NASA Astrophysics Data System (ADS)
Alfianto, E.; Rusydi, F.; Aisyah, N. D.; Fadilla, R. N.; Dipojono, H. K.; Martoprawiro, M. A.
2017-05-01
This study implemented DFT method into the C++ programming language with object-oriented programming rules (expressive software). The use of expressive software results in getting a simple programming structure, which is similar to mathematical formula. This will facilitate the scientific community to develop the software. We validate our software by calculating the energy band structure of Silica, Carbon, and Germanium with FCC structure using the Projector Augmented Wave (PAW) method then compare the results to Quantum Espresso calculation’s results. This study shows that the accuracy of the software is 85% compared to Quantum Espresso.
Density functional theory calculations of 95Mo NMR parameters in solid-state compounds.
Cuny, Jérôme; Furet, Eric; Gautier, Régis; Le Pollès, Laurent; Pickard, Chris J; d'Espinose de Lacaillerie, Jean-Baptiste
2009-12-21
The application of periodic density functional theory-based methods to the calculation of (95)Mo electric field gradient (EFG) and chemical shift (CS) tensors in solid-state molybdenum compounds is presented. Calculations of EFG tensors are performed using the projector augmented-wave (PAW) method. Comparison of the results with those obtained using the augmented plane wave + local orbitals (APW+lo) method and with available experimental values shows the reliability of the approach for (95)Mo EFG tensor calculation. CS tensors are calculated using the recently developed gauge-including projector augmented-wave (GIPAW) method. This work is the first application of the GIPAW method to a 4d transition-metal nucleus. The effects of ultra-soft pseudo-potential parameters, exchange-correlation functionals and structural parameters are precisely examined. Comparison with experimental results allows the validation of this computational formalism.
Orthogonal polynomial projectors for the Projector Augmented Wave (PAW) formalism.
NASA Astrophysics Data System (ADS)
Holzwarth, N. A. W.; Matthews, G. E.; Tackett, A. R.; Dunning, R. B.
1998-03-01
The PAW method for density functional electronic structure calculations developed by Blöchl(Phys. Rev. B 50), 17953 (1994) and also used by our group(Phys. Rev. B 55), 2005 (1997) has numerical advantages of a pseudopotential technique while retaining the physics of an all-electron formalism. We describe a new method for generating the necessary set of atom-centered projector and basis functions, based on choosing the projector functions from a set of orthogonal polynomials multiplied by a localizing weight factor. Numerical benefits of the new scheme result from having direct control of the shape of the projector functions and from the use of a simple repulsive local potential term to eliminate ``ghost state" problems, which can haunt calculations of this kind. We demonstrate the method by calculating the cohesive energies of CaF2 and Mo and the density of states of CaMoO4 which shows detailed agreement with LAPW results over a 66 eV range of energy including upper core, valence, and conduction band states.
Orbital dependent functionals: An atom projector augmented wave method implementation
NASA Astrophysics Data System (ADS)
Xu, Xiao
This thesis explores the formulation and numerical implementation of orbital dependent exchange-correlation functionals within electronic structure calculations. These orbital-dependent exchange-correlation functionals have recently received renewed attention as a means to improve the physical representation of electron interactions within electronic structure calculations. In particular, electron self-interaction terms can be avoided. In this thesis, an orbital-dependent functional is considered in the context of Hartree-Fock (HF) theory as well as the Optimized Effective Potential (OEP) method and the approximate OEP method developed by Krieger, Li, and Iafrate, known as the KLI approximation. In this thesis, the Fock exchange term is used as a simple well-defined example of an orbital-dependent functional. The Projected Augmented Wave (PAW) method developed by P. E. Blochl has proven to be accurate and efficient for electronic structure calculations for local and semi-local functions because of its accurate evaluation of interaction integrals by controlling multiple moments. We have extended the PAW method to treat orbital-dependent functionals in Hartree-Fock theory and the Optimized Effective Potential method, particularly in the KLI approximation. In the course of study we develop a frozen-core orbital approximation that accurately treats the core electron contributions for above three methods. The main part of the thesis focuses on the treatment of spherical atoms. We have investigated the behavior of PAW-Hartree Fock and PAW-KLI basis, projector, and pseudopotential functions for several elements throughout the periodic table. We have also extended the formalism to the treatment of solids in a plane wave basis and implemented PWPAW-KLI code, which will appear in future publications.
NMR and NQR parameters of ethanol crystal
NASA Astrophysics Data System (ADS)
Milinković, M.; Bilalbegović, G.
2012-04-01
Electric field gradients and chemical shielding tensors of the stable monoclinic crystal phase of ethanol are computed. The projector-augmented wave (PAW) and gauge-including projector-augmented wave (GIPAW) models in the periodic plane-wave density functional theory are used. The crystal data from X-ray measurements, as well as the structures where either all atomic, or only hydrogen atom positions are optimized in the density functional theory are analyzed. These structural models are also studied by including the semi-empirical van der Waals correction to the density functional theory. Infrared spectra of these five crystal models are calculated.
Adsorbate Diffusion on Transition Metal Nanoparticles
2015-01-01
different sizes and shapes using density functional theory calculations. We show that nanoparticles bind adsorbates more strongly than the...structure theoretical methods, a quantitative study with accurate density functional theory (DFT) calculations is still missing. Here, we perform a...functional theory . The projector augmented wave (PAW) potentials29,30 were used for electron- ion interactions and the generalized gradient approximation
Projector Augmented Wave formulation of orbital-dependent exchange-correlation functionals
NASA Astrophysics Data System (ADS)
Xu, Xiao; Holzwarth, N. A. W.
2012-02-01
The use of orbital-dependent exchange-correlation functionals within electronic structure calculations has recently received renewed attention for improving the accuracy of the calculations, especially correcting self-interaction errors. Since the Projector Augmented Wave (PAW) methodootnotetext P. Bl"ochl, Phys. Rev. B 50, 17953 (1994). is an efficient pseudopotential-like scheme which ensures accurate evaluation of all multipole moments of direct and exchange Coulomb integrals, it is a natural choice for implementing orbital-dependent formalisms. Using Fock exchange as an example of an orbital-dependent functional, we developed the formulation and numerical implementation of the approximate optimized effective potential formalism of Kreiger, Li, and Iafrate (KLI)ootnotetext J. B. Krieger, Y. Li, and G. J. Iafrate Phys. Rev. A 45, 101 (1992). within the PAW method, comparing results with the analogous Hartree-Fock treatment.ootnotetext Xiao Xu and N. A. W. Holzwarth, Phys. Rev. B 81, 245105 (2010); 84, 155113 (2011). Test results are presented for ground state properties of two well-known materials -- diamond and LiF. This formalism can be extended to treat orbital-dependent functionals more generally.
NASA Astrophysics Data System (ADS)
Biktagirov, Timur; Schmidt, Wolf Gero; Gerstmann, Uwe
2018-03-01
For high-spin centers, one of the key spectroscopic fingerprints is the zero-field splitting (ZFS) addressable by electron paramagnetic resonance. In this paper, an implementation of the spin-spin contribution to the ZFS tensor within the projector augmented-wave (PAW) formalism is reported. We use a single-determinant approach proposed by M. J. Rayson and P. R. Briddon [Phys. Rev. B 77, 035119 (2008), 10.1103/PhysRevB.77.035119], and complete it by adding a PAW reconstruction term which has not been taken into account before. We benchmark the PAW approach against a well-established all-electron method for a series of diatomic radicals and defects in diamond and cubic silicon carbide. While for some of the defect centers the PAW reconstruction is found to be almost negligible, in agreement with the common assumption, we show that in general it significantly improves the calculated ZFS towards the all-electron results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Kuang; Libisch, Florian; Carter, Emily A., E-mail: eac@princeton.edu
We report a new implementation of the density functional embedding theory (DFET) in the VASP code, using the projector-augmented-wave (PAW) formalism. Newly developed algorithms allow us to efficiently perform optimized effective potential optimizations within PAW. The new algorithm generates robust and physically correct embedding potentials, as we verified using several test systems including a covalently bound molecule, a metal surface, and bulk semiconductors. We show that with the resulting embedding potential, embedded cluster models can reproduce the electronic structure of point defects in bulk semiconductors, thereby demonstrating the validity of DFET in semiconductors for the first time. Compared to ourmore » previous version, the new implementation of DFET within VASP affords use of all features of VASP (e.g., a systematic PAW library, a wide selection of functionals, a more flexible choice of U correction formalisms, and faster computational speed) with DFET. Furthermore, our results are fairly robust with respect to both plane-wave and Gaussian type orbital basis sets in the embedded cluster calculations. This suggests that the density functional embedding method is potentially an accurate and efficient way to study properties of isolated defects in semiconductors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehtomäki, Jouko; Makkonen, Ilja; Harju, Ari
We present a computational scheme for orbital-free density functional theory (OFDFT) that simultaneously provides access to all-electron values and preserves the OFDFT linear scaling as a function of the system size. Using the projector augmented-wave method (PAW) in combination with real-space methods, we overcome some obstacles faced by other available implementation schemes. Specifically, the advantages of using the PAW method are twofold. First, PAW reproduces all-electron values offering freedom in adjusting the convergence parameters and the atomic setups allow tuning the numerical accuracy per element. Second, PAW can provide a solution to some of the convergence problems exhibited in othermore » OFDFT implementations based on Kohn-Sham (KS) codes. Using PAW and real-space methods, our orbital-free results agree with the reference all-electron values with a mean absolute error of 10 meV and the number of iterations required by the self-consistent cycle is comparable to the KS method. The comparison of all-electron and pseudopotential bulk modulus and lattice constant reveal an enormous difference, demonstrating that in order to assess the performance of OFDFT functionals it is necessary to use implementations that obtain all-electron values. The proposed combination of methods is the most promising route currently available. We finally show that a parametrized kinetic energy functional can give lattice constants and bulk moduli comparable in accuracy to those obtained by the KS PBE method, exemplified with the case of diamond.« less
NASA Astrophysics Data System (ADS)
Martin, Alexandre; Torrent, Marc; Caracas, Razvan
2015-03-01
A formulation of the response of a system to strain and electric field perturbations in the pseudopotential-based density functional perturbation theory (DFPT) has been proposed by D.R Hamman and co-workers. It uses an elegant formalism based on the expression of DFT total energy in reduced coordinates, the key quantity being the metric tensor and its first and second derivatives. We propose to extend this formulation to the Projector Augmented-Wave approach (PAW). In this context, we express the full elastic tensor including the clamped-atom tensor, the atomic-relaxation contributions (internal stresses) and the response to electric field change (piezoelectric tensor and effective charges). With this we are able to compute the elastic tensor for all materials (metals and insulators) within a fully analytical formulation. The comparison with finite differences calculations on simple systems shows an excellent agreement. This formalism has been implemented in the plane-wave based DFT ABINIT code. We apply it to the computation of elastic properties and seismic-wave velocities of iron with impurity elements. By analogy with the materials contained in meteorites, tested impurities are light elements (H, O, C, S, Si).
Multinuclear NMR of CaSiO(3) glass: simulation from first-principles.
Pedone, Alfonso; Charpentier, Thibault; Menziani, Maria Cristina
2010-06-21
An integrated computational method which couples classical molecular dynamics simulations with density functional theory calculations is used to simulate the solid-state NMR spectra of amorphous CaSiO(3). Two CaSiO(3) glass models are obtained by shell-model molecular dynamics simulations, successively relaxed at the GGA-PBE level of theory. The calculation of the NMR parameters (chemical shielding and quadrupolar parameters), which are then used to simulate solid-state 1D and 2D-NMR spectra of silicon-29, oxygen-17 and calcium-43, is achieved by the gauge including projector augmented-wave (GIPAW) and the projector augmented-wave (PAW) methods. It is shown that the limitations due to the finite size of the MD models can be overcome using a Kernel Estimation Density (KDE) approach to simulate the spectra since it better accounts for the disorder effects on the NMR parameter distribution. KDE allows reconstructing a smoothed NMR parameter distribution from the MD/GIPAW data. Simulated NMR spectra calculated with the present approach are found to be in excellent agreement with the experimental data. This further validates the CaSiO(3) structural model obtained by MD simulations allowing the inference of relationships between structural data and NMR response. The methods used to simulate 1D and 2D-NMR spectra from MD GIPAW data have been integrated in a package (called fpNMR) freely available on request.
Density functional calculations of multiphonon capture cross sections at defects in semiconductors
NASA Astrophysics Data System (ADS)
Barmparis, Georgios D.; Puzyrev, Yevgeniy S.; Zhang, X.-G.; Pantelides, Sokrates T.
2014-03-01
The theory of electron capture cross sections by multiphonon processes in semiconductors has a long and controversial history. Here we present a comprehensive theory and describe its implementation for realistic calculations. The Born-Oppenheimer and the Frank-Condon approximations are employed. The transition probability of an incoming electron is written as a product of an instantaneous electronic transition in the initial defect configuration and the line shape function (LSF) that describes the multiphonon processes that lead to lattice relaxation. The electronic matrix elements are calculated using the Projector Augmented Wave (PAW) method which yields the true wave functions while still employing a plane-wave basis. The LSF is calculated by employing a Monte Carlo method and the real phonon modes of the defect, calculated using density functional theory in the PAW scheme. Initial results of the capture cross section for a prototype system, namely a triply hydrogenated vacancy in Si are presented. The results are relevant for modeling device degradation by hot electron effects. This work is supported in part by the Samsung Advanced Institute of Technology (SAIT)'s Global Research Outreach (GRO) Program and by the LDRD program at ORNL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattsson, Ann E.
Density Functional Theory (DFT) based Equation of State (EOS) construction is a prominent part of Sandia’s capabilities to support engineering sciences. This capability is based on augmenting experimental data with information gained from computational investigations, especially in those parts of the phase space where experimental data is hard, dangerous, or expensive to obtain. A key part of the success of the Sandia approach is the fundamental science work supporting the computational capability. Not only does this work enhance the capability to perform highly accurate calculations but it also provides crucial insight into the limitations of the computational tools, providing highmore » confidence in the results even where results cannot be, or have not yet been, validated by experimental data. This report concerns the key ingredient of projector augmented-wave (PAW) potentials for use in pseudo-potential computational codes. Using the tools discussed in SAND2012-7389 we assess the standard Vienna Ab-initio Simulation Package (VASP) PAWs for Molybdenum.« less
Insight into the adsorption of chloramphenicol on a vermiculite surface
NASA Astrophysics Data System (ADS)
Tri, Nguyen Ngoc; Carvalho, A. J. P.; Dordio, A. V.; Nguyen, Minh Tho; Trung, Nguyen Tien
2018-05-01
Four stable configurations were found upon adsorption of the chloramphenicol on a period slab model of the vermiculite surface, using the PBE and C09-vdW functionals in a projector-augmented wave (PAW) method approach. The adsorption is a strong chemisorption process, characterized by an adsorption energy of -106.5 kcal mol-1 at the most stable configuration. Stability of configurations contributed mainly by Mg⋯O/Cl attractive electrostatic interactions and C/Osbnd H⋯O hydrogen bonds. It is remarkable that the vermiculite is found to be a solid material with good potential to be used for adsorption and consequent removal of this type of antibiotic drugs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Timothy F. G., E-mail: tim.green@materials.ox.ac.uk; Yates, Jonathan R., E-mail: jonathan.yates@materials.ox.ac.uk
2014-06-21
We present a method for the first-principles calculation of nuclear magnetic resonance (NMR) J-coupling in extended systems using state-of-the-art ultrasoft pseudopotentials and including scalar-relativistic effects. The use of ultrasoft pseudopotentials is allowed by extending the projector augmented wave (PAW) method of Joyce et al. [J. Chem. Phys. 127, 204107 (2007)]. We benchmark it against existing local-orbital quantum chemical calculations and experiments for small molecules containing light elements, with good agreement. Scalar-relativistic effects are included at the zeroth-order regular approximation level of theory and benchmarked against existing local-orbital quantum chemical calculations and experiments for a number of small molecules containing themore » heavy row six elements W, Pt, Hg, Tl, and Pb, with good agreement. Finally, {sup 1}J(P-Ag) and {sup 2}J(P-Ag-P) couplings are calculated in some larger molecular crystals and compared against solid-state NMR experiments. Some remarks are also made as to improving the numerical stability of dipole perturbations using PAW.« less
Influence of hydrogen on the stability of iron phases under pressure
NASA Astrophysics Data System (ADS)
Skorodumova, N. V.; Ahuja, R.; Johansson, B.
2004-04-01
The influence of hydrogen presence on the stability of iron phases (bcc, hcp, dhcp, fcc, simple cubic) in a wide pressure interval at 0 K has been studied by the first-principles projector augmented-wave (PAW) method. Hydrogen is shown to occupy different interstitial lattice positions depending on the type of structure and pressure. An introduction of hydrogen impurities (˜6 at. %) leads to a stabilization of the close-packed iron structures, shifting the calculated pressure of the bcc-hcp transition from ˜9 GPa for pure iron to 7 GPa for Fe (6 at. % H). This tendency is further enhanced in the iron hydride structures. The iron hydrides in the close-packed structures (hcp, dhcp, fcc) are essentially degenerate in energy and found to be most stable in the whole pressure range.
Carbon diffusion in molten uranium: an ab initio molecular dynamics study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, Kerry E.; Abrecht, David G.; Kessler, Sean H.
In this work we used ab initio molecular dynamics (AIMD) within the framework of density functional theory (DFT) and the projector-augmented wave (PAW) method to study carbon diffusion in liquid uranium at temperatures above 1600 K. The electronic interactions of carbon and uranium were described using the local density approximation (LDA). The self-diffusion of uranium based on this approach is compared with literature computational and experimental results for liquid uranium. The temperature dependence of carbon and uranium diffusion in the melt was evaluated by fitting the resulting diffusion coefficients to an Arrhenius relationship. We found that the LDA calculated activationmore » energy for carbon was nearly twice that of uranium: 0.55±0.03 eV for carbon compared to 0.32±0.04 eV for uranium. Structural analysis of the liquid uranium-carbon system is also discussed.« less
Carbon in iron phases under high pressure
NASA Astrophysics Data System (ADS)
Huang, L.; Skorodumova, N. V.; Belonoshko, A. B.; Johansson, B.; Ahuja, R.
2005-11-01
The influence of carbon impurities on the properties of iron phases (bcc, hcp, dhcp, fcc) has been studied using the first-principles projector augmented-wave (PAW) method for a wide pressure range. It is shown that the presence of ~6 at. % of interstitial carbon has a little effect on the calculated structural sequence of the iron phases under high pressure. The bcc -> hcp transition both for pure iron and iron containing carbon takes place around 9 GPa. According to the enthalpies comparison, the solubility of carbon into the iron solid is decreased by high pressure. The coexistence of iron carbide (Fe3C) + pure hcp Fe is most stable phase at high pressure compared with other phases. Based on the analysis of the pressure-density dependences for Fe3C and hcp Fe, we suggest that there might be some fraction of iron carbide present in the core.
NASA Astrophysics Data System (ADS)
Pašti, Igor A.; Jovanović, Aleksandar; Dobrota, Ana S.; Mentus, Slavko V.; Johansson, Börje; Skorodumova, Natalia V.
2018-04-01
The understanding of atomic adsorption on graphene is of high importance for many advanced technologies. Here we present a complete database of the atomic adsorption energies for the elements of the Periodic Table up to the atomic number 86 (excluding lanthanides) on pristine graphene. The energies have been calculated using the projector augmented wave (PAW) method with PBE, long-range dispersion interaction corrected PBE (PBE+D2, PBE+D3) as well as non-local vdW-DF2 approach. The inclusion of dispersion interactions leads to an exothermic adsorption for all the investigated elements. Dispersion interactions are found to be of particular importance for the adsorption of low atomic weight earth alkaline metals, coinage and s-metals (11th and 12th groups), high atomic weight p-elements and noble gases. We discuss the observed adsorption trends along the groups and rows of the Periodic Table as well some computational aspects of modelling atomic adsorption on graphene.
Structural and magnetic properties of FeHx (x=0.25; 0.50; 0.75)
NASA Astrophysics Data System (ADS)
Mikhaylushkin, A. S.; Skorodumova, N. V.; Ahuja, R.; Johansson, B.
2006-05-01
The structural and magnetic properties of the FeHx (x=0.25; 0.50; 0.75) compounds have been studied using the projector augmented wave (PAW) method within the generalized gradient approximation (GGA). We compare the hcp, dhcp and fcc structures and find that for the considered concentrations of hydrogen the hcp structure is most stable in a wide pressure range. The magnetic behavior of iron is crucially influenced by hydrogen. In particular, the local moment on a Fe atom depends on the number of hydrogen atoms in the atom surroundings. Iron atoms, which are crystallographically equivalent in their original structures (hcp, fcc) but have different number of hydrogen neighbors, are shown to have different local magnetic moments. This finding suggests that the experimental observations of two magnetic moments in iron hydride can be explained by nonstoichiometry of the hydride and might not be a direct evidence for the presence of the dhcp phase.
Determination of NMR chemical shifts for cholesterol crystals from first-principles
NASA Astrophysics Data System (ADS)
Kucukbenli, Emine; de Gironcoli, Stefano
2011-03-01
Solid State Nuclear Magnetic Resonance (NMR) is a powerful tool in crystallography when combined with theoretical predictions. So far, empirical calculations of spectra have been employed for an unambiguous identification. However, many complex systems are outside the scope of these methods. Our implementation of ultrasoft and projector augmented wave pseudopotentials within ab initio gauge including projector augmented plane wave (GIPAW) method in Quantum Espresso simulation package allows affordable calculations of NMR spectra for systems of thousands of electrons. We report here the first ab initio determination of NMR spectra for several crystal structures of cholesterol. Cholesterol crystals, the main component of human gallstones, are of interest to medical research as their structural properties can shed light on the pathologies of gallbladder. With our application we show that ab initio calculations can be employed to aid NMR crystallography.
Computational research on lithium ion battery materials
NASA Astrophysics Data System (ADS)
Tang, Ping
Crystals of LiFePO4 and related materials have recently received a lot of attention due to their very promising use as cathodes in rechargeable lithium ion batteries. This thesis studied the electronic structures of FePO 4 and LiMPO4, where M=Mn, Fe, Co and Ni within the framework of density-functional theory. The first study compared the electronic structures of the LiMPO 4 and FePO4 materials in their electrochemically active olivine form, using the LAPW (linear augmented plane wave) method [1]. A comparison of results for various spin configurations suggested that the ferromagnetic configuration can serve as a useful approximation for studying general features of these systems. The partial densities of states for the LiMPO4 materials are remarkably similar to each other, showing the transition metal 3d states forming narrow bands above the O 2p band. By contrast, in absence of Li, the majority spin transition metal 3d states are well-hybridized with the O 2p band in FePO4. The second study compared the electronic structures of FePO4 in several crystal structures including an olivine, monoclinic, quartz-like, and CrVO4-like form [2,3]. For this work, in addition to the LAPW method, PAW (Projector Augmented Wave) [4], and PWscf (plane-wave pseudopotential) [5] methods were used. By carefully adjusting the computational parameters, very similar results were achieved for the three independent computational methods. Results for the relative stability of the four crystal structures are reported. In addition, partial densities of state analyses show qualitative information about the crystal field splittings and bond hybridizations and help rationalize the understanding of the electrochemical and stability properties of these materials.
Clean Os(0001) electronic surface states: A first-principle fully relativistic investigation
NASA Astrophysics Data System (ADS)
Urru, Andrea; Dal Corso, Andrea
2018-05-01
We analyze the electronic structure of the Os(0001) surface by means of first-principle calculations based on Fully Relativistic (FR) Density Functional Theory (DFT) and a Projector Augmented-Wave (PAW) approach. We investigate surface states and resonances analyzing their spin-orbit induced energy splitting and their spin polarization. The results are compared with previously studied surfaces Ir(111), Pt(111), and Au(111). We do not find any surface state in the gap similar to the L-gap of the (111) fcc surfaces, but find Rashba split resonances that cross the Fermi level and, as in the recently studied Ir(111) surface, have a characteristic downward dispersion. Moreover, for some selected surface states we study the spin polarization with respect to k∥, the wave-vector parallel to the surface. In some cases, such as the Rashba split resonances, the spin polarization shows a smooth behavior with slow rotations, in others the rotation is faster, due to mixing and anti-crossing of the states.
NMR shieldings from density functional perturbation theory: GIPAW versus all-electron calculations
NASA Astrophysics Data System (ADS)
de Wijs, G. A.; Laskowski, R.; Blaha, P.; Havenith, R. W. A.; Kresse, G.; Marsman, M.
2017-02-01
We present a benchmark of the density functional linear response calculation of NMR shieldings within the gauge-including projector-augmented-wave method against all-electron augmented-plane-wave+local-orbital and uncontracted Gaussian basis set results for NMR shieldings in molecular and solid state systems. In general, excellent agreement between the aforementioned methods is obtained. Scalar relativistic effects are shown to be quite large for nuclei in molecules in the deshielded limit. The small component makes up a substantial part of the relativistic corrections.
NMR shieldings from density functional perturbation theory: GIPAW versus all-electron calculations.
de Wijs, G A; Laskowski, R; Blaha, P; Havenith, R W A; Kresse, G; Marsman, M
2017-02-14
We present a benchmark of the density functional linear response calculation of NMR shieldings within the gauge-including projector-augmented-wave method against all-electron augmented-plane-wave+local-orbital and uncontracted Gaussian basis set results for NMR shieldings in molecular and solid state systems. In general, excellent agreement between the aforementioned methods is obtained. Scalar relativistic effects are shown to be quite large for nuclei in molecules in the deshielded limit. The small component makes up a substantial part of the relativistic corrections.
Hubbard physics in the PAW GW approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booth, J. M., E-mail: jamie.booth@rmit.edu.au; Smith, J. S.; Russo, S. P.
It is demonstrated that the signatures of the Hubbard Model in the strongly interacting regime can be simulated by modifying the screening in the limit of zero wavevector in Projector-Augmented Wave GW calculations for systems without significant nesting. This modification, when applied to the Mott insulator CuO, results in the opening of the Mott gap by the splitting of states at the Fermi level into upper and lower Hubbard bands, and exhibits a giant transfer of spectral weight upon electron doping. The method is also employed to clearly illustrate that the M{sub 1} and M{sub 2} forms of vanadium dioxidemore » are fundamentally different types of insulator. Standard GW calculations are sufficient to open a gap in M{sub 1} VO{sub 2}, which arise from the Peierls pairing filling the valence band, creating homopolar bonds. The valence band wavefunctions are stabilized with respect to the conduction band, reducing polarizability and pushing the conduction band eigenvalues to higher energy. The M{sub 2} structure, however, opens a gap from strong on-site interactions; it is a Mott insulator.« less
NASA Astrophysics Data System (ADS)
Xu, Xiao; Holzwarth, N. A. W.
2011-10-01
This paper presents the formulation and numerical implementation of a self-consistent treatment of orbital-dependent exchange-correlation functionals within the projector-augmented-wave method of Blöchl [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.50.17953 50, 17953 (1994)] for electronic structure calculations. The methodology is illustrated with binding energy curves for C in the diamond structure and LiF in the rock salt structure, by comparing results from the Hartree-Fock (HF) formalism and the optimized effective potential formalism in the so-called KLI approximation [Krieger, Li, and Iafrate, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.45.101 45, 101 (1992)] with those of the local density approximation. While the work here uses pure Fock exchange only, the formalism can be extended to treat orbital-dependent functionals more generally.
Modeling nuclear field shift isotope fractionation in crystals
NASA Astrophysics Data System (ADS)
Schauble, E. A.
2013-12-01
In this study nuclear field shift fractionations in solids (and chemically similar liquids) are estimated using calibrated density functional theory calculations. The nuclear field shift effect is a potential driver of mass independent isotope fractionation(1,2), especially for elements with high atomic number such as Hg, Tl and U. This effect is caused by the different shapes and volumes of isotopic nuclei, and their interactions with electronic structures and energies. Nuclear field shift isotope fractionations can be estimated with first principles methods, but the calculations are computationally difficult, limiting most theoretical studies so far to small gas-phase molecules and molecular clusters. Many natural materials of interest are more complex, and it is important to develop ways to estimate field shift effects that can be applied to minerals, solutions, in biomolecules, and at mineral-solution interfaces. Plane-wave density functional theory, in combination with the projector augmented wave method (DFT-PAW), is much more readily adapted to complex materials than the relativistic all-electron calculations that have been the focus of most previous studies. DFT-PAW is a particularly effective tool for studying crystals with periodic boundary conditions, and may also be incorporated into molecular dynamics simulations of solutions and other disordered phases. Initial calibrations of DFT-PAW calculations against high-level all-electron models of field shift fractionation suggest that there may be broad applicability of this method to a variety of elements and types of materials. In addition, the close relationship between the isomer shift of Mössbauer spectroscopy and the nuclear field shift isotope effect makes it possible, at least in principle, to estimate the volume component of field shift fractionations in some species that are too complex even for DFT-PAW models, so long as there is a Mössbauer isotope for the element of interest. Initial results will be presented for calculations of liquid-vapor fractionation of cadmium and mercury, which indicate an affinity for heavy isotopes in the liquid phase. In the case of mercury the results match well with recent experiments. Mössbauer-calibrated fractionation factors will also be presented for tin and platinum species. Platinum isotope behaviour in metals appears to particularly interesting, with very distinct isotope partitioning behaviour for iron-rich alloys, relative to pure platinum metal. References: 1) Bigeleisen, J. (1996) J. Am. Chem. Soc. 118, 3676-3680. 2) Nomura, M., Higuchi, N., Fujii, Y. (1996) J. Am. Chem. Soc. 118, 9127-9130.
Energy band gap and spectroscopic studies in Mn{sub 1-x}Cu{sub x}WO{sub 4} (0 ≤ x ≤ 0.125)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mal, Priyanath; Rambabu, P.; Turpu, G. R.
2016-05-06
A study on the effect of nonmagnetic Cu{sup 2+} substitution at Mn{sup 2+} site on the structural and energy band gap of the MnWO{sub 4} is reported. Convenient solid state reaction route has been adopted for the synthesis of Mn{sub 1-x}Cu{sub x}WO{sub 4}. X-ray diffraction (XRD) pattern showed high crystalline quality of the prepared samples. Raman spectroscopic studies were carried out to understand the structural aspects of the doping. 15 Raman active modes were identified out of 18, predicted for wolframite type monoclinic structure of MnWO{sub 4}. UV-visible diffuse reflectance spectra were recorded and analyzed to get energy band gapmore » of the studied system and are found in the range of 2.5 eV to 2.04 eV with a systematic decrease with the increase in Cu{sup 2+} concentration. Energy band gap values are verified by Density Functional Theory calculations based on projector augmented wave (PAW) method. The calculated values are in good agreement with the experimental data.« less
NASA Astrophysics Data System (ADS)
Li, Shaorong; Wang, Shaofeng; Wang, Rui
2011-12-01
First-principles calculations are used to predict the generalized-stacking-fault energy (GSFE) surfaces of AlRE intermetallics. The calculations employ the projector augmented-wave (PAW) method within the generalized gradient approximation (GGA) using the density functional theory (DFT). GSFE curves along <1 1 1> {1 1 0} direction, <1 1 0> {1 1 0} direction and <1 0 0> {1 1 0} direction have been calculated. The fitted GSFE surfaces have been obtained from the Fourier series based on the translational symmetry. In order to illuminate the reasonable of our computational accuracy, we have compared our theoretical results of B2 intermetallics YCu with the previous calculated results. The unstable-stacking-fault energy (γus) on the {1 1 0} plane has the laws of AlPr
NASA Astrophysics Data System (ADS)
Petersen, John; Spinks, Michael; Borges, Pablo; Scolfaro, Luisa
2012-03-01
Lead chalcogenides, most notably PbTe and PbSe, have become an active area of research due to their thermoelectric (TE) properties. The high figure of merit (ZT) of these materials has brought much attention to them, due to their ability to convert waste heat into electricity, with a possible application being in engine exhaust. Here, we examine the effects of altering the lattice parameter on total ground state energy and the band gap using first principles calculations performed within Density Functional Theory and the Projector Augmented Wave approach and the Vienna Ab-initio Simulation Package (VASP-PAW) code. Both PbTe and PbSe, in NaCl, orthorhombic, and CsCl structures are considered. It is found that altering the lattice parameter, which is analogous to applying external pressure on the material experimentally, has notable effects on both ground state energy and the band gap. The implications of this behavior in the TE properties of these materials are analyzed.
NASA Astrophysics Data System (ADS)
Shahi, Chandra; Sun, Jianwei; Perdew, John P.
2018-03-01
Most of the group IV, III-V, and II-VI compounds crystallize in semiconductor structures under ambient conditions. Upon application of pressure, they undergo structural phase transitions to more closely packed structures, sometimes metallic phases. We have performed density functional calculations using projector augmented wave (PAW) pseudopotentials to determine the transition pressures for these transitions within the local density approximation (LDA), the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA), and the strongly constrained and appropriately normed (SCAN) meta-GGA. LDA underestimates the transition pressure for most of the studied materials. PBE under- or overestimates in many cases. SCAN typically corrects the errors of LDA and PBE for the transition pressure. The accuracy of SCAN is comparable to that of computationally expensive methods like the hybrid functional HSE06, the random phase approximation (RPA), and quantum Monte Carlo (QMC), in cases where calculations with these methods have been reported, but at a more modest computational cost. The improvement from LDA to PBE to SCAN is especially clearcut and dramatic for covalent semiconductor-metal transitions, as for Si and Ge, where it reflects the increasing relative stabilization of the covalent semiconducting phases under increasing functional sophistication.
Ab Initio Theory of Nuclear Magnetic Resonance Shifts in Metals
NASA Astrophysics Data System (ADS)
D'Avezac, Mayeul; Marzari, Nicola; Mauri, Francesco
2005-03-01
A comprehensive approach for the first-principles determination of all-electron NMR shifts in metallic systems is presented. Our formulation is based on a combination of density-functional perturbation theory and all-electron wavefunction reconstruction, starting from periodic-boundary calculations in the pseudopotential approximation. The orbital contribution to the NMR shift (the chemical shift) is obtained by combining the gauge-including projector augmented-wave approach (GIPAW), originally developed for the case of insulatorsootnotetextC. J. Pickard, Francesco Mauri, Phys. Rev. B, 63, 245101(2001), with the extension of linear-response theory to the case of metallic systemsootnotetextS. de Gironcoli, Phys. Rev. B, 51, 6773(1995). The spin contribution (the Knight shift) is obtained as a response to a finite uniform magnetic field, and through reconstructing the hyperfine interaction between the electron-spin density and the nuclear spins with the projector augmented-wave method (PAWootnotetextC. G. Van de Walle, P. E. Blöchl, Phys. Rev. B, 47, 4244(1993)). Our method is validated with applications to the case of the homogeneous electron gas and of simple metals. (Work supported by MURI grant DAAD 19-03-1-0169 and MIT-France)
First-principles study of defects and phase transition in UO(2).
Yu, Jianguo; Devanathan, Ram; Weber, William J
2009-10-28
Defect properties and phase transition in UO(2) have been studied from first principles by the all-electron projector-augmented-wave (PAW) method. The generalized gradient approximation with empirical self-interaction correction, (GGA)+U, formalism has been used to account for the strong on-site Coulomb repulsion among the localized U 5f electrons. The Hubbard parameter U(eff), magnetic ordering, chemical potential and heat of formation have been systematically examined. By choosing an appropriate U(eff) = 3.0 eV it is possible to consistently describe structural properties of UO(2) and model the phase transition processes. The phase transition pressure for UO(2) is about 20 GPa, which is less than the experimental value of 42 GPa but better than the LDA+U value of 7.8 GPa. Meanwhile our results for the formation energies of intrinsic defects partly confirm earlier calculations for the intrinsic charge neutral defects but reveal large variations depending on the determination of the chemical potential and whether the environment is O-rich or U-rich. Moreover, the results for extrinsic defects of Xe, which are representative of mobile insoluble fission product in UO(2), are consistent with experimental data in which Xe prefers to be trapped by Schottky defects.
NASA Astrophysics Data System (ADS)
Eryigit, Resul; Gurel, Tanju; Erturk, Esra; Lukoyanov, A. V.; Akcay, Guven; Anisimov, V. I.
2014-03-01
We present density functional theory calculations on iron-based pnictides RFeAsO (R = Pr, Nd, Sm, Gd). The calculations have been carried out using plane-waves and projector augmented wave (PAW) pseudopotential approach. Structural, magnetic and electronic properties are studied within generalized gradient approximation (GGA) and also within GGA+U in order to investigate the influence of electron correlation effects. Low-temperature Cmma structure is fully optimized by GGA considering both non-magnetic and magnetic cells. We have found that spin-polarized structure improves the agreement with experiments on equilibrium lattice parameters, particularly c lattice parameter and Fe-As bond-lengths. Electronic band structure, total density of states, and spin-dependent orbital-resolved density of states are also analyzed in the frameworks of GGA and GGA+U and discussed. For all materials, by including on-site Coulomb correction, rare earth 4f states move away from the Fermi level and the Fermi level features of the systems are found to be mostly defined by the 3d electron-electron correlations in Fe. This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK Project No. TBAG-111T796) and the Russian Foundation for Basic Research (Project No. 12-02-91371-CT_a).
Pindelska, Edyta; Szeleszczuk, Lukasz; Pisklak, Dariusz Maciej; Majka, Zbigniew; Kolodziejski, Waclaw
2015-07-01
Tiotropium bromide is an anticholinergic bronchodilator used in the management of chronic obstructive pulmonary disease. The crystal structures of this compound and its monohydrate have been previously solved and published. However, in this paper, we showed that those structures contain some major errors. Our methodology based on combination of the solid-state nuclear magnetic resonance (NMR) spectroscopy and quantum mechanical gauge-including projector-augmented wave (GIPAW) calculations of NMR shielding constants enabled us to correct those errors and obtain reliable structures of the studied compounds. It has been proved that such approach can be used not only to perform the structural analysis of a drug substance and to identify its polymorphs, but also to verify and optimize already existing crystal structures. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Liu, Miao; Yang, Shourui; Wang, Zhangying; Huang, Shujun; Liu, Yue; Niu, Zhenqi; Zhang, Xiaoxuan; Zhu, Jigui; Zhang, Zonghua
2016-05-30
Augmented reality system can be applied to provide precise guidance for various kinds of manual works. The adaptability and guiding accuracy of such systems are decided by the computational model and the corresponding calibration method. In this paper, a novel type of augmented reality guiding system and the corresponding designing scheme are proposed. Guided by external positioning equipment, the proposed system can achieve high relative indication accuracy in a large working space. Meanwhile, the proposed system is realized with a digital projector and the general back projection model is derived with geometry relationship between digitized 3D model and the projector in free space. The corresponding calibration method is also designed for the proposed system to obtain the parameters of projector. To validate the proposed back projection model, the coordinate data collected by a 3D positioning equipment is used to calculate and optimize the extrinsic parameters. The final projecting indication accuracy of the system is verified with subpixel pattern projecting technique.
Exact density functional and wave function embedding schemes based on orbital localization
NASA Astrophysics Data System (ADS)
Hégely, Bence; Nagy, Péter R.; Ferenczy, György G.; Kállay, Mihály
2016-08-01
Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.
NASA Astrophysics Data System (ADS)
Errico, Leonardo A.; Rentería, Mario; Petrilli, Helena M.
2007-04-01
We perform an ab initio study of the electric field gradient (EFG) at the nucleus of Cd impurities at substitutional Sn sites in crystalline SnO. The full-potential linearized-augmented plane wave and the projector augmented wave methods used here allow us to treat the electronic structure of the doped system and the atomic relaxations introduced by the impurities in the host in a fully self-consistent way using a supercell approach in a state-of-the-art way. Effects of the impurity charge state on the electronic and structural properties are also discussed. Since the EFG is a very subtle quantity, its determination is very useful to probe ground-state properties such as the charge density. We show that the EFG is very sensitive to structural relaxations induced by the impurity. Our theoretical predictions are compared with available experimental results.
NASA Astrophysics Data System (ADS)
Calderín, L.; Karasiev, V. V.; Trickey, S. B.
2017-12-01
As the foundation for a new computational implementation, we survey the calculation of the complex electrical conductivity tensor based on the Kubo-Greenwood (KG) formalism (Kubo, 1957; Greenwood, 1958), with emphasis on derivations and technical aspects pertinent to use of projector augmented wave datasets with plane wave basis sets (Blöchl, 1994). New analytical results and a full implementation of the KG approach in an open-source Fortran 90 post-processing code for use with Quantum Espresso (Giannozzi et al., 2009) are presented. Named KGEC ([K]ubo [G]reenwood [E]lectronic [C]onductivity), the code calculates the full complex conductivity tensor (not just the average trace). It supports use of either the original KG formula or the popular one approximated in terms of a Dirac delta function. It provides both Gaussian and Lorentzian representations of the Dirac delta function (though the Lorentzian is preferable on basic grounds). KGEC provides decomposition of the conductivity into intra- and inter-band contributions as well as degenerate state contributions. It calculates the dc conductivity tensor directly. It is MPI parallelized over k-points, bands, and plane waves, with an option to recover the plane wave processes for their use in band parallelization as well. It is designed to provide rapid convergence with respect to k-point density. Examples of its use are given.
Projector-Based Augmented Reality for Quality Inspection of Scanned Objects
NASA Astrophysics Data System (ADS)
Kern, J.; Weinmann, M.; Wursthorn, S.
2017-09-01
After scanning or reconstructing the geometry of objects, we need to inspect the result of our work. Are there any parts missing? Is every detail covered in the desired quality? We typically do this by looking at the resulting point clouds or meshes of our objects on-screen. What, if we could see the information directly visualized on the object itself? Augmented reality is the generic term for bringing virtual information into our real environment. In our paper, we show how we can project any 3D information like thematic visualizations or specific monitoring information with reference to our object onto the object's surface itself, thus augmenting it with additional information. For small objects that could for instance be scanned in a laboratory, we propose a low-cost method involving a projector-camera system to solve this task. The user only needs a calibration board with coded fiducial markers to calibrate the system and to estimate the projector's pose later on for projecting textures with information onto the object's surface. Changes within the projected 3D information or of the projector's pose will be applied in real-time. Our results clearly reveal that such a simple setup will deliver a good quality of the augmented information.
Dohn, A O; Jónsson, E Ö; Levi, G; Mortensen, J J; Lopez-Acevedo, O; Thygesen, K S; Jacobsen, K W; Ulstrup, J; Henriksen, N E; Møller, K B; Jónsson, H
2017-12-12
A multiscale density functional theory-quantum mechanics/molecular mechanics (DFT-QM/MM) scheme is presented, based on an efficient electrostatic coupling between the electronic density obtained from a grid-based projector augmented wave (GPAW) implementation of density functional theory and a classical potential energy function. The scheme is implemented in a general fashion and can be used with various choices for the descriptions of the QM or MM regions. Tests on H 2 O clusters, ranging from dimer to decamer show that no systematic energy errors are introduced by the coupling that exceeds the differences in the QM and MM descriptions. Over 1 ns of liquid water, Born-Oppenheimer QM/MM molecular dynamics (MD) are sampled combining 10 parallel simulations, showing consistent liquid water structure over the QM/MM border. The method is applied in extensive parallel MD simulations of an aqueous solution of the diplatinum [Pt 2 (P 2 O 5 H 2 ) 4 ] 4- complex (PtPOP), spanning a total time period of roughly half a nanosecond. An average Pt-Pt distance deviating only 0.01 Å from experimental results, and a ground-state Pt-Pt oscillation frequency deviating by <2% from experimental results were obtained. The simulations highlight a remarkable harmonicity of the Pt-Pt oscillation, while also showing clear signs of Pt-H hydrogen bonding and directional coordination of water molecules along the Pt-Pt axis of the complex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hégely, Bence; Nagy, Péter R.; Kállay, Mihály, E-mail: kallay@mail.bme.hu
Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up themore » system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.« less
Investigation of half-metallic ferromagnetism in Heusler compounds Co2VZ (Z = Ga, Ge, As, Se)
NASA Astrophysics Data System (ADS)
Han, Jiajia; Wang, Zhengwei; Xu, Weiwei; Wang, Cuiping; Liu, Xingjun
2017-11-01
The electronic structures and magnetic properties of 3d transition metal-based full Heusler compounds Co2VZ (Z = Ga, Ge, As, Se) are investigated using the projector augmented wave (PAW) pseudopotential method. By considering the strong localization of Co 3d-states and V 3d-states at the Fermi level, these Co2VZ (Z = Ga, Ge, As, Se) compounds were treated in the framework of the generalized gradient approximation (GGA)+U method, and the results from the conventional GGA method are presented for comparison. The results that were obtained from the density of states with the GGA+U and GGA methods show that the Co2VGa compound is a half-metallic ferromagnet. For the Co2VGe and Co2VAs compounds, the GGA+U method predicts that these two compounds are half-metallic ferromagnetic by shifting the Fermi level to a lower value with respect to the gap in the minority states, when compared to the conventional GGA method. The energy gaps are determined to be 0.283 eV and 0.425 eV, respectively. However, these results show that the density of states of the Co2VSe compound has a metallic character, although the 3d states were corrected when using the GGA+U method. We found that the characteristic of half-metallic ferromagnetism is attributed to the interaction between the V 3d-states other than Co 3d-states. The calculated total magnetic moments are 2.046 μB, 3.054 μB and 4.012 μB respectively for the Co2VZ (Z = Ga, Ge, As) compounds with the GGA+U method. The relationship between total spin magnetic moment per formula unit and total number of valence electrons of these Heusler compounds is in agreement with the Slater-Pauling rule.
Predicting equilibrium uranium isotope fractionation in crystals and solution
NASA Astrophysics Data System (ADS)
Schauble, E. A.
2015-12-01
Despite the rapidly growing interest in using 238U/235U measurements as a proxy for changes in oxygen abundance in surface and near-surface environments, the present theoretical understanding of uranium isotope fractionation is limited to a few simple gas-phase molecules and analogues of dissolved species (e.g., 1,2,3). Understanding uranium isotope fractionation behavior in more complicated species, such as crystals and adsorption complexes, will help in the design and interpretation of experiments and field studies, and may suggest other uses for 38U/235U measurements. In this study, a recently developed first-principles method for estimating the nuclear volume component of field shift fractionation in crystals and complex molecular species (4) is combined with mass-dependent fractionation theory to predict equilibrium 38U/235U fractionations in aqueous and crystalline uranium compounds, including uraninite (UO2). The nuclear field shift effect, caused by the interaction of electrons with the finite volume of the positive charge distribution in uranium nuclei, is estimated using Density Functional Theory and the Projector Augmented Wave method (DFT-PAW). Tests against relativistic electronic structure calculations and Mössbauer isomer shift data indicate that the DFT-PAW method is reasonably accurate, while being much better suited to models of complex and crystalline species. Initial results confirm previous predictions that the nuclear volume effect overwhelms mass depdendent fractionation in U(VI)-U(IV) exchange reactions, leading to higher 238U/235U in U(IV) species (i.e., for UO2 xtal vs. UO22+aq, ln αNV ≈ +1.8‰ , ln αMD ≈ -0.8‰, ln αTotal ≈ +1.0‰ at 25ºC). UO2 and U(H2O)94+, are within ~0.4‰ of each other, while U(VI) species appear to be more variable. This suggests that speciation is likely to significantly affect natural uranium isotope fractionations, in addition to oxidation state. Tentatively, it appears that uranyl-type (UO22+-bearing) structures will tend to have higher 238U/235U than uranate-type structures that lack strong U=O bonds. References: 1. Bigeleisen (1996) JACS 118:3676; 2. Schauble (2006) Eos 87:V21B-0570; 3. Abe et al. (2008) J Chem Phys 128:144309, 129:164309, & Abe et al. (2010) J Chem Phys 133:044309; 4. Schauble (2013) PNAS 110:17714.
Pindelska, Edyta; Szeleszczuk, Lukasz; Pisklak, Dariusz Maciej; Mazurek, Andrzej; Kolodziejski, Waclaw
2015-01-01
Clopidogrel hydrogensulfate (HSCL) is an antiplatelet agent, one of top-selling drugs in the world. In this paper, we have described a rapid and convenient method of verification which polymorph of HSCL is present in its final solid dosage form. Our methodology based on solid-state NMR spectroscopy and ab initio gauge-including projector-augmented wave calculations of NMR shielding constants is appropriate for currently available commercial solid dosage forms of HSCL. Furthermore, such structural characterization can assist with the development of new pharmaceutical products containing HSCL and also be useful in the identification of counterfeit drugs. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Yazawa, Koji; Suzuki, Furitsu; Nishiyama, Yusuke; Ohata, Takuya; Aoki, Akihiro; Nishimura, Katsuyuki; Kaji, Hironori; Shimizu, Tadashi; Asakura, Tetsuo
2012-11-25
The accurate (1)H positions of alanine tripeptide, A(3), with anti-parallel and parallel β-sheet structures could be determined by highly resolved (1)H DQMAS solid-state NMR spectra and (1)H chemical shift calculation with gauge-including projector augmented wave calculations.
Rezende, Carlos A; San Gil, Rosane A S; Borré, Leandro B; Pires, José Ricardo; Vaiss, Viviane S; Resende, Jackson A L C; Leitão, Alexandre A; De Alencastro, Ricardo B; Leal, Katia Z
2016-09-01
The experiments of carvedilol form II, form III, and hydrate by (13)C and (15)N cross-polarization magic-angle spinning (CP MAS) are reported. The GIPAW (gauge-including projector-augmented wave) method from DFT (density functional theory) calculations was used to simulate (13)C and (15)N chemical shifts. A very good agreement was found for the comparison between the global results of experimental and calculated nuclear magnetic resonance (NMR) chemical shifts for carvedilol polymorphs. This work aims a comprehensive understanding of carvedilol crystalline forms employing solution and solid-state NMR as well as DFT calculations. Copyright © 2016. Published by Elsevier Inc.
Ziaei, Vafa; Bredow, Thomas
2018-05-31
An accurate theoretical prediction of ionization potential (IP) and electron affinity (EA) is key in understanding complex photochemical processes in aqueous environments. There have been numerous efforts in literature to accurately predict IP and EA of liquid water, however with often conflicting results depending on the level of theory and the underlying water structures. In a recent study based on hybrid-non-self-consistent many-body perturbation theory (MBPT) Gaiduk et al (2018 Nat. Commun. 9 247) predicted an IP of 10.2 eV and EA of 0.2 eV, resulting in an electronic band gap (i.e. electronic gap (IP-EA) as measured by photoelectron spectroscopy) of about 10 eV, redefining the widely cited experimental gap of 8.7 eV in literature. In the present work, we show that GW self-consistency and an implicit vertex correction in MBPT considerably affect recently reported EA values by Gaiduk et al (2018 Nat. Commun. 9 247) by about 1 eV. Furthermore, the choice of pseudo-potential is critical for an accurate determination of the absolute band positions. Consequently, the self-consistent GW approach with an implicit vertex correction based on projector augmented wave (PAW) method on top of quantum water structures predicts an IP of 10.2, an EA of 1.1, a fundamental gap of 9.1 eV and an exciton binding (Eb) energy of 0.9 eV for the first absorption band of liquid water via the Bethe-Salpeter equation (BSE). Only within such a self-consistent approach a simultanously accurate prediction of IP, EA, Eg, Eb is possible.
NASA Astrophysics Data System (ADS)
Ziaei, Vafa; Bredow, Thomas
2018-05-01
An accurate theoretical prediction of ionization potential (IP) and electron affinity (EA) is key in understanding complex photochemical processes in aqueous environments. There have been numerous efforts in literature to accurately predict IP and EA of liquid water, however with often conflicting results depending on the level of theory and the underlying water structures. In a recent study based on hybrid-non-self-consistent many-body perturbation theory (MBPT) Gaiduk et al (2018 Nat. Commun. 9 247) predicted an IP of 10.2 eV and EA of 0.2 eV, resulting in an electronic band gap (i.e. electronic gap (IP-EA) as measured by photoelectron spectroscopy) of about 10 eV, redefining the widely cited experimental gap of 8.7 eV in literature. In the present work, we show that GW self-consistency and an implicit vertex correction in MBPT considerably affect recently reported EA values by Gaiduk et al (2018 Nat. Commun. 9 247) by about 1 eV. Furthermore, the choice of pseudo-potential is critical for an accurate determination of the absolute band positions. Consequently, the self-consistent GW approach with an implicit vertex correction based on projector augmented wave (PAW) method on top of quantum water structures predicts an IP of 10.2, an EA of 1.1, a fundamental gap of 9.1 eV and an exciton binding (Eb) energy of 0.9 eV for the first absorption band of liquid water via the Bethe–Salpeter equation (BSE). Only within such a self-consistent approach a simultanously accurate prediction of IP, EA, Eg, Eb is possible.
Thermodynamical study of boron doped CeX{sub 3} (X=Pd, Rh)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Ramesh; Dwivedi, Shalini; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com
2016-05-06
The structural, electronic, thermal, and optical properties of cubic non magnetic CeX{sub 3}(X=Pd, Rh) compounds which crystallize in the Au{sub 3}Cu structure have been studied using the projected augmented wave (PAW) method within the density functional theory (DFT) with generalized gradient approximation (GGA) for exchange correlation potential. In this paper we have calculated the band structure which are interpreted using the density of states. The optical properties such as extinction coefficients clearly illustrate the changes in CeX{sub 3} due to intercalation of boron. Lattice instability is observed in CePd{sub 3}B from the calculated dynamical properties.
Solid-state NMR studies of theophylline co-crystals with dicarboxylic acids.
Pindelska, Edyta; Sokal, Agnieszka; Szeleszczuk, Lukasz; Pisklak, Dariusz Maciej; Kolodziejski, Waclaw
2014-11-01
In this work, three polycrystalline materials containing co-crystals of theophylline with malonic, maleic, and glutaric acids were studied using (13)C, (15)N and (1)H solid-state NMR and FT-IR spectroscopy. The NMR assignments were supported by gauge including projector augmented waves (GIPAW) calculations of chemical shielding, performed using X-ray determined geometry. The experimental (13)C cross polarization/magic angle spinning (CP/MAS) NMR results and the calculated isotropic chemical shifts were in excellent agreement. A rapid and convenient method for theophylline co-crystals crystal structure analysis has been proposed for co-crystals, which are potentially new APIs. Copyright © 2014 Elsevier B.V. All rights reserved.
Hangan, Adriana; Borodi, Gheorghe; Filip, Xenia; Tripon, Carmen; Morari, Cristian; Oprean, Luminita; Filip, Claudiu
2010-12-01
The crystal structure solution of the title compound is determined from microcrystalline powder using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct-space methods with information from (13)C solid-state NMR (SSNMR), and molecular modelling using the GIPAW (gauge including projector augmented-wave) method. The space group is Pbca with one molecule in the asymmetric unit. The proposed methodology proves very useful for unambiguously characterizing the supramolecular arrangement adopted by the N-(5-ethyl-[1,3,4]-thiadiazole-2-yl)toluenesulfonamide molecules in the crystal, which consists of extended double strands held together by C-H···π non-covalent interactions.
A Visual Servoing-Based Method for ProCam Systems Calibration
Berry, Francois; Aider, Omar Ait; Mosnier, Jeremie
2013-01-01
Projector-camera systems are currently used in a wide field of applications, such as 3D reconstruction and augmented reality, and can provide accurate measurements, depending on the configuration and calibration. Frequently, the calibration task is divided into two steps: camera calibration followed by projector calibration. The latter still poses certain problems that are not easy to solve, such as the difficulty in obtaining a set of 2D–3D points to compute the projection matrix between the projector and the world. Existing methods are either not sufficiently accurate or not flexible. We propose an easy and automatic method to calibrate such systems that consists in projecting a calibration pattern and superimposing it automatically on a known printed pattern. The projected pattern is provided by a virtual camera observing a virtual pattern in an OpenGL model. The projector displays what the virtual camera visualizes. Thus, the projected pattern can be controlled and superimposed on the printed one with the aid of visual servoing. Our experimental results compare favorably with those of other methods considering both usability and accuracy. PMID:24084121
Krempien, Robert; Hoppe, Harald; Kahrs, Lüder; Daeuber, Sascha; Schorr, Oliver; Eggers, Georg; Bischof, Marc; Munter, Marc W; Debus, Juergen; Harms, Wolfgang
2008-03-01
The aim of this study is to implement augmented reality in real-time image-guided interstitial brachytherapy to allow an intuitive real-time intraoperative orientation. The developed system consists of a common video projector, two high-resolution charge coupled device cameras, and an off-the-shelf notebook. The projector was used as a scanning device by projecting coded-light patterns to register the patient and superimpose the operating field with planning data and additional information in arbitrary colors. Subsequent movements of the nonfixed patient were detected by means of stereoscopically tracking passive markers attached to the patient. In a first clinical study, we evaluated the whole process chain from image acquisition to data projection and determined overall accuracy with 10 patients undergoing implantation. The described method enabled the surgeon to visualize planning data on top of any preoperatively segmented and triangulated surface (skin) with direct line of sight during the operation. Furthermore, the tracking system allowed dynamic adjustment of the data to the patient's current position and therefore eliminated the need for rigid fixation. Because of soft-part displacement, we obtained an average deviation of 1.1 mm by moving the patient, whereas changing the projector's position resulted in an average deviation of 0.9 mm. Mean deviation of all needles of an implant was 1.4 mm (range, 0.3-2.7 mm). The developed low-cost augmented-reality system proved to be accurate and feasible in interstitial brachytherapy. The system meets clinical demands and enables intuitive real-time intraoperative orientation and monitoring of needle implantation.
Johnston, Jessica C.; Iuliucci, Robbie J.; Facelli, Julio C.; Fitzgerald, George; Mueller, Karl T.
2009-01-01
In order to predict accurately the chemical shift of NMR-active nuclei in solid phase systems, magnetic shielding calculations must be capable of considering the complete lattice structure. Here we assess the accuracy of the density functional theory gauge-including projector augmented wave method, which uses pseudopotentials to approximate the nodal structure of the core electrons, to determine the magnetic properties of crystals by predicting the full chemical-shift tensors of all 13C nuclides in 14 organic single crystals from which experimental tensors have previously been reported. Plane-wave methods use periodic boundary conditions to incorporate the lattice structure, providing a substantial improvement for modeling the chemical shifts in hydrogen-bonded systems. Principal tensor components can now be predicted to an accuracy that approaches the typical experimental uncertainty. Moreover, methods that include the full solid-phase structure enable geometry optimizations to be performed on the input structures prior to calculation of the shielding. Improvement after optimization is noted here even when neutron diffraction data are used for determining the initial structures. After geometry optimization, the isotropic shift can be predicted to within 1 ppm. PMID:19831448
Density functional theory calculations of continuum lowering in strongly coupled plasmas.
Vinko, S M; Ciricosta, O; Wark, J S
2014-03-24
An accurate description of the ionization potential depression of ions in plasmas due to their interaction with the environment is a fundamental problem in plasma physics, playing a key role in determining the ionization balance, charge state distribution, opacity and plasma equation of state. Here we present a method to study the structure and position of the continuum of highly ionized dense plasmas using finite-temperature density functional theory in combination with excited-state projector augmented-wave potentials. The method is applied to aluminium plasmas created by intense X-ray irradiation, and shows excellent agreement with recently obtained experimental results. We find that the continuum lowering for ions in dense plasmas at intermediate temperatures is larger than predicted by standard plasma models and explain this effect through the electronic structure of the valence states in these strong-coupling conditions.
NASA Astrophysics Data System (ADS)
Hernández, E. R.; Brodholt, J.; Alfè, D.
2015-03-01
In this paper we report a computational study of the structural and vibrational properties of the Mg-end members forsterite, wadsleyite and ringwoodite of Mg2SiO4 , and akimotoite, majorite and the perovskite phase of MgSiO3 . Our calculations have been carried out in the framework of Density Functional Theory (DFT) using a plane wave basis set and the Projector-augmented Wave (PAW) method to account for the core electrons. All structures have been fully relaxed at a series of volumes corresponding to the pressure range relevant to the transition zone in the Earth's mantle, and at each volume the phonon frequencies have been obtained and classified. Using the quasi-harmonic approximation, we have estimated a series of thermodynamic properties for each structure, including the Gibbs free energy, from which we have computed approximate phase diagrams for Mg2SiO4 and MgSiO3 . In spite of our reliance on the quasi-harmonic approximation, which is expected to break down at high temperatures, our calculated phase diagrams qualitatively reproduce the main features expected from diagrams fitted to experimental data. For example, from the computed phase diagram for Mg2SiO4 we obtain a post-spinel boundary at P = 22.1 GPa at T = 1873 K, with a slope of -3.4 MPa/K.This supports experimental results suggesting a relatively large slope rather than those favouring a much flatter one. It also suggests that vertical deflections of the 660 km discontinuity due to thermal signatures from plumes and slabs should be similar to those at the 410 km, and that a deflection of 35 km as seen in recent seismic studies could be caused by a thermal anomaly as small as 330 K. We also identify the triple point between the ringwoodite, ilmenite (plus periclase) and perovskite (plus periclase) phases to be at P = 22.9 GPa and T = 1565 K. Our results clearly illustrate the stringent requirements made on theoretical models in order to extract predictions compatible with the available experimental data.
Local structure study of Fe dopants in Ni-deficit Ni 3Al alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
V. N. Ivanovski; Umicevic, A.; Belosevic-Cavor, J.
2015-08-24
We found that the local electronic and magnetic structure, hyperfine interactions, and phase composition of polycrystalline Ni–deficient Ni 3-x FexAl (x = 0.18 and 0.36) were investigated by means of 57 Fe Mössbauer spectroscopy. The samples were characterized by X–ray diffraction and magnetization measurements. The ab initio calculations performed with the projector augmented wave method and the calculations of the energies of iron point defects were done to elucidate the electronic structure and site preference of Fe doped Ni 3 Al. Moreover, the value of calculated electric field gradient tensor V zz=1.6 10 21Vm -2 matches well with the resultsmore » of Mössbauer spectroscopy and indicates that the Fe atoms occupy Ni sites.« less
Augmented reality 3D display using head-mounted projectors and transparent retro-reflective screen
NASA Astrophysics Data System (ADS)
Soomro, Shoaib R.; Urey, Hakan
2017-02-01
A 3D augmented reality display is proposed that can provide glass-free stereo parallax using a highly transparent projection screen. The proposed display is based on a transparent retro-reflective screen and a pair of laser pico projectors placed close to the viewer's head. The retro-reflective screen directs incident light towards its source with little scattering so that each of the viewer's eyes only perceives the content projected by the associated projector. Each projector displays one of the two components (left or right channel) of stereo content. The retro-reflective nature of screen provides high brightness compared to the regular diffused screens. The partially patterned retro-reflective material on clear substrate introduces optical transparency and facilitates the viewer to see the real-world scene on the other side of screen. The working principle and design of the proposed see-through 3D display are presented. A tabletop prototype consisting of an in-house fabricated 60×40cm2 see-through retro-reflective screen and a pair of 30 lumen pico-projectors with custom 3D printed housings is demonstrated. Geometric calibration between projectors and optimal viewing conditions (eye box size, eye-to-projector distance) are discussed. The display performance is evaluated by measuring the brightness and crosstalk for each eye. The screen provides high brightness (up to 300 cd/m2 per eye) using 30 lumens mobile projectors while maintaining the 75% screen transparency. The crosstalk between left and right views is measured as <10% at the optimum distance of 125-175 cm, which is within acceptable range.
NASA Astrophysics Data System (ADS)
Xu, Shigang; Liu, Yang
2018-03-01
The conventional pseudo-acoustic wave equations (PWEs) in arbitrary orthorhombic anisotropic (OA) media usually have coupled P- and SV-wave modes. These coupled equations may introduce strong SV-wave artifacts and numerical instabilities in P-wave simulation results and reverse-time migration (RTM) profiles. However, pure acoustic wave equations (PAWEs) completely decouple the P-wave component from the full elastic wavefield and naturally solve all the aforementioned problems. In this article, we present a novel PAWE in arbitrary OA media and compare it with the conventional coupled PWEs. Through decomposing the solution of the corresponding eigenvalue equation for the original PWE into an ellipsoidal differential operator (EDO) and an ellipsoidal scalar operator (ESO), the new PAWE in time-space domain is constructed by applying the combination of these two solvable operators and can effectively describe P-wave features in arbitrary OA media. Furthermore, we adopt the optimal finite-difference method (FDM) to solve the newly derived PAWE. In addition, the three-dimensional (3D) hybrid absorbing boundary condition (HABC) with some reasonable modifications is developed for reducing artificial edge reflections in anisotropic media. To improve computational efficiency in 3D case, we adopt graphic processing unit (GPU) with Compute Unified Device Architecture (CUDA) instead of traditional central processing unit (CPU) architecture. Several numerical experiments for arbitrary OA models confirm that the proposed schemes can produce pure, stable and accurate P-wave modeling results and RTM images with higher computational efficiency. Moreover, the 3D numerical simulations can provide us with a comprehensive and real description of wave propagation.
Projection Mapping User Interface for Disabled People
Simutis, Rimvydas; Maskeliūnas, Rytis
2018-01-01
Difficulty in communicating is one of the key challenges for people suffering from severe motor and speech disabilities. Often such person can communicate and interact with the environment only using assistive technologies. This paper presents a multifunctional user interface designed to improve communication efficiency and person independence. The main component of this interface is a projection mapping technique used to highlight objects in the environment. Projection mapping makes it possible to create a natural augmented reality information presentation method. The user interface combines a depth sensor and a projector to create camera-projector system. We provide a detailed description of camera-projector system calibration procedure. The described system performs tabletop object detection and automatic projection mapping. Multiple user input modalities have been integrated into the multifunctional user interface. Such system can be adapted to the needs of people with various disabilities. PMID:29686827
Projection Mapping User Interface for Disabled People.
Gelšvartas, Julius; Simutis, Rimvydas; Maskeliūnas, Rytis
2018-01-01
Difficulty in communicating is one of the key challenges for people suffering from severe motor and speech disabilities. Often such person can communicate and interact with the environment only using assistive technologies. This paper presents a multifunctional user interface designed to improve communication efficiency and person independence. The main component of this interface is a projection mapping technique used to highlight objects in the environment. Projection mapping makes it possible to create a natural augmented reality information presentation method. The user interface combines a depth sensor and a projector to create camera-projector system. We provide a detailed description of camera-projector system calibration procedure. The described system performs tabletop object detection and automatic projection mapping. Multiple user input modalities have been integrated into the multifunctional user interface. Such system can be adapted to the needs of people with various disabilities.
Structural and electronic properties of chiral single-wall copper nanotubes
NASA Astrophysics Data System (ADS)
Duan, YingNi; Zhang, JianMin; Xu, KeWei
2014-04-01
The structural, energetic and electronic properties of chiral ( n, m) (3⩽ n⩽6, n/2⩽ m⩽ n) single-wall copper nanotubes (CuNTs) have been investigated by using projector-augmented wave method based on density-functional theory. The (4, 3) CuNT is energetically stable and should be observed experimentally in both free-standing and tip-suspended conditions, whereas the (5, 5) and (6, 4) CuNTs should be observed in free-standing and tip-suspended conditions, respectively. The number of conductance channels in the CuNTs does not always correspond to the number of atomic strands comprising the nanotube. Charge density contours show that there is an enhanced interatomic interaction in CuNTs compared with Cu bulk. Current transporting states display different periods and chirality, the combined effects of which lead to weaker chiral currents on CuNTs.
Carbon diffusion in molten uranium: an ab initio molecular dynamics study
NASA Astrophysics Data System (ADS)
Garrett, Kerry E.; Abrecht, David G.; Kessler, Sean H.; Henson, Neil J.; Devanathan, Ram; Schwantes, Jon M.; Reilly, Dallas D.
2018-04-01
In this work we used ab initio molecular dynamics within the framework of density functional theory and the projector-augmented wave method to study carbon diffusion in liquid uranium at temperatures above 1600 K. The electronic interactions of carbon and uranium were described using the local density approximation (LDA). The self-diffusion of uranium based on this approach is compared with literature computational and experimental results for liquid uranium. The temperature dependence of carbon and uranium diffusion in the melt was evaluated by fitting the resulting diffusion coefficients to an Arrhenius relationship. We found that the LDA calculated activation energy for carbon was nearly twice that of uranium: 0.55 ± 0.03 eV for carbon compared to 0.32 ± 0.04 eV for uranium. Structural analysis of the liquid uranium-carbon system is also discussed.
Electronic structure and defect properties of selenophosphate Pb2P2Se6 for γ-ray detection
NASA Astrophysics Data System (ADS)
Kontsevoi, Oleg Y.; Im, Jino; Wessels, Bruce W.; Kanatzidis, Mercouri G.; Freeman, Arthur J.
Heavy metal chalco-phosphate Pb2P2Se6 has shown a significant promise as an X-ray and γ-ray detector material. To assess the fundamental physical properties important for its performance as detector, theoretical calculations were performed for the electronic structure, band gaps, electron and hole effective masses, and static dielectric constants. The calculations were based on first-principles density functional theory (DFT) and employ the highly precise full potential linearized augmented plane wave method and the projector augmented wave method and include nonlocal exchange-correlation functionals to overcome the band gap underestimation in DFT calculations. The calculations show that Pb2P2Se6 is an indirect band gap material with the calculated band gap of 2.0 eV, has small effective masses, which could result in a good carrier mobility-lifetime product μτ , and a very high static dielectric constant, which could lead to high mobility of carriers by screening of charged scattering centers. We further investigated a large set of native defects in Pb2P2Se6 to determine the optimal growth conditions for application as γ-ray detectors. The results suggest that the prevalent intrinsic defects are selenium vacancies, followed by lead vacancies, then phosphorus vacancies and antisite defects. The effect of various chemical environments on defect properties was examined and the optimal conditions for material synthesis were suggested. Supported by DHS (Grant No. 2014-DN-077-ARI086-01).
Applying AR technology with a projector-camera system in a history museum
NASA Astrophysics Data System (ADS)
Miyata, Kimiyoshi; Shiroishi, Rina; Inoue, Yuka
2011-01-01
In this research, an AR (augmented reality) technology with projector-camera system is proposed for a history museum to provide user-friendly interface and pseudo hands-on exhibition. The proposed system is a desktop application and designed for old Japanese coins to enhance the visitors' interests and motivation to investigate them. The size of the old coins are small to recognize their features and the surface of the coins has fine structures on both sides, so it is meaningful to show the reverse side and enlarged image of the coins to the visitors for enhancing their interest and motivation. The image of the reverse side of the coins is displayed based on the AR technology to reverse the AR marker by the user. The information to augment the coins is projected by using a data projector, and the information is placed nearby the coins. The proposed system contributes to develop an exhibition method based on the combinations of the real artifacts and the AR technology, and demonstrated the flexibility and capability to offer background information relating to the old Japanese coins. However, the accuracy of the detection and tracking of the markers and visitor evaluation survey are required to improve the effectiveness of the system.
A Protein in the Palm of Your Hand through Augmented Reality
ERIC Educational Resources Information Center
Berry, Colin; Board, Jason
2014-01-01
Understanding of proteins and other biological macromolecules must be based on an appreciation of their 3-dimensional shape and the fine details of their structure. Conveying these details in a clear and stimulating fashion can present challenges using conventional approaches and 2-dimensional monitors and projectors. Here we describe a method for…
Advanced capabilities for materials modelling with Quantum ESPRESSO
NASA Astrophysics Data System (ADS)
Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; Colonna, N.; Carnimeo, I.; Dal Corso, A.; de Gironcoli, S.; Delugas, P.; DiStasio, R. A., Jr.; Ferretti, A.; Floris, A.; Fratesi, G.; Fugallo, G.; Gebauer, R.; Gerstmann, U.; Giustino, F.; Gorni, T.; Jia, J.; Kawamura, M.; Ko, H.-Y.; Kokalj, A.; Küçükbenli, E.; Lazzeri, M.; Marsili, M.; Marzari, N.; Mauri, F.; Nguyen, N. L.; Nguyen, H.-V.; Otero-de-la-Roza, A.; Paulatto, L.; Poncé, S.; Rocca, D.; Sabatini, R.; Santra, B.; Schlipf, M.; Seitsonen, A. P.; Smogunov, A.; Timrov, I.; Thonhauser, T.; Umari, P.; Vast, N.; Wu, X.; Baroni, S.
2017-11-01
Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
Advanced capabilities for materials modelling with Quantum ESPRESSO.
Giannozzi, P; Andreussi, O; Brumme, T; Bunau, O; Buongiorno Nardelli, M; Calandra, M; Car, R; Cavazzoni, C; Ceresoli, D; Cococcioni, M; Colonna, N; Carnimeo, I; Dal Corso, A; de Gironcoli, S; Delugas, P; DiStasio, R A; Ferretti, A; Floris, A; Fratesi, G; Fugallo, G; Gebauer, R; Gerstmann, U; Giustino, F; Gorni, T; Jia, J; Kawamura, M; Ko, H-Y; Kokalj, A; Küçükbenli, E; Lazzeri, M; Marsili, M; Marzari, N; Mauri, F; Nguyen, N L; Nguyen, H-V; Otero-de-la-Roza, A; Paulatto, L; Poncé, S; Rocca, D; Sabatini, R; Santra, B; Schlipf, M; Seitsonen, A P; Smogunov, A; Timrov, I; Thonhauser, T; Umari, P; Vast, N; Wu, X; Baroni, S
2017-10-24
Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
Advanced capabilities for materials modelling with Quantum ESPRESSO.
Andreussi, Oliviero; Brumme, Thomas; Bunau, Oana; Buongiorno Nardelli, Marco; Calandra, Matteo; Car, Roberto; Cavazzoni, Carlo; Ceresoli, Davide; Cococcioni, Matteo; Colonna, Nicola; Carnimeo, Ivan; Dal Corso, Andrea; de Gironcoli, Stefano; Delugas, Pietro; DiStasio, Robert; Ferretti, Andrea; Floris, Andrea; Fratesi, Guido; Fugallo, Giorgia; Gebauer, Ralph; Gerstmann, Uwe; Giustino, Feliciano; Gorni, Tommaso; Jia, Junteng; Kawamura, Mitsuaki; Ko, Hsin-Yu; Kokalj, Anton; Küçükbenli, Emine; Lazzeri, Michele; Marsili, Margherita; Marzari, Nicola; Mauri, Francesco; Nguyen, Ngoc Linh; Nguyen, Huy-Viet; Otero-de-la-Roza, Alberto; Paulatto, Lorenzo; Poncé, Samuel; Giannozzi, Paolo; Rocca, Dario; Sabatini, Riccardo; Santra, Biswajit; Schlipf, Martin; Seitsonen, Ari Paavo; Smogunov, Alexander; Timrov, Iurii; Thonhauser, Timo; Umari, Paolo; Vast, Nathalie; Wu, Xifan; Baroni, Stefano
2017-09-27
Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software. © 2017 IOP Publishing Ltd.
Hartman, Joshua D; Day, Graeme M; Beran, Gregory J O
2016-11-02
Chemical shift prediction plays an important role in the determination or validation of crystal structures with solid-state nuclear magnetic resonance (NMR) spectroscopy. One of the fundamental theoretical challenges lies in discriminating variations in chemical shifts resulting from different crystallographic environments. Fragment-based electronic structure methods provide an alternative to the widely used plane wave gauge-including projector augmented wave (GIPAW) density functional technique for chemical shift prediction. Fragment methods allow hybrid density functionals to be employed routinely in chemical shift prediction, and we have recently demonstrated appreciable improvements in the accuracy of the predicted shifts when using the hybrid PBE0 functional instead of generalized gradient approximation (GGA) functionals like PBE. Here, we investigate the solid-state 13 C and 15 N NMR spectra for multiple crystal forms of acetaminophen, phenobarbital, and testosterone. We demonstrate that the use of the hybrid density functional instead of a GGA provides both higher accuracy in the chemical shifts and increased discrimination among the different crystallographic environments. Finally, these results also provide compelling evidence for the transferability of the linear regression parameters mapping predicted chemical shieldings to chemical shifts that were derived in an earlier study.
2016-01-01
Chemical shift prediction plays an important role in the determination or validation of crystal structures with solid-state nuclear magnetic resonance (NMR) spectroscopy. One of the fundamental theoretical challenges lies in discriminating variations in chemical shifts resulting from different crystallographic environments. Fragment-based electronic structure methods provide an alternative to the widely used plane wave gauge-including projector augmented wave (GIPAW) density functional technique for chemical shift prediction. Fragment methods allow hybrid density functionals to be employed routinely in chemical shift prediction, and we have recently demonstrated appreciable improvements in the accuracy of the predicted shifts when using the hybrid PBE0 functional instead of generalized gradient approximation (GGA) functionals like PBE. Here, we investigate the solid-state 13C and 15N NMR spectra for multiple crystal forms of acetaminophen, phenobarbital, and testosterone. We demonstrate that the use of the hybrid density functional instead of a GGA provides both higher accuracy in the chemical shifts and increased discrimination among the different crystallographic environments. Finally, these results also provide compelling evidence for the transferability of the linear regression parameters mapping predicted chemical shieldings to chemical shifts that were derived in an earlier study. PMID:27829821
Achieving accuracy in first-principles calculations at extreme temperature and pressure
NASA Astrophysics Data System (ADS)
Mattsson, Ann; Wills, John
2013-06-01
First-principles calculations are increasingly used to provide EOS data at pressures and temperatures where experimental data is difficult or impossible to obtain. The lack of experimental data, however, also precludes validation of the calculations in those regimes. Factors influencing the accuracy of first-principles data include theoretical approximations, and computational approximations used in implementing and solving the underlying equations. The first category includes approximate exchange-correlation functionals and wave equations simplifying the Dirac equation. In the second category are, e.g., basis completeness and pseudo-potentials. While the first category is extremely hard to assess without experimental data, inaccuracies of the second type should be well controlled. We are using two rather different electronic structure methods (VASP and RSPt) to make explicit the requirements for accuracy of the second type. We will discuss the VASP Projector Augmented Wave potentials, with examples for Li and Mo. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
High pressure structural behavior of YGa2: A combined experimental and theoretical study
NASA Astrophysics Data System (ADS)
Sekar, M.; Shekar, N. V. Chandra; Babu, R.; Sahu, P. Ch.; Sinha, A. K.; Upadhyay, Anuj; Singh, M. N.; Babu, K. Ramesh; Appalakondaiah, S.; Vaitheeswaran, G.; Kanchana, V.
2015-03-01
High pressure structural stability studies were carried out on YGa2 (AlB2 type structure at NTP, space group P6/mmm) up to a pressure of 35 GPa using both laboratory based rotating anode and synchrotron X-ray sources. An isostructural transition with reduced c/a ratio, was observed at 6 GPa and above 17.5 GPa, the compound transformed to orthorhombic structure. Bulk modulus B0 for the parent and high pressure phases were estimated using Birch-Murnaghan and modified Birch-Murnaghan equation of state. Electronic structure calculations based on projector augmented wave method confirms the experimentally observed two high pressure structural transitions. The calculations also reveal that the 'Ga' networks remains as two dimensional in the high pressure isostructural phase, whereas the orthorhombic phase involves three dimensional networks of 'Ga' atoms interconnected by strong covalent bonds.
Analyzing checkpointing trends for applications on the IBM Blue Gene/P system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naik, H.; Gupta, R.; Beckman, P.
Current petascale systems have tens of thousands of hardware components and complex system software stacks, which increase the probability of faults occurring during the lifetime of a process. Checkpointing has been a popular method of providing fault tolerance in high-end systems. While considerable research has been done to optimize checkpointing, in practice the method still involves a high-cost overhead for users. In this paper, we study the checkpointing overhead seen by applications running on leadership-class machines such as the IBM Blue Gene/P at Argonne National Laboratory. We study various applications and design a methodology to assist users in understanding andmore » choosing checkpointing frequency and reducing the overhead incurred. In particular, we study three popular applications -- the Grid-Based Projector-Augmented Wave application, the Carr-Parrinello Molecular Dynamics application, and a Nek5000 computational fluid dynamics application -- and analyze their memory usage and possible checkpointing trends on 32,768 processors of the Blue Gene/P system.« less
ERIC Educational Resources Information Center
Sugimoto, Masanori
2011-01-01
This paper describes a system called GENTORO that uses a robot and a handheld projector for supporting children's storytelling activities. GENTORO differs from many existing systems in that children can make a robot play their own story in a physical space augmented by mixed-reality technologies. Pilot studies have been conducted to clarify the…
NASA Astrophysics Data System (ADS)
Kontsevoi, Oleg Y.; He, Yihui; Wessels, Bruce W.; Kanatzidis, Mercouri G.
Heavy metal chalcohalides Hg3Q2I2 (Q =S, Se and Te) have shown significant promise as X-ray and γ-ray detector materials. To assess the fundamental physical properties important for their performance as detectors, theoretical calculations were performed for the electronic structure, band gaps, electron and hole effective masses, and native defect properties. The calculations were based on first-principles density functional theory (DFT) and employ the highly precise full potential linearized augmented plane wave method and the projector augmented wave method and include nonlocal exchange-correlation functionals to overcome the band gap underestimation in DFT calculations. The calculations show that Hg3Q2I2 have either indirect (Q =S, Se) or direct (Q =Te) band gaps within 1.9-2.25 range which is optimal for a detector material, and very small electron effective masses (0.19 m0 for Hg3Se2I2) which could result in a good carrier mobility-lifetime product μτ . We further investigated a large set of native defects in the most promising candidate material, Hg3Se2I2, to determine the optimal growth conditions for application as γ-ray detectors. The results suggest that the prevalent intrinsic defects are iodine vacancies, mercury vacancies, and selenium vacancies followed by antisite defects. The effect of various chemical environments on defect properties was examined and the optimal conditions for material synthesis were suggested. Supported by DHS (Grant No. 2014-DN-077-ARI086-01).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krempien, Robert; Hoppe, Harald; Kahrs, Lueder
Purpose: The aim of this study is to implement augmented reality in real-time image-guided interstitial brachytherapy to allow an intuitive real-time intraoperative orientation. Methods and Materials: The developed system consists of a common video projector, two high-resolution charge coupled device cameras, and an off-the-shelf notebook. The projector was used as a scanning device by projecting coded-light patterns to register the patient and superimpose the operating field with planning data and additional information in arbitrary colors. Subsequent movements of the nonfixed patient were detected by means of stereoscopically tracking passive markers attached to the patient. Results: In a first clinical study,more » we evaluated the whole process chain from image acquisition to data projection and determined overall accuracy with 10 patients undergoing implantation. The described method enabled the surgeon to visualize planning data on top of any preoperatively segmented and triangulated surface (skin) with direct line of sight during the operation. Furthermore, the tracking system allowed dynamic adjustment of the data to the patient's current position and therefore eliminated the need for rigid fixation. Because of soft-part displacement, we obtained an average deviation of 1.1 mm by moving the patient, whereas changing the projector's position resulted in an average deviation of 0.9 mm. Mean deviation of all needles of an implant was 1.4 mm (range, 0.3-2.7 mm). Conclusions: The developed low-cost augmented-reality system proved to be accurate and feasible in interstitial brachytherapy. The system meets clinical demands and enables intuitive real-time intraoperative orientation and monitoring of needle implantation.« less
The Fermionic Projector, entanglement and the collapse of the wave function
NASA Astrophysics Data System (ADS)
Finster, Felix
2011-07-01
After a brief introduction to the fermionic projector approach, we review how entanglement and second quantized bosonic and fermionic fields can be described in this framework. The constructions are discussed with regard to decoherence phenomena and the measurement problem. We propose a mechanism leading to the collapse of the wave function in the quantum mechanical measurement process.
Computer Augmented Lectures (CAL): A New Teaching Technique for Chemistry.
ERIC Educational Resources Information Center
Masten, F. A.; And Others
A new technique described as computer augmented lectures (CAL) is being used at the University of Texas at Austin. It involves the integration of on-line, interactive, time sharing computer terminals and theater size video projectors for large screen display. This paper covers the basic concept, pedagogical techniques, experiments conducted,…
An NMR crystallography study of the hemihydrate of 2', 3'-O-isopropylidineguanosine.
Reddy, G N Manjunatha; Cook, Daniel S; Iuga, Dinu; Walton, Richard I; Marsh, Andrew; Brown, Steven P
2015-02-01
An NMR crystallography study of the hemihydrate of 2', 3'-O-isopropylidineguanosine (Gace) is presented, together with powder X-ray diffraction and thermogravimetric analysis. (1)H double-quantum and (14)N-(1)H HMQC spectra recorded at 850MHz and 75kHz MAS (using a JEOL 1mm probe) are presented together with a (1)H-(13)C refocused INEPT spectrum recorded at 500MHz and 12.5kHz MAS using eDUMBO-122(1)H homonuclear decoupling. NMR chemical shieldings are calculated using the GIPAW (gauge-including projector augmented wave) method; good two-dimensional agreement between calculation and experiment is observed for (13)C and (1)H chemical shifts for directly bonded CH and CH3 peaks. There are two Gace molecules in the asymmetric unit cell: differences in specific (1)H chemical shifts are rationalised in terms of the strength of CH-π and intermolecular hydrogen bonding interactions. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Ab initio 27Al NMR chemical shifts and quadrupolar parameters for Al2O3 phases and their precursors
NASA Astrophysics Data System (ADS)
Ferreira, Ary R.; Küçükbenli, Emine; Leitão, Alexandre A.; de Gironcoli, Stefano
2011-12-01
The gauge-including projector augmented wave (GIPAW) method, within the density functional theory (DFT) generalized gradient approximation (GGA) framework, is applied to compute solid state NMR parameters for 27Al in the α, θ, and κ aluminium oxide phases and their gibbsite and boehmite precursors. The results for well established crystalline phases compare very well with available experimental data and provide confidence in the accuracy of the method. For γ-alumina, four structural models proposed in the literature are discussed in terms of their ability to reproduce the experimental spectra also reported in the literature. Among the considered models, the Fd3¯m structure proposed by Paglia [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.71.224115 71, 224115 (2005)] shows the best agreement. We attempt to link the theoretical NMR parameters to the local geometry. Chemical shifts depend on coordination number but no further correlation is found with geometrical parameters. Instead, our calculations reveal that, within a given coordination number, a linear correlation exists between chemical shifts and Born effective charges.
Analytic Interatomic Forces in the Random Phase Approximation
NASA Astrophysics Data System (ADS)
Ramberger, Benjamin; Schäfer, Tobias; Kresse, Georg
2017-03-01
We discuss that in the random phase approximation (RPA) the first derivative of the energy with respect to the Green's function is the self-energy in the G W approximation. This relationship allows us to derive compact equations for the RPA interatomic forces. We also show that position dependent overlap operators are elegantly incorporated in the present framework. The RPA force equations have been implemented in the projector augmented wave formalism, and we present illustrative applications, including ab initio molecular dynamics simulations, the calculation of phonon dispersion relations for diamond and graphite, as well as structural relaxations for water on boron nitride. The present derivation establishes a concise framework for forces within perturbative approaches and is also applicable to more involved approximations for the correlation energy.
A micro-machined source transducer for a parametric array in air.
Lee, Haksue; Kang, Daesil; Moon, Wonkyu
2009-04-01
Parametric array applications in air, such as highly directional parametric loudspeaker systems, usually rely on large radiators to generate the high-intensity primary beams required for nonlinear interactions. However, a conventional transducer, as a primary wave projector, requires a great deal of electrical power because its electroacoustic efficiency is very low due to the large characteristic mechanical impedance in air. The feasibility of a micro-machined ultrasonic transducer as an efficient finite-amplitude wave projector was studied. A piezoelectric micro-machined ultrasonic transducer array consisting of lead zirconate titanate uni-morph elements was designed and fabricated for this purpose. Theoretical and experimental evaluations showed that a micro-machined ultrasonic transducer array can be used as an efficient source transducer for a parametric array in air. The beam patterns and propagation curves of the difference frequency wave and the primary wave generated by the micro-machined ultrasonic transducer array were measured. Although the theoretical results were based on ideal parametric array models, the theoretical data explained the experimental results reasonably well. These experiments demonstrated the potential of micro-machined primary wave projector.
Nearly metastable rhombohedral phases of bcc metals
NASA Astrophysics Data System (ADS)
Mehl, Michael J.; Finkenstadt, Daniel
2008-02-01
The energy E(c/a) for a bcc element stretched along its [001] axis (the Bain path) has a minimum at c/a=1 , a maximum at c/a=2 , and an elastically unstable local minimum at c/a>2 . An alternative path connecting the bcc and fcc structures is the rhombohedral lattice. The primitive lattice has R3¯m symmetry, with the angle α changing from 109.4° (bcc), to 90° (simple cubic), to 60 ° (fcc). We study this path for the non-magnetic bcc transition metals (V, Nb, Mo, Ta, and W) using both all-electron linearized augmented plane wave and projector augmented wave VASP codes. Except for Ta, the energy E(α) has a local maximum at α=60° , with local minima near 55° and 70° , the latter having lower energy, suggesting the possibility of a metastable rhombohedral state for these materials. We first examine the elastic stability of the 70° minimum structure, and determine that only W is elastically stable in this structure, with the smallest eigenvalue of the elastic tensor at 4GPa . We then consider the possibility that tungsten is actually metastable in this structure by looking at its vibrational and third-order elastic stability.
[Application of injection test in confirming the ideal position of esophageal balloon catheter].
Chen, Han; Xu, Ming; Yang, Yanlin; He, Xuan; Zhou, Jianxin
2017-09-01
To evaluate the safety and feasibility of injection test which is used to locate esophageal balloon catheter. A prospective study was conducted. The patients undergoing invasive mechanical ventilation (MV) admitted to general intensive care unit (ICU) of Beijing Tiantan Hospital Affiliated to Capital Medical University from May 2015 and March 2017 were enrolled. The commercially available esophageal balloon catheter was modified to perform injection test. The catheter was withdrawn step by step and the injection test was repeated until the presence disturbance wave presented, which indicated that the balloon had just entered the esophagus. The position where disturbance wave appears was named 0 cm. End-expiratory occlusions were performed at the positions of +15, +10, +5, 0, -5, -10 and -15 cm, respectively, and the changes of esophageal pressure (Pes) and airway pressures (Paw) were measured in the spontaneous breathing and passive ventilation, and the ratio between the changes (ΔPes/ΔPaw) was calculated. A total of 20 patients were enrolled, of which 15 patients finished both the spontaneous and the passive ventilation parts, and 2 patients finished only the spontaneous part and 3 patients finished only passive part. (1) Disturbance waves could be induced by injection test in all patients. The average depth of disturbance wave in spontaneous breathing was deeper than that in passive ventilation (cm: 42.4±3.8 vs. 41.8±3.3), but there was no significant difference between the two ventilation settings (P = 0.132). No adverse events occurred during the study period. (2) Pes increased with the stepwise withdraw of esophageal catheter, reached the maximal value at +5 cm, and then decreased when the catheter was further withdrawn, no matter in the spontaneous or the passive ventilation. In spontaneous breathing, the ΔPes/ΔPaw was within the ideal range (0.8-1.2) at the positions of 0, -5 and -10 cm. The ΔPes/ΔPaw was closest to unity at the positions of 0 cm (0.98±0.15). The ΔPes/ΔPaw at -15 cm (0.66±0.26) was significantly lower than that at 0 cm (P < 0.05). For passive ventilation, the ΔPes/ΔPaw was within the ideal range at the positions of -5 cm and -10 cm, and the ΔPes/ΔPaw was closest to unity at the positions of -10 cm (0.94±0.12). The ΔPes/ΔPaw at 0 cm and -5 cm was significantly higher than that at -10 cm (1.43±0.31 and 1.12±0.14, respectively); while the ΔPes/ΔPaw at -15 cm (0.68±0.23) was significantly lower than that at -10 cm (all P < 0.01). Ideal position of the esophageal balloon catheter could be determined quickly and easily by using injection test. The method is safe and clinically feasible. Clinical Trials, NCT02446938.
NASA Astrophysics Data System (ADS)
Kobayashi, Hayato; Osaki, Tsugutoyo; Okuyama, Tetsuro; Gramm, Joshua; Ishino, Akira; Shinohara, Ayumi
This paper describes an interactive experimental environment for autonomous soccer robots, which is a soccer field augmented by utilizing camera input and projector output. This environment, in a sense, plays an intermediate role between simulated environments and real environments. We can simulate some parts of real environments, e.g., real objects such as robots or a ball, and reflect simulated data into the real environments, e.g., to visualize the positions on the field, so as to create a situation that allows easy debugging of robot programs. The significant point compared with analogous work is that virtual objects are touchable in this system owing to projectors. We also show the portable version of our system that does not require ceiling cameras. As an application in the augmented environment, we address the learning of goalie strategies on real quadruped robots in penalty kicks. We make our robots utilize virtual balls in order to perform only quadruped locomotion in real environments, which is quite difficult to simulate accurately. Our robots autonomously learn and acquire more beneficial strategies without human intervention in our augmented environment than those in a fully simulated environment.
NASA Astrophysics Data System (ADS)
Feng, Zhixin
2018-02-01
Projector calibration is crucial for a camera-projector three-dimensional (3-D) structured light measurement system, which has one camera and one projector. In this paper, a novel projector calibration method is proposed based on digital image correlation. In the method, the projector is viewed as an inverse camera, and a plane calibration board with feature points is used to calibrate the projector. During the calibration processing, a random speckle pattern is projected onto the calibration board with different orientations to establish the correspondences between projector images and camera images. Thereby, dataset for projector calibration are generated. Then the projector can be calibrated using a well-established camera calibration algorithm. The experiment results confirm that the proposed method is accurate and reliable for projector calibration.
Pechkis, Daniel L; Walter, Eric J; Krakauer, Henry
2011-09-21
First-principles density functional theory oxygen chemical shift tensors were calculated for A(B,B')O(3) perovskite alloys Pb(Zr(1/2)Ti(1/2))O(3) (PZT) and Pb(Mg(1/3)Nb(2/3))O(3) (PMN). Quantum chemistry methods for embedded clusters and the gauge including projector augmented waves (GIPAW) method [C. J. Pickard and F. Mauri, Phys. Rev. B 63, 245101 (2001)] for periodic boundary conditions were used. Results from both methods are in good agreement for PZT and prototypical perovskites. PMN results were obtained using only GIPAW. Both isotropic δ(iso) and axial δ(ax) chemical shifts were found to vary approximately linearly as a function of the nearest-distance transition-metal/oxygen bond length, r(s). Using these results, we argue against Ti clustering in PZT, as conjectured from recent (17)O NMR magic-angle-spinning measurements. Our findings indicate that (17)O NMR measurements, coupled with first-principles calculations, can be an important probe of local structure in complex perovskite solid solutions.
NASA Astrophysics Data System (ADS)
Pechkis, Daniel L.; Walter, Eric J.; Krakauer, Henry
2011-09-01
First-principles density functional theory oxygen chemical shift tensors were calculated for A(B,B')O3 perovskite alloys Pb(Zr1/2Ti1/2)O3 (PZT) and Pb(Mg1/3Nb2/3)O3 (PMN). Quantum chemistry methods for embedded clusters and the gauge including projector augmented waves (GIPAW) method [C. J. Pickard and F. Mauri, Phys. Rev. B 63, 245101 (2001)], 10.1103/PhysRevB.63.245101 for periodic boundary conditions were used. Results from both methods are in good agreement for PZT and prototypical perovskites. PMN results were obtained using only GIPAW. Both isotropic δiso and axial δax chemical shifts were found to vary approximately linearly as a function of the nearest-distance transition-metal/oxygen bond length, rs. Using these results, we argue against Ti clustering in PZT, as conjectured from recent 17O NMR magic-angle-spinning measurements. Our findings indicate that 17O NMR measurements, coupled with first-principles calculations, can be an important probe of local structure in complex perovskite solid solutions.
NASA Astrophysics Data System (ADS)
Ovcharenko, R. E.; Tupitsyn, I. I.; Savinov, E. P.; Voloshina, E. N.; Dedkov, Yu. S.; Shulakov, A. S.
2014-01-01
A procedure is proposed to calculate the shape of the characteristic X-ray emission bands of metals with allowance for multielectron effects. The effects of the dynamic screening of a core vacancy by conduction electrons and the Auger effect in the valence band are taken into account. The dynamic screening of a core vacancy, which is known to be called the MND (Mahan-Nozeieres-De Dominics) effect, is taken into account by an ab initio band calculation of crystals using the PAW (projected augmented waves) method. The Auger effect is taken into account by a semiempirical method using the approximation of a quadratic dependence of the level width in the valence band on the difference between the level energy and the Fermi energy. The proposed calculation procedure is used to describe the X-ray emission K and L 2,3 bands of metallic magnesium and aluminum crystals. The calculated spectra agree well with the experimental bands both near the Fermi level and in the low-energy part of the spectra in all cases.
Inexpensive Monocular Pico-Projector-based Augmented Reality Display for Surgical Microscope
Shi, Chen; Becker, Brian C.; Riviere, Cameron N.
2013-01-01
This paper describes an inexpensive pico-projector-based augmented reality (AR) display for a surgical microscope. The system is designed for use with Micron, an active handheld surgical tool that cancels hand tremor of surgeons to improve microsurgical accuracy. Using the AR display, virtual cues can be injected into the microscope view to track the movement of the tip of Micron, show the desired position, and indicate the position error. Cues can be used to maintain high performance by helping the surgeon to avoid drifting out of the workspace of the instrument. Also, boundary information such as the view range of the cameras that record surgical procedures can be displayed to tell surgeons the operation area. Furthermore, numerical, textual, or graphical information can be displayed, showing such things as tool tip depth in the work space and on/off status of the canceling function of Micron. PMID:25264542
Scanning laser beam displays based on a 2D MEMS
NASA Astrophysics Data System (ADS)
Niesten, Maarten; Masood, Taha; Miller, Josh; Tauscher, Jason
2010-05-01
The combination of laser light sources and MEMS technology enables a range of display systems such as ultra small projectors for mobile devices, head-up displays for vehicles, wearable near-eye displays and projection systems for 3D imaging. Images are created by scanning red, green and blue lasers horizontally and vertically with a single two-dimensional MEMS. Due to the excellent beam quality of laser beams, the optical designs are efficient and compact. In addition, the laser illumination enables saturated display colors that are desirable for augmented reality applications where a virtual image is used. With this technology, the smallest projector engine for high volume manufacturing to date has been developed. This projector module has a height of 7 mm and a volume of 5 cc. The resolution of this projector is WVGA. No additional projection optics is required, resulting in an infinite focus depth. Unlike with micro-display projection displays, an increase in resolution will not lead to an increase in size or a decrease in efficiency. Therefore future projectors can be developed that combine a higher resolution in an even smaller and thinner form factor with increased efficiencies that will lead to lower power consumption.
Filip, Xenia; Borodi, Gheorghe; Filip, Claudiu
2011-10-28
A solid state structural investigation of ethoxzolamide is performed on microcrystalline powder by using a multi-technique approach that combines X-ray powder diffraction (XRPD) data analysis based on direct space methods with information from (13)C((15)N) solid-state Nuclear Magnetic Resonance (SS-NMR) and molecular modeling. Quantum chemical computations of the crystal were employed for geometry optimization and chemical shift calculations based on the Gauge Including Projector Augmented-Wave (GIPAW) method, whereas a systematic search in the conformational space was performed on the isolated molecule using a molecular mechanics (MM) approach. The applied methodology proved useful for: (i) removing ambiguities in the XRPD crystal structure determination process and further refining the derived structure solutions, and (ii) getting important insights into the relationship between the complex network of non-covalent interactions and the induced supra-molecular architectures/crystal packing patterns. It was found that ethoxzolamide provides an ideal case study for testing the accuracy with which this methodology allows to distinguish between various structural features emerging from the analysis of the powder diffraction data. This journal is © the Owner Societies 2011
Asakura, Tetsuo; Yazawa, Koji; Horiguchi, Kumiko; Suzuki, Furitsu; Nishiyama, Yusuke; Nishimura, Katsuyuki; Kaji, Hironori
2014-01-01
Alanine oligomers provide a key structure for silk fibers from spider and wild silkworms.We report on structural analysis of L-alanyl-L-alanyl-L-alanyl-L-alanine (Ala)4 with anti-parallel (AP) β-structures using X-ray and solid-state NMR. All of the Ala residues in the (Ala)4 are in equivalent positions, whereas for alanine trimer (Ala)3 there are two alternative locations in a unit cell as reported previously (Fawcett and Camerman, Acta Cryst., 1975, 31, 658-665). (Ala)4 with AP β-structure is more stable than AP-(Ala)3 due to formation of the stronger hydrogen bonds. The intermolecular structure of (Ala)4 is also different from polyalanine fiber structure, indicating that the interchain arrangement of AP β-structure changes with increasing alanine sequencelength. Furthermore the precise (1)H positions, which are usually inaccesible by X-ray diffraction method, are determined by high resolution (1)H solid state NMR combined with the chemical shift calculations by the gauge-including projector augmented wave method. Copyright © 2013 Wiley Periodicals, Inc.
Hartman, Joshua D; Beran, Gregory J O
2014-11-11
First-principles chemical shielding tensor predictions play a critical role in studying molecular crystal structures using nuclear magnetic resonance. Fragment-based electronic structure methods have dramatically improved the ability to model molecular crystal structures and energetics using high-level electronic structure methods. Here, a many-body expansion fragment approach is applied to the calculation of chemical shielding tensors in molecular crystals. First, the impact of truncating the many-body expansion at different orders and the role of electrostatic embedding are examined on a series of molecular clusters extracted from molecular crystals. Second, the ability of these techniques to assign three polymorphic forms of the drug sulfanilamide to the corresponding experimental (13)C spectra is assessed. This challenging example requires discriminating among spectra whose (13)C chemical shifts differ by only a few parts per million (ppm) across the different polymorphs. Fragment-based PBE0/6-311+G(2d,p) level chemical shielding predictions correctly assign these three polymorphs and reproduce the sulfanilamide experimental (13)C chemical shifts with 1 ppm accuracy. The results demonstrate that fragment approaches are competitive with the widely used gauge-invariant projector augmented wave (GIPAW) periodic density functional theory calculations.
High field (33)S solid state NMR and first-principles calculations in potassium sulfates.
Moudrakovski, Igor; Lang, Stephen; Patchkovskii, Serguei; Ripmeester, John
2010-01-14
A set of potassium sulfates presenting a variety of sulfur environments (K(2)SO(4), KHSO(4), K(2)S(2)O(7), and K(2)S(2)O(8)) has been studied by (33)S solid state NMR at 21 T. Low natural abundance (0.75%) and small gyromagnetic ratio of (33)S presented a serious challenge even at such a high magnetic field. Nevertheless, using the QCPMG technique we were able to obtain good signals from the sites with C(Q) values approaching 16 MHz. Assignment of the sites and the relative orientations of the EFG tensors were assisted by quantum mechanical calculations using the Gaussian 98 and CASTEP packages. The Gaussian 98 calculations were performed using the density functional method and gauge independent atomic orbitals on molecular clusters of about 100-120 atoms. The CASTEP calculations utilized periodic boundary conditions and a gauge-including projector augmented-wave pseudopotential approach. Although only semiquantitative agreement is observed between the experimental and calculated parameters, the calculations are a very useful aid in the interpretation of experimental data.
Atomic and electronic structure of Pd40Ni40P20 bulk metallic glass from ab initio simulations
NASA Astrophysics Data System (ADS)
Kumar, Vijay; Fujita, T.; Konno, K.; Matsuura, M.; Chen, M. W.; Inoue, A.; Kawazoe, Y.
2011-10-01
The atomic structure of Pd40Ni40P20 bulk metallic glass has been simulated using an ab initio molecular dynamics method with projector-augmented wave pseudopotentials for electron-ion interaction and generalized gradient approximation for exchange-correlation energy. The calculated extended x-ray absorption fine structure (EXAFS) spectra of Pd-K and Ni-K edges, the mass density, and the electronic structure agree remarkably well with the available experimental data and the EXAFS spectra measured at the SPring-8 synchrotron radiation facility. Our results show that the atomic structure can be described in terms of P-centered polyhedra. There are no two P atoms that are nearest neighbors at this composition, and this could be a reason for the observed optimal P concentration of about 20 at.%. The neighboring polyhedra share metal (M) atoms and form a polar covalently bonded random network of P-M-P favoring certain angles. The remaining M atoms act as metallic glue with a tendency of nanoscale clustering of Pd-Pd and Ni-Ni atoms.
Exploring the ring current of carbon nanotubes by first-principles calculations.
Ren, Pengju; Zheng, Anmin; Xiao, Jianping; Pan, Xiulian; Bao, Xinhe
2015-02-01
Ring current is a fundamental concept to understand the nuclear magnetic resonance (NMR) properties and aromaticity for conjugated systems, such as carbon nanotubes (CNTs). Employing the recently developed gauge including projector augmented wave (GIPAW) method, we studied the ring currents of CNTs systematically and visualized their distribution. The ring current patterns are determined by the semiconducting or metallic properties of CNTs. The discrepancy is mainly caused by the axial component of external magnetic fields, whereas the radial component induced ring currents are almost independent of the electronic structures of CNTs, where the intensities of the ring currents are linearly related to the diameters of the CNTs. Although the ring currents induced by the radial component are more intense than those by the axial component, only the latter determines the overall NMR responses and aromaticity of the CNTs as well. Furthermore, the semiconducting CNTs are more aromatic than their metallic counterparts due to the existence of delocalized ring currents on the semiconducting CNTs. These fundamental features are of vital importance for the development of CNT-based nanoelectronics and applications in magnetic fields.
Pawlak, Tomasz; Potrzebowski, Marek J
2014-03-27
This paper presents a methodology that allows the fine refinement of the crystal and molecular structure for compounds for which the data deposited in the crystallographic bases are of poor quality. Such species belong to the group of samples with molecular disorder. In the Cambridge Crystallographic Data Center (CCDC), there are approximately 22,000 deposited structures with an R-factor over 10. The powerful methodology we present employs crystal data for Leu-enkephalin (two crystallographic forms) with R-factor values of 14.0 and 8.9 and for Met-enkephalin (one form) with an R-factor of 10.5. NMR crystallography was employed in testing the X-ray data and the quality of the structure refinement. The GIPAW (gauge invariant projector augmented wave) method was used to optimize the coordinates of the enkephalins and to compute NMR parameters. As we reveal, this complementary approach makes it possible to generate a reasonable set of new coordinates that better correlate to real samples. This methodology is general and can be employed in the study of each compound possessing magnetically active nuclei.
Exploring the ring current of carbon nanotubes by first-principles calculations
Ren, Pengju; Zheng, Anmin; Xiao, Jianping; Pan, Xiulian
2015-01-01
Ring current is a fundamental concept to understand the nuclear magnetic resonance (NMR) properties and aromaticity for conjugated systems, such as carbon nanotubes (CNTs). Employing the recently developed gauge including projector augmented wave (GIPAW) method, we studied the ring currents of CNTs systematically and visualized their distribution. The ring current patterns are determined by the semiconducting or metallic properties of CNTs. The discrepancy is mainly caused by the axial component of external magnetic fields, whereas the radial component induced ring currents are almost independent of the electronic structures of CNTs, where the intensities of the ring currents are linearly related to the diameters of the CNTs. Although the ring currents induced by the radial component are more intense than those by the axial component, only the latter determines the overall NMR responses and aromaticity of the CNTs as well. Furthermore, the semiconducting CNTs are more aromatic than their metallic counterparts due to the existence of delocalized ring currents on the semiconducting CNTs. These fundamental features are of vital importance for the development of CNT-based nanoelectronics and applications in magnetic fields. PMID:29560175
Structural instability in polyacene: A projector quantum Monte Carlo study
NASA Astrophysics Data System (ADS)
Srinivasan, Bhargavi; Ramasesha, S.
1998-04-01
We have studied polyacene within the Hubbard model to explore the effect of electron correlations on the Peierls' instability in a system marginally away from one dimension. We employ the projector quantum Monte Carlo method to obtain ground-state estimates of the energy and various correlation functions. We find strong similarities between polyacene and polyacetylene which can be rationalized from the real-space valence-bond arguments of Mazumdar and Dixit. Electron correlations tend to enhance the Peierls' instability in polyacene. This enhancement appears to attain a maximum at U/t~3.0, and the maximum shifts to larger values when the alternation parameter is increased. The system shows no tendency to destroy the imposed bond-alternation pattern, as evidenced by the bond-bond correlations. The cis distortion is seen to be favored over the trans distortion. The spin-spin correlations show that undistorted polyacene is susceptible to a spin-density-wave distortion for large interaction strength. The charge-charge correlations indicate the absence of a charge-density-wave distortion for the parameters studied.
Auxiliary-field-based trial wave functions in quantum Monte Carlo calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chia -Chen; Rubenstein, Brenda M.; Morales, Miguel A.
2016-12-19
Quantum Monte Carlo (QMC) algorithms have long relied on Jastrow factors to incorporate dynamic correlation into trial wave functions. While Jastrow-type wave functions have been widely employed in real-space algorithms, they have seen limited use in second-quantized QMC methods, particularly in projection methods that involve a stochastic evolution of the wave function in imaginary time. Here we propose a scheme for generating Jastrow-type correlated trial wave functions for auxiliary-field QMC methods. The method is based on decoupling the two-body Jastrow into one-body projectors coupled to auxiliary fields, which then operate on a single determinant to produce a multideterminant trial wavemore » function. We demonstrate that intelligent sampling of the most significant determinants in this expansion can produce compact trial wave functions that reduce errors in the calculated energies. Lastly, our technique may be readily generalized to accommodate a wide range of two-body Jastrow factors and applied to a variety of model and chemical systems.« less
QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials.
Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola; Calandra, Matteo; Car, Roberto; Cavazzoni, Carlo; Ceresoli, Davide; Chiarotti, Guido L; Cococcioni, Matteo; Dabo, Ismaila; Dal Corso, Andrea; de Gironcoli, Stefano; Fabris, Stefano; Fratesi, Guido; Gebauer, Ralph; Gerstmann, Uwe; Gougoussis, Christos; Kokalj, Anton; Lazzeri, Michele; Martin-Samos, Layla; Marzari, Nicola; Mauri, Francesco; Mazzarello, Riccardo; Paolini, Stefano; Pasquarello, Alfredo; Paulatto, Lorenzo; Sbraccia, Carlo; Scandolo, Sandro; Sclauzero, Gabriele; Seitsonen, Ari P; Smogunov, Alexander; Umari, Paolo; Wentzcovitch, Renata M
2009-09-30
QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.
Solid-State 87Sr NMR Spectroscopy at Natural Abundance and High Magnetic Field Strength.
Faucher, Alexandra; Terskikh, Victor V; Ye, Eric; Bernard, Guy M; Wasylishen, Roderick E
2015-12-10
Twenty-five strontium-containing solids were characterized via (87)Sr NMR spectroscopy at natural abundance and high magnetic field strength (B0 = 21.14 T). Strontium nuclear quadrupole coupling constants in these compounds are sensitive to the strontium site symmetry and range from 0 to 50.5 MHz. An experimental (87)Sr chemical shift scale is proposed, and available data indicate a chemical shift range of approximately 550 ppm, from -200 to +350 ppm relative to Sr(2+)(aq). In general, magnetic shielding increased with strontium coordination number. Experimentally measured chemical shift anisotropy is reported for stationary samples of solid powdered SrCl2·6H2O, SrBr2·6H2O, and SrCO3, with δaniso((87)Sr) values of +28, +26, and -65 ppm, respectively. NMR parameters were calculated using CASTEP, a gauge including projector augmented wave (GIPAW) DFT-based program, which addresses the periodic nature of solids using plane-wave basis sets. Calculated NMR parameters are in good agreement with those measured.
Visualising crystal packing interactions in solid-state NMR: Concepts and applications
NASA Astrophysics Data System (ADS)
Zilka, Miri; Sturniolo, Simone; Brown, Steven P.; Yates, Jonathan R.
2017-10-01
In this article, we introduce and apply a methodology, based on density functional theory and the gauge-including projector augmented wave approach, to explore the effects of packing interactions on solid-state nuclear magnetic resonance (NMR) parameters. A visual map derived from a so-termed "magnetic shielding contribution field" can be made of the contributions to the magnetic shielding of a specific site—partitioning the chemical shift to specific interactions. The relation to the established approaches of examining the molecule to crystal change in the chemical shift and the nuclear independent chemical shift is established. The results are applied to a large sample of 71 molecular crystals and three further specific examples from supermolecular chemistry and pharmaceuticals. This approach extends the NMR crystallography toolkit and provides insight into the development of both cluster based approaches to the predictions of chemical shifts and for empirical predictions of chemical shifts in solids.
Paluch, Piotr; Pawlak, Tomasz; Oszajca, Marcin; Lasocha, Wieslaw; Potrzebowski, Marek J
2015-02-01
We present step by step facets important in NMR Crystallography strategy employing O-phospho-dl-tyrosine as model sample. The significance of three major techniques being components of this approach: solid state NMR (SS NMR), X-ray diffraction of powdered sample (PXRD) and theoretical calculations (Gauge Invariant Projector Augmented Wave; GIPAW) is discussed. Each experimental technique provides different set of structural constraints. From the PXRD measurement the size of the unit cell, space group and roughly refined molecular structure are established. SS NMR provides information about content of crystallographic asymmetric unit, local geometry, molecular motion in the crystal lattice and hydrogen bonding pattern. GIPAW calculations are employed for validation of quality of elucidation and fine refinement of structure. Crystal and molecular structure of O-phospho-dl-tyrosine solved by NMR Crystallography is deposited at Cambridge Crystallographic Data Center under number CCDC 1005924. Copyright © 2014 Elsevier Inc. All rights reserved.
Sokal, Agnieszka; Pindelska, Edyta; Szeleszczuk, Lukasz; Kolodziejski, Waclaw
2017-04-30
The aim of this study was to evaluate the stability and solubility of the polymorphic forms of the ethenzamide (ET) - gentisic acid (GA) cocrystals during standard technological processes leading to tablet formation, such as compression and excipient addition. In this work two polymorphic forms of pharmaceutical cocrystals (ETGA) were characterized by 13 C and 15 N solid-state nuclear magnetic resonance and Fourier transformed infrared spectroscopy. Spectroscopic studies were supported by gauge including projector augmented wave (GIPAW) calculations of chemical shielding constants.Polymorphs of cocrystals were easily identified and characterized on the basis of solid-state spectroscopic studies. ETGA cocrystals behaviour during direct compressionand tabletting with excipient addition were tested. In order to choose the best tablet composition with suitable properties for the pharmaceutical industry dissolution profile studies of tablets containing polymorphic forms of cocrystals with selected excipients were carried out. Copyright © 2017. Published by Elsevier B.V.
Mattsson, Thomas R.; Root, Seth; Mattsson, Ann E.; ...
2014-11-11
We use Sandia's Z machine and magnetically accelerated flyer plates to shock compress liquid krypton to 850 GPa and compare with results from density-functional theory (DFT) based simulations using the AM05 functional. We also employ quantum Monte Carlo calculations to motivate the choice of AM05. We conclude that the DFT results are sensitive to the quality of the pseudopotential in terms of scattering properties at high energy/temperature. A new Kr projector augmented wave potential was constructed with improved scattering properties which resulted in excellent agreement with the experimental results to 850 GPa and temperatures above 10 eV (110 kK). Inmore » conclusion, we present comparisons of our data from the Z experiments and DFT calculations to current equation of state models of krypton to determine the best model for high energy-density applications.« less
Effects of S and N doping on the structural, magnetic and electronic properties of rutile CrO2
NASA Astrophysics Data System (ADS)
Xie, You; Zhou, An-Ning; Sun, Kai-Gang; Zhang, Ya-Ting; Huo, Yi-Ping; Wang, Su-Fang; Zhang, Jian-Min
2016-05-01
Magnetic and electronic properties of S- and N-doped CrO2 are studied by using the first-principle projector augmented wave potential within the generalized gradient approximation. The optimized lattice constants for CrO2 agree well with the previous work. With increasing S doping (N doping), the lattice constants of CrO2-xSx (CrO2-xNx) (x=0.5, 1 and 1.5) all increase (decrease), While these compounds remain the tetragonal structure. CrO1.5S0.5, CrO1.5N0.5 and CrON compounds remain the half-metallicity, while the band gap is determined by different factors. It is also found that the change of the total magnetic moment with equivalent atom S doping in CrO2 compound is small except for x=1.
Design and characterization of an ultraresolution seamlessly tiled display for data visualization
NASA Astrophysics Data System (ADS)
Bordes, Nicole; Bleha, William P.; Pailthorpe, Bernard
2003-09-01
The demand for more pixels in digital displays is beginning to be met as manufacturers increase the native resolution of projector chips. Tiling several projectors still offers one solution to augment the pixel capacity of a display. However problems of color and illumination uniformity across projectors need to be addressed as well as the computer software required to drive such devices. In this paper we present the results obtained on a desktop size tiled projector array of three D-ILA projectors sharing a common illumination source. The composite image on a 3 x 1 array, is 3840 by 1024 pixels with a resolution of about 80 dpi. The system preserves desktop resolution, is compact and can fit in a normal room or laboratory. A fiber optic beam splitting system and a single set of red, green and blue dichroic filters are the key to color and illumination uniformity. The D-ILA chips inside each projector can be adjusted individually to set or change characteristics such as contrast, brightness or gamma curves. The projectors were matched carefully and photometric variations were corrected, leading to a seamless tiled image. Photometric measurements were performed to characterize the display and losses through the optical paths, and are reported here. This system is driven by a small PC computer cluster fitted with graphics cards and is running Linux. The Chromium API can be used for tiling graphics tiles across the display and interfacing to users' software applications. There is potential for scaling the design to accommodate larger arrays, up to 4x5 projectors, increasing display system capacity to 50 Megapixels. Further increases, beyond 100 Megapixels can be anticipated with new generation D-ILA chips capable of projecting QXGA (2k x 1.5k), with ongoing evolution as QUXGA (4k x 2k) becomes available.
NASA Astrophysics Data System (ADS)
Qin, Chen; Ren, Bin; Guo, Longfei; Dou, Wenhua
2014-11-01
Multi-projector three dimension display is a promising multi-view glass-free three dimension (3D) display technology, can produce full colour high definition 3D images on its screen. One key problem of multi-projector 3D display is how to acquire the source images of projector array while avoiding pseudoscopic problem. This paper analysis the displaying characteristics of multi-projector 3D display first and then propose a projector content synthetic method using tetrahedral transform. A 3D video format that based on stereo image pair and associated disparity map is presented, it is well suit for any type of multi-projector 3D display and has advantage in saving storage usage. Experiment results show that our method solved the pseudoscopic problem.
The PAW/GIPAW approach for computing NMR parameters: a new dimension added to NMR study of solids.
Charpentier, Thibault
2011-07-01
In 2001, Mauri and Pickard introduced the gauge including projected augmented wave (GIPAW) method that enabled for the first time the calculation of all-electron NMR parameters in solids, i.e. accounting for periodic boundary conditions. The GIPAW method roots in the plane wave pseudopotential formalism of the density functional theory (DFT), and avoids the use of the cluster approximation. This method has undoubtedly revitalized the interest in quantum chemical calculations in the solid-state NMR community. It has quickly evolved and improved so that the calculation of the key components of NMR interactions, namely the shielding and electric field gradient tensors, has now become a routine for most of the common nuclei studied in NMR. Availability of reliable implementations in several software packages (CASTEP, Quantum Espresso, PARATEC) make its usage more and more increasingly popular, maybe indispensable in near future for all material NMR studies. The majority of nuclei of the periodic table have already been investigated by GIPAW, and because of its high accuracy it is quickly becoming an essential tool for interpreting and understanding experimental NMR spectra, providing reliable assignments of the observed resonances to crystallographic sites or enabling a priori prediction of NMR data. The continuous increase of computing power makes ever larger (and thus more realistic) systems amenable to first-principles analysis. In the near future perspectives, as the incorporation of dynamical effects and/or disorder are still at their early developments, these areas will certainly be the prime target. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hartman, Joshua D.; Monaco, Stephen; Schatschneider, Bohdan; Beran, Gregory J. O.
2015-09-01
We assess the quality of fragment-based ab initio isotropic 13C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic 13C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.
Küçükbenli, Emine; Sonkar, Kanchan; Sinha, Neeraj; de Gironcoli, Stefano
2012-04-12
We report here the first fully ab initio determination of (13)C NMR spectra for several crystal structures of cholesterol, observed in various biomaterials. We combine Gauge-Including Projector Augmented Waves (GIPAW) calculations at relaxed structures, fully including dispersion forces, with Magic Angle Spinning Solid State NMR experiments and spectral editing to achieve a detailed interpretation of the complex NMR spectra of cholesterol crystals. By introducing an environment-dependent secondary referencing scheme in our calculations, not only do we reproduce the characteristic spectral features of the different crystalline polymorphs, thus clearly discriminating among them, but also closely represent the spectrum in the region of several highly overlapping peaks. This, in combination with spectral editing, allows us to provide a complete peak assignment for monohydrate (ChM) and low-temperature anhydrous (ChAl) crystal polymorphs. Our results show that the synergy between ab initio calculations and refined experimental techniques can be exploited for an accurate and efficient NMR crystallography of complex systems of great interest for biomaterial studies. The method is general in nature and can be applied for studies of various complex biomaterials.
Sene, Saad; Reinholdt, Marc; Renaudin, Guillaume; Berthomieu, Dorothée; Zicovich-Wilson, Claudio M; Gervais, Christel; Gaveau, Philippe; Bonhomme, Christian; Filinchuk, Yaroslav; Smith, Mark E; Nedelec, Jean-Marie; Bégu, Sylvie; Mutin, P Hubert; Laurencin, Danielle
2013-01-14
Boronic acids (R-B(OH)(2)) are a family of molecules that have found a large number of applications in materials science. In contrast, boronate anions (R-B(OH)(3)(-)) have hardly been used so far for the preparation of novel materials. Here, a new crystalline phase involving a boronate ligand is described, Ca[C(4)H(9)-B(OH)(3)](2), which is then used as a basis for the establishment of the spectroscopic signatures of boronates in the solid state. The phase was characterized by IR and multinuclear solid-state NMR spectroscopy ((1)H, (13)C, (11)B and (43)Ca), and then modeled by periodic DFT calculations. Anharmonic OH vibration frequencies were calculated as well as NMR parameters (by using the Gauge Including Projector Augmented Wave--GIPAW--method). These data allow relationships between the geometry around the OH groups in boronates and the IR and (1)H NMR spectroscopic data to be established, which will be key to the future interpretation of the spectra of more complex organic-inorganic materials containing boronate building blocks. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hartman, Joshua D; Monaco, Stephen; Schatschneider, Bohdan; Beran, Gregory J O
2015-09-14
We assess the quality of fragment-based ab initio isotropic (13)C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic (13)C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readily in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.
NASA Astrophysics Data System (ADS)
Lei, Hui-Ru; Zhu, Jun; Hao, Yan-Jun; Zhang, Lin; Yu, Bai-Ru; Chen, Long-Qing; Zou, Yang-Chun
2015-02-01
Phase transition of rhenium mononitride (ReN) in NaCl, CsCl, zincblende (ZB), NbO, wurtzite (WZ), NiAs, WC, PtS, Pmn21 and Cmc21 structures have been studied by using the projector augmented wave method. It is found that NbO-type structure is the most stable. This conclusion is consistent with the report of Wang et al., while contrary to the results of Zhao et al., Chen et al., Asvini et al., and Hlynsson et al. The phase transition from NbO-type to NiAs-type occurs at ca. 52.8 GPa, which is also in good agreement with that of Wang et al. The elastic constants of NbO- and NiAs-type ReN under high pressure are calculated and found to be increased with the increasing pressures. At the same time, the ductile-brittle behavior is evaluated by Pugh's criteria. Also, we have predicted the density of states and Vickers hardness for NbO and NiAs types of ReN. Finally, the Debye temperature ΘD, thermal expansion α and heat capacity CV for NbO-type structure at high pressures are also derived through the quasi-harmonic Debye model.
Defect stability in thorium monocarbide: An ab initio study
NASA Astrophysics Data System (ADS)
Wang, Chang-Ying; Han, Han; Shao, Kuan; Cheng, Cheng; Huai, Ping
2015-09-01
The elastic properties and point defects of thorium monocarbide (ThC) have been studied by means of density functional theory based on the projector-augmented-wave method. The calculated electronic and elastic properties of ThC are in good agreement with experimental data and previous theoretical results. Five types of point defects have been considered in our study, including the vacancy defect, interstitial defect, antisite defect, schottky defect, and composition-conserving defect. Among these defects, the carbon vacancy defect has the lowest formation energy of 0.29 eV. The second most stable defect (0.49 eV) is one of composition-conserving defects in which one carbon is removed to another carbon site forming a C2 dimer. In addition, we also discuss several kinds of carbon interstitial defects, and predict that the carbon trimer configuration may be a transition state for a carbon dimer diffusion in ThC. Project supported by the International S&T Cooperation Program of China (Grant No. 2014DFG60230), the National Natural Science Foundation of China (Grant No. 91326105), the National Basic Research Program of China (Grant No. 2010CB934504), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA02040104).
Toward the light field display: autostereoscopic rendering via a cluster of projectors.
Yang, Ruigang; Huang, Xinyu; Li, Sifang; Jaynes, Christopher
2008-01-01
Ultimately, a display device should be capable of reproducing the visual effects observed in reality. In this paper we introduce an autostereoscopic display that uses a scalable array of digital light projectors and a projection screen augmented with microlenses to simulate a light field for a given three-dimensional scene. Physical objects emit or reflect light in all directions to create a light field that can be approximated by the light field display. The display can simultaneously provide many viewers from different viewpoints a stereoscopic effect without head tracking or special viewing glasses. This work focuses on two important technical problems related to the light field display; calibration and rendering. We present a solution to automatically calibrate the light field display using a camera and introduce two efficient algorithms to render the special multi-view images by exploiting their spatial coherence. The effectiveness of our approach is demonstrated with a four-projector prototype that can display dynamic imagery with full parallax.
Hartman, Joshua D; Balaji, Ashwin; Beran, Gregory J O
2017-12-12
Fragment-based methods predict nuclear magnetic resonance (NMR) chemical shielding tensors in molecular crystals with high accuracy and computational efficiency. Such methods typically employ electrostatic embedding to mimic the crystalline environment, and the quality of the results can be sensitive to the embedding treatment. To improve the quality of this embedding environment for fragment-based molecular crystal property calculations, we borrow ideas from the embedded ion method to incorporate self-consistently polarized Madelung field effects. The self-consistent reproduction of the Madelung potential (SCRMP) model developed here constructs an array of point charges that incorporates self-consistent lattice polarization and which reproduces the Madelung potential at all atomic sites involved in the quantum mechanical region of the system. The performance of fragment- and cluster-based 1 H, 13 C, 14 N, and 17 O chemical shift predictions using SCRMP and density functionals like PBE and PBE0 are assessed. The improved embedding model results in substantial improvements in the predicted 17 O chemical shifts and modest improvements in the 15 N ones. Finally, the performance of the model is demonstrated by examining the assignment of the two oxygen chemical shifts in the challenging γ-polymorph of glycine. Overall, the SCRMP-embedded NMR chemical shift predictions are on par with or more accurate than those obtained with the widely used gauge-including projector augmented wave (GIPAW) model.
Ercan, Nilufer; Uludag, Mecit Orhan; Agis, Erol Rauf; Demirel-Yilmaz, Emine
2013-12-01
Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most used drugs in musculoskeletal disorders, but their systemic adverse effects limit their therapeutic benefit in local inflammation. On the other hand, topical preparations of capsaicinoids are widely used for musculoskeletal disorders as a complementary therapy. In this study, the effects of both topical capsaicinoids-containing patch and local subcutaneous capsaicin application on the anti-inflammatory action of NSAID were examined. Carrageenan-induced paw oedema of rats was used as the inflammation model. The volume and weight of the paw oedema and plasma extravasation in the paw were determined after carrageenan injection. The systemic application of diclofenac (3 mg/kg), which is an NSAID, significantly decreased the volume and weight of the paw oedema. Topical capsaicinoids-containing patch application or local capsaicin injection (2, 10, 20 μg/paw) alone did not cause any effect on oedema volume and weight. However, the combination of diclofenac with topical capsaicinoids-containing patch significantly increased the effectiveness of diclofenac on inflammation. Evans blue content of the paws that represents plasma extravasation was decreased by capsaicinoids-containing patch with and without diclofenac and diclofenac combination with the lowest dose of capsaicin injection. The results of this study indicate that topical application of capsaicinoids-containing patch enhances the anti-inflammatory effect of diclofenac and its beneficial effect may not purely relate to its capsaicin content. In the treatment of local inflammatory disorders, the combination of NSAID with topical capsaicinoids-containing patch could increase the anti-inflammatory efficiency of drug without systemic side effects.
Evaluation of fatty acid amides in the carrageenan-induced paw edema model.
Wise, Laura E; Cannavacciulo, Roberta; Cravatt, Benjamin F; Martin, Billy F; Lichtman, Aron H
2008-01-01
While it has long been recognized that Delta(9)-tetrahydrocannabinol (THC), the primary psychoactive constituent of cannabis, and other cannabinoid receptor agonists possess anti-inflammatory properties, their well known CNS effects have dampened enthusiasm for therapeutic development. On the other hand, genetic deletion of fatty acid amide hydrolase (FAAH), the enzyme responsible for degradation of fatty acid amides, including endogenous cannabinoid N-arachidonoyl ethanolamine (anandamide; AEA), N-palmitoyl ethanolamine (PEA), N-oleoyl ethanolamine (OEA), and oleamide, also elicits anti-edema, but does not produce any apparent cannabinoid effects. The purpose of the present study was to investigate whether exogenous administration of FAAs would augment the anti-inflammatory phenotype of FAAH (-/-) mice in the carrageenan model. Thus, we evaluated the effects of the FAAs AEA, PEA, OEA, and oleamide in wild-type and FAAH (-/-) mice. For comparison, we evaluated the anti-edema effects of THC, dexamethasone (DEX), a synthetic glucocorticoid, diclofenac (DIC), a nonselective cyclooxygenase (COX) inhibitor, in both genotypes. A final study determined if tolerance to the anti-edema effects of PEA occurs after repeated dosing. PEA, THC, DEX, DIC elicited significant decreases in carrageenan-induced paw edema in wild-type mice. In contrast OEA produced a less reliable anti-edema effect than these other drugs, and AEA and oleamide failed to produce any significant decreases in paw edema. Moreover, none of the agents evaluated augmented the anti-edema phenotype of FAAH (-/-) mice, suggesting that maximal anti-edema effects had already been established. PEA was the most effective FAA in preventing paw edema and its effects did not undergo tolerance. While the present findings do not support a role for AEA in preventing carrageenan-induced edema, PEA administration and FAAH blockade elicited anti-edema effects of an equivalent magnitude as produced by THC, DEX, and DIC in this assay.
Zhang, Jiarui; Zhang, Yingjie; Chen, Bo
2017-12-20
The three-dimensional measurement system with a binary defocusing technique is widely applied in diverse fields. The measurement accuracy is mainly determined by out-of-focus projector calibration accuracy. In this paper, a high-precision out-of-focus projector calibration method that is based on distortion correction on the projection plane and nonlinear optimization algorithm is proposed. To this end, the paper experimentally presents the principle that the projector has noticeable distortions outside its focus plane. In terms of this principle, the proposed method uses a high-order radial and tangential lens distortion representation on the projection plane to correct the calibration residuals caused by projection distortion. The final accuracy parameters of out-of-focus projector were obtained using a nonlinear optimization algorithm with good initial values, which were provided by coarsely calibrating the parameters of the out-of-focus projector on the focal and projection planes. Finally, the experimental results demonstrated that the proposed method can accuracy calibrate an out-of-focus projector, regardless of the amount of defocusing.
Efficient implementation of core-excitation Bethe-Salpeter equation calculations
NASA Astrophysics Data System (ADS)
Gilmore, K.; Vinson, John; Shirley, E. L.; Prendergast, D.; Pemmaraju, C. D.; Kas, J. J.; Vila, F. D.; Rehr, J. J.
2015-12-01
We present an efficient implementation of the Bethe-Salpeter equation (BSE) method for obtaining core-level spectra including X-ray absorption (XAS), X-ray emission (XES), and both resonant and non-resonant inelastic X-ray scattering spectra (N/RIXS). Calculations are based on density functional theory (DFT) electronic structures generated either by ABINIT or QuantumESPRESSO, both plane-wave basis, pseudopotential codes. This electronic structure is improved through the inclusion of a GW self energy. The projector augmented wave technique is used to evaluate transition matrix elements between core-level and band states. Final two-particle scattering states are obtained with the NIST core-level BSE solver (NBSE). We have previously reported this implementation, which we refer to as OCEAN (Obtaining Core Excitations from Ab initio electronic structure and NBSE) (Vinson et al., 2011). Here, we present additional efficiencies that enable us to evaluate spectra for systems ten times larger than previously possible; containing up to a few thousand electrons. These improvements include the implementation of optimal basis functions that reduce the cost of the initial DFT calculations, more complete parallelization of the screening calculation and of the action of the BSE Hamiltonian, and various memory reductions. Scaling is demonstrated on supercells of SrTiO3 and example spectra for the organic light emitting molecule Tris-(8-hydroxyquinoline)aluminum (Alq3) are presented. The ability to perform large-scale spectral calculations is particularly advantageous for investigating dilute or non-periodic systems such as doped materials, amorphous systems, or complex nano-structures.
Application of an imaging system to a museum exhibition for developing interactive exhibitions
NASA Astrophysics Data System (ADS)
Miyata, Kimiyoshi; Inoue, Yuka; Takiguchi, Takahiro; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi
2009-10-01
In the National Museum of Japanese History, 215,759 artifacts are stored and used for research and exhibitions. In museums, due to the limitation of space in the galleries, a guidance system is required to satisfy visitors' needs and to enhance their understanding of the artifacts. We introduce one exhibition using imaging technology to improve visitors' understanding of a kimono (traditional Japanese clothing) exhibition. In the imaging technology introduced, one data projector, one display with touch panel interface, and magnifiers were used as exhibition tools together with a real kimono. The validity of this exhibition method was confirmed by results from a visitors' interview survey. Second, to further develop the interactive guidance system, an augmented reality system that consisted of cooperation between the projector and a digital video camera was also examined. A white paper board in the observer's hand was used as a projection screen and also as an interface to control the images projected on the board. The basic performance of the proposed system was confirmed; however continuous development was necessary for applying the system to actual exhibitions.
ABINIT: First-principles approach to material and nanosystem properties
NASA Astrophysics Data System (ADS)
Gonze, X.; Amadon, B.; Anglade, P.-M.; Beuken, J.-M.; Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.; Côté, M.; Deutsch, T.; Genovese, L.; Ghosez, Ph.; Giantomassi, M.; Goedecker, S.; Hamann, D. R.; Hermet, P.; Jollet, F.; Jomard, G.; Leroux, S.; Mancini, M.; Mazevet, S.; Oliveira, M. J. T.; Onida, G.; Pouillon, Y.; Rangel, T.; Rignanese, G.-M.; Sangalli, D.; Shaltaf, R.; Torrent, M.; Verstraete, M. J.; Zerah, G.; Zwanziger, J. W.
2009-12-01
ABINIT [ http://www.abinit.org] allows one to study, from first-principles, systems made of electrons and nuclei (e.g. periodic solids, molecules, nanostructures, etc.), on the basis of Density-Functional Theory (DFT) and Many-Body Perturbation Theory. Beyond the computation of the total energy, charge density and electronic structure of such systems, ABINIT also implements many dynamical, dielectric, thermodynamical, mechanical, or electronic properties, at different levels of approximation. The present paper provides an exhaustive account of the capabilities of ABINIT. It should be helpful to scientists that are not familiarized with ABINIT, as well as to already regular users. First, we give a broad overview of ABINIT, including the list of the capabilities and how to access them. Then, we present in more details the recent, advanced, developments of ABINIT, with adequate references to the underlying theory, as well as the relevant input variables, tests and, if available, ABINIT tutorials. Program summaryProgram title: ABINIT Catalogue identifier: AEEU_v1_0 Distribution format: tar.gz Journal reference: Comput. Phys. Comm. Programming language: Fortran95, PERL scripts, Python scripts Computer: All systems with a Fortran95 compiler Operating system: All systems with a Fortran95 compiler Has the code been vectorized or parallelized?: Sequential, or parallel with proven speed-up up to one thousand processors. RAM: Ranges from a few Mbytes to several hundred Gbytes, depending on the input file. Classification: 7.3, 7.8 External routines: (all optional) BigDFT [1], ETSF IO [2], libxc [3], NetCDF [4], MPI [5], Wannier90 [6] Nature of problem: This package has the purpose of computing accurately material and nanostructure properties: electronic structure, bond lengths, bond angles, primitive cell size, cohesive energy, dielectric properties, vibrational properties, elastic properties, optical properties, magnetic properties, non-linear couplings, electronic and vibrational lifetimes, etc. Solution method: Software application based on Density-Functional Theory and Many-Body Perturbation Theory, pseudopotentials, with planewaves, Projector-Augmented Waves (PAW) or wavelets as basis functions. Running time: From less than one second for the simplest tests, to several weeks. The vast majority of the >600 provided tests run in less than 30 seconds. References:[1] http://inac.cea.fr/LSim/BigDFT. [2] http://etsf.eu/index.php?page=standardization. [3] http://www.tddft.org/programs/octopus/wiki/index.php/Libxc. [4] http://www.unidata.ucar.edu/software/netcdf. [5] http://en.wikipedia.org/wiki/MessagePassingInterface. [6] http://www.wannier.org.
NASA Astrophysics Data System (ADS)
Tsukamoto, Shigeru; Ono, Tomoya; Hirose, Kikuji; Blügel, Stefan
2017-03-01
The self-energy term used in transport calculations, which describes the coupling between electrode and transition regions, is able to be evaluated only from a limited number of the propagating and evanescent waves of a bulk electrode. This obviously contributes toward the reduction of the computational expenses in transport calculations. In this paper, we present a mathematical formula for reducing the computational expenses further without using any approximation and without losing accuracy. So far, the self-energy term has been handled as a matrix with the same dimension as the Hamiltonian submatrix representing the interaction between an electrode and a transition region. In this work, through the singular-value decomposition of the submatrix, the self-energy matrix is handled as a smaller matrix, whose dimension is the rank number of the Hamiltonian submatrix. This procedure is practical in the case of using the pseudopotentials in a separable form, and the computational expenses for determining the self-energy matrix are reduced by 90% when employing a code based on the real-space finite-difference formalism and projector-augmented wave method. In addition, this technique is applicable to the transport calculations using atomic or localized basis sets. Adopting the self-energy matrices obtained from this procedure, we present the calculation of the electron transport properties of C20 molecular junctions. The application demonstrates that the electron transmissions are sensitive to the orientation of the molecule with respect to the electrode surface. In addition, channel decomposition of the scattering wave functions reveals that some unoccupied C20 molecular orbitals mainly contribute to the electron conduction through the molecular junction.
Muon contact hyperfine field in metals: A DFT calculation
NASA Astrophysics Data System (ADS)
Onuorah, Ifeanyi John; Bonfà, Pietro; De Renzi, Roberto
2018-05-01
In positive muon spin rotation and relaxation spectroscopy it is becoming customary to take advantage of density functional theory (DFT) based computational methods to aid the experimental data analysis. DFT-aided muon site determination is especially useful for measurements performed in magnetic materials, where large contact hyperfine interactions may arise. Here we present a systematic analysis of the accuracy of the ab initio estimation of muon's hyperfine contact field on elemental transition metals, performing state-of-the-art spin-polarized plane-wave DFT and using the projector-augmented pseudopotential approach, which allows one to include the core state effects due to the spin ordering. We further validate this method in not-so-simple, noncentrosymmetric metallic compounds, presently of topical interest for their spiral magnetic structure giving rise to skyrmion phases, such as MnSi and MnGe. The calculated hyperfine fields agree with experimental values in all cases, provided the spontaneous spin magnetization of the metal is well reproduced within the approach. To overcome the known limits of the conventional mean-field approximation of DFT on itinerant magnets, we adopt the so-called reduced Stoner theory [L. Ortenzi et al., Phys. Rev. B 86, 064437 (2012), 10.1103/PhysRevB.86.064437]. We establish the accuracy of the estimated muon contact field in metallic compounds with DFT and our results show improved agreement with experiments compared to those of earlier publications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Todd M.; Liao, Zuolei; Nyman, May
Solid-state 1H magic-angle spinning (MAS) NMR was used to investigate local proton environments in anhydrous [UO 2(OH) 2] (α-UOH) and hydrated uranyl hydroxide [(UO 2) 4O(OH) 6·5H 2O (metaschoepite). For the metaschoepite material, proton resonances of the μ 2-OH hydroxyl and interlayer waters were resolved, with two-dimensional (2D) double-quantum (DQ) 1H– 1H NMR correlation experiments revealing strong dipolar interactions between these different proton species. The experimental NMR results were combined with first-principles CASTEP GIPAW (gauge including projector-augmented wave) chemical shift calculations to develop correlations between hydrogen-bond strength and observed 1H NMR chemical shifts. Furthermore, these NMR correlations allowed characterization ofmore » local hydrogen-bond environments in uranyl U 24 capsules and of changes in hydrogen bonding that occurred during thermal dehydration of metaschoepite.« less
Alam, Todd M.; Liao, Zuolei; Nyman, May; ...
2016-04-27
Solid-state 1H magic-angle spinning (MAS) NMR was used to investigate local proton environments in anhydrous [UO 2(OH) 2] (α-UOH) and hydrated uranyl hydroxide [(UO 2) 4O(OH) 6·5H 2O (metaschoepite). For the metaschoepite material, proton resonances of the μ 2-OH hydroxyl and interlayer waters were resolved, with two-dimensional (2D) double-quantum (DQ) 1H– 1H NMR correlation experiments revealing strong dipolar interactions between these different proton species. The experimental NMR results were combined with first-principles CASTEP GIPAW (gauge including projector-augmented wave) chemical shift calculations to develop correlations between hydrogen-bond strength and observed 1H NMR chemical shifts. Furthermore, these NMR correlations allowed characterization ofmore » local hydrogen-bond environments in uranyl U 24 capsules and of changes in hydrogen bonding that occurred during thermal dehydration of metaschoepite.« less
Directed electromagnetic wave propagation in 1D metamaterial: Projecting operators method
NASA Astrophysics Data System (ADS)
Ampilogov, Dmitrii; Leble, Sergey
2016-07-01
We consider a boundary problem for 1D electrodynamics modeling of a pulse propagation in a metamaterial medium. We build and apply projecting operators to a Maxwell system in time domain that allows to split the linear propagation problem to directed waves for a material relations with general dispersion. Matrix elements of the projectors act as convolution integral operators. For a weak nonlinearity we generalize the linear results still for arbitrary dispersion and derive the system of interacting right/left waves with combined (hybrid) amplitudes. The result is specified for the popular metamaterial model with Drude formula for both permittivity and permeability coefficients. We also discuss and investigate stationary solutions of the system related to some boundary regimes.
NASA Astrophysics Data System (ADS)
Pishtshev, A.; Rubin, P.
2018-04-01
By means of periodic density functional theory (DFT) electronic structure calculations, we investigate iron-site doping effects in a structural model of bulk FeAs2. Simulations performed within the projector augmented-wave method-Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) functional scheme reveal that the impacts of the two stoichiometric substitutions Fe → Mg and Fe → Ni are radically different with respect to the structural and electronic behavior of the dopants. In particular, unlike the Ni dopant, the Mg dopant incorporated in FeAs2 occupies a noncentral equilibrium position characterized by an off-center displacement from the reference higher-symmetry position. Analysis of the respective electron and vibrational factors allows us to explain this result in terms of the local pseudo Jahn-Teller effect (pJTE). On the basis of DFT calculations, we deduce which electron orbitals and lattice vibrational modes are appropriate for promoting the local instability at the origin of the pJTE. Quantitative evaluations of the pJTE parameters performed within the polyatomic formalism of an effective tight-binding model show that it is just the enhanced vibronic interaction in the Mg-[FeAs6] cluster that is responsible for the local lattice symmetry breaking.
Ferreira, Ary R; Rino, José P
2017-08-24
Solid-state nuclear magnetic resonance (ssNMR) experimental 27 Al metallic shifts reported in the literature for bulk metallic glasses (BMGs) were revisited in the light of state-of-the-art atomistic simulations. In a consistent way, the Gauge-Including Projector Augmented-Wave (GIPAW) method was applied in conjunction with classical molecular dynamics (CMD). A series of Zr-Cu-Al alloys with low Al concentrations were selected as case study systems, for which realistic CMD derived structural models were used for a short- and medium-range order mining. That initial procedure allowed the detection of trends describing changes on the microstructure of the material upon Al alloying, which in turn were used to guide GIPAW calculations with a set of abstract systems in the context of ssNMR. With essential precision and accuracy, the ab initio simulations also yielded valuable trends from the electronic structure point of view, which enabled an overview of the bonding nature of Al-centered clusters as well as its influence on the experimental ssNMR outcomes. The approach described in this work might promote the use of ssNMR spectroscopy in research on glassy metals. Moreover, the results presented demonstrate the possibility to expand the applications of this technique, with deeper insight into nuclear interactions and less speculative assignments.
Ab Initio Molecular Dynamics Simulations and GIPAW NMR Calculations of a Lithium Borate Glass Melt.
Ohkubo, Takahiro; Tsuchida, Eiji; Takahashi, Takafumi; Iwadate, Yasuhiko
2016-04-14
The atomic structure of a molten 0.3Li2O-0.7B2O3 glass at 1250 K was investigated using ab initio molecular dynamics (AIMD) simulations. The gauge including projector augmented wave (GIPAW) method was then employed for computing the chemical shift and quadrupolar coupling constant of (11)B, (17)O, and (7)Li from 764 AIMD derived structures. The chemical shift and quadrupolar coupling constant distributions were directly estimated from the dynamical structure of the molten glass. (11)B NMR parameters of well-known structural units such as the three-coordinated ring, nonring, and four-coordinated tetrahedron were found to be in good agreement with the experimental results. In this study, more detailed classification of B units was presented based on the number of O species bonded to the B atoms. This highlights the limitations of (11)B NMR sensitivity for resolving (11)B local environment using the experimentally obtained spectra only. The (17)O NMR parameter distributions can theoretically resolve the bridging and nonbridging O atoms with different structural units such as nonring, single boroxol ring, and double boroxol ring. Slight but clear differences in the number of bridging O atoms surrounding Li that have not been reported experimentally were observed in the theoretically obtained (7)Li NMR parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, Joshua D.; Beran, Gregory J. O., E-mail: gregory.beran@ucr.edu; Monaco, Stephen
2015-09-14
We assess the quality of fragment-based ab initio isotropic {sup 13}C chemical shift predictions for a collection of 25 molecular crystals with eight different density functionals. We explore the relative performance of cluster, two-body fragment, combined cluster/fragment, and the planewave gauge-including projector augmented wave (GIPAW) models relative to experiment. When electrostatic embedding is employed to capture many-body polarization effects, the simple and computationally inexpensive two-body fragment model predicts both isotropic {sup 13}C chemical shifts and the chemical shielding tensors as well as both cluster models and the GIPAW approach. Unlike the GIPAW approach, hybrid density functionals can be used readilymore » in a fragment model, and all four hybrid functionals tested here (PBE0, B3LYP, B3PW91, and B97-2) predict chemical shifts in noticeably better agreement with experiment than the four generalized gradient approximation (GGA) functionals considered (PBE, OPBE, BLYP, and BP86). A set of recommended linear regression parameters for mapping between calculated chemical shieldings and observed chemical shifts are provided based on these benchmark calculations. Statistical cross-validation procedures are used to demonstrate the robustness of these fits.« less
Bonhomme, Christian; Gervais, Christel; Coelho, Cristina; Pourpoint, Frédérique; Azaïs, Thierry; Bonhomme-Coury, Laure; Babonneau, Florence; Jacob, Guy; Ferrari, Maude; Canet, Daniel; Yates, Jonathan R; Pickard, Chris J; Joyce, Siân A; Mauri, Francesco; Massiot, Dominique
2010-12-01
In 2001, Pickard and Mauri implemented the gauge including projected augmented wave (GIPAW) protocol for first-principles calculations of NMR parameters using periodic boundary conditions (chemical shift anisotropy and electric field gradient tensors). In this paper, three potentially interesting perspectives in connection with PAW/GIPAW in solid-state NMR and pure nuclear quadrupole resonance (NQR) are presented: (i) the calculation of J coupling tensors in inorganic solids; (ii) the calculation of the antisymmetric part of chemical shift tensors and (iii) the prediction of (14)N and (35)Cl pure NQR resonances including dynamics. We believe that these topics should open new insights in the combination of GIPAW, NMR/NQR crystallography, temperature effects and dynamics. Points (i), (ii) and (iii) will be illustrated by selected examples: (i) chemical shift tensors and heteronuclear (2)J(P-O-Si) coupling constants in the case of silicophosphates and calcium phosphates [Si(5)O(PO(4))(6), SiP(2)O(7) polymorphs and α-Ca(PO(3))(2)]; (ii) antisymmetric chemical shift tensors in cyclopropene derivatives, C(3)X(4) (X = H, Cl, F) and (iii) (14)N and (35)Cl NQR predictions in the case of RDX (C(3)H(6)N(6)O(6)), β-HMX (C(4)H(8)N(8)O(8)), α-NTO (C(2)H(2)N(4)O(3)) and AlOPCl(6). RDX, β-HMX and α-NTO are explosive compounds. Copyright © 2010 John Wiley & Sons, Ltd.
The AR Sandbox: Augmented Reality in Geoscience Education
NASA Astrophysics Data System (ADS)
Kreylos, O.; Kellogg, L. H.; Reed, S.; Hsi, S.; Yikilmaz, M. B.; Schladow, G.; Segale, H.; Chan, L.
2016-12-01
The AR Sandbox is a combination of a physical box full of sand, a 3D (depth) camera such as a Microsoft Kinect, a data projector, and a computer running open-source software, creating a responsive and interactive system to teach geoscience concepts in formal or informal contexts. As one or more users shape the sand surface to create planes, hills, or valleys, the 3D camera scans the surface in real-time, the software creates a dynamic topographic map including elevation color maps and contour lines, and the projector projects that map back onto the sand surface such that real and projected features match exactly. In addition, users can add virtual water to the sandbox, which realistically flows over the real surface driven by a real-time fluid flow simulation. The AR Sandbox can teach basic geographic and hydrologic skills and concepts such as reading topographic maps, interpreting contour lines, formation of watersheds, flooding, or surface wave propagation in a hands-on and explorative manner. AR Sandbox installations in more than 150 institutions have shown high audience engagement and long dwell times of often 20 minutes and more. In a more formal context, the AR Sandbox can be used in field trip preparation, and can teach advanced geoscience skills such as extrapolating 3D sub-surface shapes from surface expression, via advanced software features such as the ability to load digital models of real landscapes and guiding users towards recreating them in the sandbox. Blueprints, installation instructions, and the open-source AR Sandbox software package are available at http://arsandbox.org .
Evaluation of fatty acid amides in the carrageenan-induced paw edema model
Wise, Laura E.; Cannavacciulo, Roberta; Cravatt, Benjamin F.; Martin, Billy F.; Lichtman, Aron H.
2008-01-01
While it has long been recognized that Δ9-tetrahydrocannabinol (THC), the primary psychoactive constituent of cannabis, and other cannabinoid receptor agonists possess anti-inflammatory properties, their well known CNS effects have dampened enthusiasm for therapeutic development. On the other hand, genetic deletion of fatty acid amide hydrolase (FAAH), the enzyme responsible for degradation of fatty acid amides, including endogenous cannabinoid N-arachidonoyl ethanolamine (anandamide; AEA), N-palmitoyl ethanolamine (PEA), N-oleoyl ethanolamine (OEA), and oleamide, also elicits anti-edema, but does not produce any apparent cannabinoid effects. The purpose of the present study was to investigate whether exogenous administration of FAAs would augment the anti-inflammatory phenotype of FAAH (-/-) mice in the carrageenan model. Thus, we evaluated the effects of the FAAs AEA, PEA, OEA, and oleamide in wild-type and FAAH (-/-) mice. For comparison, we evaluated the anti-edema effects of THC, dexamethasone (DEX), a synthetic glucocorticoid, diclofenac (DIC), a nonselective cyclooxygenase (COX) inhibitor, in both genotypes. A final study determined if tolerance to the anti-edema effects of PEA occurs after repeated dosing. PEA, THC, DEX, DIC elicited significant decreases in carrageenan-induced paw edema in wild type mice. In contrast OEA produced a less reliable anti-edema effect than these other drugs, and AEA and oleamide failed to produce any significant decreases in paw edema. Moreover, none of the agents evaluated augmented the anti-edema phenotype of FAAH (-/-) mice, suggesting that maximal anti-edema effects had already been established. PEA was the most effective FAA in preventing paw edema and its effects did not undergo tolerance. While the present findings do not support a role for AEA in preventing carrageenan-induced edema, PEA administration and FAAH blockade elicited anti-edema effects of an equivalent magnitude as produced by THC, DEX, and DIC in this assay. PMID:17675189
Multi-projector auto-calibration and placement optimization for non-planar surfaces
NASA Astrophysics Data System (ADS)
Li, Dong; Xie, Jinghui; Zhao, Lu; Zhou, Lijing; Weng, Dongdong
2015-10-01
Non-planar projection has been widely applied in virtual reality and digital entertainment and exhibitions because of its flexible layout and immersive display effects. Compared with planar projection, a non-planar projection is more difficult to achieve because projector calibration and image distortion correction are difficult processes. This paper uses a cylindrical screen as an example to present a new method for automatically calibrating a multi-projector system in a non-planar environment without using 3D reconstruction. This method corrects the geometric calibration error caused by the screen's manufactured imperfections, such as an undulating surface or a slant in the vertical plane. In addition, based on actual projection demand, this paper presents the overall performance evaluation criteria for the multi-projector system. According to these criteria, we determined the optimal placement for the projectors. This method also extends to surfaces that can be parameterized, such as spheres, ellipsoids, and paraboloids, and demonstrates a broad applicability.
A Protein in the palm of your hand through augmented reality.
Berry, Colin; Board, Jason
2014-01-01
Understanding of proteins and other biological macromolecules must be based on an appreciation of their 3-dimensional shape and the fine details of their structure. Conveying these details in a clear and stimulating fashion can present challenges using conventional approaches and 2-dimensional monitors and projectors. Here we describe a method for the production of 3-D interactive images of protein structures that can be manipulated in real time through the use of augmented reality software. Users first see a real-time image of themselves using the computer's camera, then, when they hold up a trigger image, a model of a molecule appears automatically in the video. This model rotates and translates in space in response to movements of the trigger card. The system described has been optimized to allow customization for the display of user-selected structures to create engaging, educational visualizations to explore 3-D structures. Copyright © 2014 The International Union of Biochemistry and Molecular Biology.
Cifuentes, Ignacio Javier; Dagnino, Bruno Leonardo; Salisbury, María Carolina; Perez, María Eliana; Ortega, Claudia; Maldonado, Daniela
2018-05-01
Dynamic infrared thermography (DIRT) has been used for the preoperative mapping of cutaneous perforators. This technique has shown a positive correlation with intraoperative findings. Our aim was to evaluate the accuracy of perforator mapping with DIRT and augmented reality using a portable projector. For this purpose, three volunteers had both of their anterolateral thighs assessed for the presence and location of cutaneous perforators using DIRT. The obtained image of these "hotspots" was projected back onto the thigh and the presence of Doppler signals within a 10-cm diameter from the midpoint between the lateral patella and the anterior superior iliac spine was assessed using a handheld Doppler device. Hotspots were identified in all six anterolateral thighs and were successfully projected onto the skin. The median number of perforators identified within the area of interest was 5 (range, 3-8) and the median time needed to identify them was 3.5 minutes (range, 3.3-4.0 minutes). Every hotspot was correlated to a Doppler sound signal. In conclusion, augmented reality can be a reliable method for transferring the location of perforators identified by DIRT onto the thigh, facilitating its assessment and yielding a reliable map of potential perforators for flap raising.
DFT study of adsorption and dissociation of thiophene molecules on Ni(1 1 0)
NASA Astrophysics Data System (ADS)
Morin, C.; Eichler, A.; Hirschl, R.; Sautet, P.; Hafner, J.
2003-08-01
The different adsorption possibilities of thiophene (C 4H 4S) on the Ni(1 1 0) surface have been studied using first principle local-density-functional calculations, with the Vienna ab initio simulation package, which is based on a plane wave basis set and projector augmented wave potentials. For each configuration, a geometric optimisation has been performed. A detailed analysis of the structural and electronic properties of the molecule and the surface in the most stable conformations is presented, showing the combined roles of the molecular distortion and the interactions between the molecule and the surface. Three structures with comparatively large adsorption energies are identified, all with the molecule plane parallel to the surface. Starting from these stabilised structures, various scenarios for the desulfurisation process have been envisaged. While, for the most stable structure, the formation of an adsorbed thiol is an activated process, with an energetic barrier of 0.70 eV, the two structures which are just a bit less stable can dissociate to a C 4H 4 species and a sulfur atom with barriers as low as 0.07 eV. A description of the different transition states and a kinetic analysis of the desulfurisation reaction is also presented.
Thermal transport properties of bulk and monolayer MoS2: an ab-initio approach
NASA Astrophysics Data System (ADS)
Bano, Amreen; Khare, Preeti; Gaur, N. K.
2017-05-01
The transport properties of semiconductors are key to the performance of many solid-state devices (transistors, data storage, thermoelectric cooling and power generation devices, etc). In recent years simulation tools based on first-principles calculations have been greatly improved, being able to obtain the fundamental ground-state properties of materials accurately. The quasi harmonic thermal properties of bulk and monolayer of MoS2 has been computed with ab initio periodic simulations based of density functional theory (DFT). The temperature dependence of bulk modulus, specific heat, thermal expansion and gruneisen parameter have been calculated in our work within the temperature range of 0K to 900K with projected augmented wave (PAW) method using generalized gradient approximation (GGA). Our results show that the optimized lattice parameters are in good agreement with the earlier reported works and also for thermoelastic parameter, i.e. isothermal bulk modulus (B) at 0K indicates that monolayer MoS2 (48.5 GPa)is more compressible than the bulk structure (159.23 GPa). The thermal expansion of monolayer structure is slightly less than the bulk. Similarly, other parameters like heat capacity and gruneisen parameter shows different nature which is due to the confinement of 3 dimensional structure to 2 dimension (2D) for improving its transport characteristics.
The compatibility of consumer DLP projectors with time-sequential stereoscopic 3D visualisation
NASA Astrophysics Data System (ADS)
Woods, Andrew J.; Rourke, Tegan
2007-02-01
A range of advertised "Stereo-Ready" DLP projectors are now available in the market which allow high-quality flickerfree stereoscopic 3D visualization using the time-sequential stereoscopic display method. The ability to use a single projector for stereoscopic viewing offers a range of advantages, including extremely good stereoscopic alignment, and in some cases, portability. It has also recently become known that some consumer DLP projectors can be used for timesequential stereoscopic visualization, however it was not well understood which projectors are compatible and incompatible, what display modes (frequency and resolution) are compatible, and what stereoscopic display quality attributes are important. We conducted a study to test a wide range of projectors for stereoscopic compatibility. This paper reports on the testing of 45 consumer DLP projectors of widely different specifications (brand, resolution, brightness, etc). The projectors were tested for stereoscopic compatibility with various video formats (PAL, NTSC, 480P, 576P, and various VGA resolutions) and video input connections (composite, SVideo, component, and VGA). Fifteen projectors were found to work well at up to 85Hz stereo in VGA mode. Twenty three projectors would work at 60Hz stereo in VGA mode.
Growing Crystals on the Ceiling.
ERIC Educational Resources Information Center
Christman, Robert A.
1980-01-01
Described is a method of studying growing crystals in a classroom utilizing a carrousel projector standing vertically. A saturated salt solution is placed on a slide on the lens of the projector and the heat from the projector causes the water to evaporate and salt to crystalize. (Author/DS)
Autocalibration of a projector-camera system.
Okatani, Takayuki; Deguchi, Koichiro
2005-12-01
This paper presents a method for calibrating a projector-camera system that consists of multiple projectors (or multiple poses of a single projector), a camera, and a planar screen. We consider the problem of estimating the homography between the screen and the image plane of the camera or the screen-camera homography, in the case where there is no prior knowledge regarding the screen surface that enables the direct computation of the homography. It is assumed that the pose of each projector is unknown while its internal geometry is known. Subsequently, it is shown that the screen-camera homography can be determined from only the images projected by the projectors and then obtained by the camera, up to a transformation with four degrees of freedom. This transformation corresponds to arbitrariness in choosing a two-dimensional coordinate system on the screen surface and when this coordinate system is chosen in some manner, the screen-camera homography as well as the unknown poses of the projectors can be uniquely determined. A noniterative algorithm is presented, which computes the homography from three or more images. Several experimental results on synthetic as well as real images are shown to demonstrate the effectiveness of the method.
On the use of video projectors for three-dimensional scanning
NASA Astrophysics Data System (ADS)
Juarez-Salazar, Rigoberto; Diaz-Ramirez, Victor H.; Robledo-Sanchez, Carlos; Diaz-Gonzalez, Gerardo
2017-08-01
Structured light projection is one of the most useful methods for accurate three-dimensional scanning. Video projectors are typically used as the illumination source. However, because video projectors are not designed for structured light systems, some considerations such as gamma calibration must be taken into account. In this work, we present a simple method for gamma calibration of video projectors. First, the experimental fringe patterns are normalized. Then, the samples of the fringe patterns are sorted in ascending order. The sample sorting leads to a simple three-parameter sine curve that is fitted using the Gauss-Newton algorithm. The novelty of this method is that the sorting process removes the effect of the unknown phase. Thus, the resulting gamma calibration algorithm is significantly simplified. The feasibility of the proposed method is illustrated in a three-dimensional scanning experiment.
Design of a single projector multiview 3D display system
NASA Astrophysics Data System (ADS)
Geng, Jason
2014-03-01
Multiview three-dimensional (3D) display is able to provide horizontal parallax to viewers with high-resolution and fullcolor images being presented to each view. Most multiview 3D display systems are designed and implemented using multiple projectors, each generating images for one view. Although this multi-projector design strategy is conceptually straightforward, implementation of such multi-projector design often leads to a very expensive system and complicated calibration procedures. Even for a multiview system with a moderate number of projectors (e.g., 32 or 64 projectors), the cost of a multi-projector 3D display system may become prohibitive due to the cost and complexity of integrating multiple projectors. In this article, we describe an optical design technique for a class of multiview 3D display systems that use only a single projector. In this single projector multiview (SPM) system design, multiple views for the 3D display are generated in a time-multiplex fashion by the single high speed projector with specially designed optical components, a scanning mirror, and a reflective mirror array. Images of all views are generated sequentially and projected via the specially design optical system from different viewing directions towards a 3D display screen. Therefore, the single projector is able to generate equivalent number of multiview images from multiple viewing directions, thus fulfilling the tasks of multiple projectors. An obvious advantage of the proposed SPM technique is the significant reduction of cost, size, and complexity, especially when the number of views is high. The SPM strategy also alleviates the time-consuming procedures for multi-projector calibration. The design method is flexible and scalable and can accommodate systems with different number of views.
Non-auditory, electrophysiological potentials preceding dolphin biosonar click production.
Finneran, James J; Mulsow, Jason; Jones, Ryan; Houser, Dorian S; Accomando, Alyssa W; Ridgway, Sam H
2018-03-01
The auditory brainstem response to a dolphin's own emitted biosonar click can be measured by averaging epochs of the instantaneous electroencephalogram (EEG) that are time-locked to the emitted click. In this study, averaged EEGs were measured using surface electrodes placed on the head in six different configurations while dolphins performed an echolocation task. Simultaneously, biosonar click emissions were measured using contact hydrophones on the melon and a hydrophone in the farfield. The averaged EEGs revealed an electrophysiological potential (the pre-auditory wave, PAW) that preceded the production of each biosonar click. The largest PAW amplitudes occurred with the non-inverting electrode just right of the midline-the apparent side of biosonar click generation-and posterior of the blowhole. Although the source of the PAW is unknown, the temporal and spatial properties rule out an auditory source. The PAW may be a neural or myogenic potential associated with click production; however, it is not known if muscles within the dolphin nasal system can be actuated at the high rates reported for dolphin click production, or if sufficiently coordinated and fast motor endplates of nasal muscles exist to produce a PAW detectable with surface electrodes.
Sadoc, Aymeric; Biswal, Mamata; Body, Monique; Legein, Christophe; Boucher, Florent; Massiot, Dominique; Fayon, Franck
2014-01-01
The relationship between the experimental (19)F isotropic chemical shift and the (19)F isotropic shielding calculated using the gauge including projector augmented-wave (GIPAW) method with PBE functional is investigated in the case of GaF3, InF3, TlF and several AlF3 polymorphs. It is shown that the linear correlation between experimental and DFT-PBE calculated values previously established on alkali, alkaline earth and rare earth of column 3 basic fluorides (Sadoc et al., Phys. Chem. Chem. Phys. 13 (2011) 18539-18550) remains valid in the case of column 13 metal fluorides, indicating that it allows predicting (19)F solid state NMR spectra of a broad range of crystalline fluorides with a relatively good accuracy. For the isostructural α-AlF3, GaF3 and InF3 phases, PBE-DFT geometry optimization leads to noticeably overbended M-F-M bond angles and underestimated (27)Al, (71)Ga and (115)In calculated quadrupolar coupling constants. For the studied compounds, whose structures are built of corner shared MF6 octahedra, it is shown that the electric field gradient (EFG) tensor at the cationic sites is not related to distortions of the octahedral units, in contrast to what previously observed for isolated AlF6 octahedra in fluoroaluminates. Copyright © 2014 Elsevier Inc. All rights reserved.
Effect of van der Waals interactions on the structural and binding properties of GaSe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkisov, Sergey Y., E-mail: sarkisov@mail.tsu.ru; Kosobutsky, Alexey V., E-mail: kosobutsky@kemsu.ru; Kemerovo State University, Krasnaya 6, 650043 Kemerovo
The influence of van der Waals interactions on the lattice parameters, band structure, elastic moduli and binding energy of layered GaSe compound has been studied using projector-augmented wave method within density functional theory. We employed the conventional local/semilocal exchange-correlation functionals and recently developed van der Waals functionals which are able to describe dispersion forces. It is found that application of van der Waals density functionals allows to substantially increase the accuracy of calculations of the lattice constants a and c and interlayer distance in GaSe at ambient conditions and under hydrostatic pressure. The pressure dependences of the a-parameter, Ga–Ga, Ga–Semore » bond lengths and Ga–Ga–Se bond angle are characterized by a relatively low curvature, while c(p) has a distinct downward bowing due to nonlinear shrinking of the interlayer spacing. From the calculated binding energy curves we deduce the interlayer binding energy of GaSe, which is found to be in the range 0.172–0.197 eV/layer (14.2–16.2 meV/Å{sup 2}). - Highlights: • Effects of van der Waals interactions are analyzed using advanced density functionals. • Calculations with vdW-corrected functionals closely agree with experiment. • Interlayer binding energy of GaSe is estimated to be 14.2–16.2 meV/Å{sup 2}.« less
Southern, Scott A; Bryce, David L
2015-12-10
Group IV tetrel elements may act as tetrel bond donors, whereby a region of positive electrostatic potential (σ-hole) interacts with a Lewis base. The results of calculations of NMR parameters are reported for a series of model compounds exhibiting tetrel bonding from a methyl carbon to the oxygen or nitrogen atoms in various functional groups. The (13)C chemical shift (δiso) and the (1c)J((13)C,Y) coupling (Y = (17)O, (15)N) across the tetrel bond are recorded as a function of geometry. The sensitivity of the NMR parameters to the noncovalent interaction is demonstrated via an increase in δiso and in |(1c)J((13)C,Y)| as the tetrel bond shortens. Gauge-including projector-augmented wave density functional theory (DFT) calculations of δiso are reported for crystals that exhibit tetrel bonding in the solid state. Experimental δiso values for solid sarcosine and its tetrel-bonded salts corroborate the computational findings. This work offers new insights into tetrel bonding and facilitates the incorporation of tetrel bonds as restraints in NMR crystallographic structure refinement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, R.; Naik, H.; Beckman, P.
Providing fault tolerance in high-end petascale systems, consisting of millions of hardware components and complex software stacks, is becoming an increasingly challenging task. Checkpointing continues to be the most prevalent technique for providing fault tolerance in such high-end systems. Considerable research has focussed on optimizing checkpointing; however, in practice, checkpointing still involves a high-cost overhead for users. In this paper, we study the checkpointing overhead seen by various applications running on leadership-class machines like the IBM Blue Gene/P at Argonne National Laboratory. In addition to studying popular applications, we design a methodology to help users understand and intelligently choose anmore » optimal checkpointing frequency to reduce the overall checkpointing overhead incurred. In particular, we study the Grid-Based Projector-Augmented Wave application, the Carr-Parrinello Molecular Dynamics application, the Nek5000 computational fluid dynamics application and the Parallel Ocean Program application-and analyze their memory usage and possible checkpointing trends on 65,536 processors of the Blue Gene/P system.« less
An Accurate Projector Calibration Method Based on Polynomial Distortion Representation
Liu, Miao; Sun, Changku; Huang, Shujun; Zhang, Zonghua
2015-01-01
In structure light measurement systems or 3D printing systems, the errors caused by optical distortion of a digital projector always affect the precision performance and cannot be ignored. Existing methods to calibrate the projection distortion rely on calibration plate and photogrammetry, so the calibration performance is largely affected by the quality of the plate and the imaging system. This paper proposes a new projector calibration approach that makes use of photodiodes to directly detect the light emitted from a digital projector. By analyzing the output sequence of the photoelectric module, the pixel coordinates can be accurately obtained by the curve fitting method. A polynomial distortion representation is employed to reduce the residuals of the traditional distortion representation model. Experimental results and performance evaluation show that the proposed calibration method is able to avoid most of the disadvantages in traditional methods and achieves a higher accuracy. This proposed method is also practically applicable to evaluate the geometric optical performance of other optical projection system. PMID:26492247
Autocalibration of multiprojector CAVE-like immersive environments.
Sajadi, Behzad; Majumder, Aditi
2012-03-01
In this paper, we present the first method for the geometric autocalibration of multiple projectors on a set of CAVE-like immersive display surfaces including truncated domes and 4 or 5-wall CAVEs (three side walls, floor, and/or ceiling). All such surfaces can be categorized as swept surfaces and multiple projectors can be registered on them using a single uncalibrated camera without using any physical markers on the surface. Our method can also handle nonlinear distortion in the projectors, common in compact setups where a short throw lens is mounted on each projector. Further, when the whole swept surface is not visible from a single camera view, we can register the projectors using multiple pan and tilted views of the same camera. Thus, our method scales well with different size and resolution of the display. Since we recover the 3D shape of the display, we can achieve registration that is correct from any arbitrary viewpoint appropriate for head-tracked single-user virtual reality systems. We can also achieve wallpapered registration, more appropriate for multiuser collaborative explorations. Though much more immersive than common surfaces like planes and cylinders, general swept surfaces are used today only for niche display environments. Even the more popular 4 or 5-wall CAVE is treated as a piecewise planar surface for calibration purposes and hence projectors are not allowed to be overlapped across the corners. Our method opens up the possibility of using such swept surfaces to create more immersive VR systems without compromising the simplicity of having a completely automatic calibration technique. Such calibration allows completely arbitrary positioning of the projectors in a 5-wall CAVE, without respecting the corners.
Cifuentes, Ignacio Javier; Dagnino, Bruno Leonardo; Salisbury, María Carolina; Perez, María Eliana; Ortega, Claudia; Maldonado, Daniela
2018-01-01
Dynamic infrared thermography (DIRT) has been used for the preoperative mapping of cutaneous perforators. This technique has shown a positive correlation with intraoperative findings. Our aim was to evaluate the accuracy of perforator mapping with DIRT and augmented reality using a portable projector. For this purpose, three volunteers had both of their anterolateral thighs assessed for the presence and location of cutaneous perforators using DIRT. The obtained image of these “hotspots” was projected back onto the thigh and the presence of Doppler signals within a 10-cm diameter from the midpoint between the lateral patella and the anterior superior iliac spine was assessed using a handheld Doppler device. Hotspots were identified in all six anterolateral thighs and were successfully projected onto the skin. The median number of perforators identified within the area of interest was 5 (range, 3–8) and the median time needed to identify them was 3.5 minutes (range, 3.3–4.0 minutes). Every hotspot was correlated to a Doppler sound signal. In conclusion, augmented reality can be a reliable method for transferring the location of perforators identified by DIRT onto the thigh, facilitating its assessment and yielding a reliable map of potential perforators for flap raising. PMID:29788686
Real-time advanced spinal surgery via visible patient model and augmented reality system.
Wu, Jing-Ren; Wang, Min-Liang; Liu, Kai-Che; Hu, Ming-Hsien; Lee, Pei-Yuan
2014-03-01
This paper presents an advanced augmented reality system for spinal surgery assistance, and develops entry-point guidance prior to vertebroplasty spinal surgery. Based on image-based marker detection and tracking, the proposed camera-projector system superimposes pre-operative 3-D images onto patients. The patients' preoperative 3-D image model is registered by projecting it onto the patient such that the synthetic 3-D model merges with the real patient image, enabling the surgeon to see through the patients' anatomy. The proposed method is much simpler than heavy and computationally challenging navigation systems, and also reduces radiation exposure. The system is experimentally tested on a preoperative 3D model, dummy patient model and animal cadaver model. The feasibility and accuracy of the proposed system is verified on three patients undergoing spinal surgery in the operating theater. The results of these clinical trials are extremely promising, with surgeons reporting favorably on the reduced time of finding a suitable entry point and reduced radiation dose to patients. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Arterial Wave Reflection and Aortic Valve Calcification in an Elderly Community-Based Cohort
Sera, Fusako; Russo, Cesare; Iwata, Shinichi; Jin, Zhezhen; Rundek, Tatjana; Elkind, Mitchell S.V.; Homma, Shunichi; Sacco, Ralph L.; Di Tullio, Marco R.
2015-01-01
Background Aortic valve calcification (AVC) without stenosis is common in the elderly, is associated with cardiovascular morbidity and mortality, and may progress to aortic valve stenosis. Arterial stiffness and pulse wave reflection are important components of proximal aortic hemodynamics, but their relationship with AVC is not established. Methods To investigate the relationship of arterial wave reflection and stiffness with AVC, pulse wave analysis and AVC evaluation by echocardiography were performed in 867 participants from the Cardiovascular Abnormalities and Brain Lesions (CABL) study. Participants were divided into 4 categories based on the severity and extent of AVC: 1) none or mild focal AVC; 2) mild diffuse AVC; 3) moderate-severe focal AVC; and 4) moderate-severe diffuse AVC. Central blood pressures and pulse pressure, total arterial compliance, augmentation index, and time to wave reflection were assessed using applanation tonometry. Results Indicators of arterial stiffness and wave reflection were significantly associated with AVC severity, except for central systolic and diastolic pressures and time to reflection. After adjustment for pertinent covariates (age, sex, race/ethnicity, and eGFR), only augmentation pressure (P = .02) and augmentation index (P = .002) were associated with the severity of AVC. Multivariable logistic regression analysis revealed that augmentation pressure (odds ratio per mmHg = 1.14; 95% confidence interval, 1.02–1.27; P = .02) and augmentation index (odds ratio per percentage point = 1.07; 95% confidence interval, 1.01–1.13; P = .02) were associated with an increase risk of moderate-severe diffuse AVC, even when central blood pressure value was included in the same model. Conclusions Arterial wave reflection is associated with AVC severity, independent of blood pressure values. Increased contribution of wave reflection to central blood pressure could be involved in the process leading to AVC. PMID:25600036
ERIC Educational Resources Information Center
Ivanov, Dragia; Nikolov, Stefan
2011-01-01
This article presents a new technique for performing most well-known demonstrations of wave optics. Demonstrations which are normally very hard to show to more than a few people can be presented easily to very large audiences with excellent visibility for everyone. The proposed setup is easy to put together and use and can be very useful for…
Zheng, Jiabei; Fessler, Jeffrey A; Chan, Heang-Ping
2017-01-01
Purpose Digital forward and back projectors play a significant role in iterative image reconstruction. The accuracy of the projector affects the quality of the reconstructed images. Digital breast tomosynthesis (DBT) often uses the ray-tracing (RT) projector that ignores finite detector element size. This paper proposes a modified version of the separable footprint (SF) projector, called the segmented separable footprint (SG) projector, that calculates efficiently the Radon transform mean value over each detector element. The SG projector is specifically designed for DBT reconstruction because of the large height-to-width ratio of the voxels generally used in DBT. This study evaluates the effectiveness of the SG projector in reducing projection error and improving DBT reconstruction quality. Methods We quantitatively compared the projection error of the RT and the SG projector at different locations and their performance in regular and subpixel DBT reconstruction. Subpixel reconstructions used finer voxels in the imaged volume than the detector pixel size. Subpixel reconstruction with RT projector uses interpolated projection views as input to provide adequate coverage of the finer voxel grid with the traced rays. Subpixel reconstruction with the SG projector, however, uses the measured projection views without interpolation. We simulated DBT projections of a test phantom using CatSim (GE Global Research, Niskayuna, NY) under idealized imaging conditions without noise and blur, to analyze the effects of the projectors and subpixel reconstruction without other image degrading factors. The phantom contained an array of horizontal and vertical line pair patterns (1 to 9.5 line pairs/mm) and pairs of closely spaced spheres (diameters 0.053 to 0.5 mm) embedded at the mid-plane of a 5-cm-thick breast-tissue-equivalent uniform volume. The images were reconstructed with regular simultaneous algebraic reconstruction technique (SART) and subpixel SART using different projectors. The resolution and contrast of the test objects in the reconstructed images and the computation times were compared under different reconstruction conditions. Results The SG projector reduced the projector error by 1 to 2 orders of magnitude at most locations. In the worst case, the SG projector still reduced the projection error by about 50%. In the DBT reconstructed slices parallel to the detector plane, the SG projector not only increased the contrast of the line pairs and spheres, but also produced more smooth and continuous reconstructed images whereas the discrete and sparse nature of the RT projector caused artifacts appearing as patterned noise. For subpixel reconstruction, the SG projector significantly increased object contrast and computation speed, especially for high subpixel ratios, compared with the RT projector implemented with accelerated Siddon’s algorithm. The difference in the depth resolution among the projectors is negligible under the conditions studied. Our results also demonstrated that subpixel reconstruction can improve the spatial resolution of the reconstructed images, and can exceed the Nyquist limit of the detector under some conditions. Conclusions The SG projector was more accurate and faster than the RT projector. The SG projector also substantially reduced computation time and improved the image quality for the tomosynthesized images with and without subpixel reconstruction. PMID:28058719
Design of two-DMD based zoom MW and LW dual-band IRSP using pixel fusion
NASA Astrophysics Data System (ADS)
Pan, Yue; Xu, Xiping; Qiao, Yang
2018-06-01
In order to test the anti-jamming ability of mid-wave infrared (MWIR) and long-wave infrared (LWIR) dual-band imaging system, a zoom mid-wave (MW) and long-wave (LW) dual-band infrared scene projector (IRSP) based on two-digital micro-mirror device (DMD) was designed by using a projection method of pixel fusion. Two illumination systems, which illuminate the two DMDs directly with Kohler telecentric beam respectively, were combined with projection system by a spatial layout way. The distances of projection entrance pupil and illumination exit pupil were also analyzed separately. MWIR and LWIR virtual scenes were generated respectively by two DMDs and fused by a dichroic beam combiner (DBC), resulting in two radiation distributions in projected image. The optical performance of each component was evaluated by ray tracing simulations. Apparent temperature and image contrast were demonstrated by imaging experiments. On the basis of test and simulation results, the aberrations of optical system were well corrected, and the quality of projected image meets test requirements.
On the regularized fermionic projector of the vacuum
NASA Astrophysics Data System (ADS)
Finster, Felix
2008-03-01
We construct families of fermionic projectors with spherically symmetric regularization, which satisfy the condition of a distributional MP-product. The method is to analyze regularization tails with a power law or logarithmic scaling in composite expressions in the fermionic projector. The resulting regularizations break the Lorentz symmetry and give rise to a multilayer structure of the fermionic projector near the light cone. Furthermore, we construct regularizations which go beyond the distributional MP-product in that they yield additional distributional contributions supported at the origin. The remaining freedom for the regularization parameters and the consequences for the normalization of the fermionic states are discussed.
Speckle reduction methods in laser-based picture projectors
NASA Astrophysics Data System (ADS)
Akram, M. Nadeem; Chen, Xuyuan
2016-02-01
Laser sources have been promised for many years to be better light sources as compared to traditional lamps or light-emitting diodes (LEDs) for projectors, which enable projectors having wide colour gamut for vivid image, super brightness and high contrast for the best picture quality, long lifetime for maintain free operation, mercury free, and low power consumption for green environment. A major technology obstacle in using lasers for projection has been the speckle noise caused by to the coherent nature of the lasers. For speckle reduction, current state of the art solutions apply moving parts with large physical space demand. Solutions beyond the state of the art need to be developed such as integrated optical components, hybrid MOEMS devices, and active phase modulators for compact speckle reduction. In this article, major methods reported in the literature for the speckle reduction in laser projectors are presented and explained. With the advancement in semiconductor lasers with largely reduced cost for the red, green and the blue primary colours, and the developed methods for their speckle reduction, it is hoped that the lasers will be widely utilized in different projector applications in the near future.
Sample Design, Sample Augmentation, and Estimation for Wave 2 of the NSHAP
English, Ned; Pedlow, Steven; Kwok, Peter K.
2014-01-01
Objectives. The sample for the second wave (2010) of National Social Life, Health, and Aging Project (NSHAP) was designed to increase the scientific value of the Wave 1 (2005) data set by revisiting sample members 5 years after their initial interviews and augmenting this sample where possible. Method. There were 2 important innovations. First, the scope of the study was expanded by collecting data from coresident spouses or romantic partners. Second, to maximize the representativeness of the Wave 2 data, nonrespondents from Wave 1 were again approached for interview in the Wave 2 sample. Results. The overall unconditional response rate for the Wave 2 panel was 74%; the conditional response rate of Wave 1 respondents was 89%; the conditional response rate of partners was 84%; and the conversion rate for Wave 1 nonrespondents was 26%. Discussion. The inclusion of coresident partners enhanced the study by allowing the examination of how intimate, household relationships are related to health trajectories and by augmenting the size of the NSHAP sample size for this and future waves. The uncommon strategy of returning to Wave 1 nonrespondents reduced potential bias by ensuring that to the extent possible the whole of the original sample forms the basis for the field effort. NSHAP Wave 2 achieved its field objectives of consolidating the panel, recruiting their resident spouses or romantic partners, and converting a significant proportion of Wave 1 nonrespondents. PMID:25360016
2D virtual texture on 3D real object with coded structured light
NASA Astrophysics Data System (ADS)
Molinier, Thierry; Fofi, David; Salvi, Joaquim; Gorria, Patrick
2008-02-01
Augmented reality is used to improve color segmentation on human body or on precious no touch artifacts. We propose a technique to project a synthesized texture on real object without contact. Our technique can be used in medical or archaeological application. By projecting a suitable set of light patterns onto the surface of a 3D real object and by capturing images with a camera, a large number of correspondences can be found and the 3D points can be reconstructed. We aim to determine these points of correspondence between cameras and projector from a scene without explicit points and normals. We then project an adjusted texture onto the real object surface. We propose a global and automatic method to virtually texture a 3D real object.
Projection display industry market and technology trends
NASA Astrophysics Data System (ADS)
Castellano, Joseph A.; Mentley, David E.
1995-04-01
The projection display industry is diverse, embracing a variety of technologies and applications. In recent years, there has been a high level of interest in projection displays, particularly those using LCD panels or light valves because of the difficulty in making large screen, direct view displays. Many developers feel that projection displays will be the wave of the future for large screen HDTV (high-definition television), penetrating the huge existing market for direct view CRT-based televisions. Projection displays can have the images projected onto a screen either from the rear or the front; the main characteristic is their ability to be viewed by more than one person. In addition to large screen home television receivers, there are numerous other uses for projection displays including conference room presentations, video conferences, closed circuit programming, computer-aided design, and military command/control. For any given application, the user can usually choose from several alternative technologies. These include CRT front or rear projectors, LCD front or rear projectors, LCD overhead projector plate monitors, various liquid or solid-state light valve projectors, or laser-addressed systems. The overall worldwide market for projection information displays of all types and for all applications, including home television, will top DOL4.6 billion in 1995 and DOL6.45 billion in 2001.
The Fermionic Signature Operator and Hadamard States in the Presence of a Plane Electromagnetic Wave
NASA Astrophysics Data System (ADS)
Finster, Felix; Reintjes, Moritz
2017-05-01
We give a non-perturbative construction of a distinguished state for the quantized Dirac field in Minkowski space in the presence of a time-dependent external field of the form of a plane electromagnetic wave. By explicit computation of the fermionic signature operator, it is shown that the Dirac operator has the strong mass oscillation property. We prove that the resulting fermionic projector state is a Hadamard state.
Bryce, David L; Bultz, Elijah B; Aebi, Dominic
2008-07-23
Natural-abundance (43)Ca solid-state NMR spectroscopy at 21.1 T and gauge-including projector-augmented-wave (GIPAW) DFT calculations are developed as tools to provide insight into calcium binding environments, with special emphasis on the calcium chemical shift (CS) tensor. The first complete analysis of a (43)Ca solid-state NMR spectrum, including the relative orientation of the CS and electric field gradient (EFG) tensors, is reported for calcite. GIPAW calculations of the (43)Ca CS and EFG tensors for a series of small molecules are shown to reproduce experimental trends; for example, the trend in available solid-state chemical shifts is reproduced with a correlation coefficient of 0.983. The results strongly suggest the utility of the calcium CS tensor as a novel probe of calcium binding environments in a range of calcium-containing materials. For example, for three polymorphs of CaCO3 the CS tensor span ranges from 8 to 70 ppm and the symmetry around calcium is manifested differently in the CS tensor as compared with the EFG tensor. The advantages of characterizing the CS tensor are particularly evident in very high magnetic fields where the effect of calcium CS anisotropy is augmented in hertz while the effect of second-order quadrupolar broadening is often obscured for (43)Ca because of its small quadrupole moment. Finally, as an application of the combined experimental-theoretical approach, the solid-state structure of the vaterite polymorph of calcium carbonate is probed and we conclude that the hexagonal P6(3)/mmc space group provides a better representation of the structure than does the orthorhombic Pbnm space group, thereby demonstrating the utility of (43)Ca solid-state NMR as a complementary tool to X-ray crystallographic methods.
Controllable parabolic-cylinder optical rogue wave.
Zhong, Wei-Ping; Chen, Lang; Belić, Milivoj; Petrović, Nikola
2014-10-01
We demonstrate controllable parabolic-cylinder optical rogue waves in certain inhomogeneous media. An analytical rogue wave solution of the generalized nonlinear Schrödinger equation with spatially modulated coefficients and an external potential in the form of modulated quadratic potential is obtained by the similarity transformation. Numerical simulations are performed for comparison with the analytical solutions and to confirm the stability of the rogue wave solution obtained. These optical rogue waves are built by the products of parabolic-cylinder functions and the basic rogue wave solution of the standard nonlinear Schrödinger equation. Such rogue waves may appear in different forms, as the hump and paw profiles.
The s-Ordered Fock Space Projectors Gained by the General Ordering Theorem
NASA Astrophysics Data System (ADS)
Farid, Shähandeh; Mohammad, Reza Bazrafkan; Mahmoud, Ashrafi
2012-09-01
Employing the general ordering theorem (GOT), operational methods and incomplete 2-D Hermite polynomials, we derive the t-ordered expansion of Fock space projectors. Using the result, the general ordered form of the coherent state projectors is obtained. This indeed gives a new integration formula regarding incomplete 2-D Hermite polynomials. In addition, the orthogonality relation of the incomplete 2-D Hermite polynomials is derived to resolve Dattoli's failure.
NASA Astrophysics Data System (ADS)
Sander, Tobias; Kresse, Georg
2017-02-01
Linear optical properties can be calculated by solving the time-dependent density functional theory equations. Linearization of the equation of motion around the ground state orbitals results in the so-called Casida equation, which is formally very similar to the Bethe-Salpeter equation. Alternatively one can determine the spectral functions by applying an infinitely short electric field in time and then following the evolution of the electron orbitals and the evolution of the dipole moments. The long wavelength response function is then given by the Fourier transformation of the evolution of the dipole moments in time. In this work, we compare the results and performance of these two approaches for the projector augmented wave method. To allow for large time steps and still rely on a simple difference scheme to solve the differential equation, we correct for the errors in the frequency domain, using a simple analytic equation. In general, we find that both approaches yield virtually indistinguishable results. For standard density functionals, the time evolution approach is, with respect to the computational performance, clearly superior compared to the solution of the Casida equation. However, for functionals including nonlocal exchange, the direct solution of the Casida equation is usually much more efficient, even though it scales less beneficial with the system size. We relate this to the large computational prefactors in evaluating the nonlocal exchange, which renders the time evolution algorithm fairly inefficient.
NASA Astrophysics Data System (ADS)
Hotta, Aira; Sasaki, Takashi; Okumura, Haruhiko
2007-02-01
In this paper, we propose a novel display method to realize a high-resolution image in a central visual field for a hyper-realistic head dome projector. The method uses image processing based on the characteristics of human vision, namely, high central visual acuity and low peripheral visual acuity, and pixel shift technology, which is one of the resolution-enhancing technologies for projectors. The projected image with our method is a fine wide-viewing-angle image with high definition in the central visual field. We evaluated the psychological effects of the projected images with our method in terms of sensation of reality. According to the result, we obtained 1.5 times higher resolution in the central visual field and a greater sensation of reality by using our method.
Nguyen, Van-Giang; Lee, Soo-Jin
2016-07-01
Iterative reconstruction from Compton scattered data is known to be computationally more challenging than that from conventional line-projection based emission data in that the gamma rays that undergo Compton scattering are modeled as conic projections rather than line projections. In conventional tomographic reconstruction, to parallelize the projection and backprojection operations using the graphics processing unit (GPU), approximated methods that use an unmatched pair of ray-tracing forward projector and voxel-driven backprojector have been widely used. In this work, we propose a new GPU-accelerated method for Compton camera reconstruction which is more accurate by using exactly matched pair of projector and backprojector. To calculate conic forward projection, we first sample the cone surface into conic rays and accumulate the intersecting chord lengths of the conic rays passing through voxels using a fast ray-tracing method (RTM). For conic backprojection, to obtain the true adjoint of the conic forward projection, while retaining the computational efficiency of the GPU, we use a voxel-driven RTM which is essentially the same as the standard RTM used for the conic forward projector. Our simulation results show that, while the new method is about 3 times slower than the approximated method, it is still about 16 times faster than the CPU-based method without any loss of accuracy. The net conclusion is that our proposed method is guaranteed to retain the reconstruction accuracy regardless of the number of iterations by providing a perfectly matched projector-backprojector pair, which makes iterative reconstruction methods for Compton imaging faster and more accurate. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
CXCL10 Controls Inflammatory Pain via Opioid Peptide-Containing Macrophages in Electroacupuncture
Wang, Ying; Gehringer, Rebekka; Mousa, Shaaban A.; Hackel, Dagmar; Brack, Alexander; Rittner, Heike L.
2014-01-01
Acupuncture is widely used for pain treatment in patients with osteoarthritis or low back pain, but molecular mechanisms remain largely enigmatic. In the early phase of inflammation neutrophilic chemokines direct opioid-containing neutrophils in the inflamed tissue and stimulate opioid peptide release and antinociception. In this study the molecular pathway and neuroimmune connections in complete Freund's adjuvant (CFA)-induced hind paw inflammation and electroacupuncture for peripheral pain control were analyzed. Free moving Wistar rats with hind paw inflammation were treated twice with electroacupuncture at GB30 (Huan Tiao - gall bladder meridian) (day 0 and 1) and analyzed for mechanical and thermal nociceptive thresholds. The cytokine profiles as well as the expression of opioid peptides were quantified in the inflamed paw. Electroacupuncture elicited long-term antinociception blocked by local injection of anti-opioid peptide antibodies (beta-endorphin, met-enkephalin, dynorphin A). The treatment altered the cytokine profile towards an anti-inflammatory pattern but augmented interferon (IFN)-gamma and the chemokine CXCL10 (IP-10: interferon gamma-inducible protein) protein and mRNA expression with concomitant increased numbers of opioid peptide-containing CXCR3+ macrophages. In rats with CFA hind paw inflammation without acupuncture repeated injection of CXCL10 triggered opioid-mediated antinociception and increase opioid-containing macrophages. Conversely, neutralization of CXCL10 time-dependently decreased electroacupuncture-induced antinociception and the number of infiltrating opioid peptide-expressing CXCR3+ macrophages. In summary, we describe a novel function of the chemokine CXCL10 - as a regulator for an increase of opioid-containing macrophages and antinociceptive mediator in inflammatory pain and as a key chemokine regulated by electroacupuncture. PMID:24732949
Saletu, B; Grünberger, J; Linzmayer, L
1977-10-01
Utilizing computerized quantitative analysis of the human scalp recorded electroencephalogram (EEG), it is possible to classify psychotropic drugs. While neuroleptic compounds produce an increase of slow and decrease of fast activities, anxiolytic substances induce an augmentation of fast waves, decrease of alpha waves and--according to the sedative properties of the drug--an increase or decrease of slow waves. Antidepressants produce a concomitant augmentation of slow and fast activities as well as an attenuation of alpha waves. Nootropic substances attenuate slow activities, augment alpha and slow beta waves and decrease fast beta waves. The latter alterations are quite opposite to age-related changes. Since the main psychopharmacological classes seem to have characteristic pharmaco-EEG profiles, the method proved to be useful for determination of psychoactivity and cerebral bioavailability of newly developed substances as for instance AX-A411-BS, a new benzodiazepine. The latter substance was found to be CNS-active and was classified as anxiolytic. It induced dosedependent changes, which were barely visible in the 2nd hour post-drug, became quite obvious in the 4th hour and increased until the 8th hour after oral administration of one single dose. In the higher dosage range, slow activities came to the fore, indicating aoditional sedative properties. Psychometric tests measuring attention, psychomotor activity. mood, vigilance, extroversion, concentration aith a long-lasting effect. The implications of these methods are discussed.
Webber, Amy L; Emsley, Lyndon; Claramunt, Rosa M; Brown, Steven P
2010-09-30
(1)H-(13)C two-dimensional magic-angle spinning (MAS) solid-state NMR correlation spectra, recorded with the MAS-J-HMQC experiment, are presented for campho[2,3-c]pyrazole. For each (13)C moiety, there are six resonances associated with the six distinct molecules in the asymmetric unit cell (Z' = 6). The one-bond C-H correlations observed in the 2D (1)H-(13)C MAS-J-HMQC spectra allow the experimental determination of the (1)H and (13)C chemical shifts associated with the separate CH, CH(2), and CH(3) groups. (1)H and (13)C chemical shifts calculated by using the GIPAW (Gauge Including Projector Augmented Waves) plane-wave pseudopotential approach are presented. Calculations for the whole unit cell (12 × 29 = 348 atoms, with geometry optimization of all atoms) allow the assignment of the experimental (1)H and (13)C chemical shifts to the six distinct molecules. The calculated chemical shifts for the full crystal structure are compared with those for isolated molecules as extracted from the geometry-optimized crystal structure. In this way, the effect of intermolecular interactions on the observed chemical shifts is quantified. In particular, the calculations are sufficiently precise to differentiate the small (<1 ppm) differences between the (1)H chemical shifts of the six resonances associated with each distinct CH or CH(2) moiety.
Hand gesture guided robot-assisted surgery based on a direct augmented reality interface.
Wen, Rong; Tay, Wei-Liang; Nguyen, Binh P; Chng, Chin-Boon; Chui, Chee-Kong
2014-09-01
Radiofrequency (RF) ablation is a good alternative to hepatic resection for treatment of liver tumors. However, accurate needle insertion requires precise hand-eye coordination and is also affected by the difficulty of RF needle navigation. This paper proposes a cooperative surgical robot system, guided by hand gestures and supported by an augmented reality (AR)-based surgical field, for robot-assisted percutaneous treatment. It establishes a robot-assisted natural AR guidance mechanism that incorporates the advantages of the following three aspects: AR visual guidance information, surgeon's experiences and accuracy of robotic surgery. A projector-based AR environment is directly overlaid on a patient to display preoperative and intraoperative information, while a mobile surgical robot system implements specified RF needle insertion plans. Natural hand gestures are used as an intuitive and robust method to interact with both the AR system and surgical robot. The proposed system was evaluated on a mannequin model. Experimental results demonstrated that hand gesture guidance was able to effectively guide the surgical robot, and the robot-assisted implementation was found to improve the accuracy of needle insertion. This human-robot cooperative mechanism is a promising approach for precise transcutaneous ablation therapy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chan, Ka Wai
The solvation and electronic structures of M+Ln, with M+ = Mg+ and Cat, L = H2O, CH 3OH and NH3, n=1-6 were investigated by ab initio calculations using G03 package and density functional theory based ab initio molecular dynamics (AIMD) simulations with projector augmented-wave (PAW) method and a planewave basis set using Vienna Ab initio Simulation Package (VASP). Furthermore, ab initio studies on the intracluster reactions of Mg+ and Ca+ ions with different solvent molecules, H2O, CH3OH and NH3, were also done using G03 package. Finally, the elimination of a H atom in Na(H2O)n was studied. Such studies on the interactions and reactivity in gas clusters can provide insights into their analogies existing in condense phase. Interactions of Mg+ and Ca+ ions in different solvent molecules, H2O, CH3OH and NH3, were calculated with B3LYP and MP2 methods with basis sets 6-31+g** and 6-311+g**. A systematic comparison on the structures and reactivities of these clusters should provide a better understanding on the interplay of the ion-solvent, solvent-solvent, and electron-solvent interactions. It can provide a better understanding on the structures and bonding of complexes having analogies to those existing in condense phase. For Mg+(CH3OH)n and Ca+(CH 3OH)n, both H-elimination from OH/CH bond and CH3-elimination were investigated. H-elimination from O---H bond becomes more accessible for large cluster due to the diffusion of electron density to O---H bond. Studies on the H-elimination in Mg+(NH3)n and H-elimination from C---H bond in Mg+(CH3OH) n show that the reaction barriers flatten above 20 kcal/mol as n reaches 4 and above. These calculation results prove that the source of loss of H atom in ground state Mg+(CH3OH)n should be through the O---H bond rather than through the C---H bond. Compared to Mg+(CH3OH)n, the reaction barriers for H-elimination in Mg+(NH3)n is much larger, which is in consistent with the experimental observation of little H-elimination for Mg+(NH3)n unless it's photo-excited. The examination of neutral Na(H2O)n clusters, n=4~15 for H-elimination was carried out. The reaction profile for H-elimination was obtained by energy minimization at constrained O---H distance which was successively increased. There was a general trend of decreasing reaction barrier, as the cluster size grows. In contrast to Mg+(H 2O)n, the expected switch-off of H-elimination as in Mg +(H2O)n cannot be observed.
NASA Astrophysics Data System (ADS)
Rössler, Tomáš; Hrabovský, Miroslav; Pluháček, František
2005-08-01
The cotyle implantate is abraded in the body of patient and its shape changes. Information about the magnitude of abrasion is contained in the result contour map of the implantate. The locations and dimensions of abraded areas can be computed from the contours deformation. The method called the single-projector moire topography was used for the contour lines determination. The theoretical description of method is given at first. The design of the experimental set-up follows. The light grating projector was developed to realize the periodic structure on the measured surface. The method of fringe-shifting was carried out to increase the data quantity. The description of digital processing applied to the moire grating images is introduced at the end together with the examples of processed images.
Burgess, Kevin M N; Bryce, David L
2015-02-01
The vaterite polymorph of CaCO3 has puzzled crystallographers for decades in part due to difficulties in obtaining single crystals. The multiple proposed structures for the vaterite polymorph of CaCO3 are assessed using a combined (43)Ca solid-state nuclear magnetic resonance (SSNMR) spectroscopic and computational approach. A combination of improved experimental and computational methods, along with a calibrated chemical shift scale and (43)Ca nuclear quadrupole moment, allow for improved insights relative to our earlier work (Bryce et al., J. Am. Chem. Soc. 2008, 130, 9282). Here, we synthesize a (43)Ca isotopically-enriched sample of vaterite and perform high-resolution quadrupolar SSNMR experiments including magic-angle spinning (MAS), double-rotation (DOR), and multiple-quantum (MQ) MAS experiments at magnetic field strengths of 9.4 and 21.1T. We identify one crystallographically unique Ca(2+) site in vaterite with a slight distribution in both chemical shifts and quadrupolar parameters. Both the experimental (43)Ca electric field gradient tensor and the isotropic chemical shift for vaterite are compared to those calculated with the gauge-including projector-augmented-wave (GIPAW) DFT method in an attempt to identify the model that best represents the crystal structure of vaterite. Simulations of (43)Ca DOR and MAS NMR spectra based on the NMR parameters computed for a total of 18 structural models for vaterite allow us to distinguish between these models. Among these 18, the P3221 and C2 structures provide simulated spectra and diffractograms in best agreement with all experimental data. Copyright © 2014 Elsevier Inc. All rights reserved.
Aliev, Ali E; Mayo, Nathanael K; Baughman, Ray H; Avirovik, Dragan; Priya, Shashank; Zarnetske, Michael R; Blottman, John B
2014-10-10
Carbon nanotube (CNT) aerogel sheets produce smooth-spectra sound over a wide frequency range (1-10(5) Hz) by means of thermoacoustic (TA) sound generation. Protective encapsulation of CNT sheets in inert gases between rigid vibrating plates provides resonant features for the TA sound projector and attractive performance at needed low frequencies. Energy conversion efficiencies in air of 2% and 10% underwater, which can be enhanced by further increasing the modulation temperature. Using a developed method for accurate temperature measurements for the thin aerogel CNT sheets, heat dissipation processes, failure mechanisms, and associated power densities are investigated for encapsulated multilayered CNT TA heaters and related to the thermal diffusivity distance when sheet layers are separated. Resulting thermal management methods for high applied power are discussed and deployed to construct efficient and tunable underwater sound projector for operation at relatively low frequencies, 10 Hz-10 kHz. The optimal design of these TA projectors for high-power SONAR arrays is discussed.
Hanna, John V; Pike, Kevin J; Charpentier, Thibault; Kemp, Thomas F; Smith, Mark E; Lucier, Bryan E G; Schurko, Robert W; Cahill, Lindsay S
2010-03-08
A variable B(0) field static (broadline) NMR study of a large suite of niobate materials has enabled the elucidation of high-precision measurement of (93)Nb NMR interaction parameters such as the isotropic chemical shift (delta(iso)), quadrupole coupling constant and asymmetry parameter (C(Q) and eta(Q)), chemical shift span/anisotropy and skew/asymmetry (Omega/Deltadelta and kappa/eta(delta)) and Euler angles (alpha, beta, gamma) describing the relative orientation of the quadrupolar and chemical shift tensorial frames. These measurements have been augmented with ab initio DFT calculations by using WIEN2k and NMR-CASTEP codes, which corroborate these reported values. Unlike previous assertions made about the inability to detect CSA (chemical shift anisotropy) contributions from Nb(V) in most oxo environments, this study emphasises that a thorough variable B(0) approach coupled with the VOCS (variable offset cumulative spectroscopy) technique for the acquisition of undistorted broad (-1/2<-->+1/2) central transition resonances facilitates the unambiguous observation of both quadrupolar and CSA contributions within these (93)Nb broadline data. These measurements reveal that the (93)Nb electric field gradient tensor is a particularly sensitive measure of the immediate and extended environments of the Nb(V) positions, with C(Q) values in the 0 to >80 MHz range being measured; similarly, the delta(iso) (covering an approximately 250 ppm range) and Omega values (covering a 0 to approximately 800 ppm range) characteristic of these niobate systems are also sensitive to structural disposition. However, their systematic rationalisation in terms of the Nb-O bond angles and distances defining the immediate Nb(V) oxo environment is complicated by longer-range influences that usually involve other heavy elements comprising the structure. It has also been established in this study that the best computational method(s) of analysis for the (93)Nb NMR interaction parameters generated here are the all-electron WIEN2k and the gauge included projector augmented wave (GIPAW) NMR-CASTEP DFT approaches, which account for the short- and long-range symmetries, periodicities and interaction-potential characteristics for all elements (and particularly the heavy elements) in comparison with Gaussian 03 methods, which focus on terminated portions of the total structure.
Low-cost structured-light based 3D capture system design
NASA Astrophysics Data System (ADS)
Dong, Jing; Bengtson, Kurt R.; Robinson, Barrett F.; Allebach, Jan P.
2014-03-01
Most of the 3D capture products currently in the market are high-end and pricey. They are not targeted for consumers, but rather for research, medical, or industrial usage. Very few aim to provide a solution for home and small business applications. Our goal is to fill in this gap by only using low-cost components to build a 3D capture system that can satisfy the needs of this market segment. In this paper, we present a low-cost 3D capture system based on the structured-light method. The system is built around the HP TopShot LaserJet Pro M275. For our capture device, we use the 8.0 Mpixel camera that is part of the M275. We augment this hardware with two 3M MPro 150 VGA (640 × 480) pocket projectors. We also describe an analytical approach to predicting the achievable resolution of the reconstructed 3D object based on differentials and small signal theory, and an experimental procedure for validating that the system under test meets the specifications for reconstructed object resolution that are predicted by our analytical model. By comparing our experimental measurements from the camera-projector system with the simulation results based on the model for this system, we conclude that our prototype system has been correctly configured and calibrated. We also conclude that with the analytical models, we have an effective means for specifying system parameters to achieve a given target resolution for the reconstructed object.
Adsorption of oxygen on low-index surfaces of the TiAl{sub 3} alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latyshev, A. M.; Bakulin, A. V.; Kulkova, S. E., E-mail: kulkova@ms.tsc.ru
Method of the projector augmented waves in the plane-wave basis within the generalized-gradient approximation for the exchange-correlation functional has been used to study oxygen adsorption on (001), (100), and (110) low-index surfaces of the TiAl{sub 3} alloy. It has been established that the sites that are most energetically preferred for the adsorption of oxygen are hollow (H) positions on the (001) surface and bridge (B) positions on the (110) and (100) surfaces. Structural and electronic factors that define their energy preference have been discussed. Changes in the atomic and electronic structure of subsurface layers that occur as the oxygen concentrationmore » increases to three monolayers have been analyzed. It has been shown that the formation of chemical bonds of oxygen with both components of the alloy leads to the appearance of states that are split-off from the bottoms of their valence bands, which is accompanied by the formation of a forbidden gap at the Fermi level and by a weakening of the Ti–Al metallic bonds in the alloy. On the Al-terminated (001) and (110) surfaces, the oxidation of aluminum dominates over that of titanium. On the whole, the binding energy of oxygen on the low-index surfaces with a mixed termination is higher than that at the aluminum-terminated surface. The calculation of the diffusion of oxygen in the TiAl{sub 3} alloy has shown that the lowest barriers correspond to the diffusion between tetrahedral positions in the (001) plane; the diffusion of oxygen in the [001] direction occurs through octahedral and tetrahedral positions. An increase in the concentration of aluminum in the alloy favors a reduction in the height of the energy barriers as compared to the corresponding barriers in the γ-TiAl alloy.« less
Defect formation energy in pyrochlore: the effect of crystal size
NASA Astrophysics Data System (ADS)
Wang, Jianwei; Ewing, Rodney C.; Becker, Udo
2014-09-01
Defect formation energies of point defects of two pyrochlores Gd2Ti2O7 and Gd2Zr2O7 as a function of crystal size were calculated. Density functional theory with plane-wave basis sets and the projector-augmented wave method were used in the calculations. The results show that the defect formation energies of the two pyrochlores diverge as the size decreases to the nanometer range. For Gd2Ti2O7 pyrochlore, the defect formation energy is higher at nanometers with respect to that of the bulk, while it is lower for Gd2Zr2O7. The lowest defect formation energy for Gd2Zr2O7 is found at 15-20 Å. The different behaviors of the defect formation energies as a function of crystal size are caused by different structural adjustments around the defects as the size decreases. For both pyrochlore compositions at large sizes, the defect structures are similar to those of the bulk. As the size decreases, for Gd2Ti2O7, additional structure distortions appear at the surfaces, which cause the defect formation energy to increase. For Gd2Zr2O7, additional oxygen Frenkel pair defects are introduced, which reduce the defect formation energy. As the size further decreases, increased structure distortions occur at the surfaces, which cause the defect formation energy to increase. Based on a hypothesis that correlates the energetics of defect formation and radiation response for complex oxides, the calculated results suggest that at nanometer range Gd2Ti2O7 pyrochlore is expected to have a lower radiation tolerance, and those of Gd2Zr2O7 pyrochlore to have a higher radiation tolerance. The highest radiation tolerance for Gd2Zr2O7 pyrochlore is expected to be found at ˜2 nanometers.
The Overhead Projector in the Mathematics Classroom.
ERIC Educational Resources Information Center
Lenchner, George
The first section of this pamphlet illustrates and describes the overhead projector, and discusses several of its advantages over other projection devises, including its simplicity of operation, conservation of class time, dynamic effects, image size, etc. The second section describes in some detail materials and methods used to make visuals, then…
Streaming Video--The Wave of the Video Future!
ERIC Educational Resources Information Center
Brown, Laura
2004-01-01
Videos and DVDs give the teachers more flexibility than slide projectors, filmstrips, and 16mm films but teachers and students are excited about a new technology called streaming. Streaming allows the educators to view videos on demand via the Internet, which works through the transfer of digital media like video, and voice data that is received…
A combined representation method for use in band structure calculations. 1: Method
NASA Technical Reports Server (NTRS)
Friedli, C.; Ashcroft, N. W.
1975-01-01
A representation was described whose basis levels combine the important physical aspects of a finite set of plane waves with those of a set of Bloch tight-binding levels. The chosen combination has a particularly simple dependence on the wave vector within the Brillouin Zone, and its use in reducing the standard one-electron band structure problem to the usual secular equation has the advantage that the lattice sums involved in the calculation of the matrix elements are actually independent of the wave vector. For systems with complicated crystal structures, for which the Korringa-Kohn-Rostoker (KKR), Augmented-Plane Wave (APW) and Orthogonalized-Plane Wave (OPW) methods are difficult to apply, the present method leads to results with satisfactory accuracy and convergence.
Quantum Foundations of Quantum Information
NASA Astrophysics Data System (ADS)
Griffiths, Robert
2009-03-01
The main foundational issue for quantum information is: What is quantum information about? What does it refer to? Classical information typically refers to physical properties, and since classical is a subset of quantum information (assuming the world is quantum mechanical), quantum information should--and, it will be argued, does--refer to quantum physical properties represented by projectors on appropriate subspaces of a quantum Hilbert space. All sorts of microscopic and macroscopic properties, not just measurement outcomes, can be represented in this way, and are thus a proper subject of quantum information. The Stern-Gerlach experiment illustrates this. When properties are compatible, which is to say their projectors commute, Shannon's classical information theory based on statistical correlations extends without difficulty or change to the quantum case. When projectors do not commute, giving rise to characteristic quantum effects, a foundation for the subject can still be constructed by replacing the ``measurement and wave-function collapse'' found in textbooks--an efficient calculational tool, but one giving rise to numerous conceptual difficulties--with a fully consistent and paradox free stochastic formulation of standard quantum mechanics. This formulation is particularly helpful in that it contains no nonlocal superluminal influences; the reason the latter carry no information is that they do not exist.
Bennour, Sami; Ulrich, Baptiste; Legrand, Thomas; Jolles, Brigitte M; Favre, Julien
2018-01-03
Improving lower-limb flexion/extension angles during walking is important for the treatment of numerous pathologies. Currently, these gait retraining procedures are mostly qualitative, often based on visual assessment and oral instructions. This study aimed to propose an alternative method combining motion capture and display of target footprints on the floor. The second objectives were to determine the error in footprint modifications and the effects of footprint modifications on lower-limb flexion/extension angles. An augmented-reality system made of an optoelectronic motion capture device and video projectors displaying target footprints on the floor was designed. 10 young healthy subjects performed a series of 27 trials, consisting of increased and decreased amplitudes in stride length, step width and foot progression angle. 11 standard features were used to describe and compare lower-limb flexion/extension angles among footprint modifications. Subjects became accustomed to walk on target footprints in less than 10 min, with mean (± SD) precision of 0.020 ± 0.002 m in stride length, 0.022 ± 0.006 m in step width, and 2.7 ± 0.6° in progression angle. Modifying stride length had significant effects on 3/3 hip, 2/4 knee and 4/4 ankle features. Similarly, step width and progression angle modifications affected 2/3 and 1/3 hip, 2/4 and 1/4 knee as well as 3/4 and 2/4 ankle features, respectively. In conclusion, this study introduced an augmented-reality method allowing healthy subjects to modify their footprint parameters rapidly and precisely. Walking with modified footprints changed lower-limb sagittal-plane kinematics. Further research is needed to design rehabilitation protocols for specific pathologies. Copyright © 2017 Elsevier Ltd. All rights reserved.
SU-C-204-03: DFT Calculations of the Stability of DOTA-Based-Radiopharmaceuticals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khabibullin, A.R.; Woods, L.M.; Karolak, A.
2016-06-15
Purpose: Application of the density function theory (DFT) to investigate the structural stability of complexes applied in cancer therapy consisting of the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelated to Ac225, Fr221, At217, Bi213, and Gd68 radio-nuclei. Methods: The possibility to deliver a toxic payload directly to tumor cells is a highly desirable aim in targeted alpha particle therapy. The estimation of bond stability between radioactive atoms and the DOTA chelating agent is the key element in understanding the foundations of this delivery process. Thus, we adapted the Vienna Ab-initio Simulation Package (VASP) with the projector-augmented wave method and a plane-wave basis setmore » in order to study the stability and electronic properties of DOTA ligand chelated to radioactive isotopes. In order to count for the relativistic effect of radioactive isotopes we included Spin-Orbit Coupling (SOC) in the DFT calculations. Five DOTA complex structures were represented as unit cells, each containing 58 atoms. The energy optimization was performed for all structures prior to calculations of electronic properties. Binding energies, electron localization functions as well as bond lengths between atoms were estimated. Results: Calculated binding energies for DOTA-radioactive atom systems were −17.792, −5.784, −8.872, −13.305, −18.467 eV for Ac, Fr, At, Bi and Gd complexes respectively. The displacements of isotopes in DOTA cages were estimated from the variations in bond lengths, which were within 2.32–3.75 angstroms. The detailed representation of chemical bonding in all complexes was obtained with the Electron Localization Function (ELF). Conclusion: DOTA-Gd, DOTA-Ac and DOTA-Bi were the most stable structures in the group. Inclusion of SOC had a significant role in the improvement of DFT calculation accuracy for heavy radioactive atoms. Our approach is found to be proper for the investigation of structures with DOTA-based-radiopharmaceuticals and will enhance our understanding of processes occurring at subatomic levels.« less
Gravbox - The First Augmented Reality Sandbox for Gravitational Dynamics
NASA Astrophysics Data System (ADS)
Isbell, Jacob; Deam, Sophie; Reed, Mason; Bettis, Wyatt; Lu, Jianbo; Luppen, Zachary; Maier, Erin; McCurdy, Ross; Moore, Sadie; Fu, Hai
2018-01-01
Gravitational effects are an overarching theme in astronomy education, yet existing classroom demonstrations are insufficient in elucidating complex gravitational interactions. Inspired by the augmented reality (AR) sandbox developed by geologists, we have developed Gravbox, the first AR sandbox to demonstrate gravitational dynamics. The arbitrary topography of the sand surface represents the mass distribution of a two-dimensional universe. The computer reads the topography with a Kinect camera, calculates the orbit of a test particle with user-defined position and velocity, and projects the topography contour map and orbit animation with an overhead projector, all within a duty cycle of one second. This creates an interactive and intuitive tool to help students at all levels understand gravitational effects. In this contribution, we will describe the development of the Gravbox prototype and show its current capabilities. The Gravbox software will be publicly available along with a building tutorial.
NASA Astrophysics Data System (ADS)
Petersen, John; Bechstedt, Friedhelm; Furthmüller, Jürgen; Scolfaro, Luisa
LSNO (La2-xSrxNiO4) is of great interest due to its colossal dielectric constant (CDC) and rich underlying physics. While being an antiferromagnetic insulator, localized holes are present in the form of stripes in the Ni-O planes which are commensurate with the inverse of the Sr concentration. The stripes are a manifestation of charge density waves with period approximately 1/x and spin density waves with period approximately 2/x. Here, the spin ground state is calculated via LSDA + U with the PAW method implemented in VASP. Crystal structure and the effective Hubbard U parameter are optimized before calculating ɛ∞ within the independent particle approximation. ɛ∞ and the full static dielectric constant (including the lattice polarizability) ɛ0 are calculated within Density Functional Perturbation Theory.
A novel augmented reality system of image projection for image-guided neurosurgery.
Mahvash, Mehran; Besharati Tabrizi, Leila
2013-05-01
Augmented reality systems combine virtual images with a real environment. To design and develop an augmented reality system for image-guided surgery of brain tumors using image projection. A virtual image was created in two ways: (1) MRI-based 3D model of the head matched with the segmented lesion of a patient using MRIcro software (version 1.4, freeware, Chris Rorden) and (2) Digital photograph based model in which the tumor region was drawn using image-editing software. The real environment was simulated with a head phantom. For direct projection of the virtual image to the head phantom, a commercially available video projector (PicoPix 1020, Philips) was used. The position and size of the virtual image was adjusted manually for registration, which was performed using anatomical landmarks and fiducial markers position. An augmented reality system for image-guided neurosurgery using direct image projection has been designed successfully and implemented in first evaluation with promising results. The virtual image could be projected to the head phantom and was registered manually. Accurate registration (mean projection error: 0.3 mm) was performed using anatomical landmarks and fiducial markers position. The direct projection of a virtual image to the patients head, skull, or brain surface in real time is an augmented reality system that can be used for image-guided neurosurgery. In this paper, the first evaluation of the system is presented. The encouraging first visualization results indicate that the presented augmented reality system might be an important enhancement of image-guided neurosurgery.
Perturbative description of the fermionic projector: Normalization, causality, and Furry's theorem
NASA Astrophysics Data System (ADS)
Finster, Felix; Tolksdorf, Jürgen
2014-05-01
The causal perturbation expansion of the fermionic projector is performed with a contour integral method. Different normalization conditions are analyzed. It is shown that the corresponding light-cone expansions are causal in the sense that they only involve bounded line integrals. For the resulting loop diagrams we prove a generalized Furry theorem.
Beamforming using subspace estimation from a diagonally averaged sample covariance.
Quijano, Jorge E; Zurk, Lisa M
2017-08-01
The potential benefit of a large-aperture sonar array for high resolution target localization is often challenged by the lack of sufficient data required for adaptive beamforming. This paper introduces a Toeplitz-constrained estimator of the clairvoyant signal covariance matrix corresponding to multiple far-field targets embedded in background isotropic noise. The estimator is obtained by averaging along subdiagonals of the sample covariance matrix, followed by covariance extrapolation using the method of maximum entropy. The sample covariance is computed from limited data snapshots, a situation commonly encountered with large-aperture arrays in environments characterized by short periods of local stationarity. Eigenvectors computed from the Toeplitz-constrained covariance are used to construct signal-subspace projector matrices, which are shown to reduce background noise and improve detection of closely spaced targets when applied to subspace beamforming. Monte Carlo simulations corresponding to increasing array aperture suggest convergence of the proposed projector to the clairvoyant signal projector, thereby outperforming the classic projector obtained from the sample eigenvectors. Beamforming performance of the proposed method is analyzed using simulated data, as well as experimental data from the Shallow Water Array Performance experiment.
Projector primary-based optimization for superimposed projection mappings
NASA Astrophysics Data System (ADS)
Ahmed, Bilal; Lee, Jong Hun; Lee, Yong Yi; Lee, Kwan H.
2018-01-01
Recently, many researchers have focused on fully overlapping projections for three-dimensional (3-D) projection mapping systems but reproducing a high-quality appearance using this technology still remains a challenge. On top of existing color compensation-based methods, much effort is still required to faithfully reproduce an appearance that is free from artifacts, colorimetric inconsistencies, and inappropriate illuminance over the 3-D projection surface. According to our observation, this is due to the fact that overlapping projections are treated as an additive-linear mixture of color. However, this is not the case according to our elaborated observations. We propose a method that enables us to use high-quality appearance data that are measured from original objects and regenerate the same appearance by projecting optimized images using multiple projectors, ensuring that the projection-rendered results look visually close to the real object. We prepare our target appearances by photographing original objects. Then, using calibrated projector-camera pairs, we compensate for missing geometric correspondences to make our method robust against noise. The heart of our method is a target appearance-driven adaptive sampling of the projection surface followed by a representation of overlapping projections in terms of the projector-primary response. This gives off projector-primary weights to facilitate blending and the system is applied with constraints. These samples are used to populate a light transport-based system. Then, the system is solved minimizing the error to get the projection images in a noise-free manner by utilizing intersample overlaps. We ensure that we make the best utilization of available hardware resources to recreate projection mapped appearances that look as close to the original object as possible. Our experimental results show compelling results in terms of visual similarity and colorimetric error.
NASA Astrophysics Data System (ADS)
Gomes, Gary G.
1986-05-01
A cost effective and supportable color visual system has been developed to provide the necessary visual cues to United States Air Force B-52 bomber pilots training to become proficient at the task of inflight refueling. This camera model visual system approach is not suitable for all simulation applications, but provides a cost effective alternative to digital image generation systems when high fidelity of a single movable object is required. The system consists of a three axis gimballed KC-l35 tanker model, a range carriage mounted color augmented monochrome television camera, interface electronics, a color light valve projector and an infinity optics display system.
Realistic Reflections for Marine Environments in Augmented Reality Training Systems
2009-09-01
Static Backgrounds. Top: Agua Background. Bottom: Blue Background.............48 Figure 27. Ship Textures Used to Generate Reflections. In Order from...Like virtual simulations, augmented reality trainers can be configured to meet specific training needs and can be restarted and reused to train...Wave Distortion, Blurring and Shadow Many of the same methods outlined in Full Reflection shader were reused for the Physics shader. The same
Reconstruction method for fringe projection profilometry based on light beams.
Li, Xuexing; Zhang, Zhijiang; Yang, Chen
2016-12-01
A novel reconstruction method for fringe projection profilometry, based on light beams, is proposed and verified by experiments. Commonly used calibration techniques require the parameters of projector calibration or the reference planes placed in many known positions. Obviously, introducing the projector calibration can reduce the accuracy of the reconstruction result, and setting the reference planes to many known positions is a time-consuming process. Therefore, in this paper, a reconstruction method without projector's parameters is proposed and only two reference planes are introduced. A series of light beams determined by the subpixel point-to-point map on the two reference planes combined with their reflected light beams determined by the camera model are used to calculate the 3D coordinates of reconstruction points. Furthermore, the bundle adjustment strategy and the complementary gray-code phase-shifting method are utilized to ensure the accuracy and stability. Qualitative and quantitative comparisons as well as experimental tests demonstrate the performance of our proposed approach, and the measurement accuracy can reach about 0.0454 mm.
NASA Astrophysics Data System (ADS)
Oh, Jun-Seok; Szili, Endre J.; Ogawa, Kotaro; Short, Robert D.; Ito, Masafumi; Furuta, Hiroshi; Hatta, Akimitsu
2018-01-01
Plasma-activated water (PAW) is receiving much attention in biomedical applications because of its reported potent bactericidal properties. Reactive oxygen and nitrogen species (RONS) that are generated in water upon plasma exposure are thought to be the key components in PAW that destroy bacterial and cancer cells. In addition to developing applications for PAW, it is also necessary to better understand the RONS chemistry in PAW in order to tailor PAW to achieve a specific biological response. With this in mind, we previously developed a UV-vis spectroscopy method using an automated curve fitting routine to quantify the changes in H2O2, NO2 -, NO3 - (the major long-lived RONS in PAW), and O2 concentrations. A major advantage of UV-vis is that it can take multiple measurements during plasma activation. We used the UV-vis procedure to accurately quantify the changes in the concentrations of these RONS and O2 in PAW. However, we have not yet provided an in-depth commentary of how we perform the curve fitting procedure or its implications. Therefore, in this study, we provide greater detail of how we use the curve fitting routine to derive the RONS and O2 concentrations in PAW. PAW was generated by treatment with a helium plasma jet. In addition, we employ UV-vis to study how the plasma jet exposure time and treatment distance affect the RONS chemistry and amount of O2 dissolved in PAW. We show that the plasma jet exposure time principally affects the total RONS concentration, but not the relative ratios of RONS, whereas the treatment distance affects both the total RONS concentration and the relative RONS concentrations.
NASA Astrophysics Data System (ADS)
Liu, Z. C.; Liu, D. X.; Chen, C.; Liu, Z. J.; Yang, A. J.; Rong, M. Z.; Chen, H. L.; Kong, M. G.
2018-05-01
Plasma-activated water (PAW) has been reported to sustain a bactericidal ability for months. However, many reactive species regarded as the main antibacterial agents in PAW have short lifetimes of less than one second. In order to explain the prolonged antibacterial ability of PAW and predict how to extend its effective time, we studied the post-discharge evolution of reactive species in PAW based on a system-level model reported previously. Three common storage conditions for PAW were considered within the post-discharge time of 14 d: (I) leaving the residual gas and PAW in the sealed reactor; (II) leaving PAW in the open air; (III) sealing the container of PAW. In comparison, storage condition III was the best condition to preserve the long-lived species including H2O2 and HNO2/, whereas storage condition I was the best method to preserve the short-lived species including OH, HO2 and ONOOH/ONOO‑. It suggests that the gas–liquid mass transfer plays an important role in the evolution of reactive species. We also found that O2NOOH/O2NOO‑ had an almost one order of magnitude higher concentration and a longer residue time than those of ONOOH/ONOO‑. This distinction suggests that the biological effect of O2NOOH/O2NOO‑ may be important.
Nakata, Satoshi; Morishima, Sayaka; Ichino, Takatoshi; Kitahata, Hiroyuki
2006-12-21
The photosensitive Belousov-Zhabotinsky (BZ) reaction was investigated on a circular ring, which was drawn using computer software and then projected on a film soaked with BZ solution using a liquid-crystal projector. Under the initial conditions, a chemical wave propagated with a constant velocity on the black ring under a bright background. When the background was rapidly changed to dark, coexistence of the oscillation on part of the ring and propagation of the chemical wave on the other part was observed. These experimental results are discussed in relation to the nature of the photosensitive BZ reaction and theoretically reproduced based on a reaction-diffusion system using the modified Oregonator model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Feipeng; Shi Hongjian; Bai Pengxiang
In fringe projection, the CCD camera and the projector are often placed at equal height. In this paper, we will study the calibration of an unequal arrangement of the CCD camera and the projector. The principle of fringe projection with two-dimensional digital image correlation to acquire the profile of object surface is described in detail. By formula derivation and experiment, the linear relationship between the out-of-plane calibration coefficient and the y coordinate is clearly found. To acquire the three-dimensional (3D) information of an object correctly, this paper presents an effective calibration method with linear least-squares fitting, which is very simplemore » in principle and calibration. Experiments are implemented to validate the availability and reliability of the calibration method.« less
Detonation wave augmentation of gas turbines
NASA Technical Reports Server (NTRS)
Wortman, A.
1984-01-01
The results of a feasibility study that examined the effects of using detonation waves to augment the performance of gas turbines are reported. The central ideas were to reduce compressor requirements and to maintain high performance in jet engines. Gasdynamic equations were used to model the flows associated with shock waves generated by the detonation of fuel in detonator tubes. Shock wave attenuation to the level of Mach waves was found possible, thus eliminating interference with the compressor and the necessity of valves and seals. A preliminary parametric study of the performance of a compressor working at a 4:1 ratio in a conceptual design of a detonation wave augmented jet engine in subsonic flight indicated a clear superiority over conventional designs in terms of fuel efficiency and thrust.
NASA Astrophysics Data System (ADS)
Stavroulakis, Petros I.; Chen, Shuxiao; Sims-Waterhouse, Danny; Piano, Samanta; Southon, Nicholas; Bointon, Patrick; Leach, Richard
2017-06-01
In non-rigid fringe projection 3D measurement systems, where either the camera or projector setup can change significantly between measurements or the object needs to be tracked, self-calibration has to be carried out frequently to keep the measurements accurate1. In fringe projection systems, it is common to use methods developed initially for photogrammetry for the calibration of the camera(s) in the system in terms of extrinsic and intrinsic parameters. To calibrate the projector(s) an extra correspondence between a pre-calibrated camera and an image created by the projector is performed. These recalibration steps are usually time consuming and involve the measurement of calibrated patterns on planes, before the actual object can continue to be measured after a motion of a camera or projector has been introduced in the setup and hence do not facilitate fast 3D measurement of objects when frequent experimental setup changes are necessary. By employing and combining a priori information via inverse rendering, on-board sensors, deep learning and leveraging a graphics processor unit (GPU), we assess a fine camera pose estimation method which is based on optimising the rendering of a model of a scene and the object to match the view from the camera. We find that the success of this calibration pipeline can be greatly improved by using adequate a priori information from the aforementioned sources.
Optical system for object detection and delineation in space
NASA Astrophysics Data System (ADS)
Handelman, Amir; Shwartz, Shoam; Donitza, Liad; Chaplanov, Loran
2018-01-01
Object recognition and delineation is an important task in many environments, such as in crime scenes and operating rooms. Marking evidence or surgical tools and attracting the attention of the surrounding staff to the marked objects can affect people's lives. We present an optical system comprising a camera, computer, and small laser projector that can detect and delineate objects in the environment. To prove the optical system's concept, we show that it can operate in a hypothetical crime scene in which a pistol is present and automatically recognize and segment it by various computer-vision algorithms. Based on such segmentation, the laser projector illuminates the actual boundaries of the pistol and thus allows the persons in the scene to comfortably locate and measure the pistol without holding any intermediator device, such as an augmented reality handheld device, glasses, or screens. Using additional optical devices, such as diffraction grating and a cylinder lens, the pistol size can be estimated. The exact location of the pistol in space remains static, even after its removal. Our optical system can be fixed or dynamically moved, making it suitable for various applications that require marking of objects in space.
Method calibration of the model 13145 infrared target projectors
NASA Astrophysics Data System (ADS)
Huang, Jianxia; Gao, Yuan; Han, Ying
2014-11-01
The SBIR Model 13145 Infrared Target Projectors ( The following abbreviation Evaluation Unit ) used for characterizing the performances of infrared imaging system. Test items: SiTF, MTF, NETD, MRTD, MDTD, NPS. Infrared target projectors includes two area blackbodies, a 12 position target wheel, all reflective collimator. It provide high spatial frequency differential targets, Precision differential targets imaged by infrared imaging system. And by photoelectricity convert on simulate signal or digital signal. Applications software (IR Windows TM 2001) evaluate characterizing the performances of infrared imaging system. With regards to as a whole calibration, first differently calibration for distributed component , According to calibration specification for area blackbody to calibration area blackbody, by means of to amend error factor to calibration of all reflective collimator, radiance calibration of an infrared target projectors using the SR5000 spectral radiometer, and to analyze systematic error. With regards to as parameter of infrared imaging system, need to integrate evaluation method. According to regulation with -GJB2340-1995 General specification for military thermal imaging sets -testing parameters of infrared imaging system, the results compare with results from Optical Calibration Testing Laboratory . As a goal to real calibration performances of the Evaluation Unit.
Comparative analysis of local spin definitions.
Herrmann, Carmen; Reiher, Markus; Hess, Bernd A
2005-01-15
This work provides a survey of the definition of electron spin as a local property and its dependence on several parameters in actual calculations. We analyze one-determinant wave functions constructed from Hartree-Fock and, in particular, from Kohn-Sham orbitals within the collinear approach to electron spin. The scalar total spin operators S2 and Sz are partitioned by projection operators, as introduced by Clark and Davidson, in order to obtain local spin operators SASB and SzA, respectively. To complement the work of Davidson and co-workers, we analyze some features of local spins which have not yet been discussed in sufficient depth. The dependence of local spin on the choice of basis set, density functional, and projector is studied. We also discuss the results of Sz partitioning and show that SzA values depend less on these parameters than SASB values. Furthermore, we demonstrate that for small organic test molecules, a partitioning of Sz with preorthogonalized Lowdin projectors yields nearly the same results as one obtains using atoms-in-molecules projectors. In addition, the physical significance of nonzero SASB values for closed-shell molecules is investigated. It is shown that due to this problem, SASB values are useful for calculations of relative spin values, but not for absolute local spins, where SzA values appear to be better suited.
PAWS/STEM - PADE APPROXIMATION WITH SCALING AND SCALED TAYLOR EXPONENTIAL MATRIX (VAX VMS VERSION)
NASA Technical Reports Server (NTRS)
Butler, R. W.
1994-01-01
Traditional fault-tree techniques for analyzing the reliability of large, complex systems fail to model the dynamic reconfiguration capabilities of modern computer systems. Markov models, on the other hand, can describe fault-recovery (via system reconfiguration) as well as fault-occurrence. The Pade Approximation with Scaling (PAWS) and Scaled Taylor Exponential Matrix (STEM) programs provide a flexible, user-friendly, language-based interface for the creation and evaluation of Markov models describing the behavior of fault-tolerant reconfigurable computer systems. PAWS and STEM produce exact solutions for the probability of system failure and provide a conservative estimate of the number of significant digits in the solution. The calculation of the probability of entering a death state of a Markov model (representing system failure) requires the solution of a set of coupled differential equations. Because of the large disparity between the rates of fault arrivals and system recoveries, Markov models of fault-tolerant architectures inevitably lead to numerically stiff differential equations. Both PAWS and STEM have the capability to solve numerically stiff models. These complementary programs use separate methods to determine the matrix exponential in the solution of the model's system of differential equations. In general, PAWS is better suited to evaluate small and dense models. STEM operates at lower precision, but works faster than PAWS for larger models. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. Although different solution techniques are utilized on different programs, it is possible to have a common input language. The Systems Validation Methods group at NASA Langley Research Center has created a set of programs that form the basis for a reliability analysis workstation. The set of programs are: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST specification interface program (LAR-14193, LAR-14923), PAWS/STEM reliability analysis programs (LAR-14165, LAR-14920); and the FTC fault tree tool (LAR-14586, LAR-14922). FTC is used to calculate the top-event probability for a fault tree. PAWS/STEM and SURE are programs which interpret the same SURE language, but utilize different solution methods. ASSIST is a preprocessor that generates SURE language from a more abstract definition. SURE, ASSIST, and PAWS/STEM are also offered as a bundle. Please see the abstract for COS-10039/COS-10041, SARA - SURE/ASSIST Reliability Analysis Workstation, for pricing details. PAWS/STEM was originally developed for DEC VAX series computers running VMS and was later ported for use on Sun computers running SunOS. The package is written in PASCAL, ANSI compliant C-language, and FORTRAN 77. The standard distribution medium for the VMS version of PAWS/STEM (LAR-14165) is a 9-track 1600 BPI magnetic tape in VMSINSTAL format. It is also available on a TK50 tape cartridge in VMSINSTAL format. Executables are included. The standard distribution medium for the Sun version of PAWS/STEM (LAR-14920) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. Both Sun3 and Sun4 executables are included. PAWS/STEM was developed in 1989 and last updated in 1991. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation. SunOS, Sun3, and Sun4 are trademarks of Sun Microsystems, Inc. UNIX is a registered trademark of AT&T Bell Laboratories.
PAWS/STEM - PADE APPROXIMATION WITH SCALING AND SCALED TAYLOR EXPONENTIAL MATRIX (SUN VERSION)
NASA Technical Reports Server (NTRS)
Butler, R. W.
1994-01-01
Traditional fault-tree techniques for analyzing the reliability of large, complex systems fail to model the dynamic reconfiguration capabilities of modern computer systems. Markov models, on the other hand, can describe fault-recovery (via system reconfiguration) as well as fault-occurrence. The Pade Approximation with Scaling (PAWS) and Scaled Taylor Exponential Matrix (STEM) programs provide a flexible, user-friendly, language-based interface for the creation and evaluation of Markov models describing the behavior of fault-tolerant reconfigurable computer systems. PAWS and STEM produce exact solutions for the probability of system failure and provide a conservative estimate of the number of significant digits in the solution. The calculation of the probability of entering a death state of a Markov model (representing system failure) requires the solution of a set of coupled differential equations. Because of the large disparity between the rates of fault arrivals and system recoveries, Markov models of fault-tolerant architectures inevitably lead to numerically stiff differential equations. Both PAWS and STEM have the capability to solve numerically stiff models. These complementary programs use separate methods to determine the matrix exponential in the solution of the model's system of differential equations. In general, PAWS is better suited to evaluate small and dense models. STEM operates at lower precision, but works faster than PAWS for larger models. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. Although different solution techniques are utilized on different programs, it is possible to have a common input language. The Systems Validation Methods group at NASA Langley Research Center has created a set of programs that form the basis for a reliability analysis workstation. The set of programs are: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST specification interface program (LAR-14193, LAR-14923), PAWS/STEM reliability analysis programs (LAR-14165, LAR-14920); and the FTC fault tree tool (LAR-14586, LAR-14922). FTC is used to calculate the top-event probability for a fault tree. PAWS/STEM and SURE are programs which interpret the same SURE language, but utilize different solution methods. ASSIST is a preprocessor that generates SURE language from a more abstract definition. SURE, ASSIST, and PAWS/STEM are also offered as a bundle. Please see the abstract for COS-10039/COS-10041, SARA - SURE/ASSIST Reliability Analysis Workstation, for pricing details. PAWS/STEM was originally developed for DEC VAX series computers running VMS and was later ported for use on Sun computers running SunOS. The package is written in PASCAL, ANSI compliant C-language, and FORTRAN 77. The standard distribution medium for the VMS version of PAWS/STEM (LAR-14165) is a 9-track 1600 BPI magnetic tape in VMSINSTAL format. It is also available on a TK50 tape cartridge in VMSINSTAL format. Executables are included. The standard distribution medium for the Sun version of PAWS/STEM (LAR-14920) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. Both Sun3 and Sun4 executables are included. PAWS/STEM was developed in 1989 and last updated in 1991. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation. SunOS, Sun3, and Sun4 are trademarks of Sun Microsystems, Inc. UNIX is a registered trademark of AT&T Bell Laboratories.
Application of LC and LCoS in Multispectral Polarized Scene Projector (MPSP)
NASA Astrophysics Data System (ADS)
Yu, Haiping; Guo, Lei; Wang, Shenggang; Lippert, Jack; Li, Le
2017-02-01
A Multispectral Polarized Scene Projector (MPSP) had been developed in the short-wave infrared (SWIR) regime for the test & evaluation (T&E) of spectro-polarimetric imaging sensors. This MPSP generates multispectral and hyperspectral video images (up to 200 Hz) with 512×512 spatial resolution with active spatial, spectral, and polarization modulation with controlled bandwidth. It projects input SWIR radiant intensity scenes from stored memory with user selectable wavelength and bandwidth, as well as polarization states (six different states) controllable on a pixel level. The spectral contents are implemented by a tunable filter with variable bandpass built based on liquid crystal (LC) material, together with one passive visible and one passive SWIR cholesteric liquid crystal (CLC) notch filters, and one switchable CLC notch filter. The core of the MPSP hardware is the liquid-crystal-on-silicon (LCoS) spatial light modulators (SLMs) for intensity control and polarization modulation.
NASA Astrophysics Data System (ADS)
Mao, Cuili; Lu, Rongsheng; Liu, Zhijian
2018-07-01
In fringe projection profilometry, the phase errors caused by the nonlinear intensity response of digital projectors needs to be correctly compensated. In this paper, a multi-frequency inverse-phase method is proposed. The theoretical model of periodical phase errors is analyzed. The periodical phase errors can be adaptively compensated in the wrapped maps by using a set of fringe patterns. The compensated phase is then unwrapped with multi-frequency method. Compared with conventional methods, the proposed method can greatly reduce the periodical phase error without calibrating measurement system. Some simulation and experimental results are presented to demonstrate the validity of the proposed approach.
Peripheral Antinociception Induced by Aripiprazole Is Mediated by the Opioid System
Ferreira, Renata Cristina Mendes; Almeida-Santos, Ana Flávia; Aguiar, Daniele C.; Moreira, Fabricio A.
2017-01-01
Background Aripiprazole is an antipsychotic drug used to treat schizophrenia and related disorders. Our previous study showed that this compound also induces antinociceptive effects. The present study aimed to assess the participation of the opioid system in this effect. Methods Male Swiss mice were submitted to paw pressure test and hyperalgesia was induced by intraplantar injection of prostaglandin E2 (PGE2, 2 μg). Aripiprazole was injected 10 min before the measurement. Naloxone, clocinnamox, naltrindole, nor-binaltorphimine, and bestatin were given 30 min before aripiprazole. Nociceptive thresholds were measured in the 3rd hour after PGE2 injection. Results Aripiprazole (100 μg/paw) injected locally into the right hind paw induced an antinociceptive effect that was blocked by naloxone (50 μg/paw), a nonselective opioid receptor antagonist. The role of μ-, δ-, and κ-opioid receptors was investigated using the selective antagonists, clocinnamox (40 μg/paw), naltrindole (15, 30, and 60 μg/paw), and nor-binaltorphimine (200 μg/paw), respectively. The data indicated that only the δ-opioid receptor antagonist inhibited the peripheral antinociception induced by aripiprazole. Bestatin (400 μg), an aminopeptidase-N inhibitor, significantly enhanced low-dose (25 μg/paw) aripiprazole-induced peripheral antinociception. Conclusion The results suggest the participation of the opioid system via δ-opioid receptor in the peripheral antinociceptive effect induced by aripiprazole. PMID:28758123
Long thermal interactions of PAW with normal tooth structure and different dental biomaterials
NASA Astrophysics Data System (ADS)
Bostǎnaru, Andra-Cristina; Hnatiuc, Eugen; Roşca, Irina; Vasiliu, Ana Lavinia; Doroftei, Mirela; Ursu, Laura; Ailincǎi, Luminiţa Iuliana; Nǎstasǎ, Valentin; Mareş, Mihai
2016-12-01
Plasma activated water (PAW) has been widely considered to be an effective method for decontamination. Recently, numerous studies report that plasma-activated water (PAW) also has antibacterial ability to prevent or treat dental caries and periodontal related diseases. In this context, this study presents the first report to evaluate the plasma activated water effect on vital teeth enamel and different dental biomaterials. In this context, this study presents the first report to evaluate long thermal interactions of plasma activated water effect on vital teeth enamel and different dental biomaterials without organic substrate. The results suggest that the long-thermal of treatment with PAW of enamel without organic substrate can dissolve the apatite crystallites which are highly organized hierarchical structures.
Besharati Tabrizi, Leila; Mahvash, Mehran
2015-07-01
An augmented reality system has been developed for image-guided neurosurgery to project images with regions of interest onto the patient's head, skull, or brain surface in real time. The aim of this study was to evaluate system accuracy and to perform the first intraoperative application. Images of segmented brain tumors in different localizations and sizes were created in 10 cases and were projected to a head phantom using a video projector. Registration was performed using 5 fiducial markers. After each registration, the distance of the 5 fiducial markers from the visualized tumor borders was measured on the virtual image and on the phantom. The difference was considered a projection error. Moreover, the image projection technique was intraoperatively applied in 5 patients and was compared with a standard navigation system. Augmented reality visualization of the tumors succeeded in all cases. The mean time for registration was 3.8 minutes (range 2-7 minutes). The mean projection error was 0.8 ± 0.25 mm. There were no significant differences in accuracy according to the localization and size of the tumor. Clinical feasibility and reliability of the augmented reality system could be proved intraoperatively in 5 patients (projection error 1.2 ± 0.54 mm). The augmented reality system is accurate and reliable for the intraoperative projection of images to the head, skull, and brain surface. The ergonomic advantage of this technique improves the planning of neurosurgical procedures and enables the surgeon to use direct visualization for image-guided neurosurgery.
Mishima, K; Ohta, M
1992-01-01
In urethane-anesthetized rats, low frequency electrical stimulation of the thalamic radiation (TR) evoked an augmenting response in the somatosensory cortex (SCx) which was followed by rhythmic slow waves. The augmenting response mainly consists of the incremental secondary response (II-response). Simultaneously, augmentation also occurs in the ventrobasal nucleus of thalamus (VB) on the late component responses, C- and D-waves, to TR stimulation. The latencies of these augmented responses were shorter for the C-wave and the accompanying unit discharges in the VB relay neurons than for the D-wave and the II-response. We hypothesized that the thalamo-cortico-thalamic reverberating circuit was crucial in generating the augmenting response in the SCx. To test this hypothesis, an attempt was made to block temporarily the corticothalamic glutamatergic transmission by means of microinjections of kynurenate (KYN), an antagonist of glutamate, into the VB with a dose of more than 2 mM. This local procedure blocked all of the augmenting phenomena completely with a full recovery after the duration that depended on the dose of KYN. Besides, in the stage of complete blocking of the II-response to the test TR stimuli, the augmentation was able to be restored by adding a short train of high frequency TR stimuli that mimicked a burst discharge of VB relay neurons. These results in support of the hypothesis would reappraise the functional significance of the reverberating circuit in augmentation that has recently been controversial.
Efficient 3M PBS enhancing miniature projection optics
NASA Astrophysics Data System (ADS)
Yun, Zhisheng; Nevitt, Timothy; Willett, Stephen; Mortenson, Dave; Le, John; McDowell, Erin; Kent, Susan; Wong, Timothy; Beniot, Gilles J.; Ouderkirk, Andrew
2016-09-01
Over the past decade, 3M has developed a number of mobile projectors, with a goal towards providing the world's smallest, most efficient projection systems. Compact size and efficiency are required characteristics for projection systems used in mobile devices and more lately, in augmented reality systems. In this paper we summarize the main generations of 3M light engine optical designs. We present the optical architectures of four light engines, including the rationale behind the illumination designs and the projection systems. In particular, we describe various configurations relating to the 3M polarizing beam splitter (PBS) which is key to enhanced efficiency of the miniature projection systems.
Quality status display for a vibration welding process
Spicer, John Patrick; Abell, Jeffrey A.; Wincek, Michael Anthony; Chakraborty, Debejyo; Bracey, Jennifer; Wang, Hui; Tavora, Peter W.; Davis, Jeffrey S.; Hutchinson, Daniel C.; Reardon, Ronald L.; Utz, Shawn
2017-03-28
A system includes a host machine and a status projector. The host machine is in electrical communication with a collection of sensors and with a welding controller that generates control signals for controlling the welding horn. The host machine is configured to execute a method to thereby process the sensory and control signals, as well as predict a quality status of a weld that is formed using the welding horn, including identifying any suspect welds. The host machine then activates the status projector to illuminate the suspect welds. This may occur directly on the welds using a laser projector, or on a surface of the work piece in proximity to the welds. The system and method may be used in the ultrasonic welding of battery tabs of a multi-cell battery pack in a particular embodiment. The welding horn and welding controller may also be part of the system.
Aerial 3D display by use of a 3D-shaped screen with aerial imaging by retro-reflection (AIRR)
NASA Astrophysics Data System (ADS)
Kurokawa, Nao; Ito, Shusei; Yamamoto, Hirotsugu
2017-06-01
The purpose of this paper is to realize an aerial 3D display. We design optical system that employs a projector below a retro-reflector and a 3D-shaped screen. A floating 3D image is formed with aerial imaging by retro-reflection (AIRR). Our proposed system is composed of a 3D-shaped screen, a projector, a quarter-wave retarder, a retro-reflector, and a reflective polarizer. Because AIRR forms aerial images that are plane-symmetric of the light sources regarding the reflective polarizer, the shape of the 3D screen is inverted from a desired aerial 3D image. In order to expand viewing angle, the 3D-shaped screen is surrounded by a retro-reflector. In order to separate the aerial image from reflected lights on the retro- reflector surface, the retro-reflector is tilted by 30 degrees. A projector is located below the retro-reflector at the same height of the 3D-shaped screen. The optical axis of the projector is orthogonal to the 3D-shaped screen. Scattered light on the 3D-shaped screen forms the aerial 3D image. In order to demonstrate the proposed optical design, a corner-cube-shaped screen is used for the 3D-shaped screen. Thus, the aerial 3D image is a cube that is floating above the reflective polarizer. For example, an aerial green cube is formed by projecting a calculated image on the 3D-shaped screen. The green cube image is digitally inverted in depth by our developed software. Thus, we have succeeded in forming aerial 3D image with our designed optical system.
Contribution of first-principles calculations to multinuclear NMR analysis of borosilicate glasses.
Soleilhavoup, Anne; Delaye, Jean-Marc; Angeli, Frédéric; Caurant, Daniel; Charpentier, Thibault
2010-12-01
Boron-11 and silicon-29 NMR spectra of xSiO(2)-(1-x)B(2)O(3) glasses (x=0.40, 0.80 and 0.83) have been calculated using a combination of molecular dynamics (MD) simulations with density functional theory (DFT) calculations of NMR parameters. Structure models of 200 atoms have been generated using classical force fields and subsequently relaxed at the PBE-GGAlevel of DFT theory. The gauge including projector augmented wave (GIPAW) method is then employed for computing the shielding and electric field gradient tensors for each silicon and boron atom. Silicon-29 MAS and boron-11 MQMAS NMR spectra of two glasses (x=0.40 and 0.80) have been acquired and theoretical spectra are found to well agree with the experimental data. For boron-11, the NMR parameter distributions have been analysed using a Kernel density estimation (KDE) approach which is shown to highlight its main features. Accordingly, a new analytical model that incorporates the observed correlations between the NMR parameters is introduced. It significantly improves the fit of the (11)B MQMAS spectra and yields, therefore, more reliable NMR parameter distributions. A new analytical model for a quantitative description of the dependence of the silicon-29 and boron-11 isotropic chemical shift upon the bond angles is proposed, which incorporates possibly the effect of SiO(2)-B(2)O(3) intermixing. Combining all the above procedures, we show how distributions of Si-O-T and B-O-T (T=Si, B) bond angles can be estimated from the distribution of isotropic chemical shift of silicon-29 and boron-11, respectively. Copyright © 2010 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Lin, Y. H.; Raghunath, P.; Lin, M. C.
2016-01-01
The adsorption and dissociation mechanisms of SiHx(x = 1-4) species on W(1 1 1) surface have been investigated by using the periodic density functional theory with the projector-augmented wave approach. The adsorption of all the species on four surface sites: top (T), bridge (B), shallow (S), and deep (D) sites have been analyzed. For SiH4 on a top site, T-SiH4(a), it is more stable with an adsorption energy of 2.6 kcal/mol. For SiH3, the 3-fold shallow site is most favorable with adsorption energy of 46.0 kcal/mol. For SiH2, its adsorption on a bridge site is most stable with 73.0 kcal/mol binding energy, whereas for SiH and Si the most stable adsorption configurations are on 3-fold deep sites with very high adsorption energies, 111.8 and 134.7 kcal/mol, respectively. The potential energy surfaces for the dissociative adsorption of all SiHx species on the W(1 1 1) surface have been constructed using the CINEB method. The barriers for H-atom migration from SiHx(a) to its neighboring W atoms, preferentially on B-sites, were predicted to be 0.4, 1.0, 4.5 and, 8.0 kcal/mol, respectively, for x = 4, 3, 2, and 1, respectively. The adsorption energy of the H atom on a bridge site on the clean W(1 1 1) surface was predicted to be 65.9 kcal/mol, which was found to be slightly affected by the co-adsorption of SiHx-1 within ± 1 kcal/mol.
Reinholdt, Marc; Croissant, Jonas; Di Carlo, Lidia; Granier, Dominique; Gaveau, Philippe; Bégu, Sylvie; Devoisselle, Jean-Marie; Mutin, P Hubert; Smith, Mark E; Bonhomme, Christian; Gervais, Christel; van der Lee, Arie; Laurencin, Danielle
2011-08-15
We describe the preparation of the first crystalline compounds based on arylboronate ligands PhB(OH)(3)(-) coordinated to metal cations: [Ca(PhB(OH)(3))(2)], [Sr(PhB(OH)(3))(2)]·H(2)O, and [Ba(PhB(OH)(3))(2)]. The calcium and strontium structures were solved using powder and single-crystal X-ray diffraction, respectively. In both cases, the structures are composed of chains of cations connected through phenylboronate ligands, which interact one with each other to form a 2D lamellar structure. The temperature and pH conditions necessary for the formation of phase-pure compounds were investigated: changes in temperature were found to mainly affect the morphology of the crystallites, whereas strong variations in pH were found to affect the formation of pure phases. All three compounds were characterized using a wide range of analytical techniques (TGA, IR, Raman, XRD, and high resolution (1)H, (11)B, and (13)C solid-state NMR), and the different coordination modes of phenylboronate ligands were analyzed. Two different kinds of hydroxyl groups were identified in the structures: those involved in hydrogen bonds, and those that are effectively "free" and not involved in hydrogen bonds of any significant strength. To position precisely the OH protons within the structures, an NMR-crystallography approach was used: the comparison of experimental and calculated NMR parameters (determined using the Gauge Including Projector Augmented Wave method, GIPAW) allowed the most accurate positions to be identified. In the case of the calcium compound, it was found that it is the (43)Ca NMR data that are critical to help identify the best model of the structure. © 2011 American Chemical Society
Time averaging of NMR chemical shifts in the MLF peptide in the solid state.
De Gortari, Itzam; Portella, Guillem; Salvatella, Xavier; Bajaj, Vikram S; van der Wel, Patrick C A; Yates, Jonathan R; Segall, Matthew D; Pickard, Chris J; Payne, Mike C; Vendruscolo, Michele
2010-05-05
Since experimental measurements of NMR chemical shifts provide time and ensemble averaged values, we investigated how these effects should be included when chemical shifts are computed using density functional theory (DFT). We measured the chemical shifts of the N-formyl-L-methionyl-L-leucyl-L-phenylalanine-OMe (MLF) peptide in the solid state, and then used the X-ray structure to calculate the (13)C chemical shifts using the gauge including projector augmented wave (GIPAW) method, which accounts for the periodic nature of the crystal structure, obtaining an overall accuracy of 4.2 ppm. In order to understand the origin of the difference between experimental and calculated chemical shifts, we carried out first-principles molecular dynamics simulations to characterize the molecular motion of the MLF peptide on the picosecond time scale. We found that (13)C chemical shifts experience very rapid fluctuations of more than 20 ppm that are averaged out over less than 200 fs. Taking account of these fluctuations in the calculation of the chemical shifts resulted in an accuracy of 3.3 ppm. To investigate the effects of averaging over longer time scales we sampled the rotameric states populated by the MLF peptides in the solid state by performing a total of 5 micros classical molecular dynamics simulations. By averaging the chemical shifts over these rotameric states, we increased the accuracy of the chemical shift calculations to 3.0 ppm, with less than 1 ppm error in 10 out of 22 cases. These results suggests that better DFT-based predictions of chemical shifts of peptides and proteins will be achieved by developing improved computational strategies capable of taking into account the averaging process up to the millisecond time scale on which the chemical shift measurements report.
NASA Astrophysics Data System (ADS)
Cheng, Tai-min; Yu, Guo-Liang; Su, Yong; Ge, Chong-Yuan; Zhang, Xin-Xin; Zhu, Lin; Li, Lin
2018-05-01
The ordered crystalline Invar alloy Fe3Pt is in a special magnetic critical state, under which the lattice dynamic stability of the system is extremely sensitive to external pressures. We studied the pressure dependence of enthalpy and magnetism of Fe3Pt in different crystalline alloys by using the first-principles projector augmented-wave method based on the density functional theory. Results show that the P4/mbm structure is the ground state structure and is more stable relative to other structures at pressures below 18.54 GPa. The total magnetic moments of L12, I4/mmm and DO22 structures decrease rapidly with pressure and oscillate near the ferromagnetic collapse critical pressure. At the pressure of 43 GPa, the ferrimagnetic property in DO22 structure becomes apparently strengthened and its volume increases rapidly. The lattice dynamics calculation for L12 structures at high pressures shows that the spontaneous magnetization of the system in ferromagnetic states induces the softening of the transverse acoustic phonon TA1 (M), and there exists a strong spontaneous volume magnetostriction at pressures below 26.95 GPa. Especially, the lattice dynamics stability is sensitive to pressure, in the pressure range between the ferromagnetic collapse critical pressure (41.9 GPa) and the magnetism completely disappearing pressure (57.25 GPa), and near the pressure of phase transition from L12 to P4/mbm structure (27.27 GPa). Moreover, the instability of magnetic structure leads to a prominent elastic modulus oscillation, and the spin polarizability of electrons near the Fermi level is very sensitive to pressures in that the pressure range. The pressure induces the stability of the phonon spectra of the system at pressures above 57.25 GPa.
A Wave Diagnostics in Geophysics: Algorithmic Extraction of Atmosphere Disturbance Modes
NASA Astrophysics Data System (ADS)
Leble, S.; Vereshchagin, S.
2018-04-01
The problem of diagnostics in geophysics is discussed and a proposal based on dynamic projecting operators technique is formulated. The general exposition is demonstrated by an example of symbolic algorithm for the wave and entropy modes in the exponentially stratified atmosphere. The novel technique is developed as a discrete version for the evolution operator and the corresponding projectors via discrete Fourier transformation. Its explicit realization for directed modes in exponential one-dimensional atmosphere is presented via the correspondent projection operators in its discrete version in terms of matrices with a prescribed action on arrays formed from observation tables. A simulation based on opposite directed (upward and downward) wave train solution is performed and the modes' extraction from a mixture is illustrated.
Automatic algorithm for monitoring systolic pressure variation and difference in pulse pressure.
Pestel, Gunther; Fukui, Kimiko; Hartwich, Volker; Schumacher, Peter M; Vogt, Andreas; Hiltebrand, Luzius B; Kurz, Andrea; Fujita, Yoshihisa; Inderbitzin, Daniel; Leibundgut, Daniel
2009-06-01
Difference in pulse pressure (dPP) reliably predicts fluid responsiveness in patients. We have developed a respiratory variation (RV) monitoring device (RV monitor), which continuously records both airway pressure and arterial blood pressure (ABP). We compared the RV monitor measurements with manual dPP measurements. ABP and airway pressure (PAW) from 24 patients were recorded. Data were fed to the RV monitor to calculate dPP and systolic pressure variation in two different ways: (a) considering both ABP and PAW (RV algorithm) and (b) ABP only (RV(slim) algorithm). Additionally, ABP and PAW were recorded intraoperatively in 10-min intervals for later calculation of dPP by manual assessment. Interobserver variability was determined. Manual dPP assessments were used for comparison with automated measurements. To estimate the importance of the PAW signal, RV(slim) measurements were compared with RV measurements. For the 24 patients, 174 measurements (6-10 per patient) were recorded. Six observers assessed dPP manually in the first 8 patients (10-min interval, 53 measurements); no interobserver variability occurred using a computer-assisted method. Bland-Altman analysis showed acceptable bias and limits of agreement of the 2 automated methods compared with the manual method (RV: -0.33% +/- 8.72% and RV(slim): -1.74% +/- 7.97%). The difference between RV measurements and RV(slim) measurements is small (bias -1.05%, limits of agreement 5.67%). Measurements of the automated device are comparable with measurements obtained by human observers, who use a computer-assisted method. The importance of the PAW signal is questionable.
Webber, Amy L; Elena, Bénédicte; Griffin, John M; Yates, Jonathan R; Pham, Tran N; Mauri, Francesco; Pickard, Chris J; Gil, Ana M; Stein, Robin; Lesage, Anne; Emsley, Lyndon; Brown, Steven P
2010-07-14
A disaccharide is a challenging case for high-resolution (1)H solid-state NMR because of the 24 distinct protons (14 aliphatic and 10 OH) having (1)H chemical shifts that all fall within a narrow range of approximately 3 to 7 ppm. High-resolution (1)H (500 MHz) double-quantum (DQ) combined rotation and multiple pulse sequence (CRAMPS) solid-state NMR spectra of beta-maltose monohydrate are presented. (1)H-(1)H DQ-SQ CRAMPS spectra are presented together with (1)H (DQ)-(13)C correlation spectra obtained with a new pulse sequence that correlates a high-resolution (1)H DQ dimension with a (13)C single quantum (SQ) dimension using the refocused INEPT pulse-sequence element to transfer magnetization via one-bond (13)C-(1)H J couplings. Compared to the observation of only a single broad peak in a (1)H DQ spectrum recorded at 30 kHz magic-angle spinning (MAS), the use of DUMBO (1)H homonuclear decoupling in the (1)H DQ CRAMPS experiment allows the resolution of distinct DQ correlation peaks which, in combination with first-principles chemical shift calculations based on the GIPAW (Gauge Including Projector Augmented Waves) plane-wave pseudopotential approach, enables the assignment of the (1)H resonances to the 24 distinct protons. We believe this to be the first experimental solid-state NMR determination of the hydroxyl OH (1)H chemical shifts for a simple sugar. Variable-temperature (1)H-(1)H DQ CRAMPS spectra reveal small increases in the (1)H chemical shifts of the OH resonances upon decreasing the temperature from 348 K to 248 K.
NASA Astrophysics Data System (ADS)
Chiker, F.; Khachai, H.; Mathieu, C.; Bin-Omran, S.; Kada, Belkacem; Sun, Xiao-Wei; Sandeep; Rai, D. P.; Khenata, R.
2018-05-01
In this study, first-principles investigations were performed using the full-potential linearized augmented plane-wave method of the structural and optoelectronic properties of thorium germinate (ThGeO4), a high-K dielectric material. Under ambient conditions, the structural properties calculated for ThGeO4 in the zircon phase were in excellent agreement with the available experimental data. Furthermore, using the modified Becke -Johnson correction method, the calculated band gaps and optical constants accurately described this compound. Finally, the thermal properties were predicted over a temperature range of 0-700 K and pressures up to 11 GPa using the quasi-harmonic Debye model, where the variations in the heat capacity, primitive cell volume, and thermal expansion coefficients were determined successfully.
Fernberg, Ulrika; Fernström, Maria; Hurtig-Wennlöf, Anita
2017-11-01
Background Early changes in the large muscular arteries are already associated with risk factors as hypertension and obesity in adolescence and young adulthood. The present study examines the association between arterial stiffness measurements, pulse wave velocity and augmentation index and lifestyle-related factors, body composition and cardiorespiratory fitness, in young, healthy, Swedish adults. Design This study used a population-based cross-sectional sample. Methods The 834 participants in the study were self-reported healthy, non-smoking, age 18-25 years. Augmentation index and pulse wave velocity were measured with applanation tonometry. Cardiorespiratory fitness was measured by ergometer bike test to estimate maximal oxygen uptake. Body mass index (kg/m 2 ) was calculated and categorised according to classification by the World Health Organisation. Results Young Swedish adults with obesity and low cardiorespiratory fitness have significantly higher pulse wave velocity and augmentation index than non-obese young adults with medium or high cardiorespiratory fitness. The observed U-shaped association between pulse wave velocity and body mass index categories in women indicates that it might be more beneficial to be normal weight than underweight when assessing the arterial stiffness with pulse wave velocity. The highest mean pulse wave velocity was found in overweight/obese individuals with low cardiorespiratory fitness. The lowest mean pulse wave velocity was found in normal weight individuals with high cardiorespiratory fitness. Cardiorespiratory fitness had a stronger effect than body mass index on arterial stiffness in multiple regression analyses. Conclusions The inverse association between cardiorespiratory fitness and arterial stiffness is observed already in young adults. The study result highlights the importance of high cardiorespiratory fitness, but also that underweight individuals may be a possible risk group that needs to be further studied.
Strategies for Buying and Maintaining Audio Visual Equipment.
ERIC Educational Resources Information Center
Kalmbach, John A.; Kruzel, Richard D.
1989-01-01
Presents guidelines for purchasing and maintaining audiovisual equipment most often used in the classroom. Highlights include selecting a vendor; purchasing associations; preventive maintenance; optical equipment, including overhead projectors, slide projectors, movie projectors, and filmstrip projectors; and electromagnetic equipment, including…
Burgess, Kevin M N; Xu, Yang; Leclerc, Matthew C; Bryce, David L
2013-08-01
We report on the (25)Mg solid-state nuclear magnetic resonance (NMR) characterization of a series of magnesium complexes featuring Mg(2+) ions in organic coordination environments. Six compounds have been synthesized with benzoate and salicylate ligands, which are typically used as linkers in metal organic frameworks (MOFs). The use of ultrahigh-field solid-state NMR has revealed a relatively large range of values for the (25)Mg quadrupolar coupling constant, CQ((25)Mg), in these compounds. In contrast to some previously studied inorganic Mg(2+) complexes, the values of CQ((25)Mg) in organic Mg(2+) complexes are well rationalized by the degree of octahedral strain of the "MgO6" coordination polyhedra. (13)C and (25)Mg isotropic chemical shifts were also found to be sensitive to the binding mode of the carboxylate ligands. The experimental findings are corroborated by gauge-including projector-augmented-wave (GIPAW) density functional theory (DFT) computations, and these have allowed for an interpretation of the experimentally observed trend in the CQ((25)Mg) values and for the visualization of the EFG tensor principal components with respect to the molecular structure. These new insights may prove to be valuable for the understanding and interpretation of (25)Mg NMR data for Mg(2+) ions in organic binding environments such as those found in MOFs and protein-divalent metal binding sites.
Zurek, Eva; Pickard, Chris J; Walczak, Brian; Autschbach, Jochen
2006-11-02
NMR chemical shifts were calculated for semiconducting (n,0) single-walled carbon nanotubes (SWNTs) with n ranging from 7 to 17. Infinite isolated SWNTs were calculated using a gauge-including projector-augmented plane-wave (GIPAW) approach with periodic boundary conditions and density functional theory (DFT). In order to minimize intertube interactions in the GIPAW computations, an intertube distance of 8 A was chosen. For the infinite tubes, we found a chemical shift range of over 20 ppm for the systems considered here. The SWNT family with lambda = mod(n, 3) = 0 has much smaller chemical shifts compared to the other two families with lambda = 1 and lambda = 2. For all three families, the chemical shifts decrease roughly inversely proportional to the tube's diameter. The results were compared to calculations of finite capped SWNT fragments using a gauge-including atomic orbital (GIAO) basis. Direct comparison of the two types of calculations could be made if benzene was used as the internal (computational) reference. The NMR chemical shifts of finite SWNTs were found to converge very slowly, if at all, to the infinite limit, indicating that capping has a strong effect (at least for the (9,0) tubes) on the calculated properties. Our results suggest that (13)C NMR has the potential for becoming a useful tool in characterizing SWNT samples.
Ikeda, Minoru; Yamasaki, Takahiro; Kaneta, Chioko
2010-09-29
Using the projector-augmented plane wave method, we study diffusion and dissociation processes of C(2)H(2) molecules on the ferromagnetic bcc-Fe(110) surface and investigate the formation process of graphene created by C(2)H(2) molecules. The most stable site for C(2)H(2) on the Fe surface is a hollow site and its adsorption energy is - 3.5 eV. In order to study the diffusion process of the C(2)H(2) molecule, the barrier height energies for the C atom, C(2)-dimer and CH as well as the C(2)H(2) molecule are estimated using the nudged elastic band method. The barrier height energy for C(2)H(2) is 0.71 eV and this indicates that the C(2)H(2) diffuses easily on this FM bcc-Fe(110) surface. We further investigate the two step dissociation process of C(2)H(2) on Fe. The first step is the dissociation of C(2)H(2) into C(2)H and H, and the second step is that of C(2)H into C(2) and H. Their dissociation energies are 0.9 and 1.2 eV, respectively. These energies are relatively small compared to the dissociation energy 7.5 eV of C(2)H(2) into C(2)H and H in the vacuum. Thus, the Fe surface shows catalytic effects. We further investigate the initial formation process of graphene by increasing the coverage of C(2)H(2). The formation process of the benzene molecule on the FM bcc(110) surface is also discussed. We find that there exists a critical coverage of C(2)H(2) which characterizes the beginning of the formation of the graphene.
Aizawa, Yoshifusa; Sato, Masahito; Kitazawa, Hitoshi; Aizawa, Yoshiyasu; Takatsuki, Seiji; Oda, Eiji; Okabe, Masaaki; Fukuda, Keiichi
2015-02-01
J waves can be observed in individuals of the general population, but electrocardiographic characteristics are poorly understood. The purpose of this study was to examine the J-wave dynamicity in a general patient population. The responses of J waves (>0.1 mV above the isoelectric line in 2 contiguous leads) to varying RR intervals were analyzed. Patients with aborted sudden cardiac death, documented ventricular fibrillation, or a family history of sudden cardiac death were excluded. The J-wave amplitude was measured at baseline, in beats with short RR intervals in conducted atrial premature beats (APBs) or atrial stimulation during the electrophysiology study, and in the beats next to APBs with prolonged RR intervals. Mainly notched J waves were identified in 94 of 701 (24.5%) general patients (13.4%), and APBs were present in 23 of 94 (24.5%) patients. The mean baseline amplitude of J waves was 0.20 ± 0.06 mV at the baseline RR interval of 853 ± 152 ms, 0.25 ± 0.11 mV at the RR interval in the conducted APB of 545 ± 133 ms (P = .0018), and 0.19 ± 0.08 mV at the RR interval of 1146 ± 314 ms (P = .3102). The clinical characteristics were not different between patients with and without tachycardia-dependent augmentation of J waves. Augmentation of J waves was confirmed by the electrophysiology study: 0.28 ± 0.12 mV vs 0.42 ± 0.11 mV at baseline and in the beats of atrial stimulation, respectively (P = .0001). However, no bradycardia-dependent augmentation (>0.05 mV) was observed. Such tachycardia-dependent augmentation can represent depolarization abnormality rather than repolarization abnormality. J waves in a general patient population were augmented at shorter RR intervals, but not at prolonged RR intervals. Mechanistically, conduction delay is most likely responsible for this. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Cellular prion protein protects from inflammatory and neuropathic pain
2011-01-01
Cellular prion protein (PrPC) inhibits N-Methyl-D-Aspartate (NMDA) receptors. Since NMDA receptors play an important role in the transmission of pain signals in the dorsal horn of spinal cord, we thus wanted to determine if PrPC null mice show a reduced threshold for various pain behaviours. We compared nociceptive thresholds between wild type and PrPC null mice in models of inflammatory and neuropathic pain, in the presence and the absence of a NMDA receptor antagonist. 2-3 months old male PrPC null mice exhibited an MK-801 sensitive decrease in the paw withdrawal threshold in response both mechanical and thermal stimuli. PrPC null mice also exhibited significantly longer licking/biting time during both the first and second phases of formalin-induced inflammation of the paw, which was again prevented by treatment of the mice with MK-801, and responded more strongly to glutamate injection into the paw. Compared to wild type animals, PrPC null mice also exhibited a significantly greater nociceptive response (licking/biting) after intrathecal injection of NMDA. Sciatic nerve ligation resulted in MK-801 sensitive neuropathic pain in wild-type mice, but did not further augment the basal increase in pain behaviour observed in the null mice, suggesting that mice lacking PrPC may already be in a state of tonic central sensitization. Altogether, our data indicate that PrPC exerts a critical role in modulating nociceptive transmission at the spinal cord level, and fit with the concept of NMDA receptor hyperfunction in the absence of PrPC. PMID:21843375
Experimental Investigation of Turbojet Thrust Augmentation Using an Ejector
2007-03-01
mechanisms in which a particle can exchange energy. Thrust augmenting devices can be divided into two categories: ones that exchange net work or heat and...two categories from the energy equation discussion above. Thrust augmentation is achieved through turbulent entrainment where work and/or heat is...front sustained by compression waves from a trailing reaction zone. A deflagration wave is a subsonic flame front sustained by heat transfer
The Audio-Visual Equipment Directory. Seventeenth Edition.
ERIC Educational Resources Information Center
Herickes, Sally, Ed.
The following types of audiovisual equipment are catalogued: 8 mm. and 16 mm. motion picture projectors, filmstrip and sound filmstrip projectors, slide projectors, random access projection equipment, opaque, overhead, and micro-projectors, record players, special purpose projection equipment, audio tape recorders and players, audio tape…
How to Choose--and Use--Motion Picture Projectors
ERIC Educational Resources Information Center
Training, 1976
1976-01-01
Suggests techniques for selecting super 8 and 16mm movie projectors for various training and communication needs. Charts list various characteristics for 17 models of 8mm projectors with built-in screen, 7 models without screen, and 33 models of 16mm projectors. (WL)
NASA Astrophysics Data System (ADS)
Jenkins, H. S.; Gant, R.; Hopkins, D.
2014-12-01
Teaching natural science in a technologically advancing world requires that our methods reach beyond the traditional computer interface. Innovative 3D visualization techniques and real-time augmented user interfaces enable students to create realistic environments to understand the world around them. Here, we present a series of laboratory activities that utilize an Augmented Reality Sandbox to teach basic concepts of hydrology, geology, and geography to undergraduates at Harvard University and the University of Redlands. The Augmented Reality (AR) Sandbox utilizes a real sandbox that is overlain by a digital projection of topography and a color elevation map. A Microsoft Kinect 3D camera feeds altimetry data into a software program that maps this information onto the sand surface using a digital projector. Students can then manipulate the sand and observe as the Sandbox augments their manipulations with projections of contour lines, an elevation color map, and a simulation of water. The idea for the AR Sandbox was conceived at MIT by the Tangible Media Group in 2002 and the simulation software used here was written and developed by Dr. Oliver Kreylos of the University of California - Davis as part of the NSF funded LakeViz3D project. Between 2013 and 2014, we installed AR Sandboxes at Harvard and the University of Redlands, respectively, and developed laboratory exercises to teach flooding hazard, erosion and watershed development in undergraduate earth and environmental science courses. In 2013, we introduced a series of AR Sandbox laboratories in Introductory Geology, Hydrology, and Natural Disasters courses. We found laboratories that utilized the AR Sandbox at both universities allowed students to become quickly immersed in the learning process, enabling a more intuitive understanding of the processes that govern the natural world. The physical interface of the AR Sandbox reduces barriers to learning, can be used to rapidly illustrate basic concepts of geology, geography and hydrology, and enabled our undergraduate students to understand topography intuitively. We therefore find the AR Sandbox to be a novel teaching tool and an effective demonstration of the capabilities of 3D visualization and real-time augmented user interfaces that enable students to better understand environmental processes.
Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin
2016-09-03
While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments.
Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin
2016-01-01
While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments. PMID:27598174
Assessment of central haemomodynamics from a brachial cuff in a community setting
2012-01-01
Background Large artery stiffening and wave reflections are independent predictors of adverse events. To date, their assessment has been limited to specialised techniques and settings. A new, more practical method allowing assessment of central blood pressure from waveforms recorded using a conventional automated oscillometric monitor has recently been validated in laboratory settings. However, the feasibility of this method in a community based setting has not been assessed. Methods One-off peripheral and central haemodynamic (systolic and diastolic blood pressure (BP) and pulse pressure) and wave reflection parameters (augmentation pressure (AP) and index, AIx) were obtained from 1,903 volunteers in an Austrian community setting using a transfer-function like method (ARCSolver algorithm) and from waveforms recorded with a regular oscillometric cuff. We assessed these parameters for known differences and associations according to gender and age deciles from <30 years to >80 years in the whole population and a subset with a systolic BP < 140 mmHg. Results We obtained 1,793 measures of peripheral and central BP, PP and augmentation parameters. Age and gender associations with central haemodynamic and augmentation parameters reflected those previously established from reference standard non-invasive techniques under specialised settings. Findings were the same for patients with a systolic BP below 140 mmHg (i.e. normotensive). Lower values for AIx in the current study are possibly due to differences in sampling rates, detection frequency and/or averaging procedures and to lower numbers of volunteers in younger age groups. Conclusion A novel transfer-function like algorithm, using brachial cuff-based waveform recordings, provides robust and feasible estimates of central systolic pressure and augmentation in community-based settings. PMID:22734820
When All Else Fails--KICK! Trouble Shooting, Preventive Maintenance, and Auxiliary Equipment.
ERIC Educational Resources Information Center
Beasley, Augie E.; Palmer, Carolyn G.
The guidelines presented in this manual for the maintenance and repair of media equipment and materials provide information on optical systems, slide projectors, film projectors, overhead projectors, record players, cassette recorders, public address systems, opaque projectors, laminators, motion picture films, and cassette tapes. A list of…
Using a Video Projector for Color-Mixing Demonstrations.
ERIC Educational Resources Information Center
Bartels, Richard A.
1982-01-01
Suggestions are provided for using color television projector systems to demonstrate color mixing. With such a projector, manipulation of the three primary colors can be done by simply covering and uncovering the three separate beams. In addition, projector systems serve as good examples in studying geometrical optics. (Author/JN)
Media Manual (How to Use Media Equipment).
ERIC Educational Resources Information Center
Jones, Nancy
Using a workbook format, this guide explains the use of seven types of audiovisual equipment: overhead projector, Bell and Howell 16mm motion picture projector, Dukane filmstrip projector, record player, Kodak slide projector, Wollensak 2552 tape recorder, and JVC videocassette color video system. An introductory section includes (1) a media…
Dual-sensitivity profilometry with defocused projection of binary fringes.
Garnica, G; Padilla, M; Servin, M
2017-10-01
A dual-sensitivity profilometry technique based on defocused projection of binary fringes is presented. Here, two sets of fringe patterns with a sinusoidal profile are produced by applying the same analog low-pass filter (projector defocusing) to binary fringes with a high- and low-frequency spatial carrier. The high-frequency fringes have a binary square-wave profile, while the low-frequency binary fringes are produced with error-diffusion dithering. The binary nature of the binary fringes removes the need for calibration of the projector's nonlinear gamma. Working with high-frequency carrier fringes, we obtain a high-quality wrapped phase. On the other hand, working with low-frequency carrier fringes we found a lower-quality, nonwrapped phase map. The nonwrapped estimation is used as stepping stone for dual-sensitivity temporal phase unwrapping, extending the applicability of the technique to discontinuous (piecewise continuous) surfaces. We are proposing a single defocusing level for faster high- and low-frequency fringe data acquisition. The proposed technique is validated with experimental results.
New method for rekindling the nonlinear solitary waves in Maxwellian complex space plasma
NASA Astrophysics Data System (ADS)
Das, G. C.; Sarma, Ridip
2018-04-01
Our interest is to study the nonlinear wave phenomena in complex plasma constituents with Maxwellian electrons and ions. The main reason for this consideration is to exhibit the effects of dust charge fluctuations on acoustic modes evaluated by the use of a new method. A special method (G'/G) has been developed to yield the coherent features of nonlinear waves augmented through the derivation of a Korteweg-de Vries equation and found successfully the different nature of solitons recognized in space plasmas. Evolutions have shown with the input of appropriate typical plasma parameters to support our theoretical observations in space plasmas. All conclusions are in good accordance with the actual occurrences and could be of interest to further the investigations in experiments and satellite observations in space. In this paper, we present not only the model that exhibited nonlinear solitary wave propagation but also a new mathematical method to the execution.
NASA Astrophysics Data System (ADS)
Chang, Yong; Zi, Yanyang; Zhao, Jiyuan; Yang, Zhe; He, Wangpeng; Sun, Hailiang
2017-03-01
In guided wave pipeline inspection, echoes reflected from closely spaced reflectors generally overlap, meaning useful information is lost. To solve the overlapping problem, sparse deconvolution methods have been developed in the past decade. However, conventional sparse deconvolution methods have limitations in handling guided wave signals, because the input signal is directly used as the prototype of the convolution matrix, without considering the waveform change caused by the dispersion properties of the guided wave. In this paper, an adaptive sparse deconvolution (ASD) method is proposed to overcome these limitations. First, the Gaussian echo model is employed to adaptively estimate the column prototype of the convolution matrix instead of directly using the input signal as the prototype. Then, the convolution matrix is constructed upon the estimated results. Third, the split augmented Lagrangian shrinkage (SALSA) algorithm is introduced to solve the deconvolution problem with high computational efficiency. To verify the effectiveness of the proposed method, guided wave signals obtained from pipeline inspection are investigated numerically and experimentally. Compared to conventional sparse deconvolution methods, e.g. the {{l}1} -norm deconvolution method, the proposed method shows better performance in handling the echo overlap problem in the guided wave signal.
Feasibility study of utilizing ultraportable projectors for endoscopic video display (with videos).
Tang, Shou-Jiang; Fehring, Amanda; Mclemore, Mac; Griswold, Michael; Wang, Wanmei; Paine, Elizabeth R; Wu, Ruonan; To, Filip
2014-10-01
Modern endoscopy requires video display. Recent miniaturized, ultraportable projectors are affordable, durable, and offer quality image display. Explore feasibility of using ultraportable projectors in endoscopy. Prospective bench-top comparison; clinical feasibility study. Masked comparison study of images displayed via 2 Samsung ultraportable light-emitting diode projectors (pocket-sized SP-HO3; pico projector SP-P410M) and 1 Microvision Showwx-II Laser pico projector. BENCH-TOP FEASIBILITY STUDY: Prerecorded endoscopic video was streamed via computer. CLINICAL COMPARISON STUDY: Live high-definition endoscopy video was simultaneously displayed through each processor onto a standard liquid crystal display monitor and projected onto a portable, pull-down projection screen. Endoscopists, endoscopy nurses, and technicians rated video images; ratings were analyzed by linear mixed-effects regression models with random intercepts. All projectors were easy to set up, adjust, focus, and operate, with no real-time lapse for any. Bench-top study outcomes: Samsung pico preferred to Laser pico, overall rating 1.5 units higher (95% confidence interval [CI] = 0.7-2.4), P < .001; Samsung pocket preferred to Laser pico, 3.3 units higher (95% CI = 2.4-4.1), P < .001; Samsung pocket preferred to Samsung pico, 1.7 units higher (95% CI = 0.9-2.5), P < .001. The clinical comparison study confirmed the Samsung pocket projector as best, with a higher overall rating of 2.3 units (95% CI = 1.6-3.0), P < .001, than Samsung pico. Low brightness currently limits pico projector use in clinical endoscopy. The pocket projector, with higher brightness levels (170 lumens), is clinically useful. Continued improvements to ultraportable projectors will supply a needed niche in endoscopy through portability, reduced cost, and equal or better image quality. © The Author(s) 2013.
Castro, Juan M.; García-Espinosa, Victoria; Curcio, Santiago; Arana, Maite; Chiesa, Pedro; Giachetto, Gustavo; Zócalo, Yanina; Bia, Daniel
2016-01-01
The aims were to determine if childhood obesity is associated with increased central aortic blood pressure (BP) and to characterize haemodynamic and vascular changes associated with BP changes in obese children and adolescents by means of analyzing changes in cardiac output (stroke volume, SV), arterial stiffness (aortic pulse wave velocity, PWV), peripheral vascular resistances (PVR), and net and relative contributions of reflected waves to the aortic pulse wave amplitude. We included 117 subjects (mean/range age: 10 (5–15) years, 49 females), who were obese (OB) or had normal weight (NW). Peripheral and central aortic BP, PWV, and pulse wave-derived parameters (augmentation index, amplitude of forward and backward components) were measured with tonometry (SphygmoCor) and oscillometry (Mobil-O-Graph). With independence of the presence of dyslipidemia, hypertension, or sedentarism, the aortic systolic and pulse BP were higher in OB than in NW subjects. The increase in central BP could not be explained by the elevation in the relative contribution of reflections to the aortic pressure wave and higher PVR or by an augmented peripheral reflection coefficient. Instead, the rise in central BP could be explained by an increase in the amplitude of both incident and reflect wave components associated to augmented SV and/or PWV. PMID:26881081
Zhao, Yue; Zhu, Dianwen; Baikejiang, Reheman; Li, Changqing
2015-11-10
This work introduces a fast, low-cost, robust method based on fringe pattern and phase shifting to obtain three-dimensional (3D) mouse surface geometry for fluorescence molecular tomography (FMT) imaging. We used two pico projector/webcam pairs to project and capture fringe patterns from different views. We first calibrated the pico projectors and the webcams to obtain their system parameters. Each pico projector/webcam pair had its own coordinate system. We used a cylindrical calibration bar to calculate the transformation matrix between these two coordinate systems. After that, the pico projectors projected nine fringe patterns with a phase-shifting step of 2π/9 onto the surface of a mouse-shaped phantom. The deformed fringe patterns were captured by the corresponding webcam respectively, and then were used to construct two phase maps, which were further converted to two 3D surfaces composed of scattered points. The two 3D point clouds were further merged into one with the transformation matrix. The surface extraction process took less than 30 seconds. Finally, we applied the Digiwarp method to warp a standard Digimouse into the measured surface. The proposed method can reconstruct the surface of a mouse-sized object with an accuracy of 0.5 mm, which we believe is sufficient to obtain a finite element mesh for FMT imaging. We performed an FMT experiment using a mouse-shaped phantom with one embedded fluorescence capillary target. With the warped finite element mesh, we successfully reconstructed the target, which validated our surface extraction approach.
NASA Astrophysics Data System (ADS)
Studer, Stephan P.; Bucher, Andreas; Mueller, Felix
1993-09-01
The oral health of the Swiss population was significantly improved by the successful prevention of dental caries and periodontitis. Along with the healthy dentition the demand for aesthetic dentistry is increasing. Removable partial dentures are becoming less accepted. Therefore, to substitute lost teeth by permanent fixed partial prosthesis (bridges), the often deformed alveolar ridge has to be operated, either to improve the aesthetic appearance or to make it possible to restore the missing teeth by a fixed cemented bridge. The aim of this paper is (1) to evaluate whether the moire technique is an appropriate and handy method, and (2) to validate the precision of the new method. The measuring system consisted of a moire projector with an integrated phase shift device and a moire viewer with a CCD video camera, connected to a frame grabber in a personal computer. a highly versatile software was allowed to control the system as well as to grab the moire images using the four-phase shift technique in order to compute the phase image of the actual object. The new technique was validated with one solid test object measured by a 3D coordination, high precision measuring machine.
Polarization measurements made on LFRA and OASIS emitter arrays
NASA Astrophysics Data System (ADS)
Geske, Jon; Sparkman, Kevin; Oleson, Jim; Laveigne, Joe; Sieglinger, Breck; Marlow, Steve; Lowry, Heard; Burns, James
2008-04-01
Polarization is increasingly being considered as a method of discrimination in passive sensing applications. In this paper the degree of polarization of the thermal emission from the emitter arrays of two new Santa Barbara Infrared (SBIR) micro-bolometer resistor array scene projectors was characterized at ambient temperature and at 77 K. The emitter arrays characterized were from the Large Format Resistive Array (LFRA) and the Optimized Arrays for Space-Background Infrared Simulation (OASIS) scene projectors. This paper reports the results of this testing.
NASA Astrophysics Data System (ADS)
Sakaguchi, Toshimasa; Fujigaki, Motoharu; Murata, Yorinobu
2015-03-01
Accurate and wide-range shape measurement method is required in industrial field. The same technique is possible to be used for a shape measurement of a human body for the garment industry. Compact 3D shape measurement equipment is also required for embedding in the inspection system. A shape measurement by a phase shifting method can measure the shape with high spatial resolution because the coordinates can be obtained pixel by pixel. A key-device to develop compact equipment is a grating projector. Authors developed a linear LED projector and proposed a light source stepping method (LSSM) using the linear LED projector. The shape measurement euipment can be produced with low-cost and compact without any phase-shifting mechanical systems by using this method. Also it enables us to measure 3D shape in very short time by switching the light sources quickly. A phase unwrapping method is necessary to widen the measurement range with constant accuracy for phase shifting method. A general phase unwrapping method with difference grating pitches is often used. It is one of a simple phase unwrapping method. It is, however, difficult to apply the conventional phase unwrapping algorithm to the LSSM. Authors, therefore, developed an expansion unwrapping algorithm for the LSSM. In this paper, an expansion algorithm of measurement range suited for 3D shape measurement using two pitches of projected grating with the LSSM was evaluated.
A spatially augmented reality sketching interface for architectural daylighting design.
Sheng, Yu; Yapo, Theodore C; Young, Christopher; Cutler, Barbara
2011-01-01
We present an application of interactive global illumination and spatially augmented reality to architectural daylight modeling that allows designers to explore alternative designs and new technologies for improving the sustainability of their buildings. Images of a model in the real world, captured by a camera above the scene, are processed to construct a virtual 3D model. To achieve interactive rendering rates, we use a hybrid rendering technique, leveraging radiosity to simulate the interreflectance between diffuse patches and shadow volumes to generate per-pixel direct illumination. The rendered images are then projected on the real model by four calibrated projectors to help users study the daylighting illumination. The virtual heliodon is a physical design environment in which multiple designers, a designer and a client, or a teacher and students can gather to experience animated visualizations of the natural illumination within a proposed design by controlling the time of day, season, and climate. Furthermore, participants may interactively redesign the geometry and materials of the space by manipulating physical design elements and see the updated lighting simulation. © 2011 IEEE Published by the IEEE Computer Society
Yang, Woo-In; Shim, Chi Y; Bang, Woo D; Oh, Chang M; Chang, Hyuk J; Chung, Namsik; Ha, Jong-Won
2011-12-01
Arterial elastic properties change with aging. Measurements of pulse wave velocity and augmentation index are useful for the evaluation of arterial stiffness. However, they likely represent only global characteristics of the arterial tree rather than local vascular alterations. The aim of this study was to evaluate whether local vascular properties assessed by velocity vector imaging differed with aging. Vascular properties of carotid arteries with ages were assessed in 100 healthy volunteers (52 men) ranging from 20 to 68 years using velocity vector imaging. The peak circumferential strain and strain rate of the six segments in left common carotid arteries were analyzed and the standard deviation of the time to peak circumferential strain and strain rate of the six segments, representing the synchronicity of the arterial expansion, were calculated. Central blood pressure, augmentation index and pulse wave velocity were assessed by commercially available radial artery tonometry, the SphygmoCor system (AtCor Medical, West Ryde, Australia). A validated generalized transfer function was used to acquire the central aortic pressures and pressure waveforms. Pulse wave velocity, augmentation index and velocity vector imaging parameters showed significant changes with age. However, the age-related changes in pulse wave velocity, augmentation index and velocity vector imaging parameters were different. The increase in pulse wave velocity was more prominent in older individuals, whereas the changes in augmentation index and carotid strain and strain rate were evident earlier, at the age of 30 years. Unlike augmentation index, which showed little change in older individuals, the standard deviation of time to peak strain and strain rate showed a steady increase from younger to older individuals. Asynchronous arterial expansion could be a useful discriminative marker of vascular aging independent of individual's age.
Aortic stiffness predicts functional outcome in patients after ischemic stroke.
Gasecki, Dariusz; Rojek, Agnieszka; Kwarciany, Mariusz; Kubach, Marlena; Boutouyrie, Pierre; Nyka, Walenty; Laurent, Stephane; Narkiewicz, Krzysztof
2012-02-01
Increased aortic stiffness (measured by carotid-femoral pulse wave velocity) and central augmentation index have been shown to independently predict cardiovascular events, including stroke. We studied whether pulse wave velocity and central augmentation index predict functional outcome after ischemic stroke. In a prospective study, we enrolled 99 patients with acute ischemic stroke (age 63.7 ± 12.4 years, admission National Institutes of Health Stroke Scale score 6.6 ± 6.6, mean ± SD). Carotid-femoral pulse wave velocity and central augmentation index (SphygmoCor) were measured 1 week after stroke onset. Functional outcome was evaluated 90 days after stroke using the modified Rankin Scale with modified Rankin Scale score of 0 to 1 considered an excellent outcome. In univariate analysis, low carotid-femoral pulse wave velocity (P=0.000001) and low central augmentation index (P=0.028) were significantly associated with excellent stroke outcome. Age, severity of stroke, presence of previous stroke, diabetes, heart rate, and peripheral pressures also predicted stroke functional outcome. In multivariate analysis, the predictive value of carotid-femoral pulse wave velocity (<9.4 m/s) remained significant (OR, 0.21; 95% CI, 0.06-0.79; P=0.02) after adjustment for age, National Institutes of Health Stroke Scale score on admission, and presence of previous stroke. By contrast, central augmentation index had no significant predictive value after adjustment. This study indicates that aortic stiffness is an independent predictor of functional outcome in patients with acute ischemic stroke.
Arterial wave reflection and aortic valve calcification in an elderly community-based cohort.
Sera, Fusako; Russo, Cesare; Iwata, Shinichi; Jin, Zhezhen; Rundek, Tatjana; Elkind, Mitchell S V; Homma, Shunichi; Sacco, Ralph L; Di Tullio, Marco R
2015-04-01
Aortic valve calcification (AVC) without stenosis is common in the elderly, is associated with cardiovascular morbidity and mortality, and may progress to aortic valve stenosis. Arterial stiffness and pulse-wave reflection are important components of proximal aortic hemodynamics, but their relationship with AVC is not established. To investigate the relationship of arterial wave reflection and stiffness with AVC, pulse wave analysis and AVC evaluation by echocardiography were performed in 867 participants from the Cardiovascular Abnormalities and Brain Lesions study. Participants were divided into four categories on the basis of the severity and extent of AVC: (1) none or mild focal AVC, (2) mild diffuse AVC, (3) moderate to severe focal AVC, and (4) moderate to severe diffuse AVC. Central blood pressures and pulse pressure, total arterial compliance, augmentation index, and time to wave reflection were assessed using applanation tonometry. Indicators of arterial stiffness and wave reflection were significantly associated with AVC severity, except for central systolic and diastolic pressures and time to reflection. After adjustment for pertinent covariates (age, sex, race/ethnicity, and estimated glomerular filtration rate), only augmentation pressure (P = .02) and augmentation index (P = .002) were associated with the severity of AVC. Multivariate logistic regression analysis revealed that augmentation pressure (odds ratio per mm Hg, 1.14; 95% confidence interval, 1.02-1.27; P = .02) and augmentation index (odds ratio per percentage point, 1.07; 95% confidence interval, 1.01-1.13; P = .02) were associated with an increased risk for moderate to severe diffuse AVC, even when central blood pressure value was included in the same model. Arterial wave reflection is associated with AVC severity, independent of blood pressure values. Increased contribution of wave reflection to central blood pressure could be involved in the process leading to AVC. Copyright © 2015 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Augmented shock wave fracture/severance of materials
NASA Technical Reports Server (NTRS)
Schimmel, Morry L. (Inventor); Bement, Laurence J. (Inventor)
1995-01-01
The present invention related generally to severing materials, and more particularly to severing or weakening materials through explosively induced, augmented shock waves. Explosive cords are placed in grooves on the upper surface of the material to be severed or weakened. The explosive cords are initiated simultaneously to introduce explosive shock waves into the material. These shock waves progress toward the centerline between the explosive cords and the lower surface of the material. Intersecting and reflected waves produce a rarefaction zone on the centerline to fail the material in tension. A groove may also be cut in the lower surface of the material to aid in severing or weakening the material.
Visible-light system for detecting doxorubicin contamination on skin and surfaces.
Van Raalte, J; Rice, C; Moss, C E
1990-05-01
A portable system that uses fluorescence stimulated by visible light to identify doxorubicin contamination on skin and surfaces was studied. When activated by violet-blue light in the 465-nm range, doxorubicin fluoresces, emitting orange-red light in the 580-nm range. The light source to stimulate fluorescence was a slide projector with a filter to selectively pass short-wave (blue) visible light. Fluorescence was both observed visually with viewing spectacles and photographed. Solutions of doxorubicin in sterile 0.9% sodium chloride injection were prepared in nine standard concentrations ranging from 2 to 0.001 mg/mL. Droplets of each admixture were placed on stainless steel, laboratory coat cloth, pieces of latex examination glove, bench-top absorbent padding, and other materials on which antineoplastics might spill or leak. These materials then were stored for up to eight weeks and photographed weekly. The relative ability of water, household bleach, hydrogen peroxide solution, and soap solution to deactivate doxorubicin was also measured. Finally, this system was used to inspect the antineoplastic-drug preparation and administration areas of three outpatient cancer clinics for doxorubicin contamination. Doxorubicin fluorescence was easily detectable with viewing spectacles when a slide projector was used as the light source. The photographic method was sensitive for doxorubicin concentrations from 2.0 to 0.001 mg/mL. Immersion of study materials in bleach for one minute eliminated detectable fluorescence. Doxorubicin contamination is detectable for at least eight weeks in the ambient environment. Probable doxorubicin contamination was detected in two of the three clinics surveyed. A safe, portable system that uses fluorescence stimulated by visible light is a sensitive method for detecting doxorubicin on skin and surfaces.
High-accuracy 3D measurement system based on multi-view and structured light
NASA Astrophysics Data System (ADS)
Li, Mingyue; Weng, Dongdong; Li, Yufeng; Zhang, Longbin; Zhou, Haiyun
2013-12-01
3D surface reconstruction is one of the most important topics in Spatial Augmented Reality (SAR). Using structured light is a simple and rapid method to reconstruct the objects. In order to improve the precision of 3D reconstruction, we present a high-accuracy multi-view 3D measurement system based on Gray-code and Phase-shift. We use a camera and a light projector that casts structured light patterns on the objects. In this system, we use only one camera to take photos on the left and right sides of the object respectively. In addition, we use VisualSFM to process the relationships between each perspective, so the camera calibration can be omitted and the positions to place the camera are no longer limited. We also set appropriate exposure time to make the scenes covered by gray-code patterns more recognizable. All of the points above make the reconstruction more precise. We took experiments on different kinds of objects, and a large number of experimental results verify the feasibility and high accuracy of the system.
Sekihara, K; Poeppel, D; Marantz, A; Koizumi, H; Miyashita, Y
1997-09-01
This paper proposes a method of localizing multiple current dipoles from spatio-temporal biomagnetic data. The method is based on the multiple signal classification (MUSIC) algorithm and is tolerant of the influence of background brain activity. In this method, the noise covariance matrix is estimated using a portion of the data that contains noise, but does not contain any signal information. Then, a modified noise subspace projector is formed using the generalized eigenvectors of the noise and measured-data covariance matrices. The MUSIC localizer is calculated using this noise subspace projector and the noise covariance matrix. The results from a computer simulation have verified the effectiveness of the method. The method was then applied to source estimation for auditory-evoked fields elicited by syllable speech sounds. The results strongly suggest the method's effectiveness in removing the influence of background activity.
NASA Astrophysics Data System (ADS)
Alexandrou, Constantia; Athenodorou, Andreas; Cichy, Krzysztof; Constantinou, Martha; Horkel, Derek P.; Jansen, Karl; Koutsou, Giannis; Larkin, Conor
2018-04-01
We compare lattice QCD determinations of topological susceptibility using a gluonic definition from the gradient flow and a fermionic definition from the spectral-projector method. We use ensembles with dynamical light, strange and charm flavors of maximally twisted mass fermions. For both definitions of the susceptibility we employ ensembles at three values of the lattice spacing and several quark masses at each spacing. The data are fitted to chiral perturbation theory predictions with a discretization term to determine the continuum chiral condensate in the massless limit and estimate the overall discretization errors. We find that both approaches lead to compatible results in the continuum limit, but the gluonic ones are much more affected by cutoff effects. This finally yields a much smaller total error in the spectral-projector results. We show that there exists, in principle, a value of the spectral cutoff which would completely eliminate discretization effects in the topological susceptibility.
A subjective evaluation of high-chroma color with wide color-gamut display
NASA Astrophysics Data System (ADS)
Kishimoto, Junko; Yamaguchi, Masahiro; Ohyama, Nagaaki
2009-01-01
Displays tends to expand its color gamut, such as multi-primary color display, Adobe RGB and so on. Therefore displays got possible to display high chroma colors. However sometimes, we feel unnatural some for the image which only expanded chroma. Appropriate gamut mapping method to expand color gamut is not proposed very much. We are attempting preferred expanded color reproduction on wide color gamut display utilizing high chroma colors effectively. As a first step, we have conducted an experiment to investigate the psychological effect of color schemes including highly saturated colors. We used the six-primary-color projector that we have developed for the presentation of test colors. The six-primary-color projector's gamut volume in CIELAB space is about 1.8 times larger than the normal RGB projector. We conducted a subjective evaluation experiment using the SD (Semantic Differential) technique to find the quantitative psychological effect of high chroma colors.
Chattopadhyay, Pronobesh; Hazarika, Soilyadhar; Dhiman, Sunil; Upadhyay, Aadesh; Pandey, Anurag; Karmakar, Sanjeev; Singh, Lokendra
2012-01-01
Background: Vitex negundo L. (Verbenaceae) is a hardy plant widely distributed in the Indian subcontinent and used for treatment of a wide spectrum of health disorders in traditional and folk medicine, some of which have been experimentally validated. In present study, we aimed to investigate the anti-inflammatory effects of V. negundo in carrageenan-induced paw edema in rats, and to investigate the probable mechanism of anti-inflammatory action. Materials and Methods: Paw edema was produced by injecting 1% solution of carrageenan, and the paw volume was measured before and after carrageenan injection up to 5 h. V. negundo leaf oil was extracted using a Clevenger apparatus and administered by a trans-dermal route to Wistar rats and the percentage of inhibition of inflammation was observed using a Plethysmometer by comparing a compound aerosol-based formulation with 1 mg diclofinac diethylamine BP and 7 mg methyl salicylate IP/kg body weight served as a standard drug whereas paraffin oil served as the placebo group. After withdrawing of blood, serum was separated and cyclooxygenase (COX)-1 and COX-2 inhibitory activities were measured by the enzyme immuno assay (EIA) method by using a COX inhibitor screening assay kit. Results and Discussion: V. negundo leaf oil significantly (P < 0.05) reduced the carrageenan-induced paw edema as compared to the placebo group (paraffin oil) and 1 mg diclofinac diethylamine BP and 7 mg methyl salicylate IP showed the maximum inhibition of paw edema as compared to the V. negundo leaf oil treated group and the control group. Also in the present study V. negundo leaf oil showed significantly (P < 0.05) inhibits COX-1 pathways rather than COX-2 pathways as compared to the V. negundo leaf oil treated group. Conclusion: It is suggested that the V. negundo leaf oil is a potent anti-inflammatory agent and acts via inhibition of COX-2 without much interfering COX-1 pathways. PMID:22923950
Energetics of halogen impurities in thorium dioxide
NASA Astrophysics Data System (ADS)
Kuganathan, Navaratnarajah; Ghosh, Partha S.; Arya, Ashok K.; Dey, Gautam K.; Grimes, Robin W.
2017-11-01
Defect energies for halogen impurity atoms (Cl, Br and I) in thoria are calculated using the generalized gradient approximation and projector augmented plane wave potentials under the framework of density functional theory. The energy to place a halogen atom at a pre-existing lattice site is the incorporation energy. Seven sites are considered: octahedral interstitial, O vacancy, Th vacancy, Th-O di-vacancy cluster (DV) and the three O-Th-O tri-vacancy cluster (NTV) configurations. For point defects and vacancy clusters, neutral and all possible defect charge states up to full formal charge are considered. The most favourable incorporation site for Cl is the singly charged positive oxygen vacancy while for Br and I it is the NTV1 cluster. By considering the energy to form the defect sites, solution energies are generated. These show that in both ThO2-x and ThO2 the most favourable solution equilibrium site for halides is the single positively charged oxygen vacancy (although in ThO2, I demonstrates the same solubility in the NTV1 and DV clusters). Solution energies are much lower in ThO2-x than in ThO2 indicating that stoichiometry is a significant factor in determining solubility. In ThO2, all three halogens are highly insoluble and in ThO2-x Br and I remain insoluble. Although ½Cl2 is soluble in ThO2-x alternative phases such as ZrCl4 exist which are of lower energy.
Evolutionary Origins of a Bioactive Peptide Buried within Preproalbumin[C][W
Elliott, Alysha G.; Delay, Christina; Liu, Huanle; Phua, Zaiyang; Rosengren, K. Johan; Benfield, Aurélie H.; Panero, Jose L.; Colgrave, Michelle L.; Jayasena, Achala S.; Dunse, Kerry M.; Anderson, Marilyn A.; Schilling, Edward E.; Ortiz-Barrientos, Daniel; Craik, David J.; Mylne, Joshua S.
2014-01-01
The de novo evolution of proteins is now considered a frequented route for biological innovation, but the genetic and biochemical processes that lead to each newly created protein are often poorly documented. The common sunflower (Helianthus annuus) contains the unusual gene PawS1 (Preproalbumin with SFTI-1) that encodes a precursor for seed storage albumin; however, in a region usually discarded during albumin maturation, its sequence is matured into SFTI-1, a protease-inhibiting cyclic peptide with a motif homologous to unrelated inhibitors from legumes, cereals, and frogs. To understand how PawS1 acquired this additional peptide with novel biochemical functionality, we cloned PawS1 genes and showed that this dual destiny is over 18 million years old. This new family of mostly backbone-cyclic peptides is structurally diverse, but the protease-inhibitory motif was restricted to peptides from sunflower and close relatives from its subtribe. We describe a widely distributed, potential evolutionary intermediate PawS-Like1 (PawL1), which is matured into storage albumin, but makes no stable peptide despite possessing residues essential for processing and cyclization from within PawS1. Using sequences we cloned, we retrodict the likely stepwise creation of PawS1’s additional destiny within a simple albumin precursor. We propose that relaxed selection enabled SFTI-1 to evolve its inhibitor function by converging upon a successful sequence and structure. PMID:24681618
Home theater projectors: the next big thing?
NASA Astrophysics Data System (ADS)
Chinnock, Christopher B.
2002-04-01
The business presentation market has traditionally been the mainstay of the projection business, but as these users find the projectors work well at showing movies at home, interest in the home entertainment market is heating up. The idea of creating a theater environment in the home, complete with big screen projector and quality audio system, is not new. Wealthy patrons have been doing it for years. But can the concept be extended to ordinary living rooms? Many think so. Already pioneers like Sony, InFocus, Toshiba and Plus Vision are offering first generation products - and others will follow. But this market will require projectors that have different performance characteristics than those designed for data projection. In this paper, we will discuss how the requirements for a home theater projector differ from those of a data projector. We will provide updated information on who is doing what in this segment and give some insight into the growth potential.
Realizing the increased potential of an open-system high-definition digital projector design
NASA Astrophysics Data System (ADS)
Daniels, Reginald
1999-05-01
Modern video projectors are becoming more compact and capable. Various display technologies are very competitive and are delivering higher performance and more compact projectors to market at an ever quickening pace. However the end users are often left with the daunting task of integrating the 'off the self projectors' into a previously existing system. As the projectors become more digitally enhanced, there will be a series of designs, and the digital projector technology matures. The design solutions will be restricted by the state of the art at the time of manufacturing. In order to allow the most growth and performance for a given price, many design decisions will be made and revisited over a period of years or decades. A modular open digital system design concept is indeed a major challenge of the future high definition digital displays for al applications.
Experiential learning in soil science: Use of an augmented reality sandbox
NASA Astrophysics Data System (ADS)
Vaughan, Karen; Vaughan, Robert; Seeley, Janel; Brevik, Eric
2017-04-01
It is known widely that greater learning occurs when students are active participants. Novel technologies allow instructors the opportunity to create interactive activities for undergraduate students to gain comprehension of complex landscape processes. We incorporated the use of an Augmented Reality (AR) Sandbox in the Introductory Soil Science course at the University of Wyoming to facilitate an experiential learning experience in pedology. The AR Sandbox was developed by researchers at the University of California, Davis as part of a project on informal science education in freshwater lakes and watershed science. It is a hands-on display that allows users to create topography models by shaping sand that is augmented in real-time by a colored elevation maps, topographic contour lines, and simulated water. It uses a 3-dimensional motion sensing camera that detects changes to the distance between the sand surface and the camera sensor. A short-throw projector then displays the elevation model and contour lines in real-time. Undergraduate students enrolled in the Introductory Soil Science course were tasked with creating a virtual landscape and then predicting where particular soils would form on the various landforms. All participants reported a greater comprehension of surface water flow, erosion, and soil formation as a result of this exercise. They provided suggestions for future activities using the AR Sandbox including its incorporation into lessons of watershed hydrology, land management, soil water, and soil genesis.
A Gauss-Newton full-waveform inversion in PML-truncated domains using scalar probing waves
NASA Astrophysics Data System (ADS)
Pakravan, Alireza; Kang, Jun Won; Newtson, Craig M.
2017-12-01
This study considers the characterization of subsurface shear wave velocity profiles in semi-infinite media using scalar waves. Using surficial responses caused by probing waves, a reconstruction of the material profile is sought using a Gauss-Newton full-waveform inversion method in a two-dimensional domain truncated by perfectly matched layer (PML) wave-absorbing boundaries. The PML is introduced to limit the semi-infinite extent of the half-space and to prevent reflections from the truncated boundaries. A hybrid unsplit-field PML is formulated in the inversion framework to enable more efficient wave simulations than with a fully mixed PML. The full-waveform inversion method is based on a constrained optimization framework that is implemented using Karush-Kuhn-Tucker (KKT) optimality conditions to minimize the objective functional augmented by PML-endowed wave equations via Lagrange multipliers. The KKT conditions consist of state, adjoint, and control problems, and are solved iteratively to update the shear wave velocity profile of the PML-truncated domain. Numerical examples show that the developed Gauss-Newton inversion method is accurate enough and more efficient than another inversion method. The algorithm's performance is demonstrated by the numerical examples including the case of noisy measurement responses and the case of reduced number of sources and receivers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Jijun; Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology; Akimoto, Ryoichi, E-mail: r-akimoto@aist.go.jp
2015-10-19
Low threshold current ridge-waveguide BeZnCdSe quantum-well laser diodes (LDs) have been developed by completely etching away the top p-type BeMgZnSe/ZnSe:N short-period superlattice cladding layer, which can suppress the leakage current that flows laterally outside of the electrode. The waveguide LDs are covered with a thick SiO{sub 2} layer and planarized with chemical-mechanical polishing and a reactive ion etching process. Room-temperature lasing under continuous-wave condition is achieved with the laser cavity formed by the cleaved waveguide facets coated with high-reflectivity dielectric films. For a 4 μm-wide green LD lasing around a wavelength of 535 nm, threshold current and voltage of 7.07 mA and 7.89 Vmore » are achieved for a cavity length of 300 μm, and the internal differential quantum efficiency, internal absorption loss, gain constant, and nominal transparency current density are estimated to be 27%, 4.09 cm{sup −1}, 29.92 (cm × μm)/kA and 6.35 kA/(cm{sup 2 }× μm), respectively. This compact device can realize a significantly improved performance with much lower threshold power consumption, which would benefit the potential application for ZnSe-based green LDs as light sources in full-color display and projector devices installed in consumer products such as pocket projectors.« less
A simple and low-cost structured illumination microscopy using a pico-projector
NASA Astrophysics Data System (ADS)
Özgürün, Baturay
2018-02-01
Here, development of a low-cost structured illumination microscopy (SIM) based on a pico-projector is presented. The pico-projector consists of independent red, green and blue LEDs that remove need for an external illumination source. Moreover, display element of the pico-projector serves as a pattern generating spatial light modulator. A simple lens group is employed to couple light from the projector to an epi-illumination port of a commercial microscope system. 2D sub SIM images are acquired and synthesized to surpass the diffraction limit using 40x (0.75 NA) objective. Resolution of the reconstructed SIM images is verified with a dye-and-object object and a fixed cell sample.
Structured light system calibration method with optimal fringe angle.
Li, Beiwen; Zhang, Song
2014-11-20
For structured light system calibration, one popular approach is to treat the projector as an inverse camera. This is usually performed by projecting horizontal and vertical sequences of patterns to establish one-to-one mapping between camera points and projector points. However, for a well-designed system, either horizontal or vertical fringe images are not sensitive to depth variation and thus yield inaccurate mapping. As a result, the calibration accuracy is jeopardized if a conventional calibration method is used. To address this limitation, this paper proposes a novel calibration method based on optimal fringe angle determination. Experiments demonstrate that our calibration approach can increase the measurement accuracy up to 38% compared to the conventional calibration method with a calibration volume of 300(H) mm×250(W) mm×500(D) mm.
Impact of various lecture delivery methods in pharmacology
Seth, Vikas; Upadhyaya, Prerna; Ahmad, Mushtaq; Kumar, Virendra
2010-01-01
The aim of the study was to assess the impact of three common lecture delivery methods viz. the lectures using chalkboard, the lectures using PowerPoint presentations and the lectures utilizing transparencies with an overhead projector. By filling in a questionnaire, the second year MBBS students were asked to assess the impact of three pharmacology lectures given by three different methods of lecture delivery. Also after each lecture an objective test was given to compare the impact of the lecture delivered by different methods. The results of the study show that as per the subjective assessment of the lectures, students preferred PowerPoint teaching the most. As far as the students' performance is concerned the impact of traditional Chalkboard and PowerPoint teaching was much more than the lectures using transparency and overhead projector (OHP). PMID:29255392
Parallelization of the FLAPW method and comparison with the PPW method
NASA Astrophysics Data System (ADS)
Canning, Andrew; Mannstadt, Wolfgang; Freeman, Arthur
2000-03-01
The FLAPW (full-potential linearized-augmented plane-wave) method is one of the most accurate first-principles methods for determining electronic and magnetic properties of crystals and surfaces. In the past the FLAPW method has been limited to systems of about a hundred atoms due to the lack of an efficient parallel implementation to exploit the power and memory of parallel computers. In this work we present an efficient parallelization of the method by division among the processors of the plane-wave components for each state. The code is also optimized for RISC (reduced instruction set computer) architectures, such as those found on most parallel computers, making full use of BLAS (basic linear algebra subprograms) wherever possible. Scaling results are presented for systems of up to 686 silicon atoms and 343 palladium atoms per unit cell running on up to 512 processors on a Cray T3E parallel supercomputer. Some results will also be presented on a comparison of the plane-wave pseudopotential method and the FLAPW method on large systems.
Zhang, Xiao; Liu, Jian Jun; Fang Sum, Chee; Ying, Yeoh Lee; Tavintharan, Subramaniam; Ng, Xiao Wei; Su, Chang; Low, Serena; Lee, Simon Bm; Tang, Wern Ee; Lim, Su Chi
2016-07-01
To examine the relationship between inflammation and central arterial stiffness in a type 2 diabetes Asian cohort. Central arterial stiffness was estimated by carotid-femoral pulse wave velocity and augmentation index. Linear regression model was used to evaluate the association of high-sensitivity C-reactive protein and soluble receptor for advanced glycation end products with pulse wave velocity and augmentation index. High-sensitivity C-reactive protein was analysed as a continuous variable and categories (<1, 1-3, and >3 mg/L). There is no association between high-sensitivity C-reactive protein and pulse wave velocity. Augmentation index increased with high-sensitivity C-reactive protein as a continuous variable (β = 0.328, p = 0.049) and categories (β = 1.474, p = 0.008 for high-sensitivity C-reactive protein: 1-3 mg/L and β = 1.323, p = 0.019 for high-sensitivity C-reactive protein: >3 mg/L) after multivariable adjustment. No association was observed between augmentation index and soluble receptor for advanced glycation end products. Each unit increase in natural log-transformed soluble receptor for advanced glycation end products was associated with 0.328 m/s decrease in pulse wave velocity after multivariable adjustment (p = 0.007). Elevated high-sensitivity C-reactive protein and decreased soluble receptor for advanced glycation end products are associated with augmentation index and pulse wave velocity, respectively, suggesting the potential role of systemic inflammation in the pathogenesis of central arterial stiffness in type 2 diabetes. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Chen, Enguo; Liu, Peng; Yu, Feihong
2012-10-01
A novel synchronized optimization method of multiple freeform surfaces is proposed and applied to double lenses illumination system design of CF-LCoS pico-projectors. Based on Snell's law and the energy conservation law, a series of first-order partial differential equations are derived for the multiple freeform surfaces of the initial system. By assigning the light deflection angle to each freeform surface, multiple surfaces can be obtained simultaneously by solving the corresponding equations, meanwhile the restricted angle on CF-LCoS is guaranteed. In order to improve the spatial uniformity, the multi-surfaces are synchronously optimized by using simplex algorithm for an extended LED source. Design example shows that the double lenses based illumination system, which employs a single 2 mm×2 mm LED chip and a CF-LCoS panel with a diagonal of 0.59 inches satisfies the needs of pico-projector. Moreover, analytical result indicates that the design method represents substantial improvement and practical significance over traditional CF-LCoS projection system, which could offer outstanding performance with both portability and low cost. The synchronized optimization design method could not only realize collimating and uniform illumination, but also could be introduced to other specific light conditions.
Tomiyama, Hirofumi; Komatsu, Shunsuke; Shiina, Kazuki; Matsumoto, Chisa; Kimura, Kazutaka; Fujii, Masatsune; Takahashi, Lisa; Chikamori, Taishiro; Yamashina, Akira
2018-05-08
We conducted analyses of repeated-measures data to examine whether pressure wave reflection acts additively or synergistically with arterial stiffness in the pathogenesis of hypertension. In 3172 middle-aged (42±9 years) healthy Japanese men without hypertension at the study baseline, systolic and diastolic blood pressures, brachial-ankle pulse wave velocity, and radial augmentation index were measured annually during a 9-year study period. Of these, 474 participants (15%) developed hypertension by the end of the study period. Binary logistic regression analysis demonstrated significant individual odds ratios for both baseline brachial-ankle pulse wave velocity and radial augmentation index for the development of hypertension. The rate of onset of hypertension during the study period was highest in the participant group with high values for both brachial-ankle pulse wave velocity and radial augmentation index at study baseline (262 of 965 participants: 27%). The generalized estimating equation analysis revealed that both radial augmentation index (estimate=0.06, SE=0.03, P =0.05) and brachial-ankle pulse wave velocity (estimate=0.07×10 -1 , SE=0.02×10 -1 , P <0.01) showed significant longitudinal association with new onset of hypertension, with no significant interaction. In Japanese men, abnormal wave reflection and increased arterial stiffness may be additively associated with the risk of new onset of hypertension. Abnormal wave reflection and elevated central blood pressure may be longitudinally associated with increase in arterial stiffness, and this longitudinal association may be a mechanism underlying the additive effect of these 2 variables on the risk of new onset of hypertension. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
A method for the real-time construction of a full parallax light field
NASA Astrophysics Data System (ADS)
Tanaka, Kenji; Aoki, Soko
2006-02-01
We designed and implemented a light field acquisition and reproduction system for dynamic objects called LiveDimension, which serves as a 3D live video system for multiple viewers. The acquisition unit consists of circularly arranged NTSC cameras surrounding an object. The display consists of circularly arranged projectors and a rotating screen. The projectors are constantly projecting images captured by the corresponding cameras onto the screen. The screen rotates around an in-plane vertical axis at a sufficient speed so that it faces each of the projectors in sequence. Since the Lambertian surfaces of the screens are covered by light-collimating plastic films with vertical louver patterns that are used for the selection of appropriate light rays, viewers can only observe images from a projector located in the same direction as the viewer. Thus, the dynamic view of an object is dependent on the viewer's head position. We evaluated the system by projecting both objects and human figures and confirmed that the entire system can reproduce light fields with a horizontal parallax to display video sequences of 430x770 pixels at a frame rate of 45 fps. Applications of this system include product design reviews, sales promotion, art exhibits, fashion shows, and sports training with form checking.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-27
... INTERNATIONAL TRADE COMMISSION [DN 2849] Certain Projectors With Controlled-Angle Optical... Re Certain Projectors with Controlled-Angle Optical Retarders, Components Thereof, And Products... complaint. FOR FURTHER INFORMATION CONTACT: James R. Holbein, Secretary to the Commission, U.S...
Electron correlation and relativity of the 5f electrons in the U-Zr alloy system
NASA Astrophysics Data System (ADS)
Söderlind, P.; Sadigh, B.; Lordi, V.; Landa, A.; Turchi, P. E. A.
2014-01-01
We address a recently communicated conception that spin-orbit interaction and strong electron correlations are important for the metal fuel U-Zr system. Here, we show that (i) relativistic effects only marginally correct the uranium metal equation-of-state and (ii) addition of onsite Coulomb repulsion leads to an unphysical magnetic ground state of the body-centered cubic (γ) phase and a grossly overestimated equilibrium volume. Consequently, LSDA + U is deemed unsuitable for describing the electronic structure of the U-Zr system.
Center for Coastline Security Technology, Year 3
2008-05-01
Polarization control for 3D Imaging with the Sony SRX-R105 Digital Cinema Projectors 3.4 HDMAX Camera and Sony SRX-R105 Projector Configuration for 3D...HDMAX Camera Pair Figure 3.2 Sony SRX-R105 Digital Cinema Projector Figure 3.3 Effect of camera rotation on projected overlay image. Figure 3.4...system that combines a pair of FAU’s HD-MAX video cameras with a pair of Sony SRX-R105 digital cinema projectors for stereo imaging and projection
Tékus, Valéria; Horváth, Ádám; Hajna, Zsófia; Borbély, Éva; Bölcskei, Kata; Boros, Melinda; Pintér, Erika; Helyes, Zsuzsanna; Pethő, Gábor; Szolcsányi, János
2016-06-01
To investigate the roles of TRPV1 and TRPA1 channels in baseline and allyl isothiocyanate (AITC)-evoked nociceptive responses by comparing wild-type and gene-deficient mice. In contrast to conventional methods of thermonociception measuring reflex latencies, we used our novel methods to determine the noxious heat threshold. It was revealed that the heat threshold of the tail measured by an increasing-temperature water bath is significantly higher in TRPV1(-/-), but not TRPA1(-/-), mice compared to respective wild-types. There was no difference between the noxious heat thresholds of the hind paw as measured by an increasing-temperature hot plate in TRPV1(-/-), TRPA1(-/-) and the corresponding wild-type mice. The withdrawal latency of the tail from 0°C water was prolonged in TRPA1(-/-), but not TRPV1(-/-), mice compared to respective wild-types. In wild-type animals, dipping the tail or paw into 1% AITC induced an 8-14°C drop of the noxious heat threshold (heat allodynia) of both the tail and paw, and 40-50% drop of the mechanonociceptive threshold (mechanical allodynia) of the paw measured by dynamic plantar esthesiometry. These AITC-evoked responses were diminished in TRPV1(-/-), but not TRPA1(-/-), mice. Tail withdrawal latency to 1% AITC was significantly prolonged in both gene-deleted strains. Different heat sensors determine the noxious heat threshold in distinct areas: a pivotal role for TRPV1 on the tail is contrasted with no involvement of either TRPV1 or TRPA1 on the hind paw. Noxious heat threshold measurement appears appropriate for preclinical screening of TRP channel ligands as novel analgesics. Copyright © 2016 Elsevier Inc. All rights reserved.
Gowda, Vasantha; Laitinen, Risto S; Telkki, Ville-Veikko; Larsson, Anna-Carin; Antzutkin, Oleg N; Lantto, Perttu
2016-12-06
The molecular, crystal, and electronic structures as well as spectroscopic properties of a mononuclear heteroleptic lanthanum(iii) complex with diethyldithiocarbamate and 1,10-phenanthroline ligands (3 : 1) were studied by solid-state 13 C and 15 N cross-polarisation (CP) magic-angle-spinning (MAS) NMR, X-ray diffraction (XRD), and first principles density functional theory (DFT) calculations. A substantially different powder XRD pattern and 13 C and 15 N CP-MAS NMR spectra indicated that the title compound is not isostructural to the previously reported analogous rare earth complexes with the space group P2 1 /n. Both 13 C and 15 N CP-MAS NMR revealed the presence of six structurally different dithiocarbamate groups in the asymmetric unit cell, implying a non-centrosymmetric packing arrangement of molecules. This was supported by single-crystal X-ray crystallography showing that the title compound crystallised in the triclinic space group P1[combining macron]. In addition, the crystal structure also revealed that one of the dithiocarbamate ligands has a conformational disorder. NMR chemical shift calculations employing the periodic gauge including projector augmented wave (GIPAW) approach supported the assignment of the experimental 13 C and 15 N NMR spectra. However, the best correspondences were obtained with the structure where the atomic positions in the X-ray unit cell were optimised at the DFT level. The roles of the scalar and spin-orbit relativistic effects on NMR shielding were investigated using the zeroth-order regular approximation (ZORA) method with the outcome that already the scalar relativistic level qualitatively reproduces the experimental chemical shifts. The electronic properties of the complex were evaluated based on the results of the natural bond orbital (NBO) and topology of the electron density analyses. Overall, we apply a multidisciplinary approach acquiring comprehensive information about the solid-state structure and the metal-ligand bonding of the heteroleptic lanthanum complex.
Szell, Patrick M J; Gabriel, Shaina A; Gill, Russell D D; Wan, Shirley Y H; Gabidullin, Bulat; Bryce, David L
2017-03-01
Halogen bonding is a noncovalent interaction between the electrophilic region of a halogen (σ-hole) and an electron donor. We report a crystallographic and structural analysis of halogen-bonded compounds by applying a combined X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (SSNMR) approach. Single-crystal XRD was first used to characterize the halogen-bonded cocrystals formed between two fluorinated halogen-bond donors (1,4-diiodotetrafluorobenzene and 1,3,5-trifluoro-2,4,6-triiodobenzene) and several nitrogen-containing heterocycles (acridine, 1,10-phenanthroline, 2,3,5,6-tetramethylpyrazine, and hexamethylenetetramine). New structures are reported for the following three cocrystals, all in the P2 1 /c space group: acridine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 13 H 9 N, 1,10-phenanthroline-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 12 H 8 N 2 , and 2,3,5,6-tetramethylpyrazine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 8 H 12 N 2 . 13 C and 19 F solid-state magic-angle spinning (MAS) NMR is shown to be a convenient method to characterize the structural features of the halogen-bond donor and acceptor, with chemical shifts attributable to cocrystal formation observed in the spectra of both nuclides. Cross polarization (CP) from 19 F to 13 C results in improved spectral sensitivity in characterizing the perfluorinated halogen-bond donor when compared to conventional 1 H CP. Gauge-including projector-augmented wave density functional theory (GIPAW DFT) calculations of magnetic shielding constants, along with optimization of the XRD structures, provide a final set of structures in best agreement with the experimental 13 C and 19 F chemical shifts. Data for carbons bonded to iodine remain outliers due to well-known relativistic effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamashita, S.; Masubuchi, Y.; Nakazawa, Y.
2012-10-15
Slight enhancement of saturation magnetization to 219 A m{sup 2} kg{sup -1} was observed from 199 A m{sup 2} kg{sup -1} for the original {alpha}-Fe on the intermediate nitrided mixture of '{alpha} Prime Prime -Fe{sub 16}N{sub 2}' with residual {alpha}-Fe among the low temperature ammonia nitridation products under 5 T magnetic field at room temperature. The value changed not linearly against the yield as had been expected. Crystal structure refinement indicated that the phase similar to {alpha} Prime Prime -Fe{sub 16}N{sub 2} had deviations on its lattice constants and positional parameters, compared to previously reported values for {alpha} Prime Primemore » -Fe{sub 16}N{sub 2}. Spin-polarized total energy calculations were performed using the projector-augmented wave method as implemented in the Vienna ab-initio simulation package (VASP) to calculate magnetic moment on the refined crystal structure of the intermediate '{alpha} Prime Prime -Fe{sub 16}N{sub 2}'. The calculations supported the observed magnetization enhancement in the intermediate nitridation product. - Graphical abstract: Crystal structural parameters slightly change in the intermediate nitrided '{alpha} Prime Prime -Fe{sub 16}N{sub 2}' from those in {alpha} Prime Prime -Fe{sub 16}N{sub 2} to show the magnetization maxima in the mixture of '{alpha} Prime Prime -Fe{sub 16}N{sub 2}' and the residual {alpha}-F. Highlights: Black-Right-Pointing-Pointer Larger magnetization was observed than the value of Fe{sub 16}N{sub 2} on its intermediate nitrided mixture with residual {alpha}-Fe. Black-Right-Pointing-Pointer The enhancement was related to the crystal structural deviation from Fe{sub 16}N{sub 2} on the intermediate nitride. Black-Right-Pointing-Pointer It was supported by spin-polarized total energy calculation using the deviated structure.« less
Theoretical investigations on structural, elastic and electronic properties of thallium halides
NASA Astrophysics Data System (ADS)
Singh, Rishi Pal; Singh, Rajendra Kumar; Rajagopalan, Mathrubutham
2011-04-01
Theoretical investigations on structural, elastic and electronic properties, viz. ground state lattice parameter, elastic moduli and density of states, of thallium halides (viz. TlCl and TlBr) have been made using the full potential linearized augmented plane wave method within the generalized gradient approximation (GGA). The ground state lattice parameter and bulk modulus and its pressure derivative have been obtained using optimization method. Young's modulus, shear modulus, Poisson ratio, sound velocities for longitudinal and shear waves, Debye average velocity, Debye temperature and Grüneisen parameter have also been calculated for these compounds. Calculated structural, elastic and other parameters are in good agreement with the available data.
Wave energy patterns of counterpulsation: a novel approach with wave intensity analysis.
Lu, Pong-Jeu; Yang, Chi-Fu Jeffrey; Wu, Meng-Yu; Hung, Chun-Hao; Chan, Ming-Yao; Hsu, Tzu-Cheng
2011-11-01
In counterpulsation, diastolic augmentation increases coronary blood flow and systolic unloading reduces left ventricular afterload. We present a new approach with wave intensity analysis to revisit and explain counterpulsation principles. In an acute porcine model, a standard intra-aortic balloon pump was placed in descending aorta in 4 pigs. We measured pressure and velocity with probes in left anterior descending artery and aorta during and without intra-aortic balloon pump assistance. Wave intensities of aortic and left coronary waves were derived from pressure and flow measurements with synchronization correction. We identified predominating waves in counterpulsation. In the aorta, during diastolic augmentation, intra-aortic balloon inflation generated a backward compression wave, with a "pushing" effect toward the aortic root that translated to a forward compression wave into coronary circulation. During systolic unloading, intra-aortic balloon pump deflation generated a backward expansion wave that "sucked" blood from left coronary bed into the aorta. While this backward expansion wave translated to reduced left ventricular afterload, the "sucking" effect resulted in left coronary blood steal, as demonstrated by a forward expansion wave in left anterior descending coronary flow. The waves were sensitive to inflation and deflation timing, with just 25 ms delay from standard deflation timing leading to weaker forward expansion wave and less coronary regurgitation. Intra-aortic balloon pumps generate backward-traveling waves that predominantly drive aortic and coronary blood flow during counterpulsation. Wave intensity analysis of arterial circulations may provide a mechanism to explain diastolic augmentation and systolic unloading of intra-aortic balloon pump counterpulsation. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Lateral bias and temperament in the domestic cat (Felis silvestris).
McDowell, Louise J; Wells, Deborah L; Hepper, Peter G; Dempster, Martin
2016-11-01
Research points to a relationship between lateralization and emotional functioning in humans and many species of animal. The present study explored the association between paw preferences and emotional functioning, specifically temperament, in a species thus far overlooked in this area, the domestic cat. Thirty left-pawed, 30 right-pawed, and 30 ambilateral pet cats were recruited following an assessment of their paw preferences using a food-reaching challenge. The animals' temperament was subsequently assessed using the Feline Temperament Profile (FTP). Cats' owners also completed a purpose-designed cat temperament (CAT) scale. Analysis revealed a significant relationship between lateral bias and FTP and CAT scale scores. Ambilateral cats had lower positive (FTP+) scores, and were perceived as less affectionate, obedient, friendly, and more aggressive, than left or right-pawed animals. Left and right pawed cats differed significantly on 1 trait on the CAT scale, namely playfulness. The strength of the cats' paw preferences was related to the animals' FTP and CAT scores. Cats with a greater strength of paw preference had higher FTP+ scores than those with a weaker strength of paw preference. Animals with stronger paw preferences were perceived as more confident, affectionate, active, and friendly than those with weaker paw preferences. Results suggest that motor laterality in the cat is strongly related to temperament and that the presence or absence of lateralization has greater implications for the expression of emotion in this species than the direction of the lateralized bias. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
The ontogenesis of lateralized behavior in the domestic cat, Felis silvestris catus.
Wells, Deborah L; Millsopp, Sarah
2012-02-01
For the first time, the development of paw preferences in the domestic cat, Felis silvestris catus, is explored. Twelve cats were tested at ages 12 weeks, 6 months, and 1 year on a challenge requiring them to use one of their paws to retrieve food. To control for repeated testing of the same cats at different ages, the subjects' paw preferences were compared with those of cats tested just once, at 6 months (n = 11) or 1 year (n = 14) of age. Analysis revealed a significant effect of age on the distribution of cats' paw preferences. Cats were significantly more likely to be ambilateral than paw preferent at 12 weeks and at 6 months but more likely to display a lateral bias in paw use at 1 year. There was a significant positive correlation between cats' paw preferences at 6 months and at 1 year. Lateralized behavior was strongly sex related. Females had a greater preference for using their right paw; males were significantly more inclined to adopt their left. Analysis revealed no significant difference in the direction or strength of paw preferences of cats tested longitudinally or cross-sectionally at 6 months or 1 year of age. Findings indicate that cats develop paw preferences by 1 year and hint at a relative stability in preferred paw use over time. The strong sex effect observed strengthens the case for the influence of a biological mechanism in the emergence of motor asymmetry in cats.
Luegmair, Georg; Mehta, Daryush D.; Kobler, James B.; Döllinger, Michael
2015-01-01
Vocal fold kinematics and its interaction with aerodynamic characteristics play a primary role in acoustic sound production of the human voice. Investigating the temporal details of these kinematics using high-speed videoendoscopic imaging techniques has proven challenging in part due to the limitations of quantifying complex vocal fold vibratory behavior using only two spatial dimensions. Thus, we propose an optical method of reconstructing the superior vocal fold surface in three spatial dimensions using a high-speed video camera and laser projection system. Using stereo-triangulation principles, we extend the camera-laser projector method and present an efficient image processing workflow to generate the three-dimensional vocal fold surfaces during phonation captured at 4000 frames per second. Initial results are provided for airflow-driven vibration of an ex vivo vocal fold model in which at least 75% of visible laser points contributed to the reconstructed surface. The method captures the vertical motion of the vocal folds at a high accuracy to allow for the computation of three-dimensional mucosal wave features such as vibratory amplitude, velocity, and asymmetry. PMID:26087485
Joly, Marine; Scheumann, Marina; Zimmermann, Elke
2012-01-01
Recent results in birds, marsupials, rodents and nonhuman primates suggest that phylogeny and ecological factors such as body size, diet and postural habit of a species influence limb usage and the direction and strength of limb laterality. To examine to which extent these findings can be generalised to small-bodied rooting quadrupedal mammals, we studied trees shrews (Tupaia belangeri). We established a behavioural test battery for examining paw usage comparable to small-bodied primates and tested 36 Tupaia belangeri. We studied paw usage in a natural foraging situation (simple food grasping task) and measured the influence of varying postural demands (triped, biped, cling, sit) on paw preferences by applying a forced-food grasping task similar to other small-bodied primates. Our findings suggest that rooting tree shrews prefer mouth over paw usage to catch food in a natural foraging situation. Moreover, we demonstrated that despite differences in postural demand, tree shrews show a strong and consistent individual paw preference for grasping across different tasks, but no paw preference at a population level. Tree shrews showed less paw usage than small-bodied quadrupedal and arboreal primates, but the same paw preference. Our results confirm that individual paw preferences remain constant irrespective of postural demand in some small-bodied quadrupedal non primate and primate mammals which do not require fine motoric control for manipulating food items. Our findings suggest that the lack of paw/hand preference for grasping food at a population level is a universal pattern among those species and that the influence of postural demand on manual lateralisation in quadrupeds may have evolved in large-bodied species specialised in fine manipulations of food items.
Landucci, E C; Antunes, E; Donato, J L; Faro, R; Hyslop, S; Marangoni, S; Oliveira, B; Cirino, G; de Nucci, G
1995-01-01
1. The effect of purified crotapotin, a non-toxic non-enzymatic chaperon protein normally complexed to a phospholipase A2 (PLA2) in South America rattlesnake venom, was studied in the acute inflammatory response induced by carrageenin (1 mg/paw), compound 48/80 (3 micrograms/paw) and 5-hydroxytryptamine (5-HT) (3 micrograms/paw) in the rat hind-paw. The effects of crotapotin on platelet aggregation, mast cell degranulation and eicosanoid release from guinea-pig isolated lung were also investigated. 2. Subplantar co-injection of crotapotin (1 and 10 micrograms/paw) with carrageenin or injection of crotapotin (10 micrograms/paw) into the contralateral paw significantly inhibited the carrageenin-induced oedema. This inhibition was also observed when crotapotin (10-30 micrograms/paw) was administered either intraperitoneally or orally. Subplantar injection of heated crotapotin (15 min at 60 degrees C) failed to inhibit carrageenin-induced oedema. Subplantar injection of crotapotin (10 micrograms/paw) also significantly inhibited the rat paw oedema induced by compound 48/80, but it did not affect 5-HT-induced oedema. 3. In adrenalectomized animals, subplantar injection of crotapotin markedly inhibited the oedema induced by carrageenin. The inhibitory effect of crotapotin was also observed in rats depleted of histamine and 5-HT stores. 4. Crotapotin (30 micrograms/paw) had no effect on either the histamine release induced by compound 48/80 in vitro or on the platelet aggregation induced by both arachidonic acid (1 nM) and platelet activating factor (1 microM) in human platelet-rich plasma. The platelet aggregation and thromboxane B2 (TXB2) release induced by thrombin (100 mu ml-1) in washed human platelets were also not affected by crotapotin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7537590
LCD Projectors: An Evaluation of Features and Utilization for Educators.
ERIC Educational Resources Information Center
Fawson, Curtis E.
1990-01-01
Describes liquid crystal display (LCD) projectors and discusses their use in educational settings. Highlights include rear screen projection; LCD projectors currently available and the number of pixel elements in each; and examples of instructional applications, including portable setups, and use with videocassette recorders (VCRs), computers, and…
Digital Projectors Demystified
ERIC Educational Resources Information Center
Careless, James
2007-01-01
Digital projectors are becoming a common sight in U.S. schools. A projector can serve many roles, from letting teachers give tours of educational Web sites to having students present their projects to the entire class. With this trend come questions: Which projection technology is the most cost-effective? Which requires the least maintenance? How…
Market trends in the projection display industry
NASA Astrophysics Data System (ADS)
Dash, Sweta
2001-03-01
The projection display industry represents a multibillion- dollar market that includes four distinct technologies. High-volume consumer products and high-value business products drive the market, with different technologies being used in different application markets. The consumer market is dominated by rear CRT technology, especially in the projection TV segment. Rear LCD (liquid crystal display), MEMS/DLP (or Digital Light Processing TM) and LCOS (Liquid-crystal-on-silicon) TVs are slowly emerging as future competitors to rear CRT projectors. Front CRT projectors are also facing challenges from LCD and DLP technology for the home theater market while the business market is completely dominated by front LCD and DLP technology. Three-chip DLP projectors have replaced liquid crystal light valves in large venue applications where projectors have higher light output requirements. In recent years front LCD and LCOS projectors have been increasingly competing with 3-chip DLP projectors especially at the low end of the large venue application market. Within the next five years the projection market will experience very fast growth. Sales and presentation applications, which are the fastest growing applications in the business market, will continue to be the major driving force for the growth for front projectors, and the shift in the consumer market to digital and HDTV products will drive the rear projection market.
Kumar, Tekeshwar; Jain, Vishal
2014-01-01
Antinociceptive and anti-inflammatory potentials of methanolic extract of Bridelia retusa fruit (BRME) were evaluated against different animal models in rodents. Antinociceptive effects of BRME were assessed in mice using the acetic acid-induced writhing and formalin test. Anti-inflammatory effects of BRME in three different doses, namely, 100, 200, and 400 mg/kg, were evaluated by utilizing different animal models representing various changes associated with inflammation, namely, carrageenan-induced paw oedema, histamine and serotonin-induced paw oedema, arachidonic acid-induced paw oedema, formalin-induced paw oedema, TPA-induced ear oedema, acetic acid-induced vascular permeability, total WBC count in paw fluid, and myeloperoxidase assay. Also BRME was phytochemically evaluated using chromatographic method. The BRME did not exhibit any signs of toxicity up to a dose of 2000 mg/kg. The extract showed statistical significant inhibition of induced nociception and inflammation in dose dependent manner. The higher dose of extract significantly inhibited pain and inflammation against control (P < 0.001). HPLC results revealed the presence of gallic acid and ellagic acid as phytoconstituents in BRME and it was proven as anti-inflammatory agents. The present study scientifically demonstrated the antinociceptive and anti-inflammatory potential of fruit of B. retusa methanolic extract. These effects may be attributed to the presence of polyphenolic phytoconstituents in the extract. PMID:25506619
Evaluation of anti-inflammatory potential of leaf extracts of Skimmia anquetilia
Kumar, Vijender; Bhat, Zulfiqar Ali; Kumar, Dinesh; Khan, NA; Chashoo, IA
2012-01-01
Objective To evaluate anti-inflammatory potential of leaf extract of Skimmia anquetilia by in-vitro and in-vivo anti-inflammatory models. Methods Acute toxicity study was carried out to determine the toxicity level of different extract using acute toxic class method as described in Organization of Economic Co-operation and Development Guidelines No.423. Carrageenan (1% w/w) was administered and inflammation was induced in rat paw. The leaf extracts of Skimmia anquetilia were evaluated for anti-inflammatory activity by in-vitro human red blood cell (HRBC) membrane stabilization method and in-vivo carrangeenan-induced rat paw edema method. Results The in-vitro membrane stabilizing test showed petroleum ether (PE), chloroform (CE), ethyl acetate (EE), methanol (ME) and aqueous extracts (AE) showed 49.44%, 59.39%, 60.15%, 68.40% and 52.18 % protection, respectively as compared to control groups. The in-vivo results of CE, EE and ME showed 58.20%, 60.17% and 67.53% inhibition of inflammation after 6h administration of test drugs in albino rats. The potency of the leaf extracts of Skimmia anquetilia were compared with standard diclofenac (10 mg/kg) which showed 74.18% protection in in-vitro HRBC membrane stabilization test and 71.64% inhibition in in-vivo carrangeenan-induced rat paw edema model. The ME showed a dose dependent significant (P< 0.01) anti-inflammatory activity in human red blood cell membrane stabilization test and reduction of edema in carrageenan induced rat paw edema. Conclusions The present investigation has confirmed the anti-inflammatory activity of Skimmia anquetilia due to presence of bioactive phytoconstitutes for the first time and provide the pharmacological evidence in favor of traditional claim of Skimmia anquetilia as an anti- inflammatory agent. PMID:23569983
Reactive radical-driven bacterial inactivation by hydrogen-peroxide-enhanced plasma-activated-water
NASA Astrophysics Data System (ADS)
Wu, Songjie; Zhang, Qian; Ma, Ruonan; Yu, Shuang; Wang, Kaile; Zhang, Jue; Fang, Jing
2017-08-01
The combined effects of plasma activated water (PAW) and hydrogen peroxide (H2O2), PAW/HP, in sterilization were investigated in this study. To assess the synergistic effects of PAW/HP, S. aureus was selected as the test microorganism to determine the inactivation efficacy. Also, the DNA/RNA and proteins released by the bacterial suspensions under different conditions were examined to confirm membrane integrity. Additionally, the intracellular pH (pHi) of S. aureus was measured in our study. Electron spin resonance spectroscopy (ESR) was employed to identify the presence of radicals. Finally, the oxidation reduction potential (ORP), conductivity and pH were measured. Our results revealed that the inactivation efficacy of PAW/HP is much greater than that of PAW, while increased H2O2 concentration result in higher inactivation potential. More importantly, as compared with PAW, the much stronger intensity ESR signals and higher ORP in PAW/HP suggests that the inactivation mechanism of the synergistic effects of PAW/HP: more reactive oxygen species (ROS) and reactive nitrogen species (RNS), especially OH and NO radicals, are generated in PAW combined with H2O2 resulting in more deaths of the bacteria.
Meléndez-Gallardo, J; Eblen-Zajjur, A
2016-09-01
Most of the endogenous pain modulation (EPM) involves the spinal dorsal horn (SDH). EPM including diffuse noxious inhibitory controls have been extensively described in oligoneuronal electrophysiological recordings but less attention had been paid to responses of the SDH neuronal population to heterotopic noxious stimulation (HNS). Spinal somatosensory-evoked potentials (SEP) offer the possibility to evaluate the neuronal network behavior, reflecting the incoming afferent volleys along the entry root, SDH interneuron activities and the primary afferent depolarization. SEP from de lumbar cord dorsum were evaluated during mechanical heterotopic noxious stimuli. Sprague-Dawley rats (n = 12) were Laminectomized (T10-L3). The sural nerve of the left hind paw was electrically stimulated (5 mA, 0.5 ms, 0.05 Hz) to induce lumbar SEP. The HNS (mechanic clamp) was applied sequentially to the tail, right hind paw, right forepaw, muzzle and left forepaw during sural stimulation. N wave amplitude decreases (-16.6 %) compared to control conditions when HNS was applied to all areas of stimulation. This effect was more intense for muzzle stimulation (-23.5 %). N wave duration also decreased by -23.6 %. HNS did not change neither the amplitude nor the duration of the P wave but dramatically increases the dispersion of these two parameters. The results of the present study strongly suggest that a HNS applied to different parts of the body is able to reduce the integrated electrical response of the SDH, suggesting that not only wide dynamic range neurons but many others in the SDH are modulated by the EPM.
2010-01-01
Background Bee pollen, a honeybee product, is the feed for honeybees prepared themselves by pollens collecting from plants and has been consumed as a perfect food in Europe, because it is nutritionally well balanced. In this study, we aimed to investigate the anti-inflammatory effect of bee pollen from Cistus sp. of Spanish origin by a method of carrageenan-induced paw edema in rats, and to investigate the mechanism of anti-inflammatory action and also to elucidate components involved in bee pollen extracted with ethanol. Methods The bee pollen bulk, its water extract and its ethanol extract were administered orally to rats. One hour later, paw edema was produced by injecting of 1% solution of carrageenan, and paw volume was measured before and after carrageenan injection up to 5 h. The ethanol extract and water extract were measured COX-1 and COX-2 inhibitory activities using COX inhibitor screening assay kit, and were compared for the inhibition of NO production in LPS-stimulated RAW 264.7 cells. The constituents of bee pollen were purified from the ethanol extract subjected to silica gel or LH-20 column chromatography. Each column chromatography fractions were further purified by repeated ODS or silica gel column chromatography. Results The bee pollen bulk mildly suppressed the carrageenan-induced paw edema and the water extract showed almost no inhibitory activity, but the ethanol extract showed relatively strong inhibition of paw edema. The ethanol extract inhibited the NO production and COX-2 but not COX-1 activity, but the water extract did not affect the NO production or COX activities. Flavonoids were isolated and purified from the ethanol extract of bee pollen, and identified at least five flavonoids and their glycosides. Conclusions It is suggested that the ethanol extract of bee pollen show a potent anti-inflammatory activity and its effect acts via the inhibition of NO production, besides the inhibitory activity of COX-2. Some flavonoids included in bee pollen may partly participate in some of the anti-inflammatory action. The bee pollen would be beneficial not only as a dietary supplement but also as a functional food. PMID:20573205
Addison, Elena S; Clements, Dylan N
2017-12-01
Objectives The aim of this study was to evaluate the repeatability of quantitative sensory tests (QSTs) in a group of healthy untrained cats (n = 14) and to compare the results with those from cats with osteoarthritis (n = 7). Methods Peak vertical force (PVF) and vertical impulse were measured on a pressure plate system. Thermal sensitivity was assessed using a temperature-controlled plate at 7°C and 40°C. Individual paw lifts and overall duration of paw lifts were counted and measured for each limb. Paw withdrawal thresholds were measured using manual and electronic von Frey monofilaments (MVF and EVF, respectively) applied to the metacarpal or metatarsal pads. All measurements were repeated twice to assess repeatability of the tests. Results In healthy cats all tests were moderately repeatable. When compared with cats with osteoarthritis the PVF was significantly higher in healthy hindlimbs in repeat 1 but not in repeat 2. Cats with osteoarthritis of the forelimbs showed a decrease in the frequency of paw lifts on the 7°C plate compared with cats with healthy forelimbs, and the duration of paw lifts was significantly less than healthy forelimbs in the first repeat but not in the second repeat. Osteoarthritic limbs had significantly lower paw withdrawal thresholds with both MVF and EVF than healthy limbs. Conclusions and relevance QSTs are moderately repeatable in untrained cats. Kinetic gait analysis did not permit differentiation between healthy limbs and those with osteoarthritis, but thermal sensitivity testing (cold) does. Sensory threshold testing can differentiate osteoarthritic and healthy limbs, and may be useful in the diagnosis and monitoring of this condition in cats in the clinical setting.
Stress formulation in the all-electron full-potential linearized augmented plane wave method
NASA Astrophysics Data System (ADS)
Nagasako, Naoyuki; Oguchi, Tamio
2012-02-01
Stress formulation in the linearlized augmented plane wave (LAPW) method has been proposed in 2002 [1] as an extension of the force formulation in the LAPW method [2]. However, pressure calculations only for Al and Si were reported in Ref.[1] and even now stress calculations have not yet been fully established in the LAPW method. In order to make it possible to efficiently relax lattice shape and atomic positions simultaneously and to precisely evaluate the elastic constants in the LAPW method, we reformulate stress formula in the LAPW method with the Soler-Williams representation [3]. Validity of the formulation is tested by comparing the pressure obtained as the trace of stress tensor with that estimated from total energies for a wide variety of material systems. Results show that pressure is estimated within the accuracy of less than 0.1 GPa. Calculations of the shear elastic constant show that the shear components of the stress tensor are also precisely computed with the present formulation [4].[4pt] [1] T. Thonhauser et al., Solid State Commun. 124, 275 (2002).[0pt] [2] R. Yu et al., Phys. Rev. B 43, 6411 (1991).[0pt] [3] J. M. Soler and A. R. Williams, Phys. Rev. B 40, 1560 (1989).[0pt] [4] N. Nagasako and T. Oguchi, J. Phys. Soc. Jpn. 80, 024701 (2011).
ERIC Educational Resources Information Center
Ethridge, Robin R.; Hadden, Cynthia M; Smith, Michael P.
2000-01-01
Describes the Personal Access Web Services (PAWS) at Louisiana State University, a portal application which offers enterprise, workgroup, and personal services. The paper highlights: PAWS project planning; PAWS as a portal; PAWS implementation; account accreditation; user authentication; legacy integration; mapping credentials; transmission of…
Using a Photon Beam for Thermal Nociceptive Threshold Experiments
NASA Astrophysics Data System (ADS)
Walker, Azida; Anderson, Jeffery; Sherwood, Spencer
In humans, risk of diabetes and diabetic complications increases with age and duration of prediabetic state. In an effort to understand the progression of this disease scientists have evaluated the deterioration of the nervous system. One of the current methods used in the evaluation of the deterioration of the nervous system is through thermal threshold experiments. An incremental Hot / Cold Plate Analgesia Meter (IITC Life Science,CA is used to linearly increase the plate temperature at a rate of 10 ºC min-1 with a cutoff temperature of 55 ºC. Hind limb heat pain threshold (HPT) will be defined as a plate temperature at which the animal abruptly withdraws either one of its hind feet from the plate surface in a sharp move, typically followed by licking of the lifted paw. One of the disadvantages of using this hot plate method is in determining the true temperature at which the paw was withdrawn. While the temperature of the plate is known the position of the paw on the surface may vary; occasionally being cupped resulting in a temperature differentiation between the plate and the paw. During experiments the rats may urine onto the plate changing the temperature of the surface again resulting in reduced accuracy as to the withdrawal threshold. We propose here a new method for nociceptive somatic experiments involving the heat pain threshold experiments. This design employs the use of a photon beam to detect thermal response from an animal model. The details of this design is presented. Funded by the Undergraduate Research Council at the University of Central Arkansas.
The Physics of the Data Projector
ERIC Educational Resources Information Center
Reid, Alastair
2008-01-01
Data projectors have become a common sight in school classrooms, often in conjunction with an interactive whiteboard. Long periods of continuous use coupled with the transfer of a large amount of thermal energy from the projector's bulb means that they frequently break down, often in such a manner that they become uneconomic to repair. In this…
Overhead Projector Spectrum of Polymethine Dye: A Physical Chemistry Demonstration
NASA Astrophysics Data System (ADS)
Solomon, Sally; Hur, Chinhyu
1995-08-01
The position of the predominant peak of 1,1'-diethyl-4,4'-cyanine iodide is measured in class using an overhead projector spectrometer, then predicted using the model of a particle-in a one dimensional box. The calculated wavelength is in excellent agreement with the wavelength estimated from the overhead projector spectroscopy experiment.
Development of Integrated and Flexible Ultrasonic Transducers for Aerospace Applications
NASA Astrophysics Data System (ADS)
Wu, Kuo-Ting
2011-12-01
High temperature (HT) integrated (IUTs) and flexible ultrasonic transducers (FUTs) for potential aerospace applications in the area of nondestructive testing (NDT) and structural health monitoring (SHM) are developed. The main merits are that IUTs can be fabricated on-site and FUTs are feasible and attractive for on-site installation. The piezoelectric composite films of these HT ultrasonic transducers (HTUTs) are made by sol-gel spray fabrication. Lead-zirconate titanate composite (PZT-c), bismuth titanate composite (BIT-c), or lithium niobate composite (LiNbO3-c) films were coated onto metallic substrates with planar and curved surfaces and investigated as IUTs. Their maximum operating temperatures were demonstrated at up to 150°C, 400°C, and 800°C, respectively. PZT-c or BIT-c films were coated onto 75 mum or 38 mum thick metallic membranes and were investigated as FUTs. They can be bonded onto flat or curved surfaces for NDT and SHM. An FUT made of BIT-c film coated onto a stainless steel membrane glued onto a steel plate was performed at up to 300°C. Besides being coated onto metallic materials, sol-gel sprayed composite films were also coated onto graphite/epoxy (Gr/Ep) plates as IUTs and 50 mum thick polyimide films as FUTs for the thickness and delamination evaluation. Using acoustic mode conversion techniques, HTUTs for shear (S) wave, surface acoustic wave (SAW), and plate acoustic wave (PAW), have been developed. HT ultrasonic probes simultaneously producing one longitudinal (L) and two orthogonally polarized S waves were demonstrated in metallic and Plexiglas probes. The potential applications of these probes were discussed. Also applying mode conversion approaches, HT symmetrical, anti-symmetrical, and shear horizontal (SH) PAWs UTs for NDT and SHM were developed. The results showed that the SH PAWs may be the best candidate for NDT and SHM purposes for plate structures. Generation and detection of guided acoustic waves for NDT were demonstrated by using IUTs or FUTs with metallic wedges, mechanical gratings or interdigital transducers as well. The experiments with these three approaches were performed at up to 300°C. Furthermore, two non-contact ultrasonic measurement techniques by sol-gel sprayed composite films were presented in this thesis. One is using lasers to generate ultrasound and IUTs as receivers, and the other is using induction-based non-contact ultrasonic measurement technique with IUTs. NDT of bonded composite patches on aluminum plates was performed using laser generated ultrasound and IUT receivers. The induction-based ultrasonic measurement of a Gr/Ep composite plate rotated at 1000 rpm was demonstrated. The IUTs and FUTs developed in this thesis are able to provide signals with good signal-to-noise ratios at elevated temperature on structures and parts having a curved surface. They are light weight and miniature in size. They may be used for real-time, in situ, nondestructive local and global (large area) damage detection and assessment in aerospace NDT and SHM applications.
NASA Astrophysics Data System (ADS)
Kleinman, Leonard
2001-03-01
The history of pseudopotentials from 1934 to the present time will be discussed. The speaker's personal involvement will be described but not to the neglect of the many others who have made huge contributions to the field. We end with the question, 'Is it possible that pseudopotential calculations could be more accurate than those made using the full potential augmented plane wave method?'.
Protective effects of radon inhalation on carrageenan-induced inflammatory paw edema in mice.
Kataoka, Takahiro; Teraoka, Junichi; Sakoda, Akihiro; Nishiyama, Yuichi; Yamato, Keiko; Monden, Mayuko; Ishimori, Yuu; Nomura, Takaharu; Taguchi, Takehito; Yamaoka, Kiyonori
2012-04-01
We assessed whether radon inhalation inhibited carrageenan-induced inflammation in mice. Carrageenan (1% v/v) was injected subcutaneously into paws of mice that had or had not inhaled approximately 2,000 Bq/m(3) of radon for 24 h. Radon inhalation significantly increased superoxide dismutase (SOD) and catalase activities and significantly decreased lipid peroxide levels in mouse paws, indicating that radon inhalation activates antioxidative functions. Carrageenan administration induced paw edema and significantly increased tumor necrosis factor-alpha (TNF-α) and nitric oxide in serum. However, radon inhalation significantly reduced carrageenan-induced paw edema. Serum TNF-α levels were lower in the radon-treated mice than in sham-treated mice. In addition, SOD and catalase activities in paws were significantly higher in the radon-treated mice than in the sham-treated mice. These findings indicated that radon inhalation had anti-inflammatory effects and inhibited carrageenan-induced inflammatory paw edema.
Siniscalchi, Marcello; Cirone, Francesco; Guaricci, Antonio Ciro; Quaranta, Angelo
2014-01-01
To explore the possible role of the sympathetic nervous activity in the asymmetrical crosstalk between the brain and immune system, catecholamine (E, NE) plasma levels, Interferon-γ (IFN-γ) serum levels and production of antibodies induced by rabies vaccine in dogs selected for their paw preference were measured. The results showed that the direction of behavioural lateralization influenced both epinephrine levels and immune response in dogs. A different kinetic of epinephrine levels after immunization was observed in left-pawed dogs compared to both right-pawed and ambidextrous dogs. The titers of antirabies antibodies were lower in left-pawed dogs than in right-pawed and ambidextrous dogs. Similarly, the IFN-γ serum levels were lower in left-pawed dogs than in the other two groups. Taken together, these findings showed that the left-pawed group appeared to be consistently the different group stressing the fundamental role played by the sympathetic nervous system as a mechanistic basis for the crosstalk between the brain and the immune system.
Tan, U
1993-06-01
The distribution of the right minus left (R - L) paw use and its relation to hemispheric weight was studied in tortoise-shell cats. Paw preference was assessed by a food reaching test. All males (N = 9) were left-preferent; females (N = 13) were predominantly right-preferent. There was an inverse relationship between the degree of left-paw preference and the right-brain weight in males (no correlation with left-brain weight). In females, the R - L paw use showed a negative linear correlation with the right- and left-brain weights: the right-pawedness decreased and the left-pawedness increased as the right- and left-brain weights increased. The distributions of the R - L paw use as well as the relationships between brain-weight and pawedness exhibited sexual dimorphism. The results suggest that mainly the genetic and hormonal factors may play an important role in emergence of motor asymmetry in cats. Annett's right shift theory of handedness was also discussed in light of these results.
Plasma-activated water: a new and effective alternative for duodenoscope reprocessing.
Bălan, Gheorghe G; Roşca, Irina; Ursu, Elena-Laura; Doroftei, Florica; Bostănaru, Andra-Cristina; Hnatiuc, Eugen; Năstasă, Valentin; Şandru, Vasile; Ştefănescu, Gabriela; Trifan, Anca; Mareş, Mihai
2018-01-01
Duodenoscopes have been widely used for both diagnostic and therapeutic endoscopic retrograde cholangiopancreatography procedures. Numerous outbreaks of duodenoscope-associated infections involving multidrug-resistant bacteria have recently been reported. Plasma activated water (PAW) has been widely considered an effective agent for surface decontamination and is increasingly used for disinfection of medical equipment. The aim of this study was to evaluate whether the duodenoscopes currently on market are suited for the repeated use of PAW and to test the efficacy of PAW for their disinfection. In order to evaluate the disinfection efficacy and the required time of contact, the duodenoscope samples were contaminated by immersing them in fasted-state simulated intestinal fluid containing Escherichia coli , Klebsiella pneumoniae , Acinetobacter baumannii , and Pseudomonas aeruginosa , prior to PAW exposure. In order to test the duodenoscope polymer compatibility with PAW, a challenge test was conducted by immersing the samples in PAW for 30 minutes daily for 45 consecutive days. Significant reductions in bacterial populations were achieved after 30 minutes of PAW treatment, indicating a high-level disinfection. Atomic force microscopy and scanning electron microscopy were used to demonstrate that repeated PAW treatment of duodenoscope coating polymer samples did not result in significant differences in morphological surface between the treated and untreated samples. Energy-dispersive X-ray spectroscopy analysis also showed no significant differences between the elemental composition of the duodenoscope coating polymer samples before and after repeated PAW treatment. Considering these preliminary results, PAW could be considered as a new alternative for duodenoscope reprocessing.
Ribeiro, Andre S; Eales, Brenda A; Biddle, Fred G
2013-05-15
The corpus callosum (CC) and hippocampal commissure (HC) are major interhemispheric connections whose role in brain function and behaviors is fascinating and contentious. Paw preference of laboratory mice is a genetically regulated, adaptive behavior, continuously shaped by training and learning. We studied variation with training in paw-preference in mice of the 9XCA/WahBid ('9XCA') recombinant inbred strain, selected for complete absence of the CC and severely reduced HC. We measured sequences of paw choices in 9XCA mice in two training sessions in unbiased test chambers, separated by one-week. We compared them with sequences of paw choices in model non-learner mice that have random unbiased paw choices and with those of C57BL/6JBid ('C57BL/6J') mice that have normal interhemispheric connections and learn a paw preference. Positive autocorrelation between successive paw choices during each session and change in paw-preference bias between sessions indicate that 9XCA mice have weak, but not null, learning skills. We tested the effect of the forebrain commissural defect on paw-preference learning with the independent BTBR T+ tf/J ('BTBR') mouse strain that has a genetically identical, non-complementing commissural trait. BTBR has weak short-term and long-term memory skills, identical to 9XCA. The results provide strong evidence that CC and HC contribute in memory function and formation of paw-preference biases. Copyright © 2013 Elsevier B.V. All rights reserved.
Romero, Thiago R L; Guzzo, Luciana S; Perez, Andrea C; Klein, André; Duarte, Igor D G
2012-03-31
Despite the classical peripheral pronociceptive effect of noradrenaline (NA), recently studies showed the involvement of NA in antinociceptive effect under immune system interaction. In addition, the participation of the NO/cGMP/KATP pathway in the peripheral antinociception has been established by our group as the molecular mechanism of another adrenoceptor agonist xylazine. Thus the aim of this study was to obtain pharmacological evidences for the involvement of the NO/cGMP/KATP pathway in the peripheral antinociceptive effect induced by exogenous noradrenaline. The rat paw pressure test was used, with hyperalgesia induced by intraplantar injection of prostaglandin E(2) (2μg/paw). All drugs were locally administered into the right hind paw of male Wistar rats. NA (5, 20 and 80ng/paw) elicited a local inhibition of hyperalgesia. The non-selective NO synthase inhibitor l-NOarg (12, 18 and 24μg/paw) antagonized the antinociception effect induced by the highest dose of NA. The soluble guanylyl cyclase inhibitor ODQ (25, 50 and 100μg/paw) antagonized the NA-induced effect; and cGMP-phosphodiesterase inhibitor zaprinast (50μg/paw) potentiated the antinociceptive effect of NA low dose (5ng/paw). In addition, the local effect of NA was antagonized by a selective blocker of an ATP-sensitive K(+) channel, glibenclamide (20, 40 and 80μg/paw). On the other hand, the specifically voltage-dependent K(+) channel blocker, tetraethylammonium (30μg/paw), Ca(2+)-activated K(+) channel blockers of small and large conductance types dequalinium (50μg/paw) and paxilline (20μg/paw), respectively, were not able to block local antinociceptive effect of NA. The results provide evidences that NA probably induces peripheral antinociceptive effects by activation of the NO/cGMP/KATP pathway. Copyright © 2012 Elsevier Inc. All rights reserved.
Srebro, Dragana P; Vučković, Sonja M; Savić Vujović, Katarina R; Prostran, Milica Š
2015-02-01
Previous studies have shown that while magnesium, an antagonist of the glutamate subtype of N-methyl-D-aspartate receptors, possesses analgesic properties, it can induce writhing in rodents. The aim of this study was to determine the effect and mechanism of action of local (intraplantar) administration of magnesium sulfate (MS) on the paw withdrawal threshold (PWT) to mechanical stimuli. The PWT was evaluated by the electronic von Frey test in male Wistar rats. Tested drugs were either co-administered intraplantarly (i.pl.) with MS or given into the contralateral paw to exclude systemic effects. MS at doses of 0.5, 1.5, 3 and 6.2 mg/paw (i.pl.) induced a statistically significant (as compared to 0.9% NaCl) and dose-dependent mechanical hyperalgesia. Only isotonic MS (250 mmol/l or 6.2% or 6.2 mg/paw) induced mechanical hyperalgesia that lasted at least six hours. Isotonic MS-induced mechanical hyperalgesia was reduced in a dose-dependent manner by co-injection of camphor, a non-selective TRPA1 antagonist (0.3, 1 and 2.5 μg/paw), MK-801, a NMDA receptor antagonist (0.001, 0.025 and 0.1 μg/paw), L-NAME, a non-selective nitric oxide (NO) synthase inhibitor (20, 50 and 100 μg/paw), ARL 17477, a selective neuronal NOS inhibitor (5.7 and 17 μg/paw), SMT, a selective inducible NOS inhibitor (1 and 2.78 μg/paw), and methylene blue, a guanylate cyclase inhibitor (5, 20 and 125 μg/paw). Drugs injected into the contralateral hind paw did not produce significant effects. These results suggest that an i.pl. injection of MS produces local peripheral mechanical hyperalgesia via activation of peripheral TRPA1 and NMDA receptors and peripheral production of NO. Copyright © 2014 Elsevier Inc. All rights reserved.
77 FR 34967 - Notice of Issuance of Final Determination Concerning Digital Projectors
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-12
... six function tests in the ``post test'', the EDID firmware is programmed into the digital projectors... tests and consists of at least 97 steps taking approximately 137.8 minutes. After the whole projector is... includes 11 kinds of function tests and consists of at least 97 steps which will take approximately 11...
76 FR 30180 - Notice of Issuance of Final Determination Concerning Pocket Projectors
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-24
..., and adhering by electrostatic means. The finished projector will undergo a series of tests in Taiwan: A pre-test, a run-in test, and a function test. The pre-test consists of: ensuring that the... the projector is turned on (developed in Taiwan), (2) test patterns that are projected on the screen...
The Development of a Computer Controlled Super 8 Motion Picture Projector.
ERIC Educational Resources Information Center
Reynolds, Eldon J.
Instructors in Child Development at the University of Texas at Austin selected sound motion pictures as the most effective medium to simulate the observation of children in nursery laboratories. A computer controlled projector was designed for this purpose. An interface and control unit controls the Super 8 projector from a time-sharing computer…
Bulletin Boards and 3-D Showcases That Capture Them with Pizzazz. Volume 2.
ERIC Educational Resources Information Center
Hawthorne, Karen; Gibson, Jane E.
This book features bulletin boards and showcases, designed to motivate readers to use the library, that have been the favorites of students in grades 7-12. Chapter 1 covers getting started, including principles of design, tools of design, background, borders, letters, leaves and flowers, opaque projector/overhead projector/document projector,…
NASA Astrophysics Data System (ADS)
Wałejko, P.; Paradowska, K.; Szeleszczuk, Ł.; Wojtulewski, S.; Baj, A.
2018-03-01
Trolox C (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) is a water-soluble vitamin E analogue that is available in enantiomeric forms R or S. Enantiomerically pure Trolox 1, its derivatives 2, 3 (R and S enantiomers) and racemic forms 1-3 were studied using solid-state 13C cross-polarisation (CP) magic angle spinning (MAS) NMR (13C CPMAS NMR). Gauge-including projector-augmented wave density functional theory (GIPAW DFT) calculations of the shielding constants supported the assignment of 13C resonances in the solid-state NMR spectra. For the 13C CPMAS NMR spectra of 1, resonances of pure enantiomers were significantly broader than those of the racemic R/S form. In order to explain these effects, five of the available crystal structures were analysed (1R/S, 3R/S, 2S and the newly measured 2R/S and 3S). Cyclic dimers with one R and one S enantiomer linked by two OHsbnd Odbnd C2b hydrogen bonds were formed in 1R/S. Similar hydrogen-bonded dimers were present in 3S but not in 3R/S, in which interactions are water-mediated. A comparison of X-ray diffraction, CPMAS NMR data and the DFT GIPAW calculations of racemic forms and pure enantiomers was conducted for the first time. Our results, particularly the solid-state NMR data, were discussed in relation to Wallach's rule, that the racemic crystal appears as more ordered than its chiral counterpart.
The ideal imaging AR waveguide
NASA Astrophysics Data System (ADS)
Grey, David J.
2017-06-01
Imaging waveguides are a key development that are helping to create the Augmented Reality revolution. They have the ability to use a small projector as an input and produce a wide field of view, large eyebox, full colour, see-through image with good contrast and resolution. WaveOptics is at the forefront of this AR technology and has developed and demonstrated an approach which is readily scalable. This paper presents our view of the ideal near-to-eye imaging AR waveguide. This will be a single-layer waveguide which can be manufactured in high volume and low cost, and is suitable for small form factor applications and all-day wear. We discuss the requirements of the waveguide for an excellent user experience. When enhanced (AR) viewing is not required, the waveguide should have at least 90% transmission, no distracting artifacts and should accommodate the user's ophthalmic prescription. When enhanced viewing is required, additionally, the waveguide requires excellent imaging performance, this includes resolution to the limit of human acuity, wide field of view, full colour, high luminance uniformity and contrast. Imaging waveguides are afocal designs and hence cannot provide ophthalmic correction. If the user requires this correction then they must wear either contact lenses, prescription spectacles or inserts. The ideal imaging waveguide would need to cope with all of these situations so we believe it must be capable of providing an eyebox at an eye relief suitable for spectacle wear which covers a significant range of population inter-pupillary distances. We describe the current status of our technology and review existing imaging waveguide technologies against the ideal component.
NASA Astrophysics Data System (ADS)
West, Michael; Gao, Wei; Grand, Stephen
2004-08-01
Body and surface wave tomography have complementary strengths when applied to regional-scale studies of the upper mantle. We present a straight-forward technique for their joint inversion which hinges on treating surface waves as horizontally-propagating rays with deep sensitivity kernels. This formulation allows surface wave phase or group measurements to be integrated directly into existing body wave tomography inversions with modest effort. We apply the joint inversion to a synthetic case and to data from the RISTRA project in the southwest U.S. The data variance reductions demonstrate that the joint inversion produces a better fit to the combined dataset, not merely a compromise. For large arrays, this method offers an improvement over augmenting body wave tomography with a one-dimensional model. The joint inversion combines the absolute velocity of a surface wave model with the high resolution afforded by body waves-both qualities that are required to understand regional-scale mantle phenomena.
Anderson, Hazel P; Ward, Jamie
2015-05-01
Questionnaires have been developed for categorising grapheme-colour synaesthetes into two sub-types based on phenomenology: associators and projectors. The general approach has been to assume a priori the existence of two sub-types on a single dimension (with endpoints as projector and associator) rather than explore, in a data-driven fashion, other possible models. We collected responses from 175 grapheme-colour synaesthetes on two questionnaires, the Illustrated Synaesthetic Experience Questionnaire (Skelton, Ludwig, & Mohr, 2009) and Rouw and Scholte's (2007) Projector-Associator Questionnaire. After Principle Component Analysis both questionnaires were comprised of two factors which coincide with the projector/associator distinction. This suggests that projectors and associators are not opposites of each other, but separate dimensions of experience (e.g. some synaesthetes claim to be both, others claim to be neither). The revised questionnaires provide a useful tool for researchers and insights into the phenomenology of synaesthesia. Copyright © 2015 Elsevier Inc. All rights reserved.
Full-field 3D shape measurement of specular object having discontinuous surfaces
NASA Astrophysics Data System (ADS)
Zhang, Zonghua; Huang, Shujun; Gao, Nan; Gao, Feng; Jiang, Xiangqian
2017-06-01
This paper presents a novel Phase Measuring Deflectometry (PMD) method to measure specular objects having discontinuous surfaces. A mathematical model is established to directly relate the absolute phase and depth, instead of the phase and gradient. Based on the model, a hardware measuring system has been set up, which consists of a precise translating stage, a projector, a diffuser and a camera. The stage locates the projector and the diffuser together to a known position during measurement. By using the model-based and machine vision methods, system calibration is accomplished to provide the required parameters and conditions. The verification tests are given to evaluate the effectiveness of the developed system. 3D (Three-Dimensional) shapes of a concave mirror and a monolithic multi-mirror array having multiple specular surfaces have been measured. Experimental results show that the proposed method can obtain 3D shape of specular objects having discontinuous surfaces effectively
Quality status display for a vibration welding process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spicer, John Patrick; Abell, Jeffrey A.; Wincek, Michael Anthony
A method includes receiving, during a vibration welding process, a set of sensory signals from a collection of sensors positioned with respect to a work piece during formation of a weld on or within the work piece. The method also includes receiving control signals from a welding controller during the process, with the control signals causing the welding horn to vibrate at a calibrated frequency, and processing the received sensory and control signals using a host machine. Additionally, the method includes displaying a predicted weld quality status on a surface of the work piece using a status projector. The methodmore » may include identifying and display a quality status of a suspect weld. The laser projector may project a laser beam directly onto or immediately adjacent to the suspect welds, e.g., as a red, green, blue laser or a gas laser having a switched color filter.« less
Enhancement of Stereo Imagery by Artificial Texture Projection Generated Using a LIDAR
NASA Astrophysics Data System (ADS)
Veitch-Michaelis, Joshua; Muller, Jan-Peter; Walton, David; Storey, Jonathan; Foster, Michael; Crutchley, Benjamin
2016-06-01
Passive stereo imaging is capable of producing dense 3D data, but image matching algorithms generally perform poorly on images with large regions of homogenous texture due to ambiguous match costs. Stereo systems can be augmented with an additional light source that can project some form of unique texture onto surfaces in the scene. Methods include structured light, laser projection through diffractive optical elements, data projectors and laser speckle. Pattern projection using lasers has the advantage of producing images with a high signal to noise ratio. We have investigated the use of a scanning visible-beam LIDAR to simultaneously provide enhanced texture within the scene and to provide additional opportunities for data fusion in unmatched regions. The use of a LIDAR rather than a laser alone allows us to generate highly accurate ground truth data sets by scanning the scene at high resolution. This is necessary for evaluating different pattern projection schemes. Results from LIDAR generated random dots are presented and compared to other texture projection techniques. Finally, we investigate the use of image texture analysis to intelligently project texture where it is required while exploiting the texture available in the ambient light image.
The Use of Steady and Unsteady Detonation Waves for Propulsion Systems
NASA Technical Reports Server (NTRS)
Adelman, Henry G.; Menees, Gene P.; Cambier, Jean-Luc; Bowles, Jeffrey V.; Cavolowsky, John A. (Technical Monitor)
1995-01-01
Detonation wave enhanced supersonic combustors such as the Oblique Detonation Wave Engine (ODWE) are attractive propulsion concepts for hypersonic flight. These engines utilize detonation waves to enhance fuel-air mixing and combustion. The benefits of wave combustion systems include shorter and lighter engines which require less cooling and generate lower internal drag. These features allow air-breathing operation at higher Mach numbers than the diffusive burning scramjet delaying the need for rocket engine augmentation. A comprehensive vehicle synthesis code has predicted the aerodynamic characteristics and structural size and weight of a typical single-stage-to-orbit vehicle using an ODWE. Other studies have focused on the use of unsteady or pulsed detonation waves. For low speed applications, pulsed detonation engines (PDE) have advantages in low weight and higher efficiency than turbojets. At hypersonic speeds, the pulsed detonations can be used in conjunction with a scramjet type engine to enhance mixing and provide thrust augmentation.
Sabino, George S; Santos, Cristiane M F; Francischi, Janetti N; de Resende, Marcos Antônio
2008-02-01
Transcutaneous electric nerve stimulation (TENS) is a noninvasive treatment used in physiotherapy practice to promote analgesia in acute and chronic inflammatory conditions. The aim of the present study was to investigate the action mechanism of TENS at high (HF: 130 Hz) and low (LF: 10 Hz) frequencies in an inflammation model produced by the injection of carrageenan in rat paws (Cg; 250 microg). After carrageenan administration (0 time), either HF or LF TENS was applied to the inflamed paw of rats for 20 minutes, and hyperalgesia was assessed hourly using the modified Randall-Selitto method (1957). HF and LF TENS inhibited the carrageenan-induced hyperalgesia by 100%. Pretreatment of animals with intraplantar naltrexone (Nx; 50 microg) reversed the analgesic effect of the LF TENS but did not alter the effect of HF TENS. The application of HF and LF TENS to the contralateral paw reversed the hyperalgesia of the inflamed paw similar to that observed when TENS was applied to the inflamed paw. However, LF TENS presented a longer-lasting analgesic effect than HF TENS. Our data demonstrate that HF and LF TENS induced antihyperalgesia. We also report that the antihyperalgesia provoked by LF TENS is partially due to the local release of endogenous opioids. This study offers important information about physiotherapy practices aimed at pain relieving. TENS is a noninvasive treatment that promotes analgesia in acute and chronic inflammatory conditions. Scientists, patients, and the general population may benefit from this knowledge.
Human speckle perception threshold for still images from a laser projection system.
Roelandt, Stijn; Meuret, Youri; Jacobs, An; Willaert, Koen; Janssens, Peter; Thienpont, Hugo; Verschaffelt, Guy
2014-10-06
We study the perception of speckle by human observers in a laser projector based on a 40 persons survey. The speckle contrast is first objectively measured making use of a well-defined speckle measurement method. We statistically analyse the results of the user quality scores, revealing that the speckle perception is not only influenced by the speckle contrast settings of the projector, but it is also strongly influenced by the type of image shown. Based on the survey, we derive a speckle contrast threshold for which speckle can be seen, and separately we investigate a speckle disturbance limit that is tolerated by the majority of test persons.
Stea, Francesco; Massetti, Luciano; Taddei, Stefano; Ghiadoni, Lorenzo; Modesti, Pietro Amedeo
2017-01-01
Objective The effects of seasonality on blood pressure (BP) and cardiovascular (CV) events are well established, while the influence of seasonality and other environmental factors on arterial stiffness and wave reflection has never been analyzed. This study evaluated whether seasonality (daily number of hours of light) and acute variations in outdoor temperature and air pollutants may affect carotid-femoral pulse wave velocity (PWV) and pressure augmentation. Design and method 731 hypertensive patients (30–88 years, 417 treated) were enrolled in a cross-sectional study during a 5-year period. PWV, central BP, Augmentation Index (AIx) and Augmentation Pressure (AP) were measured in a temperature-controlled (22–24°C) room. Data of the local office of the National Climatic Data Observatory were used to estimate meteorological conditions and air pollutants (PM10, O3, CO, N2O) exposure on the same day. Results PWV (mean value 8.5±1.8 m/s) was related to age (r = 0.467, p<0.001), body mass index (r = 0.132, p<0.001), central systolic (r = 0.414, p<0.001) and diastolic BP (r = 0.093, p = 0.013), daylight hours (r = -0.176, p<0.001), mean outdoor temperature (r = -0.082, p = 0.027), O3 (r = -0.135, p<0.001), CO (r = 0.096, p = 0.012), N2O (r = 0.087, p = 0.022). In multiple linear regression analysis, adjusted for confounders, PWV remained independently associated only with daylight hours (β = -0.170; 95% CI: -0.273 to -0.067, p = 0.001). No significant correlation was found between pressure augmentation and daylight hours, mean temperature or air pollutants. The relationship was stronger in untreated patients and women. Furthermore, a positive, independent association between O3 levels and PWV emerged in untreated patients (β: 0.018; p = 0.029; CI: 0.002 to 0.034) and in women (β: 0.027; p = 0.004; CI: 0.009 to 0.045). Conclusions PWV showed a marked seasonality in hypertensive patients. Environmental O3 levels may acutely reduce arterial stiffness in hypertensive women and in untreated patients. PMID:28231259
The Use of a Computer-Controlled Random Access Slide Projector for Rapid Information Display.
ERIC Educational Resources Information Center
Muller, Mark T.
A 35mm random access slide projector operated in conjunction with a computer terminal was adapted to meet the need for a more rapid and complex graphic display mechanism than is currently available with teletypewriter terminals. The model projector can be operated manually to provide for a maintenance checkout of the electromechanical system.…
Guzzo, Luciana S; Perez, Andrea C; Romero, Thiago Rl; Azevedo, Adolfo O; Duarte, Igor Dg
2012-05-01
The opioid peptides have been implicated in peripheral antinociception induced by non-opioidergic compounds, including non-steroidal anti-inflammatory drugs and α(2) -adrenoceptor agonists. The aims of the present study were to investigate the possible peripheral antinociceptive effect of cafestol, a diterpene present in the oil derived from coffee beans, and to evaluate the involvement of opioid peptides in its effect. The rat paw pressure test was used to assess antinocipeptive effects. Hyperalgesia was induced by intraplantar injection of prostaglandin E(2) (2 μg/paw). All drugs were locally administered into the hind-paws of male Wistar rats. Intraplantar injection of cafestol (20, 40 and 80 μg) induced peripheral antinociception. The antinociceptive effect of cafestol was due to a local action because the higher dose (80 μg/paw) did not produce any effect in the contralateral paw. The opioid receptor antagonist naloxone (25, 50 and 100 μg/paw) prevented the action of cafestol (80 μg/paw), whereas the aminopeptidase inhibitor bestatin (400 μg/paw) potentiated the antinociceptive effect of cafestol (40 μg/paw). The results of the present study provide evidence that cafestol treatment has a peripheral antinociceptive effect and suggest that this effect is mediated by the release of endogenous opioids. © 2012 The Authors Clinical and Experimental Pharmacology and Physiology © 2012 Blackwell Publishing Asia Pty Ltd.
Contribution to the Chemistry of Plasma-Activated Water
NASA Astrophysics Data System (ADS)
Julák, J.; Hujacová, A.; Scholtz, V.; Khun, J.; Holada, K.
2018-01-01
Plasma-activated water (PAW) was prepared by exposure to nonthermal plasma produced by a positive dc corona discharge in a transient spark regime. The activation of water was performed in atmosphere of various surrounding gases (air, nitrogen, carbon dioxide, and argon). This PAW retains its biological activity, measured on the mouse neuroblastoma cells culture, even after storage for more than one year. The highest hydrogen peroxide content was found for PAWs prepared in the atmospheres of argon or carbon dioxide, whereas the PAWs prepared in air and nitrogen exhibited lower hydrogen peroxide content. The acidity of PAWs mediated by nitric and nitrous acid formation displayed an opposite trend. It is concluded that the long-lasting biological effect of PAW is mediated by hydrogen peroxide in acid milieu only, whereas other possible active components decompose rapidly.
Three-dimensional digital projection in neurosurgical education: technical note.
Martins, Carolina; Ribas, Eduardo Carvalhal; Rhoton, Albert L; Ribas, Guilherme Carvalhal
2015-10-01
Three-dimensional images have become an important tool in teaching surgical anatomy, and its didactic power is enhanced when combined with 3D surgical images and videos. This paper describes the method used by the last author (G.C.R.) since 2002 to project 3D anatomical and surgical images using a computer source. Projecting 3D images requires the superposition of 2 similar but slightly different images of the same object. The set of images, one mimicking the view of the left eye and the other mimicking the view of the right eye, constitute the stereoscopic pair and can be processed using anaglyphic or horizontal-vertical polarization of light for individual use or presentation to larger audiences. Classically, 3D projection could be obtained by using a double set of slides, projected through 2 slide projectors, each of them equipped with complementary filters, shooting over a medium that keeps light polarized (a silver screen) and having the audience wear appropriate glasses. More recently, a digital method of 3D projection has been perfected. In this method, a personal computer is used as the source of the images, which are arranged in a Microsoft PowerPoint presentation. A beam splitter device is used to connect the computer source to 2 digital, portable projectors. Filters, a silver screen, and glasses are used, similar to the classic method. Among other advantages, this method brings flexibility to 3D presentations by allowing the combination of 3D anatomical and surgical still images and videos. It eliminates the need for using film and film developing, lowering the costs of the process. In using small, powerful digital projectors, this method substitutes for the previous technology, without incurring a loss of quality, and enhances portability.
U. S. Army Land Warfare Laboratory. Volume II Appendix B. Task Sheets
1974-06-01
Free-Drop Water Container B-256 *06-S-64 Riot Shield 01-S-65 Cl Mob Control Equipment Studies 3-257 02-S-65 Compass - Fog and Fungus Proof B-258 03-S-65...Combustion Engine B-360 05-C-69 Mini-Grenade Munitions 3-36. 06-C-69 Explosive Detector - Plasma Chromatography -chnique B1-362 07-C-69 Grenade, Smoke...Mechanical Earth Waves B-406 05-P-63 Non-Electric Projector B-407 06-P-63 Communication by Earth Currents B-408 07-P-63 Ultrasonics B-409 08-P-63 Acoustic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ya-Qiong; Jin, Shao-Ju; Luohe Medical College, Luohe 462002, Henan Province
Highlights: • Aloperine has anti-nociceptive effects on neuropathic pain induced CCI. • Aloperine reduces ROS in neuropathic pain mice. • Aloperine down-regulates the expression of NF-κB and its downstream pro-inflammatory cytokines in neuropathic pain mice. - Abstract: Objective: To investigate whether aloperine (ALO) has antinociceptive effects on neuropathic pain induced by chronic constriction injury, whether ALO reduces ROS against neuropathic pain, and what are the mechanisms involved in ALO attenuated neuropathic pain. Methods: Mechanical and cold allodynia, thermal and mechanical hyperalgesia and spinal thermal hyperalgesia were estimated by behavior methods such as Von Frey filaments, cold-plate, radiant heat, paw pressuremore » and tail immersion on one day before surgery and days 7, 8, 10, 12 and 14 after surgery, respectively. In addition, T-AOC, GSH-PX, T-AOC and MDA in the spinal cord (L4/5) were measured to evaluate anti-oxidation activity of ALO on neuropathic pain. Expressions of NF-κB and pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) in the spinal cord (L4/5) were analyzed by using Western blot. Results: Administration of ALO (80 mg/kg and 40 mg/kg, i.p.) significantly increased paw withdrawal threshold, paw pressure, paw withdrawal latencies, tail-curling latencies, T-AOC, GSH-PX and T-SOD concentration, reduced the numbers of paw lifts and MDA concentration compared to CCI group. ALO attenuated CCI induced up-regulation of expressions of NF-κB, TNF-α, IL-6, IL-1β at the dose of 80 mg/kg (i.p.). Pregabalin produced similar effects serving as positive control at the dose of 10 mg/kg (i.p.). Conclusion: ALO has antinociceptive effects on neuropathic pain induced by CCI. The antinociceptive effects of ALO against neuropathic pain is related to reduction of ROS, via suppression of NF-κB pathway.« less
A Generalized Method of Image Analysis from an Intercorrelation Matrix which May Be Singular.
ERIC Educational Resources Information Center
Yanai, Haruo; Mukherjee, Bishwa Nath
1987-01-01
This generalized image analysis method is applicable to singular and non-singular correlation matrices (CMs). Using the orthogonal projector and a weaker generalized inverse matrix, image and anti-image covariance matrices can be derived from a singular CM. (SLD)
Franke, Bastian; James, Amy M; Mobli, Mehdi; Colgrave, Michelle L; Mylne, Joshua S; Rosengren, K Johan
2017-07-28
Seed storage proteins are both an important source of nutrition for humans and essential for seedling establishment. Interestingly, unusual napin-type 2S seed storage albumin precursors in sunflowers contain a sequence that is released as a macrocyclic peptide during post-translational processing. The mechanism by which such peptides emerge from linear precursor proteins has received increased attention; however, the structural characterization of intact precursor proteins has been limited. Here, we report the 3D NMR structure of the Helianthus annuus PawS1 ( p repro a lbumin w ith s unflower trypsin inhibitor- 1 ) and provide new insights into the processing of this remarkable dual-destiny protein. In seeds, PawS1 is matured by asparaginyl endopeptidases (AEPs) into the cyclic peptide SFTI-1 ( s un f lower t rypsin i nhibitor- 1 ) and a heterodimeric 2S albumin. The structure of PawS1 revealed that SFTI-1 and the albumin are independently folded into well-defined domains separated by a flexible linker. PawS1 was cleaved in vitro with recombinant sunflower HaAEP1 and in situ using a sunflower seed extract in a way that resembled the expected in vivo cleavages. Recombinant HaAEP1 cleaved PawS1 at multiple positions, and in situ , its flexible linker was removed, yielding fully mature heterodimeric albumin. Liberation and cyclization of SFTI-1, however, was inefficient, suggesting that specific seed conditions or components may be required for in vivo biosynthesis of SFTI-1. In summary, this study has revealed the 3D structure of a macrocyclic precursor protein and provided important mechanistic insights into the maturation of sunflower proalbumins into an albumin and a macrocyclic peptide. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Recent advancements in system design for miniaturized MEMS-based laser projectors
NASA Astrophysics Data System (ADS)
Scholles, M.; Frommhagen, K.; Gerwig, Ch.; Knobbe, J.; Lakner, H.; Schlebusch, D.; Schwarzenberg, M.; Vogel, U.
2008-02-01
Laser projection systems that use the flying spot principle and which are based on a single MEMS micro scanning mirrors are a very promising way to build ultra-compact projectors that may fit into mobile devices. First demonstrators that show the feasibility of this approach and the applicability of the micro scanning mirror developed by Fraunhofer IPMS for these systems have already been presented. However, a number of items still have to be resolved until miniaturized laser projectors are ready for the market. This contribution describes progress on several different items, each of them of major importance for laser projection systems. First of all, the overall performance of the system has been increased from VGA resolution to SVGA (800×600 pixels) with easy connection to a PC via DVI interface or by using the projector as embedded system with direct camera interface. Secondly, the degree of integration of the electronics has been enhanced by design of an application specific analog front end IC for the micro scanning mirror. It has been fabricated in a special high voltage technology and does not only allow to generate driving signals for the scanning mirror with amplitudes of up to 200V but also integrates position detection of the mirror by several methods. Thirdly, first results concerning Speckle reduction have been achieved, which is necessary for generation of images with high quality. Other aspects include laser modulation and solutions regarding projection on tilted screens which is possible because of the unlimited depth of focus.
Projection type transparent 3D display using active screen
NASA Astrophysics Data System (ADS)
Kamoshita, Hiroki; Yendo, Tomohiro
2015-05-01
Equipment to enjoy a 3D image, such as a movie theater, television and so on have been developed many. So 3D video are widely known as a familiar image of technology now. The display representing the 3D image are there such as eyewear, naked-eye, the HMD-type, etc. They has been used for different applications and location. But have not been widely studied for the transparent 3D display. If transparent large 3D display is realized, it is useful to display 3D image overlaid on real scene in some applications such as road sign, shop window, screen in the conference room etc. As a previous study, to produce a transparent 3D display by using a special transparent screen and number of projectors is proposed. However, for smooth motion parallax, many projectors are required. In this paper, we propose a display that has transparency and large display area by time multiplexing projection image in time-division from one or small number of projectors to active screen. The active screen is composed of a number of vertically-long small rotate mirrors. It is possible to realize the stereoscopic viewing by changing the image of the projector in synchronism with the scanning of the beam.3D vision can be realized by light is scanned. Also, the display has transparency, because it is possible to see through the display when the mirror becomes perpendicular to the viewer. We confirmed the validity of the proposed method by using simulation.
More Fun with Singing Wineglasses.
ERIC Educational Resources Information Center
Planinsic, Gorazd
2000-01-01
Describes a method for visually demonstrating resonance in a wine glass on an overhead projector. Provides instructions for making a "howling" wine glass where two slightly different tones separated by an irritating interval sound alternately. (WRM)
Non-moving Hadamard matrix diffusers for speckle reduction in laser pico-projectors
NASA Astrophysics Data System (ADS)
Thomas, Weston; Middlebrook, Christopher
2014-12-01
Personal electronic devices such as cell phones and tablets continue to decrease in size while the number of features and add-ons keep increasing. One particular feature of great interest is an integrated projector system. Laser pico-projectors have been considered, but the technology has not been developed enough to warrant integration. With new advancements in diode technology and MEMS devices, laser-based projection is currently being advanced for pico-projectors. A primary problem encountered when using a pico-projector is coherent interference known as speckle. Laser speckle can lead to eye irritation and headaches after prolonged viewing. Diffractive optical elements known as diffusers have been examined as a means to lower speckle contrast. This paper presents a binary diffuser known as a Hadamard matrix diffuser. Using two static in-line Hadamard diffusers eliminates the need for rotation or vibration of the diffuser for temporal averaging. Two Hadamard diffusers were fabricated and contrast values measured showing good agreement with theory and simulated values.
Song, Junhwa; Mun, Hyunil; Park, Keon Uk
2009-01-01
Background/Aims Acidic saline injections produce mechanical hyperresponsiveness in male Sprague-Dawley rats. We investigated the effect of milnacipran in conjunction with tramadol on the pain threshold in an acidic saline animal model of pain. Methods The left gastrocnemius muscle of 20 male rats was injected with 100 µL of saline at pH 4.0 under brief isoflurane anesthesia on days 0 and 5. Rats administered acidic saline injections were separated into four study subgroups. After determining the pre-drug pain threshold, rats were injected intraperitoneally with one of the following regimens; saline, milnacipran alone (60 mg/kg), milnacipran (40 mg/kg) plus tramadol (20 mg/kg), or milnacipran (40 mg/kg) plus tramadol (40 mg/kg). Paw withdrawal in response to pressure was measured at 30 min, 120 min, and 5 days after injection. Nociceptive thresholds, expressed in grams, were measured with a Dynamic Plantar Aesthesiometer (Ugo Basile, Italy) by applying increasing pressure to the right or left hind paw until the rat withdrew the paw. Results A potent antihyperalgesic effect was observed when tramadol and milnacipran were used in combination (injected paw, p=0.001; contralateral paw, p=0.012). This finding was observed only at 30 min after the combination treatment. Conclusions We observed potentiation of the antihyperalgesic effect when milnacipran and tramadol were administered in combination in an animal model of fibromyalgia. Further research is required to determine the efficacy of various combination treatments in fibromyalgia in humans. PMID:19543493
Robarge, Jason D.; Duarte, Djane B.; Shariati, Behzad; Wang, Ruizhong; Flockhart, David A.; Vasko, Michael R.
2016-01-01
Although aromatase inhibitors (AIs) are commonly used therapies for breast cancer, their use is limited because they produce arthralgia in a large number of patients. To determine whether AIs produce hypersensitivity in animal models of pain, we examined the effects of the AI, letrozole, on mechanical, thermal, and chemical sensitivity in rats. In ovariectomized (OVX) rats, administering a single dose of 1 or 5 mg/kg letrozole significantly reduced mechanical paw withdrawal thresholds, without altering thermal sensitivity. Repeated injection of 5 mg/kg letrozole in male rats produced mechanical, but not thermal, hypersensitivity that extinguished when drug dosing was stopped. A single dose of 5 mg/kg letrozole or daily dosing of letrozole or exemestane in male rats also augmented flinching behavior induced by intraplantar injection of 1000 nmol of adenosine 5′-triphosphate (ATP). To determine whether sensitization of sensory neurons contributed to AI-induced hypersensitivity, we evaluated the excitability of neurons isolated from dorsal root ganglia of male rats chronically treated with letrozole. Both small and medium-diameter sensory neurons isolated from letrozole-treated rats were more excitable, as reflected by increased action potential firing in response to a ramp of depolarizing current, a lower resting membrane potential, and a lower rheobase. However, systemic letrozole treatment did not augment the stimulus-evoked release of the neuropeptide calcitonin gene-related peptide (CGRP) from spinal cord slices, suggesting that the enhanced nociceptive responses were not secondary to an increase in peptide release from sensory endings in the spinal cord. These results provide the first evidence that AIs modulate the excitability of sensory neurons, which may be a primary mechanism for the effect of these drugs to augment pain behaviors in rats. PMID:27072527
Parallelization of the FLAPW method
NASA Astrophysics Data System (ADS)
Canning, A.; Mannstadt, W.; Freeman, A. J.
2000-08-01
The FLAPW (full-potential linearized-augmented plane-wave) method is one of the most accurate first-principles methods for determining structural, electronic and magnetic properties of crystals and surfaces. Until the present work, the FLAPW method has been limited to systems of less than about a hundred atoms due to the lack of an efficient parallel implementation to exploit the power and memory of parallel computers. In this work, we present an efficient parallelization of the method by division among the processors of the plane-wave components for each state. The code is also optimized for RISC (reduced instruction set computer) architectures, such as those found on most parallel computers, making full use of BLAS (basic linear algebra subprograms) wherever possible. Scaling results are presented for systems of up to 686 silicon atoms and 343 palladium atoms per unit cell, running on up to 512 processors on a CRAY T3E parallel supercomputer.
Yoshida, Shunsuke
2016-06-13
A novel glasses-free tabletop 3D display to float virtual objects on a flat tabletop surface is proposed. This method employs circularly arranged projectors and a conical rear-projection screen that serves as an anisotropic diffuser. Its practical implementation installs them beneath a round table and produces horizontal parallax in a circumferential direction without the use of high speed or a moving apparatus. Our prototype can display full-color, 5-cm-tall 3D characters on the table. Multiple viewers can share and enjoy its real-time animation from any angle of 360 degrees with appropriate perspectives as if the animated figures were present.
Merkulova, A G; Osokina, E S; Bukhtiiarov, I V
2014-10-01
The case of compare two ways of projection color visual images, characterized by different spatial-temporal characteristics of visual stimuli, presents the methodology and the set of techniques. Received comparative data, identifying risks of regulation disorder of the functional state and development general, mental and visual fatigue during prolonged strenuous visual activity, according to two types of test tasks, which are the most typical for the use of modern projectors to work with the audience, both inthe process of implementation of learning technologies and the collective take responsible decisions by expert groups that control of complex technological processes.
Frozen-Orbital and Downfolding Calculations with Auxiliary-Field Quantum Monte Carlo.
Purwanto, Wirawan; Zhang, Shiwei; Krakauer, Henry
2013-11-12
We describe the implementation of the frozen-orbital and downfolding approximations in the auxiliary-field quantum Monte Carlo (AFQMC) method. These approaches can provide significant computational savings, compared to fully correlating all of the electrons. While the many-body wave function is never explicit in AFQMC, its random walkers are Slater determinants, whose orbitals may be expressed in terms of any one-particle orbital basis. It is therefore straightforward to partition the full N-particle Hilbert space into active and inactive parts to implement the frozen-orbital method. In the frozen-core approximation, for example, the core electrons can be eliminated in the correlated part of the calculations, greatly increasing the computational efficiency, especially for heavy atoms. Scalar relativistic effects are easily included using the Douglas-Kroll-Hess theory. Using this method, we obtain a way to effectively eliminate the error due to single-projector, norm-conserving pseudopotentials in AFQMC. We also illustrate a generalization of the frozen-orbital approach that downfolds high-energy basis states to a physically relevant low-energy sector, which allows a systematic approach to produce realistic model Hamiltonians to further increase efficiency for extended systems.
Transition operators in electromagnetic-wave diffraction theory. II - Applications to optics
NASA Technical Reports Server (NTRS)
Hahne, G. E.
1993-01-01
The theory developed by Hahne (1992) for the diffraction of time-harmonic electromagnetic waves from fixed obstacles is briefly summarized and extended. Applications of the theory are considered which comprise, first, a spherical harmonic expansion of the so-called radiation impedance operator in the theory, for a spherical surface, and second, a reconsideration of familiar short-wavelength approximation from the new standpoint, including a derivation of the so-called physical optics method on the basis of quasi-planar approximation to the radiation impedance operator, augmented by the method of stationary phase. The latter includes a rederivation of the geometrical optics approximation for the complete Green's function for the electromagnetic field in the presence of a smooth- and a convex-surfaced perfectly electrically conductive obstacle.
Infrared Cephalic-Vein to Assist Blood Extraction Tasks: Automatic Projection and Recognition
NASA Astrophysics Data System (ADS)
Lagüela, S.; Gesto, M.; Riveiro, B.; González-Aguilera, D.
2017-05-01
Thermal infrared band is not commonly used in photogrammetric and computer vision algorithms, mainly due to the low spatial resolution of this type of imagery. However, this band captures sub-superficial information, increasing the capabilities of visible bands regarding applications. This fact is especially important in biomedicine and biometrics, allowing the geometric characterization of interior organs and pathologies with photogrammetric principles, as well as the automatic identification and labelling using computer vision algorithms. This paper presents advances of close-range photogrammetry and computer vision applied to thermal infrared imagery, with the final application of Augmented Reality in order to widen its application in the biomedical field. In this case, the thermal infrared image of the arm is acquired and simultaneously projected on the arm, together with the identification label of the cephalic-vein. This way, blood analysts are assisted in finding the vein for blood extraction, especially in those cases where the identification by the human eye is a complex task. Vein recognition is performed based on the Gaussian temperature distribution in the area of the vein, while the calibration between projector and thermographic camera is developed through feature extraction and pattern recognition. The method is validated through its application to a set of volunteers, with different ages and genres, in such way that different conditions of body temperature and vein depth are covered for the applicability and reproducibility of the method.
Overhead Projector Demonstrations.
ERIC Educational Resources Information Center
Kolb, Doris, Ed.
1987-01-01
Describes several chemistry demonstrations that use an overhead projector. Some of the demonstrations deal with electrochemistry, and another deals with the reactions of nonvolatile immiscible liquid in water. (TW)
NASA Astrophysics Data System (ADS)
Peterson, David
2005-11-01
The audio and visual capabilities of the planetarium at Francis Marion University were upgraded in Fall 2004 to incorporate three Barco CRT projectors and surround sound. Controlled by the Astro-FX media manager system developed by Bowen Technovation, the projectors focus on the 33 foot dome installed in 1978 for the Spitz 512 Star projector. The significant additional capabilities of the new combined systems will be presented together with a review of the planetarium renovation procedure.
Invisible marker based augmented reality system
NASA Astrophysics Data System (ADS)
Park, Hanhoon; Park, Jong-Il
2005-07-01
Augmented reality (AR) has recently gained significant attention. The previous AR techniques usually need a fiducial marker with known geometry or objects of which the structure can be easily estimated such as cube. Placing a marker in the workspace of the user can be intrusive. To overcome this limitation, we present an AR system using invisible markers which are created/drawn with an infrared (IR) fluorescent pen. Two cameras are used: an IR camera and a visible camera, which are positioned in each side of a cold mirror so that their optical centers coincide with each other. We track the invisible markers using IR camera and visualize AR in the view of visible camera. Additional algorithms are employed for the system to have a reliable performance in the cluttered background. Experimental results are given to demonstrate the viability of the proposed system. As an application of the proposed system, the invisible marker can act as a Vision-Based Identity and Geometry (VBIG) tag, which can significantly extend the functionality of RFID. The invisible tag is the same as RFID in that it is not perceivable while more powerful in that the tag information can be presented to the user by direct projection using a mobile projector or by visualizing AR on the screen of mobile PDA.
NASA Astrophysics Data System (ADS)
Reiter, D. T.; Rodi, W. L.
2015-12-01
Constructing 3D Earth models through the joint inversion of large geophysical data sets presents numerous theoretical and practical challenges, especially when diverse types of data and model parameters are involved. Among the challenges are the computational complexity associated with large data and model vectors and the need to unify differing model parameterizations, forward modeling methods and regularization schemes within a common inversion framework. The challenges can be addressed in part by decomposing the inverse problem into smaller, simpler inverse problems that can be solved separately, providing one knows how to merge the separate inversion results into an optimal solution of the full problem. We have formulated an approach to the decomposition of large inverse problems based on the augmented Lagrangian technique from optimization theory. As commonly done, we define a solution to the full inverse problem as the Earth model minimizing an objective function motivated, for example, by a Bayesian inference formulation. Our decomposition approach recasts the minimization problem equivalently as the minimization of component objective functions, corresponding to specified data subsets, subject to the constraints that the minimizing models be equal. A standard optimization algorithm solves the resulting constrained minimization problems by alternating between the separate solution of the component problems and the updating of Lagrange multipliers that serve to steer the individual solution models toward a common model solving the full problem. We are applying our inversion method to the reconstruction of the·crust and upper-mantle seismic velocity structure across Eurasia.· Data for the inversion comprise a large set of P and S body-wave travel times·and fundamental and first-higher mode Rayleigh-wave group velocities.
Salient features of solitary waves in dusty plasma under the influence of Coriolis force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, G. C.; Nag, Apratim; Department of Physics, G. C. College, Silchar-788004
The main interest is to study the nonlinear acoustic wave in rotating dusty plasma augmented through the derivation of a modified Sagdeev potential equation. Small rotation causes the interaction of Coriolis force in the dynamical system, and leads to the complexity in the derivation of the nonlinear wave equation. As a result, the finding of solitary wave propagation in dusty plasma ought to be of merit. However, the nonlinear wave equation has been successfully solved by the use of the hyperbolic method. Main emphasis has been given to the changes on the evolution and propagation of soliton, and the variationmore » caused by the dusty plasma constituents as well as by the Coriolis force have been highlighted. Some interesting nonlinear wave behavior has been found which can be elaborately studied for the interest of laboratory and space plasmas. Further, to support the theoretical investigations, numeric plasma parameters have been taken for finding the inherent features of solitons.« less
Heffernan, Kevin S; Jae, Sae Young; Tomayko, Emily; Ishaque, Muhammad R; Fernhall, Bo; Wilund, Kenneth R
2009-05-01
Increased carotid intima-media thickness (IMT) with aging is a significant predictor of mortality. Older endurance trained (ET) individuals have lower carotid artery stiffness but similar carotid IMT when compared to sedentary (SED) age-matched peers. The purpose of this study was to examine the contribution of arterial wave reflections to carotid hemodynamics and IMT in older ET and SED with pre-hypertension. Subjects consisted of endurance-trained master athletes and age-matched sedentary controls (mean age 67 years). Carotid artery Beta-stiffness index and IMT was assessed with ultrasonography. Carotid pressure and augmented pressure from wave reflections (obtained from pulse contour analysis) was measured with applanation tonometry. Carotid systolic blood pressure (SBP) and IMT were not different between groups (P>0.05). Carotid stiffness was significantly lower in ET versus SED (7.3 +/- 0.8 versus 9.9 +/- 0.6, P<0.05). Augmented pressure was significantly greater in ET versus SED (17.7 +/- 1.6 versus 13.3 +/- 1.5 mmHg, P<0.05). When adjusting for differences in resting heart rate, there were no group differences in augmented pressure. In conclusion, older ET persons with pre-hypertension have reduced carotid artery stiffness, but similar carotid SBP and carotid IMT when compared to SED. The lack of change in carotid SBP and IMT in older ET may be related to the inability of chronic exercise training to reduce bradycardia-related augmented pressure from wave reflections with aging.
Peripheral Antinociception Induced by Aripiprazole Is Mediated by the Opioid System.
Ferreira, Renata Cristina Mendes; Almeida-Santos, Ana Flávia; Duarte, Igor Dimitri Gama; Aguiar, Daniele C; Moreira, Fabricio A; Romero, Thiago Roberto Lima
2017-01-01
Aripiprazole is an antipsychotic drug used to treat schizophrenia and related disorders. Our previous study showed that this compound also induces antinociceptive effects. The present study aimed to assess the participation of the opioid system in this effect. Male Swiss mice were submitted to paw pressure test and hyperalgesia was induced by intraplantar injection of prostaglandin E 2 (PGE 2 , 2 μ g). Aripiprazole was injected 10 min before the measurement. Naloxone, clocinnamox, naltrindole, nor-binaltorphimine, and bestatin were given 30 min before aripiprazole. Nociceptive thresholds were measured in the 3rd hour after PGE 2 injection. Aripiprazole (100 μ g/paw) injected locally into the right hind paw induced an antinociceptive effect that was blocked by naloxone (50 μ g/paw), a nonselective opioid receptor antagonist. The role of μ -, δ -, and κ -opioid receptors was investigated using the selective antagonists, clocinnamox (40 μ g/paw), naltrindole (15, 30, and 60 μ g/paw), and nor-binaltorphimine (200 μ g/paw), respectively. The data indicated that only the δ -opioid receptor antagonist inhibited the peripheral antinociception induced by aripiprazole. Bestatin (400 μ g), an aminopeptidase-N inhibitor, significantly enhanced low-dose (25 μ g/paw) aripiprazole-induced peripheral antinociception. The results suggest the participation of the opioid system via δ -opioid receptor in the peripheral antinociceptive effect induced by aripiprazole.
Takahashi, Shigetoshi; Hwang, In-Hee; Matsuto, Toshihiko
2016-06-01
Fabric filters are widely used to remove dust from flue gas generated by waste incineration. However, a pressure drop occurs at the filters, caused by growth of a dust layer on the filter fabric despite regular cleaning by pulsed-jet air. The pressure drop at the fabric filters leads to energy consumption at induced draft fan to keep the incinerator on negative pressure, so that its proper control is important to operate incineration facility efficiently. The pressure drop at fabric filters decreased whenever phosphoric acid wastewater (PAW) was sprayed into an incinerator for treating industrial waste. Operational data obtained from the incineration facility were analyzed to determine the short- and long-term effects of PAW spraying on the pressure drop. For the short-term effect, it was confirmed that the pressure drop at the fabric filters always decreased to 0.3-1.2kPa within about 5h after spraying PAW. This effect was expected to be obtained by about one third of present PAW spraying amount. However, from the long-term perspective, the pressure drop showed an increase in the periods of PAW spraying compared with periods for which PAW spraying was not performed. The pressure drop increase was particularly noticeable after the initial PAW spraying, regardless of the age and type of fabric filters used. These results suggest that present PAW spraying causes a temporary pressure drop reduction, leading to short-term energy consumption savings; however, it also causes an increase of the pressure drop over the long-term, degrading the overall operating conditions. Thus, appropriate PAW spraying conditions are needed to make effective use of PAW to reduce the pressure drop at fabric filters from a short- and long-term point of view. Copyright © 2016 Elsevier Ltd. All rights reserved.
Night vision goggle stimulation using LCoS and DLP projection technology, which is better?
NASA Astrophysics Data System (ADS)
Ali, Masoud H.; Lyon, Paul; De Meerleer, Peter
2014-06-01
High fidelity night-vision training has become important for many of the simulation systems being procured today. The end-users of these simulation-training systems prefer using their actual night-vision goggle (NVG) headsets. This requires that the visual display system stimulate the NVGs in a realistic way. Historically NVG stimulation was done with cathode-ray tube (CRT) projectors. However, this technology became obsolete and in recent years training simulators do NVG stimulation with laser, LCoS and DLP projectors. The LCoS and DLP projection technologies have emerged as the preferred approach for the stimulation of NVGs. Both LCoS and DLP technologies have advantages and disadvantages for stimulating NVGs. LCoS projectors can have more than 5-10 times the contrast capability of DLP projectors. The larger the difference between the projected black level and the brightest object in a scene, the better the NVG stimulation effects can be. This is an advantage of LCoS technology, especially when the proper NVG wavelengths are used. Single-chip DLP projectors, even though they have much reduced contrast compared to LCoS projectors, can use LED illuminators in a sequential red-green-blue fashion to create a projected image. It is straightforward to add an extra infrared (NVG wavelength) LED into this sequential chain of LED illumination. The content of this NVG channel can be independent of the visible scene, which allows effects to be added that can compensate for the lack of contrast inherent in a DLP device. This paper will expand on the differences between LCoS and DLP projectors for stimulating NVGs and summarize the benefits of both in night-vision simulation training systems.
Scorpion Hybrid Optical-based Inertial Tracker (HObIT) test results
NASA Astrophysics Data System (ADS)
Atac, Robert; Spink, Scott; Calloway, Tom; Foxlin, Eric
2014-06-01
High fidelity night-vision training has become important for many of the simulation systems being procured today. The end-users of these simulation-training systems prefer using their actual night-vision goggle (NVG) headsets. This requires that the visual display system stimulate the NVGs in a realistic way. Historically NVG stimulation was done with cathode-ray tube (CRT) projectors. However, this technology became obsolete and in recent years training simulators do NVG stimulation with laser, LCoS and DLP projectors. The LCoS and DLP projection technologies have emerged as the preferred approach for the stimulation of NVGs. Both LCoS and DLP technologies have advantages and disadvantages for stimulating NVGs. LCoS projectors can have more than 5-10 times the contrast capability of DLP projectors. The larger the difference between the projected black level and the brightest object in a scene, the better the NVG stimulation effects can be. This is an advantage of LCoS technology, especially when the proper NVG wavelengths are used. Single-chip DLP projectors, even though they have much reduced contrast compared to LCoS projectors, can use LED illuminators in a sequential red-green-blue fashion to create a projected image. It is straightforward to add an extra infrared (NVG wavelength) LED into this sequential chain of LED illumination. The content of this NVG channel can be independent of the visible scene, which allows effects to be added that can compensate for the lack of contrast inherent in a DLP device. This paper will expand on the differences between LCoS and DLP projectors for stimulating NVGs and summarize the benefits of both in night-vision simulation training systems.
NASA Astrophysics Data System (ADS)
Robinson, Dirk; Stork, David G.
2008-02-01
A recent theory claims that the late-Italian Renaissance painter Lorenzo Lotto secretly built a concave-mirror projector to project an image of a carpet onto his canvas and trace it during the execution of Husband and wife (c. 1543). Key evidence adduced to support this claim includes "perspective anomalies" and changes in "magnification" that the theory's proponents ascribe to Lotto refocusing his projector to overcome its limitations in depth of field. We find, though, that there are important geometrical constraints upon such a putative optical projector not incorporated into the proponents' analyses, and that when properly included, the argument for the use of optics loses its force. We used Zemax optical design software to create a simple model of Lotto's studio and putative projector, and incorporated the optical properties proponents inferred from geometrical properties of the depicted carpet. Our central contribution derives from including the 116-cm-wide canvas screen; we found that this screen forces the incident light to strike the concave mirror at large angles (>= 15°) and that this, in turn, means that the projected image would reveal severe off-axis aberrations, particularly astigmatism. Such aberrations are roughly as severe as the defocus blur claimed to have led Lotto to refocus the projector. In short, we find that the projected images would not have gone in and out of focus in the way claimed by proponents, a result that undercuts their claim that Lotto used a projector for this painting. We speculate on the value of further uses of sophisticated ray-tracing analyses in the study of fine arts.
Beats: Video Monitors and Cameras.
ERIC Educational Resources Information Center
Worth, Frazier
1996-01-01
Presents a method to teach the concept of beats as a generalized phenomenon rather than teaching it only in the context of sound. Involves using a video camera to film a computer terminal, 16-mm projector, or TV monitor. (JRH)
A New Idea for Dissecting Tray
ERIC Educational Resources Information Center
Branham, Arthur
1976-01-01
A method of preparing a special dissecting tray to be used with transmitted light as well as reflected light is presented. It may also be used with an overhead projector to illustrate some skeletal structures in vertebrates. (Author/EB)
Jiang, Hongzhi; Zhao, Huijie; Li, Xudong; Quan, Chenggen
2016-03-07
We propose a novel hyper thin 3D edge measurement technique to measure the profile of 3D outer envelope of honeycomb core structures. The width of the edges of the honeycomb core is less than 0.1 mm. We introduce a triangular layout design consisting of two cameras and one projector to measure hyper thin 3D edges and eliminate data interference from the walls. A phase-shifting algorithm and the multi-frequency heterodyne phase-unwrapping principle are applied for phase retrievals on edges. A new stereo matching method based on phase mapping and epipolar constraint is presented to solve correspondence searching on the edges and remove false matches resulting in 3D outliers. Experimental results demonstrate the effectiveness of the proposed method for measuring the 3D profile of honeycomb core structures.
Pàez, Olga; Alfie, José; Gorosito, Marta; Puleio, Pablo; de Maria, Marcelo; Prieto, Noemì; Majul, Claudio
2009-10-01
Pre-eclampsia not only complicates 5 to 8% of pregnancies but also increases the risk of maternal cardiovascular disease and mortality later in life. We analyzed three different aspects of arterial function (pulse wave velocity, augmentation index, and flow-mediated dilatation), in 55 nonpregnant, normotensive women (18-33 years old) according to their gestational history: 15 nulliparous, 20 with a previous normotensive, and 20 formerly pre-eclamptic pregnancy. Former pre-eclamptic women showed a significantly higher augmentation index and pulse wave velocity (P < 0.001 and P < 0.05, respectively) and lower flow-mediated dilatation (p = 0.01) compared to control groups. In contrast, sublingual nitroglycerine elicited a comparable vasodilatory response in the three groups. The augmentation index correlated significantly with pulse wave velocity and flow-mediated dilatation (R = 0.28 and R = -0.32, respectively, P < 0.05 for both). No significant correlations were observed between augmentation index or flow-mediated dilatation with age, body mass index (BMI), brachial blood pressure, heart rate, or metabolic parameters (plasma cholesterol, glucose, insulin, or insulin resistance). Birth weight maintained a significantly inverse correlation with the augmentation index (R = -0.51, p < 0.002) but not with flow-mediated dilatation. Our findings revealed a parallel decrease in arterial distensibility and endothelium-dependent dilatation in women with a history of pre-eclampsia compared to nulliparous women and women with a previous normal pregnancy. A high augmentation index was the most consistent alteration associated with a history of pre-eclampsia. The study supports the current view that the generalized arterial dysfunction associated with pre-eclampsia persists subclinically after delivery.
Divergent effects of laughter and mental stress on arterial stiffness and central hemodynamics.
Vlachopoulos, Charalambos; Xaplanteris, Panagiotis; Alexopoulos, Nikolaos; Aznaouridis, Konstantinos; Vasiliadou, Carmen; Baou, Katerina; Stefanadi, Elli; Stefanadis, Christodoulos
2009-05-01
To investigate the effect of laughter and mental stress on arterial stiffness and central hemodynamics. Arterial stiffness and wave reflections are independent predictors of cardiovascular risk. Chronic psychological stress is an independent risk factor for cardiovascular events, whereas acute stress deteriorates vascular function. Eighteen healthy individuals were studied on three occasions, according to a randomized, single-blind, crossover, sham procedure-controlled design. The effects of viewing a 30-minute segment of two films inducing laughter or stress were assessed. Carotid-femoral pulse wave velocity was used as an index of arterial stiffness; augmentation index was used as a measure of wave reflections. Laughter decreased pulse wave velocity (by 0.30 m/sec, p = .01), and augmentation index (by 2.72%, p = .05). Conversely, stress increased pulse wave velocity (by 0.29 m/sec, p = .05) and augmentation index (by 5.1%, p = .005). Laughter decreased cortisol levels by 1.67 microg/dl (p = .02), soluble P-selectin by 26 ng/ml (p = .02) and marginally von Willebrand factor (by 2.4%, p = .07) and increased total oxidative status (by 61 micromol/L, p < .001). Stress decreased interleukin-6 (by 0.11 pg/ml, p = .04) and increased total oxidative status (by 44 micromol/L, p = .007). Soluble CD40 ligand and fibrinogen remained unchanged. Positive (laughter) and negative (stress) behavioral interventions have divergent acute effects on arterial stiffness and wave reflections. These findings have important clinical implications extending the spectrum of lifestyle modifications that can ameliorate arterial function.
Directional Acoustic Wave Manipulation by a Porpoise via Multiphase Forehead Structure
NASA Astrophysics Data System (ADS)
Zhang, Yu; Song, Zhongchang; Wang, Xianyan; Cao, Wenwu; Au, Whitlow W. L.
2017-12-01
Porpoises are small-toothed whales, and they can produce directional acoustic waves to detect and track prey with high resolution and a wide field of view. Their sound-source sizes are rather small in comparison with the wavelength so that beam control should be difficult according to textbook sonar theories. Here, we demonstrate that the multiphase material structure in a porpoise's forehead is the key to manipulating the directional acoustic field. Computed tomography (CT) derives the multiphase (bone-air-tissue) complex, tissue experiments obtain the density and sound-velocity multiphase gradient distributions, and acoustic fields and beam formation are numerically simulated. The results suggest the control of wave propagations and sound-beam formations is realized by cooperation of the whole forehead's tissues and structures. The melon size significantly impacts the side lobes of the beam and slightly influences the main beams, while the orientation of the vestibular sac mainly adjusts the main beams. By compressing the forehead complex, the sound beam can be expanded for near view. The porpoise's biosonar allows effective wave manipulations for its omnidirectional sound source, which can help the future development of miniaturized biomimetic projectors in underwater sonar, medical ultrasonography, and other ultrasonic imaging applications.
NASA Astrophysics Data System (ADS)
Abuzairi, Tomy; Ramadhanty, Savira; Puspohadiningrum, Dini Fithriaty; Ratnasari, Anita; Poespawati, Nji Raden; Purnamaningsih, Retno Wigajatri
2018-02-01
Plasma activated water (PAW) is a new approach to bacterial inactivation while ensuring safety and maintaining the properties of the material sterilized. Reported research imply that PAW has been effective for inactivation of bacteria. In this paper, plasma treatment using atmospheric pressure plasma was demonstrated. Physicochemical properties such as pH, temperature, ORP, and nitrite concentration were assessed. The results suggest that plasma treatment causes acidification on water and generate reactive species, creating an environment suitable for killing bacteria. Therefore, plasma activated water is an assuring method for medical devices sterilization.
Pelissier, Teresa; Alvarez, Pedro; Hernández, Alejandro
2003-09-01
The antinociceptive effect of long-lasting ketamine administration (mini-osmotic pump) was studied in monoarthritic rats by using hindpaw pressure testing and wind-up measurement in a C-fiber reflex paradigm. Chronic ketamine induced antinociception in the monoarthritic paw and significantly suppressed mechanical hyperalgesia during the 14-day treatment period. The treatment also reduced C-reflex wind-up in the monoarthritic hindpaw. After pump removal, vocalization thresholds and spinal wind-up scores from the monoarthritic paw returned to control values, while hyperalgesia developed in the normal paw. Results suggest that ketamine upregulates NMDA receptors upon long-term administration, resulting in hyperalgesic response in the normal paw after drug withdrawal.
Speckle perception and disturbance limit in laser based projectors
NASA Astrophysics Data System (ADS)
Verschaffelt, Guy; Roelandt, Stijn; Meuret, Youri; Van den Broeck, Wendy; Kilpi, Katriina; Lievens, Bram; Jacobs, An; Janssens, Peter; Thienpont, Hugo
2016-04-01
We investigate the level of speckle that can be tolerated in a laser cinema projector. For this purpose, we equipped a movie theatre room with a prototype laser projector. A group of 186 participants was gathered to evaluate the speckle perception of several, short movie trailers in a subjective `Quality of Experience' experiment. This study is important as the introduction of lasers in projection systems has been hampered by the presence of speckle in projected images. We identify a speckle disturbance threshold by statistically analyzing the observers' responses for different values of the amount of speckle, which was monitored using a well-defined speckle measurement method. The analysis shows that the speckle perception of a human observer is not only dependent on the objectively measured amount of speckle, but it is also strongly influenced by the image content. As is also discussed in [Verschaffelt et al., Scientific Reports 5, art. nr. 14105, 2015] we find that, for moving images, the speckle becomes disturbing if the speckle contrast becomes larger than 6.9% for the red, 6.0% for the green, and 4.8% for the blue primary colors of the projector, whereas for still images the speckle detection threshold is about 3%. As we could not independently tune the speckle contrast of each of the primary colors, this speckle disturbance limit seems to be determined by the 6.9% speckle contrast of the red color as this primary color contains the largest amount of speckle. The speckle disturbance limit for movies thus turns out to be substantially larger than that for still images, and hence is easier to attain.
fVisiOn: glasses-free tabletop 3D display to provide virtual 3D media naturally alongside real media
NASA Astrophysics Data System (ADS)
Yoshida, Shunsuke
2012-06-01
A novel glasses-free tabletop 3D display, named fVisiOn, floats virtual 3D objects on an empty, flat, tabletop surface and enables multiple viewers to observe raised 3D images from any angle at 360° Our glasses-free 3D image reproduction method employs a combination of an optical device and an array of projectors and produces continuous horizontal parallax in the direction of a circular path located above the table. The optical device shapes a hollow cone and works as an anisotropic diffuser. The circularly arranged projectors cast numerous rays into the optical device. Each ray represents a particular ray that passes a corresponding point on a virtual object's surface and orients toward a viewing area around the table. At any viewpoint on the ring-shaped viewing area, both eyes collect fractional images from different projectors, and all the viewers around the table can perceive the scene as 3D from their perspectives because the images include binocular disparity. The entire principle is installed beneath the table, so the tabletop area remains clear. No ordinary tabletop activities are disturbed. Many people can naturally share the 3D images displayed together with real objects on the table. In our latest prototype, we employed a handmade optical device and an array of over 100 tiny projectors. This configuration reproduces static and animated 3D scenes for a 130° viewing area and allows 5-cm-tall virtual characters to play soccer and dance on the table.
Overhead Projector Demonstrations.
ERIC Educational Resources Information Center
Kolb, Doris, Ed.
1989-01-01
Described are demonstrations of the optical activity of two sugar solutions, and the effects of various substituents on acid strength using an overhead projector. Materials and procedures for each demonstration are discussed. (CW)
A calibration method immune to the projector errors in fringe projection profilometry
NASA Astrophysics Data System (ADS)
Zhang, Ruihua; Guo, Hongwei
2017-08-01
In fringe projection technique, system calibration is a tedious task to establish the mapping relationship between the object depths and the fringe phases. Especially, it is not easy to accurately determine the parameters of the projector in this system, which may induce errors in the measurement results. To solve this problem, this paper proposes a new calibration by using the cross-ratio invariance in the system geometry for determining the phase-to-depth relations. In it, we analyze the epipolar eometry of the fringe projection system. On each epipolar plane, the depth variation along an incident ray induces the pixel movement along the epipolar line on the image plane of the camera. These depth variations and pixel movements can be connected by use of the projective transformations, under which condition the cross-ratio for each of them keeps invariant. Based on this fact, we suggest measuring the depth map by use of this cross-ratio invariance. Firstly, we shift the reference board in its perpendicular direction to three positions with known depths, and measure their phase maps as the reference phase maps; and secondly, when measuring an object, we calculate the object depth at each pixel by equating the cross-ratio of the depths to that of the corresponding pixels having the same phase on the image plane of the camera. This method is immune to the errors sourced from the projector, including the distortions both in the geometric shapes and in the intensity profiles of the projected fringe patterns.The experimental results demonstrate the proposed method to be feasible and valid.
Dunham, James P; Hulse, Richard P; Donaldson, Lucy F
2015-07-15
Thermal sensory testing in rodents informs human pain research. There are important differences in the methodology for delivering thermal stimuli to humans and rodents. This is particularly true in cold pain research. These differences confound extrapolation and de-value nociceptive tests in rodents. We investigated cooling-induced behaviours in rats and psychophysical thresholds in humans using ramped cooling stimulation protocols. A Peltier device mounted upon force transducers simultaneously applied a ramped cooling stimulus whilst measuring contact with rat hind paw or human finger pad. Rat withdrawals and human detection, discomfort and pain thresholds were measured. Ramped cooling of a rat hind paw revealed two distinct responses: Brief paw removal followed by paw replacement, usually with more weight borne than prior to the removal (temperature inter-quartile range: 19.1 °C to 2.8 °C). Full withdrawal was evoked at colder temperatures (inter quartile range: -11.3 °C to -11.8 °C). The profile of human cool detection threshold and cold pain threshold were remarkably similar to that of the rat withdrawals behaviours. Previous rat cold evoked behaviours utilise static temperature stimuli. By utilising ramped cold stimuli this novel methodology better reflects thermal testing in patients. Brief paw removal in the rat is driven by non-nociceptive afferents, as is the perception of cooling in humans. This is in contrast to the nociceptor-driven withdrawal from colder temperatures. These findings have important implications for the interpretation of data generated in older cold pain models and consequently our understanding of cold perception and pain. Copyright © 2015. Published by Elsevier B.V.
Bonhomme, Christian; Gervais, Christel; Folliet, Nicolas; Pourpoint, Frédérique; Diogo, Cristina Coelho; Lao, Jonathan; Jallot, Edouard; Lacroix, Joséphine; Nedelec, Jean-Marie; Iuga, Dinu; Hanna, John V; Smith, Mark E; Xiang, Ye; Du, Jincheng; Laurencin, Danielle
2012-08-01
Strontium is an element of fundamental importance in biomedical science. Indeed, it has been demonstrated that Sr(2+) ions can promote bone growth and inhibit bone resorption. Thus, the oral administration of Sr-containing medications has been used clinically to prevent osteoporosis, and Sr-containing biomaterials have been developed for implant and tissue engineering applications. The bioavailability of strontium metal cations in the body and their kinetics of release from materials will depend on their local environment. It is thus crucial to be able to characterize, in detail, strontium environments in disordered phases such as bioactive glasses, to understand their structure and rationalize their properties. In this paper, we demonstrate that (87)Sr NMR spectroscopy can serve as a valuable tool of investigation. First, the implementation of high-sensitivity (87)Sr solid-state NMR experiments is presented using (87)Sr-labeled strontium malonate (with DFS (double field sweep), QCPMG (quadrupolar Carr-Purcell-Meiboom-Gill), and WURST (wideband, uniform rate, and smooth truncation) excitation). Then, it is shown that GIPAW DFT (gauge including projector augmented wave density functional theory) calculations can accurately compute (87)Sr NMR parameters. Last and most importantly, (87)Sr NMR is used for the study of a (Ca,Sr)-silicate bioactive glass of limited Sr content (only ~9 wt %). The spectrum is interpreted using structural models of the glass, which are generated through molecular dynamics (MD) simulations and relaxed by DFT, before performing GIPAW calculations of (87)Sr NMR parameters. Finally, changes in the (87)Sr NMR spectrum after immersion of the glass in simulated body fluid (SBF) are reported and discussed.
Oh, Se-Woung; Weiss, Joseph W E; Kerneghan, Phillip A; Korobkov, Ilia; Maly, Kenneth E; Bryce, David L
2012-05-01
Nine arylboronic acids, seven arylboronic catechol cyclic esters, and two trimeric arylboronic anhydrides (boroxines) are investigated using (11)B solid-state NMR spectroscopy at three different magnetic field strengths (9.4, 11.7, and 21.1 T). Through the analysis of spectra of static and magic-angle spinning samples, the (11)B electric field gradient and chemical shift tensors are determined. The effects of relaxation anisotropy and nutation field strength on the (11)B NMR line shapes are investigated. Infrared spectroscopy was also used to help identify peaks in the NMR spectra as being due to the anhydride form in some of the arylboronic acid samples. Seven new X-ray crystallographic structures are reported. Calculations of the (11)B NMR parameters are performed using cluster model and periodic gauge-including projector-augmented wave (GIPAW) density functional theory (DFT) approaches, and the results are compared with the experimental values. Carbon-13 solid-state NMR experiments and spectral simulations are applied to determine the chemical shifts of the ipso carbons of the samples. One bond indirect (13)C-(11)B spin-spin (J) coupling constants are also measured experimentally and compared with calculated values. The (11)B/(10)B isotope effect on the (13)C chemical shift of the ipso carbons of arylboronic acids and their catechol esters, as well as residual dipolar coupling, is discussed. Overall, this combined X-ray, NMR, IR, and computational study provides valuable new insights into the relationship between NMR parameters and the structure of boronic acids and esters. Copyright © 2012 John Wiley & Sons, Ltd.
Tu, Bingtian; Liu, Xin; Wang, Hao; Wang, Weimin; Zhai, Pengcheng; Fu, Zhengyi
2016-12-19
The nuclear magnetic resonance (NMR) technique gives insight into the local information in a crystal structure, while Rietveld refinement of powder X-ray diffraction (PXRD) sketches out the framework of a crystal lattice. In this work, first-principles calculations were combined with the solid-state NMR technique and Rietveld refinement to explore the crystal structure of a disordered aluminum oxynitride (γ-alon). The theoretical NMR parameters (chemical shift, δ iso , quadrupolar coupling constants, C Q , and asymmetry parameter, η) of Al 22.5 O 28.5 N 3.5 , predicted by the gauge-including projector augmented wave (GIPAW) algorithm, were used to facilitate the analytical investigation of the 27 Al magic-angle spinning (MAS) NMR spectra of the as-prepared sample, whose formula was confirmed to be Al 2.811 O 3.565 N 0.435 by quantitative analysis. The experimental δ iso , C Q , and η of 27 Al showed a small discrepancy compared with theoretical models. The ratio of aluminum located at the 8a to 16d sites was calculated to be 0.531 from the relative integration of peaks in the 27 Al NMR spectra. The occupancies of aluminum at the 8a and 16d positions were determined through NMR investigations to be 0.9755 and 0.9178, respectively, and were used in the Rietveld refinement to obtain the lattice parameter and anion parameter of Al 2.811 O 3.565 N 0.435 . The results from 27 Al NMR investigations and PXRD structural refinement complemented each other. This work provides a powerful and accessible strategy to precisely understand the crystal structure of novel oxynitride materials with multiple disorder.
Pöppler, Ann Christin; Corlett, Emily K; Pearce, Harriet; Seymour, Mark P; Reid, Matthew; Montgomery, Mark G; Brown, Steven P
2017-03-01
A single-crystal X-ray diffraction structure of a 1:1 cocrystal of two fungicides, namely dithianon (DI) and pyrimethanil (PM), is reported [systematic name: 5,10-dioxo-5H,10H-naphtho[2,3-b][1,4]dithiine-2,3-dicarbonitrile-4,6-dimethyl-N-phenylpyrimidin-2-amine (1/1), C 14 H 4 N 2 O 2 S 2 ·C 12 H 13 N 2 ]. Following an NMR crystallography approach, experimental solid-state magic angle spinning (MAS) NMR spectra are presented together with GIPAW (gauge-including projector augmented wave) calculations of NMR chemical shieldings. Specifically, experimental 1 H and 13 C chemical shifts are determined from two-dimensional 1 H- 13 C MAS NMR correlation spectra recorded with short and longer contact times so as to probe one-bond C-H connectivities and longer-range C...H proximities, whereas H...H proximities are identified in a 1 H double-quantum (DQ) MAS NMR spectrum. The performing of separate GIPAW calculations for the full periodic crystal structure and for isolated molecules allows the determination of the change in chemical shift upon going from an isolated molecule to the full crystal structure. For the 1 H NMR chemical shifts, changes of 3.6 and 2.0 ppm correspond to intermolecular N-H...O and C-H...O hydrogen bonding, while changes of -2.7 and -1.5 ppm are due to ring current effects associated with C-H...π interactions. Even though there is a close intermolecular S...O distance of 3.10 Å, it is of note that the molecule-to-crystal chemical shifts for the involved sulfur or oxygen nuclei are small.
The algebraic theory of latent projectors in lambda matrices
NASA Technical Reports Server (NTRS)
Denman, E. D.; Leyva-Ramos, J.; Jeon, G. J.
1981-01-01
Multivariable systems such as a finite-element model of vibrating structures, control systems, and large-scale systems are often formulated in terms of differential equations which give rise to lambda matrices. The present investigation is concerned with the formulation of the algebraic theory of lambda matrices and the relationship of latent roots, latent vectors, and latent projectors to the eigenvalues, eigenvectors, and eigenprojectors of the companion form. The chain rule for latent projectors and eigenprojectors for the repeated latent root or eigenvalues is given.
40. View of dual projector system located in MWOC facility ...
40. View of dual projector system located in MWOC facility in transmitter building no. 102 by Bessler Company. System used to project images in MWOC on backlit screen system with fiber optic electro/mechanical system linked to computer output to indicate information on screen linked with display from projector system. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
A modular projection autostereoscopic system for stereo cinema
NASA Astrophysics Data System (ADS)
Elkhov, Victor A.; Kondratiev, Nikolai V.; Ovechkis, Yuri N.; Pautova, Larisa V.
2009-02-01
The lenticular raster system for 3D movies non-glasses show designed by NIKFI demonstrated commercially in Moscow in the 40'st of the last century. Essential lack of this method was narrow individual viewing zone as only two images on the film used. To solve this problem, we propose to use digital video projective system with modular principle of its design. Increase of the general number of the pixels forming the stereo image is reached by using of more than one projector. The modular projection autostereoscopic system for demonstration of the 3D movies includes diffuser screen; lenticular plate located in front of the screen; projective system consisted from several projectors and the block of parallax panoramogram fragments creator. By means of this block the parallax panoramogram is broken into fragments which quantity corresponds to number of projectors. For the large dimension lenticular screen making rectangular fragments of inclined raster were joined in a uniform leaf. To obtain the needed focal distance of the screen lenses we used immersion - aqueous solution of glycerin. The immersion also let essentially decrease visibility of fragments joints. An experimental prototype of the modular projection autostereoscopic system was created to validate proposed system.
Method and apparatus for providing a seamless tiled display
NASA Technical Reports Server (NTRS)
Dubin, Matthew B. (Inventor); Johnson, Michael J. (Inventor)
2002-01-01
A display for producing a seamless composite image from at least two discrete images. The display includes one or more projectors for projecting each of the discrete images separately onto a screen such that at least one of the discrete images overlaps at least one other of the discrete images by more than 25 percent. The amount of overlap that is required to reduce the seams of the composite image to an acceptable level over a predetermined viewing angle depends on a number of factors including the field-of-view and aperture size of the projectors, the screen gain profile, etc. For rear-projection screens and some front projection screens, an overlap of more than 25 percent is acceptable.
Electronic structure of Pt-substituted clathrate silicides Ba{sub 8}Pt{sub x}Si{sub 46–x}(x = 4–6)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borshch, N. A., E-mail: n.a.borshch@ya.ru
The results of calculation of the electronic structure of Si-based Pt-substituted clathrates are reported. Calculation is carried out by the linearized-augmented-plane-wave method. The effect of the number of substitutions and their crystallographic position in the unit cell on the electron-energy spectrum and the electronic properties of Pt-substituted clathrates is analyzed.
NASA Astrophysics Data System (ADS)
Shugani, Mani; Aynyas, Mahendra; Sanyal, S. P.
2018-05-01
We present a structural, Electronic and Fermi surface properties of Aluminum Praseodymium (AlPr) using First-principles density functional calculation by using full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation (GGA). The ground state properties along with electronic and Fermi surface properties are studied. It is found that AlPr is metallic and the bonding between Al and Pr is covalent.
NMR Shielding in Metals Using the Augmented Plane Wave Method
2015-01-01
We present calculations of solid state NMR magnetic shielding in metals, which includes both the orbital and the complete spin response of the system in a consistent way. The latter contains an induced spin-polarization of the core states and needs an all-electron self-consistent treatment. In particular, for transition metals, the spin hyperfine field originates not only from the polarization of the valence s-electrons, but the induced magnetic moment of the d-electrons polarizes the core s-states in opposite direction. The method is based on DFT and the augmented plane wave approach as implemented in the WIEN2k code. A comparison between calculated and measured NMR shifts indicates that first-principle calculations can obtain converged results and are more reliable than initially concluded based on previous publications. Nevertheless large k-meshes (up to 2 000 000 k-points in the full Brillouin-zone) and some Fermi-broadening are necessary. Our results show that, in general, both spin and orbital components of the NMR shielding must be evaluated in order to reproduce experimental shifts, because the orbital part cancels the shift of the usually highly ionic reference compound only for simple sp-elements but not for transition metals. This development paves the way for routine NMR calculations of metallic systems. PMID:26322148
Ansari, Prawej; Badhan, Sanjeeda Sarmin; Azam, Shofiul; Sultana, Nasrin; Anwar, Sabbir; Mohamed Abdurahman, Mohamed Sheikh; Hannan, J M A
2016-06-01
The aim of the current study was to investigate the scientific basis of the traditional application of Lophopetalum javanicum for measuring anti-inflammatory and analgesic activity and phytochemical screening. Present study includes the preliminary screening of the phytochemical composition and in vivo analgesic and anti-inflammatory activity of methanolic extract of L. javanicum (MELJ). Hot-plate test and tail immersion method were used to investigate acute analgesic effects of L. javanicum, and the potency in inhibition of chronic inflammation in mice was tested by carrageenan-induced paw edema and formalin-induced edema method. One hour after the administration of carrageenan, rat's paw was inflamed, and after treating it with 500 mg/kg dose, increase in the significant inhibitory effect on paw was observed. At the third hour after carrageenan injection, extreme inhibition (55.61%±0.015%; p<0.001) resulted by methanolic extract. By using hot plate method, it was found that L. javanicum increases pain tolerance time up to 17.89±0.079 min, whereas the compared standard's interval was 21.48±0.397 min. In tail immersion method, the pain threshold was 3.02±0.074 (p<0.001) at 400 mg/kg by L. javanicum at 90 min of experiment. This study manifested that the methanolic extract of L. javanicum is efficient in inhibiting pain mediators to release, and conceivably, this report should get priority while searching for a new analgesic and anti-inflammatory agent.
Wave Augmented Diffuser for Centrifugal Compressor
NASA Technical Reports Server (NTRS)
Skoch, Gary J. (Inventor); Paxson, Daniel E. (Inventor)
2001-01-01
A wave augmented diffuser for a centrifugal compressor surrounds the outlet of an impeller that rotates on a drive shaft having an axis of rotation. The impeller brings flow in in an axial direction and imparts kinetic energy to the flow discharging it in radial and tangential directions. The flow is discharged into a plurality of circumferentially disposed wave chambers. The wave chambers are periodically opened and closed by a rotary valve such that the flow through the diffuser is unsteady. The valve includes a plurality of valve openings that are periodically brought into and out of fluid communication with the wave chambers. When the wave chambers are closed, a reflected compression wave moves upstream towards the diffuser bringing the flow into the wave chamber to rest. This action recovers the kinetic energy from the flow and limits any boundary layer growth. The flow is then discharged in an axial direction through an opening in the valve plate when the valve plate is rotated to an open position. The diffuser thus efficiently raises the static pressure of the fluid and discharges an axially directed flow at a radius that is predominantly below the maximum radius of the diffuser.
Computational Studies of Strongly Correlated Quantum Matter
NASA Astrophysics Data System (ADS)
Shi, Hao
The study of strongly correlated quantum many-body systems is an outstanding challenge. Highly accurate results are needed for the understanding of practical and fundamental problems in condensed-matter physics, high energy physics, material science, quantum chemistry and so on. Our familiar mean-field or perturbative methods tend to be ineffective. Numerical simulations provide a promising approach for studying such systems. The fundamental difficulty of numerical simulation is that the dimension of the Hilbert space needed to describe interacting systems increases exponentially with the system size. Quantum Monte Carlo (QMC) methods are one of the best approaches to tackle the problem of enormous Hilbert space. They have been highly successful for boson systems and unfrustrated spin models. For systems with fermions, the exchange symmetry in general causes the infamous sign problem, making the statistical noise in the computed results grow exponentially with the system size. This hinders our understanding of interesting physics such as high-temperature superconductivity, metal-insulator phase transition. In this thesis, we present a variety of new developments in the auxiliary-field quantum Monte Carlo (AFQMC) methods, including the incorporation of symmetry in both the trial wave function and the projector, developing the constraint release method, using the force-bias to drastically improve the efficiency in Metropolis framework, identifying and solving the infinite variance problem, and sampling Hartree-Fock-Bogoliubov wave function. With these developments, some of the most challenging many-electron problems are now under control. We obtain an exact numerical solution of two-dimensional strongly interacting Fermi atomic gas, determine the ground state properties of the 2D Fermi gas with Rashba spin-orbit coupling, provide benchmark results for the ground state of the two-dimensional Hubbard model, and establish that the Hubbard model has a stripe order in the underdoped region.
Overhead Projector Demonstrations.
ERIC Educational Resources Information Center
Kolb, Doris, Ed.
1989-01-01
Included are demonstrations using the overhead projector to show change in optical rotation with wavelength and aromatic pi cloud availability, and formation of colored charge-transfer complexes. Instructional techniques unique to these topics are discussed. (CW)
Futaki, Nobuko; Harada, Masahiro; Sugimoto, Masanori; Hashimoto, Yuki; Honma, Yusuke; Arai, Iwao; Nakaike, Shiro; Hoshi, Keiko
2009-05-01
Lornoxicam is a non-selective cyclooxygenase inhibitor that exhibits strong analgesic and anti-inflammatory effects but a weak antipyretic effect in rat models. Our aim was to investigate the mechanism of separation of potencies or analgesic and antipyretic effects of lornoxicam in relation to its effect on prostaglandin E2 (PGE2) production in the inflammatory paw and the brain. A model of acute or chronic paw inflammation was induced by Freund's complete adjuvant injection into the rat paw. Lornoxicam (0.01-1 mg/kg), celecoxib (0.3-30 mg/kg) or loxoprofen (0.3-30 mg/kg) was administered orally to the rats and the analgesic and antipyretic effects were compared. The paw hyperalgesia was assessed using the Randall-Selitto test or the flexion test. Dorsal subcutaneous body temperature was measured as indicator of pyresis. After the measurement of activities, the rats were sacrificed and the PGE2 content in the paw exudate, cerebrospinal fluid or brain hypothalamus was measured by enzyme-immunoassay. In a chronic model of arthritis, lornoxicam, celecoxib and loxoprofen reduced hyperalgesia with an effective dose that provides 50% inhibition (ED50) of 0.083, 3.9 and 4.3 mg/kg respectively, whereas the effective dose of these drugs in pyresis was 0.58, 0.31 and 0.71 mg/kg respectively. These drugs significantly reduced the PGE2 level in paw exudate and the cerebrospinal fluid. In acute oedematous rats, lornoxicam 0.16 mg/kg, celecoxib 4 mg/kg and loxoprofen 2.4 mg/kg significantly reduced hyperalgesia to a similar extent. On the other hand, lornoxicam did not affect the elevated body temperature, whereas celecoxib and loxoprofen significantly reduced the pyrexia to almost the normal level. These drugs significantly reduced the PGE2 level in inflamed paw exudate lo almost the normal level. On the other hand, lornoxicam did not change PGE2 level in the brain hypothalamus, whereas celecoxib and loxoprofen strongly decreased it. Lornoxicam exhibits strong analgesic but weak antipyretic effects in rats with paw inflammation. Such a separation of effects is related to its efficacy in the reduction of PGE2 levels in the paw and brain hypothalamus.
Gupta, Amit O; Jain, Sourav; Dawane, Jayshree Shriram
2017-01-01
Introduction The incidence of arthritis is quite high and there is a need for the search of natural products to halt the progression of disease or provide symptomatic relief without significant adverse effects. Aim This study aimed at evaluating the anti-inflammatory and analgesic activities of topical Pterocarpus santalinus in an animal model of chronic inflammation. Materials and Methods Albino rats of either sex were divided into five groups of six rats each (Group I – Control, Group II –Gel base, Group III –P. santalinus paste, Group IV –P. santalinus gel, Group V– Diclofenac gel). Chronic inflammation was induced on day 0 by injecting 0.1 ml Complete Freund’s Adjuvant (CFA) in sub-plantar tissue of left hind paw of the rats. Topical treatment was started from day 12 till day 28. Body weight and paw volume (Plethysmometer) were assessed on day 0, 12 and 28. Pain assessment was done using Randall and Selitto paw withdrawal method. Data was analysed using GraphPad Prism version 5. Unpaired students t-test and ANOVA followed by Tukey’s test was used for comparison among groups. Results Only topical P.santalinus gel significantly reduced the body weight (p=0.02) due to reduction in inflammatory oedema of the left limb. P. santalinus gel also showed significant reduction (p=0.03) in paw volume of rats compared to the other groups. There was significant reduction in pain threshold (gm/sec) due to chronic inflammation, with all the study drugs (p<0.05) but with P. santalinus gel, this reduction was less (p<0.001). Conclusion Gel showed significant anti-inflammatory and mild analgesic activity on topical application in rat model of chronic inflammation. PMID:28892928
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suryanarayana, Phanish, E-mail: phanish.suryanarayana@ce.gatech.edu; Phanish, Deepa
We present an Augmented Lagrangian formulation and its real-space implementation for non-periodic Orbital-Free Density Functional Theory (OF-DFT) calculations. In particular, we rewrite the constrained minimization problem of OF-DFT as a sequence of minimization problems without any constraint, thereby making it amenable to powerful unconstrained optimization algorithms. Further, we develop a parallel implementation of this approach for the Thomas–Fermi–von Weizsacker (TFW) kinetic energy functional in the framework of higher-order finite-differences and the conjugate gradient method. With this implementation, we establish that the Augmented Lagrangian approach is highly competitive compared to the penalty and Lagrange multiplier methods. Additionally, we show that higher-ordermore » finite-differences represent a computationally efficient discretization for performing OF-DFT simulations. Overall, we demonstrate that the proposed formulation and implementation are both efficient and robust by studying selected examples, including systems consisting of thousands of atoms. We validate the accuracy of the computed energies and forces by comparing them with those obtained by existing plane-wave methods.« less
Magnetic nanogel polymer of bupivacaine for ankle block in rats.
Nadri, Sedigheh; Mahmoudvand, Hormoz; Eatemadi, Ali
2016-11-01
In an effort of designing an alternative method for local nerve block, we demonstrated the possibility of inducing ankle block in the rat with intravenous (IV) injection of magnetic nanoparticles conjugated bupivacaine and application of a magnet at the ankle. The anaesthetic effect of magnet-directed bupivacaine-associated MNPs (NIPAAM-MAA-bupivacaine) was tested in rat using paw withdrawal latencies from thermal stimuli on the hind paw. Thirteen (13) experimental animals were grouped into two; untreated left hind paw (control group) and test group with treated right hind paw. The morphology of the synthesised nanogel was analysed using scanning electron micrograph (SEM), chemical characterisation using Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) and finally the in vivo drug release using UV spectroscopy. UV spectroscopy result show that, at 37 °C a sharp increase was observed from 24-72 h (40-75%) cumulative drug release at pH 5.3, a steady increase from 21-60% and 20-40% at pH 6.8 and 7.4m respectively. At 43 °C, a steady increase was observed at the three pH, 37-72%, 20-35% and 10-19% at pH 5.3, 6.8 and 7.4, respectively. It was shown also that drug release at higher pH (6.8 and 7.4) does not become significantly faster when temperature is high, compared to the release at a pH of 5.3. This depicts that the decreasing pH has more impact on the speed of the release of drug than increasing temperature. NMR and FTIR results displayed a comparable chemical structure as expected. The NMR peak displayed high purity of the final product. Morphology using SEM showed that the nanocomposite size is slightly greater than that of the nanogel, and the nanocomposite particles are nearly mono dispersed. Paw withdrawal latency highest peak of 15% was observed for NG/PU/30 at 40hours, and lowest peak for NG/30 at 50 h for the left paw. Group BU0.15 at 30 h shows the highest peak (20%) and NG/30 at 120 h shows the lowest peak for the right treated paw, which is significantly difference from the untreated left paw group (p< 0.0001). However, there wasn't a significant difference amongst NG/30, NG/Pub/15, or NG/Pub/60. The current study verifies the findings that we can induce ankle block in rat through IV injection administration of NIPAAM-MAA-bupivacaine complexes and the application of magnet at the ankle. We however suggest a lower temperature and pH for optimum release of this nanoanaesthetics, there is a probability of translating this mechanism to clinical practise.
NASA Astrophysics Data System (ADS)
Graham-Rowe, Duncan
2007-12-01
As the size of handheld gadgets decreases, their displays become harder to view. The solution could lie with integrated projectors that can project crisp, large images from mobile devices onto any chosen surface. Duncan Graham-Rowe reports.
Scalable large format 3D displays
NASA Astrophysics Data System (ADS)
Chang, Nelson L.; Damera-Venkata, Niranjan
2010-02-01
We present a general framework for the modeling and optimization of scalable large format 3-D displays using multiple projectors. Based on this framework, we derive algorithms that can robustly optimize the visual quality of an arbitrary combination of projectors (e.g. tiled, superimposed, combinations of the two) without manual adjustment. The framework creates for the first time a new unified paradigm that is agnostic to a particular configuration of projectors yet robustly optimizes for the brightness, contrast, and resolution of that configuration. In addition, we demonstrate that our algorithms support high resolution stereoscopic video at real-time interactive frame rates achieved on commodity graphics hardware. Through complementary polarization, the framework creates high quality multi-projector 3-D displays at low hardware and operational cost for a variety of applications including digital cinema, visualization, and command-and-control walls.
A scalable multi-DLP pico-projector system for virtual reality
NASA Astrophysics Data System (ADS)
Teubl, F.; Kurashima, C.; Cabral, M.; Fels, S.; Lopes, R.; Zuffo, M.
2014-03-01
Virtual Reality (VR) environments can offer immersion, interaction and realistic images to users. A VR system is usually expensive and requires special equipment in a complex setup. One approach is to use Commodity-Off-The-Shelf (COTS) desktop multi-projectors manually or camera based calibrated to reduce the cost of VR systems without significant decrease of the visual experience. Additionally, for non-planar screen shapes, special optics such as lenses and mirrors are required thus increasing costs. We propose a low-cost, scalable, flexible and mobile solution that allows building complex VR systems that projects images onto a variety of arbitrary surfaces such as planar, cylindrical and spherical surfaces. This approach combines three key aspects: 1) clusters of DLP-picoprojectors to provide homogeneous and continuous pixel density upon arbitrary surfaces without additional optics; 2) LED lighting technology for energy efficiency and light control; 3) smaller physical footprint for flexibility purposes. Therefore, the proposed system is scalable in terms of pixel density, energy and physical space. To achieve these goals, we developed a multi-projector software library called FastFusion that calibrates all projectors in a uniform image that is presented to viewers. FastFusion uses a camera to automatically calibrate geometric and photometric correction of projected images from ad-hoc positioned projectors, the only requirement is some few pixels overlapping amongst them. We present results with eight Pico-projectors, with 7 lumens (LED) and DLP 0.17 HVGA Chipset.
Advanced millimeter-wave security portal imaging techniques
NASA Astrophysics Data System (ADS)
Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.
2012-03-01
Millimeter-wave (mm-wave) imaging is rapidly gaining acceptance as a security tool to augment conventional metal detectors and baggage x-ray systems for passenger screening at airports and other secured facilities. This acceptance indicates that the technology has matured; however, many potential improvements can yet be realized. The authors have developed a number of techniques over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, and high-frequency high-bandwidth techniques. All of these may improve the performance of new systems; however, some of these techniques will increase the cost and complexity of the mm-wave security portal imaging systems. Reducing this cost may require the development of novel array designs. In particular, RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems. Highfrequency, high-bandwidth designs are difficult to achieve with conventional mm-wave electronic devices, and RF photonic devices may be a practical alternative. In this paper, the mm-wave imaging techniques developed at PNNL are reviewed and the potential for implementing RF photonic mm-wave array designs is explored.
Hamiltonian methods: BRST, BFV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, J. Antonio
2006-09-25
The range of applicability of Hamiltonian methods to gauge theories is very diverse and cover areas of research from phenomenology to mathematical physics. We review some of the areas developed in Mexico in the last decades. They cover the study of symplectic methods, BRST-BFV and BV approaches, Klauder projector program, and non perturbative technics used in the study of bound states in relativistic field theories.
Hamiltonian methods: BRST, BFV
NASA Astrophysics Data System (ADS)
García, J. Antonio
2006-09-01
The range of applicability of Hamiltonian methods to gauge theories is very diverse and cover areas of research from phenomenology to mathematical physics. We review some of the areas developed in México in the last decades. They cover the study of symplectic methods, BRST-BFV and BV approaches, Klauder projector program, and non perturbative technics used in the study of bound states in relativistic field theories.
Exploring the Use of Alfven Waves in Magnetometer Calibration at Geosynchronous Orbit
NASA Technical Reports Server (NTRS)
Bentley, John; Sheppard, David; RIch, Frederick; Redmon, Robert; Loto'aniu, Paul; Chu, Donald
2016-01-01
An Alfven wave is a type magnetohydrodynamicwave that travels through a conducting fluid under the influence of a magnetic field. Researchers have successfully calculated offset vectors of magnetometers in interplanetary space by optimizing the offset to maximize certain Alfvenic properties of observed waves (Leinweber, Belcher). If suitable Alfven waves can be found in the magnetosphere at geosynchronous altitude then these techniques could be used to augment the overall calibration plan for magnetometers in this region such as on the GOES spacecraft, possibly increasing the time between regular maneuvers. Calibration maneuvers may be undesirable because they disrupt the activities of other instruments. Various algorithms to calculate an offset using Alfven waves were considered. A new variation of the Davis-Smith method was derived because it can be mathematically shown that the Davis-Smith method tolerates filtered data, which expands potential applications. The variant developed was designed to find only the offset in the plane normal to the main field because the overall direction of Earth's magnetic field rarely changes, and theory suggests the Alfvenic disturbances occur transverse to the main field. Other variations of the Davis-Smith method encounter problems with data containing waves that propagate in mostly the same direction. A searching algorithm was then designed to look for periods of time with potential Alfven waves in GOES 15 data based on parameters requiring that disturbances be normal to the main field and not change field magnitude. Final waves for calculation were hand-selected. These waves produced credible two-dimensional offset vectors when input to the Davis-Smith method. Multiple two-dimensional solutions in different planes can be combined to get a measurement of the complete offset. The resulting three dimensional offset did not show sufficient precision over several years to be used as a primary calibration method, but reflected changes in the offset fairly well, suggesting that the method could be helpful in monitoring trends of the offset vector when maneuvers cannot be used.
Mechanisms underlying the antinociceptive effect of mangiferin in the formalin test.
Izquierdo, Teresa; Espinosa de los Monteros-Zuñiga, Antonio; Cervantes-Durán, Claudia; Lozada, María Concepción; Godínez-Chaparro, Beatriz
2013-10-15
The purpose of this study was to investigate the possible antinociceptive effect of mangiferin, a glucosylxanthone present in Mangifera indica L., in inflammatory pain. Furthermore, we sought to investigate the possible mechanisms action that contributes to these effects. The ipsilateral local peripheral (1-30 µg/paw), intrathecal (1-30 µg/rat) and oral (1-30 mg/kg) administration of mangiferin produced a dose-dependent reduction in formalin-induced nociception. The antinociceptive effect of this drug was similar to that induced by diclofenac after oral and local peripheral administration. Furthermore, mangiferin was also able to reduce 0.1% capsaicin- and serotonin-induced nociceptive behavior. The local peripheral antinociceptive effect of mangiferin in the formalin test was blocked by naloxone (50 μg/paw), naltrindole (1 μg/paw), 5-guanidinonaltrindole (5-GNTI, 1 μg/paw), N(G)-L-nitro-arginine methyl ester (L-NAME, 100 µg/paw), 1H-(1,2,4)-oxadiazolo [4,2-a]quinoxalin-1-one (ODQ, 50 µg/paw) and glibenclamide (50 μg/paw), but not by methiothepin (30 μg/paw). These results suggest that the antinociceptive effects induced by mangiferin are mediated by the peripheral opioidergic system involving the activation of δ, κ, and probably µ, receptors, but not serotonergic receptors. Data also suggests that mangiferin activates the NO-cyclic GMP-ATP-sensitive K(+) channels pathway in order to produce its local peripheral antinociceptive effect in the formalin test. Mangiferin may prove to be effective in treating inflammatory pain in humans. © 2013 Elsevier B.V. All rights reserved.
Genome signature analysis of thermal virus metagenomes reveals Archaea and thermophilic signatures
Pride, David T; Schoenfeld, Thomas
2008-01-01
Background Metagenomic analysis provides a rich source of biological information for otherwise intractable viral communities. However, study of viral metagenomes has been hampered by its nearly complete reliance on BLAST algorithms for identification of DNA sequences. We sought to develop algorithms for examination of viral metagenomes to identify the origin of sequences independent of BLAST algorithms. We chose viral metagenomes obtained from two hot springs, Bear Paw and Octopus, in Yellowstone National Park, as they represent simple microbial populations where comparatively large contigs were obtained. Thermal spring metagenomes have high proportions of sequences without significant Genbank homology, which has hampered identification of viruses and their linkage with hosts. To analyze each metagenome, we developed a method to classify DNA fragments using genome signature-based phylogenetic classification (GSPC), where metagenomic fragments are compared to a database of oligonucleotide signatures for all previously sequenced Bacteria, Archaea, and viruses. Results From both Bear Paw and Octopus hot springs, each assembled contig had more similarity to other metagenome contigs than to any sequenced microbial genome based on GSPC analysis, suggesting a genome signature common to each of these extreme environments. While viral metagenomes from Bear Paw and Octopus share some similarity, the genome signatures from each locale are largely unique. GSPC using a microbial database predicts most of the Octopus metagenome has archaeal signatures, while bacterial signatures predominate in Bear Paw; a finding consistent with those of Genbank BLAST. When using a viral database, the majority of the Octopus metagenome is predicted to belong to archaeal virus Families Globuloviridae and Fuselloviridae, while none of the Bear Paw metagenome is predicted to belong to archaeal viruses. As expected, when microbial and viral databases are combined, each of the Octopus and Bear Paw metagenomic contigs are predicted to belong to viruses rather than to any Bacteria or Archaea, consistent with the apparent viral origin of both metagenomes. Conclusion That BLAST searches identify no significant homologs for most metagenome contigs, while GSPC suggests their origin as archaeal viruses or bacteriophages, indicates GSPC provides a complementary approach in viral metagenomic analysis. PMID:18798991
Genome signature analysis of thermal virus metagenomes reveals Archaea and thermophilic signatures.
Pride, David T; Schoenfeld, Thomas
2008-09-17
Metagenomic analysis provides a rich source of biological information for otherwise intractable viral communities. However, study of viral metagenomes has been hampered by its nearly complete reliance on BLAST algorithms for identification of DNA sequences. We sought to develop algorithms for examination of viral metagenomes to identify the origin of sequences independent of BLAST algorithms. We chose viral metagenomes obtained from two hot springs, Bear Paw and Octopus, in Yellowstone National Park, as they represent simple microbial populations where comparatively large contigs were obtained. Thermal spring metagenomes have high proportions of sequences without significant Genbank homology, which has hampered identification of viruses and their linkage with hosts. To analyze each metagenome, we developed a method to classify DNA fragments using genome signature-based phylogenetic classification (GSPC), where metagenomic fragments are compared to a database of oligonucleotide signatures for all previously sequenced Bacteria, Archaea, and viruses. From both Bear Paw and Octopus hot springs, each assembled contig had more similarity to other metagenome contigs than to any sequenced microbial genome based on GSPC analysis, suggesting a genome signature common to each of these extreme environments. While viral metagenomes from Bear Paw and Octopus share some similarity, the genome signatures from each locale are largely unique. GSPC using a microbial database predicts most of the Octopus metagenome has archaeal signatures, while bacterial signatures predominate in Bear Paw; a finding consistent with those of Genbank BLAST. When using a viral database, the majority of the Octopus metagenome is predicted to belong to archaeal virus Families Globuloviridae and Fuselloviridae, while none of the Bear Paw metagenome is predicted to belong to archaeal viruses. As expected, when microbial and viral databases are combined, each of the Octopus and Bear Paw metagenomic contigs are predicted to belong to viruses rather than to any Bacteria or Archaea, consistent with the apparent viral origin of both metagenomes. That BLAST searches identify no significant homologs for most metagenome contigs, while GSPC suggests their origin as archaeal viruses or bacteriophages, indicates GSPC provides a complementary approach in viral metagenomic analysis.
Maruyama, Hiroe; Sakamoto, Takashi; Araki, Yoko; Hara, Hideaki
2010-06-23
Bee pollen, a honeybee product, is the feed for honeybees prepared themselves by pollens collecting from plants and has been consumed as a perfect food in Europe, because it is nutritionally well balanced. In this study, we aimed to investigate the anti-inflammatory effect of bee pollen from Cistus sp. of Spanish origin by a method of carrageenan-induced paw edema in rats, and to investigate the mechanism of anti-inflammatory action and also to elucidate components involved in bee pollen extracted with ethanol. The bee pollen bulk, its water extract and its ethanol extract were administered orally to rats. One hour later, paw edema was produced by injecting of 1% solution of carrageenan, and paw volume was measured before and after carrageenan injection up to 5 h. The ethanol extract and water extract were measured COX-1 and COX-2 inhibitory activities using COX inhibitor screening assay kit, and were compared for the inhibition of NO production in LPS-stimulated RAW 264.7 cells. The constituents of bee pollen were purified from the ethanol extract subjected to silica gel or LH-20 column chromatography. Each column chromatography fractions were further purified by repeated ODS or silica gel column chromatography. The bee pollen bulk mildly suppressed the carrageenan-induced paw edema and the water extract showed almost no inhibitory activity, but the ethanol extract showed relatively strong inhibition of paw edema. The ethanol extract inhibited the NO production and COX-2 but not COX-1 activity, but the water extract did not affect the NO production or COX activities. Flavonoids were isolated and purified from the ethanol extract of bee pollen, and identified at least five flavonoids and their glycosides. It is suggested that the ethanol extract of bee pollen show a potent anti-inflammatory activity and its effect acts via the inhibition of NO production, besides the inhibitory activity of COX-2. Some flavonoids included in bee pollen may partly participate in some of the anti-inflammatory action. The bee pollen would be beneficial not only as a dietary supplement but also as a functional food.
Market trends in the projection display industry
NASA Astrophysics Data System (ADS)
Dash, Sweta
2000-04-01
The projection display industry represents a multibillion- dollar market that includes four distinct technologies. High-volume consumer products and high-value business products drive the market, with different technologies being used in different application markets. The consumer market is dominated by rear CRT technology, especially in the projection television segment. But rear LCD (liquid crystal display) and rear reflective (DLP, or Digital Light ProcessingTM) televisions are slowly emerging as future competitors to rear CRT projectors. Front CRT projectors are still popular in the high-end home theater market. Front LCD technology and front DLP technology dominate the business market. Traditional light valve technology was the only solution for applications requiring high light outputs, but new three-chip DLP projectors meet the higher light output requirements at a lower price. In the last few years the strongest growth has been in the business market for multimedia presentation applications. This growth was due to the continued increase in display pixel formats, the continued reduction in projector weight, and the improved price/performance ratio. The projection display market will grow at a significant rate during the next five years, driven by the growth in ultraportable (< 10 pound) projectors and the shift in the consumer market to digital and HDTV products.
Cohen, Michael X; Weidacker, Kathrin; Tankink, Judith; Scholte, H Steven; Rouw, Romke
2015-01-01
Grapheme-color synesthesia is a condition in which seeing letters and numbers produces sensations of colors (e.g., the letter R may elicit a sky-blue percept). Recent evidence implicates posterior parietal areas, in addition to lower-level sensory processing regions, in the neurobiological mechanisms involved in synesthesia. Furthermore, these mechanisms seem to differ for "projectors" (synesthetes who report seeing the color "out there in the real world") versus "associators" (synesthetes who report the color to be only an internal experience). Relatively little is known about possible electrophysiological characteristics of grapheme-color synesthesia. Here we used EEG to investigate functional oscillatory differences among associators, projectors, and non-synesthetes. Projectors had stronger stimulus-related alpha-band (~10 Hz) power over posterior parietal electrodes, compared to both associators and non-synesthetes. Posterior alpha activity was not statistically significantly different between associators from non-synesthetes. We also performed a test-retest assessment of the projector-associator score and found strong retest reliability, as evidenced by a correlation coefficient of .85. These findings demonstrate that the projector-associator distinction is highly reliable over time and is related to neural oscillations in the alpha band.
In vivo and in vitro anti-inflammatory effects of Sophora flavescens residues.
Ma, Hongyan; Huang, Qi; Qu, Wenshan; Li, Linyuan; Wang, Min; Li, Shao; Chu, Fujiang
2018-06-15
The dried roots of Sophora flavescens Ait. (Leguminosae) is traditionally used as antipyretic medicine to reduce inflammation. It is well known that alkaloids and flavonoids are the main constituents of S. flavescens. However, the clinical researches and applications of S. flavescens is mainly based on its water-extracted alkaloids, its flavonoids may still remain in residues and have been underused. With development and manufacturing of S. flavescens in recent years, more herb residues are being produced. Since they are typically treated as waste and dumped openly in landfill sites, which can cause pollution, there is a great need to explore these wastes as recyclable resources and increase their added value. To date, whether other bioactive components would be found in the residues of S. flavescens is still unknown. If the extraction method of these active ingredients was established, the residues of S. flavescens could be turned from the harm to a benefit and make great sense of the comprehensive utilization of S. flavescens resources. This study aimed to establish an extraction method of the residues of S. flavescens and investigate the anti-inflammatory effect of it both in vivo and in vitro. Dried S. flavescens were decocted with distilled water firstly, then the residues were powdered and extracted with ethyl acetate by using ultrasonic wave. HPLC was utilized to analyze the chemical constituents of the water extracts of S. flavescens (WSF) and the ethyl acetate extracts of residues of S. flavescens (RSF). In vivo, the anti-inflammatory effect of WSF and RSF were evaluated using the xylene-induced auricle edema, acetic acid-induced peritoneal permeability and carrageenan-induced hind paw edema methods. In vitro, the inhibitory activities of WSF and RSF on NO, TNF-α, IL-6 and MCP-1 production of LPS-treated RAW264.7 cells were measured. The major ingredients of RSF were flavonoids, while WSF almost had no flavonoids. In vivo, WSF and RSF (200mg/kg) could significantly inhibit the edema in the xylene-induced mice auricle edema and carrageenan-induced hind paw edema as well as the peritoneal permeability increased by acetic acid. They can also lower production levels of PGE 2 in inflamed paw tissues. In vitro experimental results showed that RSF (25, 50, 100μg/mL) could significantly inhibit the release of pro-inflammatory cytokines NO, TNF-α, IL-6 and MCP-1 on LPS-induced RAW264.7 cells. The in vitro suppress effect of WSF had no dose-response relationship. The residues of S. flavescens had obvious flavonoids with anti-inflammatory activity. This study provided evidence for the reuse of residues from S. flavescens in the food additive, medicine and cosmetic industries. Copyright © 2018. Published by Elsevier B.V.
Projector Center: Using an Overhead Projector to Initiate Discussion of Life and Non-Life.
ERIC Educational Resources Information Center
Barman, Charles R.
1982-01-01
Describes a demonstration and role-playing activity focusing on differences between living/dead, definitions of living/dead, and situations in which active euthanasia could be morally right. (Author/JN)
Overhead Projector Demonstrations: Tilted TOPS: Inclined Plane Projection.
ERIC Educational Resources Information Center
Alyea, Hubert N.
1989-01-01
The construction and uses of a device to facilitate the use of an overhead projector to show chemical reactions is presented. Materials and instructions for construction as well as reactor vessels are discussed. (CW)
George, Leema; Ramasamy, Tamizhselvi; Manickam, Venkatraman; Iyer, Sathiyanarayanan Kulathu; Radhakrishnan, Vidya
2016-08-01
This study was conducted to assess the anti-inflammatory effect of a novel synthesized phenanthridine alkaloid (PHE-4i) and to examine the possible involvement of hydrogen sulfide (H2S) in anti-inflammatory mechanism. The synthesized phenanthridine derivative PHE-4i (2, 5, and 10 mg/kg) was administered intraperitoneally to rats. One hour following treatment, inflammation was induced by intraplantar injection of carrageenan (1 %), in the hind paw. Paw volume as the index of inflammation was measured before and after carrageenan injection. Neutrophil sequestration into the hind paw was quantified by measuring tissue myeloperoxidase (MPO) activity and was compared for the inhibition of H2S production. Pretreatment with PHE-4i significantly reduced carrageenan-induced hind paw weight, MPO activity, leukocyte infiltration, and H2S production in a dose-dependent manner (p < 0.001). These results indicate that the anti-inflammatory effect of PHE-4i on carrageenan-induced rat paw oedema could be via the inhibition of the gaseous mediator H2S.
The PAWS and STEM reliability analysis programs
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Stevenson, Philip H.
1988-01-01
The PAWS and STEM programs are new design/validation tools. These programs provide a flexible, user-friendly, language-based interface for the input of Markov models describing the behavior of fault-tolerant computer systems. These programs produce exact solutions of the probability of system failure and provide a conservative estimate of the number of significant digits in the solution. PAWS uses a Pade approximation as a solution technique; STEM uses a Taylor series as a solution technique. Both programs have the capability to solve numerically stiff models. PAWS and STEM possess complementary properties with regard to their input space; and, an additional strength of these programs is that they accept input compatible with the SURE program. If used in conjunction with SURE, PAWS and STEM provide a powerful suite of programs to analyze the reliability of fault-tolerant computer systems.
NASA Astrophysics Data System (ADS)
Havens, John R.; Ishioka, J.; Jones, Philip J.; Lau, Aldrich; Tomita, Akira; Asano, A.; Konuma, Nobuhiro; Sato, Kazuhiko; Takemoto, Iwao
1997-05-01
Projectors based on polymer-eNCAPsulated liquid crystals can provide bright displays suitable for use in conference rooms with normal lighting. Contrast is generated by light scattering among the droplets, rather than by light absorption with crossed polarizers. We have demonstrated a full-color, compact projector showing 1200 ANSI lumens with 200 watts of lamp power - a light efficiency of 6 lumens/watt. This projector is based on low-voltage NCAP material, highly reflective CMOS die, and matched illumination and projection optics. We will review each of these areas and discuss the integrated system performance.
Steinberg, Simon; Card, Nathan; Mudring, Anja -Verena
2015-08-13
The ternary Eu(Au/In) 2 (EuAu 0.46In 1.54 (2)) (I), EuAu 4(Au/In) 2 (EuAu 4+xIn 2–x with x = 0.75(2) (II), 0.93(2), and 1.03(2)), and Eu 5Au 16(Au/In) 6 (Eu 5Au 17.29In 4.71(3)) (III) have been synthesized, and their structures were characterized by single-crystal X-ray diffraction. I and II crystallize with the CeCu 2-type (Pearson Symbol oI12; Imma; Z = 4; a = 4.9018(4) Å; b = 7.8237(5) Å; c = 8.4457(5) Å) and the YbAl 4Mo 2-type (tI14; I4/ mmm; Z = 2; a = 7.1612(7) Å; c = 5.5268(7) Å) and exhibit significant Au/In disorder. I is composed ofmore » an Au/In-mixed diamond-related host lattice encapsulating Eu atoms, while the structure of II features ribbons of distorted, squared Au 8 prisms enclosing Eu, Au, and In atoms. Combination of these structural motifs leads to a new structure type as observed for Eu 5Au 16(Au/In) 6 (Eu 5Au 17.29In 4.71(3)) (oS108; Cmcm; Z = 4; a = 7.2283(4) Å; b = 9.0499(6) Å; c = 34.619(2) Å), which formally represents a one-dimensional intergrowth of the series EuAu 2–“EuAu 4In 2”. The site preferences of the disordered Au/In positions in II were investigated for different hypothetical “EuAu 4(Au/In) 2” models using the projector-augmented wave method and indicate that these structures attempt to optimize the frequencies of the heteroatomic Au–In contacts. Furthermore, a chemical bonding analysis on two “EuAu 5In” and “EuAu 4In 2” models employed the TB-LMTO-ASA method and reveals that the subtle interplay between the local atomic environments and the bond energies determines the structural and site preferences for these systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, Simon; Card, Nathan; Mudring, Anja -Verena
The ternary Eu(Au/In) 2 (EuAu 0.46In 1.54 (2)) (I), EuAu 4(Au/In) 2 (EuAu 4+xIn 2–x with x = 0.75(2) (II), 0.93(2), and 1.03(2)), and Eu 5Au 16(Au/In) 6 (Eu 5Au 17.29In 4.71(3)) (III) have been synthesized, and their structures were characterized by single-crystal X-ray diffraction. I and II crystallize with the CeCu 2-type (Pearson Symbol oI12; Imma; Z = 4; a = 4.9018(4) Å; b = 7.8237(5) Å; c = 8.4457(5) Å) and the YbAl 4Mo 2-type (tI14; I4/ mmm; Z = 2; a = 7.1612(7) Å; c = 5.5268(7) Å) and exhibit significant Au/In disorder. I is composed ofmore » an Au/In-mixed diamond-related host lattice encapsulating Eu atoms, while the structure of II features ribbons of distorted, squared Au 8 prisms enclosing Eu, Au, and In atoms. Combination of these structural motifs leads to a new structure type as observed for Eu 5Au 16(Au/In) 6 (Eu 5Au 17.29In 4.71(3)) (oS108; Cmcm; Z = 4; a = 7.2283(4) Å; b = 9.0499(6) Å; c = 34.619(2) Å), which formally represents a one-dimensional intergrowth of the series EuAu 2–“EuAu 4In 2”. The site preferences of the disordered Au/In positions in II were investigated for different hypothetical “EuAu 4(Au/In) 2” models using the projector-augmented wave method and indicate that these structures attempt to optimize the frequencies of the heteroatomic Au–In contacts. Furthermore, a chemical bonding analysis on two “EuAu 5In” and “EuAu 4In 2” models employed the TB-LMTO-ASA method and reveals that the subtle interplay between the local atomic environments and the bond energies determines the structural and site preferences for these systems.« less
A bulk viscosity approach for shock capturing on unstructured grids
NASA Astrophysics Data System (ADS)
Shoeybi, Mohammad; Larsson, Nils Johan; Ham, Frank; Moin, Parviz
2008-11-01
The bulk viscosity approach for shock capturing (Cook and Cabot, JCP, 2005) augments the bulk part of the viscous stress tensor. The intention is to capture shock waves without dissipating turbulent structures. The present work extends and modifies this method for unstructured grids. We propose a method that properly scales the bulk viscosity with the grid spacing normal to the shock for unstructured grid for which the shock is not necessarily aligned with the grid. The magnitude of the strain rate tensor used in the original formulation is replaced with the dilatation, which appears to be more appropriate in the vortical turbulent flow regions (Mani et al., 2008). The original form of the model is found to have an impact on dilatational motions away form the shock wave, which is eliminated by a proposed localization of the bulk viscosity. Finally, to allow for grid adaptation around shock waves, an explicit/implicit time advancement scheme has been developed that adaptively identifies the stiff regions. The full method has been verified with several test cases, including 2D shock-vorticity entropy interaction, homogenous isotropic turbulence, and turbulent flow over a cylinder.
Marín-Luna, Marta; Alkorta, Ibon; Elguero, José
2018-03-01
This paper compares the absolute shieldings obtained by gauge-including-projected-augmented-wave (GIPAW) to those obtained by gauge-invariant atomic orbital/Becke, 3-parameter, Lee-Yang-Parr (GIAO/B3LYP)/6-311++G(d,p)-polarizable continuum model (PCM, dimethyl sulfoxide) for nine benzazoles (benzimidazoles, indazoles, and benzotriazoles) recorded in the solid-state. Three nuclei were explored, 13 C, 15 N, and 19 F, and the gauge-including-projected-augmented-wave approach only proved better for 15 N MAS NMR. Copyright © 2017 John Wiley & Sons, Ltd.
Development of infrared scene projectors for testing fire-fighter cameras
NASA Astrophysics Data System (ADS)
Neira, Jorge E.; Rice, Joseph P.; Amon, Francine K.
2008-04-01
We have developed two types of infrared scene projectors for hardware-in-the-loop testing of thermal imaging cameras such as those used by fire-fighters. In one, direct projection, images are projected directly into the camera. In the other, indirect projection, images are projected onto a diffuse screen, which is then viewed by the camera. Both projectors use a digital micromirror array as the spatial light modulator, in the form of a Micromirror Array Projection System (MAPS) engine having resolution of 800 x 600 with mirrors on a 17 micrometer pitch, aluminum-coated mirrors, and a ZnSe protective window. Fire-fighter cameras are often based upon uncooled microbolometer arrays and typically have resolutions of 320 x 240 or lower. For direct projection, we use an argon-arc source, which provides spectral radiance equivalent to a 10,000 Kelvin blackbody over the 7 micrometer to 14 micrometer wavelength range, to illuminate the micromirror array. For indirect projection, an expanded 4 watt CO II laser beam at a wavelength of 10.6 micrometers illuminates the micromirror array and the scene formed by the first-order diffracted light from the array is projected onto a diffuse aluminum screen. In both projectors, a well-calibrated reference camera is used to provide non-uniformity correction and brightness calibration of the projected scenes, and the fire-fighter cameras alternately view the same scenes. In this paper, we compare the two methods for this application and report on our quantitative results. Indirect projection has an advantage of being able to more easily fill the wide field of view of the fire-fighter cameras, which typically is about 50 degrees. Direct projection more efficiently utilizes the available light, which will become important in emerging multispectral and hyperspectral applications.
Overhead Projector Demonstrations: A Classroom Demonstration of Aliphatic Substitution.
ERIC Educational Resources Information Center
Perina, Ivo; Mihanovic, Branka
1989-01-01
Presents a halogen substitution of an alkane using a compartmentalized Petri dish or Conway dish on an overhead projector. Provides methodology and several modifications for different reactions. Uses hexane, methyl orange, bromine, and silver nitrate. (MVL)
Modular design of the LED vehicle projector headlamp system.
Hsieh, Chi-Chang; Li, Yan-Huei; Hung, Chih-Ching
2013-07-20
A well designed headlamp for a vehicle lighting system is very important as it provides drivers with safe and comfortable driving conditions at night or in dark places. With the advances of the semiconductor technology, the LED has become the fourth generation lighting source in the auto industry. In this study, we will propose a LED vehicle projector headlamp system. This headlamp system contains several LED headlamp modules, and every module of it includes four components: focused LEDs, asymmetric metal-based plates, freeform surfaces, and condenser lenses. By optimizing the number of LED headlamp modules, the proposed LED vehicle projector headlamp system has only five LED headlamp modules. It not only provides the low-beam cutoff without a shield, but also meets the requirements of the ECE R112 regulation. Finally, a prototype of the LED vehicle projector headlamp system was assembled and fabricated to create the correct light pattern.
The causal perturbation expansion revisited: Rescaling the interacting Dirac sea
NASA Astrophysics Data System (ADS)
Finster, Felix; Grotz, Andreas
2010-07-01
The causal perturbation expansion defines the Dirac sea in the presence of a time-dependent external field. It yields an operator whose image generalizes the vacuum solutions of negative energy and thus gives a canonical splitting of the solution space into two subspaces. After giving a self-contained introduction to the ideas and techniques, we show that this operator is, in general, not idempotent. We modify the standard construction by a rescaling procedure giving a projector on the generalized negative-energy subspace. The resulting rescaled causal perturbation expansion uniquely defines the fermionic projector in terms of a series of distributional solutions of the Dirac equation. The technical core of the paper is to work out the combinatorics of the expansion in detail. It is also shown that the fermionic projector with interaction can be obtained from the free projector by a unitary transformation. We finally analyze the consequences of the rescaling procedure on the light-cone expansion.
Tomić, Maja A; Vucković, Sonja M; Stepanović-Petrović, Radica M; Ugresić, Nenad D; Paranos, Sonja Lj; Prostran, Milica S; Bosković, Bogdan
2007-11-01
We studied whether peripheral alpha2-adrenergic receptors are involved in the antihyperalgesic effects of oxcarbazepine by examining the effects of yohimbine (selective alpha2-adrenoceptor antagonist), BRL 44408 (selective alpha(2A)-adrenoceptor antagonist), MK-912 (selective alpha2C-adrenoceptor antagonist), and clonidine (alpha2-adrenoceptor agonist) on the antihyperalgesic effect of oxcarbazepine in the rat model of inflammatory pain. Rats were intraplantarly (i.pl.) injected with the proinflammatory compound concanavalin A (Con A). A paw-pressure test was used to determine: 1) the development of hyperalgesia induced by Con A; 2) the effects of oxcarbazepine (i.pl.) on Con A-induced hyperalgesia; and 3) the effects of i.pl. yohimbine, BRL 44408, MK-912 and clonidine on the oxcarbazepine antihyperalgesia. Both oxcarbazepine (1000-3000 nmol/paw; i.pl.) and clonidine (1.9-7.5 nmol/paw; i.pl.) produced a significant dose-dependent reduction of the paw inflammatory hyperalgesia induced by Con A. Yohimbine (260 and 520 nmol/paw; i.pl.), BRL 44408 (100 and 200 nmol/paw; i.pl.) and MK-912 (10 and 20 nmol/paw; i.pl.) significantly depressed the antihyperalgesic effects of oxcarbazepine (2000 nmol/paw; i.pl.) in a dose-dependent manner. The effects of antagonists were due to local effects since they were not observed after administration into the contralateral hindpaw. Oxcarbazepine and clonidine administered jointly in fixed-dose fractions of the ED(50) (1/4, 1/2, and 3/4) caused significant and dose-dependent reduction of hyperalgesia induced by Con A. Isobolographic analysis revealed an additive antihyperalgesic effect. Our results indicate that the peripheral alpha2A and alpha2C adrenoceptors could be involved in the antihyperalgesic effects of oxcarbazepine in a rat model of inflammatory hyperalgesia.
Klafke, J Z; da Silva, M A; Rossato, M F; de Prá, S Dal Toé; Rigo, F K; Walker, C I B; Bochi, G V; Moresco, R N; Ferreira, J; Trevisan, G
2016-02-01
Complex regional pain syndrome type 1 (CRPS1) may be evoked by ischemia/reperfusion, eliciting acute and chronic pain that is difficult to treat. Despite this, the underlying mechanism of CRPS1 has not been fully elucidated. Therefore, the goal of this study is to evaluate the involvement of inflammation, oxidative stress, and the transient receptor potential ankyrin 1 (TRPA1) channel, a chemosensor of inflammation and oxidative substances, in an animal model of chronic post-ischemia pain (CPIP). Male Wistar rats were subjected to 3 h hind paw ischemia/reperfusion (CPIP model). Different parameters of nociception, inflammation, ischemia, and oxidative stress were evaluated at 1 (acute) and 14 (chronic) days after CPIP. The effect of a TRPA1 antagonist and the TRPA1 immunoreactivity were also observed after CPIP. In the CPIP acute phase, we observed mechanical and cold allodynia; increased levels of tumor necrosis factor-α (hind paw), ischemia-modified albumin (IMA) (serum), protein carbonyl (hind paw and spinal cord), lactate (serum), and 4-hydroxy-2-nonenal (4-HNE, hind paw and spinal cord); and higher myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAGase) activities (hind paw). In the CPIP chronic phase, we detected mechanical and cold allodynia and increased levels of IMA (serum), protein carbonyl (hind paw and spinal cord), and 4-HNE (hind paw and spinal cord). TRPA1 antagonism reduced mechanical and cold allodynia 1 and 14 days after CPIP, but no change in TRPA1 immunoreactivity was observed. Different mechanisms underlie acute (inflammation and oxidative stress) and chronic (oxidative stress) phases of CPIP. TRPA1 activation may be relevant for CRPS1/CPIP-induced acute and chronic pain.
[A Method for Selecting Self-Adoptive Chromaticity of the Projected Markers].
Zhao, Shou-bo; Zhang, Fu-min; Qu, Xing-hua; Zheng, Shi-wei; Chen, Zhe
2015-04-01
The authors designed a self-adaptive projection system which is composed of color camera, projector and PC. In detail, digital micro-mirror device (DMD) as a spatial light modulator for the projector was introduced in the optical path to modulate the illuminant spectrum based on red, green and blue light emitting diodes (LED). However, the color visibility of active markers is affected by the screen which has unknown reflective spectrum as well. Here active markers are projected spot array. And chromaticity feature of markers is sometimes submerged in similar spectral screen. In order to enhance the color visibility of active markers relative to screen, a method for selecting self-adaptive chromaticity of the projected markers in 3D scanning metrology is described. Color camera with 3 channels limits the accuracy of device characterization. For achieving interconversion of device-independent color space and device-dependent color space, high-dimensional linear model of reflective spectrum was built. Prior training samples provide additional constraints to yield high-dimensional linear model with more than three degrees of freedom. Meanwhile, spectral power distribution of ambient light was estimated. Subsequently, markers' chromaticity in CIE color spaces was selected via maximization principle of Euclidean distance. The setting values of RGB were easily estimated via inverse transform. Finally, we implemented a typical experiment to show the performance of the proposed approach. An 24 Munsell Color Checker was used as projective screen. Color difference in the chromaticity coordinates between the active marker and the color patch was utilized to evaluate the color visibility of active markers relative to the screen. The result comparison between self-adaptive projection system and traditional diode-laser light projector was listed and discussed to highlight advantage of our proposed method.
Shree, Nitya; Venkategowda, Sunil; Venkatranganna, M V; Bhonde, Ramesh R
2017-06-01
Mesenchymal stem cells are known for anti inflammatory and immunomodulatory activities. The aim of our study was to evaluate the effect of human adipose derived mesenchymal stem cells (hADMSCs) and its conditioned media (CM) on carrageenan induced acute inflammation in db/db mice. We injected 5×10 5 ADMSCs or the CM in the inflamed paw. We assessed the paw volume, serum IL6 levels and histopathology of the paw to reveal the anti inflammatory effect. We observed a single injection of hADMSCs or CM could reverse the inflammation within 24h as evidenced by reduction in paw volume, IL6 levels and histological examination. Our result equivocally demonstrates the role of CM in normalising the inflammation better than hADMSCs. This study will pave way for an alternative to anti inflammatory drugs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Kun; Li, Yajiang; Wang, Juan
2016-10-01
The combined double-pass process of plasma arc welding (PAW) + gas tungsten arc welding (GTAW) was performed on 304 austenitic stainless steel with the thickness of 12 mm. Results indicated that two different morphologies of ferrite (e.g., lathy δ-ferrite and skeletal δ-ferrite) were formed within the austenite matrix in PAW weld metal (PAW-WM). GTAW weld metal (GTAW-WM) was mainly composed of fine austenite and skeletal δ-ferrite. In transition zone between PAW-WM and GTAW-WM, epitaxial growth contributed to cellular dendritic crystals transforming into columnar crystals. The tensile strength of joint is about 700 MPa. The impact toughness of WM varied from 281 J (20 °C) to 122 (-196 °C), while the impact toughness of heat-affected zone (HAZ) varied from 205 J (20 °C) to 112 J (-196 °C).
Centripetal Force on an Overhead Projector.
ERIC Educational Resources Information Center
Rheam, Harry
1995-01-01
Describes two simple demonstrations of an object moving in a straight line tangent to the circle if centripetal force is removed. Demonstrations use a pie plate and petri dish with ball bearings to illustrate the phenomena on an overhead projector. (LZ)
Display screen and method of manufacture therefor
NASA Technical Reports Server (NTRS)
Dubin, Matthew B. (Inventor); Larson, Brent D. (Inventor)
2002-01-01
A screen assembly that combines an angle re-distributing prescreen with a conventional diffusion screen. The prescreen minimizes or eliminates the sensitivity of the screen assembly to projector location. The diffusion screen provides other desirable screen characteristics. Compatible screen structures, along with methods for fabricating high resolution prescreens and methods and devices for maintaining the desired relationship between the prescreen and the diffusion screen are contemplated.
Hope, Sarah A; Antonis, Paul; Adam, David; Cameron, James D; Meredith, Ian T
2007-10-01
The aim of this study was to test the hypothesis that coronary artery disease extent and severity are associated with central aortic pressure waveform characteristics. Although it is thought that central aortic pressure waveform characteristics, particularly augmentation index, may influence cardiovascular disease progression and predict cardiovascular risk, little is known of the relationship between central waveform characteristics and the severity and extent of coronary artery disease. Central aortic waveforms (2F Millar pressure transducer-tipped catheters) were acquired at the time of coronary angiography for suspected native coronary artery disease in 40 patients (24 male). The severity and extent of disease were assessed independently by two observers using two previously described scoring systems (modified Gensini's stenosis and Sullivan's extent scores). Relationships between disease scores, aortic waveform characteristics, aorto-radial pulse wave velocity and subject demographic features were assessed by regression techniques. Both extent and severity scores were associated with increasing age and male sex (P < 0.001), but no other risk factors. Both scores were independently associated with aorto-radial pulse wave velocity (P < 0.001), which entered a multiple regression model prior to age and sex. This association was not dependent upon blood pressure. Neither score was associated with central aortic augmentation index, by either simple or multiple linear regression techniques including heart rate, subject demographic features and cardiovascular risk factors. Aorto-radial pulse wave velocity, but not central aortic augmentation index, is associated with both the extent and severity of coronary artery disease. This has potentially important implications for applicability of a generalized arterial transfer function.
Fast 3D NIR systems for facial measurement and lip-reading
NASA Astrophysics Data System (ADS)
Brahm, Anika; Ramm, Roland; Heist, Stefan; Rulff, Christian; Kühmstedt, Peter; Notni, Gunther
2017-05-01
Structured-light projection is a well-established optical method for the non-destructive contactless three-dimensional (3D) measurement of object surfaces. In particular, there is a great demand for accurate and fast 3D scans of human faces or facial regions of interest in medicine, safety, face modeling, games, virtual life, or entertainment. New developments of facial expression detection and machine lip-reading can be used for communication tasks, future machine control, or human-machine interactions. In such cases, 3D information may offer more detailed information than 2D images which can help to increase the power of current facial analysis algorithms. In this contribution, we present new 3D sensor technologies based on three different methods of near-infrared projection technologies in combination with a stereo vision setup of two cameras. We explain the optical principles of an NIR GOBO projector, an array projector and a modified multi-aperture projection method and compare their performance parameters to each other. Further, we show some experimental measurement results of applications where we realized fast, accurate, and irritation-free measurements of human faces.
Invalid-point removal based on epipolar constraint in the structured-light method
NASA Astrophysics Data System (ADS)
Qi, Zhaoshuai; Wang, Zhao; Huang, Junhui; Xing, Chao; Gao, Jianmin
2018-06-01
In structured-light measurement, there unavoidably exist many invalid points caused by shadows, image noise and ambient light. According to the property of the epipolar constraint, because the retrieved phase of the invalid point is inaccurate, the corresponding projector image coordinate (PIC) will not satisfy the epipolar constraint. Based on this fact, a new invalid-point removal method based on the epipolar constraint is proposed in this paper. First, the fundamental matrix of the measurement system is calculated, which will be used for calculating the epipolar line. Then, according to the retrieved phase map of the captured fringes, the PICs of each pixel are retrieved. Subsequently, the epipolar line in the projector image plane of each pixel is obtained using the fundamental matrix. The distance between the corresponding PIC and the epipolar line of a pixel is defined as the invalidation criterion, which quantifies the satisfaction degree of the epipolar constraint. Finally, all pixels with a distance larger than a certain threshold are removed as invalid points. Experiments verified that the method is easy to implement and demonstrates better performance than state-of-the-art measurement systems.
A study of oxidative stress induced by non-thermal plasma-activated water for bacterial damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qian; Ma, Ruonan; Tian, Ying
2013-05-20
Ar/O{sub 2} (2%) cold plasma microjet was used to create plasma-activated water (PAW). The disinfection efficacy of PAW against Staphylococcus aureus showed that PAW can effectively disinfect bacteria. Optical emission spectra and oxidation reduction potential results demonstrated the inactivation is attributed to oxidative stress induced by reactive oxygen species in PAW. Moreover, the results of X-ray photoelectron spectroscopy, atomic absorption spectrometry, and transmission electron microscopy suggested that the chemical state of cell surface, the integrity of cell membrane, as well as the cell internal components and structure were damaged by the oxidative stress.
NASA Astrophysics Data System (ADS)
Kamagara, Abel; Wang, Xiangzhao; Li, Sikun
2018-03-01
We propose a method to compensate for the projector intensity nonlinearity induced by gamma effect in three-dimensional (3-D) fringe projection metrology by extending high-order spectra analysis and bispectral norm minimization to digital sinusoidal fringe pattern analysis. The bispectrum estimate allows extraction of vital signal information features such as spectral component correlation relationships in fringe pattern images. Our approach exploits the fact that gamma introduces high-order harmonic correlations in the affected fringe pattern image. Estimation and compensation of projector nonlinearity is realized by detecting and minimizing the normed bispectral coherence of these correlations. The proposed technique does not require calibration information and technical knowledge or specification of fringe projection unit. This is promising for developing a modular and calibration-invariant model for intensity nonlinear gamma compensation in digital fringe pattern projection profilometry. Experimental and numerical simulation results demonstrate this method to be efficient and effective in improving the phase measuring accuracies with phase-shifting fringe pattern projection profilometry.
Dai, Meiling; Yang, Fujun; He, Xiaoyuan
2012-04-20
A simple but effective fringe projection profilometry is proposed to measure 3D shape by using one snapshot color sinusoidal fringe pattern. One color fringe pattern encoded with a sinusoidal fringe (as red component) and one uniform intensity pattern (as blue component) is projected by a digital video projector, and the deformed fringe pattern is recorded by a color CCD camera. The captured color fringe pattern is separated into its RGB components and division operation is applied to red and blue channels to reduce the variable reflection intensity. Shape information of the tested object is decoded by applying an arcsine algorithm on the normalized fringe pattern with subpixel resolution. In the case of fringe discontinuities caused by height steps, or spatially isolated surfaces, the separated blue component is binarized and used for correcting the phase demodulation. A simple and robust method is also introduced to compensate for nonlinear intensity response of the digital video projector. The experimental results demonstrate the validity of the proposed method.
Personal projection with Ujoy technology
NASA Astrophysics Data System (ADS)
Moench, Holger; Mackens, Uwe; Pekarski, Pavel; Ritz, Arnd; S'heeren, Griet; Verbeek, Will
2007-02-01
Personal projection is a new way to use projectors for gaming, entertainment or photo projection. The requirements for this new category have been defined based on market research with focus groups. A screen brightness of 200-300lm out of compact and affordable devices is a must. In order to reach this performance a very bright light source is at least as important as for professional projectors. The new 50W Ujoy lamp system with 1mm arc enables efficient projection systems. Lower cooling requirements, the potential for battery operation and the low voltage input makes it the ideal source for this new category of projectors.
NASA Astrophysics Data System (ADS)
Finster, Felix; Murro, Simone; Röken, Christian
2016-07-01
We give a non-perturbative construction of the fermionic projector in Minkowski space coupled to a time-dependent external potential which is smooth and decays faster than quadratically for large times. The weak and strong mass oscillation properties are proven. We show that the integral kernel of the fermionic projector is of the Hadamard form, provided that the time integral of the spatial sup-norm of the potential satisfies a suitable bound. This gives rise to an algebraic quantum field theory of Dirac fields in an external potential with a distinguished pure quasi-free Hadamard state.
BRDF-dependent accuracy of array-projection-based 3D sensors.
Heist, Stefan; Kühmstedt, Peter; Tünnermann, Andreas; Notni, Gunther
2017-03-10
In order to perform high-speed three-dimensional (3D) shape measurements with structured light systems, high-speed projectors are required. One possibility is an array projector, which allows pattern projection at several tens of kilohertz by switching on and off the LEDs of various slide projectors. The different projection centers require a separate analysis, as the intensity received by the cameras depends on the projection direction and the object's bidirectional reflectance distribution function (BRDF). In this contribution, we investigate the BRDF-dependent errors of array-projection-based 3D sensors and propose an error compensation process.
NASA Astrophysics Data System (ADS)
Erickson, Ricky A.; Moren, Stephen E.; Skalka, Marion S.
1998-07-01
Providing a flexible and reliable source of IR target imagery is absolutely essential for operation of an IR Scene Projector in a hardware-in-the-loop simulation environment. The Kinetic Kill Vehicle Hardware-in-the-Loop Simulator (KHILS) at Eglin AFB provides the capability, and requisite interfaces, to supply target IR imagery to its Wideband IR Scene Projector (WISP) from three separate sources at frame rates ranging from 30 - 120 Hz. Video can be input from a VCR source at the conventional 30 Hz frame rate. Pre-canned digital imagery and test patterns can be downloaded into stored memory from the host processor and played back as individual still frames or movie sequences up to a 120 Hz frame rate. Dynamic real-time imagery to the KHILS WISP projector system, at a 120 Hz frame rate, can be provided from a Silicon Graphics Onyx computer system normally used for generation of digital IR imagery through a custom CSA-built interface which is available for either the SGI/DVP or SGI/DD02 interface port. The primary focus of this paper is to describe our technical approach and experience in the development of this unique SGI computer and WISP projector interface.
Whishaw, I Q; Coles, B L
1996-05-01
This study describes how rats use their paws and digits when handling a wide range of foodstuffs, including food pellets, grapes, sunflower seeds, shelled and unshelled peanuts, and different sized pastas, etc. Analysis of videorecordings show that the rats display digit postures that include variations in the spacing of the digits, differences in the relative use of different digits, and interlimb differences in paw and digit posture. The rats also display limb preferences in that one paw is used in a supporting function while the other rotates, flips, or pushes the food as is required by the shape of the item. There is a significant correlation between the paw used for manipulation and food items of similar shape but no correlation between the limb used for manipulation and that used for skilled reaching. Small unilateral lesions to the forepaw area of somatic sensorimotor cortex produced impairments in use of the paw contralateral to the lesions. These results: (1) reveal a surprising complexity in the way in which rats use their paws and digits in manipulating food; (2) show that rats have limb preferences in spontaneous food handling; and (3) show that manipulatory dexterity is dependent upon the integrity of the forelimb area of motor cortex. The results are discussed in relation to the evolution of motor skill, the use of rats for investigating questions of motor system organization, neural plasticity, and recovery of function after brain damage.
Considerations in Using Computer for Presentation.
ERIC Educational Resources Information Center
Lee, Shih-chung
1997-01-01
Addresses issues to consider in conducting computer presentations. Discusses presentation devices--television, multiscan capable monitor, LCD (liquid crystal display) panel with overhead projector, and video/RGB (red, green, blue) projector; lighting; audience size; and types of presentations--fast/short time multimedia presentations, oral and…
Spectroscopy on the Overhead Projector.
ERIC Educational Resources Information Center
Solomon, Sally; And Others
1994-01-01
Any overhead projector easily can be converted into a simple spectrometer by placing a piece of diffraction grating over the projecting lens. A detailed description of the apparatus and suggested spectroscopy experiments are included. Demonstrations can utilize solutions of cobalt chloride, potassium permanganate, potassium dichromate, or…
An Assessment of Teachers' Preference for Lecture Delivery Methods in Medical Education
ERIC Educational Resources Information Center
Seth, Vikas; Upadhyaya, Prerna; Ahmad, Mushtaq; Kumar, Virendra
2010-01-01
The aim of the study was to assess the medical teachers' preference for various lecture delivery methods like the lectures using chalkboard, utilizing transparencies with an overhead projector (OHP) or lectures using a PowerPoint presentation and their frequency of use of teaching aids. The faculty of the medical college was asked to fill in the…
2010-01-01
Background Healthy lifestyles may help to delay arterial aging. The purpose of this study is to analyze the relationship of physical activity and dietary pattern to the circadian pattern of blood pressure, central and peripheral blood pressure, pulse wave velocity, carotid intima-media thickness and biological markers of endothelial dysfunction in active and sedentary individuals without arteriosclerotic disease. Methods/Design Design: A cross-sectional multicenter study with six research groups. Subjects: From subjects of the PEPAF project cohort, in which 1,163 who were sedentary became active, 1,942 were sedentary and 2,346 were active. By stratified random sampling, 1,500 subjects will be included, 250 in each group. Primary measurements: We will evaluate height, weight, abdominal circumference, clinical and ambulatory blood pressure with the Radial Pulse Wave Acquisition Device (BPro), central blood pressure and augmentation index with Pulse Wave Application Software (A-Pulse) and SphymgoCor System Px (Pulse Wave Analysis), pulse wave velocity (PWV) with SphymgoCor System Px (Pulse Wave Velocity), nutritional pattern with a food intake frequency questionnaire, physical activity with the 7-day PAR questionnaire and accelerometer (Actigraph GT3X), physical fitness with the cycle ergometer (PWC-170), carotid intima-media thickness by ultrasound (Micromax), and endothelial dysfunction biological markers (endoglin and osteoprotegerin). Discussion Determining that sustained physical activity and the change from sedentary to active as well as a healthy diet improve circadian pattern, arterial elasticity and carotid intima-media thickness may help to propose lifestyle intervention programs. These interventions could improve the cardiovascular risk profile in some parameters not routinely assessed with traditional risk scales. From the results of this study, interventional approaches could be obtained to delay vascular aging that combine physical exercise and diet. Trial Registration Clinical Trials.gov Identifier: NCT01083082 PMID:20459634
Millen, Aletta M E; Woodiwiss, Angela J; Norton, Gavin R
2016-07-01
Decreases in brachial blood pressure (BP) may occur for several hours following a bout of exercise. Although aortic backward waves predict cardiovascular damage independent of brachial BP, whether decreases in aortic backward waves also occur post-exercise in young-to-middle-aged hypertensives, the extent to which these changes exceed brachial BP changes, and the best method of identifying these changes is uncertain. We examined aortic function at baseline and 15-min post-exercise in 20 pre-hypertensive or hypertensive men and women (age 45 ± 7 years). Central aortic pressure, forward (Pf) and backward (Pb) wave pressures, the reflection index (RI) and augmentation pressure (AP) and index (AIx) were determined using applanation tonometry, and SphygmoCor software. Decreases in central aortic (p < 0.001) but not brachial systolic BP and pulse pressure (PP) occurred post-exercise. In addition, decreases in post-exercise (baseline versus post-exercise) Pb (19 ± 4 vs 13 ± 3 mm Hg p < 0.0001), RI (72.9 ± 22.1 vs 47.6 ± 12.8 %, p < 0.0001), AIx (26.3 ± 10.8 vs 7.8 ± 11.6 %, p < 0.0001) and AP (9.9 ± 3.9 vs 2.8 ± 3.9 mm Hg, p < 0.0001), but not Pf, were noted. However, decreases in AIx were not correlated with decreases in Pb, and whilst decreases in aortic PP correlated with decreases in Pb (p < 0.0001), no correlations were noted with decreases in AP or AIx. In young-to-middle-aged pre-hypertensive and hypertensive individuals, aortic backward waves decrease post-exercise; this change is not reflected in brachial BP measurements and is poorly indexed by measures of pressure augmentation.
Quantitative subsurface analysis using frequency modulated thermal wave imaging
NASA Astrophysics Data System (ADS)
Subhani, S. K.; Suresh, B.; Ghali, V. S.
2018-01-01
Quantitative depth analysis of the anomaly with an enhanced depth resolution is a challenging task towards the estimation of depth of the subsurface anomaly using thermography. Frequency modulated thermal wave imaging introduced earlier provides a complete depth scanning of the object by stimulating it with a suitable band of frequencies and further analyzing the subsequent thermal response using a suitable post processing approach to resolve subsurface details. But conventional Fourier transform based methods used for post processing unscramble the frequencies with a limited frequency resolution and contribute for a finite depth resolution. Spectral zooming provided by chirp z transform facilitates enhanced frequency resolution which can further improves the depth resolution to axially explore finest subsurface features. Quantitative depth analysis with this augmented depth resolution is proposed to provide a closest estimate to the actual depth of subsurface anomaly. This manuscript experimentally validates this enhanced depth resolution using non stationary thermal wave imaging and offers an ever first and unique solution for quantitative depth estimation in frequency modulated thermal wave imaging.
["Animal hypnosis" and defensive dominant, behavioral aspect].
Pavlygina, R A; Galashina, A G; Bogdanov, A V
2002-01-01
A stationary excitation focus produced in the sensorimotor cortex of a rabbit by rhythmic electrodermal paw stimulation was manifested in the reaction to a testing sound stimulus earlier indifferent for the animal. Regardless of the stimulated paw (left or right), reactions to the testing stimuli appeared approximately in the equal percent of cases (70.7% and 71.5%, respectively). After a single-trial induction of the "animal hypnosis" state, it was difficult to produce the dominant focus by simulation of the left paw, whereas the results of the right-paw stimulation did not differ from those obtained during control stimulation. Consequently, the influence of hypnosis on defensive stationary excitation foci in different hemispheres was not the same.
Efficiency enhancement of liquid crystal projection displays using light recycle technology
NASA Technical Reports Server (NTRS)
Wang, Y.
2002-01-01
A new technology developed at JPL using low absorption color filters with polarization and color recycle system, is able to enhance efficiency of a single panel liquid crytal display (LCD) projector to the same efficiency of a 3 panel LCD projector.
Effects of mold design of aspheric projector lens for head up display
NASA Astrophysics Data System (ADS)
Chen, Chao-Chang A.; Tang, Jyun-Cing; Teng, Lin-Ming
2010-08-01
This paper investigates the mold design and related effects on an aspheric projector lens for Head Up Display (HUD) with injection molding process. Injection flow analysis with a commercial software, Moldex3D has been used to simulate this projector lens for filling, packing, shrinkage, and flow-induced residual stress. This projector lens contains of variant thickness due to different aspheric design on both surfaces. Defects may be induced as the melt front from the gate into the cavity with jet-flow phenomenon, short shot, weld line, and even shrinkage. Thus, this paper performs a gate design to find the significant parameters including injection velocity, melt temperature, and mold temperature. After simulation by the Moldex3D, gate design for the final assembly of Head Up Display (HUD) has been obtained and then experimental tests have been proceeded for verification of short-shot, weight variation, and flow-induced stress. Moreover, warpage analysis of the Head Up Display (HUD) can be integrated with the optical design specification in future work.
Field-Sequential Electronic Stereoscopic Projector
NASA Astrophysics Data System (ADS)
Lipton, Lenny
1989-07-01
Culminating a research and development project spanning many years, StereoGraphics Corporation has succeeded in bringing to market the first field-sequential electronic stereoscopic projector. The product is based on a modification of Electrohome and Barco projectors. Our design goal was to produce a projector capable of displaying an image on a six-foot (or larger) diagonal screen for an audience of 50 or 60 people, or for an individual using a simulator. A second goal was to produce an image that required only passive polarizing glasses rather than powered, tethered visors. Two major design challenges posed themselves. First, it was necessary to create an electro-optical modulator which could switch the characteristic of polarized light at field rate, and second, it was necessary to produce a bright green CRT with short persistence to prevent crosstalk between left and right fields. To solve the first problem, development was undertaken to produce the required electro-optical modulator. The second problem was solved with the help of a vendor specializing in high performance CRT's.
Projection display technology and product trends
NASA Astrophysics Data System (ADS)
Kahn, Frederic J.
1999-05-01
Major technology and market trends that could generate a 20 billion dollar electronic projector market by 2010 are reviewed in the perspective of recent product introductions. A log linear analysis shows that the light outputs of benchmark transportable data video projectors have increased at a rate of almost 90 percent per year since 1993. The list prices of these same projectors have decreased at a rate of over 40 percent per year. The tradeoffs of light output vs. resolution and weight are illustrated. Recent trends in projector efficacy vs. year are discussed. Lumen output per dollar of list price is shown to be a useful market metric. Continued technical advances and innovations including higher throughput light valve technologies with integrated drivers, brighter light source, field sequential color, integrated- and micro-optical components, and aerospace materials are likely to sustain these trends. The new technologies will enable projection displays for entertainment and computer applications with unprecedented levels of performance, compactness, and cost-effectiveness.
Choi, Jun-Hui; Kim, Na-Hyun; Kim, Sung-Jun; Lee, Hyo-Jeong; Kim, Seung
2016-03-01
Undaria pinnatifida is a well-known traditional Korean food with a variety of biological activities. Carrageenan (carr) is commonly used to induce paw edema in animal models. This study was designed to elucidate the processes underlying the anti-inflammatory effect of fucoxanthin isolated from the sporophyll of U. pinnatifida in carr-induced paw edema in ICR mice. Fucoxanthin significantly decreased carr-induced increased nitric oxide levels in the plasma of mice with carr-induced paw edema. Fucoxanthin protected catalase (CAT) and superoxide dismutase (SOD) activity against disruption in mice with carr-induced paw edema. In addition, fucoxanthin repressed carr-induced activation of inducible nitric oxide synthase, cyclooxygenase-2, and nuclear factor kappa B, as well as carr-induced phosphorylation of mitogen-activated protein kinase, extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, and protein kinase B/Akt. These results suggest that fucoxanthin may have therapeutic potential as a treatment for patients with inflammatory diseases. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Hiremath, Varun; Pope, Stephen B.
2013-04-01
The Rate-Controlled Constrained-Equilibrium (RCCE) method is a thermodynamic based dimension reduction method which enables representation of chemistry involving n s species in terms of fewer n r constraints. Here we focus on the application of the RCCE method to Lagrangian particle probability density function based computations. In these computations, at every reaction fractional step, given the initial particle composition (represented using RCCE), we need to compute the reaction mapping, i.e. the particle composition at the end of the time step. In this work we study three different implementations of RCCE for computing this reaction mapping, and compare their relative accuracy and efficiency. These implementations include: (1) RCCE/TIFS (Trajectory In Full Space): this involves solving a system of n s rate-equations for all the species in the full composition space to obtain the reaction mapping. The other two implementations obtain the reaction mapping by solving a reduced system of n r rate-equations obtained by projecting the n s rate-equations for species evaluated in the full space onto the constrained subspace. These implementations include (2) RCCE: this is the classical implementation of RCCE which uses a direct projection of the rate-equations for species onto the constrained subspace; and (3) RCCE/RAMP (Reaction-mixing Attracting Manifold Projector): this is a new implementation introduced here which uses an alternative projector obtained using the RAMP approach. We test these three implementations of RCCE for methane/air premixed combustion in the partially-stirred reactor with chemistry represented using the n s=31 species GRI-Mech 1.2 mechanism with n r=13 to 19 constraints. We show that: (a) the classical RCCE implementation involves an inaccurate projector which yields large errors (over 50%) in the reaction mapping; (b) both RCCE/RAMP and RCCE/TIFS approaches yield significantly lower errors (less than 2%); and (c) overall the RCCE/TIFS approach is the most accurate, efficient (by orders of magnitude) and robust implementation.
How does the canine paw pad attenuate ground impacts? A multi-layer cushion system.
Miao, Huaibin; Fu, Jun; Qian, Zhihui; Ren, Luquan; Ren, Lei
2017-12-15
Macroscopic mechanical properties of digitigrade paw pads, such as non-linear elastic and variable stiffness, have been investigated in previous studies; however, little is known about the micro-scale structural characteristics of digitigrade paw pads, or the relationship between these characteristics and the exceptional cushioning of the pads. The digitigrade paw pad consists of a multi-layered structure, which is mainly comprised of a stratified epithelium layer, a dermis layer and a subcutaneous layer. The stratified epithelium layer and dermal papillae constitute the epidermis layer. Finite element analyses were carried out and showed that the epidermis layer effectively attenuated the ground impact across impact velocities of 0.05-0.4 m/s, and that the von Mises stresses were uniformly distributed in this layer. The dermis layer encompassing the subcutaneous layer can be viewed as a hydrostatic system, which can store, release and dissipate impact energy. All three layers in the paw pad work as a whole to meet the biomechanical requirements of animal locomotion. These findings provide insights into the biomechanical functioning of digitigrade paw pads and could be used to facilitate bio-inspired, ground-contacting component development for robots and machines, as well as contribute to footwear design. © 2017. Published by The Company of Biologists Ltd.
Gelam Honey Attenuates Carrageenan-Induced Rat Paw Inflammation via NF-κB Pathway
Hussein, Saba Zuhair; Mohd Yusoff, Kamaruddin; Makpol, Suzana; Mohd Yusof, Yasmin Anum
2013-01-01
The activation of nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of a number of inflammatory diseases. In this study, we investigated the anti-inflammatory mechanism of Gelam honey in inflammation induced rats via NF-κB signalling pathway. Rats paw edema was induced by subplantar injection of 1% carrageenan into the right hind paw. Rats were pre-treated with Gelam honey at different doses (1 or 2 g/kg, p.o.) and NSAID Indomethacin (10 mg/kg, p.o.), in two time points (1 and 7 days). Our results showed that Gelam honey at both concentrations suppressed the gene expressions of NF-κB (p65 & p50) and IκBα in inflamed rats paw tissues. In addition, Gelam honey inhibited the nuclear translocation and activation of NF-κB and decreased the cytosolic degradation of IκBα dose dependently in inflamed rats paw tissues. The immunohistochemical expressions of pro-inflammatory mediators COX-2 and TNF-α were also decreased in inflamed rats paw tissues when treated with Gelam honey. The results of our findings suggest that Gelam honey exhibits its inhibitory effects by attenuating NF-κB translocation to the nucleus and inhibiting IκBα degradation, with subsequent decrease of inflammatory mediators COX-2 and TNF-α. PMID:24015236
Bulk silicon as photonic dynamic infrared scene projector
NASA Astrophysics Data System (ADS)
Malyutenko, V. K.; Bogatyrenko, V. V.; Malyutenko, O. Yu.
2013-04-01
A Si-based fast (frame rate >1 kHz), large-scale (scene area 100 cm2), broadband (3-12 μm), dynamic contactless infrared (IR) scene projector is demonstrated. An IR movie appears on a scene because of the conversion of a visible scenario projected at a scene kept at elevated temperature. Light down conversion comes as a result of free carrier generation in a bulk Si scene followed by modulation of its thermal emission output in the spectral band of free carrier absorption. The experimental setup, an IR movie, figures of merit, and the process's advantages in comparison to other projector technologies are discussed.
Computational imaging with a single-pixel detector and a consumer video projector
NASA Astrophysics Data System (ADS)
Sych, D.; Aksenov, M.
2018-02-01
Single-pixel imaging is a novel rapidly developing imaging technique that employs spatially structured illumination and a single-pixel detector. In this work, we experimentally demonstrate a fully operating modular single-pixel imaging system. Light patterns in our setup are created with help of a computer-controlled digital micromirror device from a consumer video projector. We investigate how different working modes and settings of the projector affect the quality of reconstructed images. We develop several image reconstruction algorithms and compare their performance for real imaging. Also, we discuss the potential use of the single-pixel imaging system for quantum applications.
A Formulation of Quantum Field Theory Realizing a Sea of Interacting Dirac Particles
NASA Astrophysics Data System (ADS)
Finster, Felix
2011-08-01
In this survey article, we explain a few ideas behind the fermionic projector approach and summarize recent results which clarify the connection to quantum field theory. The fermionic projector is introduced, which describes the physical system by a collection of Dirac states, including the states of the Dirac sea. Formulating the interaction by an action principle for the fermionic projector, we obtain a consistent description of interacting quantum fields which reproduces the results of perturbative quantum field theory. We find a new mechanism for the generation of boson masses and obtain small corrections to the field equations which violate causality.
Anti-inflammatory, Analgesic and Antiulcer properties of Porphyra vietnamensis
Bhatia, Saurabh; Sharma, Kiran; Sharma, Ajay; Nagpal, Kalpana; Bera, Tanmoy
2015-01-01
Objectives: Aim of the present work was to investigate the anti-inflammatory, analgesic and antiulcer effects of red seaweed Porphyra vietnamensis (P. vietnamenis). Materials and Methods: Aqueous (POR) and alcoholic (PE) fractions were successfully isolated from P. vietnamenis. Further biological investigations were performed using a classic test of paw edema induced by carrageenan, writhing induced by acetic acid, hot plate method and naproxen induced gastro-duodenal ulcer. Results: Among the fractions POR showed better activity. POR and PE significantly (p < 0.05) reduced carrageenan induced paw edema in a dose dependent manner. In the writhing test POR significantly (p < 0.05) reduced abdominal writhes than PE. In hot plate method POR showed better analgesic activity than PE. POR showed comparable ulcers reducing potential (p<0.01) to that of omeprazole, and has more ulcer reducing potential then PE. Conclusions: The results of this study demonstrated that P. vietnamenis aqueous fraction possesses biological activity that is close to the standards taken for the treatment of peripheral painful or/and inflammatory and ulcer conditions. PMID:25767759
Overhead Projector Demonstrations: Some Ideas from the Past.
ERIC Educational Resources Information Center
Kolb, Doris
1987-01-01
Describes nine chemistry demonstrations that can be done using an overhead projector. Includes demonstrations on common ion effect, crystal formation from supersaturated solutions, making iron positive with nitric acid, optical activity, carbon dioxide in human breath, amphoteric hydroxides, the surface tension of mercury, and natural acid-base…
ERIC Educational Resources Information Center
Gould, Mauri
1975-01-01
Describes assembly of a moderately priced synchronized projector and cassette tape recorder using a single channel recorder with a tuned amplifier to separate voice and control tones. Construction requires familiarity with transistors and use of an oscilloscope with an audio signal generator. A picture as well as schematics is provided. (GH)
NASA Astrophysics Data System (ADS)
Kiani, M.; Hernandez Ramirez, G.; Quideau, S.
2016-12-01
Improved knowledge about the spatial variability of plant available water (PAW), soil organic carbon (SOC), and microbial biomass carbon (MBC) as affected by land-use systems can underpin the identification and inventory of beneficial ecosystem good and services in both agricultural and wild lands. Little research has been done that addresses the spatial patterns of PAW, SOC, and MBC under different land use types at a field scale. Therefore, we collected 56 soil samples (5-10 cm depth increment), using a nested cyclic sampling design within both a native grassland (NG) site and an irrigated cultivated (IC) site located near Brooks, Alberta. Using classical statistical and geostatistical methods, we characterized the spatial heterogeneities of PAW, SOC, and MBC under NG and IC using several geostatistical methods such as ordinary kriging (OK), regression-kriging (RK), cokriging (COK), and regression-cokriging (RCOK). Converting the native grassland to irrigated cultivated land altered soil pore distribution by reducing macroporosity which led to lower saturated water content and half hydraulic conductivity in IC compared to NG. This conversion also decreased the relative abundance of gram-negative bacteria, while increasing both the proportion of gram-positive bacteria and MBC concentration. At both studied sites, the best fitted spatial model was Gaussian based on lower RSS and higher R2 as criteria. The IC had stronger degree of spatial dependence and longer range of spatial auto-correlation revealing a homogenization of the spatial variability of soil properties as a result of intensive, recurrent agricultural activities. Comparison of OK, RK, COK, and RCOK approaches indicated that cokriging method had the best performance demonstrating a profound improvement in the accuracy of spatial estimations of PAW, SOC, and MBC. It seems that the combination of terrain covariates such as elevation and depth-to-water with kriging techniques offers more capability for incorporating explicit ancillary information in predictive soil mapping. Overall, identification of spatial patterns of soil properties in agricultural lands gives a bird's eye view to land owners to implement and improve management practices which lead to more sustainable production.
Tight-Binding study of Boron structures
NASA Astrophysics Data System (ADS)
McGrady, Joseph W.; Papaconstantopoulos, Dimitrios A.; Mehl, Michael J.
2014-10-01
We have performed Linearized Augmented Plane Wave (LAPW) calculations for five crystal structures (alpha, dhcp, sc, fcc, bcc) of Boron which we then fitted to a non-orthogonal tight-binding model following the Naval Research Laboratory Tight-Binding (NRL-TB) method. The predictions of the NRL-TB approach for complicated Boron structures such as R105 (or β-rhombohedral) and T190 are in agreement with recent first-principles calculations. Fully utilizing the computational speed of the NRL-TB method we calculated the energy differences of various structures, including those containing vacancies using supercells with up to 5000 atoms.
Comparison of Pictorial Techniques for Guiding Performance During Training.
ERIC Educational Resources Information Center
Miller, Elmo E.
An experimental program was conducted to develop effective methods for producing and utilizing filmed demonstrations and instructional manuals. Four variations on conventional filmed demonstrations were evaluated: 1) revising an Army film through repeated tryouts with novices, 2) stopping the projector after each step is demonstrated to allow…
Students' Attitudes towards Control Methods in Computer-Assisted Instruction.
ERIC Educational Resources Information Center
Hintze, Hanne; And Others
1988-01-01
Describes study designed to investigate dental students' attitudes toward computer-assisted teaching as applied in programs for oral radiology in Denmark. Programs using personal computers and slide projectors with varying degrees of learner and teacher control are described, and differences in attitudes between male and female students are…
Uniqueness of thermodynamic projector and kinetic basis of molecular individualism
NASA Astrophysics Data System (ADS)
Gorban, Alexander N.; Karlin, Iliya V.
2004-05-01
Three results are presented: First, we solve the problem of persistence of dissipation for reduction of kinetic models. Kinetic equations with thermodynamic Lyapunov functions are studied. Uniqueness of the thermodynamic projector is proven: There exists only one projector which transforms any vector field equipped with the given Lyapunov function into a vector field with the same Lyapunov function for a given anzatz manifold which is not tangent to the Lyapunov function levels. Second, we use the thermodynamic projector for developing the short memory approximation and coarse-graining for general nonlinear dynamic systems. We prove that in this approximation the entropy production increases. ( The theorem about entropy overproduction.) In example, we apply the thermodynamic projector to derive the equations of reduced kinetics for the Fokker-Planck equation. A new class of closures is developed, the kinetic multipeak polyhedra. Distributions of this type are expected in kinetic models with multidimensional instability as universally as the Gaussian distribution appears for stable systems. The number of possible relatively stable states of a nonequilibrium system grows as 2 m, and the number of macroscopic parameters is in order mn, where n is the dimension of configuration space, and m is the number of independent unstable directions in this space. The elaborated class of closures and equations pretends to describe the effects of “molecular individualism”. This is the third result.
Nguyen, Van Tang; Sakoff, Jennette A.; Scarlett, Christopher J.
2017-01-01
Background: Phyllanthus amarus (P. amarus) has been used as a medicinal plant for the prevention and treatment of chronic ailments such as diabetes, hepatitis, and cancer. Methods: The physicochemical properties, antioxidant and cytotoxic activities of crude extracts and fractions from P. amarus were determined using spectrophotometric method. Results: The P. amarus methanol (PAM) extract had lower levels of residual moisture (7.40%) and water activity (0.24) and higher contents of saponins, phenolics, flavonoids, and proanthocyanidins (1657.86 mg escin equivalents, 250.45 mg gallic acid equivalents, 274.73 mg rutin equivalents and 61.22 mg catechin equivalents per g dried extract, respectively) than those of the P. amarus water (PAW) extract. The antioxidant activity of PAM extract was significantly higher (p < 0.05) than that of the PAW extract, PAM fractions, and phyllanthin (known as a major compound in the P. amarus). Higher cytotoxic activity of PAM extract based on MTT assay on different cell lines including MiaPaCa-2 (pancreas), HT29 (colon), A2780 (ovarian), H460 (lung), A431 (skin), Du145 (prostate), BE2-C (neuroblastoma), MCF-7 (breast), MCF-10A (normal breast), and U87, SJ-G2, SMA (glioblastoma) was observed in comparison to the PAW extract and PAM fractions. The cytotoxic potential of the PAW extract (200 μg/mL), based on the CCK-8 assay on a pancreatic cancer cell line (MiaCaPa2) was significantly lower (p < 0.05) than those of gemcitabine (50 nM) and a saponin-enriched extract from quillajia bark at 200 μg/mL (a commercial product), but was significantly higher than that of phyllanthin at 2 μg/mL. Conclusions: The results achieved from this study reveal that the PA extracts are a potential source for the development of natural antioxidant products and/or novel anticancer drugs. PMID:28930257
Zhenyu, Xie; Shaowen, Ke; Chaoqun, Hu; Zhixiong, Zhu; Shifeng, Wang; Yongcan, Zhou
2013-01-01
White syndrome, a term for scleractinian coral disease with progressive tissue loss, is known to cause depressed growth and increased morality of coral reefs in the major oceans around the world, and the occurrence of this disease has been frequently reported in the past few decades. Investigations during April to September in both 2010 and 2011 identified widespread Porites andrewsi White syndrome (PAWS) in Xisha Archipelago, South China Sea. However, the causes and etiology of PAWS have been unknown. A transmission experiment was performed on P. andrewsi in the Qilianyu Subgroup (QLY). The results showed that there was a significant (P ≤ 0.05) difference between test and control groups after 28 days if the invalid replicates were excluded. Rates of tissue loss ranged from 0.90-10.76 cm(2) d(-1) with a mean of 5.40 ± 3.34 cm(2) d(-1) (mean ± SD). Bacterial strains were isolated from the PAWS corals at the disease outbreak sites in QLY of the Xisha Archipelago, South China Sea, and included in laboratory-based infection trials to satisfy Koch's postulates for establishing causality. Following exposure to bacterial concentrations of 10(5) cells mL(-1), the infected colonies exhibited similar signs to those observed in the field. Using phylogenetic 16S rRNA gene analysis, classical phenotypic trait comparison, Biolog automatic identification system, MALDI-TOF mass spectrometry and MALDI Biotyper method, two pathogenic strains were identified as Vibrio alginolyticus . This is the first report of V. alginolyticus as a pathogenic agent of PAWS in the South China Sea. Our results point out an urgent need to develop sensitive detection methods for V. alginolyticus virulence strains and robust diagnostics for coral disease caused by this and Vibrio pathogenic bacterium in the South China Sea.
Chaoqun, Hu; Zhixiong, Zhu; Shifeng, Wang; Yongcan, Zhou
2013-01-01
Background White syndrome, a term for scleractinian coral disease with progressive tissue loss, is known to cause depressed growth and increased morality of coral reefs in the major oceans around the world, and the occurrence of this disease has been frequently reported in the past few decades. Investigations during April to September in both 2010 and 2011 identified widespread Porites andrewsi White syndrome (PAWS) in Xisha Archipelago, South China Sea. However, the causes and etiology of PAWS have been unknown. Methodology/Principal Findings A transmission experiment was performed on P . andrewsi in the Qilianyu Subgroup (QLY). The results showed that there was a significant (P ≤ 0.05) difference between test and control groups after 28 days if the invalid replicates were excluded. Rates of tissue loss ranged from 0.90-10.76 cm2 d-1 with a mean of 5.40 ± 3.34 cm2 d-1 (mean ± SD). Bacterial strains were isolated from the PAWS corals at the disease outbreak sites in QLY of the Xisha Archipelago, South China Sea, and included in laboratory-based infection trials to satisfy Koch’s postulates for establishing causality. Following exposure to bacterial concentrations of 105 cells mL-1, the infected colonies exhibited similar signs to those observed in the field. Using phylogenetic 16S rRNA gene analysis, classical phenotypic trait comparison, Biolog automatic identification system, MALDI-TOF mass spectrometry and MALDI Biotyper method, two pathogenic strains were identified as Vibrio alginolyticus . Conclusion/Significance This is the first report of V . alginolyticus as a pathogenic agent of PAWS in the South China Sea. Our results point out an urgent need to develop sensitive detection methods for V . alginolyticus virulence strains and robust diagnostics for coral disease caused by this and Vibrio pathogenic bacterium in the South China Sea. PMID:24086529
Antinociceptive and anti-inflammatory activities of Cuscuta chinensis seeds in mice.
Liao, Jung-Chun; Chang, Wen-Te; Lee, Meng-Shiou; Chiu, Yung-Jia; Chao, Wei-Kai; Lin, Ying-Chih; Lin, Ming-Kuem; Peng, Wen-Huang
2014-01-01
The seeds of Cuscuta chinensis, Cuscutae Semen, are commonly used as a medicinal material for treating the aching and weakness of the loins and knees, tonifying the defects of the liver and the kidney, and treating the diarrhea due to hypofunction of the kidney and the spleen. Since aching and inflammation are highly correlated with such diseases, the aim of this study is to investigate the possible antinociceptive and anti-inflammatory mechanisms of the seeds of C. chinensis. The antinociceptive effect of the seeds of C. chinensis was evaluated via the acetic acid-induced writhing response and formalin-induced paw licking methods. The anti-inflammatory effect was evaluated via the λ-carrageenan induced mouse paw edema method. The results found that 100 and 500 mg/kg of the methanol extract of the seeds of C. chinensis( CC MeOH ) significantly decreased (p < 0.01 and p < 0.001, respectively) the writhing response in the acetic acid assay. Additionally, 20-500 mg/kg of CC MeOH significantly decreased licking time at the early (20 and 100 mg/kg, p < 0.001) and late phases (100 mg/kg, p < 0.01; 500 mg/kg, p < 0.001) of the formalin test, respectively. Furthermore, CC MeOH (100 and 500 mg/kg) significantly decreased (p < 0.01 and p < 0.001, respectively) edema paw volume four hours after λ-carrageenan had been injected. The results in the following study also revealed that the anti-inflammatory mechanism of CC MeOH may be due to declined levels of NO and MDA in the edema paw by increasing the activities of SOD, GPx and GRd in the liver. In addition, CC MeOH also decreased IL-1β, IL-6, NF-κB, TNF-α, and COX-2 levels. This is the first study to demonstrate the possible mechanisms for the antinociceptive and anti-inflammatory effects of CC MeOH in vivo. Thus, it provides evidence for the treatment of Cuscutae Semen in inflammatory diseases.
2010-01-01
Introduction Pristane-induced arthritis (PIA) in the rat has been described as an animal model of inflammatory arthritis which exhibits features similar to rheumatoid arthritis in humans, such as a chronic, destructive, and symmetrical involvement of peripheral joints. However, so far little is known about the earliest inflammatory events and their influence on locomotor behaviour during the course of PIA. To investigate this issue a detailed analysis of the pathologic changes occurring during the prodromal and early stages of PIA was performed. Methods Arthritis was induced in DA.rats by injection of 150 μl 2,6,10,4-tetramethyl-pentadecane (pristane) at the base of the tail and changes in locomotor behaviour of the affected paws were monitored using the CatWalk quantitative gait analysis system. The pathologic events occurring in the joints of pristane-injected animals were studied before onset, at onset, and during acute phase of arthritis by histological methods. Results Gait analysis revealed that changes in locomotion such as reduced paw print areas and stance phase time are already apparent before the onset of clinically discernible arthritis symptoms (erythema, paw swelling) and correlate with PIA scores. In agreement with these findings, inflammatory tenosynovitis could be observed by histology already before the onset of erythema and swelling of the respective paws. In the most heavily affected rats also irregularities in step sequence patterns occurred A kinetic analysis of clinical and histological findings demonstrated that gait changes precede the pathological changes occurring during the acute phase of pristane-induced arthritis. Conclusions Gait analysis allows for pinpointing the initial inflammatory changes in experimental arthritis models such as pristane-induced arthritis. Analysis of early clinically relevant symptoms in arthritis models may facilitate the search for novel therapeutics to interfere with pain, inflammation and joint destruction in patients suffering from inflammatory arthritis. PMID:20222952
Fluidically Augmented Nozzles for Pulse Detonation Engine Applications
2011-12-01
25 captured the flow soon after the leading shock wave passed through the diverging section of the nozzle. As can be seen, the “pillow” has begun to...35 Figure 25. Initial Detonation Wave Enters the Diverging Section of the Nozzle...charging the combustor with an appropriate fuel/air mixture. This mixture is then ignited, producing a flame that is initially a deflagration wave . A
Viscosity and compressibility of diacylglycerol under high pressure
NASA Astrophysics Data System (ADS)
Malanowski, Aleksander; Rostocki, A. J.; Kiełczyński, P.; Szalewski, M.; Balcerzak, A.; Kościesza, R.; Tarakowski, R.; Ptasznik, S.; Siegoczyński, R. M.
2013-03-01
The influence of high pressure on viscosity and compressibility of diacylglycerol (DAG) oil has been presented in this paper. The investigated DAG oil was composed of 82% of DAGs and 18% TAGs (triacylglycerols). The dynamic viscosity of DAG was investigated as a function of the pressure up to 400 MPa. The viscosity was measured by means of the surface acoustic wave method, where the acoustic waveguides were used as sensing elements. As the pressure was rising, the larger ultrasonic wave attenuation was observed, whereas amplitude decreased with the liquid viscosity augmentation. Measured changes of physical properties were most significant in the pressure range near the phase transition. Deeper understanding of DAG viscosity and compressibility changes versus pressure could shed more light on thermodynamic properties of edible oils.
Electron-positron momentum density in Tl 2Ba 2CuO 6
NASA Astrophysics Data System (ADS)
Barbiellini, B.; Gauthier, M.; Hoffmann, L.; Jarlborg, T.; Manuel, A. A.; Massidda, S.; Peter, M.; Triscone, G.
1994-08-01
We present calculations of the electron-positron momentum density for the high- Tc superconductor Tl 2Ba 2CuO 6, together with some preliminary two-dimensional angular correlation of the annihilation radiation (2D-ACAR) measurements. The calculations are based on the first-principles electronic structure obtained using the full-potential linearized augmented plane wave (FLAPW) and the linear muffin-tin orbital (LMTO) methods. We also use a linear combination of the atomic orbitals-molecular orbital method (LCAO-MO) to discuss orbital contributions to the anisotropies. Some agreement between calculated and measured 2D-ACAR anisotropies encourage sample improvement for further Fermi surface investigations. Indeed, our results indicate a non-negligle overlap of the positron wave function with the CuOo 2 plane electrons. Therefore, this compound may be well suited for investigating the relevant CuO 2 Fermi surface by 2D-ACAR.
Ab initio study on structural stability of uranium carbide
NASA Astrophysics Data System (ADS)
Sahoo, B. D.; Joshi, K. D.; Gupta, Satish C.
2013-06-01
First principles calculations have been performed using plane wave pseudopotential and full potential linearized augmented plane wave (FP-LAPW) methods to analyze structural, elastic and dynamic stability of UC under hydrostatic compression. Our calculations within pseudopotential method suggest that the rocksalt (B1) structure will transform to body centered orthorhombic (bco) structure at ˜21.5 GPa. The FP-LAPW calculations put this transition at 23 GPa. The transition pressures determined from our calculations though agree reasonably with the experimental value of 27 GPa, the high pressure bco structure suggested by theory differs slightly from the experimentally reported pseudo bco phase. The elastic stability analysis of B1 phase suggests that the B1 to bco transition is driven by the failure of C44 modulus. This finding is further substantiated by the lattice dynamic calculations which demonstrate that the B1 phase becomes dynamically unstable around the transition pressure and the instability is of long wavelength nature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, U. P.; Nayak, V.
Quantum mechanical first principle calculations have been performed to study the electronic and structural properties of TiN and TiAs in zinc blende (ZB) and rock salt (RS) structures. The full-potential linearized augmented plane wave (FP-LAPW) method has been used within the framework of density functional theory (DFT). The exchange correlation functional has been solved employing generalized gradient approximation (GGA). Our predicted results for lattice constants are in good agreement with the earlier findings. The electronic band structures of TiX are metallic in both the phases.
Manhães, Alex C; Krahe, Thomas E; Caparelli-Dáquer, Egas; Ribeiro-Carvalho, Anderson; Schmidt, Sergio L; Filgueiras, Cláudio C
2003-09-11
In the present work, the hypothesis that the ontogenetic development of the corpus callosum (CC) affects the establishment of behavioral lateralization was tested by studying paw preference performance in adult Swiss mice that were subjected to mid-sagittal transection of the CC on the first postnatal day. Magnitude and direction of laterality were evaluated independently. No significant differences between groups were found for the magnitude of paw preference. On the other hand, the transected group presented a significant populational bias favoring the left paw that was not present in the control groups. These results lend support to the hypothesis that the development of the CC plays a role in the establishment of the normal pattern of behavioral lateralization.
Looking At Display Technologies
ERIC Educational Resources Information Center
Bull, Glen; Bull, Gina
2005-01-01
A projection system in a classroom with an Internet connection provides a window on the world. Until recently, projectors were expensive and difficult to maintain. Technological advances have resulted in solid-state projectors that require little maintenance and cost no more than a computer. Adding a second or third computer to a classroom…
A Simple Polarimeter and Experiments Utilizing an Overhead Projector.
ERIC Educational Resources Information Center
Dorn, H. C.; And Others
1984-01-01
Although polarimeters that illustrate rotation of plane-polarized light by chiral solutions have been previously described, the polarimeter described in this paper has certain advantages when used in conjunction with an overhead projector. Instructions for constructing this polarimeter and its use in demonstrating the optical activity of sugars…
Viewing Vertical Objects with an Overhead Projector.
ERIC Educational Resources Information Center
Wild, R. L.
1988-01-01
Discusses the use of an overhead projector for the deflection of a vertical image to a screen. Describes three demonstrations: magnetizing of a steel ball bearing and paper clip; convection currents of a hot liquid within a cold liquid; and oscillation of concentrated salt solution into fresh water. (YP)
Optical projectors simulate human eyes to establish operator's field of view
NASA Technical Reports Server (NTRS)
Beam, R. A.
1966-01-01
Device projects visual pattern limits of the field of view of an operator as his eyes are directed at a given point on a control panel. The device, which consists of two projectors, provides instant evaluation of visual ability at a point on a panel.
SARA - SURE/ASSIST RELIABILITY ANALYSIS WORKSTATION (VAX VMS VERSION)
NASA Technical Reports Server (NTRS)
Butler, R. W.
1994-01-01
SARA, the SURE/ASSIST Reliability Analysis Workstation, is a bundle of programs used to solve reliability problems. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. The Systems Validation Methods group at NASA Langley Research Center has created a set of four software packages that form the basis for a reliability analysis workstation, including three for use in analyzing reconfigurable, fault-tolerant systems and one for analyzing non-reconfigurable systems. The SARA bundle includes the three for reconfigurable, fault-tolerant systems: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST specification interface program (LAR-14193, LAR-14923), and PAWS/STEM reliability analysis programs (LAR-14165, LAR-14920). As indicated by the program numbers in parentheses, each of these three packages is also available separately in two machine versions. The fourth package, which is only available separately, is FTC, the Fault Tree Compiler (LAR-14586, LAR-14922). FTC is used to calculate the top-event probability for a fault tree which describes a non-reconfigurable system. PAWS/STEM and SURE are analysis programs which utilize different solution methods, but have a common input language, the SURE language. ASSIST is a preprocessor that generates SURE language from a more abstract definition. ASSIST, SURE, and PAWS/STEM are described briefly in the following paragraphs. For additional details about the individual packages, including pricing, please refer to their respective abstracts. ASSIST, the Abstract Semi-Markov Specification Interface to the SURE Tool program, allows a reliability engineer to describe the failure behavior of a fault-tolerant computer system in an abstract, high-level language. The ASSIST program then automatically generates a corresponding semi-Markov model. A one-page ASSIST-language description may result in a semi-Markov model with thousands of states and transitions. The ASSIST program also includes model-reduction techniques to facilitate efficient modeling of large systems. The semi-Markov model generated by ASSIST is in the format needed for input to SURE and PAWS/STEM. The Semi-Markov Unreliability Range Evaluator, SURE, is an analysis tool for reconfigurable, fault-tolerant systems. SURE provides an efficient means for calculating accurate upper and lower bounds for the death state probabilities for a large class of semi-Markov models, not just those which can be reduced to critical-pair architectures. The calculated bounds are close enough (usually within 5 percent of each other) for use in reliability studies of ultra-reliable computer systems. The SURE bounding theorems have algebraic solutions and are consequently computationally efficient even for large and complex systems. SURE can optionally regard a specified parameter as a variable over a range of values, enabling an automatic sensitivity analysis. SURE output is tabular. The PAWS/STEM package includes two programs for the creation and evaluation of pure Markov models describing the behavior of fault-tolerant reconfigurable computer systems: the Pade Approximation with Scaling (PAWS) and Scaled Taylor Exponential Matrix (STEM) programs. PAWS and STEM produce exact solutions for the probability of system failure and provide a conservative estimate of the number of significant digits in the solution. Markov models of fault-tolerant architectures inevitably lead to numerically stiff differential equations. Both PAWS and STEM have the capability to solve numerically stiff models. These complementary programs use separate methods to determine the matrix exponential in the solution of the model's system of differential equations. In general, PAWS is better suited to evaluate small and dense models. STEM operates at lower precision, but works faster than PAWS for larger models. The programs that comprise the SARA package were originally developed for use on DEC VAX series computers running VMS and were later ported for use on Sun series computers running SunOS. They are written in C-language, Pascal, and FORTRAN 77. An ANSI compliant C compiler is required in order to compile the C portion of the Sun version source code. The Pascal and FORTRAN code can be compiled on Sun computers using Sun Pascal and Sun Fortran. For the VMS version, VAX C, VAX PASCAL, and VAX FORTRAN can be used to recompile the source code. The standard distribution medium for the VMS version of SARA (COS-10041) is a 9-track 1600 BPI magnetic tape in VMSINSTAL format. It is also available on a TK50 tape cartridge in VMSINSTAL format. Executables are included. The standard distribution medium for the Sun version of SARA (COS-10039) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. Both Sun3 and Sun4 executables are included. Electronic copies of the ASSIST user's manual in TeX and PostScript formats are provided on the distribution medium. DEC, VAX, VMS, and TK50 are registered trademarks of Digital Equipment Corporation. Sun, Sun3, Sun4, and SunOS are trademarks of Sun Microsystems, Inc. TeX is a trademark of the American Mathematical Society. PostScript is a registered trademark of Adobe Systems Incorporated.
SARA - SURE/ASSIST RELIABILITY ANALYSIS WORKSTATION (UNIX VERSION)
NASA Technical Reports Server (NTRS)
Butler, R. W.
1994-01-01
SARA, the SURE/ASSIST Reliability Analysis Workstation, is a bundle of programs used to solve reliability problems. The mathematical approach chosen to solve a reliability problem may vary with the size and nature of the problem. The Systems Validation Methods group at NASA Langley Research Center has created a set of four software packages that form the basis for a reliability analysis workstation, including three for use in analyzing reconfigurable, fault-tolerant systems and one for analyzing non-reconfigurable systems. The SARA bundle includes the three for reconfigurable, fault-tolerant systems: SURE reliability analysis program (COSMIC program LAR-13789, LAR-14921); the ASSIST specification interface program (LAR-14193, LAR-14923), and PAWS/STEM reliability analysis programs (LAR-14165, LAR-14920). As indicated by the program numbers in parentheses, each of these three packages is also available separately in two machine versions. The fourth package, which is only available separately, is FTC, the Fault Tree Compiler (LAR-14586, LAR-14922). FTC is used to calculate the top-event probability for a fault tree which describes a non-reconfigurable system. PAWS/STEM and SURE are analysis programs which utilize different solution methods, but have a common input language, the SURE language. ASSIST is a preprocessor that generates SURE language from a more abstract definition. ASSIST, SURE, and PAWS/STEM are described briefly in the following paragraphs. For additional details about the individual packages, including pricing, please refer to their respective abstracts. ASSIST, the Abstract Semi-Markov Specification Interface to the SURE Tool program, allows a reliability engineer to describe the failure behavior of a fault-tolerant computer system in an abstract, high-level language. The ASSIST program then automatically generates a corresponding semi-Markov model. A one-page ASSIST-language description may result in a semi-Markov model with thousands of states and transitions. The ASSIST program also includes model-reduction techniques to facilitate efficient modeling of large systems. The semi-Markov model generated by ASSIST is in the format needed for input to SURE and PAWS/STEM. The Semi-Markov Unreliability Range Evaluator, SURE, is an analysis tool for reconfigurable, fault-tolerant systems. SURE provides an efficient means for calculating accurate upper and lower bounds for the death state probabilities for a large class of semi-Markov models, not just those which can be reduced to critical-pair architectures. The calculated bounds are close enough (usually within 5 percent of each other) for use in reliability studies of ultra-reliable computer systems. The SURE bounding theorems have algebraic solutions and are consequently computationally efficient even for large and complex systems. SURE can optionally regard a specified parameter as a variable over a range of values, enabling an automatic sensitivity analysis. SURE output is tabular. The PAWS/STEM package includes two programs for the creation and evaluation of pure Markov models describing the behavior of fault-tolerant reconfigurable computer systems: the Pade Approximation with Scaling (PAWS) and Scaled Taylor Exponential Matrix (STEM) programs. PAWS and STEM produce exact solutions for the probability of system failure and provide a conservative estimate of the number of significant digits in the solution. Markov models of fault-tolerant architectures inevitably lead to numerically stiff differential equations. Both PAWS and STEM have the capability to solve numerically stiff models. These complementary programs use separate methods to determine the matrix exponential in the solution of the model's system of differential equations. In general, PAWS is better suited to evaluate small and dense models. STEM operates at lower precision, but works faster than PAWS for larger models. The programs that comprise the SARA package were originally developed for use on DEC VAX series computers running VMS and were later ported for use on Sun series computers running SunOS. They are written in C-language, Pascal, and FORTRAN 77. An ANSI compliant C compiler is required in order to compile the C portion of the Sun version source code. The Pascal and FORTRAN code can be compiled on Sun computers using Sun Pascal and Sun Fortran. For the VMS version, VAX C, VAX PASCAL, and VAX FORTRAN can be used to recompile the source code. The standard distribution medium for the VMS version of SARA (COS-10041) is a 9-track 1600 BPI magnetic tape in VMSINSTAL format. It is also available on a TK50 tape cartridge in VMSINSTAL format. Executables are included. The standard distribution medium for the Sun version of SARA (COS-10039) is a .25 inch streaming magnetic tape cartridge in UNIX tar format. Both Sun3 and Sun4 executables are included. Electronic copies of the ASSIST user's manual in TeX and PostScript formats are provided on the distribution medium. DEC, VAX, VMS, and TK50 are registered trademarks of Digital Equipment Corporation. Sun, Sun3, Sun4, and SunOS are trademarks of Sun Microsystems, Inc. TeX is a trademark of the American Mathematical Society. PostScript is a registered trademark of Adobe Systems Incorporated.
Advanced Wavefront Sensing and Control Testbed (AWCT)
NASA Technical Reports Server (NTRS)
Shi, Fang; Basinger, Scott A.; Diaz, Rosemary T.; Gappinger, Robert O.; Tang, Hong; Lam, Raymond K.; Sidick, Erkin; Hein, Randall C.; Rud, Mayer; Troy, Mitchell
2010-01-01
The Advanced Wavefront Sensing and Control Testbed (AWCT) is built as a versatile facility for developing and demonstrating, in hardware, the future technologies of wave front sensing and control algorithms for active optical systems. The testbed includes a source projector for a broadband point-source and a suite of extended scene targets, a dispersed fringe sensor, a Shack-Hartmann camera, and an imaging camera capable of phase retrieval wavefront sensing. The testbed also provides two easily accessible conjugated pupil planes which can accommodate the active optical devices such as fast steering mirror, deformable mirror, and segmented mirrors. In this paper, we describe the testbed optical design, testbed configurations and capabilities, as well as the initial results from the testbed hardware integrations and tests.
Hussein, Saba Zuhair; Mohd Yusoff, Kamaruddin; Makpol, Suzana; Mohd Yusof, Yasmin Anum
2012-01-01
Natural honey is well known for its therapeutic value and has been used in traditional medicine of different cultures throughout the world. The aim of this study was to investigate the anti-inflammatory effect of Malaysian Gelam honey in inflammation-induced rats. Paw edema was induced by a subplantar injection of 1% carrageenan into the rat right hind paw. Rats were treated with the nonsteroidal anti-inflammatory drug (NSAID) Indomethacin (10 mg/kg, p.o.) or Gelam honey at different doses (1 or 2 g/kg, p.o.). The increase in footpad thickness was considered to be edema, which was measured using a dial caliper. Plasma and paw tissue were collected to analyze the production of inflammatory mediators, such as NO, PGE2, TNF-α, and IL-6, as well as iNOS and COX-2. The results showed that Gelam honey could reduce edema in a dose-dependent fashion in inflamed rat paws, decrease the production of NO, PGE2, TNF-α, and IL-6 in plasma, and suppress the expression of iNOS, COX-2, TNF-α, and IL-6 in paw tissue. Oral pretreatment of Gelam honey at 2 g/kg of body weight at two time points (1 and 7 days) showed a significantly decreased production of proinflammatory cytokines, which was similar to the effect of the anti-inflammatory drug Indomethacin (NSAID), both in plasma and tissue. Thus, our results suggest that Gelam honey has anti-inflammatory effects by reducing the rat paw edema size and inhibiting the production of proinflammatory mediators. Gelam honey is potentially useful for treating inflammatory conditions. PMID:22919407
Benslimane, A F; Pouchus, Y F; Verbist, J F; Petit, J Y; Khettab, E N; Welin, L; Brion, J D
1992-01-01
A new synthesis is proposed for cordiachromene A (CCA), a bioactive component of the ascidian Aplidium antillense Gravier, using a method producing a racemic mixture. The anti-inflammatory activities of a natural extract and a chemically synthetic form of CCA were assessed in vivo by carrageenan-induced rat-paw edema. The activity of synthetic CCA was confirmed by a test on kaolin-induced granuloma in the rat. Strong activities were measured for both CCA, but comparison of results of the first test suggests that only the natural optically active isomer has an anti-inflammatory effect. CCA is similar to indomethacin in its effect on carrageenan-induced rat-paw edema and ten times as active as phenylbutazone.
A full-parallax 3D display with restricted viewing zone tracking viewer's eye
NASA Astrophysics Data System (ADS)
Beppu, Naoto; Yendo, Tomohiro
2015-03-01
The Three-Dimensional (3D) vision became widely known as familiar imaging technique now. The 3D display has been put into practical use in various fields, such as entertainment and medical fields. Development of 3D display technology will play an important role in a wide range of fields. There are various ways to the method of displaying 3D image. There is one of the methods that showing 3D image method to use the ray reproduction and we focused on it. This method needs many viewpoint images when achieve a full-parallax because this method display different viewpoint image depending on the viewpoint. We proposed to reduce wasteful rays by limiting projector's ray emitted to around only viewer using a spinning mirror, and to increase effectiveness of display device to achieve a full-parallax 3D display. We propose a method by using a tracking viewer's eye, a high-speed projector, a rotating mirror that tracking viewer (a spinning mirror), a concave mirror array having the different vertical slope arranged circumferentially (a concave mirror array), a cylindrical mirror. About proposed method in simulation, we confirmed the scanning range and the locus of the movement in the horizontal direction of the ray. In addition, we confirmed the switching of the viewpoints and convergence performance in the vertical direction of rays. Therefore, we confirmed that it is possible to realize a full-parallax.
Przewlocka, B; Mika, J; Capone, F; Machelska, H; Pavone, F
1999-03-01
The present research was undertaken to investigate, by behavioral and immunohistochemical methods, the effects of intrathecal (i.th.) injection of the muscarinic agonist oxotremorine on the response to the long-lasting nociceptive stimulus induced by injection of formalin into the rat hind paw. Formalin injection induced a biphasic, pain-induced behavioral response (paw jerks), as well as an increase in the number of nitric oxide (NO) synthase-labeled neurons in laminae I-III, IV, and X, but not in laminae V-VI. Oxotremorine (0.1-10 ng, i.th.) inhibited paw-jerk frequency in both phases of formalin-induced behavior. The immunohistochemical results showed that i.th.-injected oxotremorine differently affected the level of NO synthase in lumbar part of the spinal cord: no change or increase after the dose of 1 ng, and a significant reduction of nitric oxide synthase neurons after the higher dose (10 ng). These results evidenced a role of cholinergic system in the modulation of tonic pain and in nitric oxide synthase expression at the spinal cord level, which further suggests that these two systems could be involved in phenomena induced by long-lasting nociceptive stimulation.
Chaudhary, Priyanka; de Araújo Viana, Carolina; Ramos, Marcio V; Kumar, Vijay L
2015-03-01
The aim was to evaluate the effect of high molecular weight protein fraction of Calotropis procera latex on edema formation and oxidative stress in carrageenan-induced paw inflammation. A sub-plantar injection of carrageenan was given to induce edema in the hind paw of the rat. The inhibitory effect of high molecular weight protein fraction of C. procera latex was evaluated following intravenous administration (5 and 25 mg/kg body weight) and was compared with that of diclofenac given orally (5 mg/kg). The levels of reduced glutathione (GSH), thiobarbituric acid reactive substances (TBARS) and myeloperoxidase (MPO) were measured in the inflamed paw tissue at the end of the study. The high molecular weight protein fraction obtained from the latex of C. procera produced a dose-dependent inhibition of edema formation that was accompanied by normalization of levels of oxidative stress markers (GSH and TBARS) and MPO, a marker for neutrophils in the paw tissue. The high molecular weight protein fraction of C. procera latex ameliorates acute inflammation in the paw through its antioxidant effect.
Monahan, Kevin D; Feehan, Robert P; Blaha, Cheryl; McLaughlin, Daniel J
2015-01-01
Increased central arterial stiffness and enhanced arterial wave reflections may contribute to increased risk of cardiovascular disease development with advancing age. Omega-3 polyunsaturated fatty acid (n-3) ingestion may reduce cardiovascular risk via favorable effects exerted on arterial structure and function. We determined the effects of n-3 supplementation (4 g/day for 12 weeks) on important measures of central arterial stiffness (carotid-femoral pulse wave velocity; PWV) and arterial wave reflection (central augmentation index) in young (n = 12; 25 ± 1-year-old, mean ± SE) and older (n = 12; 66 ± 2) healthy adults. We hypothesized that n-3 supplementation would decrease carotid-femoral PWV and central augmentation index in older adults. Our results indicate that carotid-femoral PWV and central augmentation index were greater in older (988 ± 65 cm/sec and 33 ± 2%) than in young adults (656 ± 16 cm/sec and 3 ± 4%: both P < 0.05 compared to older) before the intervention (Pre). N-3 supplementation decreased carotid-femoral PWV in older (Δ-9 ± 2% Precompared to Post; P < 0.05), but not young adults (Δ2 ± 3%). Central augmentation index was unchanged by n-3 supplementation in young (3 ± 4 vs. 0 ± 4% for Pre and Post, respectively) and older adults (33 ± 2 vs. 35 ± 3%). Arterial blood pressure at rest, although increased with age, was not altered by n-3 supplementation in young or older adults. Collectively, these data indicate that 12 weeks of daily n-3 supplementation decreases an important measure of central arterial stiffness (carotid-femoral PWV) in older, but not young healthy adults. The mechanism underlying decreased central arterial stiffness with n-3 supplementation is unknown, but appears to be independent of effects on arterial blood pressure or arterial wave reflections. PMID:26109192
A low-cost and portable realization on fringe projection three-dimensional measurement
NASA Astrophysics Data System (ADS)
Xiao, Suzhi; Tao, Wei; Zhao, Hui
2015-12-01
Fringe projection three-dimensional measurement is widely applied in a wide range of industrial application. The traditional fringe projection system has the disadvantages of high expense, big size, and complicated calibration requirements. In this paper we introduce a low-cost and portable realization on three-dimensional measurement with Pico projector. It has the advantages of low cost, compact physical size, and flexible configuration. For the proposed fringe projection system, there is no restriction to camera and projector's relative alignment on parallelism and perpendicularity for installation. Moreover, plane-based calibration method is adopted in this paper that avoids critical requirements on calibration system such as additional gauge block or precise linear z stage. What is more, error sources existing in the proposed system are introduced in this paper. The experimental results demonstrate the feasibility of the proposed low cost and portable fringe projection system.
Integral freeform illumination lens design of LED based pico-projector.
Zhao, Shuang; Wang, Kai; Chen, Fei; Qin, Zong; Liu, Sheng
2013-05-01
In this paper, an illumination lens design for a LED-based pico-projector is presented. Different from the traditional illumination systems composed by lens group, the integral illumination lens consists of a total internal reflector (TIR) and a freeform surface. TIR acts as collimation lens and its top surface formed by a freeform surface reshapes the nonuniform circular light pattern generated by TIR to be rectangular and uniform. Diameter and height of the lens are 16 and 10 mm, respectively. An optimization method to deal with the problem of extended light source is also presented in detail in this paper. According to the simulation results of the final optimized lens, 77% (neglecting the effect of polarization) of the power of light source is collected on liquid crystal on silicon panel with a 16∶9 ratio and illumination uniformity achieves 92%.
ERIC Educational Resources Information Center
Bull, Glen; Garofalo, Joe
2006-01-01
In higher education, the number of computer projectors in classrooms has doubled every year for the past five years. A similar trend in K?12 education is occurring now that capable classroom projectors have become available for less than $1,000. At the same time, large-screen displays are becoming common in society; a trend being acceleration by a…
Using the 16MM. Stop-Frame Projector to Teach Film Technique.
ERIC Educational Resources Information Center
Head, James
1969-01-01
English is concerned with language experience, and because much of today's "language" is experienced through electronic media--television, movies, radio--film courses fall within the English curriculum. A stop-frame projector is essential for classroom analysis of such film devices as framing, establishing shots, and scene composition. Framing is…
Launcher and Transparent Air Table for Use with Overhead Projector
ERIC Educational Resources Information Center
Carr, H. Y.; and others
1969-01-01
Describes an apparatus designed for quantitative demonstrations of collision experiments. The apparatus consists of a transparent air table and a launching device for projecting two objects simultaneously. It may be used with an overhead projector. The apparatus won third prize in Demonstration Lecture Apparatus in the A.A.P.T. Apparatus…
ERIC Educational Resources Information Center
Montgomery, Malcolm
2008-01-01
As technology and teaching requirements continue to evolve, one would think the choice of which data projector to buy would be easier because there now are more products with more capabilities. Yet just the opposite is true: The sheer number of projectors and myriad combinations of available features can be overwhelming, making it really tough to…