrochemical properties. Finally, the developed bimetallic Ag@Pt NRDs/L-ERGO/GCEs were studied as a better electrocatalyst compared to the commercial catalysts such as Pt40/C or Pt20/C-loaded electrode for the oxidation of ethanol or methanol with a high tolerance level and an enhanced current density. In addition, the long-term stability was studied using chronoamperometry for 1000 s at the bimetallic NRD electrode for alcohol oxidation which impedes the fouling properties. The unfavourable and favourable electrooxidation of ethanol at Ag@Cu NRDs/L-ERGO/GCE (a) and Ag@Pt NRDs/L-ERGO/GCE (b) is discussed. The synergistic effect of Ag core and catalytic properties of Pt shell at Ag@Pt NRDs/L-ERGO/GCE tend to strongly minimize the CO poisoning effect and enhanced ethanol electrooxidation.
Synthesis and Characterization of CO-and H2S-Tolerant Electrocatalysts for PEM Fuel Cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamsuddin Ilias
2005-12-22
The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary,more » ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period we synthesized four Pt-based electrocatalysts catalysts (Pt/Ru/Mo/Se, Pt/Ru/Mo/Ir, Pt/Ru/Mo/W, Ptr/Ru/Mo/Co) on Vulcan XG72 Carbon support by both conventional and ultra-sonication method. From current-voltage performance study, the catalytic activity was found in the increasing order of Pt/Ru/Mo/Ir > Pt/Ru/Mo/W > Pt/Ru/Mo/Co > Pt/Ru/MO/Se. Sonication method appears to provide better dispersion of catalysts on carbon support.« less
The control of Pt and Ru nanoparticle size on high surface area supports.
Liu, Qiuli; Joshi, Upendra A; Über, Kevin; Regalbuto, John R
2014-12-28
Supported Ru and Pt nanoparticles are synthesized by the method of strong electrostatic adsorption and subsequently treated under different steaming-reduction conditions to achieve a series of catalysts with controlled particle sizes, ranging from 1 to 8 nm. While in the case of oxidation-reduction conditions, only Pt yielded particles ranging from 2.5 to 8 nm in size and a loss of Ru was observed. Both Ru and Pt sinter faster in air than in hydrogen. This methodology allows the control of particle size using a "production-scalable" catalyst synthesis method which can be applied to high surface area supports with common metal precursors.
Szalma, József; Vajta, László; Lempel, Edina; Tóth, Ákos; Jeges, Sára; Olasz, Lajos
2017-10-01
The aim of this in vitro study was to investigate temperature increases in the inferior alveolar canal (IAC), when different bone preparation methods approximate and penetrate the IAC. In pig mandible, buccal bone removals were performed until the neurovascular bundle became visible. Temperatures were registered with thermocouple probes and with infrared thermometer. Preparations were performed with diamond drills (DD), tungsten carbide drills (TCD), piezoelectric diamond sphere (PT_D) and saw (PT_S) tips, and a combined preparation method was also performed whereby the superficial three-fourths of the bone was removed with TCD and the deepest one-fourth of the bone with PT_D (TCD + PT_D_7 °C) or PT_S (TCD + PT_S_7 °C), using cooled irrigation (7 °C). Preparations using room temperature irrigation caused significantly less heat on the bone surface than in the IAC. Piezosurgery in the IAC produced significantly higher temperatures (>13 °C) than the drills (<4 °C). Heat productions of the piezoelectric tips were reduced significantly by applying the combined bone removal methods. The speed of PT_S and TCD + PT_S_7 °C were comparable to the speed of TCD, whereas TCD + PT_D_7 °C was found to be significantly slower. The speed of piezosurgery is comparable to that of the drills; however, it produces the highest, potentially nerve-harming temperatures. To eliminate the heat consequences during piezosurgery in the IAC, the use of cooled irrigation at 7 °C and predrilling is recommended. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yan, Zaoxue; He, Guoqiang; Jiang, Zhifeng; Wei, Wei; Gao, Lina; Xie, Jimin
2015-06-01
Mesoporous graphene-like nanobowls (GLBs) with high surface area of 1091 m2 g-1, high pore volume of 2.7 cm3 g-1 and average pore diameter of 9.8 nm are synthesized through template method. The GLBs with inherent excellent electrical conductivity and chemical inertia show the properties of well mass transfer, poison resistance and stable loading of smaller Pt particles. Therefore, the Pt/GLB catalyst shows much higher activity and stability than that of commercial Pt/C (TKK) for methanol oxidation reaction (MOR). Therein, the peak current density on Pt/GLB (2075 mA mgPt-1) for MOR is 2.87 times that of commercial Pt/C (723 mA mgPt-1); and the onset potential for the MOR on the former is negatively shifted about 160 mV compared with that on the latter. The catalytic performances of the Pt/GLB are also better than those of the Pt loading on mesoporous amorphous carbon nanobowls (Pt/BLC), indicating promotion effect of graphite on Pt catalytic performance.
NASA Astrophysics Data System (ADS)
Wang, Weiguo; Zou, Yake; Yan, Jinwu; Liu, Jing; Chen, Huixiong; Li, Shan; Zhang, Lei
2018-03-01
In this paper, an ultrasensitive colorimetric biosensor for human chorionic gonadotrophin (hCG) detection was designed from bottom-up method based on the dual catalysis of the horseradish peroxidase (HRP) and Au@Pt nanoparticles (NPs) relative to H2O2-TEM system. HRP and monoclonal mouse anti-hCG antibody (β-submit, mAb1) were co-immobilized onto the Au@Pt NP surface to improve catalytic efficiency and specificity, which formed a dual functionalized Au@Pt-HRP probe with the mean size of 42.8 nm (D50). The colorimetric immunoassay was developed for the hCG detection, and the Au@Pt-HRP probe featured a higher sensitivity in the concentration range of 0.4-12.8 IU L- 1 with a low limit of detection (LOD) of 0.1 IU L- 1 compared with the LODs of 0.8 IU L- 1 for BA-ELISA and of 2.0 IU L- 1 for Au@Pt, which indicated that the Au@Pt-HRP probe possessed higher catalytic efficiency with 2.8-fold increase over Au@Pt and 33.8-fold increase over HRP. Also, the Au@Pt-HRP probe exhibited good precision and reproducibility, high specificity and acceptable accuracy with CV being less than 15%. The dual functionalized Au@Pt-HRP probe as a type of signal amplified method was firstly applied in the colorimetric immunoassay for the hCG detection.
NASA Astrophysics Data System (ADS)
Okazaki, Tomohisa; Seino, Satoshi; Matsuura, Yoshiyuki; Otake, Hiroaki; Kugai, Junichiro; Ohkubo, Yuji; Nitani, Hiroaki; Nakagawa, Takashi; Yamamoto, Takao A.
2017-04-01
The process of nanoparticle formation by radiation chemical synthesis in a heterogeneous system has been investigated. Carbon-supported Pt-based bimetallic nanoparticles were synthesized using a high-energy electron beam. Rh, Cu, Ru, and Sn were used as counterpart metals. The nanoparticles were characterized by inductively coupled plasma atomic emission spectrometry, transmission electron microscopy, X-ray diffraction, and X-ray absorption spectroscopy. PtRh formed a uniform random alloy nanoparticle, while Cu partially formed an alloy with Pt and the remaining Cu existed as CuO. PtRu formed an alloy structure with a composition distribution of a Pt-rich core and Ru-rich shell. No alloying was observed in PtSn, which had a Pt-SnO2 structure. The alloy and oxide formation mechanisms are discussed considering the redox potentials, the standard enthalpy of oxide formation, and the solid solubilities of Pt and the counterpart metals.
Synthesis and characterization of magnetically hard Fe-Pt alloy nanoparticles and nano-islands
NASA Astrophysics Data System (ADS)
Hu, Xiaocao
In this dissertation, we explored the fabrication of FePt nanoparticles and nano-islands with the face-centered tetragonal (fct, L10) phase prepared by both chemical synthesis routes and physical vapor deposition. Microstructure and magnetic properties characterizations were used to gain a fundamental understanding of the nano-structure formation and atomic ordering behavior and determine the possible applications in the next generation ultra-high density magnetic storage media. FePt nanoparticles prepared by thermal decomposition of iron pentacarbonyl [Fe(CO)5] have been widely investigated and by tuning the processing procedure monodispersed FePt nanoparticles with good assembly can be obtained. The as-made FePt nanoparticles are usually in the magnetically soft face-centered cubic (fcc) phase. To transformation to the fct phase, post-annealing at above 600°C is needed which, however, introduces undesirable agglomeration and sintering. To address this problem, we used three different fabrication processes which are discussed below. In the first fabrication experiment, the FePt nanoparticles were fabricated by a novel environmental friendly method involving crystalline saline complex hexaaquairon (II) hexachloroplatinate ([Fe(H2O)6]PtCl 6) with a special layered structure. Then the precursor was ball milled with NaCl and annealed at temperatures above 400°C under a reducing atmosphere of forming gas (95% Ar and 5% H2) FePt nanoparticles were obtained after washing away NaCl with deionized water. This method avoids the use of the very poisonous Fe(CO)5 and other organic solvents such as oleylamine and oleic acid. Instead, environmentally friendly NaCl and water were used. The size of FePt nanoparticles was controlled by varying the proportion of precursor and NaCl (from 10mg/20g to 50mg/20g). Particles with size in the range of 6.2--13.2 nm were obtained. All the nanoparticles annealed above 400°C are in the highly ordered fct phase with a coercivity range of 4.7 kOe to 10.7 kOe. Compared with reported high annealing temperatures above 600°C, this fabrication process led to a significantly decreased temperature to achieve the L10 phase FePt by 200°C. A qualitative model was set up to explain the surprising low L10 phase achievement temperature and the influence of annealing temperature on the microstructure and magnetic properties was investigated. Although FePt nanoparticles with high coercivity and small size were successfully obtained by the first fabrication method, agglomeration happened during the washing procedure due to the large inter-particle magnetostatic force caused by their high magnetization. To avoid this agglomeration, exfoliated graphene was introduced in the second preparation method to keep the nanoparticles separated. Different from the traditional solvent-phase reaction to disperse FePt nanoparticles onto the exfoliated graphene, a novel solid-phase reaction was used in this dissertation involving the layered precursor [Fe(H2 O)6]PtCl6 molecule. The [Fe(H2O) 6]PtCl6 water solution was mixed with exfoliated graphene oxide (GO) and then the top solution was removed. Fe2+ and Pt2+ ions were absorbed onto the surface of GO. The remaining product was annealed under a reducing atmosphere of forming gas at different temperatures (500°C to 950°C). During the reduction process, GO was reduced to "graphene" and FePt nanoparticles were formed on the surface of exfoliated graphene. The separation effect by the exfoliated graphene increased the phase transformation temperature to 600°C compared to the first method. However, even at an annealing temperature as high as 750°C, we could still obtained separated, small size FePt nanoparticles with coercivity of 8.3 kOe. The third preparation method used in this dissertation is the traditional magnetron sputtering with very short deposition time (10 s to 25 s) on heated MgO (001) substrate to form separate nano-islands instead of continuous thin films. The ordering of FePt nano-islands were studied by high resolution transmission electron microscopy. Because of the low degree of atomic ordering of the as-prepared nano-islands, post annealing at 700°C under an atmosphere of forming gas was introduced. Ordering of nano-islands of as small as 3 nm was revealed. We discovered that in the ordered FePt nano-islands, there are defects present. Particularly, we observed an onion like structure in a FePt nano-island composed of c-domains perpendicular to each other. These defects explained the low coercivity of the L10 ordered FePt nano-islands, which was envisioned theoretically. In summary, in this dissertation, novel solid-phase, environmentally friendly synthesis methods to fabricate FePt nanoparticles and FePt nanoparticles on "graphene" with high coercivity are first reported. Also, a special onion-like structure was first discovered by high-resolution microscopy and theoretical simulation was done with good agreement with the experimental results.
Perry, Albert; Babanova, Sofia; Matanovic, Ivana; ...
2016-07-14
Here in this study we combined experimental approaches and density functional theory to evaluate novel platinum-based materials as electrocatalysts for oxalic acid oxidation. Several Pt alloys, PtSn (1:1), PtSn (19:1), PtRu (1:4), PtRuSn (5:4:1), and PtRhSn (3:1:4), were synthetized using sacrificial support method and tested for oxidation of oxalic acid at pH 4. It was shown that PtSn (1:1) and PtRu (1:4) have higher mass activity relative to Pt. These two materials along with Pt and one of the least active alloys, PtSn (19:1), were further analyzed for the oxidation of oxalic acid at different pHs. The results show thatmore » all samples tested followed an identical trend of decreased onset potential with increased pH and increased catalytic activity with decreased pH. Density functional theory was further utilized to gain a fundamental knowledge about the mechanism of oxalic acid oxidation on Pt, PtSn (1:1), and PtRu (1:4). In conclusion, the results of the calculations along with the experimentally observed dependence of generated currents on the oxalic acid concentration indicate that the mechanism of oxalic acid oxidation on Pt proceeds without the participation of surface oxidizing species, while on Pt alloys it involves their participation.« less
NASA Astrophysics Data System (ADS)
Bai, Juan; Fang, Chun-Long; Liu, Zong-Huai; Chen, Yu
2016-01-01
Three-dimensional (3D) noble metal nanoassemblies composed of one-dimensional (1D) nanowires have been attracting much interest due to the unique physical and chemical properties of 1D nanowires as well as the particular interconnected open-pore structure of 3D nanoassemblies. In this work, well-defined Au/Pt wire nanoassemblies were synthesized by using a facile NaBH4 reduction method in the presence of a branched form of polyethyleneimine (PEI). A study of the growth mechanism indicated the morphology of the final product to be highly related to the molecular structure of the polymeric amine. Also, the preferred Pt-on-Pt deposition contributed to the formation of the 1D Pt nanowires. The Au/Pt wire nanoassemblies were functionalized with PEI at the same time that these nanoassemblies were synthesized due to the strong N-Pt bond. The chemically functionalized Au/Pt wire nanoassemblies exhibited better electrocatalytic activity for the electro-oxidation of oxalic acid than did commercial Pt black.Three-dimensional (3D) noble metal nanoassemblies composed of one-dimensional (1D) nanowires have been attracting much interest due to the unique physical and chemical properties of 1D nanowires as well as the particular interconnected open-pore structure of 3D nanoassemblies. In this work, well-defined Au/Pt wire nanoassemblies were synthesized by using a facile NaBH4 reduction method in the presence of a branched form of polyethyleneimine (PEI). A study of the growth mechanism indicated the morphology of the final product to be highly related to the molecular structure of the polymeric amine. Also, the preferred Pt-on-Pt deposition contributed to the formation of the 1D Pt nanowires. The Au/Pt wire nanoassemblies were functionalized with PEI at the same time that these nanoassemblies were synthesized due to the strong N-Pt bond. The chemically functionalized Au/Pt wire nanoassemblies exhibited better electrocatalytic activity for the electro-oxidation of oxalic acid than did commercial Pt black. Electronic supplementary information (ESI) available: Experimental details and additional physical characterization. See DOI: 10.1039/c5nr08150e
Nie, Longhui; Zheng, Yingqiu; Yu, Jiaguo
2014-09-14
Pt/honeycomb ceramic (Pt/HC) catalysts with ultra-low Pt content (0.005-0.055 wt%) were for the first time prepared by an impregnation of honeycomb ceramics with Pt precursor and NaBH4-reduction combined method. The microstructures, morphologies and textural properties of the resulting samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The obtained Pt/HC catalysts were used for catalytic oxidative decomposition of formaldehyde (HCHO) at room temperature. It was found that the as-prepared Pt/HC catalysts can efficiently decompose HCHO in air into CO2 and H2O at room temperature. The catalytic activity of the Pt/HC catalysts increases with increasing the Pt loading in the range of 0.005-0.013 wt%, and the further increase of the Pt loading does not obviously improve catalytic activity. From the viewpoint of cost and catalytic performance, 0.013 wt% Pt loading is the optimal Pt loading amount, and the Pt/HC catalyst with 0.013 wt% Pt loading also exhibited good catalytic stability. Considering practical applications, this work will provide new insights into the low-cost and large-scale fabrication of advanced catalytic materials for indoor air purification.
Adaptive Fourier decomposition based R-peak detection for noisy ECG Signals.
Ze Wang; Chi Man Wong; Feng Wan
2017-07-01
An adaptive Fourier decomposition (AFD) based R-peak detection method is proposed for noisy ECG signals. Although lots of QRS detection methods have been proposed in literature, most detection methods require high signal quality. The proposed method extracts the R waves from the energy domain using the AFD and determines the R-peak locations based on the key decomposition parameters, achieving the denoising and the R-peak detection at the same time. Validated by clinical ECG signals in the MIT-BIH Arrhythmia Database, the proposed method shows better performance than the Pan-Tompkin (PT) algorithm in both situations of a native PT and the PT with a denoising process.
Hwang, Bing Joe; Chen, Ching-Hsiang; Sarma, Loka Subramanyam; Chen, Jiun-Ming; Wang, Guo-Rung; Tang, Mau-Tsu; Liu, Din-Goa; Lee, Jyh-Fu
2006-04-06
The understanding of the formation mechanism of nanoparticles is essential for the successful particle design and scaling-up process. This paper reports findings of an X-ray absorption spectroscopy (XAS) investigation, comprised of X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) regions, to understand the mechanism of the carbon-supported Pt-Ru nanoparticles (NPs) formation process. We have utilized Watanabe's colloidal reduction method to synthesize Pt-Ru/C NPs. We slightly modified the Watanabe method by introducing a mixing and heat treatment step of Pt and Ru oxidic species at 100 degrees C for 8 h with a view to enhance the mixing efficiency of the precursor species, thereby one can achieve improved homogeneity and atomic distribution in the resultant Pt-Ru/C NPs. During the reduction process, in situ XAS measurements allowed us to follow the evolution of Pt and Ru environments and their chemical states. The Pt LIII-edge XAS indicates that when H2PtCl6 is treated with NaHSO3, the platinum compound is found to be reduced to a Pt(II) form corresponding to the anionic complex [Pt(SO3)4]6-. Further oxidation of this anionic complex with hydrogen peroxide forms dispersed [Pt(OH)6]2- species. Analysis of Ru K-edge XAS results confirms the reduction of RuIIICl3 to [RuII(OH)4]2- species upon addition of NaHSO3. Addition of hydrogen peroxide to [RuII(OH)4]2- causes dehydrogenation and forms RuOx species. Mixing of [Pt(OH)6]2- and RuOx species and heat treatment at 100 degrees C for 8 h produced a colloidal sol containing both Pt and Ru metallic as well as ionic contributions. The reduction of this colloidal mixture at 300 degrees C in hydrogen atmosphere for 2 h forms Pt-Ru nanoparticles as indicated by the presence of Pt and Ru atoms in the first coordination shell. Determination of the alloying extent or atomic distribution of Pt and Ru atoms in the resulting Pt-Ru/C NPs reveals that the alloying extent of Ru (JRu) is greater than that of the alloying extent of Pt (JPt). The XAS results support the Pt-rich core and Ru-rich shell structure with a considerable amount of segregation in the Pt region and with less segregation in the Ru region for the obtained Pt-Ru/C NPs.
Sumner, D.M.; Jacobs, J.M.
2005-01-01
Actual evapotranspiration (ETa) was measured at 30-min resolution over a 19-month period (September 28, 2000-April 23, 2002) from a nonirrigated pasture site in Florida, USA, using eddy correlation methods. The relative magnitude of measured ETa (about 66% of long-term annual precipitation at the study site) indicates the importance of accurate ET a estimates for water resources planning. The time and cost associated with direct measurements of ETa and the rarity of historical measurements of ETa make the use of methods relying on more easily obtainable data desirable. Several such methods (Penman-Monteith (PM), modified Priestley-Taylor (PT), reference evapotranspiration (ET 0), and pan evaporation (Ep)) were related to measured ETa using regression methods to estimate PM bulk surface conductance, PT ??, ET0 vegetation coefficient, and Ep pan coefficient. The PT method, where the PT ?? is a function of green-leaf area index (LAI) and solar radiation, provided the best relation with ET a (standard error (SE) for daily ETa of 0.11 mm). The PM method, in which the bulk surface conductance was a function of net radiation and vapor-pressure deficit, was slightly less effective (SE=0.15 mm) than the PT method. Vegetation coefficients for the ET0 method (SE=0.29 mm) were found to be a simple function of LAI. Pan coefficients for the Ep method (SE=0.40 mm) were found to be a function of LAI and Ep. Historical or future meteorological, LAI, and pan evaporation data from the study site could be used, along with the relations developed within this study, to provide estimates of ETa in the absence of direct measurements of ETa. Additionally, relations among PM, PT, and ET0 methods and ETa can provide estimates of ETa in other, environmentally similar, pasture settings for which meteorological and LAI data can be obtained or estimated. ?? 2004 Elsevier B.V. All rights reserved.
Observation and elimination of broken symmetry in L1{sub 0} FePt nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quarterman, P.; Wang, Hao; Qiu, Jiao-Ming
2015-12-07
An unexplained surface anisotropy effect was observed and confirmed in the magnetization reversal process of both L1{sub 0} phase FePt nanoparticles with octahedral shape and (001) textured L1{sub 0} FePt thin films with island nanostructures. We suggest that the nature of the observed surface effect is caused by broken symmetry on the FePt surface, which results in weakened exchange coupling for surface atoms. Furthermore, we propose, and experimentally demonstrate, a method to repair the broken symmetry by capping the FePt islands with a Pt layer, which could prove invaluable in understanding fundamental limitations of magnetic nanostructures.
Electricity generation of microbial fuel cell with waterproof breathable membrane cathode
NASA Astrophysics Data System (ADS)
Xing, Defeng; Tang, Yu; Mei, Xiaoxue; Liu, Bingfeng
2015-12-01
Simplification of fabrication and reduction of capital cost are important for scale-up and application of microbial electrochemical systems (MES). A fast and inexpensive method of making cathode was developed via assembling stainless steel mesh (SSM) with waterproof breathable membrane (WBM). Three assemble types of cathodes were fabricated; Pt@SSM/WBM (SSM as cathode skeleton, WBM as diffusion layer, platinum (Pt) catalyst applied on SSM), SSM/Pt@WBM and Pt@WBM. SSM/Pt@WBM cathode showed relatively preferable with long-term stability and favorable power output (24.7 W/m3). Compared to conventional cathode fabrication, air-cathode was made for 0.5 h. The results indicated that the novel fabrication method could remarkably reduce capital cost and simplify fabrication procedures with a comparable power output, making MFC more prospective for future application.
Growth of platinum fibers using the micro-pulling-down method
NASA Astrophysics Data System (ADS)
Nihei, Takayuki; Yokota, Yuui; Arakawa, Mototaka; Ohashi, Yuji; Kurosawa, Shunsuke; Kamada, Kei; Chani, Valery; Yoshikawa, Akira
2017-06-01
Platinum (Pt) crystalline fibers were grown from the melt by the micro-pulling-down (μ-PD) method using the ZrO2 ceramics crucible. The diameter of the grown Pt fiber was controlled by the ϕ1 mm outlet made at the bottom of the crucible and the Pt fiber of 0.95±0.03 mm in diameter and over 5 m in length was obtained at 10 mm/min pulling-down rate. In addition, the Pt fiber was grown at 1-110 mm/min pulling rates while the liquid-solid interface reached the bottom of the crucible and the crystal growth became unstable at 120 mm/min pulling rate. Few grain boundaries were observed in the scanning electron microscopy image of the Pt fibers and there were some spots with high intensity in the pole figures.
NASA Astrophysics Data System (ADS)
Xiao, Mingshu; Yan, Yuhua; Feng, Kai; Tian, Yanping; Miao, Yuqing
2015-04-01
A new electrochemical technique to detect hydrogen peroxide (H2O2) was developed. The Pt nanoparticles and BiIII were subsequently assembled on agmatine sulfate (AS) modified glassy carbon electrode (GCE) and the prepared GCE-AS-Pt-BiIII was characterized by scanning electron microscopy (SEM) with result showing that the flower-like nanostructure of Pt-BiIII was yielded. Compared with Pt nanoparticles, the flower-like nanostructure of Pt-BiIII greatly enhanced the electrocatalysis of GCE-AS-Pt-BiIII towards H2O2, which is ascribed to more Pt-OH obtained on GCE-AS-Pt-BiIII surface for the presence of BiIII. Based on its high electrocatalysis, GCE-AS-Pt-BiIII was used to determine the content of H2O2 in the sample of sheet bean curd with standard addition method. Meantime, its electrocatalytic activity also was studied.
Fabrication of metal/semiconductor nanocomposites by selective laser nano-welding.
Yu, Huiwu; Li, Xiangyou; Hao, Zhongqi; Xiong, Wei; Guo, Lianbo; Lu, Yongfeng; Yi, Rongxing; Li, Jiaming; Yang, Xinyan; Zeng, Xiaoyan
2017-06-01
A green and simple method to prepare metal/semiconductor nanocomposites by selective laser nano-welding metal and semiconductor nanoparticles was presented, in which the sizes, phases, and morphologies of the components can be maintained. Many types of nanocomposites (such as Ag/TiO 2 , Ag/SnO 2 , Ag/ZnO 2 , Pt/TiO 2 , Pt/SnO 2 , and Pt/ZnO) can be prepared by this method and their corresponding performances were enhanced.
Electronic structure of Pt-substituted clathrate silicides Ba{sub 8}Pt{sub x}Si{sub 46–x}(x = 4–6)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borshch, N. A., E-mail: n.a.borshch@ya.ru
The results of calculation of the electronic structure of Si-based Pt-substituted clathrates are reported. Calculation is carried out by the linearized-augmented-plane-wave method. The effect of the number of substitutions and their crystallographic position in the unit cell on the electron-energy spectrum and the electronic properties of Pt-substituted clathrates is analyzed.
Zhang, Jie; Zhang, Lin; Wang, Wei; Han, Lianhuan; Jia, Jing-Chun; Tian, Zhao-Wu; Tian, Zhong-Qun; Zhan, Dongping
2017-03-01
Although metal assisted chemical etching (MacEtch) has emerged as a versatile micro-nanofabrication method for semiconductors, the chemical mechanism remains ambiguous in terms of both thermodynamics and kinetics. Here we demonstrate an innovative phenomenon, i.e. , the contact electrification between platinum (Pt) and an n-type gallium arsenide (100) wafer (n-GaAs) can induce interfacial redox reactions. Because of their different work functions, when the Pt electrode comes into contact with n-GaAs, electrons will move from n-GaAs to Pt and form a contact electric field at the Pt/n-GaAs junction until their electron Fermi levels ( E F ) become equal. In the presence of an electrolyte, the potential of the Pt/electrolyte interface will shift due to the contact electricity and induce the spontaneous reduction of MnO 4 - anions on the Pt surface. Because the equilibrium of contact electrification is disturbed, electrons will transfer from n-GaAs to Pt through the tunneling effect. Thus, the accumulated positive holes at the n-GaAs/electrolyte interface make n-GaAs dissolve anodically along the Pt/n-GaAs/electrolyte 3-phase interface. Based on this principle, we developed a direct electrochemical nanoimprint lithography method applicable to crystalline semiconductors.
NASA Astrophysics Data System (ADS)
Parambath Vinayan, Bhaghavathi; Nagar, Rupali; Ramaprabhu, Sundara
2016-09-01
We investigate the electrocatalytic activity of PtAu alloy nanoparticles supported on various chemically modified carbon morphologies towards oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR). The surface-modification of graphene nanosheets (f-G), multi-walled carbon nanotubes (f-MWNTs) and (graphene nanosheets-carbon nanotubes) hybrid support (f-G-MWNTs) were carried out by soft functionalization method using a cationic polyelectrolyte poly-(diallyldimethyl ammonium chloride). The Pt and PtAu alloy nanoparticles were dispersed over chemically modified carbon supports by sodium-borohydride assisted modified polyol reduction method. The electrochemical performance of all electrocatalysts were studied by half- and full-cell proton exchange membrane fuel cell (PEMFC) measurements and PtAu/f-G-MWNTs catalyst comparatively yielded the best catalytic performance. PEMFC full cell measurements of PtAu/f-G-MWNTs cathode electrocatalyst yield a maximum power density of 319 mW cm-2 at 60 °C without any back pressure,which is 2.1 times higher than that of cathode electrocatalyst Pt on graphene support. The high ORR and MOR activity of PtAu/f-G-MWNTs electrocatalyst is due to the alloying effect and inherent beneficial properties of porous hybrid nanocarbon support.
NASA Astrophysics Data System (ADS)
Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antici'c, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Bohácová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Filevich, A.; Filipcic, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mi'canovi'c, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; 'Smiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.
2012-04-01
Observations of cosmic ray arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Véron-Cetty Véron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt-L, 2pt+ and 3pt methods, each giving a different measure of self-clustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energy resolutions. If the sources of UHECRs follow the same large scale structure as ordinary galaxies in the local Universe and if UHECRs are deflected no more than a few degrees, a study of mock maps suggests that these three methods can efficiently respond to the resulting anisotropy with a P-value = 1.0% or smaller with data sets as few as 100 events. Using data taken from January 1, 2004 to July 31, 2010 we examined the 20,30,...,110 highest energy events with a corresponding minimum energy threshold of about 49.3 EeV. The minimum P-values found were 13.5% using the 2pt-L method, 1.0% using the 2pt+ method and 1.1% using the 3pt method for the highest 100 energy events. In view of the multiple (correlated) scans performed on the data set, these catalog-independent methods do not yield strong evidence of anisotropy in the highest energy cosmic rays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abreu, P.
2012-01-01
Observations of cosmic ray arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Veron-Cetty Veron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt-L, 2pt+ and 3pt methods, each giving a different measure of self-clustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energymore » resolutions. If the sources of UHECRs follow the same large scale structure as ordinary galaxies in the local Universe and if UHECRs are deflected no more than a few degrees, a study of mock maps suggests that these three methods can efficiently respond to the resulting anisotropy with a P-value = 1.0% or smaller with data sets as few as 100 events. Using data taken from January 1, 2004 to July 31, 2010 we examined the 20, 30, ..., 110 highest energy events with a corresponding minimum energy threshold of about 51 EeV. The minimum P-values found were 13.5% using the 2pt-L method, 1.0% using the 2pt+ method and 1.1% using the 3pt method for the highest 100 energy events. In view of the multiple (correlated) scans performed on the data set, these catalog-independent methods do not yield strong evidence of anisotropy in the highest energy cosmic rays.« less
Garrick, Taylor R.; Moylan, Thomas E.; Carpenter, Michael K.; ...
2016-12-13
The use of hydrogen adsorption/desorption (HAD) is a convenient method to measure the Pt surface area of a catalyst. However, it was shown that electrochemical charges measured by this technique can underestimate the Pt surface area by up to a factor of two for small Pt nanoparticles or Pt alloy nanoparticles. Electrooxidation of CO, so-called CO stripping, has been shown to be more accurate. Yet measurements of CO stripping in MEAs are scarce, especially on high activity alloy catalysts. In this study we investigated CO stripping and the ratio between Pt surface areas measured by CO and by HAD onmore » several Pt and Pt alloy catalysts. The effects on these measurements of temperature and catalyst aging by voltage cycling are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrick, Taylor R.; Moylan, Thomas E.; Carpenter, Michael K.
The use of hydrogen adsorption/desorption (HAD) is a convenient method to measure the Pt surface area of a catalyst. However, it was shown that electrochemical charges measured by this technique can underestimate the Pt surface area by up to a factor of two for small Pt nanoparticles or Pt alloy nanoparticles. Electrooxidation of CO, so-called CO stripping, has been shown to be more accurate. Yet measurements of CO stripping in MEAs are scarce, especially on high activity alloy catalysts. In this study we investigated CO stripping and the ratio between Pt surface areas measured by CO and by HAD onmore » several Pt and Pt alloy catalysts. The effects on these measurements of temperature and catalyst aging by voltage cycling are discussed.« less
Liu, Bing; Mei, Hua; DesMarteau, Darryl; Creager, Stephen E
2014-12-11
A monoprotic [(trifluoromethyl)benzenesulfonyl]imide (SI) superacid electrolyte was used to covalently modify a mesoporous carbon xerogel (CX) support via reaction of the corresponding trifluoromethyl aryl sulfonimide diazonium zwitterion with the carbon surface. Electrolyte attachment was demonstrated by elemental analysis, acid-base titration, and thermogravimetric analysis. The ion-exchange capacity of the fluoroalkyl-aryl-sulfonimide-grafted carbon xerogel (SI-CX) was ∼0.18 mequiv g(-1), as indicated by acid-base titration. Platinum nanoparticles were deposited onto the SI-grafted carbon xerogel samples by the impregnation and reduction method, and these materials were employed to fabricate polyelectrolyte membrane fuel-cell (PEMFC) electrodes by the decal transfer method. The SI-grafted carbon-xerogel-supported platinum (Pt/SI-CX) was characterized by X-ray diffraction and transmission electron microscopy to determine platinum nanoparticle size and distribution, and the findings are compared with CX-supported platinum catalyst without the grafted SI electrolyte (Pt/CX). Platinum nanoparticle sizes are consistently larger on Pt/SI-CX than on Pt/CX. The electrochemically active surface area (ESA) of platinum catalyst on the Pt/SI-CX and Pt/CX samples was measured with ex situ cyclic voltammetry (CV) using both hydrogen adsorption/desorption and carbon monoxide stripping methods and by in situ CV within membrane electrode assemblies (MEAs). The ESA values for Pt/SI-CX are consistently lower than those for Pt/CX. Some possible reasons for the behavior of samples with and without grafted SI layers and implications for the possible use of SI-grafted carbon layers in PEMFC devices are discussed.
Lacombe, Pierre J.
2011-01-01
Pump and Treat (P&T) remediation is the primary technique used to contain and remove trichloroethylene (TCE) and its degradation products cis 1-2,dichloroethylene (cDCE) and vinyl chloride (VC) from groundwater at the Naval Air Warfare Center (NAWC), West Trenton, NJ. Three methods were used to determine the masses of TCE, cDCE, and VC removed from groundwater by the P&T system since it became fully operational in 1996. Method 1, is based on the flow volume and concentrations of TCE, cDCE, and VC in groundwater that entered the P&T building as influent. Method 2 is based on withdrawal volume from each active recovery well and the concentrations of TCE, cDCE, and VC in the water samples from each well. Method 3 compares the maximum monthly amount of TCE, cDCE, and VC from Method 1 and Method 2. The greater of the two values is selected to represent the masses of TCE, cDCE and VC removed from groundwater each month. Previously published P&T monthly reports used Method 1 to determine the mass of TCE, cDCE, and VC removed. The reports state that 8,666 pounds (lbs) of TCE, 13,689 lbs of cDCE, and 2,455 lbs of VC were removed by the P&T system during 1996-2010. By using Method 2, the mass removed was determined to be 8,985 lbs of TCE, 17,801 lbs of cDCE, and 3,056 lbs of VC removed, and Method 3, resulted in 10,602 lbs of TCE, 21,029 lbs of cDCE, and 3,496 lbs of VC removed. To determine the mass of original TCE removed from groundwater, the individual masses of TCE, cDCE, and VC (determined using Methods 1, 2, and 3) were converted to numbers of moles, summed, and converted to pounds of original TCE. By using the molar conversion the mass of original TCE removed from groundwater by Methods 1, 2, and 3 was 32,381 lbs, 39,535 lbs, and 46,452 lbs, respectively, during 1996-2010. P&T monthly reports state that 24,805 lbs of summed TCE, cDCE, and VC were removed from groundwater. The simple summing method underestimates the mass of original TCE removed by the P&T system.
Simple synthesized Pt/GNs/TiO2 with good mass activity and stability for methanol oxidation
NASA Astrophysics Data System (ADS)
Zhang, Jianbo; Hu, Xiulan; Zhu, Faquan; Su, Nan; Huang, Huihong; Cheng, Jiexu; Yang, Hui
2017-12-01
Pt/GNs/TiO2 (GNs, graphene nanosheets) catalyst was synthesized by a simple two-step method, including a rapid solution plasma technique to obtained Pt nanoparticles with a size of 2-5 nm and followed by an ultrasonic mixing of the Pt, GNs and TiO2 nanoparticles. After coupling with TiO2 nanoparticles, the Pt/GNs/TiO2 catalyst exhibited a promoting catalytic activity towards methanol oxidation, which was superior to the Pt/GNs catalyst. The mass activity of the Pt/GNs/TiO2 catalyst was 3464 mA mgPt -1, which was 3.5 and 3.4 times higher than those of the Pt/GNs and the commercial Pt/C, respectively. And the Pt/GNs/TiO2 showed a strongly negative shift onset potential of methanol oxidation. The results of long-term cyclic voltammetry and CO-stripping tests showed an improved CO tolerance of the Pt/GNs/TiO2. Moreover, the mass activity of the Pt/GNs/TiO2 was further enhanced under light irradiation, with the mass activity of 4715 mA mgPt -1, which was 1.4 times higher than that of in dark. This work provides new opportunities for exploiting efficient visible photo-assisted electro-catalytic methanol oxidation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yang; Institute of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013; Jiang, Yuhong
2014-07-01
(FePt){sub 100−x}Au{sub x} (x=0, 5, 10, and 20) nanoparticles were synthesized by the sol–gel method, and effects of Au content on the structural and magnetic properties of samples were investigated. Au doping reduced the phase transition temperature from face-centered cubic (FCC) to face-centered tetragonal (FCT) structure. In addition, additive Au promotes the chemical ordering of L1{sub 0} FePt NPs and increases the grain size of L1{sub 0} FePt NPs. When Au content increased from 0 to 10 at%, the coercivity (H{sub c}) increased due to the increase in degree of ordering S and grain size of L1{sub 0} FePt NPs.more » By increasing the Au content to 20 at%, H{sub c} decreased. - Graphical abstract: (FePt){sub 100}Au{sub 0} NPs are the coexistence of FCT and FCC phases. However, no hints of FCC phase were found for the (FePt){sub 100−x}Au{sub x} NPs (x=5, 10 and 20), which indicates that addition of gold greatly promotes the FCC to FCT phase transition. - Highlights: • (FePt){sub 100−x}Au{sub x} (x=0, 5, 10 and 20) nanoparticles (NPs) were synthesized. • Au addition promotes the chemical ordering of L1{sub 0} FePt NPs. • Au addition reduces ordering temperature of L1{sub 0} FePt NPs from FCC to FCT phase. • (FePt){sub 90}Au{sub 10} NPs show a high coercivity of 9585 Oe at room temperature.« less
Evaluating Connectivity between Marine Protected Areas Using CODAR High-Frequency Radar
2010-06-01
SMCA/SMR, (6) Big Creek SMCA/SMR, (7) Piedras Blancas SMCA/SMR, (8) Cambria SMCA/White Rock SMCA, (9) Pt. Buchon SMCA/SMR, and (10) Vandenberg SMR...52 grid- points, (7) Piedras Blancas 47 grid-points, (8) Cambria 20 grid-points, (9) Pt. Buchon 45 grid- points, and (10) the Vandenberg MPA had 62...COLUMN HEADERS. Back-projected from: (Sorted north- to-south) Año Nuevo Soquel Canyon Portuguese Ledge Point Lobos Point Sur Big Creek Piedras
Implementation of a microcontroller-based semi-automatic coagulator.
Chan, K; Kirumira, A; Elkateeb, A
2001-01-01
The coagulator is an instrument used in hospitals to detect clot formation as a function of time. Generally, these coagulators are very expensive and therefore not affordable by a doctors' office and small clinics. The objective of this project is to design and implement a low cost semi-automatic coagulator (SAC) prototype. The SAC is capable of assaying up to 12 samples and can perform the following tests: prothrombin time (PT), activated partial thromboplastin time (APTT), and PT/APTT combination. The prototype has been tested successfully.
Xu, Guang-Rui; Bai, Juan; Jiang, Jia-Xing
2017-01-01
The electrocatalytic hydrogen evolution reaction (HER) is a highly promising green method for sustainable and efficient hydrogen production. So far, Pt nanocrystals are still the most active electrocatalysts for the HER in acidic media, although a tremendous search for alternatives has been done in the past decade. In this work, we synthesize polyethyleneimine (PEI) functionalized Pt superstructures (Pt-SSs@PEI) with tetragonal, hierarchical, and branched morphologies with a facile wet chemical reduction method. A series of physical characterizations are conducted to investigate the morphology, electronic structure, surface composition, and formation mechanism of Pt-SSs@PEI. Impressively, the as-prepared Pt-SSs@PEI show an unprecedented onset reduction potential (+64.6 mV vs. reversible hydrogen electrode) for the HER in strong acidic media due to the protonation of –NH2 groups in the PEI adlayers on the Pt surface, and they outperform all currently reported HER electrocatalysts. The work highlights a highly effective interface-engineering strategy for improving the electrocatalytic performance of Pt nanocrystals for the HER. PMID:29619188
NASA Astrophysics Data System (ADS)
Li, Shan-Shan; Zheng, Jie-Ning; Ma, Xiaohong; Hu, Yuan-Yuan; Wang, Ai-Jun; Chen, Jian-Rong; Feng, Jiu-Ju
2014-05-01
A simple and facile method is developed for one-pot preparation of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide (PtPd/RGO) at room temperature, without using any seed, organic solvent, or complex apparatus. It is found that octylphenoxypolyethoxyethanol (NP-40) as a soft template and its amount are critical to the formation of PtPd garlands. The as-prepared nanocomposites are further applied to methanol and ethanol oxidation with significantly enhanced electrocatalytic activity and better stability in alkaline media.A simple and facile method is developed for one-pot preparation of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide (PtPd/RGO) at room temperature, without using any seed, organic solvent, or complex apparatus. It is found that octylphenoxypolyethoxyethanol (NP-40) as a soft template and its amount are critical to the formation of PtPd garlands. The as-prepared nanocomposites are further applied to methanol and ethanol oxidation with significantly enhanced electrocatalytic activity and better stability in alkaline media. Electronic supplementary information (ESI) available: Experimental section, Fig. S1-S12 and Tables S1 and S2. See DOI: 10.1039/c3nr06808k
The nature of the Pt(111)/α -Fe2O3(0001) interfaces revealed by DFT calculations
NASA Astrophysics Data System (ADS)
Mahmoud, Agnes; Deleuze, Pierre-Marie; Dupont, Céline
2018-05-01
Density functional theory calculations are performed to give a thorough description of structural, energetic, and electronic properties of Pt(111)/α-Fe2O3(0001) systems by spin-polarized calculations, accounting for the on-site Coulomb interaction. Toward the better understanding of Pt(111)/α-Fe2O3(0001) interfaces, two terminations of α-Fe2O3(0001) surface, namely, the single Fe- and the O3-termination, are considered and coupled with the four possible (top, hcp, fcc, and bridge) sites on Pt(111). The effect of the strain on clean hematite surfaces due to the lattice mismatch between the substrate and the overlayer is included in the analysis. Among the possible adsorption configurations, bridge sites are unstable, while the most favorable configurations are the ones at hollow sites. The stability of the interfaces is not only influenced by the termination of the overlayer but also influenced by the degree of its structural relaxation and the relative position of the first layer of O atoms in hematite with respect to Pt. To elucidate the different nature of the two terminations of the overlayer on Pt, projected density of states and 3D charge density difference plots are also discussed.
Preisner, Ornella; Guiomar, Raquel; Machado, Jorge; Menezes, José Cardoso; Lopes, João Almeida
2010-06-01
Fourier transform infrared (FT-IR) spectroscopy and chemometric techniques were used to discriminate five closely related Salmonella enterica serotype Enteritidis phage types, phage type 1 (PT1), PT1b, PT4b, PT6, and PT6a. Intact cells and outer membrane protein (OMP) extracts from bacterial cell membranes were subjected to FT-IR analysis in transmittance mode. Spectra were collected over a wavenumber range from 4,000 to 600 cm(-1). Partial least-squares discriminant analysis (PLS-DA) was used to develop calibration models based on preprocessed FT-IR spectra. The analysis based on OMP extracts provided greater separation between the Salmonella Enteritidis PT1-PT1b, PT4b, and PT6-PT6a groups than the intact cell analysis. When these three phage type groups were considered, the method based on OMP extract FT-IR spectra was 100% accurate. Moreover, complementary local models that considered only the PT1-PT1b and PT6-PT6a groups were developed, and the level of discrimination increased. PT1 and PT1b isolates were differentiated successfully with the local model using the entire OMP extract spectrum (98.3% correct predictions), whereas the accuracy of discrimination between PT6 and PT6a isolates was 86.0%. Isolates belonging to different phage types (PT19, PT20, and PT21) were used with the model to test its robustness. For the first time it was demonstrated that FT-IR analysis of OMP extracts can be used for construction of robust models that allow fast and accurate discrimination of different Salmonella Enteritidis phage types.
Platinum assisted by carbon quantum dots for methanol electro-oxidation
NASA Astrophysics Data System (ADS)
Pan, Dan; Li, Xingwei; Zhang, Aofeng
2018-01-01
Various types of fuel cells as clean and portable power sources show a great attraction, especially direct methanol fuel cell (DMFC) having high energy density, low operating temperature and convenient fuel storage. However, the preparation of low-cost Pt-based catalysts with satisfactory catalytic performance still faces many challenges for its commercialization on large scale. Here, Pt catalysts assisted by carbon quantum dots (CQDs) are reported. The synergistic effect of carbon quantum dots and Pt metals is similar to a bi-component catalyst, such as PtRu. First, carbon quantum dots derived from Vulcan XC-72 carbon black are synthesized by mixed acid etching. Then, carbon black (Vulcan XC-72) is soaked in carbon quantum dots solution for several days to obtain carbon black modified by carbon quantum dots (XC-72-CQDs). Finally, Pt catalysts are supported on XC-72-CQDs (Pt/XC-72-CQDs) through a simple chemical reduction method. For methanol electro-oxidation reaction, the catalytic performance of Pt/XC-72-CQDs is compared with commercial PtRu/C (30% Pt + 15% Ru). Results show that a typical product (Pt/XC-72-CQDs5) exhibits a better catalytic activity than PtRu/C. In cyclic voltammetry test, the specific activity of Pt/XC-72-CQDs5 is 1.06 mA cm-2 Pt and 477.6 mA mg-1 Pt, while that of PtRu/C is 0.77 mA cm-2 Pt and 280.6 mA mg-1 Pt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudnev, N.A.; Malofeeva, G.I.
1963-07-01
Gravimetric methods were developed for the determination of microamounts of Ru, Rh, Pt, and Pd as TlRu/sub 2/S/sub 6/, TlRh/sub 2/S/sub 4/ TlPtS/sub 3/, and TlPd/sub 2/S/sub 3/. The methods are simpl e, rapid, and satisfactorily accurate. (auth)
NASA Astrophysics Data System (ADS)
Ekrami-Kakhki, Mehri-Saddat; Farzaneh, Nahid; Abbasi, Sedigheh; Beitollahi, Hadi; Ekrami-Kakhki, Seyed Ali
2018-05-01
In this research, graphene oxide was prepared by a modified Hummers' method, and then functionalized with 1, 1'-dimethyl-4, 4'-bipyridinium dichloride (MV), and chitosan (CH) to get a MV-RGO-CH support. Pt nanoparticles were prepared on this support to get Pt/MV-RGO-CH catalyst. The morphology and microstructure of Pt/MV-RGO-CH catalyst were characterized with transmission electron microscopy image and X-ray diffraction analysis. The electrocatalytic activity of the prepared catalyst towards ethanol oxidation was investigated by carbon monoxide stripping voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy techniques. The effects of some experimental parameters such as scan rate, ethanol concentration, and temperature were investigated for ethanol electrooxidation at Pt/MV-RGO-CH catalyst. Durability of the catalyst was also investigated. The electrocatalytic performance of Pt/MV-RGO-CH catalyst for ethanol oxidation was compared with those of Pt/CH and Pt/MV-RGO catalysts. The higher electrocatalytic performance of Pt/MV-RGO-CH than Pt/CH and Pt/MV-RGO catalysts towards ethanol electrooxidation indicated that Pt/MV-RGO-CH could be a promising catalyst for application in direct ethanol fuel cells.
Improved oxygen reduction reaction catalyzed by Pt/Clay/Nafion nanocomposite for PEM fuel cells.
Narayanamoorthy, B; Datta, K K R; Eswaramoorthy, M; Balaji, S
2012-07-25
A novel Pt nanoparticle (Pt NP) embedded aminoclay/Nafion (Pt/AC/N) nanocomposite catalyst film was prepared for oxygen reduction reaction by sol-gel method. The prepared nanocomposite films were surface characterized using XRD and TEM and thermal stability was studied by TGA. The prepared film has firmly bound Pt NP and could exhibit an improved electro-reduction activity compared to vulcan carbon/Nafion supported Pt NP (Pt/VC/N). Moreover, the Pt/AC/N film possessed good stability in the acidic environment. The limiting current density of the Pt/AC/N film with 35.4 μg/cm(2) of Pt loading was found to be 4.2 mA/cm(2), which is 30% higher than that of the Pt/VC/N. The maximum H2O2 intermediate formation was found to be ∼1.6% and the reaction found to follow a four electron transfer mechanism. Accelerated durability test for 2000 potential cycles showed that ca. 78% of initial limiting current was retained. The results are encouraging for possible use of the Pt/AC/N as the free-standing electrocatalyst layer for polymer electrolyte membrane fuel cells.
Sasaki, Kotaro; Marinkovic, Nebojsa; Isaacs, Hugh S.; ...
2015-11-17
Understanding oxidation/dissolution mechanisms of Pt is critical in designing durable catalysts for the oxygen reduction reaction (ORR), but exact mechanisms remain unclear. Our present work explores the oxidation/dissolution of Pt and Pt monolayer (ML) electrocatalysts over a wide range of applied potentials using cells that facilitate in situ measurements by combining X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) measurements. Furthermore, the X-ray absorption near edge structure (XANES) measurement demonstrated that Pt nanoparticle surfaces were oxidized from metallic Pt to α-PtO 2-type oxide during the potential sweep from 0.41 to 1.5 V, and the transition state of O or OHmore » adsorption on Pt and the onset of the place exchange process were revealed by the delta mu (Δμ) method. Only the top layers of Pt nanoparticles were oxidized, while the inner Pt atoms remained intact. At a higher potential over 1.9 V, α-PtO 2-type surface oxides dissolve due to local acidification caused by the oxygen evolution reaction and carbon corrosion. Pt oxidation of Pt ML on the Pd nanoparticle electrocatalyst is considerably hampered compared with the Pt/C catalyst, presumably because preferential Pd oxidation proceeds at the defects in Pt MLs up to 0.91 V and through O penetrated through the Pt MLs by the place exchange process above 1.11 V.« less
NASA Astrophysics Data System (ADS)
Wang, Hongjing; Yu, Hongjie; Li, Yinghao; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang
2018-04-01
The engineering of electrocatalysts with high performance for cathodic and/or anodic catalytic reactions is of great urgency for the development of direct methanol fuel cells. Pt-based bimetallic alloys have recently received considerable attention in the field of fuel cells because of their superior catalytic performance towards both fuel molecule electro-oxidation and oxygen reduction. In this work, bimetallic PtCo mesoporous nanospheres (PtCo MNs) with uniform size and morphology have been prepared by a one-step method with a high yield. The as-made PtCo MNs show superior catalytic activities for both oxygen reduction reaction and methanol oxidation reaction relative to Pt MNs and commercial Pt/C catalyst, attributed to their mesoporous structure and bimetallic composition.
NASA Astrophysics Data System (ADS)
Okazaki, Tomohisa; Seino, Satoshi; Nakagawa, Takashi; Kugai, Junichiro; Ohkubo, Yuji; Akita, Tomoki; Nitani, Hiroaki; Yamamoto, Takao A.
2015-03-01
Carbon-supported Pt-SnO2 electrocatalysts with various Sn/Pt molar ratios were prepared by an electron beam irradiation method. These catalysts were composed of metallic Pt particles approximately 5 nm in diameter together with low crystalline SnO2. The contact between the Pt and SnO2 in these materials varied with the amount of dissolved oxygen in the precursor solutions and it was determined that intimate contact between the Pt and SnO2 significantly enhanced the catalytic activity of these materials during the ethanol oxidation reaction. The mechanism by which the contact varies is discussed based on the radiochemical reduction process.
Hsu, Ryan S; Higgins, Drew; Chen, Zhongwei
2010-04-23
Novel tin-oxide (SnO(2))-coated single-walled carbon nanotube (SWNT) bundles supporting platinum (Pt) electrocatalysts for ethanol oxidation were developed for direct ethanol fuel cells. SnO(2)-coated SWNT (SnO(2)-SWNT) bundles were synthesized by a simple chemical-solution route. SnO(2)-SWNT bundles supporting Pt (Pt/SnO(2)-SWNTs) electrocatalysts and SWNT-supported Pt (Pt/SWNT) electrocatalysts were prepared by an ethylene glycol reduction method. The catalysts were physically characterized using TGA, XRD and TEM and electrochemically evaluated through cyclic voltammetry experiments. The Pt/SnO(2)-SWNTs showed greatly enhanced electrocatalytic activity for ethanol oxidation in acid medium, compared to the Pt/SWNT. The optimal SnO(2) loading of Pt/SnO(2)-SWNT catalysts with respect to specific catalytic activity for ethanol oxidation was also investigated.
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Fang; Zhu, Xiao-Yan; Feng, Jiu-Ju; Wang, Ai-Jun
2018-01-01
A simple solvothermal method was developed to prepare N-doped reduced graphene oxide supported homogeneous PtCo nanodendrites (PtCo NDs/N-rGO), where ethylene glycol (EG) served as the reducing agent and the solvent, and linagliptin as the structure-directing and stabilizing agent for PtCo NDs and dopant for rGO, respectively. Controlled researches showed that the dosage of linagliptin and the ratios of the two metal precursors were important in the current synthesis. The PtCo NDs/N-rGO nanocomposite exhibited higher catalytic activity towards the reduction of 4-nitrophnol (4-NP) in contrast with the referenced Pt1Co3 NCs/N-rGO, Pt3Co1 NCs/N-rGO and commercial Pt/C catalysts. More importantly, the constructed catalyst exhibited the superior stability without sacrificing the catalytic activity, showing great prospect for the reduction of 4-NP in practice.
NASA Astrophysics Data System (ADS)
Vintzentz, S. V.; Kiselev, V. F.; Levshin, N. L.; Sandomirskii, V. B.
1991-01-01
The photothermal surface deformation (PTSD) method is used for characterization of the first-order phase transition (PT) for the first time. The advantages of the method are demonstrated experimentally for the well known metal-to-semiconductor PT in VO 2. It is found that near the PT temperature the PTSD pulse in a VO 2 film has a sign opposite to that of the thermoelastic response. The conclusion is drawn that this phenomenon is determined primarily by the contribution of the decrease in the specific volume (Δ V/ V) of the substance involved in the semiconductor-to-metal PT. The sign of Δ V/ V for a submicron polycrystalline VO 2 film is determined. Besides, analysis shows that in the PTSD kinetics measured as a whole we can "separate" a law for the metal-semicon- ductor interface movement (i.e. the interface moves towards the interior of the film when the latter is heated and back towards the surface when it is cooling down). The relative density change due to the PT is estimated based on this law.
NASA Astrophysics Data System (ADS)
Siirila, E. R.; Fernandez-Garcia, D.; Sanchez-Vila, X.
2014-12-01
Particle tracking (PT) techniques, often considered favorable over Eulerian techniques due to artificial smoothening in breakthrough curves (BTCs), are evaluated in a risk-driven framework. Recent work has shown that given a relatively few number of particles (np), PT methods can yield well-constructed BTCs with kernel density estimators (KDEs). This work compares KDE and non-KDE BTCs simulated as a function of np (102-108) and averaged as a function of the exposure duration, ED. Results show that regardless of BTC shape complexity, un-averaged PT BTCs show a large bias over several orders of magnitude in concentration (C) when compared to the KDE results, remarkably even when np is as low as 102. With the KDE, several orders of magnitude less np are required to obtain the same global error in BTC shape as the PT technique. PT and KDE BTCs are averaged as a function of the ED with standard and new methods incorporating the optimal h (ANA). The lowest error curve is obtained through the ANA method, especially for smaller EDs. Percent error of peak of averaged-BTCs, important in a risk framework, is approximately zero for all scenarios and all methods for np ≥105, but vary between the ANA and PT methods, when np is lower. For fewer np, the ANA solution provides a lower error fit except when C oscillations are present during a short time frame. We show that obtaining a representative average exposure concentration is reliant on an accurate representation of the BTC, especially when data is scarce.
Enhanced activity of Pt/CNTs anode catalyst for direct methanol fuel cells using Ni2P as co-catalyst
NASA Astrophysics Data System (ADS)
Li, Xiang; Luo, Lanping; Peng, Feng; Wang, Hongjuan; Yu, Hao
2018-03-01
The direct methanol fuel cell is a promising energy conversion device because of the utilization of the state-of-the-art platinum (Pt) anode catalyst. In this work, novel Pt/Ni2P/CNTs catalysts were prepared by the H2 reduction method. It was found that the activity and stability of Pt for methanol oxidation reaction (MOR) could be significantly enhanced while using nickel phosphide (Ni2P) nanoparticles as co-catalyst. X-ray photoelectron spectroscopy revealed that the existence of Ni2P affected the particle size and electronic distribution of Pt obviously. Pt/CNTs catalyst, Pt/Ni2P/CNTs catalysts with different Ni2P amount were synthesized, among which Pt/6%Ni2P/CNTs catalyst exhibited the best MOR activity of 1400 mAmg-1Pt, which was almost 2.5 times of the commercial Pt/C-JM catalyst. Moreover, compared to other Pt-based catalysts, this novel Pt/Ni2P/CNTs catalyst also exhibited higher onset current density and better steady current density. The result of this work may provide positive guidance to the research on high efficiency and stability of Pt-based catalyst for direct methanol fuel cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Shangqian; Yue, Jeffrey; Qin, Xueping
Cu-mediated-Pt-displacement method that involves the displacement of an underpotentially deposited (UPD) Cu monolayer by Pt has been extensively studied to prepare core-shell catalysts. It has been found that Pt clusters instead of a uniform Pt monolayer were formed in the gram batch synthesis. With a suitable surfactant, such as citric acid, the Pt shell could be much more uniform. In this study, the role of citric acid in controlling the Cu-Pt displacement reaction kinetics was studied by electrochemical techniques and theoretical approaches. It was found that citric acid strongly adsorbed on Pd, Pt, Cu/Pd, and Pt/Pd surfaces, especially in themore » double layer region in acid solutions. The strong adsorption of citric acid slowed down the Cu-Pt displacement reaction. The main characteristics of such strong interaction most likely arises from the OH groups in the citric acid molecule according to the molecular dynamics simulation results.« less
Zhu, Shangqian; Yue, Jeffrey; Qin, Xueping; ...
2016-07-28
Cu-mediated-Pt-displacement method that involves the displacement of an underpotentially deposited (UPD) Cu monolayer by Pt has been extensively studied to prepare core-shell catalysts. It has been found that Pt clusters instead of a uniform Pt monolayer were formed in the gram batch synthesis. With a suitable surfactant, such as citric acid, the Pt shell could be much more uniform. In this study, the role of citric acid in controlling the Cu-Pt displacement reaction kinetics was studied by electrochemical techniques and theoretical approaches. It was found that citric acid strongly adsorbed on Pd, Pt, Cu/Pd, and Pt/Pd surfaces, especially in themore » double layer region in acid solutions. The strong adsorption of citric acid slowed down the Cu-Pt displacement reaction. The main characteristics of such strong interaction most likely arises from the OH groups in the citric acid molecule according to the molecular dynamics simulation results.« less
Pt-Bi decorated nanoporous gold for high performance direct glucose fuel cell
Guo, Hong; Yin, Huiming; Yan, Xiuling; Shi, Shuai; Yu, Qingyang; Cao, Zhen; Li, Jian
2016-01-01
Binary PtBi decorated nanoporous gold (NPG-PtBi) electrocatalyst is specially designed and prepared for the anode in direct glucose fuel cells (DGFCs). By using electroless and electrochemical plating methods, a dense Pt layer and scattered Bi particles are sequentially coated on NPG. A simple DGFC with NPG-PtBi as anode and commercial Pt/C as cathode is constructed and operated to study the effect of operating temperatures and concentrations of glucose and NaOH. With an anode noble metal loading of only 0.45 mg cm−2 (Au 0.3 mg and Pt 0.15 mg), an open circuit voltage (OCV) of 0.9 V is obtained with a maximum power density of 8 mW cm−2. Furthermore, the maximum gravimetric power density of NPG-PtBi is 18 mW mg−1, about 4.5 times higher than that of commercial Pt/C. PMID:27966629
Critical assessment of Pt surface energy - An atomistic study
NASA Astrophysics Data System (ADS)
Kim, Jin-Soo; Seol, Donghyuk; Lee, Byeong-Joo
2018-04-01
Despite the fact that surface energy is a fundamental quantity in understanding surface structure of nanoparticle, the results of experimental measurements and theoretical calculations for the surface energy of pure Pt show a wide range of scattering. It is necessary to further ensure the surface energy of Pt to find the equilibrium shape and atomic configuration in Pt bimetallic nanoparticles accurately. In this article, we critically assess and optimize the Pt surface energy using a semi-empirical atomistic approach based on the second nearest-neighbor modified embedded-atom method interatomic potential. That is, the interatomic potential of pure Pt was adjusted in a way that the surface segregation tendency in a wide range of Pt binary alloys is reproduced in accordance with experimental information. The final optimized Pt surface energy (mJ/m2) is 2036 for (100) surface, 2106 for (110) surface, and 1502 for (111) surface. The potential can be utilized to find the equilibrium shape and atomic configuration of Pt bimetallic nanoparticles more accurately.
Worbs, Sylvia; Fiebig, Uwe; Zeleny, Reinhard; Schimmel, Heinz; Rummel, Andreas; Luginbühl, Werner; Dorner, Brigitte G.
2015-01-01
In the framework of the EU project EQuATox, a first international proficiency test (PT) on the detection and quantification of botulinum neurotoxins (BoNT) was conducted. Sample materials included BoNT serotypes A, B and E spiked into buffer, milk, meat extract and serum. Different methods were applied by the participants combining different principles of detection, identification and quantification. Based on qualitative assays, 95% of all results reported were correct. Successful strategies for BoNT detection were based on a combination of complementary immunological, MS-based and functional methods or on suitable functional in vivo/in vitro approaches (mouse bioassay, hemidiaphragm assay and Endopep-MS assay). Quantification of BoNT/A, BoNT/B and BoNT/E was performed by 48% of participating laboratories. It turned out that precise quantification of BoNT was difficult, resulting in a substantial scatter of quantitative data. This was especially true for results obtained by the mouse bioassay which is currently considered as “gold standard” for BoNT detection. The results clearly demonstrate the urgent need for certified BoNT reference materials and the development of methods replacing animal testing. In this context, the BoNT PT provided the valuable information that both the Endopep-MS assay and the hemidiaphragm assay delivered quantitative results superior to the mouse bioassay. PMID:26703724
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Shaofang; Zhu, Chengzhou; Song, Junhua
2017-01-01
Dendritic nanostructures are capturing increasing attentions in electrocatalysis owing to their unique structural features and low density. Herein, we report for the first time bromide ions mediated synthesis of low-Pt-content PdCuPt ternary nanodendrites via galvanic replacement reaction between Pt precursor and PdCu template in aqueous solution. The experimental results show that the ternary PdCuPt nanodendrites present enhanced electrocatalytic performance for oxygen reduction reaction in acid solution compared with commercial Pt/C as well as some state-of-the-art catalysts. In details, the mass activity of the PdCuPt catalyst with optimized composition is 1.73 A/mgPt at 0.85 V vs RHE, which is 14 timesmore » higher than that of commercial Pt/C catalyst. Moreover, the long-term stability test demonstrates its better durability in acid solution. After 5k cycles, there is still 70% electrochemical surface area maintained. This method provides an efficient way to synthesize trimetallic alloys with controllable composition and specific structure for oxygen reduction reaction.« less
Zhang, Xiahong; Wu, Genghuang; Cai, Zhixiong; Chen, Xi
2015-03-01
In this study, a facile hydrothermal method was developed to synthesize Pt-on-Pd supported on reduced graphene oxide (Pt-on-Pd/RGO) hybrids. Because of the synergistic effect between Pt-on-Pd and RGO, the obtained Pt-on-Pd/RGO had superior peroxidase-mimic activities in H2O2 reduction and TMB oxidation. The reaction medium was optimized and a sensing approach for H2O2 was developed with a linear range from 0.98 to 130.7 μM of H2O2. In addition, the characteristic of electrocatalytic oxidation of methanol was investigated. The peak current density value, j(f), for the Pt-on-Pd/RGO hybrid (328 mA mg(Pt)(-1)) was about 1.85 fold higher than that of commercial Pt black (177 mA mg(Pt)(-1)) and, also, more durable electrocatalytic activity could be obtained. For the first time, the dual-functional Pt-on-Pd/RGO with peroxidase-mimic activity and an enhanced electrocatalytic oxidation characteristic was reported. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Guzman Blas, Rolando Pedro
This thesis is focused on fuel cells using hydrogen, methanol and ethanol as fuel. Also, in the method of preparation of catalytic material for the anode: Supercritical Fluid Deposition (SFD) and impregnation method using ethylenediaminetetraacetic acid (EDTA) as a chelating agent. The first part of the thesis describes the general knowledge about Hydrogen Polymer Exchange Membrane Fuel Cell (HPEMFC),Direct Methanol Fuel Cell (DMFC) and Direct Ethanol Fuel Cell (DEFC), as well as the properties of Cerium and CeO2 (Ceria). The second part of the thesis describes the preparation of catalytic material by Supercritical Fluid Deposition (SFD). SFD was utilized to deposit Pt and ceria simultaneously onto gas diffusion layers. The Pt-ceria catalyst deposited by SFD exhibited higher methanol oxidation activity compared to the platinum catalyst alone. The linear sweep traces of the cathode made for the methanol cross over study indicate that Pt-Ceria/C as the anode catalyst, due to its better activity for methanol, improves the fuel utilization, minimizing the methanol permeation from anode to cathode compartment. The third and fourth parts of the thesis describe the preparation of material catalytic material Carbon-Platinum-Cerium by a simple and cheap impregnation method using EDTA as a chelating agent to form a complex with cerium (III). This preparation method allows the mass production of the material catalysts without additional significant cost. Fuel cell polarization and power curves experiments showed that the Carbon-Platinum-Cerium anode materials exhibited better catalytic activity than the only Vulcan-Pt catalysts for DMFC, DEFC and HPEMFC. In the case of Vulcan-20%Pt-5%w Cerium, this material exhibits better catalytic activity than the Vulcan-20%Pt in DMFC. In the case of Vulcan-40% Pt-doped Cerium, this material exhibits better catalytic activity than the Vulcan-40% Pt in DMFC, DEFC and HPEMFC. Finally, I propose a theory that explains the reason why the carbon-platinum-cerium has better catalytic activity than platinum-carbon. Due to the hybridization behavior of C and Ce could arise charge transfer, both carbon and cerium to the Platinum. Ce-C→Pt charge transfer could occur at the Ce-C/Pt interface. Thus, results in an increase in the catalytic activity of platinum-cerium-carbon when compared with carbon-platinum.
Folens, Karel; Van Acker, Thibaut; Bolea-Fernandez, Eduardo; Cornelis, Geert; Vanhaecke, Frank; Du Laing, Gijs; Rauch, Sebastien
2018-02-15
Elevated platinum (Pt) concentrations are found in road dust as a result of emissions from catalytic converters in vehicles. This study investigates the occurrence of Pt in road dust collected in Ghent (Belgium) and Gothenburg (Sweden). Total Pt contents, determined by tandem ICP-mass spectrometry (ICP-MS/MS), were in the range of 5 to 79ngg -1 , comparable to the Pt content in road dust of other medium-sized cities. Further sample characterization was performed by single particle (sp) ICP-MS following an ultrasonic extraction procedure using stormwater runoff for leaching. The method was found to be suitable for the characterization of Pt nanoparticles in road dust leachates. The extraction was optimized using road dust reference material BCR-723, for which an extraction efficiency of 2.7% was obtained by applying 144kJ of ultrasonic energy. Using this method, between 0.2% and 18% of the Pt present was extracted from road dust samples. spICP-MS analysis revealed that Pt in the leachate is entirely present as nanoparticles of sizes between 9 and 21nm. Although representing only a minor fraction of the total content in road dust, the nanoparticulate Pt leachate is most susceptible to biological uptake and hence most relevant in terms of bioavailability. Copyright © 2017 Elsevier B.V. All rights reserved.
Xu, Qiao; Wei, Fang; Wang, Zhan; Yang, Qin; Zhao, Yuan-Di; Chen, Hong
2010-01-01
Since the mechanism of Cd(2+) stress for plants is not clear, an in vivo method to monitor Cd(2+) stress for plants is necessary. However, oxidative burst (OB) is a signal messenger in the process of Cd(2+) stress for plants. To establish an electrochemical method with poly-o-phenylenediamine and Pt microparticle modified Pt electrode (POPD-Pt-MP-Pt) as a microbiosensor for the in vivo detection of oxidative burst induced by Cd(2+) stress in oilseed rape (Brassica napus L.). The optimal fabrication of POPD-Pt-MP-Pt biosensor was achieved. Electrochemical signal was collected by amperometry. After oilseed rape was exposed to 84.9 mM CdCl(2) stress, three oxidative bursts were observed in oilseed rape by amperometry at 3.3 h, 8.4 h and 13.2 h, respectively. However, there was no obvious signal observed in the controlled assay. This contribution presents the in vivo monitoring of the OB process induced by Cd(2+) stress in oilseed rape by POPD-Pt-MP-Pt microbiosensor in real-time. The novel electrochemical microbiosensor not only facilitates the real-time study in plant self-defence response to the adverse environment such as Cd(2+) stress, but also provides an effective tool for probing the self-defence mechanism in plants.
Performance Templates and the Regulation of Learning
ERIC Educational Resources Information Center
Lyons, Paul
2009-01-01
Purpose: The purpose of this paper is to provide a detailed, theoretical underpinning for the training and performance improvement method: performance template (P-T). The efficacy of P-T, with limitations, has been demonstrated in this journal and in others. However, the theoretical bases of the P-T approach had not been well-developed. The other…
NASA Astrophysics Data System (ADS)
Moniri, Samira; Reza Hantehzadeh, Mohammad; Ghoranneviss, Mahmood; Asadi Asadabad, Mohsen
2017-07-01
Au-Pt alloy nanoparticles (NPs) of different compositions ( Au0Pt100 , Au30Pt70 , Au50Pt50 , Au70Pt30 , and Au100Pt0 were obtained using the nanosecond laser ablation of gold and platinum bulk targets in ethylene glycol, followed by mixing highly monodisperse Au and Pt nanocolloids, for the first time. UV-vis absorption spectra of NPs showed that by increasing the Au content in the Au-Pt NPs, the surface plasmon resonance (SPR) peak red-shifted, from 260 to 573nm in a nonlinear way. In addition, the mean crystalline size, crystal structure, d-spacing, and lattice parameters of NPs were estimated from the XRD spectra. Microscopy studies revealed the most NPs have a spherical or near-spherical shape, and the average sizes of Au0Pt100 , Au30Pt70 , Au50Pt50 , Au70Pt30 , and Au100Pt0 NPs were calculated to be 12.50, 14.15, 18.53, 19.29, and 26.38nm, respectively. Also, the chemical identity of the molecules adhering to the NPs surface was considered by Raman and FT-IR spectroscopy techniques. Among different synthesis methods, the demonstrated technique allows easy synthesis of alloy NPs in aqueous media at room temperature with no formation of by-products.
NASA Astrophysics Data System (ADS)
Higuchi, Eiji; Takase, Tomonori; Chiku, Masanobu; Inoue, Hiroshi
2014-10-01
Pt, Rh and SnO2 nanoparticle-loaded carbon black (Pt/Rh/SnO2/CB) catalysts with different contents of Pt and Rh were prepared by the modified Bönnemann method. The mean size and size distribution of Pt, Rh and SnO2 for Pt-71/Rh-4/SnO2/CB (Pt : Rh : Sn = 71 at.%: 4 at.%: 25 at.%) were 3.8 ± 0.7, 3.2 ± 0.7 and 2.6 ± 0.5 nm, respectively, indicating that Pt, Rh and SnO2 were all nanoparticles. The onset potential of ethanol oxidation current for the Pt-65/Rh-10/SnO2/CB and Pt-56/Rh-19/SnO2/CB electrodes was ca. 0.2 V vs. RHE which was ca. 0.2 V less positive than that for the Pt/CB electrode. The oxidation current at 0.6 V for the Pt/Rh/SnO2/CB electrode (ca. 2% h-1) decayed more slowly than that at the Pt/SnO2/CB electrode (ca. 5% h-1), indicating that the former was superior in durability to the latter. The main product of EOR in potentiostatic electrolysis at 0.6 V for the Pt-71/Rh-4/SnO2/CB electrode was acetic acid.
Particle size dependence of CO tolerance of anode PtRu catalysts for polymer electrolyte fuel cells
NASA Astrophysics Data System (ADS)
Yamanaka, Toshiro; Takeguchi, Tatsuya; Wang, Guoxiong; Muhamad, Ernee Noryana; Ueda, Wataru
An anode catalyst for a polymer electrolyte fuel cell must be CO-tolerant, that is, it must have the function of hydrogen oxidation in the presence of CO, because hydrogen fuel gas generated by the steam reforming process of natural gas contains a small amount of CO. In the present study, PtRu/C catalysts were prepared with control of the degree of Pt-Ru alloying and the size of PtRu particles. This control has become possible by a new method of heat treatment at the final step in the preparation of catalysts. The CO tolerances of PtRu/C catalysts with the same degree of Pt-Ru alloying and with different average sizes of PtRu particles were thus compared. Polarization curves were obtained with pure H 2 and CO/H 2 (CO concentrations of 500-2040 ppm). It was found that the CO tolerance of highly dispersed PtRu/C (high dispersion (HD)) with small PtRu particles was much higher than that of poorly dispersed PtRu/C (low dispersion (LD)) with large metal particles. The CO tolerance of PtRu/C (HD) was higher than that of any commercial PtRu/C. The high CO tolerance of PtRu/C (HD) is thought to be due to efficient concerted functions of Pt, Ru, and their alloy.
Dogan, Didem C; Cho, Seonghun; Hwang, Sun-Mi; Kim, Young-Min; Guim, Hwanuk; Yang, Tae-Hyun; Park, Seok-Hee; Park, Gu-Gon; Yim, Sung-Dae
2016-10-10
Supportless Pt catalysts have several advantages over conventional carbon-supported Pt catalysts in that they are not susceptible to carbon corrosion. However, the need for high Pt loadings in membrane electrode assemblies (MEAs) to achieve state-of-the-art fuel cell performance has limited their application in proton exchange membrane fuel cells. Herein, we report a new approach to the design of a supportless Pt catalyst in terms of catalyst layer architecture, which is crucial for fuel cell performance as it affects water management and oxygen transport in the catalyst layers. Large Pt hollow spheres (PtHSs) 100 nm in size were designed and prepared using a carbon template method. Despite their large size, the unique structure of the PtHSs, which are composed of a thin-layered shell of Pt nanoparticles (ca. 7 nm thick), exhibited a high surface area comparable to that of commercial Pt black (PtB). The PtHS structure also exhibited twice the durability of PtB after 2000 potential cycles (0-1.3 V, 50 mV/s). A MEA fabricated with PtHSs showed significant improvement in fuel cell performance compared to PtB-based MEAs at high current densities (>800 mA/cm 2 ). This was mainly due to the 2.7 times lower mass transport resistance in the PtHS-based catalyst layers compared to that in PtB, owing to the formation of macropores between the PtHSs and high porosity (90%) in the PtHS catalyst layers. The present study demonstrates a successful example of catalyst design in terms of catalyst layer architecture, which may be applied to a real fuel cell system.
NASA Astrophysics Data System (ADS)
Tancret, N.; Obbade, S.; Bettahar, N.; Abraham, F.
1996-07-01
The mixed-valence PbPt2O4compound was synthesized both by solid state reaction between stoichiometric amounts of PbO and Pt heated at 650-750°C for 1 week and by chemical attack of Pb2PtO4. It decomposes to PbO and Pt at 750°C. The crystal structure was completely solved from direct methods and difference Fourier maps from powder X-ray diffraction data. The unit cell is triclinic (space groupP1,Z= 2) witha= 6.1161(2) Å,b= 6.6504(2) Å,c= 5.5502(2) Å, α = 97.178(2)°, β = 108.803(2)°, and γ = 115.241(2)°. The structural model was refined using the Rietveld profile technique and led to the reliability factorsRwp= 0.118,Rp= 0.086,RBragg= 0.029,RF= 0.018, and χ2= 1.51. The structure of PbPt2O4appears to be a unique one involving both Pt4+in octahedral coordination and Pt2+or partially oxidized platinum in square-planar coordination. The PbPt2O4structure consists of columnar-stacked PtO4groups extending along thecaxis of the unit cell. These columnar stacks are held by other planar PtO4groups to constitute Pt3O8sheets. These sheets are linked together by PtO6octahedra to form a three-dimensional framework. Lead atoms are surrounded by six oxygens forming a distorted octahedron. Metallic conductivity in PbPt2O4is consistent with short Pt-Pt bonds in the columnar stacks of PtO4groups along thecaxis direction (dPt-Pt= 2.78 Å).
The analytical transfer matrix method for PT-symmetric complex potential
NASA Astrophysics Data System (ADS)
Naceri, Leila; Hammou, Amine B.
2017-07-01
We have extended the analytical transfer matrix (ATM) method to solve quantum mechanical bound state problems with complex PT-symmetric potentials. Our work focuses on a class of models studied by Bender and Jones, we calculate the energy eigenvalues, discuss the critical values of g and compare the results with those obtained from other methods such as exact numerical computation and WKB approximation method.
Dosanjh, Manjit; Magrin, Giulio
2013-07-01
PARTNER (Particle Training Network for European Radiotherapy) is a project funded by the European Commission's Marie Curie-ITN funding scheme through the ENLIGHT Platform for 5.6 million Euro. PARTNER has brought together academic institutes, research centres and leading European companies, focusing in particular on a specialized radiotherapy (RT) called hadron therapy (HT), interchangeably referred to as particle therapy (PT). The ultimate goal of HT is to deliver more effective treatment to cancer patients leading to major improvement in the health of citizens. In Europe, several hundred million Euro have been invested, since the beginning of this century, in PT. In this decade, the use of HT is rapidly growing across Europe, and there is an urgent need for qualified researchers from a range of disciplines to work on its translational research. In response to this need, the European community of HT, and in particular 10 leading academic institutes, research centres, companies and small and medium-sized enterprises, joined together to form the PARTNER consortium. All partners have international reputations in the diverse but complementary fields associated with PT: clinical, radiobiological and technological. Thus the network incorporates a unique set of competencies, expertise, infrastructures and training possibilities. This paper describes the status and needs of PT research in Europe, the importance of and challenges associated with the creation of a training network, the objectives, the initial results, and the expected long-term benefits of the PARTNER initiative.
Yang, Wei-Hua; Wang, Hong-Hui; Chen, De-Hao; Zhou, Zhi-You; Sun, Shi-Gang
2012-12-21
Aimed at searching for highly active and stable nano-scale Pt-based catalysts that can improve significantly the energy conversion efficiency of direct ethanol fuel cells (DEFCs), a novel Pt-PbO(x) nanocomposite (Pt-PbO(x) NC) catalyst with a mean size of 3.23 nm was synthesized through a simple wet chemistry method without using a surfactant, organometallic precursors and high temperature. Electrocatalytic tests demonstrated that the as-prepared Pt-PbO(x) NC catalyst possesses a much higher catalytic activity and a longer durability than Pt nanoparticles (nm-Pt) and commercial Pt black catalysts for ethanol electrooxidation. For instance, Pt-PbO(x) NC showed an onset potential that was 30 mV and 44 mV less positive, together with a peak current density 1.7 and 2.6 times higher than those observed for nm-Pt and Pt black catalysts in the cyclic voltammogram tests. The ratio of current densities per unit Pt mass on Pt-PbO(x) NC, nm-Pt and Pt black catalysts is 27.3 : 3.4 : 1 for the long-term (2 hours) chronoamperometric experiments measured at -0.4 V (vs. SCE). In situ FTIR spectroscopic studies revealed that the activity of breaking C-C bonds of ethanol of the Pt-PbO(x) NC is as high as 5.17 times that of the nm-Pt, which illustrates a high efficiency of ethanol oxidation to CO(2) on the as-prepared Pt-PbO(x) NC catalyst.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayanamoorthy, B.; Kumar, B.V.V.S. Pavan; Eswaramoorthy, M.
2014-07-01
Highlights: • Supportless Pt nanonetwork (Pt NN) synthesized by novel template free one step method as per our earlier reported procedure. • Electrocatalytic activity of Pt NN studied taking oxygen reduction reaction in acid medium. • Kinetic and thermodynamic parameters were deduced under hydrodynamic conditions. • ORR mechanistic pathway was proposed based on kinetic rate constants. • ADT analysis found enhanced stability (5000 cycles) for Pt NN than Pt NN/VC and reported Pt/C. - Abstract: The reduction reaction of molecular oxygen (ORR) was investigated using supportless Pt nanonetwork (Pt NN) electrocatalyst in sulfuric acid medium. Pt NN was prepared bymore » template free borohydride reduction. The transmission electron microscope images revealed a network like nano-architecture having an average cluster size of 30 nm. The electrochemical characterization of supportless and Vulcan carbon supported Pt NN (Pt NN/VC) was carried out using rotating disc and ring disc electrodes at various temperatures. Kinetic and thermodynamic parameters were estimated under hydrodynamic conditions and compared with Pt NN/VC and reported Pt/C catalysts. The accelerated durability test revealed that supportless Pt NN is quite stable for 5000 potential cycles with 22% reduction in electrochemical surface area (ECSA). While the initial limiting current density has in fact increased by 11.6%, whereas Pt NN/VC suffered nearly 55% loss in ECSA and 13% loss in limiting current density confirming an enhanced stability of supportless Pt NN morphology for ORR compared to conventional Pt/C ORR catalysts in acid medium.« less
Examining the Link Between Public Transit Use and Active Commuting
Bopp, Melissa; Gayah, Vikash V.; Campbell, Matthew E.
2015-01-01
Background: An established relationship exists between public transportation (PT) use and physical activity. However, there is limited literature that examines the link between PT use and active commuting (AC) behavior. This study examines this link to determine if PT users commute more by active modes. Methods: A volunteer, convenience sample of adults (n = 748) completed an online survey about AC/PT patterns, demographic, psychosocial, community and environmental factors. t-test compared differences between PT riders and non-PT riders. Binary logistic regression analyses examined the effect of multiple factors on AC and a full logistic regression model was conducted to examine AC. Results: Non-PT riders (n = 596) reported less AC than PT riders. There were several significant relationships with AC for demographic, interpersonal, worksite, community and environmental factors when considering PT use. The logistic multivariate analysis for included age, number of children and perceived distance to work as negative predictors and PT use, feelings of bad weather and lack of on-street bike lanes as a barrier to AC, perceived behavioral control and spouse AC were positive predictors. Conclusions: This study revealed the complex relationship between AC and PT use. Further research should investigate how AC and public transit use are related. PMID:25898405
NASA Astrophysics Data System (ADS)
Mo, Changki; Radziemski, Leon J.; Clark, William W.
2007-04-01
This paper presents current work on a project to demonstrate the feasibility of harvesting energy for medical devices from internal biomechanical forces using piezoelectric transducer technology based on PMN-PT. The energy harvesting device in this study is a partially covered, simply-supported PMN-PT unimorph circular plate to capture biomechanical energy and to provide power to implanted medical devices. Power harvesting performance for the piezoelectric energy harvesting diaphragm structure is examined analytically. The analysis includes comprehensive modeling and parametric study to provide a design primer for a specific application. An expression for the total power output from the devices for applied pressure is shown, and then used to determine optimal design parameters. It is shown that the device's deflections and stresses under load are the limiting factors in the design. While the primary material choice for energy harvesting today is PZT, an advanced material, PMN-PT, which exhibits improved potential over current materials, is used.
Maintenance of biological activity of pertussis toxin radioiodinated while bound to fetuin-agarose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, G.D.; Peppler, M.S.
1987-05-01
We developed a method to produce radioiodinated pertussis toxin (PT) which was active in the goose erythrocyte agglutination and CHO cell assay systems. The procedure used fetuin coupled to agarose to prevent inactivation of the toxin during the iodination reaction. Analysis of the labeled PT by affinity chromatography on fetuin-agarose and wheat germ agglutinin-agarose and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that there were minimal amounts of labeled fetuin or other contaminants in the labeled PT preparations. All five of the subunits of the toxin appeared to be labeled by the procedure. The labeling method will facilitate further investigationsmore » into the nature of the interaction and activity of PT in host tissues.« less
Ortiz-Prado, E; Natah, Siraj; Srinivasan, Sathyanarayanan; Dunn, Jeff F
2010-11-30
The level of tissue oxygenation provides information related to the balance between oxygen delivery, oxygen utilization, tissue reactivity and morphology during physiological conditions. Tissue partial pressure of oxygen (PtO(2)) is influenced by the use of anesthesia or restraint. These factors may impact the absolute level of PtO(2). In this study we present a novel fiber optic method to measure brain PtO(2). This method can be used in unanesthetized, unrestrained animals, provides absolute values for PO(2), has a stable calibration, does not consume oxygen and is MRI compatible. Brain PtO(2) was studied during acute hypoxia, as well as before and after 28 days of high altitude acclimatization. A sensor was chronically implanted in the frontal cortex of eight Wistar rats. It is comprised of a fiber optic probe with a tip containing material that fluoresces with an oxygen dependent lifetime. Brain PtO(2) declines by 80% and 76% pre- and post-acclimatization, respectively, when the fraction of inspired oxygen declines from 0.21 to 0.08. In addition, a linear relationship between brain PtO(2) and inspired O(2) levels was demonstrated r(2)=0.98 and r(2)=0.99 (pre- and post-acclimatization). Hypoxia acclimatization resulted in an increase in the overall brain PtO(2) by approximately 35%. This paper demonstrates the use of a novel chronically implanted fiber optic based sensor for measuring absolute PtO(2). It shows a very strong linear relationship in awake animals between inspired O(2) and tissue O(2), and shows that there is a proportional increase in PtO(2) over a range of inspired values after exposure to chronic hypoxia. Copyright © 2010 Elsevier B.V. All rights reserved.
16 CFR Appendix F to Part 436 - Sample Item 20(5) Table-Projected New Franchised Outlets
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Sample Item 20(5) Table-Projected New Franchised Outlets F Appendix F to Part 436 Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES DISCLOSURE REQUIREMENTS AND PROHIBITIONS CONCERNING FRANCHISING Pt. 436, App. F Appendix F to Part...
Platinum nanoparticles induce damage to DNA and inhibit DNA replication
Nejdl, Lukas; Kudr, Jiri; Moulick, Amitava; Hegerova, Dagmar; Ruttkay-Nedecky, Branislav; Gumulec, Jaromir; Cihalova, Kristyna; Smerkova, Kristyna; Dostalova, Simona; Krizkova, Sona; Novotna, Marie; Kopel, Pavel
2017-01-01
Sparsely tested group of platinum nanoparticles (PtNPs) may have a comparable effect as complex platinum compounds. The aim of this study was to observe the effect of PtNPs in in vitro amplification of DNA fragment of phage λ, on the bacterial cultures (Staphylococcus aureus), human foreskin fibroblasts and erythrocytes. In vitro synthesized PtNPs were characterized by dynamic light scattering (PtNPs size range 4.8–11.7 nm), zeta potential measurements (-15 mV at pH 7.4), X-ray fluorescence, UV/vis spectrophotometry and atomic absorption spectrometry. The PtNPs inhibited the DNA replication and affected the secondary structure of DNA at higher concentrations, which was confirmed by polymerase chain reaction, DNA sequencing and DNA denaturation experiments. Further, cisplatin (CisPt), as traditional chemotherapy agent, was used in all parallel experiments. Moreover, the encapsulation of PtNPs in liposomes (LipoPtNPs) caused an approximately 2.4x higher of DNA damage in comparison with CisPt, LipoCisPt and PtNPs. The encapsulation of PtNPs in liposomes also increased their antibacterial, cytostatic and cytotoxic effect, which was determined by the method of growth curves on S. aureus and HFF cells. In addition, both the bare and encapsulated PtNPs caused lower oxidative stress (determined by GSH/GSSG ratio) in the human erythrocytes compared to the bare and encapsulated CisPt. CisPt was used in all parallel experiments as traditional chemotherapy agent. PMID:28704436
Platinum nanoparticles induce damage to DNA and inhibit DNA replication.
Nejdl, Lukas; Kudr, Jiri; Moulick, Amitava; Hegerova, Dagmar; Ruttkay-Nedecky, Branislav; Gumulec, Jaromir; Cihalova, Kristyna; Smerkova, Kristyna; Dostalova, Simona; Krizkova, Sona; Novotna, Marie; Kopel, Pavel; Adam, Vojtech
2017-01-01
Sparsely tested group of platinum nanoparticles (PtNPs) may have a comparable effect as complex platinum compounds. The aim of this study was to observe the effect of PtNPs in in vitro amplification of DNA fragment of phage λ, on the bacterial cultures (Staphylococcus aureus), human foreskin fibroblasts and erythrocytes. In vitro synthesized PtNPs were characterized by dynamic light scattering (PtNPs size range 4.8-11.7 nm), zeta potential measurements (-15 mV at pH 7.4), X-ray fluorescence, UV/vis spectrophotometry and atomic absorption spectrometry. The PtNPs inhibited the DNA replication and affected the secondary structure of DNA at higher concentrations, which was confirmed by polymerase chain reaction, DNA sequencing and DNA denaturation experiments. Further, cisplatin (CisPt), as traditional chemotherapy agent, was used in all parallel experiments. Moreover, the encapsulation of PtNPs in liposomes (LipoPtNPs) caused an approximately 2.4x higher of DNA damage in comparison with CisPt, LipoCisPt and PtNPs. The encapsulation of PtNPs in liposomes also increased their antibacterial, cytostatic and cytotoxic effect, which was determined by the method of growth curves on S. aureus and HFF cells. In addition, both the bare and encapsulated PtNPs caused lower oxidative stress (determined by GSH/GSSG ratio) in the human erythrocytes compared to the bare and encapsulated CisPt. CisPt was used in all parallel experiments as traditional chemotherapy agent.
Inaba, Masanori; Quinson, Jonathan; Bucher, Jan Rudolf; Arenz, Matthias
2018-03-16
We present a step-by-step tutorial to prepare proton exchange membrane fuel cell (PEMFC) catalysts, consisting of Pt nanoparticles (NPs) supported on a high surface area carbon, and to test their performance in thin film rotating disk electrode (TF-RDE) measurements. The TF-RDE methodology is widely used for catalyst screening; nevertheless, the measured performance sometimes considerably differs among research groups. These uncertainties impede the advancement of new catalyst materials and, consequently, several authors discussed possible best practice methods and the importance of benchmarking. The visual tutorial highlights possible pitfalls in the TF-RDE testing of Pt/C catalysts. A synthesis and testing protocol to assess standard Pt/C catalysts is introduced that can be used together with polycrystalline Pt disks as benchmark catalysts. In particular, this study highlights how the properties of the catalyst film on the glassy carbon (GC) electrode influence the measured performance in TF-RDE testing. To obtain thin, homogeneous catalyst films, not only the catalyst preparation, but also the ink deposition and drying procedures are essential. It is demonstrated that an adjustment of the ink's pH might be necessary, and how simple control measurements can be used to check film quality. Once reproducible TF-RDE measurements are obtained, determining the Pt loading on the catalyst support (expressed as Pt wt%) and the electrochemical surface area is necessary to normalize the determined reaction rates to either surface area or Pt mass. For the surface area determination, so-called CO stripping, or the determination of the hydrogen underpotential deposition (Hupd) charge, are standard. For the determination of the Pt loading, a straightforward and cheap procedure using digestion in aqua regia with subsequent conversion of Pt(IV) to Pt(II) and UV-vis measurements is introduced.
Inaba, Masanori; Quinson, Jonathan; Bucher, Jan Rudolf; Arenz, Matthias
2018-01-01
We present a step-by-step tutorial to prepare proton exchange membrane fuel cell (PEMFC) catalysts, consisting of Pt nanoparticles (NPs) supported on a high surface area carbon, and to test their performance in thin film rotating disk electrode (TF-RDE) measurements. The TF-RDE methodology is widely used for catalyst screening; nevertheless, the measured performance sometimes considerably differs among research groups. These uncertainties impede the advancement of new catalyst materials and, consequently, several authors discussed possible best practice methods and the importance of benchmarking. The visual tutorial highlights possible pitfalls in the TF-RDE testing of Pt/C catalysts. A synthesis and testing protocol to assess standard Pt/C catalysts is introduced that can be used together with polycrystalline Pt disks as benchmark catalysts. In particular, this study highlights how the properties of the catalyst film on the glassy carbon (GC) electrode influence the measured performance in TF-RDE testing. To obtain thin, homogeneous catalyst films, not only the catalyst preparation, but also the ink deposition and drying procedures are essential. It is demonstrated that an adjustment of the ink's pH might be necessary, and how simple control measurements can be used to check film quality. Once reproducible TF-RDE measurements are obtained, determining the Pt loading on the catalyst support (expressed as Pt wt%) and the electrochemical surface area is necessary to normalize the determined reaction rates to either surface area or Pt mass. For the surface area determination, so-called CO stripping, or the determination of the hydrogen underpotential deposition (Hupd) charge, are standard. For the determination of the Pt loading, a straightforward and cheap procedure using digestion in aqua regia with subsequent conversion of Pt(IV) to Pt(II) and UV-vis measurements is introduced. PMID:29608166
Nitrogen Doped Graphene Supported Pt Nanoflowers as Electrocatalysts for Oxidation of Formaldehyde.
Xie, Aijuan; Zhou, Wenting; Luo, Shiping; Chen, Yu; Zhou, Xiaoqing; Chao, Yao
2017-02-01
A facile Pt nanoflowers/nitrogen-doped graphene (PtNFs/NG) electrocatalyst was prepared via depositing Pt nanoflowers (PtNFs) onto the nitrogen-doped graphene (NG) matrix with urea as the nitrogen source and PtNFs/NG modified glassy carbon electrode (GCE) was prepared by electro-chemical method. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscope, X-ray photoelectron spectroscopy (XPS) and Scanning electron microscope (SEM) were used to characterize the resulting composites. Also oxidation of formaldehyde on the resulting PtNFs/NG modified electrode was investigated. The influence of deposition time, electrodeposition potential and formaldehyde concentration on electrooxidation of formaldehyde was detected, the experimental results indicate the high performance of PtNFs/NG catalyst for formaldehyde oxidation is at electrodeposition time of 300 s with the applied potential of −0.3 V. Electrochemical process, electrocatalytic stability and chronoamperometry were also inspected, it was indicated that formalde-hyde oxidation reaction on the PtNFs/NG electrode is diffusion-controlled and PtNFs/NG exhibits a high catalytic activity, stability as well as excellent poisoning-tolerance towards formaldehyde oxidation, which is attributed to the synergistic effect of PtNFs and NG. It turns out that PtNFs/NG can be used in direct liquid-feed fuel cells as a promising alternative catalyst.
NASA Astrophysics Data System (ADS)
Cao, Ribing; Xia, Tiantian; Zhu, Ruizhi; Liu, Zhihua; Guo, Jinming; Chang, Gang; Zhang, Zaoli; Liu, Xiong; He, Yunbin
2018-03-01
Core-shell Au-Pt dendritic nanoparticles (Au-Pt NPs) has been synthesized via a facile seed-mediated growth method, in which dendritic Pt nanoparticles as shell grow on the surface of gold nanocores by using ascorbic acid (AA) as "green" reducing reagents. The morphologies and compositions of the as-prepared nanocomposites with core-shell structure are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Electrochemical experiments, including cyclic voltammetry (CV) and chronoamperometry (CA) are performed to investigate the electrocatalytic properties of the Au-Pt NPs loaded carbon black composites (Au-Pt NPs/V) towards methanol oxidation in an alkaline solution. It is found that the reduction time of AA could regulate the thickness and amount of Pt on the Au nanocores, which significantly affect catalytic activity of the Au-Pt NPs/V toward methanol oxidation. Au-Pt NPs/V with optimum reduction time 4 h exhibit 2.3-times higher electrocatalytic activity than that of a commercial catalyst (Pt/carbon black) and an excellent CO tolerance toward methanol oxidation. This behavior is attributed to large active electrochemical area of the bimetallic nanocomposites and the change in the electronic structure of Pt when Au surface modified with fewer Pt nanoparticles.
Large scale structural optimization of trimetallic Cu-Au-Pt clusters up to 147 atoms
NASA Astrophysics Data System (ADS)
Wu, Genhua; Sun, Yan; Wu, Xia; Chen, Run; Wang, Yan
2017-10-01
The stable structures of Cu-Au-Pt clusters up to 147 atoms are optimized by using an improved adaptive immune optimization algorithm (AIOA-IC method), in which several motifs, such as decahedron, icosahedron, face centered cubic, sixfold pancake, and Leary tetrahedron, are randomly selected as the inner cores of the starting structures. The structures of Cu8AunPt30-n (n = 1-29), Cu8AunPt47-n (n = 1-46), and partial 75-, 79-, 100-, and 147-atom clusters are analyzed. Cu12Au93Pt42 cluster has onion-like Mackay icosahedral motif. The segregation phenomena of Cu, Au and Pt in clusters are explained by the atomic radius, surface energy, and cohesive energy.
NASA Astrophysics Data System (ADS)
Ehsani, Ali; Jaleh, Babak; Nasrollahzadeh, Mahmoud
2014-07-01
Reduced graphene oxide (rGO) was used to support Cu nanoparticles. As electro-active electrodes for supercapacitors composites of reduced graphene oxide/Cu nanoparticles (rGO/CuNPs) and polytyramine (PT) with good uniformity are prepared by electropolymerization. Composite of rGO/CuNPs-PT was synthesized by cyclic voltammetry (CV) methods and electrochemical properties of film were investigated by using electrochemical techniques. The results show that, the rGO/CuNPs-PT/G has better capacitance performance. This is mainly because of the really large surface area and the better electronic and ionic conductivity of rGO/CuNPs-PT/G, which lead to greater double-layer capacitance and faradic pseudo capacitance. Modified graphite electrodes (rGO/CuNPs-PT/G) were examined for their redox process and electrocatalytic activities towards the oxidation of methanol in alkaline solutions. The methods of cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) were employed. In comparison with a Cu-PT/G (Graphite), rGO/CuNPs-PT/G modified electrode shows a significantly higher response for methanol oxidation. A mechanism based on the electro-chemical generation of Cu(III) active sites and their subsequent consumptions by methanol have been discussed.
Platinum thin film resistors as accurate and stable temperature sensors
NASA Technical Reports Server (NTRS)
Diehl, W.
1984-01-01
The measurement characteristics of thin-Pt-film temperature sensors fabricated using advanced methods are discussed. The limitations of wound-wire Pt temperature sensors and the history of Pt-film development are outlined, and the commonly used film-deposition, structuring, and trimming methods are presented in a table. The development of a family of sputtered film resistors is described in detail and illustrated with photographs of the different types. The most commonly used tolerances are reported as + or - 0.3 C + 0.5 percent of the temperature measured.
Johnston, Christina M; Strbac, Svetlana; Lewera, Adam; Sibert, Eric; Wieckowski, Andrzej
2006-09-12
Catalytic activity of the Pt(111)/Os surface toward methanol electrooxidation was optimized by exploring a wide range of Os coverage. Various methods of surface analyses were used, including electroanalytical, STM, and XPS methods. The Pt(111) surface was decorated with nanosized Os islands by spontaneous deposition, and the Os coverage was controlled by changing the exposure time to the Os-containing electrolyte. The structure of Os deposits on Pt(111) was characterized and quantified by in situ STM and stripping voltammetry. We found that the optimal Os surface coverage of Pt(111) for methanol electrooxidation was 0.7 +/- 0.1 ML, close to 1.0 +/- 0.1 Os packing density. Apparently, the high osmium coverage Pt(111)/Os surface provides more of the necessary oxygen-containing species (e.g., Os-OH) for effective methanol electrooxidation than the Pt(111)/Os surfaces with lower Os coverage (vs e.g., Ru-OH). Supporting evidence for this conjecture comes from the CO electrooxidation data, which show that the onset potential for CO stripping is lowered from 0.53 to 0.45 V when the Os coverage is increased from 0.2 to 0.7 ML. However, the activity of Pt(111)/Os for methanol electrooxidation decreases when the Os coverage is higher than 0.7 +/- 0.1 ML, indicating that Pt sites uncovered by Os are necessary for sustaining significant methanol oxidation rates. Furthermore, osmium is inactive for methanol electrooxidation when the platinum substrate is absent: Os deposits on Au(111), a bulk Os ingot, and thick films of electrodeposited Os on Pt(111), all compare poorly to Pt(111)/Os. We conclude that a bifunctional mechanism applies to the methanol electrooxidation similarly to Pt(111)/Ru, although with fewer available Pt sites. Finally, the potential window for methanol electrooxidation on Pt(111)/Os was observed to shift positively versus Pt(111)/Ru. Because of the difference in the Os and Ru oxophilicity under electrochemical conditions, the Os deposit provides fewer oxygen-containing species, at least below 0.5 V vs RHE. Both higher coverage of Os than Ru and the higher potentials are required to provide a sufficient number of active oxygen-containing species for the effective removal of the site-blocking CO from the catalyst surface when the methanol electrooxidation process occurs.
Parker, Craig T.; Huynh, Steven; Quiñones, Beatriz; Harris, Linda J.; Mandrell, Robert E.
2010-01-01
In 2000 to 2001, 2003 to 2004, and 2005 to 2006, three outbreaks of Salmonella enterica serovar Enteritidis were linked with the consumption of raw almonds. The S. Enteritidis strains from these outbreaks had rare phage types (PT), PT30 and PT9c. Clinical and environmental S. Enteritidis strains were subjected to pulsed-field gel electrophoresis (PFGE), multilocus variable-number tandem repeat analysis (MLVA), and DNA microarray-based comparative genomic indexing (CGI) to evaluate their genetic relatedness. All three methods differentiated these S. Enteritidis strains in a manner that correlated with PT. The CGI analysis confirmed that the majority of the differences between the S. Enteritidis PT9c and PT30 strains corresponded to bacteriophage-related genes present in the sequenced genomes of S. Enteritidis PT4 and S. enterica serovar Typhimurium LT2. However, PFGE, MLVA, and CGI failed to discriminate between S. Enteritidis PT30 strains related to outbreaks from unrelated clinical strains or between strains separated by up to 5 years. However, metabolic fingerprinting demonstrated that S. Enteritidis PT4, PT8, PT13a, and clinical PT30 strains metabolized l-aspartic acid, l-glutamic acid, l-proline, l-alanine, and d-alanine amino acids more efficiently than S. Enteritidis PT30 strains isolated from orchards. These data indicate that S. Enteritidis PT9c and 30 strains are highly related genetically and that PT30 orchard strains differ from clinical PT30 strains metabolically, possibly due to fitness adaptations. PMID:20363782
The selective hydrogenation of crotonaldehyde over bimetallic catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoeb, Ann M.
1997-10-17
The selective hydrogenation of crotonaldehyde has been investigated over a monometallic Pt/SiO 2 catalyst and platinum bimetallic catalysts where the second metal was either silver, copper, or tin. The effects of addition of a second metal to the Pt/SiO 2 system on the selectivity to crotyl alcohol were investigated. The Pt-Sn bimetallic catalysts were characterized by hydrogen chemisorption, 1H NMR and microcalorimetry. The Pt-Ag/SiO 2 and Pt-Cu/SiO 2 catalysts were characterized by hydrogen chemisorption. Pt-Sn/SiO 2 catalysts selectively hydrogenated crotonaldehyde to crotyl alcohol and the method of preparation of these catalysts affected the selectivity. The most selective Pt-Sn/SiO 2 catalystsmore » for the hydrogenation of crotonaldehyde to crotyl alcohol were those in which the Sn precursor was dissolved in a HCl solution. Sn increased both the rate of formation of butyraldehyde and the rate of formation of crotyl alcohol. The Pt/SiO 2, Pt-Ag/SiO 2 and Pt-Cu/SiO 2 catalysts produced only butyraldehyde. Initial heats of adsorption (~90 kJ/mol) measured using microcalorimetry were not affected by the presence of Sn on Pt. We can conclude that there is no through metal electronic interaction between Pt and Sn at least with respect to hydrogen surface bonds since the Pt and Pt-Sn at least with respect to hydrogen surface bonds since the Pt and Pt-Sn had similar initial heats of adsorption coupled with the invariance of the 1H NMR Knight shift.« less
Sang, Fuming; Liu, Jia; Zhang, Xue; Pan, Jianxin
2018-04-25
A colorimetric method is described for the determination of Pt(II). It is based on the use of gold nanoparticles (AuNPs) which are known to aggregate in the presence of a cationic polymer such as poly(diallyldimethylammonium chloride) (PDDA). If, however, a mismatched aptamer (AA) electrostatically binds to PDDA, aggregation is prevented. Upon the addition of Pt(II), it will bind to the aptamer and induce the formation of a hairpin structure. Hence, interaction between aptamer and PDDA is suppressed and PDDA will induce the aggregation of the AuNPs. This is accompanied by a color change from red to blue. The effect can be observed with bare eyes and quantified by colorimetry via measurement of the ratio of absorbances at 610 nm and 520 nm. Response is linear in the 0.24-2 μM Pt(II) concentration range, and the detection limit is 58 nM. The assay is completed within 15 min and selective for Pt(II) even in the presence of other metal ions. It was successfully applied to the rapid determination of Pt(II) in spiked soil samples. Graphical abstract Schematic representation of the method for detection of Pt(II) based on the use of a cationic polymer and gold nanoparticles. In the presence of Pt(II), aptamer interacts with the Pt(II) and prevents the interaction between aptamer and cationic polymer. Hence, cationic polymer induce the aggregation of the AuNPs and lead to the color change from red to blue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Sufen; Xiao, Weiping; Wang, Jie
Optimizing the utilization of Pt to catalyze the sluggish kinetics of the oxygen reduction reaction (ORR) is of vital importance in proton exchange membrane fuel cells. One of the strategies is to spread Pt atoms over the surface of a substrate to increase the surface area. We report a facile method to synthesize Pd6CoCu@Pt/C core-shell nanoparticles with an ultralow amount of Pt. It was found that Pt-coated layer on Pd6CoCu cores plays a vital role in enhancing the ORR activity and the cycling stability. The half-wave potential of Pd6CoCu@Pt/C positively shifts about 50 mV and 17 mV relative to Pd6CoCu/Cmore » and Pt/C, respectively. The Pt mass activity on Pd6CoCu@Pt/C was calculated to be about 27 times higher than that on Pt/C catalysts at 0.9 V. Furthermore, the Pd6CoCu@Pt/C nanoparticles exhibit superior stability with almost no decay for the ORR polarization curves during 10,000 potential cycles and the core-shell structure remains with only a slight increase in the thickness of the Pt overlayer. Our findings provide a methodology for synthesizing highly efficient catalytic materials for the cathodic application in fuel cells.« less
Quality factor concept in piezoceramic transformer performance description.
Mezheritsky, Alex V
2006-02-01
A new general approach based on the quality factor concept to piezoceramic transformer (PT) performance description is proposed. The system's quality factor, material elastic anisotropy, and coupling factors of the input and output sections of an electrically excited and electrically loaded PT fully characterize its resonance and near-resonance behavior. The PT efficiency, transformation ratio, and input and output power were analytically analyzed and simulated as functions of the load and frequency for the simplest classical Langevin-type and Rosen-type PT designs. A new formulation of the electrical input impedance allows one to separate the power consumed by PT from the power transferred into the load. The system's PT quality factor takes into account losses in each PT "input-output-load" functional components. The loading process is changing PT input electrical impedance on the way that under loading the minimum series impedance is increasing and the maximum parallel impedance is decreasing coincidentally. The quality-factors ratio, between the states of fully loaded and nonloaded PT, is one of the best measures of PTs dynamic performance--practically, the lower the ratio is, the better PT efficiency. A simple and effective method for the loaded PT quality factor determination is proposed. As was found, a piezoceramic with low piezoelectric anisotropy is required to provide maximum PT efficiency and higher corresponding voltage gain. Limitations on the PT output voltage and power, caused by nonlinear effects in piezoceramics, were established.
Liu, Sufen; Xiao, Weiping; Wang, Jie; ...
2016-08-01
Optimizing the utilization of Pt to catalyze the sluggish kinetics of the oxygen reduction reaction (ORR) is of vital importance in proton exchange membrane fuel cells. One of the strategies is to spread Pt atoms over the surface of a substrate to increase the surface area. We report a facile method to synthesize Pd6CoCu@Pt/C core-shell nanoparticles with an ultralow amount of Pt. It was found that Pt-coated layer on Pd6CoCu cores plays a vital role in enhancing the ORR activity and the cycling stability. The half-wave potential of Pd6CoCu@Pt/C positively shifts about 50 mV and 17 mV relative to Pd6CoCu/Cmore » and Pt/C, respectively. The Pt mass activity on Pd6CoCu@Pt/C was calculated to be about 27 times higher than that on Pt/C catalysts at 0.9 V. Furthermore, the Pd6CoCu@Pt/C nanoparticles exhibit superior stability with almost no decay for the ORR polarization curves during 10,000 potential cycles and the core-shell structure remains with only a slight increase in the thickness of the Pt overlayer. Our findings provide a methodology for synthesizing highly efficient catalytic materials for the cathodic application in fuel cells.« less
Cho, Taehoon; Yoon, Chang Won; Kim, Joohoon
2018-06-13
In this study, we report the controllable synthesis of dendrimer-encapsulated Pt nanoparticles (Pt DENs) utilizing repetitively coupled chemical reduction and galvanic exchange reactions. The synthesis strategy allows the expansion of the applicable number of Pt atoms encapsulated inside dendrimers to more than 1000 without being limited by the fixed number of complexation sites for Pt 2+ precursor ions in the dendrimers. The synthesis of Pt DENs is achieved in a short period of time (i.e., ∼10 min) simply by the coaddition of appropriate amounts of Cu 2+ and Pt 2+ precursors into aqueous dendrimer solution and subsequent addition of reducing agents such as BH 4 - , resulting in fast and selective complexation of Cu 2+ with the dendrimers and subsequent chemical reduction of the complexed Cu 2+ while uncomplexed Pt 2+ precursors remain oxidized. Interestingly, the chemical reduction of Cu 2+ , leading to the formation of Cu nanoparticles encapsulated inside the dendrimers, is coupled with the galvanic exchange of the Cu nanoparticles with the nearby Pt 2+ . This coupling repetitively proceeds until all of the added Pt 2+ ions form into Pt nanoparticles encapsulated inside the dendrimers. In contrast to the conventional method utilizing direct chemical reduction, this repetitively coupled chemical reduction and galvanic exchange enables a substantial increase in the applicable number of Pt atoms up to 1320 in Pt DENs while maintaining the unique features of DENs.
Development of highly active and stable hybrid cathode catalyst for PEMFCs
NASA Astrophysics Data System (ADS)
Jung, Won Suk
Polymer electrolyte membrane fuel cells (PEMFCs) are attractive power sources of the future for a variety of applications including portable electronics, stationary power, and automobile application. However, sluggish cathode kinetics, high Pt cost, and durability issues inhibit the commercialization of PEMFCs. To overcome these drawbacks, research has been focused on alloying Pt with transition metals since alloy catalysts show significantly improved catalytic properties like high activity, selectivity, and durability. However, Pt-alloy catalysts synthesized using the conventional impregnation method exhibit uneven particle size and poor particle distribution resulting in poor performance and/or durability in PEMFCs. In this dissertation, a novel catalyst synthesis methodology is developed and compared with catalysts prepared using impregnation method and commercial catalysts. Two approaches are investigated for the catalyst development. The catalyst durability was studied under U. S. DRIVE Fuel Cell Tech Team suggested protocols. In the first approach, the carbon composite catalyst (CCC) having active sites for oxygen reduction reaction (ORR) is employed as a support for the synthesis of Pt/CCC catalyst. The structural and electrochemical properties of Pt/CCC catalyst are investigated using high-resolution transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, while RDE and fuel cell testing are carried out to study the electrochemical properties. The synergistic effect of CCC and Pt is confirmed by the observed high activity towards ORR for the Pt/CCC catalyst. The second approach is the synthesis of Co-doped hybrid cathode catalysts (Co-doped Pt/CCC) by diffusing the Co metal present within the CCC support into the Pt nanoparticles during heat-treatment. The optimized Co-doped Pt/CCC catalyst performed better than the commercial catalysts and the catalyst prepared using the impregnation method in PEMFCs and showed high stability under 30,000 potential cycles between 0.6 and 1.0 V. To further increase the stability of the catalyst at high potential cycles (1.0-1.5 V), high temperature treatment is used to obtain graphitized carbon having optimum BET surface area. The novel catalyst synthesis procedure developed in this study was successfully applied for the synthesis of Co-doped Pt catalysts supported on the graphitized carbon which showed high activity and enhanced stability at high potentials.
Wu, Fengxia; Lai, Jianping; Zhang, Ling; Niu, Wenxin; Lou, Baohua; Luque, Rafael; Xu, Guobao
2018-05-08
The rational construction of multi-dimensional layered noble metal nanostructures is a great challenge since noble metals are not layer-structured materials. Herein, we report a one-pot hydrothermal synthetic method for PtCu hierarchical concave layered triangular (HCLT) nanostructures using dl-carnitine, KI, poly(vinylpyrrolidone), CuCl2, and H2PtCl6. The PtCu HCLT nanostructure is comprised of multilayered triangular dendrites. Its layer number is tunable by changing dl-carnitine concentrations, and the concavity/convexity of the PtCu triangle nanostructures is tunable by changing the H2PtCl6/CuCl2 ratio or KI concentrations. Hierarchical trigonal bipyramid nanoframes are also obtained under certain conditions. Because of its advantageous nanostructure and bimetallic synergetic effect, the obtained PtCu HCLT nanostructure exhibits enhanced electrocatalytic activity and prolonged stability to formic acid oxidation compared to commercial Pt black, Pd/C and some other nanostructures.
Active and stable Ir@Pt core–shell catalysts for electrochemical oxygen reduction
Strickler, Alaina L.; Jackson, Ariel; Jaramillo, Thomas F.
2016-12-28
Electrochemical oxygen reduction is an important reaction for many sustainable energy technologies, such as fuel cells and metal–air batteries. Kinetic limitations of this reaction, expensive electrocatalysts, and catalyst instability, however, limit the commercial viability of such devices. Herein, we report an active Ir@Pt core–shell catalyst that combines platinum overlayers with nanostructure effects to tune the oxygen binding to the Pt surface, thereby achieving enhanced activity and stability for the oxygen reduction reaction. Ir@Pt nanoparticles with several shell thicknesses were synthesized in a scalable, inexpensive, one-pot polyol method. Electrochemical analysis demonstrates the activity and stability of the Ir@Pt catalyst, with specificmore » and mass activities increasing to 2.6 and 1.8 times that of commercial Pt/C (TKK), respectively, after 10 000 stability cycles. Furthermore, activity enhancement of the Ir@Pt catalyst is attributed to weakening of the oxygen binding to the Pt surface induced by the Ir core.« less
2011-01-01
In this article, PtAg alloy nanoislands/graphene hybrid composites were prepared based on the self-organization of Au@PtAg nanorods on graphene sheets. Graphite oxides (GO) were prepared and separated to individual sheets using Hummer's method. Graphene nano-sheets were prepared by chemical reduction with hydrazine. The prepared PtAg alloy nanomaterial and the hybrid composites with graphene were characterized by SEM, TEM, and zeta potential measurements. It is confirmed that the prepared Au@PtAg alloy nanorods/graphene hybrid composites own good catalytic function for methanol electro-oxidation by cyclic voltammograms measurements, and exhibited higher catalytic activity and more stability than pure Au@Pt nanorods and Au@AgPt alloy nanorods. In conclusion, the prepared PtAg alloy nanoislands/graphene hybrid composites own high stability and catalytic activity in methanol electro-oxidation, so that it is one kind of high-performance catalyst, and has great potential in applications such as methanol fuel cells in near future. PMID:21982417
Seed-mediated synthesis of cross-linked Pt-NiO nanochains for methanol oxidation
NASA Astrophysics Data System (ADS)
Gu, Zhulan; Bin, Duan; Feng, Yue; Zhang, Ke; Wang, Jin; Yan, Bo; Li, Shumin; Xiong, Zhiping; Wang, Caiqin; Shiraishi, Yukihide; Du, Yukou
2017-07-01
A simple method was reported for employing NiO nanoparticles act as seeds and then different amounts of Pt2+ were reduced on the NiO nanoparticles, forming a cross-linked Pt-NiO nanocatalysts. These as-prepared catalysts were characterized using different physical-chemical techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results indicate that the morphology of the cross-linked Pt-NiO nanochain was successfully produced regardless of the molar ratio of Pt2+ to NiO precursors. The electrochemical characteristics of Pt-NiO nanochain catalysts were evaluated for the oxidation of methanol as a model reaction, which verify that the Pt-NiO catalysts show enhanced activity and high stability in comparison with the commercial Pt/C catalyst. The optimized ratio of Pt to NiO is 1:1, then tuned by simple adjusting the feed ratio of the precursors as well. The synthesized nanocatalysts will be found the great potential applications as electrocatalysts for fuel cells owe to their enhanced catalytic performance and long-term stability.
Accelerating oxygen reduction on Pt monolayer via substrate compression
NASA Astrophysics Data System (ADS)
Zhang, Xilin; Chen, Yue; Yang, Zongxian; Lu, Zhansheng
2017-11-01
Many methods have been proposed to accelerate the oxygen reduction and save the dosage of Pt. Here, we report a promising way in fulfilling these purposes by applying substrate strain on the supported Pt monolayer. The compressive strain would modify the geometric and electronic structures of tungsten carbide (WC) substrate, changing the interaction nature between substrate and Pt monolayer and resulting in a downward shift of the d-band center of surface Pt atoms. The activity of Pt monolayer on the compressed WC is further evaluated from the kinetics of the dissociation and protonation of O2. The dissociation barrier of O2 is increased and the hydrogenation barrier of O atom is decreased, indicating that the recovery of the catalytically active sites is accelerated and the deactivation by oxygen poison is alleviated. The present study provides an effective way in tuning the activity of Pt-based catalysts by applying the substrate strain.
Gram-Scale Synthesized Pd2Co-Supported PtMonolayers Electrocatalysts for Oxygen Reduction Reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, W.P.; Sasaki, K.; Su, D.
2010-04-21
Gram-scale synthesis of Pt{sub ML} electrocatalysts with a well-defined core-shell structure has been carried out using method involving galvanic displacement of an underpotential deposition Cu layer. The Pt shell thickness can be controlled by stepwise deposition. The Pt{at}Pd{sub 2}Co/C nanoparticles were characterized by X-ray powder diffraction, aberration-corrected scanning transmission electron microscopy, high-resolution energy-loss spectrometry, and in situ X-ray absorption spectroscopy. A complete Pt shell of 0.6 nm on a Pd{sub 2}Co core has been confirmed. The Pt{at}Pd{sub 2}Co/C core-shell electrocatalysts showed a very high activity for the oxygen reduction reaction; the Pt mass and specific activity were 0.72 A mg{supmore » -1}{sub Pt} and 0.5 mA cm{sup -2}, respectively (3.5 and 2.5 times higher than the corresponding values for commercial Pt catalysts), at 0.9 V in 0.1 M HClO{sub 4} at room temperature. In an accelerated potential cycling test, a loss in active surface area and a decrease in catalytic activity for gram-scale-synthesized Pt{sub ML} catalysts were also determined.« less
Conductivity study of thermally stabilized RuO2/polythiophene nanocomposites
NASA Astrophysics Data System (ADS)
Hebbar, Vidyashree; Bhajantri, R. F.
2018-04-01
The polymer nanocomposites of Ruthenium oxide (RuO2) filled polythiophene (PT) were synthesized by polymerization using chemical method. The purity of the synthesized polymer composite is verified using X-Ray diffraction (XRD). The structural discrepancies of the RuO2 filled PT composites are studied by Fourier transform infrared (FT-IR) spectroscopy. The phase transition and thermal stability of the prepared composite is revised by thermal characterization such as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DC conductivity of RuO2 filled PT composite in the form of pellets is calculated using current-voltage (I-V) characterization by two-probe method. The enhancement in conductivity with increased RuO2 content in PT matrix is examined, which is the required property for electrical and electronic applications in supercapacitors.
Wang, Deli; Xin, Huolin L; Yu, Yingchao; Wang, Hongsen; Rus, Eric; Muller, David A; Abruña, Hector D
2010-12-22
A simple method for the preparation of PdCo@Pd core-shell nanoparticles supported on carbon based on an adsorbate-induced surface segregation effect has been developed. The stability of these PdCo@Pd nanoparticles and their electrocatalytic activity for the oxygen reduction reaction (ORR) were enhanced by decoration with a small amount of Pt deposited via a spontaneous displacement reaction. The facile method described herein is suitable for large-scale, lower-cost production and significantly lowers the Pt loading and thus the cost. The as-prepared PdCo@Pd and Pd-decorated PdCo@Pd nanocatalysts have a higher methanol tolerance than Pt/C in the ORR and are promising cathode catalysts for fuel cell applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Deli; Xin, Huolin L.; Yu, Yingchao
2010-11-24
A simple method for the preparation of PdCo@Pd core-shell nanoparticles supported on carbon based on an adsorbate-induced surface segregation effect has been developed. The stability of these PdCo@Pd nanoparticles and their electrocatalytic activity for the oxygen reduction reaction (ORR) were enhanced by decoration with a small amount of Pt deposited via a spontaneous displacement reaction. The facile method described herein is suitable for large-scale, lower-cost production and significantly lowers the Pt loading and thus the cost. The as-prepared PdCo@Pd and Pd-decorated PdCo@Pd nanocatalysts have a higher methanol tolerance than Pt/C in the ORR and are promising cathode catalysts for fuelmore » cell applications.« less
Liu, Xinyu; Xu, Guangrui; Chen, Yu; Lu, Tianhong; Tang, Yawen; Xing, Wei
2015-01-01
Three-dimensionally (3D) porous morphology of nanostructures can effectively improve their electrocatalytic activity and durability for various electrochemical reactions owing to big surface area and interconnected structure. Cyanogel, a jelly-like inorganic polymer, can be used to synthesize various three-dimensionally (3D) porous alloy nanomaterials owing to its double-metal property and particular 3D backbone. Here, 3D porous PdNi@Pt core-shell nanostructures (CSNSs) are facilely synthesized by first preparing the Pd-Ni alloy networks (Pd-Ni ANWs) core via cyanogel-reduction method followed by a galvanic displacement reaction to generate the Pt-rich shell. The as-synthesized PdNi@Pt CSNSs exhibit a much improved catalytic activity and durability for the methanol oxidation reaction (MOR) in the acidic media compared to the commercial used Pt black because of their specific structural characteristics. The facile and mild method described herein is highly attractive for the synthisis of 3D porous core-shell nanostructures. PMID:25557190
Yu, Jianguo; Dai, Tangming; Cao, Yuechao; Qu, Yuning; Li, Yao; Li, Juan; Zhao, Yongnan; Gao, Haiyan
2018-08-15
In this paper, platinum nanoparticles were deposited on a carbon carrier with the partly graphitized carbon and the highly dispersive carbon-coated nickel particles. An efficient electron transfer structure can be fabricated by controlling the contents of the deposited platinum. The high resolution transmission electron microscopy images of Pt 2 /Ni@C N-doped sample prove the electron transfer channel from Pt (1 1 1) crystal planes to graphite (1 0 0) or Ni (1 1 1) crystal planes due to these linked together crystal planes. The Pt 3 /Ni@C N-doped with low Pt contents cannot form the electron transfer structure and the Pt 1 /Ni@C N-doped with high Pt contents show an obvious aggregation of Pt nanoparticles. The electrochemical tests of all the catalysts show that the Pt 2 /Ni@C N-doped sample presents the highest catalytic activity, the strongest CO tolerance and the best catalytic stability. The high performance is attributed to the efficient electronic transport structure of the Pt 2 /Ni@C N-doped sample and the synergistic effect between Pt and Ni nanoparticles. This paper provides a promising method for enhancing the conductivity of electrode material. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doucet, L.; De Veyrac, B.; Delaage, M.
1990-08-01
Perindopril (P) is a prodrug whose active metabolite perindoprilat (PT) is an antihypertensive agent which acts by inhibition of angiotensin-converting enzyme (ACE). Anti-PT antiserum was produced in a rabbit immunized against PT that was covalently linked to bovine serum albumin. The radioligand is an iodinated ({sup 125}I) derivative of PT-glycyltyrosinamide. Both the drug (PT) and the prodrug (P) are assayed in the same sample; PT is assayed as is and P is assayed after quantitative alkaline hydrolysis into PT. Certain data obtained from such assays suggest the occurrence in plasma and urine of a third immunoreactive component. A chromatographic fractionationmore » of samples allowed us to isolate a new immunoreactive metabolite which was further identified as a glucuronide of PT (PT-G). Therefore, the whole assay was carried out as follows: biological samples were fractionated by stepwise chromatography on a anion-exchange resin (the first fraction contained P, the second contained PT, and the third contained PT-G); and RIA was performed on fractions 2 and 3 as is, and on fraction 1 after alkaline hydrolysis. Performances and assessments of this method are presented together with an example of a pharmacokinetic profile.« less
Sun, Zhenyu; Wang, Xiang; Liu, Zhimin; Zhang, Hongye; Yu, Ping; Mao, Lanqun
2010-07-20
Pt-Ru/CeO(2)/multiwalled carbon nanotube (MWNT) electrocatalysts were prepared using a rapid sonication-facilitated deposition method and were characterized by X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), and voltammetry. Morphological characterization by TEM revealed that CeO(2) nanoparticles (NPs) were in intimate contact with Pt-Ru NPs, and both were highly dispersed on the exteriors of nanotubes with a small size and a very narrow size distribution. Compared with the Pt-Ru/MWNT and Pt/MWNT electrocatalysts, the as-prepared Pt-Ru/CeO(2)/MWNT exhibited a significantly improved electrochemically active surface area (ECSA) and a remarkably enhanced activity toward methanol oxidation. The effects of the Pt-Ru loading and the Pt-to-Ru molar ratio on the electrocatalytic activity of Pt-Ru/CeO(2)/MWNT for methanol oxidation were investigated. We found that a maximum activity toward methanol oxidation reached at the 10 wt % of Pt-Ru loading and 1:1 of Pt-to-Ru ratio. Moreover, the role of CeO(2) in the catalysts for the enhancement of methanol oxidation was discussed in terms of both bifunctional mechanism and electronic effects.
NASA Astrophysics Data System (ADS)
Kim, Minjoong; Kwon, Chorong; Eom, Kwangsup; Kim, Jihyun; Cho, Eunae
2017-03-01
This study explores a facile method to prepare an efficient and durable support for Pt catalyst of polymer electrolyte membrane fuel cell (PEMFC). As a candidate, Nb-doped TiO2 (Nb-TiO2) nanofibers are simply fabricated using an electrospinning technique, followed by a heat treatment. Doping Nb into the TiO2 nanofibers leads to a drastic increase in electrical conductivity with doping level of up to 25 at. % (Nb0.25Ti0.75O2). Pt nanoparticles are synthesized on the prepared 25 at. % Nb-doped TiO2-nanofibers (Pt/Nb-TiO2) as well as on a commercial powdered carbon black (Pt/C). The Pt/Nb-TiO2 nanofiber catalyst exhibits similar oxygen reaction reduction (ORR) activity to that of the Pt/C catalyst. However, during an accelerated stress test (AST), the Pt/Nb-TiO2 nanofiber catalyst retained more than 60% of the initial ORR activity while the Pt/C catalyst lost 65% of the initial activity. The excellent durability of the Pt/Nb-TiO2 nanofiber catalyst can be attributed to high corrosion resistance of TiO2 and strong interaction between Pt and TiO2.
Kim, MinJoong; Kwon, ChoRong; Eom, KwangSup; Kim, JiHyun; Cho, EunAe
2017-03-14
This study explores a facile method to prepare an efficient and durable support for Pt catalyst of polymer electrolyte membrane fuel cell (PEMFC). As a candidate, Nb-doped TiO 2 (Nb-TiO 2 ) nanofibers are simply fabricated using an electrospinning technique, followed by a heat treatment. Doping Nb into the TiO 2 nanofibers leads to a drastic increase in electrical conductivity with doping level of up to 25 at. % (Nb 0.25 Ti 0.75 O 2 ). Pt nanoparticles are synthesized on the prepared 25 at. % Nb-doped TiO 2 -nanofibers (Pt/Nb-TiO 2 ) as well as on a commercial powdered carbon black (Pt/C). The Pt/Nb-TiO 2 nanofiber catalyst exhibits similar oxygen reaction reduction (ORR) activity to that of the Pt/C catalyst. However, during an accelerated stress test (AST), the Pt/Nb-TiO 2 nanofiber catalyst retained more than 60% of the initial ORR activity while the Pt/C catalyst lost 65% of the initial activity. The excellent durability of the Pt/Nb-TiO 2 nanofiber catalyst can be attributed to high corrosion resistance of TiO 2 and strong interaction between Pt and TiO 2 .
Kim, MinJoong; Kwon, ChoRong; Eom, KwangSup; Kim, JiHyun; Cho, EunAe
2017-01-01
This study explores a facile method to prepare an efficient and durable support for Pt catalyst of polymer electrolyte membrane fuel cell (PEMFC). As a candidate, Nb-doped TiO2 (Nb-TiO2) nanofibers are simply fabricated using an electrospinning technique, followed by a heat treatment. Doping Nb into the TiO2 nanofibers leads to a drastic increase in electrical conductivity with doping level of up to 25 at. % (Nb0.25Ti0.75O2). Pt nanoparticles are synthesized on the prepared 25 at. % Nb-doped TiO2-nanofibers (Pt/Nb-TiO2) as well as on a commercial powdered carbon black (Pt/C). The Pt/Nb-TiO2 nanofiber catalyst exhibits similar oxygen reaction reduction (ORR) activity to that of the Pt/C catalyst. However, during an accelerated stress test (AST), the Pt/Nb-TiO2 nanofiber catalyst retained more than 60% of the initial ORR activity while the Pt/C catalyst lost 65% of the initial activity. The excellent durability of the Pt/Nb-TiO2 nanofiber catalyst can be attributed to high corrosion resistance of TiO2 and strong interaction between Pt and TiO2. PMID:28290503
Facile synthesis of Pt-Pd alloy nanocages and Pt nanorings by templating with Pd nanoplates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xue; Luo, Ming; Huang, Hongwen
We report a facile method for the synthesis of Pt-Pd nanocages and Pt nanorings by conformally coating Pd nanoplates with Pt-based shells using polyol- and water-based protocols, respectively, followed by selective removal of the Pd cores. For the polyol-based system, Pd nanoplates were conformally coated with Pt-Pd alloy shells due to the use of a high reaction temperature of 200 °C and a slow injection rate for the Pt precursor. In comparison, Pt shells were formed on Pd nanoplates (with a larger thickness on the side face than on the top/bottom face) in the water-based system due to the usemore » of a low reaction temperature of 80 °C and the presence of twin boundaries on the side face. As such, the Pd@Pt nanoplates prepared using the polyol- and water-based protocols evolved into Pt-Pd nanocages and Pt nanorings, respectively, when the Pd templates in the cores were selectively removed by wet etching. As a result, the wall thickness of the nanocages and the ridge thickness of the nanorings could be reduced down to 1.1 nm and 1.8 nm, respectively, without breaking the hollow structures.« less
Wei, Guang-Feng
2015-01-01
The restructuring of nanoparticles at the in situ condition is a common but complex phenomenon in nanoscience. Here, we present the first systematic survey on the structure dynamics and its catalytic consequence for hydrogen evolution reaction (HER) on Pt nanoparticles, as represented by a magic number Pt44 octahedron (∼1 nm size). Using a first principles calculation based global structure search method, we stepwise follow the significant nanoparticle restructuring under HER conditions as driven by thermodynamics to expose {100} facets, and reveal the consequent large activity enhancement due to the marked increase of the concentration of the active site, being identified to be apex atoms. The enhanced kinetics is thus a “byproduct” of the thermodynamical restructuring. Based on the results, the best Pt catalyst for HER is predicted to be ultrasmall Pt particles without core atoms, a size below ∼20 atoms. PMID:29560237
Adsorption and dissociation mechanism of SO2 and H2S on Pt decorated graphene: a DFT-D3 study
NASA Astrophysics Data System (ADS)
Chen, Dachang; Zhang, Xiaoxing; Tang, Ju; Fang, Jiani; Li, Yi; Liu, Huijun
2018-06-01
This study explores the diffusion behavior of one Pt atom on graphene as well as the interaction mechanism between two types of gas molecule (SO2 and H2S) and Pt-graphene based on density functional theory (DFT) considering a dispersion correction about van der Walls force. Results suggest that one Pt atom shows high mobility with low activation energy and Pt doped graphene exhibits relatively stronger interaction with H2S than SO2 according to adsorption energy. SO2 accepts electrons from Pt-graphene while H2S losses electrons. Both two molecules introduce obvious hybridization with Pt-graphene in density of states. The charge density difference and Electron Localization Function (ELF) configurations indicate evident changes in the distribution of electrons about Pt-graphene and gas molecule before and after gas adsorption. H2S is easy to dissociate on Pt-graphene due to the much lower energy barrier compared to SO2. The work provides quantum chemistry methods to investigate the chemical interaction between Pt decorated graphene and two typical gases to shed light on practical application of Pt-graphene in adsorbing and detecting these two kinds of gases or other types of gases.
Facile synthesis of Pt-Pd alloy nanocages and Pt nanorings by templating with Pd nanoplates
Wang, Xue; Luo, Ming; Huang, Hongwen; ...
2016-09-06
We report a facile method for the synthesis of Pt-Pd nanocages and Pt nanorings by conformally coating Pd nanoplates with Pt-based shells using polyol- and water-based protocols, respectively, followed by selective removal of the Pd cores. For the polyol-based system, Pd nanoplates were conformally coated with Pt-Pd alloy shells due to the use of a high reaction temperature of 200 °C and a slow injection rate for the Pt precursor. In comparison, Pt shells were formed on Pd nanoplates (with a larger thickness on the side face than on the top/bottom face) in the water-based system due to the usemore » of a low reaction temperature of 80 °C and the presence of twin boundaries on the side face. As such, the Pd@Pt nanoplates prepared using the polyol- and water-based protocols evolved into Pt-Pd nanocages and Pt nanorings, respectively, when the Pd templates in the cores were selectively removed by wet etching. As a result, the wall thickness of the nanocages and the ridge thickness of the nanorings could be reduced down to 1.1 nm and 1.8 nm, respectively, without breaking the hollow structures.« less
Accessing the exceptional points of parity-time symmetric acoustics
Shi, Chengzhi; Dubois, Marc; Chen, Yun; Cheng, Lei; Ramezani, Hamidreza; Wang, Yuan; Zhang, Xiang
2016-01-01
Parity-time (PT) symmetric systems experience phase transition between PT exact and broken phases at exceptional point. These PT phase transitions contribute significantly to the design of single mode lasers, coherent perfect absorbers, isolators, and diodes. However, such exceptional points are extremely difficult to access in practice because of the dispersive behaviour of most loss and gain materials required in PT symmetric systems. Here we introduce a method to systematically tame these exceptional points and control PT phases. Our experimental demonstration hinges on an active acoustic element that realizes a complex-valued potential and simultaneously controls the multiple interference in the structure. The manipulation of exceptional points offers new routes to broaden applications for PT symmetric physics in acoustics, optics, microwaves and electronics, which are essential for sensing, communication and imaging. PMID:27025443
NASA Astrophysics Data System (ADS)
Wu, Facai; Si, Shuyao; Shi, Tuo; Zhao, Xiaolong; Liu, Qi; Liao, Lei; Lv, Hangbing; Long, Shibing; Liu, Ming
2018-02-01
Pt/SiO2:metal nanoparticles/Pt sandwich structure is fabricated with the method of metal ion (Ag) implantation. The device exhibits multilevel storage with appropriate R off/R on ratio, good endurance and retention properties. Based on transmission electron microscopy and energy dispersive spectrometer analysis, we confirm that Pt nanoparticles are spurted into SiO2 film from Pt bottom electrode by Ag implantation; during electroforming, the local electric field can be enhanced by these Pt nanoparticles, meanwhile the Ag nanoparticles constantly migrate toward the Pt nanoparticles. The implantation induced nanoparticles act as trap sites in the resistive switching layer and play critical roles in the multilevel storage, which is evidenced by the negative differential resistance effect in the current-voltage (I-V) measurements.
Photothermal monitoring of interaction of carcinoma cells with cytostatic drugs in vitro
NASA Astrophysics Data System (ADS)
Lapotko, Dmitri; Hanna, Ehab; Cannon, Martin
2003-06-01
Background/problem. Monitoring of tumor response to cancer chemotherapy and dose optimization for specific patients are the key factors for successful application of anti-tumor drugs. Using patient's tumor cells for preliminary in vitro drug screening may allow optimal selection of drug type and dose. Method. Single cell state was studied with photothermal microscope. Carcinoma cells were irradiated at 427 nm with 8 ns laser pulse with energy 30 - 40 μJ. Cell photothermal (PT) response amplitude and shape from each cell were analyzed and amount of cells that produced specific PT response was used as PT parameter. Parallel experiment included cell viability control. Results were obtained for two cytotoxic chemotherapy agents -- Platinol-aq and Adrucil. Incubation of cell suspensions for 90 min at 20 and 37°C caused changes in cell PT parameters. Reaction of carcinoma cells to the drug was very similar to reaction of hepatocytes to respiratory chain inhibition and reaction of RBC to osmotic pressure decrease. PT effect was found to be dose-dependent. PT method allows detecting drug-induced changes before cell death or morphological changes and therefore can be fast and sensitive modality for control of chemotherapy.
A pulsed mode electrolytic drug delivery device
NASA Astrophysics Data System (ADS)
Yi, Ying; Buttner, Ulrich; Carreno, Armando A. A.; Conchouso, David; Foulds, Ian G.
2015-10-01
This paper reports the design of a proof-of-concept drug delivery device that is actuated using the bubbles formed during electrolysis. The device uses a platinum (Pt) coated nickel (Ni) metal foam and a solid drug in reservoir (SDR) approach to improve the device’s performance. This electrochemically-driven pump has many features that are unlike conventional drug delivery devices: it is capable of pumping periodically and being refilled automatically; it features drug release control; and it enables targeted delivery. Pt-coated metal foam is used as a catalytic reforming element, which reduces the period of each delivery cycle. Two methods were used for fabricating the Pt-coated metal: sputtering and electroplating. Of these two methods, the sputtered Pt-coated metal foam has a higher pumping rate; it also has a comparable recombination rate when compared to the electroplated Pt-coated metal foam. The only drawback of this catalytic reformer is that it consumes nickel scaffold. Considering long-term applications, the electroplated Pt metal foam was selected for drug delivery, where a controlled drug release rate of 2.2 μg ± 0.3 μg per actuation pulse was achieved using 4 mW of power.
NASA Astrophysics Data System (ADS)
Zhang, Jing; Yi, Xi-bin; Liu, Shuo; Fan, Hui-Li; Ju, Wei; Wang, Qi-Chun; Ma, Jie
2017-03-01
Vertically aligned carbon nanotubes (VACNTs) grown on carbon fiber paper (CFP) by plasma enhanced chemical vapor deposition is introduced as a catalyst support material for direct methanol fuel cells (DMFCs). Well dispersed Pt nanoparticles on VACNTs surface are prepared by impregnation-reduction method. The VACNTs on CFP possess well-maintained alignment, large surface area and good electrical conductivity, which leading to the formation of Pt particles with a smaller size and enhance the Pt utilization rate. The structure and nature of resulting Pt/VACNTs/CFP catalysts for methanol oxidation are investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD) and scanning electron microscope (SEM). With the aid of VACNTs, well-dispersed Pt catalysts enable the reversibly rapid redox kinetic since electron transport efficiently passes through a one-dimensional pathway, which leads to enhance the catalytic activity and Pt utilization rate. Compared with the Pt/XC-72/CFP electrode, the electrochemical measurements results display that the Pt/VACNTs/CFP catalyst shows much higher electrocatalytic activity and better stability for methanol oxidation. In addition, the oxidation current from 200 to 1200 s decayed more slowly for the Pt/VACNTs/CFP than that of the Pt/XC-72/CFP catalysts, indicating less accumulation of adsorbed CO species. All those results imply that the Pt/VACNTs/CFP has a great potential for applications in DMFCs.
Paganoto, Giordano T.; Santos, Deise M.; Guimarães, Marco C. C.; Carneiro, Maria Tereza W. D.
2017-01-01
This paper is consisted in the synthesis of platinum-based electrocatalysts supported on carbon (Vulcan XC-72) and investigation of the addition of gallium in their physicochemical and electrochemical properties toward ethanol oxidation reaction (EOR). PtGa/C electrocatalysts were prepared through thermal decomposition of polymeric precursor method at a temperature of 350°C. Six different compositions were homemade: Pt50Ga50/C, Pt60Ga40/C, Pt70Ga30/C, Pt80Ga20/C, Pt90Ga10/C, and Pt100/C. These electrocatalysts were electrochemically characterized by cyclic voltammetry (CV), chronoamperometry (CA), chronopotentiometry (CP), and electrochemical impedance spectroscopy (EIS) in the presence and absence of ethanol 1.0 mol L−1. Thermogravimetric analysis (TGA), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and transmission electron microscopy (TEM) were also carried out for a physicochemical characterization of those materials. XRD results showed the main peaks of face-centered cubic Pt. The particle sizes obtained from XRD and TEM analysis range from 7.2 nm to 12.9 nm. The CV results indicate behavior typical of Pt-based electrocatalysts in acid medium. The CV, EIS, and CA data reveal that the addition of up to 31% of gallium to the Pt highly improves catalytic activity on EOR response when compared to Pt100/C. PMID:28466065
NASA Astrophysics Data System (ADS)
Chiu, Tsai-Chin; Lee, Hsin-Yi; Li, Pei-Hua; Chao, Jiunn-Hsing; Lin, Chiu-Hsun
2013-03-01
The oxidation state and size of Pt nanoparticles attached to alkali metal titanate nanotubes (MTNTs=M2Ti3O7, M = Li+, Na+, K+, Cs+) via ion exchange (indicated by the added label ‘-IE’) and wet impregnation (indicated by the added label ‘-IMP’) methods varied systematically with the cation of the MTNTs. X-ray photoelectron spectroscopy revealed that the binding energy of Pt was reduced to a low value when the support was changed from LiTNTs to CsTNTs, yielding a Ptδ- oxidation state. Thus, a space charge layer (SCL) was constructed at the interface between the Pt particle and MTNT support; the former carried the negative charge, and the alkali cation and proton in the hydroxyl group of the latter carried the positive charge. Due to a higher M/Ti atomic ratio in MTNTs, a higher electron density accumulated on Pt particles in Pt/MTNTs-IMP than on those in Pt/MTNTs-IE. Sub-ambient temperature temperature-programmed reduction and transmission electron microscopy revealed that because of the difference in reducibility of PtOx/MTNTs, the mean Pt particle size followed the order Pt/CsTNTs > Pt/KTNTs > Pt/NaTNTs > Pt/LiTNTs and Pt/MTNTs-IMP > Pt/MTNTs-IE. DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy) showed that owing to its interaction with SCL, cinnamaldehyde adsorbed on Pt mainly through the C=C bond at the Pt-MTNT interfaces, and the small Pt particles in Pt/LiTNTs adsorbed three times more cinnamaldehyde than those in Pt/CsTNTs. Due to the competition between the adsorption of cinnamaldehyde and C=C activation, Pt/KTNT-IMP is the most active Pt/MTNT catalysts, achieving a conversion of 100% in the hydrogenation of cinnamaldehyde at 2 atm and 313 K. The carbonyl stretching of adsorbed cinnamaldehyde was almost unperturbed by adsorption (at 1705 cm-1), suggesting that Ptδ- and the π electrons in the carbonyl group repel each other, so the CH=O group points upward and away from the Pt surface, preventing it from being hydrogenated and causing Pt/MTNTs to exhibit high 3-phenyl propionaldehyde selectivities of 75-80%.
Materials Data on MgPt (SG:198) by Materials Project
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on USnPt (SG:216) by Materials Project
Kristin Persson
2015-03-19
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PtO (SG:131) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-02-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Wang, Hui; Liu, Li; Lu, Yang; ...
2015-07-14
PT70 is a diaryl ether inhibitor of InhA, the enoyl-ACP reductase in the Mycobacterium tuberculosis fatty acid biosynthesis pathway. It has a residence time of 24 min on the target, and also shows antibacterial activity in a mouse model of tuberculosis infection. Due to the interest in studying target tissue pharmacokinetics of PT70, we developed a method to radiolabel PT70 with carbon-11 and have studied its pharmacokinetics in mice and baboons using positron emission tomography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hui; Liu, Li; Lu, Yang
PT70 is a diaryl ether inhibitor of InhA, the enoyl-ACP reductase in the Mycobacterium tuberculosis fatty acid biosynthesis pathway. It has a residence time of 24 min on the target, and also shows antibacterial activity in a mouse model of tuberculosis infection. Due to the interest in studying target tissue pharmacokinetics of PT70, we developed a method to radiolabel PT70 with carbon-11 and have studied its pharmacokinetics in mice and baboons using positron emission tomography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaofeng; Zhao, Haiyan; Wu, Tianpin
2016-11-01
Highly dispersed and highly stable supported bimetallic catalysts were prepared using a two-step process. Pt nanoparticles (NPs) were first deposited on porous γ-Al2O3 particles by atomic layer deposition (ALD). Au NPs were synthesized by using gold(III) chloride as the Au precursor, and then immobilized on ALD Pt/γ-Al2O3 particles. The Au–Pt bimetallic catalysts were highly active and highly stable in a vigorously stirred liquid phase reaction of glucose oxidation.
Xia, Zhigang; Wang, Jihao; Hou, Yubin; Lu, Qingyou
2014-09-01
In this paper, we provide and demonstrate a design of a unique cell with Pt single crystal bead electrode for electrochemical scanning tunneling microscope (ECSTM) measurements. The active metal Pt electrode can be protected from air contamination during the preparation process. The transparency of the cell allows the tip and bead to be aligned by direct observation. Based on this, a new and effective alignment method is introduced. The high-quality bead preparations through this new cell have been confirmed by the ECSTM images of Pt (111).
Zhang, Changkun; Yu, Hongmei; Li, Yongkun; Gao, Yuan; Zhao, Yun; Song, Wei; Shao, Zhigang; Yi, Baolian
2013-04-01
Hydrogen-treated TiO2 nanotube (H-TNT) arrays serve as highly ordered nanostructured electrode supports, which are able to significantly improve the electrochemical performance and durability of fuel cells. The electrical conductivity of H-TNTs increases by approximately one order of magnitude in comparison to air-treated TNTs. The increase in the number of oxygen vacancies and hydroxyl groups on the H-TNTs help to anchor a greater number of Pt atoms during Pt electrodeposition. The H-TNTs are pretreated by using a successive ion adsorption and reaction (SIAR) method that enhances the loading and dispersion of Pt catalysts when electrodeposited. In the SIAR method a Pd activator can be used to provide uniform nucleation sites for Pt and leads to increased Pt loading on the H-TNTs. Furthermore, fabricated Pt nanoparticles with a diameter of 3.4 nm are located uniformly around the pretreated H-TNT support. The as-prepared and highly ordered electrodes exhibit excellent stability during accelerated durability tests, particularly for the H-TNT-loaded Pt catalysts that have been annealed in ultrahigh purity H2 for a second time. There is minimal decrease in the electrochemical surface area of the as-prepared electrode after 1000 cycles compared to a 68 % decrease for the commercial JM 20 % Pt/C electrode after 800 cycles. X-ray photoelectron spectroscopy shows that after the H-TNT-loaded Pt catalysts are annealed in H2 for the second time, the strong metal-support interaction between the H-TNTs and the Pt catalysts enhances the electrochemical stability of the electrodes. Fuel-cell testing shows that the power density reaches a maximum of 500 mWcm(-2) when this highly ordered electrode is used as the anode. When used as the cathode in a fuel cell with extra-low Pt loading, the new electrode generates a specific power density of 2.68 kWg(Pt) (-1) . It is indicated that H-TNT arrays, which have highly ordered nanostructures, could be used as ordered electrode supports. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wakayama, Akinobu; Nagano, Akinori; Hay, Dean; Fukashiro, Senshi
2005-06-01
The purpose of the present study was to investigate the effects of pretension on work and power output of the muscle-tendon complex during dynamic elbow flexion under several submaximal and maximal conditions. The subjects were 10 healthy female students. Randomized trials from 0% to 100% maximal voluntary contraction (MVC) pretension (PT) at 60 degrees elbow flexion were conducted. After about 3 s of static PT, subjects maximally flexed the elbow joint to 90 degrees using a quick release method. The weight was individually selected for each subject to provide an optimal load for the development of maximal power. A Hill-type model was utilized to analyze the performance of the elbow muscle-tendon complex (MTC). PT 0, 30, 60 and 90% MVC data were used for comparison, and all data were expressed as the mean and standard deviation. Multiple paired comparisons between the value of PT 0% MVC and that of the other PT levels were performed post-hoc using Dunnett's method. The work of the series elastic component (SEC) increased gradually with the PT level because elastic energy was stored in the PT phase. However, the work of the contractile component (CC) decreased gradually with an increase in PT level. Moreover, the work of the MTC also decreased, closely related to the CC work decrement. The phenomenon of CC work decrement was caused by force depression and was not related to either the force-length or force-velocity relationships of the CC. EMG activity (agonist and antagonist) showed no significant differences. Muscle geometry changes or intracellular chemical shifts may have occurred in the PT phase.
Multifunctional nanocomposites of carbon nanotubes and nanoparticles formed via vacuum filtration
Hersam, Mark C; Ostojic, Gordana; Liang, Yu Teng
2013-10-22
In one aspect, the present invention provides a method of forming a film of nanocomposites of carbon nanotubes (CNTs) and platinum (Pt) nanoparticles. In one embodiment, the method includes the steps of (a) providing a first solution that contains a plurality of CNTs, (b) providing a second solution that contains a plurality of Pt nanoparticles, (c) combining the first solution and the second solution to form a third solution, and (d) filtering the third solution through a nanoporous membrane using vacuum filtration to obtain a film of nanocomposites of CNTs and Pt nanoparticles.
Malorny, Burkhard; Junker, Ernst; Helmuth, Reiner
2008-01-01
Background Salmonella enterica subsp. enterica serotype Enteritidis is known as an important and pathogenic clonal group which continues to cause worldwide sporadic cases and outbreaks in humans. Here a new multiple-locus variable-number tandem repeat analysis (MLVA) method is reported for highly-discriminative subtyping of Salmonella Enteritidis. Emphasis was given on the most predominant phage types PT4 and PT8. The method comprises multiplex PCR specifically amplifying repeated sequences from nine different loci followed by an automatic fragment size analysis using a multicolor capillary electrophoresis instrument. A total of 240 human, animal, food and environmental isolates of S. Enteritidis including 23 definite phage types were used for development and validation. Furthermore, the MLVA types were compared to the phage types of several isolates from two recent outbreaks to determine the concordance between both methods and to estimate their in vivo stability. The in vitro stability of the two MLVA types specifically for PT4 and PT8 strains were determined by multiple freeze-thaw cycles. Results Seventy-nine different MLVA types were identified in 240 S. Enteritidis strains. The Simpson's diversity index for the MLVA method was 0.919 and Nei diversity values for the nine VNTR loci ranged from 0.07 to 0.65. Twenty-four MLVA types could be assigned to 62 PT4 strains and 21 types to 81 PT8 strains. All outbreak isolates had an indistinguishable outbreak specific MLVA type. The in vitro stability experiments showed no changes of the MLVA type compared to the original isolate. Conclusion This MLVA method is useful to discriminate S. Enteritidis strains even within a single phage type. It is easy in use, fast, and cheap compared to other high-resolution molecular methods and therefore an important tool for surveillance and outbreak studies for S. Enteritidis. PMID:18513386
DOE Office of Scientific and Technical Information (OSTI.GOV)
B Cheney; J Lauterbach; J Chen
2011-12-31
Reverse micelle synthesis was used to improve the nanoparticle size uniformity of bimetallic Pt/Ni nanoparticles supported on {gamma}-Al{sub 2}O{sub 3}. Two impregnation methods were investigated to optimize the use of the micelle method: (1) step-impregnation, where Ni nanoparticles were chemically reduced in microemulsion and then supported, followed by Pt deposition using incipient wetness impregnation, and (2) co-impregnation, where Ni and Pt were chemically reduced simultaneously in microemulsion and then supported. Transmission electron microscopy (TEM) was used to characterize the particle size distribution. Atomic absorption spectroscopy (AAS) was used to perform elemental analysis of bimetallic catalysts. Extended X-ray absorption fine structuremore » (EXAFS) measurements were utilized to confirm the formation of the Pt-Ni bimetallic bond in the step-impregnated catalyst. CO pulse chemisorption and Fourier transform infrared spectroscopy (FTIR) studies of 1,3-butadiene hydrogenation in a batch reactor were performed to determine the catalytic activity. Step-impregnated Pt/Ni catalyst demonstrated enhanced hydrogenation activity over the parent monometallic Pt and Ni catalysts due to bimetallic bond formation. The catalyst synthesized using co-impregnation showed no enhanced activity, behaving similarly to monometallic Ni. Overall, our results indicate that reverse micelle synthesis combined with incipient wetness impregnation produced small, uniform nanoparticles with bimetallic bonds that enhanced hydrogenation activity.« less
Lemoine, Lieselotte; Thijssen, Elsy; Noben, Jean-Paul; Adriaensens, Peter; Carleer, Robert; Speeten, Kurt Van der
2018-04-15
Oxaliplatin is a platinum (Pt) 1 containing antineoplastic agent that is applied in current clinical practice for the treatment of colon and appendiceal neoplasms. A fully validated, highly sensitive, high throughput inductively coupled plasma mass spectrometry (ICP-MS) method is provided to quantify the total Pt content in plasma, plasma ultrafiltrate, urine and peritoneal fluid. In this ICP-MS approach, the only step of sample preparation is a 1000-fold dilution in 0.5% nitric acid, allowing the analysis of 17 samples per hour. Detection of Pt was achieved over a linear range of 0.01-100 ng/mL. The limit of quantification was 18.0 ng/mL Pt in plasma, 8.0 ng/mL in ultrafiltrate and 6.1 ng/mL in urine and peritoneal fluid. The ICP-MS method was further validated for inter-and intraday precision and accuracy (≤15%), recovery, robustness and stability. Short-term storage of the biofluids, for 14 days, can be performed at -4 °C, -24 °C and -80 °C. As to long-term stability, up to 5 months, storage at -80 °C is encouraged. Furthermore, a timeline assessing the total and unbound Pt fraction in plasma and ultrafiltrate over a period of 45 h is provided. Following an incubation period of 5 h at 37 °C, 19-21% of Pt was recovered in the ultrafiltrate, emphasizing the extensive and rapid binding of oxaliplatin-derived Pt to plasma proteins. The described method can easily be implemented in a routine setting for pharmacokinetic studies in patients treated with oxaliplatin-based hyperthermic intraperitoneal perioperative chemotherapy. Copyright © 2018 Elsevier B.V. All rights reserved.
Electronic Transitions of Palladium Monoboride and Platinum Monoboride
NASA Astrophysics Data System (ADS)
Ng, Y. W.; Pang, H. F.; Wong, Y. S.; Qian, Yue; Cheung, A. S.-C.
2012-06-01
Electronic transition spectrum of palladium monoboride (PdB) and platinum (PtB) monoboride have been studied using the technique of laser-ablation/reaction free jet expansion and laser induced fluorescence spectroscopy. The metal monoborides were produced by reacting laser ablated metal atoms and diborane ((B_2H_6) seeded in argon. Five and six vibrational bands were observed respectively for the PdB and PtB molecules. Preliminary analysis of the rotationally resolved structure showed that both molecules have X2 Σ+ ground state. Least-squares fit of the measured line positions yielded molecular constants for the electronic states involved. Molecular and electronic structures of PdB and PtB are discussed using a molecular orbital energy level diagram. Financial support from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. HKU 701008P) is gratefully acknowledged.
Santymire, R M; Armstrong, D M
2010-01-01
Hormonal analysis provides information about wildlife populations, but is difficult to conduct in the field. Our goal was to develop a rapid and effective field method for fecal steroid analysis by comparing: (1) three extraction methods (laboratory (LAB), homogenize (HO) and handshake (HS)) and (2) two storage methods (solid-phase extraction (SPE) tubes vs. plastic tubes (PT)). Samples (n=23) from captive African wild dogs (Lycaon pictus) were thoroughly mixed, three aliquots of each were weighed ( approximately 0.5 g) and 5 ml of 90% ethanol was added. For LAB, samples were agitated (mixer setting 60; 30 min), centrifuged (1,500 rpm; 20 min) and poured into glass tubes. Or aliquots were HO (1 min) or HS (1 min) and poured through filter paper into glass tubes. Samples were split, analyzed for corticosterone (C) and testosterone (T) metabolites using enzyme immunoassays or stored in SPE or PT. Samples were stored (room temperature) for 30, 60 or 180 days, reconstituted in buffer and analyzed. Mean C and T recoveries of HO were greater (P=0.03) than HS compared with LAB, which was similar to HO (P>0.05). After 30 days <21% of C and T was recovered from SPE, but approximately 100% of each was recovered from HO-PT and HS-PT. Similarly, after 60 and 180 days, approximately 100% of C and T was recovered from HO-PT and HS-PT. Results demonstrated that, for C and T, HO was more comparable (P<0.001) to LAB than HS and PT storage was more efficient than SPE (P<0.001). (c) 2009 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Liang, Hong; Wu, Ying; Ou, Xiang-Yu; Li, Jing-Ying; Li, Juan
2017-11-01
Hypoxic tumor microenvironment (TME) is closely linked to tumor progression, heterogeneity and immune suppression. Therefore, the development of effective methods to overcome hypoxia and substantially enhance the immunotherapy efficacy remains a desirable goal. Herein, we engineered a biocompatible Au core/Pt shell nanoparticles (Au@Pt NPs) to reoxygenate the TME by reacting with endogenous H2O2. Treatment with Au@Pt NPs appeared to improve oxygen in intracellular environments and decrease hypoxia-inducible factor-1α expression. Furthermore, the integration of high catalytic efficiency of Au@Pt NPs with cytokine-induced killer (CIK) cell immunotherapy, could lead to significantly improve the effect of CIK cell-mediated cytotoxicity. These results suggest great potential of Au@Pt NPs for regulation of the hypoxic TME and enhance immune cell mediated anti-tumor immunity.
Jedidi, Abdesslem; Li, Rui; Fornasiero, Paolo; Cavallo, Luigi; Carbonniere, Philippe
2015-12-03
Vibrational fingerprints of small Pt(n)P(2n) (n = 1-5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first Pt(n)P(2n) isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the Pt(n)P(2n) structures.
Preparation of platinum-decorated porous graphite nanofibers, and their hydrogen storage behaviors.
Kim, Byung-Joo; Lee, Young-Seak; Park, Soo-Jin
2008-02-15
In this work, the hydrogen storage behaviors of porous graphite nanofibers (GNFs) decorated by Pt nanoparticles were investigated. The Pt nanoparticles were introduced onto the GNF surfaces using a well-known chemical reduction method. We investigated the hydrogen storage capacity of the Pt-doped GNFs for the platinum content range of 1.3-7.5 mass%. The microstructure of the Pt/porous GNFs was characterized by X-ray diffraction and transmission electron microscopy. The hydrogen storage behaviors of the Pt/GNFs were studied using a PCT apparatus at 298 K and 10 MPa. It was found that amount of hydrogen stored increased with increasing Pt content to 3.4 mass%, and then decreased. This result indicates that the hydrogen storage capacity of porous carbons is based on both their metal content and dispersion rate.
Model-based magnetization retrieval from holographic phase images.
Röder, Falk; Vogel, Karin; Wolf, Daniel; Hellwig, Olav; Wee, Sung Hun; Wicht, Sebastian; Rellinghaus, Bernd
2017-05-01
The phase shift of the electron wave is a useful measure for the projected magnetic flux density of magnetic objects at the nanometer scale. More important for materials science, however, is the knowledge about the magnetization in a magnetic nano-structure. As demonstrated here, a dominating presence of stray fields prohibits a direct interpretation of the phase in terms of magnetization modulus and direction. We therefore present a model-based approach for retrieving the magnetization by considering the projected shape of the nano-structure and assuming a homogeneous magnetization therein. We apply this method to FePt nano-islands epitaxially grown on a SrTiO 3 substrate, which indicates an inclination of their magnetization direction relative to the structural easy magnetic [001] axis. By means of this real-world example, we discuss prospects and limits of this approach. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dai, Xiu Hong; Zhao, Hong Dong; Zhang, Lei; Zhu, Hui Juan; Li, Xiao Hong; Zhao, Ya Jun; Guo, Jian Xin; Zhao, Qing Xun; Wang, Ying Long; Liu, Bao Ting; Ma, Lian Xi
2014-03-01
Polycrystalline Bi0.975La0.025Fe0.975Ni0.025O3 (BLFNO) film is fabricated on Pt/Ti/SiO2/Si(111) substrate by sol-gel method. It is found that the well-crystallized BLFNO film is polycrystalline, and the Pt/BLFNO/Pt capacitor possesses good ferroelectric properties with remnant polarization of 74 μC/cm2 at electric field of 833 kV/cm. Moreover, it is also found that the leakage current density of the Pt/BLFNO/Pt capacitor increases with the increase of measurement temperature ranging from 100 to 300 K. The leakage density of the Pt/BLFNO/Pt capacitor satisfies space-charge-limited conduction (SCLC) at higher electric field and shows little dependence on voltage polarity and temperature, but shows polarity and temperature dependence at lower applied electric field. With temperature increasing from 100 to 300 K at lower applied electric field, the most likely conduction mechanism is from Ohmic behavior to SCLC for positive biases, but no clear dominant mechanism for negative biases is shown.
Architecture-dependent surface chemistry for Pt monolayers on carbon-supported Au.
Cheng, Shuang; Rettew, Robert E; Sauerbrey, Marc; Alamgir, Faisal M
2011-10-01
Pt monolayers were grown by surface-limited redox replacement (SLRR) on two types of Au nanostructures. The Au nanostructures were fabricated electrochemically on carbon fiber paper (CFP) by either potentiostatic deposition (PSD) or potential square wave deposition (PSWD). The morphology of the Au/CFP heterostructures, examined using scanning electron microscopy (SEM), was found to depend on the type of Au growth method employed. The properties of the Pt deposit, as studied using X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and cyclic voltammetry (CV), were found to depend strongly on the morphology of the support. Specifically, it was found that smaller Au morphologies led to a higher degree of cationicity in the resulting Pt deposit, with Pt(4+) and Pt(2+) species being identified using XPS and XAS. For fuel-cell catalysts, the resistance of ultrathin catalyst deposits to surface area loss through dissolution, poisoning, and agglomeration is critical. This study shows that an equivalent of two monolayers (ML) is the low-loading limit of Pt on Au. At 1 ML or below, the Pt film decreases in activity and durability very rapidly due to presence of cationic Pt. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping
2016-02-01
In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs.
Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping
2016-02-15
In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs.
NASA Astrophysics Data System (ADS)
Wang, Peng; Zong, Lanlan; Guan, Zhongjie; Li, Qiuye; Yang, Jianjun
2018-02-01
An economic and effective Pt-based alloy cocatalyst has attracted considerable attention due to their excellent catalytic activity and reducing Pt usage. In this study, PtNi alloy cocatalyst was successfully decorated on the g-C3N4/GO hybrid photocatalyst via a facile chemical reduction method. The Eosin Y-sensitized g-C3N4/PtNi/GO-0.5% composite photocatalyst yields about 1.54 and 1178 times higher hydrogen evolution rate than the Eosin Y-sensitized g-C3N4/Pt/GO-0.5% and g-C3N4/Ni/GO-0.5% samples, respectively. Mechanism of enhanced performance for the g-C3N4/PtNi/GO composite was also investigated by different characterization, such as photoluminescence, transient photocurrent response, and TEM. These results indicated that enhanced charge separation efficiency and more reactive sites are responsible for the improved hydrogen evolution performance due to the positive synergetic effect between Pt and Ni. This study suggests that PtNi alloy can be used as an economic and effective cocatalyst for hydrogen evolution reaction. [Figure not available: see fulltext.
Han, Xinyi; Wang, Dawei; Liu, Dong; Huang, Jianshe; You, Tianyan
2012-02-01
Gold/Platinum (Au/Pt) bimetallic nanodendrites were successfully synthesized through seeded growth method using preformed Au nanodendrites as seeds and ascorbic acid as reductant. Cyclic voltammograms (CVs) of a series of Au/Pt nanodendrites modified electrodes in 1M KOH solution containing 1M ethanol showed that the electrocatalyst with a molar ratio (Au:Pt) of 3 exhibited the highest peak current density and the lowest onset potential. The peak current density of ethanol electro-oxidation on the Au(3)Pt(1) nanodendrites modified glassy carbon electrode (Au(3)Pt(1) electrode) is about 16, 12.5, and 4.5 times higher than those on the polycrystalline Pt electrode, polycrystalline Au electrode, and Au nanodendrites modified glassy carbon electrode (Au dendrites electrode), respectively. The oxidation peak potential of ethanol electro-oxidation on the Au(3)Pt(1) electrode is about 299 and 276 mV lower than those on the polycrystalline Au electrode and Au dendrites electrode, respectively. These results demonstrated that the Au/Pt bimetallic nanodendrites may find potential application in alkaline direct ethanol fuel cells (ADEFCs). Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinozaki, Kazuma; Morimoto, Yu; Pivovar, Bryan S.
The platinum 'particle size effect' on the oxygen reduction reaction (ORR) has been re-evaluated using commercial Pt/C catalysts (2-10 nm Pt particle) and polycrystalline Pt (poly-Pt) in 0.1 M HClO4 with a rotating disk electrode method. Nafion-free catalyst layers were employed to obtain specific activities (SA) that were not perturbed (suppressed) by sulfonate anion adsorption/blocking. By using ultrathin uniform catalyst layers, O2 diffusion limitation was minimized as confirmed from the high SAs of our supported catalysts that were comparable to unsupported sputtered Pt having controlled sizes. The specific activity (SA) steeply increased for the particle sizes in the range -2-10more » nm (0.8-1.8 mA/cm2Pt at 0.9 V vs. RHE) and plateaued over -10 nm to 2.7 mA/cm2Pt for bulk poly-Pt. On the basis of the activity trend for the range of particle sizes studied, it appears that the effect of carbon support on activity is negligible. The experimental results and the concomitant profile of SA vs. particle size was found to be in an agreement to a truncated octahedral particle model that assumes active terrace sites.« less
NASA Astrophysics Data System (ADS)
Su, Nan; Hu, Xiulan; Zhang, Jianbo; Huang, Huihong; Cheng, Jiexu; Yu, Jinchen; Ge, Chao
2017-03-01
A Pt/C/TiO2 nanotube composite catalyst was successfully prepared for enhanced methanol electro-oxidation. Pt nanoparticles with a particle size of 2 nm were synthesized by plasma sputtering in water, and anatase TiO2 nanotubes with an inner diameter of approximately 100 nm were prepared by a simple two-step anodization method and annealing process. Field-emission scanning electron microscopy images indicated that the different morphologies of TiO2 synthesized on the surface of Ti foils were dependent on the different anodization parameters. The electrochemical performance of Pt/C/TiO2 catalysts for methanol oxidation showed that TiO2 nanotubes were more suitable for use as Pt nanoparticle support materials than irregular TiO2 short nanorods due to their tubular morphology and better electronic conductivity. X-ray photoelectron spectroscopy characterization showed that the binding energies of the Pt 4f of the Pt/C/TiO2 nanotubes exhibited a slightly positive shift caused by the relatively strong interaction between Pt and the TiO2 nanotubes, which could mitigate the poisoning of the Pt catalyst by COads, and further enhance the electrocatalytic performance. Thus, the as-obtained Pt/C/TiO2 nanotubes composites may become a promising catalyst for methanol electro-oxidation.
Zhang, Jie; Zhang, Lin; Wang, Wei; Han, Lianhuan; Jia, Jing-Chun; Tian, Zhao-Wu; Tian, Zhong-Qun
2017-01-01
Although metal assisted chemical etching (MacEtch) has emerged as a versatile micro-nanofabrication method for semiconductors, the chemical mechanism remains ambiguous in terms of both thermodynamics and kinetics. Here we demonstrate an innovative phenomenon, i.e., the contact electrification between platinum (Pt) and an n-type gallium arsenide (100) wafer (n-GaAs) can induce interfacial redox reactions. Because of their different work functions, when the Pt electrode comes into contact with n-GaAs, electrons will move from n-GaAs to Pt and form a contact electric field at the Pt/n-GaAs junction until their electron Fermi levels (E F) become equal. In the presence of an electrolyte, the potential of the Pt/electrolyte interface will shift due to the contact electricity and induce the spontaneous reduction of MnO4 – anions on the Pt surface. Because the equilibrium of contact electrification is disturbed, electrons will transfer from n-GaAs to Pt through the tunneling effect. Thus, the accumulated positive holes at the n-GaAs/electrolyte interface make n-GaAs dissolve anodically along the Pt/n-GaAs/electrolyte 3-phase interface. Based on this principle, we developed a direct electrochemical nanoimprint lithography method applicable to crystalline semiconductors. PMID:28451347
Materials Data on Pt(SCl3)2 (SG:2) by Materials Project
Kristin Persson
2016-05-20
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on AlPt3 (SG:221) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on U(SiPt)2 (SG:129) by Materials Project
Kristin Persson
2016-02-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on U(SiPt)2 (SG:139) by Materials Project
Kristin Persson
2016-04-04
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on U(GePt)2 (SG:139) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CuPtO2 (SG:53) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YbPt3 (SG:221) by Materials Project
Kristin Persson
2016-02-05
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on FeSbPt (SG:146) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-04-23
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Y(SiPt)2 (SG:139) by Materials Project
Kristin Persson
2014-07-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sn2Pt (SG:225) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tb(SiPt)2 (SG:139) by Materials Project
Kristin Persson
2016-07-26
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tb2Pt (SG:62) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
NASA Astrophysics Data System (ADS)
Jana, Rajkumar; Peter, Sebastian C.
2016-10-01
Ordered intermetallic Pt2In3 nanoparticles have been synthesized by superhydride reduction of K2PtCl4 and InCl3.xH2O precursors using facile, one-pot solvothermal method. We report surfactant free solvothermal synthesis of a novel ordered Pt2In3 intermetallic nanoparticles for the first time. The structure and morphology of the catalyst has been confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. The electrocatalytic properties of the catalysts have been investigated by cyclic voltammetry and chronoamperometry. The as prepared Pt2In3 catalyst exhibit far superior electrocatalytic activity and stability towards alcohol oxidation over commercial Pt/C. The specific activity of as synthesized catalyst was found to be 3.2 and 2.3 times higher than commercial Pt/C for methanol and ethanol oxidation, respectively. This improved activity and durability of the Pt2In3 nanoparticles can make the catalyst an ideal catalyst candidate for direct alcohol fuel cell.
NASA Astrophysics Data System (ADS)
Soares, Layciane A.; Morais, Claudia; Napporn, Teko W.; Kokoh, K. Boniface; Olivi, Paulo
2016-05-01
This work investigates ethanol electrooxidation on Pt/C, PtxRhy/C, Pt-SnO2/C, and PtxRhy-SnO2/C catalysts synthesized by the Pechini and microwave-assisted polyol methods. The catalysts are characterized by energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and X-ray diffraction (XRD) techniques. The electrochemical properties of these electrode materials are examined by cyclic voltammetry and chronoamperometry experiments in acid medium. The products obtained during ethanol electrolysis are identified by high performance liquid chromatography (HPLC). The adsorbed intermediates are evaluated by an in situ reflectance Infrared Spectroscopy technique combined with cyclic voltammetry. Catalysts performance in a direct ethanol fuel cell (DEFC) is also assessed. The electrical performance of the electrocatalysts in a single DEFC at 80 °C decreases in the following order Pt70Rh30SnO2 > Pt80Rh20SnO2 > Pt60Rh40SnO2 ∼ PtSnO2 > PtxRhy ∼ Pt, showing that the presence of SnO2 enhances the ability of Pt to catalyze ethanol electrooxidation.
Bimetallic Pt-Au Nanocatalysts on ZnO/Al2O3/Monolith for Air Pollution Control.
Kim, Ki-Joong; Ahn, Ho-Geun
2015-08-01
The catalytic activity of a monolithic catalyst with nanosized Pt and Au particles on ZnO/Al2O3 (Pt-Au/ZnO/Al2O3/M) prepared by a wash-coat method was examined, specifically for toluene oxidation. Scanning electron microscopy image showed clearly the formation of a ZnO/Al2O3 layer on the monolith. Nanosized Pt-Au particles on ZnO/Al2O3/M with different sizes could be found in the Pt-Au/ZnO/Al2O3/M catalyst. The conversion of toluene decreased with increasing toluene concentration and was also largely affected by the feed flow rate. The Pt-Au/ZnO/Al2O3/M catalysts prepared in this work have almost the same activity (molecules of toluene per second) compared with a powder Pt-Au/ZnO/Al2O3 catalyst with the same loadings of Pt and Au components; thus this catalyst could be used in controlling air pollution with very low concentrations and high flow rate.
Díaz, Pedro; Garrido, María Dolores; Bañón, Sancho
2010-03-01
The effects of two packaging methods on the spoilage of a cook-chill pork-based dish kept under refrigeration were studied. Raw pork cuts and pre-cooked tomato sauce were packed under vacuum "sous vide" in polyamide-polypropylene pouches (SV) or into translucent polypropylene trays under modified atmosphere (80% N(2)+20% CO(2)) and sealed with a top film (PT). Samples were cooked inside the pack at an oven temperature/time of 70 degrees C/7h, chilled at 3 degrees C and stored at 2 degrees C for up to 90days. Microbial (psychrotrophs, lactic-acid bacteria, Enterobacteriaceae, moulds and yeasts), physical-chemical (pH, water activity and total acidity) and sensory (colour, odour, flavour, texture and acceptance) parameters were determined. Heat penetration was faster in SV (2 degrees C/min) than in PT (1 degrees C/min) (core temperature). Both packaging methods were equally effective in protecting against microbial spoilage for 90 day at 2 degrees C. Minor counts were only detected for lactic-acid bacteria and anaerobic psychrotrophs in SV. No Enterobacteriaceae growth was found. Slight differences between SV and PT in pH and total acidity were observed. SV and PT had similar effects on the sensory preservation of the dishes. A gradual loss of acceptance of the cooked pork and tomato sauce was observed. Rancid flavour in PT and warmed-over-flavour in SV were noted in the final stages of storage. According to acceptance scores, the shelf-life of both SV and PT was 56 days at 2 degrees C. Both packaging methods can be used to manufacture sous vide meat-based dishes subsequently stored under refrigeration for catering use. Copyright 2009 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, L; Huang, S; Kang, M
Purpose: Eclipse proton Monte Carlo AcurosPT 13.7 was commissioned and experimentally validated for an IBA dedicated PBS nozzle in water. Topas 1.3 was used to isolate the cause of differences in output and penumbra between simulation and experiment. Methods: The spot profiles were measured in air at five locations using Lynx. PTW-34070 Bragg peak chamber (Freiburg, Germany) was used to collect the relative integral Bragg peak for 15 proton energies from 100 MeV to 225 MeV. The phase space parameters (σx, σθ, ρxθ) number of protons per MU, energy spread and calculated mean energy provided by AcurosPT were identically implementedmore » into Topas. The absolute dose, profiles and field size factors measured using ionization chamber arrays were compared with both AcurosPT and Topas. Results: The beam spot size, σx, and the angular spread, σθ, in air were both energy-dependent: in particular, the spot size in air at isocentre ranged from 2.8 to 5.3 mm, and the angular spread ranged from 2.7 mrad to 6 mrad. The number of protons per MU increased from ∼9E7 at 100 MeV to ∼1.5E8 at 225 MeV. Both AcurosPT and TOPAS agree with experiment within 2 mm penumbra difference or 3% dose difference for scenarios including central axis depth dose and profiles at two depths in multi-spot square fields, from 40 to 200 mm, for all the investigated single-energy and multi-energy beams, indicating clinically acceptable source model and radiation transport algorithm in water. Conclusion: By comparing measured data and TOPAS simulation using the same source model, the AcurosPT 13.7 was validated in water within 2 mm penumbra difference or 3% dose difference. Benchmarks versus an independent Monte Carlo code are recommended to study the agreement in output, filed size factors and penumbra differences. This project is partially supported by the Varian grant under the master agreement between University of Pennsylvania and Varian.« less
Synthesis and properties of platinum on multiwall carbon nanotube modified by chitosan
NASA Astrophysics Data System (ADS)
Fikriyyah, A. K.; Chaldun, E. R.; Indriyati
2018-03-01
Platinum nanoparticles on multiwall carbon nanotubes (Pt/MWCNT) play an important role in fuel cell to convert the chemical energy from a fuel into electricity. In this study, Pt/MWCNT electrocatalysts were prepared by chemical reduction of the metal salts in chitosan as the support. Firstly, commercial MWCNTs were functionalized by oxidative process using a mixture of nitric acid and sulfuric acid. Then, functionalized MWCNTs were mixed with chitosan-acetic acid solution to conduct grafting reaction with NH2 groups in chitosan by solution polymerization method. Platinum nanoparticles were loaded onto the surface of the MWCNTs after hexachloroplatinic acid was reduced by sodium hydroxide solution. The result showed that Pt was attached on MWCNT based on analysis from EDS, XRD, and UV Vis Spectroscopy. UV Vis analysis indicates the plasmon absorbance band of Pt nanoparticles in Pt/MWCNT, while XRD analysis confirmed the size of Pt particle in nanometer. This elucidates the potential procedure to synthesize Pt/MWCNT using chitosan.
Zhao, Bo; Zhu, Wenkun; Mu, Tao; Hu, Zuowen; Duan, Tao
2017-01-01
A novel Pt/ACF (Pt supported on activated carbon fibers) electrode was successfully prepared with impregnation and electrodeposition method. Characterization of the electrodes indicated that the Pt/ACF electrode had a larger effective area and more active sites. Electrochemical degradation of ethylenediaminetetra-acetic acid (EDTA) in aqueous solution with Pt/ACF electrodes was investigated. The results showed that the 3% Pt/ACF electrode had a better effect on EDTA removal. The operational parameters influencing the electrochemical degradation of EDTA with 3% Pt/ACF electrode were optimized and the optimal removal of EDTA and chemical oxygen demand (COD) were 94% and 60% after 100 min on condition of the electrolyte concentration, initial concentration of EDTA, current density and initial value of pH were 0.1 mol/L, 300 mg/L, 40 mA/cm2 and 5.0, respectively. The degradation intermediates of EDTA in electrochemical oxidation with 3% Pt/ACF electrode were identified by gas chromatography-mass spectrum (GC-MS). PMID:28754016
Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes
NASA Astrophysics Data System (ADS)
Liu, Wenlong; Liu, Yen-Yu; Do, Jing-Shan; Li, Jing
2016-12-01
Room temperature NH3 gas sensors based on Pt and Pt-Ir (Ir doping Pt) porous ceramic electrodes have been fabricated by both electroplating and sputtering methods. The properties of the gaseous ammonia sensors have been examined by polarization and chronoamperometry techniques. The influence of humidity on the features of the resulting sensors in the system has also been discussed, and the working potential was optimized. Water vapors seem to hugely improve the electrochemical activity of the electrode. With increasing the relative humidity, the response of the Pt-Ir(E)/Pt(S)/PCP sensor to NH3 gas could be enhanced remarkably, and the sensitivity increases from 1.14 to 12.06 μA ppm-1 cm-2 .Then we have also discussed the sensing mechanism of the Pt-Ir sensor and the result has been confirmed by X-ray photoelectron spectroscopy of the electrode surface before and after reaction in the end.
NASA Astrophysics Data System (ADS)
Li, Chenyang; Verma, Prakash; Hannon, Kevin P.; Evangelista, Francesco A.
2017-08-01
We propose an economical state-specific approach to evaluate electronic excitation energies based on the driven similarity renormalization group truncated to second order (DSRG-PT2). Starting from a closed-shell Hartree-Fock wave function, a model space is constructed that includes all single or single and double excitations within a given set of active orbitals. The resulting VCIS-DSRG-PT2 and VCISD-DSRG-PT2 methods are introduced and benchmarked on a set of 28 organic molecules [M. Schreiber et al., J. Chem. Phys. 128, 134110 (2008)]. Taking CC3 results as reference values, mean absolute deviations of 0.32 and 0.22 eV are observed for VCIS-DSRG-PT2 and VCISD-DSRG-PT2 excitation energies, respectively. Overall, VCIS-DSRG-PT2 yields results with accuracy comparable to those from time-dependent density functional theory using the B3LYP functional, while VCISD-DSRG-PT2 gives excitation energies comparable to those from equation-of-motion coupled cluster with singles and doubles.
Platinum-coated non-noble metal-noble metal core-shell electrocatalysts
Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir
2015-04-14
Core-shell particles encapsulated by a thin film of a catalytically active metal are described. The particles are preferably nanoparticles comprising a non-noble core with a noble metal shell which preferably do not include Pt. The non-noble metal-noble metal core-shell nanoparticles are encapsulated by a catalytically active metal which is preferably Pt. The core-shell nanoparticles are preferably formed by prolonged elevated-temperature annealing of nanoparticle alloys in an inert environment. This causes the noble metal component to surface segregate and form an atomically thin shell. The Pt overlayer is formed by a process involving the underpotential deposition of a monolayer of a non-noble metal followed by immersion in a solution comprising a Pt salt. A thin Pt layer forms via the galvanic displacement of non-noble surface atoms by more noble Pt atoms in the salt. The overall process is a robust and cost-efficient method for forming Pt-coated non-noble metal-noble metal core-shell nanoparticles.
Sui, Ning; Wang, Ke; Shan, Xinyao; Bai, Qiang; Wang, Lina; Xiao, Hailian; Liu, Manhong; Colvin, Vicki L; Yu, William W
2017-11-14
Hollow dendritic Ag/Pt alloy nanoparticles were synthesized by a double template method: Ag nanoparticles as the hard template to obtain hollow spheres by a galvanic replacement reaction between PtCl 6 2- and metallic Ag and surfactant micelles (Brij58) as the soft template to generate porous dendrites. The formation of a Ag/Pt alloy phase was confirmed by XRD and HRTEM. Elemental mapping and line scanning revealed the formation of the hollow architecture. We studied the effects of the Ag/Pt ratio, surfactant and reaction temperature on the morphology. In addition, we explored the formation process of hollow dendritic Ag/Pt nanoparticles by tracking the morphologies of the nanostructures formed at different stages. In order to improve the electrocatalytic property, we controlled the size of the nanoparticles and the thickness of the shell by adjusting the amount of the precursor. We found that these Ag/Pt alloy nanoparticles exhibited high activity (440 mA mg -1 ) and stability as an electrocatalyst for catalyzing methanol oxidation.
Smad4 re-expression increases the sensitivity to parthenolide in colorectal cancer.
Li, Xuemei; Yang, Huike; Ke, Jia; Liu, Baoquan; Lv, Xiaohong; Li, Xinlei; Zhang, Yafang
2017-10-01
Parthenolide (PT), a sesquiterpene lactone extracted from the plant feverfew, has been demonstrated to have anti-inflammatory and anticancer properties. Although PT has been revealed to markedly inhibit colorectal cancer cell proliferation, the inhibitory effects decrease with administration time. These findings revealed that colorectal cancer cells develop resistance to PT. However, the underlying mechanism is unclear. In the present study we observed significantly low expression of Smad4 in 3 PT-resistant cell lines (HCT‑116/PT, HT-29/PT and Caco-2/PT), which were obtained using in vitro concentration gradient-increased induction, but not in their parental cells. In the present study we used the lentiviral‑mediated transfection method to upregulate Smad4 in resistant colorectal cancer cell lines. Flow cytometry assay was used to assess cell apoptosis. Cell migration was detected using a QCM™ 24-well Fluorimetric Cell Migration Assay kit. Our study showed that Smad4 overexpression notably decreased the half maximal inhibitory concentration (IC50) values for PT in the 3 PT-resistant cell lines, and improved the inhibitory effects of PT on cell migration and enhanced apoptosis in vitro as well as suppressed xenografted tumors in a PT-resistant colorectal cancer mouse model. Further study by western blotting into the underlying mechanism demonstrated that Smad4 overexpression suppressed the expression of MDR1 in the resistant cells, and resulted in the accumulation of PT, which in turn promoted the expession of caspase-3 and Bax and inhibited the expression of Bcl-2 and the phosphorylation of NF-κB p65. In short, Smad4 re-expression may be crucial for enhancing the sensitivity and reversing the resistance to PT in PT-resistant colorectal cancer cells.
Growth of Pt/Cu(100): An Atomistic Modeling Comparison with the Pd/Cu(100) Surface Alloy
NASA Technical Reports Server (NTRS)
Demarco, Gustavo; Garces, Jorge E.; Bozzolo, Guillermo
2002-01-01
The Bozzolo, Ferrante, and Smith (BFS) method for alloys is applied to the study of Pt deposition on Cu(100). The formation of a Cu-Pt surface alloy is discussed within the framework of previous results for Pd/Cu(100). In spite of the fact that both Pd and Pt share the same basic behavior when deposited on Cu, it is seen that subtle differences become responsible for the differences in growth observed at higher cover-ages. In agreement with experiment, all the main features of Pt/Cu(100) and Pd/Cu(100) are obtained by means of a simple modeling scheme, and explained in terms of a few basic ingredients that emerge from the BFS analysis.
Metallofullerenes as fuel cell electrocatalysts: a theoretical investigation of adsorbates on C59Pt.
Gabriel, Margaret A; Genovese, Luigi; Krosnicki, Guillaume; Lemaire, Olivier; Deutsch, Thierry; Franco, Alejandro A
2010-08-28
Nano-structured electrode degradation in state-of-the-art polymer electrolyte membrane fuel cells (PEMFCs) is one of the main shortcomings that limit the large-scale development and commercialization of this technology. During normal operating conditions of the fuel cell, the PEMFC lifetime tends to be limited by coarsening of the cathode's Pt-based catalyst and by corrosion of the cathode's carbon black support. Because of their chemical properties, metallofullerenes such as C(59)Pt may be more electrochemically stable than the Pt/C mixture. In this paper we investigate, by theoretical methods, the stability of oxygen reduction reaction (ORR) adsorbates on the metallofullerene C(59)Pt and evaluate its potential as a PEMFC fuel cell catalyst.
Durability Improvement of Pt/RGO Catalysts for PEMFC by Low-Temperature Self-Catalyzed Reduction.
Sun, Kang Gyu; Chung, Jin Suk; Hur, Seung Hyun
2015-12-01
Pt/C catalyst used for polymer electrolyte membrane fuel cells (PEMFCs) displays excellent initial performance, but it does not last long because of the lack of durability. In this study, a Pt/reduced graphene oxide (RGO) catalyst was synthesized by the polyol method using ethylene glycol (EG) as the reducing agent, and then low-temperature hydrogen bubbling (LTHB) treatment was introduced to enhance the durability of the Pt/RGO catalyst. The cyclic voltammetry (CV), oxygen reduction reaction (ORR) analysis, and transmittance electron microscopy (TEM) results suggested that the loss of the oxygen functional groups, because of the hydrogen spillover and self-catalyzed dehydration reaction during LTHB, reduced the carbon corrosion and Pt agglomeration and thus enhanced the durability of the electrocatalyst.
Mandoda, Shilpa; Landry, Michel D.
2011-01-01
ABSTRACT Purpose: To explore the potential for different models of incorporating physical therapy (PT) services within the emerging network of family health teams (FHTs) in Ontario and to identify challenges and opportunities of each model. Methods: A two-phase mixed-methods qualitative descriptive approach was used. First, FHTs were mapped in relation to existing community-based PT practices. Second, semi-structured key-informant interviews were conducted with representatives from urban and rural FHTs and from a variety of community-based PT practices. Interviews were digitally recorded, transcribed verbatim, and analyzed using a categorizing/editing approach. Results: Most participants agreed that the ideal model involves embedding physical therapists directly into FHTs; in some situations, however, partnering with an existing external PT provider may be more feasible and sustainable. Access and funding remain the key issues, regardless of the model adopted. Conclusion: Although there are differences across the urban/rural divide, there exist opportunities to enhance and optimize existing delivery models so as to improve client access and address emerging demand for community-based PT services. PMID:22654231
Chen, Dan; Li, Yuexia; Liao, Shijun; ...
2015-08-03
Core–shell structured catalysts, made by placing either a monolayer or a thin layer of a noble metal on relatively cheap core-metal nanoparticles, are fascinating and promising fuel cell catalysts due to their high utilization of noble metals. Here, we report our development of a core–shell structured catalyst, Ru@Pt/C, generated by a novel and facile pulse electrochemical deposition (PED) approach. We demonstrate that compared with a commercial Pt/C catalyst, this novel catalyst achieves over four times higher mass activity towards the anodic oxidation of methanol, and 3.6 times higher mass activity towards the cathodic reduction of oxygen. Importantly, we find thatmore » the intrinsic activity of Pt in this Ru@Pt/C catalyst is doubled due to the formation of the core–shell structure. The catalyst also shows superior stability: even after 2000 scans, it still retains up to 90% of the peak current. As a result, our findings demonstrate that this novel PED approach is a promising method for preparing high-performance core–shell catalysts for fuel cell applications.« less
Post-exercise heart rate variability recovery: a time-frequency analysis.
Peçanha, Tiago; de Paula-Ribeiro, Marcelle; Nasario-Junior, Olivassé; de Lima, Jorge Roberto Perrout
2013-12-01
Most studies investigating the effects of non-pharmacological interventions, such as physical training (PT), on cardiac autonomic control, assessed the HRV only in resting conditions. Recently, a new time-frequency mathematical approach based on the short-time Fourier transform (STFT) method has been validated for the assessment of HRV in non-stationary conditions such as the immediate post-exercise period. The aim of this study was to evaluate the effects of the PT on post-exercise cardiac autonomic control using the time-frequency STFT analysis of the HRV. Twenty-one healthy male volunteers participated in this study. The subjects were initially evaluated for their physical exercise/sport practice and allocated to groups of low physical training ((Low)PT, n = 13) or high physical training (H(igh)PT, n = 8). The post-exercise HRV was assessed by the STFT method, which provides the analysis of dynamic changes in the power of the low- and high-frequency spectral components (LF and HF, respectively) of the HRV during the whole recovery period. Greater LF (from the min 5 to 10) and HF (from the min 6 to 10) in the post-exercise period in the H(igh)PT compared to the (Low)PT group (P < 0.05) was observed. These results indicate that exercise training exerts beneficial effects on post-exercise cardiac autonomic control.
NASA Astrophysics Data System (ADS)
Ghasemifard, M.; Hosseini, S. M.; Bagheri-Mohagheghi, M. M.; Shahtahmasbi, N.
2009-09-01
We have synthesized and were performed a comparison of structures and optical properties between relaxor ferroelectric PMN-PT and PMN-PZT nanopowders. A gel-combustion method has been used to synthesize PMN-PT and PMN-PZT nanocrystalline with the perovskite structure. The precursors employed in the gel-combustion process were lead nitrate, magnesium acetate, niobium ammonium oxalate and zirconium nitrate. The nanopowders were characterized using the X-ray diffraction (XRD) and transmission electron microscopy (TEM) observation. Fourier transform infrared (FTIR) spectroscopy was employed to monitor the transformation of precursor solutions during the thermal reactions leading to the formation of perovskite phase.
Multimodal electromechanical model of piezoelectric transformers by Hamilton's principle.
Nadal, Clement; Pigache, Francois
2009-11-01
This work deals with a general energetic approach to establish an accurate electromechanical model of a piezoelectric transformer (PT). Hamilton's principle is used to obtain the equations of motion for free vibrations. The modal characteristics (mass, stiffness, primary and secondary electromechanical conversion factors) are also deduced. Then, to illustrate this general electromechanical method, the variational principle is applied to both homogeneous and nonhomogeneous Rosen-type PT models. A comparison of modal parameters, mechanical displacements, and electrical potentials are presented for both models. Finally, the validity of the electrodynamical model of nonhomogeneous Rosen-type PT is confirmed by a numerical comparison based on a finite elements method and an experimental identification.
Prevention of nanoparticle coalescence under high-temperature annealing.
Mizuno, Mikihisa; Sasaki, Yuichi; Yu, Andrew C C; Inoue, Makoto
2004-12-21
An effective method of employing 3-aminopropyldimethylethoxysilane linker molecules to stabilize 4.4 nm FePt nanoparticle monolayer films on a SiO2 substrate as well as to prevent coalescence of the particles under 800 degrees C annealing is reported. As-deposited FePt nanoparticle films in chemically disordered face-centered-cubic phase transform to mostly chemically ordered L1 0 structure after annealing, while the nanoparticles are free from serious coalescence. The method may fulfill the pressing need to prevent nanoparticle coalescence under high-temperature annealing for the development of FePt nanoparticle based products, such as ultrahigh-density magnetic recording media and novel memory devices.
NASA Astrophysics Data System (ADS)
Zhang, Ke; Xu, Hui; Yan, Bo; Wang, Jin; Gu, Zhulan; Du, Yukou
2017-12-01
This article reports a rapid synthetic method for the preparation of dendritic platinum-lead bimetallic catalysts by using an oil bath for 5 min in the presence of hexadecyltrimethylammonium chloride (CTAC) and ascorbic acid (AA). CTAC acts as a shape-direction agent, and AA acts as a reducing agent during the reaction process. A series of physical techniques are used to characterize the morphology, structure and electronic properties of the dendritic Pt/Pb nanoparticles, indicating the Pt/Pb dendrites are porous, highly alloying, and self-supported nanostructures. Various electrochemical techniques were also investigated the catalytic performance of the Pt/Pb catalysts toward the ethanol electrooxidation reaction. Cyclic voltammetry and chronoamperometry indicated that the synthesized dendritic Pt/Pb nanoparticles possessed much higher electrocatalytic performance than bulk Pt catalyst. This study may inspire the engineering of dendritic bimetallic catalysts, which are expected to have great potential applications in fuel cells.
Noh, Chang Soo; Heo, Dong Hyun; Lee, Ki Rak; Jeon, Min Ku; Sohn, Jung Min
2016-05-01
PtSn/C and Pt5Sn4M/C (M = W, Pd, Ni) electrocatalysts were prepared by impregnation method using NaBH4 as a reducing agent. Chemical composition, crystalline size, and alloy formation were determined by EDX, XRD and TEM. The average particle sizes of the synthesized catalysts were approximately 3.64-4.95 nm. The electro-chemical properties were measured by CO stripping, cyclic voltammetry, linear sweep voltammetry, and chronoamperometry. The maximum specific activity of the electro-catalysts for ethanol electro-oxidation was 406.08 mA m(-2) in Pt5Sn4Pd/C. The poisoning rate of the Pt5Sn4Pd/C (0.0017% s(-1)) was 4.5 times lower than that of the PtSn/C (0.0076% s(-1)).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aijaz, Arshad; Karkamkar, Abhijeet J.; Choi, Young Joon
2012-08-29
Ultrafine Pt nanoparticles were successfully immobilized inside the pores of a metal-organic framework MIL-101 without deposition of Pt nanoparticles on the external surfaces of framework by using a 'double solvents' method. The resulting Pt@MIL-101 composites with different Pt loadings represent the first highly active MOF-immobilized metal nanocatalysts for catalytic reactions in all three phases: liquid-phase ammonia borane hydrolysis; solid-phase ammonia borane thermal dehy-drogenation and gas-phase CO oxidation. The observed excellent catalytic performances are at-tributed to the small Pt nanoparticles within the pores of MIL-101. 'We are thankful to AIST and METI for financial support. TA & AK are thankful formore » support from the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. PNNL is operated by Battelle.'« less
Materials Data on Mg(PtO2)3 (SG:65) by Materials Project
Kristin Persson
2016-02-05
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca(PtO2)2 (SG:131) by Materials Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristin Persson
2016-02-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Iepsen, Ulrik Winning; Ringbæk, Thomas
2013-06-01
The aim of this study was to compare the efficacy and complications of surgical (large-bore) chest tube drainage with smaller and less invasive chest tubes in the treatment of non-traumatic pneumothorax (PT). This was a retrospective study of 104 cases (94 patients) of non-traumatic PT treated with chest tubes - either by pulmonary physicians (daytime and weekdays) using small-bore chest tubes, or by orthopaedic surgeons (remaining time slots) using large-bore chest tubes. A total of 62 had primary spontaneous PT, 30 had secondary spontaneous PT and 12 had iatrogenic PT. A total of 62 patients were treated with large-bore (20-28 Fr) chest tubes placed with traditional thoracotomy, 42 patients were treated by a pulmonary physician, and in 30 of these cases a True-Close thoracic vent (11-13 Fr) was inserted. Patients treated with surgical chest tubes were comparable with patients treated with smaller chest tubes in terms of demographic data and type and size of PT. Compared with patients treated with smaller chest tubes, patients with surgical large-bore tubes had more complications (27.4% versus 9.5%; p = 0.026), a lower success rate (56.5% versus 85.7%; p = 0.002), and longer duration of chest tube (8.3 versus 4.9 days; p = 0.001) and of hospitalisation (11.8 versus 6.9 days; p = 0.004). We found small chest tubes to be superior to large-bore chest tubes with regard to short-term outcomes in the treatment of non-traumatic PT. not relevant. The project was approved by the Danish Data Protection Agency, file no. 2012-41-0554.
NASA Astrophysics Data System (ADS)
Alexandre Diogo, Paulo; Nunes, João Pedro; Marco, Machado; Aal, Carlo; Carmona Rodrigues, António; Beça, Pedro; Casanova Lino, Rafael; Rocha, João; Carvalho Santos, Cláudia
2016-04-01
Climate change (CC) scenarios for the Mediterranean region include an increase in the frequency and intensity of extreme weather events such as drought periods. higher average temperatures and evapotranspiration, combined with the decrease of annual precipitation may strongly affect the sustainability of water resources. In face of these risks, improving water management actions? by anticipating necessary operational measures is required to insure water quantity and quality according to the needs of the populations and irrigation in agriculture. This is clearly the case of the Alentejo region, southern Portugal, where present climatic conditions already pose significant challenges to water resources stakeholders, mainly from the agricultural and the urban supply sectors. With this in mind, the GestAqua.AdaPT project is underway during 2015 and 2016, aiming at analyzing CC impacts until 2100 and develop operational procedures to ensure water needs are adequately satisfied in the Monte Novo and Vigia reservoirs, which supply water for the city of Évora and nearby irrigation systems. Specific project objectives include: a) defining management and operational adaptation strategies aiming to ensure resource sustainability, both quantitatively and qualitatively; b) evaluate future potential costs and available alternatives to the regional water transfer infrastructure linked with the large Alqueva reservoir implemented in 2011; c) defining CC adaptation strategies to reduce irrigation water needs and d) identification of CC adaptation strategies which can be suitable also to other similar water supply systems. The methodology is centered on the implementation of a cascade of modeling tools, allowing the integrated simulation of the multiple variables under analysis. The project is based on CC scenarios resulting from the CORDEX project for 10 combinations of Global and regional climate models (GCMs and RCMs). The study follows by using two of these combinations, selected on the basis of comparison with regional climate data for the control period of 1971-2005, and implementing the eco-hydrological model SWAT (Soil and Water Assessment tool) in order to obtain runoff flows and quality and evapotranspiration for representative agricultural systems. Outputs from SWAT are used as inputs for the hydrodynamic and water quality model CE-Qual-W2 to simulate both the Monte Novo and Vigia reservoirs, thus enabling sustainability evaluation in terms of water quantity and quality. Reservoir water balances are used to estimate water transfer energy costs. GestAqua.AdaPT also includes hydrometric and water quality monitoring tasks, some of them focused in evaluating changes in water quality caused by extreme hydrological events. The combination of the implemented methods will allow the development of CC adaptation strategies for the operation of reservoirs and for the agricultural sector. This includes the definition and implementation of reservoir operation curve rules, as well as the assessment of structural solutions for the water transfer from Alqueva. In the agricultural sector will be evaluated alternative agricultural practices focused on water resources sustainability. GestAqua.AdaPT is funded by EEA Grants and Fundo de Carbono/Agência Portuguesa do Ambiente.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in; Jain, Ekta, E-mail: jainekta05@gmail.com; Sanyal, S. P., E-mail: sps.physicsbu@gmail.com
2016-05-06
Structural, electronic, optical and elastic properties of PtZr have been studied using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). The energy against volume and enthalpy vs. pressure variation in three different structures i.e. B{sub 1}, B{sub 2} and B{sub 3} for PtZr has been presented. The equilibrium lattice parameter, bulk modulus and its pressure derivative have been obtained using optimization method for all the three phases. Furthermore, electronic structure was discussed to reveal the metallic character of the present compound. The linear optical properties are also studied under zero pressure for the first time.more » Results on elastic properties are obtained using generalized gradient approximation (GGA) for exchange correlation potentials. Ductile nature of PtZr compound is predicted in accordance with Pugh’s criteria.« less
NASA Astrophysics Data System (ADS)
Xu, Feiyan; Le, Yao; Cheng, Bei; Jiang, Chuanjia
2017-12-01
Catalytic oxidation at room temperature over well-designed catalysts is an environmentally friendly method for the abatement of indoor formaldehyde (HCHO) pollution. Herein, nanocomposites of platinum (Pt) and titanium dioxide (TiO2) nanofibers with various phase compositions were prepared by calcining the electrospun TiO2 precursors at different temperatures and subsequently depositing Pt nanoparticles (NPs) on the TiO2 through a NaBH4-reduction process. The phase compositions and structures of Pt/TiO2 can be easily controlled by varying the calcination temperature. The Pt/TiO2 nanocomposites showed a phase-dependent activity towards the catalytic HCHO oxidation. Pt/TiO2 containing pure rutile phase showed enhanced activity with a turnover frequency (TOF) of 16.6 min-1 (for a calcination temperature of 800 °C) as compared to those containing the anatase phase or mixed phases. Density functional theory calculation shows that TiO2 nanofibers with pure rutile phase have stronger adsorption ability to Pt atoms than anatase phase, which favors the reduction of Pt over rutile phase TiO2, leading to higher contents of metallic Pt in the nanocomposite. In addition, the Pt/TiO2 with rutile phase possesses more abundant oxygen vacancies, which is conducive to the activation of adsorbed oxygen. Consequently, the Pt/rutile-TiO2 nanocomposite exhibited better catalytic activity towards HCHO oxidation at room temperature.
Recent Advances in Developing Platinum Monolayer Electrocatalysts for the O2 Reduction Reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vukmirovic,M.B.; Sasaki, K.; Zhou, W.-P.
2008-09-15
For Pt, the best single-element catalyst for many reactions, the question of content and loading is exceedingly important because of its price and availability. Using platinum as a fuel-cell catalyst in automotive applications will cause an unquantifiable increase in the demand for this metal. This big obstacle for using fuel cells in electric cars must be solved by decreasing the content of Pt, which is a great challenge of electrocatalysis Over the last several years we inaugurated a new class of electrocatalysts for the oxygen reduction reaction (ORR) based on a monolayer of Pt deposited on metal or alloy carbon-supportedmore » nanoparticles. The possibility of decreasing the Pt content in the ORR catalysts down to a monolayer level has a considerable importance because this reaction requires high loadings due to its slow kinetics. The Pt-monolayer approach has several unique features and some of them are: high Pt utilization, enhanced (or decreased) activity, enhanced stability, and direct activity correlations. The synthesis of Pt monolayer (ML) electrocatalysts was facilitated by our new synthesis method which allowed us to deposit a monolayer of Pt on various metals, or alloy nanoparticles [1, 2] for the cathode electrocatalyst. In this synthesis approach Pt is laid down by the galvanically displacing a Cu monolayer, which was deposited at underpotentials in a monolayer-limited reaction on appropriate metal substrate, with Pt after immersing the electrode in a K{sub 2}PtCl{sub 4} solution.« less
Dohn, A O; Jónsson, E Ö; Levi, G; Mortensen, J J; Lopez-Acevedo, O; Thygesen, K S; Jacobsen, K W; Ulstrup, J; Henriksen, N E; Møller, K B; Jónsson, H
2017-12-12
A multiscale density functional theory-quantum mechanics/molecular mechanics (DFT-QM/MM) scheme is presented, based on an efficient electrostatic coupling between the electronic density obtained from a grid-based projector augmented wave (GPAW) implementation of density functional theory and a classical potential energy function. The scheme is implemented in a general fashion and can be used with various choices for the descriptions of the QM or MM regions. Tests on H 2 O clusters, ranging from dimer to decamer show that no systematic energy errors are introduced by the coupling that exceeds the differences in the QM and MM descriptions. Over 1 ns of liquid water, Born-Oppenheimer QM/MM molecular dynamics (MD) are sampled combining 10 parallel simulations, showing consistent liquid water structure over the QM/MM border. The method is applied in extensive parallel MD simulations of an aqueous solution of the diplatinum [Pt 2 (P 2 O 5 H 2 ) 4 ] 4- complex (PtPOP), spanning a total time period of roughly half a nanosecond. An average Pt-Pt distance deviating only 0.01 Å from experimental results, and a ground-state Pt-Pt oscillation frequency deviating by <2% from experimental results were obtained. The simulations highlight a remarkable harmonicity of the Pt-Pt oscillation, while also showing clear signs of Pt-H hydrogen bonding and directional coordination of water molecules along the Pt-Pt axis of the complex.
Solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis.
Carpenter, Michael K; Moylan, Thomas E; Kukreja, Ratandeep Singh; Atwan, Mohammed H; Tessema, Misle M
2012-05-23
Platinum alloy nanoparticles show great promise as electrocatalysts for the oxygen reduction reaction (ORR) in fuel cell cathodes. We report here on the use of N,N-dimethylformamide (DMF) as both solvent and reductant in the solvothermal synthesis of Pt alloy nanoparticles (NPs), with a particular focus on Pt-Ni alloys. Well-faceted alloy nanocrystals were generated with this method, including predominantly cubic and cuboctahedral nanocrystals of Pt(3)Ni, and octahedral and truncated octahedral nanocrystals of PtNi. X-ray diffraction (XRD) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), coupled with energy dispersive spectroscopy (EDS), were used to characterize crystallite morphology and composition. ORR activities of the alloy nanoparticles were measured with a rotating disk electrode (RDE) technique. While some Pt(3)Ni alloy nanoparticle catalysts showed specific activities greater than 1000 μA/cm(2)(Pt), alloy catalysts prepared with a nominal composition of PtNi displayed activities close to 3000 μA/cm(2)(Pt), or almost 15 times that of a state-of-the-art Pt/carbon catalyst. XRD and EDS confirmed the presence of two NP compositions in this catalyst. HAADF-STEM examination of the PtNi nanoparticle catalyst after RDE testing revealed the development of hollows in a number of the nanoparticles due to nickel dissolution. Continued voltage cycling caused further nickel dissolution and void formation, but significant activity remained even after 20,000 cycles.
NASA Astrophysics Data System (ADS)
Kim, In Gyeom; Nah, In Wook; Oh, In-Hwan; Park, Sehkyu
2017-10-01
Three-dimensional (3D) crumpled reduced graphene oxide supported Pt-Ir alloys that served as bifunctional oxygen catalysts for use in untized regenerative fuel cells were synthesized by a facile spray pyrolysis method. Pt-Ir catalysts supported on rGO (Pt-Ir/rGOs) were physically characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) to observe change in composition by heat treatment, alloying, and morphological transition of the catalysts. Their catalytic activities and stabilities for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) conditions were electrochemically investigated using cyclic voltammetry (CV), linear sweep voltammetry (LSV), potential cycling and hold tests on the rotating disk electrode (RDE). Pt-Ir/rGO with no post heat-treatment (Pt-Ir/rGO_NP) showed a lower activity for ORR and OER although metal nanoparticles decorated on the support are relatively small. However, Pt-Ir/rGO showed remarkably enhanced activity following heat treatment, depending on temperature. Pt-Ir/rGO heat-treated at 600 °C after spray pyrolysis (Pt-Ir/rGO_P600) exhibited a higher activity and stability than a commercially available Pt/C catalyst kept under the ORR condition, and it also revealed a comparable OER activity and durability versus the commercial unsupported Ir catalyst.
In-beam γ -ray spectroscopy of the neutron-rich platinum isotope 200Pt toward the N =126 shell gap
NASA Astrophysics Data System (ADS)
John, P. R.; Valiente-Dobón, J. J.; Mengoni, D.; Modamio, V.; Lunardi, S.; Bazzacco, D.; Gadea, A.; Wheldon, C.; Rodríguez, T. R.; Alexander, T.; de Angelis, G.; Ashwood, N.; Barr, M.; Benzoni, G.; Birkenbach, B.; Bizzeti, P. G.; Bizzeti-Sona, A. M.; Bottoni, S.; Bowry, M.; Bracco, A.; Browne, F.; Bunce, M.; Camera, F.; Corradi, L.; Crespi, F. C. L.; Melon, B.; Farnea, E.; Fioretto, E.; Gottardo, A.; Grente, L.; Hess, H.; Kokalova, Tz.; Korten, W.; Kuşoǧlu, A.; Lenzi, S.; Leoni, S.; Ljungvall, J.; Menegazzo, R.; Michelagnoli, C.; Mijatović, T.; Montagnoli, G.; Montanari, D.; Napoli, D. R.; Podolyák, Zs.; Pollarolo, G.; Recchia, F.; Reiter, P.; Roberts, O. J.; Şahin, E.; Salsac, M.-D.; Scarlassara, F.; Sferrazza, M.; Söderström, P.-A.; Stefanini, A. M.; Szilner, S.; Ur, C. A.; Vogt, A.; Walshe, J.
2017-06-01
The neutron-rich nucleus 200Pt is investigated via in-beam γ -ray spectroscopy to study the shape evolution in the neutron-rich platinum isotopes towards the N =126 shell closure. The two-neutron transfer reaction 198Pt(82Se, 80Se)200Pt is used to populate excited states of 200Pt. The Advanced Gamma Ray Tracking Array (AGATA) demonstrator coupled with the PRISMA spectrometer detects γ rays coincident with the 80Se recoils, the binary partner of 200Pt. The binary partner method is applied to extract the γ -ray transitions and build the level scheme of 200Pt. The level at 1884 keV reported by Yates et al. [S. W. Yates, E. M. Baum, E. A. Henry, L. G. Mann, N. Roy, A. Aprahamian, R. A. Meyer, and R. Estep, Phys. Rev. C 37, 1889 (1988)] was confirmed to be at 1882.1 keV and assigned as the (61+) state. An additional γ ray was found and it presumably deexcites the (81+) state. The results are compared with state-of-the-art beyond mean-field calculations, performed for the even-even 190 -204Pt isotopes, revealing that 200Pt marks the transition from the γ -unstable behavior of lighter Pt nuclei towards a more spherical one when approaching the N =126 shell closure.
Jung, Won Suk
2018-03-15
In this study, a novel synthesis method for the bimetallic alloy catalyst is reported, which is subsequently used as an oxygen reduction catalyst in polymer electrolyte membrane fuel cells (PEMFCs). The support prepared from the Ni-chelate complex shows a mesoporous structure with a specific surface area of ca. 400 m 2 g -1 indicating the suitable support for PEMFC applications. Ethylenediamine is converted to the nitrogen and carbon layers to protect the Ni particles which will diffuse into the Pt lattice at 800 °C. The PtNi/NCC catalyst with PtNi cores and Pt-rich shells is successfully formed when acid-treated as evidenced by line scan profiles. The catalyst particles thus synthesized are well-dispersed on the N-doped carbon support, while the average particle size is ca. 3 nm. In the PEMFC test, the maximum power density of the PtNi/NCC catalyst shows approximately 25% higher than that of the commercial Pt/C catalyst. The mass activity of the PtNi/NCC catalyst showed approximately 3-fold higher than that of the commercial Pt/C catalyst. The mass activity strongly depends on the ratio of Pt to Ni since the strain effect can be strong for catalysts due to the mismatch of lattice parameters of the Ni and Pt. Copyright © 2017 Elsevier Inc. All rights reserved.
Nasal bone length: prenasal thickness ratio: a strong 2D ultrasound marker for Down syndrome
Szabó, Andrea; Szili, Károly; Szabó, János Tamás; Sikovanyecz, János; Isaszegi, Dóra; Horváth, Emese; Szabó, János
2014-01-01
Objectives To evaluate the feasibility of incorporating two-dimensional ultrasound measurements of nasal bone length (NBL) and prenasal thickness (PT) into the second-trimester anomaly scan and to determine whether the NBL : PT ratio could help in differentiating euploid and Down syndrome fetuses. Method Two-dimensional measurements of NBL and PT were obtained from the midsagittal plane of the fetal head at 14–28 weeks of gestation in a Caucasian population at risk for aneuploidy. The screening performances of NBL, PT, and the ratios NBL : PT and PT : NBL were analyzed in euploid (n = 1330) and Down syndrome (n = 33) fetuses. Results Nasal bone length and PT alone showed strong correlations with Down syndrome (sensitivity: 76% at 1.88% and 2.35% false positive rate, respectively). However, the NBL : PT ratio showed an even stronger correlation with Down syndrome (false positive rate: 0.9%, sensitivity: 97%). The mean NBL : PT ratio showed a gradual increase from 1.48 to 1.79 (a 21.2% increase) between 14 and 28 weeks of gestation. Conclusion Two-dimensional ultrasound measurements of NBL and PT, particularly the NBL : PT ratio, are highly sensitive markers for Down syndrome fetuses. © 2014 The Authors. Prenatal Diagnosis published by John Wiley & Sons, Ltd. PMID:24966049
Zheng, Huanyu; Ding, Yangyue; Xu, Hui; Zhang, Lin; Cui, Yueting; Han, Jianchun; Zhu, Xiuqing; Yu, Dianyu; Jiang, Lianzhou; Liu, Lilai
2018-08-01
Pt/CNTs were synthesized with an ethylene glycol reduction method, and the effects of carboxyl functionalization, ultrasonic power and the concentration of chloroplatinic acid on the catalytic activity of Pt/CNTs were investigated. The optimal performance of the Pt/CNTs catalyst was obtained when the ultrasonic power was 300 W and the concentration of chloroplatinic acid was 40 mg/mL. The durability and stability of the Pt/CNTs catalyst were considerably better compared to Pt/C, as shown by cyclic voltammetry measurement results. The trans fatty acids content of the obtained hydrogenated soybean oil (IV: 108.4 gl2/100 g oil) using Pt/CNTs as the cathode catalyst in a solid polymer electrolyte reactor was only 1.49%. The IV of hydrogenated soybean oil obtained using CNTs as carrier with Pt loading 0.1 mg/cm2 (IV: 108.4 gl2/100 g oil) was lower than carbon with a Pt loading of 0.8 mg/cm2 (IV: 109.9 gl2/100 g oil). Thus, to achive the same IV, the usage of Pt was much less when carbon nanotubes were selected as catalyst carrier compared to traditional carbon carrier. The changes of fatty acid components and the hydrogenated selectivity of octadecenoic acid were also discussed.
Jung, Won Suk; Popov, Branko N
2017-07-19
In the bottom-up synthesis strategy performed in this study, the Co-catalyzed pyrolysis of chelate-complex and activated carbon black at high temperatures triggers the graphitization reaction which introduces Co particles in the N-doped graphitic carbon matrix and immobilizes N-modified active sites for the oxygen reduction reaction (ORR) on the carbon surface. In this study, the Co particles encapsulated within the N-doped graphitic carbon shell diffuse up to the Pt surface under the polymer protective layer and forms a chemically ordered face-centered tetragonal (fct) Pt-Co catalyst PtCo/CCCS catalyst as evidenced by structural and compositional studies. The fct-structured PtCo/CCCS at low-Pt loading (0.1 mg Pt cm -2 ) shows 6% higher power density than that of the state-of-the-art commercial Pt/C catalyst. After the MEA durability test of 30 000 potential cycles, the performance loss of the catalyst is negligible. The electrochemical surface area loss is less than 40%, while that of commercial Pt/C is nearly 80%. After the accelerated stress test, the uniform catalyst distribution is retained and the mean particle size increases approximate 1 nm. The results obtained in this study indicated that highly stable compositional and structural properties of chemically ordered PtCo/CCCS catalyst contribute to its exceptional catalyst durability.
Size-tunable drug-delivery capsules composed of a magnetic nanoshell.
Fuchigami, Teruaki; Kitamoto, Yoshitaka; Namiki, Yoshihisa
2012-01-01
Nano-sized FePt capsules with two types of ultrathin shell were fabricated using a template method for use in a nano-scale drug delivery system. One capsule was composed of an inorganic-organic hybrid shell of a water-soluble polymer and FePt nanoparticles, and the other capsule was composed of a network of fused FePt nanoparticles. We demonstrated that FePt nanoparticles selectively accumulated on the polymer molecules adsorbed on the template silica particles, and investigated the morphologies of the particle accumulation by changing the concentration of the polymer solution with which the template particles were treated. Capsular size was reduced from 340 to less than 90 nm by changing the size of the silica template particles, and the shell thickness was controlled by changing the amount of FePt nanoparticles adsorbed on the template particles. The hybrid shell was maintained by the connection of FePt nanoparticles and polymer molecules, and the shell thickness was 10 nm at the maximum. The FePt network shell was fabricated by hydrothermal treatment of the FePt/polymer-modified silica composite particles. The FePt network shell was produced from only the FePt alloy, and the shell thickness was 3 nm. Water-soluble anti-cancer drugs could be loaded into the hollow space of FePt network capsules, and lipid-coated FePt network capsules loaded with anti-cancer drugs showed cellular toxicity. The nano-sized capsular structure and the ultrathin shell suggest applicability as a drug carrier in magnetically guided drug delivery systems.
Enhanced methanol electro-oxidation reaction on Pt-CoOx/MWCNTs hybrid electro-catalyst
NASA Astrophysics Data System (ADS)
Nouralishahi, Amideddin; Rashidi, Ali Morad; Mortazavi, Yadollah; Khodadadi, Abbas Ali; Choolaei, Mohammadmehdi
2015-04-01
The electro-catalytic behavior of Pt-CoOx/MWCNTs in methanol electro-oxidation reaction (MOR) is investigated and compared to that of Pt/MWCNTs. The electro-catalysts were synthesized by an impregnation method using NaBH4 as the reducing agent. The morphological and physical characteristics of samples are examined by XRD, TEM, ICP and EDS techniques. In the presence of CoOx, Pt nanoparticles were highly distributed on the support with an average particle size of 2 nm, an obvious decrease from 5.1 nm for Pt/MWCNTs. Cyclic voltammetry, CO-stripping, Chronoamperometry, and electrochemical impedance spectroscopy (EIS) measurements are used to study the electrochemical behavior of the electro-catalysts. The results revealed a considerable enhancement in the oxidation kinetics of COads on Pt active sites by the participation of CoOx. Compared to Pt/MWCNTs, Pt-CoOx/MWCNTs sample has a larger electrochemical active surface area (ECSA) and higher electro-catalytic activity and stability toward methanol electro-oxidation. According to the results of cyclic voltammetry, the forward anodic peak current density enhances more than 89% at the optimum atomic ratio of Pt:Co = 2:1. Furthermore, inclusion of cobalt oxide species causes the onset potential of methanol electro-oxidation reaction to shift 84 mV to negative values compared to that on Pt/MWCNTs. Based on EIS data, dehydrogenation of methanol is the rate-determining step of MOR on both Pt/MWCNTs and Pt-CoOx/MWCNTs, at small overpotentials. However, at higher overpotentials, the oxidation of adsorbed oxygen-containing groups controls the total rate of MOR process.
Size-tunable drug-delivery capsules composed of a magnetic nanoshell
Fuchigami, Teruaki; Kitamoto, Yoshitaka; Namiki, Yoshihisa
2012-01-01
Nano-sized FePt capsules with two types of ultrathin shell were fabricated using a template method for use in a nano-scale drug delivery system. One capsule was composed of an inorganic-organic hybrid shell of a water-soluble polymer and FePt nanoparticles, and the other capsule was composed of a network of fused FePt nanoparticles. We demonstrated that FePt nanoparticles selectively accumulated on the polymer molecules adsorbed on the template silica particles, and investigated the morphologies of the particle accumulation by changing the concentration of the polymer solution with which the template particles were treated. Capsular size was reduced from 340 to less than 90 nm by changing the size of the silica template particles, and the shell thickness was controlled by changing the amount of FePt nanoparticles adsorbed on the template particles. The hybrid shell was maintained by the connection of FePt nanoparticles and polymer molecules, and the shell thickness was 10 nm at the maximum. The FePt network shell was fabricated by hydrothermal treatment of the FePt/polymer-modified silica composite particles. The FePt network shell was produced from only the FePt alloy, and the shell thickness was 3 nm. Water-soluble anti-cancer drugs could be loaded into the hollow space of FePt network capsules, and lipid-coated FePt network capsules loaded with anti-cancer drugs showed cellular toxicity. The nano-sized capsular structure and the ultrathin shell suggest applicability as a drug carrier in magnetically guided drug delivery systems. PMID:23507895
A method for the formation of Pt metal nanoparticle arrays using nanosecond pulsed laser dewetting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owusu-Ansah, Ebenezer; Horwood, Corie A.; Birss, Viola I.
2015-05-18
Nanosecond pulsed laser dewetting of Pt thin films, deposited on a dimpled Ta (DT) surface, has been studied here in order to form ordered Pt nanoparticle (NP) arrays. The DT substrate was fabricated via a simple electrochemical anodization process in a highly concentrated H{sub 2}SO{sub 4} and HF solution. Pt thin films (3–5 nm) were sputter coated on DT and then dewetted under vacuum to generate NPs using a 355 nm laser radiation (6–9 ns, 10 Hz). The threshold laser fluence to fully dewet a 3.5 nm thick Pt film was determined to be 300 mJ/cm{sup 2}. Our experiments have shown that shorter irradiation timesmore » (≤60 s) produce smaller nanoparticles with more uniform sizes, while longer times (>60 s) give large nanoparticles with wider size distributions. The optimum laser irradiation time of 1 s (10 pulses) has led to the formation of highly ordered Pt nanoparticle arrays with an average nanoparticle size of 26 ± 3 nm with no substrate deformation. At the optimum condition of 1 s and 500 mJ/cm{sup 2}, as many as 85% of the dewetted NPs were found neatly in the well-defined dimples. This work has demonstrated that pulsed laser dewetting of Pt thin films on a pre-patterned dimpled substrate is an efficient and powerful technique to produce highly ordered Pt nanoparticle arrays. This method can thus be used to produce arrays of other high-melting-point metal nanoparticles for a range of applications, including electrocatalysis, functionalized nanomaterials, and analytical purposes.« less
Physical properties of FePt nanocomposite doped with Ag atoms: First-principles study
NASA Astrophysics Data System (ADS)
Jia, Yong-Fei; Shu, Xiao-Lin; Xie, Yong; Chen, Zi-Yu
2014-07-01
L10 FePt nanocomposite with high magnetocrystalline anisotropy energy has been extensively investigated in the fields of ultra-high density magnetic recording media. However, the order—disorder transition temperature of the nanocomposite is higher than 600 °C, which is a disadvantage for the use of the material due to the sustained growth of FePt grain under the temperature. To address the problem, addition of Ag atoms has been proposed, but the magnetic properties of the doped system are still unclear so far. Here in this paper, we use first-principles method to study the lattice parameters, formation energy, electronic structure, atomic magnetic moment and order—disorder transition temperature of L10 FePt with Ag atom doping. The results show that the formation energy of a Ag atom substituting for a Pt site is 1.309 eV, which is lower than that of substituting for an Fe site 1.346 eV. The formation energy of substituting for the two nearest Pt sites is 2.560 eV lower than that of substituting for the further sites 2.621 eV, which indicates that Ag dopants tend to segregate L10 FePt. The special quasirandom structures (SQSs) for the pure FePt and the FePt doped with two Ag atoms at the stable Pt sites show that the order—disorder transition temperatures are 1377 °C and 600 °C, respectively, suggesting that the transition temperature can be reduced with Ag atom, and therefore the FePt grain growth is suppressed. The saturation magnetizations of the pure FePt and the two Ag atoms doped FePt are 1083 emu/cc and 1062 emu/cc, respectively, indicating that the magnetic property of the doped system is almost unchanged.
Platinum stable isotopes in ferromanganese crust and nodules
NASA Astrophysics Data System (ADS)
Corcoran, Loretta; Seward, Terry; Handler, Monica R.
2015-04-01
Hydrogenetic ferromanganese (Fe-Mn) crust and nodules are slow-growing chemical sediments that form by direct precipitation from seawater, resulting in a record of changing seawater chemistry. These sediments are the primary sink for platinum in the modern oxic marine environment, hosting well-documented enrichments over other platinum-group elements (PGEs): the Pt anomaly [1]. Platinum is a non-bio-essential, highly siderophile, transition metal with six stable isotopes (190Pt, 192Pt, 194Pt, 195Pt, 196Pt, and 198Pt) with several oxidation states (Pt0, Pt2+ and Pt4+). Platinum is generally considered to exist in the hydrosphere as Pt2+ although its behaviour in the marine environment is poorly constrained, and Pt4+may also be present. Variations in ocean redox state, together with changes in source fluxes to the oceans, may therefore lead to small variations (< ±1) in the stable isotopic composition of marine platinum, raising the potential of adding platinum to the growing arsenal of paleoceanographic tracers. A method has been developed to measure the platinum isotopic composition using double spike MC-ICPMS analysis [2]and applied to a global suite of modern Fe-Mn crust and nodules. Combining synchrotron XAFS analyses of platinum adsorbed onto Fe-Mn oxide and oxyhydroxide surfaces to determine oxidation state and bonding environment, with platinum stable isotopic measurements allowing us to evaluate both platinum incorporation onto these sediments and the associated degree of platinum isotopic fractionation. Leaching experiments conducted on platinum rich terrestrial materials underwent platinum stable isotopic measurement as an analogue for the Pt isotopic fractionation associated with continental weathering. [1] Hodge, V.F. et al. (1985) Earth and Planetary Science Letters, 72, 158-162. [2] Creech, J. et al. (2013) Journal of Analytical Atomic Spectrometry, 28. 853-865.
15 CFR Appendix B to Subpart R of... - Minor Projects for Purposes of § 922.193(a)(2)(iii)
Code of Federal Regulations, 2012 CFR
2012-01-01
....193(a)(2)(iii) B Appendix B to Subpart R of Part 922 Commerce and Foreign Trade Regulations Relating... Thunder Bay National Marine Sanctuary and Underwater Preserve Pt. 922, Subpt. R, App. B Appendix B to Subpart R of Part 922—Minor Projects for Purposes of § 922.193(a)(2)(iii) Pursuant to Michigan State...
15 CFR Appendix B to Subpart R of... - Minor Projects for Purposes of § 922.193(a)(2)(iii)
Code of Federal Regulations, 2014 CFR
2014-01-01
....193(a)(2)(iii) B Appendix B to Subpart R of Part 922 Commerce and Foreign Trade Regulations Relating... Thunder Bay National Marine Sanctuary and Underwater Preserve Pt. 922, Subpt. R, App. B Appendix B to Subpart R of Part 922—Minor Projects for Purposes of § 922.193(a)(2)(iii) Pursuant to Michigan State...
15 CFR Appendix B to Subpart R of... - Minor Projects for Purposes of § 922.193(a)(2)(iii)
Code of Federal Regulations, 2013 CFR
2013-01-01
....193(a)(2)(iii) B Appendix B to Subpart R of Part 922 Commerce and Foreign Trade Regulations Relating... Thunder Bay National Marine Sanctuary and Underwater Preserve Pt. 922, Subpt. R, App. B Appendix B to Subpart R of Part 922—Minor Projects for Purposes of § 922.193(a)(2)(iii) Pursuant to Michigan State...
Synthesis and Characterization of Mixed-Conducting Corrosion Resistant Oxide Supports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramani, Vijay K.
An extensive search and evaluation of electrochemically stable catalyst supports (including metal oxides like RuO2-SiO2, RuO2-TiO2, and ITO was perfomed during the 4 years of the project. The suports were also catalyzed by deposition of Pt and tested for its performance and electrochemical stability in RDE and fuel cell experiments. For testing the electrochemical stability and fuel cell performance of the catalysts and supports, we have employed the protocols in use at the Department of Energy and Nissan Technological Center North America (NTCNA). The use of such procedures allows a precise and reproducible estimation of the performance and stability ofmore » the materials and permits comparisons among laboratories and DOE funded projects. RuO2-SiO2 catalyst supports showed no loss in surface area during start-stop stability tests that were performed by cycling the electrode potential between 0 V to 1.8 V for 1000 cycles. Catalyzed support (40% Pt/RuO2-SiO2; 1:1 mole ratio) were tested in a PEFC, resulting in a current density of 750 mA/cm2 at 0.6 Volts, and a maximum power density of 570 mW/cm2. Measurements were conducted at 80 ºC with 75% relative humidity of the inlet gases (H2/O2); Pt loadings were 0.4 mg/cm2 at the cathode and 0.2 mg/cm2 at the anode. Start-stop stability tests for support and catalyzed support performed in RDE and PEFC set-ups have confirmed RuO2-TiO2 support stability. The beginning of life performance was exactly equal to end of life performance (in an MEA that has been subjected to severe start-stop cycling for 10,000 start/stop cycles between 1 V to 1.5 V). This result was in sharp contrast to baseline Pt/C catalyst that showed significant performance deterioration after accelerated stability tests. The Pt/TRO showed minimal loss in performance upon exposure to start-stop cycles. The loss in cell voltage at 1 A/cm2 at 100% RH was almost 700 mV for Pt/C whereas it was only ca. 15 mV for Pt/TRO. 40% RH data (of inlet gases) revealed a similar trend in terms of stability – exceptional stability for Pt/TRO as opposed to very poor stability for Pt/HSAC. These observations were attributed to the much higher stability of the TRO support compared to Carbon. The carbon dioxide concentration in the cathode exit stream during the accelerated degradation test with Pt/TRO (start-stop protocol) was extremely low (between 3 to 10 ppm of CO2). In contrast, the CO2 emission levels from a conventional Pt/C catalyst were found to be approx. 200 ppm. This observation was a clear indicator that the main source of carbon being oxidized to carbon dioxide in an MEA was the carbon catalyst support, and not the gas diffusion layer or the graphite flow fields. Indium tin oxide (ITO) was also evaluated as a catalyst support for PEFCs. Pt/ITO was very stable under start-up/shutdown accelerated degradation protocol (RDE tests in perchloric acid). The ECSA change was less than 4% over 10,000 cycles. The load cycling accelerated protocol (from 0.6 to 0.95 V vs. RHE) resulted in a loss of approximately 34% of the initial ECSA after 10,000 cycles. However, fuel cell testing resulted in a very low performing catalyst. XPS spectroscopy was employed to investigate the changes in the catalysts occuring during fuel cell operation. It was observed a shift of In 3d5/2 and In 3d3/2 peaks towards higher binding energies. This can be explained by the formation of hydroxides or oxy-hydroxides in the surface of the catalyst. O1s spectrum for Pt/ITO catalyst after being operated in the fuel cell, also confirmed the formation of significant amounts of surface hydroxides (12 to 16%). The presence of surface hydroxides in the catalyst increased the electrode resistivity affecting fuel cell performance. NTCNA performed a detailed analysis of transport phenomena (reactants and products to/from the Pt active sites) in both commercial catalyst and Pt/RTO (in order to have a better understanding at the basic level). The proton resistance (Rionomer) in Pt/C and Pt/RTO cathode catalyst layers were 150 and 12 mΩ-cm2, respectively. Pt/RTO catalyst layer has about an order or magnitude lower proton transfer resistance than Pt/C catalyst layer. Since the ionomer/support ratio that was used in formulating the ink for both catalysts was the same (0.9), it is expected that the volumetric coverage of ionomer of both catalysts will be significantly different due to the disparity in the surface areas (Pt/C had ~ 800 m2/g, while Pt/RTO had ~ 50 m2/g). The differences in the ionomer volumetric coverage and the ionomer film thickness may explain the significantly higher proton conductivity in the Pt/RTO catalyst layer when compared to Pt/HSAC. It is therefore very important to optimize the ionomer loadings when synthesizing new catalyst supports (and never rely on values for carbon-based commercial catalysts). Finally, NTCNA has elaborated a cost model for non-carbon support materials considering their durability benefits. Material costs for production of Pt/ RuO2-TiO2 electrodes were compared to Pt/C. RuO2-TiO2 support was more expensive than carbon but the total material cost was still dominated by platinum cost. Though ruthenium is considered a precious metal, its cost is far less than platinum. It should also be noted that ruthenium only makes up 38% of the mass of the support, while the rest is inexpensive TiO2. After considering the durability advantages of Pt/RTO, cost model showed that even with almost double the Pt loading (0.35 vs 0.18 mgPt/cm2), Pt/RTO ($22.7/kWnet) is only slightly more expensive than Pt/C ($21.9/kWnet).« less
Experimental Studies of Phase Equilibria of Meteorites and Planetary Bodies
NASA Technical Reports Server (NTRS)
Stolper, Edward M.
2005-01-01
The primary theme of this project was the application of experimental petrology and geochemistry to a variety of problems in meteoritics and planetary geology. The studies were designed to help develop constraints on the histories of primitive meteorites and their components, the environments in which they formed and evolved, and to understand quantitatively the processes involved in the evolution of igneous rocks on the earth and other planetary bodies. We undertook several projects relating to the origin of CAIs and chondrules. Systematics in the thermodynamic properties of CAI-like liquids were investigated and used to elucidate speciation of multi-valent cations and sulfide capacity of silicate melts and to constrain redox conditions and the vapor pressures of volatile species over molten chondrules. We experimentally determined vanadium speciation in meteoritic pyroxenes and in pyroxenes crystallized from CAI-like melts under very reducing conditions. We also found that bulk oxygen isotope compositions of chondrules in the moderately unequilibrated LL chondrites are related to the relative timing of plagioclase crystallization. We completed an experimental study on the vaporization of beta-SiC and SiO2 (glass or cristobalite) in reducing gases and established the conditions under which these presolar grains could have survived in the solar nebula. We expanded our technique for determining the thermodynamic properties of minerals and liquids to iron-bearing systems. We determined activity-composition relationships in Pt-Fe, Pt-Cr and Pt-Fe-Cr alloys. Results were used to determine the thermodynamic properties of chromite-picrochromite spinels including the free energy of formation of end-member FeCr2O4. We also established a new approach for evaluating Pt-Fe saturation experiments. We calculated the T-fO2 relationships in equilibrated ordinary chondrites and thereby constrained the conditions of metamorphism in their parent bodies.
Concave 1-norm group selection
Jiang, Dingfeng; Huang, Jian
2015-01-01
Grouping structures arise naturally in many high-dimensional problems. Incorporation of such information can improve model fitting and variable selection. Existing group selection methods, such as the group Lasso, require correct membership. However, in practice it can be difficult to correctly specify group membership of all variables. Thus, it is important to develop group selection methods that are robust against group mis-specification. Also, it is desirable to select groups as well as individual variables in many applications. We propose a class of concave \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$1$\\end{document}-norm group penalties that is robust to grouping structure and can perform bi-level selection. A coordinate descent algorithm is developed to calculate solutions of the proposed group selection method. Theoretical convergence of the algorithm is proved under certain regularity conditions. Comparison with other methods suggests the proposed method is the most robust approach under membership mis-specification. Simulation studies and real data application indicate that the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$1$\\end{document}-norm concave group selection approach achieves better control of false discovery rates. An R package grppenalty implementing the proposed method is available at CRAN. PMID:25417206
Stress formulation in the all-electron full-potential linearized augmented plane wave method
NASA Astrophysics Data System (ADS)
Nagasako, Naoyuki; Oguchi, Tamio
2012-02-01
Stress formulation in the linearlized augmented plane wave (LAPW) method has been proposed in 2002 [1] as an extension of the force formulation in the LAPW method [2]. However, pressure calculations only for Al and Si were reported in Ref.[1] and even now stress calculations have not yet been fully established in the LAPW method. In order to make it possible to efficiently relax lattice shape and atomic positions simultaneously and to precisely evaluate the elastic constants in the LAPW method, we reformulate stress formula in the LAPW method with the Soler-Williams representation [3]. Validity of the formulation is tested by comparing the pressure obtained as the trace of stress tensor with that estimated from total energies for a wide variety of material systems. Results show that pressure is estimated within the accuracy of less than 0.1 GPa. Calculations of the shear elastic constant show that the shear components of the stress tensor are also precisely computed with the present formulation [4].[4pt] [1] T. Thonhauser et al., Solid State Commun. 124, 275 (2002).[0pt] [2] R. Yu et al., Phys. Rev. B 43, 6411 (1991).[0pt] [3] J. M. Soler and A. R. Williams, Phys. Rev. B 40, 1560 (1989).[0pt] [4] N. Nagasako and T. Oguchi, J. Phys. Soc. Jpn. 80, 024701 (2011).
Wang, Peng; Yin, Shibin; Wen, Ying; Tian, Zhiqun; Wang, Ningzhang; Key, Julian; Wang, Shuangbao; Shen, Pei Kang
2017-03-22
To address the problems of high cost and poor stability of anode catalysts in direct ethanol fuel cells (DEFCs), ternary nanoparticles Pt 9 RhFe x (x = 1, 3, 5, 7, and 9) supported on carbon powders (XC-72R) have been synthesized via a facile method involving reduction by sodium borohydride followed by thermal annealing in N 2 at ambient pressure. The catalysts are physically characterized by X-ray diffraction, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy, and their catalytic performance for the ethanol oxidation reaction (EOR) is evaluated by cyclic and linear scan voltammetry, CO-stripping voltammograms, and chronopotentiometry. All the Pt 9 RhFe x /C catalysts of different atomic ratios produce high EOR catalytic activity. The catalyst of atomic ratio composition 9:1:3 (Pt/Rh/Fe) has the highest activity and excellent CO-poisoning tolerance. Moreover, the enhanced EOR catalytic activity on Pt 9 RhFe 3 /C when compared to Pt 9 Rh/C, Pt 3 Fe/C, and Pt/C clearly demonstrates the presence of Fe improves catalytic performance. Notably, the onset potential for CO oxidation on Pt 9 RhFe 3 /C (0.271 V) is ∼55, 75, and 191 mV more negative than on Pt 9 Rh/C (0.326 V), Pt 3 Fe/C (0.346 V), and Pt/C (0.462 V), respectively, which implies the presence of Fe atoms dramatically improves CO-poisoning tolerance. Meanwhile, compared to the commercial PtRu/C catalyst, the peak potential on Pt 9 RhFe 3 /C for CO oxidation was just slightly changed after several thousand cycles, which shows high stability against the potential cycling. The possible mechanism by which Fe and Rh atoms facilitate the observed enhanced performance is also considered herein, and we conclude Pt 9 RhFe 3 /C offers a promising anode catalyst for direct ethanol fuel cells.
Gu, Zhulan; Li, Shumin; Xiong, Zhiping; Xu, Hui; Gao, Fei; Du, Yukou
2018-07-01
Bimetallic nanocatalysts with small particle size benefit from markedly enhanced electrocatalytic activity and stability during small molecule oxidation. Herein, we report a facile method to synthesize binary Pt-Ru nanoparticles dispersed on a carbon support at an optimum temperature. Because of its monodispersed nanostructure, synergistic effects were observed between Pt and Ru and the PtRu/C electrocatalysts showed remarkably enhanced electrocatalytic activity towards ethanol oxidation. The peak current density of the Pt 1 Ru 1 /C electrocatalyst is 3731 mA mg -1 , which is 9.3 times higher than that of commercial Pt/C (401 mA mg -1 ). Furthermore, the synthesized Pt 1 Ru 1 /C catalyst exhibited higher stability during ethanol oxidation in an alkaline medium and maintained a significantly higher current density after successive cyclic voltammograms (CVs) of 500 cycles than commercial Pt/C. Our work highlights the significance of the reaction temperature during electrocatalyst synthesis, leading to enhanced catalytic performance towards ethanol oxidation. The Pt 1 Ru 1 /C electrocatalyst has great potential for application in direct ethanol fuel cells. Copyright © 2018 Elsevier Inc. All rights reserved.
Materials Data on Cs2PtC2(OF)4 (SG:12) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tb2Al6Si4Pt (SG:166) by Materials Project
Kristin Persson
2015-03-19
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
NASA Astrophysics Data System (ADS)
Shinozaki, Kazuma; Morimoto, Yu; Pivovar, Bryan S.; Kocha, Shyam S.
2016-09-01
The impact of Nafion on the oxygen reduction reaction (ORR) activity is studied for Pt/C and Pt-alloy/C catalysts using thin-film rotating disk electrode (TF-RDE) methods in 0.1 M HClO4. Ultrathin uniform catalyst layers and standardized activity measurement protocols are employed to obtain accurate and reproducible ORR activity. Nafion lowers the ORR activity which plateaus with increasing loading on Pt catalysts. Pt particle size is found not to have significant influence on the extent of the SA decrease upon Nafion incorporation. Catalysts using high surface area carbon (HSC) support exhibit attenuated activity loss resulting from lower ionomer coverage on catalyst particles located within the deep pores. The impact of metallic composition on the activity loss due to Nafion incorporation is also discussed.
Unidirectional invisibility induced by parity-time symmetric circuit
NASA Astrophysics Data System (ADS)
Lv, Bo; Fu, Jiahui; Wu, Bian; Li, Rujiang; Zeng, Qingsheng; Yin, Xinhua; Wu, Qun; Gao, Lei; Chen, Wan; Wang, Zhefei; Liang, Zhiming; Li, Ao; Ma, Ruyu
2017-01-01
Parity-time (PT) symmetric structures present the unidirectional invisibility at the spontaneous PT-symmetry breaking point. In this paper, we propose a PT-symmetric circuit consisting of a resistor and a microwave tunnel diode (TD) which represent the attenuation and amplification, respectively. Based on the scattering matrix method, the circuit can exhibit an ideal unidirectional performance at the spontaneous PT-symmetry breaking point by tuning the transmission lines between the lumped elements. Additionally, the resistance of the reactance component can alter the bandwidth of the unidirectional invisibility flexibly. Furthermore, the electromagnetic simulation for the proposed circuit validates the unidirectional invisibility and the synchronization with the input energy well. Our work not only provides an unidirectional invisible circuit based on PT-symmetry, but also proposes a potential solution for the extremely selective filter or cloaking applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Gary E.; Diefenderfer, Heida L.; Borde, Amy B.
This is the sixth annual report of a seven-year project (2004 through 2010) to evaluate the cumulative effects of habitat restoration actions in the lower Columbia River and estuary (LCRE). The project, called the Cumulative Effects Study, is being conducted for the U.S. Army Corps of Engineers Portland District (USACE) by the Marine Sciences Laboratory of the Pacific Northwest National Laboratory (PNNL), the Pt. Adams Biological Field Station of the National Marine Fisheries Service (NMFS), the Columbia River Estuary Study Taskforce (CREST), and the University of Washington. The goal of the Cumulative Effects Study is to develop a methodology tomore » evaluate the cumulative effects of multiple habitat restoration projects intended to benefit ecosystems supporting juvenile salmonids in the 235-km-long LCRE. Literature review in 2004 revealed no existing methods for such an evaluation and suggested that cumulative effects could be additive or synergistic. From 2005 through 2009, annual field research involved intensive, comparative studies paired by habitat type (tidal swamp versus marsh), trajectory (restoration versus reference site), and restoration action (tidegate replacement vs. culvert replacement vs. dike breach).« less
Wang, Hui-Fang; Liu, Zhi-Pan
2008-08-20
Ethanol oxidation on Pt is a typical multistep and multiselectivity heterogeneous catalytic process. A comprehensive understanding of this fundamental reaction would greatly benefit design of catalysts for use in direct ethanol fuel cells and the degradation of biomass-derived oxygenates. In this work, the reaction network of ethanol oxidation on different Pt surfaces, including close-packed Pt{111}, stepped Pt{211}, and open Pt{100}, is explored thoroughly with an efficient reaction path searching method, which integrates our new transition-state searching technique with periodic density functional theory calculations. Our new technique enables the location of the transition state and saddle points for most surface reactions simply and efficiently by optimization of local minima. We show that the selectivity of ethanol oxidation on Pt depends markedly on the surface structure, which can be attributed to the structure-sensitivity of two key reaction steps: (i) the initial dehydrogenation of ethanol and (ii) the oxidation of acetyl (CH3CO). On open surface sites, ethanol prefers C-C bond cleavage via strongly adsorbed intermediates (CH2CO or CHCO), which leads to complete oxidation to CO2. However, only partial oxidizations to CH3CHO and CH3COOH occur on Pt{111}. Our mechanism points out that the open surface Pt{100} is the best facet to fully oxidize ethanol at low coverages, which sheds light on the origin of the remarkable catalytic performance of Pt tetrahexahedra nanocrystals found recently. The physical origin of the structure-selectivity is rationalized in terms of both thermodynamics and kinetics. Two fundamental quantities that dictate the selectivity of ethanol oxidation are identified: (i) the ability of surface metal atoms to bond with unsaturated C-containing fragments and (ii) the relative stability of hydroxyl at surface atop sites with respect to other sites.
Prompt Photon Measurements with the PHENIX MPC-EX Detector
NASA Astrophysics Data System (ADS)
Lajoie, John
2012-10-01
The MPC-EX detector is a Si-W preshower extension to the existing PHENIX Muon Piston Calorimeter (MPC). The MPC-EX consists of eight layers of alternating W absorber and Si mini-pad sensors. Covering a large pseudorapidity range, 3.1 < |η| < 3.8, the MPC-EX and MPC access low-x partons in the Au nucleus in d+Au collisions through prompt photon measurements. With the addition of the MPC-EX, the neutral pion reconstruction range extends to energies > 80 GeV, a factor of four improvement over current capabilities. Not only will the MPC-EX strengthen PHENIX's existing forward 0̂ and jet measurements, it also provides the necessary 0̂ rejection to make a prompt photon measurement feasible. With this 0̂ rejection, prompt photon yields at high pT, pT> 3 GeV, can be statistically extracted using a double ratio method. The prompt photon RdAu measured with the MPC-EX will quantify the level of gluon shadowing or saturation in the Au nucleus at low-x, x˜ 10-3, with a projected systematic error band a factor of four smaller than current global fits to current measurements.
Self-Assembled Nanoparticles from Phenolic Derivatives for Cancer Therapy.
Dai, Yunlu; Guo, Junling; Wang, Ting-Yi; Ju, Yi; Mitchell, Andrew J; Bonnard, Thomas; Cui, Jiwei; Richardson, Joseph J; Hagemeyer, Christoph E; Alt, Karen; Caruso, Frank
2017-08-01
Therapeutic nanoparticles hold clinical promise for cancer treatment by avoiding limitations of conventional pharmaceuticals. Herein, a facile and rapid method is introduced to assemble poly(ethylene glycol) (PEG)-modified Pt prodrug nanocomplexes through metal-polyphenol complexation and combined with emulsification, which results in ≈100 nm diameter nanoparticles (PtP NPs) that exhibit high drug loading (0.15 fg Pt per nanoparticle) and low fouling properties. The PtP NPs are characterized for potential use as cancer therapeutics. Mass cytometry is used to quantify uptake of the nanoparticles and the drug concentration in individual cells in vitro. The PtP NPs have long circulation times, with an elimination half-life of ≈18 h in healthy mice. The in vivo antitumor activity of the PtP NPs is systematically investigated in a human prostate cancer xenograft mouse model. Mice treated with the PtP NPs demonstrate four times better inhibition of tumor growth than either free prodrug or cisplatin. This study presents a promising strategy to prepare therapeutic nanoparticles for biomedical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Savych, Iuliia; Subianto, Surya; Nabil, Yannick; Cavaliere, Sara; Jones, Deborah; Rozière, Jacques
2015-07-14
Novel platinum-catalysed, corrosion-resistant, loose-tube-structured electrocatalysts for proton exchange membrane fuel cells have been obtained using single-needle electrospinning associated with a microwave-assisted polyol method. Monodisperse platinum particles supported on Nb-SnO2 demonstrated higher electrochemical stability than conventional Pt/C electrodes during ex situ potential cycling and comparable activity in the oxygen reduction reaction. In situ fuel cell operation under accelerated stress test conditions of a membrane electrode assembly elaborated using a Pt/C anode and Pt/Nb-SnO2 cathode confirmed that the voltage loss is significantly lower for the novel cathode than for an MEA prepared using conventional Pt/C supported electrocatalysts. Furthermore, the Nb-SnO2 stabilised the supported platinum nanoparticles against dissolution, migration and reprecipitation in the membrane. Pt/Nb-SnO2 loose-tubes constitute a mitigation strategy for two known degradation mechanisms in PEMFC: corrosion of the carbon support at the cathode, and dissolution of Pt at high cell voltages.
Magneto-optical properties of PdCo based multilayered films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, K.; Tsunashima, S.; Iwata, S.
1989-09-01
Magneto-optical and magnetic properties of multilayered films composed of PdCo alloy and other noble metal (Pd, Pt or Cu) layers are investigated. Multilayered films were prepared by RF magnetron sputtering method. Kerr rotation spectra (275nm-800nm) of Pd/Co multilayered films resemble those of PdCo alloys. In the films composed of PdCo alloy and Pt bilayers, the Kerr rotation increases with increasing Pt content while the perpendicular anisotropy decreases.
Godard, Cyril; López-Serrano, Joaquín; Gálvez-López, María-Dolores; Roselló-Merino, Marta; Duckett, Simon B; Khazal, Iman; Lledós, Agustí; Whitwood, Adrian C
2008-01-01
In-situ NMR studies on the reactions of Pt{CH2 = CHSi(Me)2}2O)(PCy3) with phosphines, HSiEt3 and--hydrogen or Pt(L)(L')(Me)(2) alone enable the detection of cis-Pt(L)(L')(H)2 [L = PCy3 and L' = PCy2H, PPh3 or PCy3] which then undergo hydride site interchange and H2 reductive elimination on the NMR timescale.
Atomic mean-square displacement of a solid: A Green's-function approach
NASA Astrophysics Data System (ADS)
Shukla, R. C.; Hübschle, Hermann
1989-07-01
We have presented a Green's-function method of calculating the atomic mean-square displacement (MSD) of a solid. The method effectively sums a class of all anharmonic contributions to the MSD. From the point of view of perturbation theory (PT) our expression for MSD includes the lowest-order (λ2) PT contributions (cubic and quartic) with correct numerical coefficients. The numerical results obtained by this method in the high-temperature limit for a fcc nearest-neighbor Lennard-Jones-solid model are in excellent agreement with the Monte Carlo (MC) method for the same model over the entire temperature range of the solid. Highly accurate results for the order-λ2 PT contributions to MSD are obtained by eliminating the uncertainty in the convergence of the cubic contributions in the earlier work of Heiser, Shukla, and Cowly and they are now in much better agreement with the MC results but still inferior to the Green's-function method at the highest temperature.
NASA Astrophysics Data System (ADS)
Selvaganesh, S. Vinod; Dhanasekaran, P.; Bhat, Santoshkumar D.
2017-12-01
Durability is a major issue and has been the growing focus of research for the commercialization of polymer electrolyte fuel cells (PEFCs). Corrosion of carbon support is a key parameter as it triggers the Pt catalyst degradation and affects cell performance, which in turn affects the longevity of the cells. Herein, we describe a hybrid composite support of TiO2-nanowires and Multiwalled carbon nanotubes (MWCNTs) that offers resistance to corrosion under stressful operating conditions. Titania nanowireswhich have been shown to be more efficient and catalytically active than spherically shaped TiO2. TiO2-MWCNT composites are prepared through a hydrothermal method, followed by Pt deposition using a polyol method. Crystal structure, morphology, and oxidation state are examined through various characterization techniques. Electrochemical performance of TiO2-nanowire/MWCNT composite-supported Pt at various ratios of TiO2/MWCNT is assessed in PEFCs. Pt on support with optimum composition of TiO2-nanowires to MWCNTs exhibits fuel cell performance superior to Pt onMWCNTs. Accelerated stress testing (AST) between 1 and 1.5 V reveals that the designed catalyst on nanocomposite support possesses superior electrochemical activity and shows only 16% loss in catalytic activity in relation to 35% for Pt/MWCNTs even after 6000 potential cycles. Subsequently, the samples were characterized after AST to correlate the loss in fuel cell performance
Bottom-Up Syntheses and Characterization of One Dimensional Nanomaterials
NASA Astrophysics Data System (ADS)
Yeh, Yao-Wen
Nanomaterials, materials having at least one dimension below 100 nm, have been creating exciting opportunities for fundamental quantum confinement studies and applications in electronic devices and energy technologies. One obvious and important aspect of nanomaterials is their production. Although nanostructures can be obtained by top-down reductive e-beam lithography and focused ion beam processes, further development of these processes is needed before these techniques can become practical routes to large scale production. On the other hand, bottom-up syntheses, with advantages in material diversity, throughput, and the potential for large volume production, may provide an alternative strategy for creating nanostructures. In this work, we explore syntheses of one dimensional nanostructures based on hydrothermal and arc discharge methods. The first project presented in this thesis involves syntheses of technologically important nanomaterials and their potential application in energy harvesting. In particular, it was demonstrated that single crystal ferroelectric lead magnesium niobate lead titanate (PMN-PT) nanowires can be synthesized by a hydrothermal route. The chemical composition of the synthesized nanowires is near the rhombohedral-monoclinic boundary of PMN-PT, which leads to a high piezoelectric coefficient of 381 pm/V. Finally, the potential use of PMN-PT nanowires in energy harvesting applications was also demonstrated. The second part of this thesis involves the synthesis of carbon and boron nitride nanotubes by dc arc discharges. In particular, we investigated how local plasma related properties affected the synthesis of carbon nanostructures. Finally, we investigated the anodic nature of the arc and how a dc arc discharge can be applied to synthesize boron nitride nanotubes.
Feasibilty of a Multi-bit Cell Perpendicular Magnetic Tunnel Junction Device
NASA Astrophysics Data System (ADS)
Kim, Chang Soo
The ultimate objective of this research project was to explore the feasibility of making a multi-bit cell perpendicular magnetic tunnel junction (PMTJ) device to increase the storage density of spin-transfer-torque random access memory (STT-RAM). As a first step toward demonstrating a multi-bit cell device, this dissertation contributed a systematic and detailed study of developing a single cell PMTJ device using L10 FePt films. In the beginning of this research, 13 up-and-coming non-volatile memory (NVM) technologies were investigated and evaluated to see whether one of them might outperform NAND flash memories and even HDDs on a cost-per-TB basis in 2020. This evaluation showed that STT-RAM appears to potentially offer superior power efficiency, among other advantages. It is predicted that STTRAM's density could make it a promising candidate for replacing NAND flash memories and possibly HDDs if STTRAM could be improved to store multiple bits per cell. Ta/Mg0 under-layers were used first in order to develop (001) L1 0 ordering of FePt at a low temperature of below 400 °C. It was found that the tradeoff between surface roughness and (001) L10 ordering of FePt makes it difficult to achieve low surface roughness and good perpendicular magnetic properties simultaneously when Ta/Mg0 under-layers are used. It was, therefore, decided to investigate MgO/CrRu under-layers to simultaneously achieve smooth films with good ordering below 400°C. A well ordered 4 nm L10 FePt film with RMS surface roughness close to 0.4 nm, perpendicular coercivity of about 5 kOe, and perpendicular squareness near 1 was obtained at a deposition temperature of 390 °C on a thermally oxidized Si substrate when MgO/CrRu under-layers are used. A PMTJ device was developed by depositing a thin MgO tunnel barrier layer and a top L10 FePt film and then being postannealed at 450 °C for 30 minutes. It was found that the sputtering power needs to be minimized during the thin MgO tunnel barrier deposition because the high sputtering power can degrade perpendicular magnetic anisotropy of the bottom L1 0 FePt film and also increase RMS film surface roughness of the MgO tunnel barrier layer. From a lithographically unpatterned PMTJ sample, MR ratio and RA were measured at room temperature by the CIPT method and found to be 138% and 6.4 kOmicrom2, respectively. A completed PMTJ test pattern with a junction size of 80x40 microm2 was fabricated and showed a measured MR ratio and RA product of 108% and 4~6 kOmicrom 2, respectively. These values agree relatively well with the corresponding values of 138% and 6.4 kOmicrom2 obtained from the unpatterned PMTJ sample measured by a current-in-plane tunneling (CIPT) method.
Materials Data on Sb4PtC4(O2F11)2 (SG:14) by Materials Project
Kristin Persson
2016-02-04
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K2Ag4Pt3(NO2)12 (SG:14) by Materials Project
Kristin Persson
2016-02-05
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Guide to Canadian Aerospace Related Industries,
1984-03-01
manufacturing per- North America If, is tnus PaissiOre !or PT toc Oer a- exle- sonnel depending upon the product aird customer require- sive range af t...the Brazilian government-owned telecommunications Patrol Frigate. company. The project known as Sistema Brasiliero de Telecomunicacoes por Satelite
Pareto Tracer: a predictor-corrector method for multi-objective optimization problems
NASA Astrophysics Data System (ADS)
Martín, Adanay; Schütze, Oliver
2018-03-01
This article proposes a novel predictor-corrector (PC) method for the numerical treatment of multi-objective optimization problems (MOPs). The algorithm, Pareto Tracer (PT), is capable of performing a continuation along the set of (local) solutions of a given MOP with k objectives, and can cope with equality and box constraints. Additionally, the first steps towards a method that manages general inequality constraints are also introduced. The properties of PT are first discussed theoretically and later numerically on several examples.
Multi-Paradigm Multi-Scale Simulations for Fuel Cell Catalysts and Membranes
2006-01-01
transfer studies on model systems. . Applying newly developed density functionals QM ( X3LYP ) for estimating the thermodynamics and kinetic energy...Density functional theory methods We have used many QM methods to probe chemical reaction mechanisms and find that the B3LYP and X3LYP [6] flavors of DFT...carried out QM calculations on the surface reactivity of the Pt and PtRu anode catalysts. This QM uses a new ab initio DFT-GGA method ( X3LYP ) [6
NASA Astrophysics Data System (ADS)
Duan, Sibin; Wang, Rongming; Liu, Jingyue
2018-05-01
Catalysis by supported single metal atoms has demonstrated tremendous potential for practical applications due to their unique catalytic properties. Unless they are strongly anchored to the support surfaces, supported single atoms, however, are thermodynamically unstable, which poses a major obstacle for broad applications of single-atom catalysts (SACs). In order to develop strategies to improve the stability of SACs, we need to understand the intrinsic nature of the sintering processes of supported single metal atoms, especially under various gas environments that are relevant to important catalytic reactions. We report on the synthesis of high number density Pt1/Fe2O3 SACs using a facial strong adsorption method and the study of the mobility of these supported Pt single atoms at 250 °C under various gas environments that are relevant to CO oxidation, water–gas shift, and hydrogenation reactions. Under the oxidative gas environment, Fe2O3 supported Pt single atoms are stable even at high temperatures. The presence of either CO or H2 molecules in the gas environment, however, facilitates the movement of the Pt atoms. The strong interaction between CO and Pt weakens the binding between the Pt atoms and the support, facilitating the movement of the Pt single atoms. The dissociation of H2 molecules on the Pt atoms and their subsequent interaction with the oxygen species of the support surfaces dislodge the surface oxygen anchored Pt atoms, resulting in the formation of Pt clusters. The addition of H2O molecules to the CO or H2 significantly accelerates the sintering of the Fe2O3 supported Pt single atoms. An anchoring-site determined sintering mechanism is further proposed, which is related to the metal–support interaction.
Duan, Sibin; Wang, Rongming; Liu, Jingyue
2018-05-18
Catalysis by supported single metal atoms has demonstrated tremendous potential for practical applications due to their unique catalytic properties. Unless they are strongly anchored to the support surfaces, supported single atoms, however, are thermodynamically unstable, which poses a major obstacle for broad applications of single-atom catalysts (SACs). In order to develop strategies to improve the stability of SACs, we need to understand the intrinsic nature of the sintering processes of supported single metal atoms, especially under various gas environments that are relevant to important catalytic reactions. We report on the synthesis of high number density Pt 1 /Fe 2 O 3 SACs using a facial strong adsorption method and the study of the mobility of these supported Pt single atoms at 250 °C under various gas environments that are relevant to CO oxidation, water-gas shift, and hydrogenation reactions. Under the oxidative gas environment, Fe 2 O 3 supported Pt single atoms are stable even at high temperatures. The presence of either CO or H 2 molecules in the gas environment, however, facilitates the movement of the Pt atoms. The strong interaction between CO and Pt weakens the binding between the Pt atoms and the support, facilitating the movement of the Pt single atoms. The dissociation of H 2 molecules on the Pt atoms and their subsequent interaction with the oxygen species of the support surfaces dislodge the surface oxygen anchored Pt atoms, resulting in the formation of Pt clusters. The addition of H 2 O molecules to the CO or H 2 significantly accelerates the sintering of the Fe 2 O 3 supported Pt single atoms. An anchoring-site determined sintering mechanism is further proposed, which is related to the metal-support interaction.
Tuning Nb–Pt Interactions To Facilitate Fuel Cell Electrocatalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghoshal, Shraboni; Jia, Qingying; Bates, Michael K.
High stability, availability of multiple oxidation states, and accessibility within a wide electrochemical window are the prime features of Nb that make it a favorable candidate for electrocatalysis, especially when it is combined with Pt. However, Nb has been used as a support in the form of oxides in all previously reported Pt–Nb electrocatalysts, and no Pt–Nb alloying phase has been demonstrated hitherto. Herein, we report a multifunctional Pt–Nb composite (PtNb/NbOx-C) where Nb exists both as an alloying component with Pt and as an oxide support and is synthesized by means of a simple wet chemical method. In this work,more » the Pt–Nb alloy phase has been firmly verified with the help of multiple spectroscopic methods. This allows for the experimental evidence of the theoretical prediction that Pt–Nb alloy interactions improve the oxygen reduction reaction (ORR) activity of Pt. In addition, such a combination of multiphase Nb brings up myriad features encompassing increased ORR durability, immunity to phosphate anion poisoning, enhanced hydrogen oxidation reaction (HOR) activity, and oxidative carbon monoxide (CO) stripping, making this electrocatalyst useful in multiple fuel cell systems.« less
NASA Astrophysics Data System (ADS)
Canali, A. C.; Brenan, J. M.; Sullivan, N. A.
2017-11-01
To better understand the Pt-As association in natural magmas, experiments were done at 1200 °C and 0.1 MPa to measure the solubility of Pt and Pt-arsenide phases (melt and sperrylite, PtAs2), as well as to determine the oxidation state, and identify evidence for Pt-As complexing, in molten silicate. Samples consisting of synthetic basalt contained in chromite crucibles were subject to three experimental procedures. In the first, platinum solubility in the synthetic basalt was determined without added arsenic by equilibrating the sample with a platinum source (embedded wire or bead) in a gas-mixing furnace. In the second, the sample plus a Pt-arsenide source was equilibrated in a vacuum-sealed fused quartz tube containing a solid-oxide oxygen buffer. The third approach involved two steps: first equilibrating the sample in a gas-mixing furnace, then with added arsenide melt in a sealed quartz tube. Oxygen fugacity was estimated in the latter step using chromite/melt partitioning of vanadium. Method two experiments done at high initial arsenic activity (PtAs melt + PtAs2), showed significant loss of arsenic from the sample, the result of vapour transfer to newly-formed arsenide phases in the buffer. Method three experiments showed no loss of arsenic, yielding a uniform final distribution in the sample. Analyses of run-product glasses from experiments which did not show arsenic loss reveal significant increase in arsenic concentrations with fO2, varying from ∼10 ppm (FMQ-3.25) to >10,000 ppm (FMQ + 5.5). Despite very high arsenic loadings (>1000 ppm), the solubility of Pt is similar in arsenic-bearing and arsenic-free glasses. The variation in arsenic solubility with fO2 shows a linear relationship, that when corrected for the change in the activity of dissolved arsenic with the melt ferric/ferrous ratio, yields a solubility-fO2 relationship consistent with As3+ as the dissolved species. This result is confirmed by X-ray absorption near edge structure (XANES) determination on run-product glasses. Levels of arsenic required for Pt-arsenide saturation are 50-500 ppm over the fO2 range of most terrestrial basalts (FMQ to FMQ-2), >100× higher than the arsenic concentrations typical of such magmas, indicating significant enrichment of arsenic is required if Pt-arsenide saturation is to occur. In contrast, the level of dissolved Pt required to saturate in sperrylite is >8× lower than for pure Pt, suggesting that arsenic enrichment could lead to Pt removal at concentrations much less than required for pure metal saturation.
Kalman, Lisa V.; Lubin, Ira M.; Barker, Shannon; du Sart, Desiree; Elles, Rob; Grody, Wayne W.; Pazzagli, Mario; Richards, Sue; Schrijver, Iris; Zehnbauer, Barbara
2015-01-01
Context Participation in proficiency testing (PT) or external quality assessment (EQA) programs allows the assessment and comparison of test performance among different clinical laboratories and technologies. In addition to the approximately 2300 tests for individual genetic disorders, recent advances in technology have enabled the development of clinical tests which quickly and economically analyze the entire human genome. New PT/EQA approaches are needed to ensure the continued quality of these complex tests. Objective To review the availability and scope of PT/EQA for molecular genetic testing for inherited conditions in Europe, Australasia and the United States; to evaluate the successes and demonstrated value of available PT/EQA programs; and to examine the challenges to the provision of comprehensive PT/EQA posed by new laboratory practices and methodologies. Data Sources The available literature on this topic was reviewed and supplemented with personal experiences of several PT/EQA providers. Conclusions PT/EQA schemes are available for common genetic disorders tested in many clinical laboratories, but are not available for most genetic tests offered by only one or a few laboratories. Provision of broad, method-based PT schemes, such as DNA sequencing, would allow assessment of a large number of tests for which formal PT is not currently available. Participation in PT/EQA improves the quality of testing by identifying inaccuracies that laboratories can trace to errors in the testing process. Areas of research and development to ensure that PT/EQA programs can meet the needs of new and evolving genetic tests and technologies are identified and discussed. PMID:23808472
Method to tune electrical impedance of LSMO/PMN-PT by nanocontact
NASA Astrophysics Data System (ADS)
Zhou, Hao; Pei, Yongmao; Wang, Yaobing; Lei, Hongshuai
2018-01-01
Electromagnetic composites have wide application in the functional devices. For the best performance of devices, the regulation of the electrical impedance has been being desired for the impedance matching in service. However, the keeping of impedance matching in service is quite challenging. In the present work, a mechanical method for tuning the electrical impedance of La0.7Sr0.3MnO3/0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (LSMO/PMN-PT) based on the nanocontact technique is proposed. It is found that the electrical impedance reduces with the increase of the nanocontact load. A linear relationship is found between the square of impedance magnitude and the inverse of nanocontact depth. Furthermore, a method for predicting the contact-depth-dependent impedance magnitude of LSMO/PMN-PT is proposed.
Platinum adlayered ruthenium nanoparticles, method for preparing, and uses thereof
Tong, YuYe; Du, Bingchen
2015-08-11
A superior, industrially scalable one-pot ethylene glycol-based wet chemistry method to prepare platinum-adlayered ruthenium nanoparticles has been developed that offers an exquisite control of the platinum packing density of the adlayers and effectively prevents sintering of the nanoparticles during the deposition process. The wet chemistry based method for the controlled deposition of submonolayer platinum is advantageous in terms of processing and maximizing the use of platinum and can, in principle, be scaled up straightforwardly to an industrial level. The reactivity of the Pt(31)-Ru sample was about 150% higher than that of the industrial benchmark PtRu (1:1) alloy sample but with 3.5 times less platinum loading. Using the Pt(31)-Ru nanoparticles would lower the electrode material cost compared to using the industrial benchmark alloy nanoparticles for direct methanol fuel cell applications.
High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys and Associated Processing Methods
NASA Technical Reports Server (NTRS)
Noebe, Ronald D. (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Garg, Anita (Inventor)
2009-01-01
According to the invention, compositions of Ni-Ti-Pt high temperature, high force, shape memory alloys are disclosed that have transition temperatures above 100 C.; have narrow hysteresis; and produce a high specific work output.
NASA Technical Reports Server (NTRS)
Medard, E.; Martin, A. M.; Righter, K.; Malouta, A.; Lee, C.-T.
2017-01-01
Most siderophile element concentrations in planetary mantles can be explained by metal/ silicate equilibration at high temperature and pressure during core formation. Highly siderophile elements (HSE = Au, Re, and the Pt-group elements), however, usually have higher mantle abundances than predicted by partitioning models, suggesting that their concentrations have been set by late accretion of material that did not equilibrate with the core. The partitioning of HSE at the low oxygen fugacities relevant for core formation is however poorly constrained due to the lack of sufficient experimental constraints to describe the variations of partitioning with key variables like temperature, pressure, and oxygen fugacity. To better understand the relative roles of metal/silicate partitioning and late accretion, we performed a self-consistent set of experiments that parameterizes the influence of oxygen fugacity, temperature and melt composition on the partitioning of Pt, one of the HSE, between metal and silicate melts. The major outcome of this project is the fact that Pt dissolves in an anionic form in silicate melts, causing a dependence of partitioning on oxygen fugacity opposite to that reported in previous studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Weiyan; Wu, Kui; Liu, Pengli
2016-07-20
ZrO 2-Al 2O 3 and CeO 2-Al 2O 3 were prepared by a co-precipitation method and selected as supports for Pt catalysts. The effects of CeO 2 and ZrO 2 on the surface area and Brønsted acidity of Pt/Al 2O 3 were studied. In the hydrodeoxygenation (HDO) of p-cresol, the addition of ZrO 2 promoted the direct deoxygenation activity on Pt/ZrOO 2-Al 2O 3 via Caromatic-O bond scission without benzene ring saturation. Pt/CeOO 2-Al 2O 3 exhibited higher deoxygenation extent than Pt/Al 2O 3 due to the fact that Brønsted acid sites on the catalyst surface favored the adsorption ofmore » p-cresol. With the advantages of CeO 2 and ZrO 2 taken into consideration, CeO 2-ZrOO 2-Al 2O 3 was prepared, leading to the highest HDO activity of Pt/CeO 2-ZrOO 2-Al 2O 3. The deoxygenation extent for Pt/CeO 2-ZrOO 2-Al 2O 3 was 48.4% and 14.5% higher than that for Pt/ZrO2O 2-Al 2O 3 and Pt/CeOO 2-Al 2O 3, respectively.« less
Cui, Zhiming; Li, Chang Ming; Jiang, San Ping
2011-09-28
A simple self-assembly approach has been developed to functionalize carbon nanotubes (CNTs) with chitosan (CS) and heteropolyacids (HPAs) of phosphomolybdic acid (H(3)PMo(12)O(40), HPMo) and phosphotungstic acid (H(3)PW(12)O(40), HPW). The non-covalent functionalization method, which introduces homogenous surface functional groups with no detrimental effect on graphene structures of CNTs, can be carried out at room temperature without the use of corrosive acids. The PtRu nanoparticles supported on HPAs-CS-CNTs have a uniform distribution and much smaller size as compared to those of the PtRu nanoparticles supported on conventional acid treated CNTs (PtRu/AO-CNTs). The onset and peak potentials for CO(ad) oxidation on PtRu/HPAs-CS-CNTs catalysts are more negative than those on PtRu/AO-CNTs, indicating that HPAs facilitate the electro-oxidation of CO. The PtRu/HPMo-CS-CNTs catalyst has a higher electrocatalytic activity for methanol oxidation and higher tolerance toward CO poisoning than PtRu/HPW-CS-CNTs. The better electrocatalytic enhancement of HPMo on the PtRu/HPAs-CS-CNTs catalyst is most likely related to the fact that molybdenum-containing HPAs such as HPMo have more labile terminal oxygen to provide additional active oxygen sites while accelerating the CO and methanol oxidation in a similar way to that of Ru in the PtRu binary alloy system.
Lai, Jianping; Guo, Shaojun
2017-12-01
Nanocatalysts with high platinum (Pt) utilization efficiency are attracting extensive attention for oxygen reduction reactions (ORR) conducted at the cathode of fuel cells. Ultrathin Pt-based multimetallic nanostructures show obvious advantages in accelerating the sluggish cathodic ORR due to their ultrahigh Pt utilization efficiency. A focus on recent important developments is provided in using wet chemistry techniques for making/tuning the multimetallic nanostructures with high Pt utilization efficiency for boosting ORR activity and durability. First, new synthetic methods for multimetallic core/shell nanoparticles with ultrathin shell sizes for achieving highly efficient ORR catalysts are reviewed. To obtain better ORR activity and stability, multimetallic nanowires or nanosheets with well-defined structure and surface are further highlighted. Furthermore, ultrathin Pt-based multimetallic nanoframes that feature 3D molecularly accessible surfaces for achieving more efficient ORR catalysis are discussed. Finally, the remaining challenges and outlooks for the future will be provided for this promising research field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhu, Jing; Zheng, Xin; Wang, Jie; ...
2015-09-15
Controlling the size, composition, and structure of bimetallic nanoparticles is of particular interest in the field of electrocatalysts for fuel cells. In the present work, structurally ordered nanoparticles with intermetallic phases of Pt 3Zn and PtZn have been successfully synthesized via an impregnation reduction method, followed by post heat-treatment. The Pt 3Zn and PtZn ordered intermetallic nanoparticles are well dispersed on a carbon support with ultrasmall mean particle sizes of ~5 nm and ~3 nm in diameter, respectively, which are credited to the evaporation of the zinc element at high temperature. These catalysts are less susceptible to CO poisoning relativemore » to Pt/C and exhibited enhanced catalytic activity and stability toward formic acid electrooxidation. The mass activities of the as-prepared catalysts were approximately 2 to 3 times that of commercial Pt at 0.5 V (vs. RHE). As a result, this facile synthetic strategy is scalable for mass production of catalytic materials.« less
Mauger, Scott A.; Neyerlin, K. C.; Alia, Shaun M.; ...
2018-03-13
Platinum-nickel nanowire (PtNiNW) catalysts have shown exceptionally high oxygen reduction mass activity in rotating disk electrode measurements. However, the ability to successfully incorporate PtNiNWs into high performance membrane electrode assemblies (MEAs) has been challenging due to their size, shape, density, dispersion characteristics, and corrosion-susceptible nickel core. We have investigated the impact of specific processing steps and electrode composition on observed fuel cell performance and electrochemical properties in order to optimize performance. We have found that nickel ion contamination is a major concern for PtNiNWs that can be addressed through ion exchange in fabricated/tested MEAs or by acid leaching of catalystmore » materials prior to MEA incorporation, with the latter being the more successful method. Additionally, decreased ionomer incorporation has led to the highest performance demonstrating 238 mA/mg Pt (0.9 V IR-free) for PtNiNWs (pre-leached to 80 wt% Pt) with 9 wt% ionomer incorporation.« less
NASA Astrophysics Data System (ADS)
Wu, Wenlan; Li, Junbo; Zou, Sheng; Guo, Jinwu; Zhou, Huiyun
2017-03-01
A method of in-situ reduction to prepare Au@Pt core-satellite nanoparticles (NPs) is described by using Au NPs coating poly[1-methyl 3-(2-methacryloyloxy propylimidazolium bromine)] (PMMPImB-@-Au NPs) as the template. After electrostatic complex chloroplatinic acid with PMMPImB shell, the composite NP was directly reduced with N2H4 to produce Au@Pt core-satellite NPs. The characterization of composite and core-satellite NPs under different amounts of chloroplatinic acid were studied by DLS, UV-vis absorption spectrum and TEM. The satellite Pt NPs with a small size ( 2 nm) dotted around Au core, and the resulting Au@Pt core-satellite NPs showed a red-shift surface plasmon resonance (SPR) and a good dispersion due to effectively electrostatic repulsion providing by the polymeric ionic liquid (PIL) shell. Finally, Au@Pt core-satellite NPs exhibit an enhanced catalytic activity and cycled catalytic capability for the reduction of p-nitrophenol with NaBH4.
Structures of small Pd Pt bimetallic clusters by Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Cheng, Daojian; Huang, Shiping; Wang, Wenchuan
2006-11-01
Segregation phenomena of Pd-Pt bimetallic clusters with icosahedral and decahedral structures are investigated by using Monte Carlo method based on the second-moment approximation of the tight-binding (TB-SMA) potentials. The simulation results indicate that the Pd atoms generally lie on the surface of the smaller clusters. The three-shell onion-like structures are observed in 55-atom Pd-Pt bimetallic clusters, in which a single Pd atom is located in the center, and the Pt atoms are in the middle shell, while the Pd atoms are enriched on the surface. With the increase of Pd mole fraction in 55-atom Pd-Pt bimetallic clusters, the Pd atoms occupy the vertices of clusters first, then edge and center sites, and finally the interior shell. It is noticed that some decahedral structures can be transformed into the icosahedron-like structure at 300 and 500 K. Comparisons are made with previous experiments and theoretical studies of Pd-Pt bimetallic clusters.
NASA Astrophysics Data System (ADS)
Bai, Lei; Bai, Yuwei
2018-02-01
Hollow-structured nanomaterials generally showed enhanced catalytic abilities due to their high utilization. In this work, a general method for the synthesis of PtCu3 nanoframes was reported with the employment of hexadecyltrimethylammonium chloride (CTAC), copper(I) chloride, and various kinds of platinum precursors such as K2PtCl6, H2PtCl6, and Pt(acac)2. It was revealed that the presence of CTAC was crucial for the formation of frame structures. On the one hand, CTAC could act as a structure director, and on the other hand, the galvanic replacement and etching effect of the chloride ions together with oxygen was also responsible for the formation of the frame structure. A similar effect was also evidenced in the case of hexadecyltrimethylammonium bromide. Finally, the as-obtained PtCu3 nanoframes demonstrated high catalytic abilities in the oxidation of methanol as a model reaction. [Figure not available: see fulltext.
Zhu, Chengzhou; Guo, Shaojun; Dong, Shaojun
2013-01-14
We have demonstrated a rapid and general strategy to synthesize novel three-dimensional PdPt bimetallic alloy nanosponges in the absence of a capping agent. Significantly, the as-prepared PdPt bimetallic alloy nanosponges exhibited greatly enhanced activity and stability towards ethanol/methanol electrooxidation in an alkaline medium, which demonstrates the potential of applying these PdPt bimetallic alloy nanosponges as effective electrocatalysts for direct alcohol fuel cells. In addition, this simple method has also been applied for the synthesis of AuPt, AuPd bimetallic, and AuPtPd trimetallic alloy nanosponges. The as-synthesized three-dimensional bimetallic/trimetallic alloy nanosponges, because of their convenient preparation, well-defined sponge-like network, large-scale production, and high electrocatalytic performance for ethanol/methanol electrooxidation, may find promising potential applications in various fields, such as formic acid oxidation or oxygen reduction reactions, electrochemical sensors, and hydrogen-gas sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kobayashi, Takeshi; Perras, Frederic A.; Goh, Tian Wei; ...
2016-06-06
Ultrawideline dynamic nuclear polarization (DNP)-enhanced 195Pt solid-state NMR (SSNMR) spectroscopy and theoretical calculations are used to determine the coordination of atomic Pt species supported within the pores of metal–organic frameworks (MOFs). The 195Pt SSNMR spectra, with breadths reaching 10,000 ppm, were obtained by combining DNP with broadbanded cross-polarization and CPMG acquisition. Although the DNP enhancements in static samples are lower than those typically observed under magic-angle spinning conditions, the presented measurements would be very challenging using the conventional SSNMR methods. The DNP-enhanced ultrawideline NMR spectra served to separate signals from cis- and trans-coordinated atomic Pt 2+ species supported on themore » UiO-66-NH 2 MOF. Here, the data revealed a dominance of kinetic effects in the formation of Pt 2+ complexes and the thermodynamic effects in their reduction to nanoparticles. A single cis-coordinated Pt 2+ complex was confirmed in MOF-253.« less
Wu, Fuxiang; Zhang, Dongtang; Peng, Manhua; Yu, Zhihui; Wang, Xiayan; Guo, Guangsheng; Sun, Yugang
2016-04-11
Developing new synthetic methods for carbon supported catalysts with improved performance is of fundamental importance in advancing proton exchange membrane fuel cell (PEMFC) technology. Continuous-flow, microfluidic reactions in capillary tube reactors are described, which are capable of synthesizing surfactant-free, ultrafine PtSn alloyed nanoparticles (NPs) on various carbon supports (for example, commercial carbon black particles, carbon nanotubes, and graphene sheets). The PtSn NPs are highly crystalline with sizes smaller than 2 nm, and they are highly dispersed on the carbon supports with high loadings up to 33 wt%. These characteristics make the as-synthesized carbon-supported PtSn NPs more efficient than state of the art commercial Pt/C catalysts applied to the ethanol oxidation reaction (EOR). Significantly enhanced mass catalytic activity (two-times that of Pt/C) and improved stability are obtained. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauger, Scott A.; Neyerlin, K. C.; Alia, Shaun M.
Platinum-nickel nanowire (PtNiNW) catalysts have shown exceptionally high oxygen reduction mass activity in rotating disk electrode measurements. However, the ability to successfully incorporate PtNiNWs into high performance membrane electrode assemblies (MEAs) has been challenging due to their size, shape, density, dispersion characteristics, and corrosion-susceptible nickel core. We have investigated the impact of specific processing steps and electrode composition on observed fuel cell performance and electrochemical properties in order to optimize performance. We have found that nickel ion contamination is a major concern for PtNiNWs that can be addressed through ion exchange in fabricated/tested MEAs or by acid leaching of catalystmore » materials prior to MEA incorporation, with the latter being the more successful method. Additionally, decreased ionomer incorporation has led to the highest performance demonstrating 238 mA/mg Pt (0.9 V IR-free) for PtNiNWs (pre-leached to 80 wt% Pt) with 9 wt% ionomer incorporation.« less
Tamburri, Emanuela; Cassani, Maria Cristina; Ballarin, Barbara; Tomellini, Massimo; Femoni, Cristina; Mignani, Adriana; Terranova, Maria Letizia; Orlanducci, Silvia
2016-05-23
Self-supporting membranes built entirely of carbon nanotubes have been prepared by wet methods and characterized by Raman spectroscopy. The membranes are used as supports for the electrodeposition of Pt nanoparticles without the use of additional additives and/or stabilizers. The Pt precursor is an ad hoc synthesized ammonium-ethylimidazolium chloroplatinate(IV) salt, [NH3 (CH2 )2 MIM)][PtCl6 ]. The Pt complex was characterized using NMR spectroscopy, XRD, ESI-MS, and FTIR spectroscopy. The interaction between the Pt-carbon nanotubes nanocomposites and hydrogen is analyzed using electrochemical and quartz microbalance measurements under near-ambient conditions. The contribution of the Pt phase to the hydrogen adsorption on nanotube is found and explained by a kinetic model that takes into account a spillover event. Such a phenomenon may be exploited conveniently for catalysis and electrocatalysis applications in which the hybrid systems could act as a hydrogen transfer agent in specific hydrogenation reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lu, Xiaojing; Song, Xinjie; Gu, Cuiping; Ren, Haibo; Sun, Yufeng; Huang, Jiarui
2018-05-01
Quick and efficient detection of low concentrations of hydrogen remains a challenge because of the stability of hydrogen. A sensor based on reduced oxide graphene functionalized with Pt nanoparticles is successfully fabricated using a freeze-drying method followed by heat treatment. The structure and morphology of the Pt@rGO nanocomposites are well analyzed by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The as-prepared Pt@rGO nanocomposites show excellent hydrogen gas sensing properties at a low working temperature of 50 °C. The sensitivity toward 0.5% hydrogen is 8%. The response and recovery times of the sensor exposed to 0.5% hydrogen are 63 and 104 s, respectively. The gas-sensing mechanism of Pt@rGO sensor is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinozaki, Kazuma; Morimoto, Yu; Pivovar, Bryan S.
The impact of Nafion on the oxygen reduction reaction (ORR) activity is studied for Pt/C and Pt-alloy/C catalysts using thin-film rotating disk electrode (TF-RDE) methods in 0.1 M HClO4. Ultrathin uniform catalyst layers and standardized activity measurement protocols are employed to obtain accurate and reproducible ORR activity. Nafion lowers the ORR activity which plateaus with increasing loading on Pt catalysts. Pt particle size is found not to have significant influence on the extent of the SA decrease upon Nafion incorporation. Catalysts using high surface area carbon (HSC) support exhibit attenuated activity loss resulting from lower ionomer coverage on catalyst particlesmore » located within the deep pores. The impact of metallic composition on the activity loss due to Nafion incorporation is also discussed.« less
Electron impact ionisation cross section for organoplatinum compounds
NASA Astrophysics Data System (ADS)
Mahato, Dibyendu; Naghma, Rahla; Alam, Mohammad Jane; Ahmad, Shabbir; Antony, Bobby
2016-11-01
This article reports electron impact ionisation cross sections for platinum-based drugs viz., cisplatin (H6N2Cl2Pt), carboplatin (C6H12N2O4Pt), oxaliplatin (C8H14N2O4Pt), nedaplatin (C2H8N2O3Pt) and satraplatin (C10H22ClN2O4Pt) complexes used in the cancer chemotherapy. The multi-scattering centre spherical complex optical potential formalism is used to obtain the inelastic cross section for these large molecules upon electron impact. The ionisation cross section is derived from the inelastic cross section employing complex scattering potential-ionisation contribution method. Comparison is made with previous results, where ever available and overall a reasonable agreement is observed. This is the first attempt to report total ionisation cross sections for nedaplatin and satraplatin complexes.
NASA Astrophysics Data System (ADS)
Tan, Lingyu; Li, Lidong; Peng, Yi; Guo, Lin
2015-12-01
Herein, a new type of uniform and well-structured Au@Pt bimetallic nanoparticles (BNPs) with highly active concave Au nanocuboids (NCs) as seeds was successfully synthesized by using the classic seed-mediated method. Electrochemical measurements were conducted to demonstrate their greatly enhanced catalytic performance in the ethanol oxidation reaction (EOR). It was found that the electrochemical performance for Au@Pt BNPs with the concave Au NCs as seeds, which were enclosed by {611} high-index facets, could be seven times higher than that of the Au@Pt bimetallic nanoparticles with regular spherical Au NPs as seeds. Furthermore, our findings show that the morphology and electrocatalytic activity of the Au@Pt BNPs can be tuned simply by changing the compositional ratios of the growth solution. The lower the amount of H2PtCl6 used in the growth solution, the thinner the Pt shell grew, and the more high-index facets of concave Au NCs seeds were exposed in Au@Pt BNPs, leading to higher electrochemical activity. These as-prepared concave Au@Pt BNPs will open up new strategies for improving catalytic efficiency and reducing the use of the expensive and scarce resource of platinum in the ethanol oxidation reaction, and are potentially applicable as electrochemical catalysts for direct ethanol fuel cells.
Sawosz, Ewa; Chwalibog, André; Szeliga, Jacek; Sawosz, Filip; Grodzik, Marta; Rupiewicz, Marlena; Niemiec, Tomasz; Kacprzyk, Katarzyna
2010-01-01
Purpose Rapid development of nanotechnology has recently brought significant attention to the extraordinary biological features of nanomaterials. The objective of the present investigation was to evaluate morphological characteristics of the assembles of gold and platinum nanoparticles (nano-Au and nano-Pt respectively), with Salmonella Enteritidis (Gram-negative) and Listeria monocytogenes (Gram-positive), to reveal possibilities of constructing bacteria-nanoparticle vehicles. Methods Hydrocolloids of nano-Au or nano-Pt were added to two bacteria suspensions in the following order: nano-Au + Salmonella Enteritidis; nano-Au + Listeria monocytogenes; nano-Pt + Salmonella Enteritidis; nano-Pt + Listeria monocytogenes. Samples were inspected by transmission electron microscope. Results Visualization of morphological interaction between nano-Au and Salmonella Enteritidis and Listeria monocytogenes, showed that nano-Au were aggregated within flagella or biofilm network and did not penetrate the bacterial cell. The analysis of morphological effects of interaction of nano-Pt with bacteria revealed that nano-Pt entered cells of Listeria monocytogenes and were removed from the cells. In the case of Salmonella Enteritidis, nano-Pt were seen inside bacteria cells, probably bound to DNA and partly left bacterial cells. After washing and centrifugation, some of the nano-Pt-DNA complexes were observed within Salmonella Enteritidis. Conclusion The results indicate that the bacteria could be used as a vehicle to deliver nano-Pt to specific points in the body. PMID:20856838
Tan, Lingyu; Li, Lidong; Peng, Yi; Guo, Lin
2015-12-18
Herein, a new type of uniform and well-structured Au@Pt bimetallic nanoparticles (BNPs) with highly active concave Au nanocuboids (NCs) as seeds was successfully synthesized by using the classic seed-mediated method. Electrochemical measurements were conducted to demonstrate their greatly enhanced catalytic performance in the ethanol oxidation reaction (EOR). It was found that the electrochemical performance for Au@Pt BNPs with the concave Au NCs as seeds, which were enclosed by {611} high-index facets, could be seven times higher than that of the Au@Pt bimetallic nanoparticles with regular spherical Au NPs as seeds. Furthermore, our findings show that the morphology and electrocatalytic activity of the Au@Pt BNPs can be tuned simply by changing the compositional ratios of the growth solution. The lower the amount of H2PtCl6 used in the growth solution, the thinner the Pt shell grew, and the more high-index facets of concave Au NCs seeds were exposed in Au@Pt BNPs, leading to higher electrochemical activity. These as-prepared concave Au@Pt BNPs will open up new strategies for improving catalytic efficiency and reducing the use of the expensive and scarce resource of platinum in the ethanol oxidation reaction, and are potentially applicable as electrochemical catalysts for direct ethanol fuel cells.
Morabia, Alfredo; Zhang, Fang Fang; Kappil, Maya A.; Flory, Janine; Mirer, Frank E; Santella, Regina M.; Wolff, Mary; Markowitz, Steven B
2013-01-01
Background and Aims Commuting by public transportation (PT) entails more physical activity and energy expenditure than by cars, but its biologic consequences are unknown. Methods In 2009-2010, we randomly sampled New York adults, usually commuting either by car (n=79) or PT (n=101). Measures comprised diet and physical activity questionnaires, weight and height, white blood cell (WBC) count, C reactive protein, (CRP) gene-specific methylation (IL-6), and global genomic DNA methylation (LINE-1 methylation). Results Compared to the 101 PT commuters, the 79 car drivers were about 9 years older, 2 kg/m2 heavier, more often non-Hispanic whites, and ate more fruits and more meats. The 2005 guidelines for physical activity were met by more car drivers than PT users (78.5% vs. 65.0%). There were no differences in median levels of CRP (car vs. PT: 0.6 vs. 0.5 mg/dl), mean levels of WBC (car vs. PT: 6.7 vs. 6.5 cells/mm3), LINE-1 methylation (car vs. PT: 78.0% vs. 78.3%), and promoter methylation of IL-6 (car vs. PT: 56.1% vs. 58.0%). Conclusions PT users were younger and lighter than car drivers, but their commute mode did not translate into a lower inflammatory response or a higher DNA methylation, maybe because, overall, car drivers were more physically active. PMID:22313796
Photocatalytic and Photoelectrochemically Degradation of Chlorsulfuron herbicide
NASA Astrophysics Data System (ADS)
Guo, Xu; Liu, Hongwei; Miao, Jinjie; Ma, Zhen
2017-12-01
Photocatalytic and photo electrochemical (PEC) degradation of chlorsulfuron herbicide were studied. Two novel PEC electrodes Ti/IrO2-Pt-WO3 (TIW) and Ti/IrO2-Pt-Ag3PO4 (TIA) were designed and some important factors were studied. Lower current density showed lower removal efficiency than higher conditions by electrochemical method. Furthermore, PEC showed higher degradation efficiency than the sum of individual EO and photocatalytic methode.
Auditory-Verbal Music Play Therapy: An Integrated Approach (AVMPT)
Mohammad Esmaeilzadeh, Sahar; Sharifi, Shahla; Tayarani Niknezhad, Hamid
2013-01-01
Introduction: Hearing loss occurs when there is a problem with one or more parts of the ear or ears and causes children to have a delay in the language-learning process. Hearing loss affects children's lives and their development. Several approaches have been developed over recent decades to help hearing-impaired children develop language skills. Auditory-verbal therapy (AVT) is one such approach. Recently, researchers have found that music and play have a considerable effect on the communication skills of children, leading to the development of music therapy (MT) and play therapy (PT). There have been several studies which focus on the impact of music on hearing-impaired children. The aim of this article is to review studies conducted in AVT, MT, and PT and their efficacy in hearing-impaired children. Furthermore, the authors aim to introduce an integrated approach of AVT, MT, and PT which facilitates language and communication skills in hearing-impaired children. Materials and Methods: In this article we review studies of AVT, MT, and PT and their impact on hearing-impaired children. To achieve this goal, we searched databases and journals including Elsevier, Chor Teach, and Military Psychology, for example. We also used reliable websites such as American Choral Directors Association and Joint Committee on Infant Hearing websites. The websites were reviewed and key words in this article used to find appropriate references. Those articles which are related to ours in content were selected. Conclusion: VT, MT, and PT enhance children’s communication and language skills from an early age. Each method has a meaningful impact on hearing loss, so by integrating them we have a comprehensive method in order to facilitate communication and language learning. To achieve this goal, the article offers methods and techniques to perform AVT and MT integrated with PT leading to an approach which offers all advantages of these three types of therapy. PMID:24303441
Eskina, Vasilina V; Dalnova, Olga A; Filatova, Daria G; Baranovskaya, Vasilisa B; Karpov, Yuri A
2016-10-01
This paper describes the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for determination of Pt, Pd and Rh after separation and concentration by original in-house developed heterochain polymer S, N-containing sorbent. The methods of sample preparation of spent ceramic-based autocatalysts were considered, two of which were used: autoclave decomposition in mixture of acids HCl:HNO3 (3:1) and high-temperature melting with K2S2O7. Both methods anyway limit the direct determination of analytes by HR CS GFAAS. Using the first method it is an incomplete digestion of spent autocatalysts samples, since the precipitate is Si, and the rhodium metal dissolves with difficulty and partially passes into solution. In contrast to the first method, the second method allow to completely transfer analytes into solution, however, the background signal produced by the chemical composition of the flux, overlaps the analytical zone. It was found, that Pt, Pd and Rh contained in the spent ceramic automotive catalysts could be effectively separated and concentrated by heterochain polymer S, N-containing sorbent, which has high sorption capacity, selectivity and resistant to dilute acids. The chosen HR CS GFAAS analysis conditions enable us to determine Pt, Pd and Rh with good metrological characteristics. The concentrations of Pt, Pd and Rh in two samples of automobile exhaust catalysts were found in range of 0.00015-0.00050; 0.170-0.189; 0.0180-0.0210wt%, respectively. The relative standard deviation obtained by HR CS GFAAS was not more than 5%. Limits of detection by HR CS GFAAS achieved were 6.2·10(-6)wt% for Pt, 1.8·10(-6)wt% for Pd, and 3.4·10(-6)wt% for Rh. Limits of determination achieved by HR CS GFAAS were 1.1·10(-5)wt% for Pt, 6.9·10(-5)wt% for Pd, and 8.3·10(-5)wt% for Rh. To control the accuracy of PGM in sorption concentrates by HR CS GFAAS method, it was appropriate to conduct an inter-method comparative experiment. The researches on the application of atomic-emission spectroscopy method with inductively coupled plasma as a comparative method were conducted. In addition, the trueness control of the obtained results is confirmed by added-found method. Copyright © 2016 Elsevier B.V. All rights reserved.
Cernohorsky, Ondrej; Grym, Jan; Yatskiv, Roman; ...
2016-08-13
We report on the formation of Pt nanoparticle monolayers by electrophoretic deposition from nonpolar solvents. First, the growth kinetics of Pt nanoparticles prepared by the reverse micelle technique are described in detail. Second, a model of nanoparticle charging in nonpolar media is discussed and methods to control the nanoparticle charging are proposed. Lastly, essential parameters of the electrophoretic deposition process to control the deposition of nanoparticle monolayers are discussed and mechanisms of their formation are analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cernohorsky, Ondrej; Grym, Jan; Yatskiv, Roman
We report on the formation of Pt nanoparticle monolayers by electrophoretic deposition from nonpolar solvents. First, the growth kinetics of Pt nanoparticles prepared by the reverse micelle technique are described in detail. Second, a model of nanoparticle charging in nonpolar media is discussed and methods to control the nanoparticle charging are proposed. Lastly, essential parameters of the electrophoretic deposition process to control the deposition of nanoparticle monolayers are discussed and mechanisms of their formation are analyzed.
Approximation methods in relativistic eigenvalue perturbation theory
NASA Astrophysics Data System (ADS)
Noble, Jonathan Howard
In this dissertation, three questions, concerning approximation methods for the eigenvalues of quantum mechanical systems, are investigated: (i) What is a pseudo--Hermitian Hamiltonian, and how can its eigenvalues be approximated via numerical calculations? This is a fairly broad topic, and the scope of the investigation is narrowed by focusing on a subgroup of pseudo--Hermitian operators, namely, PT--symmetric operators. Within a numerical approach, one projects a PT--symmetric Hamiltonian onto an appropriate basis, and uses a straightforward two--step algorithm to diagonalize the resulting matrix, leading to numerically approximated eigenvalues. (ii) Within an analytic ansatz, how can a relativistic Dirac Hamiltonian be decoupled into particle and antiparticle degrees of freedom, in appropriate kinematic limits? One possible answer is the Foldy--Wouthuysen transform; however, there are alter- native methods which seem to have some advantages over the time--tested approach. One such method is investigated by applying both the traditional Foldy--Wouthuysen transform and the "chiral" Foldy--Wouthuysen transform to a number of Dirac Hamiltonians, including the central-field Hamiltonian for a gravitationally bound system; namely, the Dirac-(Einstein-)Schwarzschild Hamiltonian, which requires the formal- ism of general relativity. (iii) Are there are pseudo--Hermitian variants of Dirac Hamiltonians that can be approximated using a decoupling transformation? The tachyonic Dirac Hamiltonian, which describes faster-than-light spin-1/2 particles, is gamma5--Hermitian, i.e., pseudo-Hermitian. Superluminal particles remain faster than light upon a Lorentz transformation, and hence, the Foldy--Wouthuysen program is unsuited for this case. Thus, inspired by the Foldy--Wouthuysen program, a decoupling transform in the ultrarelativistic limit is proposed, which is applicable to both sub- and superluminal particles.
Wang, Wei; Wang, Zongyuan; Wang, Jiajun; Zhong, Chuan‐Jian
2017-01-01
Carbon‐supported platinum (Pt) and palladium (Pd) alloy catalyst has become a promising alternative electrocatalyst for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. In this work, the synthesis of highly active and stable carbon‐supported Pt–Pd alloy catalysts is reported with a room‐temperature electron reduction method. The alloy nanoparticles thus prepared show a particle size around 2.6 nm and a core–shell structure with Pt as the shell. With this structure, the breaking of O–O bands and desorption of OH are both promoted in electrocatalysis of ORR. In comparison with the commercial Pt/C catalyst prepared by conventional method, the mass activity of the Pt–Pd/C catalyst for ORR is shown to increase by a factor of ≈4. After 10 000‐cycle durability test, the Pt–Pd/C catalyst is shown to retain 96.5% of the mass activity, which is much more stable than that of the commercial Pt/C catalyst. PMID:28435780
Suga, Hiroshi; Sumiya, Touru; Furuta, Shigeo; Ueki, Ryuichi; Miyazawa, Yosuke; Nishijima, Takuya; Fujita, Jun-ichi; Tsukagoshi, Kazuhito; Shimizu, Tetsuo; Naitoh, Yasuhisa
2012-10-24
A method for fabricating single-crystalline nanogaps on Si substrates was developed. Polycrystalline Pt nanowires on Si substrates were broken down by current flow under various gaseous environments. The crystal structure of the nanogap electrode was evaluated using scanning electron microscopy and transmission electron microscopy. Nanogap electrodes sandwiched between Pt-large-crystal-grains were obtained by the breakdown of the wire in an O(2) or H(2) atmosphere. These nanogap electrodes show intense spots in the electron diffraction pattern. The diffraction pattern corresponds to Pt (111), indicating that single-crystal grains are grown by the electrical wire breakdown process in an O(2) or H(2) atmosphere. The Pt wires that have (111)-texture and coherent boundaries can be considered ideal as interconnectors for single molecular electronics. The simple method for fabrication of a single-crystalline nanogap is one of the first steps toward standard nanogap electrodes for single molecular instruments and opens the door to future research on physical phenomena in nanospaces.
Pt-Pd bimetallic nanoparticles on MWCNTs: catalyst for hydrogen peroxide electrosynthesis
NASA Astrophysics Data System (ADS)
Félix-Navarro, R. M.; Beltrán-Gastélum, M.; Salazar-Gastélum, M. I.; Silva-Carrillo, C.; Reynoso-Soto, E. A.; Pérez-Sicairos, S.; Lin, S. W.; Paraguay-Delgado, F.; Alonso-Núñez, G.
2013-08-01
Bimetallic nanoparticles of Pt-Pd were deposited by the microemulsion method on a multiwall carbon nanotube (MWCNTs) to obtain a Pt-Pd/MWCNTs for electrocatalytic reduction of O2 to H2O2. The activity and selectivity of the catalyst was determined qualitatively by the rotating disk electrode method in acidic medium. The catalyst was spray-coated onto a reticulated vitreous carbon substrate and quantitatively was tested in bulk electrolysis for 20 min under potentiostatic conditions (0.5 V vs Ag/AgCl) in a 0.5 M H2SO4 electrolyte using dissolved O2. The bulk electrolysis experiments show that the Pt-Pd/MWCNTs catalyst is more efficient for H2O2 electrogeneration than a MWCNTs catalyst. Nitrobenzene degradation by electrogenerated H2O2 alone and Electro-Fenton process were also tested. Our results show that both processes decompose nitrobenzene, but the Electro-Fenton process does it more efficiently. The prepared nanoparticulated catalyst shows a great potential in environmental applications.
NASA Astrophysics Data System (ADS)
Cheng, Tianqiong; Wang, Jianli; Wang, Suning; Cui, Yajuan; Zhang, Hailong; Yan, Shuang; Yuan, Shandong; Chen, Yaoqiang
2017-12-01
Citric acid (CA), as the chelating agent, was introduced to obtain the enhanced Pt dispersion and catalytic activities for the Pt-based catalysts supported on oxygen-storage material. The role and content of CA were investigated systematically. It was found that the citric acid-assisted catalysts showed better Pt dispersion and smaller nanoparticle size of Pt. Thus, the catalyst had lower reduction temperature, preferable thermostability and possessed more oxidation state of Pt species under the oxidation atmosphere. The citric acid-induced fresh catalysts were excellent to convert CO and the corresponding aged ones exhibited higher activities for the elimination of all the target pollutants. Among the aged catalysts, P2-a (the mole ratio of Pt/CA is 2:1) presented the best performance. Particularly, compared with the reference sample (Pc-a), the light-off temperatures (T50) of NO, HC and CO for P2-a decreased by 39 °C, 42 °C and 72 °C, respectively, and the full-conversion temperatures (T90) of NO, HC and CO for P2-a decreased by 44 °C, 44 °C and 48 °C, respectively. Therefore, this work provides a facile and valid method to manufacture advanced catalysts for purification of the vehicle exhaust in the future.
NASA Astrophysics Data System (ADS)
Ponken, Tanachai; Tagsin, Kamonlapron; Suwannakhun, Chuleerat; Luecha, Jakkrit; Choawunklang, Wijit
2017-09-01
Pt counter electrode was coated by electrochemical method. Electrolyte solution was synthesized by platinum (IV) choloride (PtCl4) powder dissolved in hydrochloric acid solution. Pt films were deposited on the FTO substrate. Deposition time of 10, 30 and 60 minutes, the coating current of 5, 10, 15 and 20 mA and electrolyte solution temperatures for Pt layer synthesis of 25, 30 and 40°C were varied. Surface morphology and optical properties was analyzed by digital microscopic and UV-vis spectrophotometer. Pt films exhibit uniform surface area highly for all the conditions of coating current in the deposition time of 30 and 40 minutes at 40°C. Transmittance values of Pt films deposited on FTO substrate has approximately of 5 to 50 % show that occur high reflection corresponding to dye molecule absorption increases. DSSC device was fabricated from the TiO2 standard and immersed in dye N719 for 24 hours. Efficiency was measured by solar simulator. Efficiency value obtains as high as 5.91 % for the coating current, deposition time and solution temperature of 15 mA, 30 minutes and 40°C. Summary, influence of temperature effects efficiency increasing. Pt counter electrode can be prepared easily and the suitable usefully for DSSC.
Department of Energy Technology Readiness Assessments - Process Guide and Training Plan
2008-09-12
Hanford Waste Treatment and Immobilization Plant ( WTP ) Analytical Laboratory, Low Activity Waste (LAW) Facility and Balance of Facilities (3 TRAs... WTP High-Level Waste (HLW) Facility – WTP Pre-Treatment (PT) Facility – Hanford River Protection Project Low Activity Waste Treatment Alternatives
Materials Data on K2H6PtC4N4O3 (SG:60) by Materials Project
Kristin Persson
2014-07-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Effect of Pt Nanoparticles on the Photocatalytic Activity of ZnO Nanofibers
NASA Astrophysics Data System (ADS)
Di Mauro, Alessandro; Zimbone, Massimo; Scuderi, Mario; Nicotra, Giuseppe; Fragalà, Maria Elena; Impellizzeri, Giuliana
2015-12-01
For this study, we originally realized ZnO nanofibers (˜50 nm in mean radius) mixed with Pt nanoparticles (˜30 nm in mean radius), prepared by pulsed laser ablation in liquid, and investigated their photocatalytic performance. The material was synthesized by the simple electrospinning method coupled with subsequent thermal treatments. Methylene blue was employed as a representative dye pollutant to evaluate the photocatalytic activity of the nanofibers. It was found that the Pt-ZnO fibers exhibit a photodegradation reaction rate that is ˜40 % higher than the one obtained for reference ZnO fibers. These encouraging results demonstrate that Pt-ZnO nanofibers can be fruitfully applied for environmental applications.
Low-lying electromagnetic transition strengths in 180Pt
NASA Astrophysics Data System (ADS)
Müller-Gatermann, C.; Dewald, A.; Fransen, C.; Braunroth, T.; Jolie, J.; Litzinger, J.; Régis, J. M.; von Spee, F.; Warr, N.; Zell, K. O.; Grahn, T.; Greenlees, P. T.; Hauschild, K.; Jakobsson, U.; Julin, R.; Juutinen, S.; Ketelhut, S.; Nieminen, P.; Nyman, M.; Peura, P.; Rahkila, P.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Sorri, J.; Stolze, S.; Uusitalo, J.; Petkov, P.
2018-02-01
Lifetime measurements have been performed using the 98Mo(86Kr,4 n )180Pt reaction at a beam energy of 380 MeV, and the recoil distance Doppler-shift method. In a second experiment the 168Yb(16O,4 n )180Pt reaction at a beam energy of 88 MeV using the Ge-gated γ -γ fast timing technique was used to determine lifetimes. Lifetimes of the four lowest yrast states of 180Pt have been determined. The experimental data are compared to calculations within the framework of the interacting boson model and the general collective model. Both models predict a deformed ground state and are consistent with all the remaining experimental results.
Gabriel, Erin E.; Gilbert, Peter B.
2014-01-01
Principal surrogate (PS) endpoints are relatively inexpensive and easy to measure study outcomes that can be used to reliably predict treatment effects on clinical endpoints of interest. Few statistical methods for assessing the validity of potential PSs utilize time-to-event clinical endpoint information and to our knowledge none allow for the characterization of time-varying treatment effects. We introduce the time-dependent and surrogate-dependent treatment efficacy curve, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\mathrm {TE}}(t|s)$\\end{document}, and a new augmented trial design for assessing the quality of a biomarker as a PS. We propose a novel Weibull model and an estimated maximum likelihood method for estimation of the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\mathrm {TE}}(t|s)$\\end{document} curve. We describe the operating characteristics of our methods via simulations. We analyze data from the Diabetes Control and Complications Trial, in which we find evidence of a biomarker with value as a PS. PMID:24337534
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Liming; Fu, Honggang, E-mail: fuhg@vip.sina.com; Key Laboratory of Functional Inorganic Material Chemistry, Heilongjiang University, Harbin 150080
2014-01-01
Graphical abstract: The WC nanoparticles are well dispersed in the carbon matrix. The size of WC nanoparticles is about 30 nm. It can be concluded that tungsten carbide and carbon composite was successfully prepared by the present synthesis conditions. - Highlights: • The WC/PC composite with high specific surface area was prepared by a simple way. • The Pt/WC/PC catalyst has superior performance toward methanol electro-oxidation. • The current density for methanol electro-oxidation is as high as 595.93 A g{sup −1} Pt. • The Pt/WC/PC catalyst shows better durability and stronger CO electro-oxidation. • The performance of Pt/WC/PC is superiormore » to the commercial Pt/C (JM) catalyst. - Abstract: Tungsten carbide/porous carbon (WC/PC) composites have been successfully synthesized through a surfactant assisted evaporation-induced-assembly method, followed by a thermal treatment process. In particular, WC/PC-35-1000 composite with tungsten content of 35% synthesized at the carbonized temperature of 1000 °C, exhibited a specific surface area (S{sub BET}) of 457.92 m{sup 2} g{sup −1}. After loading Pt nanoparticles (NPs), the obtained Pt/WC/PC-35-1000 catalyst exhibits the highest unit mass electroactivity (595.93 A g{sup −1} Pt) toward methanol electro-oxidation, which is about 2.6 times as that of the commercial Pt/C (JM) catalyst. Furthermore, the Pt/WC/PC-35-1000 catalyst displays much stronger resistance to CO poisoning and better durability toward methanol electrooxidation compared with the commercial Pt/C (JM) catalyst. The high electrocatalytic activity, strong poison-resistivity and good stability of Pt/WC/PC-35-1000 catalyst are attributed to the porous structures and high specific surface area of WC/PC support could facilitate the rapid mass transportation. Moreover, synergistic effect between WC and Pt NPs is favorable to the higher catalytic performance.« less
Li, Luyao; Liu, Haiqing; Qin, Chao; ...
2018-02-28
Pt-based alloys denote promising catalysts for the methanol oxidation reaction (MOR) and the ethanol oxidation reaction (EOR), due to their enhanced activity toward alcohol-oxidation reactions and reduced cost as compared with Pt alone. Among all of these binary systems, PtSn has been reported to exhibit superior methanol/ethanol oxidation activity. In this paper, we deliberatively tailor chemical composition, reduce size, and optimize morphology of the catalyst in an effort to understand structure–property correlations that can be used to improve upon the electrocatalytic activity of these systems. Previous work performed by our group suggested that Pt-based catalysts, possessing an ultrathin one-dimensional (1D)more » structure, dramatically promote both cathodic and anodic reactions with respect to their zero-dimensional (0D) counterparts. Herein, a novel set of ultrathin binary Pt–Sn 1D nanowire (NW) catalysts with rationally controlled chemical compositions, i.e., Pt 9Sn 1, Pt 8Sn 2, and Pt 7Sn 3, has been synthesized using a facile, room-temperature, wet-solution-based method. The crystallinity and chemical composition of these as-prepared samples were initially characterized using XRD, XPS, and EDX. Results revealed that this synthetic protocol could successfully generate PtSn alloys with purposely tunable chemical compositions. TEM and HRTEM verified the structural integrity of our ultrathin 1D NW morphology for our Pt 9Sn 1, Pt 8Sn 2, and Pt 7Sn 3 samples. The effects of varying Sn content within these alloy samples toward the electro-oxidation reaction of methanol and ethanol were probed using cyclic voltammetry (CV) in acidic media. Finally, within this series, we find that the optimized chemical composition for both the MOR and the EOR is Pt 7Sn 3.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Luyao; Liu, Haiqing; Qin, Chao
Pt-based alloys denote promising catalysts for the methanol oxidation reaction (MOR) and the ethanol oxidation reaction (EOR), due to their enhanced activity toward alcohol-oxidation reactions and reduced cost as compared with Pt alone. Among all of these binary systems, PtSn has been reported to exhibit superior methanol/ethanol oxidation activity. In this paper, we deliberatively tailor chemical composition, reduce size, and optimize morphology of the catalyst in an effort to understand structure–property correlations that can be used to improve upon the electrocatalytic activity of these systems. Previous work performed by our group suggested that Pt-based catalysts, possessing an ultrathin one-dimensional (1D)more » structure, dramatically promote both cathodic and anodic reactions with respect to their zero-dimensional (0D) counterparts. Herein, a novel set of ultrathin binary Pt–Sn 1D nanowire (NW) catalysts with rationally controlled chemical compositions, i.e., Pt 9Sn 1, Pt 8Sn 2, and Pt 7Sn 3, has been synthesized using a facile, room-temperature, wet-solution-based method. The crystallinity and chemical composition of these as-prepared samples were initially characterized using XRD, XPS, and EDX. Results revealed that this synthetic protocol could successfully generate PtSn alloys with purposely tunable chemical compositions. TEM and HRTEM verified the structural integrity of our ultrathin 1D NW morphology for our Pt 9Sn 1, Pt 8Sn 2, and Pt 7Sn 3 samples. The effects of varying Sn content within these alloy samples toward the electro-oxidation reaction of methanol and ethanol were probed using cyclic voltammetry (CV) in acidic media. Finally, within this series, we find that the optimized chemical composition for both the MOR and the EOR is Pt 7Sn 3.« less
Lower Extremity Kinematics During a Drop Jump in Individuals With Patellar Tendinopathy
Rosen, Adam B.; Ko, Jupil; Simpson, Kathy J.; Kim, Seock-Ho; Brown, Cathleen N.
2015-01-01
Background: Patellar tendinopathy (PT) is a common degenerative condition in physically active populations. Knowledge regarding the biomechanics of landing in populations with symptomatic PT is limited, but altered mechanics may play a role in the development or perpetuation of PT. Purpose: To identify whether study participants with PT exhibited different landing kinematics compared with healthy controls. Study Design: Controlled laboratory study. Methods: Sixty recreationally active participants took part in this study; 30 had current signs and symptoms of PT, including self-reported pain within the patellar tendon during loading activities for at least 3 months and ≤80 on the Victorian Institute of Sport Assessment Scale–Patella (VISA-P). Thirty healthy participants with no history of PT or other knee joint pathology were matched by sex, age, height, and weight. Participants completed 5 trials of a 40-cm, 2-legged drop jump followed immediately by a 50% maximum vertical jump. Dependent variables of interest included hip, knee, and ankle joint angles at initial ground contact, peak angles, and maximum angular displacements during the landing phase in 3 planes. Independent-samples t tests (P ≤ .05) were utilized to compare the joint angles and angular displacements between PT and control participants. Results: Individuals with PT displayed significantly decreased peak hip (PT, 59.2° ± 14.6°; control, 67.2° ± 13.9°; P = .03) and knee flexion angles (PT, 74.8° ± 13.2°; control, 82.5° ± 9.0°; P = .01) compared with control subjects. The PT group displayed decreased maximum angular displacement in the sagittal plane at the hip (PT, 49.3° ± 10.8°; control, 55.2° ± 11.4°; P = .04) and knee (PT, 71.6° ± 8.4°; control, 79.7° ± 8.3°; P < .001) compared with the control group. Conclusion: Participants with PT displayed decreased maximum flexion and angular displacement in the sagittal plane, at both the knee and the hip. The altered movement patterns in those with PT may be perpetuating symptoms associated with PT and could be due to the contributions of the rectus femoris during dynamic movement. Clinical Relevance: Based on kinematic alterations in symptomatic participants, rehabilitation efforts may benefit from focusing on both the knee and the hip to treat symptoms associated with PT. PMID:26665034
NASA Astrophysics Data System (ADS)
Shen, Peichuan
In recent decades, semiconductor photocatalysis has attracted a growing attention as a possible alternative to existing methods of hydrogen production, hydrocarbon conversion and organic compound oxidation. Many types of photocatalysts have been developed and tested for photocatalytic applications. However, most of them do not have notable activity in visible light region, which limits their practical applications. Development of photocatalysts, which can be activated by visible light provides a promising way forward to utilize both UV and visible portions of solar spectrum. In this thesis, two main methods to advance visible light driven photocatalysis, such as bandgap modification through doping and co-catalyst development, are investigated. The photocatalysts studied in this thesis included CdS and SrTiO3, which were extensively investigated and characterized. Rhodium doped strontium titanate was synthesized through different preparation methods. The synthesized samples have been investigated by various characterization techniques including XRD, TEM, STEM, XPS and UV-Vis spectroscopy. The effect of preparation conditions, such as doping concentration, calcination temperature and pH have been investigated and optimized. In addition, the photocatalytic activities for hydrogen production of the samples synthesized by different preparation methods were also studied. Among the preparation methods, polymerizable complex (PC) method was found to be the most effective synthesis method for SrTiO3: Rh. The samples prepared by PC method had higher photocatalytic activity as compared to that of samples synthesized by solid state reaction method and hydrothermal method. The reasons might be attributed to more effective doping and higher surface area. The results of this work suggest that PC method can also be applied to develop other perovskite materials for photocatalytic applications. Co-catalyst development for enhancement of photocatalytic hydrogen production is also described in this dissertation. Noble metal nanoparticles have been proved to be effective co-catalysts due to their unique physical and chemical properties. Au and Pt nanoparticles with different sizes were synthesized and deposited on CdS. Sub-nanometer Au and Pt were found to be promising co-catalysts for photocatalytic hydrogen production reaction. Specifically, sub-nm Au and sub-nm Pt nanoparticles were found to enhance the photocatalytic activity in hydrogen production of CdS by 35 and 15 times respectively. Other noble metal co-catalysts, such as Ru, Pd and Rh were also deposited on CdS and their photocatalytic activities were investigated. Additionally, a novel chamber for photocatalytic reactions was developed as a part of this dissertation. The reaction chamber has several unique features allowing different reactions and measurements. The reactor was proved to be suitable for future projects in photocatalysis such as photocatalytic CO2 conversion into hydrocarbons.
Park, Jinho; Zhang, Lei; Choi, Sang-Il; ...
2015-02-08
We systematically evaluated two different approaches to the syntheses of Pd@PtnL (n = 2–5) core–shell octahedra. We initially prepared the core–shell octahedra using a polyol-based route by titrating a Pt(IV) precursor into the growth solution containing Pd octahedral seeds at 200 °C through the use of a syringe pump. The number of Pt atomic layers could be precisely controlled from two to five by increasing the volume of the precursor solution while fixing the amount of seeds. We then demonstrated the synthesis of Pd@Pt nL octahedra using a water-based route at 95 °C through the one-shot injection of a Pt(II)more » precursor. Due to the large difference in reaction temperature, the Pd@Pt nL octahedra obtained via the water-based route showed sharper corners than their counterparts obtained through the polyol-based route. When compared to a commercial Pt/C catalyst based upon 3.2 nm Pt particles, the Pd@Pt nL octahedra prepared using both methods showed similar remarkable enhancement in terms of activity (both specific and mass) and durability toward the oxygen reduction reaction. These calculations based upon periodic, self-consistent density functional theory suggested that the enhancement in specific activity for the Pd@Pt nL octahedra could be attributed to the destabilization of OH on their Pt nL*/Pd(111) surface relative to the {111} and {100} facets exposed on the surface of Pt/C. Finally. the destabilization of OH facilitates its hydrogenation, which was found to be the rate-limiting step of the oxygen reduction reaction on all these surfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jan, Nuzhat; Balik, Salim; Hugo, Geoffrey D.
Purpose: To analyze primary tumor (PT) and lymph node (LN) position changes relative to each other and relative to anatomic landmarks during conventionally fractionated radiation therapy for patients with locally advanced lung cancer. Methods and Materials: In 12 patients with locally advanced non-small cell lung cancer PT, LN, carina, and 1 thoracic vertebra were manually contoured on weekly 4-dimensional fan-beam CT scans. Systematic and random interfraction displacements of all contoured structures were identified in the 3 cardinal directions, and resulting setup margins were calculated. Time trends and the effect of volume changes on displacements were analyzed. Results: Three-dimensional displacement vectorsmore » and systematic/random interfraction displacements were smaller for carina than for vertebra both for PT and LN. For PT, mean (SD) 3-dimensional displacement vectors with carina-based alignment were 7 (4) mm versus 9 (5) mm with bony anatomy (P<.0001). For LN, smaller displacements were found with carina- (5 [3] mm, P<.0001) and vertebra-based (6 [3] mm, P=.002) alignment compared with using PT for setup (8 [5] mm). Primary tumor and LN displacements relative to bone and carina were independent (P>.05). Displacements between PT and bone (P=.04) and between PT and LN (P=.01) were significantly correlated with PT volume regression. Displacements between LN and carina were correlated with LN volume change (P=.03). Conclusions: Carina-based setup results in a more reproducible PT and LN alignment than bony anatomy setup. Considering the independence of PT and LN displacement and the impact of volume regression on displacements over time, repeated CT imaging even with PT-based alignment is recommended in locally advanced disease.« less
Exercise Intervention for Cancer Survivors with Heart Failure: Two Case Reports
Hughes, Daniel C.; Lenihan, Daniel J.; Harrison, Carol A.; Basen-Engquist, Karen M.
2011-01-01
Rationale Cardiotoxicity is a troubling long-term side effect of chemotherapy cancer treatment, affecting therapy and quality of life (QOL). Exercise is beneficial in heart failure (HF) patients and in cancer survivors without HF, but has not been tested in cancer survivors with treatment induced HF. Methods We present case studies for two survivors: a 56-year old female Hodgkin’s lymphoma survivor (Pt 1) and a 44-year old male leukemia survivor (Pt 2). We conducted a 16-week exercise program with the goal of 30 minutes of exercise performed 3 times per week at a minimum intensity of 50% heart rate reserve (HRR) or ‘12’ rating of perceived exertion (RPE). Results Pt 1 improved from 11.5 minutes of exercise split over two bouts at an RPE of 14 to a 30 minute bout at an RPE of 15. Pt 2 improved from 11 minutes of exercise split over two bouts at an RPE of 12 to an 18 minute bout at an RPE of 12. Both improved in VO2 peak (Pt 1: 13.9 to 14.3 mlO2/kg/min; Pt 2: 12.5 to 18.7 mlO2/kg/min). Ejection fraction increased for Pt 2 (25–30% to 35–40%) but not for Pt 1 (35–40%). QOL as assessed by the SF-36 Physical Component Scale (PCS) improved from 17.79 to 25.31 for Pt 1 and the Mental Component Scale (MCS) improved from 43.84 to 56.65 for Pt 1 and from 34.79 to 44.45 for Pt 2. Conclusions Properly designed exercise interventions can improve physical functioning and quality of life for this growing group of survivors. PMID:21709755
76 FR 159 - Discretionary Grant Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-03
... detection of iron deficiency, another pediatric health issue. Proficiency testing (PT) is a proven method... monthly PT and other lab quality improvement tools to nearly 600 laboratories across the U.S. and beyond... Competition: The participation of large numbers of these labs in voluntary proficiency was by design, and...
Enhanced End-Contacts by Helium Ion Bombardment to Improve Graphene-Metal Contacts
Jia, Kunpeng; Su, Yajuan; Zhan, Jun; Shahzad, Kashif; Zhu, Huilong; Zhao, Chao; Luo, Jun
2016-01-01
Low contact resistance between graphene and metals is of paramount importance to fabricate high performance graphene-based devices. In this paper, the impact of both defects induced by helium ion (He+) bombardment and annealing on the contact resistance between graphene and various metals (Ag, Pd, and Pt) were systematically explored. It is found that the contact resistances between all metals and graphene are remarkably reduced after annealing, indicating that not only chemically adsorbed metal (Pd) but also physically adsorbed metals (Ag and Pt) readily form end-contacts at intrinsic defect locations in graphene. In order to further improve the contact properties between Ag, Pd, and Pt metals and graphene, a novel method in which self-aligned He+ bombardment to induce exotic defects in graphene and subsequent thermal annealing to form end-contacts was proposed. By using this method, the contact resistance is reduced significantly by 15.1% and 40.1% for Ag/graphene and Pd/graphene contacts with He+ bombardment compared to their counterparts without He+ bombardment. For the Pt/graphene contact, the contact resistance is, however, not reduced as anticipated with He+ bombardment and this might be ascribed to either inappropriate He+ bombardment dose, or inapplicable method of He+ bombardment in reducing contact resistance for Pt/graphene contact. The joint efforts of as-formed end-contacts and excess created defects in graphene are discussed as the cause responsible for the reduction of contact resistance. PMID:28335286
NASA Astrophysics Data System (ADS)
Liu, Wei; Repo, Eveliina; Heikkilä, Mikko; Leskelä, Markku; Sillanpää, Mika
2010-10-01
Novel hollow and solid paramecium-like hierarchical Au/Pt bimetallic nanostructures were constructed using goethite as template via a seed-mediated growth method. Transmission electron microscopy (TEM), ξ-potential measurement, UV-vis spectroscopy, energy dispersive x-ray spectroscopy (EDS), ICP-AES measurement, x-ray powder diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) were utilized to systematically characterize the bimetallic nanostructures. It is found that the core structure of the paramecium-like bimetallic nanomaterial is closely related to reducing agent. When ascorbic acid is used as reducing agent, goethite serves as in situ sacrificed template and hollow paramecium-like bimetallic structure is obtained. When NH2OH·HCl is used, solid nanostructure with preserved goethite core is produced. Heating the reaction solution is necessary to obtain the paramecium-like morphology with rough interconnected Pt cilia shell. The thickness of Pt cilia layer can be controlled by adjusting the molar ratio of H2PtCl6 to Au nanoseeds. The overgrowth of the rough Pt cilia is proposed to be via an autocatalytic and three-dimensional heterogeneous nucleation process first through flower-like morphology. Both the hollow and solid hierarchical paramecium-like Au/Pt bimetallic nanostructures show good catalytic activities.
Liu, Wei; Repo, Eveliina; Heikkilä, Mikko; Leskelä, Markku; Sillanpää, Mika
2010-10-01
Novel hollow and solid paramecium-like hierarchical Au/Pt bimetallic nanostructures were constructed using goethite as template via a seed-mediated growth method. Transmission electron microscopy (TEM), xi-potential measurement, UV-vis spectroscopy, energy dispersive x-ray spectroscopy (EDS), ICP-AES measurement, x-ray powder diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) were utilized to systematically characterize the bimetallic nanostructures. It is found that the core structure of the paramecium-like bimetallic nanomaterial is closely related to reducing agent. When ascorbic acid is used as reducing agent, goethite serves as in situ sacrificed template and hollow paramecium-like bimetallic structure is obtained. When NH(2)OH.HCl is used, solid nanostructure with preserved goethite core is produced. Heating the reaction solution is necessary to obtain the paramecium-like morphology with rough interconnected Pt cilia shell. The thickness of Pt cilia layer can be controlled by adjusting the molar ratio of H(2)PtCl(6) to Au nanoseeds. The overgrowth of the rough Pt cilia is proposed to be via an autocatalytic and three-dimensional heterogeneous nucleation process first through flower-like morphology. Both the hollow and solid hierarchical paramecium-like Au/Pt bimetallic nanostructures show good catalytic activities.
Bai, Wushuang; Sheng, Qinglin; Zheng, Jianbin
2016-07-21
In this paper, we report a novel morphology-controlled synthetic method. Platinum (Pt) nanoparticles with three kinds of morphology (aggregation-like, cube-like and globular) were grown on the surface of graphene oxide (GO) using a simple gas-liquid interfacial reaction and Pt/GO nanocomposites were obtained successfully. According to the experimental results, the morphology of the Pt nanoparticles can be controlled by adjusting the reaction temperature with the protection of chitosan. The obtained Pt/GO nanocomposites were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR). Then the Pt/GO nanocomposites with the three kinds of morphology were all used to fabricate electrochemical sensors. The electrochemical experimental results indicated that compared with various reported electrochemical sensors, the Pt/GO modified sensors in this work exhibit a low detection limit, high sensitivity and an extra wide linear range for the detection of nitrite. In addition, the synthesis of Pt particles based on a gas-liquid interfacial reaction provides a new platform for the controllable synthesis of nanomaterials.
Development of Ternary and Quaternary Catalysts for the Electrooxidation of Glycerol
Artem, L. M.; Santos, D. M.; De Andrade, A. R.; Kokoh, K. B.; Ribeiro, J.
2012-01-01
This work consisted in the preparation of platinum-based catalysts supported on carbon (Vulcan XC-72) and investigation of their physicochemical and electrochemical properties. Catalysts of the C/Pt-Ni-Sn-Me (Me = Ru or Ir) type were prepared by the Pechini method at temperature of 350°C. Four different compositions were homemade: C/Pt60Sn10Ni30, C/Pt60Sn10Ni20Ru10, C/Pt60Sn10Ni10Ru20, and C/Pt60Sn10Ni10Ir20. These catalysts were electrochemically and physically characterized by cyclic voltammetry (CV), chronoamperometry (CA) in the presence of glycerol 1.0 mol dm−3, X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). XRD results showed the main peaks of face-centered cubic Pt. The particle sizes obtained from XRD and HRTEM experiments were close to values ranging from 3 to 8.5 nm. The CV results indicate behavior typical of Pt-based catalysts in acid medium. The CV and CA data reveal that quaternary catalysts present the highest current density for the electrooxidation of glycerol. PMID:22623905
Growth, Crystal Structure and Magnetic Characterization of Zn-Stabilized CePtIn4
NASA Astrophysics Data System (ADS)
Carnicom, Elizabeth M.; Klimczuk, Tomasz; von Rohr, Fabian; Winiarski, Michal J.; Kong, Tai; Stolze, Karoline; Xie, Weiwei; Kushwaha, Satya K.; Cava, Robert J.
2017-08-01
The growth and characterization of CePtIn4, stabilized by 10% Zn substitution for In, is reported. The new material is orthorhombic, space group Cmcm (No. 63), with lattice parameters a = 4.51751(4) Å, b = 16.7570(2) Å, and c = 7.36682(8) Å, and the refined crystal composition has 10% of Zn substituted for In, i.e., the crystals are CePt(In0.9Zn0.1)4. Crystals were grown using a self-flux method: only growths containing Zn yielded CePtIn4 crystals, while Ce3Pt4In13 crystals formed when Zn was not present. Anisotropic temperature-dependent magnetic susceptibilities for single crystals show that Zn-stabilized CePtIn4 orders magnetically at ˜1.9 K. High-temperature Curie-Weiss fits indicate an effective moment of ˜2.49 μB/Ce and a directionally averaged Weiss-temperature of approximately -31 K. Specific heat data shows a peak consistent with the ordering temperature seen in the magnetic susceptibility data. Zn-stabilized CePtIn4 is metallic and displays no superconducting transition down to 0.14 K.
NASA Astrophysics Data System (ADS)
Melliana, Armen, Yusrizal, Akmal, Syarifah
2017-11-01
PT Nira Murni construction is a contractor of PT Chevron Pacific Indonesia which engaged in contractor, fabrication, maintenance construction suppliers, and labor services. The high of accident rate in this company is caused the lack of awareness of workplace safety. Therefore, it requires an effort to reduce the accident rate on the company so that the financial losses can be minimized. In this study, Safe T-Score method is used to analyze the accident rate by measuring the level of frequency. Analysis is continued using risk management methods which identify hazards, risk measurement and risk management. The last analysis uses Job safety analysis (JSA) which will identify the effect of accidents. From the result of this study can be concluded that Job Safety Analysis (JSA) methods has not been implemented properly. Therefore, JSA method needs to follow-up in the next study, so that can be well applied as prevention of occupational accidents.
Platelet-Rich Plasma Treatment With Physical Therapy in Chronic Partial Supraspinatus Tears
Ilhanli, Ilker; Guder, Necip; Gul, Murat
2015-01-01
Background: Despite the insufficient evidence, due to potential contribution to the improvement, platelet-rich plasma (PRP) is emerging as a promising method. Objectives: The aim of this study was to assess the effectiveness of PRP injection in partial supraspinatus tears by comparing with physical therapy (PT). Patients and Methods: Seventy patients with chronic partial supraspinatus tears in magnetic resonance imaging were randomized into two groups; PRP (n = 35) and PT (n = 35). Before the treatment, at the end of the treatment and at the 12th month after the end of the treatment, range of motion (ROM), visual analog scale (VAS) for pain, Disabilities of Arm, Shoulder and Hand questionnaire (DASH), Neer’s, Hawkins’ and drop arm tests and Beck Depression Inventory were investigated. Results: Statistical analysis was made for 62 subjects (PRP group, n = 30; PT group, n = 32). There were no differences between the groups according to demographic data. At the 12th month after the end of the treatment, significant improvement in ROM was detected in both groups, pain was reduced significantly in both groups and improvement of the DASH score was observed in both groups. At all the evaluation steps, increases in ROM degrees were significantly higher in the PT group than the PRP group. For VAS in activity and in rest, after the treatment, improvement was higher in the PT group than the PRP group. However, improvement of the DASH score of the PRP group was significantly better than the PT group. Conclusions: When we compared with PT, PRP seemed to be a well-tolerated application which showed promising results in patients with chronic partial supraspinatus tears. PMID:26473076
Biomonitoring of a worker population exposed to platinum dust in a catalyst production plant
Petrucci, F; Violante, N; Senofonte, O; Cristaudo, A; Di, G; Forte, G; Alimonti, A
2005-01-01
Aims: To evaluate the occupational exposure to platinum in an industrial plant engaged in the production, recovery, and recycling of catalytic converters for the automotive traction and chemical industries. Methods: Pt was determined in airborne particulate matter, and blood, urine, and hair of 106 exposed workers, 21 controls from the plant's administrative offices, and 25 unexposed subjects. Results: The highest air Pt level was found in the department of the plant in which supports are coated with acid metal solutions, where values of 2.39 and 4.83 µg/m3 respectively were found in environmental airborne particulate matter and in air collected using personal sampler devices. The percentage of soluble Pt was also highest in this area, varying from 24% to 44% of the total. The biological data confirmed this trend, with mean concentrations in this site being higher than in other working areas: 1.86 µg/l (urine), 0.38 µg/l (blood), and 2.26 µg/kg (hair). The workers employed in the administrative sector, who were not directly exposed to Pt, had levels of contaminant lower than those of other workers, albeit 2–20 times higher than those of external controls. High correlations were obtained between Pt levels detected in airborne samples using personal devices and those found in urine and hair, but not in blood. Conclusions: The background level of Pt in all areas of the factory implies widespread exposure for the workers. The most reliable biomarker was urine. Hair cannot be considered a good index of time related exposure, at least until more reliable methods of washing can be found that are able to remove exogenous Pt completely. PMID:15613605
Razi, Syed S; Koo, Yun Hee; Kim, Woojae; Yang, Wenbo; Wang, Zhijia; Gobeze, Habtom; D'Souza, Francis; Zhao, Jianzhang; Kim, Dongho
2018-05-07
A boron dipyrromethane (BDP)-containing Pt(II)-Schiff base complex (Pt-BDP), showing ping-pong singlet-triplet energy transfer, was synthesized, and the detailed photophysical properties were investigated using various steady-state and time-resolved transient spectroscopies. Femtosecond/nanosecond transient absorption spectroscopies demonstrated that, upon selective excitation of the BDP unit in Pt-BDP at 490 nm, Förster resonance energy transfer from the BDP unit to the Pt(II) coordination center occurred (6.7 ps), accompanied by an ultrafast intersystem crossing at the Pt(II) coordination center (<1 ps) and triplet-triplet energy transfer back to the BDP moiety (148 ps). These processes generated a triplet state localized at BDP, and the lifetime was 103.2 μs, much longer than the triplet-state lifetime of Pt-Ph (3.5 μs), a complex without the BDP moiety. Finally, Pt-BDP was used as a triplet photosensitizer for triplet-triplet annihilation (TTA) upconversion through selective excitation of the BDP unit or the Pt(II) coordination center at lower excitation energy. An upconversion quantum yield of up to 10% was observed with selective excitation of the BDP moiety, and a large anti-Stokes shift of 0.65 eV was observed upon excitation of the lower-energy band of the Pt(II) coordination center. We propose that using triplet photosensitizers with the ping-pong energy-transfer process may become a useful method for increasing the anti-Stokes shift of TTA upconversion.
NASA Astrophysics Data System (ADS)
Bolotin, H. H.; Stuchbery, A. E.; Morrison, I.; Kennedy, D. L.; Ryan, C. G.; Sie, S. H.
1981-11-01
The lifetimes and lifetime limits of the low-lying excited states up to and including the 6 1+ levels in 196, 198Pt were determined by the recoil-distance method (RDM). Gamma-ray angular distributions in 198Pt were also measured. These states were populated by multiple Coulomb excitation using 220 MeV 58Ni ion beams and the measurements were carried out in coincidence with back-scattered projectiles. The measured mean lives of the states and B(E2) values inferred for the transitions between levels are presented. These specific findings, and the observed structure systematics obtained from the combination of the present results and those of prior workers for the even 194-198Pt isotopes, are critically compared with our structure calculations employing the interacting boson approximation (IBA) model incorporating a symmetry-breaking quadrupole force; evaluative comparisons are also made with boson expansion theory (BET) calculations.
Durability test with fuel starvation using a Pt/CNF catalyst in PEMFC.
Jung, Juhae; Park, Byungil; Kim, Junbom
2012-01-05
In this study, a catalyst was synthesized on carbon nanofibers [CNFs] with a herringbone-type morphology. The Pt/CNF catalyst exhibited low hydrophilicity, low surface area, high dispersion, and high graphitic behavior on physical analysis. Electrodes (5 cm2) were prepared by a spray method, and the durability of the Pt/CNF was evaluated by fuel starvation. The performance was compared with a commercial catalyst before and after accelerated tests. The fuel starvation caused carbon corrosion with a reverse voltage drop. The polarization curve, EIS, and cyclic voltammetry were analyzed in order to characterize the electrochemical properties of the Pt/CNF. The performance of a membrane electrode assembly fabricated from the Pt/CNF was maintained, and the electrochemical surface area and cell resistance showed the same trend. Therefore, CNFs are expected to be a good support in polymer electrolyte membrane fuel cells.
Durability test with fuel starvation using a Pt/CNF catalyst in PEMFC
2012-01-01
In this study, a catalyst was synthesized on carbon nanofibers [CNFs] with a herringbone-type morphology. The Pt/CNF catalyst exhibited low hydrophilicity, low surface area, high dispersion, and high graphitic behavior on physical analysis. Electrodes (5 cm2) were prepared by a spray method, and the durability of the Pt/CNF was evaluated by fuel starvation. The performance was compared with a commercial catalyst before and after accelerated tests. The fuel starvation caused carbon corrosion with a reverse voltage drop. The polarization curve, EIS, and cyclic voltammetry were analyzed in order to characterize the electrochemical properties of the Pt/CNF. The performance of a membrane electrode assembly fabricated from the Pt/CNF was maintained, and the electrochemical surface area and cell resistance showed the same trend. Therefore, CNFs are expected to be a good support in polymer electrolyte membrane fuel cells. PMID:22221426
Tran, Minh; Whale, Alison
2018-01-01
Noble transition metals, like palladium (Pd) and platinum (Pt), have been well-known for their excellent catalytic and electrochemical properties. However, they have been considered non-active for surface enhanced Raman spectroscopy (SERS). In this work, we explore the scattering contributions of Pd and Pt for the detection of organic molecules. The Pd and Pt nanostructures were synthesized on silicon substrate using a modified galvanic displacement method. The results show Pt nanoparticles and dendritic Pd nanostructures with controlled density and size. The influence of surfactants, including sodium dodecyl sulfate and cetyltrimethylammonium bromide, on the size and morphology of the nanostructures was investigated. The Pd and Pt nanostructures with a combination of large size and high density were then used to explore their applicability for the detection of 10−5 M Rhodamine 6G and 10−2 M paraoxon. PMID:29316659
Assessing Cognitive Function in Older Adults Using a Videoconference Approach.
Castanho, Teresa Costa; Amorim, Liliana; Moreira, Pedro Silva; Mariz, José; Palha, Joana Almeida; Sousa, Nuno; Santos, Nadine Correia
2016-09-01
The use of communication technologies is an emerging trend in healthcare and research. Despite efficient, reliable and accurate neuropsychological batteries to evaluate cognitive performance in-person, more diverse and less expensive and time consuming solutions are needed. Here we conducted a pilot study to determine the applicability of a videoconference (VC, Skype®) approach to assess cognitive function in older adults, using The Telephone Interview for Cognitive Status-Modified - Portuguese version (TICSM-PT). After inclusion and exclusion criteria, 69 individuals (mean age=74.90±9.46years), selected from registries of local health centers and assisted-living facilities, were assessed on cognitive performance using videoconference, telephone and in-person approaches. The videoconference administration method yielded comparable results to the traditional application. Correlation analyses showed high associations between the testing modalities: TICSM-PT VC and TICSM-PT telephone (r=0.885), TICSM-PT VC and MMSE face-to-face (r=0.801). Using the previously validated threshold for cognitive impairment on the TICSM-PT telephone, TICSM-PT VC administration presented a sensitivity of 87.8% and a specificity of 84.6%. Findings indicate for the range of settings where videoconference approaches can be used, and for their applicability and acceptability, providing an alternative to current cognitive assessment methods. Continued validation studies and adaptation of neuropsychological instruments is warranted. Copyright © 2016 Forschungsgesellschaft für Arbeitsphysiologie und Arbeitschutz e.V. Published by Elsevier B.V. All rights reserved.
Gao, Hanjing; Song, Qing; Lv, Faqin; Wang, Shan; Wang, Yiru; Li, Xiaoyan; Luo, Yukun; Mei, Xingguo; Tang, Jie
2017-01-01
Background/Aims This study investigated the protection provided by gabexate mesylate thermo-sensitive in-situ gel (GMTI) against grade III pancreatic trauma in rats. Methods A grade III pancreatic trauma model with main pancreatic duct dividing was established, and the pancreas anatomical diagram, ascites, and serum biochemical indices, including amylase, lipase, C-reactive protein (CRP), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α), were examined. The pancreas was sliced and stained with hematoxylin eosin and subjected to terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Results Ascites, serum amylase, lipase, CRP, IL-6, and TNF-α levels were significantly increased in the pancreas trauma (PT) groups with prolonged trauma time and were significantly decreased after GMTI treatment. The morphological structure of the pancreas was loose, the acinus was significantly damaged, the nuclei were irregular and hyperchromatic, and there was inflammatory cell invasion in the PT group compared to the control. After GMTI treatment, the morphological structure of the pancreas was restored, and the damaged acinus and inflammatory cell invasion were decreased compared to the PT group. Moreover, the cell apoptosis index was significantly increased in the PT group and restored to the same levels as the control group after GMTI treatment. Conclusions GMTI, a novel formulation and drug delivery method, exhibited specific effective protection against PT with acute pancreatitis therapy and has potential value as a minimally invasive adjuvant therapy for PT with acute pancreatitis. PMID:27646597
2012-01-01
Background Identifying risk factors for Salmonella Enteritidis (SE) infections in Ontario will assist public health authorities to design effective control and prevention programs to reduce the burden of SE infections. Our research objective was to identify risk factors for acquiring SE infections with various phage types (PT) in Ontario, Canada. We hypothesized that certain PTs (e.g., PT8 and PT13a) have specific risk factors for infection. Methods Our study included endemic SE cases with various PTs whose isolates were submitted to the Public Health Laboratory-Toronto from January 20th to August 12th, 2011. Cases were interviewed using a standardized questionnaire that included questions pertaining to demographics, travel history, clinical symptoms, contact with animals, and food exposures. A multinomial logistic regression method using the Generalized Linear Latent and Mixed Model procedure and a case-case study design were used to identify risk factors for acquiring SE infections with various PTs in Ontario, Canada. In the multinomial logistic regression model, the outcome variable had three categories representing human infections caused by SE PT8, PT13a, and all other SE PTs (i.e., non-PT8/non-PT13a) as a referent category to which the other two categories were compared. Results In the multivariable model, SE PT8 was positively associated with contact with dogs (OR=2.17, 95% CI 1.01-4.68) and negatively associated with pepper consumption (OR=0.35, 95% CI 0.13-0.94), after adjusting for age categories and gender, and using exposure periods and health regions as random effects to account for clustering. Conclusions Our study findings offer interesting hypotheses about the role of phage type-specific risk factors. Multinomial logistic regression analysis and the case-case study approach are novel methodologies to evaluate associations among SE infections with different PTs and various risk factors. PMID:23057531
Video Cases. [SITE 2002 Section].
ERIC Educational Resources Information Center
Talley, Sue, Ed.
This document contains the following papers on video case studies from the SITE (Society for Information Technology & Teacher Education) 2002 conference: (1) "Developing Digital Video Resources To Improve Teaching with Technology: The PT3--'Best Practices' Project"; (2) "Portraits of Three Schools from the U.S.A. Exemplary Technology-Supported…
RESEARCH PROJECT A: MAPPING DISPARITIES IN BIRTH OUTCOMES
Measurement of residual solvents in a drug substance by a purge-and-trap method.
Lakatos, Miklós
2008-08-05
The purge-and-trap (P&T) gas extraction method combined with gas chromatography was studied for its suitability for quantitative residual solvents determination in a water-soluble active pharmaceutical ingredient (API). Some analytical method performance characteristics were investigated, namely, the repeatability, the accuracy and the detection limit of determination. The results show that the P&T technique is--as expected--more sensitive than the static headspace, thus it can be used for the determination of residual solvents pertaining to the ICH Class 1 group. It was found that it could be an alternative sample preparation method besides the static headspace (HS) method.
NASA Astrophysics Data System (ADS)
Graff, Kévin; Viel, Vincent; Carlier, Benoit; Lissak, Candide; Arnaud-Fassetta, Gilles; Fort, Monique; Madelin, Malika
2016-04-01
In mountainous areas, especially in large catchments with torrential tributaries, the production and sediment transport significantly increase flood impacts in the valley bottoms. The quantification and characterisation of sedimentary transfers are therefore major challenges to provide better flood risk management. As a part of SAMCO (ANR 12 SENV-0004 SAMCO) project, for mountain hazard assessment in a context of global changes, we tried to improve the knowledge of these hydromorphological systems at both spatial and temporal scales, by identifying sediment supply and sediment dynamics from torrential tributaries to the main channel. A sediment budget was used as a tool for quantifying erosion, transport and deposition processes. This research is focused on the upper Guil catchment (Queyras, Southern French Alps - 317 km2) entrenched in "schistes lustrés" and ophiolitic bedrock. This catchment is prone to catastrophic summer floods [June 1957 (>R.I. 100 yr), June 2000 (R.I. 30 yr)] characterised by huge sediment transport from tributaries to downvalley, very much facilitated by strong hillslope-channel connectivity (about 12,000 m3 volume of sediment aggraded in the Peyronnelle fan during the June 2000 RI-30 year flood event). We intend to highlight sediment dynamics on small torrential channels and its connection with gravel-bed streams. Four study sites characterised by avalanche and debris flow-dominated channels located in the upper Guil catchment were investigated. In order to better assess sediment movement, we used the pit-tags technique. In total, 560 pit-tags (pt) have been implemented in four catchments: Peyronnelle (320pt), Combe Morel (40pt), Bouchouse (120pt), and Maloqueste (80pt). Distances and trajectories of gravels sediments have been monitored since two years during summer periods. We specifically describe results obtained along the Peyronnelle channel affected by a large debris-flow during august 2015. Data are used to discuss lag time, processes and thresholds needed to observe significant sediments fluxes. Results highlight the pulsating character of sediment fluxes associated with high magnitude and low frequency events and indicate the strongest functionality of debris flow-dominated channels. We intend to continue this monitoring long enough to observe sediment connection with gravel-bed streams.
von der Lancken, Shelley; Levenhagen, Kim
2014-12-01
Nurse educators must adjust curricula to meet the dynamic and critical changes in the health care environment, and to recognize the risk of injury our educational approach has on safety, team effectiveness, and culture change. Interprofessional collaboration and simulation are key components in the preparation of our students. Utilizing the interprofessional alliance model, an experience to promote collaborative relationships among nursing and physical therapy (PT) students to improve patient and caregiver safety was developed. Through this model, PT students taught safe patient-handling skills in a simulated setting to undergraduate nursing students. The majority of nursing students (N=351) from 2009–2014 strongly agreed or agreed that they were confident in the skills taught by the PT students and provided an overall course rating of outstanding or above average. This educational model, which includes simulation and safe patient handling, was a valuable addition to the curriculum, reinforcing the significance of developing collaborative relationships. Copyright 2014, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Mirabelli, R.; Battistoni, G.; Giacometti, V.; Patera, V.; Pinci, D.; Sarti, A.; Sciubba, A.; Traini, G.; Marafini, M.
2018-01-01
In Particle Therapy (PT) accelerated charged particles and light ions are used for treating tumors. One of the main limitation to the precision of PT is the emission of secondary particles due to the beam interaction with the patient: secondary emitted neutrons can release a significant dose far from the tumor. Therefore, a precise characterization of their flux, production energy and angle distribution is eagerly needed in order to improve the Treatment Planning Systems (TPS) codes. The principal aim of the MONDO (MOnitor for Neutron Dose in hadrOntherapy) project is the development of a tracking device optimized for the detection of fast and ultra-fast secondary neutrons emitted in PT. The detector consists of a matrix of scintillating square fibres coupled with a CMOS-based readout. Here, we present the characterization of the detector tracker prototype and CMOS-based digital SPAD (Single Photon Avalanche Diode) array sensor tested with protons at the Beam Test Facility (Frascati, Italy) and at the Proton Therapy Centre (Trento, Italy), respectively.
Polymer electrolyte fuel cells
NASA Astrophysics Data System (ADS)
Gottesfeld, S.
The recent increase in attention to polymer electrolyte fuel cells (PEFC's) is the result of significant technical advances in this technology and the initiation of some projects for the demonstration of complete PEFC-based power system in a bus or in a passenger car. A PEFC powered vehicle has the potential for zero emission, high energy conversion efficiency and extended range compared to present day battery powered EV's. This paper describes recent achievements in R&D on PEFC's. The major thrust areas have been: (1) demonstration of membrane/electrode assemblies with stable high performance in life tests lasting 4000 hours, employing ultra-low Pt loadings corresponding to only 1/2 oz of Pt for the complete power source of a passenger car; (2) effective remedies for the high sensitivity of the Pt electrocatalyst to impurities in the fuel feed stream; and (3) comprehensive evaluation of the physicochemical properties of membrane and electrodes in the PEFC, clarifying the water management issues and enabling effective codes and diagnostics for this fuel cell.
Exploring the Transphobia Effect on Heteroleptic NHC Cycloplatinated Complexes.
Fuertes, Sara; Chueca, Andrés J; Sicilia, Violeta
2015-10-19
The synthesis of 1-(4-cyanophenyl)-1H-imidazol (1) has been carried out by an improved method. Then its corresponding imidazolium iodide salt, 2, has been used to prepare the N-heterocyclic carbene (NHC) cycloplatinated compound [{Pt(μ-Cl)(C^C*)}2] (4) (HC^C*-κC* = 1-(4-cyanophenyl)-3-methyl-1H-imidazol-2-ylidene) following a step-by-step protocol. The intermediate complex [PtCl(η(3)-2-Me-C3H4) (HC^C*-κC*)] (3) has also been isolated and characterized. Using 4 as precursor, several heteroleptic complexes of stoicheometry [PtCl(C^C*)L] (L = PPh3 (5), pyridine (py, 6), 2,6-dimethylphenyl isocyanide (CNXyl, 7), and 2-mercapto-1-methylimidazole (MMI, 8)) and [Pt(C^C*)LL']PF6 (L = PPh3, L' = py (9), CNXyl (10), and MMI (11)) have been synthesized. Complexes 6-8 were obtained as a mixture of cis- and trans-(C*,L) isomers, while trans-(C*,L) isomer was the only one observed for complexes 5 and 9-11. Their geometries have been discussed in terms of the degree of transphobia (T) of pairs of trans ligands and supported by theoretical calculations. The trans influence of the two σ Pt-C bonds present in these molecules, Pt-C(Ar) and Pt-C*(NHC), has been compared from the J(Pt-P) values observed in the new complex [Pt(C^C*)(dppe)]PF6 (dppe = 1, 2-bis(diphenylphosphino)ethane, 12).
NASA Astrophysics Data System (ADS)
Hadjipanayis, George; Hu, Xiaocao; Capobianchi, Aldo; Gallagher, Ryan
2014-03-01
In this work, a new green chemical strategy for the synthesis of L10 FePt nanoparticles is reported. The starting material is a polycrystalline molecular complex (Fe(H2O)6PtCl6) , in which Fe and Pt atoms are arranged on alternating planes. The starting compound was milled with crystalline NaCl and then annealed under forming gas (5 % H2 and 95 % Ar) at 450 °C for 2h. Finally, the mixture was washed with water to remove the NaCl and L10 FePt nanoparticles were obtained. Transmission electron microscopy (TEM) images revealed that this method is able to produce L10 nanoparticles with different average size varying from 13.9 nm to 5.4 nm depending on the (Fe(H2O)6PtCl6) /NaCl ratio. With smaller (Fe(H2O)6PtCl6) /NaCl ratio(10mg/20g) and longer milling time(15h), FePt nanoparticles had a smaller size and narrower size distribution. The X-Ray Diffraction (XRD) pattern showed the presence of the characteristic peaks of the fct phase. The hysteresis loop, measured both at room temperature and 50 K, shows a high coercivity of 7.6 kOe and 11.2 kOe, respectively as expected for the high anisotropy L10 phase. Larger precursor/NaCl ratio and shorter ball milling time led to larger coercivity.
Metal and Metal Oxide Interactions and Their Catalytic Consequences for Oxygen Reduction Reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Qingying; Ghoshal, Shraboni; Li, Jingkun
2017-06-01
Many industrial catalysts are composed of metal particles supported on metal oxides (MMO). It is known that the catalytic activity of MMO materials is governed by metal and metal oxide interactions (MMOI), but how to optimize MMO systems via manipulation of MMOI remains unclear, due primarily to the ambiguous nature of MMOI. Herein, we develop a Pt/NbOx/C system with tunable structural and electronic properties via a modified arc plasma deposition method. We unravel the nature of MMOI by characterizing this system under reactive conditions utilizing combined electrochemical, microscopy, and in situ spectroscopy. We show that Pt interacts with the Nbmore » in unsaturated NbOx owing to the oxygen deficiency in the MMO interface, whereas Pt interacts with the O in nearly saturated NbOx, and further interacts with Nb when the oxygen atoms penetrate into the Pt cluster at elevated potentials. While the Pt–Nb interactions do not benefit the inherent activity of Pt toward oxygen reduction reaction (ORR), the Pt–O interactions improve the ORR activity by shortening the Pt–Pt bond distance. Pt donates electrons to NbOx in both Pt–Nb and Pt–O cases. The resultant electron efficiency stabilizes low-coordinated Pt sites, hereby stabilizing small Pt particles. This determines the two characteristic features of MMO systems: dispersion of small metal particles and high catalytic durability. These findings contribute to our understandings of MMO catalytic systems.« less
Yang, Zhe-Han; Zhuo, Ying; Yuan, Ruo; Chai, Ya-Qin
2016-04-15
In this work, a nanohybrid of platinum nanoparticles-porous ZnO spheres-hemin (Pt-pZnO-hemin) was synthesized for construction of alkaline phosphatase-based immunosensor for detection of influenza. Briefly, porous ZnO spheres (pZnO) were prepared using soluble starches as the capping agent, followed by surface functionalization of platinum nanoparticles via a hydrothermal method (Pt-pZnO). Then, hemin with carboxylic functionality was spontaneously adsorbed onto Pt-pZnO by ester-like binding between carboxylic group of hemin and ZnO. Compared with platinum nanoparticles and hemin, the resulting Pt-pZnO-hemin nanohybrid showed more excellent electrocatalysis activity toward 1-naphthol (1-NP). Taking advantage of the Pt-pZnO-hemin, we have developed an amplified electrochemical immunosensor based on in situ generation of redox probe by alkaline phosphatase (ALP) and Pt-pZnO-hemin as signal enhancer. Herein, electrochemically active 1-NP was generated by enzymatic hydrolysis of inactive 1-naphthyl phosphate by ALP, then Pt-pZnO-hemin was used as catalyst to catalytically oxidize 1-NP, resulting in electrochemical signal amplification. Furthermore, in comparison with other nanomaterials including Au-pZnO, Pt-pZnO and Au-pZnO-hemin, the excellent catalytical property of Pt-pZnO-hemin make it a promising nanohybrid material for ALP-based immunosensor for signal amplification. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Savic, Ivana
2012-02-01
Decreasing the thermal conductivity of bulk materials by nanostructuring and dimensionality reduction, or by introducing some amount of disorder represents a promising strategy in the search for efficient thermoelectric materials [1]. For example, considerable improvements of the thermoelectric efficiency in nanowires with surface roughness [2], superlattices [3] and nanocomposites [4] have been attributed to a significantly reduced thermal conductivity. In order to accurately describe thermal transport processes in complex nanostructured materials and directly compare with experiments, the development of theoretical and computational approaches that can account for both anharmonic and disorder effects in large samples is highly desirable. We will first summarize the strengths and weaknesses of the standard atomistic approaches to thermal transport (molecular dynamics [5], Boltzmann transport equation [6] and Green's function approach [7]) . We will then focus on the methods based on the solution of the Boltzmann transport equation, that are computationally too demanding, at present, to treat large scale systems and thus to investigate realistic materials. We will present a Monte Carlo method [8] to solve the Boltzmann transport equation in the relaxation time approximation [9], that enables computation of the thermal conductivity of ordered and disordered systems with a number of atoms up to an order of magnitude larger than feasible with straightforward integration. We will present a comparison between exact and Monte Carlo Boltzmann transport results for small SiGe nanostructures and then use the Monte Carlo method to analyze the thermal properties of realistic SiGe nanostructured materials. This work is done in collaboration with Davide Donadio, Francois Gygi, and Giulia Galli from UC Davis.[4pt] [1] See e.g. A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).[0pt] [2] A. I. Hochbaum et al, Nature 451, 163 (2008).[0pt] [3] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, Nature 413, 597 (2001).[0pt] [4] B. Poudel et al, Science 320, 634 (2008).[0pt] [5] See e.g. Y. He, D. Donadio, and G. Galli, Nano Lett. 11, 3608 (2011).[0pt] [6] See e.g. A. Ward and D. A. Broido, Phys. Rev. B 81, 085205 (2010).[0pt] [7] See e.g. I. Savic, N. Mingo, and D. A. Stewart, Phys. Rev. Lett. 101, 165502 (2008).[0pt] [8] I. Savic, D.Donadio, F.Gygi, and G.Galli (in preparation).[0pt] [9] See e.g. J. E. Turney, E. S. Landry, A. J. H. McGaughey, and C. H. Amon, Phys. Rev. B, 79, 064301 (2009).
Clarke, B.; O’Brien, A.; Hammond, A.; Ryan, S.; Kay, L.; Richards, P.; Almeida, C.
2008-01-01
Objectives. Rheumatological conditions are common, thus nurses (Ns) occupational therapists (OTs) and physiotherapists (PTs) require at least basic rheumatology knowledge upon qualifying. The aim of this study was to develop a core set of teaching topics and potential ways of delivering them. Methods. A modified Delphi technique was used for clinicians to develop preliminary core sets of teaching topics for each profession. Telephone interviews with educationalists explored their views on these, and challenges and solutions for delivering them. Inter-professional workshops enabled clinicians and educationalists to finalize the core set together, and generate methods for delivery. Results. Thirty-nine rheumatology clinicians (12N, 14OT, 13PT) completed the Delphi consensus, proposing three preliminary core sets (N71 items, OT29, PT26). Nineteen educationalists (6N, 7OT, 6PT) participated in telephone interviews, raising concerns about disease-specific vs generic teaching and proposing many methods for delivery. Three inter-professional workshops involved 34 participants (clinicians: N12, OT9, PT5; educationalists: N2, OT3, PT2; Patient 1) who reached consensus on a single core set comprising six teaching units: Anatomy and Physiology; Assessment; Management and Intervention; Psychosocial Issues; Patient Education; and the Multi-disciplinary Team, recommending some topics within the units receive greater depth for some professions. An innovative range of delivery options was generated plus two brief interventions: a Rheumatology Chat Show and a Rheumatology Road Show. Conclusions. Working together, clinicians and educationalists proposed a realistic core set of rheumatology topics for undergraduate health professionals. They proposed innovative delivery methods, with collaboration between educationalists, clinicians and patients strongly recommended. These potential interventions need testing. PMID:18443005
NASA Astrophysics Data System (ADS)
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, H. Z.; Huang, X.; Huang, B.; Huang, T.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, Y.; Li, W.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, P.; Liu, Y.; Liu, F.; Liu, H.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Luo, S.; Ma, Y. G.; Ma, L.; Ma, R.; Ma, G. L.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, M. K.; Sharma, A.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, W.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration
2017-03-01
We present measurements of elliptic flow (v2) of electrons from the decays of heavy-flavor hadrons (eHF) by the STAR experiment. For Au+Au collisions at √{sN N}=200 GeV we report v2, for transverse momentum (pT) between 0.2 and 7 GeV /c , using three methods: the event plane method (v2{EP } ), two-particle correlations (v2{2 } ), and four-particle correlations (v2{4 } ). For Au+Au collisions at √{sN N}=62.4 and 39 GeV we report v2{2 } for pT<2 GeV /c . v2{2 } and v2{4 } are nonzero at low and intermediate pT at 200 GeV, and v2{2 } is consistent with zero at low pT at other energies. The v2{2 } at the two lower beam energies is systematically lower than at √{sN N}=200 GeV for pT<1 GeV /c . This difference may suggest that charm quarks interact less strongly with the surrounding nuclear matter at those two lower energies compared to √{sN N}=200 GeV.
Wet-plate culture studies of Penicillium sp. PT95 and Q1 for mass production of sclerotia.
Zhao, Wen-Jing; An, Cui-Hong; Han, Jian-Rong
2014-04-01
Penicillium sp. PT95 and Q1 strains were able to form abundant orange, sand-shaped sclerotia in which carotenoids were accumulated. To determine the potential availability of the wet-plate method for mass production of sclerotia, nine kinds of liquid media were used culture the PT95 and Q1 strains. The results of the wet-plate culture showed that on 25% glycerol nitrate broth medium, the growth of both strains was relatively slow, and no sclerotia were found. Q1 strain cultured on Czapek's yeast extract broth medium could not form sclerotia. On other media, both strains could form sclerotia. For PT95 strain, the highest sclerotial biomass (380 mg plate(-1) ) and carotenoids yield (20.88 µg plate(-1) ) could be obtained on Czapek's yeast extract broth and Georgiou's liquid medium, respectively. For Q1 strain, malt extract broth medium gave the highest sclerotial biomass (340 mg plate(-1) ) and omitting iron Joham's liquid medium gave the highest carotenoids yield (18.29 µg plate(-1) ). The results from this study suggest the potential usage of wet-plate method in the mass production of sclerotia of the PT95 and Q1 strains. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sehatzadeh, S
2015-01-01
Background After stroke, impairment of the upper and lower limb can limit patients’ motor function and ability to perform activities of daily living (ADL). Physiotherapy (PT) is an established clinical practice for stroke patients, playing an important role in improving limb function. Recently, several randomized trials have evaluated the effect of higher-intensity physiotherapy (increased duration and/or frequency) on patients’ functional ability. Objectives Our objective is to investigate whether an increased intensity of PT after stroke results in better outcomes for patients. Data Sources A literature search was performed on June 7, 2013, for English-language randomized controlled trials published from January 1, 2003, to June 7, 2013. Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid Embase, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), and EBM Reviews were searched. Review Methods We reviewed the full text of articles that compared 2 or more levels of PT intensity. Outcomes of interest included motor function, ADL, and quality of life (QOL). Results High-quality evidence showed that higher-intensity upper-limb PT and higher-intensity lower-limb PT both resulted in significantly greater improvements in motor function. Moderate-quality evidence showed that higher-intensity general PT did not. Moderate-quality evidence showed a significant improvement in ADL performance with higher-intensity upper-limb PT, but no improvement with higher-intensity general PT; no studies reported on ADL outcomes on lower-limb PT specifically. According to moderate-quality evidence, patient QOL did not change significantly after increased intensity of upper-limb, lower-limb, or general PT. When considering the results, one difference should be noted: Compared with the studies examining upper- and lower-limb PT, the studies examining general PT looked at a smaller increase—2 hours or less of additional therapy per week. Limitations This analysis is limited to the earlier post-stroke phase and is not equipped to comment on expected outcomes of later-stage PT. Conclusions Overall, this analysis found support for the use of more intensive PT to improve motor function and ability to perform ADL after stroke. PMID:26356355
Sonko, Bakary J; Miller, Leland V; Jones, Richard H; Donnelly, Joseph E; Jacobsen, Dennis J; Hill, James O; Fennessey, Paul V
2003-12-15
Reducing water to hydrogen gas by zinc or uranium metal for determining D/H ratio is both tedious and time consuming. This has forced most energy metabolism investigators to use the "two-point" technique instead of the "Multi-point" technique for estimating total energy expenditure (TEE). Recently, we purchased a new platinum (Pt)-equilibration system that significantly reduces both time and labor required for D/H ratio determination. In this study, we compared TEE obtained from nine overweight but healthy subjects, estimated using the traditional Zn-reduction method to that obtained from the new Pt-equilibration system. Rate constants, pool spaces, and CO2 production rates obtained from use of the two methodologies were not significantly different. Correlation analysis demonstrated that TEEs estimated using the two methods were significantly correlated (r=0.925, p=0.0001). Sample equilibration time was reduced by 66% compared to those of similar methods. The data demonstrated that the Zn-reduction method could be replaced by the Pt-equilibration method when TEE was estimated using the "Multi-Point" technique. Furthermore, D equilibration time was significantly reduced.
Broadband magnetometry by infrared-absorption detection of nitrogen-vacancy ensembles in diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acosta, V. M.; Bauch, E.; Jarmola, A.
We demonstrate magnetometry by detection of the spin state of high-density nitrogen-vacancy ensembles in diamond using optical absorption at 1042 nm. With this technique, measurement contrast, and collection efficiency can approach unity, leading to an increase in magnetic sensitivity compared to the more common method of collecting red fluorescence. Working at 75 K with a sensor with effective volume 50x50x300 {mu}m{sup 3}, we project photon shot-noise limited sensitivity of 5 pT in one second of acquisition and bandwidth from dc to a few megahertz. Operation in a gradiometer configuration yields a noise floor of 7 nT{sub rms} at {approx}110 Hzmore » in one second of acquisition.« less
Superconducting Resonators with Parasitic Electromagnetic Environments
NASA Astrophysics Data System (ADS)
Hornibrook, John; Mitchell, Emma; Reilly, David
2012-02-01
Microwave losses in niobium superconducting resonators are investigated at milli-Kelvin temperatures and with low drive power. In addition to the well-known suppression of Q-factor that arises from coupling between the resonator and two-level defects in the dielectric substrate [1-4], we report strong dependence of the loaded Q-factor and resonance line-shape on the electromagnetic environment. Methods to suppress parasitic coupling between the resonator and its environment are demonstrated.[4pt] [1] Day, P.K. et al., Nature 425, 817-821 (2003).[0pt] [2] Wallraff, A. et. al., Nature 451, 162-167 (2004).[0pt] [3] Macha, P. et. al., Appl. Phys. Lett., 96, 062503 (2010).[0pt] [4] O'Connell, A.D. et. al., Appl. Phys. Lett., 92, 112903 (2008).
Dehydrogenation of benzene on Pt(111) surface
NASA Astrophysics Data System (ADS)
Gao, W.; Zheng, W. T.; Jiang, Q.
2008-10-01
The dehydrogenation of benzene on Pt(111) surface is studied by ab initio density functional theory. The minimum energy pathways for benzene dehydrogenation are found with the nudge elastic band method including several factors of the associated barriers, reactive energies, intermediates, and transient states. The results show that there are two possible parallel minimum energy pathways on the Pt(111) surface. Moreover, the tilting angle of the H atom in benzene can be taken as an index for the actual barrier of dehydrogenation. In addition, the properties of dehydrogenation radicals on the Pt(111) surface are explored through their adsorption energy, adsorption geometry, and electronic structure on the surface. The vibrational frequencies of the dehydrogenation radicals derived from the calculations are in agreement with literature data.
Kang, Zhe; Tan, Xinyu; Li, Xiao; Xiao, Ting; Zhang, Li; Lao, Junchao; Li, Xinming; Cheng, Shan; Xie, Dan; Zhu, Hongwei
2016-01-21
In this study, we demonstrated a self-deposition method to deposit Pt nanoparticles (NPs) on graphene woven fabrics (GWF) to improve the performance of graphene-on-silicon solar cells. The deposition of Pt NPs increased the work function of GWF and reduced the sheet resistance of GWF, thereby improving the power conversion efficiency (PCE) of graphene-on-silicon solar cells. The PCE (>10%) was further enhanced via solid electrolyte coating of the hybrid Schottky junction in the photoelectrochemical solar cells. These results suggest that the combination of self-deposition of Pt NPs and solid-state electrolyte coating of graphene-on-silicon is a promising way to produce high performance graphene-on-semiconductor solar cells.
Dehydrogenation of benzene on Pt(111) surface.
Gao, W; Zheng, W T; Jiang, Q
2008-10-28
The dehydrogenation of benzene on Pt(111) surface is studied by ab initio density functional theory. The minimum energy pathways for benzene dehydrogenation are found with the nudge elastic band method including several factors of the associated barriers, reactive energies, intermediates, and transient states. The results show that there are two possible parallel minimum energy pathways on the Pt(111) surface. Moreover, the tilting angle of the H atom in benzene can be taken as an index for the actual barrier of dehydrogenation. In addition, the properties of dehydrogenation radicals on the Pt(111) surface are explored through their adsorption energy, adsorption geometry, and electronic structure on the surface. The vibrational frequencies of the dehydrogenation radicals derived from the calculations are in agreement with literature data.
Hu, Jun; Ji, Ming-liang; Qian, Bang-ping; Qiu, Yong; Wang, Bin; Yu, Yang; Zhu, Ze-Zhang; Jiang, Jun
2014-11-01
A retrospective radiographical study. To construct a predictive model for pelvic tilt (PT) based on the sacrofemoral-pubic (SFP) angle in patients with thoracolumbar kyphosis secondary to ankylosing spondylitis (or AS). PT is a key pelvic parameter in the regulation of spine sagittal alignment that can be used to plan the appropriate osteotomy angle in patients with AS with thoracolumbar kyphosis. However, it could be difficult to measure PT in patients with femoral heads poorly visualized on lateral radiographs. Previous studies showed that the SFP angle could be used to evaluate PT in adult patients with scoliosis. However, this method has not been validated in patients with AS. A total of 115 patients with AS with thoracolumbar kyphosis were included. Full-length anteroposterior and lateral spine radiographs were all available, with spinal and pelvic anatomical landmarks clearly identified. PT, SFP angle, and global kyphosis were measured. The patients were randomly divided into group A (n=65) and group B (n=50). In group A, the predictive model for PT was constructed by the results of the linear regression analysis. In group B, the predictive ability and accuracy of the predictive model were investigated. In group A, the Pearson correlation analysis revealed a strong correlation between the SFP angle and PT (r=0.852; P<0.001). The predictive model for PT was constructed as PT=72.3-0.82×(SFP angle). In group B, PT was predicted by the model with a mean error of 4.6° (SD=4.5°) with a predictive value of 78%. PT can be accurately predicted by the SFP angle using the current model: PT=72.3-0.82×(SFP angle), when the femur heads are poorly visualized on lateral radiographs in patients with AS with thoracolumbar kyphosis. 4.
Chen, Xiufang; Zhang, Ligang; Zhang, Bo; Guo, Xingcui; Mu, Xindong
2016-06-22
Graphitic carbon nitride nanosheets were investigated for developing effective Pt catalyst supports for selective hydrogenation of furfural to furfuryl alcohol in water. The nanosheets with an average thickness of about 3 nm were synthesized by a simple and green method through thermal oxidation etching of bulk g-C3N4 in air. Combined with the unique feature of nitrogen richness and locally conjugated structure, the g-C3N4 nanosheets with a high surface area of 142 m(2) g(-1) were demonstrated to be an excellent supports for loading small-size Pt nanoparticles. Superior furfural hydrogenation activity in water with complete conversion of furfural and high selectivity of furfuryl alcohol (>99%) was observed for g-C3N4 nanosheets supported Pt catalysts. The large specific surface area, uniform dispersion of Pt nanoparticles and the stronger furfural adsorption ability of nanosheets contributed to the considerable catalytic performance. The reusability tests showed that the novel Pt catalyst could maintain high activity and stability in the furfural hydrogenation reaction.
A Novel Biocontainment Strategy Makes Bacterial Growth and Survival Dependent on Phosphite.
Hirota, Ryuichi; Abe, Kenji; Katsuura, Zen-Ichiro; Noguchi, Reiji; Moribe, Shigeaki; Motomura, Kei; Ishida, Takenori; Alexandrov, Maxym; Funabashi, Hisakage; Ikeda, Takeshi; Kuroda, Akio
2017-03-20
There is a growing demand to develop biocontainment strategies that prevent unintended proliferation of genetically modified organisms in the open environment. We found that the hypophosphite (H 3 PO 2 , HPt) transporter HtxBCDE from Pseudomonas stutzeri WM88 was also capable of transporting phosphite (H 3 PO 3 , Pt) but not phosphate (H 3 PO 4 , Pi), suggesting the potential for engineering a Pt/HPt-dependent bacterial strain as a biocontainment strategy. We disrupted all Pi and organic Pi transporters in an Escherichia coli strain expressing HtxABCDE and a Pt dehydrogenase, leaving Pt/HPt uptake and oxidation as the only means to obtain Pi. Challenge on non-permissive growth medium revealed that no escape mutants appeared for at least 21 days with a detection limit of 1.94 × 10 -13 per colony forming unit. This represents, to the best of our knowledge, the lowest escape frequency among reported strategies. Since Pt/HPt are ecologically rare and not available in amounts sufficient for the growth of the Pt/HPt-dependent bacteria, this strategy offers a reliable and practical method for biocontainment.
NASA Astrophysics Data System (ADS)
Li, Shumin; Xu, Hui; Xiong, Zhiping; Zhang, Ke; Wang, Caiqin; Yan, Bo; Guo, Jun; Du, Yukou
2017-11-01
Designing and tuning the bimetallic nanoparticles with desirable morphology and structure can embody them with greatly enhanced electrocatalytic activity and stability towards liquid fuel oxidation. We herein reported a facile one-pot method for the controlled synthesis of monodispersed binary PtAu nanoflowers with abundant exposed surface area. Owing to its fantastic structure, synergistic and electronic effect, such as-prepared PtAu nanoflowers exhibited outstandingly high electrocatalytic activity with the mass activity of 6482 mA mg-1 towards ethanol oxidation, which is 28.3 times higher than that of commercial Pt/C (227 mA mg-1). More interesting, the present PtAu nanoflower catalysts are more stable for the ethanol oxidation reaction in the alkaline with lower current density decay and retained a much higher current density after successive CVs of 500 cycles than that of commercial Pt/C. This work may open a new way for maximizing the catalytic performance of electrocatalysts towards ethanol oxidation by synthesizing shape-controlled alloy nanoparticles with more surface active sites to enhance the performances of direct fuel cells reaction, chemical conversion, and beyond.
NASA Astrophysics Data System (ADS)
Tsang, Chi Him A.; Leung, D. Y. C.
2017-09-01
Fabrication of electrocatalyst for direct glucose fuel cell (DGFC) operation involves destructive preparation methods with the use of stabilizer like binder, which may cause activity depreciation. Binder-free electrocatalytic electrode becomes a possible solution to the above problem. Binder-free bimetallic Pd-Pt loaded graphene aerogel on nickel foam plates with different Pd/Pt ratios (1:2.32, 1:1.62, and 1:0.98) are successfully fabricated through a green one-step mild reduction process producing a Pd-Pt/GO/nickel form plate (NFP) composite. Anode with the binder-free electrocatalysts exhibit a strong activity in a batch type DGFC unit under room temperature. The effects of glucose and KOH concentrations, and the Pd/Pt ratios of the electrocatalyst on the DGFC performance are also studied. Maximum power density output of 1.25 mW cm-2 is recorded with 0.5 M glucose/3 M KOH as the anodic fuel, and Pd1Pt0.98/GA/NFP as catalyst, which is the highest obtained so far among other types of electrocatalyst.
First-principles calculations of perpendicular magnetic anisotropy for spintronic applications
NASA Astrophysics Data System (ADS)
Ansarino, Masoud; Ravan, Bahram Abedi
2017-01-01
A combination of density functional theory and non-equilibrium Green’s function methods are used to simulate spin-dependent electronic transport in monatomic Au-nanowires sandwiched between ferromagnetic electrodes. Electrodes of the junction are in turn composed of tetragonal FeCo, FePd and FePt alloys. Magnetic anisotropy energies of the electrodes are calculated for different values of the c/a ratios of the electrode lattice constants and it is shown that at c/a = 1.05, the FePt electrodes gain a relatively large amount of magnetic anisotropy energy (MAE). Hence, it is concluded that the ferromagnetic FePt alloy can be used as a suitable type of electrode for applications in perpendicular magnetic tunnel junctions (MTJs). We observe that increasing the c/a ratio leads to notable improvements in the spin filtering of the FeCo and FePd MTJs while it only has a slight effect on the filtering of the FePt MTJ. Later, we show that by removing the interfacial Pt atoms of the FePt MTJ, we are able to enhance its filtering property.
NASA Astrophysics Data System (ADS)
Chen, Xiufang; Zhang, Ligang; Zhang, Bo; Guo, Xingcui; Mu, Xindong
2016-06-01
Graphitic carbon nitride nanosheets were investigated for developing effective Pt catalyst supports for selective hydrogenation of furfural to furfuryl alcohol in water. The nanosheets with an average thickness of about 3 nm were synthesized by a simple and green method through thermal oxidation etching of bulk g-C3N4 in air. Combined with the unique feature of nitrogen richness and locally conjugated structure, the g-C3N4 nanosheets with a high surface area of 142 m2 g-1 were demonstrated to be an excellent supports for loading small-size Pt nanoparticles. Superior furfural hydrogenation activity in water with complete conversion of furfural and high selectivity of furfuryl alcohol (>99%) was observed for g-C3N4 nanosheets supported Pt catalysts. The large specific surface area, uniform dispersion of Pt nanoparticles and the stronger furfural adsorption ability of nanosheets contributed to the considerable catalytic performance. The reusability tests showed that the novel Pt catalyst could maintain high activity and stability in the furfural hydrogenation reaction.
Chen, Xiufang; Zhang, Ligang; Zhang, Bo; Guo, Xingcui; Mu, Xindong
2016-01-01
Graphitic carbon nitride nanosheets were investigated for developing effective Pt catalyst supports for selective hydrogenation of furfural to furfuryl alcohol in water. The nanosheets with an average thickness of about 3 nm were synthesized by a simple and green method through thermal oxidation etching of bulk g-C3N4 in air. Combined with the unique feature of nitrogen richness and locally conjugated structure, the g-C3N4 nanosheets with a high surface area of 142 m2 g−1 were demonstrated to be an excellent supports for loading small-size Pt nanoparticles. Superior furfural hydrogenation activity in water with complete conversion of furfural and high selectivity of furfuryl alcohol (>99%) was observed for g-C3N4 nanosheets supported Pt catalysts. The large specific surface area, uniform dispersion of Pt nanoparticles and the stronger furfural adsorption ability of nanosheets contributed to the considerable catalytic performance. The reusability tests showed that the novel Pt catalyst could maintain high activity and stability in the furfural hydrogenation reaction. PMID:27328834
NASA Astrophysics Data System (ADS)
Zhu, Xiaohong; Defaÿ, Emmanuel; Aïd, Marc; Ren, Yinjuan; Zhang, Caiyun; Zhu, Jiliang; Zhu, Jianguo; Xiao, Dingquan
2013-03-01
Ba0.7Sr0.3TiO3 (BST) thin films, about 100 nm in thickness, were prepared on unannealed and 700 °C-preannealed Pt bottom electrodes by the ion beam sputtering and post-deposition annealing method. It was found that the preannealed Pt layer has a more compact structure, making it not only a bottom electrode but also a good template for high-quality BST thin film growth. The BST films deposited on preannealed Pt bottom electrodes showed (0 0 l)-preferred orientation, dense and uniform microstructure with no intermediate phase formed at the film/electrode interface, and thus enhanced dielectric properties. As a result, the typical relative dielectric constant and tunability (under a dc electric field of 1 MV cm-1) reach 180 and 50.1%, respectively, for the BST thin films with preannealed Pt bottom electrodes, which are significantly higher than those (166 and 41.3%, respectively) for the BST thin films deposited on unannealed Pt bottom electrodes.
Tathod, Anup P; Dhepe, Paresh L
2015-02-01
Promoter effect of Sn in the PtSn/γ-Al2O3 (AL) and PtSn/C bimetallic catalysts is studied for the conversion of variety of substrates such as, C5 sugars (xylose, arabinose), C6 sugars (glucose, fructose, galactose), hemicelluloses (xylan, arabinogalactan), inulin and agricultural wastes (bagasse, rice husk, wheat straw) into sugar alcohols (sorbitol, mannitol, xylitol, arabitol, galactitol). In all the reactions, PtSn/AL showed enhanced yields of sugar alcohols by 1.5-3 times than Pt/AL. Compared to C, AL supported bimetallic catalysts showed prominent enhancement in the yields of sugar alcohols. Bimetallic catalysts characterized by X-ray diffraction study revealed the stability of catalyst and absence of alloy formation thereby indicating that Pt and Sn are present as individual particles in PtSn/AL. The TEM analysis also confirmed stability of the catalysts and XPS study disclosed formation of electron deficient Sn species which helps in polarizing carbonyl bond to achieve enhanced hydrogenation activity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Enhanced electronic and electrochemical properties of core-shelled V2O5-Pt nanowires
NASA Astrophysics Data System (ADS)
Pan, Ko-Ying; Wei, Da-Hua
2018-01-01
Platinum nanoparticles (Pt NPs) were decorated on vanadium pentoxide nanowires (V2O5 NWs) to form the core-shelled vanadium-platinum nanowires (Pt@V2O5 NWs) and their electrochemical activities for methanol oxidation were investigated. The synthetic procedure involved the synthesis of abundant vanadium pentoxide nanowires (V2O5 NWs) by a direct vapor-solid growth process (VS method), followed by atomic layer depositions (ALD) of platinum nanoparticles (Pt NPs) onto the V2O5 NWs. After the physical examinations, three designed deposition parameters (50, 100 and 150 cycles) of Pt NPs onto the V2O5 NWs by ALD process were successful. From the measurements of current-voltage (I-V) and cyclic voltammetry (CV) curves respectively, both the conductivity and the ratio of the forward anodic peak current (IF) to the reverse anodic peak current (IR) are enhancing proportionately to the deposition cycles of ALD process, which denotes that coating Pt atomic layers onto V2O5 nanowires indeed improves the catalytic performances than that of pure V2O5 nanowires.
Wu, Jiaye; Yang, Xiangbo
2017-10-30
In this paper, we construct a 1D PT-symmetric Thue-Morse aperiodic optical waveguide network (PTSTMAOWN) and mainly investigate the ultrastrong extraordinary transmission and reflection. We propose an approach to study the photonic modes and solve the problem of calculating photonic modes distributions in aperiodic networks due to the lack of dispersion functions and find that in a PTSTMAOWN there exist more photonic modes and more spontaneous PT-symmetric breaking points, which are quite different from other reported PT-symmetric optical systems. Additionally, we develop a method to sort spontaneous PT-symmetric breaking point zones to seek the strongest extraordinary point and obtain that at this point the strongest extraordinary transmission and reflection arrive at 2.96316 × 10 5 and 1.32761 × 10 5 , respectively, due to the PT-symmetric coupling resonance and the special symmetry pattern of TM networks. These enormous gains are several orders of magnitude larger than the previous results. This optical system may possess potential in designing optical amplifier, optical logic elements in photon computers and ultrasensitive optical switches with ultrahigh monochromatity.
NASA Astrophysics Data System (ADS)
Dutta, Abhijit; Mondal, Achintya; Datta, Jayati
2015-06-01
Understanding of the electrode-kinetics and mechanism of ethanol oxidation reaction (EOR) is of considerable interest for optimizing electro-catalysis in direct ethanol fuel cell (DEFC). This work attempts to design Pt based electro-catalyst on carbon support, tuned with gold nano-particles (NPs), for their use in DEFC operating in alkaline medium. The platinum-gold alloyed NPs are synthesized at desired compositions and size (2-10 nm) by controlled borohydride reduction method and successfully characterized by XRD, TEM, EDS and XPS techniques. The kinetic parameters along with the activation energies for the EOR are evaluated over the temperature range 20-80 °C and the oxidation reaction products estimated through ion chromatographic analysis. Compared to single Pt/C catalyst, the over potential of EOR is reduced by ca. 500 mV, at the onset during the reaction, for PtAu/C alloy with only 23% Pt content demonstrating the ability of Au and/or its surface oxides providing oxygen species at much lower potentials compared to Pt. Furthermore, a considerable increase in the peak power density (>191%) is observed in an in-house fabricated direct ethanol anion exchange membrane fuel cell, DE(AEM)FC using the best performing Au covered Pt electrode (23% Pt) compared to the monometallic Pt catalyst.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cullen, David A; More, Karren Leslie; Atanasoska, Liliana
Electron microscopy and X-ray photoelectron spectroscopy (XPS) methods have been utilized to study the role of oxygen evolution reaction (OER) catalysts in mitigating degradation arising from start-up/shutdown events. Pt nanostructured thin films (NSTF) were coated with a Ru0.1Ir0.9 OER catalyst at loadings ranging from 1 to 10 g/cm2 and submitted to 5,000 potential cycles within a membrane electrode assembly. Analysis of the as-deposited catalyst showed that Ir and Ru coating is primarily metallic, and further evidence is provided to support the previously reported interaction between Ru and the perylene-red support. Aberration-corrected scanning transmission electron microscopy and energy dispersive X-ray spectroscopymore » were used to observe the impact of the OER catalysts on Pt dissolution and migration through the membrane. Elemental mapping showed a high percentage of the Ir catalyst was maintained on the NSTF whisker surfaces following testing. The presence of the OER catalysts greatly reduced the smoothing of the Pt NSTF whiskers, which has been correlated with Pt dissolution and losses in electrochemically active surface area. The dissolution of both Ir and Pt led to the formation of IrPt nanoparticle clusters in the membrane close to the cathode, as well as the formation of a Pt band deeper in the membrane.« less
Paleczny, J; Maciejewski, D; Łoniewska-Paleczny, E; Sawczuk, M; Kaczur, A
2000-01-01
The purpose of this study was to compare on the basis of up to date papers currently applied methods of the percutaneous tracheostomy (PT). There are four main PT methods by: Ciaglia, Schachner, Griggs and Fantoni. In these methods a wire is introduced into the trachea serving as a guide for special forceps or series of dilatators of increasing diameter to dilate the wall and allow cannulation of the trachea. In the literature authors found a low incidence of complications after PT. Acute complications were documented in 6-18% and late complications in 1-3% of the patients. Follow-up showed no late obstructive complications at the level of stomia and very low (0.3-0.36%) mortality risk. Translaryngeal tracheostomy (TLT) by Fantoni ensures minimal risk of complications and tissue trauma. In the TLT method through a needle inserted in to the trachea a guide wire is retrogradely pushed out of the mouth and attached to special flexible tracheostomy tube by flexible plastic cone with pointed metal tip. This device is then pulled back through larynx and outwards across the trachea and neck wall by traction on the wire. TLT can also be used in infants and children and in difficult patients in whom other techniques are riskier Review of the literature suggests that the PT can be safe and also cost-effective for properly selected patients in intensive care and other hospital units.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, Zhiqi
The Full Potential Linear Augmented Plane Wave (FPLAPW or FLAPW) method is used for a spin-polarized band calculation for ordered Fe 3Pt. As major purpose, the momentum distributions of the spin-polarized electrons are calculated and compared with results from a magnetic Compton scattering measurement. To get related information, the electronic behavior is also analyzed by examining the partial densities of states and the spatial electron distributions; the role of alloying effects is then explored by studying the electrons in some related alloys: Fe 3Ni, Fe 3Pd, Ni 3Pt and Co 3Pt.
Metal-Insulator-Metal Diode Process Development for Energy Harvesting Applications
2010-04-01
Sputter Tool Dep Method: Sputtering (DC Magnetron ) Recipe: MC_Pt 1640A_TiO2 1000A_Ti 2000A_500C_1a MC_Pt 1640A_TiO2 1000A_Ti 2000A_300C_1a MC_Pt...thin films were sputtered onto silicon substrates with silicon dioxide overlayers. I-V measurements were taken using an electrical characterization...deposition of the entire MIM material stack to be done without breaking the vacuum within a multi-material system DC sputtering tool. A CAD layout of a MIM
Wan, Haiying; Shi, Shifan; Bai, Litao; Shamsuzzoha, Mohammad; Harrell, J W; Street, Shane C
2010-08-01
We describe an approach to synthesize monodisperse CoPt nanoparticles with dendrimer as template by a simple chemical reduction method in aqueous solution using NaBH4 as reducing agent at room temperature. The as-made CoPt nanoparticles buried in the dendrimer matrix have the chemically disordered fcc structure and can be transformed to the fct phase after annealing at 700 degrees C. This is the first report of dendrimer-mediated room temperature synthesis of monodisperse magnetic nanoparticles in aqueous solution.
Li, Jingfeng; Dumonski, Mark L; Samartzis, Dino; Hong, Joseph; He, Shisheng; Zhu, Xiaodong; Wang, Chuanfeng; Vaccaro, Alexander R; Albert, Todd J; Li, Ming
2011-01-01
The aim of the prospective, comparative radiographic analysis was to determine the role of the fulcrum-bending radiograph (FBR) for the assessment of the proximal thoracic (PT), main thoracic (MT), and the thoracolumbar/lumbar (TL/L) curves in patients undergoing posterior spinal pedicle screw fixation and fusion for adolescent idiopathic scoliosis (AIS). The FBR demonstrated statistically better correction than other preoperative methods for the assessment of frontal plane correction of the MT curves. The fulcrum-bending correction index (FBCI) has been considered a superior method than the correction rate for comparing curve correction undergoing posterior spinal fusion because it accounts for the curve flexibility. However, their applicability to assess the PT and TL/L curves in AIS patients remains speculative. The relation between FBR and correction obtained by pedicle screws fixation is still unknown. Thirty-eight consecutive AIS patients who underwent pedicle screw fixation and posterior fusion were included in this study. The assessment of preoperative radiographs included standing posterior-anterior (PA), FBR, supine side-bending, and postoperative standing PA and lateral plain radiographs. The flexibility of the curve, as well as the FBCI, was calculated for all patients. Postoperatively, radiographs were assessed at immediate (i.e. 1 week), 3-month, 6-month, 12-month, and 2-year follow-up. Cobb angles were obtained from the PT, MT, and TL/L curves. The study consisted of 9 PT, 37 MT, and 12 TL/L curves, with a mean age of 15.1 years. The mean FBR flexibility of the PT, MT, and the TL/L curves was 42.6, 61.1, and 66.2%, respectively. The mean operative correction rates in the PT, MT, and TL/L curves were 43.4, 69.3, and 73.9%, respectively, and the mean FBCI was 103.8, 117.0, and 114.8%, respectively. Fulcrum-bending flexibility was positively correlated with the operative correction rate in PT, MT, and TL/L curves. Although the correction rate in MT and TL/L curves was higher than PT curves, the FBCI in PT, MT, and TL/L curves was not significantly different (p < 0.05). The FBR can be used to assist in the assessment of PT, MT, and TL/L curve corrections in AIS patients. When curve flexibility is taken into account by FBR, the ability of pedicle screws to correct PT, MT, and TL/L curves is the same.
Longitudinal recording on FePt and FePtX (X = B, Ni) intermetallic compounds
NASA Astrophysics Data System (ADS)
Li, Ning
1999-11-01
Near field recording on high coercivity FePt intermetallic compound media using a high Bsat write element was investigated. Untextured FePt media were prepared by magnetron sputtering on ZrO2 disks at a substrate temperature of 450°C, with post annealing at 450°C for 8 hrs. Both multilayer and cosputtered precursors produced the ordered tetragonal L10 phase with high coercivity between 5kOe and 12kOe. To improve readback noise decrease magnetic domain size, FePtB media were subsequently prepared by cosputtering. Over-write, roll-off, signal to noise ratio and non-linear transition shift (NLTS) ere measured by both metal in gap (MIG) and merged MR heads. FePtB media showed similar NLTS to commercial CoCrPtTa longitudinal media, but 5dB lower signal to noise ratio. By operating recording transducers in near contact, reasonable values of (>30dB) could be obtained. VSM Rotational Transverse Magnetization has been used for measuring the anisotropy field of magnetic thin films. Magnetization reversal during rotation of a 2D isotropic an applied field is discussed. The relationship between the transverse magnetization My and the applied field H was numerically solved. An excellent approximation for the transverse magnetization is found to be: My/Ms=A(1- H/Hk) 2.5, where A = 1.1434, and Hk is the anisotropy field. For curve fitting to experimental data, both A and Hk were used as fitting parameters. Comparison between a constructed torque hysteresis method and this VSM RTM method have been made theoretically and experimentally. Both results showed that VSM RTM will give better extrapolation of the anisotropy field. The torque measurement will slightly overestimate the anisotropy field. The anisotropy fields of FePt and FePtX (X = B, Ni) films were characterized using this VSM RTM technique with comparison to a CoCrTaPt disk. Anisotropy energy was derived. Hc/Hk was used as an indicator for coherent rotation of a single domain. Interactions between magnetic domains were characterized by Kelly-Henkel plot and interactive field factor (IFF). Correlation between coercive force and magnetic anisotropy of grains and the degree of magnetic isolation among grains were discussed. B and Ni were used as diluting agents to the FePt system to decrease saturation magnetization, coercivity, anisotropy field and anisotropy energy. They also decrease the magnetic coupling between neighboring domains, and promote coherent rotation inside each domain.
34 CFR Appendix B to Part 379 - Presumption of Eligibility
Code of Federal Regulations, 2014 CFR
2014-07-01
... 34 Education 2 2014-07-01 2013-07-01 true Presumption of Eligibility B Appendix B to Part 379 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION PROJECTS WITH INDUSTRY Pt. 379, App. B Appendix B...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
34 CFR Appendix B to Part 379 - Presumption of Eligibility
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 2 2010-07-01 2010-07-01 false Presumption of Eligibility B Appendix B to Part 379 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION PROJECTS WITH INDUSTRY Pt. 379, App. B Appendix B...
34 CFR Appendix C to Part 379 - Calculating Required Matching Amount
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 2 2010-07-01 2010-07-01 false Calculating Required Matching Amount C Appendix C to Part 379 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION PROJECTS WITH INDUSTRY Pt. 379, App...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Physiotherapy practice patterns in Intensive Care Units of Nepal: A multicenter survey
Baidya, Sumana; Acharya, Ranjeeta S.; Coppieters, Michel W.
2016-01-01
Context: As physiotherapy (PT) is a young profession in Nepal, there is a dearth of insight into the common practices of physiotherapists in critical care. Aims: To identify the availability of PT services in Intensive Care Units (ICUs) and articulate the common practices by physiotherapists in ICUs of Nepal. Settings and Design: All tertiary care hospitals across Nepal with ICU facility via an exploratory cross-sectional survey. Subjects and Methods: An existing questionnaire was distributed to all the physiotherapists currently working in ICUs of Nepal with 2 years of experience. The survey was sent via E-mail or given in person to 86 physiotherapists. Statistical Analysis Used: Descriptive and inferential statistics according to nature of data. Results: The response rate was 60% (n = 52). In the majority of hospitals (68%), PT service was provided only after a physician consultation, and few hospitals (13%) had established hospital criteria for PT in ICUs. Private hospitals (57.1%) were providing PT service in weekends compared to government hospitals (32.1%) (P = 0.17). The likelihood of routine PT involvement varied significantly with the clinical scenarios (highest 71.2% status cerebrovascular accident, lowest 3.8% myocardial infarction, P < 0.001). The most preferred PT treatment was chest PT (53.8%) and positioning (21.2%) while least preferred was therapeutic exercise (3.8%) irrespective of clinical scenarios. Conclusions: There is a lack of regular PT service during weekends in ICUs of Nepal. Most of the cases are treated by physiotherapists only after physician's referral. The preferred intervention seems to be limited only to chest PT and physiotherapists are not practicing therapeutic exercise and functional mobility training to a great extent. PMID:27076708
Handen, Benjamin L.; Aman, Michael G.; Arnold, L. Eugene; Hyman, Susan L.; Tumuluru, Rameshwari V.; Lecavalier, Luc; Corbett-Dick, Patricia; Pan, Xueliang; Hollway, Jill A.; Buchan-Page, Kristin A.; Silverman, Laura B.; Brown, Nicole V.; Rice, Robert R.; Hellings, Jessica; Mruzek, Daniel W.; McAuliffe-Bellin, Sarah; Hurt, Elizabeth A.; Ryan, Melissa M.; Levato, Lynne; Smith, Tristram
2015-01-01
Objective Impairments associated with attention-deficit/hyperactivity disorder (ADHD) and noncompliance are prevalent in children with autism spectrum disorder (ASD). However, ADHD response to stimulants is well below rates in typically developing children, with frequent side effects. Group studies of treatments for noncompliance are rare in ASD. We examined individual and combined-effectiveness of atomoxetine (ATX) and parent training (PT) for ADHD symptoms and noncompliance. Method In a 3-site, 10-week, double-blind, 2×2 trial of ATX and PT, 128 children (ages 5–14) with ASD and ADHD symptoms were randomized to ATX, ATX+PT, placebo+PT, or placebo. ATX was adjusted to optimal dose (capped at 1.8 mg/kg/day) over 6 weeks and maintained for 4 additional weeks. Nine PT sessions were provided. Primary outcome measures were the parent-rated DSM ADHD symptoms on the Swanson, Nolan and Pelham (SNAP) scale and Home Situations Questionnaire (HSQ). Results On the SNAP, ATX, ATX+PT and placebo+PT were each superior to placebo (effect sizes 0.57–0.98), with p-values of 0.0005, 0.0004 and 0.025, respectively. For noncompliance, ATX and ATX+PT were superior to placebo (effect sizes 0.47–0.64; p values of .03 and .0028, respectively). ATX was associated with decreased appetite but otherwise well-tolerated. Conclusion Both ATX and PT resulted in significant improvement on ADHD symptoms while ATX (both alone and combined with PT) was associated with significant decreases on measures of noncompliance. ATX appears to have a better side effects profile than psychostimulants in the population with ASD. PMID:26506581
Achieving Methodological Alignment When Combining QCA and Process Tracing in Practice
ERIC Educational Resources Information Center
Beach, Derek
2018-01-01
This article explores the practical challenges one faces when combining qualitative comparative analysis (QCA) and process tracing (PT) in a manner that is consistent with their underlying assumptions about the nature of causal relationships. While PT builds on a mechanism-based understanding of causation, QCA as a comparative method makes claims…
Partnering through Training and Practice to Achieve Performance Improvement
ERIC Educational Resources Information Center
Lyons, Paul R.
2010-01-01
This article presents a partnership effort among managers, trainers, and employees to spring to life performance improvement using the performance templates (P-T) approach. P-T represents a process model as well as a method of training leading to performance improvement. Not only does it add to our repertoire of training and performance management…
ERIC Educational Resources Information Center
Ensign, Todd I.; Rye, James A.; Luna, Melissa J.
2017-01-01
Research indicates that preservice teacher (PT) education programs can positively impact perceptions of scientific probeware use in K-8 environments. Despite the potential of probeware to improve science instruction and student engagement, its use in elementary education has been limited. Sixty-seven PT enrolled across three sections of an…
Metal nanoparticles of Ag, Au, Pt, and Pd were prepared in aqueous solutions via a rapid microwave-assisted green method using beet juice, an abundant sugar-rich agricultural produce, served as both a reducing and a capping reagent. The Ag nanoparticles with capping prepared by b...
Controlled Synthesis of Pd/Pt Core Shell Nanoparticles Using Area-selective Atomic Layer Deposition
Cao, Kun; Zhu, Qianqian; Shan, Bin; Chen, Rong
2015-01-01
We report an atomic scale controllable synthesis of Pd/Pt core shell nanoparticles (NPs) via area-selective atomic layer deposition (ALD) on a modified surface. The method involves utilizing octadecyltrichlorosilane (ODTS) self-assembled monolayers (SAMs) to modify the surface. Take the usage of pinholes on SAMs as active sites for the initial core nucleation, and subsequent selective deposition of the second metal as the shell layer. Since new nucleation sites can be effectively blocked by surface ODTS SAMs in the second deposition stage, we demonstrate the successful growth of Pd/Pt and Pt/Pd NPs with uniform core shell structures and narrow size distribution. The size, shell thickness and composition of the NPs can be controlled precisely by varying the ALD cycles. Such core shell structures can be realized by using regular ALD recipes without special adjustment. This SAMs assisted area-selective ALD method of core shell structure fabrication greatly expands the applicability of ALD in fabricating novel structures and can be readily applied to the growth of NPs with other compositions. PMID:25683469
Recent developments of nano-structured materials as the catalysts for oxygen reduction reaction
NASA Astrophysics Data System (ADS)
Kang, SungYeon; Kim, HuiJung; Chung, Yong-Ho
2018-04-01
Developments of high efficient materials for electrocatalyst are significant topics of numerous researches since a few decades. Recent global interests related with energy conversion and storage lead to the expansion of efforts to find cost-effective catalysts that can substitute conventional catalytic materials. Especially, in the field of fuel cell, novel materials for oxygen reduction reaction (ORR) have been noticed to overcome disadvantages of conventional platinum-based catalysts. Various approaching methods have been attempted to achieve low cost and high electrochemical activity comparable with Pt-based catalysts, including reducing Pt consumption by the formation of hybrid materials, Pt-based alloys, and not-Pt metal or carbon based materials. To enhance catalytic performance and stability, numerous methods such as structural modifications and complex formations with other functional materials are proposed, and they are basically based on well-defined and well-ordered catalytic active sites by exquisite control at nanoscale. In this review, we highlight the development of nano-structured catalytic materials for ORR based on recent findings, and discuss about an outlook for the direction of future researches.
Inaga, Sumire; Hirashima, Sayuri; Tanaka, Keiichi; Katsumoto, Tetsuo; Kameie, Toshio; Nakane, Hironobu; Naguro, Tomonori
2009-07-01
The present study introduces a novel method for the direct observation of histological paraffin sections by low vacuum scanning electron microscopy (LVSEM) with platinum blue (Pt-blue) treatment. Pt-blue was applied not only as a backscattered electron (BSE) signal enhancer but also as a histologically specific stain. In this method, paraffin sections of the rat tongue prepared for conventional light microscopy (LM) were stained on glass slides with a Pt-blue staining solution (pH 9) and observed in a LVSEM using BSE detector. Under LVSEM, overviews of whole sections as well as three-dimensional detailed observations of individual cells and tissues could be easily made at magnifications from x40 to x10,000. Each kind of cell and tissue observed in the section could be clearly distinguished due to the different yields of BSE signals, which depended on the surface structures and different affinities to Pt-blue. Thus, we roughly classified cellular and tissue components into three groups according to the staining intensity of Pt-blue observed by LM and LVSEM: 1) a strongly stained (deep blue by LM and brightest by LVSEM) group which included epithelial tissue, endothelium and mast cells; 2) a moderately stained (light blue and bright) group which included muscular tissue and nervous tissue; 3) an unstained or weakly stained (colorless and dark) group which included elastic fibers and collagen fibers. We expect that this method will prove useful for the three-dimensional direct observation of histological paraffin sections of various tissues by LVSEM with higher resolutions than LM.
NASA Astrophysics Data System (ADS)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Waltenberger, W.; Wulz, C.-E.; Dvornikov, O.; Makarenko, V.; Mossolov, V.; Suarez Gonzalez, J.; Zykunov, V.; Shumeiko, N.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Ruan, M.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Khvedelidze, A.; Bagaturia, I.; Autermann, C.; Beranek, S.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Baus, C.; Berger, J.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Pasztor, G.; Bencze, G.; Hajdu, C.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Gulmini, M.; Lacaprara, S.; Margoni, M.; Maron, G.; Meneguzzo, A. T.; Michelotto, M.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Fallavollita, F.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Mariani, V.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chadeeva, M.; Popova, E.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Demiyanov, A.; Ershov, A.; Gribushin, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Yang, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Squires, M.; Stolp, D.; Tos, K.; Tripathi, M.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Weber, M.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Bunn, J.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, Y.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Bein, S.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Prosper, H.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Jung, K.; Sandoval Gonzalez, I. D.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Forthomme, L.; Kenny, R. P.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Kumar, A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Rupprecht, N.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Svyatkovskiy, A.; Tully, C.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Shi, X.; Sun, J.; Wang, F.; Xie, W.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Belknap, D. A.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration
2018-01-01
The Fourier coefficients v2 and v3 characterizing the anisotropy of the azimuthal distribution of charged particles produced in PbPb collisions at √{sNN } = 5.02 TeV are measured with data collected by the CMS experiment. The measurements cover a broad transverse momentum range, 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirunyan, Albert M; et al.
2017-02-02
The Fourier coefficients v[2] and v[3] characterizing the anisotropy of the azimuthal distribution of charged particles produced in PbPb collisions atmore » $$\\sqrt{s_{NN}}$$ = 5.02 TeV are measured with data collected by the CMS experiment. The measurements cover a broad transverse momentum range, pt= 1-100 GeV. The analysis focuses on pt > 10 GeV range, where anisotropic azimuthal distributions should reflect the path-length dependence of parton energy loss in the created medium. Results are presented in several bins of PbPb collision centrality, spanning the 60x% most central events. The v[2] coefficient is measured with the scalar product and the multiparticle cumulant methods, which have different sensitivities to the initial-state fluctuations. The values of both methods remain positive up to pt ~ 70 GeV, in all examined centrality classes. The v[3] coefficient, only measured with the scalar product method, tends to zero for pt >~ 20 GeV. Comparisons between theoretical calculations and data provide new constraints on the path-length dependence of parton energy loss in heavy ion collisions and highlight the importance of the initial-state fluctuations.« less
Zhang, Zhicheng; Liu, Guigao; Cui, Xiaoya; Chen, Bo; Zhu, Yihan; Gong, Yue; Saleem, Faisal; Xi, Shibo; Du, Yonghua; Borgna, Armando; Lai, Zhuangchai; Zhang, Qinghua; Li, Bing; Zong, Yun; Han, Yu; Gu, Lin; Zhang, Hua
2018-06-07
The rational design and synthesis of anisotropic 3D nanostructures with specific composition, morphology, surface structure, and crystal phase is of significant importance for their diverse applications. Here, the synthesis of well-crystalline lotus-thalamus-shaped Pt-Ni anisotropic superstructures (ASs) via a facile one-pot solvothermal method is reported. The Pt-Ni ASs with Pt-rich surface are composed of one Ni-rich "core" with face-centered cubic (fcc) phase, Ni-rich "arms" with hexagonal close-packed phase protruding from the core, and facet-selectively grown Pt-rich "lotus seeds" with fcc phase on the end surfaces of the "arms." Impressively, these unique Pt-Ni ASs exhibit superior electrocatalytic activity and stability toward the hydrogen evolution reaction under alkaline conditions compared to commercial Pt/C and previously reported electrocatalysts. The obtained overpotential is as low as 27.7 mV at current density of 10 mA cm -2 , and the turnover frequency reaches 18.63 H 2 s -1 at the overpotential of 50 mV. This work provides a new strategy for the synthesis of highly anisotropic superstructures with a spatial heterogeneity to boost their promising application in catalytic reactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Impact of active phase chemical composition and dispersity on catalytic behavior in PROX reaction
NASA Astrophysics Data System (ADS)
Cherkezova-Zheleva, Z.; Paneva, D.; Todorova, S.; Kolev, H.; Shopska, M.; Yordanova, I.; Mitov, I.
2014-04-01
Iron and iron-platinum catalysts supported on activated carbon have been successfully synthesized by wet impregnation method and low-temperature treatment in inert atmosphere. The content of the supported phases corresponds to 10 wt % Fe and 0.5 wt % Pt. Four catalytic samples were synthesized: Sample A—activated carbon impregnated with Fe nitrate; Sample B—activated carbon impregnated with Pt salt; Sample C—activated carbon impregnated consequently with Fe and Pt salts; Sample D—activated carbon impregnated simultaneously with Fe and Pt salts. The as-prepared materials were characterized by Mössbauer spectroscopy, X-ray diffraction, infrared and X-ray photoelectron spectroscopy. The spectra show that the activated carbon support and the preparation procedure give rise to the synthesis of isolated metal Pt ions and ultradispersed Fe and Pt oxide species. Probably the presence of different functional groups of activated carbon gives rise to registered very high dispersion of loaded species on support. The catalytic tests were carried out in PROX reaction. A lower activity of bimetallic Pt-Fe samples was explained with the increase in surface oxygen species as a result of predomination of iron oxide on the support leading to the increase in selectivity to the H2 oxidation. Partial agglomeration of supported iron oxide phase was registered after catalytic tests.
Platinum Monolayer Electrocatalysts for Oxygen Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vukmirovic, Miomir B.; Zhang, Junliang; Sasaki, Kotaro
2007-01-20
The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. We have synthesized a new class of electrocatalysts for the oxygen reduction reaction, consisting of a monolayer of Pt or mixed monolayer of Pt and another late transition metal (Au, Pd, Ir, Ru, Rh, Re or Os) deposited on a Pd(1 1 1) single crystal or on carbon-supported Pd nanoparticles. Several of these electrocatalysts exhibited very high activity, amounting tomore » 20-fold increase in a Pt mass activity, compared with conventional all-Pt electrocatalysts. Their superior activity reflects a low OH coverage on Pt, caused by the lateral repulsion between the OH adsorbed on Pt and the OH or O adsorbed on neighboring, other than Pt, late transition metal atoms. The origin of this effect was identified through a combination of experimental and theoretical methods, employing electrochemical techniques, X-ray absorption spectroscopy, and periodic, self-consistent density functional theory calculations. This new class of electrocatalysts promises to alleviate some major problems of existing fuel cell technology by simultaneously decreasing materials cost and enhancing performance.« less
NASA Astrophysics Data System (ADS)
Li, Hongda; Li, Wenjun; Wang, Fangzhi; Liu, Xintong; Ren, Chaojun; Miao, Xiao
2018-01-01
A new Pt nanoparticles decorated Gd-doped Bi2MoO6 photocatalyst was synthesized by the hydrothermal process and in-situ reduction method. The crystal structure, morphology, chemical state and optical property of the obtained photocatalysts were investigated. The activities of photocatalysts were also evaluated by the degradation of Rhodamine B, Tetracyclines and 4-Chlorophenol under visible light irradiation, and the results indicated that the Gd/Pt co-modified Bi2MoO6 sample shows better photocatalytic activity. Meanwhile, the results of trapping experiments and Electron Spin Resonance (ESR) spectra demonstrated that the rad OH radicals can be formed by doping of Gd3+ ions, and the addition of Pt was conducive to the producing of more • O2- and rad OH radicals. Also the results from the degradation of 4-chlorophenol implied that the formed rad OH radicals in the system of Gd/Pt-BMO possess stronger oxidizability than • O2- radicals for degrading the special organics which are difficult to be mineralized. Additionally, the mechanism about the excellent photocatalytic activity of Gd/Pt co-modified Bi2MoO6 was also discussed.
You, Jyun-Guo; Liu, Yao-Wen; Lu, Chi-Yu; Tseng, Wei-Lung; Yu, Cheng-Ju
2017-06-15
We report citrate-capped platinum nanoparticles (Pt NPs) as oxidase mimetics for effectively catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid), dopamine, and methylene blue in the presence of O 2 . To confirm oxidase-like activity of citrate-capped Pt NPs, their activity toward oxygen reduction reaction was studied using cyclic voltammetry and rotating ring-disk electrode method. The results obtained showed that Pt NP NPs can catalyze the oxidation of organic substrates to the colored product and the reduction of oxygen to water through a four-electron exchange process. Because the aggregation of Pt NPs can inhibit their oxidase-like activity and protamine can recognize heparin, we prepared the protamine-modified Pt NPs through direct adsorption on the surface of citrate-capped Pt NPs. The electrostatic attraction between heparin and protamine-stabilized Pt NPs induced nanoparticle aggregation, inhibiting their catalytic activity. Therefore, the lowest detectable heparin concentrations through UV-vis absorption and by the naked eye were estimated to be 0.3 and 60nM, respectively. Moreover, the proposed system enabled the determination of the therapeutic heparin concentration in a single drop of blood. Copyright © 2016 Elsevier B.V. All rights reserved.
Pootawang, Panuphong; Saito, Nagahiro; Takai, Osamu; Lee, Sang-Yul
2012-10-05
Arc discharge in solution, generated by applying a high voltage of unipolar pulsed dc to electrodes of Ag and Pt, was used as a method to form Ag/Pt bimetallic nanocomposites via electrode erosion by the effects of the electric arc at the cathode (Ag rod) and the sputtering at the anode (Pt rod). Ag/Pt bimetallic nanocomposites were formed as colloidal particles dispersed in solution via the reduction of hydrogen radicals generated during discharge without the addition of chemical precursor or reducing agent. At a discharge time of 30 s, the fine bimetallic nanoparticles with a mean particle size of approximately 5 nm were observed by transmission electron microscopy (TEM). With increasing discharge time, the bimetallic nanoparticle size tended to increase by forming an agglomeration. The presence of the relatively small amount of Pt dispersed in the Ag matrix could be observed by the analytical mapping mode of energy-dispersive x-ray spectroscopy and high-resolution TEM. This demonstrated that the synthesized particle was in the form of a nanocomposite. No contamination of other chemical substances was detected by x-ray photoelectron spectroscopy. Hence, solution plasma could be a clean and simple process to effectively synthesize Ag/Pt bimetallic nanocomposites and it is expected to be widely applicable in the preparation of several types of nanoparticle.
O2 adsorbed on Ptn clusters: Structure and optical absorption
NASA Astrophysics Data System (ADS)
Wang, Ruiying; Zhao, Liang; Jia, Jianfeng; Wu, Hai-Shun
2018-03-01
The interaction of O2 with Ptn and the optical absorption properties of PtnO2 were explored under the framework of density functional theory. The Ptn (n= 2, 4, 6, 9, 10, 14, 18, 22, and 27) clusters were selected, which were reported as magnetic number Ptn clusters in reference (V. Kumar and Y. Kawazoe, Phys. Rev. B 77(20), 205418 (2008)). The single Pt atom was also considered. The longest O2 bonds were found for Pt27O2, Pt6O2 and Pt14O2, while PtO2 and Pt2O2 have the shortest O2 bonds. This result showed that the single Pt atom was not preferred for O2 activation. The O2 bond length was closely related to the electron transfer from Ptn to O2. The optical absorptions of PtnO2 were investigated with time-dependent density functional theory method. A new term of charge transfer strength was defined to estimate the further electron transfer from Ptn to O2 caused by the optical absorption in the visible light range. Our calculations showed that with the increasing n, the further electron transfer from Ptn to O2 caused by optical absorption will become very weak.
Johnstone, Timothy C.
2014-01-01
The Pt(IV) complex c,c,t-[Pt(NH3)2Cl2(OH)2] is an important intermediate in the synthesis of Pt(IV) anticancer prodrugs and has been investigated as an anticancer agent in its own right. An analysis of the vibrational spectroscopy of this molecule was previously reported [Faggiani et al., 1982, Can. J. Chem. 60, 529] in which crystallographic determination of the structure of the complex permitted a site group approach. The space group, however, was incorrectly assigned. In the present study we have redetermined at high resolution crystal structures of c,c,t-[Pt(NH3)2Cl2(OH)2] and c,c,t-[Pt(NH3)2Cl2(OH)2]·H2O2, which enable discussion of the effect of hydrogen bonding on the N–H and O–H vibrational bands. The correct crystallographic site symmetry of the platinum complex in the c,c,t-[Pt(NH3)2Cl2(OH)2] structure is employed to conduct a new vibrational analysis using both group theoretical and modern DFT methods. This analysis reveals the nature and symmetry of the “missing band” described in the original publication and suggests a possible explanation for its disappearance. PMID:24515615
Zhao, Zongya; Zhang, Mingming; Chen, Xiang; Li, Youjun; Wang, Jue
2015-01-01
In this paper, AuPt bimetallic nanoparticles-graphene nanocomposites were obtained by electrochemical co-reduction of graphene oxide (GO), HAuCl4 and H2PtCl6. The as-prepared AuPt bimetallic nanoparticles-graphene nanocomposites were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and other electrochemical methods. The morphology and composition of the nanocomposite could be easily controlled by adjusting the HAuCl4/H2PtCl6 concentration ratio. The electrochemical experiments showed that when the concentration ratio of HAuCl4/H2PtCl6 was 1:1, the obtained AuPt bimetallic nanoparticles-graphene nanocomposite (denoted as Au1Pt1NPs-GR) possessed the highest electrocatalytic activity toward dopamine (DA). As such, Au1Pt1NPs-GR nanocomposites were used to detect DA in the presence of ascorbic acid (AA) and uric acid (UA) using the differential pulse voltammetry (DPV) technique and on the modified electrode, there were three separate DPV oxidation peaks with the peak potential separations of 177 mV, 130 mV and 307 mV for DA and AA, DA and UA, AA and UA, respectively. The linear range of the constructed DA sensor was from 1.6 μM to 39.7 μM with a detection limit of 0.1 μM (S/N = 3). The obtained DA sensor with good stability, high reproducibility and excellent selectivity made it possible to detect DA in human urine samples. PMID:26184200