Science.gov

Sample records for prokaryotic dna segregation

  1. Mechanism of DNA Segregation in Prokaryotes: Replicon Pairing by parC of Plasmid R1

    NASA Astrophysics Data System (ADS)

    Jensen, Rasmus Bugge; Lurz, Rudi; Gerdes, Kenn

    1998-07-01

    Prokaryotic chromosomes and plasmids encode partitioning systems that are required for DNA segregation at cell division. The systems are thought to be functionally analogous to eukaryotic centromeres and to play a general role in DNA segregation. The parA system of plasmid R1 encodes two proteins ParM and ParR, and a cis-acting centromere-like site denoted parC. The ParR protein binds to parC in vivo and in vitro. The ParM protein is an ATPase that interacts with ParR specifically bound to parC. Using electron microscopy, we show here that parC mediates efficient pairing of plasmid molecules. The pairing requires binding of ParR to parC and is stimulated by the ParM ATPase. The ParM mediated stimulation of plasmid pairing is dependent on ATP hydrolysis by ParM. Using a ligation kinetics assay, we find that ParR stimulates ligation of parC-containing DNA fragments. The rate-of-ligation was increased by wild type ParM protein but not by mutant ParM protein deficient in the ATPase activity. Thus, two independent assays show that parC mediates pairing of plasmid molecules in vitro. These results are consistent with the proposal that replicon pairing is part of the mechanism of DNA segregation in prokaryotes.

  2. Compartmentalization of prokaryotic DNA replication.

    PubMed

    Bravo, Alicia; Serrano-Heras, Gemma; Salas, Margarita

    2005-01-01

    It becomes now apparent that prokaryotic DNA replication takes place at specific intracellular locations. Early studies indicated that chromosomal DNA replication, as well as plasmid and viral DNA replication, occurs in close association with the bacterial membrane. Moreover, over the last several years, it has been shown that some replication proteins and specific DNA sequences are localized to particular subcellular regions in bacteria, supporting the existence of replication compartments. Although the mechanisms underlying compartmentalization of prokaryotic DNA replication are largely unknown, the docking of replication factors to large organizing structures may be important for the assembly of active replication complexes. In this article, we review the current state of this subject in two bacterial species, Escherichia coli and Bacillus subtilis, focusing our attention in both chromosomal and extrachromosomal DNA replication. A comparison with eukaryotic systems is also presented.

  3. Structural and functional relationships between prokaryotic and eukaryotic DNA polymerases.

    PubMed

    Bernad, A; Zaballos, A; Salas, M; Blanco, L

    1987-12-20

    The Bacillus subtilis phage luminal diameter 29 DNA polymerase, involved in protein-primed viral DNA replication, was inhibited by phosphonoacetic acid (PAA), a known inhibitor of alpha-like DNA polymerases, by decreasing the rate of elongation. Three highly conserved regions of amino acid homology, found in several viral alpha-like DNA polymerases and in the luminal diameter 29 DNA polymerase, one of them proposed to be the PAA binding site, were also found in the T4 DNA polymerase. This prokaryotic enzyme was highly sensitive to the drugs aphidicolin and the nucleotide analogues butylanilino dATP (BuAdATP) and butylphenyl dGTP (BuPdGTP), known to be specific inhibitors of eukaryotic alpha-like DNA polymerases. Two potential DNA polymerases from the linear plasmid pGKL1 from yeast and the S1 mitochondrial DNA from maize have been identified, based on the fact that they contain the three conserved regions of amino acid homology. Comparison of DNA polymerases from prokaryotic and eukaryotic origin showed extensive amino acid homology in addition to highly conserved domains. These findings reflect evolutionary relationships between hypothetically unrelated DNA polymerases.

  4. The chromosome cycle of prokaryotes.

    PubMed

    Kuzminov, Andrei

    2013-10-01

    In both eukaryotes and prokaryotes, chromosomal DNA undergoes replication, condensation-decondensation and segregation, sequentially, in some fixed order. Other conditions, like sister-chromatid cohesion (SCC), may span several chromosomal events. One set of these chromosomal transactions within a single cell cycle constitutes the 'chromosome cycle'. For many years it was generally assumed that the prokaryotic chromosome cycle follows major phases of the eukaryotic one: -replication-condensation-segregation-(cell division)-decondensation-, with SCC of unspecified length. Eventually it became evident that, in contrast to the strictly consecutive chromosome cycle of eukaryotes, all stages of the prokaryotic chromosome cycle run concurrently. Thus, prokaryotes practice 'progressive' chromosome segregation separated from replication by a brief SCC, and all three transactions move along the chromosome at the same fast rate. In other words, in addition to replication forks, there are 'segregation forks' in prokaryotic chromosomes. Moreover, the bulk of prokaryotic DNA outside the replication-segregation transition stays compacted. I consider possible origins of this concurrent replication-segregation and outline the 'nucleoid administration' system that organizes the dynamic part of the prokaryotic chromosome cycle.

  5. Cell biology of prokaryotic organelles.

    PubMed

    Murat, Dorothee; Byrne, Meghan; Komeili, Arash

    2010-10-01

    Mounting evidence in recent years has challenged the dogma that prokaryotes are simple and undefined cells devoid of an organized subcellular architecture. In fact, proteins once thought to be the purely eukaryotic inventions, including relatives of actin and tubulin control prokaryotic cell shape, DNA segregation, and cytokinesis. Similarly, compartmentalization, commonly noted as a distinguishing feature of eukaryotic cells, is also prevalent in the prokaryotic world in the form of protein-bounded and lipid-bounded organelles. In this article we highlight some of these prokaryotic organelles and discuss the current knowledge on their ultrastructure and the molecular mechanisms of their biogenesis and maintenance.

  6. Single-Molecule Observation of Prokaryotic DNA Replication

    PubMed Central

    Tanner, Nathan A.; van Oijen, Antoine M.

    2010-01-01

    Recent advances in optical imaging and molecular manipulation techniques have made it possible to observe the activity of individual enzymes and study the dynamic properties of processes that are challenging to elucidate using ensemble-averaging techniques. The use of single-molecule approaches has proven to be particularly successful in the study of the dynamic interactions between the components at the replication fork. In this section, we describe the methods necessary for in vitro single-molecule studies of prokaryotic replication systems. Through these experiments, accurate information can be obtained on the rates and processivities of DNA unwinding and polymerization. The ability to monitor in real time the progress of a single replication fork allows for the detection of short-lived, intermediate states that would be difficult to visualize in bulk-phase assays. PMID:19563119

  7. Single-molecule observation of prokaryotic DNA replication.

    PubMed

    Geertsema, Hylkje J; Duderstadt, Karl E; van Oijen, Antoine M

    2015-01-01

    Replication of DNA requires the coordinated activity of a number of proteins within a multiprotein complex, the replisome. Recent advances in single-molecule techniques have enabled the observation of dynamic behavior of individual replisome components and of the replisome as a whole, aspects that previously often have been obscured by ensemble averaging in more classical solution-phase biochemical experiments. To improve robustness and reproducibility of single-molecule assays of replication and allow objective analysis and comparison of results obtained from such assays, common practices should be established. Here, we describe the technical details of two assays to study replisome activity. In one, the kinetics of replication are observed as length changes in DNA molecules mechanically stretched by a laminar flow applied to attached beads. In the other, fluorescence imaging is used to determine both the kinetics and stoichiometry of individual replisome components. These in vitro single-molecule methods allow for elucidation of the dynamic behavior of individual replication proteins of prokaryotic replication systems.

  8. GTAG- and CGTC-tagged palindromic DNA repeats in prokaryotes

    PubMed Central

    2013-01-01

    Background REPs (Repetitive Extragenic Palindromes) are small (20–40 bp) palindromic repeats found in high copies in some prokaryotic genomes, hypothesized to play a role in DNA supercoiling, transcription termination, mRNA stabilization. Results We have monitored a large number of REP elements in prokaryotic genomes, and found that most can be sorted into two large DNA super-families, as they feature at one end unpaired motifs fitting either the GTAG or the CGTC consensus. Tagged REPs have been identified in >80 species in 8 different phyla. GTAG and CGTC repeats reside predominantly in microorganisms of the gamma and alpha division of Proteobacteria, respectively. However, the identification of members of both super- families in deeper branching phyla such Cyanobacteria and Planctomycetes supports the notion that REPs are old components of the bacterial chromosome. On the basis of sequence content and overall structure, GTAG and CGTC repeats have been assigned to 24 and 4 families, respectively. Of these, some are species-specific, others reside in multiple species, and several organisms contain different REP types. In many families, most units are close to each other in opposite orientation, and may potentially fold into larger secondary structures. In different REP-rich genomes the repeats are predominantly located between unidirectionally and convergently transcribed ORFs. REPs are predominantly located downstream from coding regions, and many are plausibly transcribed and function as RNA elements. REPs located inside genes have been identified in several species. Many lie within replication and global genome repair genes. It has been hypothesized that GTAG REPs are miniature transposons mobilized by specific transposases known as RAYTs (REP associated tyrosine transposases). RAYT genes are flanked either by GTAG repeats or by long terminal inverted repeats (TIRs) unrelated to GTAG repeats. Moderately abundant families of TIRs have been identified in

  9. Molecular aspects of gene transfer and foreign DNA acquisition in prokaryotes with regard to safety issues.

    PubMed

    Brigulla, Matthias; Wackernagel, Wilfried

    2010-04-01

    Horizontal gene transfer (HGT) is part of prokaryotic life style and a major factor in evolution. In principle, any combinations of genetic information can be explored via HGT for effects on prokaryotic fitness. HGT mechanisms including transformation, conjugation, transduction, and variations of these plus the role of mobile genetic elements are summarized with emphasis on their potential to translocate foreign DNA. Complementarily, we discuss how foreign DNA can be integrated in recipient cells through homologous recombination (HR), illegitimate recombination (IR), and combinations of both, site-specific recombination, and the reconstitution of plasmids. Integration of foreign DNA by IR is very low, and combinations of IR with HR provide intermediate levels compared to the high frequency of homologous integration. A survey of studies on potential HGT from various transgenic plants indicates very rare transfer of foreign DNA. At the same time, in prokaryotic habitats, genes introduced into transgenic plants are abundant, and natural HGT frequencies are relatively high providing a greater chance for direct transfer instead of via transgenic plants. It is concluded that potential HGT from transgenic plants to prokaryotes is not expected to influence prokaryotic evolution and to have negative effects on human or animal health and the environment.

  10. Novel actin filaments from Bacillus thuringiensis form nanotubules for plasmid DNA segregation

    PubMed Central

    Jiang, Shimin; Narita, Akihiro; Popp, David; Ghoshdastider, Umesh; Lee, Lin Jie; Srinivasan, Ramanujam; Balasubramanian, Mohan K.; Oda, Toshiro; Koh, Fujiet; Larsson, Mårten; Robinson, Robert C.

    2016-01-01

    Here we report the discovery of a bacterial DNA-segregating actin-like protein (BtParM) from Bacillus thuringiensis, which forms novel antiparallel, two-stranded, supercoiled, nonpolar helical filaments, as determined by electron microscopy. The BtParM filament features of supercoiling and forming antiparallel double-strands are unique within the actin fold superfamily, and entirely different to the straight, double-stranded, polar helical filaments of all other known ParMs and of eukaryotic F-actin. The BtParM polymers show dynamic assembly and subsequent disassembly in the presence of ATP. BtParR, the DNA-BtParM linking protein, stimulated ATP hydrolysis/phosphate release by BtParM and paired two supercoiled BtParM filaments to form a cylinder, comprised of four strands with inner and outer diameters of 57 Å and 145 Å, respectively. Thus, in this prokaryote, the actin fold has evolved to produce a filament system with comparable features to the eukaryotic chromosome-segregating microtubule. PMID:26873105

  11. Repairing DNA double-strand breaks by the prokaryotic non-homologous end-joining pathway.

    PubMed

    Brissett, Nigel C; Doherty, Aidan J

    2009-06-01

    The NHEJ (non-homologous end-joining) pathway is one of the major mechanisms for repairing DSBs (double-strand breaks) that occur in genomic DNA. In common with eukaryotic organisms, many prokaryotes possess a conserved NHEJ apparatus that is essential for the repair of DSBs arising in the stationary phase of the cell cycle. Although the bacterial NHEJ complex is much more minimal than its eukaryotic counterpart, both pathways share a number of common mechanistic features. The relative simplicity of the prokaryotic NHEJ complex makes it a tractable model system for investigating the cellular and molecular mechanisms of DSB repair. The present review describes recent advances in our understanding of prokaryotic end-joining, focusing primarily on biochemical, structural and cellular aspects of the mycobacterial NHEJ repair pathway.

  12. Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery.

    PubMed

    Tuteja, Narendra; Tuteja, Renu

    2004-05-01

    DNA helicases are ubiquitous molecular motor proteins which harness the chemical free energy of ATP hydrolysis to catalyze the unwinding of energetically stable duplex DNA, and thus play important roles in nearly all aspects of nucleic acid metabolism, including replication, repair, recombination, and transcription. They break the hydrogen bonds between the duplex helix and move unidirectionally along the bound strand. All helicases are also translocases and DNA-dependent ATPases. Most contain conserved helicase motifs that act as an engine to power DNA unwinding. All DNA helicases share some common properties, including nucleic acid binding, NTP binding and hydrolysis, and unwinding of duplex DNA in the 3' to 5' or 5' to 3' direction. The minichromosome maintenance (Mcm) protein complex (Mcm4/6/7) provides a DNA-unwinding function at the origin of replication in all eukaryotes and may act as a licensing factor for DNA replication. The RecQ family of helicases is highly conserved from bacteria to humans and is required for the maintenance of genome integrity. They have also been implicated in a variety of human genetic disorders. Since the discovery of the first DNA helicase in Escherichia coli in 1976, and the first eukaryotic one in the lily in 1978, a large number of these enzymes have been isolated from both prokaryotic and eukaryotic systems, and the number is still growing. In this review we cover the historical background of DNA helicases, helicase assays, biochemical properties, prokaryotic and eukaryotic DNA helicases including Mcm proteins and the RecQ family of helicases. The properties of most of the known DNA helicases from prokaryotic and eukaryotic systems, including viruses and bacteriophages, are summarized in tables.

  13. DNA Looping in Prokaryotes: Experimental and Theoretical Approaches

    PubMed Central

    Cournac, Axel

    2013-01-01

    Transcriptional regulation is at the heart of biological functions such as adaptation to a changing environment or to new carbon sources. One of the mechanisms which has been found to modulate transcription, either positively (activation) or negatively (repression), involves the formation of DNA loops. A DNA loop occurs when a protein or a complex of proteins simultaneously binds to two different sites on DNA with looping out of the intervening DNA. This simple mechanism is central to the regulation of several operons in the genome of the bacterium Escherichia coli, like the lac operon, one of the paradigms of genetic regulation. The aim of this review is to gather and discuss concepts and ideas from experimental biology and theoretical physics concerning DNA looping in genetic regulation. We first describe experimental techniques designed to show the formation of a DNA loop. We then present the benefits that can or could be derived from a mechanism involving DNA looping. Some of these are already experimentally proven, but others are theoretical predictions and merit experimental investigation. Then, we try to identify other genetic systems that could be regulated by a DNA looping mechanism in the genome of Escherichia coli. We found many operons that, according to our set of criteria, have a good chance to be regulated with a DNA loop. Finally, we discuss the proposition recently made by both biologists and physicists that this mechanism could also act at the genomic scale and play a crucial role in the spatial organization of genomes. PMID:23292776

  14. Promoters responsive to DNA bending: a common theme in prokaryotic gene expression.

    PubMed Central

    Pérez-Martín, J; Rojo, F; de Lorenzo, V

    1994-01-01

    The early notion of DNA as a passive target for regulatory proteins has given way to the realization that higher-order DNA structures and DNA-protein complexes are at the basis of many molecular processes, including control of promoter activity. Protein binding may direct the bending of an otherwise linear DNA, exacerbate the angle of an intrinsic bend, or assist the directional flexibility of certain sequences within prokaryotic promoters. The important, sometimes essential role of intrinsic or protein-induced DNA bending in transcriptional regulation has become evident in virtually every system examined. As discussed throughout this article, not every function of DNA bends is understood, but their presence has been detected in a wide variety of bacterial promoters subjected to positive or negative control. Nonlinear DNA structures facilitate and even determine proximal and distal DNA-protein and protein-protein contacts involved in the various steps leading to transcription initiation. PMID:8078436

  15. DnaK-Dependent Accelerated Evolutionary Rate in Prokaryotes.

    PubMed

    Kadibalban, A Samer; Bogumil, David; Landan, Giddy; Dagan, Tal

    2016-01-01

    Many proteins depend on an interaction with molecular chaperones in order to fold into a functional tertiary structure. Previous studies showed that protein interaction with the GroEL/GroES chaperonine and Hsp90 chaperone can buffer the impact of slightly deleterious mutations in the protein sequence. This capacity of GroEL/GroES to prevent protein misfolding has been shown to accelerate the evolution of its client proteins. Whether other bacterial chaperones have a similar effect on their client proteins is currently unknown. Here, we study the impact of DnaK (Hsp70) chaperone on the evolution of its client proteins. Evolutionary parameters were derived from comparison of the Escherichia coli proteome to 1,808,565 orthologous proteins in 1,149 proteobacterial genomes. Our analysis reveals a significant positive correlation between protein binding frequency with DnaK and evolutionary rate. Proteins with high binding affinity to DnaK evolve on average 4.3-fold faster than proteins in the lowest binding affinity class at the genus resolution. Differences in evolutionary rates of DnaK interactor classes are still significant after adjusting for possible effects caused by protein expression level. Furthermore, we observe an additive effect of DnaK and GroEL chaperones on the evolutionary rates of their common interactors. Finally, we found pronounced similarities in the physicochemical profiles that characterize proteins belonging to DnaK and GroEL interactomes. Our results thus implicate DnaK-mediated folding as a major component in shaping protein evolutionary dynamics in bacteria and supply further evidence for the long-term manifestation of chaperone-mediated folding on genome evolution. PMID:27189986

  16. DnaK-Dependent Accelerated Evolutionary Rate in Prokaryotes

    PubMed Central

    Kadibalban, A. Samer; Bogumil, David; Landan, Giddy; Dagan, Tal

    2016-01-01

    Many proteins depend on an interaction with molecular chaperones in order to fold into a functional tertiary structure. Previous studies showed that protein interaction with the GroEL/GroES chaperonine and Hsp90 chaperone can buffer the impact of slightly deleterious mutations in the protein sequence. This capacity of GroEL/GroES to prevent protein misfolding has been shown to accelerate the evolution of its client proteins. Whether other bacterial chaperones have a similar effect on their client proteins is currently unknown. Here, we study the impact of DnaK (Hsp70) chaperone on the evolution of its client proteins. Evolutionary parameters were derived from comparison of the Escherichia coli proteome to 1,808,565 orthologous proteins in 1,149 proteobacterial genomes. Our analysis reveals a significant positive correlation between protein binding frequency with DnaK and evolutionary rate. Proteins with high binding affinity to DnaK evolve on average 4.3-fold faster than proteins in the lowest binding affinity class at the genus resolution. Differences in evolutionary rates of DnaK interactor classes are still significant after adjusting for possible effects caused by protein expression level. Furthermore, we observe an additive effect of DnaK and GroEL chaperones on the evolutionary rates of their common interactors. Finally, we found pronounced similarities in the physicochemical profiles that characterize proteins belonging to DnaK and GroEL interactomes. Our results thus implicate DnaK-mediated folding as a major component in shaping protein evolutionary dynamics in bacteria and supply further evidence for the long-term manifestation of chaperone-mediated folding on genome evolution. PMID:27189986

  17. The prokaryotic enhancer binding protein NTRC has an ATPase activity which is phosphorylation and DNA dependent.

    PubMed Central

    Austin, S; Dixon, R

    1992-01-01

    The prokaryotic activator protein NTRC binds to enhancer-like elements and activates transcription in response to nitrogen limitation by catalysing open complex formation by sigma 54 RNA polymerase holoenzyme. Formation of open complexes requires the phosphorylated form of NTRC and the reaction is ATP dependent. We find that NTRC has an ATPase activity which is activated by phosphorylation and is strongly stimulated by the presence of DNA containing specific NTRC binding sites. Images PMID:1534752

  18. Assessing Diversity of DNA Structure-Related Sequence Features in Prokaryotic Genomes

    PubMed Central

    Huang, Yongjie; Mrázek, Jan

    2014-01-01

    Prokaryotic genomes are diverse in terms of their nucleotide and oligonucleotide composition as well as presence of various sequence features that can affect physical properties of the DNA molecule. We present a survey of local sequence patterns which have a potential to promote non-canonical DNA conformations (i.e. different from standard B-DNA double helix) and interpret the results in terms of relationships with organisms' habitats, phylogenetic classifications, and other characteristics. Our present work differs from earlier similar surveys not only by investigating a wider range of sequence patterns in a large number of genomes but also by using a more realistic null model to assess significant deviations. Our results show that simple sequence repeats and Z-DNA-promoting patterns are generally suppressed in prokaryotic genomes, whereas palindromes and inverted repeats are over-represented. Representation of patterns that promote Z-DNA and intrinsic DNA curvature increases with increasing optimal growth temperature (OGT), and decreases with increasing oxygen requirement. Additionally, representations of close direct repeats, palindromes and inverted repeats exhibit clear negative trends with increasing OGT. The observed relationships with environmental characteristics, particularly OGT, suggest possible evolutionary scenarios of structural adaptation of DNA to particular environmental niches. PMID:24408877

  19. Asymmetric segregation of template DNA strands in basal-like human breast cancer cell lines

    PubMed Central

    2013-01-01

    Background and methods Stem or progenitor cells from healthy tissues have the capacity to co-segregate their template DNA strands during mitosis. Here, we set out to test whether breast cancer cell lines also possess the ability to asymmetrically segregate their template DNA strands via non-random chromosome co-segregation, and whether this ability correlates with certain properties attributed to breast cancer stem cells (CSCs). We quantified the frequency of asymmetric segregation of template DNA strands in 12 human breast cancer cell lines, and correlated the frequency to molecular subtype, CD44+/CD24-/lo phenotype, and invasion/migration ability. We tested if co-culture with human mesenchymal stem cells, which are known to increase self-renewal, can alter the frequency of asymmetric segregation of template DNA in breast cancer. Results We found a positive correlation between asymmetric segregation of template DNA and the breast cancer basal-like and claudin-low subtypes. There was an inverse correlation between asymmetric segregation of template DNA and Her2 expression. Breast cancer samples with evidence of asymmetric segregation of template DNA had significantly increased invasion and borderline significantly increased migration abilities. Samples with high CD44+/CD24-/lo surface expression were more likely to harbor a consistent population of cells that asymmetrically segregated its template DNA; however, symmetric self-renewal was enriched in the CD44+/CD24-/lo population. Co-culturing breast cancer cells with human mesenchymal stem cells expanded the breast CSC pool and decreased the frequency of asymmetric segregation of template DNA. Conclusions Breast cancer cells within the basal-like subtype can asymmetrically segregate their template DNA strands through non-random chromosome segregation. The frequency of asymmetric segregation of template DNA can be modulated by external factors that influence expansion or self-renewal of CSC populations. Future

  20. The Friedreich's ataxia protein frataxin modulates DNA base excision repair in prokaryotes and mammals.

    PubMed

    Thierbach, René; Drewes, Gunnar; Fusser, Markus; Voigt, Anja; Kuhlow, Doreen; Blume, Urte; Schulz, Tim J; Reiche, Carina; Glatt, Hansruedi; Epe, Bernd; Steinberg, Pablo; Ristow, Michael

    2010-11-15

    DNA-repair mechanisms enable cells to maintain their genetic information by protecting it from mutations that may cause malignant growth. Recent evidence suggests that specific DNA-repair enzymes contain ISCs (iron-sulfur clusters). The nuclearencoded protein frataxin is essential for the mitochondrial biosynthesis of ISCs. Frataxin deficiency causes a neurodegenerative disorder named Friedreich's ataxia in humans. Various types of cancer occurring at young age are associated with this disease, and hence with frataxin deficiency. Mice carrying a hepatocyte-specific disruption of the frataxin gene develop multiple liver tumours for unresolved reasons. In the present study, we show that frataxin deficiency in murine liver is associated with increased basal levels of oxidative DNA base damage. Accordingly, eukaryotic V79 fibroblasts overexpressing human frataxin show decreased basal levels of these modifications, while prokaryotic Salmonella enterica serotype Typhimurium TA104 strains transformed with human frataxin show decreased mutation rates. The repair rates of oxidative DNA base modifications in V79 cells overexpressing frataxin were significantly higher than in control cells. Lastly, cleavage activity related to the ISC-independent repair enzyme 8-oxoguanine glycosylase was found to be unaltered by frataxin overexpression. These findings indicate that frataxin modulates DNA-repair mechanisms probably due to its impact on ISC-dependent repair proteins, linking mitochondrial dysfunction to DNA repair and tumour initiation.

  1. Computational Model for DNA Organization Mediated by Protein Interaction in Prokaryotes

    NASA Astrophysics Data System (ADS)

    Garimella, Karthik; Kharel, Savan

    2016-03-01

    In Escherichia Coli, there are several mechanisms that drive chromosomal organization. We know through experiments that the E. Coli chromosome is condensed into highly structured regions known as macrodomains (MDs). One of the regions known as the Terminus undergoes DNA-bridging condensation that form loops between distant DNA sites and it is known to be mediated by a Terminus specific protein, which binds to specific markers within the Terminus region. In the absence of Terminus specific protein, however, the Terminus region is known to not condense nearly as much, which will likely impede several biological processes including DNA replication. In order to understand the molecular basis of protein mediation in vivo several models of Terminus specific segregation have been constructed in silico which model DNA as polymer chains.

  2. Replication initiator DnaA binds at the Caulobacter centromere and enables chromosome segregation

    PubMed Central

    Mera, Paola E.; Kalogeraki, Virginia S.; Shapiro, Lucy

    2014-01-01

    During cell division, multiple processes are highly coordinated to faithfully generate genetically equivalent daughter cells. In bacteria, the mechanisms that underlie the coordination of chromosome replication and segregation are poorly understood. Here, we report that the conserved replication initiator, DnaA, can mediate chromosome segregation independent of replication initiation. It does so by binding directly to the parS centromere region of the chromosome, and mutations that alter this interaction result in cells that display aberrant centromere translocation and cell division. We propose that DnaA serves to coordinate bacterial DNA replication with the onset of chromosome segregation. PMID:25349407

  3. Tissue-specific modulation of mitochondrial DNA segregation by a defect in mitochondrial division.

    PubMed

    Jokinen, Riikka; Marttinen, Paula; Stewart, James B; Neil Dear, T; Battersby, Brendan J

    2016-02-15

    Mitochondria are dynamic organelles that divide and fuse by remodeling an outer and inner membrane in response to developmental, physiological and stress stimuli. These events are coordinated by conserved dynamin-related GTPases. The dynamics of mitochondrial morphology require coordination with mitochondrial DNA (mtDNA) to ensure faithful genome transmission, however, this process remains poorly understood. Mitochondrial division is linked to the segregation of mtDNA but how it affects cases of mtDNA heteroplasmy, where two or more mtDNA variants/mutations co-exist in a cell, is unknown. Segregation of heteroplasmic human pathogenic mtDNA mutations is a critical factor in the onset and severity of human mitochondrial diseases. Here, we investigated the coupling of mitochondrial morphology to the transmission and segregation of mtDNA in mammals by taking advantage of two genetically modified mouse models: one with a dominant-negative mutation in the dynamin-related protein 1 (Drp1 or Dnm1l) that impairs mitochondrial fission and the other, heteroplasmic mice segregating two neutral mtDNA haplotypes (BALB and NZB). We show a tissue-specific response to mtDNA segregation from a defect in mitochondrial fission. Only mtDNA segregation in the hematopoietic compartment is modulated from impaired Dnm1l function. In contrast, no effect was observed in other tissues arising from the three germ layers during development and in mtDNA transmission through the female germline. Our data suggest a robust organization of a heteroplasmic mtDNA segregating unit across mammalian cell types that can overcome impaired mitochondrial division to ensure faithful transmission of the mitochondrial genome. PMID:26681804

  4. Human mitochondrial transcription factor A is required for the segregation of mitochondrial DNA in cultured cells.

    PubMed

    Kasashima, Katsumi; Sumitani, Megumi; Endo, Hitoshi

    2011-01-15

    The segregation and transmission of the mitochondrial genome in humans are complicated processes but are particularly important for understanding the inheritance and clinical abnormalities of mitochondrial disorders. However, the molecular mechanism of the segregation of mitochondrial DNA (mtDNA) is largely unclear. In this study, we demonstrated that human mitochondrial transcription factor A (TFAM) is required for the segregation of mtDNA in cultured cells. RNAi-mediated knockdown of TFAM in HeLa cells resulted in the enlarged mtDNA, as indicated by the assembly of fluorescent signals stained with PicoGreen. Fluorescent in situ hybridization confirmed the enlarged mtDNA and further showed the existence of increased numbers of mitochondria lacking mtDNA signals in TFAM knockdown cells. By complementation analysis, the C-terminal tail of TFAM, which enhances its affinity with DNA, was found to be required for the appropriate distribution of mtDNA. Furthermore, we found that TFAM knockdown induced asymmetric segregation of mtDNA between dividing daughter cells. These results suggest an essential role for human TFAM in symmetric segregation of mtDNA. PMID:20955698

  5. A novel mechanism for direct real-time polymerase chain reaction that does not require DNA isolation from prokaryotic cells.

    PubMed

    Soejima, Takashi; Xiao, Jin-Zhong; Abe, Fumiaki

    2016-06-23

    Typically, polymerase chain reaction (PCR) is performed after DNA isolation. Real-time PCR (qPCR), also known as direct qPCR in mammalian cells with weak membranes, is a common technique using crude samples subjected to preliminary boiling to elute DNA. However, applying this methodology to prokaryotic cells, which have solid cell walls, in contrast to mammalian cells which immediately burst in water, can result in poor detection. We successfully achieved PCR elongation with the addition of 1.3 cfu of Cronobacter muytjensii to a newly developed direct qPCR master mix without performing any crude DNA extraction (detection limit of 1.6 × 10(0) cfu/ml for the test sample compared with a detection limit of 1.6 × 10(3) cfu/ml primarily for crude (boiling) or classical DNA isolation). We revealed that the chromosomal DNA retained in prokaryotic cells can function as a PCR template, similarly to the mechanism in in situ PCR. Elucidating this reaction mechanism may contribute to the development of an innovative master mix for direct qPCR to detect genes in a single bacterium with solid cell walls and might lead to numerous novel findings in prokaryotic genomics research.

  6. A novel mechanism for direct real-time polymerase chain reaction that does not require DNA isolation from prokaryotic cells.

    PubMed

    Soejima, Takashi; Xiao, Jin-Zhong; Abe, Fumiaki

    2016-01-01

    Typically, polymerase chain reaction (PCR) is performed after DNA isolation. Real-time PCR (qPCR), also known as direct qPCR in mammalian cells with weak membranes, is a common technique using crude samples subjected to preliminary boiling to elute DNA. However, applying this methodology to prokaryotic cells, which have solid cell walls, in contrast to mammalian cells which immediately burst in water, can result in poor detection. We successfully achieved PCR elongation with the addition of 1.3 cfu of Cronobacter muytjensii to a newly developed direct qPCR master mix without performing any crude DNA extraction (detection limit of 1.6 × 10(0) cfu/ml for the test sample compared with a detection limit of 1.6 × 10(3) cfu/ml primarily for crude (boiling) or classical DNA isolation). We revealed that the chromosomal DNA retained in prokaryotic cells can function as a PCR template, similarly to the mechanism in in situ PCR. Elucidating this reaction mechanism may contribute to the development of an innovative master mix for direct qPCR to detect genes in a single bacterium with solid cell walls and might lead to numerous novel findings in prokaryotic genomics research. PMID:27334801

  7. A novel mechanism for direct real-time polymerase chain reaction that does not require DNA isolation from prokaryotic cells

    PubMed Central

    Soejima, Takashi; Xiao, Jin-zhong; Abe, Fumiaki

    2016-01-01

    Typically, polymerase chain reaction (PCR) is performed after DNA isolation. Real-time PCR (qPCR), also known as direct qPCR in mammalian cells with weak membranes, is a common technique using crude samples subjected to preliminary boiling to elute DNA. However, applying this methodology to prokaryotic cells, which have solid cell walls, in contrast to mammalian cells which immediately burst in water, can result in poor detection. We successfully achieved PCR elongation with the addition of 1.3 cfu of Cronobacter muytjensii to a newly developed direct qPCR master mix without performing any crude DNA extraction (detection limit of 1.6 × 100 cfu/ml for the test sample compared with a detection limit of 1.6 × 103 cfu/ml primarily for crude (boiling) or classical DNA isolation). We revealed that the chromosomal DNA retained in prokaryotic cells can function as a PCR template, similarly to the mechanism in in situ PCR. Elucidating this reaction mechanism may contribute to the development of an innovative master mix for direct qPCR to detect genes in a single bacterium with solid cell walls and might lead to numerous novel findings in prokaryotic genomics research. PMID:27334801

  8. Metakaryotic stem cell nuclei use pangenomic dsRNA/DNA intermediates in genome replication and segregation.

    PubMed

    Thilly, William G; Gostjeva, Elena V; Koledova, Vera V; Zukerberg, Lawrence R; Chung, Daniel; Fomina, Janna N; Darroudi, Firouz; Stollar, B David

    2014-01-01

    Bell shaped nuclei of metakaryotic cells double their DNA content during and after symmetric and asymmetric amitotic fissions rather than in the separate, pre-mitotic S-phase of eukaryotic cells. A parsimonious hypothesis was tested that the two anti-parallel strands of each chromatid DNA helix were first segregated as ssDNA-containing complexes into sister nuclei then copied to recreate a dsDNA genome. Metakaryotic nuclei that were treated during amitosis with RNase A and stained with acridine orange or fluorescent antibody to ssDNA revealed large amounts of ssDNA. Without RNase treatment metakaryotic nuclei in amitosis stained strongly with an antibody complex specific to dsRNA/DNA. Images of amitotic figures co-stained with dsRNA/DNA antibody and DAPI indicated that the entire interphase dsDNA genome (B-form helices) was transformed into two dsRNA/DNA genomes (A-form helices) that were segregated in the daughter cell nuclei then retransformed into dsDNA. As this process segregates DNA strands of opposite polarity in sister cells it hypothetically offers a sequential switching mechanism within the diverging stem cell lineages of development.

  9. Metakaryotic stem cell nuclei use pangenomic dsRNA/DNA intermediates in genome replication and segregation

    PubMed Central

    Thilly, William G; Gostjeva, Elena V; Koledova, Vera V; Zukerberg, Lawrence R; Chung, Daniel; Fomina, Janna N; Darroudi, Firouz; Stollar, B David

    2014-01-01

    Bell shaped nuclei of metakaryotic cells double their DNA content during and after symmetric and asymmetric amitotic fissions rather than in the separate, pre-mitotic S-phase of eukaryotic cells. A parsimonious hypothesis was tested that the two anti-parallel strands of each chromatid DNA helix were first segregated as ssDNA-containing complexes into sister nuclei then copied to recreate a dsDNA genome. Metakaryotic nuclei that were treated during amitosis with RNase A and stained with acridine orange or fluorescent antibody to ssDNA revealed large amounts of ssDNA. Without RNase treatment metakaryotic nuclei in amitosis stained strongly with an antibody complex specific to dsRNA/DNA. Images of amitotic figures co-stained with dsRNA/DNA antibody and DAPI indicated that the entire interphase dsDNA genome (B-form helices) was transformed into two dsRNA/DNA genomes (A-form helices) that were segregated in the daughter cell nuclei then retransformed into dsDNA. As this process segregates DNA strands of opposite polarity in sister cells it hypothetically offers a sequential switching mechanism within the diverging stem cell lineages of development. PMID:24418910

  10. Rapid quantification and taxonomic classification of environmentalDNA from both prokaryotic and eukaryotic origins using a microarray

    SciTech Connect

    DeSantis, Todd Z.; Stone, Carol E.; Murray, Sonya R.; Moberg,Jordan P.; Andersen, Gary L.

    2005-02-22

    A microarray has been designed using 62,358 probes matched to both prokaryotic and eukaryotic small-subunit ribosomal RNA genes. The array categorized environmental DNA to specific phylogenetic clusters in under 9 h. To a background of DNA generated from natural outdoor aerosols, known quantities of rRNA gene copies from distinct organisms were added producing corresponding hybridization intensity scores that correlated well with their concentrations (r=0.917). Reproducible differences in microbial community composition were observed by altering the genomic DNA extraction method. Notably, gentle extractions produced peak intensities for Mycoplasmatales and Burkholderiales, whereas a vigorous disruption produced peak intensities for Vibrionales,Clostridiales, and Bacillales.

  11. Quantitative Changes in Gimap3 and Gimap5 Expression Modify Mitochondrial DNA Segregation in Mice

    PubMed Central

    Jokinen, Riikka; Lahtinen, Taina; Marttinen, Paula; Myöhänen, Maarit; Ruotsalainen, Pilvi; Yeung, Nicolas; Shvetsova, Antonina; Kastaniotis, Alexander J.; Hiltunen, J. Kalervo; Öhman, Tiina; Nyman, Tuula A.; Weiler, Hartmut; Battersby, Brendan J.

    2015-01-01

    Mammalian mitochondrial DNA (mtDNA) is a high-copy maternally inherited genome essential for aerobic energy metabolism. Mutations in mtDNA can lead to heteroplasmy, the co-occurence of two different mtDNA variants in the same cell, which can segregate in a tissue-specific manner affecting the onset and severity of mitochondrial dysfunction. To investigate mechanisms regulating mtDNA segregation we use a heteroplasmic mouse model with two polymorphic neutral mtDNA haplotypes (NZB and BALB) that displays tissue-specific and age-dependent selection for mtDNA haplotypes. In the hematopoietic compartment there is selection for the BALB mtDNA haplotype, a phenotype that can be modified by allelic variants of Gimap3. Gimap3 is a tail-anchored member of the GTPase of the immunity-associated protein (Gimap) family of protein scaffolds important for leukocyte development and survival. Here we show how the expression of two murine Gimap3 alleles from Mus musculus domesticus and M. m. castaneus differentially affect mtDNA segregation. The castaneus allele has incorporated a uORF (upstream open reading frame) in-frame with the Gimap3 mRNA that impairs translation and imparts a negative effect on the steady-state protein abundance. We found that quantitative changes in the expression of Gimap3 and the paralogue Gimap5, which encodes a lysosomal protein, affect mtDNA segregation in the mouse hematopoietic tissues. We also show that Gimap3 localizes to the endoplasmic reticulum and not mitochondria as previously reported. Collectively these data show that the abundance of protein scaffolds on the endoplasmic reticulum and lysosomes are important to the segregation of the mitochondrial genome in the mouse hematopoietic compartment. PMID:25808953

  12. Dbl2 Regulates Rad51 and DNA Joint Molecule Metabolism to Ensure Proper Meiotic Chromosome Segregation

    PubMed Central

    Hyppa, Randy W.; Benko, Zsigmond; Misova, Ivana; Schleiffer, Alexander; Smith, Gerald R.; Gregan, Juraj

    2016-01-01

    To identify new proteins required for faithful meiotic chromosome segregation, we screened a Schizosaccharomyces pombe deletion mutant library and found that deletion of the dbl2 gene led to missegregation of chromosomes during meiosis. Analyses of both live and fixed cells showed that dbl2Δ mutant cells frequently failed to segregate homologous chromosomes to opposite poles during meiosis I. Removing Rec12 (Spo11 homolog) to eliminate meiotic DNA double-strand breaks (DSBs) suppressed the segregation defect in dbl2Δ cells, indicating that Dbl2 acts after the initiation of meiotic recombination. Analyses of DSBs and Holliday junctions revealed no significant defect in their formation or processing in dbl2Δ mutant cells, although some Rec12-dependent DNA joint molecules persisted late in meiosis. Failure to segregate chromosomes in the absence of Dbl2 correlated with persistent Rad51 foci, and deletion of rad51 or genes encoding Rad51 mediators also suppressed the segregation defect of dbl2Δ. Formation of foci of Fbh1, an F-box helicase that efficiently dismantles Rad51-DNA filaments, was impaired in dbl2Δ cells. Our results suggest that Dbl2 is a novel regulator of Fbh1 and thereby Rad51-dependent DSB repair required for proper meiotic chromosome segregation and viable sex cell formation. The wide conservation of these proteins suggests that our results apply to many species. PMID:27304859

  13. Human bone marrow mesenchymal stem cells regulate biased DNA segregation in response to cell adhesion asymmetry.

    PubMed

    Freida, Delphine; Lecourt, Severine; Cras, Audrey; Vanneaux, Valérie; Letort, Gaelle; Gidrol, Xavier; Guyon, Laurent; Larghero, Jerome; Thery, Manuel

    2013-11-14

    Biased DNA segregation is a mitotic event in which the chromatids carrying the original template DNA strands and those carrying the template copies are not segregated randomly into the two daughter cells. Biased segregation has been observed in several cell types, but not in human mesenchymal stem cells (hMSCs), and the factors affecting this bias have yet to be identified. Here, we have investigated cell adhesion geometries as a potential parameter by plating hMSCs from healthy donors on fibronectin-coated micropatterns. On symmetric micropatterns, the segregation of sister chromatids to the daughter cells appeared random. In contrast, on asymmetric micropatterns, the segregation was biased. This sensitivity to asymmetric extracellular cues was reproducible in cells from all donors but was not observed in human skin-derived fibroblasts or in a fibroblastic cell line used as controls. We conclude that the asymmetry of cell adhesion is a major factor in the regulation of biased DNA segregation in hMSCs.

  14. The precarious prokaryotic chromosome.

    PubMed

    Kuzminov, Andrei

    2014-05-01

    Evolutionary selection for optimal genome preservation, replication, and expression should yield similar chromosome organizations in any type of cells. And yet, the chromosome organization is surprisingly different between eukaryotes and prokaryotes. The nuclear versus cytoplasmic accommodation of genetic material accounts for the distinct eukaryotic and prokaryotic modes of genome evolution, but it falls short of explaining the differences in the chromosome organization. I propose that the two distinct ways to organize chromosomes are driven by the differences between the global-consecutive chromosome cycle of eukaryotes and the local-concurrent chromosome cycle of prokaryotes. Specifically, progressive chromosome segregation in prokaryotes demands a single duplicon per chromosome, while other "precarious" features of the prokaryotic chromosomes can be viewed as compensations for this severe restriction.

  15. Physical modeling of chromosome segregation in escherichia coli reveals impact of force and DNA relaxation.

    PubMed

    Lampo, Thomas J; Kuwada, Nathan J; Wiggins, Paul A; Spakowitz, Andrew J

    2015-01-01

    The physical mechanism by which Escherichia coli segregates copies of its chromosome for partitioning into daughter cells is unknown, partly due to the difficulty in interpreting the complex dynamic behavior during segregation. Analysis of previous chromosome segregation measurements in E. coli demonstrates that the origin of replication exhibits processive motion with a mean displacement that scales as t(0.32). In this work, we develop a model for segregation of chromosomal DNA as a Rouse polymer in a viscoelastic medium with a force applied to a single monomer. Our model demonstrates that the observed power-law scaling of the mean displacement and the behavior of the velocity autocorrelation function is captured by accounting for the relaxation of the polymer chain and the viscoelastic environment. We show that the ratio of the mean displacement to the variance of the displacement during segregation events is a critical metric that eliminates the compounding effects of polymer and medium dynamics and provides the segregation force. We calculate the force of oriC segregation in E. coli to be ∼0.49 pN.

  16. Segregation of Naturally Occurring Mitochondrial DNA Variants in a Mini-Pig Model.

    PubMed

    Cagnone, Gael; Tsai, Te-Sha; Srirattana, Kanokwan; Rossello, Fernando; Powell, David R; Rohrer, Gary; Cree, Lynsey; Trounce, Ian A; St John, Justin C

    2016-03-01

    The maternally inherited mitochondrial genome (mtDNA) is present in multimeric form within cells and harbors sequence variants (heteroplasmy). While a single mtDNA variant at high load can cause disease, naturally occurring variants likely persist at low levels across generations of healthy populations. To determine how naturally occurring variants are segregated and transmitted, we generated a mini-pig model, which originates from the same maternal ancestor. Following next-generation sequencing, we identified a series of low-level mtDNA variants in blood samples from the female founder and her daughters. Four variants, ranging from 3% to 20%, were selected for validation by high-resolution melting analysis in 12 tissues from 31 animals across three generations. All four variants were maintained in the offspring, but variant load fluctuated significantly across the generations in several tissues, with sex-specific differences in heart and liver. Moreover, variant load was persistently reduced in high-respiratory organs (heart, brain, diaphragm, and muscle), which correlated significantly with higher mtDNA copy number. However, oocytes showed increased heterogeneity in variant load, which correlated with increased mtDNA copy number during in vitro maturation. Altogether, these outcomes show that naturally occurring mtDNA variants segregate and are maintained in a tissue-specific manner across generations. This segregation likely involves the maintenance of selective mtDNA variants during organogenesis, which can be differentially regulated in oocytes and preimplantation embryos during maturation. PMID:26819245

  17. Self-organized patterning through the dynamic segregation of DNA and silica nanoparticles

    PubMed Central

    Joksimovic, Rastko; Watanabe, Shun; Riemer, Sven; Gradzielski, Michael; Yoshikawa, Kenichi

    2014-01-01

    Exotic pattern formation as a result of drying of an aqueous solution containing DNA and silica nanoparticles is reported. The pattern due to segregation was found to critically depend on the relative ratio of nanoparticles and DNA, as revealed by polarization microscopy, scanning electron microscopy, and fluorescence microscopy. The blurred radial pattern that is usually observed in the drying of a colloidal solution was shown to be vividly sharpened in the presence of DNA. Uniquely curved, crescent-shaped micrometer-scale domains are generated in regions that are rich in nanoparticles. The characteristic segregated patterns observed in the present study are interpreted in terms of a large aspect ratio between the persistence length (∼50 nm) and the diameter (∼2 nm) of double-stranded DNA, and the relatively small silica nanoparticles (radius: 5 nm). PMID:24413900

  18. Molecular cloning of Drosophila mus308, a gene involved in DNA cross-link repair with homology to prokaryotic DNA polymerase I genes.

    PubMed Central

    Harris, P V; Mazina, O M; Leonhardt, E A; Case, R B; Boyd, J B; Burtis, K C

    1996-01-01

    Mutations in the Drosophila mus308 gene confer specific hypersensitivity to DNA-cross-linking agents as a consequence of defects in DNA repair. The mus308 gene is shown here to encode a 229-kDa protein in which the amino-terminal domain contains the seven conserved motifs characteristic of DNA and RNA helicases and the carboxy-terminal domain shares over 55% sequence similarity with the polymerase domains of prokaryotic DNA polymerase I-like enzymes. This is the first reported member of this family of DNA polymerases in a eukaryotic organism, as well as the first example of a single polypeptide with homology to both DNA polymerase and helicase motifs. Identification of a closely related gene in the genome of Caenorhabditis elegans suggests that this novel polypeptide may play an evolutionarily conserved role in the repair of DNA damage in eukaryotic organisms. PMID:8816490

  19. Analysis of T-DNA integration and generative segregation in transgenic winter triticale (x Triticosecale Wittmack)

    PubMed Central

    2012-01-01

    Background While the genetic transformation of the major cereal crops has become relatively routine, to date only a few reports were published on transgenic triticale, and robust data on T-DNA integration and segregation have not been available in this species. Results Here, we present a comprehensive analysis of stable transgenic winter triticale cv. Bogo carrying the selectable marker gene HYGROMYCIN PHOSPHOTRANSFERASE (HPT) and a synthetic green fluorescent protein gene (gfp). Progeny of four independent transgenic plants were comprehensively investigated with regard to the number of integrated T-DNA copies, the number of plant genomic integration loci, the integrity and functionality of individual T-DNA copies, as well as the segregation of transgenes in T1 and T2 generations, which also enabled us to identify homozygous transgenic lines. The truncation of some integrated T-DNAs at their left end along with the occurrence of independent segregation of multiple T-DNAs unintendedly resulted in a single-copy segregant that is selectable marker-free and homozygous for the gfp gene. The heritable expression of gfp driven by the maize UBI-1 promoter was demonstrated by confocal laser scanning microscopy. Conclusions The used transformation method is a valuable tool for the genetic engineering of triticale. Here we show that comprehensive molecular analyses are required for the correct interpretation of phenotypic data collected from the transgenic plants. PMID:23006412

  20. Stem cells propagate their DNA by random segregation in the flatworm Macrostomum lignano.

    PubMed

    Verdoodt, Freija; Willems, Maxime; Mouton, Stijn; De Mulder, Katrien; Bert, Wim; Houthoofd, Wouter; Smith, Julian; Ladurner, Peter

    2012-01-01

    Adult stem cells are proposed to have acquired special features to prevent an accumulation of DNA-replication errors. Two such mechanisms, frequently suggested to serve this goal are cellular quiescence, and non-random segregation of DNA strands during stem cell division, a theory designated as the immortal strand hypothesis. To date, it has been difficult to test the in vivo relevance of both mechanisms in stem cell systems. It has been shown that in the flatworm Macrostomum lignano pluripotent stem cells (neoblasts) are present in adult animals. We sought to address by which means M. lignano neoblasts protect themselves against the accumulation of genomic errors, by studying the exact mode of DNA-segregation during their division. In this study, we demonstrated four lines of in vivo evidence in favor of cellular quiescence. Firstly, performing BrdU pulse-chase experiments, we localized 'Label-Retaining Cells' (LRCs). Secondly, EDU pulse-chase combined with Vasa labeling demonstrated the presence of neoblasts among the LRCs, while the majority of LRCs were differentiated cells. We showed that stem cells lose their label at a slow rate, indicating cellular quiescence. Thirdly, CldU/IdU- double labeling studies confirmed that label-retaining stem cells showed low proliferative activity. Finally, the use of the actin inhibitor, cytochalasin D, unequivocally demonstrated random segregation of DNA-strands in LRCs. Altogether, our data unambiguously demonstrated that the majority of neoblasts in M. lignano distribute their DNA randomly during cell division, and that label-retention is a direct result of cellular quiescence, rather than a sign of co-segregation of labeled strands.

  1. Stem Cells Propagate Their DNA by Random Segregation in the Flatworm Macrostomum lignano

    PubMed Central

    Verdoodt, Freija; Willems, Maxime; Mouton, Stijn; De Mulder, Katrien; Bert, Wim; Houthoofd, Wouter; Smith, Julian; Ladurner, Peter

    2012-01-01

    Adult stem cells are proposed to have acquired special features to prevent an accumulation of DNA-replication errors. Two such mechanisms, frequently suggested to serve this goal are cellular quiescence, and non-random segregation of DNA strands during stem cell division, a theory designated as the immortal strand hypothesis. To date, it has been difficult to test the in vivo relevance of both mechanisms in stem cell systems. It has been shown that in the flatworm Macrostomum lignano pluripotent stem cells (neoblasts) are present in adult animals. We sought to address by which means M. lignano neoblasts protect themselves against the accumulation of genomic errors, by studying the exact mode of DNA-segregation during their division. In this study, we demonstrated four lines of in vivo evidence in favor of cellular quiescence. Firstly, performing BrdU pulse-chase experiments, we localized ‘Label-Retaining Cells’ (LRCs). Secondly, EDU pulse-chase combined with Vasa labeling demonstrated the presence of neoblasts among the LRCs, while the majority of LRCs were differentiated cells.We showed that stem cells lose their label at a slow rate, indicating cellular quiescence. Thirdly, CldU/IdU− double labeling studies confirmed that label-retaining stem cells showed low proliferative activity. Finally, the use of the actin inhibitor, cytochalasin D, unequivocally demonstrated random segregation of DNA-strands in LRCs. Altogether, our data unambiguously demonstrated that the majority of neoblasts in M. lignano distribute their DNA randomly during cell division, and that label-retention is a direct result of cellular quiescence, rather than a sign of co-segregation of labeled strands. PMID:22276162

  2. DNA segregation by the bacterial actin AlfA during Bacillus subtilis growth and development.

    PubMed

    Becker, Eric; Herrera, Nick C; Gunderson, Felizza Q; Derman, Alan I; Dance, Amber L; Sims, Jennifer; Larsen, Rachel A; Pogliano, Joe

    2006-12-13

    We here identify a protein (AlfA; actin like filament) that defines a new family of actins that are only distantly related to MreB and ParM. AlfA is required for segregation of Bacillus subtilis plasmid pBET131 (a mini pLS32-derivative) during growth and sporulation. A 3-kb DNA fragment encoding alfA and a downstream gene (alfB) is necessary and sufficient for plasmid stability. AlfA-GFP assembles dynamic cytoskeletal filaments that rapidly turn over (t(1/2)< approximately 45 s) in fluorescence recovery after photobleaching experiments. A point mutation (alfA D168A) that completely inhibits AlfA subunit exchange in vivo is strongly defective for plasmid segregation, demonstrating that dynamic polymerization of AlfA is necessary for function. During sporulation, plasmid segregation occurs before septation and independently of the DNA translocase SpoIIIE and the chromosomal Par proteins Soj and Spo0J. The absence of the RacA chromosome anchoring protein reduces the efficiency of plasmid segregation (by about two-fold), suggesting that it might contribute to anchoring the plasmid at the pole during sporulation. Our results suggest that the dynamic polymerization of AlfA mediates plasmid separation during both growth and sporulation.

  3. DNA segregation by the bacterial actin AlfA during Bacillus subtilis growth and development.

    PubMed

    Becker, Eric; Herrera, Nick C; Gunderson, Felizza Q; Derman, Alan I; Dance, Amber L; Sims, Jennifer; Larsen, Rachel A; Pogliano, Joe

    2006-12-13

    We here identify a protein (AlfA; actin like filament) that defines a new family of actins that are only distantly related to MreB and ParM. AlfA is required for segregation of Bacillus subtilis plasmid pBET131 (a mini pLS32-derivative) during growth and sporulation. A 3-kb DNA fragment encoding alfA and a downstream gene (alfB) is necessary and sufficient for plasmid stability. AlfA-GFP assembles dynamic cytoskeletal filaments that rapidly turn over (t(1/2)< approximately 45 s) in fluorescence recovery after photobleaching experiments. A point mutation (alfA D168A) that completely inhibits AlfA subunit exchange in vivo is strongly defective for plasmid segregation, demonstrating that dynamic polymerization of AlfA is necessary for function. During sporulation, plasmid segregation occurs before septation and independently of the DNA translocase SpoIIIE and the chromosomal Par proteins Soj and Spo0J. The absence of the RacA chromosome anchoring protein reduces the efficiency of plasmid segregation (by about two-fold), suggesting that it might contribute to anchoring the plasmid at the pole during sporulation. Our results suggest that the dynamic polymerization of AlfA mediates plasmid separation during both growth and sporulation. PMID:17139259

  4. Dipole angular entropy techniques for intron-exon segregation in DNA

    NASA Astrophysics Data System (ADS)

    Subramanian, Nithya; Bose, R.

    2012-04-01

    We propose techniques for computing the angular entropies of DNA sequences, based on the orientations of the dipole moments of the nucleotide bases. The angles of the dipole moment vectors of the bases are used to compute the dipole angular entropy and the Fourier harmonics of the angles are used to compute the dipole angular spectral entropy for a given sequence. We also show that the coding (exons) and noncoding (introns) regions of the DNA can be segregated based on their dipole angular entropies and dipole angular spectral entropies. Segregation using these techniques is found to be computationally faster and more accurate than the previously reported methods. The proposed techniques can also be improvised to use the magnitude of the dipole moments of the bases in addition to the angles.

  5. Plasmid protein TubR uses a distinct mode of HTH-DNA binding and recruits the prokaryotic tubulin homolog TubZ to effect DNA partition.

    PubMed

    Ni, Lisheng; Xu, Weijun; Kumaraswami, Muthiah; Schumacher, Maria A

    2010-06-29

    The segregation of plasmid DNA typically requires three elements: a DNA centromere site, an NTPase, and a centromere-binding protein. Because of their simplicity, plasmid partition systems represent tractable models to study the molecular basis of DNA segregation. Unlike eukaryotes, which utilize the GTPase tubulin to segregate DNA, the most common plasmid-encoded NTPases contain Walker-box and actin-like folds. Recently, a plasmid stability cassette on Bacillus thuringiensis pBtoxis encoding a putative FtsZ/tubulin-like NTPase called TubZ and DNA-binding protein called TubR has been described. How these proteins collaborate to impart plasmid stability, however, is unknown. Here we show that the TubR structure consists of an intertwined dimer with a winged helix-turn-helix (HTH) motif. Strikingly, however, the TubR recognition helices mediate dimerization, making canonical HTH-DNA interactions impossible. Mutagenesis data indicate that a basic patch, encompassing the two wing regions and the N termini of the recognition helices, mediates DNA binding, which indicates an unusual HTH-DNA interaction mode in which the N termini of the recognition helices insert into a single DNA groove and the wings into adjacent DNA grooves. The TubZ structure shows that it is as similar structurally to eukaryotic tubulin as it is to bacterial FtsZ. TubZ forms polymers with guanine nucleotide-binding characteristics and polymer dynamics similar to tubulin. Finally, we show that the exposed TubZ C-terminal region interacts with TubR-DNA, linking the TubR-bound pBtoxis to TubZ polymerization. The combined data suggest a mechanism for TubZ-polymer powered plasmid movement. PMID:20534443

  6. Microcompartments and Protein Machines in Prokaryotes

    PubMed Central

    Saier, Milton H.

    2013-01-01

    The prokaryotic cell was once thought of as a “bag of enzymes” with little or no intracellular compartmentalization. In this view, most reactions essential for life occurred as a consequence of random molecular collisions involving substrates, cofactors and cytoplasmic enzymes. Our current conception of a prokaryote is far from this view. We now consider a bacterium or an archaeon as a highly structured, non-random collection of functional membrane-embedded and proteinaceous molecular machines, each of which serves a specialized function. In this article we shall present an overview of such microcompartments including (i) the bacterial cytoskeleton and the apparati allowing DNA segregation during cells division, (ii) energy transduction apparati involving light-driven proton pumping and ion gradient-driven ATP synthesis, (iii) prokaryotic motility and taxis machines that mediate cell movements in response to gradients of chemicals and physical forces, (iv) machines of protein folding, secretion and degradation, (v) metabolasomes carrying out specific chemical reactions, (vi) 24 hour clocks allowing bacteria to coordinate their metabolic activities with the daily solar cycle and (vii) proteinaceous membrane compartmentalized structures such as sulfur granules and gas vacuoles. Membrane-bounded prokaryotic organelles were considered in a recent JMMB written symposium concerned with membraneous compartmentalization in bacteria [Saier and Bogdanov, 2013]. By contrast, in this symposium, we focus on proteinaceous microcompartments. These two symposia, taken together, provide the interested reader with an objective view of the remarkable complexity of what was once thought of as a simple non-compartmentalized cell. PMID:23920489

  7. Pathological ribonuclease H1 causes R-loop depletion and aberrant DNA segregation in mitochondria

    PubMed Central

    Akman, Gokhan; Desai, Radha; Bailey, Laura J.; Yasukawa, Takehiro; Dalla Rosa, Ilaria; Durigon, Romina; Holmes, J. Bradley; Moss, Chloe F.; Mennuni, Mara; Houlden, Henry; Hanna, Michael G.; Pitceathly, Robert D. S.; Spinazzola, Antonella; Holt, Ian J.

    2016-01-01

    The genetic information in mammalian mitochondrial DNA is densely packed; there are no introns and only one sizeable noncoding, or control, region containing key cis-elements for its replication and expression. Many molecules of mitochondrial DNA bear a third strand of DNA, known as “7S DNA,” which forms a displacement (D-) loop in the control region. Here we show that many other molecules contain RNA as a third strand. The RNA of these R-loops maps to the control region of the mitochondrial DNA and is complementary to 7S DNA. Ribonuclease H1 is essential for mitochondrial DNA replication; it degrades RNA hybridized to DNA, so the R-loop is a potential substrate. In cells with a pathological variant of ribonuclease H1 associated with mitochondrial disease, R-loops are of low abundance, and there is mitochondrial DNA aggregation. These findings implicate ribonuclease H1 and RNA in the physical segregation of mitochondrial DNA, perturbation of which represents a previously unidentified disease mechanism. PMID:27402764

  8. Synonymous codon bias and functional constraint on GC3-related DNA backbone dynamics in the prokaryotic nucleoid

    PubMed Central

    Babbitt, Gregory A.; Alawad, Mohammed A.; Schulze, Katharina V.; Hudson, André O.

    2014-01-01

    While mRNA stability has been demonstrated to control rates of translation, generating both global and local synonymous codon biases in many unicellular organisms, this explanation cannot adequately explain why codon bias strongly tracks neighboring intergene GC content; suggesting that structural dynamics of DNA might also influence codon choice. Because minor groove width is highly governed by 3-base periodicity in GC, the existence of triplet-based codons might imply a functional role for the optimization of local DNA molecular dynamics via GC content at synonymous sites (≈GC3). We confirm a strong association between GC3-related intrinsic DNA flexibility and codon bias across 24 different prokaryotic multiple whole-genome alignments. We develop a novel test of natural selection targeting synonymous sites and demonstrate that GC3-related DNA backbone dynamics have been subject to moderate selective pressure, perhaps contributing to our observation that many genes possess extreme DNA backbone dynamics for their given protein space. This dual function of codons may impose universal functional constraints affecting the evolution of synonymous and non-synonymous sites. We propose that synonymous sites may have evolved as an ‘accessory’ during an early expansion of a primordial genetic code, allowing for multiplexed protein coding and structural dynamic information within the same molecular context. PMID:25200075

  9. Role of SAGA in the asymmetric segregation of DNA circles during yeast ageing.

    PubMed

    Denoth-Lippuner, Annina; Krzyzanowski, Marek Konrad; Stober, Catherine; Barral, Yves

    2014-01-01

    In eukaryotes, intra-chromosomal recombination generates DNA circles, but little is known about how cells react to them. In yeast, partitioning of such circles to the mother cell at mitosis ensures their loss from the population but promotes replicative ageing. Nevertheless, the mechanisms of partitioning are debated. In this study, we show that the SAGA complex mediates the interaction of non-chromosomal DNA circles with nuclear pore complexes (NPCs) and thereby promotes their confinement in the mother cell. Reciprocally, this causes retention and accumulation of NPCs, which affects the organization of ageing nuclei. Thus, SAGA prevents the spreading of DNA circles by linking them to NPCs, but unavoidably causes accumulation of circles and NPCs in the mother cell, and thereby promotes ageing. Together, our data provide a unifying model for the asymmetric segregation of DNA circles and how age affects nuclear organization.

  10. Mitochondria: Biogenesis and mitophagy balance in segregation and clonal expansion of mitochondrial DNA mutations.

    PubMed

    Carelli, Valerio; Maresca, Alessandra; Caporali, Leonardo; Trifunov, Selena; Zanna, Claudia; Rugolo, Michela

    2015-06-01

    Mitochondria are cytoplasmic organelles containing their own multi-copy genome. They are organized in a highly dynamic network, resulting from balance between fission and fusion, which maintains homeostasis of mitochondrial mass through mitochondrial biogenesis and mitophagy. Mitochondrial DNA (mtDNA) mutates much faster than nuclear DNA. In particular, mtDNA point mutations and deletions may occur somatically and accumulate with aging, coexisting with the wild type, a condition known as heteroplasmy. Under specific circumstances, clonal expansion of mutant mtDNA may occur within single cells, causing a wide range of severe human diseases when mutant overcomes wild type. Furthermore, mtDNA deletions accumulate and clonally expand as a consequence of deleterious mutations in nuclear genes involved in mtDNA replication and maintenance, as well as in mitochondrial fusion genes (mitofusin-2 and OPA1), possibly implicating mtDNA nucleoids segregation. We here discuss how the intricacies of mitochondrial homeostasis impinge on the intracellular propagation of mutant mtDNA. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.

  11. DNA Distribution in Spermatid Nuclei of Normal and Segregation Distorter Males of DROSOPHILA MELANOGASTER

    PubMed Central

    Hauschteck-Jungen, E.; Hartl, D. L.

    1978-01-01

    Using the DNA-specific dye BAO [2,5-bis-(4'-aminophenyl-(1')]-1,3,4-oxadiazol), we have examined spermiogenesis in wild-type males of Drosophila melanogaster and in males carrying various combinations of the Sd and Rsp mutations involved in segregation distortion. Wild-type strains, even those newly collected from nature, are heterogeneous with respect to the incidence of spermiogenic abnormalities, principally in having a variable number of spermatid nuclei per cyst that fail to undergo complete elongation. Among segregation distorter males, Rsp/Rsp homozygotes have the greatest incidence of nuclear nonelongation or incomplete elongation, Rsp/Rsp + heterozygotes are intermediate, while Rsp+/ Rsp+ homozygotes have the least amount of abnormality. Indeed, Sd Rsp+/Sd+Rsp+ males have significantly fewer spermiogenic aberrations than do wild-type strains. PMID:17248826

  12. [Non-mutagenic and mutagenic post-replicative DNA repair in prokaryotic and eukaryotic cells].

    PubMed

    Zhestianikov, V D

    2000-01-01

    The review is devoted to mechanisms of repair gaps in DNA daughter strand, formed during the stall of moving replication forks and restart of replication in cells after the action of DNA damaging agents (predominantly--UV light). The repair of daughter DNA, or postreplication DNA repair (PRR), is realized by error-free (non-mutagenic) and error-prone (mutagenic) pathways. The former is a recombination repair, or recombination between two sister duplexes. By this way the major part of postreplication gaps is eliminated. The second way is related with the induction of SOS-response. In Escherichia coli cells mutagenic SOS-response is realized by proteins RecA, UmuD, UmuC, DNA-polymerase III holoenzyme and others. In E. coli some mutagenic enzymes--DNA-polymerase IV (the product of dinB gene) and DNA-polymerase V (the product of umuDC genes) have been recently discovered. In Saccharomyces cerevisiae cells postreplicative translesion synthesis is realized by newly discovered enzymes deoxycytidilmonophosphatetransferase (encoded by REV1 gene), DNA-polymerase zeta (encoded by REV3 gene), DNA-polymerase eta (encoded by RAD30 gene). All the three enzymes share a great homology with UmuC enzyme of E. coli. DNA polymerase eta correctly inserts adenine residues in the daughter strand opposite noncoded thymine residues in cyclobutane pyrimidine dimer. Based on RAD6 gene of S. cerevisiae, human cells hREV1, hREV3 and hRAD30A have been obtained to encode, respectively, deoxycytidiltransferase, DNA-polymerase zeta and DNA-polymerase eta. It has been shown that the defect of PRR DNA in xeroderma pigmentosum variant is associated with DNA-polymerase eta deficiency. This defect is corrected by the extract of intact HeLa cells. The importance of newly discovered enzymes in the system of mechanisms of DNA repair and replication is discussed.

  13. The prokaryotic Cys2His2 zinc-finger adopts a novel fold as revealed by the NMR structure of Agrobacterium tumefaciens Ros DNA-binding domain

    PubMed Central

    Malgieri, Gaetano; Russo, Luigi; Esposito, Sabrina; Baglivo, Ilaria; Zaccaro, Laura; Pedone, Emilia M.; Di Blasio, Benedetto; Isernia, Carla; Pedone, Paolo V.; Fattorusso, Roberto

    2007-01-01

    The first putative prokaryotic Cys2His2 zinc-finger domain has been identified in the transcriptional regulator Ros from Agrobacterium tumefaciens, indicating that the Cys2His2 zinc-finger domain, originally thought to be confined to the eukaryotic kingdom, could be widespread throughout the living kingdom from eukaryotic, both animal and plant, to prokaryotic. In this article we report the NMR solution structure of Ros DNA-binding domain (Ros87), providing 79 structural characterization of a prokaryotic Cys2His2 zinc-finger domain. The NMR structure of Ros87 shows that the putative prokaryotic Cys2His2 zinc-finger sequence is indeed part of a significantly larger zinc-binding globular domain that possesses a novel protein fold very different from the classical fold reported for the eukaryotic classical zinc-finger. The Ros87 globular domain consists of 58 aa (residues 9–66), is arranged in a βββαα topology, and is stabilized by an extensive 15-residue hydrophobic core. A backbone dynamics study of Ros87, based on 15N R1, 15N R2, and heteronuclear 15N-{1H}-NOE measurements, has further confirmed that the globular domain is uniformly rigid and flanked by two flexible tails. Mapping of the amino acids necessary for the DNA binding onto Ros87 structure reveals the protein surface involved in the DNA recognition mechanism of this new zinc-binding protein domain. PMID:17956987

  14. BubR1- and Polo-Coated DNA Tethers Facilitate Poleward Segregation of Acentric Chromatids

    PubMed Central

    Royou, Anne; Gagou, Mary E.; Karess, Roger; Sullivan, William

    2010-01-01

    Summary The mechanisms that safeguard cells against chromosomal instability (CIN) are of great interest, as CIN contributes to tumorigenesis. To gain insight into these mechanisms, we studied the behavior of cells entering mitosis with damaged chromosomes. We used the endonuclease I-CreI to generate acentric chromosomes in Drosophila larvae. While I-CreI expression produces acentric chromosomes in the majority of neuronal stem cells, remarkably, it has no effect on adult survival. Our live studies reveal that acentric chromatids segregate efficiently to opposite poles. The acentric chromatid poleward movement is mediated through DNA tethers decorated with BubR1, Polo, INCENP, and Aurora-B. Reduced BubR1 or Polo function results in abnormal segregation of acentric chromatids, a decrease in acentric chromosome tethering, and a great reduction in adult survival. We propose that BubR1 and Polo facilitate the accurate segregation of acentric chromatids by maintaining the integrity of the tethers that connect acentric chromosomes to their centric partners. PMID:20141837

  15. Cytokinesis in Prokaryotes and Eukaryotes: Common Principles and Different Solutions

    PubMed Central

    Nanninga, Nanne

    2001-01-01

    Cytokinesis requires duplication of cellular structures followed by bipolarization of the predivisional cell. As a common principle, this applies to prokaryotes as well as eukaryotes. With respect to eukaryotes, the discussion has focused mainly on Saccharomyces cerevisiae and on Schizosaccharomyces pombe. Escherichia coli and to a lesser extent Bacillus subtilis have been used as prokaryotic examples. To establish a bipolar cell, duplication of a eukaryotic origin of DNA replication as well as its genome is not sufficient. Duplication of the microtubule-organizing center is required as a prelude to mitosis, and it is here that the dynamic cytoskeleton with all its associated proteins comes to the fore. In prokaryotes, a cytoskeleton that pervades the cytoplasm appears to be absent. DNA replication and the concomitant DNA segregation seem to occur without help from extensive cytosolic supramacromolecular assemblies but with help from the elongating cellular envelope. Prokaryotic cytokinesis proceeds through a contracting ring, which has a roughly 100-fold-smaller circumference than its eukaryotic counterpart. Although the ring contains proteins that can be considered as predecessors of actin, tubulin, and microtubule-associated proteins, its macromolecular composition is essentially different. PMID:11381104

  16. DNA Damage Responses in Prokaryotes: Regulating Gene Expression, Modulating Growth Patterns, and Manipulating Replication Forks

    PubMed Central

    Kreuzer, Kenneth N.

    2013-01-01

    Recent advances in the area of bacterial DNA damage responses are reviewed here. The SOS pathway is still the major paradigm of bacterial DNA damage response, and recent studies have clarified the mechanisms of SOS induction and key physiological roles of SOS including a very major role in genetic exchange and variation. When considering diverse bacteria, it is clear that SOS is not a uniform pathway with one purpose, but rather a platform that has evolved for differing functions in different bacteria. Relating in part to the SOS response, the field has uncovered multiple apparent cell-cycle checkpoints that assist cell survival after DNA damage and remarkable pathways that induce programmed cell death in bacteria. Bacterial DNA damage responses are also much broader than SOS, and several important examples of LexA-independent regulation will be reviewed. Finally, some recent advances that relate to the replication and repair of damaged DNA will be summarized. PMID:24097899

  17. Full-Length cDNA, Prokaryotic Expression, and Antimicrobial Activity of UuHb-F-I from Urechis unicinctus

    PubMed Central

    Niu, Rongli; Chen, Xiang

    2016-01-01

    Hemoglobin, which widely exists in all vertebrates and in some invertebrates, is possibly a precursor of antimicrobial peptides (AMPs). However, AMPs in the hemoglobin of invertebrates have been rarely investigated. This study is the first to report the full-length cDNA, prokaryotic expression, and antimicrobial activity of UuHb-F-I from Urechis unicinctus. The full-length cDNA sequence of UuHb-F-I was 780 bp with an open-reading frame of 429 bp encoding 142 amino acids. MALDI-TOF-MS suggested that the recombinant protein of UuHb-F-I (rUuHb-F-I) yielded a molecular weight of 15,168.01 Da, and its N-terminal amino acid sequence was MGLTGAQIDAIK. rUuHb-F-I exhibited different antimicrobial activities against microorganisms. The lowest minimum inhibitory concentration against Micrococcus luteus was 2.78–4.63 μM. Our results may help elucidate the immune defense mechanism of U. unicinctus and may provide insights into new AMPs in drug discovery. PMID:27471730

  18. Full-Length cDNA, Prokaryotic Expression, and Antimicrobial Activity of UuHb-F-I from Urechis unicinctus.

    PubMed

    Niu, Rongli; Chen, Xiang

    2016-01-01

    Hemoglobin, which widely exists in all vertebrates and in some invertebrates, is possibly a precursor of antimicrobial peptides (AMPs). However, AMPs in the hemoglobin of invertebrates have been rarely investigated. This study is the first to report the full-length cDNA, prokaryotic expression, and antimicrobial activity of UuHb-F-I from Urechis unicinctus. The full-length cDNA sequence of UuHb-F-I was 780 bp with an open-reading frame of 429 bp encoding 142 amino acids. MALDI-TOF-MS suggested that the recombinant protein of UuHb-F-I (rUuHb-F-I) yielded a molecular weight of 15,168.01 Da, and its N-terminal amino acid sequence was MGLTGAQIDAIK. rUuHb-F-I exhibited different antimicrobial activities against microorganisms. The lowest minimum inhibitory concentration against Micrococcus luteus was 2.78-4.63 μM. Our results may help elucidate the immune defense mechanism of U. unicinctus and may provide insights into new AMPs in drug discovery. PMID:27471730

  19. Analysis of mtDNA variant segregation during early human embryonic development: a tool for successful NARP preimplantation diagnosis

    PubMed Central

    Steffann, J; Frydman, N; Gigarel, N; Burlet, P; Ray, P F; Fanchin, R; Feyereisen, E; Kerbrat, V; Tachdjian, G; Bonnefont, J‐P; Frydman, R; Munnich, A

    2006-01-01

    Background Diseases arising from mitochondrial DNA (mtDNA) mutations are usually serious pleiotropic disorders with maternal inheritance. Owing to the high recurrence risk in the progeny of carrier females, “at‐risk” couples often ask for prenatal diagnosis. However, reliability of such practices remains under debate. Preimplantation diagnosis (PGD), a theoretical alternative to conventional prenatal diagnosis, requires that the mutant load measured in a single cell from an eight cell embryo accurately reflects the overall heteroplasmy of the whole embryo, but this is not known to be the case. Objective To investigate the segregation of an mtDNA length polymorphism in blastomeres of 15 control embryos from four unrelated couples, the NARP mutation in blastomeres of three embryos from a carrier of this mutation. Results Variability of the mtDNA polymorphism heteroplasmy among blastomeres from each embryo was limited, ranging from zero to 19%, with a mean of 7%. PGD for the neurogenic ataxia retinitis pigmentosa (NARP) mtDNA mutation (8993T→G) was therefore carried out in the carrier mother of an affected child. One of three embryos was shown to carry 100% of mutant mtDNA species while the remaining two were mutation‐free. These two embryos were transferred, resulting in a singleton pregnancy with delivery of a healthy child. Conclusions This PGD, the first reported for a mtDNA mutation, illustrates the skewed meiotic segregation of the NARP mtDNA mutation in early human development. However, discrepancies between the segregation patterns of the NARP mutation and the HV2 polymorphism indicate that a particular mtDNA nucleotide variant might differentially influenced the mtDNA segregation, precluding any assumption on feasibility of PGD for other mtDNA mutations. PMID:16155197

  20. Single-molecule study of DNA unlinking by eukaryotic and prokaryotic type-II topoisomerases

    NASA Astrophysics Data System (ADS)

    Charvin, G.; Bensimon, D.; Croquette, V.

    2003-08-01

    Type-II topoisomerases are responsible for untangling DNA during replication by removing supercoiled and interlinked DNA structures. Using a single-molecule micromanipulation setup, we follow the real-time decatenation of two mechanically braided DNA molecules by Drosophila melanogaster topoisomerase (Topo) II and Escherichia coli Topo IV. Although Topo II relaxes left-handed (L) and right-handed (R-) braids similarly at a rate of 2.9 s-1, Topo IV has a marked preference for L-braids, which it relaxes completely and processively at a rate of 2.4 s-1. However, Topo IV can unlink R-braids at about half that rate when they supercoil to form L-plectonemes. These results imply that the preferred substrate for unlinking by Topo IV has the symmetry of an L-crossing and shed new light on the decatenation of daughter strands during DNA replication, which are usually assumed to be linked in an R-braid. DNA replication

  1. Single-molecule study of DNA unlinking by eukaryotic and prokaryotic type-II topoisomerases

    PubMed Central

    Charvin, G.; Bensimon, D.; Croquette, V.

    2003-01-01

    Type-II topoisomerases are responsible for untangling DNA during replication by removing supercoiled and interlinked DNA structures. Using a single-molecule micromanipulation setup, we follow the real-time decatenation of two mechanically braided DNA molecules by Drosophila melanogaster topoisomerase (Topo) II and Escherichia coli Topo IV. Although Topo II relaxes left-handed (L) and right-handed (R-) braids similarly at a rate of ≈2.9 s–1, Topo IV has a marked preference for L-braids, which it relaxes completely and processively at a rate of ≈2.4 s–1. However, Topo IV can unlink R-braids at about half that rate when they supercoil to form L-plectonemes. These results imply that the preferred substrate for unlinking by Topo IV has the symmetry of an L-crossing and shed new light on the decatenation of daughter strands during DNA replication, which are usually assumed to be linked in an R-braid. PMID:12902541

  2. Enzyme therapy of xeroderma pigmentosum: safety and efficacy testing of T4N5 liposome lotion containing a prokaryotic DNA repair enzyme.

    PubMed

    Yarosh, D; Klein, J; Kibitel, J; Alas, L; O'Connor, A; Cummings, B; Grob, D; Gerstein, D; Gilchrest, B A; Ichihashi, M; Ogoshi, M; Ueda, M; Fernandez, V; Chadwick, C; Potten, C S; Proby, C M; Young, A R; Hawk, J L

    1996-06-01

    Xeroderma pigmentosum (XP) is a rare genetic disease in which patients are defective in DNA repair and are extremely sensitive to solar UV radiation exposure. A new treatment approach was tested in these patients, in which a prokaryotic DNA repair enzyme specific for UV-induced DNA damage was delivered into the skin by means of topically applied liposomes to supplement the deficient activity. Acute and chronic safety testing in both mice and humans showed neither adverse reactions nor significant changes in serum chemistry or in skin histology. The skin of XP patients treated with the DNA repair liposomes had fewer cyclobutylpyrimidine dimers in DNA and showed less erythema than did control sites. The results encourage further clinical testing of this new enzyme therapy approach.

  3. Prokaryote and eukaryote evolvability.

    PubMed

    Poole, Anthony M; Phillips, Matthew J; Penny, David

    2003-05-01

    The concept of evolvability covers a broad spectrum of, often contradictory, ideas. At one end of the spectrum it is equivalent to the statement that evolution is possible, at the other end are untestable post hoc explanations, such as the suggestion that current evolutionary theory cannot explain the evolution of evolvability. We examine similarities and differences in eukaryote and prokaryote evolvability, and look for explanations that are compatible with a wide range of observations. Differences in genome organisation between eukaryotes and prokaryotes meets this criterion. The single origin of replication in prokaryote chromosomes (versus multiple origins in eukaryotes) accounts for many differences because the time to replicate a prokaryote genome limits its size (and the accumulation of junk DNA). Both prokaryotes and eukaryotes appear to switch from genetic stability to genetic change in response to stress. We examine a range of stress responses, and discuss how these impact on evolvability, particularly in unicellular organisms versus complex multicellular ones. Evolvability is also limited by environmental interactions (including competition) and we describe a model that places limits on potential evolvability. Examples are given of its application to predator competition and limits to lateral gene transfer. We suggest that unicellular organisms evolve largely through a process of metabolic change, resulting in biochemical diversity. Multicellular organisms evolve largely through morphological changes, not through extensive changes to cellular biochemistry. PMID:12689728

  4. Stochastic Self-Assembly of ParB Proteins Builds the Bacterial DNA Segregation Apparatus.

    PubMed

    Sanchez, Aurore; Cattoni, Diego I; Walter, Jean-Charles; Rech, Jérôme; Parmeggiani, Andrea; Nollmann, Marcelo; Bouet, Jean-Yves

    2015-08-26

    Many canonical processes in molecular biology rely on the dynamic assembly of higher-order nucleoprotein complexes. In bacteria, the assembly mechanism of ParABS, the nucleoprotein super-complex that actively segregates the bacterial chromosome and many plasmids, remains elusive. We combined super-resolution microscopy, quantitative genome-wide surveys, biochemistry, and mathematical modeling to investigate the assembly of ParB at the centromere-like sequences parS. We found that nearly all ParB molecules are actively confined around parS by a network of synergistic protein-protein and protein-DNA interactions. Interrogation of the empirically determined, high-resolution ParB genomic distribution with modeling suggests that instead of binding only to specific sequences and subsequently spreading, ParB binds stochastically around parS over long distances. We propose a new model for the formation of the ParABS partition complex based on nucleation and caging: ParB forms a dynamic lattice with the DNA around parS. This assembly model and approach to characterizing large-scale, dynamic interactions between macromolecules may be generalizable to many unrelated machineries that self-assemble in superstructures. PMID:27135801

  5. Segregation pattern and biochemical effect of the G3460A mtDNA mutation in 27 members of LHON family.

    PubMed

    Kaplanová, Vilma; Zeman, Jirí; Hansíková, Hana; Cerná, Leona; Houst'ková, Hana; Misovicová, Nadezda; Houstek, Josef

    2004-08-30

    Inheritance and expression of mitochondrial DNA (mtDNA) mutations are crucial for the pathogenesis of Leber hereditary optic neuropathy (LHON). We have investigated the segregation and functional consequences of G3460A mtDNA mutation in 27 members of a three-generation family with LHON syndrome. Specific activity of respiratory chain complex I in platelets was reduced in average to 56%, but no direct correlation between the mutation load and its biochemical expression was found. Heteroplasmy in blood, platelets and hair follicles varied from 7% to 100%. Segregation pattern exhibited tissue specificity and influence of different nuclear backgrounds in four branches of the pedigree. Longitudinal analysis revealed a significant (p=0.02) decrease in blood mutation load. Although enzyme assay showed reduction of complex I activity, our results give additional support to the hypothesis that expression of LHON mutation depends on complex nuclear-mitochondrial interaction.

  6. Segregation of mtDNA Throughout Human Embryofetal Development: m.3243A > G as a Model System

    PubMed Central

    Monnot, Sophie; Gigarel, Nadine; Samuels, David C; Burlet, Philippe; Hesters, Laetitia; Frydman, Nelly; Frydman, René; Kerbrat, Violaine; Funalot, Benoit; Martinovic, Jelena; Benachi, Alexandra; Feingold, Josué; Munnich, Arnold; Bonnefont, Jean-Paul; Steffann, Julie

    2011-01-01

    Mitochondrial DNA (mtDNA) mutations cause a wide range of serious diseases with high transmission risk and maternal inheritance. Tissue heterogeneity of the heteroplasmy rate (“mutant load”) accounts for the wide phenotypic spectrum observed in carriers. Owing to the absence of therapy, couples at risk to transmit such disorders commonly ask for prenatal (PND) or preimplantation diagnosis (PGD). The lack of data regarding heteroplasmy distribution throughout intrauterine development, however, hampers the implementation of such procedures. We tracked the segregation of the m.3243A > G mutation (MT-TL1 gene) responsible for the MELAS syndrome in the developing embryo/fetus, using tissues and cells from eight carrier females, their 38 embryos and 12 fetuses. Mutant mtDNA segregation was found to be governed by random genetic drift, during oogenesis and somatic tissue development. The size of the bottleneck operating for m.3243A > G during oogenesis was shown to be individual-dependent. Comparison with data we achieved for the m.8993T > G mutation (MT-ATP6 gene), responsible for the NARP/Leigh syndrome, indicates that these mutations differentially influence mtDNA segregation during oogenesis, while their impact is similar in developing somatic tissues. These data have major consequences for PND and PGD procedures in mtDNA inherited disorders. Hum Mutat 32:116–125, 2011. © 2010 Wiley-Liss, Inc. PMID:21120938

  7. The hidden side of the prokaryotic cell: rediscovering the microbial world.

    PubMed

    Guerrero, Ricardo; Berlanga, Mercedes

    2007-09-01

    How many different forms of life exist and how they are evolutionarily related is one of the most challenging problems in biology. In 1962, Roger Y. Stanier and Cornelis B. van Niel proposed "the concept of a bacterium" and thus allowed (micro)biologists to divide living organisms into two primary groups: prokaryotes and eukaryotes. Initially, prokaryotes were believed to be devoid of any internal organization or other characteristics typical of eukaryotes, due to their minute size and deceptively simple appearance. However, the last few decades have demonstrated that the structure and function of the prokaryotic cell are much more intricate than initially thought. We will discuss here two characteristics of prokaryotic cells that were not known to Stanier and van Niel but which now allow us to understand the basis of many characteristics that are fully developed in eukaryotic cells: First, it has recently become clear that bacteria contain all of the cytoskeletal elements present in eukaryotic cells, demonstrating that the cytoskeleton was not a eukaryotic invention; on the contrary, it evolved early in evolution. Essential processes of the prokaryotic cell, such as the maintenance of cell shape, DNA segregation, and cell division, rely on the cytoskeleton. Second, the accumulation of intracellular storage polymers, such as polyhydroxyalkanoates (a property studied in detail by Stanier and colleagues), provides a clear evolutionary advantage to bacteria. These compounds act as a "time-binding" mechanism, one of several prokaryotic strategies to increases survival in the Earth's everchanging environments.

  8. Three Different Pathways Prevent Chromosome Segregation in the Presence of DNA Damage or Replication Stress in Budding Yeast.

    PubMed

    Palou, Gloria; Palou, Roger; Zeng, Fanli; Vashisht, Ajay A; Wohlschlegel, James A; Quintana, David G

    2015-09-01

    A surveillance mechanism, the S phase checkpoint, blocks progression into mitosis in response to DNA damage and replication stress. Segregation of damaged or incompletely replicated chromosomes results in genomic instability. In humans, the S phase checkpoint has been shown to constitute an anti-cancer barrier. Inhibition of mitotic cyclin dependent kinase (M-CDK) activity by Wee1 kinases is critical to block mitosis in some organisms. However, such mechanism is dispensable in the response to genotoxic stress in the model eukaryotic organism Saccharomyces cerevisiae. We show here that the Wee1 ortholog Swe1 does indeed inhibit M-CDK activity and chromosome segregation in response to genotoxic insults. Swe1 dispensability in budding yeast is the result of a redundant control of M-CDK activity by the checkpoint kinase Rad53. In addition, our results indicate that Swe1 is an effector of the checkpoint central kinase Mec1. When checkpoint control on M-CDK and on Pds1/securin stabilization are abrogated, cells undergo aberrant chromosome segregation. PMID:26332045

  9. "Anticipated" nucleosome positioning pattern in prokaryotes.

    PubMed

    Rapoport, Alexandra E; Trifonov, Edward N

    2011-11-15

    Linguistic (word count) analysis of prokaryotic genome sequences, by Shannon N-gram extension, reveals that the dominant hidden motifs in A+T rich genomes are T(A)(T)A and G(A)(T)C with uncertain number of repeating A and T. Since prokaryotic sequences are largely protein-coding, the motifs would correspond to amphipathic alpha-helices with alternating lysine and phenylalanine as preferential polar and non-polar residues. The motifs are also known in eukaryotes, as nucleosome positioning patterns. Their existence in prokaryotes as well may serve for binding of histone-like proteins to DNA. In this case the above patterns in prokaryotes may be considered as "anticipated" nucleosome positioning patterns which, quite likely, existed in prokaryotic genomes before the evolutionary separation between eukaryotes and prokaryotes.

  10. The structure of the herpes simplex virus DNA-packaging terminase pUL15 nuclease domain suggests an evolutionary lineage among eukaryotic and prokaryotic viruses.

    PubMed

    Selvarajan Sigamani, Sundaresan; Zhao, Haiyan; Kamau, Yvonne N; Baines, Joel D; Tang, Liang

    2013-06-01

    Herpes simplex virus 1 (HSV-1), the prototypic member of herpesviruses, employs a virally encoded molecular machine called terminase to package the viral double-stranded DNA (dsDNA) genome into a preformed protein shell. The terminase contains a large subunit that is thought to cleave concatemeric viral DNA during the packaging initiation and completion of each packaging cycle and supply energy to the packaging process via ATP hydrolysis. We have determined the X-ray structure of the C-terminal domain of the terminase large-subunit pUL15 (pUL15C) from HSV-1. The structure shows a fold resembling those of bacteriophage terminases, RNase H, integrases, DNA polymerases, and topoisomerases, with an active site clustered with acidic residues. Docking analysis reveals a DNA-binding surface surrounded by flexible loops, indicating considerable conformational changes upon DNA binding. In vitro assay shows that pUL15C possesses non-sequence-specific, Mg(2+)-dependent nuclease activity. These results suggest that pUL15 uses an RNase H-like, metal ion-mediated catalysis mechanism for cleavage of viral concatemeric DNA. The structure reveals extra structural elements in addition to the RNase H-like fold core and variations in local architecture of the nuclease active site, which are conserved in herpesvirus terminases and bear great similarity to the phage T4 gp17 but are distinct from podovirus and siphovirus orthologs and cellular RNase H, delineating a new evolutionary lineage among a large family of eukaryotic viruses and simple and complex prokaryotic viruses.

  11. The Epigenomic Landscape of Prokaryotes.

    PubMed

    Blow, Matthew J; Clark, Tyson A; Daum, Chris G; Deutschbauer, Adam M; Fomenkov, Alexey; Fries, Roxanne; Froula, Jeff; Kang, Dongwan D; Malmstrom, Rex R; Morgan, Richard D; Posfai, Janos; Singh, Kanwar; Visel, Axel; Wetmore, Kelly; Zhao, Zhiying; Rubin, Edward M; Korlach, Jonas; Pennacchio, Len A; Roberts, Richard J

    2016-02-01

    DNA methylation acts in concert with restriction enzymes to protect the integrity of prokaryotic genomes. Studies in a limited number of organisms suggest that methylation also contributes to prokaryotic genome regulation, but the prevalence and properties of such non-restriction-associated methylation systems remain poorly understood. Here, we used single molecule, real-time sequencing to map DNA modifications including m6A, m4C, and m5C across the genomes of 230 diverse bacterial and archaeal species. We observed DNA methylation in nearly all (93%) organisms examined, and identified a total of 834 distinct reproducibly methylated motifs. This data enabled annotation of the DNA binding specificities of 620 DNA Methyltransferases (MTases), doubling known specificities for previously hard to study Type I, IIG and III MTases, and revealing their extraordinary diversity. Strikingly, 48% of organisms harbor active Type II MTases with no apparent cognate restriction enzyme. These active 'orphan' MTases are present in diverse bacterial and archaeal phyla and show motif specificities and methylation patterns consistent with functions in gene regulation and DNA replication. Our results reveal the pervasive presence of DNA methylation throughout the prokaryotic kingdoms, as well as the diversity of sequence specificities and potential functions of DNA methylation systems.

  12. The Epigenomic Landscape of Prokaryotes

    PubMed Central

    Blow, Matthew J.; Clark, Tyson A.; Daum, Chris G.; Deutschbauer, Adam M.; Fomenkov, Alexey; Fries, Roxanne; Froula, Jeff; Kang, Dongwan D.; Malmstrom, Rex R.; Morgan, Richard D.; Posfai, Janos; Singh, Kanwar; Visel, Axel; Wetmore, Kelly; Zhao, Zhiying; Rubin, Edward M.; Korlach, Jonas; Pennacchio, Len A.; Roberts, Richard J.

    2016-01-01

    DNA methylation acts in concert with restriction enzymes to protect the integrity of prokaryotic genomes. Studies in a limited number of organisms suggest that methylation also contributes to prokaryotic genome regulation, but the prevalence and properties of such non-restriction-associated methylation systems remain poorly understood. Here, we used single molecule, real-time sequencing to map DNA modifications including m6A, m4C, and m5C across the genomes of 230 diverse bacterial and archaeal species. We observed DNA methylation in nearly all (93%) organisms examined, and identified a total of 834 distinct reproducibly methylated motifs. This data enabled annotation of the DNA binding specificities of 620 DNA Methyltransferases (MTases), doubling known specificities for previously hard to study Type I, IIG and III MTases, and revealing their extraordinary diversity. Strikingly, 48% of organisms harbor active Type II MTases with no apparent cognate restriction enzyme. These active ‘orphan’ MTases are present in diverse bacterial and archaeal phyla and show motif specificities and methylation patterns consistent with functions in gene regulation and DNA replication. Our results reveal the pervasive presence of DNA methylation throughout the prokaryotic kingdoms, as well as the diversity of sequence specificities and potential functions of DNA methylation systems. PMID:26870957

  13. Genome Segregation and Packaging Machinery in Acanthamoeba polyphaga Mimivirus Is Reminiscent of Bacterial Apparatus

    PubMed Central

    Chelikani, Venkata; Ranjan, Tushar; Zade, Amrutraj; Shukla, Avi

    2014-01-01

    ABSTRACT Genome packaging is a critical step in the virion assembly process. The putative ATP-driven genome packaging motor of Acanthamoeba polyphaga mimivirus (APMV) and other nucleocytoplasmic large DNA viruses (NCLDVs) is a distant ortholog of prokaryotic chromosome segregation motors, such as FtsK and HerA, rather than other viral packaging motors, such as large terminase. Intriguingly, APMV also encodes other components, i.e., three putative serine recombinases and a putative type II topoisomerase, all of which are essential for chromosome segregation in prokaryotes. Based on our analyses of these components and taking the limited available literature into account, here we propose for the first time a model for genome segregation and packaging in APMV that can possibly be extended to NCLDV subfamilies, except perhaps Poxviridae and Ascoviridae. This model might represent a unique variation of the prokaryotic system acquired and contrived by the large DNA viruses of eukaryotes. It is also consistent with previous observations that unicellular eukaryotes, such as amoebae, are melting pots for the advent of chimeric organisms with novel mechanisms. IMPORTANCE Extremely large viruses with DNA genomes infect a wide range of eukaryotes, from human beings to amoebae and from crocodiles to algae. These large DNA viruses, unlike their much smaller cousins, have the capability of making most of the protein components required for their multiplication. Once they infect the cell, these viruses set up viral replication centers, known as viral factories, to carry out their multiplication with very little help from the host. Our sequence analyses show that there is remarkable similarity between prokaryotes (bacteria and archaea) and large DNA viruses, such as mimivirus, vaccinia virus, and pandoravirus, in the way that they process their newly synthesized genetic material to make sure that only one copy of the complete genome is generated and is meticulously placed inside

  14. Environmental distribution of prokaryotic taxa

    PubMed Central

    2010-01-01

    Background The increasing availability of gene sequences of prokaryotic species in samples extracted from all kind of locations allows addressing the study of the influence of environmental patterns in prokaryotic biodiversity. We present a comprehensive study to address the potential existence of environmental preferences of prokaryotic taxa and the commonness of the specialist and generalist strategies. We also assessed the most significant environmental factors shaping the environmental distribution of taxa. Results We used 16S rDNA sequences from 3,502 sampling experiments in natural and artificial sources. These sequences were taxonomically assigned, and the corresponding samples were also classified into a hierarchical classification of environments. We used several statistical methods to analyze the environmental distribution of taxa. Our results indicate that environmental specificity is not very common at the higher taxonomic levels (phylum to family), but emerges at lower taxonomic levels (genus and species). The most selective environmental characteristics are those of animal tissues and thermal locations. Salinity is another very important factor for constraining prokaryotic diversity. On the other hand, soil and freshwater habitats are the less restrictive environments, harboring the largest number of prokaryotic taxa. All information on taxa, samples and environments is provided at the envDB online database, http://metagenomics.uv.es/envDB. Conclusions This is, as far as we know, the most comprehensive assessment of the distribution and diversity of prokaryotic taxa and their associations with different environments. Our data indicate that we are still far from characterizing prokaryotic diversity in any environment, except, perhaps, for human tissues such as the oral cavity and the vagina. PMID:20307274

  15. Cloning of the cDNA encoding the large subunit of human RNase HI, a homologue of the prokaryotic RNase HII.

    PubMed

    Frank, P; Braunshofer-Reiter, C; Wintersberger, U; Grimm, R; Büsen, W

    1998-10-27

    Two RNases H of mammalian tissues have been described: RNase HI, the activity of which was found to rise during DNA replication, and RNase HII, which may be involved in transcription. RNase HI is the major mammalian enzyme representing around 85% of the total RNase H activity in the cell. By using highly purified calf thymus RNase HI we identified the sequences of several tryptic peptides. This information enabled us to determine the sequence of the cDNA coding for the large subunit of human RNase HI. The corresponding ORF of 897 nt defines a polypeptide of relative molecular mass of 33,367, which is in agreement with the molecular mass obtained earlier by SDS/PAGE. Expression of the cloned ORF in Escherichia coli leads to a polypeptide, which is specifically recognized by an antiserum raised against calf thymus RNase HI. Interestingly, the deduced amino acid sequence of this subunit of human RNase HI displays significant homology to RNase HII from E. coli, an enzyme of unknown function and previously judged as a minor activity. This finding suggests an evolutionary link between the mammalian RNases HI and the prokaryotic RNases HII. The idea of a mammalian RNase HI large subunit being a strongly conserved protein is substantiated by the existence of homologous ORFs in the genomes of other eukaryotes and of all eubacteria and archaebacteria that have been completely sequenced.

  16. Cloning of the cDNA encoding the large subunit of human RNase HI, a homologue of the prokaryotic RNase HII

    PubMed Central

    Frank, Peter; Braunshofer-Reiter, Christa; Wintersberger, Ulrike; Grimm, Rudolf; Büsen, Werner

    1998-01-01

    Two RNases H of mammalian tissues have been described: RNase HI, the activity of which was found to rise during DNA replication, and RNase HII, which may be involved in transcription. RNase HI is the major mammalian enzyme representing around 85% of the total RNase H activity in the cell. By using highly purified calf thymus RNase HI we identified the sequences of several tryptic peptides. This information enabled us to determine the sequence of the cDNA coding for the large subunit of human RNase HI. The corresponding ORF of 897 nt defines a polypeptide of relative molecular mass of 33,367, which is in agreement with the molecular mass obtained earlier by SDS/PAGE. Expression of the cloned ORF in Escherichia coli leads to a polypeptide, which is specifically recognized by an antiserum raised against calf thymus RNase HI. Interestingly, the deduced amino acid sequence of this subunit of human RNase HI displays significant homology to RNase HII from E. coli, an enzyme of unknown function and previously judged as a minor activity. This finding suggests an evolutionary link between the mammalian RNases HI and the prokaryotic RNases HII. The idea of a mammalian RNase HI large subunit being a strongly conserved protein is substantiated by the existence of homologous ORFs in the genomes of other eukaryotes and of all eubacteria and archaebacteria that have been completely sequenced. PMID:9789007

  17. The RECG1 DNA Translocase Is a Key Factor in Recombination Surveillance, Repair, and Segregation of the Mitochondrial DNA in Arabidopsis[OPEN

    PubMed Central

    Le Ret, Monique; Bergdoll, Marc; Bichara, Marc; Dietrich, André

    2015-01-01

    The mitochondria of flowering plants have considerably larger and more complex genomes than the mitochondria of animals or fungi, mostly due to recombination activities that modulate their genomic structures. These activities most probably participate in the repair of mitochondrial DNA (mtDNA) lesions by recombination-dependent processes. Rare ectopic recombination across short repeats generates new genomic configurations that contribute to mtDNA heteroplasmy, which drives rapid evolution of the sequence organization of plant mtDNAs. We found that Arabidopsis thaliana RECG1, an ortholog of the bacterial RecG translocase, is an organellar protein with multiple roles in mtDNA maintenance. RECG1 targets to mitochondria and plastids and can complement a bacterial recG mutant that shows defects in repair and replication control. Characterization of Arabidopsis recG1 mutants showed that RECG1 is required for recombination-dependent repair and for suppression of ectopic recombination in mitochondria, most likely because of its role in recovery of stalled replication forks. The analysis of alternative mitotypes present in a recG1 line and of their segregation following backcross allowed us to build a model to explain how a new stable mtDNA configuration, compatible with normal plant development, can be generated by stoichiometric shift. PMID:26462909

  18. Segregation of naturally occurring mitochondrial DNA variants in a mini-pig model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Within cells and tissues, the maternally inherited mitochondrial genome (mtDNA) is present in multimeric form and can harbour naturally occurring variants. Whilst high variant load can cause mitochondrial disease, naturally occurring mtDNA variants likely persist at low levels across generations of ...

  19. Roles of two DNA-binding factors in replication, segregation and transcriptional repression mediated by a yeast silencer.

    PubMed Central

    Kimmerly, W; Buchman, A; Kornberg, R; Rine, J

    1988-01-01

    The HMR E silencer is required for SIR-dependent transcriptional repression of the silent mating-type locus, HMR. The silencer also behaves as an origin of replication (ARS element) and allows plasmids to replicate autonomously in yeast. The replication and segregation properties of these plasmids are also dependent on the four SIR genes. We have previously characterized two DNA-binding factors in yeast extracts that recognize specific sequences at the HMR E silencer. These proteins, called ABFI (ARS-Binding Factor) and GRFI (General Regulatory Factor), are not encoded by any of the SIR genes. To investigate the biological roles of these factors, single-base-pair mutations were constructed in both binding sites at the HMR E silencer that were no longer recognized by the corresponding proteins in vitro. Our results indicate that the GRFI-binding site is required for the efficient segregation of plasmids replicated by the HMR E silencer. SIR-dependent transcriptional repression requires either an intact ABFI-binding site or GRFI-binding site, although the GRFI-binding site appears to be more important. A double-mutant silencer that binds neither ABFI nor GRFI does not mediate transcriptional repression of HMR. The replacement of HMR E with a chromosomal origin of replication (ARS1) allows partial SIR-dependent transcriptional repression of HMR, indicating a role for replication in silencer function. Together, these results suggest that the SIR proteins influence the properties of the HMR E silencer through interactions with other DNA-binding proteins. Images PMID:3046937

  20. Strict sex-specific mtDNA segregation in the germ line of the DUI species Venerupis philippinarum (Bivalvia: Veneridae).

    PubMed

    Ghiselli, Fabrizio; Milani, Liliana; Passamonti, Marco

    2011-02-01

    Doubly Uniparental Inheritance (DUI) is one of the most striking exceptions to the common rule of standard maternal inheritance of metazoan mitochondria. In DUI, two mitochondrial genomes are present, showing different transmission routes, one through eggs (F-type) and the other through sperm (M-type). In this paper, we report results from a multiplex real-time quantitative polymerase chain reaction analysis on the Manila clam Venerupis philippinarum (formerly Tapes philippinarum). We quantified M- and F-types in somatic tissues, gonads, and gametes. Nuclear and external reference sequences were used, and the whole experimental process was designed to avoid any possible cross-contamination. In most male somatic tissues, the M-type is largely predominant: This suggests that the processes separating sex-linked mitochondrial DNAs (mtDNAs) in somatic tissues are less precise than in other DUI species. In the germ line, we evidenced a strict sex-specific mtDNA segregation because both sperm and eggs do carry exclusively M- and F-types, respectively, an observation that is in contrast with a previous analysis on Mytilus galloprovincialis. More precisely, whereas two mtDNAs are present in the whole gonad, only the sex-specific one is detected in gametes. Because of this, we propose that the mtDNA transmission is achieved through a three-checkpoint process in V. philippinarum. The cytological mechanisms of male mitochondria segregation in males and degradation in females during the embryo development (here named Checkpoint #1 and Checkpoint #2) are already well known for DUI species; a Checkpoint #3 would act when primordial germ cells (PGCs) are first formed and would work in both males and females. We believe that Checkpoint #3 is a mere variation of the "mitochondrial bottleneck" in species with standard maternal inheritance, established when their PGCs separate during embryo cleavage.

  1. Arrest of segregation leads to accumulation of highly intertwined catenated dimers: dissection of the final stages of SV40 DNA replication.

    PubMed

    Sundin, O; Varshavsky, A

    1981-09-01

    When SV40-infected cells are placed into hypertonic medium, newly synthesized DNA accumulates as form C catenated dimers. These molecules consist of two supercoiled monomer circles of SV40 DNA interlocked by one or more topological inter-twinings and are seen as transiently labeled inter-mediates during normal replication. Form C catenated dimers represent pure segregation intermediates, replicative DNA structures in which DNA synthesis is complete but which still require topological separation of the two daughter circles. Hypertonic shock seems to block selectively a type II topoisomerase activity involved in disentangling the two circles. This is reflected in the fact that form C catenated dimers that accumulate during the block are highly intertwined with catenation linkage numbers up to C(L) = 20. While initiation of replication is also inhibited by hypertonic treatment, ongoing SV40 DNA synthesis is not affected, and replication is free to proceed from the earliest cairns structure through to form C catenated dimers. The block to segregation is rapidly and completely released by shifting the cells back to normal medium. A much slower recovery of DNA segregation takes place on prolonged incubation in hypertonic medium, perhaps because of some cellular homeostatic mechanism. The results of this work lead to a detailed view of the final stages of SV40 DNA replication.

  2. Promoter propagation in prokaryotes

    PubMed Central

    Matus-Garcia, Mariana; Nijveen, Harm; van Passel, Mark W. J.

    2012-01-01

    Transcriptional activation or ‘rewiring’ of silent genes is an important, yet poorly understood, phenomenon in prokaryotic genomes. Anecdotal evidence coming from experimental evolution studies in bacterial systems has shown the promptness of adaptation upon appropriate selective pressure. In many cases, a partial or complete promoter is mobilized to silent genes from elsewhere in the genome. We term hereafter such recruited regulatory sequences as Putative Mobile Promoters (PMPs) and we hypothesize they have a large impact on rapid adaptation of novel or cryptic functions. Querying all publicly available prokaryotic genomes (1362) uncovered >4000 families of highly conserved PMPs (50 to 100 long with ≥80% nt identity) in 1043 genomes from 424 different genera. The genomes with the largest number of PMP families are Anabaena variabilis (28 families), Geobacter uraniireducens (27 families) and Cyanothece PCC7424 (25 families). Family size varied from 2 to 93 homologous promoters (in Desulfurivibrio alkaliphilus). Some PMPs are present in particular species, but some are conserved across distant genera. The identified PMPs represent a conservative dataset of very recent or conserved events of mobilization of non-coding DNA and thus they constitute evidence of an extensive reservoir of recyclable regulatory sequences for rapid transcriptional rewiring. PMID:22933716

  3. PprA Protein Is Involved in Chromosome Segregation via Its Physical and Functional Interaction with DNA Gyrase in Irradiated Deinococcus radiodurans Bacteria

    PubMed Central

    Devigne, Alice; Guérin, Philippe; Lisboa, Johnny; Quevillon-Cheruel, Sophie; Armengaud, Jean; Sommer, Suzanne; Bouthier de la Tour, Claire

    2016-01-01

    ABSTRACT PprA, a radiation-induced Deinococcus-specific protein, was previously shown to be required for cell survival and accurate chromosome segregation after exposure to ionizing radiation. Here, we used an in vivo approach to determine, by shotgun proteomics, putative PprA partners coimmunoprecipitating with PprA when cells were exposed to gamma rays. Among them, we found the two subunits of DNA gyrase and, thus, chose to focus our work on characterizing the activities of the deinococcal DNA gyrase in the presence or absence of PprA. Loss of PprA rendered cells hypersensitive to novobiocin, an inhibitor of the B subunit of DNA gyrase. We showed that treatment of bacteria with novobiocin resulted in induction of the radiation desiccation response (RDR) regulon and in defects in chromosome segregation that were aggravated by the absence of PprA. In vitro, the deinococcal DNA gyrase, like other bacterial DNA gyrases, possesses DNA negative supercoiling and decatenation activities. These two activities are inhibited in vitro by novobiocin and nalidixic acid, whereas PprA specifically stimulates the decatenation activity of DNA gyrase. Together, these results suggest that PprA plays a major role in chromosome decatenation via its interaction with the deinococcal DNA gyrase when D. radiodurans cells are recovering from exposure to ionizing radiation. IMPORTANCE D. radiodurans is one of the most radiation-resistant organisms known. This bacterium is able to cope with high levels of DNA lesions generated by exposure to extreme doses of ionizing radiation and to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Here, we identified partners of PprA, a radiation-induced Deinococcus-specific protein, previously shown to be required for radioresistance. Our study leads to three main findings: (i) PprA interacts with DNA gyrase after irradiation, (ii) treatment of cells with novobiocin results in defects in chromosome segregation

  4. Human DNA polymerase alpha gene expression is cell proliferation dependent and its primary structure is similar to both prokaryotic and eukaryotic replicative DNA polymerases.

    PubMed Central

    Wong, S W; Wahl, A F; Yuan, P M; Arai, N; Pearson, B E; Arai, K; Korn, D; Hunkapiller, M W; Wang, T S

    1988-01-01

    We have isolated cDNA clones encoding the human DNA polymerase alpha catalytic polypeptide. Studies of the human DNA polymerase alpha steady-state mRNA levels in quiescent cells stimulated to proliferate, or normal cells compared to transformed cells, demonstrate that the polymerase alpha mRNA, like its enzymatic activity and de novo protein synthesis, positively correlates with cell proliferation and transformation. Analysis of the deduced 1462-amino-acid sequence reveals six regions of striking similarity to yeast DNA polymerase I and DNA polymerases of bacteriophages T4 and phi 29, herpes family viruses, vaccinia virus and adenovirus. Three of these conserved regions appear to comprise the functional active site required for deoxynucleotide interaction. Two putative DNA interacting domains are also identified. Images PMID:3359994

  5. Abnormal segregation of alleles in CEPH pedigree DNAs arising from allele loss in lymphoblastoid DNA

    SciTech Connect

    Royle, N.J.; Armour, J.A.L.; Crosier, M.; Jeffreys, A.J. )

    1993-01-01

    Somatic events that result in the reduction to hemior homozygosity at all loci affected by the event have been identified in lymphoblastoid DNA from mothers of two CEPH families. Using suitably informative probes, the allele deficiencies were detected by the abnormal transmission of alleles from grandparents to grandchildren, with the apparent absence of the alleles from the parent. Undetected somatic deficiencies in family DNAs could result in misscoring of recombination events and consequently introduce errors into linkage analysis. 15 refs., 2 figs.

  6. Desiccation tolerance of prokaryotes.

    PubMed Central

    Potts, M

    1994-01-01

    The removal of cell-bound water through air drying and the addition of water to air-dried cells are forces that have played a pivotal role in the evolution of the prokaryotes. In bacterial cells that have been subjected to air drying, the evaporation of free cytoplasmic water (Vf) can be instantaneous, and an equilibrium between cell-bound water (Vb) and the environmental water (vapor) potential (psi wv) may be achieved rapidly. In the air-dried state some bacteria survive only for seconds whereas others can tolerate desiccation for thousands, perhaps millions, of years. The desiccated (anhydrobiotic) cell is characterized by its singular lack of water--with contents as low as 0.02 g of H2O g (dry weight)-1. At these levels the monolayer coverage by water of macromolecules, including DNA and proteins, is disturbed. As a consequence the mechanisms that confer desiccation tolerance upon air-dried bacteria are markedly different from those, such as the mechanism of preferential exclusion of compatible solutes, that preserve the integrity of salt-, osmotically, and freeze-thaw-stressed cells. Desiccation tolerance reflects a complex array of interactions at the structural, physiological, and molecular levels. Many of the mechanisms remain cryptic, but it is clear that they involve interactions, such as those between proteins and co-solvents, that derive from the unique properties of the water molecule. A water replacement hypothesis accounts for how the nonreducing disaccharides trehalose and sucrose preserve the integrity of membranes and proteins. Nevertheless, we have virtually no insight into the state of the cytoplasm of an air-dried cell. There is no evidence for any obvious adaptations of proteins that can counter the effects of air drying or for the occurrence of any proteins that provide a direct and a tangible contribution to cell stability. Among the prokaryotes that can exist as anhydrobiotic cells, the cyanobacteria have a marked capacity to do so. One

  7. Advantages and limitations of genomics in prokaryotic taxonomy.

    PubMed

    Sentausa, E; Fournier, P-E

    2013-09-01

    Taxonomic classification is an important field of microbiology, as it enables scientists to identify prokaryotes worldwide. Although the current classification system is still based on the one designed by Carolus Linnaeus, the currently available genomic content of several thousands of sequenced prokaryotic genomes represents a unique source of taxonomic information that should not be ignored. In addition, the development of faster, cheaper and improved sequencing methods has made genomics a tool that has a place in the workflow of a routine microbiology laboratory. Thus, genomics has reached a stage where it may be used in prokaryotic taxonomic classification, with criteria such as the genome index of average nucleotide identity being an alternative to DNA-DNA hybridization. However, several hurdles remain, including the lack of genomic sequences of many prokaryotic taxonomic representatives, and consensus procedures to describe new prokaryotic taxa that do not, as yet, accommodate genomic data. We herein review the advantages and disadvantages of using genomics in prokaryotic taxonomy.

  8. Advantages and limitations of genomics in prokaryotic taxonomy.

    PubMed

    Sentausa, E; Fournier, P-E

    2013-09-01

    Taxonomic classification is an important field of microbiology, as it enables scientists to identify prokaryotes worldwide. Although the current classification system is still based on the one designed by Carolus Linnaeus, the currently available genomic content of several thousands of sequenced prokaryotic genomes represents a unique source of taxonomic information that should not be ignored. In addition, the development of faster, cheaper and improved sequencing methods has made genomics a tool that has a place in the workflow of a routine microbiology laboratory. Thus, genomics has reached a stage where it may be used in prokaryotic taxonomic classification, with criteria such as the genome index of average nucleotide identity being an alternative to DNA-DNA hybridization. However, several hurdles remain, including the lack of genomic sequences of many prokaryotic taxonomic representatives, and consensus procedures to describe new prokaryotic taxa that do not, as yet, accommodate genomic data. We herein review the advantages and disadvantages of using genomics in prokaryotic taxonomy. PMID:23490121

  9. Sites of termination of in vitro DNA synthesis on ultraviolet- and N-acetylaminofluorene-treated phi X174 templates by prokaryotic and eukaryotic DNA polymerases

    SciTech Connect

    Moore, P.D.; Bose, K.K.; Rabkin, S.D.; Strauss, B.S.

    1981-01-01

    In vitro DNA synthesis on a phi X174 template primed with a restriction fragment and catalyzed by the Escherichia coli DNA polymerase I large (Klenow) fragment (pol I) terminates at the nucleotide preceding a site that has been altered by ultraviolet irradiation or treatment with N-acetylaminofluorene. Termination on ultraviolet-irradiated templates is similar when synthesis is catalyzed by E. coli DNA polymerase III holoenzyme (pol III), phage T4DNA polymerase a polymerase ..cap alpha.. from human lymphoma cells, or avian myeloblastosis virus reverse transcriptase. 3' ..-->.. 5' exonuclease activity cannot be detected in the reverse transcriptase and DNA polymerase ..cap alpha.. preparations. On N-acetylaminofluorene templates, pol I, pol III, and T4 polymerase reactions terminate immediately preceding the lesion, whereas reverse transcriptase-catalyzed reactions and, at some positions in the sequence, polymerase ..cap alpha..-catalyzed reactions terminate at the site of the lesion. Substitution of Mn/sup 2 +/ for Mg/sup 2 +/ changes the pattern of pol I-catalyzed termination sites. The data sugest that termination is a complicated process that does not depend exclusively on the 3' ..-->.. 5' exonuclease activity associated with many polymerases.

  10. Sites of termination of in vitro DNA synthesis on ultraviolet- and N-acetylaminofluorene-treated phi X174 templates by prokaryotic and eukaryotic DNA polymerases.

    PubMed

    Moore, P D; Bose, K K; Rabkin, S D; Strauss, B S

    1981-01-01

    In vitro DNA synthesis on a phi X174 template primed with a restriction fragment and catalyzed by the Escherichia coli DNA polymerase I large (Klenow) fragment (pol I) terminates at the nucleotide preceding a site that has been altered by ultraviolet irradiation or treatment with N-acetylaminofluorene. Termination on ultraviolet-irradiated templates is similar when synthesis is catalyzed by E. coli DNA polymerase III holoenzyme (pol III), phage T4 DNA polymerase, a polymerase alpha from human lymphoma cells, or avian myeloblastosis virus reverse transcriptase. 3' leads to 5' exonuclease activity cannot be detected in the reverse transcriptase and DNA polymerase alpha preparations. On N-acetylaminofluorene templates, pol I, pol III, and T4 polymerase reactions terminate immediately preceding the lesion, whereas reverse transcriptase-catalyzed reactions and, at some positions in the sequence, polymerase alpha-catalyzed reactions terminate at the site of the lesion. Substitution of Mn2+ for Mg2+ changes the pattern of pol I-catalyzed termination sites. The data suggest that termination is a complicated process that does not depend exclusively on the 3' leads to 5' exonuclease activity associated with many polymerases.

  11. Bub3–BubR1-dependent sequestration of Cdc20Fizzy at DNA breaks facilitates the correct segregation of broken chromosomes

    PubMed Central

    Derive, Nicolas; Landmann, Cedric; Montembault, Emilie; Claverie, Marie-Charlotte; Pierre-Elies, Priscillia; Goutte-Gattat, Damien; Founounou, Nabila; McCusker, Derek

    2015-01-01

    The presence of DNA double-strand breaks during mitosis is particularly challenging for the cell, as it produces broken chromosomes lacking a centromere. This situation can cause genomic instability resulting from improper segregation of the broken fragments into daughter cells. We recently uncovered a process by which broken chromosomes are faithfully transmitted via the BubR1-dependent tethering of the two broken chromosome ends. However, the mechanisms underlying BubR1 recruitment and function on broken chromosomes were largely unknown. We show that BubR1 requires interaction with Bub3 to localize on the broken chromosome fragments and to mediate their proper segregation. We also find that Cdc20, a cofactor of the E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), accumulates on DNA breaks in a BubR1 KEN box–dependent manner. A biosensor for APC/C activity demonstrates a BubR1-dependent local inhibition of APC/C around the segregating broken chromosome. We therefore propose that the Bub3–BubR1 complex on broken DNA inhibits the APC/C locally via the sequestration of Cdc20, thus promoting proper transmission of broken chromosomes. PMID:26553926

  12. Bub3-BubR1-dependent sequestration of Cdc20Fizzy at DNA breaks facilitates the correct segregation of broken chromosomes.

    PubMed

    Derive, Nicolas; Landmann, Cedric; Montembault, Emilie; Claverie, Marie-Charlotte; Pierre-Elies, Priscillia; Goutte-Gattat, Damien; Founounou, Nabila; McCusker, Derek; Royou, Anne

    2015-11-01

    The presence of DNA double-strand breaks during mitosis is particularly challenging for the cell, as it produces broken chromosomes lacking a centromere. This situation can cause genomic instability resulting from improper segregation of the broken fragments into daughter cells. We recently uncovered a process by which broken chromosomes are faithfully transmitted via the BubR1-dependent tethering of the two broken chromosome ends. However, the mechanisms underlying BubR1 recruitment and function on broken chromosomes were largely unknown. We show that BubR1 requires interaction with Bub3 to localize on the broken chromosome fragments and to mediate their proper segregation. We also find that Cdc20, a cofactor of the E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), accumulates on DNA breaks in a BubR1 KEN box-dependent manner. A biosensor for APC/C activity demonstrates a BubR1-dependent local inhibition of APC/C around the segregating broken chromosome. We therefore propose that the Bub3-BubR1 complex on broken DNA inhibits the APC/C locally via the sequestration of Cdc20, thus promoting proper transmission of broken chromosomes.

  13. Conformation and segregation of nucleoids accompanying cell length extension after completion of a single round of DNA replication in germinated and outgrowing Bacillus subtilis spores.

    PubMed

    Hariharan, I K; Czolij, R; Wake, R G

    1982-05-01

    When germinating spores of the temperature-sensitive DNA initiation mutant of Bacillus subtilis TsB134 are shifted to the restrictive temperature at a time such that just one or two rounds of replication are accomplished, the completed, nonreplicating nucleoids that form eventually adopt a doublet conformation. This conformation has now been observed after fixation by glutaraldehyde or osmium tetroxide, as well as by Formalin as found previously. The doublet was observed in media of different degrees of richness and under both light and electron microscopes. Electron micrographs of serial sections through the doublet were consistent with its formation by the gradual pulling apart of a single mass of DNA into two lobes. A systematic study was made of the effect of the time of shifting from the permissive to the restrictive temperature and of the restrictive temperature used on the number of nucleoids segregating within the outgrowing rod. It was established that the doublet nucleoid behaved as a single unit in replication control and segregation in both rich and poor media. Measurement of the relative position of the two segregating nucleoids within the outgrowing rod after completion of just one round of replication yielded quantitative information on the segregation and cell length extension processes. Segregation was accompanied by cell length extension at approximately equal rates on both sides of each nucleoid. Furthermore, the data were consistent with an exponential increase in such an extension with time over the early and major portion of the period studied, but it was not possible to rule out other models of length extension.

  14. Reconstitution of a prokaryotic minus end-tracking system using TubRC centromeric complexes and tubulin-like protein TubZ filaments.

    PubMed

    Fink, Gero; Löwe, Jan

    2015-04-14

    Segregation of DNA is a fundamental process during cell division. The mechanism of prokaryotic DNA segregation is largely unknown, but several low-copy-number plasmids encode cytomotive filament systems of the actin type and tubulin type important for plasmid inheritance. Of these cytomotive filaments, only actin-like systems are mechanistically well characterized. In contrast, the mechanism by which filaments of tubulin-like TubZ protein mediate DNA motility is unknown. To understand polymer-driven DNA transport, we reconstituted the filaments of TubZ protein (TubZ filaments) from Bacillus thuringiensis pBtoxis plasmid with their centromeric TubRC complexes containing adaptor protein TubR and tubC DNA. TubZ alone assembled into polar filaments, which annealed laterally and treadmilled. Using single-molecule imaging, we show that TubRC complexes were not pushed by filament polymerization; instead, they processively tracked shrinking, depolymerizing minus ends. Additionally, the TubRC complex nucleated TubZ filaments and allowed for treadmilling. Overall, our results indicate a pulling mechanism for DNA transport by the TubZRC system. The discovered minus end-tracking property of the TubRC complex expands the mechanistic diversity of the prokaryotic cytoskeleton.

  15. Theory of prokaryotic genome evolution

    PubMed Central

    Sela, Itamar; Wolf, Yuri I.; Koonin, Eugene V.

    2016-01-01

    Bacteria and archaea typically possess small genomes that are tightly packed with protein-coding genes. The compactness of prokaryotic genomes is commonly perceived as evidence of adaptive genome streamlining caused by strong purifying selection in large microbial populations. In such populations, even the small cost incurred by nonfunctional DNA because of extra energy and time expenditure is thought to be sufficient for this extra genetic material to be eliminated by selection. However, contrary to the predictions of this model, there exists a consistent, positive correlation between the strength of selection at the protein sequence level, measured as the ratio of nonsynonymous to synonymous substitution rates, and microbial genome size. Here, by fitting the genome size distributions in multiple groups of prokaryotes to predictions of mathematical models of population evolution, we show that only models in which acquisition of additional genes is, on average, slightly beneficial yield a good fit to genomic data. These results suggest that the number of genes in prokaryotic genomes reflects the equilibrium between the benefit of additional genes that diminishes as the genome grows and deletion bias (i.e., the rate of deletion of genetic material being slightly greater than the rate of acquisition). Thus, new genes acquired by microbial genomes, on average, appear to be adaptive. The tight spacing of protein-coding genes likely results from a combination of the deletion bias and purifying selection that efficiently eliminates nonfunctional, noncoding sequences. PMID:27702904

  16. Co-evolution of segregation guide DNA motifs and the FtsK translocase in bacteria: identification of the atypical Lactococcus lactis KOPS motif

    PubMed Central

    Nolivos, Sophie; Touzain, Fabrice; Pages, Carine; Coddeville, Michele; Rousseau, Philippe; El Karoui, Meriem; Le Bourgeois, Pascal; Cornet, François

    2012-01-01

    Bacteria use the global bipolarization of their chromosomes into replichores to control the dynamics and segregation of their genome during the cell cycle. This involves the control of protein activities by recognition of specific short DNA motifs whose orientation along the chromosome is highly skewed. The KOPS motifs act in chromosome segregation by orienting the activity of the FtsK DNA translocase towards the terminal replichore junction. KOPS motifs have been identified in γ-Proteobacteria and in Bacillus subtilis as closely related G-rich octamers. We have identified the KOPS motif of Lactococcus lactis, a model bacteria of the Streptococcaceae family harbouring a compact and low GC% genome. This motif, 5′-GAAGAAG-3, was predicted in silico using the occurrence and skew characteristics of known KOPS motifs. We show that it is specifically recognized by L. lactis FtsK in vitro and controls its activity in vivo. L. lactis KOPS is thus an A-rich heptamer motif. Our results show that KOPS-controlled chromosome segregation is conserved in Streptococcaceae but that KOPS may show important variation in sequence and length between bacterial families. This suggests that FtsK adapts to its host genome by selecting motifs with convenient occurrence frequencies and orientation skews to orient its activity. PMID:22373923

  17. Cyclic AMP in prokaryotes.

    PubMed Central

    Botsford, J L; Harman, J G

    1992-01-01

    Cyclic AMP (cAMP) is found in a variety of prokaryotes including both eubacteria and archaebacteria. cAMP plays a role in regulating gene expression, not only for the classic inducible catabolic operons, but also for other categories. In the enteric coliforms, the effects of cAMP on gene expression are mediated through its interaction with and allosteric modification of a cAMP-binding protein (CRP). The CRP-cAMP complex subsequently binds specific DNA sequences and either activates or inhibits transcription depending upon the positioning of the complex relative to the promoter. Enteric coliforms have provided a model to explore the mechanisms involved in controlling adenylate cyclase activity, in regulating adenylate cyclase synthesis, and in performing detailed examinations of CRP-cAMP complex-regulated gene expression. This review summarizes recent work focused on elucidating the molecular mechanisms of CRP-cAMP complex-mediated processes. For other bacteria, less detail is known. cAMP has been implicated in regulating antibiotic production, phototrophic growth, and pathogenesis. A role for cAMP has been suggested in nitrogen fixation. Often the only data that support cAMP involvement in these processes includes cAMP measurement, detection of the enzymes involved in cAMP metabolism, or observed effects of high concentrations of the nucleotide on cell growth. PMID:1315922

  18. Bioinformatics of prokaryotic RNAs.

    PubMed

    Backofen, Rolf; Amman, Fabian; Costa, Fabrizio; Findeiß, Sven; Richter, Andreas S; Stadler, Peter F

    2014-01-01

    The genome of most prokaryotes gives rise to surprisingly complex transcriptomes, comprising not only protein-coding mRNAs, often organized as operons, but also harbors dozens or even hundreds of highly structured small regulatory RNAs and unexpectedly large levels of anti-sense transcripts. Comprehensive surveys of prokaryotic transcriptomes and the need to characterize also their non-coding components is heavily dependent on computational methods and workflows, many of which have been developed or at least adapted specifically for the use with bacterial and archaeal data. This review provides an overview on the state-of-the-art of RNA bioinformatics focusing on applications to prokaryotes.

  19. Bioinformatics of prokaryotic RNAs

    PubMed Central

    Backofen, Rolf; Amman, Fabian; Costa, Fabrizio; Findeiß, Sven; Richter, Andreas S; Stadler, Peter F

    2014-01-01

    The genome of most prokaryotes gives rise to surprisingly complex transcriptomes, comprising not only protein-coding mRNAs, often organized as operons, but also harbors dozens or even hundreds of highly structured small regulatory RNAs and unexpectedly large levels of anti-sense transcripts. Comprehensive surveys of prokaryotic transcriptomes and the need to characterize also their non-coding components is heavily dependent on computational methods and workflows, many of which have been developed or at least adapted specifically for the use with bacterial and archaeal data. This review provides an overview on the state-of-the-art of RNA bioinformatics focusing on applications to prokaryotes. PMID:24755880

  20. Bioinformatics of prokaryotic RNAs.

    PubMed

    Backofen, Rolf; Amman, Fabian; Costa, Fabrizio; Findeiß, Sven; Richter, Andreas S; Stadler, Peter F

    2014-01-01

    The genome of most prokaryotes gives rise to surprisingly complex transcriptomes, comprising not only protein-coding mRNAs, often organized as operons, but also harbors dozens or even hundreds of highly structured small regulatory RNAs and unexpectedly large levels of anti-sense transcripts. Comprehensive surveys of prokaryotic transcriptomes and the need to characterize also their non-coding components is heavily dependent on computational methods and workflows, many of which have been developed or at least adapted specifically for the use with bacterial and archaeal data. This review provides an overview on the state-of-the-art of RNA bioinformatics focusing on applications to prokaryotes. PMID:24755880

  1. Analysis of inserts in prokaryote genomes

    NASA Astrophysics Data System (ADS)

    Cristea, Paul Dan; Tuduce, Rodica Aurora

    2008-02-01

    Nucleotide genomic signals satisfy regularities that reveal restrictions in the distribution of nucleotides and pairs of nucleotides along DNA sequences. Structurally, a chromosome appears to be more than a plain text, by satisfying symmetry constrains that evoke the rhythm and rhyme in poems. These regularities make it easy to identify exogenous inserts in the genomes of prokaryotes, because such inserts obey different regularities than the background sequence. The paper presents instances of inserts found in the genomes of Bacillus subtilis, Mycobacterium tuberculosis and other prokaryotes. Inserts of exogenous material are frequently accompanied by complementary inserts tending to restore the original constrains.

  2. Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA.

    PubMed Central

    Nunnari, J; Marshall, W F; Straight, A; Murray, A; Sedat, J W; Walter, P

    1997-01-01

    To gain insight into the process of mitochondrial transmission in yeast, we directly labeled mitochondrial proteins and mitochondrial DNA (mtDNA) and observed their fate after the fusion of two cells. To this end, mitochondrial proteins in haploid cells of opposite mating type were labeled with different fluorescent dyes and observed by fluorescence microscopy after mating of the cells. Parental mitochondrial protein markers rapidly redistributed and colocalized throughout zygotes, indicating that during mating, parental mitochondria fuse and their protein contents intermix, consistent with results previously obtained with a single parentally derived protein marker. Analysis of the three-dimensional structure and dynamics of mitochondria in living cells with wide-field fluorescence microscopy indicated that mitochondria form a single dynamic network, whose continuity is maintained by a balanced frequency of fission and fusion events. Thus, the complete mixing of mitochondrial proteins can be explained by the formation of one continuous mitochondrial compartment after mating. In marked contrast to the mixing of parental mitochondrial proteins after fusion, mtDNA (labeled with the thymidine analogue 5-bromodeoxyuridine) remained distinctly localized to one half of the zygotic cell. This observation provides a direct explanation for the genetically observed nonrandom patterns of mtDNA transmission. We propose that anchoring of mtDNA within the organelle is linked to an active segregation mechanism that ensures accurate inheritance of mtDNA along with the organelle. Images PMID:9243504

  3. Ecology of prokaryotic viruses.

    PubMed

    Weinbauer, Markus G

    2004-05-01

    The finding that total viral abundance is higher than total prokaryotic abundance and that a significant fraction of the prokaryotic community is infected with phages in aquatic systems has stimulated research on the ecology of prokaryotic viruses and their role in ecosystems. This review treats the ecology of prokaryotic viruses ('phages') in marine, freshwater and soil systems from a 'virus point of view'. The abundance of viruses varies strongly in different environments and is related to bacterial abundance or activity suggesting that the majority of the viruses found in the environment are typically phages. Data on phage diversity are sparse but indicate that phages are extremely diverse in natural systems. Lytic phages are predators of prokaryotes, whereas lysogenic and chronic infections represent a parasitic interaction. Some forms of lysogeny might be described best as mutualism. The little existing ecological data on phage populations indicate a large variety of environmental niches and survival strategies. The host cell is the main resource for phages and the resource quality, i.e., the metabolic state of the host cell, is a critical factor in all steps of the phage life cycle. Virus-induced mortality of prokaryotes varies strongly on a temporal and spatial scale and shows that phages can be important predators of bacterioplankton. This mortality and the release of cell lysis products into the environment can strongly influence microbial food web processes and biogeochemical cycles. Phages can also affect host diversity, e.g., by 'killing the winner' and keeping in check competitively dominant species or populations. Moreover, they mediate gene transfer between prokaryotes, but this remains largely unknown in the environment. Genomics or proteomics are providing us now with powerful tools in phage ecology, but final testing will have to be performed in the environment. PMID:15109783

  4. Ecology of prokaryotic viruses.

    PubMed

    Weinbauer, Markus G

    2004-05-01

    The finding that total viral abundance is higher than total prokaryotic abundance and that a significant fraction of the prokaryotic community is infected with phages in aquatic systems has stimulated research on the ecology of prokaryotic viruses and their role in ecosystems. This review treats the ecology of prokaryotic viruses ('phages') in marine, freshwater and soil systems from a 'virus point of view'. The abundance of viruses varies strongly in different environments and is related to bacterial abundance or activity suggesting that the majority of the viruses found in the environment are typically phages. Data on phage diversity are sparse but indicate that phages are extremely diverse in natural systems. Lytic phages are predators of prokaryotes, whereas lysogenic and chronic infections represent a parasitic interaction. Some forms of lysogeny might be described best as mutualism. The little existing ecological data on phage populations indicate a large variety of environmental niches and survival strategies. The host cell is the main resource for phages and the resource quality, i.e., the metabolic state of the host cell, is a critical factor in all steps of the phage life cycle. Virus-induced mortality of prokaryotes varies strongly on a temporal and spatial scale and shows that phages can be important predators of bacterioplankton. This mortality and the release of cell lysis products into the environment can strongly influence microbial food web processes and biogeochemical cycles. Phages can also affect host diversity, e.g., by 'killing the winner' and keeping in check competitively dominant species or populations. Moreover, they mediate gene transfer between prokaryotes, but this remains largely unknown in the environment. Genomics or proteomics are providing us now with powerful tools in phage ecology, but final testing will have to be performed in the environment.

  5. In vivo analysis of polyadenylation in prokaryotes.

    PubMed

    Mohanty, Bijoy K; Kushner, Sidney R

    2014-01-01

    Polyadenylation at the 3' ends of mRNAs, tRNAs, rRNAs, and sRNAs plays important roles in RNA metabolism in both prokaryotes and eukaryotes. However, the nature of poly(A) tails in prokaryotes is distinct compared to their eukaryotic counterparts. Specifically, depending on the organism, eukaryotic poly(A) tails average between 50 and >200 nt and can easily be isolated by several techniques involving oligo(dT)-dependent cDNA amplification. In contrast, the bulk of the poly(A) tails present on prokaryotic transcripts is relatively short (<10 nt) and is difficult to characterize using similar techniques. This chapter describes methods that can circumvent these problems. For example, we discuss how to isolate total RNA and characterize its overall polyadenylation status employing a poly(A) sizing assay. Furthermore, we describe a technique involving RNase H treatment of total RNA followed by northern analysis in order to distinguish length of poly(A) tails on various types of transcripts. Finally, we outline a useful procedure to clone the poly(A) tails of specific transcripts using 5'-3' end-ligated RNA, which is independent of oligo(dT)-dependent cDNA amplification. These approaches are particularly helpful in analyzing transcripts with either short or long poly(A) tails both in prokaryotes and eukaryotes.

  6. Application of subtracted gDNA microarray-assisted Bulked Segregant Analysis for rapid discovery of molecular markers associated with day-neutrality in strawberry (Fragaria x ananassa).

    PubMed

    Gor, Mian Chee; Mantri, Nitin; Pang, Edwin

    2016-01-01

    A Fragaria Discovery Panel (FDP; strawberry-specific SDA) containing 287 features was constructed by subtracting the pooled gDNA of nine non-angiosperm species from the pooled gDNA of five strawberry genotypes. This FDP was used for Bulk Segregant Analysis (BSA) to enable identification of molecular markers associated with day-neutrality. Analysis of hybridisation patterns of a short day (SD) DNA bulk and three day-neutral (DN) DNA bulks varying in flowering strength allowed identification of a novel feature, FaP2E11, closely linked to CYTOKININ OXIDASE 1 (CKX1) gene possibly involved in promoting flowering under non-inductive condition. The signal intensities of FaP2E11 feature obtained from the strong DN bulk (DN1) is three fold higher than the short day bulk (SD), indicating that the putative marker may linked to a CKX1 variant allele with lower enzyme activity. We propose a model for flowering regulation based on the hypothesis that flowering strength may be regulated by the copy number of FaP2E11-linked CKX1 alleles. This study demonstrates the feasibility of the SDA-based BSA approach for the identification of molecular markers associated with day-neutrality in strawberry. This innovative strategy is an efficient and cost-effective approach for molecular marker discovery. PMID:27586242

  7. Application of subtracted gDNA microarray-assisted Bulked Segregant Analysis for rapid discovery of molecular markers associated with day-neutrality in strawberry (Fragaria x ananassa).

    PubMed

    Gor, Mian Chee; Mantri, Nitin; Pang, Edwin

    2016-01-01

    A Fragaria Discovery Panel (FDP; strawberry-specific SDA) containing 287 features was constructed by subtracting the pooled gDNA of nine non-angiosperm species from the pooled gDNA of five strawberry genotypes. This FDP was used for Bulk Segregant Analysis (BSA) to enable identification of molecular markers associated with day-neutrality. Analysis of hybridisation patterns of a short day (SD) DNA bulk and three day-neutral (DN) DNA bulks varying in flowering strength allowed identification of a novel feature, FaP2E11, closely linked to CYTOKININ OXIDASE 1 (CKX1) gene possibly involved in promoting flowering under non-inductive condition. The signal intensities of FaP2E11 feature obtained from the strong DN bulk (DN1) is three fold higher than the short day bulk (SD), indicating that the putative marker may linked to a CKX1 variant allele with lower enzyme activity. We propose a model for flowering regulation based on the hypothesis that flowering strength may be regulated by the copy number of FaP2E11-linked CKX1 alleles. This study demonstrates the feasibility of the SDA-based BSA approach for the identification of molecular markers associated with day-neutrality in strawberry. This innovative strategy is an efficient and cost-effective approach for molecular marker discovery.

  8. Application of subtracted gDNA microarray-assisted Bulked Segregant Analysis for rapid discovery of molecular markers associated with day-neutrality in strawberry (Fragaria x ananassa)

    NASA Astrophysics Data System (ADS)

    Gor, Mian Chee; Mantri, Nitin; Pang, Edwin

    2016-09-01

    A Fragaria Discovery Panel (FDP; strawberry-specific SDA) containing 287 features was constructed by subtracting the pooled gDNA of nine non-angiosperm species from the pooled gDNA of five strawberry genotypes. This FDP was used for Bulk Segregant Analysis (BSA) to enable identification of molecular markers associated with day-neutrality. Analysis of hybridisation patterns of a short day (SD) DNA bulk and three day-neutral (DN) DNA bulks varying in flowering strength allowed identification of a novel feature, FaP2E11, closely linked to CYTOKININ OXIDASE 1 (CKX1) gene possibly involved in promoting flowering under non-inductive condition. The signal intensities of FaP2E11 feature obtained from the strong DN bulk (DN1) is three fold higher than the short day bulk (SD), indicating that the putative marker may linked to a CKX1 variant allele with lower enzyme activity. We propose a model for flowering regulation based on the hypothesis that flowering strength may be regulated by the copy number of FaP2E11-linked CKX1 alleles. This study demonstrates the feasibility of the SDA-based BSA approach for the identification of molecular markers associated with day-neutrality in strawberry. This innovative strategy is an efficient and cost-effective approach for molecular marker discovery.

  9. Application of subtracted gDNA microarray-assisted Bulked Segregant Analysis for rapid discovery of molecular markers associated with day-neutrality in strawberry (Fragaria x ananassa)

    PubMed Central

    Gor, Mian Chee; Mantri, Nitin; Pang, Edwin

    2016-01-01

    A Fragaria Discovery Panel (FDP; strawberry-specific SDA) containing 287 features was constructed by subtracting the pooled gDNA of nine non-angiosperm species from the pooled gDNA of five strawberry genotypes. This FDP was used for Bulk Segregant Analysis (BSA) to enable identification of molecular markers associated with day-neutrality. Analysis of hybridisation patterns of a short day (SD) DNA bulk and three day-neutral (DN) DNA bulks varying in flowering strength allowed identification of a novel feature, FaP2E11, closely linked to CYTOKININ OXIDASE 1 (CKX1) gene possibly involved in promoting flowering under non-inductive condition. The signal intensities of FaP2E11 feature obtained from the strong DN bulk (DN1) is three fold higher than the short day bulk (SD), indicating that the putative marker may linked to a CKX1 variant allele with lower enzyme activity. We propose a model for flowering regulation based on the hypothesis that flowering strength may be regulated by the copy number of FaP2E11-linked CKX1 alleles. This study demonstrates the feasibility of the SDA-based BSA approach for the identification of molecular markers associated with day-neutrality in strawberry. This innovative strategy is an efficient and cost-effective approach for molecular marker discovery. PMID:27586242

  10. Gigantism in a Bacterium, Epulopiscium fishelsoni, Correlates with Complex Patterns in Arrangement, Quantity, and Segregation of DNA

    PubMed Central

    Bresler, V.; Montgomery, W. L.; Fishelson, L.; Pollak, P. E.

    1998-01-01

    Epulopiscium fishelsoni, gut symbiont of the brown surgeonfish (Acanthurus nigrofuscus) in the Red Sea, attains a larger size than any other eubacterium, varies 10- to 20-fold in length (and >2,000-fold in volume), and undergoes a complex daily life cycle. In early morning, nucleoids contain highly condensed DNA in elongate, chromosome-like structures which are physically separated from the general cytoplasm. Cell division involves production of two (rarely three) nucleoids within a cell, deposition of cell walls around expanded nucleoids, and emergence of daughter cells from the parent cell. Fluorescence measurements of DNA, RNA, and other cell components indicate the following. DNA quantity is proportional to cell volume over cell lengths of ∼30 μm to >500 μm. For cells of a given size, nucleoids of cells with two nucleoids (binucleoid) contain approximately equal amounts of DNA. And each nucleoid of a binucleoid cell contains one-half the DNA of the single nucleoid in a uninucleoid cell of the same size. The life cycle involves approximately equal subdivision of DNA among daughter cells, formation of apical caps of condensed DNA from previously decondensed and diffusely distributed DNA, and “pinching” of DNA near the middle of the cell in the absence of new wall formation. Mechanisms underlying these patterns remain unclear, but formation of daughter nucleoids and cells occurs both during diurnal periods of host feeding and bacterial cell growth and during nocturnal periods of host inactivity when mean bacterial cell size declines. PMID:9791108

  11. Lack of the H-NS Protein Results in Extended and Aberrantly Positioned DNA during Chromosome Replication and Segregation in Escherichia coli

    PubMed Central

    Helgesen, Emily; Fossum-Raunehaug, Solveig

    2016-01-01

    ABSTRACT The architectural protein H-NS binds nonspecifically to hundreds of sites throughout the chromosome and can multimerize to stiffen segments of DNA as well as to form DNA-protein-DNA bridges. H-NS has been suggested to contribute to the orderly folding of the Escherichia coli chromosome in the highly compacted nucleoid. In this study, we investigated the positioning and dynamics of the origins, the replisomes, and the SeqA structures trailing the replication forks in cells lacking the H-NS protein. In H-NS mutant cells, foci of SeqA, replisomes, and origins were irregularly positioned in the cell. Further analysis showed that the average distance between the SeqA structures and the replisome was increased by ∼100 nm compared to that in wild-type cells, whereas the colocalization of SeqA-bound sister DNA behind replication forks was not affected. This result may suggest that H-NS contributes to the folding of DNA along adjacent segments. H-NS mutant cells were found to be incapable of adopting the distinct and condensed nucleoid structures characteristic of E. coli cells growing rapidly in rich medium. It appears as if H-NS mutant cells adopt a “slow-growth” type of chromosome organization under nutrient-rich conditions, which leads to a decreased cellular DNA content. IMPORTANCE It is not fully understood how and to what extent nucleoid-associated proteins contribute to chromosome folding and organization during replication and segregation in Escherichia coli. In this work, we find in vivo indications that cells lacking the nucleoid-associated protein H-NS have a lower degree of DNA condensation than wild-type cells. Our work suggests that H-NS is involved in condensing the DNA along adjacent segments on the chromosome and is not likely to tether newly replicated strands of sister DNA. We also find indications that H-NS is required for rapid growth with high DNA content and for the formation of a highly condensed nucleoid structure under such

  12. Prokaryote diversity and taxonomy: current status and future challenges.

    PubMed

    Oren, Aharon

    2004-04-29

    The prokaryotes are by far the most abundant organisms inhabiting planet Earth. They are also by far the most diverse, both metabolically and phylogenetically; they encompass the Bacteria and the Archaea, two out of the three major divisions of living organisms. The current prokaryote species classification is based on a combination of genomic and phenotypic properties. The recommended cut-off value of 70% DNA-DNA similarity to delineate species signifies an extremely broad species definition for the prokaryotes compared with the higher eukaryotes. The number of validly named species of prokaryotes is currently slightly more than 6200. However, on the basis of small-subunit rDNA characterization of whole communities and other approaches, the more exact number of species present can be inferred to be at least two orders of magnitude larger. Classic culturing methods based on colony formation on agar are generally unsatisfactory for the recovery of bacteria from the environment. Many of the most abundant prokaryotes in nature have not yet been brought into culture. Some of these may thrive by means of as yet unknown modes of energy generation. Several novel methods have recently enabled the isolation of some interesting organisms of environmental significance. A better coverage of the prokaryote diversity on Earth depends on such innovative approaches, combined with appropriate funding.

  13. Coddling Segregation

    ERIC Educational Resources Information Center

    Josey, E. J.

    1971-01-01

    The American Library Association's (ALA) Black Caucus expects that the ALA Intellectual Freedom Committee will proceed to carry out the mandate--to censure and bring sanctions against those librarians and libraries that provide service to segregated schools established to circumvent the U. S. Supreme Court Decision. (Author/MF)

  14. In vitro replication by prokaryotic and eukaryotic polymerases on DNA templates containing site-specific and stereospecific benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide adducts.

    PubMed

    Chary, P; Lloyd, R S

    1995-04-25

    DNA adducts of the environmental carcinogen benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) interact stereospecifically with prokaryotic and eukaryotic polymerases in vitro. Toward understanding the capacity to replicate past different diastereomers of BPDE at specific sites in DNA, six deoxyoligonucleotides, each 33 bases long, were constructed with stereochemically defined BPDE adducts on adenine N6 at position two of the human N-ras codon 61. Four polymerases that were studied under single encounters with the template-primer complex terminated synthesis one base 3' to the lesion with all the adducted templates. When multiple encounters between polymerase and substrate were permitted, each of the polymerases analyzed revealed a unique pattern for a given adducted template. The general replication pattern was encompassed under two categories, reflecting the significance of the R and S configurations of C10 of the pyrenyl ring attached to the single-stranded DNA template. Furthermore, within each of these categories, every polymerase demonstrated distinct quantitative differences in product accumulation at a given site, for the various adducted templates. Among the polymerases utilized in this study, exonuclease-deficient Klenow fragment of polymerase I (exo- KF) exhibited the most efficient translesion synthesis resulting in approximately 16% full-length products with the modified templates bearing adducts with C10-S configuration. In contrast, chain elongation with bacteriophage T4 DNA polymerase bearing an active 3'-->5' exonucleolytic activity was most strongly inhibited by all six BPDE-adducted templates. Misincorporation of A opposite the adduct occurred in all the templates when polymerized with Sequenase, whereas exo- KF preferentially incorporated C opposite the C10-R BPDE adducts and A opposite the C10-S BPDE adducts.

  15. Structural and functional conservation of the human homolog of the Schizosaccharomyces pombe rad2 gene, which is required for chromosome segregation and recovery from DNA damage.

    PubMed Central

    Murray, J M; Tavassoli, M; al-Harithy, R; Sheldrick, K S; Lehmann, A R; Carr, A M; Watts, F Z

    1994-01-01

    The rad2 mutant of Schizosaccharomyces pombe is sensitive to UV irradiation and deficient in the repair of UV damage. In addition, it has a very high degree of chromosome loss and/or nondisjunction. We have cloned the rad2 gene and have shown it to be a member of the Saccharomyces cerevisiae RAD2/S. pombe rad13/human XPG family. Using degenerate PCR, we have cloned the human homolog of the rad2 gene. Human cDNA has 55% amino acid sequence identity to the rad2 gene and is able to complement the UV sensitivity of the rad2 null mutant. We have thus isolated a novel human gene which is likely to be involved both in controlling the fidelity of chromosome segregation and in the repair of UV-induced DNA damage. Its involvement in two fundamental processes for maintaining chromosomal integrity suggests that it is likely to be an important component of cancer avoidance mechanisms. Images PMID:8007985

  16. Analysis of branched DNA replication and recombination intermediates from prokaryotic cells by two-dimensional (2D) native-native agarose gel electrophoresis.

    PubMed

    Robinson, Nicholas P

    2013-01-01

    Branched DNA molecules are generated by the essential processes of replication and recombination. Owing to their distinctive extended shapes, these intermediates migrate differently from linear double-stranded DNA under certain electrophoretic conditions. However, these branched species exist in the cell at much low abundance than the bulk linear DNA. Consequently, branched molecules cannot be visualized by conventional electrophoresis and ethidium bromide staining. Two-dimensional native-native agarose electrophoresis has therefore been developed as a method to facilitate the separation and visualization of branched replication and recombination intermediates. A wide variety of studies have employed this technique to examine branched molecules in eukaryotic, archaeal, and bacterial cells, providing valuable insights into how DNA is duplicated and repaired in all three domains of life.

  17. Keeping the Wolves at Bay: Antitoxins of Prokaryotic Type II Toxin-Antitoxin Systems.

    PubMed

    Chan, Wai Ting; Espinosa, Manuel; Yeo, Chew Chieng

    2016-01-01

    In their initial stages of discovery, prokaryotic toxin-antitoxin (TA) systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I-VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA antitoxins. We shall

  18. Keeping the Wolves at Bay: Antitoxins of Prokaryotic Type II Toxin-Antitoxin Systems

    PubMed Central

    Chan, Wai Ting; Espinosa, Manuel; Yeo, Chew Chieng

    2016-01-01

    In their initial stages of discovery, prokaryotic toxin-antitoxin (TA) systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I–VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA antitoxins. We shall

  19. Keeping the Wolves at Bay: Antitoxins of Prokaryotic Type II Toxin-Antitoxin Systems.

    PubMed

    Chan, Wai Ting; Espinosa, Manuel; Yeo, Chew Chieng

    2016-01-01

    In their initial stages of discovery, prokaryotic toxin-antitoxin (TA) systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I-VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA antitoxins. We shall

  20. Mutations reducing replication from R-loops suppress the defects of growth, chromosome segregation and DNA supercoiling in cells lacking topoisomerase I and RNase HI activity.

    PubMed

    Usongo, Valentine; Martel, Makisha; Balleydier, Aurélien; Drolet, Marc

    2016-04-01

    R-loop formation occurs when the nascent RNA hybridizes with the template DNA strand behind the RNA polymerase. R-loops affect a wide range of cellular processes and their use as origins of replication was the first function attributed to them. In Escherichia coli, R-loop formation is promoted by the ATP-dependent negative supercoiling activity of gyrase (gyrA and gyrB) and is inhibited by topoisomerase (topo) I (topA) relaxing transcription-induced negative supercoiling. RNase HI (rnhA) degrades the RNA moiety of R-loops. The depletion of RNase HI activity in topA null mutants was previously shown to lead to extensive DNA relaxation, due to DNA gyrase inhibition, and to severe growth and chromosome segregation defects that were partially corrected by overproducing topo III (topB). Here, DNA gyrase assays in crude cell extracts showed that the ATP-dependent activity (supercoiling) of gyrase but not its ATP-independent activity (relaxation) was inhibited in topA null cells lacking RNase HI. To characterize the cellular event(s) triggered by the absence of RNase HI, we performed a genetic screen for suppressors of the growth defect of topA rnhA null cells. Suppressors affecting genes in replication (holC2::aph and dnaT18::aph) nucleotide metabolism (dcd49::aph), RNA degradation (rne59::aph) and fimbriae synthesis (fimD22::aph) were found to reduce replication from R-loops and to restore supercoiling, thus pointing to a correlation between R-loop-dependent replication in topA rnhA mutants and the inhibition of gyrase activity and growth. Interestingly, the position of fimD on the E. coli chromosome corresponds to the site of one of the five main putative origins of replication from R-loops in rnhA null cells recently identified by next-generation sequencing, thus suggesting that the fimD22::aph mutation inactivated one of these origins. Furthermore, we show that topo III overproduction is unable to complement the growth defect of topA rnhA null mutants at low

  1. Thiol biochemistry of prokaryotes

    NASA Technical Reports Server (NTRS)

    Fahey, Robert C.

    1986-01-01

    The present studies have shown that GSH metabolism arose in the purple bacteria and cyanobacteria where it functions to protect against oxygen toxicity. Evidence was obtained indicating that GSH metabolism was incorporated into eucaryotes via the endosymbiosis giving rise to mitochrondria and chloroplasts. Aerobic bacteria lacking GSH utilize other thiols for apparently similar functions, the thiol being coenzyme A in Gram positive bacteria and chi-glutamylcysteine in the halobacteria. The thiol biochemistry of prokaryotes is thus seen to be much more highly diversified than that of eucaryotes and much remains to be learned about this subject.

  2. Do prokaryotes contain microtubules?

    NASA Technical Reports Server (NTRS)

    Bermudes, D.; Hinkle, G.; Margulis, L.

    1994-01-01

    In eukaryotic cells, microtubules are 24-nm-diameter tubular structures composed of a class of conserved proteins called tubulin. They are involved in numerous cell functions including ciliary motility, nerve cell elongation, pigment migration, centrosome formation, and chromosome movement. Although cytoplasmic tubules and fibers have been observed in bacteria, some with diameters similar to those of eukaryotes, no homologies to eukaryotic microtubules have been established. Certain groups of bacteria including azotobacters, cyanobacteria, enteric bacteria, and spirochetes have been frequently observed to possess microtubule-like structures, and others, including archaebacteria, have been shown to be sensitive to drugs that inhibit the polymerization of microtubules. Although little biochemical or molecular biological information is available, the differences observed among these prokaryotic structures suggest that their composition generally differs among themselves as well as from that of eukaryotes. We review the distribution of cytoplasmic tubules in prokaryotes, even though, in all cases, their functions remain unknown. At least some tend to occur in cells that are large, elongate, and motile, suggesting that they may be involved in cytoskeletal functions, intracellular motility, or transport activities comparable to those performed by eukaryotic microtubules. In Escherichia coli, the FtsZ protein is associated with the formation of a ring in the division zone between the newly forming offspring cells. Like tubulin, FtsZ is a GTPase and shares with tubulin a 7-amino-acid motif, making it a promising candidate in which to seek the origin of tubulins.

  3. Do prokaryotes contain microtubules?

    PubMed Central

    Bermudes, D; Hinkle, G; Margulis, L

    1994-01-01

    In eukaryotic cells, microtubules are 24-nm-diameter tubular structures composed of a class of conserved proteins called tubulin. They are involved in numerous cell functions including ciliary motility, nerve cell elongation, pigment migration, centrosome formation, and chromosome movement. Although cytoplasmic tubules and fibers have been observed in bacteria, some with diameters similar to those of eukaryotes, no homologies to eukaryotic microtubules have been established. Certain groups of bacteria including azotobacters, cyanobacteria, enteric bacteria, and spirochetes have been frequently observed to possess microtubule-like structures, and others, including archaebacteria, have been shown to be sensitive to drugs that inhibit the polymerization of microtubules. Although little biochemical or molecular biological information is available, the differences observed among these prokaryotic structures suggest that their composition generally differs among themselves as well as from that of eukaryotes. We review the distribution of cytoplasmic tubules in prokaryotes, even though, in all cases, their functions remain unknown. At least some tend to occur in cells that are large, elongate, and motile, suggesting that they may be involved in cytoskeletal functions, intracellular motility, or transport activities comparable to those performed by eukaryotic microtubules. In Escherichia coli, the FtsZ protein is associated with the formation of a ring in the division zone between the newly forming offspring cells. Like tubulin, FtsZ is a GTPase and shares with tubulin a 7-amino-acid motif, making it a promising candidate in which to seek the origin of tubulins. Images PMID:7968920

  4. Simple sequence repeats in prokaryotic genomes

    PubMed Central

    Mrázek, Jan; Guo, Xiangxue; Shah, Apurva

    2007-01-01

    Simple sequence repeats (SSRs) in DNA sequences are composed of tandem iterations of short oligonucleotides and may have functional and/or structural properties that distinguish them from general DNA sequences. They are variable in length because of slip-strand mutations and may also affect local structure of the DNA molecule or the encoded proteins. Long SSRs (LSSRs) are common in eukaryotes but rare in most prokaryotes. In pathogens, SSRs can enhance antigenic variance of the pathogen population in a strategy that counteracts the host immune response. We analyze representations of SSRs in >300 prokaryotic genomes and report significant differences among different prokaryotes as well as among different types of SSRs. LSSRs composed of short oligonucleotides (1–4 bp length, designated LSSR1–4) are often found in host-adapted pathogens with reduced genomes that are not known to readily survive in a natural environment outside the host. In contrast, LSSRs composed of longer oligonucleotides (5–11 bp length, designated LSSR5–11) are found mostly in nonpathogens and opportunistic pathogens with large genomes. Comparisons among SSRs of different lengths suggest that LSSR1–4 are likely maintained by selection. This is consistent with the established role of some LSSR1–4 in enhancing antigenic variance. By contrast, abundance of LSSR5–11 in some genomes may reflect the SSRs' general tendency to expand rather than their specific role in the organisms' physiology. Differences among genomes in terms of SSR representations and their possible interpretations are discussed. PMID:17485665

  5. CRISPR-Cas immunity in prokaryotes.

    PubMed

    Marraffini, Luciano A

    2015-10-01

    Prokaryotic organisms are threatened by a large array of viruses and have developed numerous defence strategies. Among these, only clustered, regularly interspaced short palindromic repeat (CRISPR)-Cas systems provide adaptive immunity against foreign elements. Upon viral injection, a small sequence of the viral genome, known as a spacer, is integrated into the CRISPR locus to immunize the host cell. Spacers are transcribed into small RNA guides that direct the cleavage of the viral DNA by Cas nucleases. Immunization through spacer acquisition enables a unique form of evolution whereby a population not only rapidly acquires resistance to its predators but also passes this resistance mechanism vertically to its progeny.

  6. A DNA Microarray Platform Based on Direct Detection of rRNA for Characterization of Freshwater Sediment-Related Prokaryotic Communities

    PubMed Central

    Peplies, Jörg; Lachmund, Christine; Glöckner, Frank Oliver; Manz, Werner

    2006-01-01

    A DNA microarray platform for the characterization of bacterial communities in freshwater sediments based on a heterogeneous set of 70 16S rRNA-targeted oligonucleotide probes and directly labeled environmental RNA was developed and evaluated. Application of a simple protocol for the efficient background blocking of aminosilane-coated slides resulted in an improved signal-to-noise ratio and a detection limit of 10 ng for particular 16S rRNA targets. An initial specificity test of the system using RNA from pure cultures of different phylogenetic lineages showed a fraction of false-positive signals of ∼5% after protocol optimization and a marginal loss of correct positive signals. Subsequent microarray analysis of sediment-related community RNA from four different German river sites suggested low diversity for the groups targeted but indicated distinct differences in community composition. The results were supported by parallel fluorescence in situ hybridization in combination with sensitive catalyzed reporter deposition (CARD-FISH). In comparisons of the data of different sampling sites, specific detection of populations with relative cellular abundances down to 2% as well as a correlation of microarray signal intensities and population size is suggested. Our results demonstrate that DNA microarray technology allows for the fast and efficient precharacterization of complex bacterial communities by the use of standard single-cell hybridization probes and the direct detection of environmental rRNA, also in methodological challenging habitats such as heterogeneous lotic freshwater sediments. PMID:16820477

  7. Evolution of small prokaryotic genomes

    PubMed Central

    Martínez-Cano, David J.; Reyes-Prieto, Mariana; Martínez-Romero, Esperanza; Partida-Martínez, Laila P.; Latorre, Amparo; Moya, Andrés; Delaye, Luis

    2015-01-01

    As revealed by genome sequencing, the biology of prokaryotes with reduced genomes is strikingly diverse. These include free-living prokaryotes with ∼800 genes as well as endosymbiotic bacteria with as few as ∼140 genes. Comparative genomics is revealing the evolutionary mechanisms that led to these small genomes. In the case of free-living prokaryotes, natural selection directly favored genome reduction, while in the case of endosymbiotic prokaryotes neutral processes played a more prominent role. However, new experimental data suggest that selective processes may be at operation as well for endosymbiotic prokaryotes at least during the first stages of genome reduction. Endosymbiotic prokaryotes have evolved diverse strategies for living with reduced gene sets inside a host-defined medium. These include utilization of host-encoded functions (some of them coded by genes acquired by gene transfer from the endosymbiont and/or other bacteria); metabolic complementation between co-symbionts; and forming consortiums with other bacteria within the host. Recent genome sequencing projects of intracellular mutualistic bacteria showed that previously believed universal evolutionary trends like reduced G+C content and conservation of genome synteny are not always present in highly reduced genomes. Finally, the simplified molecular machinery of some of these organisms with small genomes may be used to aid in the design of artificial minimal cells. Here we review recent genomic discoveries of the biology of prokaryotes endowed with small gene sets and discuss the evolutionary mechanisms that have been proposed to explain their peculiar nature. PMID:25610432

  8. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy.

    PubMed

    Glaeser, Stefanie P; Kämpfer, Peter

    2015-06-01

    To obtain a higher resolution of the phylogenetic relationships of species within a genus or genera within a family, multilocus sequence analysis (MLSA) is currently a widely used method. In MLSA studies, partial sequences of genes coding for proteins with conserved functions ('housekeeping genes') are used to generate phylogenetic trees and subsequently deduce phylogenies. However, MLSA is not only suggested as a phylogenetic tool to support and clarify the resolution of bacterial species with a higher resolution, as in 16S rRNA gene-based studies, but has also been discussed as a replacement for DNA-DNA hybridization (DDH) in species delineation. Nevertheless, despite the fact that MLSA has become an accepted and widely used method in prokaryotic taxonomy, no common generally accepted recommendations have been devised to date for either the whole area of microbial taxonomy or for taxa-specific applications of individual MLSA schemes. The different ways MLSA is performed can vary greatly for the selection of genes, their number, and the calculation method used when comparing the sequences obtained. Here, we provide an overview of the historical development of MLSA and critically review its current application in prokaryotic taxonomy by highlighting the advantages and disadvantages of the method's numerous variations. This provides a perspective for its future use in forthcoming genome-based genotypic taxonomic analyses.

  9. DNA replication. A familiar ring to DNA polymerase processivity.

    PubMed

    Wyman, C; Botchan, M

    1995-04-01

    Structural similarity reveals that prokaryotic and eukaryotic DNA polymerases share a mechanism for processivity--but the conservation of additional chromosomal replication mechanisms remains to be determined.

  10. The New Segregation.

    ERIC Educational Resources Information Center

    Laosa, Luis M.

    2001-01-01

    This issue reviews national demographic trends in school segregation, summarizing research findings. Though the national debate on school segregation emphasizes blacks and whites, present-day school segregation includes segregation by socioeconomic level, ethnicity, and native language. The research study examined features of the ecology of…

  11. PEPR: pipelines for evaluating prokaryotic references.

    PubMed

    Olson, Nathan D; Zook, Justin M; Samarov, Daniel V; Jackson, Scott A; Salit, Marc L

    2016-04-01

    The rapid adoption of microbial whole genome sequencing in public health, clinical testing, and forensic laboratories requires the use of validated measurement processes. Well-characterized, homogeneous, and stable microbial genomic reference materials can be used to evaluate measurement processes, improving confidence in microbial whole genome sequencing results. We have developed a reproducible and transparent bioinformatics tool, PEPR, Pipelines for Evaluating Prokaryotic References, for characterizing the reference genome of prokaryotic genomic materials. PEPR evaluates the quality, purity, and homogeneity of the reference material genome, and purity of the genomic material. The quality of the genome is evaluated using high coverage paired-end sequence data; coverage, paired-end read size and direction, as well as soft-clipping rates, are used to identify mis-assemblies. The homogeneity and purity of the material relative to the reference genome are characterized by comparing base calls from replicate datasets generated using multiple sequencing technologies. Genomic purity of the material is assessed by checking for DNA contaminants. We demonstrate the tool and its output using sequencing data while developing a Staphylococcus aureus candidate genomic reference material. PEPR is open source and available at https://github.com/usnistgov/pepr . PMID:26935931

  12. Capturing prokaryotic dark matter genomes.

    PubMed

    Gasc, Cyrielle; Ribière, Céline; Parisot, Nicolas; Beugnot, Réjane; Defois, Clémence; Petit-Biderre, Corinne; Boucher, Delphine; Peyretaillade, Eric; Peyret, Pierre

    2015-12-01

    Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches.

  13. Capturing prokaryotic dark matter genomes.

    PubMed

    Gasc, Cyrielle; Ribière, Céline; Parisot, Nicolas; Beugnot, Réjane; Defois, Clémence; Petit-Biderre, Corinne; Boucher, Delphine; Peyretaillade, Eric; Peyret, Pierre

    2015-12-01

    Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches. PMID:26100932

  14. In vitro topological loading of bacterial condensin MukB on DNA, preferentially single-stranded DNA rather than double-stranded DNA.

    PubMed

    Niki, Hironori; Yano, Koichi

    2016-01-01

    Condensin is the major driving force in the segregation of daughter chromosomes in prokaryotes. Core subunits of condensin belong to the SMC protein family, whose members are characterized by a unique ATPase activity and dimers with a V-shaped structure. The V-shaped dimers might close between head domains, forming a ring structure that can encircle DNA. Indeed, cohesin, which is a subfamily of SMC proteins, encircles double-stranded DNA to hold sister chromatids in eukaryotes. However, the question of whether or not condensin encircles the chromosomal DNA remains highly controversial. Here we report that MukB binds topologically to DNA in vitro, and this binding is preferentially single-stranded DNA (ssDNA) rather than double-stranded DNA. The binding of MukB to ssDNA does not require ATP. In fact, thermal energy enhances the binding. The non-SMC subunits MukF and MukE did stimulate the topological binding of MukB, although they hindered DNA-binding of MukB. Recent reports on the distribution of condensin in genomes reveal that actively transcribed genes in yeast and humans are enriched in condensin. In consideration of all these results, we propose that the binding specificity of condensin to chromosome is provided not by the DNA sequence but by the DNA structure, which is ssDNA. PMID:27387439

  15. In vitro topological loading of bacterial condensin MukB on DNA, preferentially single-stranded DNA rather than double-stranded DNA

    PubMed Central

    Niki, Hironori; Yano, Koichi

    2016-01-01

    Condensin is the major driving force in the segregation of daughter chromosomes in prokaryotes. Core subunits of condensin belong to the SMC protein family, whose members are characterized by a unique ATPase activity and dimers with a V-shaped structure. The V-shaped dimers might close between head domains, forming a ring structure that can encircle DNA. Indeed, cohesin, which is a subfamily of SMC proteins, encircles double-stranded DNA to hold sister chromatids in eukaryotes. However, the question of whether or not condensin encircles the chromosomal DNA remains highly controversial. Here we report that MukB binds topologically to DNA in vitro, and this binding is preferentially single-stranded DNA (ssDNA) rather than double-stranded DNA. The binding of MukB to ssDNA does not require ATP. In fact, thermal energy enhances the binding. The non-SMC subunits MukF and MukE did stimulate the topological binding of MukB, although they hindered DNA-binding of MukB. Recent reports on the distribution of condensin in genomes reveal that actively transcribed genes in yeast and humans are enriched in condensin. In consideration of all these results, we propose that the binding specificity of condensin to chromosome is provided not by the DNA sequence but by the DNA structure, which is ssDNA. PMID:27387439

  16. Eukaryotic and Prokaryotic Cytoskeletons: Structure and Mechanics

    NASA Astrophysics Data System (ADS)

    Gopinathan, Ajay

    2013-03-01

    The eukaryotic cytoskeleton is an assembly of filamentous proteins and a host of associated proteins that collectively serve functional needs ranging from spatial organization and transport to the production and transmission of forces. These systems can exhibit a wide variety of non-equilibrium, self-assembled phases depending on context and function. While much recent progress has been made in understanding the self-organization, rheology and nonlinear mechanical properties of such active systems, in this talk, we will concentrate on some emerging aspects of cytoskeletal physics that are promising. One such aspect is the influence of cytoskeletal network topology and its dynamics on both active and passive intracellular transport. Another aspect we will highlight is the interplay between chirality of filaments, their elasticity and their interactions with the membrane that can lead to novel conformational states with functional implications. Finally we will consider homologs of cytoskeletal proteins in bacteria, which are involved in templating cell growth, segregating genetic material and force production, which we will discuss with particular reference to contractile forces during cell division. These prokaryotic structures function in remarkably similar yet fascinatingly different ways from their eukaryotic counterparts and can enrich our understanding of cytoskeletal functioning as a whole.

  17. Solitary restriction endonucleases in prokaryotic genomes

    PubMed Central

    Ershova, Anna S.; Karyagina, Anna S.; Vasiliev, Mikhail O.; Lyashchuk, Alexander M.; Lunin, Vladimir G.; Spirin, Sergey A.; Alexeevski, Andrei V.

    2012-01-01

    Prokaryotic restriction-modification (R-M) systems defend the host cell from the invasion of a foreign DNA. They comprise two enzymatic activities: specific DNA cleavage activity and DNA methylation activity preventing cleavage. Typically, these activities are provided by two separate enzymes: a DNA methyltransferase (MTase) and a restriction endonuclease (RE). In the absence of a corresponding MTase, an RE of Type II R-M system is highly toxic for the cell. Genes of the R-M system are linked in the genome in the vast majority of annotated cases. There are only a few reported cases in which the genes of MTase and RE from one R-M system are not linked. Nevertheless, a few hundreds solitary RE genes are present in the Restriction Enzyme Database (http://rebase.neb.com) annotations. Using the comparative genomic approach, we analysed 272 solitary RE genes. For 57 solitary RE genes we predicted corresponding MTase genes located distantly in a genome. Of the 272 solitary RE genes, 99 are likely to be fragments of RE genes. Various explanations for the existence of the remaining 116 solitary RE genes are also discussed. PMID:22965118

  18. Translational Selection Is Ubiquitous in Prokaryotes

    PubMed Central

    Supek, Fran; Škunca, Nives; Repar, Jelena; Vlahoviček, Kristian; Šmuc, Tomislav

    2010-01-01

    Codon usage bias in prokaryotic genomes is largely a consequence of background substitution patterns in DNA, but highly expressed genes may show a preference towards codons that enable more efficient and/or accurate translation. We introduce a novel approach based on supervised machine learning that detects effects of translational selection on genes, while controlling for local variation in nucleotide substitution patterns represented as sequence composition of intergenic DNA. A cornerstone of our method is a Random Forest classifier that outperformed previous distance measure-based approaches, such as the codon adaptation index, in the task of discerning the (highly expressed) ribosomal protein genes by their codon frequencies. Unlike previous reports, we show evidence that translational selection in prokaryotes is practically universal: in 460 of 461 examined microbial genomes, we find that a subset of genes shows a higher codon usage similarity to the ribosomal proteins than would be expected from the local sequence composition. These genes constitute a substantial part of the genome—between 5% and 33%, depending on genome size—while also exhibiting higher experimentally measured mRNA abundances and tending toward codons that match tRNA anticodons by canonical base pairing. Certain gene functional categories are generally enriched with, or depleted of codon-optimized genes, the trends of enrichment/depletion being conserved between Archaea and Bacteria. Prominent exceptions from these trends might indicate genes with alternative physiological roles; we speculate on specific examples related to detoxication of oxygen radicals and ammonia and to possible misannotations of asparaginyl–tRNA synthetases. Since the presence of codon optimizations on genes is a valid proxy for expression levels in fully sequenced genomes, we provide an example of an “adaptome” by highlighting gene functions with expression levels elevated specifically in thermophilic

  19. DE FACTO SCHOOL SEGREGATION.

    ERIC Educational Resources Information Center

    ROSE, ARNOLD

    A WIDE RANGE OF ISSUES INVOLVED IN DE FACTO SCHOOL SEGREGATION ARE DISCUSSED IN THIS MONOGRAPH. A SECTION ON THE BACKGROUND AND NATURE OF THE PROBLEM DEALS WITH THE HISTORY OF SEGREGATION LAWS, RESTRICTIVE COVENANTS, RESIDENTIAL SEGREGATION, AND THE MANIPULATION OF PUPIL TRANSFERS AS AVOIDANCE MANEUVERS. ANOTHER SECTION DISCUSSES THE…

  20. Segregation and manifestations of the mtDNA tRNA[sup Lys] A[r arrow]G[sup (8344)] mutation of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome

    SciTech Connect

    Larsson, N.G.; Tulinius, M.H.; Holme, E.; Oldfors, A.; Andersen, O.; Wahlstroem, J. ); Aasly, J. )

    1992-12-01

    The authors have studied the segregation and manifestations of the tRNA[sup Lys] A[r arrow]G[sup (8344)] mutation of mtDNA. Three unrelated patients with myoclonus epilepsy and ragged-red fibers (MERRF) syndrome were investigated, along with 30 of their maternal relatives. Mutated mtDNA was not always found in the offspring of women carrying the tRNA[sup Lys] mutation. Four women had 10%-33% of mutated mtDNA in lymphocytes, and no mutated mtDNA was found in 7 of their 14 investigated children. The presence of mutated mtDNA was excluded at a level of 3:1,000. Five women had a proportion of 43%-73% mutated mtDNA in lymphocytes, and mutated mtDNA was found in all their 12 investigated children. This suggests that the risk for transmission of mutated mtDNA to the offspring increases if high levels are present in the mother and that, above a threshold level of 35%-40%, it is very likely that transmission will occur to all children. The three patients with MERRF syndrone had, in muscle, both 94%-96% mutated mtDNA and biochemical and histochemical evidence of a respiratory-chain dysfunction. Four relatives had a proportion of 61%-92% mutated mtDNA in muscle, and biochemical measurements showed a normal respiratory-chain function in muscle in all cases. These findings suggest that >92% of mtDNA with the tRNA[sup Lys] mutation in muscle is required to cause a respiratory-chain dysfunction that can be detected by biochemical methods. There was a positive correlation between the levels of mtDNA with the tRNA[sup Lys] mutation in lymphocytes and the levels in muscle, in all nine investigated cases. The levels of mutated mtDNA were higher in muscle than in lymphocytes in all cases. 30 refs., 3 figs., 5 tabs.

  1. Carbon cycling: the prokaryotic contribution.

    PubMed

    Shively, J M; English, R S; Baker, S H; Cannon, G C

    2001-06-01

    Although the debate continues, the concept of global warming as a consequence of the increased production of 'greenhouse gases' via human activities is now widely accepted. The role of microbes, especially the prokaryotes, in the formation, trapping and retention of 'greenhouse gases' has, for the most part, been overlooked. The future requires that we pay close attention to these organisms for possible solutions to adverse global changes.

  2. Functions of the high mobility group protein, Abf2p, in mitochondrial DNA segregation, recombination and copy number in Saccharomyces cerevisiae.

    PubMed Central

    Zelenaya-Troitskaya, O; Newman, S M; Okamoto, K; Perlman, P S; Butow, R A

    1998-01-01

    Previous studies have established that the mitochondrial high mobility group (HMG) protein, Abf2p, of Saccharomyces cerevisiae influences the stability of wild-type (rho+) mitochondrial DNA (mtDNA) and plays an important role in mtDNA organization. Here we report new functions for Abf2p in mtDNA transactions. We find that in homozygous deltaabf2 crosses, the pattern of sorting of mtDNA and mitochondrial matrix protein is altered, and mtDNA recombination is suppressed relative to homozygous ABF2 crosses. Although Abf2p is known to be required for the maintenance of mtDNA in rho+ cells growing on rich dextrose medium, we find that it is not required for the maintenance of mtDNA in p cells grown on the same medium. The content of both rho+ and rho- mtDNAs is increased in cells by 50-150% by moderate (two- to threefold) increases in the ABF2 copy number, suggesting that Abf2p plays a role in mtDNA copy control. Overproduction of Abf2p by > or = 10-fold from an ABF2 gene placed under control of the GAL1 promoter, however, leads to a rapid loss of rho+ mtDNA and a quantitative conversion of rho+ cells to petites within two to four generations after a shift of the culture from glucose to galactose medium. Overexpression of Abf2p in rho- cells also leads to a loss of mtDNA, but at a slower rate than was observed for rho+ cells. The mtDNA instability phenotype is related to the DNA-binding properties of Abf2p because a mutant Abf2p that contains mutations in residues of both HMG box domains known to affect DNA binding in vitro, and that binds poorly to mtDNA in vivo, complements deltaabf2 cells only weakly and greatly lessens the effect of overproduction on mtDNA instability. In vivo binding was assessed by colocalization to mtDNA of fusions between mutant or wild-type Abf2p and green fluorescent protein.These findings are discussed in the context of a model relating mtDNA copy number control and stability to mtDNA recombination. PMID:9581629

  3. [Progress in proteogenomics of prokaryotes].

    PubMed

    Zhang, Chengpu; Xu, Ping; Zhu, Yunping

    2014-07-01

    With the rapid development of genome sequencing technologies, a large amount of prokaryote genomes have been sequenced in recent years. To further investigate the models and functions of genomes, the algorithms for genome annotations based on the sequence and homology features have been widely implemented to newly sequenced genomes. However, gene annotations only using the genomic information are prone to errors, such as the incorrect N-terminals and pseudogenes. It is even harder to provide reasonable annotating results in the case of the poor genome sequencing results. The transcriptomics based on the technologies such as microarray and RNA-seq and the proteomics based on the MS/MS have been used widely to identify the gene products with high throughput and high sensitivity, providing the powerful tools for the verification and correction of annotated genome. Compared with transcriptomics, proteomics can generate the protein list for the expressed genes in the samples or cells without any confusion of the non-coding RNA, leading the proteogenomics an important basis for the genome annotations in prokaryotes. In this paper, we first described the traditional genome annotation algorithms and pointed out the shortcomings. Then we summarized the advantages of proteomics in the genome annotations and reviewed the progress of proteogenomics in prokaryotes. Finally we discussed the challenges and strategies in the data analyses and potential solutions for the developments of proteogenomics.

  4. NCBI prokaryotic genome annotation pipeline.

    PubMed

    Tatusova, Tatiana; DiCuccio, Michael; Badretdin, Azat; Chetvernin, Vyacheslav; Nawrocki, Eric P; Zaslavsky, Leonid; Lomsadze, Alexandre; Pruitt, Kim D; Borodovsky, Mark; Ostell, James

    2016-08-19

    Recent technological advances have opened unprecedented opportunities for large-scale sequencing and analysis of populations of pathogenic species in disease outbreaks, as well as for large-scale diversity studies aimed at expanding our knowledge across the whole domain of prokaryotes. To meet the challenge of timely interpretation of structure, function and meaning of this vast genetic information, a comprehensive approach to automatic genome annotation is critically needed. In collaboration with Georgia Tech, NCBI has developed a new approach to genome annotation that combines alignment based methods with methods of predicting protein-coding and RNA genes and other functional elements directly from sequence. A new gene finding tool, GeneMarkS+, uses the combined evidence of protein and RNA placement by homology as an initial map of annotation to generate and modify ab initio gene predictions across the whole genome. Thus, the new NCBI's Prokaryotic Genome Annotation Pipeline (PGAP) relies more on sequence similarity when confident comparative data are available, while it relies more on statistical predictions in the absence of external evidence. The pipeline provides a framework for generation and analysis of annotation on the full breadth of prokaryotic taxonomy. For additional information on PGAP see https://www.ncbi.nlm.nih.gov/genome/annotation_prok/ and the NCBI Handbook, https://www.ncbi.nlm.nih.gov/books/NBK174280/. PMID:27342282

  5. NCBI prokaryotic genome annotation pipeline.

    PubMed

    Tatusova, Tatiana; DiCuccio, Michael; Badretdin, Azat; Chetvernin, Vyacheslav; Nawrocki, Eric P; Zaslavsky, Leonid; Lomsadze, Alexandre; Pruitt, Kim D; Borodovsky, Mark; Ostell, James

    2016-08-19

    Recent technological advances have opened unprecedented opportunities for large-scale sequencing and analysis of populations of pathogenic species in disease outbreaks, as well as for large-scale diversity studies aimed at expanding our knowledge across the whole domain of prokaryotes. To meet the challenge of timely interpretation of structure, function and meaning of this vast genetic information, a comprehensive approach to automatic genome annotation is critically needed. In collaboration with Georgia Tech, NCBI has developed a new approach to genome annotation that combines alignment based methods with methods of predicting protein-coding and RNA genes and other functional elements directly from sequence. A new gene finding tool, GeneMarkS+, uses the combined evidence of protein and RNA placement by homology as an initial map of annotation to generate and modify ab initio gene predictions across the whole genome. Thus, the new NCBI's Prokaryotic Genome Annotation Pipeline (PGAP) relies more on sequence similarity when confident comparative data are available, while it relies more on statistical predictions in the absence of external evidence. The pipeline provides a framework for generation and analysis of annotation on the full breadth of prokaryotic taxonomy. For additional information on PGAP see https://www.ncbi.nlm.nih.gov/genome/annotation_prok/ and the NCBI Handbook, https://www.ncbi.nlm.nih.gov/books/NBK174280/.

  6. ASM Conference on Prokaryotic Development

    SciTech Connect

    Kaplan, H. B.

    2005-07-13

    Support was provided by DOE for the 2nd ASM Conference on Prokaryotic Development. The final conference program and abstracts book is attached. The conference presentations are organized around topics that are central to the current research areas in prokaryotic development. The program starts with topics that involve relatively simple models systems and ends with systems that are more complex. The topics are: i) the cell cycle, ii) the cytoskeleton, iii) morphogenesis, iv) developmental transcription, v) signaling, vi) multicellularity, and vii) developmental diversity and symbiosis. The best-studied prokaryotic development model systems will be highlighted at the conference through research presentations by leaders in the field. Many of these systems are also model systems of relevance to the DOE mission including carbon sequestration (Bradyrizobium, Synechococcus), energy production (Anabaena, Rhodobacter) and bioremediation (Caulobacter, Mesorhizobium). In addition, many of the highlighted organisms have important practical applications; the actinomycetes and myxobacteria produce antimicrobials that are of commercial interest. It is certain that the cutting-edge science presented at the conference will be applicable to the large group of bacteria relevant to the DOE mission.

  7. Towards building a chromosome segregation machine

    PubMed Central

    Bloom, Kerry; Joglekar, Ajit

    2010-01-01

    All organisms, from bacteria to humans, face the daunting task of replicating, packaging and segregating up to two metres (about 6 × 109 base pairs) of DNA when each cell divides. This task is carried out up to a trillion times during the development of a human from a single fertilized cell. The strategy by which DNA is replicated is now well understood. But when it comes to packaging and segregating a genome, the mechanisms are only beginning to be understood and are often as variable as the organisms in which they are studied. PMID:20110988

  8. Structural properties of prokaryotic promoter regions correlate with functional features.

    PubMed

    Meysman, Pieter; Collado-Vides, Julio; Morett, Enrique; Viola, Roberto; Engelen, Kristof; Laukens, Kris

    2014-01-01

    The structural properties of the DNA molecule are known to play a critical role in transcription. In this paper, the structural profiles of promoter regions were studied within the context of their diversity and their function for eleven prokaryotic species; Escherichia coli, Klebsiella pneumoniae, Salmonella Typhimurium, Pseudomonas auroginosa, Geobacter sulfurreducens Helicobacter pylori, Chlamydophila pneumoniae, Synechocystis sp., Synechoccocus elongates, Bacillus anthracis, and the archaea Sulfolobus solfataricus. The main anchor point for these promoter regions were transcription start sites identified through high-throughput experiments or collected within large curated databases. Prokaryotic promoter regions were found to be less stable and less flexible than the genomic mean across all studied species. However, direct comparison between species revealed differences in their structural profiles that can not solely be explained by the difference in genomic GC content. In addition, comparison with functional data revealed that there are patterns in the promoter structural profiles that can be linked to specific functional loci, such as sigma factor regulation or transcription factor binding. Interestingly, a novel structural element clearly visible near the transcription start site was found in genes associated with essential cellular functions and growth in several species. Our analyses reveals the great diversity in promoter structural profiles both between and within prokaryotic species. We observed relationships between structural diversity and functional features that are interesting prospects for further research to yet uncharacterized functional loci defined by DNA structural properties.

  9. Income inequality and income segregation.

    PubMed

    Reardon, Sean F; Bischoff, Kendra

    2011-01-01

    This article investigates how the growth in income inequality from 1970 to 2000 affected patterns of income segregation along three dimensions: the spatial segregation of poverty and affluence, race-specific patterns of income segregation, and the geographic scale of income segregation. The evidence reveals a robust relationship between income inequality and income segregation, an effect that is larger for black families than for white families. In addition, income inequality affects income segregation primarily through its effect on the large-scale spatial segregation of affluence rather than by affecting the spatial segregation of poverty or by altering small-scale patterns of income segregation.

  10. Age Segregation in Schools.

    ERIC Educational Resources Information Center

    Pratt, David

    Evidence from ethnology, anthropology, and educational history and research indicates that age segregation is neither necessary nor natural. An examination of primate and simple human societies suggests that rigid assumptions about age segregation of the young is a recent departure from social patterns existing for millions of years. The…

  11. Segregation and Civic Virtue

    ERIC Educational Resources Information Center

    Merry, Michael S.

    2012-01-01

    In this essay Michael Merry defends the following prima facie argument: that civic virtue is not dependent on integration and in fact may be best fostered under conditions of segregation. He demonstrates that civic virtue can and does take place under conditions of involuntary segregation, but that voluntary separation--as a response to…

  12. The evolution of ecological tolerance in prokaryotes

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.; Bauld, J.

    1989-01-01

    The ecological ranges of Archaeobacteria and Eubacteria are constrained by a requirement for liquid water and the physico-chemical stability limits of biomolecules, but within this broad envelope, prokaryotes have evolved adaptations that permit them to tolerate a remarkable spectrum of habitats. Laboratory experiments indicate that prokaryotes can adapt rapidly to novel environmental conditions, yet geological studies suggest early diversification and long-term stasis within the prokaryotic kingdoms. These apparently contradictory perspectives can be reconciled by understanding that, in general, rates and patterns of prokaryotic evolution reflect the developmental history of the Earth's surface environments. Our understanding of modern microbial ecology provides a lens through which our accumulating knowledge of physiology, molecular phylogeny and the Earth's history can be integrated and focussed on the phenomenon of prokaryotic evolution.

  13. Dynamics of Escherichia coli chromosome segregation during multifork replication.

    PubMed

    Nielsen, Henrik J; Youngren, Brenda; Hansen, Flemming G; Austin, Stuart

    2007-12-01

    Slowly growing Escherichia coli cells have a simple cell cycle, with replication and progressive segregation of the chromosome completed before cell division. In rapidly growing cells, initiation of replication occurs before the previous replication rounds are complete. At cell division, the chromosomes contain multiple replication forks and must be segregated while this complex pattern of replication is still ongoing. Here, we show that replication and segregation continue in step, starting at the origin and progressing to the replication terminus. Thus, early-replicated markers on the multiple-branched chromosomes continue to separate soon after replication to form separate protonucleoids, even though they are not segregated into different daughter cells until later generations. The segregation pattern follows the pattern of chromosome replication and does not follow the cell division cycle. No extensive cohesion of sister DNA regions was seen at any growth rate. We conclude that segregation is driven by the progression of the replication forks.

  14. Dynamics of Escherichia coli Chromosome Segregation during Multifork Replication▿

    PubMed Central

    Nielsen, Henrik J.; Youngren, Brenda; Hansen, Flemming G.; Austin, Stuart

    2007-01-01

    Slowly growing Escherichia coli cells have a simple cell cycle, with replication and progressive segregation of the chromosome completed before cell division. In rapidly growing cells, initiation of replication occurs before the previous replication rounds are complete. At cell division, the chromosomes contain multiple replication forks and must be segregated while this complex pattern of replication is still ongoing. Here, we show that replication and segregation continue in step, starting at the origin and progressing to the replication terminus. Thus, early-replicated markers on the multiple-branched chromosomes continue to separate soon after replication to form separate protonucleoids, even though they are not segregated into different daughter cells until later generations. The segregation pattern follows the pattern of chromosome replication and does not follow the cell division cycle. No extensive cohesion of sister DNA regions was seen at any growth rate. We conclude that segregation is driven by the progression of the replication forks. PMID:17905986

  15. Bacterial partition complexes segregate within the volume of the nucleoid

    PubMed Central

    Le Gall, Antoine; Cattoni, Diego I.; Guilhas, Baptiste; Mathieu-Demazière, Céline; Oudjedi, Laura; Fiche, Jean-Bernard; Rech, Jérôme; Abrahamsson, Sara; Murray, Heath; Bouet, Jean-Yves; Nollmann, Marcelo

    2016-01-01

    Precise and rapid DNA segregation is required for proper inheritance of genetic material. In most bacteria and archaea, this process is assured by a broadly conserved mitotic-like apparatus in which a NTPase (ParA) displaces the partition complex. Competing observations and models imply starkly different 3D localization patterns of the components of the partition machinery during segregation. Here we use super-resolution microscopies to localize in 3D each component of the segregation apparatus with respect to the bacterial chromosome. We show that Par proteins locate within the nucleoid volume and reveal that proper volumetric localization and segregation of partition complexes requires ATPase and DNA-binding activities of ParA. Finally, we find that the localization patterns of the different components of the partition system highly correlate with dense chromosomal regions. We propose a new mechanism in which the nucleoid provides a scaffold to guide the proper segregation of partition complexes. PMID:27377966

  16. Stygofauna enhance prokaryotic transport in groundwater ecosystems

    PubMed Central

    Smith, Renee J.; Paterson, James S.; Launer, Elise; Tobe, Shanan S.; Morello, Eliesa; Leijs, Remko; Marri, Shashikanth; Mitchell, James G.

    2016-01-01

    More than 97% of the world’s freshwater reserves are found in aquifers, making groundwater one of the most important resources on the planet. Prokaryotic communities in groundwater underpin the turnover of energy and matter while also maintaining groundwater purity. Thus, knowledge of microbial transport in the subsurface is crucial for maintaining groundwater health. Here, we describe for the first time the importance of stygofauna as vectors for prokaryotes. The “hitch-hiking” prokaryotes associated with stygofauna may be up to 5 orders of magnitude higher in abundance and transported up to 34× faster than bulk groundwater flow. We also demonstrate that prokaryotic diversity associated with stygofauna may be higher than that of the surrounding groundwater. Stygofauna are a newly recognized prokaryotic niche in groundwater ecosystems that have the potential to transport remediating, water purifying and pathogenic prokaryotes. Therefore, stygofauna may influence ecosystem dynamics and health at a microbial level, and at a larger scale could be a new source of prokaryotic diversity in groundwater ecosystems. PMID:27597322

  17. Stygofauna enhance prokaryotic transport in groundwater ecosystems.

    PubMed

    Smith, Renee J; Paterson, James S; Launer, Elise; Tobe, Shanan S; Morello, Eliesa; Leijs, Remko; Marri, Shashikanth; Mitchell, James G

    2016-01-01

    More than 97% of the world's freshwater reserves are found in aquifers, making groundwater one of the most important resources on the planet. Prokaryotic communities in groundwater underpin the turnover of energy and matter while also maintaining groundwater purity. Thus, knowledge of microbial transport in the subsurface is crucial for maintaining groundwater health. Here, we describe for the first time the importance of stygofauna as vectors for prokaryotes. The "hitch-hiking" prokaryotes associated with stygofauna may be up to 5 orders of magnitude higher in abundance and transported up to 34× faster than bulk groundwater flow. We also demonstrate that prokaryotic diversity associated with stygofauna may be higher than that of the surrounding groundwater. Stygofauna are a newly recognized prokaryotic niche in groundwater ecosystems that have the potential to transport remediating, water purifying and pathogenic prokaryotes. Therefore, stygofauna may influence ecosystem dynamics and health at a microbial level, and at a larger scale could be a new source of prokaryotic diversity in groundwater ecosystems. PMID:27597322

  18. Single prokaryotic cell isolation and total transcript amplification protocol for transcriptomic analysis.

    PubMed

    Kang, Yun; McMillan, Ian; Norris, Michael H; Hoang, Tung T

    2015-07-01

    Until recently, transcriptome analyses of single cells have been confined to eukaryotes. The information obtained from single-cell transcripts can provide detailed insight into spatiotemporal gene expression, and it could be even more valuable if expanded to prokaryotic cells. Transcriptome analysis of single prokaryotic cells is a recently developed and powerful tool. Here we describe a procedure that allows amplification of the total transcript of a single prokaryotic cell for in-depth analysis. This is performed by using a laser-capture microdissection instrument for single-cell isolation, followed by reverse transcription via Moloney murine leukemia virus, degradation of chromosomal DNA with McrBC and DpnI restriction enzymes, single-stranded cDNA (ss-cDNA) ligation using T4 polynucleotide kinase and CircLigase, and polymerization of ss-cDNA to double-stranded cDNA (ds-cDNA) by Φ29 polymerase. This procedure takes ∼5 d, and sufficient amounts of ds-cDNA can be obtained from single-cell RNA template for further microarray analysis.

  19. Prokaryotic carbonic anhydrases of Earth's environment.

    PubMed

    Kumar, R Siva Sai; Ferry, James G

    2014-01-01

    Carbonic anhydrase is a metalloenzyme catalyzing the reversible hydration of carbon dioxide to bicarbonate. Five independently evolved classes have been described for which one or more are found in nearly every cell type underscoring the general importance of this ubiquitous enzyme in Nature. The bulk of research to date has centered on the enzymes from mammals and plants with less emphasis on prokaryotes. Prokaryotic carbonic anhydrases play important roles in the ecology of Earth's biosphere including acquisition of CO2 for photosynthesis and the physiology of aerobic and anaerobic prokaryotes decomposing the photosynthate back to CO2 thereby closing the global carbon cycle. This review focuses on the physiology and biochemistry of carbonic anhydrases from prokaryotes belonging to the domains Bacteria and Archaea that play key roles in the ecology of Earth's biosphere.

  20. Digital Quantification of DNA Replication and Chromosome Segregation Enables Determination of Antimicrobial Susceptibility after only 15 Minutes of Antibiotic Exposure.

    PubMed

    Schoepp, Nathan G; Khorosheva, Eugenia M; Schlappi, Travis S; Curtis, Matthew S; Humphries, Romney M; Hindler, Janet A; Ismagilov, Rustem F

    2016-08-01

    Rapid antimicrobial susceptibility testing (AST) would decrease misuse and overuse of antibiotics. The "holy grail" of AST is a phenotype-based test that can be performed within a doctor visit. Such a test requires the ability to determine a pathogen's susceptibility after only a short antibiotic exposure. Herein, digital PCR (dPCR) was employed to test whether measuring DNA replication of the target pathogen through digital single-molecule counting would shorten the required time of antibiotic exposure. Partitioning bacterial chromosomal DNA into many small volumes during dPCR enabled AST results after short exposure times by 1) precise quantification and 2) a measurement of how antibiotics affect the states of macromolecular assembly of bacterial chromosomes. This digital AST (dAST) determined susceptibility of clinical isolates from urinary tract infections (UTIs) after 15 min of exposure for all four antibiotic classes relevant to UTIs. This work lays the foundation to develop a rapid, point-of-care AST and strengthen global antibiotic stewardship.

  1. Phylogenomics of Prokaryotic Ribosomal Proteins

    PubMed Central

    Yutin, Natalya; Puigbò, Pere; Koonin, Eugene V.; Wolf, Yuri I.

    2012-01-01

    Archaeal and bacterial ribosomes contain more than 50 proteins, including 34 that are universally conserved in the three domains of cellular life (bacteria, archaea, and eukaryotes). Despite the high sequence conservation, annotation of ribosomal (r-) protein genes is often difficult because of their short lengths and biased sequence composition. We developed an automated computational pipeline for identification of r-protein genes and applied it to 995 completely sequenced bacterial and 87 archaeal genomes available in the RefSeq database. The pipeline employs curated seed alignments of r-proteins to run position-specific scoring matrix (PSSM)-based BLAST searches against six-frame genome translations, mitigating possible gene annotation errors. As a result of this analysis, we performed a census of prokaryotic r-protein complements, enumerated missing and paralogous r-proteins, and analyzed the distributions of ribosomal protein genes among chromosomal partitions. Phyletic patterns of bacterial and archaeal r-protein genes were mapped to phylogenetic trees reconstructed from concatenated alignments of r-proteins to reveal the history of likely multiple independent gains and losses. These alignments, available for download, can be used as search profiles to improve genome annotation of r-proteins and for further comparative genomics studies. PMID:22615861

  2. Understanding Segregation Processes

    NASA Astrophysics Data System (ADS)

    Bruch, Elizabeth

    There is growing consensus that living in neighborhoods of concentrated poverty increases the likelihood of social problems such as teenage parenthood, drug and alcohol use, crime victimization, and chronic unemployment. Neighborhood inequality is also implicated in studies of enduring race/ethnic health disparities, and there are recent moves to broaden the definition of health care policy to policies targeting social inequality (Mechanic 2007). Residential segregation affects health outcomes in several different ways. First, income, education, and occupation are all strongly related to health (Adler and Newman 2002). Segregation is a key mechanism through which socioeconomic inequality is perpetuated and reinforced, as it hinders the upward mobility of disadvantaged groups by limiting their educational and employment opportunities. Second, segregation increases minority exposure to unhealthy neighborhood environments. Residential segregation creates areas with concentrated poverty and unemployment, both of which are key factors that predict violence and create racial differences in homicide (Samson and Wilson 1995). Neighborhood characteristics, such as exposure to environmental hazards, fear of violence, and access to grocery stores, affect health risks and health behaviors (Cheadle et al. 1991). Tobacco and alcohol industries also advertise their products disproportionately in poor, minority areas (Moore, Williams, and Qualls 1996). Finally, residential segregation leads to inequalitie in health care resources, which contributes to disparities in quality of treatment (Smedley, Stith, and Nelson 2002).

  3. Segregation of sperm mitochondria in two- and four-cell embryos of the blue mussel Mytilus edulis: Implications for the mechanism of doubly uniparental inheritance of mitochondrial DNA.

    PubMed

    Cogswell, Andrew T; Kenchington, Ellen L R; Zouros, Eleftherios

    2006-07-01

    Species of the family Mytilidae have 2 mitochondrial genomes, one that is transmitted through the egg and one that is transmitted through the sperm. In the Mytilus edulis species complex (M. edulis, M. galloprovincialis, and M. trossulus) there is also a strong mother-dependent sex-ratio bias in favor of one or the other sex among progeny from pair matings. In a previous study, we have shown that sperm mitochondria enter the egg and that their behavior during cell division is different depending on whether the egg originated from a female- or male-biased mother. Specifically, in eggs from females that produce mostly or exclusively daughters, sperm mitochondria disperse randomly among cells after egg division. In eggs from females that produce predominantly sons, sperm mitochondria tend to stay together in the same cell. Here, we extend these observations and show that in 2- and 4-cell embryos from male-biased mothers most sperm mitochondria are located near or at the cleavage furrow of the major cell, in contrast to embryos from female-biased mothers where there is no preferential association of sperm mitochondria with the cleavage furrow. This observation provides evidence for an early developmental mechanism through which sperm mitochondria are preferentially channeled into the primordial cells of male embryos, thus making the paternal mitochondrial genome the dominant mtDNA component of the male germ line.

  4. Genomics of Bacterial and Archaeal Viruses: Dynamics within the Prokaryotic Virosphere

    PubMed Central

    Krupovic, Mart; Prangishvili, David; Hendrix, Roger W.; Bamford, Dennis H.

    2011-01-01

    Summary: Prokaryotes, bacteria and archaea, are the most abundant cellular organisms among those sharing the planet Earth with human beings (among others). However, numerous ecological studies have revealed that it is actually prokaryotic viruses that predominate on our planet and outnumber their hosts by at least an order of magnitude. An understanding of how this viral domain is organized and what are the mechanisms governing its evolution is therefore of great interest and importance. The vast majority of characterized prokaryotic viruses belong to the order Caudovirales, double-stranded DNA (dsDNA) bacteriophages with tails. Consequently, these viruses have been studied (and reviewed) extensively from both genomic and functional perspectives. However, albeit numerous, tailed phages represent only a minor fraction of the prokaryotic virus diversity. Therefore, the knowledge which has been generated for this viral system does not offer a comprehensive view of the prokaryotic virosphere. In this review, we discuss all families of bacterial and archaeal viruses that contain more than one characterized member and for which evolutionary conclusions can be attempted by use of comparative genomic analysis. We focus on the molecular mechanisms of their genome evolution as well as on the relationships between different viral groups and plasmids. It becomes clear that evolutionary mechanisms shaping the genomes of prokaryotic viruses vary between different families and depend on the type of the nucleic acid, characteristics of the virion structure, as well as the mode of the life cycle. We also point out that horizontal gene transfer is not equally prevalent in different virus families and is not uniformly unrestricted for diverse viral functions. PMID:22126996

  5. Development of a Prokaryotic Universal Primer for Simultaneous Analysis of Bacteria and Archaea Using Next-Generation Sequencing

    PubMed Central

    Takahashi, Shunsuke; Tomita, Junko; Nishioka, Kaori; Hisada, Takayoshi; Nishijima, Miyuki

    2014-01-01

    For the analysis of microbial community structure based on 16S rDNA sequence diversity, sensitive and robust PCR amplification of 16S rDNA is a critical step. To obtain accurate microbial composition data, PCR amplification must be free of bias; however, amplifying all 16S rDNA species with equal efficiency from a sample containing a large variety of microorganisms remains challenging. Here, we designed a universal primer based on the V3-V4 hypervariable region of prokaryotic 16S rDNA for the simultaneous detection of Bacteria and Archaea in fecal samples from crossbred pigs (Landrace×Large white×Duroc) using an Illumina MiSeq next-generation sequencer. In-silico analysis showed that the newly designed universal prokaryotic primers matched approximately 98.0% of Bacteria and 94.6% of Archaea rRNA gene sequences in the Ribosomal Database Project database. For each sequencing reaction performed with the prokaryotic universal primer, an average of 69,330 (±20,482) reads were obtained, of which archaeal rRNA genes comprised approximately 1.2% to 3.2% of all prokaryotic reads. In addition, the detection frequency of Bacteria belonging to the phylum Verrucomicrobia, including members of the classes Verrucomicrobiae and Opitutae, was higher in the NGS analysis using the prokaryotic universal primer than that performed with the bacterial universal primer. Importantly, this new prokaryotic universal primer set had markedly lower bias than that of most previously designed universal primers. Our findings demonstrate that the prokaryotic universal primer set designed in the present study will permit the simultaneous detection of Bacteria and Archaea, and will therefore allow for a more comprehensive understanding of microbial community structures in environmental samples. PMID:25144201

  6. Biological diversity of prokaryotic type IV secretion systems.

    PubMed

    Alvarez-Martinez, Cristina E; Christie, Peter J

    2009-12-01

    Type IV secretion systems (T4SS) translocate DNA and protein substrates across prokaryotic cell envelopes generally by a mechanism requiring direct contact with a target cell. Three types of T4SS have been described: (i) conjugation systems, operationally defined as machines that translocate DNA substrates intercellularly by a contact-dependent process; (ii) effector translocator systems, functioning to deliver proteins or other macromolecules to eukaryotic target cells; and (iii) DNA release/uptake systems, which translocate DNA to or from the extracellular milieu. Studies of a few paradigmatic systems, notably the conjugation systems of plasmids F, R388, RP4, and pKM101 and the Agrobacterium tumefaciens VirB/VirD4 system, have supplied important insights into the structure, function, and mechanism of action of type IV secretion machines. Information on these systems is updated, with emphasis on recent exciting structural advances. An underappreciated feature of T4SS, most notably of the conjugation subfamily, is that they are widely distributed among many species of gram-negative and -positive bacteria, wall-less bacteria, and the Archaea. Conjugation-mediated lateral gene transfer has shaped the genomes of most if not all prokaryotes over evolutionary time and also contributed in the short term to the dissemination of antibiotic resistance and other virulence traits among medically important pathogens. How have these machines adapted to function across envelopes of distantly related microorganisms? A survey of T4SS functioning in phylogenetically diverse species highlights the biological complexity of these translocation systems and identifies common mechanistic themes as well as novel adaptations for specialized purposes relating to the modulation of the donor-target cell interaction. PMID:19946141

  7. Prokaryotic and eukaryotic unicellular chronomics

    PubMed Central

    Halberg, F.; Cornélissen, G.; Faraone, P.; Poeggeler, B.; Hardeland, R.; Katinas, G.; Schwartzkopff, O.; Otsuka, K.; Bakken, E. E.

    2008-01-01

    An impeccable time series, published in 1930, consisting of hourly observations on colony advance in a fluid culture of E. coli, was analyzed by a periodogram and power spectrum in 1961. While the original senior author had emphasized specifically periodicity with no estimate of period length, he welcomed further analyses. After consulting his technician, he knew of no environmental periodicity related to human schedules other than an hourly photography. A periodogram analysis in 1961 showed a 20.75-h period. It was emphasized that “… the circadian period disclosed is not of exactly 24-h length.” Confirmations notwithstanding, a committee ruled out microbial circadian rhythms based on grounds that could have led to a different conclusion, namely first, the inability of some committee members to see (presumably by eyeballing) the rhythms in their own data, and second, what hardly follows, that there were “too many analyses” in the published papers. Our point in dealing with microbes and humans is that analyses are indispensable for quantification and for discovering a biologically novel spectrum of cyclicities, matching physical ones. The scope of circadian organization estimated in 1961 has become broader, including about 7-day, about half-yearly, about-yearly and ex-yearly and decadal periodisms, among others. Microbial circadians have become a field of their own with eyeballing, yet time-microscopy can quantify characteristics with their uncertainties and can assess broad chronomes (time structures) with features beyond circadians. As yet only suggestive differences between eukaryotes and prokaryotes further broaden the perspective and may lead to life’s sites of origin and to new temporal aspects of life’ s development as a chronomic tree by eventual rhythm dating in ontogeny and phylogeny. PMID:16275493

  8. Single prokaryotic cell isolation and total transcript amplification protocol for transcriptomic analysis

    PubMed Central

    Kang, Yun; McMillan, Ian; Norris, Michael H; Hoang, Tung T.

    2015-01-01

    Until recently, transcriptome analyses of single cells have been confined to eukaryotes. The information obtained from single cell transcripts can provide detailed insight into spatiotemporal gene-expression, and could be even more valuable if expanded to prokaryotic cells. Transcriptome analysis of single prokaryotic cells is a recently developed and powerful tool. Here, we describe a procedure that allows amplification of the total transcript of a single prokaryotic cell for in-depth analysis. This is performed by utilizing a laser capture microdissection instrument for single cell isolation, followed by reverse transcription via Moloney Murine Leukemia virus, degradation of chromosomal DNA with McrBC and DpnI restriction enzymes, ss-cDNA ligation using T4 polynucleotide kinase and CircLigase, and polymerization of ss-cDNA to ds-cDNA by ϕ 29 polymerase. This procedure takes ~5 days, and sufficient amounts of ds-cDNA can be obtained from single cell RNA template for further microarray analysis. PMID:26042386

  9. Towards understanding the molecular recognition process in prokaryotic zinc-finger domain.

    PubMed

    Russo, Luigi; Palmieri, Maddalena; Caso, Jolanda Valentina; D'Abrosca, Gianluca; Diana, Donatella; Malgieri, Gaetano; Baglivo, Ilaria; Isernia, Carla; Pedone, Paolo V; Fattorusso, Roberto

    2015-02-16

    Eukaryotic Cys2His2 zinc finger domain is one of the most common and important structural motifs involved in protein-DNA interaction. The recognition motif is characterized by the tetrahedral coordination of a zinc ion by conserved cysteine and histidine residues. We have characterized the prokaryotic Cys2His2 zinc finger motif, included in the DNA binding region (Ros87) of Ros protein from Agrobacterium tumefaciens, demonstrating that, although possessing a similar zinc coordination sphere, this domain presents significant differences from its eukaryotic counterpart. Furthermore, basic residues flanking the zinc binding region on either side have been demonstrated, by Electrophoretic Mobility Shift Assay (EMSA) experiments, to be essential for Ros DNA binding. In spite of this wealth of knowledge, the structural details of the mechanism through which the prokaryotic zinc fingers recognize their target genes are still unclear. Here, to gain insights into the molecular DNA recognition process of prokaryotic zinc finger domains we applied a strategy in which we performed molecular docking studies using a combination of Nuclear Magnetic Resonance (NMR) and Molecular Dynamics (MD) simulations data. The results demonstrate that the MD ensemble provides a reasonable picture of Ros87 backbone dynamics in solution. The Ros87-DNA model indicates that the interaction involves the first two residue of the first α-helix, and several residues located in the basic regions flanking the zinc finger domain. Interestingly, the prokaryotic zinc finger domain, mainly with the C-terminal tail that is wrapped around the DNA, binds a more extended recognition site than the eukaryotic counterpart. Our analysis demonstrates that the introduction of the protein flexibility in docking studies can improve, in terms of accuracy, the quality of the obtained models and could be particularly useful for protein showing high conformational heterogeneity as well as for computational drug design

  10. Insights into structural variations and genome rearrangements in prokaryotic genomes.

    PubMed

    Periwal, Vinita; Scaria, Vinod

    2015-01-01

    Structural variations (SVs) are genomic rearrangements that affect fairly large fragments of DNA. Most of the SVs such as inversions, deletions and translocations have been largely studied in context of genetic diseases in eukaryotes. However, recent studies demonstrate that genome rearrangements can also have profound impact on prokaryotic genomes, leading to altered cell phenotype. In contrast to single-nucleotide variations, SVs provide a much deeper insight into organization of bacterial genomes at a much better resolution. SVs can confer change in gene copy number, creation of new genes, altered gene expression and many other functional consequences. High-throughput technologies have now made it possible to explore SVs at a much refined resolution in bacterial genomes. Through this review, we aim to highlight the importance of the less explored field of SVs in prokaryotic genomes and their impact. We also discuss its potential applicability in the emerging fields of synthetic biology and genome engineering where targeted SVs could serve to create sophisticated and accurate genome editing.

  11. Distribution of putative xenogeneic silencers in prokaryote genomes.

    PubMed

    Perez-Rueda, Ernesto; Ibarra, J Antonio

    2015-10-01

    Gene silencing is an important function as it keeps newly acquired foreign DNA repressed, thereby avoiding possible deleterious effects in the host organism. Known transcriptional regulators associated with this process are called xenogeneic silencers (XS) and belong to either the H-NS, Lsr2, MvaT or Rok families. In the work described here we looked for XS-like regulators and their distribution in prokaryotic organisms was evaluated. Our analysis showed that putative XS regulators similar to H-NS, Lsr2, MvaT or Rok are present only in bacteria (31.7%). This does not exclude the existence of alternative XS in the rest of the organisms analyzed. Additionally, of the four XS groups evaluated in this work, those from the H-NS family have diversified more than the other groups. In order to compare the distribution of these putative XS regulators we also searched for other nucleoid-associated proteins (NAPs) not included in this group such as Fis, EbfC/YbaB, HU/IHF and Alba. Results showed that NAPs from the Fis, EbfC/YbaB, HU/IHF and Alba families are widely (94%) distributed among prokaryotes. These NAPs were found in multiple combinations with or without XS-like proteins. In regard with XS regulators, results showed that only XS proteins from one family were found in those organisms containing them. This suggests specificity for this type of regulators and their corresponding genomes.

  12. Segregation analysis of microsatellite (SSR) markers in sugarcane polyploids.

    PubMed

    Lu, X; Zhou, H; Pan, Y-B; Chen, C Y; Zhu, J R; Chen, P H; Li, Y-R; Cai, Q; Chen, R K

    2015-01-01

    No information is available on segregation analysis of DNA markers involving both pollen and self-progeny. Therefore, we used capillary electrophoresis- and fluorescence-based DNA fingerprinting together with single pollen collection and polymerase chain reaction (PCR) to investigate simple sequence repeat (SSR) marker segregation among 964 single pollens and 288 self-progenies (S1) of sugarcane cultivar LCP 85-384. Twenty SSR DNA fragments (alleles) were amplified by five polymorphic SSR markers. Only one non-parental SSR allele was observed in 2392 PCRs. SSR allele inheritance was in accordance with Mendelian laws of segregation and independent assortment. Highly significant correlation coefficients were found between frequencies of observed and expected genotypes in pollen and S1 populations. Within the S1 population, the most frequent genotype of each SSR marker was the parental genotype of the same marker. The number of genotypes was higher in pollen than S1 population. PIC values of the five SSR markers were greater in pollen than S1 populations. Eleven of 20 SSR alleles (55%) were segregated in accordance with Mendelian segregation ratios expected from pollen and S1 populations of a 2n = 10x polyploid. Six of 20 SSR alleles were segregated in a 3:1 (presence:absence) ratio and were simplex markers. Four and one alleles were segregated in 77:4 and 143:1 ratios and considered duplex and triplex markers, respectively. Segregation ratios of remaining alleles were unexplainable. The results provide information about selection of crossing parents, estimation of seedling population optimal size, and promotion of efficient selection, which may be valuable for sugarcane breeders.

  13. Segregation analysis of microsatellite (SSR) markers in sugarcane polyploids.

    PubMed

    Lu, X; Zhou, H; Pan, Y-B; Chen, C Y; Zhu, J R; Chen, P H; Li, Y-R; Cai, Q; Chen, R K

    2015-01-01

    No information is available on segregation analysis of DNA markers involving both pollen and self-progeny. Therefore, we used capillary electrophoresis- and fluorescence-based DNA fingerprinting together with single pollen collection and polymerase chain reaction (PCR) to investigate simple sequence repeat (SSR) marker segregation among 964 single pollens and 288 self-progenies (S1) of sugarcane cultivar LCP 85-384. Twenty SSR DNA fragments (alleles) were amplified by five polymorphic SSR markers. Only one non-parental SSR allele was observed in 2392 PCRs. SSR allele inheritance was in accordance with Mendelian laws of segregation and independent assortment. Highly significant correlation coefficients were found between frequencies of observed and expected genotypes in pollen and S1 populations. Within the S1 population, the most frequent genotype of each SSR marker was the parental genotype of the same marker. The number of genotypes was higher in pollen than S1 population. PIC values of the five SSR markers were greater in pollen than S1 populations. Eleven of 20 SSR alleles (55%) were segregated in accordance with Mendelian segregation ratios expected from pollen and S1 populations of a 2n = 10x polyploid. Six of 20 SSR alleles were segregated in a 3:1 (presence:absence) ratio and were simplex markers. Four and one alleles were segregated in 77:4 and 143:1 ratios and considered duplex and triplex markers, respectively. Segregation ratios of remaining alleles were unexplainable. The results provide information about selection of crossing parents, estimation of seedling population optimal size, and promotion of efficient selection, which may be valuable for sugarcane breeders. PMID:26782486

  14. Eukaryotic versus prokaryotic marine picoplankton ecology.

    PubMed

    Massana, Ramon; Logares, Ramiro

    2013-05-01

    Marine microorganisms contribute markedly to global biomass and ecosystem function. They include a diverse collection of organisms differing in cell size and in evolutionary history. In particular, microbes within the picoplankton are similar in size but belong to two drastically different cellular plans, the prokaryotes and the eukaryotes. Compared with larger organisms, prokaryotes and picoeukaryotes share ecological features, such as high specific activity, large and constant abundances, and high dispersal potential. Still, there are some aspects where their different cell organization influences their ecological performance. First, prokaryotes have a huge metabolic versatility and are involved in all biogeochemical cycles, whereas picoeukaryotes are metabolically less flexible but can exploit diverse predatory life strategies due to their phagocytic capacity. Second, sexual reproduction is absent in prokaryotes but may be present in picoeukaryotes, thus determining different evolutionary diversification dynamics and making species limits clearer in picoeukaryotes. Finally, it is plausible that picoeukaryotes are less flexible to enter a reversible state of low metabolic activity, thus picoeukaryote assemblages may have fewer rare species and may be less resilient to environmental change. In summary, lumping together pico-sized microbes may be convenient for some ecological studies, but it is also important to keep in mind their differences.

  15. Predatory prokaryotes: an emerging research opportunity.

    PubMed

    Martin, Mark O

    2002-09-01

    Predatory prokaryotes have evolved a unique strategy of obtaining energy and biosynthetic materials from their surroundings: acquiring them from other living bacterial cells. These types of microbes have been found in a diverse variety of environments, and may play an important role in modulating microbial population structure and dynamics, as has been hypothesized for marine viruses and possibly protists. Only one genus of predatory bacterium, Bdellovibrio, has been extensively described and studied, though several other examples have been reported in the literature. In this review, the four basic strategies used by currently described predatory prokaryotes will be discussed: "wolfpack" group predation, epibiotic attachment, direct cytoplasmic invasion, and periplasmic invasion. Special adaptations to each approach will be considered, and compared overall to the genetic and biochemical characteristics of symbiotic or pathogenic prokaryotes living within eukaryotic cells. Two specific examples of predatory microbes, Bdellovibrio and Ensifer, will be described in terms of predation strategy, association with host cells, and host range. The prospects for bringing to bear the tools of molecular microbial genetics to the study of predatory prokaryotes will be explored, using current research with Bdellovibrio and Ensifer as examples.

  16. Estimating prokaryotic diversity and its limits.

    PubMed

    Curtis, Thomas P; Sloan, William T; Scannell, Jack W

    2002-08-01

    The absolute diversity of prokaryotes is widely held to be unknown and unknowable at any scale in any environment. However, it is not necessary to count every species in a community to estimate the number of different taxa therein. It is sufficient to estimate the area under the species abundance curve for that environment. Log-normal species abundance curves are thought to characterize communities, such as bacteria, which exhibit highly dynamic and random growth. Thus, we are able to show that the diversity of prokaryotic communities may be related to the ratio of two measurable variables: the total number of individuals in the community and the abundance of the most abundant members of that community. We assume that either the least abundant species has an abundance of 1 or Preston's canonical hypothesis is valid. Consequently, we can estimate the bacterial diversity on a small scale (oceans 160 per ml; soil 6,400-38,000 per g; sewage works 70 per ml). We are also able to speculate about diversity at a larger scale, thus the entire bacterial diversity of the sea may be unlikely to exceed 2 x 10(6), while a ton of soil could contain 4 x 10(6) different taxa. These are preliminary estimates that may change as we gain a greater understanding of the nature of prokaryotic species abundance curves. Nevertheless, it is evident that local and global prokaryotic diversity can be understood through species abundance curves and purely experimental approaches to solving this conundrum will be fruitless.

  17. Multicellular life cycle of magnetotactic prokaryotes.

    PubMed

    Keim, Carolina N; Martins, Juliana L; Abreu, Fernanda; Rosado, Alexandre Soares; de Barros, Henrique Lins; Borojevic, Radovan; Lins, Ulysses; Farina, Marcos

    2004-11-15

    Most multicellular organisms, prokaryotes as well as animals, plants, and algae have a unicellular stage in their life cycle. Here, we describe an uncultured prokaryotic magnetotactic multicellular organism that reproduces by binary fission. It is multicellular in all the stages of its life cycle, and during most of the life cycle the cells organize into a hollow sphere formed by a functionally coordinated and polarized single-cell layer that grows by increasing the cell size. Subsequently, all the cells divide synchronously; the organism becomes elliptical, and separates into two equal spheres with a torsional movement in the equatorial plane. Unicellular bacteria similar to the cells that compose these organisms have not been found. Molecular biology analysis showed that all the organisms studied belong to a single genetic population phylogenetically related to many-celled magnetotactic prokaryotes in the delta sub-group of the proteobacteria. This appears to be the first report of a multicellular prokaryotic organism that proliferates by dividing into two equal multicellular organisms each similar to the parent one. PMID:15522508

  18. Translesion Synthesis Past the C8- and N2-Deoxyguanosine Adducts of the Dietary Mutagen 2-Amino-3-methylimidazo[4,5-f]quinoline in the NarI Recognition Sequence by Prokaryotic DNA Polymerases

    PubMed Central

    Stover, James S.; Chowdhury, Goutam; Zang, Hong; Guengerich, F. Peter; Rizzo, Carmelo J.

    2011-01-01

    2-Amino-3-methylimidazo[4,5-f]quinoline (IQ) is found in cooked meats and forms DNA adducts at the C8- and N2-positions of dGuo after appropriate activation. IQ is a potent inducer of frameshift mutations in bacteria and is carcinogenic in laboratory animals. We have incorporated both IQ-adducts into the G1-and G3-positions of the NarI recognition sequence (5′-G1G2CG3CC-3′), which is a hotspot for arylamine modification. The in vitro replication of the oligonucleotides was examined with Escherichia coli pol I Klenow fragment exo−, E. coli pol II exo−, and Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4), and the extension products were sequenced by tandem mass spectrometry. Replication of the C8-adduct at the G3-position resulted in two-base deletions with all three polymerases, whereas error-free bypass and extension was observed at the G1-position. The N2-adduct was bypassed and extended by all three polymerases when positioned at the G1-position, and the error-free product was observed. The N2-adduct at the G3-position was more blocking and was bypassed and extended only by Dpo4 to produce an error-free product. These results indicate that the replication of the IQ-adducts of dGuo is strongly influenced by the local sequence and the regioisomer of the adduct. These results also suggest a possible role for pol II and IV in the error-prone bypass of the C8-IQ-adduct leading to frameshift mutations in reiterated sequences, whereas noniterated sequences result in error-free bypass. PMID:17112239

  19. Once in a lifetime: strategies for preventing re-replication in prokaryotic and eukaryotic cells.

    PubMed

    Nielsen, Olaf; Løbner-Olesen, Anders

    2008-02-01

    DNA replication is an extremely accurate process and cells have evolved intricate control mechanisms to ensure that each region of their genome is replicated only once during S phase. Here, we compare what is known about the processes that prevent re-replication in prokaryotic and eukaryotic cells by using the model organisms Escherichia coli and Schizosaccharomyces pombe as examples. Although the underlying molecular details are different, the logic behind the control mechanisms is similar. For example, after initiation, crucial molecules required for the loading of replicative helicases in both prokaryotes and eukaryotes are inactivated until the next cell cycle. Furthermore, in both systems the beta-clamp of the replicative polymerase associates with enzymatic activities that contribute to the inactivation of the helicase loaders. Finally, recent studies suggest that the control mechanism that prevents re-replication in both systems also increases the synthesis of DNA building blocks.

  20. Gene identification in prokaryotic genomes, phages, metagenomes, and EST sequences with GeneMarkS suite.

    PubMed

    Borodovsky, Mark; Lomsadze, Alex

    2014-01-01

    This unit describes how to use several gene-finding programs from the GeneMark line developed for finding protein-coding ORFs in genomic DNA of prokaryotic species, in genomic DNA of eukaryotic species with intronless genes, in genomes of viruses and phages, and in prokaryotic metagenomic sequences, as well as in EST sequences with spliced-out introns. These bioinformatics tools were demonstrated to have state-of-the-art accuracy, and have been frequently used for gene annotation in novel nucleotide sequences. An additional advantage of these sequence-analysis tools is that the problem of algorithm parameterization is solved automatically, with parameters estimated by iterative self-training (unsupervised training). PMID:24510847

  1. Survival and Evolution of CRISPR–Cas System in Prokaryotes and Its Applications

    PubMed Central

    Shabbir, Muhammad Abu Bakr; Hao, Haihong; Shabbir, Muhammad Zubair; Hussain, Hafiz Iftikhar; Iqbal, Zahid; Ahmed, Saeed; Sattar, Adeel; Iqbal, Mujahid; Li, Jun; Yuan, Zonghui

    2016-01-01

    Prokaryotes have developed numerous innate immune mechanisms in order to fend off bacteriophage or plasmid attack. One of these immune systems is clustered regularly interspaced short palindromic repeats (CRISPR). CRISPR-associated proteins play a key role in survival of prokaryotes against invaders, as these systems cleave DNA of foreign genetic elements. Beyond providing immunity, these systems have significant impact in altering the bacterial physiology in term of its virulence and pathogenicity, as well as evolution. Also, due to their diverse nature of functionality, cas9 endoribonuclease can be easily reprogrammed with the help of guide RNAs, showing unprecedented potential and significance for gene editing in treating genetic diseases. Here, we also discuss the use of NgAgo–gDNA system in genome editing of human cells. PMID:27725818

  2. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  3. Polymer segregation under confinement: Influences of macromolecular crowding and the interaction between the polymer and crowders

    NASA Astrophysics Data System (ADS)

    Chen, Yuhao; Yu, Wancheng; Wang, Jiajun; Luo, Kaifu

    2015-10-01

    Entropy driven polymer segregation in confinements as a model for chromosome separation in bacteria has attracted wide attention; however, the effects of macromolecular crowding and the interaction between the binding protein and the newly replicated DNA on the segregation dynamics are not clear. Using Langevin dynamics simulations, we investigate the influences of crowders and the attractive interaction between the polymer and a small number of crowders on segregation of two overlapping polymers under a cylindrical confinement. We find that the segregation time increases with increasing the volume fraction of crowders due to the slower chain diffusion in crowded environments. For a fixed volume fraction of crowders, the segregation time decreases with increasing the size of crowders. Moreover, the attractive interaction between the polymer and a small number of crowders can significantly facilitate the chain segregation. These results are important for understanding the chromosome segregation in living cells.

  4. Temporal and depth-related differences in prokaryotic communities in abyssal sediments associated with particulate organic carbon flux

    NASA Astrophysics Data System (ADS)

    Moeseneder, M. M.; Smith, K. L.; Ruhl, H. A.; Jones, D. O. B.; Witte, U.; Prosser, J. I.

    2012-12-01

    Particulate organic carbon (POC) flux is hypothesized to be the most important parameter influencing activity and biomass of prokaryotic and faunal communities in the abyssal seafloor, but there is little evidence of POC-related changes in community composition of prokaryotes. This hypothesis was tested by 16S rRNA-gene-based analysis of prokaryotic DNA and RNA extracted from abyssal seafloor sediments during periods of low and high POC flux. Fingerprint analysis of prokaryotic communities indicated that approximately 50% of the phylotypes were identical at each sediment horizon, regardless of the temporal variations in POC flux. However, phylotypes were also detected that represented a relatively dynamic component of these communities and were probably strongly influenced by the prevalent POC flux regime. These patterns were also detected in deeper sediment horizons. DNA- and RNA-based community profiles differed, although both approaches had similar community dynamics. Crenarchaeota showed the strongest shift in community composition in response to availability of labile POC, indicating that POC flux may have a more pronounced impact on crenarchaeal communities than on bacterial communities. The high number of phylotypes common to each sample time suggests that both standing stock and active prokaryotic communities are stable.

  5. Patterns of Residential Segregation.

    PubMed

    Louf, Rémi; Barthelemy, Marc

    2016-01-01

    The spatial distribution of income shapes the structure and organisation of cities and its understanding has broad societal implications. Despite an abundant literature, many issues remain unclear. In particular, all definitions of segregation are implicitely tied to a single indicator, usually rely on an ambiguous definition of income classes, without any consensus on how to define neighbourhoods and to deal with the polycentric organization of large cities. In this paper, we address all these questions within a unique conceptual framework. We avoid the challenge of providing a direct definition of segregation and instead start from a definition of what segregation is not. This naturally leads to the measure of representation that is able to identify locations where categories are over- or underrepresented. From there, we provide a new measure of exposure that discriminates between situations where categories co-locate or repel one another. We then use this feature to provide an unambiguous, parameter-free method to find meaningful breaks in the income distribution, thus defining classes. Applied to the 2014 American Community Survey, we find 3 emerging classes-low, middle and higher income-out of the original 16 income categories. The higher-income households are proportionally more present in larger cities, while lower-income households are not, invalidating the idea of an increased social polarisation. Finally, using the density-and not the distance to a center which is meaningless in polycentric cities-we find that the richer class is overrepresented in high density zones, especially for larger cities. This suggests that density is a relevant factor for understanding the income structure of cities and might explain some of the differences observed between US and European cities. PMID:27315283

  6. Patterns of Residential Segregation

    PubMed Central

    Louf, Rémi; Barthelemy, Marc

    2016-01-01

    The spatial distribution of income shapes the structure and organisation of cities and its understanding has broad societal implications. Despite an abundant literature, many issues remain unclear. In particular, all definitions of segregation are implicitely tied to a single indicator, usually rely on an ambiguous definition of income classes, without any consensus on how to define neighbourhoods and to deal with the polycentric organization of large cities. In this paper, we address all these questions within a unique conceptual framework. We avoid the challenge of providing a direct definition of segregation and instead start from a definition of what segregation is not. This naturally leads to the measure of representation that is able to identify locations where categories are over- or underrepresented. From there, we provide a new measure of exposure that discriminates between situations where categories co-locate or repel one another. We then use this feature to provide an unambiguous, parameter-free method to find meaningful breaks in the income distribution, thus defining classes. Applied to the 2014 American Community Survey, we find 3 emerging classes—low, middle and higher income—out of the original 16 income categories. The higher-income households are proportionally more present in larger cities, while lower-income households are not, invalidating the idea of an increased social polarisation. Finally, using the density—and not the distance to a center which is meaningless in polycentric cities—we find that the richer class is overrepresented in high density zones, especially for larger cities. This suggests that density is a relevant factor for understanding the income structure of cities and might explain some of the differences observed between US and European cities. PMID:27315283

  7. Segregation properties of galaxies

    SciTech Connect

    Santiago, B.X.; Da Costa, L.N. )

    1990-10-01

    Using the recently completed Southern Sky Redshift Survey, in conjunction with measurements of the central surface brightness, the existence of segregation in the way galaxies of different morphology and surface brightness are distributed in space is investigated. Results indicate that there is some evidence that low surface brightness galaxies are more randomly distributed than brighter ones and that this effect is independent of the well-known tendency of early-type galaxies to cluster more strongly than spirals. Presuming that the observed clustering was established at the epoch of galaxy formation, it may provide circumstantial evidence for biased galaxy formation. 24 refs.

  8. Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes.

    PubMed

    Al-Attar, Sinan; Westra, Edze R; van der Oost, John; Brouns, Stan J J

    2011-04-01

    Many prokaryotes contain the recently discovered defense system against mobile genetic elements. This defense system contains a unique type of repetitive DNA stretches, termed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs). CRISPRs consist of identical repeated DNA sequences (repeats), interspaced by highly variable sequences referred to as spacers. The spacers originate from either phages or plasmids and comprise the prokaryotes' 'immunological memory'. CRISPR-associated (cas) genes encode conserved proteins that together with CRISPRs make-up the CRISPR/Cas system, responsible for defending the prokaryotic cell against invaders. CRISPR-mediated resistance has been proposed to involve three stages: (i) CRISPR-Adaptation, the invader DNA is encountered by the CRISPR/Cas machinery and an invader-derived short DNA fragment is incorporated in the CRISPR array. (ii) CRISPR-Expression, the CRISPR array is transcribed and the transcript is processed by Cas proteins. (iii) CRISPR-Interference, the invaders' nucleic acid is recognized by complementarity to the crRNA and neutralized. An application of the CRISPR/Cas system is the immunization of industry-relevant prokaryotes (or eukaryotes) against mobile-genetic invasion. In addition, the high variability of the CRISPR spacer content can be exploited for phylogenetic and evolutionary studies. Despite impressive progress during the last couple of years, the elucidation of several fundamental details will be a major challenge in future research.

  9. Death by Segregation: Does the Dimension of Racial Segregation Matter?

    PubMed

    Yang, Tse-Chuan; Matthews, Stephen A

    2015-01-01

    The county-level geographic mortality differentials have persisted in the past four decades in the United States (US). Though several socioeconomic factors (e.g., inequality) partially explain this phenomenon, the role of race/ethnic segregation, in general, and the different dimensions of segregation, more specifically, has been underexplored. Focusing on all-cause age-sex standardized US county-level mortality (2004-2008), this study has two substantive goals: (1) to understand whether segregation is a determinant of mortality and if yes, how the relationship between segregation and mortality varies by racial/ethnic dyads (e.g., white/black), and (2) to explore whether different dimensions of segregation (i.e., evenness, exposure, concentration, centralization, and clustering) are associated with mortality. A third goal is methodological: to assess whether spatial autocorrelation influences our understanding of the associations between the dimensions of segregation and mortality. Race/ethnic segregation was found to contribute to the geographic mortality disparities. Moreover, the relationship with mortality differed by both race/ethnic group and the dimension of segregation. Specifically, white/black segregation is positively related to mortality, whereas the segregation between whites and non-black minorities is negatively associated with mortality. Among the five dimensions of segregation, evenness and exposure are more strongly related to mortality than other dimensions. Spatial filtering approaches also identified six unique spatial patterns that significantly affect the spatial distribution of mortality. These patterns offer possible insights that help identify omitted variables related to the persistent patterning of mortality in the US.

  10. Death by Segregation: Does the Dimension of Racial Segregation Matter?

    PubMed Central

    Yang, Tse-Chuan; Matthews, Stephen A.

    2015-01-01

    The county-level geographic mortality differentials have persisted in the past four decades in the United States (US). Though several socioeconomic factors (e.g., inequality) partially explain this phenomenon, the role of race/ethnic segregation, in general, and the different dimensions of segregation, more specifically, has been underexplored. Focusing on all-cause age-sex standardized US county-level mortality (2004–2008), this study has two substantive goals: (1) to understand whether segregation is a determinant of mortality and if yes, how the relationship between segregation and mortality varies by racial/ethnic dyads (e.g., white/black), and (2) to explore whether different dimensions of segregation (i.e., evenness, exposure, concentration, centralization, and clustering) are associated with mortality. A third goal is methodological: to assess whether spatial autocorrelation influences our understanding of the associations between the dimensions of segregation and mortality. Race/ethnic segregation was found to contribute to the geographic mortality disparities. Moreover, the relationship with mortality differed by both race/ethnic group and the dimension of segregation. Specifically, white/black segregation is positively related to mortality, whereas the segregation between whites and non-black minorities is negatively associated with mortality. Among the five dimensions of segregation, evenness and exposure are more strongly related to mortality than other dimensions. Spatial filtering approaches also identified six unique spatial patterns that significantly affect the spatial distribution of mortality. These patterns offer possible insights that help identify omitted variables related to the persistent patterning of mortality in the US. PMID:26398346

  11. Death by Segregation: Does the Dimension of Racial Segregation Matter?

    PubMed

    Yang, Tse-Chuan; Matthews, Stephen A

    2015-01-01

    The county-level geographic mortality differentials have persisted in the past four decades in the United States (US). Though several socioeconomic factors (e.g., inequality) partially explain this phenomenon, the role of race/ethnic segregation, in general, and the different dimensions of segregation, more specifically, has been underexplored. Focusing on all-cause age-sex standardized US county-level mortality (2004-2008), this study has two substantive goals: (1) to understand whether segregation is a determinant of mortality and if yes, how the relationship between segregation and mortality varies by racial/ethnic dyads (e.g., white/black), and (2) to explore whether different dimensions of segregation (i.e., evenness, exposure, concentration, centralization, and clustering) are associated with mortality. A third goal is methodological: to assess whether spatial autocorrelation influences our understanding of the associations between the dimensions of segregation and mortality. Race/ethnic segregation was found to contribute to the geographic mortality disparities. Moreover, the relationship with mortality differed by both race/ethnic group and the dimension of segregation. Specifically, white/black segregation is positively related to mortality, whereas the segregation between whites and non-black minorities is negatively associated with mortality. Among the five dimensions of segregation, evenness and exposure are more strongly related to mortality than other dimensions. Spatial filtering approaches also identified six unique spatial patterns that significantly affect the spatial distribution of mortality. These patterns offer possible insights that help identify omitted variables related to the persistent patterning of mortality in the US. PMID:26398346

  12. New aspects of RNA processing in prokaryotes.

    PubMed

    Evguenieva-Hackenberg, Elena; Klug, Gabriele

    2011-10-01

    The pivotal role of posttranscriptional gene regulation is strongly underlined by genome-wide analyses showing strikingly low correlation between mRNA and protein levels in bacterial and archaeal cells. The stability of an mRNA and its availability for translation contribute to posttranscriptional gene regulation, and are determined by the following factors: i) the cell-specific set of ribonucleases and related proteins, ii) regulatory RNAs, and iii) the sequence and structural features of the RNA molecule itself. High-resolution analyses of whole prokaryotic transcriptomes allow comprehensive mapping of processed transcripts, detection of essentially all expressed regulatory RNAs, and monitoring of the global impact of ribonucleases and other processing factors. This opens new perspectives for the understanding of the molecular mechanisms responsible for mRNA decay in prokaryotes.

  13. Prokaryotic Diacylglycerol Kinase and Undecaprenol Kinase

    PubMed Central

    Van Horn, Wade D.; Sanders, Charles R.

    2013-01-01

    Prokaryotic diacylglycerol kinase (DAGK) and undecaprenol kinase (UDPK) are the lone members of a family of multispan membrane enzymes that are very small, lack relationships to any other family of proteins—including water soluble kinases, and that exhibit an unusual structure and active site architecture. Escherichia coli DAGK plays an important role in recycling diacylglycerol produced as a byproduct of biosynthesis of molecules located in the periplasmic space. UDPK seems to play an analogous role in Gram-positive bacteria, where its importance is evident by the fact that UDPK is essential for biofilm formation by the oral pathogen Streptococcus mutans. DAGK has also long served as a model system for studies of membrane protein biocatalysis, folding, stability, and structure. This review explores our current understanding of the microbial physiology, enzymology, structural biology, and folding of the prokaryotic diacylglycerol kinase family, which is based on over 40 years of studies. PMID:22224599

  14. Quantifying magma segregation in dykes

    NASA Astrophysics Data System (ADS)

    Yamato, P.; Duretz, T.; May, D. A.; Tartèse, R.

    2015-10-01

    The dynamics of magma flow is highly affected by the presence of a crystalline load. During magma ascent, it has been demonstrated that crystal-melt segregation constitutes a viable mechanism for magmatic differentiation. Moreover, crystal-melt segregation during magma transport has important implications not only in terms of magma rheology, but also in terms of differentiation of the continental crust. However, the influences of the crystal volume percentage (φ), of their geometry, their size and their density on crystal-melt segregation are still not well constrained. To address these issues, we performed a parametric study using 2D direct numerical simulations, which model the ascension of a crystal-bearing magma in a vertical dyke. Using these models, we have characterised the amount of segregation as a function of different physical properties including φ, the density contrast between crystals and the melt phase (Δρ), the size of the crystals (Ac) and their aspect ratio (R). Results show that small values of R do not affect the segregation. In this case, the amount of segregation depends upon four parameters. Segregation is highest when Δρ and Ac are large, and lowest for large pressure gradient (Pd) and/or large values of dyke width (Wd). These four parameters can be combined into a single one, the Snumber, which can be used to quantify the amount of segregation occurring during magma ascent. Based on systematic numerical modelling and dimensional analysis, we provide a first order scaling law which allows quantification of the segregation for an arbitrary Snumber and φ, encompassing a wide range of typical parameters encountered in terrestrial magmatic systems. Although developed in a simplified system, this study has strong implications regarding our understanding of crystal segregation processes during magma transport. Our first order scaling law allows to immediately determine the amount of crystal-melt segregation occurring in any given magmatic

  15. Prokaryotes Versus Eukaryotes: Who is Hosting Whom?

    PubMed Central

    Tellez, Guillermo

    2014-01-01

    Microorganisms represent the largest component of biodiversity in our world. For millions of years, prokaryotic microorganisms have functioned as a major selective force shaping eukaryotic evolution. Microbes that live inside and on animals outnumber the animals’ actual somatic and germ cells by an estimated 10-fold. Collectively, the intestinal microbiome represents a “forgotten organ,” functioning as an organ inside another that can execute many physiological responsibilities. The nature of primitive eukaryotes was drastically changed due to the association with symbiotic prokaryotes facilitating mutual coevolution of host and microbe. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. From termites and honey bees to ruminants and mammals, depending on novel biochemistries provided by the prokaryotic microbiome, the association helps to metabolize several nutrients that the host cannot digest and converting these into useful end products (such as short-chain fatty acids), a process, which has huge impact on the biology and homeostasis of metazoans. More importantly, in a direct and/or indirect way, the intestinal microbiota influences the assembly of gut-associated lymphoid tissue, helps to educate immune system, affects the integrity of the intestinal mucosal barrier, modulates proliferation and differentiation of its epithelial lineages, regulates angiogenesis, and modifies the activity of enteric as well as the central nervous system. Despite these important effects, the mechanisms by which the gut microbial community influences the host’s biology remain almost entirely unknown. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification between prokaryotes and eukaryotes, which encourage us to postulate: who is hosting whom? PMID

  16. New connections in the prokaryotic toxin-antitoxin network: relationship with the eukaryotic nonsense-mediated RNA decay system

    PubMed Central

    Anantharaman, Vivek; Aravind, L

    2003-01-01

    Background Several prokaryotic plasmids maintain themselves in their hosts by means of diverse post-segregational cell killing systems. Recent findings suggest that chromosomally encoded copies of toxins and antitoxins of post-segregational cell killing systems - such as the RelE system - might function as regulatory switches under stress conditions. The RelE toxin cleaves ribosome-associated transcripts, whereas another post-segregational cell killing toxin, ParE, functions as a gyrase inhibitor. Results Using sequence profile analysis we were able unify the RelE- and ParE-type toxins with several families of small, uncharacterized proteins from diverse bacteria and archaea into a single superfamily. Gene neighborhood analysis showed that the majority of these proteins were encoded by genes in characteristic neighborhoods, in which genes encoding toxins always co-occurred with genes encoding transcription factors that are also antitoxins. The transcription factors accompanying the RelE/ParE superfamily may belong to unrelated or distantly related superfamilies, however. We used this conserved neighborhood template to transitively search genomes and identify novel post-segregational cell killing-related systems. One of these novel systems, observed in several prokaryotes, contained a predicted toxin with a PilT-N terminal (PIN) domain, which is also found in proteins of the eukaryotic nonsense-mediated RNA decay system. These searches also identified novel transcription factors (antitoxins) in post-segregational cell killing systems. Furthermore, the toxin Doc defines a potential metalloenzyme superfamily, with novel representatives in bacteria, archaea and eukaryotes, that probably acts on nucleic acids. Conclusions The tightly maintained gene neighborhoods of post-segregational cell killing-related systems appear to have evolved by in situ displacement of genes for toxins or antitoxins by functionally equivalent but evolutionarily unrelated genes. We predict that

  17. Multilevel Modeling of Social Segregation

    ERIC Educational Resources Information Center

    Leckie, George; Pillinger, Rebecca; Jones, Kelvyn; Goldstein, Harvey

    2012-01-01

    The traditional approach to measuring segregation is based upon descriptive, non-model-based indices. A recently proposed alternative is multilevel modeling. The authors further develop the argument for a multilevel modeling approach by first describing and expanding upon its notable advantages, which include an ability to model segregation at a…

  18. A Demonstration of Sample Segregation

    ERIC Educational Resources Information Center

    Fritz, Mark D.; Brumbach, Stephen B.; Hartman, JudithAnn R.

    2005-01-01

    The demonstration of sample segregation, which is simple, and visually compelling illustrates the importance of sample handling for students studying analytical chemistry and environmental chemistry. The mixture used in this demonstration has two components, which have big particle size, and different colors, which makes the segregation graphic.

  19. Regelation and ice segregation

    NASA Technical Reports Server (NTRS)

    Miller, Robert D.

    1988-01-01

    Macroscopic processes can have an important effect on the state of regolith water. The two primary mechanisms responsible for the formation of segregated ice on Earth, thermally induced regelation and hydraulic fracturing, are reviewed while their potential importance on Mars is examined. While regelation is the dominant terrestrial process, it requires a warmer and wetter environment than currently exists on Mars. In this respect, the conditions required for hydraulic fracturing are less demanding. In assessing its potential importance on Mars, it is noted that hydraulic fracturing can produce a localized zone of high pressure water that could readily disrupt an overburden of frozen ground. Such a process, it is concluded, may have triggered the release of groundwater that led to the formation of the major outflow channels.

  20. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  1. Genotoxicity induced by saponified coconut oil surfactant in prokaryote systems.

    PubMed

    Petta, Tirzah Braz; de Medeiros, Sílvia Regina Batistuzzo; do Egito, Eryvaldo Sócrates Tabosa; Agnez-Lima, Lucymara Fassarella

    2004-11-01

    Surfactants are amphiphilic substances with special properties and chemical structures that allow a reduction in interfacial tension, which permits an increase in molecule solubilization. The critical micelle concentration (CMC) is an important characteristic of surfactants that determines their aggregate state, which is generally related to its functional mechanism. In this work the genotoxic potential of saponified coconut oil (SCO), a surfactant obtained from Cocos nucifera, was analyzed using prokaryote systems. DNA strand breaks were not observed after treatment of a plasmid with SCO. Negative results were also obtained in the SOS Chromotest using Escherichia coli strains PQ35 and PQ37. A moderate toxicity of SCO was observed after treatment of strain CC104 with a concentration above its CMC, in which micelles were found. Nevertheless, this treatment was not cytotoxic to a CC104mutMmutY strain. Furthermore, in this DNA repair-deficient strain treatment with a SCO dose below its CMC, in which only monomers were found, demonstrated the possibility of an antioxidant effect, since a reduction in spontaneous mutagenesis frequency was observed. Finally, in an Ames test without metabolic activation mutagenicity induction was observed in strains TA100 and TA104 with treatment doses below the CMC. The cytotoxic, antioxidant and mutagenic effects of SCO can be influenced by the aggregational state.

  2. Prokaryotic diversity in a Tunisian hypersaline lake, Chott El Jerid.

    PubMed

    Abdallah, Manel Ben; Karray, Fatma; Mhiri, Najla; Mei, Nan; Quéméneur, Marianne; Cayol, Jean-Luc; Erauso, Gaël; Tholozan, Jean-Luc; Alazard, Didier; Sayadi, Sami

    2016-03-01

    Prokaryotic diversity was investigated in a Tunisian salt lake, Chott El Jerid, by quantitative real-time PCR, denaturing gradient gel electrophoresis (DGGE) fingerprinting methods targeting the 16S rRNA gene and culture-dependent methods. Two different samples S1-10 and S2-10 were taken from under the salt crust of Chott El Jerid in the dry season. DGGE analysis revealed that bacterial sequences were related to Firmicutes, Proteobacteria, unclassified bacteria, and Deinococcus-Thermus phyla. Anaerobic fermentative and sulfate-reducing bacteria were also detected in this ecosystem. Within the domain archaea, all sequences were affiliated to Euryarchaeota phylum. Quantitative real-time PCR showed that 16S rRNA gene copy numbers of bacteria was 5 × 10(6) DNA copies g(-1) whereas archaea varied between 5 × 10(5) and 10(6) DNA copies g(-1) in these samples. Eight anaerobic halophilic fermentative bacterial strains were isolated and affiliated with the species Halanaerobium alcaliphilum, Halanaerobium saccharolyticum, and Sporohalobacter salinus. These data showed an abundant and diverse microbial community detected in the hypersaline thalassohaline environment of Chott El Jerid. PMID:26724953

  3. The prokaryotic zinc-finger: structure, function and comparison with the eukaryotic counterpart.

    PubMed

    Malgieri, Gaetano; Palmieri, Maddalena; Russo, Luigi; Fattorusso, Roberto; Pedone, Paolo V; Isernia, Carla

    2015-12-01

    Classical zinc finger (ZF) domains were thought to be confined to the eukaryotic kingdom until the transcriptional regulator Ros protein was identified in Agrobacterium tumefaciens. The Ros Cys2 His2 ZF binds DNA in a peculiar mode and folds in a domain significantly larger than its eukaryotic counterpart consisting of 58 amino acids (the 9-66 region) arranged in a βββαα topology, and stabilized by a conserved, extensive, 15-residue hydrophobic core. The prokaryotic ZF domain, then, shows some intriguing new features that make it interestingly different from its eukaryotic counterpart. This review will focus on the prokaryotic ZFs, summarizing and discussing differences and analogies with the eukaryotic domains and providing important insights into their structure/function relationships.

  4. Centromeric Heterochromatin: The Primordial Segregation Machine

    PubMed Central

    Bloom, Kerry S.

    2014-01-01

    Centromeres are specialized domains of heterochromatin that provide the foundation for the kinetochore. Centromeric heterochromatin is characterized by specific histone modifications, a centromere-specific histone H3 variant (CENP-A), and the enrichment of cohesin, condensin, and topo-isomerase II. Centromere DNA varies orders of magnitude in size from 125 bp (budding yeast) to several megabases (human). In metaphase, sister kinetochores on the surface of replicated chromosomes face away from each other, where they establish microtubule attachment and bi-orientation. Despite the disparity in centromere size, the distance between separated sister kinetochores is remarkably conserved (approximately 1 μm) throughout phylogeny. The centromere functions as a molecular spring that resists microtubule-based extensional forces in mitosis. This review explores the physical properties of DNA in order to understand how the molecular spring is built and how it contributes to the fidelity of chromosome segregation. PMID:25251850

  5. Are topoisomerases required for mammalian chromosome segregation?

    SciTech Connect

    Sumner, A.T.; Perry, P.E.; Slavotinek, A.

    1993-12-31

    Theoretical considerations indicate that topoisomerase II should be involved in chromosome segregation, since newly replicated daughter DNA molecules must be interwined, and an enzyme such as topoisomerase II is needed to disentangle them. It has been shown, using scanning electron microscopy, that regions of centromeric heterochromatin are the last parts of the chromosomes to separate at anaphase. Such regions generally contain highly repetitive, satellite DNAs, whose function is obscure, since they vary extensively, and apparently randomly, in their sequence and average base composition. However, in spite of this compositional variation, it appears that many satellite DNAs show characteristic curvature, which may, rather than a specific nucleotide sequence, be a recognition site for topoisomerase II. Satellite DNA in centromeric heterochromatin might then, regardless of sequence, provide a specific substrate on which topoisomerase II could act in a concerted fashion at the beginning of anaphase to ensure orderly separation of the daughter chromosomes.

  6. Chromosome segregation in plant meiosis

    PubMed Central

    Zamariola, Linda; Tiang, Choon Lin; De Storme, Nico; Pawlowski, Wojtek; Geelen, Danny

    2014-01-01

    Faithful chromosome segregation in meiosis is essential for ploidy stability over sexual life cycles. In plants, defective chromosome segregation caused by gene mutations or other factors leads to the formation of unbalanced or unreduced gametes creating aneuploid or polyploid progeny, respectively. Accurate segregation requires the coordinated execution of conserved processes occurring throughout the two meiotic cell divisions. Synapsis and recombination ensure the establishment of chiasmata that hold homologous chromosomes together allowing their correct segregation in the first meiotic division, which is also tightly regulated by cell-cycle dependent release of cohesin and monopolar attachment of sister kinetochores to microtubules. In meiosis II, bi-orientation of sister kinetochores and proper spindle orientation correctly segregate chromosomes in four haploid cells. Checkpoint mechanisms acting at kinetochores control the accuracy of kinetochore-microtubule attachment, thus ensuring the completion of segregation. Here we review the current knowledge on the processes taking place during chromosome segregation in plant meiosis, focusing on the characterization of the molecular factors involved. PMID:24987397

  7. Influence of age of aggregates and prokaryotic abundance on glucose and leucine uptake by heterotrophic marine prokaryotes.

    PubMed

    Azúa, Iñigo; Unanue, Marian; Ayo, Begoña; Artolozaga, Itxaso; Iriberri, Juan

    2007-03-01

    The kinetics of glucose and leucine uptake in attached and free-living prokaryotes in two types of microcosms with different nutrient qualities were compared. Microcosm type M1, derived from unaltered seawater, and microcosm type M2, from phytoplankton cultures, clearly expressed different kinetic parameters (Vmax/cell and K' m). In aggregates with low cell densities (M1 microcosm), the attached prokaryotes benefited from attachment as reflected in the higher potential uptake rates, while in aggregates with high cell densities (M2 microcosm) differences in the potential uptake rates of attached and free-living prokaryotes were not evident. The aging process and the chemical changes in aggregates of M2 microcosms were followed for 15-20 days. The results showed that as the aggregates aged and prokaryotic abundance increased, attached prokaryotes decreased their potential uptake rate and their K' m for substrate. This suggests an adaptive response by attached prokaryotes when aggregates undergo quantitative and qualitative impoverishment.

  8. Mechanisms of specific and nonspecific binding of architectural proteins in prokaryotic gene regulation.

    PubMed

    Benevides, James M; Danahy, Jessica; Kawakami, Jessica; Thomas, George J

    2008-03-25

    IHF and HU are small basic proteins of eubacteria that bind as homodimers to double-stranded DNA and bend the duplex to promote architectures required for gene regulation. These architectural proteins share a common alpha/beta fold but exhibit different nucleic acid binding surfaces and distinct functional roles. With respect to DNA-binding specificity, for example, IHF is sequence specific, while HU is not. We have employed Raman difference spectroscopy and gel mobility assays to characterize the molecular mechanisms underlying such differences in DNA recognition. Parallel studies of solution complexes of IHF and HU with the same DNA nonadecamer (5' --> 3' sequence: TC TAAGTAGTTGATTCATA, where the phage lambda H1 consensus sequence of IHF is underlined) show the following. (i) The structure of the targeted DNA site is altered much more dramatically by IHF than by HU binding. (ii) In the IHF complex, the structural perturbations encompass both the sugar-phosphate backbone and the bases of the consensus sequence, whereas only the DNA backbone is altered by HU binding. (iii) In the presence of excess protein, complexes of order higher than 1 dimer per duplex are detected for HU:DNA, though not for IHF:DNA. The results differentiate structural motifs of IHF:DNA and HU:DNA solution complexes, provide Raman signatures of prokaryotic sequence-specific and nonspecific recognition, and suggest that the architectural role of HU may involve the capability to recruit additional binding partners to even relatively short DNA sequences. PMID:18302340

  9. Protein diversity confers specificity in plasmid segregation.

    PubMed

    Fothergill, Timothy J G; Barillà, Daniela; Hayes, Finbarr

    2005-04-01

    The ParG segregation protein (8.6 kDa) of multidrug resistance plasmid TP228 is a homodimeric DNA-binding factor. The ParG dimer consists of intertwined C-terminal domains that adopt a ribbon-helix-helix architecture and a pair of flexible, unstructured N-terminal tails. A variety of plasmids possess partition loci with similar organizations to that of TP228, but instead of ParG homologs, these plasmids specify a diversity of unrelated, but similarly sized, partition proteins. These include the proteobacterial pTAR, pVT745, and pB171 plasmids. The ParG analogs of these plasmids were characterized in parallel with the ParG homolog encoded by the pseudomonal plasmid pVS1. Like ParG, the four proteins are dimeric. No heterodimerization was detectable in vivo among the proteins nor with the prototypical ParG protein, suggesting that monomer-monomer interactions are specific among the five proteins. Nevertheless, as with ParG, the ParG analogs all possess significant amounts of unordered amino acid residues, potentially highlighting a common structural link among the proteins. Furthermore, the ParG analogs bind specifically to the DNA regions located upstream of their homologous parF-like genes. These nucleoprotein interactions are largely restricted to cognate protein-DNA pairs. The results reveal that the partition complexes of these and related plasmids have recruited disparate DNA-binding factors that provide a layer of specificity to the macromolecular interactions that mediate plasmid segregation. PMID:15805511

  10. Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon.

    PubMed Central

    Stein, J L; Marsh, T L; Wu, K Y; Shizuya, H; DeLong, E F

    1996-01-01

    One potential approach for characterizing uncultivated prokaryotes from natural assemblages involves genomic analysis of DNA fragments retrieved directly from naturally occurring microbial biomass. In this study, we sought to isolate large genomic fragments from a widely distributed and relatively abundant but as yet uncultivated group of prokaryotes, the planktonic marine Archaea. A fosmid DNA library was prepared from a marine picoplankton assemblage collected at a depth of 200 m in the eastern North Pacific. We identified a 38.5-kbp recombinant fosmid clone which contained an archaeal small subunit ribosomal DNA gene. Phylogenetic analyses of the small subunit rRNA sequence demonstrated it close relationship to that of previously described planktonic archaea, which form a coherent group rooted deeply within the Crenarchaeota branch of the domain Archaea. Random shotgun sequencing of subcloned fragments of the archaeal fosmid clone revealed several genes which bore highest similarity to archaeal homologs, including large subunit ribosomal DNA and translation elongation factor 2 (EF2). Analyses of the inferred amino acid sequence of archaeoplankton EF2 supported its affiliation with the Crenarchaeote subdivision of Archaea. Two gene fragments encoding proteins not previously found in Archaea were also identified: RNA helicase, responsible for the ATP-dependent alteration of RNA secondary structure, and glutamate semialdehyde aminotransferase, an enzyme involved in initial steps of heme biosynthesis. In total, our results indicate that genomic analysis of large DNA fragments retrieved from mixed microbial assemblages can provide useful perspective on the physiological potential of abundant but as yet uncultivated prokaryotes. PMID:8550487

  11. Segregated solar pond

    SciTech Connect

    Assaf, G.

    1984-10-09

    A segregated solar pond includes an upper level of water overlying a lower level of water, and an impermeable barrier interposed between the two levels for preventing intermixing. The average density of the upper level exceeds the average density of the upper level. Floats on the periphery of the upper level buoyantly support it on the surface of a larger body of water connected to the lower level. The upper level contains dissolved salts establishing a halocline that renders the upper level non-convective such that it is heated by absorption of solar radiation, the heat being transferred to the lower level by conduction across the barrier. Vertical curtains attached to the periphery of the barrier inhibit mixing of the water in the lower level with the water in the larger body of water such that the lower level constitutes a heat storage layer. The barrier between the two layers includes a sheet of flexible material and a frame supporting the same rigidly connected to the floats. The upper level is stabilized by additional floats rigidly connected to the frames and floating in the upper level.

  12. Emerging spatial patterns in Antarctic prokaryotes.

    PubMed

    Chong, Chun-Wie; Pearce, David A; Convey, Peter

    2015-01-01

    Recent advances in knowledge of patterns of biogeography in terrestrial eukaryotic organisms have led to a fundamental paradigm shift in understanding of the controls and history of life on land in Antarctica, and its interactions over the long term with the glaciological and geological processes that have shaped the continent. However, while it has long been recognized that the terrestrial ecosystems of Antarctica are dominated by microbes and their processes, knowledge of microbial diversity and distributions has lagged far behind that of the macroscopic eukaryote organisms. Increasing human contact with and activity in the continent is leading to risks of biological contamination and change in a region whose isolation has protected it for millions of years at least; these risks may be particularly acute for microbial communities which have, as yet, received scant recognition and attention. Even a matter apparently as straightforward as Protected Area designation in Antarctica requires robust biodiversity data which, in most parts of the continent, remain almost completely unavailable. A range of important contributing factors mean that it is now timely to reconsider the state of knowledge of Antarctic terrestrial prokaryotes. Rapid advances in molecular biological approaches are increasingly demonstrating that bacterial diversity in Antarctica may be far greater than previously thought, and that there is overlap in the environmental controls affecting both Antarctic prokaryotic and eukaryotic communities. Bacterial dispersal mechanisms and colonization patterns remain largely unaddressed, although evidence for regional evolutionary differentiation is rapidly accruing and, with this, there is increasing appreciation of patterns in regional bacterial biogeography in this large part of the globe. In this review, we set out to describe the state of knowledge of Antarctic prokaryote diversity patterns, drawing analogy with those of eukaryote groups where appropriate

  13. Emerging spatial patterns in Antarctic prokaryotes

    PubMed Central

    Chong, Chun-Wie; Pearce, David A.; Convey, Peter

    2015-01-01

    Recent advances in knowledge of patterns of biogeography in terrestrial eukaryotic organisms have led to a fundamental paradigm shift in understanding of the controls and history of life on land in Antarctica, and its interactions over the long term with the glaciological and geological processes that have shaped the continent. However, while it has long been recognized that the terrestrial ecosystems of Antarctica are dominated by microbes and their processes, knowledge of microbial diversity and distributions has lagged far behind that of the macroscopic eukaryote organisms. Increasing human contact with and activity in the continent is leading to risks of biological contamination and change in a region whose isolation has protected it for millions of years at least; these risks may be particularly acute for microbial communities which have, as yet, received scant recognition and attention. Even a matter apparently as straightforward as Protected Area designation in Antarctica requires robust biodiversity data which, in most parts of the continent, remain almost completely unavailable. A range of important contributing factors mean that it is now timely to reconsider the state of knowledge of Antarctic terrestrial prokaryotes. Rapid advances in molecular biological approaches are increasingly demonstrating that bacterial diversity in Antarctica may be far greater than previously thought, and that there is overlap in the environmental controls affecting both Antarctic prokaryotic and eukaryotic communities. Bacterial dispersal mechanisms and colonization patterns remain largely unaddressed, although evidence for regional evolutionary differentiation is rapidly accruing and, with this, there is increasing appreciation of patterns in regional bacterial biogeography in this large part of the globe. In this review, we set out to describe the state of knowledge of Antarctic prokaryote diversity patterns, drawing analogy with those of eukaryote groups where appropriate

  14. Emerging spatial patterns in Antarctic prokaryotes.

    PubMed

    Chong, Chun-Wie; Pearce, David A; Convey, Peter

    2015-01-01

    Recent advances in knowledge of patterns of biogeography in terrestrial eukaryotic organisms have led to a fundamental paradigm shift in understanding of the controls and history of life on land in Antarctica, and its interactions over the long term with the glaciological and geological processes that have shaped the continent. However, while it has long been recognized that the terrestrial ecosystems of Antarctica are dominated by microbes and their processes, knowledge of microbial diversity and distributions has lagged far behind that of the macroscopic eukaryote organisms. Increasing human contact with and activity in the continent is leading to risks of biological contamination and change in a region whose isolation has protected it for millions of years at least; these risks may be particularly acute for microbial communities which have, as yet, received scant recognition and attention. Even a matter apparently as straightforward as Protected Area designation in Antarctica requires robust biodiversity data which, in most parts of the continent, remain almost completely unavailable. A range of important contributing factors mean that it is now timely to reconsider the state of knowledge of Antarctic terrestrial prokaryotes. Rapid advances in molecular biological approaches are increasingly demonstrating that bacterial diversity in Antarctica may be far greater than previously thought, and that there is overlap in the environmental controls affecting both Antarctic prokaryotic and eukaryotic communities. Bacterial dispersal mechanisms and colonization patterns remain largely unaddressed, although evidence for regional evolutionary differentiation is rapidly accruing and, with this, there is increasing appreciation of patterns in regional bacterial biogeography in this large part of the globe. In this review, we set out to describe the state of knowledge of Antarctic prokaryote diversity patterns, drawing analogy with those of eukaryote groups where appropriate

  15. A degradation signal recognition in prokaryotes

    PubMed Central

    Park, Eun Young; Song, Hyun Kyu

    2008-01-01

    The degradation of ssrA-tagged substrates in prokaryotes is conducted by a subset of ATP-dependent proteases, including ClpXP complex. More than 630 sequences of ssrA have been identified from 514 species, and are conserved in a wide range of prokaryotes. SspB protein markedly stimulates the degradation of these ssrA-tagged substrates by the ClpXP proteolytic machine. The dimeric SspB protein is composed of a compact ssrA-binding domain, which has a dimerization surface and a flexible C-terminal tail with a ClpX-binding motif at its very end. Since SspB is an adaptor protein for the ClpXP complex, designed mutagenesis, fluorescence spectroscopy, biochemistry and X-ray crystallography have been used to investigate the mechanism of delivery of ssrA-tagged proteins. In this paper the structural basis of ssrA-tag recognition by ClpX and SspB, as well as SspB-tail recognition by ZBD, is described. PMID:18421150

  16. Prokaryotic silicon utilizing microorganisms in the biosphere

    NASA Astrophysics Data System (ADS)

    Gupta, D.; Das, S.

    2012-12-01

    Although a little study has been done to determine the silicon utilizing prokaryotes, our previous experiments indicated that almost all Gram-positive bacteria are silicon utilizing; one of them, Streptococci survived exposure on the lunar surface for a long period in experiment done by others. Our initial experiments with these Gram positive microorganisms showed that there were limited growths of these microorganisms on carbon free silicate medium probably with the help of some carry over carbon and nitrogen during cultivation procedures. However, increase in growth rate after repeated subcultures could not be explained at present. The main groups of prokaryotes which were found silicon utilizing microorganisms were Mycobacterium, Bacillus, Nocardia, Streptomyces, Staphylococcus, Streptococcus, Lactobacillus, and Clostridium. In a another previous study by us when silicon level was studied in such grown up cells on carbon "free" silicate medium by electron prove microanalyser, it was found that silicon in cells grown on carbon "free" silicate medium was much higher (24.9%) than those grown on conventional carbon based medium (0.84%). However, these initial findings are encouraging for our future application of this group of organisms on extraterrestrial surfaces for artificial micro-ecosystem formation. It was found that when electropositive elements are less in extraterrestrial situation, then polymerization of silicon-oxygen profusion may occur easily, particularly in carbon and nitrogen paucity in the rocky worlds of the Universe.

  17. Income Segregation between Schools and School Districts

    ERIC Educational Resources Information Center

    Owens, Ann; Reardon, Sean F.; Jencks, Christopher

    2016-01-01

    Although trends in the racial segregation of schools are well documented, less is known about trends in income segregation. We use multiple data sources to document trends in income segregation between schools and school districts. Between-district income segregation of families with children enrolled in public school increased by over 15% from…

  18. Nanoscale Spatial Organization of Prokaryotic Cells Studied by Super-Resolution Optical Microscopy

    NASA Astrophysics Data System (ADS)

    McEvoy, Andrea Lynn

    All cells spatially organize their interiors, and this arrangement is necessary for cell viability. Until recently, it was believed that only eukaryotic cells spatially segregate their components. However, it is becoming increasingly clear that bacteria also assemble their proteins into complex patterns. In eukaryotic cells, spatial organization arises from membrane bound organelles as well as motor transport proteins which can move cargos within the cell. To date, there are no known motor transport proteins in bacteria and most microbes lack membrane bound organelles, so it remains a mystery how bacterial spatial organization emerges. In hind-sight it is not surprising that bacteria also exhibit complex spatial organization considering much of what we have learned about the basic processes that take place in all cells, such as transcription and translation was first discovered in prokaryotic cells. Perhaps the fundamental principles that govern spatial organization in prokaryotic cells may be applicable in eukaryotic cells as well. In addition, bacteria are attractive model organism for spatial organization studies because they are genetically tractable, grow quickly and much biochemical and structural data is known about them. A powerful tool for observing spatial organization in cells is the fluorescence microscope. By specifically tagging a protein of interest with a fluorescent probe, it is possible to examine how proteins organize and dynamically assemble inside cells. A significant disadvantage of this technology is its spatial resolution (approximately 250 nm laterally and 500 nm axially). This limitation on resolution causes closely spaced proteins to look blurred making it difficult to observe the fine structure within the complexes. This resolution limit is especially problematic within small cells such as bacteria. With the recent invention of new optical microscopies, we now can surpass the existing limits of fluorescence imaging. In some cases, we can

  19. Biophysical Adaptations of Prokaryotic Voltage-Gated Sodium Channels.

    PubMed

    Vien, T N; DeCaen, P G

    2016-01-01

    This chapter describes the adaptive features found in voltage-gated sodium channels (NaVs) of prokaryotes and eukaryotes. These two families are distinct, having diverged early in evolutionary history but maintain a surprising degree of convergence in function. While prokaryotic NaVs are required for growth and motility, eukaryotic NaVs selectively conduct fast electrical currents for short- and long-range signaling across cell membranes in mammalian organs. Current interest in prokaryotic NaVs is stoked by their resolved high-resolution structures and functional features which are reminiscent of eukaryotic NaVs. In this chapter, comparisons between eukaryotic and prokaryotic NaVs are made to highlight the shared and unique aspects of ion selectivity, voltage sensitivity, and pharmacology. Examples of prokaryotic and eukaryotic NaV convergent evolution will be discussed within the context of their structural features. PMID:27586280

  20. Controlling segregation speed of entangled polymers by the shapes: A simple model for eukaryotic chromosome segregation

    NASA Astrophysics Data System (ADS)

    Sakai, Yuji; Tachikawa, Masashi; Mochizuki, Atsushi

    2016-10-01

    We report molecular dynamics simulations of the segregation of two overlapping polymers motivated by chromosome segregation in biological cells. We investigate the relationship between polymer shapes and segregation dynamics and show that elongation and compaction make entangled polymers segregate rapidly. This result suggests that eukaryotic chromosomes take such a characteristic rod-shaped structure, which is induced by condensins, to achieve rapid segregation.

  1. Bacterial scaffold directs pole-specific centromere segregation

    PubMed Central

    Ptacin, Jerod L.; Gahlmann, Andreas; Bowman, Grant R.; Perez, Adam M.; von Diezmann, Alexander R. S.; Eckart, Michael R.; Moerner, W. E.; Shapiro, Lucy

    2014-01-01

    Bacteria use partitioning systems based on the ParA ATPase to actively mobilize and spatially organize molecular cargoes throughout the cytoplasm. The bacterium Caulobacter crescentus uses a ParA-based partitioning system to segregate newly replicated chromosomal centromeres to opposite cell poles. Here we demonstrate that the Caulobacter PopZ scaffold creates an organizing center at the cell pole that actively regulates polar centromere transport by the ParA partition system. As segregation proceeds, the ParB-bound centromere complex is moved by progressively disassembling ParA from a nucleoid-bound structure. Using superresolution microscopy, we show that released ParA is recruited directly to binding sites within a 3D ultrastructure composed of PopZ at the cell pole, whereas the ParB-centromere complex remains at the periphery of the PopZ structure. PopZ recruitment of ParA stimulates ParA to assemble on the nucleoid near the PopZ-proximal cell pole. We identify mutations in PopZ that allow scaffold assembly but specifically abrogate interactions with ParA and demonstrate that PopZ/ParA interactions are required for proper chromosome segregation in vivo. We propose that during segregation PopZ sequesters free ParA and induces target-proximal regeneration of ParA DNA binding activity to enforce processive and pole-directed centromere segregation, preventing segregation reversals. PopZ therefore functions as a polar hub complex at the cell pole to directly regulate the directionality and destination of transfer of the mitotic segregation machine. PMID:24778223

  2. Segregation and Poverty Concentration: The Role of Three Segregations

    PubMed Central

    Quillian, Lincoln

    2014-01-01

    A key argument of Massey and Denton’s American Apartheid (1993) is that racial residential segregation and non-white group poverty rates combine interactively to produce spatially concentrated poverty. Despite a compelling theoretical rationale, the empirical tests of this proposition have been negative or mixed. This paper develops a formal decomposition model that expands the Massey model of how segregation, group poverty rates, and other spatial conditions combine to form concentrated poverty. The revised decomposition model allows for income effects on cross-race neighborhood residence and interactive combinations of multiple spatial conditions in the formation of concentrated poverty. Applying the model to data reveals that racial segregation and income segregation within race contribute importantly to poverty concentration, as Massey argued, but that almost equally important for poverty concentration is the disproportionate poverty of the non-group neighbors of blacks and Hispanics. The missing interaction Massey expected in empirical tests can be found with proper accounting for the factors in the expanded model. “Because of racial segregation, a significant share of black America is condemned to experience a social environment where poverty and joblessness are the norm, where a majority of children are born out of wedlock, where most families are on welfare, where educational failure prevails, and where social and physical deterioration abound. Through prolonged exposure to such an environment, black chances for social and economic success are drastically reduced.”--Douglas Massey and Nancy Denton, American Apartheid, p. 2 PMID:24648570

  3. Segregation dynamics in debris flows

    NASA Astrophysics Data System (ADS)

    Hill, K. M.; Fei, M.

    2014-12-01

    Debris flows are massive flows consisting of mixtures of particles of different sizes and interstitial fluids such as water and mud. In sheared mixtures of different-sized (same density) particles, it is well known that larger particles tend to go up (toward the free surface), and the smaller particles, down, commonly referred to as the "Brazil-nut problem" or "kinetic sieving". When kinetic sieving fluxes are combined with advection in flows, they can give rise to a spectacular range of segregation patterns. These segregation / advection dynamics are recognized as playing a role in the coarsening of a debris flow front (its "snout") and the coarsening of the self-formed channel sides or levees. Since particle size distribution influences the flow dynamics including entrainment of bed materials, modeling segregation dynamics in debris flows is important for modeling the debris flows themselves. In sparser systems, the Brazil-nut segregation is well-modeled using kinetic theory applied to dissipative systems, where an underlying assumption involves random, uncorrelated collisions. In denser systems, where kinetic theory breaks down we have recently developed a new mixture model that demonstrates the segregation fluxes are driven by two effects associated with the kinetic stress or granular temperature (the kinetic energy associated with velocity fluctuations): (1) the difference between the partitioning of kinetic and contact stresses among the species in the mixture and (2) a kinetic stress gradient. Both model frameworks involve the temperature gradient as a driving force for segregation, but kinetic theory sends larger particles toward lower temperatures, and our mixture model sends larger particles away from lower temperatures. Which framework works under what conditions appears to depend on correlations in the flow such as those manifested in clusters and force chains. We discuss the application of each theoretical framework to representing segregation dynamics

  4. Evolutionary cell biology of chromosome segregation: insights from trypanosomes

    PubMed Central

    Akiyoshi, Bungo; Gull, Keith

    2013-01-01

    Faithful transmission of genetic material is essential for the survival of all organisms. Eukaryotic chromosome segregation is driven by the kinetochore that assembles onto centromeric DNA to capture spindle microtubules and govern the movement of chromosomes. Its molecular mechanism has been actively studied in conventional model eukaryotes, such as yeasts, worms, flies and human. However, these organisms are closely related in the evolutionary time scale and it therefore remains unclear whether all eukaryotes use a similar mechanism. The evolutionary origins of the segregation apparatus also remain enigmatic. To gain insights into these questions, it is critical to perform comparative studies. Here, we review our current understanding of the mitotic mechanism in Trypanosoma brucei, an experimentally tractable kinetoplastid parasite that branched early in eukaryotic history. No canonical kinetochore component has been identified, and the design principle of kinetochores might be fundamentally different in kinetoplastids. Furthermore, these organisms do not appear to possess a functional spindle checkpoint that monitors kinetochore–microtubule attachments. With these unique features and the long evolutionary distance from other eukaryotes, understanding the mechanism of chromosome segregation in T. brucei should reveal fundamental requirements for the eukaryotic segregation machinery, and may also provide hints about the origin and evolution of the segregation apparatus. PMID:23635522

  5. Drug-induced DNA repair: X-ray structure of a DNA-ditercalinium complex.

    PubMed Central

    Gao, Q; Williams, L D; Egli, M; Rabinovich, D; Chen, S L; Quigley, G J; Rich, A

    1991-01-01

    Ditercalinium is a synthetic anticancer drug that binds to DNA by bis-intercalation and activates DNA repair processes. In prokaryotes, noncovalent DNA-ditercalinium complexes are incorrectly recognized by the uvrABC repair system as covalent lesions on DNA. In eukaryotes, mitochondrial DNA is degraded by excess and futile DNA repair. Using x-ray crystallography, we have determined, to 1.7 A resolution, the three-dimensional structure of a complex of ditercalinium bound to the double-stranded DNA fragment [d(CGCG)]2. The DNA in the complex with ditercalinium is kinked (by 15 degrees) and severely unwound (by 36 degrees) with exceptionally wide major and minor grooves. Recognition of the DNA-ditercalinium complex by uvrABC in prokaryotes, and by mitochondrial DNA repair systems in eukaryotes, might be related to drug-induced distortion of the DNA helix. Images PMID:2006181

  6. Current Developments in Prokaryotic Single Cell Whole Genome Amplification

    SciTech Connect

    Goudeau, Danielle; Nath, Nandita; Ciobanu, Doina; Cheng, Jan-Fang; Malmstrom, Rex

    2014-03-14

    Our approach to prokaryotic single-cell Whole Genome Amplification at the JGI continues to evolve. To increase both the quality and number of single-cell genomes produced, we explore all aspects of the process from cell sorting to sequencing. For example, we now utilize specialized reagents, acoustic liquid handling, and reduced reaction volumes eliminate non-target DNA contamination in WGA reactions. More specifically, we use a cleaner commercial WGA kit from Qiagen that employs a UV decontamination procedure initially developed at the JGI, and we use the Labcyte Echo for tip-less liquid transfer to set up 2uL reactions. Acoustic liquid handling also dramatically reduces reagent costs. In addition, we are exploring new cell lysis methods including treatment with Proteinase K, lysozyme, and other detergents, in order to complement standard alkaline lysis and allow for more efficient disruption of a wider range of cells. Incomplete lysis represents a major hurdle for WGA on some environmental samples, especially rhizosphere, peatland, and other soils. Finding effective lysis strategies that are also compatible with WGA is challenging, and we are currently assessing the impact of various strategies on genome recovery.

  7. Do Phages influence Species Richness of Prokaryotic Communities?

    NASA Astrophysics Data System (ADS)

    Winter, C.; Smit, A.; Herndl, G. J.; Weinbauer, M. G.

    2003-04-01

    The aim of the study was to follow the potential influence of phage infection on the species richness of their pelagic prokaryotic hosts. Experiments were conducted during cruises in the tropical Atlantic and the southern North Sea. Concentrates of bacteria and viruses were obtained by ultrafiltration. An aliquot of the bacterial concentrate was inoculated in virus-free seawater and varying amounts of viral concentrate were added. Batch cultures with microwave-inactivated viruses and without virus amendment served as controls. Species richness of the domains Bacteria and Archaea was determined by terminal restriction fragment length polymorphism (T-RFLP) analysis of PCR amplified 16S rDNA fragments collected every 24 hrs for up to four days. The time courses of viral abundance in the cultures amended with viral concentrates were comparable to each other. However, the observed oscillations in bacterial and viral numbers appeared to increase in magnitude with increasing initial viral abundance. Differences between the microbial communities of the various treatments increased with increasing initial viral abundance for Bacteria and Archaea, regardless of the initial bacterial abundance. The results show that bacteriophages are affecting the species richness of pelagic Bacteria and Archaea under non-steady state conditions.

  8. Metabolic Design and Control for Production in Prokaryotes

    SciTech Connect

    Chhabra, Swapnil R.; Keasling, J.D.

    2010-11-10

    Prokaryotic life on earth is manifested by its diversity and omnipresence. These microbes serve as natural sources of a large variety of compounds with the potential to serve the ever growing, medicinal, chemical and transportation needs of the human population. However, commercially viable production of these compounds can be realized only through significant improvement of the native production capacity of natural isolates. The most favorable way to achieve this goal is through the genetic manipulation of metabolic pathways that direct the production of these molecules. While random mutagenesis and screening have dominated the industrial production of such compounds in the past our increased understanding of microbial physiology over the last five decades has shifted this trend towards rational approaches for metabolic design. Major drivers of this trend include recombinant DNA technology, high throughput characterization of macromolecular cellular components, quantitative modeling for metabolic engine ring, targeted combinatorial engineering and synthetic biology. In this chapter we track the evolution of microbial engineering technologies from the black box era of random mutagenesis to the science and engineering-driven era of metabolic design.

  9. The origin of DNA genomes and DNA replication proteins.

    PubMed

    Forterre, Patrick

    2002-10-01

    In recent years, it has became clear that most proteins involved in cellular DNA precursor synthesis or DNA replication have been 'invented' more than once, indicating that the transition from RNA to DNA genomes was more complex than previously thought. Several authors have suggested that DNA viruses, which often encode their own version of these proteins, played an important role in this process. The nature of the genome of the last universal cellular ancestor (LUCA) -- that is, RNA or DNA, prokaryotic-like or eukaryotic-like -- remains in dispute. A hyperthermophilic LUCA would have suggested a circular, double-stranded DNA genome; however, recent data favor a mesophilic or moderately thermophilic LUCA.

  10. Biodiversity of Prokaryotic Communities Associated with the Ectoderm of Ectopleura crocea (Cnidaria, Hydrozoa)

    PubMed Central

    Di Camillo, Cristina Gioia; Luna, Gian Marco; Bo, Marzia; Giordano, Giuseppe; Corinaldesi, Cinzia; Bavestrello, Giorgio

    2012-01-01

    The surface of many marine organisms is colonized by complex communities of microbes, yet our understanding of the diversity and role of host-associated microbes is still limited. We investigated the association between Ectopleura crocea (a colonial hydroid distributed worldwide in temperate waters) and prokaryotic assemblages colonizing the hydranth surface. We used, for the first time on a marine hydroid, a combination of electron and epifluorescence microscopy and 16S rDNA tag pyrosequencing to investigate the associated prokaryotic diversity. Dense assemblages of prokaryotes were associated with the hydrant surface. Two microbial morphotypes were observed: one horseshoe-shaped and one fusiform, worm-like. These prokaryotes were observed on the hydrozoan epidermis, but not in the portions covered by the perisarcal exoskeleton, and their abundance was higher in March while decreased in late spring. Molecular analyses showed that assemblages were dominated by Bacteria rather than Archaea. Bacterial assemblages were highly diversified, with up to 113 genera and 570 Operational Taxonomic Units (OTUs), many of which were rare and contributed to <0.4%. The two most abundant OTUs, likely corresponding to the two morphotypes present on the epidermis, were distantly related to Comamonadaceae (genus Delftia) and to Flavobacteriaceae (genus Polaribacter). Epibiontic bacteria were found on E. crocea from different geographic areas but not in other hydroid species in the same areas, suggesting that the host-microbe association is species-specific. This is the first detailed report of bacteria living on the hydrozoan epidermis, and indeed the first study reporting bacteria associated with the epithelium of E. crocea. Our results provide a starting point for future studies aiming at clarifying the role of this peculiar hydrozoan-bacterial association. PMID:22768172

  11. SIS: a program to generate draft genome sequence scaffolds for prokaryotes

    PubMed Central

    2012-01-01

    Background Decreasing costs of DNA sequencing have made prokaryotic draft genome sequences increasingly common. A contig scaffold is an ordering of contigs in the correct orientation. A scaffold can help genome comparisons and guide gap closure efforts. One popular technique for obtaining contig scaffolds is to map contigs onto a reference genome. However, rearrangements that may exist between the query and reference genomes may result in incorrect scaffolds, if these rearrangements are not taken into account. Large-scale inversions are common rearrangement events in prokaryotic genomes. Even in draft genomes it is possible to detect the presence of inversions given sufficient sequencing coverage and a sufficiently close reference genome. Results We present a linear-time algorithm that can generate a set of contig scaffolds for a draft genome sequence represented in contigs given a reference genome. The algorithm is aimed at prokaryotic genomes and relies on the presence of matching sequence patterns between the query and reference genomes that can be interpreted as the result of large-scale inversions; we call these patterns inversion signatures. Our algorithm is capable of correctly generating a scaffold if at least one member of every inversion signature pair is present in contigs and no inversion signatures have been overwritten in evolution. The algorithm is also capable of generating scaffolds in the presence of any kind of inversion, even though in this general case there is no guarantee that all scaffolds in the scaffold set will be correct. We compare the performance of sis, the program that implements the algorithm, to seven other scaffold-generating programs. The results of our tests show that sis has overall better performance. Conclusions sis is a new easy-to-use tool to generate contig scaffolds, available both as stand-alone and as a web server. The good performance of sis in our tests adds evidence that large-scale inversions are widespread in

  12. Evolution of thiol protective systems in prokaryotes

    NASA Technical Reports Server (NTRS)

    Fahey, R. C.; Newton, G. L.

    1986-01-01

    Biological thiols are essential elements in most aspects of cell function but undergo rapid oxidation to disulfides in the presence of oxygen. The evolution of systems to protect against such oxygen toxicity was essential to the emergence of aerobic life. The protection system used by eukaryotes is based upon glutathione (GSH) and GSH-dependent enzymes but many bacteria lack GSH and apparently use other mechanisms. The objective of this research is to elaborate the thiol protective mechanisms employed by prokaryotes of widely divergent evolutionary origin and to understand why GSH became the central thiol employed in essentially all higher organisms. Thiol-selective fluorescent labeling and HPLC analysis has been used to determine key monothiol components.

  13. Macromolecule diffusion and confinement in prokaryotic cells.

    PubMed

    Mika, Jacek T; Poolman, Bert

    2011-02-01

    We review recent observations on the mobility of macromolecules and their spatial organization in live bacterial cells. We outline the major fluorescence microscopy-based methods to determine the mobility and thus the diffusion coefficients (D) of molecules, which is not trivial in small cells. The extremely high macromolecule crowding of prokaryotes is used to rationalize the reported lower diffusion coefficients as compared to eukaryotes, and we speculate on the nature of the barriers for diffusion observed for proteins (and mRNAs) in vivo. Building on in vitro experiments and modeling studies, we evaluate the size dependence of diffusion coefficients for macromolecules in vivo, in case of both water-soluble and integral membrane proteins. We comment on the possibilities of anomalous diffusion and provide examples where the macromolecule mobility may be limiting biological processes.

  14. International code of nomenclature of prokaryotes

    SciTech Connect

    Garrity, George M.; Parker, Charles T.; Tindall, Brian J.

    2015-11-20

    Here, this volume contains the edition of the International Code of Nomenclature of Prokaryotes that was presented in draft form and available for comment at the Plenary Session of the Fourteenth International Congress of Bacteriology and Applied Microbiology (BAM), Montréal, 2014, together with updated lists of conserved and rejected bacterial names and of Opinions issued by the Judicial Commission. As in the past it brings together those changes accepted, published and documented by the ICSP and the Judicial Commission since the last revision was published. Several new appendices have been added to this edition. Appendix 11 addresses the appropriate application of the Candidatus concept, Appendix 12 contains the history of the van Niel Prize, and Appendix 13 contains the summaries of Congresses.

  15. International code of nomenclature of prokaryotes

    DOE PAGESBeta

    Garrity, George M.; Parker, Charles T.; Tindall, Brian J.

    2015-11-20

    Here, this volume contains the edition of the International Code of Nomenclature of Prokaryotes that was presented in draft form and available for comment at the Plenary Session of the Fourteenth International Congress of Bacteriology and Applied Microbiology (BAM), Montréal, 2014, together with updated lists of conserved and rejected bacterial names and of Opinions issued by the Judicial Commission. As in the past it brings together those changes accepted, published and documented by the ICSP and the Judicial Commission since the last revision was published. Several new appendices have been added to this edition. Appendix 11 addresses the appropriate applicationmore » of the Candidatus concept, Appendix 12 contains the history of the van Niel Prize, and Appendix 13 contains the summaries of Congresses.« less

  16. Arsenic transport in prokaryotes and eukaryotic microbes.

    PubMed

    Rosen, Barry P; Tamás, Markus J

    2010-01-01

    Aquaporins (AQPs) and aquaglyceroporins facilitate transport of a broad spectrum of substrates such as water, glycerol and other small uncharged solutes. More recently, AQPs ave also been shown to facilitate diffusion of metalloids such as arsenic (As) and antimony (Sb). At neutral pH, the trivalent forms of these metalloids are structurally similar to glycerol and hence they can enter cells through AQPs. As- and Sb-containing compounds are toxic to cells, yet both metalloids are used as chemotherapeutic agents for treating acute promyelocytic leukemia and diseases caused by protozoan parasites. In this chapter, we will review the role of AQPs and other proteins in metalloid transport in prokaryotes and eukaryotic microbes.

  17. [Thermophilic prokaryotes from deep subterranean habitats].

    PubMed

    Slobodkin, A I; Slobodkina, G B

    2014-01-01

    The deep continental biosphere consists of geologically isolated ecosystems differing in their physicochemical, geological, and trophic parameters. Most of the deep ecosystems exist at elevated temperatures (50-120 degrees C), which favor the development of thermophilic microorganisms. In many cases, indigenous nature of subsurface microorganisms is questionable due to problems of collecting representative and non-contaminated samples. In spite of the numerous studies on the deep biosphere microbial communities, the number of cultivated thermophiles isolated from subsurface environments not associated with petroleum deposits does not exceed 30 species. More than half of the thermophilic species isolated from deep subsurface belong to the Firmicutes. Majority of the underground thermophiles are subsurface strict or facultative anaerobes, with capacity for sulfate and iron reduction are notably widespread. Most thermophilic subsurface microorganisms are organotrophs, although chemolithoautotrophic thermophiles also have been reported. This review deals with the phylogenetic diversity and physiological properties of the cultivated thermophilic prokaryotes isolated from various deep subterranean habitats.

  18. Detecting uber-operons in prokaryotic genomes.

    PubMed

    Che, Dongsheng; Li, Guojun; Mao, Fenglou; Wu, Hongwei; Xu, Ying

    2006-01-01

    We present a study on computational identification of uber-operons in a prokaryotic genome, each of which represents a group of operons that are evolutionarily or functionally associated through operons in other (reference) genomes. Uber-operons represent a rich set of footprints of operon evolution, whose full utilization could lead to new and more powerful tools for elucidation of biological pathways and networks than what operons have provided, and a better understanding of prokaryotic genome structures and evolution. Our prediction algorithm predicts uber-operons through identifying groups of functionally or transcriptionally related operons, whose gene sets are conserved across the target and multiple reference genomes. Using this algorithm, we have predicted uber-operons for each of a group of 91 genomes, using the other 90 genomes as references. In particular, we predicted 158 uber-operons in Escherichia coli K12 covering 1830 genes, and found that many of the uber-operons correspond to parts of known regulons or biological pathways or are involved in highly related biological processes based on their Gene Ontology (GO) assignments. For some of the predicted uber-operons that are not parts of known regulons or pathways, our analyses indicate that their genes are highly likely to work together in the same biological processes, suggesting the possibility of new regulons and pathways. We believe that our uber-operon prediction provides a highly useful capability and a rich information source for elucidation of complex biological processes, such as pathways in microbes. All the prediction results are available at our Uber-Operon Database: http://csbl.bmb.uga.edu/uber, the first of its kind.

  19. Magnetite as a prokaryotic biomarker: A review

    NASA Astrophysics Data System (ADS)

    Jimenez-Lopez, Concepcion; Romanek, Christopher S.; Bazylinski, Dennis A.

    2010-06-01

    Over the years, nanometer-sized magnetite (Fe3O4) crystals have been recovered from many modern and ancient environments including sediments and soils and even meteorites. In some cases these crystals have been used as "magnetofossils" for evidence of the past presence of specific microbes. Magnetite nanocrystals can be formed by a number of different biological and inorganic mechanisms resulting in crystals with different physical and magnetic characteristics. Prokaryotes (bacteria) biomineralize magnetite through two methods that differ mechanistically, including: biologically induced mineralization (BIM) and biologically controlled mineralization (BCM). Magnetite nanocrystals produced by BIM are known to be synthesized by the dissimilatory iron-reducing bacteria, are deposited external to the cell, and generally are physically indistinguishable from magnetite particles formed inorganically. BCM magnetites, in contrast, are synthesized by the magnetotactic bacteria and some higher organisms and are precipitated intracellularly as membrane-bounded structures called magnetosomes. These magnetites appear to have unique crystal morphologies and a narrow size range leading to their original use as magnetofossils. Because of the discovery of nanometer-sized crystals of magnetite in the Martian meteorite ALH84001, the use of these criteria for the determination of whether magnetite crystals could constitute a prokaryotic biomarker was questioned. Thus, there is currently great debate over what criteria to use in the determination of whether specific magnetite crystals are biogenic or not. In the last decade, additional criteria have been established (e.g., the Magnetite Assay for Biogenicity), and new tools and technologies have been developed to determine the origin of specific types of magnetite crystals.

  20. Managing DNA polymerases: coordinating DNA replication, DNA repair, and DNA recombination.

    PubMed

    Sutton, M D; Walker, G C

    2001-07-17

    Two important and timely questions with respect to DNA replication, DNA recombination, and DNA repair are: (i) what controls which DNA polymerase gains access to a particular primer-terminus, and (ii) what determines whether a DNA polymerase hands off its DNA substrate to either a different DNA polymerase or to a different protein(s) for the completion of the specific biological process? These questions have taken on added importance in light of the fact that the number of known template-dependent DNA polymerases in both eukaryotes and in prokaryotes has grown tremendously in the past two years. Most notably, the current list now includes a completely new family of enzymes that are capable of replicating imperfect DNA templates. This UmuC-DinB-Rad30-Rev1 superfamily of DNA polymerases has members in all three kingdoms of life. Members of this family have recently received a great deal of attention due to the roles they play in translesion DNA synthesis (TLS), the potentially mutagenic replication over DNA lesions that act as potent blocks to continued replication catalyzed by replicative DNA polymerases. Here, we have attempted to summarize our current understanding of the regulation of action of DNA polymerases with respect to their roles in DNA replication, TLS, DNA repair, DNA recombination, and cell cycle progression. In particular, we discuss these issues in the context of the Gram-negative bacterium, Escherichia coli, that contains a DNA polymerase (Pol V) known to participate in most, if not all, of these processes.

  1. Systematic Transfer of Prokaryotic Sensors and Circuits to Mammalian Cells

    PubMed Central

    2015-01-01

    Prokaryotic regulatory proteins respond to diverse signals and represent a rich resource for building synthetic sensors and circuits. The TetR family contains >105 members that use a simple mechanism to respond to stimuli and bind distinct DNA operators. We present a platform that enables the transfer of these regulators to mammalian cells, which is demonstrated using human embryonic kidney (HEK293) and Chinese hamster ovary (CHO) cells. The repressors are modified to include nuclear localization signals (NLS) and responsive promoters are built by incorporating multiple operators. Activators are also constructed by modifying the protein to include a VP16 domain. Together, this approach yields 15 new regulators that demonstrate 19- to 551-fold induction and retain both the low levels of crosstalk in DNA binding specificity observed between the parent regulators in Escherichia coli, as well as their dynamic range of activity. By taking advantage of the DAPG small molecule sensing mediated by the PhlF repressor, we introduce a new inducible system with 50-fold induction and a threshold of 0.9 μM DAPG, which is comparable to the classic Dox-induced TetR system. A set of NOT gates is constructed from the new repressors and their response function quantified. Finally, the Dox- and DAPG- inducible systems and two new activators are used to build a synthetic enhancer (fuzzy AND gate), requiring the coordination of 5 transcription factors organized into two layers. This work introduces a generic approach for the development of mammalian genetic sensors and circuits to populate a toolbox that can be applied to diverse applications from biomanufacturing to living therapeutics. PMID:25360681

  2. Systematic transfer of prokaryotic sensors and circuits to mammalian cells.

    PubMed

    Stanton, Brynne C; Siciliano, Velia; Ghodasara, Amar; Wroblewska, Liliana; Clancy, Kevin; Trefzer, Axel C; Chesnut, Jonathan D; Weiss, Ron; Voigt, Christopher A

    2014-12-19

    Prokaryotic regulatory proteins respond to diverse signals and represent a rich resource for building synthetic sensors and circuits. The TetR family contains >10(5) members that use a simple mechanism to respond to stimuli and bind distinct DNA operators. We present a platform that enables the transfer of these regulators to mammalian cells, which is demonstrated using human embryonic kidney (HEK293) and Chinese hamster ovary (CHO) cells. The repressors are modified to include nuclear localization signals (NLS) and responsive promoters are built by incorporating multiple operators. Activators are also constructed by modifying the protein to include a VP16 domain. Together, this approach yields 15 new regulators that demonstrate 19- to 551-fold induction and retain both the low levels of crosstalk in DNA binding specificity observed between the parent regulators in Escherichia coli, as well as their dynamic range of activity. By taking advantage of the DAPG small molecule sensing mediated by the PhlF repressor, we introduce a new inducible system with 50-fold induction and a threshold of 0.9 μM DAPG, which is comparable to the classic Dox-induced TetR system. A set of NOT gates is constructed from the new repressors and their response function quantified. Finally, the Dox- and DAPG- inducible systems and two new activators are used to build a synthetic enhancer (fuzzy AND gate), requiring the coordination of 5 transcription factors organized into two layers. This work introduces a generic approach for the development of mammalian genetic sensors and circuits to populate a toolbox that can be applied to diverse applications from biomanufacturing to living therapeutics.

  3. Granular Segregation with Anisotropic Particles

    NASA Astrophysics Data System (ADS)

    Sykes, Tim

    2005-11-01

    The results from experimental investigations of horizontally vibrated mixtures of anisotropic poppy seeds and long chains of linked spheres will be presented. A critical packing fraction was observed to be required to initiate a transition to segregation. The average size of the resulting patterns was measured and the concentration ratio of the mixtures was varied by changing the number of chains present in the mixtures. A change in the order of the transition, from second to first order with associated hysteresis, was observed as the chain number was reduced. This gave rise to three distinct regions of behaviour: segregated, mixed and a bi-stable state.

  4. Evolutionary dynamics of adult stem cells: Comparison of random and immortal-strand segregation mechanisms

    NASA Astrophysics Data System (ADS)

    Tannenbaum, Emmanuel; Sherley, James L.; Shakhnovich, Eugene I.

    2005-04-01

    This paper develops a point-mutation model describing the evolutionary dynamics of a population of adult stem cells. Such a model may prove useful for quantitative studies of tissue aging and the emergence of cancer. We consider two modes of chromosome segregation: (1) random segregation, where the daughter chromosomes of a given parent chromosome segregate randomly into the stem cell and its differentiating sister cell and (2) “immortal DNA strand” co-segregation, for which the stem cell retains the daughter chromosomes with the oldest parent strands. Immortal strand co-segregation is a mechanism, originally proposed by [Cairns Nature (London) 255, 197 (1975)], by which stem cells preserve the integrity of their genomes. For random segregation, we develop an ordered strand pair formulation of the dynamics, analogous to the ordered strand pair formalism developed for quasispecies dynamics involving semiconservative replication with imperfect lesion repair (in this context, lesion repair is taken to mean repair of postreplication base-pair mismatches). Interestingly, a similar formulation is possible with immortal strand co-segregation, despite the fact that this segregation mechanism is age dependent. From our model we are able to mathematically show that, when lesion repair is imperfect, then immortal strand co-segregation leads to better preservation of the stem cell lineage than random chromosome segregation. Furthermore, our model allows us to estimate the optimal lesion repair efficiency for preserving an adult stem cell population for a given period of time. For human stem cells, we obtain that mispaired bases still present after replication and cell division should be left untouched, to avoid potentially fixing a mutation in both DNA strands.

  5. Why Our Schools Are Segregated

    ERIC Educational Resources Information Center

    Rothstein, Richard

    2013-01-01

    "Residential segregation's causes are both knowable and known," writes Richard Rothstein. According to Rothstein, those causes are "20th century federal, state, and local policies explicitly designed to separate the races." Even seasoned policymakers are convinced that the residential isolation of low-income black children…

  6. School Choice and Ethnic Segregation.

    ERIC Educational Resources Information Center

    Karsten, Sjoerd; Ledoux, Guuske; Roeleveld, Jaap; Felix, Charles; Elshof, Dorothe

    2003-01-01

    Explores how school choice has influenced ethnic segregation in Dutch primary schools. Shows that native Dutch parents are significantly more interested in a match between their social and cultural background and the pupil composition of schools than ethnic minority parents. Both groups of parents generally reject predominately "non-White"…

  7. Gender Segregation: Separate but Effective?

    ERIC Educational Resources Information Center

    Holthouse, David

    2010-01-01

    In 2002, only 11 public schools in the United States had gender-segregated classrooms. As of December 2009, there were more than 550. The movement is based on the hypothesis that hard-wired differences in the ways that male and female brains develop and function in childhood through adolescence require classrooms in which boys and girls are not…

  8. Evolution of prokaryote and eukaryote lines inferred from sequence evidence

    NASA Technical Reports Server (NTRS)

    Hunt, L. T.; George, D. G.; Yeh, L.-S.; Dayhoff, M. O.

    1984-01-01

    This paper describes the evolution of prokaryotes and early eukaryotes, including their symbiotic relationships, as inferred from phylogenetic trees of bacterial ferredoxin, 5S ribosomal RNA, ribulose-1,5-biphosphate carboxylase large chain, and mitochondrial cytochrome oxidase polypeptide II.

  9. Complex polar machinery required for proper chromosome segregation in vegetative and sporulating cells of Bacillus subtilis

    PubMed Central

    Kloosterman, Tomas G.; Lenarcic, Rok; Willis, Clare R.; Roberts, David M.; Hamoen, Leendert W.; Errington, Jeff

    2016-01-01

    Summary Chromosome segregation is an essential process of cell multiplication. In prokaryotes, segregation starts with the newly replicated sister origins of replication, oriCs, which move apart to defined positions in the cell. We have developed a genetic screen to identify mutants defective in placement of oriC during spore development in the Gram‐positive bacterium Bacillus subtilis. In addition to the previously identified proteins Soj and DivIVA, our screen identified several new factors involved in polar recruitment of oriC: a reported regulator of competence ComN, and the regulators of division site selection MinD and MinJ. Previous work implicated Soj as an important regulator of oriC positioning in the cell. Our results suggest a model in which the DivIVA‐interacting proteins ComN and MinJ recruit MinD to the cell pole, and that these proteins work upstream of Soj to enable oriC placement. We show that these proteins form a polar complex, which acts in parallel with but distinct from the sporulation‐specific RacA pathway of oriC placement, and also functions during vegetative growth. Our study further shows that MinD has two distinct cell cycle roles, in cell division and chromosome segregation, and highlights that cell probably use multiple parallel mechanisms to ensure accurate chromosome segregation. PMID:27059541

  10. The Segregation Academy and the Law

    ERIC Educational Resources Information Center

    Champagne, Anthony M.

    1973-01-01

    A case study of one private school which functions as a segregation academy'' was done in order to learn more about what segregation academies are, how they operate, and how they relate to the community. (Author/JM)

  11. Segregation effects during solidification in weightless melts

    NASA Technical Reports Server (NTRS)

    Li, C.

    1973-01-01

    Two types of melt segregation effects were studied: (1) evaporative segregation, or segregation due to surface evaporation; and (2) freezing segregation, or segregation due to liquid-solid phase transformation. These segregation effects are closely related. In fact, evaporative segregation always precedes freezing segregation to some degree and must often be studied prior to performing meaningful solidification experiments. This is particularly true since evaporation may cause the melt composition, at least at the critical surface regions or layers to be affected manyfold within seconds so that the surface region or layer melting point and other thermophysical properties, nucleation characteristics, base for undercooling, and critical velocity to avoid constitutional supercooling, may be completely unexpected. An important objective was, therefore, to develop the necessary normal evaporation equations for predicting the compositional changes within specified times at temperature and to correlate these equations with actual experimental data collected from the literature.

  12. Calf thymus Hsc70 and Hsc40 can substitute for DnaK and DnaJ function in protein renaturation but not in bacteriophage DNA replication.

    PubMed

    Ziemienowicz, A; Konieczny, I; Hübscher, U

    2001-10-19

    Calf thymus (ct) Hsc70 has been shown previously to reactivate heat-inactivated prokaryotic and eukaryotic enzymes, while DnaK was able to reactivate solely prokaryotic enzymes. Here, we report on isolation from calf thymus of a DnaJ homolog, ctHsc40, and on testing of its cooperative function in three different assays: (i) reactivation of heat-inactivated DNA polymerases, (ii) stimulation of the ATPase activity of ctHsc70 chaperone, and (iii) replication of bacteriophage lambda DNA. Surprisingly, ctHsc70/ctHsc40 chaperones were found to reactivate the denatured prokaryotic and eukaryotic enzymes but not to promote bacteriophage lambda DNA replication, suggesting species specificity in DNA replication.

  13. Molecular fossils of prokaryotes in ancient authigenic minerals: archives of microbial activity in reefs and mounds?

    NASA Astrophysics Data System (ADS)

    Heindel, Katrin; Birgel, Daniel; Richoz, Sylvain; Westphal, Hildegard; Peckmann, Jörn

    2016-04-01

    Molecular fossils (lipid biomarkers) are commonly used as proxies in organic-rich sediments of various sources, including eukaryotes and prokaryotes. Usually, molecular fossils of organisms transferred from the water column to the sediment are studied to monitor environmental changes (e.g., temperature, pH). Apart from these 'allochthonous' molecular fossils, prokaryotes are active in sediments and mats on the seafloor and leave behind 'autochthonous' molecular fossils in situ. In contrast to many phototrophic organisms, most benthic sedimentary prokaryotes are obtaining their energy from oxidation or reduction of organic or inorganic substrates. A peculiarity of some of the sediment-thriving prokaryotes is their ability to trigger in situ mineral precipitation, often but not only due to metabolic activity, resulting in authigenic rocks (microbialites). During that process, prokaryotes are rapidly entombed in the mineral matrix, where the molecular fossils are protected from early (bio)degradation. In contrast to other organic compounds (DNA, proteins etc.), molecular fossils can be preserved over very long time periods (millions of years). Thus, molecular fossils in authigenic mineral phases are perfectly suitable to trace microbial activity back in time. Among the best examples of molecular fossils, which are preserved in authigenic rocks are various microbialites, forming e.g. in phototrophic microbial mats and at cold seeps. Microbialite formation is reported throughout earth history. We here will focus on reefal microbialites form the Early Triassic and the Holocene. After the End-Permian mass extinction, microbialites covered wide areas on the ocean margins. In microbialites from the Griesbachian in Iran and Turkey (both Neotethys), molecular fossils of cyanobacteria, archaea, anoxygenic phototrophs, and sulphate-reducing bacteria indicate the presence of layered microbial mats on the seafloor, in which carbonate precipitation was induced. In association with

  14. The Geographic Scale of Metropolitan Racial Segregation

    PubMed Central

    REARDON, SEAN F.; MATTHEWS, STEPHEN A.; O’SULLIVAN, DAVID; LEE, BARRETT A.; FIREBAUGH, GLENN; FARRELL, CHAD R.; BISCHOFF, KENDRA

    2008-01-01

    This article addresses an aspect of racial residential segregation that has been largely ignored in prior work: the issue of geographic scale. In some metropolitan areas, racial groups are segregated over large regions, with predominately white regions, predominately black regions, and so on, whereas in other areas, the separation of racial groups occurs over much shorter distances. Here we develop an approach—featuring the segregation profile and the corresponding macro/micro segregation ratio—that offers a scale-sensitive alternative to standard methodological practice for describing segregation. Using this approach, we measure and describe the geographic scale of racial segregation in the 40 largest U.S. metropolitan areas in 2000. We find considerable heterogeneity in the geographic scale of segregation patterns across both metropolitan areas and racial groups, a heterogeneity that is not evident using conventional “aspatial” segregation measures. Moreover, because the geographic scale of segregation is only modestly correlated with the level of segregation in our sample, we argue that geographic scale represents a distinct dimension of residential segregation. We conclude with a brief discussion of the implications of our findings for investigating the patterns, causes, and consequences of residential segregation at different geographic scales. PMID:18939658

  15. 36 CFR 254.6 - Segregative effect.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Segregative effect. 254.6... ADJUSTMENTS Land Exchanges § 254.6 Segregative effect. (a) If a proposal is made to exchange Federal lands... segregative effect terminates as follows: (1) Automatically, upon issuance of a patent or other document...

  16. 43 CFR 2091.3-1 - Segregation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) SPECIAL LAWS AND RULES Segregation and Opening of Lands § 2091.3-1 Segregation. (a) If a proposal is made to exchange public lands administered by the... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Segregation. 2091.3-1 Section...

  17. The Big Disconnect between Segregation and Integration

    ERIC Educational Resources Information Center

    Verdun, Vincene

    2005-01-01

    The hearts and minds of the American people have been won over on the issue of segregation. However, the dilemma is that while an overwhelming majority of Americans would cringe at the idea of a racially segregated America, America remains racially segregated and racial equality is more ideal than real. Even though there is almost no legal…

  18. 18 CFR 401.113 - Segregable materials.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Segregable materials. 401.113 Section 401.113 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Segregable materials. Any reasonably segregable portion of a record shall be provided to any...

  19. 18 CFR 401.113 - Segregable materials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Segregable materials. 401.113 Section 401.113 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Segregable materials. Any reasonably segregable portion of a record shall be provided to any...

  20. 18 CFR 401.113 - Segregable materials.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Segregable materials. 401.113 Section 401.113 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Segregable materials. Any reasonably segregable portion of a record shall be provided to any...

  1. 18 CFR 401.113 - Segregable materials.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Segregable materials. 401.113 Section 401.113 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Segregable materials. Any reasonably segregable portion of a record shall be provided to any...

  2. 18 CFR 401.113 - Segregable materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Segregable materials. 401.113 Section 401.113 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Segregable materials. Any reasonably segregable portion of a record shall be provided to any...

  3. How prokaryotes deal with arsenic(†).

    PubMed

    Slyemi, Djamila; Bonnefoy, Violaine

    2012-12-01

    Arsenic is a notorious poison classified as a carcinogen, a teratogen and a clastogen that ranks number one on the Environmental Protection Agency's priority list of drinking water contaminants. It is ubiquitous and relatively abundant in the Earth's crust. Its mobilization in waters by weathering, volcanic, anthropogenic or biological activities represents a major hazard to public health, exemplified in India and Bangladesh where 50 million people are acutely at risk. Since basically the origin of life, microorganisms have been exposed to this toxic compound and have evolved a variety of resistance mechanisms, such as extracellular precipitation, chelation, intracellular sequestration, active extrusion from the cell or biochemical transformation (redox or methylation). Arsenic efflux systems are widespread and are found in nearly all organisms. Some microorganisms are also able to utilize this metalloid as a metabolic energy source through either arsenite oxidation or arsenate reduction. The energy metabolism involving redox reactions of arsenic has been suggested to have evolved during early life on Earth. This review highlights the different systems evolved by prokaryotes to cope with arsenic and how they participate in its biogeochemical cycle. PMID:23760928

  4. Restriction-Modification systems interplay causes avoidance of GATC site in prokaryotic genomes.

    PubMed

    Ershova, Anna; Rusinov, Ivan; Vasiliev, Mikhail; Spirin, Sergey; Karyagina, Anna

    2016-04-01

    Palindromes are frequently underrepresented in prokaryotic genomes. Palindromic 5[Formula: see text]-GATC-3[Formula: see text] site is a recognition site of different Restriction-Modification (R-M) systems, as well as solitary methyltransferase Dam. Classical GATC-specific R-M systems methylate GATC and cleave unmethylated GATC. On the contrary, methyl-directed Type II restriction endonucleases cleave methylated GATC. Methylation of GATC by Dam methyltransferase is involved in the regulation of different cellular processes. The diversity of functions of GATC-recognizing proteins makes GATC sequence a good model for studying the reasons of palindrome avoidance in prokaryotic genomes. In this work, the influence of R-M systems and solitary proteins on the GATC site avoidance is described by a mathematical model. GATC avoidance is strongly associated with the presence of alternate (methyl-directed or classical Type II R-M system) genes in different strains of the same species, as we have shown for Streptococcus pneumoniae, Neisseria meningitidis, Eubacterium rectale, and Moraxella catarrhalis. We hypothesize that GATC avoidance can result from a DNA exchange between strains with different methylation status of GATC site within the process of natural transformation. If this hypothesis is correct, the GATC avoidance is a sign of a DNA exchange between bacteria with different methylation status in a mixed population.

  5. Crystal structure of a prokaryotic (6-4) photolyase with an Fe-S cluster and a 6,7-dimethyl-8-ribityllumazine antenna chromophore.

    PubMed

    Zhang, Fan; Scheerer, Patrick; Oberpichler, Inga; Lamparter, Tilman; Krauß, Norbert

    2013-04-30

    The (6-4) photolyases use blue light to reverse UV-induced (6-4) photoproducts in DNA. This (6-4) photorepair was thought to be restricted to eukaryotes. Here we report a prokaryotic (6-4) photolyase, PhrB from Agrobacterium tumefaciens, and propose that (6-4) photolyases are broadly distributed in prokaryotes. The crystal structure of photolyase related protein B (PhrB) at 1.45 Å resolution suggests a DNA binding mode different from that of the eukaryotic counterparts. A His-His-X-X-Arg motif is located within the proposed DNA lesion contact site of PhrB. This motif is structurally conserved in eukaryotic (6-4) photolyases for which the second His is essential for the (6-4) photolyase function. The PhrB structure contains 6,7-dimethyl-8-ribityllumazine as an antenna chromophore and a [4Fe-4S] cluster bound to the catalytic domain. A significant part of the Fe-S fold strikingly resembles that of the large subunit of eukaryotic and archaeal primases, suggesting that the PhrB-like photolyases branched at the base of the evolution of the cryptochrome/photolyase family. Our study presents a unique prokaryotic (6-4) photolyase and proposes that the prokaryotic (6-4) photolyases are the ancestors of the cryptochrome/photolyase family.

  6. Identification of SmtB/ArsR cis elements and proteins in archaea using the Prokaryotic InterGenic Exploration Database (PIGED).

    PubMed

    Bose, Michael; Slick, David; Sarto, Mickey J; Murphy, Patrick; Roberts, David; Roberts, Jacqueline; Barber, Robert D

    2006-08-01

    Microbial genome sequencing projects have revealed an apparently wide distribution of SmtB/ArsR metal-responsive transcriptional regulators among prokaryotes. Using a position-dependent weight matrix approach, prokaryotic genome sequences were screened for SmtB/ArsR DNA binding sites using data derived from intergenic sequences upstream of orthologous genes encoding these regulators. Sixty SmtB/ArsR operators linked to metal detoxification genes, including nine among various archaeal species, are predicted among 230 annotated and draft prokaryotic genome sequences. Independent multiple sequence alignments of putative operator sites and corresponding winged helix-turn-helix motifs define sequence signatures for the DNA binding activity of this SmtB/ArsR subfamily. Prediction of an archaeal SmtB/ArsR based upon these signature sequences is confirmed using purified Methanosarcina acetivorans C2A protein and electrophoretic mobility shift assays. Tools used in this study have been incorporated into a web application, the Prokaryotic InterGenic Exploration Database (PIGED; http://bioinformatics.uwp.edu/~PIGED/home.htm), facilitating comparable studies. Use of this tool and establishment of orthology based on DNA binding signatures holds promise for deciphering potential cellular roles of various archaeal winged helix-turn-helix transcriptional regulators.

  7. Biolistic transformation of prokaryotes: factors that affect biolistic transformation of very small cells.

    PubMed

    Smith, F D; Harpending, P R; Sanford, J C

    1992-01-01

    Five bacterial species were transformed using particle gun-technology. No pretreatment of cells was necessary. Physical conditions (helium pressure, target cell distance and gap distance) and biological conditions (cell growth phase, osmoticum concentration, and cell density) were optimized for biolistic transformation of Escherichia coli and these conditions were then used to successfully transform Agrobacterium tumefaciens, Erwinia amylovora, Erwinia stewartii and Pseudomonas syringae pv. syringae. Transformation rates for E. coli were 10(4) per plate per 0.8 micrograms DNA. Although transformation rates for the other species were low (less than 10(2) per plate per 0.8 micrograms DNA), successful transformation without optimization for each species tested suggests wide utility of biolistic transformation of prokaryotes. E. coli has proven to be a useful model system to determine the effects of relative humidity, particle size and particle coating on efficiency of biolistic transformation.

  8. DNA replication: enzymology and mechanisms.

    PubMed

    Kelman, Z; O'Donnell, M

    1994-04-01

    Research into the enzymology of DNA replication has seen a multitude of highly significant advances during the past year, in both prokaryotic and eukaryotic systems. The scope of this article is limited to chromosomal replicases and origins of initiation. The multiprotein chromosomal replicases of prokaryotes and eukaryotes appear to be strikingly similar in structure and function, although future work may reveal their differences. Recent developments, elaborating the activation of origins in several systems, have begun to uncover mechanisms of regulation. The enzymology of eukaryotic origins has, until now, been limited to viral systems, but over the past few years, enzymology has caught a grip on the cellular origins of yeast.

  9. Dynein Promotes Achiasmate Segregation in Schizosaccharomyces pombe

    PubMed Central

    Davis, Luther; Smith, Gerald R.

    2005-01-01

    Most organisms use crossovers (chiasmata) to maintain physical connections between homologous chromosomes that ensure their proper segregation at the first meiotic division. The fission yeast Schizosaccharomyces pombe has a residual ability to segregate homologous chromosomes in the absence of meiotic recombination (achiasmate segregation). Using cytologically tagged chromosomes, we established a role for the microtubule motor dynein in meiotic chromosome segregation. Dhc1, the motor subunit of dynein, is required for chromosome segregation in both the presence and the absence of recombination. Dlc1, a member of the Tctex-1 dynein light-chain family, preferentially affects the segregation of achiasmate chromosomes. Dlc1 is the first identified protein, outside of Drosophila, that preferentially affects achiasmate chromosome segregation. We discuss possible roles of the dynein motor in this process. PMID:15802518

  10. Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria.

    PubMed

    Gnad, Florian; Forner, Francesca; Zielinska, Dorota F; Birney, Ewan; Gunawardena, Jeremy; Mann, Matthias

    2010-12-01

    High accuracy mass spectrometry has proven to be a powerful technology for the large scale identification of serine/threonine/tyrosine phosphorylation in the living cell. However, despite many described phosphoproteomes, there has been no comparative study of the extent of phosphorylation and its evolutionary conservation in all domains of life. Here we analyze the results of phosphoproteomics studies performed with the same technology in a diverse set of organisms. For the most ancient organisms, the prokaryotes, only a few hundred proteins have been found to be phosphorylated. Applying the same technology to eukaryotic species resulted in the detection of thousands of phosphorylation events. Evolutionary analysis shows that prokaryotic phosphoproteins are preferentially conserved in all living organisms, whereas-site specific phosphorylation is not. Eukaryotic phosphosites are generally more conserved than their non-phosphorylated counterparts (with similar structural constraints) throughout the eukaryotic domain. Yeast and Caenorhabditis elegans are two exceptions, indicating that the majority of phosphorylation events evolved after the divergence of higher eukaryotes from yeast and reflecting the unusually large number of nematode-specific kinases. Mitochondria present an interesting intermediate link between the prokaryotic and eukaryotic domains. Applying the same technology to this organelle yielded 174 phosphorylation sites mapped to 74 proteins. Thus, the mitochondrial phosphoproteome is similarly sparse as the prokaryotic phosphoproteomes. As expected from the endosymbiotic theory, phosphorylated as well as non-phosphorylated mitochondrial proteins are significantly conserved in prokaryotes. However, mitochondrial phosphorylation sites are not conserved throughout prokaryotes, consistent with the notion that serine/threonine phosphorylation in prokaryotes occurred relatively recently in evolution. Thus, the phosphoproteome reflects major events in the

  11. Murein segregation in Escherichia coli.

    PubMed Central

    de Pedro, M A; Quintela, J C; Höltje, J V; Schwarz, H

    1997-01-01

    Peptidoglycan (murein) segregation has been studied by means of a new labeling method. The method relies on the ability of Escherichia coli cells to incorporate D-Cys into macromolecular murein. The incorporation depends on a periplasmic amino acid exchange reaction. At low concentrations, D-Cys is innocuous to the cell. The distribution of modified murein in purified sacculi can be traced and visualized by immunodetection of the -SH groups by fluorescence and electron microscopy techniques. Analysis of murein segregation in wild-type and cell division mutant strains revealed that murein in polar caps is metabolically inert and is segregated in a conservative fashion. Elongation of the sacculus apparently occurs by diffuse insertion of precursors over the cylindrical part of the cell surface. At the initiation of cell division, there is a FtsZ-dependent localized activation of murein synthesis at the potential division sites. Penicillin-binding protein 3 and the products of the division genes ftsA and ftsQ are dispensable for the activation of division sites. As a consequence, under restrictive conditions ftsA,ftsI,or ftsQ mutants generate filamentous sacculi with rings of all-new murein at the positions where septa would otherwise develop. PMID:9139895

  12. The copper metallome in prokaryotic cells.

    PubMed

    Rensing, Christopher; McDevitt, Sylvia Franke

    2013-01-01

    As a trace element copper has an important role in cellular function like many other transition metals. Its ability to undergo redox changes [Cu(I) ↔ Cu(II)] makes copper an ideal cofactor in enzymes catalyzing electron transfers. However, this redox change makes copper dangerous for a cell since it is able to be involved in Fenton-like reactions creating reactive oxygen species (ROS). Cu(I) also is a strong soft metal and can attack and destroy iron-sulfur clusters thereby releasing iron which can in turn cause oxidative stress. Therefore, copper homeostasis has to be highly balanced to ensure proper cellular function while avoiding cell damage.Throughout evolution bacteria and archaea have developed a highly regulated balance in copper metabolism. While for many prokaryotes copper uptake seems to be unspecific, others have developed highly sophisticated uptake mechanisms to ensure the availability of sufficient amounts of copper. Within the cytoplasm copper is sequestered by various proteins and molecules, including specific copper chaperones, to prevent cellular damage. Copper-containing proteins are usually located in the cytoplasmic membrane with the catalytic domain facing the periplasm, in the periplasm of Gram-negative bacteria, or they are secreted, limiting the necessity of copper to accumulate in the cytoplasm. To prevent cellular damage due to excess copper, bacteria and archaea have developed various copper detoxification strategies. In this chapter we attempt to give an overview of the mechanisms employed by bacteria and archaea to handle copper and the importance of the metal for cellular function as well as in the global nutrient cycle.

  13. Reactive oxygen species stimulate mitochondrial allele segregation toward homoplasmy in human cells.

    PubMed

    Ling, Feng; Niu, Rong; Hatakeyama, Hideyuki; Goto, Yu-Ichi; Shibata, Takehiko; Yoshida, Minoru

    2016-05-15

    Mitochondria that contain a mixture of mutant and wild-type mitochondrial (mt) DNA copies are heteroplasmic. In humans, homoplasmy is restored during early oogenesis and reprogramming of somatic cells, but the mechanism of mt-allele segregation remains unknown. In budding yeast, homoplasmy is restored by head-to-tail concatemer formation in mother cells by reactive oxygen species (ROS)-induced rolling-circle replication and selective transmission of concatemers to daughter cells, but this mechanism is not obvious in higher eukaryotes. Here, using heteroplasmic m.3243A > G primary fibroblast cells derived from MELAS patients treated with hydrogen peroxide (H2O2), we show that an optimal ROS level promotes mt-allele segregation toward wild-type and mutant mtDNA homoplasmy. Enhanced ROS level reduced the amount of intact mtDNA replication templates but increased linear tandem multimers linked by head-to-tail unit-sized mtDNA (mtDNA concatemers). ROS-triggered mt-allele segregation correlated with mtDNA-concatemer production and enabled transmission of multiple identical mt-genome copies as a single unit. Our results support a mechanism by which mt-allele segregation toward mt-homoplasmy is mediated by concatemers. PMID:27009201

  14. Reactive oxygen species stimulate mitochondrial allele segregation toward homoplasmy in human cells

    PubMed Central

    Ling, Feng; Niu, Rong; Hatakeyama, Hideyuki; Goto, Yu-ichi; Shibata, Takehiko; Yoshida, Minoru

    2016-01-01

    Mitochondria that contain a mixture of mutant and wild-type mitochondrial (mt) DNA copies are heteroplasmic. In humans, homoplasmy is restored during early oogenesis and reprogramming of somatic cells, but the mechanism of mt-allele segregation remains unknown. In budding yeast, homoplasmy is restored by head-to-tail concatemer formation in mother cells by reactive oxygen species (ROS)–induced rolling-circle replication and selective transmission of concatemers to daughter cells, but this mechanism is not obvious in higher eukaryotes. Here, using heteroplasmic m.3243A > G primary fibroblast cells derived from MELAS patients treated with hydrogen peroxide (H2O2), we show that an optimal ROS level promotes mt-allele segregation toward wild-type and mutant mtDNA homoplasmy. Enhanced ROS level reduced the amount of intact mtDNA replication templates but increased linear tandem multimers linked by head-to-tail unit-sized mtDNA (mtDNA concatemers). ROS-triggered mt-allele segregation correlated with mtDNA-concatemer production and enabled transmission of multiple identical mt-genome copies as a single unit. Our results support a mechanism by which mt-allele segregation toward mt-homoplasmy is mediated by concatemers. PMID:27009201

  15. Genetic Recombination in Bacillus subtilis 168: Contribution of Holliday Junction Processing Functions in Chromosome Segregation

    PubMed Central

    Carrasco, Begoña; Cozar, M. Castillo; Lurz, Rudi; Alonso, Juan C.; Ayora, Silvia

    2004-01-01

    Bacillus subtilis mutants classified within the ɛ (ruvA, ΔruvB, ΔrecU, and recD) and η (ΔrecG) epistatic groups, in an otherwise rec+ background, render cells impaired in chromosomal segregation. A less-pronounced segregation defect in ΔrecA and Δsms (ΔradA) cells was observed. The repair deficiency of addAB, ΔrecO, ΔrecR, recH, ΔrecS, and ΔsubA cells did not correlate with a chromosomal segregation defect. The sensitivity of ɛ epistatic group mutants to DNA-damaging agents correlates with ongoing DNA replication at the time of exposure to the agents. The Δsms (ΔradA) and ΔsubA mutations partially suppress the DNA repair defect in ruvA and recD cells and the segregation defect in ruvA and ΔrecG cells. The Δsms (ΔradA) and ΔsubA mutations partially suppress the DNA repair defect of ΔrecU cells but do not suppress the segregation defect in these cells. The ΔrecA mutation suppresses the segregation defect but does not suppress the DNA repair defect in ΔrecU cells. These results result suggest that (i) the RuvAB and RecG branch migrating DNA helicases, the RecU Holliday junction (HJ) resolvase, and RecD bias HJ resolution towards noncrossovers and that (ii) Sms (RadA) and SubA proteins might play a role in the stabilization and or processing of HJ intermediates. PMID:15317759

  16. Evolution of ribonuclease H genes in prokaryotes to avoid inheritance of redundant genes

    PubMed Central

    Kochiwa, Hiromi; Tomita, Masaru; Kanai, Akio

    2007-01-01

    Background A theoretical model of genetic redundancy has proposed that the fates of redundant genes depend on the degree of functional redundancy, and that functionally redundant genes will not be inherited together. However, no example of actual gene evolution has been reported that can be used to test this model. Here, we analyzed the molecular evolution of the ribonuclease H (RNase H) family in prokaryotes and used the results to examine the implications of functional redundancy for gene evolution. Results In prokaryotes, RNase H has been classified into RNase HI, HII, and HIII on the basis of amino acid sequences. Using 353 prokaryotic genomes, we identified the genes encoding the RNase H group and examined combinations of these genes in individual genomes. We found that the RNase H group may have evolved in such a way that the RNase HI and HIII genes will not coexist within a single genome – in other words, these genes are inherited in a mutually exclusive manner. Avoiding the simultaneous inheritance of the RNase HI and HIII genes is remarkable when RNase HI contains an additional non-RNase H domain, double-stranded RNA, and an RNA-DNA hybrid-binding domain, which is often observed in eukaryotic RNase H1. This evolutionary process may have resulted from functional redundancy of these genes, because the substrate preferences of RNase HI and RNase HIII are similar. Conclusion We provide two possible evolutionary models for RNase H genes in which functional redundancy contributes to the exclusion of redundant genes from the genome of a species. This is the first empirical study to show the effect of functional redundancy on changes in gene constitution during the course of evolution. PMID:17663799

  17. A tadpole-shaped gene carrier with distinct phase segregation in a ternary polymeric micelle.

    PubMed

    Chen, Qixian; Osada, Kensuke; Pennisi, Matthew; Uchida, Satoshi; Tockary, Theofilus A; Dirisala, Anjaneyulu; Li, Yanmin; Takeda, Kaori M; Oniyanagi, Satoshi; Itaka, Keiji; Kataoka, Kazunori

    2015-04-14

    A distinct tadpole-shaped nanostructure characterized by a spherical head and an extended shaft was identified in a single plasmid DNA (pDNA)-based polymeric micelle. The tadpole-shaped structure was constructed by adding anionic chondroitin sulfate (CS) to the rod-shaped polyplex micelle containing a single pDNA molecule packaged by the PEG-polycation block copolymer through their electrostatic self-assembly. The complex consequently developed a novel structure composed of segregated domains of the CS-rich inflated head and CS-poor folded DNA tail. Hence, this tadpole structure can be regarded as evidence that distinct phase segregation occurred in a single polymeric micelle containing pDNA. PMID:25711768

  18. Coevolution of the Organization and Structure of Prokaryotic Genomes.

    PubMed

    Touchon, Marie; Rocha, Eduardo P C

    2016-01-04

    The cytoplasm of prokaryotes contains many molecular machines interacting directly with the chromosome. These vital interactions depend on the chromosome structure, as a molecule, and on the genome organization, as a unit of genetic information. Strong selection for the organization of the genetic elements implicated in these interactions drives replicon ploidy, gene distribution, operon conservation, and the formation of replication-associated traits. The genomes of prokaryotes are also very plastic with high rates of horizontal gene transfer and gene loss. The evolutionary conflicts between plasticity and organization lead to the formation of regions with high genetic diversity whose impact on chromosome structure is poorly understood. Prokaryotic genomes are remarkable documents of natural history because they carry the imprint of all of these selective and mutational forces. Their study allows a better understanding of molecular mechanisms, their impact on microbial evolution, and how they can be tinkered in synthetic biology.

  19. A large dispersed chromosomal region required for chromosome segregation in sporulating cells of Bacillus subtilis.

    PubMed

    Wu, Ling Juan; Errington, Jeff

    2002-08-01

    The cis-acting sequences required for chromosome segregation are poorly understood in most organisms, including bacteria. Sporulating cells of Bacillus subtilis undergo an unusual asymmetric cell division during which the origin of DNA replication (oriC) region of the chromosome migrates to an extreme polar position. We have now characterized the sequences required for this migration. We show that the previously characterized soj-spo0J chromosome segregation system is not essential for chromosome movement to the cell pole, so this must be driven by an additional segregation mechanism. Observations on a large set of precisely engineered chromosomal inversions and translocations have identified a polar localization region (PLR), which lies approximately 150-300 kbp to the left of oriC. Surprisingly, oriC itself has no involvement in this chromosome segregation system. Dissection of the PLR showed that it has internal functional redundancy, reminiscent of the large diffuse centromeres of most eukaryotic cells.

  20. Energetics and genetics across the prokaryote-eukaryote divide

    PubMed Central

    2011-01-01

    Background All complex life on Earth is eukaryotic. All eukaryotic cells share a common ancestor that arose just once in four billion years of evolution. Prokaryotes show no tendency to evolve greater morphological complexity, despite their metabolic virtuosity. Here I argue that the eukaryotic cell originated in a unique prokaryotic endosymbiosis, a singular event that transformed the selection pressures acting on both host and endosymbiont. Results The reductive evolution and specialisation of endosymbionts to mitochondria resulted in an extreme genomic asymmetry, in which the residual mitochondrial genomes enabled the expansion of bioenergetic membranes over several orders of magnitude, overcoming the energetic constraints on prokaryotic genome size, and permitting the host cell genome to expand (in principle) over 200,000-fold. This energetic transformation was permissive, not prescriptive; I suggest that the actual increase in early eukaryotic genome size was driven by a heavy early bombardment of genes and introns from the endosymbiont to the host cell, producing a high mutation rate. Unlike prokaryotes, with lower mutation rates and heavy selection pressure to lose genes, early eukaryotes without genome-size limitations could mask mutations by cell fusion and genome duplication, as in allopolyploidy, giving rise to a proto-sexual cell cycle. The side effect was that a large number of shared eukaryotic basal traits accumulated in the same population, a sexual eukaryotic common ancestor, radically different to any known prokaryote. Conclusions The combination of massive bioenergetic expansion, release from genome-size constraints, and high mutation rate favoured a protosexual cell cycle and the accumulation of eukaryotic traits. These factors explain the unique origin of eukaryotes, the absence of true evolutionary intermediates, and the evolution of sex in eukaryotes but not prokaryotes. Reviewers This article was reviewed by: Eugene Koonin, William Martin

  1. Pyrosequencing assessment of prokaryotic and eukaryotic diversity in biofilm communities from a French river

    PubMed Central

    Bricheux, Geneviève; Morin, Loïc; Le Moal, Gwenaël; Coffe, Gérard; Balestrino, Damien; Charbonnel, Nicolas; Bohatier, Jacques; Forestier, Christiane

    2013-01-01

    Despite the recent and significant increase in the study of aquatic microbial communities, little is known about the microbial diversity of complex ecosystems such as running waters. This study investigated the biodiversity of biofilm communities formed in a river with 454 Sequencing™. This river has the particularity of integrating both organic and microbiological pollution, as receiver of agricultural pollution in its upstream catchment area and urban pollution through discharges of the wastewater treatment plant of the town of Billom. Different regions of the small subunit (SSU) ribosomal RNA gene were targeted using nine pairs of primers, either universal or specific for bacteria, eukarya, or archaea. Our aim was to characterize the widest range of rDNA sequences using different sets of polymerase chain reaction (PCR) primers. A first look at reads abundance revealed that a large majority (47–48%) were rare sequences (<5 copies). Prokaryotic phyla represented the species richness, and eukaryotic phyla accounted for a small part. Among the prokaryotic phyla, Proteobacteria (beta and alpha) predominated, followed by Bacteroidetes together with a large number of nonaffiliated bacterial sequences. Bacillariophyta plastids were abundant. The remaining bacterial phyla, Verrucomicrobia and Cyanobacteria, made up the rest of the bulk biodiversity. The most abundant eukaryotic phyla were annelid worms, followed by Diatoms, and Chlorophytes. These latter phyla attest to the abundance of plastids and the importance of photosynthetic activity for the biofilm. These findings highlight the existence and plasticity of multiple trophic levels within these complex biological systems. PMID:23520129

  2. Pyrosequencing assessment of prokaryotic and eukaryotic diversity in biofilm communities from a French river.

    PubMed

    Bricheux, Geneviève; Morin, Loïc; Le Moal, Gwenaël; Coffe, Gérard; Balestrino, Damien; Charbonnel, Nicolas; Bohatier, Jacques; Forestier, Christiane

    2013-06-01

    Despite the recent and significant increase in the study of aquatic microbial communities, little is known about the microbial diversity of complex ecosystems such as running waters. This study investigated the biodiversity of biofilm communities formed in a river with 454 Sequencing™. This river has the particularity of integrating both organic and microbiological pollution, as receiver of agricultural pollution in its upstream catchment area and urban pollution through discharges of the wastewater treatment plant of the town of Billom. Different regions of the small subunit (SSU) ribosomal RNA gene were targeted using nine pairs of primers, either universal or specific for bacteria, eukarya, or archaea. Our aim was to characterize the widest range of rDNA sequences using different sets of polymerase chain reaction (PCR) primers. A first look at reads abundance revealed that a large majority (47-48%) were rare sequences (<5 copies). Prokaryotic phyla represented the species richness, and eukaryotic phyla accounted for a small part. Among the prokaryotic phyla, Proteobacteria (beta and alpha) predominated, followed by Bacteroidetes together with a large number of nonaffiliated bacterial sequences. Bacillariophyta plastids were abundant. The remaining bacterial phyla, Verrucomicrobia and Cyanobacteria, made up the rest of the bulk biodiversity. The most abundant eukaryotic phyla were annelid worms, followed by Diatoms, and Chlorophytes. These latter phyla attest to the abundance of plastids and the importance of photosynthetic activity for the biofilm. These findings highlight the existence and plasticity of multiple trophic levels within these complex biological systems. PMID:23520129

  3. Transplantation of prokaryotic two-component signaling pathways into mammalian cells.

    PubMed

    Hansen, Jonathan; Mailand, Erik; Swaminathan, Krishna Kumar; Schreiber, Joerg; Angelici, Bartolomeo; Benenson, Yaakov

    2014-11-01

    Signaling pathway engineering is a promising route toward synthetic biological circuits. Histidine-aspartate phosphorelays are thought to have evolved in prokaryotes where they form the basis for two-component signaling. Tyrosine-serine-threonine phosphorelays, exemplified by MAP kinase cascades, are predominant in eukaryotes. Recently, a prokaryotic two-component pathway was implemented in a plant species to sense environmental trinitrotoluene. We reasoned that "transplantation" of two-component pathways into mammalian host could provide an orthogonal and diverse toolkit for a variety of signal processing tasks. Here we report that two-component pathways could be partially reconstituted in mammalian cell culture and used for programmable control of gene expression. To enable this reconstitution, coding sequences of histidine kinase (HK) and response regulator (RR) components were codon-optimized for human cells, whereas the RRs were fused with a transactivation domain. Responsive promoters were furnished by fusing DNA binding sites in front of a minimal promoter. We found that coexpression of HKs and their cognate RRs in cultured mammalian cells is necessary and sufficient to strongly induce gene expression even in the absence of pathways' chemical triggers in the medium. Both loss-of-function and constitutive mutants behaved as expected. We further used the two-component signaling pathways to implement two-input logical AND, NOR, and OR gene regulation. Thus, two-component systems can be applied in different capacities in mammalian cells and their components can be used for large-scale synthetic gene circuits.

  4. PECAS: prokaryotic and eukaryotic classical analysis of secretome.

    PubMed

    Cortazar, Ana R; Oguiza, José A; Aransay, Ana M; Lavín, José L

    2015-12-01

    Full sets of proteins that are transported to the extracellular space, called secretomes, have been studied for a variety of organisms to understand their potential role in crucial metabolic pathways and complex health conditions. However, there is a lack of tools for integrative classical analysis of secretomes that consider all the data sources available nowadays. Thus, PECAS (Prokaryotic and Eukaryotic Classical Analysis of Secretome) has been developed to provide a well-established prediction pipeline on secreted proteins for prokaryote and eukaryote species. PMID:26233761

  5. Normal segregation of a foreign-species chromosome during Drosophila female meiosis despite extensive heterochromatin divergence.

    PubMed

    Gilliland, William D; Colwell, Eileen M; Osiecki, David M; Park, Suna; Lin, Deanna; Rathnam, Chandramouli; Barbash, Daniel A

    2015-01-01

    The abundance and composition of heterochromatin changes rapidly between species and contributes to hybrid incompatibility and reproductive isolation. Heterochromatin differences may also destabilize chromosome segregation and cause meiotic drive, the non-Mendelian segregation of homologous chromosomes. Here we use a range of genetic and cytological assays to examine the meiotic properties of a Drosophila simulans chromosome 4 (sim-IV) introgressed into D. melanogaster. These two species differ by ∼12-13% at synonymous sites and several genes essential for chromosome segregation have experienced recurrent adaptive evolution since their divergence. Furthermore, their chromosome 4s are visibly different due to heterochromatin divergence, including in the AATAT pericentromeric satellite DNA. We find a visible imbalance in the positioning of the two chromosome 4s in sim-IV/mel-IV heterozygote and also replicate this finding with a D. melanogaster 4 containing a heterochromatic deletion. These results demonstrate that heterochromatin abundance can have a visible effect on chromosome positioning during meiosis. Despite this effect, however, we find that sim-IV segregates normally in both diplo and triplo 4 D. melanogaster females and does not experience elevated nondisjunction. We conclude that segregation abnormalities and a high level of meiotic drive are not inevitable byproducts of extensive heterochromatin divergence. Animal chromosomes typically contain large amounts of noncoding repetitive DNA that nevertheless varies widely between species. This variation may potentially induce non-Mendelian transmission of chromosomes. We have examined the meiotic properties and transmission of a highly diverged chromosome 4 from a foreign species within the fruitfly Drosophila melanogaster. This chromosome has substantially less of a simple sequence repeat than does D. melanogaster 4, and we find that this difference results in altered positioning when chromosomes align

  6. Normal segregation of a foreign-species chromosome during Drosophila female meiosis despite extensive heterochromatin divergence.

    PubMed

    Gilliland, William D; Colwell, Eileen M; Osiecki, David M; Park, Suna; Lin, Deanna; Rathnam, Chandramouli; Barbash, Daniel A

    2015-01-01

    The abundance and composition of heterochromatin changes rapidly between species and contributes to hybrid incompatibility and reproductive isolation. Heterochromatin differences may also destabilize chromosome segregation and cause meiotic drive, the non-Mendelian segregation of homologous chromosomes. Here we use a range of genetic and cytological assays to examine the meiotic properties of a Drosophila simulans chromosome 4 (sim-IV) introgressed into D. melanogaster. These two species differ by ∼12-13% at synonymous sites and several genes essential for chromosome segregation have experienced recurrent adaptive evolution since their divergence. Furthermore, their chromosome 4s are visibly different due to heterochromatin divergence, including in the AATAT pericentromeric satellite DNA. We find a visible imbalance in the positioning of the two chromosome 4s in sim-IV/mel-IV heterozygote and also replicate this finding with a D. melanogaster 4 containing a heterochromatic deletion. These results demonstrate that heterochromatin abundance can have a visible effect on chromosome positioning during meiosis. Despite this effect, however, we find that sim-IV segregates normally in both diplo and triplo 4 D. melanogaster females and does not experience elevated nondisjunction. We conclude that segregation abnormalities and a high level of meiotic drive are not inevitable byproducts of extensive heterochromatin divergence. Animal chromosomes typically contain large amounts of noncoding repetitive DNA that nevertheless varies widely between species. This variation may potentially induce non-Mendelian transmission of chromosomes. We have examined the meiotic properties and transmission of a highly diverged chromosome 4 from a foreign species within the fruitfly Drosophila melanogaster. This chromosome has substantially less of a simple sequence repeat than does D. melanogaster 4, and we find that this difference results in altered positioning when chromosomes align

  7. Normal Segregation of a Foreign-Species Chromosome During Drosophila Female Meiosis Despite Extensive Heterochromatin Divergence

    PubMed Central

    Gilliland, William D.; Colwell, Eileen M.; Osiecki, David M.; Park, Suna; Lin, Deanna; Rathnam, Chandramouli; Barbash, Daniel A.

    2015-01-01

    The abundance and composition of heterochromatin changes rapidly between species and contributes to hybrid incompatibility and reproductive isolation. Heterochromatin differences may also destabilize chromosome segregation and cause meiotic drive, the non-Mendelian segregation of homologous chromosomes. Here we use a range of genetic and cytological assays to examine the meiotic properties of a Drosophila simulans chromosome 4 (sim-IV) introgressed into D. melanogaster. These two species differ by ∼12–13% at synonymous sites and several genes essential for chromosome segregation have experienced recurrent adaptive evolution since their divergence. Furthermore, their chromosome 4s are visibly different due to heterochromatin divergence, including in the AATAT pericentromeric satellite DNA. We find a visible imbalance in the positioning of the two chromosome 4s in sim-IV/mel-IV heterozygote and also replicate this finding with a D. melanogaster 4 containing a heterochromatic deletion. These results demonstrate that heterochromatin abundance can have a visible effect on chromosome positioning during meiosis. Despite this effect, however, we find that sim-IV segregates normally in both diplo and triplo 4 D. melanogaster females and does not experience elevated nondisjunction. We conclude that segregation abnormalities and a high level of meiotic drive are not inevitable byproducts of extensive heterochromatin divergence. Animal chromosomes typically contain large amounts of noncoding repetitive DNA that nevertheless varies widely between species. This variation may potentially induce non-Mendelian transmission of chromosomes. We have examined the meiotic properties and transmission of a highly diverged chromosome 4 from a foreign species within the fruitfly Drosophila melanogaster. This chromosome has substantially less of a simple sequence repeat than does D. melanogaster 4, and we find that this difference results in altered positioning when chromosomes align

  8. Fidelity drive: a mechanism for chaperone proteins to maintain stable mutation rates in prokaryotes over evolutionary time.

    PubMed

    Xue, Julian Z; Kaznatcheev, Artem; Costopoulos, Andre; Guichard, Frederic

    2015-01-01

    We show a mechanism by which chaperone proteins can play a key role in maintaining the long-term evolutionary stability of mutation rates in prokaryotes with perfect genetic linkage. Since chaperones can reduce the phenotypic effects of mutations, higher mutation rate, by affecting chaperones, can increase the phenotypic effects of mutations. This in turn leads to greater mutation effect among the proteins that control mutation repair and DNA replication, resulting in large changes in mutation rate. The converse of this is that when mutation rate is low and chaperones are functioning well, then the rate of change in mutation rate will also be low, leading to low mutation rates being evolutionarily frozen. We show that the strength of this recursion is critical to determining the long-term evolutionary patterns of mutation rate among prokaryotes. If this recursion is weak, then mutation rates can grow without bound, leading to the extinction of the lineage. However, if this recursion is strong, then we can reproduce empirical patterns of prokaryotic mutation rates, where mutation rates remain stable over evolutionary time, and where most mutation rates are low, but with a significant fraction of high mutators.

  9. The diversity of prokaryotic DDE transposases of the mutator superfamily, insertion specificity, and association with conjugation machineries.

    PubMed

    Guérillot, Romain; Siguier, Patricia; Gourbeyre, Edith; Chandler, Michael; Glaser, Philippe

    2014-02-01

    Transposable elements (TEs) are major components of both prokaryotic and eukaryotic genomes and play a significant role in their evolution. In this study, we have identified new prokaryotic DDE transposase families related to the eukaryotic Mutator-like transposases. These genes were retrieved by cascade PSI-Blast using as initial query the transposase of the streptococcal integrative and conjugative element (ICE) TnGBS2. By combining secondary structure predictions and protein sequence alignments, we predicted the DDE catalytic triad and the DNA-binding domain recognizing the terminal inverted repeats. Furthermore, we systematically characterized the organization and the insertion specificity of the TEs relying on these prokaryotic Mutator-like transposases (p-MULT) for their mobility. Strikingly, two distant TE families target their integration upstream σA dependent promoters. This allowed us to identify a transposase sequence signature associated with this unique insertion specificity and to show that the dissymmetry between the two inverted repeats is responsible for the orientation of the insertion. Surprisingly, while DDE transposases are generally associated with small and simple transposons such as insertion sequences (ISs), p-MULT encoding TEs show an unprecedented diversity with several families of IS, transposons, and ICEs ranging in size from 1.1 to 52 kb.

  10. Segregation as Splitting, Segregation as Joining: Schools, Housing, and the Many Modes of Jim Crow

    ERIC Educational Resources Information Center

    Highsmith, Andrew R.; Erickson, Ansley T.

    2015-01-01

    Popular understandings of segregation often emphasize the Jim Crow South before the 1954 "Brown" decision and, in many instances, explain continued segregation in schooling as the result of segregated housing patterns. The case of Flint, Michigan, complicates these views, at once illustrating the depth of governmental commitment to…

  11. TAC102 Is a Novel Component of the Mitochondrial Genome Segregation Machinery in Trypanosomes

    PubMed Central

    Hoffmann, Anneliese; Haenni, Beat; Jakob, Martin; Schnaufer, Achim; Schimanski, Bernd; Zuber, Benoît; Ochsenreiter, Torsten

    2016-01-01

    Trypanosomes show an intriguing organization of their mitochondrial DNA into a catenated network, the kinetoplast DNA (kDNA). While more than 30 proteins involved in kDNA replication have been described, only few components of kDNA segregation machinery are currently known. Electron microscopy studies identified a high-order structure, the tripartite attachment complex (TAC), linking the basal body of the flagellum via the mitochondrial membranes to the kDNA. Here we describe TAC102, a novel core component of the TAC, which is essential for proper kDNA segregation during cell division. Loss of TAC102 leads to mitochondrial genome missegregation but has no impact on proper organelle biogenesis and segregation. The protein is present throughout the cell cycle and is assembled into the newly developing TAC only after the pro-basal body has matured indicating a hierarchy in the assembly process. Furthermore, we provide evidence that the TAC is replicated de novo rather than using a semi-conservative mechanism. Lastly, we demonstrate that TAC102 lacks an N-terminal mitochondrial targeting sequence and requires sequences in the C-terminal part of the protein for its proper localization. PMID:27168148

  12. The prokaryotic FAD synthetase family: a potential drug target.

    PubMed

    Serrano, Ana; Ferreira, Patricia; Martínez-Júlvez, Marta; Medina, Milagros

    2013-01-01

    Disruption of cellular production of the flavin cofactors, flavin adenine mononucleotide (FMN) and flavin adenine dinucleotide(FAD) will prevent the assembly of a large number of flavoproteins and flavoenzymes involved in key metabolic processes in all types of organisms. The enzymes responsible for FMN and FAD production in prokaryotes and eukaryotes exhibit various structural characteristics to catalyze the same chemistry, a fact that converts the prokaryotic FAD synthetase (FADS) in a potential drug target for the development of inhibitors endowed with anti-pathogenic activity. The first step before searching for selective inhibitors of FADS is to understand the structural and functional mechanisms for the riboflavin kinase and FMN adenylyltransferase activities of the prokaryotic enzyme, and particularly to identify their differential functional characteristics with regard to the enzymes performing similar functions in other organisms, particularly humans. In this paper, an overview of the current knowledge of the structure-function relationships in prokaryotic FADS has been presented, as well as of the state of the art in the use of these enzymes as drug targets.

  13. Calcium binding proteins and calcium signaling in prokaryotes.

    PubMed

    Domínguez, Delfina C; Guragain, Manita; Patrauchan, Marianna

    2015-03-01

    With the continued increase of genomic information and computational analyses during the recent years, the number of newly discovered calcium binding proteins (CaBPs) in prokaryotic organisms has increased dramatically. These proteins contain sequences that closely resemble a variety of eukaryotic calcium (Ca(2+)) binding motifs including the canonical and pseudo EF-hand motifs, Ca(2+)-binding β-roll, Greek key motif and a novel putative Ca(2+)-binding domain, called the Big domain. Prokaryotic CaBPs have been implicated in diverse cellular activities such as division, development, motility, homeostasis, stress response, secretion, transport, signaling and host-pathogen interactions. However, the majority of these proteins are hypothetical, and only few of them have been studied functionally. The finding of many diverse CaBPs in prokaryotic genomes opens an exciting area of research to explore and define the role of Ca(2+) in organisms other than eukaryotes. This review presents the most recent developments in the field of CaBPs and novel advancements in the role of Ca(2+) in prokaryotes.

  14. Metagenome sequencing of prokaryotic microbiota collected from Byron Glacier, Alaska.

    PubMed

    Choudhari, Sulbha; Smith, Sean; Owens, Sarah; Gilbert, Jack A; Shain, Daniel H; Dial, Roman J; Grigoriev, Andrey

    2013-03-21

    Cold environments, such as glaciers, are large reservoirs of microbial life. The present study employed 16S rRNA gene amplicon metagenomic sequencing to survey the prokaryotic microbiota on Alaskan glacial ice, revealing a rich and diverse microbial community of some 2,500 species of bacteria and archaea.

  15. Tumor malignancy is engaged to prokaryotic homolog toolbox.

    PubMed

    Fernandes, Janaina; Guedes, Patrícia G; Lage, Celso Luiz S; Rodrigues, Juliany Cola F; Lage, Claudia de Alencar S

    2012-04-01

    Cancer cells display high proliferation rates and survival provided by high glycolysis, chemoresistance and radioresistance, metabolic features that appear to be activated with malignancy, and seemed to have arisen as early in evolution as in unicellular/prokaryotic organisms. Based on these assumptions, we hypothesize that aggressive phenotypes found in malignant cells may be related to acquired unicellular behavior, launched within a tumor when viral and prokaryotic homologs are overexpressed performing likely robust functions. The ensemble of these expressed viral and prokaryotic close homologs in the proteome of a tumor tissue gives them advantage over normal cells. To assess the hypothesis validity, sequences of human proteins involved in apoptosis, energetic metabolism, cell mobility and adhesion, chemo- and radio-resistance were aligned to homologs present in other life forms, excluding all eukaryotes, using PSI-BLAST, with further corroboration from data available in the literature. The analysis revealed that selected sequences of proteins involved in apoptosis and tumor suppression (as p53 and pRB) scored non-significant (E-value>0.001) with prokaryotic homologs; on the other hand, human proteins involved in cellular chemo- and radio-resistance scored highly significant with prokaryotic and viral homologs (as catalase, E-value=zero). We inferred that such upregulated and/or functionally activated proteins in aggressive malignant cells represent a toolbox of modern human homologs evolved from a similar key set that have granted survival of ancient prokaryotes against extremely harsh environments. According to what has been discussed along this analysis, high mutation rates usually hit hotspots in important conserved protein domains, allowing uncontrolled expansion of more resistant, death-evading malignant clones. That is the case of point mutations in key viral proteins affording viruses escape to chemotherapy, and human homologs of such retroviral

  16. Regulatory Interactions in ProKaryotes from RegTransBase

    DOE Data Explorer

    Dubchak, Inna; Gelfand, Mikhail

    RegTransBase, a manually curated database of regulatory interactions in prokaryotes, captures the knowledge in published scientific literature using a controlled vocabulary. RegTransBase describes a large number of regulatory interactions reported in many organisms and contains various types of experimental data, in particular: the activation or repression of transcription by an identified direct regulator determining the transcriptional regulatory function of a protein (or RNA) directly binding to DNA or RNA mapping or prediction of binding sites for a regulatory protein characterization of regulatory mutations. RegTransBase also contains manually created position weight matrices (PWM) that can be used to identify candidate regulatory sites in over 60 species. (Specialized Interface)

  17. Inosine at Different Primer Positions to Study Structure and Diversity of Prokaryotic Populations.

    PubMed

    Ben-Dov, Eitan; Kushmaro, Ariel

    2015-01-01

    Culture-independent methods, employed to study the diversity and complexity of microbial communities that are based on amplification of rRNA genes with universal primers, include gradient gel electrophoresis (denaturing or temperature), single-strand-conformation polymorphism, restriction fragment length polymorphism, qPCR and high-throughput DNA sequencing. Substituting one or more base(s) within or at the 3'-termi of the universal primers by inosine can overcome some of their shortcomings improving amplification capacity. Universal primer sets do not usually amplify sequences with nucleotide mismatch to the templates, particularly in the last three bases, whereas inosine-modified primers anneal and amplify a variety of rRNA gene sequences. Inosine-containing primers are therefore might be useful to detect more species in diverse prokaryotic populations. The article summarizes the pros and cons of using inosine especially at the 3' termini of universal primers in nucleic acid amplification for the study of microbial diversity.

  18. Occupational Segregation by Sex: Trends and Prospects.

    ERIC Educational Resources Information Center

    Blau, Francine D.; Hendricks, Wallace E.

    1979-01-01

    Investigates postwar trends in occupational segregation. Finds segregation increased slightly between 1950-60 as predominantly female clerical/professional jobs increased. Occupation mix changes (1960-70) were neutral in impact, but male inflow into female professions and female inflow into male sales/clerical jobs produced modest segregation…

  19. Measuring segregation: an activity space approach.

    PubMed

    Wong, David W S; Shaw, Shih-Lung

    2011-06-01

    While the literature clearly acknowledges that individuals may experience different levels of segregation across their various socio-geographical spaces, most measures of segregation are intended to be used in the residential space. Using spatially aggregated data to evaluate segregation in the residential space has been the norm and thus individual's segregation experiences in other socio-geographical spaces are often de-emphasized or ignored. This paper attempts to provide a more comprehensive approach in evaluating segregation beyond the residential space. The entire activity spaces of individuals are taken into account with individuals serving as the building blocks of the analysis. The measurement principle is based upon the exposure dimension of segregation. The proposed measure reflects the exposure of individuals of a referenced group in a neighborhood to the populations of other groups that are found within the activity spaces of individuals in the referenced group. Using the travel diary data collected from the tri-county area in southeast Florida and the imputed racial-ethnic data, this paper demonstrates how the proposed segregation measurement approach goes beyond just measuring population distribution patterns in the residential space and can provide a more comprehensive evaluation of segregation by considering various socio-geographical spaces.

  20. Measuring segregation: an activity space approach

    PubMed Central

    Shaw, Shih-Lung

    2010-01-01

    While the literature clearly acknowledges that individuals may experience different levels of segregation across their various socio-geographical spaces, most measures of segregation are intended to be used in the residential space. Using spatially aggregated data to evaluate segregation in the residential space has been the norm and thus individual’s segregation experiences in other socio-geographical spaces are often de-emphasized or ignored. This paper attempts to provide a more comprehensive approach in evaluating segregation beyond the residential space. The entire activity spaces of individuals are taken into account with individuals serving as the building blocks of the analysis. The measurement principle is based upon the exposure dimension of segregation. The proposed measure reflects the exposure of individuals of a referenced group in a neighborhood to the populations of other groups that are found within the activity spaces of individuals in the referenced group. Using the travel diary data collected from the tri-county area in southeast Florida and the imputed racial–ethnic data, this paper demonstrates how the proposed segregation measurement approach goes beyond just measuring population distribution patterns in the residential space and can provide a more comprehensive evaluation of segregation by considering various socio-geographical spaces. PMID:21643546

  1. 36 CFR 254.6 - Segregative effect.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Federal lands shall be segregated from appropriation under the public land laws and mineral laws for a... appropriation under the mineral laws for a period not to exceed 5 years from the date of notation. (c) The... segregation period not to exceed 5 years from the date of notation on the public land records,...

  2. 36 CFR 254.6 - Segregative effect.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Federal lands shall be segregated from appropriation under the public land laws and mineral laws for a... appropriation under the mineral laws for a period not to exceed 5 years from the date of notation. (c) The... segregation period not to exceed 5 years from the date of notation on the public land records,...

  3. 36 CFR 254.6 - Segregative effect.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Federal lands shall be segregated from appropriation under the public land laws and mineral laws for a... appropriation under the mineral laws for a period not to exceed 5 years from the date of notation. (c) The... segregation period not to exceed 5 years from the date of notation on the public land records,...

  4. Occupational Segregation by Sex: Determinants and Changes.

    ERIC Educational Resources Information Center

    Beller, Andrea H.

    1982-01-01

    This study found that occupational sex segregation began to diminish during the 1970s, in conjunction with enforcement of the equal employment opportunity laws against sex discrimination in employment. The success of these laws suggests that discrimination was originally a determinant of occupational segregation. (Author/SK)

  5. Residential Segregation: Challenge to White America.

    ERIC Educational Resources Information Center

    Denton, Nancy A.

    1994-01-01

    Examines the problem of residential segregation and demonstrates that it is a problem of social structure. The author contends that residential segregation has affirmed the continued subordination of blacks in American society over the past 50 years. New leadership in the Department of Housing and Urban Development is viewed as a positive…

  6. A sexy spin on nonrandom chromosome segregation.

    PubMed

    Charville, Gregory W; Rando, Thomas A

    2013-06-01

    Nonrandom chromosome segregation is an intriguing phenomenon linked to certain asymmetric stem cell divisions. In a recent report in Nature, Yadlapalli and Yamashita (2013) observe nonrandom segregation of X and Y chromosomes in Drosophila germline stem cells and shed light on the complex mechanisms of this fascinating process.

  7. A sexy spin on nonrandom chromosome segregation.

    PubMed

    Charville, Gregory W; Rando, Thomas A

    2013-06-01

    Nonrandom chromosome segregation is an intriguing phenomenon linked to certain asymmetric stem cell divisions. In a recent report in Nature, Yadlapalli and Yamashita (2013) observe nonrandom segregation of X and Y chromosomes in Drosophila germline stem cells and shed light on the complex mechanisms of this fascinating process. PMID:23746972

  8. Losing Ground: School Segregation in Massachuestts

    ERIC Educational Resources Information Center

    Ayscue, Jennifer B.; Greenberg, Alyssa

    2013-01-01

    Though once a leader in school integration, Massachusetts has regressed over the last two decades as its students of color have experienced intensifying school segregation. This report investigates trends in school segregation in Massachusetts by examining concentration, exposure, and evenness measures by both race and class. First, the report…

  9. Sex Segregation in Undergraduate Engineering Majors

    ERIC Educational Resources Information Center

    Litzler, Elizabeth

    2010-01-01

    Gender inequality in engineering persists in spite of women reaching parity in college enrollments and degrees granted. To date, no analyses of educational sex segregation have comprehensively examined segregation within one discipline. To move beyond traditional methods of studying the long-standing stratification by field of study in higher…

  10. 43 CFR 2091.2-1 - Segregation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of 270 days (See part 2710). The sales provisions of section 43 CFR 2711.1-2(d) provide for a... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Segregation. 2091.2-1 Section 2091.2-1... Lands § 2091.2-1 Segregation. The publication of a Notice of Realty Action in the Federal...

  11. 43 CFR 2091.2-1 - Segregation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of 270 days (See part 2710). The sales provisions of section 43 CFR 2711.1-2(d) provide for a... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Segregation. 2091.2-1 Section 2091.2-1... Lands § 2091.2-1 Segregation. The publication of a Notice of Realty Action in the Federal...

  12. 43 CFR 2091.2-1 - Segregation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of 270 days (See part 2710). The sales provisions of section 43 CFR 2711.1-2(d) provide for a... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Segregation. 2091.2-1 Section 2091.2-1... Lands § 2091.2-1 Segregation. The publication of a Notice of Realty Action in the Federal...

  13. 43 CFR 2091.2-1 - Segregation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of 270 days (See part 2710). The sales provisions of section 43 CFR 2711.1-2(d) provide for a... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Segregation. 2091.2-1 Section 2091.2-1... Lands § 2091.2-1 Segregation. The publication of a Notice of Realty Action in the Federal...

  14. High School Socioeconomic Segregation and Student Attainment

    ERIC Educational Resources Information Center

    Palardy, Gregory J.

    2013-01-01

    Using data from the Education Longitudinal Study of 2002, this study examines the association between high school socioeconomic segregation and student attainment outcomes and the mechanisms that mediate those relationships. The results show that socioeconomic segregation has a strong association with high school graduation and college enrollment.…

  15. Ising, Schelling and self-organising segregation

    NASA Astrophysics Data System (ADS)

    Stauffer, D.; Solomon, S.

    2007-06-01

    The similarities between phase separation in physics and residential segregation by preference in the Schelling model of 1971 are reviewed. Also, new computer simulations of asymmetric interactions different from the usual Ising model are presented, showing spontaneous magnetisation (=self-organising segregation) and in one case a sharp phase transition.

  16. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes

    PubMed Central

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Garg, Sriram; Hazkani-Covo, Einat; Martin, William F.

    2015-01-01

    Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners—the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)—and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic genes to three single prokaryotic sources, an issue that hinges crucially upon factors influencing phylogenetic inference. In the age of genomes, single-gene trees, once used to test the predictions of endosymbiotic theory, now spawn new theories that stand to eventually replace endosymbiotic theory with descriptive, gene tree-based variants featuring supernumerary symbionts: prokaryotic partners distinct from the cornerstone trio and whose existence is inferred solely from single-gene trees. We reason that the endosymbiotic ancestors of mitochondria and chloroplasts brought into the eukaryotic—and plant and algal—lineage a genome-sized sample of genes from the proteobacterial and cyanobacterial pangenomes of their respective day and that, even if molecular phylogeny were artifact-free, sampling prokaryotic pangenomes through endosymbiotic gene transfer would lead to inherited chimerism. Recombination in prokaryotes (transduction, conjugation, transformation) differs from recombination in eukaryotes (sex). Prokaryotic recombination leads to pangenomes, and eukaryotic recombination leads to vertical inheritance. Viewed from the perspective of endosymbiotic theory, the critical transition at the eukaryote origin that allowed escape from Muller’s ratchet—the origin of eukaryotic recombination, or sex—might have required surprisingly little evolutionary innovation. PMID:25733873

  17. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes.

    PubMed

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Garg, Sriram; Hazkani-Covo, Einat; Martin, William F

    2015-08-18

    Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners--the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)--and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic genes to three single prokaryotic sources, an issue that hinges crucially upon factors influencing phylogenetic inference. In the age of genomes, single-gene trees, once used to test the predictions of endosymbiotic theory, now spawn new theories that stand to eventually replace endosymbiotic theory with descriptive, gene tree-based variants featuring supernumerary symbionts: prokaryotic partners distinct from the cornerstone trio and whose existence is inferred solely from single-gene trees. We reason that the endosymbiotic ancestors of mitochondria and chloroplasts brought into the eukaryotic--and plant and algal--lineage a genome-sized sample of genes from the proteobacterial and cyanobacterial pangenomes of their respective day and that, even if molecular phylogeny were artifact-free, sampling prokaryotic pangenomes through endosymbiotic gene transfer would lead to inherited chimerism. Recombination in prokaryotes (transduction, conjugation, transformation) differs from recombination in eukaryotes (sex). Prokaryotic recombination leads to pangenomes, and eukaryotic recombination leads to vertical inheritance. Viewed from the perspective of endosymbiotic theory, the critical transition at the eukaryote origin that allowed escape from Muller's ratchet--the origin of eukaryotic recombination, or sex--might have required surprisingly little evolutionary innovation.

  18. Gene duplications in prokaryotes can be associated with environmental adaptation

    PubMed Central

    2010-01-01

    Background Gene duplication is a normal evolutionary process. If there is no selective advantage in keeping the duplicated gene, it is usually reduced to a pseudogene and disappears from the genome. However, some paralogs are retained. These gene products are likely to be beneficial to the organism, e.g. in adaptation to new environmental conditions. The aim of our analysis is to investigate the properties of paralog-forming genes in prokaryotes, and to analyse the role of these retained paralogs by relating gene properties to life style of the corresponding prokaryotes. Results Paralogs were identified in a number of prokaryotes, and these paralogs were compared to singletons of persistent orthologs based on functional classification. This showed that the paralogs were associated with for example energy production, cell motility, ion transport, and defence mechanisms. A statistical overrepresentation analysis of gene and protein annotations was based on paralogs of the 200 prokaryotes with the highest fraction of paralog-forming genes. Biclustering of overrepresented gene ontology terms versus species was used to identify clusters of properties associated with clusters of species. The clusters were classified using similarity scores on properties and species to identify interesting clusters, and a subset of clusters were analysed by comparison to literature data. This analysis showed that paralogs often are associated with properties that are important for survival and proliferation of the specific organisms. This includes processes like ion transport, locomotion, chemotaxis and photosynthesis. However, the analysis also showed that the gene ontology terms sometimes were too general, imprecise or even misleading for automatic analysis. Conclusions Properties described by gene ontology terms identified in the overrepresentation analysis are often consistent with individual prokaryote lifestyles and are likely to give a competitive advantage to the organism

  19. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes.

    PubMed

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Garg, Sriram; Hazkani-Covo, Einat; Martin, William F

    2015-08-18

    Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners--the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)--and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic genes to three single prokaryotic sources, an issue that hinges crucially upon factors influencing phylogenetic inference. In the age of genomes, single-gene trees, once used to test the predictions of endosymbiotic theory, now spawn new theories that stand to eventually replace endosymbiotic theory with descriptive, gene tree-based variants featuring supernumerary symbionts: prokaryotic partners distinct from the cornerstone trio and whose existence is inferred solely from single-gene trees. We reason that the endosymbiotic ancestors of mitochondria and chloroplasts brought into the eukaryotic--and plant and algal--lineage a genome-sized sample of genes from the proteobacterial and cyanobacterial pangenomes of their respective day and that, even if molecular phylogeny were artifact-free, sampling prokaryotic pangenomes through endosymbiotic gene transfer would lead to inherited chimerism. Recombination in prokaryotes (transduction, conjugation, transformation) differs from recombination in eukaryotes (sex). Prokaryotic recombination leads to pangenomes, and eukaryotic recombination leads to vertical inheritance. Viewed from the perspective of endosymbiotic theory, the critical transition at the eukaryote origin that allowed escape from Muller's ratchet--the origin of eukaryotic recombination, or sex--might have required surprisingly little evolutionary innovation. PMID:25733873

  20. Curvature-induced lipid segregation

    NASA Astrophysics Data System (ADS)

    Zheng, Bin; Meng, Qing-Tian; B. Selinger Robin, L.; V. Selinger, Jonathan; Ye, Fang-Fu

    2015-06-01

    We investigate how an externally imposed curvature influences lipid segregation on two-phase-coexistent membranes. We show that the bending-modulus contrast of the two phases and the curvature act together to yield a reduced effective line tension. On largely curved membranes, a state of multiple domains (or rafts) forms due to a mechanism analogous to that causing magnetic-vortex formation in type-II superconductors. We determine the criterion for such a multi-domain state to occur; we then calculate respectively the size of the domains formed on cylindrically and spherically curved membranes. Project supported by the Hundred-Talent Program of the Chinese Academy of Sciences (FY) and the National Science Foundation of USA via Grant DMR-1106014 (RLBS, JVS).

  1. Construction of prokaryotic expression plasmid of mtrC protein of Neisseria gonorrhoeae and its expression in E. coli.

    PubMed

    Chen, Hongxiang; Tu, Yating; Lin, Nengxing; Huang, Changzheng

    2005-01-01

    In order to provide a rational research basis for detection of resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents and study on the resistant mechanism of multiple transferable resistance (mtr) efflux system, plasmid pET-28a(+) encoding mtrC gene was constructed and the related target protein was expressed in Escherichia coli (E. coli) DE3. The fragments of mtrC gene of Neisseria gonorrhoeae from the standard strains were amplified and cloned into prokaryotic expression plasmid pET-28a(+) with restriction endonuclease to construct recombinant pET-mtrC which was verified by restriction endonuclease and DNA sequencing. The recombinant was transformed into E. coli DE3 to express the protein mtrC induced by IPTG. The results showed mtrC DNA fragment was proved correct through restriction endonuclease and DNA sequencing. Its sequence was 99.5% homologus to that published on GeneBank (U14993). A 48.5 kD fusion protein which was induced by IPTG was detected by SDS-PAGE. It was concluded that the construction of prokaryotic expression plasmid of mtrC protein of Neisseria gonorrhoeae was correct and the fusion protein was successively expressed in E. coli. PMID:16463681

  2. Grain boundary segregation and intergranular failure

    SciTech Connect

    White, C.L.

    1980-01-01

    Trace elements and impurities often segregate strongly to grain boundaries in metals and alloys. Concentrations of these elements at grain boundaries are often 10/sup 3/ to 10/sup 5/ times as great as their overall concentration in the alloy. Because of such segregation, certain trace elements can exert a disproportionate influence on material properties. One frequently observed consequence of trace element segregation to grain boundaries is the occurrence of grain boundary failure and low ductility. Less well known are incidences of improved ductility and inhibition of grain boundary fracture resulting from trace element segregation to grain boundaries in certain systems. An overview of trace element segregation and intergranular failure in a variety of alloy systems as well as preliminary results from studies on Al 3% Li will be presented.

  3. Selective uptake of prokaryotic picoplankton by a marine sponge ( Callyspongia sp.) within an oligotrophic coastal system

    NASA Astrophysics Data System (ADS)

    Hanson, Christine E.; McLaughlin, M. James; Hyndes, Glenn A.; Strzelecki, Joanna

    2009-09-01

    Marine sponges are key players in the transfer of carbon from the pelagic microbial food web into the benthos. Selective uptake of prokaryotic picoplankton (<2 μm) by a demosponge ( Callyspongia sp.), and carbon flux through this process, were examined for the first time in the oligotrophic coastal waters of southwestern Australia, where sponge abundance and biodiversity ranks among the highest in the world. Water sampling and flow rate measurements were conducted over five sampling occasions following the InEx method of Yahel et al. (2005), with heterotrophic bacteria and autotrophic Synechococcus cyanobacteria identified and enumerated by flow cytometry. Callyspongia sp. demonstrated high filtration efficiencies, particularly for high DNA (HDNA) bacteria (up to 85.3% in summer 2008) and Synechococcus (up to 91.1% in autumn 2007), however efficiency varied non-uniformly with time and food type ( p < 0.01). Overall filtration efficiency for Synechococcus (86.6 ± 6.3%; mean ± s.d.) was always significantly higher ( p < 0.05) than for low DNA (LDNA) bacteria (40 ± 17.2%), except during winter 2007 ( p = 0.14) when ambient Synechococcus concentrations were lowest. When compared to ambient abundances of the different food types, Callyspongia sp. exhibited consistently negative selectivity for LDNA bacteria and positive selectivity for Synechococcus, while HDNA bacteria was generally a neutral or positive selection. The total carbon removal rate (sum of all prokaryotic picoplankton cells), calculated on a per unit area basis, varied significantly with time ( p < 0.01), with lowest rates recorded during the winter (0.5 ± 0.4-0.6 ± 0.8 mg C m -2 d -1) and highest values recorded in summer (3.5 ± 1.9 mg C m -2 d -1). These flux estimates quantify the role of a demosponge species in the ultimate fate of prokaryotic picoplankton within the nearshore food webs of southwestern Australia, and support the conclusion that sponges actively select food particles that

  4. Viral Regulation of Prokaryotic Carbon Metabolism in a Hypereutrophic Freshwater Reservoir Ecosystem (Villerest, France).

    PubMed

    Pradeep Ram, Angia Sriram; Colombet, Jonathan; Perriere, Fanny; Thouvenot, Antoine; Sime-Ngando, Télesphore

    2016-01-01

    The current consensus concerning the viral regulation of prokaryotic carbon metabolism is less well-studied, compared to substrate availability. We explored the seasonal and vertical distribution of viruses and its relative influence on prokaryotic carbon metabolism in a hypereutrophic reservoir, Lake Villerest (France). Flow cytometry and transmission electron microscopy (TEM) analyses to determine viral abundance (VA; range = 6.1-63.5 × 10(7) ml(-1)) and viral infection rates of prokaryotes (range = 5.3-32%) respectively suggested that both the parameters varied more significantly with depths than with seasons. Prokaryotic growth efficiency (PGE, considered as a proxy of prokaryotic carbon metabolism) calculated from prokaryotic production and respiration measurements (PGE = prokaryotic production/[prokaryotic production + prokaryotic respiration] × 100) varied from 14 to 80% across seasons and depths. Viruses through selective lyses had antagonistic impacts on PGE by regulating key prokaryotic metabolic processes (i.e., production and respiration). Higher viral lysis accompanied by higher respiration rates and lower PGE in the summer (mean = 22.9 ± 10.3%) than other seasons (mean = 59.1 ± 18.6%), led to significant loss of carbon through bacterial-viral loop and shifted the reservoir system to net heterotrophy. Our data therefore suggests that the putative adverse impact of viruses on the growth efficiency of the prokaryotic community can have strong implications on nutrient flux patterns and on the overall ecosystem metabolism in anthropogenic dominated aquatic systems such as Lake Villerest. PMID:26903963

  5. Viral Regulation of Prokaryotic Carbon Metabolism in a Hypereutrophic Freshwater Reservoir Ecosystem (Villerest, France)

    PubMed Central

    Pradeep Ram, Angia Sriram; Colombet, Jonathan; Perriere, Fanny; Thouvenot, Antoine; Sime-Ngando, Télesphore

    2016-01-01

    The current consensus concerning the viral regulation of prokaryotic carbon metabolism is less well-studied, compared to substrate availability. We explored the seasonal and vertical distribution of viruses and its relative influence on prokaryotic carbon metabolism in a hypereutrophic reservoir, Lake Villerest (France). Flow cytometry and transmission electron microscopy (TEM) analyses to determine viral abundance (VA; range = 6.1–63.5 × 107 ml-1) and viral infection rates of prokaryotes (range = 5.3–32%) respectively suggested that both the parameters varied more significantly with depths than with seasons. Prokaryotic growth efficiency (PGE, considered as a proxy of prokaryotic carbon metabolism) calculated from prokaryotic production and respiration measurements (PGE = prokaryotic production/[prokaryotic production + prokaryotic respiration] × 100) varied from 14 to 80% across seasons and depths. Viruses through selective lyses had antagonistic impacts on PGE by regulating key prokaryotic metabolic processes (i.e., production and respiration). Higher viral lysis accompanied by higher respiration rates and lower PGE in the summer (mean = 22.9 ± 10.3%) than other seasons (mean = 59.1 ± 18.6%), led to significant loss of carbon through bacterial-viral loop and shifted the reservoir system to net heterotrophy. Our data therefore suggests that the putative adverse impact of viruses on the growth efficiency of the prokaryotic community can have strong implications on nutrient flux patterns and on the overall ecosystem metabolism in anthropogenic dominated aquatic systems such as Lake Villerest. PMID:26903963

  6. Extracellular DNA can preserve the genetic signatures of present and past viral infection events in deep hypersaline anoxic basins

    PubMed Central

    Corinaldesi, C.; Tangherlini, M.; Luna, G. M.; Dell'Anno, A.

    2014-01-01

    Deep hypersaline anoxic basins (DHABs) of the Mediterranean Sea are among the most extreme ecosystems on Earth and host abundant, active and diversified prokaryotic assemblages. However, factors influencing biodiversity and ecosystem functioning are still largely unknown. We investigated, for the first time, the impact of viruses on the prokaryotic assemblages and dynamics of extracellular DNA pool in the sediments of La Medee, the largest DHAB found on Earth. We also compared, in La Medee and L'Atalante sediments, the diversity of prokaryotic 16S rDNA sequences contained in the extracellular DNA released by virus-induced prokaryotic mortality. We found that DHAB sediments are hot-spots of viral infections, which largely contribute to the release of high amounts of extracellular DNA. DNase activities in DHAB sediments were much higher than other extracellular enzymatic activities, suggesting that extracellular DNA released from killed prokaryotes can be the most suitable trophic resource for benthic prokaryotes. Preserved extracellular DNA pools, which contained novel and diversified gene sequences, were very similar between the DHABs but dissimilar from the respective microbial DNA pools. We conclude that the strong viral impact in DHAB sediments influences the genetic composition of extracellular DNA, which can preserve the signatures of present and past infections. PMID:24523277

  7. Geochemical Interactions and Viral-Prokaryote Relationships in Freshwater Environments

    NASA Astrophysics Data System (ADS)

    Kyle, J. E.; Ferris, G.

    2009-05-01

    Viral and prokaryotic abundances were surveyed throughout southern Ontario aquatic habitats to determine relationships with geochemical parameters in the natural environment. Surface water samples were collected from acid mine drainage in summer of 2007 and 2008 and from circum-neutral pH environments in October to November 2008. Site determination was based on collecting samples from various aquatic habitats (acid mine drainage, lakes, rivers, tributaries, wetlands) with differing bedrock geology (limestone and shale dominated vs granitic Canadian Shield) to obtain a range of geochemical conditions. At each site, measurements of temperature, pH, and Eh were conducted. Samples collected for microbial counts and electron imaging were preserved to a final concentration of 2.5 % (v/v) glutaraldehyde. Additional sample were filtered into 60 mL nalgene bottles and amber EPA certified 40 mL glass vials to determine chemical constituents and dissolved organic carbon (DOC), respectively. Water was also collected to determine additional physiochemical parameters (dissolved total iron, ferric iron, nitrate, sulfate, phosphate, alkalinity, and turbidity). All samples were stored at 4 °C until analysis. Viral and prokaryotic abundance was determined by staining samples with SYBR Green I and examining with a epifluorescence microscope under blue excitation. Multiple regression analysis using stepwise backwards regression and general linear models revealed that viral abundance was the most influential predictor of prokaryotic abundance. Additional predictors include pH, sulfate, phosphate, and magnesium. The strength of the model was very strong with 90 % of the variability explained (R2 = 0.90, p < 0.007). This is the first report, to our knowledge, of viruses exhibiting such strong controls over prokaryotic abundance in the natural environment. All relationships are positively correlated with the exception of Mg, which is negatively correlated. Iron was also noted as a

  8. Duplex-specific nuclease efficiently removes rRNA for prokaryotic RNA-seq.

    PubMed

    Yi, Hana; Cho, Yong-Joon; Won, Sungho; Lee, Jong-Eun; Jin Yu, Hyung; Kim, Sujin; Schroth, Gary P; Luo, Shujun; Chun, Jongsik

    2011-11-01

    Next-generation sequencing has great potential for application in bacterial transcriptomics. However, unlike eukaryotes, bacteria have no clear mechanism to select mRNAs over rRNAs; therefore, rRNA removal is a critical step in sequencing-based transcriptomics. Duplex-specific nuclease (DSN) is an enzyme that, at high temperatures, degrades duplex DNA in preference to single-stranded DNA. DSN treatment has been successfully used to normalize the relative transcript abundance in mRNA-enriched cDNA libraries from eukaryotic organisms. In this study, we demonstrate the utility of this method to remove rRNA from prokaryotic total RNA. We evaluated the efficacy of DSN to remove rRNA by comparing it with the conventional subtractive hybridization (Hyb) method. Illumina deep sequencing was performed to obtain transcriptomes from Escherichia coli grown under four growth conditions. The results clearly showed that our DSN treatment was more efficient at removing rRNA than the Hyb method was, while preserving the original relative abundance of mRNA species in bacterial cells. Therefore, we propose that, for bacterial mRNA-seq experiments, DSN treatment should be preferred to Hyb-based methods.

  9. Binder segregation in the processing of ceramics

    SciTech Connect

    Zhang, Yao; Uematsu, Keizo

    1996-12-31

    The surface segregation of poly(vinyl alcohol) during the drying process was quantitatively studied by a model experiment of one-dimensional drying and a mathematical simulation. The drying behavior of the slurry with binder and the relationship between the binder segregation and defect formation in compact also were examined. The binder segregation shortens the constant rate period, and drying shrinkage continues occurring during the early fall rate period. The PVA segregation increased with increasing drying temperature and PVA initial concentration. The segregation was significantly restrained by full adsorption of PVA on the alumina particle surface before drying at a low concentration. The segregation in spray dried granules was also directly observed by the immersion liquid technique. The hard shell of the granule is responsible for a low packing density region between the granules. The mathematical simulation agreed with the experimental results very well. This simulation has great potential to predict the segregation of soluble components in thick films and small granules where it is difficult to determine the component distribution directly.

  10. Genome-wide survey of prokaryotic serine proteases: Analysis of distribution and domain architectures of five serine protease families in prokaryotes

    PubMed Central

    Tripathi, Lokesh P; Sowdhamini, R

    2008-01-01

    Background Serine proteases are one of the most abundant groups of proteolytic enzymes found in all the kingdoms of life. While studies have established significant roles for many prokaryotic serine proteases in several physiological processes, such as those associated with metabolism, cell signalling, defense response and development, functional associations for a large number of prokaryotic serine proteases are relatively unknown. Current analysis is aimed at understanding the distribution and probable biological functions of the select serine proteases encoded in representative prokaryotic organisms. Results A total of 966 putative serine proteases, belonging to five families, were identified in the 91 prokaryotic genomes using various sensitive sequence search techniques. Phylogenetic analysis reveals several species-specific clusters of serine proteases suggesting their possible involvement in organism-specific functions. Atypical phylogenetic associations suggest an important role for lateral gene transfer events in facilitating the widespread distribution of the serine proteases in the prokaryotes. Domain organisations of the gene products were analysed, employing sensitive sequence search methods, to infer their probable biological functions. Trypsin, subtilisin and Lon protease families account for a significant proportion of the multi-domain representatives, while the D-Ala-D-Ala carboxypeptidase and the Clp protease families are mostly single-domain polypeptides in prokaryotes. Regulatory domains for protein interaction, signalling, pathogenesis, cell adhesion etc. were found tethered to the serine protease domains. Some domain combinations (such as S1-PDZ; LON-AAA-S16 etc.) were found to be widespread in the prokaryotic lineages suggesting a critical role in prokaryotes. Conclusion Domain architectures of many serine proteases and their homologues identified in prokaryotes are very different from those observed in eukaryotes, suggesting distinct roles

  11. Quantifying crystal-melt segregation in dykes

    NASA Astrophysics Data System (ADS)

    Yamato, Philippe; Duretz, Thibault; May, Dave A.; Tartèse, Romain

    2015-04-01

    The dynamics of magma flow is highly affected by the presence of a crystalline load. During magma ascent, it has been demonstrated that crystal-melt segregation constitutes a viable mechanism for magmatic differentiation. However, the influences of crystal volume fraction, geometry, size and density on crystal melt segregation are still not well constrained. In order to address these issues, we performed a parametric study using 2D direct numerical simulations, which model the ascension of crystal-bearing magma in a vertical dyke. Using these models, we have characterised the amount of segregation as a function of different quantities including: the crystal fraction (φ), the density contrast between crystals and melt (Δρ), the size of the crystals (Ac) and their aspect ratio (R). Results show that crystal aspect ratio does not affect the segregation if R is small enough (long axis smaller than ~1/6 of the dyke width, Wd). Inertia within the system was also found not to influence crystal-melt segregation. The degree of segregation was however found to be highly dependent upon other parameters. Segregation is highest when Δρ and Ac are large, and lowest for large pressure gradient (Pd) and/or large values of Wd. These four parameters can be combined into a single one, the Snumber, which can be used to quantify the segregation. Based on systematic numerical modelling and dimensional analysis, we provide a first order scaling law which allows quantification of the segregation for an arbitrary Snumber and φ, encompassing a wide range of typical parameters encountered in terrestrial magmatic systems.

  12. On the Filling Process Forming Silicic Segregations

    NASA Astrophysics Data System (ADS)

    Zavala, K.; Marsh, B. D.

    2001-05-01

    Interdigitating silicic lenses are particularly well developed and well exposed in the Ferrar Dolerites of the McMurdo Dry Valleys, Antarctica. Silicic segregations are texturally splotchy, have sharp upper contacts, and diffuse lower contacts that grade into normal dolerite. What is unusual about these 1- 2 m lenses is that the background sill shows very little compositional variation and yet the silicic segregations show wide compositional variation. In particular, silica content varies between 47 and 68%, and thus produces for the sill overall a bimodal composition. We have analyzed over 100 segregation samples in order to investigate the nature of the filling process. Previous work (Zavala & Marsh, 1999) has shown that segregations have compositions that correspond to interstitial liquid present at crystallinities between 59 and 63 % and temperatures between 1135° and 1115° . Additionally, it was noted that the large segregation lenses are not homogeneous and exhibit cyclic variations in silica content. This observation lead to the current study, in which new samples from the Peneplain Sill (235 to 241) show remarkable correlations between segregation texture, stratigraphic position and silica enrichment. Incompatibles like Zr indicate relatively low 35 to 40% concentrations of melt at the point of segregation extraction, which supports the notion that segregations formed by withdrawal of interstitial melt into tears as the solidification front (SF) became gravitationally unstable. The details of the filling process can also be gauged using chemical profiles normalized to segregation thickness. One group shows distinct multiple smaller cycles of silica enrichment versus depth, which suggests successive stages of opening. The other group shows a strong enrichment in silica followed by a steady decay to the base. The general form of this latter pattern measures the gradient in melt composition immediately below the segregation at the time of infilling. From

  13. Process for the physical segregation of minerals

    DOEpatents

    Yingling, Jon C.; Ganguli, Rajive

    2004-01-06

    With highly heterogeneous groups or streams of minerals, physical segregation using online quality measurements is an economically important first stage of the mineral beneficiation process. Segregation enables high quality fractions of the stream to bypass processing, such as cleaning operations, thereby reducing the associated costs and avoiding the yield losses inherent in any downstream separation process. The present invention includes various methods for reliably segregating a mineral stream into at least one fraction meeting desired quality specifications while at the same time maximizing yield of that fraction.

  14. Sequential initiation of lagging and leading strand synthesis by two different polymerase complexes at the SV40 DNA replication origin.

    PubMed

    Tsurimoto, T; Melendy, T; Stillman, B

    1990-08-01

    Enzymatic synthesis of DNA from the simian virus 40 origin of DNA replication has been reconstituted in vitro with eight purified components. DNA polymerase alpha-primase complex first initiates DNA synthesis at the replication origin and continues as the lagging strand polymerase. Subsequently, the DNA polymerase delta complex initiates replication on the leading strand template. Some prokaryotic DNA polymerase complexes can replace the eukaryotic polymerase delta complex. A model for polymerase switching during initiation of DNA replication is presented.

  15. Cytoplasmic sulfur trafficking in sulfur-oxidizing prokaryotes.

    PubMed

    Dahl, Christiane

    2015-04-01

    Persulfide groups are chemically versatile and participate in a wide array of biochemical pathways. Although it is well documented that persulfurated proteins supply a number of important and elaborate biosynthetic pathways with sulfane sulfur, it is far less acknowledged that the enzymatic generation of persulfidic sulfur, the successive transfer of sulfur as a persulfide between multiple proteins, and the oxidation of sulfane sulfur in protein-bound form are also essential steps during dissimilatory sulfur oxidation in bacteria and archaea. Here, the currently available information on sulfur trafficking in sulfur oxidizing prokaryotes is reviewed, and the idea is discussed that sulfur is always presented to cytoplasmic oxidizing enzymes in a protein-bound form, thus preventing the occurrence of free sulfide inside of the prokaryotic cell. Thus, sulfur trafficking emerges as a central element in sulfur-oxidizing pathways, and TusA homologous proteins appear to be central and common elements in these processes.

  16. Proteogenomic analysis and global discovery of posttranslational modifications in prokaryotes

    PubMed Central

    Yang, Ming-kun; Yang, Yao-hua; Chen, Zhuo; Zhang, Jia; Lin, Yan; Wang, Yan; Xiong, Qian; Li, Tao; Ge, Feng; Bryant, Donald A.; Zhao, Jin-dong

    2014-01-01

    We describe an integrated workflow for proteogenomic analysis and global profiling of posttranslational modifications (PTMs) in prokaryotes and use the model cyanobacterium Synechococcus sp. PCC 7002 (hereafter Synechococcus 7002) as a test case. We found more than 20 different kinds of PTMs, and a holistic view of PTM events in this organism grown under different conditions was obtained without specific enrichment strategies. Among 3,186 predicted protein-coding genes, 2,938 gene products (>92%) were identified. We also identified 118 previously unidentified proteins and corrected 38 predicted gene-coding regions in the Synechococcus 7002 genome. This systematic analysis not only provides comprehensive information on protein profiles and the diversity of PTMs in Synechococcus 7002 but also provides some insights into photosynthetic pathways in cyanobacteria. The entire proteogenomics pipeline is applicable to any sequenced prokaryotic organism, and we suggest that it should become a standard part of genome annotation projects. PMID:25512518

  17. Classification of prokaryotic genetic replicators: between selfishness and altruism

    PubMed Central

    Jalasvuori, Matti; Koonin, Eugene V.

    2015-01-01

    Prokaryotes harbor a variety of genetic replicators, including plasmids, viruses, and chromosomes, each having differing effects on the phenotype of the hosting cell. Here, we propose a classification for replicators of bacteria and archaea on the basis of their horizontal-transfer potential and the type of relationships (mutualistic, symbiotic, commensal, or parasitic) that they have with the host cell vehicle. Horizontal movement of replicators can be either active or passive, reflecting whether or not the replicator encodes the means to mediate its own transfer from one cell to another. Some replicators also have an infectious extracellular state, thus separating viruses from other mobile elements. From the perspective of the cell vehicle, the different types of replicators form a continuum from genuinely mutualistic to completely parasitic replicators. This classification provides a general framework for dissecting prokaryotic systems into evolutionarily meaningful components. PMID:25703428

  18. Detection of Prokaryotic Genes in the Amphimedon queenslandica Genome

    PubMed Central

    Conaco, Cecilia; Tsoulfas, Pantelis; Sakarya, Onur; Dolan, Amanda; Werren, John; Kosik, Kenneth S.

    2016-01-01

    Horizontal gene transfer (HGT) is common between prokaryotes and phagotrophic eukaryotes. In metazoans, the scale and significance of HGT remains largely unexplored but is usually linked to a close association with parasites and endosymbionts. Marine sponges (Porifera), which host many microorganisms in their tissues and lack an isolated germ line, are potential carriers of genes transferred from prokaryotes. In this study, we identified a number of potential horizontally transferred genes within the genome of the sponge, Amphimedon queenslandica. We further identified homologs of some of these genes in other sponges. The transferred genes, most of which possess catalytic activity for carbohydrate or protein metabolism, have assimilated host genome characteristics and are actively expressed. The diversity of functions contributed by the horizontally transferred genes is likely an important factor in the adaptation and evolution of A. queenslandica. These findings highlight the potential importance of HGT on the success of sponges in diverse ecological niches. PMID:26959231

  19. Rates of Lateral Gene Transfer in Prokaryotes: High but Why?

    PubMed

    Vos, Michiel; Hesselman, Matthijn C; te Beek, Tim A; van Passel, Mark W J; Eyre-Walker, Adam

    2015-10-01

    Lateral gene transfer is of fundamental importance to the evolution of prokaryote genomes and has important practical consequences, as evidenced by the rapid dissemination of antibiotic resistance and virulence determinants. Relatively little effort has so far been devoted to explicitly quantifying the rate at which accessory genes are taken up and lost, but it is possible that the combined rate of lateral gene transfer and gene loss is higher than that of point mutation. What evolutionary forces underlie the rate of lateral gene transfer are not well understood. We here use theory developed to explain the evolution of mutation rates to address this question and explore its consequences for the study of prokaryote evolution.

  20. Detection of Prokaryotic Genes in the Amphimedon queenslandica Genome.

    PubMed

    Conaco, Cecilia; Tsoulfas, Pantelis; Sakarya, Onur; Dolan, Amanda; Werren, John; Kosik, Kenneth S

    2016-01-01

    Horizontal gene transfer (HGT) is common between prokaryotes and phagotrophic eukaryotes. In metazoans, the scale and significance of HGT remains largely unexplored but is usually linked to a close association with parasites and endosymbionts. Marine sponges (Porifera), which host many microorganisms in their tissues and lack an isolated germ line, are potential carriers of genes transferred from prokaryotes. In this study, we identified a number of potential horizontally transferred genes within the genome of the sponge, Amphimedon queenslandica. We further identified homologs of some of these genes in other sponges. The transferred genes, most of which possess catalytic activity for carbohydrate or protein metabolism, have assimilated host genome characteristics and are actively expressed. The diversity of functions contributed by the horizontally transferred genes is likely an important factor in the adaptation and evolution of A. queenslandica. These findings highlight the potential importance of HGT on the success of sponges in diverse ecological niches. PMID:26959231

  1. Pyrophosphate-fueled Na+ and H+ transport in prokaryotes.

    PubMed

    Baykov, Alexander A; Malinen, Anssi M; Luoto, Heidi H; Lahti, Reijo

    2013-06-01

    In its early history, life appeared to depend on pyrophosphate rather than ATP as the source of energy. Ancient membrane pyrophosphatases that couple pyrophosphate hydrolysis to active H(+) transport across biological membranes (H(+)-pyrophosphatases) have long been known in prokaryotes, plants, and protists. Recent studies have identified two evolutionarily related and widespread prokaryotic relics that can pump Na(+) (Na(+)-pyrophosphatase) or both Na(+) and H(+) (Na(+),H(+)-pyrophosphatase). Both these transporters require Na(+) for pyrophosphate hydrolysis and are further activated by K(+). The determination of the three-dimensional structures of H(+)- and Na(+)-pyrophosphatases has been another recent breakthrough in the studies of these cation pumps. Structural and functional studies have highlighted the major determinants of the cation specificities of membrane pyrophosphatases and their potential use in constructing transgenic stress-resistant organisms.

  2. Eukaryotic damaged DNA-binding proteins: DNA repair proteins or transcription factors?

    SciTech Connect

    Protic, M.

    1994-12-31

    Recognition and removal of structural defects in the genome, caused by diverse physical and chemical agents, are among the most important cell functions. Proteins that recognize and bind to modified DNA, and thereby initiate damage-induced recovery processes, have been identified in prokaryotic and eukaryotic cells. Damaged DNA-binding (DDB) proteins from prokaryotes are either DNA repair enzymes or noncatalytic subunits of larger DNA repair complexes that participate in excision repair, or in recombinational repair and SOS-mutagenesis. Although the methods employed may not have allowed detection of all eukaryotic DDB proteins and identification of their functions, it appears that during evolution cells have developed a wide array of DDB proteins that can discriminate among the diversity of DNA conformations found in the eukaryotic nucleus, as well as a gene-sharing feature found in DDB proteins that also act as transcription factors.

  3. Tracing lifestyle adaptation in prokaryotic genomes.

    PubMed

    Altermann, Eric

    2012-01-01

    Lifestyle adaptation of microbes due to changes in their ecological niches or acquisition of new environments is a major driving force for genetic changes in their respective genomes. Moving into more specialized niches often results in the acquisition of new gene sets via horizontal gene transfer to utilize previously unavailable metabolites, while genetic ballast is shed by gene loss and/or gene inactivation. In some cases, larger genome rearrangements can be observed, such as the incorporation of whole genetic islands, providing a range of new phenotypic capabilities. Until recently these changes could not be comprehensively followed and identified due to the lack of complete microbial genome sequences. The advent of high-throughput DNA sequencing has dramatically changed the scientific landscape and today microbial genomes have become increasingly abundant. Currently, more than 2,900 genomes are published and more than 11,000 genome projects are listed in the Genomes Online Database. Although this wealth of information provides many new opportunities to assess microbial functionality, it also creates a new array of challenges when a comparison between multiple microbial genomes is required. Here, functional genome distribution (FGD) is introduced, analyzing the diversity between microbes based on their predicted ORFeome. FGD is therefore a comparative genomics approach, emphasizing the assessments of gene complements. To further facilitate the comparison between two or more genomes, degrees of amino-acid similarities between ORFeomes can be visualized in the Artemis comparison tool, graphically depicting small and large scale genome rearrangements, insertion and deletion events, and levels of similarity between individual open reading frames. FGD provides a new tool for comparative microbial genomics and the interpretation of differences in the genetic makeup of bacteria. PMID:22363326

  4. Effects of viruses and predators on prokaryotic community composition.

    PubMed

    Jardillier, Ludwig; Bettarel, Yvan; Richardot, Mathilde; Bardot, Corinne; Amblard, Christian; Sime-Ngando, Télesphore; Debroas, Didier

    2005-11-01

    Dialysis bags were used to examine the impact of predation and viral lysis on prokaryotic community composition (PCC) over a 5-day experiment in the oligomesotrophic Lake Pavin (France). The impact of the different predator communities (protists and metazoans) of prokaryotes was estimated by water fractionation (<5 microm: treatment filtered on 5 microm, without ciliates and metazoans; UNF: unfiltered treatment with all planktonic communities). Enrichments of natural viruses (<1.2 microm: with a natural virus concentration; <1.2 mum V and VV: with enrichment leading to a double or triple concentration of viruses, respectively) were used to indirectly assess the control of virioplankton. Viral activity was estimated from the frequency of visibly infected cells (FVIC). PCC was determined by fluorescence in situ hybridization (FISH) and terminal restriction fragment length polymorphism (T-RFLP). In this study, PCC was affected by the eukaryote communities (especially flagellates), and viruses to a lesser extent. Cyanobacteria declined significantly during the experiment and were highly correlated with the FVIC. In addition, the 503-bp terminal restriction fragment (T-RF) disappeared in treatments with virus enrichments, suggesting possible viral-associated mortality processes, whereas the 506-bp T-RF was not affected in these treatments. On one hand, these results suggest a control of the PCC: first, by viral lysis of some dominant phylotypes and second, by interspecific competition between resistant strains for the uptake of substrates released by this lysis. The increase of Archaea may suggest that these cells benefit such resources. On the other hand, the disappearance and the stable proportion of some dominant phylotypes suggested a selection pressure due to the predatory activity on prokaryotes. In conclusion, prokaryotic abundance appears to be mainly controlled by flagellate protists, which also affected PCC, whereas viruses seemed to be essentially responsible

  5. Predatory prokaryotes: predation and primary consumption evolved in bacteria

    NASA Technical Reports Server (NTRS)

    Guerrero, R.; Pedros-Alio, C.; Esteve, I.; Mas, J.; Chase, D.; Margulis, L.

    1986-01-01

    Two kinds of predatory bacteria have been observed and characterized by light and electron microscopy in samples from freshwater sulfurous lakes in northeastern Spain. The first bacterium, named Vampirococcus, is Gram-negative and ovoidal (0.6 micrometer wide). An anaerobic epibiont, it adheres to the surface of phototrophic bacteria (Chromatium spp.) by specific attachment structures and, as it grows and divides by fission, destroys its prey. An important in situ predatory role can be inferred for Vampirococcus from direct counts in natural samples. The second bacterium, named Daptobacter, is a Gram-negative, facultatively anaerobic straight rod (0.5 x 1.5 micrometers) with a single polar flagellum, which collides, penetrates, and grows inside the cytoplasm of its prey (several genera of Chromatiaceae). Considering also the well-known case of Bdellovibrio, a Gram-negative, aerobic curved rod that penetrates and divides in the periplasmic space of many chemotrophic Gram-negative bacteria, there are three types of predatory prokaryotes presently known (epibiotic, cytoplasmic, and periplasmic). Thus, we conclude that antagonistic relationships such as primary consumption, predation, and scavenging had already evolved in microbial ecosystems prior to the appearance of eukaryotes. Furthermore, because they represent methods by which prokaryotes can penetrate other prokaryotes in the absence of phagocytosis, these associations can be considered preadaptation for the origin of intracellular organelles.

  6. Prokaryotic cells: structural organisation of the cytoskeleton and organelles.

    PubMed

    Souza, Wanderley de

    2012-05-01

    For many years, prokaryotic cells were distinguished from eukaryotic cells based on the simplicity of their cytoplasm, in which the presence of organelles and cytoskeletal structures had not been discovered. Based on current knowledge, this review describes the complex components of the prokaryotic cell cytoskeleton, including (i) tubulin homologues composed of FtsZ, BtuA, BtuB and several associated proteins, which play a fundamental role in cell division, (ii) actin-like homologues, such as MreB and Mb1, which are involved in controlling cell width and cell length, and (iii) intermediate filament homologues, including crescentin and CfpA, which localise on the concave side of a bacterium and along its inner curvature and associate with its membrane. Some prokaryotes exhibit specialised membrane-bound organelles in the cytoplasm, such as magnetosomes and acidocalcisomes, as well as protein complexes, such as carboxysomes. This review also examines recent data on the presence of nanotubes, which are structures that are well characterised in mammalian cells that allow direct contact and communication between cells.

  7. Birth, death, and diversification of mobile promoters in prokaryotes.

    PubMed

    van Passel, Mark W J; Nijveen, Harm; Wahl, Lindi M

    2014-05-01

    A previous study of prokaryotic genomes identified large reservoirs of putative mobile promoters (PMPs), that is, homologous promoter sequences associated with nonhomologous coding sequences. Here we extend this data set to identify the full complement of mobile promoters in sequenced prokaryotic genomes. The expanded search identifies nearly 40,000 PMP sequences, 90% of which occur in noncoding regions of the genome. To gain further insight from this data set, we develop a birth-death-diversification model for mobile genetic elements subject to sequence diversification; applying the model to PMPs we are able to quantify the relative importance of duplication, loss, horizontal gene transfer (HGT), and diversification to the maintenance of the PMP reservoir. The model predicts low rates of HGT relative to the duplication and loss of PMP copies, rapid dynamics of PMP families, and a pool of PMPs that exist as a single copy in a genome at any given time, despite their mobility. We report evidence of these "singletons" at high frequencies in prokaryotic genomes. We also demonstrate that including selection, either for or against PMPs, was not necessary to describe the observed data.

  8. Genomic and functional adaptation in surface ocean planktonic prokaryotes.

    PubMed

    Yooseph, Shibu; Nealson, Kenneth H; Rusch, Douglas B; McCrow, John P; Dupont, Christopher L; Kim, Maria; Johnson, Justin; Montgomery, Robert; Ferriera, Steve; Beeson, Karen; Williamson, Shannon J; Tovchigrechko, Andrey; Allen, Andrew E; Zeigler, Lisa A; Sutton, Granger; Eisenstadt, Eric; Rogers, Yu-Hui; Friedman, Robert; Frazier, Marvin; Venter, J Craig

    2010-11-01

    The understanding of marine microbial ecology and metabolism has been hampered by the paucity of sequenced reference genomes. To this end, we report the sequencing of 137 diverse marine isolates collected from around the world. We analysed these sequences, along with previously published marine prokaryotic genomes, in the context of marine metagenomic data, to gain insights into the ecology of the surface ocean prokaryotic picoplankton (0.1-3.0 μm size range). The results suggest that the sequenced genomes define two microbial groups: one composed of only a few taxa that are nearly always abundant in picoplanktonic communities, and the other consisting of many microbial taxa that are rarely abundant. The genomic content of the second group suggests that these microbes are capable of slow growth and survival in energy-limited environments, and rapid growth in energy-rich environments. By contrast, the abundant and cosmopolitan picoplanktonic prokaryotes for which there is genomic representation have smaller genomes, are probably capable of only slow growth and seem to be relatively unable to sense or rapidly acclimate to energy-rich conditions. Their genomic features also lead us to propose that one method used to avoid predation by viruses and/or bacterivores is by means of slow growth and the maintenance of low biomass.

  9. Distributions of Virus-Like Particles and Prokaryotes within Microenvironments

    PubMed Central

    Dann, Lisa M.; Paterson, James S.; Newton, Kelly; Oliver, Rod; Mitchell, James G.

    2016-01-01

    Microbial interactions are important for ecosystem function, but occur at the microscale and so are difficult to observe. Previous studies in marine systems have shown significant shifts in microbial community abundance and composition over scales of micrometres to centimetres. This study investigates the microscale abundance distributions of virus-like particles (VLPs) and prokaryotes in the lower reaches of a river to determine the extent to which microscale microbial patchiness exists in freshwater systems. Here we report local hotspots surrounded by gradients that reach a maximum 80 and 107 fold change in abundance over 0.9 cm for prokaryotic and VLP subpopulations. Changes in prokaryotic and VLP hotspots were tightly coupled. There were no gradients at tens of centimetres across the boundary layers, which is consistent with strong mixing and turbulence-driven aggregation found in river systems. Quantification of the patchiness shows a marked asymmetry with patches 10 times greater than background common, but depletions being rare or absent in most samples. This consistent asymmetry suggests that coldspots depleted by grazing and lysis are rapidly mixed to background concentrations, while the prevalence of hotspots indicates persistence against disruption. The hotspot to coldspot relative abundance may be useful for understanding microbial river dynamics. The patchiness indicates that the mean- field approach of bulk phase sampling misses the microbially relevant community variation and may underestimate the concentrations of these important microbial groups. PMID:26785114

  10. Predatory prokaryotes: Predation and primary consumption evolved in bacteria

    PubMed Central

    Guerrero, Ricardo; Pedrós-Alió, Carlos; Esteve, Isabel; Mas, Jordi; Chase, David; Margulis, Lynn

    1986-01-01

    Two kinds of predatory bacteria have been observed and characterized by light and electron microscopy in samples from freshwater sulfurous lakes in northeastern Spain. The first bacterium, named Vampirococcus, is Gram-negative and ovoidal (0.6 μm wide). An anaerobic epibiont, it adheres to the surface of phototrophic bacteria (Chromatium spp.) by specific attachment structures and, as it grows and divides by fission, destroys its prey. An important in situ predatory role can be inferred for Vampirococcus from direct counts in natural samples. The second bacterium, named Daptobacter, is a Gram-negative, facultatively anaerobic straight rod (0.5 × 1.5 μm) with a single polar flagellum, which collides, penetrates, and grows inside the cytoplasm of its prey (several genera of Chromatiaceae). Considering also the well-known case of Bdellovibrio, a Gram-negative, aerobic curved rod that penetrates and divides in the periplasmic space of many chemotrophic Gram-negative bacteria, there are three types of predatory prokaryotes presently known (epibiotic, cytoplasmic, and periplasmic). Thus, we conclude that antagonistic relationships such as primary consumption, predation, and scavenging had already evolved in microbial ecosystems prior to the appearance of eukaryotes. Furthermore, because they represent methods by which prokaryotes can penetrate other prokaryotes in the absence of phagocytosis, these associations can be considered preadaptations for the origin of intracellular organelles. Images PMID:11542073

  11. A comprehensive repertoire of prokaryotic species identified in human beings.

    PubMed

    Hugon, Perrine; Dufour, Jean-Charles; Colson, Philippe; Fournier, Pierre-Edouard; Sallah, Kankoe; Raoult, Didier

    2015-10-01

    The compilation of the complete prokaryotic repertoire associated with human beings as commensals or pathogens is a major goal for the scientific and medical community. The use of bacterial culture techniques remains a crucial step to describe new prokaryotic species. The large number of officially acknowledged bacterial species described since 1980 and the recent increase in the number of recognised pathogenic species have highlighted the absence of an exhaustive compilation of species isolated in human beings. By means of a thorough investigation of several large culture databases and a search of the scientific literature, we built an online database containing all human-associated prokaryotic species described, whether or not they had been validated and have standing in nomenclature. We list 2172 species that have been isolated in human beings. They were classified in 12 different phyla, mostly in the Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes phyla. Our online database is useful for both clinicians and microbiologists and forms part of the Human Microbiome Project, which aims to characterise the whole human microbiota and help improve our understanding of the human predisposition and susceptibility to infectious agents.

  12. The Prokaryote-Eukaryote Dichotomy: Meanings and Mythology

    PubMed Central

    Sapp, Jan

    2005-01-01

    Drawing on documents both published and archival, this paper explains how the prokaryote-eukaryote dichotomy of the 1960s was constructed, the purposes it served, and what it implied in terms of classification and phylogeny. In doing so, I first show how the concept was attributed to Edouard Chatton and the context in which he introduced the terms. Following, I examine the context in which the terms were reintroduced into biology in 1962 by Roger Stanier and C. B. van Niel. I study the discourse over the subsequent decade to understand how the organizational dichotomy took on the form of a natural classification as the kingdom Monera or superkingdom Procaryotae. Stanier and van Niel admitted that, in regard to constructing a natural classification of bacteria, structural characteristics were no more useful than physiological properties. They repeatedly denied that bacterial phylogenetics was possible. I thus examine the great historical irony that the “prokaryote,” in both its organizational and phylogenetic senses, was defined (negatively) on the basis of structure. Finally, we see how phylogenetic research based on 16S rRNA led by Carl Woese and his collaborators confronted the prokaryote concept while moving microbiology to the center of evolutionary biology. PMID:15944457

  13. Distributions of Virus-Like Particles and Prokaryotes within Microenvironments.

    PubMed

    Dann, Lisa M; Paterson, James S; Newton, Kelly; Oliver, Rod; Mitchell, James G

    2016-01-01

    Microbial interactions are important for ecosystem function, but occur at the microscale and so are difficult to observe. Previous studies in marine systems have shown significant shifts in microbial community abundance and composition over scales of micrometres to centimetres. This study investigates the microscale abundance distributions of virus-like particles (VLPs) and prokaryotes in the lower reaches of a river to determine the extent to which microscale microbial patchiness exists in freshwater systems. Here we report local hotspots surrounded by gradients that reach a maximum 80 and 107 fold change in abundance over 0.9 cm for prokaryotic and VLP subpopulations. Changes in prokaryotic and VLP hotspots were tightly coupled. There were no gradients at tens of centimetres across the boundary layers, which is consistent with strong mixing and turbulence-driven aggregation found in river systems. Quantification of the patchiness shows a marked asymmetry with patches 10 times greater than background common, but depletions being rare or absent in most samples. This consistent asymmetry suggests that coldspots depleted by grazing and lysis are rapidly mixed to background concentrations, while the prevalence of hotspots indicates persistence against disruption. The hotspot to coldspot relative abundance may be useful for understanding microbial river dynamics. The patchiness indicates that the mean- field approach of bulk phase sampling misses the microbially relevant community variation and may underestimate the concentrations of these important microbial groups.

  14. Identifying specific protein-DNA interactions using SILAC-based quantitative proteomics.

    PubMed

    Spruijt, Cornelia G; Baymaz, H Irem; Vermeulen, Michiel

    2013-01-01

    A comprehensive identification of protein-DNA interactions that drive processes such as transcription and replication, both in prokaryotic and eukaryotic organisms, remains a major technical challenge. In this chapter, we present a SILAC-based DNA affinity purification method that can be used to identify specific interactions between proteins and functional DNA elements in an unbiased manner.

  15. The Distribution of Segregation in Atlanta

    ERIC Educational Resources Information Center

    Meade, Anthony

    1972-01-01

    A prediction from ecological theory relating the distribution of residential segregation between inner and outer zones of a metropolitan area to conditions of population growth, expansion, etc. was tested using 1960 data on the Atlanta standard metropolitan statistical area. (JM)

  16. Segregation behavior in a stationary vertical zone with converging interfaces - Pressure-induced segregation effects

    NASA Technical Reports Server (NTRS)

    Kim, K. M.; Witt, A. F.; Gatos, H. C.

    1974-01-01

    Crystal growth and segregation were investigated in a confined vertical melt zone in which the upper solid-melt interface advanced under destabilizing and the lower interface under stabilizing thermal gradients. A technique reported by Kim et al. (1972) was used in the study. The experimental results are discussed, giving attention to interface morphology and growth rate and questions of dopant segregation. Dopant inhomogeneities formed simultaneously in both advancing interfaces can be explained on the basis of pressure induced segregation effects.

  17. Segregation of unvoiced speech from nonspeech interference.

    PubMed

    Hu, Guoning; Wang, DeLiang

    2008-08-01

    Monaural speech segregation has proven to be extremely challenging. While efforts in computational auditory scene analysis have led to considerable progress in voiced speech segregation, little attention has been given to unvoiced speech, which lacks harmonic structure and has weaker energy, hence more susceptible to interference. This study proposes a new approach to the problem of segregating unvoiced speech from nonspeech interference. The study first addresses the question of how much speech is unvoiced. The segregation process occurs in two stages: Segmentation and grouping. In segmentation, the proposed model decomposes an input mixture into contiguous time-frequency segments by a multiscale analysis of event onsets and offsets. Grouping of unvoiced segments is based on Bayesian classification of acoustic-phonetic features. The proposed model for unvoiced speech segregation joins an existing model for voiced speech segregation to produce an overall system that can deal with both voiced and unvoiced speech. Systematic evaluation shows that the proposed system extracts a majority of unvoiced speech without including much interference, and it performs substantially better than spectral subtraction. PMID:18681616

  18. Nonmagnetotactic multicellular prokaryotes from low-saline, nonmarine aquatic environments and their unusual negative phototactic behavior.

    PubMed

    Lefèvre, Christopher T; Abreu, Fernanda; Lins, Ulysses; Bazylinski, Dennis A

    2010-05-01

    Magnetotactic multicellular prokaryotes (MMPs) are unique magnetotactic bacteria of the Deltaproteobacteria class and the first found to biomineralize the magnetic mineral greigite (Fe(3)S(4)). Thus far they have been reported only from marine habitats. We questioned whether MMPs exist in low-saline, nonmarine environments. MMPs were observed in samples from shallow springs in the Great Boiling Springs geothermal field and Pyramid Lake, both located in northwestern Nevada. The temperature at all sites was ambient, and salinities ranged from 5 to 11 ppt. These MMPs were not magnetotactic and did not contain magnetosomes (called nMMPs here). nMMPs ranged from 7 to 11 microm in diameter, were composed of about 40 to 60 Gram-negative cells, and were motile by numerous flagella that covered each cell on one side, characteristics similar to those of MMPs. 16S rRNA gene sequences of nMMPs show that they form a separate phylogenetic branch within the MMP group in the Deltaproteobacteria class, probably representing a single species. nMMPs exhibited a negative phototactic behavior to white light and to wavelengths of < or =480 nm (blue). We devised a "light racetrack" to exploit this behavior, which was used to photoconcentrate nMMPs for specific purposes (e.g., DNA extraction) even though their numbers were low in the sample. Our results show that the unique morphology of the MMP is not restricted to marine and magnetotactic prokaryotes. Discovery of nonmagnetotactic forms of the MMP might support the hypothesis that acquisition of the magnetosome genes involves horizontal gene transfer. To our knowledge, this is the first report of phototaxis in bacteria of the Deltaproteobacteria class.

  19. Integrity of prokaryotic mRNA isolated from complex samples for in vivo bacterial transcriptome analysis.

    PubMed

    Ferreira-Machado, A B; Freitas, M C R; Saji, G R Q; Rezende, A B; Almeida, P E; Cesar, D E; Resende, J A; Nicólas, M F; Silva, V L; Diniz, C G

    2015-01-01

    Even though several in vitro studies have focused on bacterial biology, the extent of such knowledge is not complete when considering an actual infection. As culture-independent microbiology methods such as high-throughput sequencing became available, important aspects of host-bacterium interactions will be elucidated. Based on microbiological relevance, we considered Bacteroides fragilis in a murine experimental infection as a model system to evaluate the in vivo bacterial transcriptome in host exudates. A disproportionate number of reads belonging to the host genome were retrieved in the first round of pyrosequencing, even after depletion of ribosomal RNA; the average number of reads related to the eukaryotic genome was 71.924-67.7%, whereas prokaryotic reads represented 34.338-32.3% in host exudates. Thus, different treatments were used to improve the prokaryotic RNA yield: i) centrifugation; ii) ultrasonic treatment; and iii) ultrasonic treatment followed by centrifugation. The latter treatment was found to be the most efficient in generating bacterial yields, as it resulted in a higher number of Bacteroides cells. However, the RNA extracted after this treatment was not of sufficient quality to be used in cDNA synthesis. Our results suggest that the methodology routinely used for RNA extraction in transcriptional analysis is not appropriate for in vivo studies in complex samples. Furthermore, the most efficient treatment for generating good bacterial cell yields was not suitable to retrieve high-quality RNA. Therefore, as an alternative methodological approach to enable in vivo studies on host-bacterium interactions, we advise increasing the sequencing depth despite the high costs.

  20. Gender Segregation in the Spanish Labor Market: An Alternative Approach

    ERIC Educational Resources Information Center

    del Rio, Coral; Alonso-Villar, Olga

    2010-01-01

    The aim of this paper is to study occupational segregation by gender in Spain, which is a country where occupational segregation explains a large part of the gender wage gap. As opposed to previous studies, this paper measures not only overall segregation, but also the segregation of several population subgroups. For this purpose, this paper uses…

  1. Radiation-induced segregation in candidate fusion-reactor alloys

    SciTech Connect

    Brimhall, J.L.; Baer, D.R.; Jones, R.H.

    1981-07-01

    The effect of radiation on surface segregation of minor and impurity elements has been studied in four candidate fusion reactor alloys. Radiation induced surface segregation of phosphorus was found in both 316 type stainless steel and in Nimonic PE-16. Segregation and depletion of the other alloying elements in 316 stainless steel agreed with that reported by other investigators. Segregation of nitrogen in ferritic HT-9 was enhanced by radiation but no phosphorus segregation was detected. No significant radiation enhanced or induced segregation was observed in a Ti-6Al-4V alloy. The results indicate that radiaton enhanced grain boundary segregation could contribute to the embrittlement of 316 SS and PE-16.

  2. Application of TALEs, CRISPR/Cas and sRNAs as trans-acting regulators in prokaryotes.

    PubMed

    Copeland, Matthew F; Politz, Mark C; Pfleger, Brian F

    2014-10-01

    The last several years have witnessed an explosion in the understanding and use of novel, versatile trans-acting elements. TALEs, CRISPR/Cas, and sRNAs can be easily fashioned to bind any specific sequence of DNA (TALEs, CRISPR/Cas) or RNA (sRNAs) because of the simple rules governing their interactions with nucleic acids. This unique property enables these tools to repress the expression of genes at the transcriptional or post-transcriptional levels, respectively, without prior manipulation of cis-acting and/or chromosomal target DNA sequences. These tools are now being harnessed by synthetic biologists, particularly those in the eukaryotic community, for genome-wide regulation, editing, or epigenetic studies. Here we discuss the exciting opportunities for using TALEs, CRISPR/Cas, and sRNAs as synthetic trans-acting regulators in prokaryotes.

  3. DNA supercoiling and its role in DNA decatenation and unknotting

    PubMed Central

    Witz, Guillaume; Stasiak, Andrzej

    2010-01-01

    Chromosomal and plasmid DNA molecules in bacterial cells are maintained under torsional tension and are therefore supercoiled. With the exception of extreme thermophiles, supercoiling has a negative sign, which means that the torsional tension diminishes the DNA helicity and facilitates strand separation. In consequence, negative supercoiling aids such processes as DNA replication or transcription that require global- or local-strand separation. In extreme thermophiles, DNA is positively supercoiled which protects it from thermal denaturation. While the role of DNA supercoiling connected to the control of DNA stability, is thoroughly researched and subject of many reviews, a less known role of DNA supercoiling emerges and consists of aiding DNA topoisomerases in DNA decatenation and unknotting. Although DNA catenanes are natural intermediates in the process of DNA replication of circular DNA molecules, it is necessary that they become very efficiently decatenated, as otherwise the segregation of freshly replicated DNA molecules would be blocked. DNA knots arise as by-products of topoisomerase-mediated intramolecular passages that are needed to facilitate general DNA metabolism, including DNA replication, transcription or recombination. The formed knots are, however, very harmful for cells if not removed efficiently. Here, we overview the role of DNA supercoiling in DNA unknotting and decatenation. PMID:20026582

  4. Linking host prokaryotic physiology to viral lifestyle dynamics in a temperate freshwater lake (Lake Pavin, France).

    PubMed

    Palesse, S; Colombet, J; Pradeep Ram, A S; Sime-Ngando, T

    2014-11-01

    In aquatic ecosystems, fluctuations in environmental conditions and prokaryotic host physiological states can strongly affect the dynamics of viral life strategies. The influence of prokaryote physiology and environmental factors on viral replication cycles (lytic and lysogeny) was investigated from April to September 2011 at three different strata (epi, meta, and hypolimnion) in the mixolimnion of deep volcanic temperate freshwater Lake Pavin (France). Overall, the euphotic region (epi and metalimnion) was more dynamic and showed significant variation in microbial standing stocks, prokaryotic physiological state, and viral life strategies compared to the aphotic hypolimnion which was stable within sampled months. The prokaryotic host physiology as inferred from the nucleic acid content of prokaryotic cells (high or low nucleic acid) was strongly regulated by the chlorophyll concentration. The predominance of the high nucleic acid (HNA) prokaryotes (cells) over low nucleic acid (LNA) prokaryotes (cells) in the spring (HNA/LNA = 1.2) and vice versa in the summer period (HNA/LNA = 0.4) suggest that the natural prokaryotic communities underwent major shifts in their physiological states during investigated time period. The increase in the percentage of inducible lysogenic prokaryotes in the summer period was associated with the switch in the dominance of LNA over HNA cells, which coincided with the periods of strong resource (nutrient) limitation. This supports the idea that lysogeny represents a maintenance strategy for viruses in unproductive or harsh nutrient/host conditions. A negative correlation of percentage of lysogenic prokaryotes with HNA cell abundance and chlorophyll suggest that lysogenic cycle is closely related to prokaryotic cells which are stressed or starved due to unavailability of resources for its growth and activity. Our results provide support to previous findings that changes in prokaryote physiology are critical for the promotion and

  5. Linking host prokaryotic physiology to viral lifestyle dynamics in a temperate freshwater lake (Lake Pavin, France).

    PubMed

    Palesse, S; Colombet, J; Pradeep Ram, A S; Sime-Ngando, T

    2014-11-01

    In aquatic ecosystems, fluctuations in environmental conditions and prokaryotic host physiological states can strongly affect the dynamics of viral life strategies. The influence of prokaryote physiology and environmental factors on viral replication cycles (lytic and lysogeny) was investigated from April to September 2011 at three different strata (epi, meta, and hypolimnion) in the mixolimnion of deep volcanic temperate freshwater Lake Pavin (France). Overall, the euphotic region (epi and metalimnion) was more dynamic and showed significant variation in microbial standing stocks, prokaryotic physiological state, and viral life strategies compared to the aphotic hypolimnion which was stable within sampled months. The prokaryotic host physiology as inferred from the nucleic acid content of prokaryotic cells (high or low nucleic acid) was strongly regulated by the chlorophyll concentration. The predominance of the high nucleic acid (HNA) prokaryotes (cells) over low nucleic acid (LNA) prokaryotes (cells) in the spring (HNA/LNA = 1.2) and vice versa in the summer period (HNA/LNA = 0.4) suggest that the natural prokaryotic communities underwent major shifts in their physiological states during investigated time period. The increase in the percentage of inducible lysogenic prokaryotes in the summer period was associated with the switch in the dominance of LNA over HNA cells, which coincided with the periods of strong resource (nutrient) limitation. This supports the idea that lysogeny represents a maintenance strategy for viruses in unproductive or harsh nutrient/host conditions. A negative correlation of percentage of lysogenic prokaryotes with HNA cell abundance and chlorophyll suggest that lysogenic cycle is closely related to prokaryotic cells which are stressed or starved due to unavailability of resources for its growth and activity. Our results provide support to previous findings that changes in prokaryote physiology are critical for the promotion and

  6. From culturomics to taxonomogenomics: A need to change the taxonomy of prokaryotes in clinical microbiology.

    PubMed

    Fournier, Pierre-Edouard; Lagier, Jean-Christophe; Dubourg, Gregory; Raoult, Didier

    2015-12-01

    By diversifying culture conditions, in a strategy named culturomics, we were able in a short time to grow 124 new bacterial species from human stools, including 39 strict anaerobes. To describe these microorganisms, we use genome sequencing and MALDI-TOF mass spectrometry. Both tools have been major breakthroughs in clinical microbiology over the past decade, have previously been used for taxonomic purposes, and have the advantage over chemotaxonomic methods and DNA-DNA hybridization, to exhibit an excellent intra- and inter-laboratory reproducibility. We developed a polyphasic taxonomic strategy including MALDI-TOF MS and genomic analyses to describe new bacterial species associated with human beings. This strategy, that we have named taxono-genomics, was used to propose the description of 48 new species, the names of 13 of which have officially been validated. In this manuscript, we briefly reviewed the pros and cons of the currently validated taxonomic tools and propose that genomic sequencing and MALDI-TOF mass spectrometry may be incorporated in the taxonomic classification of prokaryotes.

  7. Are We Segregated and Satisfied? Segregation and Inequality in Southern California Schools

    ERIC Educational Resources Information Center

    Kucsera, John V.; Siegel-Hawley, Genevieve; Orfield, Gary

    2015-01-01

    Southern California is facing a demographic transformation that will become characteristic of the nation as a whole in coming decades. In this research, we present a historical review of the region's attempt to address school inequity, recent enrollment and segregation trends, and an investigation of whether segregation still matters. Our results…

  8. Mechanisms of plasmid segregation: have multicopy plasmids been overlooked?

    PubMed

    Million-Weaver, Samuel; Camps, Manel

    2014-09-01

    Plasmids are self-replicating pieces of DNA typically bearing non-essential genes. Given that plasmids represent a metabolic burden to the host, mechanisms ensuring plasmid transmission to daughter cells are critical for their stable maintenance in the population. Here we review these mechanisms, focusing on two active partition strategies common to low-copy plasmids: par systems type I and type II. Both involve three components: an adaptor protein, a motor protein, and a centromere, which is a sequence area in the plasmid that is recognized by the adaptor protein. The centromere-bound adaptor nucleates polymerization of the motor, leading to filament formation, which can pull plasmids apart (par I) or push them towards opposite poles of the cell (par II). No such active partition mechanisms are known to occur in high copy number plasmids. In this case, vertical transmission is generally considered stochastic, due to the random distribution of plasmids in the cytoplasm. We discuss conceptual and experimental lines of evidence questioning the random distribution model and posit the existence of a mechanism for segregation in high copy number plasmids that moves plasmids to cell poles to facilitate transmission to daughter cells. This mechanism would involve chromosomally-encoded proteins and the plasmid origin of replication. Modulation of this proposed mechanism of segregation could provide new ways to enhance plasmid stability in the context of recombinant gene expression, which is limiting for large-scale protein production and for bioremediation.

  9. Racial Segregation and the American Foreclosure Crisis

    PubMed Central

    Rugh, Jacob S.; Massey, Douglas S.

    2013-01-01

    Although the rise in subprime lending and the ensuing wave of foreclosures was partly a result of market forces that have been well-identified in the literature, in the United States it was also a highly racialized process. We argue that residential segregation created a unique niche of poor minority clients who were differentially marketed risky subprime loans that were in great demand for use in mortgage-backed securities that could be sold on secondary markets. We test this argument by regressing foreclosure actions in the top 100 U.S. metropolitan areas on measures of black, Hispanic, and Asian segregation while controlling for a variety of housing market conditions, including average creditworthiness, the extent of coverage under the Community Reinvestment Act, the degree of zoning regulation, and the overall rate of subprime lending. We find that black residential dissimilarity and spatial isolation are powerful predictors of foreclosures across U.S. metropolitan areas. In order to isolate subprime lending as the causal mechanism whereby segregation influences foreclosures, we estimate a two-stage least squares model that confirms the causal effect of black segregation on the number and rate of foreclosures across metropolitan areas. In the United States segregation was an important contributing cause of the foreclosure crisis, along with overbuilding, risky lending practices, lax regulation, and the bursting of the housing price bubble. PMID:25308973

  10. A longitudinal study of administrative segregation.

    PubMed

    O'Keefe, Maureen L; Klebe, Kelli J; Metzner, Jeffrey; Dvoskin, Joel; Fellner, Jamie; Stucker, Alysha

    2013-01-01

    The use of administrative segregation for inmates with and without mental illness has generated considerable criticism. Segregated inmates are locked in single cells for 23 hours per day, are subjected to rigorous security procedures, and have restricted access to programs. In this study, we examined whether inmates in segregation would show greater deterioration over time on psychological symptoms than would comparison offenders. The subjects were male inmates, with and without mental illness, in administrative segregation, general population, or special-needs prison. Subjects completed the Brief Symptom Inventory at regular intervals for one year. Results showed differentiation between groups at the outset and statistically significant but small positive change over time across all groups. All groups showed the same change pattern such that there was not the hypothesized differential change of inmates within administrative segregation. This study advances the empirical research, but replication research is needed to make a better determination of whether and under what conditions harm may or may not occur to inmates in solitary confinement. PMID:23503176

  11. Racial Segregation and the American Foreclosure Crisis.

    PubMed

    Rugh, Jacob S; Massey, Douglas S

    2010-10-01

    Although the rise in subprime lending and the ensuing wave of foreclosures was partly a result of market forces that have been well-identified in the literature, in the United States it was also a highly racialized process. We argue that residential segregation created a unique niche of poor minority clients who were differentially marketed risky subprime loans that were in great demand for use in mortgage-backed securities that could be sold on secondary markets. We test this argument by regressing foreclosure actions in the top 100 U.S. metropolitan areas on measures of black, Hispanic, and Asian segregation while controlling for a variety of housing market conditions, including average creditworthiness, the extent of coverage under the Community Reinvestment Act, the degree of zoning regulation, and the overall rate of subprime lending. We find that black residential dissimilarity and spatial isolation are powerful predictors of foreclosures across U.S. metropolitan areas. In order to isolate subprime lending as the causal mechanism whereby segregation influences foreclosures, we estimate a two-stage least squares model that confirms the causal effect of black segregation on the number and rate of foreclosures across metropolitan areas. In the United States segregation was an important contributing cause of the foreclosure crisis, along with overbuilding, risky lending practices, lax regulation, and the bursting of the housing price bubble. PMID:25308973

  12. Continuous utility factor in segregation models

    NASA Astrophysics Data System (ADS)

    Roy, Parna; Sen, Parongama

    2016-02-01

    We consider the constrained Schelling model of social segregation in which the utility factor of agents strictly increases and nonlocal jumps of the agents are allowed. In the present study, the utility factor u is defined in a way such that it can take continuous values and depends on the tolerance threshold as well as the fraction of unlike neighbors. Two models are proposed: in model A the jump probability is determined by the sign of u only, which makes it equivalent to the discrete model. In model B the actual values of u are considered. Model A and model B are shown to differ drastically as far as segregation behavior and phase transitions are concerned. In model A, although segregation can be achieved, the cluster sizes are rather small. Also, a frozen state is obtained in which steady states comprise many unsatisfied agents. In model B, segregated states with much larger cluster sizes are obtained. The correlation function is calculated to show quantitatively that larger clusters occur in model B. Moreover for model B, no frozen states exist even for very low dilution and small tolerance parameter. This is in contrast to the unconstrained discrete model considered earlier where agents can move even when utility remains the same. In addition, we also consider a few other dynamical aspects which have not been studied in segregation models earlier.

  13. Construction and expression of prokaryotic expression vectors fused with genes of Magnaporthe oryzae effector proteins and mCherry.

    PubMed

    Yang, Y Q; Wang, H; Liang, M L; Yan, J L; Liu, L; Li, C Y; Yang, J

    2015-09-09

    The aim of the current study was to investigate the prokaryotic expression of the Magnaporthe oryzae effector genes BAS1 and BAS4 fused to the fluorescent protein mCherry. Based on previous polymorphic analysis of BAS1 and BAS4 in rice blast strains using PCR, blast strains containing the PCR products of BAS1 and BAS4 were selected for liquid culture for total RNA extraction. For PCR analysis, cDNA was selected as a template to amplify the coding region of BAS1 and BAS4, the plasmid pXY201 was selected as template to amplify the mCherry sequence, and the three sequences were cloned into pMD®19-T vectors. Positive recombinant plasmids were digested using two restriction enzymes and the cleaved fragments of BAS1 and mCherry and BAS4 and mCherry were ligated to pGEX-4T-1 vectors and expression was induced using IPTG. The PCR results showed that the sequence sizes of BAS1, BAS4, and mCherry were 348, 309, and 711 bp, respectively, and these were cloned into pMD®19-T vectors. After digestion and gel purification, the fragments of BAS1 and mCherry, BAS4 and mCherry were ligated into pGEX-4T-1 vectors and expressed in Escherichia coli BL21 competent cells. The expressed proteins were approximately 60 kDa, corresponding to their theoretical size. Prokaryotic expression products of BAS1 and BAS4 fused to mCherry were presented in this study, providing a base for constructing prokaryotic expression vectors of pathogen effector genes fused to mCherry, which will contribute to further study of the subcellular localization, function, and protein interactions of these effectors.

  14. A computational genomics pipeline for prokaryotic sequencing projects

    PubMed Central

    Kislyuk, Andrey O.; Katz, Lee S.; Agrawal, Sonia; Hagen, Matthew S.; Conley, Andrew B.; Jayaraman, Pushkala; Nelakuditi, Viswateja; Humphrey, Jay C.; Sammons, Scott A.; Govil, Dhwani; Mair, Raydel D.; Tatti, Kathleen M.; Tondella, Maria L.; Harcourt, Brian H.; Mayer, Leonard W.; Jordan, I. King

    2010-01-01

    Motivation: New sequencing technologies have accelerated research on prokaryotic genomes and have made genome sequencing operations outside major genome sequencing centers routine. However, no off-the-shelf solution exists for the combined assembly, gene prediction, genome annotation and data presentation necessary to interpret sequencing data. The resulting requirement to invest significant resources into custom informatics support for genome sequencing projects remains a major impediment to the accessibility of high-throughput sequence data. Results: We present a self-contained, automated high-throughput open source genome sequencing and computational genomics pipeline suitable for prokaryotic sequencing projects. The pipeline has been used at the Georgia Institute of Technology and the Centers for Disease Control and Prevention for the analysis of Neisseria meningitidis and Bordetella bronchiseptica genomes. The pipeline is capable of enhanced or manually assisted reference-based assembly using multiple assemblers and modes; gene predictor combining; and functional annotation of genes and gene products. Because every component of the pipeline is executed on a local machine with no need to access resources over the Internet, the pipeline is suitable for projects of a sensitive nature. Annotation of virulence-related features makes the pipeline particularly useful for projects working with pathogenic prokaryotes. Availability and implementation: The pipeline is licensed under the open-source GNU General Public License and available at the Georgia Tech Neisseria Base (http://nbase.biology.gatech.edu/). The pipeline is implemented with a combination of Perl, Bourne Shell and MySQL and is compatible with Linux and other Unix systems. Contact: king.jordan@biology.gatech.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20519285

  15. Microdiversity of extracellular enzyme genes among sequenced prokaryotic genomes

    PubMed Central

    Zimmerman, Amy E; Martiny, Adam C; Allison, Steven D

    2013-01-01

    Understanding the relationship between prokaryotic traits and phylogeny is important for predicting and modeling ecological processes. Microbial extracellular enzymes have a pivotal role in nutrient cycling and the decomposition of organic matter, yet little is known about the phylogenetic distribution of genes encoding these enzymes. In this study, we analyzed 3058 annotated prokaryotic genomes to determine which taxa have the genetic potential to produce alkaline phosphatase, chitinase and β-N-acetyl-glucosaminidase enzymes. We then evaluated the relationship between the genetic potential for enzyme production and 16S rRNA phylogeny using the consenTRAIT algorithm, which calculated the phylogenetic depth and corresponding 16S rRNA sequence identity of clades of potential enzyme producers. Nearly half (49.2%) of the genomes analyzed were found to be capable of extracellular enzyme production, and these were non-randomly distributed across most prokaryotic phyla. On average, clades of potential enzyme-producing organisms had a maximum phylogenetic depth of 0.008004–0.009780, though individual clades varied broadly in both size and depth. These values correspond to a minimum 16S rRNA sequence identity of 98.04–98.40%. The distribution pattern we found is an indication of microdiversity, the occurrence of ecologically or physiologically distinct populations within phylogenetically related groups. Additionally, we found positive correlations among the genes encoding different extracellular enzymes. Our results suggest that the capacity to produce extracellular enzymes varies at relatively fine-scale phylogenetic resolution. This variation is consistent with other traits that require a small number of genes and provides insight into the relationship between taxonomy and traits that may be useful for predicting ecological function. PMID:23303371

  16. Prokaryotic orthologues of mitochondrial alternative oxidase and plastid terminal oxidase.

    PubMed

    McDonald, Allison E; Amirsadeghi, Sasan; Vanlerberghe, Greg C

    2003-12-01

    The mitochondrial alternative oxidase (AOX) and the plastid terminal oxidase (PTOX) are two similar members of the membrane-bound diiron carboxylate group of proteins. AOX is a ubiquinol oxidase present in all higher plants, as well as some algae, fungi, and protists. It may serve to dampen reactive oxygen species generation by the respiratory electron transport chain. PTOX is a plastoquinol oxidase in plants and some algae. It is required in carotenoid biosynthesis and may represent the elusive oxidase in chlororespiration. Recently, prokaryotic orthologues of both AOX and PTOX proteins have appeared in sequence databases. These include PTOX orthologues present in four different cyanobacteria as well as an AOX orthologue in an alpha-proteobacterium. We used PCR, RT-PCR and northern analyses to confirm the presence and expression of the PTOX gene in Anabaena variabilis PCC 7120. An extensive phylogeny of newly found prokaryotic and eukaryotic AOX and PTOX proteins supports the idea that AOX and PTOX represent two distinct groups of proteins that diverged prior to the endosymbiotic events that gave rise to the eukaryotic organelles. Using multiple sequence alignment, we identified residues conserved in all AOX and PTOX proteins. We also provide a scheme to readily distinguish PTOX from AOX proteins based upon differences in amino acid sequence in motifs around the conserved iron-binding residues. Given the presence of PTOX in cyanobacteria, we suggest that this acronym now stand for plastoquinol terminal oxidase. Our results have implications for the photosynthetic and respiratory metabolism of these prokaryotes, as well as for the origin and evolution of eukaryotic AOX and PTOX proteins.

  17. Noncoding RNAs in the regulation of DNA replication.

    PubMed

    Ge, Xin Quan; Lin, Haifan

    2014-08-01

    Noncoding RNAs (ncRNAs) have crucial roles in epigenetic, transcriptional, and post-transcriptional regulation. Recent studies have begun to reveal a role of ncRNAs in DNA replication. Here, we review the roles of ncRNAs in regulating different aspects of DNA replication in prokaryotic and eukaryotic systems. We speculate that ncRNAs might function to guide the origin recognition complex (ORC) to chromosomal DNA during replication initiation in higher eukaryotes.

  18. Replication and transcription of eukaryotic DNA in Escherichia coli.

    PubMed

    Morrow, J F; Cohen, S N; Chang, A C; Boyer, H W; Goodman, H M; Helling, R B

    1974-05-01

    Fragments of amplified Xenopus laevis DNA, coding for 18S and 28S ribosomal RNA and generated by EcoRI restriction endonuclease, have been linked in vitro to the bacterial plasmid pSC101; and the recombinant molecular species have been introduced into E. coli by transformation. These recombinant plasmids, containing both eukaryotic and prokaryotic DNA, replicate stably in E. coli. RNA isolated from E. coli minicells harboring the plasmids hybridizes to amplified X. laevis rDNA.

  19. A new view into prokaryotic cell biology from electron cryotomography.

    PubMed

    Oikonomou, Catherine M; Jensen, Grant J

    2016-04-01

    Electron cryotomography (ECT) enables intact cells to be visualized in 3D in an essentially native state to 'macromolecular' (∼4 nm) resolution, revealing the basic architectures of complete nanomachines and their arrangements in situ. Since its inception, ECT has advanced our understanding of many aspects of prokaryotic cell biology, from morphogenesis to subcellular compartmentalization and from metabolism to complex interspecies interactions. In this Review, we highlight how ECT has provided structural and mechanistic insights into the physiology of bacteria and archaea and discuss prospects for the future.

  20. Race, Segregation, and Physicians' Participation in Medicaid

    PubMed Central

    Greene, Jessica; Blustein, Jan; Weitzman, Beth C

    2006-01-01

    Many studies have explored the extent to which physicians' characteristics and Medicaid program factors influence physicians' decisions to accept Medicaid patients. In this article, we turn to patient race/ethnicity and residential segregation as potential influences. Using the 2000/2001 Community Tracking Study and other sources we show that physicians are significantly less likely to participate in Medicaid in areas where the poor are nonwhite and in areas that are racially segregated. Surprisingly—and contrary to the prevailing Medicaid participation theory—we find no link between poverty segregation and Medicaid participation when controlling for these racial factors. Accordingly, this study contributes to an accumulating body of circumstantial evidence that patient race influences physicians' choices, which in turn may contribute to racial disparities in access to health care. PMID:16771818

  1. Segregating Complex Sound Sources through Temporal Coherence

    PubMed Central

    Krishnan, Lakshmi; Elhilali, Mounya; Shamma, Shihab

    2014-01-01

    A new approach for the segregation of monaural sound mixtures is presented based on the principle of temporal coherence and using auditory cortical representations. Temporal coherence is the notion that perceived sources emit coherently modulated features that evoke highly-coincident neural response patterns. By clustering the feature channels with coincident responses and reconstructing their input, one may segregate the underlying source from the simultaneously interfering signals that are uncorrelated with it. The proposed algorithm requires no prior information or training on the sources. It can, however, gracefully incorporate cognitive functions and influences such as memories of a target source or attention to a specific set of its attributes so as to segregate it from its background. Aside from its unusual structure and computational innovations, the proposed model provides testable hypotheses of the physiological mechanisms of this ubiquitous and remarkable perceptual ability, and of its psychophysical manifestations in navigating complex sensory environments. PMID:25521593

  2. Mixture segregation by an inertial cavitation bubble.

    PubMed

    Grossier, R; Louisnard, O; Vargas, Y

    2007-04-01

    Pressure diffusion is a mass diffusion process forced by pressure gradients. It has the ability to segregate two species of a mixture, driving the densest species toward high pressure zones, but requires very large pressure gradients to become noticeable. An inertial cavitation bubble develops large pressure gradients in its vicinity, especially as the bubble rebounds at the end of its collapse, and it is therefore expected that a liquid mixture surrounding such a bubble would become segregated. Theory developed in an earlier paper shows that this is indeed the case for sufficiently large molecules or nano-particles. The main theoretical results are recalled and a possible implication of this segregation phenomenon on the well-known cavitation-enhanced crystals nucleation is proposed.

  3. Surface segregation during alloy sputtering and implantation

    NASA Astrophysics Data System (ADS)

    Andersen, Hans Henrik; Stenum, Bjarne; Sørensen, Tom; Whitlow, Harry J.

    1983-05-01

    The angular distribution of material sputtered from a two-component system carries information on concentration gradients close to the target surface. The surface layer will preferentially reduce that part of the flux from deeper layers, which exits from the target at angles far away from the surface normal. If a concentration gradient exists the element being depleted from the very surface will hence be emitted with a more forward-pointed angular distribution than that of the component in which the surface is enriched. An earlier setup for measurements of differential angular distributions has been improved to give higher sensitivity and reproducibility of measurement. The sputtered material is collected on cylindrically mounted thin carbon collectors and analysed with Rutherford backscattering. The setup has been used to investigate surface segregation in sputtered and ion-implanted alloys. Copper targets implanted to saturation with 45 keV Bi + at 77 K are found to have weak copper segregation at the surface. Alloy samples sputtered with argon at energies higher than 20 keV are found to have the weaker-bound component segregated to the surface (Ag from AgAu, Cu from CuPt, Au from Cu 3Au, Pd from Ni 5Pd, and Ni from NiPt) even at 77 K, where thermal segregation is usually prohibited. The segregated component is exactly the one in which the surfaces are usually assumed to be depleted of due to preferential sputtering. Chemical driving forces may be utilized to invert the segregation. For example oxygen will drive Ni to the surface instead of Pd from a Ni 5Pd sample.

  4. Clonetegration Using OSIP Plasmids: One-Step DNA Assembly and Site-Specific Genomic Integration in Bacteria.

    PubMed

    Cui, Lun; Shearwin, Keith E

    2017-01-01

    Clonetegration is a method for site-specific insertion of DNA into prokaryotic chromosomes, based on bacteriophage integrases. The method combines DNA cloning/assembly and chromosomal integration into a single step, providing a simple and rapid strategy for inserting DNA sequences into bacterial chromosomes. PMID:27671938

  5. Environmental Pressure May Change the Composition Protein Disorder in Prokaryotes.

    PubMed

    Vicedo, Esmeralda; Schlessinger, Avner; Rost, Burkhard

    2015-01-01

    Many prokaryotic organisms have adapted to incredibly extreme habitats. The genomes of such extremophiles differ from their non-extremophile relatives. For example, some proteins in thermophiles sustain high temperatures by being more compact than homologs in non-extremophiles. Conversely, some proteins have increased volumes to compensate for freezing effects in psychrophiles that survive in the cold. Here, we revealed that some differences in organisms surviving in extreme habitats correlate with a simple single feature, namely the fraction of proteins predicted to have long disordered regions. We predicted disorder with different methods for 46 completely sequenced organisms from diverse habitats and found a correlation between protein disorder and the extremity of the environment. More specifically, the overall percentage of proteins with long disordered regions tended to be more similar between organisms of similar habitats than between organisms of similar taxonomy. For example, predictions tended to detect substantially more proteins with long disordered regions in prokaryotic halophiles (survive high salt) than in their taxonomic neighbors. Another peculiar environment is that of high radiation survived, e.g. by Deinococcus radiodurans. The relatively high fraction of disorder predicted in this extremophile might provide a shield against mutations. Although our analysis fails to establish causation, the observed correlation between such a simplistic, coarse-grained, microscopic molecular feature (disorder content) and a macroscopic variable (habitat) remains stunning.

  6. Deciphering unusual uncultured magnetotactic multicellular prokaryotes through genomics

    PubMed Central

    Abreu, Fernanda; Morillo, Viviana; Nascimento, Fabrícia F; Werneck, Clarissa; Cantão, Mauricio Egidio; Ciapina, Luciane Prioli; de Almeida, Luiz Gonzaga Paula; Lefèvre, Christopher T; Bazylinski, Dennis A; de Vasconcelos, Ana Tereza Ribeiro; Lins, Ulysses

    2014-01-01

    Candidatus Magnetoglobus multicellularis (Ca. M. multicellularis) is a member of a group of uncultured magnetotactic prokaryotes that possesses a unique multicellular morphology. To better understand this organism's physiology, we used a genomic approach through pyrosequencing. Genomic data analysis corroborates previous structural studies and reveals the proteins that are likely involved in multicellular morphogenesis of this microorganism. Interestingly, some detected protein sequences that might be involved in cell adhesion are homologues to phylogenetically unrelated filamentous multicellular bacteria proteins, suggesting their contribution in the early development of multicellular organization in Bacteria. Genes related to the behavior of Ca. M. multicellularis (chemo-, photo- and magnetotaxis) and its metabolic capabilities were analyzed. On the basis of the genomic–physiologic information, enrichment media were tested. One medium supported chemoorganoheterotrophic growth of Ca. M. multicellularis and allowed the microorganisms to maintain their multicellular morphology and cell cycle, confirming for the first time that the entire life cycle of the MMP occurs in a multicellular form. Because Ca. M. multicellularis has a unique multicellular life style, its cultivation is an important achievement for further studies regarding the multicellular evolution in prokaryotes. PMID:24196322

  7. Environmental Pressure May Change the Composition Protein Disorder in Prokaryotes

    PubMed Central

    Vicedo, Esmeralda; Schlessinger, Avner; Rost, Burkhard

    2015-01-01

    Many prokaryotic organisms have adapted to incredibly extreme habitats. The genomes of such extremophiles differ from their non-extremophile relatives. For example, some proteins in thermophiles sustain high temperatures by being more compact than homologs in non-extremophiles. Conversely, some proteins have increased volumes to compensate for freezing effects in psychrophiles that survive in the cold. Here, we revealed that some differences in organisms surviving in extreme habitats correlate with a simple single feature, namely the fraction of proteins predicted to have long disordered regions. We predicted disorder with different methods for 46 completely sequenced organisms from diverse habitats and found a correlation between protein disorder and the extremity of the environment. More specifically, the overall percentage of proteins with long disordered regions tended to be more similar between organisms of similar habitats than between organisms of similar taxonomy. For example, predictions tended to detect substantially more proteins with long disordered regions in prokaryotic halophiles (survive high salt) than in their taxonomic neighbors. Another peculiar environment is that of high radiation survived, e.g. by Deinococcus radiodurans. The relatively high fraction of disorder predicted in this extremophile might provide a shield against mutations. Although our analysis fails to establish causation, the observed correlation between such a simplistic, coarse-grained, microscopic molecular feature (disorder content) and a macroscopic variable (habitat) remains stunning. PMID:26252577

  8. Environmental Pressure May Change the Composition Protein Disorder in Prokaryotes.

    PubMed

    Vicedo, Esmeralda; Schlessinger, Avner; Rost, Burkhard

    2015-01-01

    Many prokaryotic organisms have adapted to incredibly extreme habitats. The genomes of such extremophiles differ from their non-extremophile relatives. For example, some proteins in thermophiles sustain high temperatures by being more compact than homologs in non-extremophiles. Conversely, some proteins have increased volumes to compensate for freezing effects in psychrophiles that survive in the cold. Here, we revealed that some differences in organisms surviving in extreme habitats correlate with a simple single feature, namely the fraction of proteins predicted to have long disordered regions. We predicted disorder with different methods for 46 completely sequenced organisms from diverse habitats and found a correlation between protein disorder and the extremity of the environment. More specifically, the overall percentage of proteins with long disordered regions tended to be more similar between organisms of similar habitats than between organisms of similar taxonomy. For example, predictions tended to detect substantially more proteins with long disordered regions in prokaryotic halophiles (survive high salt) than in their taxonomic neighbors. Another peculiar environment is that of high radiation survived, e.g. by Deinococcus radiodurans. The relatively high fraction of disorder predicted in this extremophile might provide a shield against mutations. Although our analysis fails to establish causation, the observed correlation between such a simplistic, coarse-grained, microscopic molecular feature (disorder content) and a macroscopic variable (habitat) remains stunning. PMID:26252577

  9. The Gas Vacuole - an Early Organelle of Prokaryote Motility

    NASA Astrophysics Data System (ADS)

    Staley, James T.

    1980-06-01

    Several lines of evidence suggest that the gas vesicle may have been an early organelle of prokaryote motility. First, it is found in bacteria that are thought to be representatives of primitive groups. Second, it is a simple structure, and the structure alone imparts the function of motility. Thirdly, it is widely distributed amongst prokaryotes, having been found in the purple and green sulfur photosynthetic bacteria, cyanobacteria, methanogenic bacteria, obligate and facultative anaerobic heterotrophic bacteria, as well as aerobic heterotrophic bacteria that divide by budding and binary transverse fission. Recent evidence suggests that in some bacteria the genes for gas vesicle synthesis occur on plasmids. Thus, the wide distribution of this characteristic could be due to recent evolution and rapid dispersal, though early evolution is not precluded. Though the gas vesicle structure itself appears to be highly conserved among the various groups of bacteria, it seems doubtful that the regulatory mechanism to control its synthesis could be the same for the diverse gas vacuolate bacterial groups.

  10. Sequence determinants of prokaryotic gene expression level under heat stress.

    PubMed

    Xiong, Heng; Yang, Yi; Hu, Xiao-Pan; He, Yi-Ming; Ma, Bin-Guang

    2014-11-01

    Prokaryotic gene expression is environment-dependent and temperature plays an important role in shaping the gene expression profile. Revealing the regulation mechanisms of gene expression pertaining to temperature has attracted tremendous efforts in recent years particularly owning to the yielding of transcriptome and proteome data by high-throughput techniques. However, most of the previous works concentrated on the characterization of the gene expression profile of individual organism and little effort has been made to disclose the commonality among organisms, especially for the gene sequence features. In this report, we collected the transcriptome and proteome data measured under heat stress condition from recently published literature and studied the sequence determinants for the expression level of heat-responsive genes on multiple layers. Our results showed that there indeed exist commonness and consistent patterns of the sequence features among organisms for the differentially expressed genes under heat stress condition. Some features are attributed to the requirement of thermostability while some are dominated by gene function. The revealed sequence determinants of bacterial gene expression level under heat stress complement the knowledge about the regulation factors of prokaryotic gene expression responding to the change of environmental conditions. Furthermore, comparisons to thermophilic adaption have been performed to reveal the similarity and dissimilarity of the sequence determinants for the response to heat stress and for the adaption to high habitat temperature, which elucidates the complex landscape of gene expression related to the same physical factor of temperature.

  11. Lengths of Orthologous Prokaryotic Proteins Are Affected by Evolutionary Factors

    PubMed Central

    Tatarinova, Tatiana; Dien Bard, Jennifer; Cohen, Irit

    2015-01-01

    Proteins of the same functional family (for example, kinases) may have significantly different lengths. It is an open question whether such variation in length is random or it appears as a response to some unknown evolutionary driving factors. The main purpose of this paper is to demonstrate existence of factors affecting prokaryotic gene lengths. We believe that the ranking of genomes according to lengths of their genes, followed by the calculation of coefficients of association between genome rank and genome property, is a reasonable approach in revealing such evolutionary driving factors. As we demonstrated earlier, our chosen approach, Bubble-sort, combines stability, accuracy, and computational efficiency as compared to other ranking methods. Application of Bubble Sort to the set of 1390 prokaryotic genomes confirmed that genes of Archaeal species are generally shorter than Bacterial ones. We observed that gene lengths are affected by various factors: within each domain, different phyla have preferences for short or long genes; thermophiles tend to have shorter genes than the soil-dwellers; halophiles tend to have longer genes. We also found that species with overrepresentation of cytosines and guanines in the third position of the codon (GC3 content) tend to have longer genes than species with low GC3 content. PMID:26114113

  12. Desiccation tolerance of prokaryotes: application of principles to human cells.

    PubMed

    Potts, Malcolm; Slaughter, Stephen M; Hunneke, Frank-U; Garst, James F; Helm, Richard F

    2005-11-01

    The loss of water from cells is a stress that was likely imposed very early in evolution. An understanding of the sensitivity or tolerance of cells to depletion of intracellular water is relevant to the study of quiescence, longevity and aging, because one consequence of air-drying is full metabolic arrest, sometimes for extended periods. When considering the adaptation of cells to physiological extremes of pH, temperature or pressure, it is generally assumed that evolution is driven toward optimum function rather than maximum stability. However, adaptation to desiccation has the singular and crucial distinction that dried cells do not grow, and the time the cell is dried may represent the greater part of the life (the time the cell remains viable) of that cell and its component macromolecules. Is a consideration of "function" relevant in the context of desiccated cells? The response of prokaryotic cells to desiccation, and the mechanisms they employ to tolerate this stress at the level of the cell, genome and proteome are considered. Fundamental principles were then implemented in the design of strategies to achieve air-dry stabilization of sensitive eukaryotic (human) cells. The responses of the transcriptomes and proteomes of prokaryotic cells and eukaryotic cells (yeast and human) to drying in air are compared and contrasted to achieve an evolutionary context. The concept of the "desiccome" is developed to question whether there is common set of structural, physiological and molecular mechanisms that constitute desiccation tolerance. PMID:21676831

  13. When integration fails: Prokaryote phylogeny and the tree of life.

    PubMed

    O'Malley, Maureen A

    2013-12-01

    Much is being written these days about integration, its desirability and even its necessity when complex research problems are to be addressed. Seldom, however, do we hear much about the failure of such efforts. Because integration is an ongoing activity rather than a final achievement, and because today's literature about integration consists mostly of manifesto statements rather than precise descriptions, an examination of unsuccessful integration could be illuminating to understand better how it works. This paper will examine the case of prokaryote phylogeny and its apparent failure to achieve integration within broader tree-of-life accounts of evolutionary history (often called 'universal phylogeny'). Despite the fact that integrated databases exist of molecules pertinent to the phylogenetic reconstruction of all lineages of life, and even though the same methods can be used to construct phylogenies wherever the organisms fall on the tree of life, prokaryote phylogeny remains at best only partly integrated within tree-of-life efforts. I will examine why integration does not occur, compare it with integrative practices in animal and other eukaryote phylogeny, and reflect on whether there might be different expectations of what integration should achieve. Finally, I will draw some general conclusions about integration and its function as a 'meta-heuristic' in the normative commitments guiding scientific practice.

  14. GeneTrees: a phylogenomics resource for prokaryotes.

    PubMed

    Tian, Yuying; Dickerman, Allan W

    2007-01-01

    The GeneTrees phylogenomics system pursues comparative genomic analyses from the perspective of gene phylogenies for individual genes. The GeneTrees project has the goal of providing detailed evolutionary models for all protein-coding gene components of the fully sequenced genomes. Currently, a database of alignments and trees for all protein sequences for 325 fully sequenced and annotated prokaryote genomes is available. The prokaryote database contains 890,000 protein sequences organized into over 100,000 alignments, each described by a phylogenetic tree. An original homology group discovery tool assembles sets of related proteins from all versus all pairwise alignments. Multiple alignments for each homology group are stored and subjected to phylogenetic tree inference. A graphical web interface provides visual exploration of the GeneTrees database. Homology groups can be queried by sequence identifiers or annotation terms. Genomes can be browsed visually on a gene map of each chromosome or plasmid. Phylogenetic trees with support values are displayed in conjunction with the associated sequence alignment. A variety of classes of information can be selected to label the tree tips to aid in visual evaluation of annotation and gene function. This web interface is available at http://genetrees.vbi.vt.edu.

  15. Proposal to include the rank of phylum in the International Code of Nomenclature of Prokaryotes.

    PubMed

    Oren, Aharon; da Costa, Milton S; Garrity, George M; Rainey, Fred A; Rosselló-Móra, Ramon; Schink, Bernhard; Sutcliffe, Iain; Trujillo, Martha E; Whitman, William B

    2015-11-01

    The International Code of Nomenclature of Prokaryotes covers the nomenclature of prokaryotes up to the rank of class. We propose here modifying the Code to include the rank of phylum so that names of phyla that fulfil the rules of the Code will obtain standing in the nomenclature. PMID:26654112

  16. Links between viruses and prokaryotes throughout the water column along a North Atlantic latitudinal transect.

    PubMed

    De Corte, Daniele; Sintes, Eva; Yokokawa, Taichi; Reinthaler, Thomas; Herndl, Gerhard J

    2012-08-01

    Viruses are an abundant, diverse and dynamic component of marine ecosystems and have a key role in the biogeochemical processes of the ocean by controlling prokaryotic and phytoplankton abundance and diversity. However, most of the studies on virus-prokaryote interactions in marine environments have been performed in nearshore waters. To assess potential variations in the relation between viruses and prokaryotes in different oceanographic provinces, we determined viral and prokaryotic abundance and production throughout the water column along a latitudinal transect in the North Atlantic. Depth-related trends in prokaryotic and viral abundance (both decreasing by one order of magnitude from epi- to abyssopelagic waters), and prokaryotic production (decreasing by three orders of magnitude) were observed along the latitudinal transect. The virus-to-prokaryote ratio (VPR) increased from ~19 in epipelagic to ~53 in the bathy- and abyssopelagic waters. Although the lytic viral production decreased significantly with depth, the lysogenic viral production did not vary with depth. In bathypelagic waters, pronounced differences in prokaryotic and viral abundance were found among different oceanic provinces with lower leucine incorporation rates and higher VPRs in the North Atlantic Gyre province than in the provinces further north and south. The percentage of lysogeny increased from subpolar regions toward the more oligotrophic lower latitudes. Based on the observed trends over this latitudinal transect, we conclude that the viral-host interactions significantly change among different oceanic provinces in response to changes in the biotic and abiotic variables. PMID:22258100

  17. Proposal to include the rank of phylum in the International Code of Nomenclature of Prokaryotes.

    PubMed

    Oren, Aharon; da Costa, Milton S; Garrity, George M; Rainey, Fred A; Rosselló-Móra, Ramon; Schink, Bernhard; Sutcliffe, Iain; Trujillo, Martha E; Whitman, William B

    2015-11-01

    The International Code of Nomenclature of Prokaryotes covers the nomenclature of prokaryotes up to the rank of class. We propose here modifying the Code to include the rank of phylum so that names of phyla that fulfil the rules of the Code will obtain standing in the nomenclature.

  18. A proposed genus boundary for the prokaryotes based on genomic insights.

    PubMed

    Qin, Qi-Long; Xie, Bin-Bin; Zhang, Xi-Ying; Chen, Xiu-Lan; Zhou, Bai-Cheng; Zhou, Jizhong; Oren, Aharon; Zhang, Yu-Zhong

    2014-06-01

    Genomic information has already been applied to prokaryotic species definition and classification. However, the contribution of the genome sequence to prokaryotic genus delimitation has been less studied. To gain insights into genus definition for the prokaryotes, we attempted to reveal the genus-level genomic differences in the current prokaryotic classification system and to delineate the boundary of a genus on the basis of genomic information. The average nucleotide sequence identity between two genomes can be used for prokaryotic species delineation, but it is not suitable for genus demarcation. We used the percentage of conserved proteins (POCP) between two strains to estimate their evolutionary and phenotypic distance. A comprehensive genomic survey indicated that the POCP can serve as a robust genomic index for establishing the genus boundary for prokaryotic groups. Basically, two species belonging to the same genus would share at least half of their proteins. In a specific lineage, the genus and family/order ranks showed slight or no overlap in terms of POCP values. A prokaryotic genus can be defined as a group of species with all pairwise POCP values higher than 50%. Integration of whole-genome data into the current taxonomy system can provide comprehensive information for prokaryotic genus definition and delimitation.

  19. Compaction and transport properties of newly replicated Caulobacter crescentus DNA.

    PubMed

    Hong, Sun-Hae; McAdams, Harley H

    2011-12-01

    Upon initiating replication of the Caulobacter chromosome, one copy of the parS centromere remains at the stalked pole; the other moves to the distal pole. We identified the segregation dynamics and compaction characteristics of newly replicated Caulobacter DNA during transport (highly variable from cell to cell) using time-lapse fluorescence microscopy. The parS centromere and a length (also highly variable) of parS proximal DNA on each arm of the chromosome are segregated with the same relatively slow transport pattern as the parS locus. Newly replicated DNA further than about 100 kb from parS segregates with a different and faster pattern, while loci at 48 kb from parS segregate with the slow pattern in some cells and the fast pattern in others. The observed parS-proximal DNA compaction characteristics have scaling properties that suggest the DNA is branched. HU2-deletion strains exhibited a reduced compaction phenotype except near the parS site where only the ΔHU1ΔHU2 double mutant had a compaction phenotype. The chromosome shows speed-dependent extension during translocation suggesting the DNA polymer is under tension. While DNA segregation is highly reliable and succeeds in virtually all wild-type cells, the high degree of cell to cell variation in the segregation process is noteworthy.

  20. Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems

    PubMed Central

    Wang, Jun-Tao; Zheng, Yuan-Ming; Hu, Hang-Wei; Li, Jing; Zhang, Li-Mei; Chen, Bao-Dong; Chen, Wei-Ping; He, Ji-Zheng

    2016-01-01

    The belowground soil prokaryotic community plays a cardinal role in sustaining the stability and functions of forest ecosystems. Yet, the nature of how soil prokaryotic diversity co-varies with aboveground plant diversity along a latitudinal gradient remains elusive. By establishing three hundred 400-m2 quadrats from tropical rainforest to boreal forest in a large-scale parallel study on both belowground soil prokaryote and aboveground tree and herb communities, we found that soil prokaryotic diversity couples with the diversity of herbs rather than trees. The diversity of prokaryotes and herbs responds similarly to environmental factors along the latitudinal gradient. These findings revealed that herbs provide a good predictor of belowground biodiversity in forest ecosystems, and provide new perspective on the aboveground and belowground interactions in forest ecosystems. PMID:26781165

  1. Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Tao; Zheng, Yuan-Ming; Hu, Hang-Wei; Li, Jing; Zhang, Li-Mei; Chen, Bao-Dong; Chen, Wei-Ping; He, Ji-Zheng

    2016-01-01

    The belowground soil prokaryotic community plays a cardinal role in sustaining the stability and functions of forest ecosystems. Yet, the nature of how soil prokaryotic diversity co-varies with aboveground plant diversity along a latitudinal gradient remains elusive. By establishing three hundred 400-m2 quadrats from tropical rainforest to boreal forest in a large-scale parallel study on both belowground soil prokaryote and aboveground tree and herb communities, we found that soil prokaryotic diversity couples with the diversity of herbs rather than trees. The diversity of prokaryotes and herbs responds similarly to environmental factors along the latitudinal gradient. These findings revealed that herbs provide a good predictor of belowground biodiversity in forest ecosystems, and provide new perspective on the aboveground and belowground interactions in forest ecosystems.

  2. 43 CFR 2091.3-1 - Segregation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... wind or solar sources. In addition, the Bureau of Land Management may also segregate lands that it identifies for potential rights-of-way for electricity generation from wind or solar sources. Upon... years from the date of notation (See 43 CFR 2201.1-2 and 36 CFR 254.6). (b) The filing of an...

  3. Liquid-phase electroepitaxy - Dopant segregation

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Jastrzebski, L.; Gatos, H. C.

    1980-01-01

    A theoretical model is presented which accounts for the dopant segregation in liquid-phase electroepitaxy in terms of dopant transport in the liquid phase (by electromigration and diffusion), the growth velocity, and the Peltier effect at the substrate-solution interface. The contribution of dopant electromigration to the magnitude of the effective segregation coefficient is dominant in the absence of convection; the contribution of the Peltier effect becomes significant only in the presence of pronounced convection. Quantitative expressions which relate the segregation coefficient to the growth parameters also permit the determination of the diffusion constant and electromigration mobility of the dopant in the liquid phase. The model was found to be in good agreement with the measured segregation characteristics of Sn in the electroepitaxial growth of GaAs from Ga-As solutions. For Sn in Ga-As solution at 900 C the diffusion constant was found to be 4 x 10 to the -5 sq cm/s and the electromigration velocity (toward the substrate with a positive polarity 2 x 10 to the -5 cm/s current density of 10 A/sq cm.

  4. Choice without Equity: Charter School Segregation

    ERIC Educational Resources Information Center

    Frankenberg, Erica; Siegel-Hawley, Genevieve; Wang, Jia

    2011-01-01

    The political popularity of charter schools is unmistakable. This article explores the relationship between charter schools and segregation across the country, in 40 states, the District of Columbia, and several dozen metropolitan areas with large enrollments of charter school students in 2007-08. The descriptive analysis of the charter school…

  5. Irradiation Assisted Grain Boundary Segregation in Steels

    SciTech Connect

    Lu, Zheng; Faulkner, Roy G.

    2008-07-01

    The understanding of radiation-induced grain boundary segregation (RIS) has considerably improved over the past decade. New models have been introduced and much effort has been devoted to obtaining comprehensive information on segregation from the literature. Analytical techniques have also improved so that chemical analysis of layers 1 nm thick is almost routine. This invited paper will review the major methods used currently for RIS prediction: namely, Rate Theory, Inverse Kirkendall, and Solute Drag approaches. A summary is made of the available data on phosphorus RIS in reactor pressure vessel (RPV) steels. This will be discussed in the light of the predictions of the various models in an effort to show which models are the most reliable and easy to use for forecasting P segregation behaviour in steels. A consequence of RIS in RPV steels is a radiation induced shift in the ductile to brittle transition temperature (DBTT). It will be shown how it is possible to relate radiation-induced P segregation levels to DBTT shift. Examples of this exercise will be given for RPV steels and for ferritic steels being considered for first wall fusion applications. Cr RIS in high alloy stainless steels and associated irradiation-assisted stress corrosion cracking (IASCC) will be briefly discussed. (authors)

  6. Racial Segregation and Black Urban Homicide.

    ERIC Educational Resources Information Center

    Peterson, Ruth D.; Krivo, Lauren J.

    1993-01-01

    Analysis of data from large U.S. central cities indicates that African-American homicide victimization by acquaintances and strangers (but not family members) increased with residential segregation, while poverty and income inequality were not significant influences. African-American high school graduation rates were positively related to family…

  7. Phase segregation in multiphase turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Bianco, Federico; Soldati, Alfredo

    2014-11-01

    The phase segregation of a rapidly quenched mixture (namely spinodal decomposition) is numerically investigated. A phase field approach is considered. Direct numerical simulation of the coupled Navier-Stokes and Cahn-Hilliard equations is performed with spectral accuracy and focus has been put on domain growth scaling laws, in a wide range of regimes. The numerical method has been first validated against well known results of literature, then spinodal decomposition in a turbulent bounded flow (channel flow) has been considered. As for homogeneous isotropic case, turbulent fluctuations suppress the segregation process when surface tension at the interfaces is relatively low (namely low Weber number regimes). For these regimes, segregated domains size reaches a statistically steady state due to mixing and break-up phenomena. In contrast with homogenous and isotropic turbulence, the presence of mean shear, leads to a typical domain size that show a wall-distance dependence. Finally, preliminary results on the effects to the drag forces at the wall, due to phase segregation, have been discussed. Regione FVG, program PAR-FSC.

  8. Housing Segregation: Causes, Effects, Possible Cures.

    ERIC Educational Resources Information Center

    Orfield, Gary

    Though Congress long ago declared housing discrimination illegal, there is very little enforcement of the law, and in 2000, the isolation of minority families remains high. The most recent federal and local studies of the housing market and of lending practices indicate continued and widespread discrimination. Segregated black communities extend…

  9. Historical Examination of the Segregated School Experience

    ERIC Educational Resources Information Center

    Pellegrino, Anthony M.; Mann, Linda J.; Russell, William B., III

    2013-01-01

    Effective history teaching includes ample opportunities for students to develop historical thinking skills and habits of mind which encourage them to learn content beyond simple acquisition of facts. Covering the profound topic of segregation by employing multiple perspectives and encouraging investigation beyond the traditional narrative provides…

  10. Size segregation in a granular bore

    NASA Astrophysics Data System (ADS)

    Edwards, A. N.; Vriend, N. M.

    2016-10-01

    We investigate the effect of particle-size segregation in an upslope propagating granular bore. A bidisperse mixture of particles, initially normally graded, flows down an inclined chute and impacts with a closed end. This impact causes the formation of a shock in flow thickness, known as a granular bore, to travel upslope, leaving behind a thick deposit. This deposit imprints the local segregated state featuring both pure and mixed regions of particles as a function of downstream position. The particle-size distribution through the depth is characterized by a thin purely small-particle layer at the base, a significant linear transition region, and a thick constant mixed-particle layer below the surface, in contrast to previously observed S-shaped steady-state concentration profiles. The experimental observations agree with recent progress that upward and downward segregation of large and small particles respectively is asymmetric. We incorporate the three-layer, experimentally observed, size-distribution profile into a depth-averaged segregation model to modify it accordingly. Numerical solutions of this model are able to match our experimental results and therefore motivate the use of a more general particle-size distribution profile.

  11. Effects of Context on Auditory Stream Segregation

    ERIC Educational Resources Information Center

    Snyder, Joel S.; Carter, Olivia L.; Lee, Suh-Kyung; Hannon, Erin E.; Alain, Claude

    2008-01-01

    The authors examined the effect of preceding context on auditory stream segregation. Low tones (A), high tones (B), and silences (-) were presented in an ABA-pattern. Participants indicated whether they perceived 1 or 2 streams of tones. The A tone frequency was fixed, and the B tone was the same as the A tone or had 1 of 3 higher frequencies.…

  12. 43 CFR 2091.3-1 - Segregation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... right-of-way application under 43 CFR subpart 2804 for the generation of electrical energy from wind or solar sources. In addition, the Bureau of Land Management may also segregate lands that it identifies... years from the date of notation (See 43 CFR 2201.1-2 and 36 CFR 254.6). (b) The filing of an...

  13. HOW POPULATION STRUCTURE SHAPES NEIGHBORHOOD SEGREGATION*

    PubMed Central

    Bruch, Elizabeth E.

    2014-01-01

    This study investigates how choices about social affiliation based on one attribute can exacerbate or attenuate segregation on another correlated attribute. The specific application is the role of racial and economic factors in generating patterns of racial residential segregation. I identify three population parameters—between-group inequality, within-group inequality, and relative group size—that determine how income inequality between race groups affects racial segregation. I use data from the Panel Study of Income Dynamics to estimate models of individual-level residential mobility, and incorporate these estimates into agent-based models. I then simulate segregation dynamics under alternative assumptions about: (1) the relative size of minority groups; and (2) the degree of correlation between race and income among individuals. I find that income inequality can have offsetting effects at the high and low ends of the income distribution. I demonstrate the empirical relevance of the simulation results using fixed-effects, metro-level regressions applied to 1980-2000 U.S. Census data. PMID:25009360

  14. Segregation--The Act of Sequestering

    ERIC Educational Resources Information Center

    Foster, Charlotte

    2011-01-01

    In this article, the author points out that there are many reasons why self-segregation takes place. For example: People with motorcycle interests may choose to hang out with other bikers. A group of bikers may have a common interest but can be as diverse as a doctor that is a biker or a janitor that is into biking. Formally educated people may…

  15. 33 CFR 157.09 - Segregated ballast.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK... ballast water in cargo tanks during the condition described in § 157.35. (d) Segregated ballast spaces, voids, and other noncargo-carrying spaces for a vessel of conventional form must be distributed: (1)...

  16. 33 CFR 157.09 - Segregated ballast.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK... ballast water in cargo tanks during the condition described in § 157.35. (d) Segregated ballast spaces, voids, and other noncargo-carrying spaces for a vessel of conventional form must be distributed: (1)...

  17. Diversity, Racial Threat and Metropolitan Housing Segregation

    ERIC Educational Resources Information Center

    DeFina, Robert; Hannon, Lance

    2009-01-01

    Previous studies have shown that as the percent black or percent Hispanic grows, that group's residential segregation from whites tends to increase as well. Typically, these findings are explained in terms of white discriminatory reaction to the perceived threat associated with minority population growth. The present analysis examines whether…

  18. 43 CFR 2461.5 - Segregative effect.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) BUREAU INITIATED CLASSIFICATION SYSTEM Multiple... land to the extent indicated in the notice. (b) The segregative effect of a proposed classification will terminate in one of the following ways: (1) Classification of the lands within 2 years...

  19. Surface segregation in Cu-Ni alloys

    NASA Astrophysics Data System (ADS)

    Good, Brian; Bozzolo, Guillermo; Ferrante, John

    1993-12-01

    Monte Carlo simulation is used to calculate the composition profiles of surface segregation of Cu-Ni alloys. The method of Bozzolo, Ferrante, and Smith [Phys. Rev. B 45, 493 (1992)] is used to compute the energetics of these systems as a function of temperature, crystal face, and bulk concentration. The predictions are compared with other theoretical and experimental results.

  20. 17 CFR 31.12 - Segregation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... trust company wherein the leverage customer funds have been deposited that the futures commission merchant, bank or trust company has been informed that the leverage customer funds deposited with it are....12 Segregation. (a) Any person that accepts leverage customer funds from a leverage customer to...

  1. Chicano Education in the Era of Segregation.

    ERIC Educational Resources Information Center

    Gonzalez, Gilbert G.

    This book examines the education of Mexican Americans in the U.S. Southwest during the era of de jure segregation, 1900-50. The book focuses on the influence of the national political economy and the socioeconomic position of Mexican Americans as contributing factors to inequality in education. During the early 1900s, dynamic economic processes…

  2. Calcifying Sorting and Segregating: "Brown" at 60

    ERIC Educational Resources Information Center

    Graff, Cristina Santamaria; Kozleski, Elizabeth

    2014-01-01

    The 2007 "Parents Involved in Community Schools v. Seattle School District No. 1". Supreme Court 5:4 decision suggests that the Court is divided in its interpretation of "Brown" and its intent in addressing racial segregation. Although "Brown" intended equal educational opportunities through desegregation practices,…

  3. 43 CFR 2091.3-1 - Segregation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... years from the date of notation (See 43 CFR 2201.1-2 and 36 CFR 254.6). (b) The filing of an application... in a right-of-way application for the generation of electrical energy under 43 CFR subpart 2804 from wind or solar sources. In addition, the Bureau of Land Management may also segregate lands that...

  4. Stream segregation in the anesthetized auditory cortex

    PubMed Central

    Scholes, Chris; Palmer, Alan R.; Sumner, Christian J.

    2015-01-01

    Auditory stream segregation describes the way that sounds are perceptually segregated into groups or streams on the basis of perceptual attributes such as pitch or spectral content. For sequences of pure tones, segregation depends on the tones' proximity in frequency and time. In the auditory cortex (and elsewhere) responses to sequences of tones are dependent on stimulus conditions in a similar way to the perception of these stimuli. However, although highly dependent on stimulus conditions, perception is also clearly influenced by factors unrelated to the stimulus, such as attention. Exactly how ‘bottom-up’ sensory processes and non-sensory ‘top-down’ influences interact is still not clear. Here, we recorded responses to alternating tones (ABAB …) of varying frequency difference (FD) and rate of presentation (PR) in the auditory cortex of anesthetized guinea-pigs. These data complement previous studies, in that top-down processing resulting from conscious perception should be absent or at least considerably attenuated. Under anesthesia, the responses of cortical neurons to the tone sequences adapted rapidly, in a manner sensitive to both the FD and PR of the sequences. While the responses to tones at frequencies more distant from neuron best frequencies (BFs) decreased as the FD increased, the responses to tones near to BF increased, consistent with a release from adaptation, or forward suppression. Increases in PR resulted in reductions in responses to all tones, but the reduction was greater for tones further from BF. Although asymptotically adapted responses to tones showed behavior that was qualitatively consistent with perceptual stream segregation, responses reached asymptote within 2 s, and responses to all tones were very weak at high PRs (>12 tones per second). A signal-detection model, driven by the cortical population response, made decisions that were dependent on both FD and PR in ways consistent with perceptual stream segregation. This

  5. Sex segregation in undergraduate engineering majors

    NASA Astrophysics Data System (ADS)

    Litzler, Elizabeth

    Gender inequality in engineering persists in spite of women reaching parity in college enrollments and degrees granted. To date, no analyses of educational sex segregation have comprehensively examined segregation within one discipline. To move beyond traditional methods of studying the long-standing stratification by field of study in higher education, I explore gender stratification within one field: engineering. This dissertation investigates why some engineering disciplines have a greater representation of women than other engineering disciplines. I assess the individual and institutional factors and conditions associated with women's representation in certain engineering departments and compare the mechanisms affecting women's and men's choice of majors. I use national data from the Engineering Workforce Commission, survey data from 21 schools in the Project to Assess Climate in Engineering study, and Carnegie Foundation classification information to study sex segregation in engineering majors from multiple perspectives: the individual, major, institution, and country. I utilize correlations, t-tests, cross-tabulations, log-linear modeling, multilevel logistic regression and weighted least squares regression to test the relative utility of alternative explanations for women's disproportionate representation across engineering majors. As a whole, the analyses illustrate the importance of context and environment for women's representation in engineering majors. Hypotheses regarding hostile climate and discrimination find wide support across different analyses, suggesting that women's under-representation in certain engineering majors is not a question of choice or ability. However, individual level factors such as having engineering coursework prior to college show an especially strong association with student choice of major. Overall, the analyses indicate that institutions matter, albeit less for women, and women's under-representation in engineering is not

  6. Segregation time-scales in model granular flows

    NASA Astrophysics Data System (ADS)

    Staron, Lydie; Phillips, Jeremy C.

    2016-04-01

    Segregation patterns in natural granular systems offer a singular picture of the systems evolution. In many cases, understanding segregation dynamics may help understanding the system's history as well as its future evolution. Among the key questions, one concerns the typical time-scales at which segregation occurs. In this contribution, we present model granular flows simulated by means of the discrete Contact Dynamics method. The granular flows are bi-disperse, namely exhibiting two grain sizes. The flow composition and its dynamics are systematically varied, and the segregation dynamics carefully analyzed. We propose a physical model for the segregation that gives account of the observed dependence of segregation time scales on composition and dynamics. References L. Staron and J. C. Phillips, Stress partition and micro-structure in size-segregating granular flows, Phys. Rev. E 92 022210 (2015) L. Staron and J. C. Phillips, Segregation time-scales in bi-disperse granular flows, Phys. Fluids 26 (3), 033302 (2014)

  7. Measuring Trends in Segregation: Three Dimensions, Three Measures.

    ERIC Educational Resources Information Center

    Stearns, Linda Brewster; Logan, John R.

    1986-01-01

    Three commonly used measures of segregation (index of dissimilarity, p* interaction probabilities, and the correlation ratio) reflect three conceptually distinct aspects of racial residential segregation. The results of empirical studies will depend on the measure chosen. (Author/KH)

  8. Extracellular DNA metabolism in Haloferax volcanii

    PubMed Central

    Chimileski, Scott; Dolas, Kunal; Naor, Adit; Gophna, Uri; Papke, R. Thane

    2014-01-01

    Extracellular DNA is found in all environments and is a dynamic component of the microbial ecosystem. Microbial cells produce and interact with extracellular DNA through many endogenous mechanisms. Extracellular DNA is processed and internalized for use as genetic information and as a major source of macronutrients, and plays several key roles within prokaryotic biofilms. Hypersaline sites contain some of the highest extracellular DNA concentrations measured in nature–a potential rich source of carbon, nitrogen, and phosphorus for halophilic microorganisms. We conducted DNA growth studies for the halophilic archaeon Haloferax volcanii DS2 and show that this model Halobacteriales strain is capable of using exogenous double-stranded DNA as a nutrient. Further experiments with varying medium composition, DNA concentration, and DNA types revealed that DNA is utilized primarily as a phosphorus source, that growth on DNA is concentration-dependent, and that DNA isolated from different sources is metabolized selectively, with a bias against highly divergent methylated DNA. Additionally, fluorescence microscopy showed that labeled DNA co-localized with H. volcanii cells. The gene Hvo_1477 was also identified using a comparative genomic approach as a factor likely to be involved in DNA processing at the cell surface, and deletion of Hvo_1477 created a strain deficient in the ability to grow on extracellular DNA. Widespread distribution of Hvo_1477 homologs in archaea suggests metabolism of extracellular DNA may be of broad ecological and physiological relevance in this domain of life. PMID:24600440

  9. Diversity of CRISPR-Cas-Mediated Mechanisms of Adaptive Immunity in Prokaryotes and Their Application in Biotechnology.

    PubMed

    Savitskaya, E E; Musharova, O S; Severinov, K V

    2016-07-01

    CRISPR-Cas systems of adaptive immunity in prokaryotes consist of CRISPR arrays (clusters of short repeated genomic DNA fragments separated by unique spacer sequences) and cas (CRISPR-associated) genes that provide cells with resistance against bacteriophages and plasmids containing protospacers, i.e. sequences complementary to CRISPR array spacers. CRISPR-Cas systems are responsible for two different cellular phenomena: CRISPR adaptation and CRISPR interference. CRISPR adaptation is cell genome modification by integration of new spacers that represents a unique case of Lamarckian inheritance. CRISPR interference involves specific recognition of protospacers in foreign DNA followed by introduction of breaks into this DNA and its destruction. According to the mechanisms of action, CRISPR-Cas systems have been subdivided into two classes, five types, and numerous subtypes. The development of techniques based on CRISPR interference mediated by the Type II system Cas9 protein has revolutionized the field of genome editing because it allows selective, efficient, and relatively simple introduction of directed breaks into target DNA loci. However, practical applications of CRISPR-Cas systems are not limited only to genome editing. In this review, we focus on the variety of CRISPR interference and CRISPR adaptation mechanisms and their prospective use in biotechnology. PMID:27449612

  10. Fossils of Prokaryotic Microorganisms in the Orgueil Meteorite

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2006-01-01

    The Orgueil CII meteorite, which fell in southern France on the evening of May 14, 1864, has been one of the most extensively studied of all known carbonaceous meteorites. Field Emission Scanning Electron Microscopy (FESEM) studies of freshly fractured interior surfaces of the Orgueil meteorite have resulted in the detection of the fossilized remains of a large and diverse population of filamentous prokaryotic microorganisms. The taphonomy and the diverse modes of the preservation of these remains ,are diverse. Some of the remains exhibit carbonization of a hollow sheath and in other cases the remains are permineralized with water-soluble evaporite minerals, such as magnesium sulfate or ammonium salts. After the sample is fractured and the interior surfaces are exposed to the atmospheric moisture, some of these friable remains have been observed to exhibit significant alterations in appearance with time. Images are presented to document the changes that have been observed in some forms within the past two years. Images and EDS spectral data will also be presented to document the studies carried out on abiotic forms to search for possible nonbiological interpretations of the indigenous filamentous microstructures that have been found in the Orgueil meteorite. Images and EDS data will be presented showing the size, size range, morphology and chemical compositions of abiotic microstructures found in native crystalline and fibrous Epsomites from Poison Lake, Washington, USA and Catalayud, Zaragoza, Aragon, Spain. Many of these embedded forms are consistent in size and microstructure with cyanobacteria morphotypes. Some of the forms are exhibit known characteristics differentiation of cells, and reproductive structures of filamentous trichomic prokaryotes (bacteria and cyanobacteria) and the degraded remains of microfibrils associated with sheaths of cyanobacteria. In this paper, recently obtained comparative images and EDS data will be presented for the mineralized

  11. Automated genomic context analysis and experimental validation platform for discovery of prokaryote transcriptional regulator functions

    SciTech Connect

    Martí-Arbona, Ricardo; Mu, Fangping; Nowak-Lovato, Kristy L.; Wren, Melinda S.; Unkefer, Clifford J.; Unkefer, Pat J.

    2014-12-18

    The clustering of genes in a pathway and the co-location of functionally related genes is widely recognized in prokaryotes. We used these characteristics to predict the metabolic involvement for a Transcriptional Regulator (TR) of unknown function, identified and confirmed its biological activity. A software tool that identifies the genes encoded within a defined genomic neighborhood for the subject TR and its homologs was developed. The output lists of genes in the genetic neighborhoods, their annotated functions, the reactants/products, and identifies the metabolic pathway in which the encoded-proteins function. When a set of TRs of known function was analyzed, we observed that their homologs frequently had conserved genomic neighborhoods that co-located the metabolically related genes regulated by the subject TR. We postulate that TR effectors are metabolites in the identified pathways; indeed the known effectors were present. We analyzed Bxe_B3018 from Burkholderia xenovorans, a TR of unknown function and predicted that this TR was related to the glycine, threonine and serine degradation. We tested the binding of metabolites in these pathways and for those that bound, their ability to modulate TR binding to its specific DNA operator sequence. Using rtPCR, we confirmed that methylglyoxal was an effector of Bxe_3018.

  12. Automated genomic context analysis and experimental validation platform for discovery of prokaryote transcriptional regulator functions

    DOE PAGESBeta

    Martí-Arbona, Ricardo; Mu, Fangping; Nowak-Lovato, Kristy L.; Wren, Melinda S.; Unkefer, Clifford J.; Unkefer, Pat J.

    2014-12-18

    The clustering of genes in a pathway and the co-location of functionally related genes is widely recognized in prokaryotes. We used these characteristics to predict the metabolic involvement for a Transcriptional Regulator (TR) of unknown function, identified and confirmed its biological activity. A software tool that identifies the genes encoded within a defined genomic neighborhood for the subject TR and its homologs was developed. The output lists of genes in the genetic neighborhoods, their annotated functions, the reactants/products, and identifies the metabolic pathway in which the encoded-proteins function. When a set of TRs of known function was analyzed, we observedmore » that their homologs frequently had conserved genomic neighborhoods that co-located the metabolically related genes regulated by the subject TR. We postulate that TR effectors are metabolites in the identified pathways; indeed the known effectors were present. We analyzed Bxe_B3018 from Burkholderia xenovorans, a TR of unknown function and predicted that this TR was related to the glycine, threonine and serine degradation. We tested the binding of metabolites in these pathways and for those that bound, their ability to modulate TR binding to its specific DNA operator sequence. Using rtPCR, we confirmed that methylglyoxal was an effector of Bxe_3018.« less

  13. Does a Barcoding Gap Exist in Prokaryotes? Evidences from Species Delimitation in Cyanobacteria

    PubMed Central

    Eckert, Ester M.; Fontaneto, Diego; Coci, Manuela; Callieri, Cristiana

    2014-01-01

    The amount of information that is available on 16S rRNA sequences for prokaryotes thanks to high-throughput sequencing could allow a better understanding of diversity. Nevertheless, the application of predetermined threshold in genetic distances to identify units of diversity (Operative Taxonomic Units, OTUs) may provide biased results. Here we tests for the existence of a barcoding gap in several groups of Cyanobacteria, defining units of diversity according to clear differences between within-species and among-species genetic distances in 16S rRNA. The application of a tool developed for animal DNA taxonomy, the Automatic Barcode Gap Detector (ABGD), revealed that a barcoding gap could actually be found in almost half of the datasets that we tested. The identification of units of diversity through this method provided results that were not compatible with those obtained with the identification of OTUs with threshold of similarity in genetic distances of 97% or 99%. The main message of our results is a call for caution in the estimate of diversity from 16S sequences only, given that different subjective choices in the method to delimit units could provide different results. PMID:25561355

  14. Surprising Prokaryotic and Eukaryotic Diversity, Community Structure and Biogeography of Ethiopian Soda Lakes

    PubMed Central

    Lanzén, Anders; Simachew, Addis; Gessesse, Amare; Chmolowska, Dominika; Jonassen, Inge; Øvreås, Lise

    2013-01-01

    Soda lakes are intriguing ecosystems harboring extremely productive microbial communities in spite of their extreme environmental conditions. This makes them valuable model systems for studying the connection between community structure and abiotic parameters such as pH and salinity. For the first time, we apply high-throughput sequencing to accurately estimate phylogenetic richness and composition in five soda lakes, located in the Ethiopian Rift Valley. The lakes were selected for their contrasting pH, salinities and stratification and several depths or spatial positions were covered in each lake. DNA was extracted and analyzed from all lakes at various depths and RNA extracted from two of the lakes, analyzed using both amplicon- and shotgun sequencing. We reveal a surprisingly high biodiversity in all of the studied lakes, similar to that of freshwater lakes. Interestingly, diversity appeared uncorrelated or positively correlated to pH and salinity, with the most “extreme” lakes showing the highest richness. Together, pH, dissolved oxygen, sodium- and potassium concentration explained approximately 30% of the compositional variation between samples. A diversity of prokaryotic and eukaryotic taxa could be identified, including several putatively involved in carbon-, sulfur- or nitrogen cycling. Key processes like methane oxidation, ammonia oxidation and ‘nitrifier denitrification’ were also confirmed by mRNA transcript analyses. PMID:24023625

  15. Regulatable and Modulable Background Expression Control in Prokaryotic Synthetic Circuits by Auxiliary Repressor Binding Sites.

    PubMed

    Merulla, Davide; van der Meer, Jan Roelof

    2016-01-15

    Expression control in synthetic genetic circuitry, for example, for construction of sensitive biosensors, is hampered by the lack of DNA parts that maintain ultralow background yet achieve high output upon signal integration by the cells. Here, we demonstrate how placement of auxiliary transcription factor binding sites within a regulatable promoter context can yield an important gain in signal-to-noise output ratios from prokaryotic biosensor circuits. As a proof of principle, we use the arsenite-responsive ArsR repressor protein from Escherichia coli and its cognate operator. Additional ArsR operators placed downstream of its target promoter can act as a transcription roadblock in a distance-dependent manner and reduce background expression of downstream-placed reporter genes. We show that the transcription roadblock functions both in cognate and heterologous promoter contexts. Secondary ArsR operators placed upstream of their promoter can also improve signal-to-noise output while maintaining effector dependency. Importantly, background control can be released through the addition of micromolar concentrations of arsenite. The ArsR-operator system thus provides a flexible system for additional gene expression control, which, given the extreme sensitivity to micrograms per liter effector concentrations, could be applicable in more general contexts.

  16. A simple framework to describe the regulation of gene expression in prokaryotes.

    PubMed

    Alves, Filipa; Dilão, Rui

    2005-05-01

    Based on the bimolecular mass action law and the derived mass conservation laws, we propose a mathematical framework in order to describe the regulation of gene expression in prokaryotes. It is shown that the derived models have all the qualitative properties of the activation and inhibition regulatory mechanisms observed in experiments. The basic construction considers genes as templates for protein production, where regulation processes result from activators or repressors connecting to DNA binding sites. All the parameters in the models have a straightforward biological meaning. After describing the general properties of the basic mechanisms of positive and negative gene regulation, we apply this framework to the self-regulation of the trp operon and to the genetic switch involved in the regulation of the lac operon. One of the consequences of this approach is the existence of conserved quantities depending on the initial conditions that tune bifurcations of fixed points. This leads naturally to a simple explanation of threshold effects as observed in some experiments. PMID:15948632

  17. Melatonin immunoreactivity in the photosynthetic prokaryote Rhodospirillum rubrum: implications for an ancient antioxidant system.

    PubMed

    Manchester, L C; Poeggeler, B; Alvares, F L; Ogden, G B; Reiter, R J

    1995-01-01

    Rhodospirillum rubrum is a spiral anoxygenic photosynthetic bacterium that can exist under either aerobic or anaerobic conditions. The organism thrives in the presence of light or complete darkness and represents one of the oldest species of living organisms, possibly 2-3.5 billion years old. The success of this prokaryotic species may be attributed to the evolution of certain indole compounds that offer protection against life-threatening oxygen radicals produced by an evolutionary harsh environment. Melatonin, N-acetyl-5-methoxytryptamine, is an indolic highly conserved molecule that exists in protists, plants, and animals. This study was undertaken to determine the presence of an immunoreactive melatonin in the kingdom Monera and particularly in the photosynthetic bacterium, R. rubrum, under conditions of prolonged darkness or prolonged light. Immunoreactive melatonin was measured during both the extended day and extended night. Significantly more melatonin was observed during the scotophase than the photophase. This study marks the first demonstration of melatonin in a bacterium. The high level of melatonin observed in bacteria may provide on-site protection of bacterial DNA against free radical attack.

  18. Segregation in Post-Civil Rights America: Stalled Integration or End of the Segregated Century?

    PubMed Central

    Massey, Douglas S.; Rugh, Jacob S.

    2016-01-01

    In this paper we adjudicate between competing claims of persisting segregation and rapid integration by analyzing trends in residential dissimilarity and spatial isolation for African Americans, Hispanics, and Asians living in 287 consistently defined metropolitan areas from 1970 to 2010. On average, black segregation and isolation have fallen steadily but still remain very high in many areas, particularly those areas historically characterized by hypersegregation. In contrast, Hispanic segregation has increased slightly but Hispanic isolation has risen substantially owing to rapid population growth. Asian segregation has changed little and remains moderate, and although Asian isolation has increased it remains at low levels compared with other groups. Multivariate analyses reveal that segregation and isolation are being actively produced in some areas by restrictive density zoning regimes, large and/or rising minority percentages, lagging minority socioeconomic status, and active expressions of anti-black and anti-Latino sentiment, especially in large metropolitan areas. Areas displaying these characteristics are either integrating very slowly (in the case of blacks) or becoming more segregated (in the case of Hispanics), whereas those lacking these attributes are clearly moving toward integration, often quite rapidly. PMID:26966459

  19. 7 CFR 58.332 - Segregation of raw material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Procedures § 58.332 Segregation of raw material. The milk and cream received at the dairy plant shall meet the quality specifications as indicated under § 58.322. The milk and cream should be segregated by... 7 Agriculture 3 2011-01-01 2011-01-01 false Segregation of raw material. 58.332 Section...

  20. 7 CFR 58.332 - Segregation of raw material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Procedures § 58.332 Segregation of raw material. The milk and cream received at the dairy plant shall meet the quality specifications as indicated under § 58.322. The milk and cream should be segregated by... 7 Agriculture 3 2013-01-01 2013-01-01 false Segregation of raw material. 58.332 Section...

  1. 7 CFR 58.332 - Segregation of raw material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Procedures § 58.332 Segregation of raw material. The milk and cream received at the dairy plant shall meet the quality specifications as indicated under § 58.322. The milk and cream should be segregated by... 7 Agriculture 3 2010-01-01 2010-01-01 false Segregation of raw material. 58.332 Section...

  2. 7 CFR 58.332 - Segregation of raw material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Procedures § 58.332 Segregation of raw material. The milk and cream received at the dairy plant shall meet the quality specifications as indicated under § 58.322. The milk and cream should be segregated by... 7 Agriculture 3 2014-01-01 2014-01-01 false Segregation of raw material. 58.332 Section...

  3. 7 CFR 58.332 - Segregation of raw material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Procedures § 58.332 Segregation of raw material. The milk and cream received at the dairy plant shall meet the quality specifications as indicated under § 58.322. The milk and cream should be segregated by... 7 Agriculture 3 2012-01-01 2012-01-01 false Segregation of raw material. 58.332 Section...

  4. Not Just Urban Policy: Suburbs, Segregation, and Charter Schools

    ERIC Educational Resources Information Center

    Frankenberg, Erica; Siegel-Hawley, Genevieve

    2012-01-01

    As the charter school sector expands rapidly with federal support amid on-going diversification and growing segregation among traditional public school students, this article examines existing patterns of segregation in charter schools. Prior research has demonstrated that charter schools are substantially more segregated than our already…

  5. 46 CFR 151.13-5 - Cargo segregation-tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... hull. NA=Nonapplicable for this case. Independent tanks already have such segregation built in through... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo segregation-tanks. 151.13-5 Section 151.13-5... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-5 Cargo segregation—tanks....

  6. 46 CFR 151.13-5 - Cargo segregation-tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...'s hull. NA = Nonapplicable for this case. Independent tanks already have such segregation built in... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo segregation-tanks. 151.13-5 Section 151.13-5... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Cargo Segregation § 151.13-5 Cargo segregation—tanks....

  7. "E Pluribus"... Separation: Deepening Double Segregation for More Students

    ERIC Educational Resources Information Center

    Orfield, Gary; Kucsera, John; Siegel-Hawley, Genevieve

    2012-01-01

    This report shows segregation has increased dramatically across the country for Latino students, who are attending more intensely segregated and impoverished schools than they have for generations. The segregation increases have been the most dramatic in the West. The typical Latino student in the region attends a school where less than a quarter…

  8. 17 CFR 23.703 - Investment of segregated margin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 1 2014-04-01 2014-04-01 false Investment of segregated... Transactions § 23.703 Investment of segregated margin. (a) Margin that is segregated pursuant to an election... commercial arrangement, in writing, regarding the investment of such Margin, and the related allocation...

  9. Ethidium bromide: a fast fluorescent staining procedure for the detection of symbiotic partnership of flagellates and prokaryotes.

    PubMed

    Fröhlich, J; König, H

    1999-03-01

    The hindgut of 'lower' termites harbors a dense population of flagellates and bacteria. The flagellates possess ecto- and endosymbiotic prokaryotes. Most of them are hardly visible in the phase contrast microscope. Staining with the DNA-intercalating agent ethidium bromide visualizes the nuclei of the flagellates as well as the ecto- and endosymbiotic bacteria as red objects. Furthermore, it is possible to distinguish between endosymbiotic methanogens and other bacteria. Following UV excitation, the blue-green autofluorescence of the methanogenic bacteria eclipses the red fluorescence light of the intercalated ethidium bromide. The dye facilitates the observation of symbiotic bacteria and helps identify the number, shape, localization, and dividing status of the nuclei. Thus, it is a powerful tool for the examination of microorganisms in complex habitats, which are rich in strongly autofluorescent material, like wood. PMID:10192044

  10. There must be a prokaryote somewhere: microbiology's search for itself

    NASA Technical Reports Server (NTRS)

    Woese, C. R.

    1994-01-01

    While early microbiologists showed considerable interest in the problem of the natural (evolutionary) relationships among prokaryotes, by the middle of this century that problem had largely been discarded as being unsolvable. In other words, the science of microbiology developed without an evolutionary framework, the lack of which kept it a weak discipline, defined largely by external forces. Modern technology has allowed microbiology finally to develop the needed evolutionary framework, and with this comes a sense of coherence, a sense of identity. Not only is this development radically changing microbiology itself, but also it will change microbiology's relationship to the other biological disciplines. Microbiology of the future will become the primary biological science, the base upon which our future understanding of the living world rests, and the font from which new understanding of it flows.

  11. Dynamic optimization identifies optimal programmes for pathway regulation in prokaryotes.

    PubMed

    Bartl, Martin; Kötzing, Martin; Schuster, Stefan; Li, Pu; Kaleta, Christoph

    2013-01-01

    To survive in fluctuating environmental conditions, microorganisms must be able to quickly react to environmental challenges by upregulating the expression of genes encoding metabolic pathways. Here we show that protein abundance and protein synthesis capacity are key factors that determine the optimal strategy for the activation of a metabolic pathway. If protein abundance relative to protein synthesis capacity increases, the strategies shift from the simultaneous activation of all enzymes to the sequential activation of groups of enzymes and finally to a sequential activation of individual enzymes along the pathway. In the case of pathways with large differences in protein abundance, even more complex pathway activation strategies with a delayed activation of low abundance enzymes and an accelerated activation of high abundance enzymes are optimal. We confirm the existence of these pathway activation strategies as well as their dependence on our proposed constraints for a large number of metabolic pathways in several hundred prokaryotes.

  12. Prokaryotic Production of Virus-Like Particle Vaccine of Betanodavirus.

    PubMed

    Xie, Junfeng; Huang, Runqing; Lai, Yuxiong

    2016-01-01

    Betanodaviruses are the causative agents of viral nervous necrosis (VNN), a serious disease of cultured marine fish worldwide. To control this disease, vaccines of subunit capsid proteins (recombinant proteins or peptides), inactivated viruses, and virus-like particles (VLPs) were developed. VLP, which is highly similar to the wild-type virus in virion structure and contains no viral genome, was proved as one of the good and safe vaccines that can activate humoral immune response in the long term and induce cellular and innate immunities in the early stage post-immunization. The VLP vaccines can be expressed in vitro either by Baculovirus-based or yeast-based eukaryotic system or by bacterial expression system. In this chapter, the prokaryotic expression and the subsequent purification of VLP of betanodavirus orange-spotted grouper nervous necrosis virus (OGNNV) are presented. PMID:27076301

  13. Pi sensing and signalling: from prokaryotic to eukaryotic cells.

    PubMed

    Qi, Wanjun; Baldwin, Stephen A; Muench, Stephen P; Baker, Alison

    2016-06-15

    Phosphorus is one of the most important macronutrients and is indispensable for all organisms as a critical structural component as well as participating in intracellular signalling and energy metabolism. Sensing and signalling of phosphate (Pi) has been extensively studied and is well understood in single-cellular organisms like bacteria (Escherichia coli) and Saccharomyces cerevisiae In comparison, the mechanism of Pi regulation in plants is less well understood despite recent advances in this area. In most soils the available Pi limits crop yield, therefore a clearer understanding of the molecular basis underlying Pi sensing and signalling is of great importance for the development of plants with improved Pi use efficiency. This mini-review compares some of the main Pi regulation pathways in prokaryotic and eukaryotic cells and identifies similarities and differences among different organisms, as well as providing some insight into future research.

  14. Bacterial swarming: an example of prokaryotic differentiation and multicellular behaviour.

    PubMed

    Allison, C; Hughes, C

    1991-01-01

    Bacterial swarming involves the differentiation of vegetative cells into hyperflagellated swarm cells which undergo cycles of rapid and coordinated population migration across solid surfaces. Species capable of this simple form of developmental behaviour lie on the boundary between unicellular and multicellular organisms and provide processes for study which are not only of intrinsic interest but which are analogous to components of more complex eukaryotic systems. This review attempts to place current knowledge of bacterial swarming within the framework provided by more extensively studied forms of prokaryotic multicellular behaviour. It discusses the potential of swarming as a readily accessible model of differentiation and multicellular behaviour and describes evidence indicating that swarming differentiation plays an important role in bacterial virulence.

  15. There must be a prokaryote somewhere: microbiology's search for itself.

    PubMed Central

    Woese, C R

    1994-01-01

    While early microbiologists showed considerable interest in the problem of the natural (evolutionary) relationships among prokaryotes, by the middle of this century that problem had largely been discarded as being unsolvable. In other words, the science of microbiology developed without an evolutionary framework, the lack of which kept it a weak discipline, defined largely by external forces. Modern technology has allowed microbiology finally to develop the needed evolutionary framework, and with this comes a sense of coherence, a sense of identity. Not only is this development radically changing microbiology itself, but also it will change microbiology's relationship to the other biological disciplines. Microbiology of the future will become the primary biological science, the base upon which our future understanding of the living world rests, and the font from which new understanding of it flows. PMID:8177167

  16. Pi sensing and signalling: from prokaryotic to eukaryotic cells.

    PubMed

    Qi, Wanjun; Baldwin, Stephen A; Muench, Stephen P; Baker, Alison

    2016-06-15

    Phosphorus is one of the most important macronutrients and is indispensable for all organisms as a critical structural component as well as participating in intracellular signalling and energy metabolism. Sensing and signalling of phosphate (Pi) has been extensively studied and is well understood in single-cellular organisms like bacteria (Escherichia coli) and Saccharomyces cerevisiae In comparison, the mechanism of Pi regulation in plants is less well understood despite recent advances in this area. In most soils the available Pi limits crop yield, therefore a clearer understanding of the molecular basis underlying Pi sensing and signalling is of great importance for the development of plants with improved Pi use efficiency. This mini-review compares some of the main Pi regulation pathways in prokaryotic and eukaryotic cells and identifies similarities and differences among different organisms, as well as providing some insight into future research. PMID:27284040

  17. Disulfide bond formation in prokaryotes: history, diversity and design.

    PubMed

    Hatahet, Feras; Boyd, Dana; Beckwith, Jon

    2014-08-01

    The formation of structural disulfide bonds is essential for the function and stability of a great number of proteins, particularly those that are secreted. There exists a variety of dedicated cellular catalysts and pathways from archaea to humans that ensure the formation of native disulfide bonds. In this review we describe the initial discoveries of these pathways and report progress in recent years in our understanding of the diversity of these pathways in prokaryotes, including those newly discovered in some archaea. We will also discuss the various successful efforts to achieve laboratory-based evolution and design of synthetic disulfide bond formation machineries in the bacterium Escherichia coli. These latter studies have also led to new more general insights into the redox environment of the cytoplasm and bacterial cell envelope. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.

  18. Prokaryotic peptides that block leukocyte adherence to selectins

    PubMed Central

    1993-01-01

    Pertussis toxin binds target cells through the carbohydrate recognition properties of two subunits, S2 and S3, which share amino acid sequence similarity with the lectin domains of the eukaryotic selectin family. Selectins appear on inflamed endothelial cells and promote rolling of leukocytes by reversibly binding carbohydrates. S2, S3, and synthetic peptides representing their carbohydrate recognition domains competitively inhibited adherence of neutrophils to selectin-coated surfaces and to endothelial cells in vitro. These proteins and peptides also rapidly upregulated the function of the leukocyte integrin CD11b/CD18. These findings implicate mimicry of eukaryotic selectins by prokaryotic adhesive ligands and link the mechanisms underlying leukocyte trafficking to microbial pathogenesis. PMID:7688793

  19. Reconstruction of phylogenetic trees of prokaryotes using maximal common intervals.

    PubMed

    Heydari, Mahdi; Marashi, Sayed-Amir; Tusserkani, Ruzbeh; Sadeghi, Mehdi

    2014-10-01

    One of the fundamental problems in bioinformatics is phylogenetic tree reconstruction, which can be used for classifying living organisms into different taxonomic clades. The classical approach to this problem is based on a marker such as 16S ribosomal RNA. Since evolutionary events like genomic rearrangements are not included in reconstructions of phylogenetic trees based on single genes, much effort has been made to find other characteristics for phylogenetic reconstruction in recent years. With the increasing availability of completely sequenced genomes, gene order can be considered as a new solution for this problem. In the present work, we applied maximal common intervals (MCIs) in two or more genomes to infer their distance and to reconstruct their evolutionary relationship. Additionally, measures based on uncommon segments (UCS's), i.e., those genomic segments which are not detected as part of any of the MCIs, are also used for phylogenetic tree reconstruction. We applied these two types of measures for reconstructing the phylogenetic tree of 63 prokaryotes with known COG (clusters of orthologous groups) families. Similarity between the MCI-based (resp. UCS-based) reconstructed phylogenetic trees and the phylogenetic tree obtained from NCBI taxonomy browser is as high as 93.1% (resp. 94.9%). We show that in the case of this diverse dataset of prokaryotes, tree reconstruction based on MCI and UCS outperforms most of the currently available methods based on gene orders, including breakpoint distance and DCJ. We additionally tested our new measures on a dataset of 13 closely-related bacteria from the genus Prochlorococcus. In this case, distances like rearrangement distance, breakpoint distance and DCJ proved to be useful, while our new measures are still appropriate for phylogenetic reconstruction.

  20. Prokaryotic arsenate reductase enhances arsenate resistance in Mammalian cells.

    PubMed

    Wu, Dan; Tao, Xuanyu; Wu, Gaofeng; Li, Xiangkai; Liu, Pu

    2014-01-01

    Arsenic is a well-known heavy metal toxicant in the environment. Bioremediation of heavy metals has been proposed as a low-cost and eco-friendly method. This article described some of recent patents on transgenic plants with enhanced heavy metal resistance. Further, to test whether genetic modification of mammalian cells could render higher arsenic resistance, a prokaryotic arsenic reductase gene arsC was transfected into human liver cancer cell HepG2. In the stably transfected cells, the expression level of arsC gene was determined by quantitative real-time PCR. Results showed that arsC was expressed in HepG2 cells and the expression was upregulated by 3 folds upon arsenate induction. To further test whether arsC has function in HepG2 cells, the viability of HepG2-pCI-ArsC cells exposed to arsenite or arsenate was compared to that of HepG2-pCI cells without arsC gene. The results indicated that arsC increased the viability of HepG2 cells by 25% in arsenate, but not in arsenite. And the test of reducing ability of stably transfected cells revealed that the concentration of accumulated trivalent arsenic increased by 25% in HepG2-pCI-ArsC cells. To determine the intracellular localization of ArsC, a fusion vector with fluorescent marker pEGFP-N1-ArsC was constructed and transfected into.HepG2. Laser confocal microscopy showed that EGFP-ArsC fusion protein was distributed throughout the cells. Taken together, these results demonstrated that prokaryotic arsenic resistant gene arsC integrated successfully into HepG2 genome and enhanced arsenate resistance of HepG2, which brought new insights of arsenic detoxification in mammalian cells.

  1. Function of prokaryotic and eukaryotic ABC proteins in lipid transport.

    PubMed

    Pohl, Antje; Devaux, Philippe F; Herrmann, Andreas

    2005-03-21

    ATP binding cassette (ABC) proteins of both eukaryotic and prokaryotic origins are implicated in the transport of lipids. In humans, members of the ABC protein families A, B, C, D and G are mutated in a number of lipid transport and metabolism disorders, such as Tangier disease, Stargardt syndrome, progressive familial intrahepatic cholestasis, pseudoxanthoma elasticum, adrenoleukodystrophy or sitosterolemia. Studies employing transfection, overexpression, reconstitution, deletion and inhibition indicate the transbilayer transport of endogenous lipids and their analogs by some of these proteins, modulating lipid transbilayer asymmetry. Other proteins appear to be involved in the exposure of specific lipids on the exoplasmic leaflet, allowing their uptake by acceptors and further transport to specific sites. Additionally, lipid transport by ABC proteins is currently being studied in non-human eukaryotes, e.g. in sea urchin, trypanosomatides, arabidopsis and yeast, as well as in prokaryotes such as Escherichia coli and Lactococcus lactis. Here, we review current information about the (putative) role of both pro- and eukaryotic ABC proteins in the various phenomena associated with lipid transport. Besides providing a better understanding of phenomena like lipid metabolism, circulation, multidrug resistance, hormonal processes, fertilization, vision and signalling, studies on pro- and eukaryotic ABC proteins might eventually enable us to put a name on some of the proteins mediating transbilayer lipid transport in various membranes of cells and organelles. It must be emphasized, however, that there are still many uncertainties concerning the functions and mechanisms of ABC proteins interacting with lipids. In particular, further purification and reconstitution experiments with an unambiguous role of ATP hydrolysis are needed to demonstrate a clear involvement of ABC proteins in lipid transbilayer asymmetry. PMID:15749056

  2. Homopolymeric tracts represent a general regulatory mechanism in prokaryotes

    PubMed Central

    2010-01-01

    Background While, traditionally, regulation of gene expression can be grouped into transcriptional, translational, and post-translational mechanisms, some mechanisms of rapid genetic variation can also contribute to regulation of gene expression, e.g., phase variation. Results We show here that prokaryotes evolved to include homopolymeric tracts (HTs) within coding genes as a system that allows for efficient gene inactivation. Analyses of 81 bacterial and 18 archaeal genomes showed that poly(A) and poly(T) HTs are overrepresented in these genomes and preferentially located at the 5' end of coding genes. Location of HTs at the 5' end is not driven by a preferential placement of aminoacids encoded by the AAA and TTT codons at the N-terminal of proteins. The inlA gene of the pathogen L. monocytogenes was used as a model to further study the role of HTs in reversible gene inactivation. In a number of L. monocytogenes strains, inlA harbors a 5' poly(A) HT, which regularly shows frameshift mutation leading to expression of a truncated 8 aa InlA protein. Translational fusions of the inlA 5' end allowed us to estimate that the frequency of variation in this HT is about 1,000 fold higher than the estimated average point mutation frequency. Conclusions As frameshift mutations in HTs can occur at high frequencies and enable efficient gene inactivation, hypermutable HTs appear to represent a universal system for regulation of gene expression in prokaryotes. Combined with other studies indicating that HTs also enable rapid diversification of both coding and regulatory genetic sequences in eukaryotes, our data suggest that hypermutable HTs represent a general and rapid evolutionary mechanism facilitating adaptation and gene regulation across diverse organisms. PMID:20144225

  3. Microbial rRNA: rDNA gene ratios may be unexpectedly low due to extracellular DNA preservation in soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested a method of estimating the activity of detectable individual bacterial and archaeal OTUs within a community by calculating ratios of absolute 16S rRNA to rDNA copy numbers. We investigated phylogenetically coherent patterns of activity among soil prokaryotes in non-growing soil communitie...

  4. Strand-seq: a unifying tool for studies of chromosome segregation.

    PubMed

    Falconer, Ester; Lansdorp, Peter M

    2013-01-01

    Non random segregation of sister chromatids has been implicated to help specify daughter cell fate (the Silent Sister Hypothesis [1]) or to protect the genome of long-lived stem cells (the Immortal Strand Hypothesis [2]). The idea that sister chromatids are non-randomly segregated into specific daughter cells is only marginally supported by data in sporadic and often contradictory studies. As a result, the field has moved forward rather slowly. The advent of being able to directly label and differentiate sister chromatids in vivo using fluorescence in situ hybridization [3] was a significant advance for such studies. However, this approach is limited by the need for large tracks of unidirectional repeats on chromosomes and the reliance on quantitative imaging of fluorescent probes and rigorous statistical analysis to discern between the two competing hypotheses. A novel method called Strand-seq which uses next-generation sequencing to assay sister chromatid inheritance patterns independently for each chromosome [4] offers a comprehensive approach to test for non-random segregation. In addition Strand-seq enables studies on the deposition of chromatin marks in relation to DNA replication. This method is expected to help unify the field by testing previous claims of non-random segregation in an unbiased way in many model systems in vitro and in vivo. PMID:23665005

  5. Meiosis I chromosome segregation is established through regulation of microtubule-kinetochore interactions.

    PubMed

    Miller, Matthew P; Unal, Elçin; Brar, Gloria A; Amon, Angelika

    2012-12-18

    During meiosis, a single round of DNA replication is followed by two consecutive rounds of nuclear divisions called meiosis I and meiosis II. In meiosis I, homologous chromosomes segregate, while sister chromatids remain together. Determining how this unusual chromosome segregation behavior is established is central to understanding germ cell development. Here we show that preventing microtubule-kinetochore interactions during premeiotic S phase and prophase I is essential for establishing the meiosis I chromosome segregation pattern. Premature interactions of kinetochores with microtubules transform meiosis I into a mitosis-like division by disrupting two key meiosis I events: coorientation of sister kinetochores and protection of centromeric cohesin removal from chromosomes. Furthermore we find that restricting outer kinetochore assembly contributes to preventing premature engagement of microtubules with kinetochores. We propose that inhibition of microtubule-kinetochore interactions during premeiotic S phase and prophase I is central to establishing the unique meiosis I chromosome segregation pattern.DOI:http://dx.doi.org/10.7554/eLife.00117.001.

  6. Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes

    PubMed Central

    Paul, Sandip; Bag, Sumit K; Das, Sabyasachi; Harvill, Eric T; Dutta, Chitra

    2008-01-01

    Background Halophilic prokaryotes are adapted to thrive in extreme conditions of salinity. Identification and analysis of distinct macromolecular characteristics of halophiles provide insight into the factors responsible for their adaptation to high-salt environments. The current report presents an extensive and systematic comparative analysis of genome and proteome composition of halophilic and non-halophilic microorganisms, with a view to identify such macromolecular signatures of haloadaptation. Results Comparative analysis of the genomes and proteomes of halophiles and non-halophiles reveals some common trends in halophiles that transcend the boundary of phylogenetic relationship and the genomic GC-content of the species. At the protein level, halophilic species are characterized by low hydrophobicity, over-representation of acidic residues, especially Asp, under-representation of Cys, lower propensities for helix formation and higher propensities for coil structure. At the DNA level, the dinucleotide abundance profiles of halophilic genomes bear some common characteristics, which are quite distinct from those of non-halophiles, and hence may be regarded as specific genomic signatures for salt-adaptation. The synonymous codon usage in halophiles also exhibits similar patterns regardless of their long-term evolutionary history. Conclusion The generality of molecular signatures for environmental adaptation of extreme salt-loving organisms, demonstrated in the present study, advocates the convergent evolution of halophilic species towards specific genome and amino acid composition, irrespective of their varying GC-bias and widely disparate taxonomic positions. The adapted features of halophiles seem to be related to physical principles governing DNA and protein stability, in response to the extreme environmental conditions under which they thrive. PMID:18397532

  7. On the origin of prokaryotic "species": the taxonomy of halophilic Archaea.

    PubMed

    DasSarma, Priya; DasSarma, Shiladitya

    2008-01-01

    The consistent use of the taxonomic system of binomial nomenclature (genus and species) was first popularized by Linnaeus nearly three-hundred years ago to classify mainly plants and animals. His main goal was to give labels that would ensure that biologists could agree on which organism was under investigation. One-hundred fifty years later, Darwin considered the term species as one of convenience and not essentially different from variety. In the modern era, exploration of the world's niches together with advances in genomics have expanded the number of named species to over 1.8 million, including many microorganisms. However, even this large number excludes over 90% of microorganisms that have yet to be cultured or classified. In naming new isolates in the microbial world, the challenge remains the lack of a universally held and evenly applied standard for a species. The definition of species based on the capacity to form fertile offspring is not applicable to microorganisms and 70% DNA-DNA hybridization appears rather crude in light of the many completed genome sequences. The popular phylogenetic marker, 16S rRNA, is tricky for classification since it does not provide multiple characteristics or phenotypes used classically for this purpose. Using most criteria, agreement may usually be found at the genus level, but species level distinctions are problematic. These observations lend credence to the proposal that the species concept is flawed when applied to prokaryotes. In order to address this topic, we have examined the taxonomy of extremely halophilic Archaea, where the order, family, and even a genus designation have become obsolete, and the naming and renaming of certain species has led to much confusion in the scientific community. PMID:18485204

  8. The expression of prokaryotic tRNA genes in frog oocytes.

    PubMed Central

    Bossi, L; Ciampi, M S

    1983-01-01

    A tRNA gene cluster in Salmonella typhimurium includes the genes for tRNAArg, tRNAHis, tRNA1Leu and tRNAPro. DNA clones were constructed with different portions of this tRNA gene cluster. These clones were microinjected into the nuclei of Xenopus laevis oocytes and assayed for expression. Two of the bacterial tRNA genes (tRNAArg and tRNAPro) are transcribed at high rates and the primary transcripts are processed into mature tRNAs. Transcription and processing are largely independent of whether the two genes are injected individually or as part of a tRNA gene cluster. A third tRNA gene (tRNA1Leu) is expressed less efficiently. Synthesis of this tRNA is totally abolished by a deletion removing 22 bp in the first half of the tRNA1Leu coding sequence. The expression of the fourth tRNA gene (tRNAHis) is very inefficient and dependent upon the gene organization within the injected DNA. No significant tRNA synthesis is detected upon injection of a clone containing only the tRNAHis gene. Evidence is presented suggesting that the impaired expression of the tRNAHis gene is not caused by inefficient transcription, but rather by defective processing of the primary transcript. The prokaryotic tRNAs synthesized in the oocytes show a modification pattern that is specific of eukaryotic tRNAs. Overall, our results are consistent with the hypothesis that the intragenic signals for eukaryotic tRNA gene transcription have appeared early in evolution for reasons other than gene expression. Images PMID:6304627

  9. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.

    PubMed

    Koonin, Eugene V; Makarova, Kira S

    2013-05-01

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR-associated genes) is an adaptive immunity system in bacteria and archaea that functions via a distinct self-non-self recognition mechanism that is partially analogous to the mechanism of eukaryotic RNA interference (RNAi). The CRISPR-Cas system incorporates fragments of virus or plasmid DNA into the CRISPR repeat cassettes and employs the processed transcripts of these spacers as guide RNAs to cleave the cognate foreign DNA or RNA. The Cas proteins, however, are not homologous to the proteins involved in RNAi and comprise numerous, highly diverged families. The majority of the Cas proteins contain diverse variants of the RNA recognition motif (RRM), a widespread RNA-binding domain. Despite the fast evolution that is typical of the cas genes, the presence of diverse versions of the RRM in most Cas proteins provides for a simple scenario for the evolution of the three distinct types of CRISPR-cas systems. In addition to several proteins that are directly implicated in the immune response, the cas genes encode a variety of proteins that are homologous to prokaryotic toxins that typically possess nuclease activity. The predicted toxins associated with CRISPR-Cas systems include the essential Cas2 protein, proteins of COG1517 that, in addition to a ligand-binding domain and a helix-turn-helix domain, typically contain different nuclease domains and several other predicted nucleases. The tight association of the CRISPR-Cas immunity systems with predicted toxins that, upon activation, would induce dormancy or cell death suggests that adaptive immunity and dormancy/suicide response are functionally coupled. Such coupling could manifest in the persistence state being induced and potentially providing conditions for more effective action of the immune system or in cell death being triggered when immunity fails.

  10. Viral and grazer regulation of prokaryotic growth efficiency in temperate freshwater pelagic environments.

    PubMed

    Pradeep Ram, A S; Colombet, Jonathan; Perriere, Fanny; Thouvenot, Antoine; Sime-Ngando, Telesphore

    2015-02-01

    In aquatic systems, limited data exists on the impact of mortality forces such as viral lysis and flagellate grazing when seeking to explain factors regulating prokaryotic metabolism. We explored the relative influence of top-down factors (viral lysis and heterotrophic nanoflagellate grazing) on prokaryotic mortality and their subsequent impact on their community metabolism in the euphotic zone of 21 temperate freshwater lakes located in the French Massif Central. Prokaryotic growth efficiency (PGE, index of prokaryotic community metabolism) determined from prokaryotic production and respiration measurements varied from 5 to 74% across the lakes. Viral and potential grazer-induced mortality of prokaryotes had contrasting impact on PGE. Potential flagellate grazing was found to enhance PGE whereas viral lysis had antagonistic impacts on PGE. The average PGE value in the grazing and viral lysis dominated lake water samples was 35.4% (±15.2%) and 17.2% (±8.1%), respectively. Selective viral lysis or flagellate grazing on prokaryotes together with the nature of contrasted substrates released through mortality processes can perhaps explain for the observed variation and differences in PGE among the studied lakes. The influences of such specific top-down processes on PGE can have strong implications on the carbon and nutrient fluxes in freshwater pelagic environments.

  11. Evolution of prokaryotic respiratory molybdoenzymes and the frequency of their genomic co-occurrence.

    PubMed

    Harel, Arye; Häggblom, Max M; Falkowski, Paul G; Yee, Nathan

    2016-12-01

    Molybdoenzymes are an ancient protein family found in phylogenetically and ecologically diverse prokaryotes. Under anaerobic conditions, respiratory molybdoenzymes catalyze redox reactions that transfer electrons to a variety of substrates that act as terminal electron acceptors for energy generation. Here, we used probe sequences to conduct an extensive genomic survey and phylogenetic inference for NarG, DmsA, TorA and nine other respiratory molybdoenzyme subfamilies. Our analysis demonstrates their abundance in 60% of prokaryotic phyla. In contrast to many other autonomic genetic units in prokaryotes, the major route of evolution of their predominant subfamilies is vertical gene transfer, gene duplication and divergence. Our results show the robustness of genomic co-occurrence of respiratory molybdoenzymes genes, found in the majority of studied species, for most of the enzyme subfamilies. Genomes which encode for multiple respiratory molybdoenzymes are also enriched in genes regulating replication, recombination and mobility of genetic elements. Respiratory molybdoenzymes were found in prokaryotes associated with diverse environments occupying terrestrial, aquatic, food and host-related habitats, emphasizing their essential role in adaptation of prokaryotes to changing environments. Interestingly, host-associated prokaryotes such as human pathogens more frequently carry multiple respiratory molybdoenzyme genes compared with non-host-associated prokaryotes, highlighting the importance of metabolic flexibility in host-microbiome environments.

  12. Evolution of prokaryotic respiratory molybdoenzymes and the frequency of their genomic co-occurrence.

    PubMed

    Harel, Arye; Häggblom, Max M; Falkowski, Paul G; Yee, Nathan

    2016-12-01

    Molybdoenzymes are an ancient protein family found in phylogenetically and ecologically diverse prokaryotes. Under anaerobic conditions, respiratory molybdoenzymes catalyze redox reactions that transfer electrons to a variety of substrates that act as terminal electron acceptors for energy generation. Here, we used probe sequences to conduct an extensive genomic survey and phylogenetic inference for NarG, DmsA, TorA and nine other respiratory molybdoenzyme subfamilies. Our analysis demonstrates their abundance in 60% of prokaryotic phyla. In contrast to many other autonomic genetic units in prokaryotes, the major route of evolution of their predominant subfamilies is vertical gene transfer, gene duplication and divergence. Our results show the robustness of genomic co-occurrence of respiratory molybdoenzymes genes, found in the majority of studied species, for most of the enzyme subfamilies. Genomes which encode for multiple respiratory molybdoenzymes are also enriched in genes regulating replication, recombination and mobility of genetic elements. Respiratory molybdoenzymes were found in prokaryotes associated with diverse environments occupying terrestrial, aquatic, food and host-related habitats, emphasizing their essential role in adaptation of prokaryotes to changing environments. Interestingly, host-associated prokaryotes such as human pathogens more frequently carry multiple respiratory molybdoenzyme genes compared with non-host-associated prokaryotes, highlighting the importance of metabolic flexibility in host-microbiome environments. PMID:27612494

  13. Segregation, racial structure, and neighborhood violent crime.

    PubMed

    Krivo, Lauren J; Peterson, Ruth D; Kuhl, Danielle C

    2009-05-01

    Drawing on structural racism and urban disadvantage approaches, this article posits a broad influence of citywide racial residential segregation on levels of violent crime across all urban neighborhoods regardless of their racial/ethnic composition. Multilevel models based on data from the National Neighborhood Crime Study for 7,622 neighborhoods in 79 cities throughout the United States reveal that segregation is positively associated with violent crime for white and various types of nonwhite neighborhoods. Nonetheless, there is a lack of parity in violence across these types of communities reflecting the larger racialized social system in which whites are able to use their privileged position to reside in the most advantaged neighborhoods, while African-Americans and Latinos live in the most disadvantaged urban communities and therefore bear the brunt of urban criminal violence.

  14. Granular Segregation Driven by Particle Interactions

    NASA Astrophysics Data System (ADS)

    Lozano, C.; Zuriguel, I.; Garcimartín, A.; Mullin, T.

    2015-05-01

    We report the results of an experimental study of particle-particle interactions in a horizontally shaken granular layer that undergoes a second order phase transition from a binary gas to a segregation liquid as the packing fraction C is increased. By focusing on the behavior of individual particles, the effect of C is studied on (1) the process of cluster formation, (2) cluster dynamics, and (3) cluster destruction. The outcomes indicate that the segregation is driven by two mechanisms: attraction between particles with the same properties and random motion with a characteristic length that is inversely proportional to C . All clusters investigated are found to be transient and the probability distribution functions of the separation times display a power law tail, indicating that the splitting probability decreases with time.

  15. Granular segregation driven by particle interactions.

    PubMed

    Lozano, C; Zuriguel, I; Garcimartín, A; Mullin, T

    2015-05-01

    We report the results of an experimental study of particle-particle interactions in a horizontally shaken granular layer that undergoes a second order phase transition from a binary gas to a segregation liquid as the packing fraction C is increased. By focusing on the behavior of individual particles, the effect of C is studied on (1) the process of cluster formation, (2) cluster dynamics, and (3) cluster destruction. The outcomes indicate that the segregation is driven by two mechanisms: attraction between particles with the same properties and random motion with a characteristic length that is inversely proportional to C. All clusters investigated are found to be transient and the probability distribution functions of the separation times display a power law tail, indicating that the splitting probability decreases with time.

  16. Phase Segregation in Polystyrene?Polylactide Blends

    SciTech Connect

    Leung, Bonnie; Hitchcock, Adam; Brash, John; Scholl, Andreas; Doran, Andrew

    2010-06-09

    Spun-cast films of polystyrene (PS) blended with polylactide (PLA) were visualized and characterized using atomic force microscopy (AFM) and synchrotron-based X-ray photoemission electron microscopy (X-PEEM). The composition of the two polymers in these systems was determined by quantitative chemical analysis of near-edge X-ray absorption signals recorded with X-PEEM. The surface morphology depends on the ratio of the two components, the total polymer concentration, and the temperature of vacuum annealing. For most of the blends examined, PS is the continuous phase with PLA existing in discrete domains or segregated to the air?polymer interface. Phase segregation was improved with further annealing. A phase inversion occurred when films of a 40:60 PS:PLA blend (0.7 wt percent loading) were annealed above the glass transition temperature (Tg) of PLA.

  17. Housing supply and residential segregation in Ireland.

    PubMed

    Vang, Zoua M

    2010-01-01

    The article examines the role of housing supply in ethnic diversity and the residential segregation of Asian, African and eastern European immigrants from Irish nationals in Ireland. Housing supply is defined as the proportions of new housing, private rental accommodation and social housing among all housing units in an electoral district. Multivariate regressions reveal that, among all three housing supply variables, the proportion of private rentals had the largest effect on ethnic diversity and immigrant— Irish segregation. Areas with higher proportions of private rental units were more ethnically diverse, had greater presences of Africans, Asians and eastern Europeans (as opposed to high concentrations of Irish nationals) and exhibited greater integration between each of the three immigrant groups and Irish nationals. The article concludes with a discussion of immigrant assimilation and questions whether the patterns of residential integration observed would further facilitate other forms of social inclusion for immigrants in Irish society. PMID:21114091

  18. Size segregation in the Brazil nut effect

    NASA Astrophysics Data System (ADS)

    Soterroni, Aline C.; Ramos, Fernando M.

    2013-10-01

    Granular materials are ubiquitous in nature and in our daily lives, and used in many industrial processes. Depending on the physical conditions that they are subjected, granular materials may present unusual behavior, combining properties of solids, liquids or gases, and displaying interesting and diversified phenomena. In this work we numerically simulated a granular system in order to investigate the phenomena of size segregation in the Brazil Nut Effect. Our simulations indicate that the phenomenon of size segregation results from the combined effect of two different mechanisms: buoyancy and convection. Increasing the vibration amplitude, the behavior of the system becomes less periodic and more turbulent, with evidence of deterministic chaos in the dynamics of the large particle.

  19. Local Dynamics of Granular Size Segregation

    NASA Astrophysics Data System (ADS)

    Keith, Adam; Puckett, James; Daniels, Karen

    2010-11-01

    We seek to quantify the local mechanisms which drive granular size segregation, using a two-dimensional system. We perform experiments using a bi-disperse mixture of disks floating on a tilted air table, agitated by bumpers at the bottom edge. A layer of large particles initially placed at the bottom of the system mixes with a layer of small particles above it, eventually resegregating to the upper surface. We record the position of each particle and measure the average segregation velocity as a function of local packing fraction φ for all particles and local concentration c of small particles. The velocity of the large particles is strongly dependent on packing fraction; particles in regions of lower φ tend to move downward, while those in regions of higher φ ascend through the material. In contrast, we find that the effect of local concentration c is weak.

  20. Phase diagram of a Schelling segregation model

    NASA Astrophysics Data System (ADS)

    Gauvin, L.; Vannimenus, J.; Nadal, J.-P.

    2009-07-01

    The collective behavior in a variant of Schelling’s segregation model is characterized with methods borrowed from statistical physics, in a context where their relevance was not conspicuous. A measure of segregation based on cluster geometry is defined and several quantities analogous to those used to describe physical lattice models at equilibrium are introduced. This physical approach allows to distinguish quantitatively several regimes and to characterize the transitions between them, leading to the building of a phase diagram. Some of the transitions evoke empirical sudden ethnic turnovers. We also establish links with ‘spin-1’ models in physics. Our approach provides generic tools to analyze the dynamics of other socio-economic systems.

  1. The Selfish Segregation Distorter Gene Complex of Drosophila melanogaster

    PubMed Central

    Larracuente, Amanda M.; Presgraves, Daven C.

    2012-01-01

    Segregation Distorter (SD) is an autosomal meiotic drive gene complex found worldwide in natural populations of Drosophila melanogaster. During spermatogenesis, SD induces dysfunction of SD+ spermatids so that SD/SD+ males sire almost exclusively SD-bearing progeny rather than the expected 1:1 Mendelian ratio. SD is thus evolutionarily “selfish,” enhancing its own transmission at the expense of its bearers. Here we review the molecular and evolutionary genetics of SD. Genetic analyses show that the SD is a multilocus gene complex involving two key loci—the driver, Segregation distorter (Sd), and the target of drive, Responder (Rsp)—and at least three upward modifiers of distortion. Molecular analyses show that Sd encodes a truncated duplication of the gene RanGAP, whereas Rsp is a large pericentromeric block of satellite DNA. The Sd–RanGAP protein is enzymatically wild type but mislocalized within cells and, for reasons that remain unclear, appears to disrupt the histone-to-protamine transition in drive-sensitive spermatids bearing many Rsp satellite repeats but not drive-insensitive spermatids bearing few or no Rsp satellite repeats. Evolutionary analyses show that the Sd–RanGAP duplication arose recently within the D. melanogaster lineage, exploiting the preexisting and considerably older Rsp satellite locus. Once established, the SD haplotype collected enhancers of distortion and suppressors of recombination. Further dissection of the molecular genetic and cellular basis of SD-mediated distortion seems likely to provide insights into several important areas currently understudied, including the genetic control of spermatogenesis, the maintenance and evolution of satellite DNAs, the possible roles of small interfering RNAs in the germline, and the molecular population genetics of the interaction of genetic linkage and natural selection. PMID:22964836

  2. The selfish Segregation Distorter gene complex of Drosophila melanogaster.

    PubMed

    Larracuente, Amanda M; Presgraves, Daven C

    2012-09-01

    Segregation Distorter (SD) is an autosomal meiotic drive gene complex found worldwide in natural populations of Drosophila melanogaster. During spermatogenesis, SD induces dysfunction of SD(+) spermatids so that SD/SD(+) males sire almost exclusively SD-bearing progeny rather than the expected 1:1 Mendelian ratio. SD is thus evolutionarily "selfish," enhancing its own transmission at the expense of its bearers. Here we review the molecular and evolutionary genetics of SD. Genetic analyses show that the SD is a multilocus gene complex involving two key loci--the driver, Segregation distorter (Sd), and the target of drive, Responder (Rsp)--and at least three upward modifiers of distortion. Molecular analyses show that Sd encodes a truncated duplication of the gene RanGAP, whereas Rsp is a large pericentromeric block of satellite DNA. The Sd-RanGAP protein is enzymatically wild type but mislocalized within cells and, for reasons that remain unclear, appears to disrupt the histone-to-protamine transition in drive-sensitive spermatids bearing many Rsp satellite repeats but not drive-insensitive spermatids bearing few or no Rsp satellite repeats. Evolutionary analyses show that the Sd-RanGAP duplication arose recently within the D. melanogaster lineage, exploiting the preexisting and considerably older Rsp satellite locus. Once established, the SD haplotype collected enhancers of distortion and suppressors of recombination. Further dissection of the molecular genetic and cellular basis of SD-mediated distortion seems likely to provide insights into several important areas currently understudied, including the genetic control of spermatogenesis, the maintenance and evolution of satellite DNAs, the possible roles of small interfering RNAs in the germline, and the molecular population genetics of the interaction of genetic linkage and natural selection.

  3. Mispredicting the Hedonic Benefits of Segregated Gains

    ERIC Educational Resources Information Center

    Morewedge, Carey K.; Gilbert, Daniel T.; Keysar, Boaz; Berkovits, Michael J.; Wilson, Timothy D.

    2007-01-01

    The hedonic benefit of a gain (e.g., receiving $100) may be increased by segregating it into smaller units that are distributed over time (e.g., receiving $50 on each of 2 days). However, if these units are too small (e.g., receiving 1 cent on each of 10,000 days), they may fall beneath the person's hedonic limen and have no hedonic benefit at…

  4. Cyclic Segregation State in Vertically Vibrated Binary Granular Mixtures

    NASA Astrophysics Data System (ADS)

    Shi, Qingfan; Pan, Beicheng; Lu, Changhong; Sun, Gang

    2014-01-01

    In this paper, the vertically vibrated binary granular mixtures at atmospheric pressure are studied experimentally. We find a nonstationary segregation state, of which the structure changes with time cyclically. The period of the cyclic segregation is measured and its variation with the vibration conditions is shown. The transition between the segregation states is also discussed, and a phase diagram on the plot of frequency against acceleration amplitude is given. In order to observe the effect of air flow in the segregation process, an alternative container with ventilated bottom is designed. Our experiments show that both regions of the Brazil nut segregation state and the cyclic segregation state shrink obviously by use of the latter container and disappear completely if the whole system is placed in vacuum. These results testify that the air pressure plays a positive role in both the Brazil nut effect and cyclic segregation.

  5. Induction of entropic segregation: the first step is the hardest.

    PubMed

    Minina, Elena; Arnold, Axel

    2014-08-21

    In confinement, overlapping polymers experience entropic segregating forces that tend to demix them. This plays a role during cell replication, where it facilitates the segregation of daughter chromosomes. It has been argued that these forces are strong enough to explain chromosome segregation in elongated bacteria such as E. coli without the need for additional active mechanisms [S. Jun and B. Mulder, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 12388]. However, entropic segregation can only set in after the initial symmetry has been broken. We demonstrate that the timescale for this induction phase is exponentially growing in the chain length, while the actual segregation time scales only quadratically in the chain length. Thus the induction quickly becomes the dominating, slow process, and makes entropic segregation much less efficient than previously thought. The slow induction might also explain the long delay in chromosome segregation observed in experiments on E. coli. PMID:24974935

  6. Metal-Silicate Segregation in Asteroidal Meteorites

    NASA Technical Reports Server (NTRS)

    Herrin, Jason S.; Mittlefehldt, D. W.

    2006-01-01

    A fundamental process of planetary differentiation is the segregation of metal-sulfide and silicate phases, leading eventually to the formation of a metallic core. Asteroidal meteorites provide a glimpse of this process frozen in time from the early solar system. While chondrites represent starting materials, iron meteorites provide an end product where metal has been completely concentrated in a region of the parent asteroid. A complimentary end product is seen in metal-poor achondrites that have undergone significant igneous processing, such as angrites, HED's and the majority of aubrites. Metal-rich achondrites such as acapulcoite/lodranites, winonaites, ureilites, and metal-rich aubrites may represent intermediate stages in the metal segregation process. Among these, acapulcoite-lodranites and ureilites are examples of primary metal-bearing mantle restites, and therefore provide an opportunity to observe the metal segregation process that was captured in progress. In this study we use bulk trace element compositions of acapulcoites-lodranites and ureilites for this purpose.

  7. Self-segregating materials for immersion lithography

    NASA Astrophysics Data System (ADS)

    Sanders, Daniel P.; Sundberg, Linda K.; Brock, Phillip J.; Ito, Hiroshi; Truong, Hoa D.; Allen, Robert D.; McIntyre, Gregory R.; Goldfarb, Dario L.

    2008-03-01

    In this paper, we employ the self-segregating materials approach used in topcoat-free resists for water immersion lithography to extend the performance of topcoat materials for water immersion and to increase the contact angles of organic fluids on topcoat-free resists for high index immersion lithography. By tailoring polymers that segregate to the air and resist interfaces of the topcoat, high contact angle topcoats with relatively low fluorine content are achieved. While graded topcoats may extend the performance and/or reduce the cost of topcoat materials, the large amount of unprotected acidic groups necessary for TMAH development prevent them from achieving the high contact angles and low hysteresis exhibited by topcoat-free resists. Another application of this self-segregating approach is tailoring resist surfaces for high index immersion. Due to the low surface tension and higher viscosities of organic fluids relative to water and their lower contact angles on most surfaces, film pulling cannot be prevented without dramatically reducing wafer scan rates; however, tuning the surface energy of the resist may be important to control stain morphology and facilitate fluid removal from the wafer. By tailoring fluoropolymer additives for high contact angles with second generation organic high index immersion fluids, we show herein that topcoat-free resists can be developed specifically for high index immersion lithography with good contact angles and lithographic imaging performance.

  8. How population structure shapes neighborhood segregation.

    PubMed

    Bruch, Elizabeth E

    2014-03-01

    This study provides a framework for understanding how population composition conditions the relationship between individuals' choices about group affiliation and aggregate patterns of social separation or integration. The substantive focus is the role of income inequality in racial residential segregation. The author identifies three population parameters--between-group inequality, within-group inequality, and relative group size--that determine how income inequality between race groups affects racial segregation. She uses data from the Panel Study of Income Dynamics to estimate models of individual-level residential mobility and incorporates these estimates into agent-based models. She then simulates segregation dynamics under alternative assumptions about (1) the relative size of minority groups and (2) the degree of correlation between race and income among individuals. The author finds that income inequality can have offsetting effects at the high and low ends of the income distribution. She demonstrates the empirical relevance of the simulation results using fixed-effects, metro-level regressions applied to 1980-2000 U.S. census data.

  9. Chromosome positioning from activity-based segregation.

    PubMed

    Ganai, Nirmalendu; Sengupta, Surajit; Menon, Gautam I

    2014-04-01

    Chromosomes within eukaryotic cell nuclei at interphase are not positioned at random, since gene-rich chromosomes are predominantly found towards the interior of the cell nucleus across a number of cell types. The physical mechanisms that could drive and maintain the spatial segregation of chromosomes based on gene density are unknown. Here, we identify a mechanism for such segregation, showing that the territorial organization of chromosomes, another central feature of nuclear organization, emerges naturally from our model. Our computer simulations indicate that gene density-dependent radial segregation of chromosomes arises as a robust consequence of differences in non-equilibrium activity across chromosomes. Arguing that such differences originate in the inhomogeneous distribution of ATP-dependent chromatin remodeling and transcription machinery on each chromosome, we show that a variety of non-random positional distributions emerge through the interplay of such activity, nuclear shape and specific interactions of chromosomes with the nuclear envelope. Results from our model are in reasonable agreement with experimental data and we make a number of predictions that can be tested in experiments. PMID:24459132

  10. Detection of solute segregation at grain boundaries

    SciTech Connect

    Briceno-Valero, J.; Gronsky, R.

    1980-03-01

    Studies of grain boundary segregation in metallurgical systems are traditionally based upon the premise that grain boundaries are more likely sites for solute atoms than their surrounding grains. This idea is manifested in experimental studies which distinguish the solute concentration at boundaries from that of grain interiors using various spectroscopic techniques, including more recently, energy dispersive x-ray analysis in TEM/STEM instruments. A typical study consists of spot or line scans across a grain boundary plane in order to detect concentration gradients at the boundary region. It has also been pointed out that there are rather severe problems in quantitatively determining the absolute solute concentration within the grain boundary, and data correction schemes for this situation have been proposed. The present paper is concerned with an alternative study of grain boundary segregation where the distribution of solute atoms along the boundary plane (as opposed to that across the boundary plane) is sought. The interest here is to establish whether or not a relationship exists between the structural defect configuration of the boundary plane and site preference for solute segregation.

  11. Meiotic segregation of a homeologous chromosome pair.

    PubMed

    Maxfield Boumil, R; Kemp, B; Angelichio, M; Nilsson-Tillgren, T; Dawson, D S

    2003-03-01

    During meiosis, the alignment of homologous chromosomes facilitates their subsequent migration away from one another to opposite spindle poles at anaphase I. Recombination is part of the mechanism by which chromosomes identify their homologous partners, and serves to link the homologs in a way that, in some organisms, has been shown to promote proper attachment to the meiotic spindle. We have built a diploid strain that contains a pair of homeologous chromosomes V': one is derived from Saccharomyces cerevisiae and one originates from S. carlsbergensis. Sequence analysis reveals that these chromosomes share 71% sequence identity. The homeologs experience high levels of meiotic double-stranded breaks. Despite their relatedness and their competence to initiate recombination, the meiotic segregation behavior of the homeologous chromosomes suggests that, in most meioses, they are partitioned by a meiotic segregation system that has been shown previously to partition non-exchange chromosomes and pairs with no homology. Though the homeologous chromosomes show a degree of meiotic segregation fidelity similar to that of other non-exchange pairs, our data provide evidence that their limited sequence homology may provide some bias in meiotic partner choice. PMID:12655401

  12. Integration and segregation in auditory scene analysis

    NASA Astrophysics Data System (ADS)

    Sussman, Elyse S.

    2005-03-01

    Assessment of the neural correlates of auditory scene analysis, using an index of sound change detection that does not require the listener to attend to the sounds [a component of event-related brain potentials called the mismatch negativity (MMN)], has previously demonstrated that segregation processes can occur without attention focused on the sounds and that within-stream contextual factors influence how sound elements are integrated and represented in auditory memory. The current study investigated the relationship between the segregation and integration processes when they were called upon to function together. The pattern of MMN results showed that the integration of sound elements within a sound stream occurred after the segregation of sounds into independent streams and, further, that the individual streams were subject to contextual effects. These results are consistent with a view of auditory processing that suggests that the auditory scene is rapidly organized into distinct streams and the integration of sequential elements to perceptual units takes place on the already formed streams. This would allow for the flexibility required to identify changing within-stream sound patterns, needed to appreciate music or comprehend speech..

  13. Role of bacterial chaperones in DNA replication.

    PubMed

    Konieczny, I; Zylicz, M

    1999-01-01

    Studies on the involvement of chaperone proteins in DNA replication have been limited to a few replication systems, belonging primarily to the prokaryotic world. The insights gained from these studies have substantially contributed to our understanding of the eukaryotic DNA replication process as well. The finding that molecular chaperones can activate some initiation proteins before DNA synthesis has led to the more general suggestion that molecular chaperones can influence the DNA-binding activity of many proteins, including transcriptional factors involved in cell regulatory systems. The DnaK/DnaJ/GrpE molecular chaperone system became a paradigm of our understanding of fundamental processes, such as protein folding, translocation, selective proteolysis and autoregulation of the heat-shock response. Studies on the Clp ATPase family of molecular chaperones will help to define the nature of signals involved in chaperone-dependent proteins' refolding and the degradation of misfolded proteins.

  14. ACEMBL Tool-Kits for High-Throughput Multigene Delivery and Expression in Prokaryotic and Eukaryotic Hosts.

    PubMed

    Nie, Yan; Chaillet, Maxime; Becke, Christian; Haffke, Matthias; Pelosse, Martin; Fitzgerald, Daniel; Collinson, Ian; Schaffitzel, Christiane; Berger, Imre

    2016-01-01

    Multicomponent biological systems perform a wide variety of functions and are crucially important for a broad range of critical health and disease states. A multitude of applications in contemporary molecular and synthetic biology rely on efficient, robust and flexible methods to assemble multicomponent DNA circuits as a prerequisite to recapitulate such biological systems in vitro and in vivo. Numerous functionalities need to be combined to allow for the controlled realization of information encoded in a defined DNA circuit. Much of biological function in cells is catalyzed by multiprotein machines typically made up of many subunits. Provision of these multiprotein complexes in the test-tube is a vital prerequisite to study their structure and function, to understand biology and to develop intervention strategies to correct malfunction in disease states. ACEMBL is a technology concept that specifically addresses the requirements of multicomponent DNA assembly into multigene constructs, for gene delivery and the production of multiprotein complexes in high-throughput. ACEMBL is applicable to prokaryotic and eukaryotic expression hosts, to accelerate basic and applied research and development. The ACEMBL concept, reagents, protocols and its potential are reviewed in this contribution. PMID:27165317

  15. ACEMBL Tool-Kits for High-Throughput Multigene Delivery and Expression in Prokaryotic and Eukaryotic Hosts.

    PubMed

    Nie, Yan; Chaillet, Maxime; Becke, Christian; Haffke, Matthias; Pelosse, Martin; Fitzgerald, Daniel; Collinson, Ian; Schaffitzel, Christiane; Berger, Imre

    2016-01-01

    Multicomponent biological systems perform a wide variety of functions and are crucially important for a broad range of critical health and disease states. A multitude of applications in contemporary molecular and synthetic biology rely on efficient, robust and flexible methods to assemble multicomponent DNA circuits as a prerequisite to recapitulate such biological systems in vitro and in vivo. Numerous functionalities need to be combined to allow for the controlled realization of information encoded in a defined DNA circuit. Much of biological function in cells is catalyzed by multiprotein machines typically made up of many subunits. Provision of these multiprotein complexes in the test-tube is a vital prerequisite to study their structure and function, to understand biology and to develop intervention strategies to correct malfunction in disease states. ACEMBL is a technology concept that specifically addresses the requirements of multicomponent DNA assembly into multigene constructs, for gene delivery and the production of multiprotein complexes in high-throughput. ACEMBL is applicable to prokaryotic and eukaryotic expression hosts, to accelerate basic and applied research and development. The ACEMBL concept, reagents, protocols and its potential are reviewed in this contribution.

  16. Mutiscale Modeling of Segregation in Granular Flows

    SciTech Connect

    Sun, Jin

    2007-01-01

    Modeling and simulation of segregation phenomena in granular flows are investigated. Computational models at different scales ranging from particle level (microscale) to continuum level (macroscale) are employed in order to determine the important microscale physics relevant to macroscale modeling. The capability of a multi-fluid model to capture segregation caused by density difference is demonstrated by simulating grain-chaff biomass flows in a laboratory-scale air column and in a combine harvester. The multi-fluid model treats gas and solid phases as interpenetrating continua in an Eulerian frame. This model is further improved by incorporating particle rotation using kinetic theory for rapid granular flow of slightly frictional spheres. A simplified model is implemented without changing the current kinetic theory framework by introducing an effective coefficient of restitution to account for additional energy dissipation due to frictional collisions. The accuracy of predicting segregation rate in a gas-fluidized bed is improved by the implementation. This result indicates that particle rotation is important microscopic physics to be incorporated into the hydrodynamic model. Segregation of a large particle in a dense granular bed of small particles under vertical. vibration is studied using molecular dynamics simulations. Wall friction is identified as a necessary condition for the segregation. Large-scale force networks bearing larger-than-average forces are found with the presence of wall friction. The role of force networks in assisting rising of the large particle is analyzed. Single-point force distribution and two-point spatial force correlation are computed. The results show the heterogeneity of forces and a short-range correlation. The short correlation length implies that even dense granular flows may admit local constitutive relations. A modified minimum spanning tree (MST) algorithm is developed to asymptotically recover the force statistics in the

  17. Biopolymers and the fellowship of DNA rings.

    PubMed

    Wang, James C

    2013-12-01

    This article presents a brief account of the historical backdrop of the study of interlocked DNA rings (DNA catenanes), their formation in cells, and the importance of resolving the component rings of an intracellular DNA catenane if they are to be properly partitioned into a pair of progeny cells. In humans, for example, aberrant segregation of intertwined chromosomes is a major cause of birth defects, as well as termination of pregnancy in utero. Some yet unresolved issues of DNA catenation, including plausible structural and/or functional roles of DNA interlacing in chromosomes, are briefly mentioned. PMID:23532943

  18. Biopolymers and the fellowship of DNA rings.

    PubMed

    Wang, James C

    2013-12-01

    This article presents a brief account of the historical backdrop of the study of interlocked DNA rings (DNA catenanes), their formation in cells, and the importance of resolving the component rings of an intracellular DNA catenane if they are to be properly partitioned into a pair of progeny cells. In humans, for example, aberrant segregation of intertwined chromosomes is a major cause of birth defects, as well as termination of pregnancy in utero. Some yet unresolved issues of DNA catenation, including plausible structural and/or functional roles of DNA interlacing in chromosomes, are briefly mentioned.

  19. Identification and Detection of Prokaryotic Symbionts in the Ciliate Metopus from Anaerobic Granular Sludge

    PubMed Central

    Hirakata, Yuga; Oshiki, Mamoru; Kuroda, Kyohei; Hatamoto, Masashi; Kubota, Kengo; Yamaguchi, Takashi; Harada, Hideki; Araki, Nobuo

    2015-01-01

    The aim of the present study was to investigate the prokaryotic community structure of the anaerobic ciliate, Metopus sp. using rRNA sequencing, fluorescence in situ hybridization (FISH), and transmission electron microscopy (TEM). Metopus sp. was physically separated from anaerobic granular sludge in a domestic wastewater treatment plant and anoxically cultivated for 7 d. 16S rRNA gene sequences from the prokaryotes Methanoregula boonei and Clostridium aminobutyricum were abundantly detected in Metopus ciliates. The FISH analysis using the oligonucleotide probes Mg1200b and Cla568 demonstrated that these prokaryotes were localized within Metopus cells. These results identify M. boonei- and C. aminobutyricum-like prokaryotes as novel endosymbionts of Metopus ciliates. PMID:26639580

  20. PHYLOGENETIC ANALYSIS OF PROKARYOTIC AND EUKARYOTIC MICROORGANISMS IN A DRINKING WATER PIPE LOOP SYSTEM

    EPA Science Inventory

    Within potable water distribution systems, opportunistic pathogens such as Legionella species infect protozoa, gaining protection from disinfectant residuals. Analyzing the prokaryotic and eukaryotic populations in distribution system water provides a basis for understanding the...