Sample records for proliferation retinoic acid

  1. Proliferation versus Differentiation: Redefining Retinoic Acid's Role.

    PubMed

    Mosher, Kira Irving; Schaffer, David V

    2018-06-05

    Retinoic acid is commonly used in culture to differentiate stem cells into neurons and has established neural differentiation functions in vivo in developing and adult organisms. In this issue of Stem Cell Reports, Mishra et al. (2018) broaden its role in stem cell functions, showing that retinoic acid is necessary for stem and progenitor cell proliferation in the adult brain. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Retinoic acid stimulation of human dermal fibroblast proliferation is dependent on suboptimal extracellular Ca2+ concentration.

    PubMed Central

    Varani, J.; Shayevitz, J.; Perry, D.; Mitra, R. S.; Nickoloff, B. J.; Voorhees, J. J.

    1990-01-01

    Human dermal fibroblasts failed to proliferate when cultured in medium containing 0.15 mmol/l (millimolar) Ca2+ (keratinocyte growth medium [KGM]) but did when the external Ca2+ concentration was raised to 1.4 mmol/l. All-trans retinoic acid (retinoic acid) stimulated proliferation in KGM but did not further stimulate growth in Ca2(+)-supplemented KGM. The ability of retinoic acid to stimulate proliferation was inhibited in KGM prepared without Ca2+ or prepared with 0.03 mmol/l Ca2+ and in KGM treated with 1 mmol/l ethylene-glycol-bis-(beta-aminoethyl ether)N,N'-tetra acetic acid. Using 45Ca2+ to measure Ca2+ influx and efflux, it was found that retinoic acid minimally increased Ca2+ uptake into fibroblasts. In contrast, retinoic acid treatment of fibroblasts that had been pre-equilibrated for 1 day with 45Ca2+ inhibited release of intracellular Ca2+ into the extracellular fluid. Retinoic acid also stimulated 35S-methionine incorporation into trichloroacetic acid-precipitable material but in contrast to its effect on proliferation, stimulation of 35S-methionine incorporation occurred in both high-Ca2+ and low-Ca2+ medium. These data indicate that retinoic acid stimulation of proliferation, but not protein synthesis, is dependent on the concentration of Ca2+ in the extracellular environment. PMID:2356860

  3. All-trans-retinoic acid and 13-cis-retinoic acid: pharmacokinetics and biological activity in different cell culture models of human keratinocytes.

    PubMed

    Schroeder, M; Zouboulis, C C

    2007-02-01

    Despite its known biological effect on epithelial cells, 13- CIS-retinoic acid shows low binding affinity to either cellular retinoic acid-binding proteins or nuclear retinoid receptors compared to its isomer all- TRANS-retinoic acid. We have postulated a prodrug-drug relation with 13- CIS-retinoic acid which isomerizes to all- TRANS-retinoic acid. On the other hand, the biological effects of these two compounds can differ in the widely used cell culture models of HaCaT and normal primary keratinocytes. In this study, we seeded HaCaT and normal keratinocytes at high densities leading to early confluence in order to imitate high keratinocyte proliferation, such as in acne and psoriasis, while to model decreased keratinocyte proliferation, as in aged and steroid-damaged skin, cells were seeded at a low density. High performance liquid chromatography was administered to examine retinoid uptake and metabolism in monolayer HaCaT and normal keratinocyte cultures and the 4-methylumbelliferyl heptanoate assay to estimate cell growth at different cell densities. Major qualitative and quantitative differences were detected in the two cell types regarding intracellular 13- CIS-retinoic acid isomerization to all- TRANS-retinoic acid. On the other hand, the two retinoic acid isomers showed similar effects on cell growth of both cell types tested with increasing proliferation at low cell densities, but being rather inactive at high ones in normal keratinocytes and exhibiting an antiproliferative effect in HaCaT keratinocytes. The missing effect of retinoids on cell proliferation in high seeding densities of normal keratinocytes may indicate that the normalizing activity of retinoids on hyperkeratotic diseases, such as acne or psoriasis, is likely to be carried out by modulation of cell differentiation than cell growth. On the other hand, induced keratinocyte proliferation in low seeding densities may provide an explanation for the acanthosis induced by topical retinoids in aged

  4. Reversible effect of all-trans-retinoic acid on AML12 hepatocyte proliferation and cell cycle progression

    EPA Science Inventory

    The role of all-trans-retinoic acid (atRA) in the regulation of cellular proliferation and differentiation is well documented. Numerous studies have established the cancer preventive propertiesofatRAwhichfunctionstoregulate levels ofcellcycleproteinsessentialfortheGliS transition...

  5. The role of retinoic acid in the morphogenesis of the neural tube.

    PubMed

    Wilson, L; Gale, E; Maden, M

    2003-10-01

    We have examined the role of the signalling molecule, retinoic acid, in the process of neurulation and the subsequent growth and differentiation of the central nervous system using quail embryos that have developed in the absence of retinoic acid. Such retinoic acid-free embryos undergo abnormal neural tube formation in terms of its shape and structure, but the embryos do not display spina bifida or exencephaly. The neural tubes have a wider floor plate, a thicker roof plate and a different dorsoventral shape. Phalloidin staining and electron microscopy revealed alterations in the actin filaments and the junctional complexes of the cell layer lining the lumen. Initially the neural tubes proliferated at the same rate as normal, but later the proliferation rate declined drastically and neuronal differentiation was highly deficient. There were very few motoneurons extending neurites into the periphery, and within the neural tube axon trajectories were chaotic. These results reveal several functions for retinoic acid in the morphogenesis and growth of the neural tube, many of which can be explained by defective notochord signalling, but they do not suggest that this molecule plays a role in neural tube closure.

  6. Retinoic Acid Receptor β: A Potential Therapeutic Target in Retinoic Acid Treatment of Endometrial Cancer.

    PubMed

    Tsuji, Keita; Utsunomiya, Hiroki; Miki, Yasuhiro; Hanihara, Mayu; Fue, Misaki; Takagi, Kiyoshi; Nishimoto, Mitsuo; Suzuki, Fumihiko; Yaegashi, Nobuo; Suzuki, Takashi; Ito, Kiyoshi

    2017-05-01

    Several studies have reported that retinoic acid (RA) might be used to treat malignancies. The effects of RA are mediated by the RA receptor (RAR), and RARα/RARβ especially acts as a tumor suppressor. However, little is known about its role in human endometrial cancer. In this study, we examined the effects of all-trans RA (ATRA) on progression of human endometrial cancer cell line, RL95-2 and Hec1A. We then examined the expression of RARα and RARβ in 50 endometrial cancer tissues by using immunohistochemistry. We found inhibitory effects of ATRA on cell proliferation, apoptosis, and migration in RL95-2 cells, but not in Hec1A cells. RARα or RARβ knockdown individually could not cancel out the inhibition of cell proliferation by ATRA in RL95-2 cells, but simultaneous knockdown of RARα and RARβ could block its effect on proliferation. RARα and RARβ knockdown dose dependently reduced the inhibition of migration by ATRA, but the effect was more pronounced with RARβ knockdown than with RARα knockdown. We confirmed that RARβ gene was directly regulated by ATRA in microarray and real-time reverse transcription polymerase chain reaction. Furthermore, the RARβ agonist (BMS453) significantly suppressed proliferation of RL95-2 cells. In immunohistochemical analysis, RARα expression was positively correlated with tumor grade, and RARβ showed the opposite tendency in endometrial cancer. Retinoic acid might have multiple antitumor effects, and RARβ may be a potent therapeutic target in RA treatment for endometrial cancers.

  7. Retinoic acid and nitric oxide promote cell proliferation and differentially induce neuronal differentiation in vitro in the cnidarian Renilla koellikeri.

    PubMed

    Estephane, Djoyce; Anctil, Michel

    2010-10-01

    Retinoic acid (RA) and nitric oxide (NO) are known to promote neuronal development in both vertebrates and invertebrates. Retinoic acid receptors appear to be present in cnidarians and NO plays various physiological roles in several cnidarians, but there is as yet no evidence that these agents have a role in neural development in this basal metazoan phylum. We used primary cultures of cells from the sea pansy Renilla koellikeri to investigate the involvement of these signaling molecules in cnidarian cell differentiation. We found that 9-cis RA induce cell proliferation in dose- and time-dependent manners in dishes coated with polylysine from the onset of culture. Cells in cultures exposed to RA in dishes devoid of polylysine were observed to differentiate into epithelium-associated cells, including sensory cells, without net gain in cell density. NO donors also induce cell proliferation in polylysine-coated dishes, but induce neuronal differentiation and neurite outgrowth in uncoated dishes. No other cell type undergoes differentiation in the presence of NO. These observations suggest that in the sea pansy (1) cell adhesion promotes proliferation without morphogenesis and this proliferation is modulated positively by 9-cis RA and NO, (2) 9-cis RA and NO differentially induce neuronal differentiation in nonadherent cells while repressing proliferation, and (3) the involvement of RA and NO in neuronal differentiation appeared early during the evolutionary emergence of nervous systems. 2010 Wiley Periodicals, Inc.

  8. Retinoic acid as a novel medical therapy for Cushing's disease in dogs.

    PubMed

    Castillo, Victor; Giacomini, Damiana; Páez-Pereda, Marcelo; Stalla, Johanna; Labeur, Marta; Theodoropoulou, Marily; Holsboer, Florian; Grossman, Ashley B; Stalla, Günter K; Arzt, Eduardo

    2006-09-01

    Cushing's disease is almost always caused by an ACTH-secreting pituitary tumor, but effective medical therapy is currently limited. Because retinoic acid has been shown to be potentially useful in decreasing corticotroph secretion and proliferation in rodent models, we have studied its action in dogs with Cushing's disease. A randomized treatment with retinoic acid (n = 22) vs. ketoconazole (n = 20) in dogs with Cushing's disease was assigned for a period of 180 d. Clinical signs, plasma ACTH and alpha-MSH, the cortisol/creatinine urine ratio, and pituitary magnetic resonance imaging were assessed and compared at different time points. We recorded a significant reduction in plasma ACTH and alpha-MSH, and also in the cortisol/creatinine urine ratio, of the dogs treated with retinoic acid. Pituitary adenoma size was also significantly reduced at the end of retinoic acid treatment. Survival time and all the clinical signs evaluated showed an improvement in the retinoic-acid-treated dogs. No adverse events or signs of hepatotoxicity were observed, suggesting that the drug is not only effective but also safe. Retinoic acid treatment controls ACTH and cortisol hyperactivity and tumor size in dogs with ACTH-secreting tumors, leading to resolution of the clinical phenotype. This study highlights the possibility of using retinoic acid as a novel therapy in the treatment of ACTH-secreting tumors in humans with Cushing's disease.

  9. Proliferation in culture of primordial germ cells derived from embryonic stem cell: induction by retinoic acid.

    PubMed

    Makoolati, Zohreh; Movahedin, Mansoureh; Forouzandeh-Moghadam, Mehdi

    2016-12-01

    An in vitro system that supports primordial germ cells (PGCs) survival and proliferation is useful for enhancement of these cells and efficient transplantation in infertility disorders. One approach is cultivation of PGCs under proper conditions that allow self-renewal and proliferation of PGCs. For this purpose, we compared the effects of different concentrations of retinoic acid (RA), and the effect of PGCs co-culture (Co-C) with SIM mouse embryo-derived thioguanine- and ouabain-resistant (STO) cells on the proliferation of embryonic stem cells (ESCs)-derived PGCs. One-day-old embryoid body (EB) was cultured for 4 days in simple culture system in the presence of 5 ng/ml bone morphogenetic protein-4 (BMP4) (SCB group) for PGC induction. For PGC enrichment, ESCs-derived germ cells were cultured for 7 days in the presence of different doses (0-5  μM) of RA, both in the simple and STO Co-C systems. At the end of the culture period, viability and proliferation rates were assessed and expression of mouse vasa homologue (Mvh),  α6 integrin,  β1 integrin, stimulated by retinoic acid 8 (Stra8) and piwi (Drosophila)-like 2 (Piwil2) was evaluated using quantitative PCR. Also, the inductive effects were investigated immunocytochemically with Mvh and cadherin1 (CDH1) on the selected groups. Immunocytochemistry/PCR results showed higher expression of Mvh, the PGC-specific marker, in 3  μM RA concentrations on the top of the STO feeder layer. Meanwhile, assessment of the Stra8 mRNA and CDH1 protein, the specific makers for spermatogonia, showed no significant differences between groups. Based on the results, it seems that in the presence of 3 μM RA on top of the STO feeder layer cells, the majority of the cells transdifferentiated into germ cells were PGCs. © 2016 The Author(s).

  10. History of retinoic acid receptors.

    PubMed

    Benbrook, Doris M; Chambon, Pierre; Rochette-Egly, Cécile; Asson-Batres, Mary Ann

    2014-01-01

    The discovery of retinoic acid receptors arose from research into how vitamins are essential for life. Early studies indicated that Vitamin A was metabolized into an active factor, retinoic acid (RA), which regulates RNA and protein expression in cells. Each step forward in our understanding of retinoic acid in human health was accomplished by the development and application of new technologies. Development cDNA cloning techniques and discovery of nuclear receptors for steroid hormones provided the basis for identification of two classes of retinoic acid receptors, RARs and RXRs, each of which has three isoforms, α, β and ɣ. DNA manipulation and crystallographic studies revealed that the receptors contain discrete functional domains responsible for binding to DNA, ligands and cofactors. Ligand binding was shown to induce conformational changes in the receptors that cause release of corepressors and recruitment of coactivators to create functional complexes that are bound to consensus promoter DNA sequences called retinoic acid response elements (RAREs) and that cause opening of chromatin and transcription of adjacent genes. Homologous recombination technology allowed the development of mice lacking expression of retinoic acid receptors, individually or in various combinations, which demonstrated that the receptors exhibit vital, but redundant, functions in fetal development and in vision, reproduction, and other functions required for maintenance of adult life. More recent advancements in sequencing and proteomic technologies reveal the complexity of retinoic acid receptor involvement in cellular function through regulation of gene expression and kinase activity. Future directions will require systems biology approaches to decipher how these integrated networks affect human stem cells, health, and disease.

  11. Identification of 4-oxo-13-cis-retinoic acid as the major metabolite of 13-cis-retinoic acid in human blood.

    PubMed

    Vane, F M; Buggé, C J

    1981-01-01

    The metabolites of 13-cis-retinoic acid (Accutane) were investigated in blood samples from human volunteers on chronic treatment for dermatological disorders. The major metabolite was isolated by reverse-phase high-pressure liquid chromatography and identified as 4-oxo-13-cis-retinoic acid by comparison of its mass and NMR spectra to the spectra of the reference compound. 4-Oxo-all-trans-retinoic acid was also identified, but the extent to which this compound was a metabolite of 13-cis-retinoic acid or an artifactual isomerization product of the major metabolite is unknown. Chromatographic data suggested that small amounts of 13-cis-retinoic acid, 4-hydroxy-13-cis-retinoic acid, and dioxygenated metabolites of 13-cis-retinoic acid may also be present in the blood. This study indicates that a major metabolic pathway of 13-cis-retinoic acid in humans is oxidation at C4 of the cyclohexenyl group.

  12. All-trans retinoic acid inhibits craniopharyngioma cell growth: study on an explant cell model.

    PubMed

    Li, Qiang; You, Chao; Zhou, Liangxue; Sima, Xiutian; Liu, Zhiyong; Liu, Hao; Xu, Jianguo

    2013-05-01

    The ratio between FABP5 and CRABPII determines cellular response to physiological level of retinoic acid; tumor cells undergo proliferation with high level of FABP5 and apoptosis with high level of CRABPII. We intended to study FABP5 and CRABPII expression in craniopharyngiomas, to establish craniopharyngioma cell model using explants method, and to study the effect of pharmacological dose of retinoic acid on craniopharyngioma cells. Expression of FABP5 and CRABPII in craniopharyngioma tissue from 20 patients was studied using immunohistochemistry. Primary craniopharyngioma cell cultures were established using tissue explants method. Craniopharyngioma cells were treated using various concentrations of all-trans retinoic acid, and cell growth curve, apoptosis, expression of FABP5, CRABPII and NF-κB were assayed in different groups. FABP5/CRABPII ratio was significantly higher in adamatinomatous group than that in papillary group. Cell cultures were established in 19 cases (95 %). Pharmacological level retinoic acid inhibited cell growth and induced cellular apoptosis in dose dependent manner, and apoptosis rate cells treated with 30 μM retinoic acid for 24 h was 43 %. Also, retinoic acid increased CRABPII, and decreased FABP5 and NF-κB expression in craniopharyngioma cells. High FABP5/CRABPII ratio is observed in adamatinomatous craniopharyngioma. Retinoic acid at pharmacological level induced craniopharyngioma cell apoptosis via increasing FABP5/CRABPII ratio and inhibiting NF-κB signaling pathway. Our study demonstrated that all-trans retinoic acid might be a candidate for craniopharyngioma adjuvant chemotherapy in future.

  13. Steady state pharmacokinetics of oral treatment with 13-cis-retinoic acid or all-trans-retinoic acid in male and female adult rats.

    PubMed

    Ferguson, Sherry A; Siitonen, Paul H; Cisneros, F Javier; Gough, Bobby; Young, John F

    2006-06-01

    Male and female Sprague-Dawley rats were orally gavaged with 13-cis-retinoic acid (7.5 or 15 mg/kg) or all-trans-retinoic acid (10 or 15 mg/kg) for 7 consecutive days. Blood was collected out to 8 hr after the last gavage on day 7. HPLC serum concentrations of 13-cis-retinoic acid, all-trans-retinoic acid, and 13-cis-4-oxo-retinoic acid were subjected to model independent pharmacokinetic analyses. Peak serum levels of 563 to 1640 ng/ml were observed for rats treated with 13-cis-retinoic acid at 1.5-2 hr after gavage. Peak serum levels of 183 to 267 ng/ml at 1.5 hr after gavage were observed for all-trans-retinoic acids. The elimination half-life of 13-cis-retinoic acid was about 1.5 hr while the elimination half-life of all-trans-retinoic acid was slightly longer. There were no sex differences for any parameter. Serum levels resulting from the 7.5 mg/kg 13-cis-retinoic acid were similar to those of human Accutane users.

  14. Comparative teratology and transplacental pharmacokinetics of all-trans-retinoic acid, 13-cis-retinoic acid, and retinyl palmitate following daily administrations in rats.

    PubMed

    Collins, M D; Tzimas, G; Hummler, H; Bürgin, H; Nau, H

    1994-07-01

    The retinoids are teratogenic in a wide variety of species. In the rat, 13-cis-retinoic acid and retinyl palmitate are significantly less potent teratogens than all-trans-retinoic acid. This investigation questioned whether differing teratogenic potencies of these moieties can be correlated with the concentrations of these drugs and/or metabolites in the embryonic compartment. Approximately equipotent teratogenic doses of these three retinoids were administered and the pharmacokinetics in maternal plasma and embryo of the most prevalent vitamin A metabolites were measured. The glucuronides of the respective retinoids were the predominant metabolites in the maternal plasma, but were not detected in the embryo. Also, the transport of 13-cis-retinoic acid across the placenta occurred to a much lesser extent than the transport of all-trans-retinoic acid. Administration of either all-trans- or 13-cis-retinoic acid causes a depression in the endogenous retinol concentration. This depression is more pronounced in the maternal plasma than in the embryo. The depression of the retinol level in both plasma and embryo after 13-cis-retinoic acid administration (75 mg/kg/day) was greater than the depression after all-trans-retinoic acid (6 mg/kg/day), corroborating the inferential teratological data that the 13-cis-retinoic acid dose was more embryotoxic than the all-trans-retinoic acid dose. Although the dose of all-trans-retinoic acid was less embryotoxic than that of either 13-cis-retinoic acid or retinyl palmitate, the embryonic exposure to all-trans-retinoic acid was considerably larger, as determined by maximum concentration or area under the concentration-versus-time curve, after administration of all-trans-retinoic acid than after either retinyl palmitate or 13-cis-retinoic acid application. These results suggest that embryonic retinoids other than all-trans-retinoic acid--including the administered substances themselves--are important in the teratogenic process induced

  15. Retinoic acid downregulates Rae1 leading to APC(Cdh1) activation and neuroblastoma SH-SY5Y differentiation.

    PubMed

    Cuende, J; Moreno, S; Bolaños, J P; Almeida, A

    2008-05-22

    In neuroblastoma cells, retinoic acid induces cell cycle arrest and differentiation through degradation of the F-box protein, Skp2, and stabilization of cyclin-dependent kinase inhibitor, p27. However, the mechanism responsible for retinoic acid-mediated Skp2 destabilization is unknown. Since Skp2 is degraded by anaphase-promoting complex (APC)(Cdh1), here we studied whether retinoic acid promotes differentiation of human SH-SY5Y neuroblastoma cells by modulating Cdh1. We found that retinoic acid induced the nuclear accumulation of Cdh1 that paralleled Skp2 destabilization and p27 accumulation. The mRNA and protein abundance of Rae1-a nuclear export factor that limits APC(Cdh1) activity in mitosis-decreased upon retinoic acid-induced inhibition of neuroblastoma cell proliferation. Furthermore, either Rae1 overexpression or Cdh1 inhibition promoted Skp2 accumulation, p27 destabilization and prevented retinoic acid-induced cell cycle arrest and differentiation. Conversely, inhibition of Rae1 accelerated retinoic acid-induced differentiation. Thus, retinoic acid downregulates Rae1, hence facilitating APC(Cdh1)-mediated Skp2 degradation leading to the arrest of cell cycle progression and neuroblastoma differentiation.

  16. Human skin levels of retinoic acid and cytochrome P-450-derived 4-hydroxyretinoic acid after topical application of retinoic acid in vivo compared to concentrations required to stimulate retinoic acid receptor-mediated transcription in vitro.

    PubMed Central

    Duell, E A; Aström, A; Griffiths, C E; Chambon, P; Voorhees, J J

    1992-01-01

    Metabolism of retinoic acid to a less active metabolite, 4-hydroxyretinoic acid, occurs via cytochrome P-450 isozyme(s). Effect of a pharmacological dose of retinoic acid on the level of retinoic acid in skin and on cytochrome P-450 activity was investigated. A cream containing 0.1% retinoic acid or cream alone was applied topically to adult human skin for four days under occlusion. Treated areas were removed by a keratome and a microsomal fraction was isolated from each biopsy. In vitro incubation of 3H-retinoic acid with microsomes from in vivo retinoic acid treated sites resulted in a 4.5-fold increase (P = 0.0001, n = 13) in its transformation to 4-hydroxyretinoic acid in comparison to in vitro incubations with microsomes from in vivo cream alone treated sites. This cytochrome P-450 mediated activity was oxygen- and NADPH-dependent and was inhibited 68% by 5 microM ketoconazole (P = 0.0035, n = 8) and 51% by carbon monoxide (P = 0.02, n = 6). Cotransfection of individual retinoic acid receptors (RARs) or retinoid X receptor-alpha (RXR-alpha) and a chloramphenicol acetyl transferase (CAT) reporter plasmid containing a retinoic acid responsive element into CV-1 cells was used to determine the ED50 values for stimulation of CAT activity by retinoic acid and its metabolites. Levels of all trans and 13-cis RA in RA-treated tissues were greater than the ED50 values determined for all three RARs with these compounds. Furthermore, the level of all trans RA was greater than the ED50 for RXR-alpha whereas the 4-OH RA level was greater than the ED50 for RAR-beta and RAR-gamma but less than for RAR-alpha and RXR-alpha. These data suggest that there are sufficient amounts of retinoic acid in treated skin to activate gene transcription over both RARs and RXR-alpha. PMID:1328295

  17. Enzymology of retinoic acid biosynthesis and degradation

    PubMed Central

    Kedishvili, Natalia Y.

    2013-01-01

    All-trans-retinoic acid is a biologically active derivative of vitamin A that regulates numerous physiological processes. The concentration of retinoic acid in the cells is tightly regulated, but the exact mechanisms responsible for this regulation are not completely understood, largely because the enzymes involved in the biosynthesis of retinoic acid have not been fully defined. Recent studies using in vitro and in vivo models suggest that several members of the short-chain dehydrogenase/reductase superfamily of proteins are essential for retinoic acid biosynthesis and the maintenance of retinoic acid homeostasis. However, the exact roles of some of these recently identified enzymes are yet to be characterized. The properties of the known contributors to retinoid metabolism have now been better defined and allow for more detailed understanding of their interactions with retinoid-binding proteins and other retinoid enzymes. At the same time, further studies are needed to clarify the interactions between the cytoplasmic and membrane-bound proteins involved in the processing of hydrophobic retinoid metabolites. This review summarizes current knowledge about the roles of various biosynthetic and catabolic enzymes in the regulation of retinoic acid homeostasis and outlines the remaining questions in the field. PMID:23630397

  18. ISOLATION AND CHARACTERIZATION OF AXOLOTL NPDC-1 AND ITS EFFECTS ON RETINOIC ACID RECEPTOR SIGNALING

    PubMed Central

    Theodosiou, Maria; Monaghan, James R; Spencer, Michael L; Voss, S Randal; Noonan, Daniel J

    2009-01-01

    Retinoic acid, a key morphogen in early vertebrate development and tissue regeneration, mediates its effects through the binding of receptors that act as ligand-induced transcription factors. These binding events function to recruit an array of transcription co-regulatory proteins to specific gene promoters. One such co-regulatory protein, neuronal proliferation and differentiation control-1 (NPDC-1), is broadly expressed during mammalian development and functions as an in vitro repressor of retinoic acid receptor (RAR)-mediated transcription. To obtain comparative and developmental insights about NPDC-1 function, we cloned the axolotl (Ambystoma mexicanum) orthologue and measured transcript abundances among tissues sampled during the embryonic and juvenile phases of development, and also during spinal cord regeneration. Structurally, the axolotl orthologue of NPDC-1 retained sequence identity to mammalian sequences in all functional domains. Functionally, we observed that axolotl NPDC-1 mRNA expression peaked late in embryogenesis, with highest levels of expression occurring during the time of limb development, a process regulated by retinoic acid signaling. Also similar to what has been observed in mammals, axolotl NPDC-1 directly interacts with axolotl RAR, modulates axolotl RAR DNA binding, and represses cell proliferation and axolotl RAR-mediated gene transcription. These data justify axolotl as a model to further investigate NPDC-1 and its role in regulating retinoic acid signaling. PMID:17331771

  19. Correlations between conceptal concentrations of all-trans-retinoic acid and dysmorphogenesis after microinjections of all-trans-retinoic acid, 13-cis-retinoic acid, all-trans-retinoyl-beta-glucuronide, or retinol in cultured whole rat embryos.

    PubMed

    Kraft, J C; Juchau, M R

    1992-01-01

    Retinol (4,000 ng/ml), all-trans-retinoyl-beta-glucuronide (4,000 ng/ml), and 13-cis-retinoic acid (1,500 ng/ml) each produced dysmorphogenic effects qualitatively similar to those elicited by 250 ng/ml of all-trans-retinoic acid after microinjections of the respective individual retinoids into the amniotic cavities of cultured whole rat embryos. Subsequent HPLC analyses of the cultured whole conceptuses, embryos proper, yolk sacs, and culture media (24 hr after microinjections) indicated that conceptal biotransformation of each of the retinoids had occurred during the culture period. All-trans-retinoic acid was present in the embryos proper at quantitatively similar concentrations (20-100 nM) after microinjections of the selected quantities of each of the microinjected retinoids: retinol, all-trans-retinoyl-beta-glucuronide, 13-cis-retinoic acid, or all-trans-retinoic acid. The results suggested that all-trans-retinoic acid acted as an ultimate dysmorphogen for the retinoids tested with respect to the anomalies monitored in the embryo culture system.

  20. The neurobiology of retinoic acid in affective disorders.

    PubMed

    Bremner, J Douglas; McCaffery, Peter

    2008-02-15

    Current models of affective disorders implicate alterations in norepinephrine, serotonin, dopamine, and CRF/cortisol; however treatments targeted at these neurotransmitters or hormones have led to imperfect resolution of symptoms, suggesting that the neurobiology of affective disorders is incompletely understood. Until now retinoids have not been considered as possible contributors to affective disorders. Retinoids represent a family of compounds derived from vitamin A that perform a large number of functions, many via the vitamin A product, retinoic acid. This signaling molecule binds to specific retinoic acid receptors in the brain which, like the glucocorticoid and thyroid hormone receptors, are part of the nuclear receptor superfamily and regulate gene transcription. Research in the field of retinoic acid in the CNS has focused on the developing brain, in part stimulated by the observation that isotretinoin (13-cis retinoic acid), an isomer of retinoic acid used in the treatment of acne, is highly teratogenic for the CNS. More recent work has suggested that retinoic acid may influence the adult brain; animal studies indicated that the administration of isotretinoin is associated with alterations in behavior as well as inhibition of neurogenesis in the hippocampus. Clinical evidence for an association between retinoids and depression includes case reports in the literature, studies of health care databases, and other sources. A preliminary PET study in human subjects showed that isotretinoin was associated with a decrease in orbitofrontal metabolism. Several studies have shown that the molecular components required for retinoic acid signaling are expressed in the adult brain; the overlap of brain areas implicated in retinoic acid function and stress and depression suggest that retinoids could play a role in affective disorders. This report reviews the evidence in this area and describes several systems that may be targets of retinoic acid and which contribute to

  1. The Neurobiology of Retinoic Acid in Affective Disorders

    PubMed Central

    Bremner, J Douglas; McCaffery, Peter

    2009-01-01

    Current models of affective disorders implicate alterations in norepinephrine, serotonin, dopamine, and CRF/cortisol; however treatments targeted at these neurotransmitters or hormones have led to imperfect resolution of symptoms, suggesting that the neurobiology of affective disorders is incompletely understood. Until now retinoids have not been considered as possible contributors to affective disorders. Retinoids represent a family of compounds derived from Vitamin A that perform a large number of functions, many via the vitamin A product, retinoic acid. This signaling molecule binds to specific retinoic acid receptors in the brain which, like the glucocorticoid and thyroid hormone receptors, are part of the nuclear receptor superfamily and regulate gene transcription. Research in the field of retinoic acid in the CNS has focused on the developing brain, in part stimulated by the observation that isotretinoin (13-cis retinoic acid), an isomer of retinoic acid used in the treatment of acne, is highly teratogenic for the CNS. More recent work has suggested that retinoic acid may influence the adult brain; animal studies indicated that the administration of isotretinoin is associated with alterations in behavior as well as inhibition of neurogenesis in the hippocampus. Clinical evidence for an association between retinoids and depression includes case reports in the literature, studies of health care databases, and other sources. A preliminary PET study in human subjects showed that isotretinoin was associated with a decrease in orbitofrontal metabolism. Several studies have shown that the molecular components required for retinoic acid signaling are expressed in the adult brain ; the overlap of brain areas implicated in retinoic acid function and stress and depression suggest that retinoids could play a role in affective disorders. This report reviews the evidence in this area and describes several systems that may be targets of retinoic acid and which contribute

  2. Conceptual biotransformation of 4-oxo-all-trans-retinoic acid, 4-oxo-13-cis-retinoic acid and all-trans-retinoyl-beta-glucuronide in rat whole embryo culture.

    PubMed

    Creech Kraft, J; Juchau, M R

    1992-05-28

    In cultured rat conceptuses, intraamniotic microinjections of 2500 ng/mL of 4-oxo-13-cis-retinoic acid, 600 ng/mL 4-oxo-all-trans-retinoic acid or 4000 ng/mL all-trans-retinoyl-beta-glucuronide, produce qualitatively and quantitatively similar patterns of dysmorphogenesis as those reported after the intraamniotic microinjection of 250 ng/mL all-trans-retinoic acid [Lee et al., Teratology 44: 313-323, 1991; Creech Kraft et al., Teratology 45: 259-270, 1992]. In the present study, we utilized HPLC techniques to analyze retinoid levels in cultured rat conceptuses, 1.5 hr after intraamniotic microinjections of 4-oxo-13-cis-retinoic acid (2500 ng/mL), 4-oxo-all-trans-retinoic acid (600 ng/mL) or all-trans-retinoyl-beta-glucuronide (4000 ng/mL). Our findings show that, after the microinjections of 4-oxo-all-trans-retinoic acid or 4-oxo-13-cis-retinoic acid (at these selected concentrations), 4-oxo-all-trans-retinoic acid was predominant in the embryos proper at concentrations of about 200 nM. This was roughly equivalent to the levels of all-trans-retinoic acid assayed after microinjections of all-trans-retinoyl-beta-glucuronide (4000 ng/mL). We conclude from these studies that both 4-oxo-all-trans-retinoic acid and all-trans-retinoic acid behave as ultimate or proximate dysmorphogens.

  3. On the role of transforming growth factor-beta in the growth inhibitory effects of retinoic acid in human pancreatic cancer cells.

    PubMed

    Singh, Brahmchetna; Murphy, Richard F; Ding, Xian-Zhong; Roginsky, Alexandra B; Bell, Richard H; Adrian, Thomas E

    2007-12-24

    Retinoids are potent growth inhibitory and differentiating agents in a variety of cancer cell types. We have shown that retinoids induce growth arrest in all pancreatic cancer cell lines studied, regardless of their p53 and differentiation status. However, the mechanism of growth inhibition is not known. Since TGF-beta2 is markedly induced by retinoids in other cancers and mediates MUC4 expression in pancreatic cancer cells, we investigated the role of TGF-beta in retinoic acid-mediated growth inhibition in pancreatic cancer cells. Retinoic acid markedly inhibited proliferation of two cell lines (Capan-2 and Hs766T) in a concentration and time-dependent manner. Retinoic acid increased TGF-beta2 mRNA content and secretion of the active and latent forms of TGF-beta2 (measured by ELISA and bioassay). The concentrations of active and TGF-beta2 secreted in response to 0.1 - 10 muM retinoic acid were between 1-5 pM. TGF-beta2 concentrations within this range also inhibited proliferation. A TGF-beta neutralizing antibody blocked the growth inhibitory effects of retinoic acid in Capan-2 cells and partially inhibitory the effects in Hs766T cells. These findings indicate that TGF-beta can cause growth inhibition of pancreatic cancer cells, in a p53-independent manner. Furthermore, it demonstrates the fundamental role of TGF-beta in growth inhibition in response to retinoic acid treatment is preserved in vitro.

  4. Evaluation of retinoic acid ophthalmic emulsion in dry eye.

    PubMed

    Selek, H; Unlü, N; Orhan, M; Irkeç, M

    2000-01-01

    An oil in water emulsion of 0.01% all-trans-retinoic acid (tretinoin) was prepared and clinically evaluated in dry eye patients. The ophthalmic emulsion consisted of 10% of arachis oil and 90% of the hydrogel of Carbopol 940. To evaluate retinoic acid emulsion clinically, a placebo-controlled, open-labeled, randomized study was performed with 22 dry-eye patients. Symptoms were recorded before and after the treatments. The Schirmer I test, measurement of tear film break-up time (BUT), rose Bengal and fluorescein staining of cornea and conjunctiva, and mucus fern test were done. Retinoic acid did not improve the dryness, photophobia and foreign body sensation more than placebo. Schirmer test and BUT were significantly improved by retinoic acid treatment. Corneal and conjunctival epithelium maintained their characteristics during the use of retinoic acid, as indicated by rose Bengal and fluorescein staining. Ophthalmic emulsion of retinoic acid can be suggested as a promising approach for the treatment of dry eye.

  5. Solid-state stability studies of 13-cis-retinoic acid and all-trans-retinoic acid using microcalorimetry and HPLC analysis.

    PubMed

    Tan, X; Meltzer, N; Lindebaum, S

    1992-09-01

    The solid-state stabilities of 13-cis-retinoic acid and all-trans-retinoic acid in the presence and absence of oxygen were investigated. The samples were first evaluated using microcalorimetry. The rate laws of different samples under different conditions were deduced from the shapes of the heat flow curves, and the activation energies of the reactions were determined from Arrhenius plots. Under an air atmosphere, the decomposition of 13-cis-retinoic acid is an autocatalytic reaction, while all-trans-retinoic acid undergoes a zero-order process. The degradation of the two compounds at a selected elevated temperature was also determined utilizing HPLC analysis. This technique confirmed the decomposition kinetics. Hence, their half-lives and shelf lives at room temperature could be calculated. Under a nitrogen atmosphere, the microcalorimetric experiment showed a first-order phenomenon for both samples, but HPLC analysis showed no degradation, suggesting that the two samples, in the absence of oxygen, undergo only a physical change.

  6. A sensitive high-pressure liquid chromatography/particle beam/mass spectrometry assay for the determination of all-trans-retinoic acid and 13-cis-retinoic acid in human plasma.

    PubMed

    Lehman, P A; Franz, T J

    1996-03-01

    A highly sensitive assay for the measurement of all-trans-retinoic acid (tretinoin) and 13-cis-retinoic acid (isotretinoin) has been developed. Collected plasma samples were protein precipitated with 2-propanol followed by solid phase extraction. The retinoic acids were subsequently derivatized to their pentafluorobenzyl esters followed by separation and isolation by reverse phase high-pressure liquid chromatography. The HPLC eluate was directed to a mass spectrometer via a particle beam interface. Selected ion monitoring (299 m/z) for the retinoic acid's carboxylate anion produced by negative chemical ionization using methane reagent gas achieved minimum detection limits of 25 pg injected. Endogenous blood levels in 19 male and 9 female subjects were measured. It was found that females have significantly more all-trans-retinoic acid than males and that both sexes demonstrate significantly more all-trans-retinoic acid then 13-cis-retinoic acid.

  7. Retinoic acid signaling pathways in development and diseases.

    PubMed

    Das, Bhaskar C; Thapa, Pritam; Karki, Radha; Das, Sasmita; Mahapatra, Sweta; Liu, Ting-Chun; Torregroza, Ingrid; Wallace, Darren P; Kambhampati, Suman; Van Veldhuizen, Peter; Verma, Amit; Ray, Swapan K; Evans, Todd

    2014-01-15

    Retinoids comprise a group of compounds each composed of three basic parts: a trimethylated cyclohexene ring that is a bulky hydrophobic group, a conjugated tetraene side chain that functions as a linker unit, and a polar carbon-oxygen functional group. Biochemical conversion of carotenoid or other retinoids to retinoic acid (RA) is essential for normal regulation of a wide range of biological processes including development, differentiation, proliferation, and apoptosis. Retinoids regulate various physiological outputs by binding to nuclear receptors called retinoic acid receptors (RARs) and retinoid X receptors (RXRs), which themselves are DNA-binding transcriptional regulators. The functional response of RA and their receptors are modulated by a host of coactivators and corepressors. Retinoids are essential in the development and function of several organ systems; however, deregulated retinoid signaling can contribute to serious diseases. Several natural and synthetic retinoids are in clinical use or undergoing trials for treating specific diseases including cancer. In this review, we provide a broad overview on the importance of retinoids in development and various diseases, highlighting various retinoids in the drug discovery process, ranging all the way from retinoid chemistry to clinical uses and imaging. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Proteinuria Impairs Podocyte Regeneration by Sequestering Retinoic Acid

    PubMed Central

    Peired, Anna; Angelotti, Maria Lucia; Ronconi, Elisa; la Marca, Giancarlo; Mazzinghi, Benedetta; Sisti, Alessandro; Lombardi, Duccio; Giocaliere, Elisa; Della Bona, Marialuisa; Villanelli, Fabio; Parente, Eliana; Ballerini, Lara; Sagrinati, Costanza; Wanner, Nicola; Huber, Tobias B.; Liapis, Helen; Lazzeri, Elena; Lasagni, Laura

    2013-01-01

    In CKD, the risk of kidney failure and death depends on the severity of proteinuria, which correlates with the extent of podocyte loss and glomerular scarring. We investigated whether proteinuria contributes directly to progressive glomerulosclerosis through the suppression of podocyte regeneration and found that individual components of proteinuria exert distinct effects on renal progenitor survival and differentiation toward a podocyte lineage. In particular, albumin prevented podocyte differentiation from human renal progenitors in vitro by sequestering retinoic acid, thus impairing retinoic acid response element (RARE)-mediated transcription of podocyte-specific genes. In mice with Adriamycin nephropathy, a model of human FSGS, blocking endogenous retinoic acid synthesis increased proteinuria and exacerbated glomerulosclerosis. This effect was related to a reduction in podocyte number, as validated through genetic podocyte labeling in NPHS2.Cre;mT/mG transgenic mice. In RARE-lacZ transgenic mice, albuminuria reduced retinoic acid bioavailability and impaired RARE activation in renal progenitors, inhibiting their differentiation into podocytes. Treatment with retinoic acid restored RARE activity and induced the expression of podocyte markers in renal progenitors, decreasing proteinuria and increasing podocyte number, as demonstrated in serial biopsy specimens. These results suggest that albumin loss through the damaged filtration barrier impairs podocyte regeneration by sequestering retinoic acid and promotes the generation of FSGS lesions. Our findings may explain why reducing proteinuria delays CKD progression and provide a biologic rationale for the clinical use of pharmacologic modulators to induce regression of glomerular diseases. PMID:23949798

  9. Metformin inhibition of neuroblastoma cell proliferation is differently modulated by cell differentiation induced by retinoic acid or overexpression of NDM29 non-coding RNA.

    PubMed

    Costa, Delfina; Gigoni, Arianna; Würth, Roberto; Cancedda, Ranieri; Florio, Tullio; Pagano, Aldo

    2014-01-01

    Metformin is a widely used oral hypoglycemizing agent recently proposed as potential anti-cancer drug. In this study we report the antiproliferative effect of metformin treatment in a high risk neuroblastoma cell model, focusing on possible effects associated to different levels of differentiation and/or tumor initiating potential. Antiproliferative and cytotoxic effects of metformin were tested in human SKNBE2 and SH-SY5Y neuroblastoma cell lines and in SKNBE2 cells in which differentiation is induced by retinoic acid treatment or stable overexpression of NDM29 non-coding RNA, both conditions characterized by a neuron-like differentiated phenotype. We found that metformin significantly inhibits the proliferation of NB cells, an effect that correlates with the inhibition of Akt, while AMPK activity resulted unchanged. Notably, metformin effects were modulated in a different ways by differentiating stimuli, being abolished after retinoic acid treatment but potentiated by overexpression of NDM29. These data suggest the efficacy of metformin as neuroblastoma anticancer agent, and support the requirement of further studies on the possible role of the differentiation status on the antiproliferative effects of this drug.

  10. NRF2 Mediates Neuroblastoma Proliferation and Resistance to Retinoic Acid Cytotoxicity in a Model of In Vitro Neuronal Differentiation.

    PubMed

    de Miranda Ramos, Vitor; Zanotto-Filho, Alfeu; de Bittencourt Pasquali, Matheus Augusto; Klafke, Karina; Gasparotto, Juciano; Dunkley, Peter; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca

    2016-11-01

    Retinoic acid (RA) morphogenetic properties have been used in different kinds of therapies, from neurodegenerative disorders to some types of cancer such as promyelocytic leukemia and neuroblastoma. However, most of the pathways responsible for RA effects remain unknown. To investigate such pathways, we used a RA-induced differentiation model in the human neuroblastoma cells, SH-SY5Y. Our data showed that n-acetyl-cysteine (NAC) reduced cells' proliferation rate and increased cells' sensitivity to RA toxicity. Simultaneously, NAC pre-incubation attenuated nuclear factor erythroid 2-like factor 2 (NRF2) activation by RA. None of these effects were obtained with Trolox ® as antioxidant, suggesting a cysteine signalization by RA. NRF2 knockdown increased cell sensibility to RA after 96 h of treatment and diminished neuroblastoma proliferation rate. Conversely, NRF2 overexpression limited RA anti-proliferative effects and increased cell proliferation. In addition, a rapid and non-genomic activation of the ERK 1/2 and PI3K/AKT pathways revealed to be equally required to promote NRF2 activation and necessary for RA-induced differentiation. Together, we provide data correlating NRF2 activity with neuroblastoma proliferation and resistance to RA treatments; thus, this pathway could be a potential target to optimize neuroblastoma chemotherapeutic response as well as in vitro neuronal differentiation protocols.

  11. Metabolic characteristics of 13-cis-retinoic acid (isotretinoin) and anti-tumour activity of the 13-cis-retinoic acid metabolite 4-oxo-13-cis-retinoic acid in neuroblastoma

    PubMed Central

    Sonawane, Poonam; Cho, Hwang Eui; Tagde, Ashujit; Verlekar, Dattesh; Yu, Alice L; Reynolds, C Patrick; Kang, Min H

    2014-01-01

    Background and Purpose Isotretinoin (13-cis-retinoic acid; 13-cRA) is a differentiation inducer used to treat minimal residual disease after myeloablative therapy for high-risk neuroblastoma. However, more than 40% of children develop recurrent disease during or after 13-cRA treatment. The plasma concentrations of 13-cRA in earlier studies were considered subtherapeutic while 4-oxo-13-cis-RA (4-oxo-13-cRA), a metabolite of 13-cRA considered by some investigators as inactive, were greater than threefold higher than 13-cRA. We sought to define the metabolic pathways of 13-cRA and investigated the anti-tumour activity of its major metabolite, 4-oxo-13-cRA. Experimental Approach Effects of 13-cRA and 4-oxo-13-cRA on human neuroblastoma cell lines were assessed by DIMSCAN and flow cytometry for cell proliferation, MYCN down-regulation by reverse transcription PCR and immunoblotting, and neurite outgrowth by confocal microscopy. 13-cRA metabolism was determined using tandem MS in human liver microsomes and in patient samples. Key Results Six major metabolites of 13-cRA were identified in patient samples. Of these, 4-oxo-13-cRA was the most abundant, and 4-oxo-13-cRA glucuronide was also detected at a higher level in patients. CYP3A4 was shown to play a major role in catalysing 13-cRA to 4-oxo-13-cRA. In human neuroblastoma cell lines, 4-oxo-13-cRA and 13-cRA were equi-effective at inducing neurite outgrowth, inhibiting proliferation, decreasing MYCN mRNA and protein, and increasing the expression of retinoic acid receptor-β mRNA and protein levels. Conclusions and Implications We showed that 4-oxo-13-cRA is as active as 13-cRA against neuroblastoma cell lines. Plasma levels of both 13-cRA and 4-oxo-13-cRA should be evaluated in pharmacokinetic studies of isotretinoin in neuroblastoma. PMID:25039756

  12. Metabolic characteristics of 13-cis-retinoic acid (isotretinoin) and anti-tumour activity of the 13-cis-retinoic acid metabolite 4-oxo-13-cis-retinoic acid in neuroblastoma.

    PubMed

    Sonawane, Poonam; Cho, Hwang Eui; Tagde, Ashujit; Verlekar, Dattesh; Yu, Alice L; Reynolds, C Patrick; Kang, Min H

    2014-12-01

    Isotretinoin (13-cis-retinoic acid; 13-cRA) is a differentiation inducer used to treat minimal residual disease after myeloablative therapy for high-risk neuroblastoma. However, more than 40% of children develop recurrent disease during or after 13-cRA treatment. The plasma concentrations of 13-cRA in earlier studies were considered subtherapeutic while 4-oxo-13-cis-RA (4-oxo-13-cRA), a metabolite of 13-cRA considered by some investigators as inactive, were greater than threefold higher than 13-cRA. We sought to define the metabolic pathways of 13-cRA and investigated the anti-tumour activity of its major metabolite, 4-oxo-13-cRA. Effects of 13-cRA and 4-oxo-13-cRA on human neuroblastoma cell lines were assessed by DIMSCAN and flow cytometry for cell proliferation, MYCN down-regulation by reverse transcription PCR and immunoblotting, and neurite outgrowth by confocal microscopy. 13-cRA metabolism was determined using tandem MS in human liver microsomes and in patient samples. Six major metabolites of 13-cRA were identified in patient samples. Of these, 4-oxo-13-cRA was the most abundant, and 4-oxo-13-cRA glucuronide was also detected at a higher level in patients. CYP3A4 was shown to play a major role in catalysing 13-cRA to 4-oxo-13-cRA. In human neuroblastoma cell lines, 4-oxo-13-cRA and 13-cRA were equi-effective at inducing neurite outgrowth, inhibiting proliferation, decreasing MYCN mRNA and protein, and increasing the expression of retinoic acid receptor-β mRNA and protein levels. We showed that 4-oxo-13-cRA is as active as 13-cRA against neuroblastoma cell lines. Plasma levels of both 13-cRA and 4-oxo-13-cRA should be evaluated in pharmacokinetic studies of isotretinoin in neuroblastoma. © 2014 The British Pharmacological Society.

  13. Visual pigments. 11. Spectroscopy and photophysics of retinoic acids and all-trans-methyl retinoate. [Photophysical properties at 77/sup 0/K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takemura, T.; Chihara, K.; Becker, R.S.

    1980-04-09

    The photophysics of hydrogen-bonded complexes of retinoic acid and its 9-cis and 13-cis isomers and the photophysics of the dimers of these isomers of retinoic acid were studied. The investigation indicated that complexes of retinoic acid and molecules that form hydrogen bonds with the carbonyl oxygen of retinoic acid (type I complexes) have both higher radiative and nonradiative rate constants than do hydrogen-bonded complexes of retinoic acid and molecules that form hydrogen bonds only with the hydroxyl oxygen of retinoic acid (type II complexes). For all-trans-retinoic acid in 3-methylpentane at 77 K, the type I complexes have radiative rate constantsmore » approximately equal to or greater than 2 x 10/sup 8/ s/sup -1/ and nonradiative rate constants greater than 3 x 10/sup 8/ s/sup -1/. Both the radiative and nonradiative rate constants of the type II complexes of all-trans-retinoic acid at 77 K in 3-methylpentane are less than 1 x 10/sup 8/ s/sup -1/. The dimer of retinoic acid (K(association) = 1 x 10/sup 4/ M/sup -1/ at room temperature for the all-trans isomer) behaves like a type I complex, and its excited-state properties are better understood in terms of hydrogen bonding than in terms of an exciton model. The photophysical properties and triplet-triplet absorption spectrum of methyl retinoate were measured. The study concluded with an examination of some of the implications of this work for the role of hydrogen bonding in the dimers and monomers of retinal and retinol.« less

  14. Quantitative high-performance liquid chromatographic determination of retinoids in human serum using on-line solid-phase extraction and column switching. Determination of 9-cis-retinoic acid, 13-cis-retinoic acid, all-trans-retinoic acid, 4-oxo-all-trans-retinoicacid and 4-oxo-13-cis-retinoic acid.

    PubMed

    Gundersen, T E; Lundanes, E; Blomhoff, R

    1997-03-28

    A fully automated isocratic high-performance liquid chromatographic method for the determination of 9-cis-retinoic acid, 13-cis-retinoic acid, all-trans-retinoic acid, 4-oxo-13-cis-retinoic acid and 4-oxo-all-trans-retinoic acid, has been developed using on-line solid-phase extraction and a column switching technique allowing clean-up and pre-concentration in a single step. A 500-microliter sample of serum was diluted with 750 microliters of a solution containing 20% acetonitrile and the internal standard 9,10-dimethylanthracene. About 1000 microliters of this mixture was injected on a 20 x 4.6 mm I.D. poly ether ether ketone (PEEK) pre-column with titanium frits packed with Bondapak C18, 37-53 microns, 300 A particles. Proteins and very polar compounds were washed out to waste, from the pre-column, with 0.05% trifluoroacetic acid (TFA)-acetonitrile (8.5:1.5, v/v). More than 200 aliquots of diluted serum could be injected on this pre-column before elevated back-pressure enforces replacement. Components retained on the pre-column were backflushed to the analytical column for separation and detection at 360 nm. Baseline separation was achieved using a single 250 x 4.6 mm I.D. Suplex pKb-100 column and a mobile phase containing 69:10:2:16:3 (v/v) of acetonitrile-methanol-n-butanol-2% ammonium acetate-glacial acetic acid. A total time of analysis of less than 30 min, including sample preparation, was achieved. Recoveries were in the range of 79-86%. The limit of detection was 1-7 ng/ml serum and the precision, in the concentration range 20-1000 ng/ml, was between 1.3 and 4.5% for all five compounds. The method was applied for the analysis of human serum after oral administration of 60 mg Roaccutan. The method is well suited for pharmacological studies, while the endogenous levels of some retinoic acid isomers are below the limit of quantitation.

  15. 13-cis retinoic acid and isomerisation in paediatric oncology--is changing shape the key to success?

    PubMed

    Armstrong, Jane L; Redfern, Christopher P F; Veal, Gareth J

    2005-05-01

    Retinoic acid isomers have been used with some success as chemotherapeutic agents, most recently with 13-cis retinoic acid showing impressive clinical efficacy in the paediatric malignancy neuroblastoma. The aim of this commentary is to review the evidence that 13-cis retinoic acid is a pro-drug, and consider the implications of retinoid metabolism and isomerisation for the further development of retinoic acid for cancer therapy. The low binding affinity of 13-cis retinoic acid for retinoic acid receptors, low activity in gene expression assays and the accumulation of the all-trans isomer in cells treated with 13-cis retinoic acid, coupled with the more-favourable pharmacokinetic profile of 13-cis retinoic acid compared to other isomers, suggest that intracellular isomerisation to all-trans retinoic acid is the key process underlying the biological activity of 13-cis retinoic acid. Intracellular metabolism of all-trans retinoic acid by a positive auto-regulatory loop may result in clinical resistance to retinoic acid. Agents that block or reduce the metabolism of all-trans retinoic acid are therefore attractive targets for drug development. Devising strategies to deliver 13-cis retinoic acid to tumour cells and facilitate the intracellular isomerisation of 13-cis retinoic acid, while limiting metabolism of all-trans retinoic acid, may have a major impact on the efficacy of 13-cis retinoic acid in paediatric oncology.

  16. RETINOIC ACID SYNTHESIS AND DEGRADATION

    PubMed Central

    Kedishvili, Natalia Y.

    2017-01-01

    Retinoic acid was identified as the biologically active form of vitamin A almost 70 years ago, but the exact enzymes and control mechanisms that regulate its biosynthesis and degradation are yet to be fully defined. The currently accepted model postulates that RA is produced in two sequential oxidative steps: first, retinol is oxidized reversibly to retinaldehyde, and then retinaldehyde is oxidized irreversibly to RA, which is inactivated by conversion to hydroxylated derivatives. This chapter describes the history, development and recent advances in our understanding of the enzymatic pathways and mechanisms that control the rate of RA production and degradation. Gene knockout studies provided strong evidence that the members of the short chain dehydrogenase reductase superfamily of proteins play indispensable roles in retinoic acid biosynthesis during development. Furthermore, recent finding that two of these proteins regulate the rate of retinoic acid biosynthesis by mutually activating each other provided a novel insight into the mechanism of this regulation. Despite significant progress made since the middle of the 20th century many unanswered questions still remain, and there is much to be learned, especially about trafficking of the hydrophobic retinoid substrates between membrane bound and cytosolic enzymes and the roles of the retinoid binding proteins. PMID:27830503

  17. Determination of the kinetics of degradation of 13-cis-retinoic acid and all-trans-retinoic acid in solution.

    PubMed

    Tan, X; Meltzer, N; Lindenbaum, S

    1993-09-01

    The degradations of 13-cis-retinoic acid and all-trans-retinoic acid in an organic solvent were determined with an HPLC assay. The degradation curves at 70, 50 and 37 degrees C all showed autocatalytic characteristics for both isomers. For this kind of complex reaction, the usual method cannot be used to estimate the shelf-lives and half-lives at room temperature. In this work a new method was developed to directly calculate the shelf-lives and half-lives. From this equation the activation energy was found to change as the multiple step reaction progressed.

  18. Cooxidation of 13-cis-retinoic acid by prostaglandin H synthase.

    PubMed

    Samokyszyn, V M; Sloane, B F; Honn, K V; Marnett, L J

    1984-10-30

    Cooxidative metabolism of 13-cis-retinoic acid (13-CIS) via prostaglandin H synthase was investigated employing ram seminal vesicle microsomes. Oxidation of 13-CIS utilizing H2O2, 13-hydroperoxy-9-cis-11-trans-octadecadienoic acid (13-OOH-18:2), or 1-hydroperoxy-5-phenyl-4-pentene was detected by measurement of O2 incorporation. UV spectroscopy and HPLC of extracted incubation mixtures demonstrated that 13-CIS was metabolized to oxidized derivatives. Similar spectral changes and HPLC profiles were obtained with H2O2, 13-OOH-18:2, or arachidonic acid as substrates. 4-Hydroxy-13-cis-retinoic acid and all trans-retinoic acid were products of cooxidation as well as other polar metabolites. Oxidation was inhibited by the antioxidant butylated hydroxyanisole and the spin trap, nitrosobenzene. These results indicate that 13-cis-retinoic acid is cooxidized by prostaglandin H synthase and suggest a free radical mechanism resembling that of lipid peroxidation.

  19. Azadirachtin Interacts with Retinoic Acid Receptors and Inhibits Retinoic Acid-mediated Biological Responses*

    PubMed Central

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B.; Sureshkumar, Chitta; Manna, Sunil K.

    2011-01-01

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies. PMID:21127062

  20. Azadirachtin interacts with retinoic acid receptors and inhibits retinoic acid-mediated biological responses.

    PubMed

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B; Sureshkumar, Chitta; Manna, Sunil K

    2011-02-11

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies.

  1. Exogenous retinoic acid induces digit reduction in opossums (Monodelphis domestica) by disrupting cell death and proliferation, and apical ectodermal ridge and zone of polarizing activity function.

    PubMed

    Molineaux, Anna C; Maier, Jennifer A; Schecker, Teresa; Sears, Karen E

    2015-03-01

    Retinoic acid (RA) is a vitamin A derivative. Exposure to exogenous RA generates congenital limb malformations (CLMs) in species from frogs to humans. These CLMs include but are not limited to oligodactyly and long-bone hypoplasia. The processes by which exogenous RA induces CLMs in mammals have been best studied in mouse, but as of yet remain unresolved. We investigated the impact of exogenous RA on the cellular and molecular development of the limbs of a nonrodent model mammal, the opossum Monodelphis domestica. Opossums exposed to exogenous retinoic acid display CLMs including oligodactly, and results are consistent with opossum development being more susceptible to RA-induced disruptions than mouse development. Exposure of developing opossums to exogenous RA leads to an increase in cell death in the limb mesenchyme that is most pronounced in the zone of polarizing activity, and a reduction in cell proliferation throughout the limb mesenchyme. Exogenous RA also disrupts the expression of Shh in the zone of polarizing activity, and Fgf8 in the apical ectodermal ridge, and other genes with roles in the regulation of limb development and cell death. Results are consistent with RA inducing CLMs in opossum limbs by disrupting the functions of the apical ectodermal ridge and zone of polarizing activity, and driving an increase in cell death and reduction of cell proliferation in the mesenchyme of the developing limb. © 2015 Wiley Periodicals, Inc.

  2. Low-dose retinoic acid enhances in vitro invasiveness of human oral squamous-cell-carcinoma cell lines

    PubMed Central

    Uchida, D; Kawamata, H; Nakashiro, K; Omotehara, F; Hino, S; Hoque, M O; Begum, N-M; Yoshida, H; Sato, M; Fujimori, T

    2001-01-01

    Retinoids inhibit the proliferation of several types of tumour cells, and are used for patients with several malignant tumours. In this study, we examined the effect of retinoic acids (RAs) on the invasive potentials of the oral squamous cell carcinoma (SCC) cells, BHY and HNt. BHY cells expressed all of retinoid nuclear receptors (RARα, β, γ, and RXRα) and cytoplasmic retinoic acid binding proteins (CRABP1 and CRABP2). HNt cells lacked the expression of RARβ, but expressed other nuclear receptors and CRABPs. All-trans retinoic acid (ATRA) and 13-cis retinoic acid (13-cisRA) (10−6and 10−7M) inhibited the growth of the cells, but low-dose ATRA and 13-cisRA (10−8M) marginally affected the growth of the cells. Surprisingly, low-dose RAs enhanced the activity of tissue-type plasminogen activator (tPA), and activated pro-matrix metalloproteinases (proMMP2 and proMMP9). Activation of proMMP2 and proMMP9 was inhibited by aprotinin, a serine-proteinase, tPA inhibitor. Furthermore, low-dose RAs enhanced the in vitro invasiveness of BHY cells. These results indicate that low-dose RAs enhances the in vitro invasiveness of oral SCC cells via an activation of proMMP2 and proMMP9 probably mediated by the induction of tPA. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11437413

  3. Heterodimeric BMP-2/7 Antagonizes the Inhibition of All-Trans Retinoic Acid and Promotes the Osteoblastogenesis

    PubMed Central

    Bi, Wenjuan; Gu, Zhiyuan; Zheng, Yuanna; Zhang, Xiao; Guo, Jing; Wu, Gang

    2013-01-01

    Objectives Hypervitaminosis A and alcoholism can result in a low mineral density and compromised regenerative capacity of bone, thus delaying implant osteointegration. The inhibitory effect of all-trans retinoic acid on osteoblastogenesis is considered to be one of the mechanisms. We hypothesized that heterodimeric bone morphogenetic protein-2/7 could antagonize all-trans retinoic acid and enhance osteoblastogenesis, with an aim to accelerate and enhance bone regeneration and implant osteointegration. Materials and Methods We applied 5 ng/ml or 50 ng/ml bone morphogenetic protein-2/7 to restore the osteoblastogenesis of pre-osteoblasts (MC3T3-E1 cell line) that was inhibited by 1 µM all-trans retinoic acid. We evaluated the efficacy by assessing cell numbers (proliferation), alkaline phosphatase activity (a marker for early differentiation), osteocalcin (a marker for late differentiation), calcium deposition (a marker for final mineralization) and the expression of osteoblastogenic genes (such as Runx2, Collagen Ia, alkaline phosphatase and osteocalcin) at different time points. Results All-trans retinoic acid significantly inhibited the expression of all the tested osteoblastogenic genes and proteins except alkaline phosphatase activity. In the presence of ATRA, 50 ng/ml bone morphogenetic protein-2/7 not only completely restored but also significantly enhanced all the osteoblastogenic genes and proteins. On the 28th day, mineralization was completely inhibited by all-trans retinoic acid. In contrast, 50 ng/ml BMP-2/7 could antagonize ATRA and significantly enhance the mineralization about 2.5 folds in comparison with the control treatment (no ATRA, no BMP2/7). Conclusions Heterodimeric bone morphogenetic protein-2/7 bears a promising application potential to significantly promote bone regeneration and implant osteointegration for the patients with hypervitaminosis A and alcoholism. PMID:24205156

  4. Hydroperoxide-dependent cooxidation of 13-cis-retinoic acid by prostaglandin H synthase.

    PubMed

    Samokyszyn, V M; Marnett, L J

    1987-10-15

    Reverse phase high pressure liquid chromatography was employed to separate the major products resulting from the hydroperoxide-dependent cooxidation of 13-cis-retinoic acid by microsomal and purified prostaglandin H (PGH) synthase. Several major oxygenated metabolites including 4-hydroxy-, 5,6-epoxy-, and 5,8-oxy-13-cis-retinoic acid were unambiguously identified on the basis of cochromatography with authentic standards, uv spectra, and mass spectral analysis. Identical product profiles were generated regardless of the type of oxidizing substrate employed, and heat-denatured microsomes or enzyme did not support oxidation. In addition, several geometric isomers including all trans-retinoic acid were identified. Isomerization to all trans-retinoic acid in microsomes occurred in the absence of exogenous hydroperoxide, was insensitive to inhibition by antioxidant, and was eliminated when heat-denatured preparations were substituted for intact microsomes. Conversely, isomerization to at least one other isomer required the addition of hydroperoxide and was sensitive to antioxidant inhibition. Addition of antioxidant to microsomal incubation mixtures inhibited the hydroperoxide-dependent generation of 5,6-epoxy- and 5,8-oxy-13-cis-retinoic acid and other oxygenated metabolites but stimulated the formation of 4-hydroxy-13-cis-retinoic acid. Under standard conditions, 77% of the original retinoid was metabolized resulting in products containing 1.25 oxygen atoms/oxygenated metabolite, and two dioxygen molecules were consumed per hydroperoxide reduced. Purified PGH synthase also supported O2 uptake during cooxidation of 13-cis-retinoic acid by H2O2 or 5-phenyl-4-pentenyl-1-hydroperoxide, and the initial velocities of O2 uptake were directly proportional to enzyme concentration. 13-cis-Retinoic acid effectively inhibited peroxidase-dependent cooxidation of guaiacol indicating a direct interaction of retinoid with peroxidase iron-oxo intermediates, and EPR spin trapping

  5. Identification and quantitation of all-trans- and 13-cis-retinoic acid and 13-cis-4-oxoretinoic acid in human plasma.

    PubMed

    Eckhoff, C; Nau, H

    1990-08-01

    Human plasma was analyzed by high performance liquid chromatography for the presence of retinoic acid and 4-oxoretinoic acid isomers. Peaks that coeluted with the reference compounds all-trans-retinoic acid, 13-cis-retinoic acid, and 13-cis-4-oxoretinoic acid were routinely observed in human plasma. These retinoids were unequivocally identified by the following methods: comigration with reference compounds under several high performance liquid chromatographic conditions; comparison of ultraviolet spectra with those of reference compounds; derivatization with diazomethane and coelution of the methyl esters with reference compounds in a high performance liquid chromatographic system as well as in a gas chromatography system with a mass selective detector. In vitro formation of 13-cis-retinoic acid and 13-cis-4-oxoretinoic acid as artifacts during the analytical procedure was excluded by control experiments. The mean plasma concentrations of the vitamin A metabolites in ten male volunteers were: all-trans-retinoic acid: 1.32 +/- 0.46 ng/ml; 13-cis-retinoic acid: 1.63 +/- 0.85 ng/ml; and 13-cis-4-oxoretinoic acid: 3.68 +/- 0.99 ng/ml. After oral dosing with vitamin A (833 IU/kg body weight) in five male volunteers, mean plasma all-trans-retinoic acid increased to 3.92 +/- 1.40 ng/ml and 13-cis-retinoic acid increased to 9.75 +/- 2.18 ng/ml. Maximal plasma 13-cis-4-oxoretinoic acid concentrations (average 7.60 +/- 1.45 ng/ml) were observed 6 h after dosing which was the last time point in this study. Concentrations of all-trans-4-oxoretinoic acid were low or not detectable. Our findings suggest that, in addition to all-trans-retinoic acid, 13-cis-retinoic acid and 13-cis-4-oxoretinoic acid are present in normal human plasma as metabolites of vitamin A.

  6. 13-cis Retinoic acid induces apoptosis and cell cycle arrest in human SEB-1 sebocytes.

    PubMed

    Nelson, Amanda M; Gilliland, Kathryn L; Cong, Zhaoyuan; Thiboutot, Diane M

    2006-10-01

    Isotretinoin (13-cis retinoic acid (13-cis RA)) is the most potent inhibitor of sebum production, a key component in the pathophysiology of acne, yet its mechanism of action remains largely unknown. The effects of 13-cis RA, 9-cis retinoic acid (9-cis RA), and all-trans retinoic acid (ATRA) on cell proliferation, apoptosis, and cell cycle proteins were examined in SEB-1 sebocytes and keratinocytes. 13-cis RA causes significant dose-dependent and time-dependent decreases in viable SEB-1 sebocytes. A portion of this decrease can be attributed to cell cycle arrest as evidenced by decreased DNA synthesis, increased p21 protein expression, and decreased cyclin D1. Although not previously demonstrated in sebocytes, we report that 13-cis RA induces apoptosis in SEB-1 sebocytes as shown by increased Annexin V-FITC staining, increased TUNEL staining, and increased cleaved caspase 3 protein. Furthermore, the ability of 13-cis RA to induce apoptosis cannot be recapitulated by 9-cis RA or ATRA, and it is not inhibited by the presence of a retinoid acid receptor (RAR) pan-antagonist AGN 193109. Taken together these data indicate that 13-cis RA causes cell cycle arrest and induces apoptosis in SEB-1 sebocytes by a RAR-independent mechanism, which contributes to its sebosuppressive effect and the resolution of acne.

  7. The comparison of the rejuvenation effects on the skin of Wistar rats between 10600 nm CO2 fractional laser and retinoic acid.

    PubMed

    Qu, Y; Ma, W-Y; Sun, Q

    2017-04-01

    The fractional laser and topical retinoic acid treatment have been applied for skin rejuvenation; however, the possible molecular mechanism of promoting remodeling of dermis is not clearly. Here we aimed to compare the effects of 10600 nm CO2 fractional laser and topical retinoic acid formulation on the skin collagen proliferation of Wistar rats, and to further explore the possible molecular mechanism of promoting remodeling of dermis. The hair on the back of Wistar rats was removed, and the back was divided equally into four regions with the cross-streaking method: A (the control group), B (the retinoic acid group), C (retinoic acid and fractional laser combination treatment group), and D (the fractional laser group). Specimens were collected at 3rd day and in 1-8 weeks after CO2 fractional laser irradiation; then they were used for detection of the changes of dermis thickness and content of hydroxyproline in the four regions of the rats' back. Real-time PCR method was used to detect the dynamic changes of the expression level of type III procollagen mRNA and the expression levels of miR-29a, Akt and transforming growth factor-β (TGF-β) mRNA at 3rd week in the skin tissue of Wistar rats. The thickness of dermis, content of hydroxyproline and expression level of type III procollagen mRNA in the treatment groups (B, C, and D) were found all significantly increased compared with those in the control group (A) (p<0.05); at 3rd week, up-regulation of Akt and TGF-β mRNA expression and down-regulation of miR-29a mRNA expression were observed in the treatment groups (B, C, and D). The difference in the combination treatment group (C) was the most significant (p<0.05). These results demonstrate that retinoic acid formulation and CO2 fractional laser both can promote collagen proliferation and reconstruction, with the skin rejuvenation efficacy in group C > group D > group B. miR-29a/Akt/TGF-β signal pathways may play a certain role in the promotion of collagen

  8. Nutrigenomic regulation of adipose tissue development --- role of retinoic acid: A review

    PubMed Central

    Wang, Bo; Yang, Qiyuan; Harris, Corrine L.; Nelson, Mark L.; Busboom, Jan R.; Zhu, Mei-Jun; Du, Min

    2016-01-01

    To improve the efficiency of animal production, livestock have been extensively selected or managed to reduce fat accumulation and increase lean growth, which reduces intramuscular or marbling fat content. To enhance marbling, a better understanding of the mechanisms regulating adipogenesis is needed. Vitamin A has recently been shown to have a profound impact on all stages of adipogenesis. Retinoic acid, an active metabolite of vitamin A, activates both retinoic acid receptors (RAR) and retinoid X receptors (RXR), inducing epigenetic changes in key regulatory genes governing adipogenesis. Additionally, Vitamin D and folates interact with the retinoic acid receptors to regulate adipogenesis. In this review, we discuss nutritional regulation of adipogenesis, focusing on retinoic acid and its impact on epigenetic modifications of key adipogenic genes. PMID:27086067

  9. Teratogenicity of isotretinoin revisited: species variation and the role of all-trans-retinoic acid.

    PubMed

    Nau, H

    2001-11-01

    This paper reviews the teratogenicity of isotretinoin in regard to aspects of species variation, toxicokinetics, and metabolism. Particular emphasis is given to the hypothesis that most effects of isotretinoin (13-cis-retinoic acid) are mediated by isomerization to the all-trans-retinoic acid. This mechanism of action would provide a basis for the understanding of species differences and the extrapolation of experimental results to the human situation and thus improve drug development. The insensitive species (rat, mouse) eliminate the drug rapidly through detoxification to the beta-glucuronide; also, placental transfer is limited in these species. On the other hand, in sensitive species (primates), the drug is predominantly metabolized to the active 13-cis-4-oxo-retinoic acid; placental transfer is more extensive here. The beta-glucuronides showed limited placental transfer in all species examined; these metabolites exhibited very low, if any, measurable concentrations in the human. The 13-cis-retinoic acid is not appreciably bound to cellular retinoid-binding proteins or nuclear receptors and exhibits low tissue distribution and placental transfer. Its access to the nucleus may be extensive. Because of the long half life of 13-cis-retinoic acid, continuous isomerization results in significant area under the concentration-time curve levels of all-trans-retinoic acid in the mouse, monkey and the human; the all-trans-retinoic acid formed is extensively distributed across the placenta and may be an important factor that contributes to the teratogenic potency of 13-cis-retinoic acid. Isomerization cannot explain the teratogenic effects of 13-cis-retinoic acid in the rat and rabbit. It is concluded that the high teratogenic activity of isotretinoin in sensitive species (human, monkey) is related to slow elimination of the 13-cis-isomer, to metabolism to the 4-oxo-derivative, to increased placental transfer, to continuous isomerization and significant exposure of the

  10. Pharmacology of 13-cis-retinoic acid in humans.

    PubMed

    Kerr, I G; Lippman, M E; Jenkins, J; Myers, C E

    1982-05-01

    Vitamin A and its analogs (retinoids) have shown great promise for the chemoprevention of cancer as well as being a possible new class of chemotherapeutic agents. A Phase I and II trial of 13-cis-retinoic acid in advanced cancers was initiated, and the clinical pharmacology of the drug was studied. All patients received p.o. 13-cis-retinoic acid starting at 0.5 mg/kg/day, escalating over 4 weeks to a maximum dose of 8 mg/kg/day in divided doses. Although there was a linear correlation of plasma concentration with dose escalation, large inter-individual variations in peak plasma concentrations were noted. At the maximum drug dose, the mean peak plasma concentration was 4 X 10(-6) M. There was little drug accumulation on this schedule, as trough concentrations between p.o. doses often dropped below 1 X 10(-6) M. The drug was metabolized extensively to a metabolite, the concentrations of which exceeding parent 13-cis-retinoic acid concentrations with chronic dosing. Retinol concentrations were below the normal range.

  11. Choroidal retinoic acid synthesis: a possible mediator between refractive error and compensatory eye growth.

    PubMed

    Mertz, J R; Wallman, J

    2000-04-01

    Research over the past two decades has shown that the growth of young eyes is guided by vision. If near- or far-sightedness is artificially imposed by spectacle lenses, eyes of primates and chicks compensate by changing their rate of elongation, thereby growing back to the pre-lens optical condition. Little is known about what chemical signals might mediate between visual effects on the retina and alterations of eye growth. We present five findings that point to choroidal retinoic acid possibly being such a mediator. First, the chick choroid can convert retinol into all-trans-retinoic acid at the rate of 11 +/- 3 pmoles mg protein(-1) hr(-1), compared to 1.3 +/- 0.3 for retina/RPE and no conversion for sclera. Second, those visual conditions that cause increased rates of ocular elongation (diffusers or negative lens wear) produce a sharp decrease in all-trans-retinoic acid synthesis to levels barely detectable with our assay. In contrast, visual conditions which result in decreased rates of ocular elongation (recovery from diffusers or positive lens wear) produce a four- to five-fold increase in the formation of all-trans-retinoic acid. Third, the choroidal retinoic acid is found bound to a 28-32 kD protein. Fourth, a large fraction of the choroidal retinoic acid synthesized in culture is found in a nucleus-enriched fraction of sclera. Finally, application of retinoic acid to cultured sclera at physiological concentrations produced an inhibition of proteoglycan production (as assessed by measuring sulfate incorporation) with a EC50 of 8 x 10(-7) M. These results show that the synthesis of choroidal retinoic acid is modulated by those visual manipulations that influence ocular elongation and that this retinoic acid may reach the sclera in concentrations adequate to modulate scleral proteoglycan formation.

  12. 13-cis-retinoic acid metabolism in vivo. The major tissue metabolites in the rat have the all-trans configuration.

    PubMed

    McCormick, A M; Kroll, K D; Napoli, J L

    1983-08-02

    The liver and intestinal metabolites of orally dosed 13-cis-[11-3H]retinoic acid were analyzed in normal and 13-cis-retinoic acid treated rats 3 h after administration of the radiolabeled retinoid. all-trans-Retinoic acid was identified as a liver and intestinal mucosa metabolite in normal rats given physiological doses of 13-cis-[3H]retinoic acid. all-trans-Retinoyl glucuronide was identified as the most abundant radiolabeled metabolite in mucosa and a prominent liver metabolite under the same conditions. Thus, the major 13-cis-retinoic acid metabolites retained in liver and mucosa, two retinoid target tissues, had the all-trans configuration. These data indicate that the isomerization of 13-cis-retinoic acid to all-trans-retinoic acid and the subsequent conversion to all-trans-retinoyl glucuronide are central events in the in vivo metabolism of 13-cis-retinoic acid in the rat. Moreover, the all-trans-retinoic acid detected in vivo could account for a significant fraction of the physiological activity of 13-cis-retinoic acid. The tissue disposition and metabolism of orally dosed 13-cis-[3H]retinoic acid are modulated by retinoid treatment. Chronic 13-cis-retinoic acid treatment apparently increased the intestinal accumulation of all-trans-retinoic acid, all-trans-retinoyl glucuronide, and 13-cis-retinoyl glucuronide. The liver concentrations of tritiated all-trans-retinoic acid and all-trans-retinoyl glucuronide were also elevated in 13-cis-retinoic acid treated rats.

  13. TERATOGENIC EFFECTS OF RETINOIC ACID ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR AND TRANSFORMING GROWTH FACTOR-ALPHA

    EPA Science Inventory

    Background: EGF and TGF regulate cell proliferation and differentiation in the embryo. The induction of cleft palate (CP) by all trans retinoic acid (RA) was associated with altered expression of TGF, EGF receptor and binding of EGF. The present study uses knockout (KO) mice to e...

  14. Retinoic Acid Signaling Affects Cortical Synchrony During Sleep

    NASA Astrophysics Data System (ADS)

    Maret, Stéphanie; Franken, Paul; Dauvilliers, Yves; Ghyselinck, Norbert B.; Chambon, Pierre; Tafti, Mehdi

    2005-10-01

    Delta oscillations, characteristic of the electroencephalogram (EEG) of slow wave sleep, estimate sleep depth and need and are thought to be closely linked to the recovery function of sleep. The cellular mechanisms underlying the generation of delta waves at the cortical and thalamic levels are well documented, but the molecular regulatory mechanisms remain elusive. Here we demonstrate in the mouse that the gene encoding the retinoic acid receptor beta determines the contribution of delta oscillations to the sleep EEG. Thus, retinoic acid signaling, which is involved in the patterning of the brain and dopaminergic pathways, regulates cortical synchrony in the adult.

  15. Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor α (RARα) and oncogenic RARα fusion proteins

    PubMed Central

    Zhu, Jun; Gianni, Maurizio; Kopf, Eliezer; Honoré, Nicole; Chelbi-Alix, Mounira; Koken, Marcel; Quignon, Frédérique; Rochette-Egly, Cécile; de Thé, Hugues

    1999-01-01

    Analyzing the pathways by which retinoic acid (RA) induces promyelocytic leukemia/retinoic acid receptor α (PML/RARα) catabolism in acute promyelocytic leukemia (APL), we found that, in addition to caspase-mediated PML/RARα cleavage, RA triggers degradation of both PML/RARα and RARα. Similarly, in non-APL cells, RA directly targeted RARα and RARα fusions to the proteasome degradation pathway. Activation of either RARα or RXRα by specific agonists induced degradation of both proteins. Conversely, a mutation in RARα that abolishes heterodimer formation and DNA binding, blocked both RARα and RXRα degradation. Mutations in the RARα DNA-binding domain or AF-2 transcriptional activation region also impaired RARα catabolism. Hence, our results link transcriptional activation to receptor catabolism and suggest that transcriptional up-regulation of nuclear receptors by their ligands may be a feedback mechanism allowing sustained target-gene activation. PMID:10611294

  16. Stimulation of Phospholipid Scrambling of the Erythrocyte Membrane by 9-Cis-Retinoic Acid.

    PubMed

    Abed, Majed; Alzoubi, Kousi; Lang, Florian; Al Mamun Bhuayn, Abdulla

    2017-01-01

    The endogenous retinoid 9-cis-retinoic acid has previously been shown to trigger apoptosis in a wide variety of cells including several tumor cells and has thus been suggested for the treatment of malignancy. Similar to apoptosis of nucleated cells, erythrocytes may enter suicidal erythrocyte death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Cellular mechanisms participating in the accomplishment of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i) and formation of ceramide. The present study explored, whether 9-cis-retinoic acid induces eryptosis and whether the effect involves Ca2+ and/or ceramide. Flow cytometry was employed to estimate erythrocyte volume from forward scatter, phosphatidylserine exposure at the cell surface from annexin-V-binding, [Ca2+]i from Fluo3-fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was quantified from hemoglobin concentration in the supernatant. A 48 hours exposure of human erythrocytes to 9-cis-retinoic acid (≥ 0.5 µg/ml) significantly increased the percentage of annexin-V-binding cells and significantly decreased forward scatter. Exposure to 9-cis-retinoic acid (≥ 0.5 µg/ml) significantly increased Fluo3-fluorescence, and the effect of 9-cis-retinoic acid on annexin-V-binding was significantly blunted by removal of extracellular Ca2+. Exposure to 9-cis-retinoic acid (1 µg/ml) further significantly increased the ceramide abundance at the erythrocyte surface and significantly increased hemolysis. 9-cis-retinoic acid triggers phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part downstream of Ca2+ and ceramide. © 2017 The Author(s)Published by S. Karger AG, Basel.

  17. Three Conazoles Increase Hepatic Microsomal Retinoic Acid Metabolism and Decrease Mouse Hepatic Retinoic Acid Levels In Vivo

    EPA Science Inventory

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with...

  18. The efficacy of 9-cis retinoic acid in experimental models of cancer.

    PubMed

    Gottardis, M M; Lamph, W W; Shalinsky, D R; Wellstein, A; Heyman, R A

    1996-01-01

    9-cis retinoic acid (9-cis RA) is a retinoid receptor pan-agonist that binds with high affinity to both retinoic acid receptors (RARs) and retinoid X receptors (RXRs). Using a variety of in vivo and in vitro cancer models, we present experimental data that 9-cis RA has activity as a potential chemotherapeutic agent. Treatment of the human promyelocytic leukemia cell line HL-60 with 9-cis RA decreases cell proliferation, increases cell differentiation, and increases apoptosis. Induction of apoptosis correlates with an increase in tissue transglutaminase (type II) activity. In vivo, 9-cis RA induces complete tumor regression of an early passage human lip squamous cell carcinoma xenograft. Finally, 9-cis RA inhibits the anchorage-independent growth of the human breast cancer cell lines MCF-7 and LY2 (an antiestrogen-resistant MCF-7 variant). Transient co-transfection assays indicate that 9-cis RA inhibits estrogen receptor transcription of an ERE-tk-LUC reporter through RAR or RXR receptors. These data suggest that retinoid receptors can antagonize estrogen-dependent transcription and provides one possible mechanism for the inhibition of cell growth by 9-cis RA in breast cancer cell lines. In summary, these findings present evidence that 9-cis RA has a wide range of activities in human cancer models.

  19. REACTIVITY PROFILE OF LIGANDS OF MAMMALIAN RETINOIC ACID RECEPTORS: A PRELIMINARY COREPA ANALYSIS

    EPA Science Inventory

    Retinoic acid and associated derivatives comprise a class of endogenous hormones that bind to and activate different families of retinoic acid receptors (RARs, RXRs), and control many aspects of vertebrate development. Identification of potential RAR and RXR ligands is of interes...

  20. Embryonic subcellular distribution of 13-cis- and all-trans-retinoic acid indicates differential cytosolic/nuclear localization.

    PubMed

    Rühl, R; Plum, C; Elmazar, M M; Nau, H

    2001-09-01

    Isotretinoin (13-cis-retinoic acid [13CRA], Accutane) is used for the treatment of dermatological diseases. Isotretinoin is, however, teratogenic in animals and humans. The mechanism of action of its teratogenicity is still not clearly identified. It has little or no binding properties to cytosolic retinoid-binding proteins or nuclear retinoid receptors (RAR, RXR). One hypothesis is that the teratogenicity of 2 approximately equipotent teratogenic doses of 13CRA and all-trans-retinoic acids (ATRA) could mainly be correlated to ATRA in the nuclei, where the retinoic acid receptors (RARs) are located. To test this hypothesis, female mice at gestational day 11 were treated with approximately equipotent teratogenic doses of 13-cis-retinoic acid (100 mg/kg orally) or all-trans-retinoic acid (10 mg/kg orally) and sacrificed 1 h and 4 h after administration. Embryos were homogenized and centrifuged into 4 fractions, and the purity of the fractions was tested by quantification of marker constituents for various cell compartments. We analyzed, by RP-HPLC, nuclear, mitochondrial, microsomal, and cytosolic fractions, as well as embryo homogenate and maternal plasma. After treatment with 13-cis-retinoic acid, this substance was mainly located in the nuclear fraction of the embryo (approximately 82%), whereas all-trans-retinoic acid, after ATRA treatment, was mainly located in the cytosolic supernatant (approximately 64%). The binding to cellular retinoid-binding protein (CRABP) may limit the access of ATRA to the nucleus, in contrast to 13CRA, which does not bind to CRABP. The concentration of ATRA in the nuclear fraction was similar after administration of either 13CRA or ATRA. The teratogenic activity of 13-cis-retinoic acid could therefore be explained by its access to the nucleus and its possible conversion to all-trans-retinoic acids, which will interact with the nuclear retinoid receptors.

  1. Altered sensitivity to ellagic acid in neuroblastoma cells undergoing differentiation with 12-O-tetradecanoylphorbol-13-acetate and all-trans retinoic acid.

    PubMed

    Alfredsson, Christina Fjæraa; Rendel, Filip; Liang, Qui-Li; Sundström, Birgitta E; Nånberg, Eewa

    2015-12-01

    Ellagic acid has previously been reported to induce reduced proliferation and activation of apoptosis in several tumor cell lines including our own previous data from non-differentiated human neuroblastoma SH-SY5Y cells. The aim of this study was now to investigate if in vitro differentiation with the phorbol ester 12-O- tetradecanoylphorbol-13-acetate or the vitamin A derivative all-trans retinoic acid altered the sensitivity to ellagic acid in SH-SY5Y cells. The methods used were cell counting and LDH-assay for evaluation of cell number and cell death, flow cytometric analysis of SubG1- and TUNEL-analysis for apoptosis and western blot for expression of apoptosis-associated proteins. In vitro differentiation was shown to reduce the sensitivity to ellagic acid with respect to cell detachment, loss of viability and activation of apoptosis. The protective effect was phenotype-specific and most prominent in all-trans retinoic acid-differentiated cultures. Differentiation-dependent up-regulation of Bcl-2 and integrin expression is introduced as possible protective mechanisms. The presented data also point to a positive correlation between proliferative activity and sensitivity to ellagic-acid-induced cell detachment. In conclusion, the presented data emphasize the need to consider degree of neuronal differentiation and phenotype of neuroblastoma cells when discussing a potential pharmaceutical application of ellagic acid in tumor treatment. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Neutrophils are immune cells preferentially targeted by retinoic acid in elderly subjects

    PubMed Central

    2010-01-01

    Background The immune system gradually deteriorates with age and nutritional status is a major factor in immunosenescence. Of the many nutritional factors implicated in age-related immune dysfunction, vitamin A may be a good candidate, since vitamin A concentrations classically decrease during aging whereas it may possess important immunomodulatory properties via its active metabolites, the retinoic acids. This prompted us to investigate the immune response induced by retinoids in adults and elderly healthy subjects. Before and after oral supplementation with 13cis retinoic acid (0.5 mg/kg/day during 28 days), whole blood cells were phenotyped, and functions of peripheral blood mononuclear cells (PBMC) and polymorphonuclear cells (PMN) were investigated by flow cytometry and ELISA tests. Results In both young adults (n = 20, 25 ± 4 years) and older subjects (n = 20, 65 ± 4 years), retinoic acid supplementation had no effect on the distribution of leukocyte subpopulations or on the functions of PBMC (Il-2 and sIl-2R production, membrane expression of CD25). Concerning PMN, retinoic acid induced an increase in both spontaneous migration and cell surface expression of CD11b in the two different age populations, whereas bactericidal activity and phagocytosis remained unchanged. Conclusions We demonstrated that retinoic acid induces the same intensity of immune response between adult and older subjects, and more specifically affects PMN functions, i.e. adhesion and migration, than PBMC functions. PMID:20727130

  3. Combination of 13 cis-retinoic acid and tolfenamic acid induces apoptosis and effectively inhibits high-risk neuroblastoma cell proliferation.

    PubMed

    Shelake, Sagar; Eslin, Don; Sutphin, Robert M; Sankpal, Umesh T; Wadwani, Anmol; Kenyon, Laura E; Tabor-Simecka, Leslie; Bowman, W Paul; Vishwanatha, Jamboor K; Basha, Riyaz

    2015-11-01

    Chemotherapeutic regimens used for the treatment of Neuroblastoma (NB) cause long-term side effects in pediatric patients. NB arises in immature sympathetic nerve cells and primarily affects infants and children. A high rate of relapse in high-risk neuroblastoma (HRNB) necessitates the development of alternative strategies for effective treatment. This study investigated the efficacy of a small molecule, tolfenamic acid (TA), for enhancing the anti-proliferative effect of 13 cis-retinoic acid (RA) in HRNB cell lines. LA1-55n and SH-SY5Y cells were treated with TA (30μM) or RA (20μM) or both (optimized doses, derived from dose curves) for 48h and tested the effect on cell viability, apoptosis and selected molecular markers (Sp1, survivin, AKT and ERK1/2). Cell viability and caspase activity were measured using the CellTiter-Glo and Caspase-Glo kits. The apoptotic cell population was determined by flow cytometry with Annexin-V staining. The expression of Sp1, survivin, AKT, ERK1/2 and c-PARP was evaluated by Western blots. The combination therapy of TA and RA resulted in significant inhibition of cell viability (p<0.0001) when compared to individual agents. The anti-proliferative effect is accompanied by a decrease in Sp1 and survivin expression and an increase in apoptotic markers, Annexin-V positive cells, caspase 3/7 activity and c-PARP levels. Notably, TA+RA combination also caused down regulation of AKT and ERK1/2 suggesting a distinct impact on survival and proliferation pathways via signaling cascades. This study demonstrates that the TA mediated inhibition of Sp1 in combination with RA provides a novel therapeutic strategy for the effective treatment of HRNB in children. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Selective Cooperation between Fatty Acid Binding Proteins and Peroxisome Proliferator-Activated Receptors in Regulating Transcription

    PubMed Central

    Tan, Nguan-Soon; Shaw, Natacha S.; Vinckenbosch, Nicolas; Liu, Peng; Yasmin, Rubina; Desvergne, Béatrice; Wahli, Walter; Noy, Noa

    2002-01-01

    Lipophilic compounds such as retinoic acid and long-chain fatty acids regulate gene transcription by activating nuclear receptors such as retinoic acid receptors (RARs) and peroxisome proliferator-activated receptors (PPARs). These compounds also bind in cells to members of the family of intracellular lipid binding proteins, which includes cellular retinoic acid-binding proteins (CRABPs) and fatty acid binding proteins (FABPs). We previously reported that CRABP-II enhances the transcriptional activity of RAR by directly targeting retinoic acid to the receptor. Here, potential functional cooperation between FABPs and PPARs in regulating the transcriptional activities of their common ligands was investigated. We show that adipocyte FABP and keratinocyte FABP (A-FABP and K-FABP, respectively) selectively enhance the activities of PPARγ and PPARβ, respectively, and that these FABPs massively relocate to the nucleus in response to selective ligands for the PPAR isotype which they activate. We show further that A-FABP and K-FABP interact directly with PPARγ and PPARβ and that they do so in a receptor- and ligand-selective manner. Finally, the data demonstrate that the presence of high levels of K-FABP in keratinocytes is essential for PPARβ-mediated induction of differentiation of these cells. Taken together, the data establish that A-FABP and K-FABP govern the transcriptional activities of their ligands by targeting them to cognate PPARs in the nucleus, thereby enabling PPARs to exert their biological functions. PMID:12077340

  5. Effect of all-trans retinoic acid (ATRA) on viability, proliferation, activation and lineage-specific transcription factors of CD4+ T cells.

    PubMed

    Bidad, Katayoon; Salehi, Eisa; Oraei, Mona; Saboor-Yaraghi, Ali-Akbar; Nicknam, Mohammad Hossein

    2011-12-01

    All-trans retinoic acid (ATRA), as an active metabolite of vitamin A, has been shown to affect immune cells. This study was performed to evaluate the effect of ATRA on viability, proliferation, activation and lineage-specific transcription factors of CD4+ T cells. CD4+ T cells were separated from heparinized blood of healthy donors and were cultured in conditions, some with, some without ATRA. Viability was assessed by PI flowcytometry and proliferation was measured by MTT assay. CD69 expression was determined by flowcytometry as a measure of cell activation. Lineage-specific transcription factors (FOXP3, RORγt and T-bet) were examined by intracellular staining and flowcytometry. High doses of ATRA (0.1-1 mM) caused extensive cell death in both PBMCs and CD4+ T cells. Doses of ATRA equal to or lower than 10 µM did not adversely affect cell viability and proliferation in comparison to culture medium without ATRA. Doses of ATRA between 10 µM and 1nM significantly increased cell activation when compared to culture medium without ATRA. ATRA could increase FOXP3+ and also FOXP3+RORγt+ T cells while it decreased RORγt+ and T-bet+ T cells. This study showed that doses of ATRA up to 10 µM are safe when using with CD4+ T cells in terms of cell viability, proliferation and activation. We could also show that ATRA diverts the human immune response in neutral conditions (without adding polarizing cytokines) by increasing FOXP3+ cells and decreasing RORγt+ cells. ATRA could be regarded as a potential therapy in inflammatory conditions and autoimmunities.

  6. Vitamin A supplementation increases levels of retinoic acid compounds in human plasma: possible implications for teratogenesis.

    PubMed

    Eckhoff, C; Nau, H

    1990-01-01

    The concentrations of retinoic acid compounds were monitored by a newly developed highly sensitive HPLC procedure in plasma of six volunteers who received 833 IU vitamin A per kg body weight per day during a 20-day period. There was a significant increase of all-trans-retinoic acid (two-fold), 13-cis-retinoic acid (7-fold) and 13-cis-4-oxoretinoic acid (5-fold) over endogenous plasma levels of these retinoids. The same compounds had previously been found after treatment with the teratogenic drug isotretinoin (Roaccutan, Accutane). Our results raise the possibility that high vitamin A intake may carry a teratogenic risk attributable to increased levels of retinoic acid compounds generated from retinol by metabolic processes.

  7. Conformational Analysis of Free and Bound Retinoic Acid

    PubMed Central

    Fu, Zheng; Li, Xue; Merz, Kenneth M.

    2012-01-01

    The conformational profiles of unbound all-trans and 9-cis retinoic acid (RA) have been determined using classical and quantum mechanical calculations. Sixty-six all-trans-RA (ATRA) and forty-eight 9-cis-RA energy minimum conformers were identified via HF/6-31G* geometry optimizations in vacuo. Their relative conformational energies were estimated utilizing the M06, M06-2x and MP2 methods combined with the 6-311+G(d,p), aug-cc-pVDZ and aug-cc-pVTZ basis sets, as well as complete basis set MP2 extrapolations using the latter two basis sets. Single-point energy calculations performed with the M06-2x density functional were found to yield similar results to MP2/CBS for the low-energy retinoic acid conformations. Not unexpectedly, the conformational propensities of retinoic acid were governed by the orientation and arrangement of the torsion angles associated with the polyene tail. We also used previously reported QM/MM X-ray refinement results on four ATRA-protein crystal structures plus one newly refined 9-cis-RA complex (PDB ID 1XDK) in order to investigate the conformational preferences of bound retinoic acid. In the re-refined RA conformers the conjugated double bonds are nearly coplanar, which is consistent with the global minimum identified by the Omega/QM method rather than the corresponding crystallographically determined conformations given in the PDB. Consequently, a 91.3% average reduction of the local strain energy in the gas phase, as well as 92.1% in PCM solvent, was observed using the QM/MM refined structures versus the PDB deposited RA conformations. These results thus demonstrate that our QM/MM X-ray refinement approach can significantly enhance the quality of X-ray crystal structures refined by conventional refinement protocols, thereby providing reliable drug-target structural information for use in structure-based drug discovery applications. PMID:22844234

  8. Conformational Analysis of Retinoic Acids: Effects of Steric Interactions on Nonplanar Conjugated Polyenes.

    PubMed

    Cox, Bryan D; Muccio, Donald D; Hamilton, Tracy P

    2013-05-01

    Retinoic acids and other vitamin A analogs contain a trimethylcyclohexenyl ring in conjugation with a polyene chain joined at carbon-6 (C6) and carbon-7 (C7). A MP2-SCS/cc-pVDZ// B3LYP/6-31G(d) 2-D potential energy surface was computed for all- trans retinoic acid, which had 6 minima (3 enantiomeric pairs). The global minima were distorted s-gauche enantiomers ( 6-7 = 53°) with half-chair conformations of the ring. Distorted s-gauche enantiomers ( 6-7 = 55°) with inverted half-chair ring conformations were 1.7 kJ/mol above the global minima. The s-trans enantiomers ( 6-7 = 164°) were 11.3 kJ/mol above the global minima. Steric energies were computed by the method of Guo and Karplus to identify key structural elements in retinoic acids which determines their conformation. Small molecule crystal structures in the CCDC database with trimethylcyclohexenyl ring and exocyclic double bonds have ring-chain geometries near to one of the 6 energy minima of retinoic acids, except for retinaldehyde iminium cations.

  9. Chronic oral treatment with 13-cis-retinoic acid (isotretinoin) or all-trans-retinoic acid does not alter depression-like behaviors in rats.

    PubMed

    Ferguson, Sherry A; Cisneros, F Javier; Gough, B; Hanig, Joseph P; Berry, Kimberly J

    2005-10-01

    Oral treatment with the anti-acne drug Accutane (isotretinoin, 13-cis-retinoic acid) has been associated with suicide ideation and depression. Here, depression-like behaviors (i.e., behavioral despair and anhedonia) were quantified in adult Sprague-Dawley rats gavaged daily beginning at postnatal day (PND) 82 with 13-cis-RA (7.5 or 22.5 mg/kg) or all-trans-retinoic acid (10 or 15 mg/kg ). Tested at PND 130-131 in the Forced Swim Test, 7.5 mg/kg 13-cis-RA marginally decreased immobility and slightly increased climb/struggle durations whereas neither all-trans-retinoic acid group differed from controls. Voluntary saccharin solution (0.03%) intake at PND 102-104 and PND 151-153 was not different from controls in any treated group, although all RA-treated groups had lower intakes. Swim speed in a water maze at PND 180 was similar across groups, indicating no RA-induced differences in physical ability. Open field activity was mildly decreased at PND 91 in 7.5 mg/kg-treated males only, but it was within the control range at PND 119, 147, and 175. Thus, at serum levels similar to those in humans receiving the drug, chronic 13-cis-RA treatment did not severely affect depression-like behaviors in rats. These data do not substantiate the hypothesis of 13-cis-RA-induced depression.

  10. BMS 493 Modulates Retinoic Acid-Induced Differentiation During Expansion of Human Hematopoietic Progenitor Cells for Islet Regeneration.

    PubMed

    Elgamal, Ruth M; Bell, Gillian I; Krause, Sarah C T; Hess, David A

    2018-06-06

    Cellular therapies are emerging as a novel treatment strategy for diabetes. Thus, the induction of endogenous islet regeneration in situ represents a feasible goal for diabetes therapy. Umbilical cord blood-derived hematopoietic progenitor cells (HPCs), isolated by high aldehyde dehydrogenase activity (ALDH hi ), have previously been shown to reduce hyperglycemia after intrapancreatic (iPan) transplantation into streptozotocin (STZ)-treated nonobese diabetic (NOD)/severe combined immunodeficiency (SCID) mice. However, these cells are rare and require ex vivo expansion to reach clinically applicable numbers for human therapy. Therefore, we investigated whether BMS 493, an inverse retinoic acid receptor agonist, could prevent retinoic acid-induced differentiation and preserve islet regenerative functions during expansion. After 6-day expansion, BMS 493-treated cells showed a twofold increase in the number of ALDH hi cells available for transplantation compared with untreated controls. Newly expanded ALDH hi cells showed increased numbers of CD34 and CD133-positive cells, as well as a reduction in CD38 expression, a marker of hematopoietic cell differentiation. BMS 493-treated cells showed similar hematopoietic colony-forming capacity compared with untreated cells, with ALDH hi subpopulations producing more colonies than low aldehyde dehydrogenase activity subpopulations for expanded cells. To determine if the secreted proteins of these cells could augment the survival and/or proliferation of β-cells in vitro, conditioned media (CM) from cells expanded with or without BMS 493 was added to human islet cultures. The total number of proliferating β-cells was increased after 3- or 7-day culture with CM generated from BMS 493-treated cells. In contrast to freshly isolated ALDH hi cells, 6-day expansion with or without BMS 493 generated progeny that were unable to reduce hyperglycemia after iPan transplantation into STZ-treated NOD/SCID mice. Further strategies to reduce

  11. Retinoic acid regulates cell-shape and -death of E-FABP (FABP5)-immunoreactive septoclasts in the growth plate cartilage of mice.

    PubMed

    Bando, Yasuhiko; Yamamoto, Miyuki; Sakiyama, Koji; Sakashita, Hide; Taira, Fuyoko; Miyake, Genki; Iseki, Shoichi; Owada, Yuji; Amano, Osamu

    2017-09-01

    Septoclasts, which are mononuclear and spindle-shaped cells with many processes, have been considered to resorb the transverse septa of the growth plate (GP) cartilage at the chondro-osseous junction (COJ). We previously reported the expression of epidermal-type fatty acid-binding protein (E-FABP, FABP5) and localization of peroxisome proliferator-activated receptor (PPAR)β/δ, which mediates the cell survival or proliferation, in septoclasts. On the other hand, retinoic acid (RA) can bind to E-FABP and is stored abundantly in the GP cartilage. From these information, it is possible to hypothesize that RA in the GP is incorporated into septoclasts during the cartilage resorption and regulates the growth and/or death of septoclasts. To clarify the mechanism of the cartilage resorption induced by RA, we administered an overdose of RA or its precursor vitamin A (VA)-deficient diet to young mice. In mice of both RA excess and VA deficiency, septoclasts decreased in the number and cell size in association with shorter and lesser processes than those in normal mice, suggesting a substantial suppression of resorption by septoclasts in the GP cartilage. Lack of PPARβ/δ-expression, TUNEL reaction, RA receptor (RAR)β, and cellular retinoic acid-binding protein (CRABP)-II were induced in E-FABP-positive septoclasts under RA excess, suggesting the growth arrest/cell-death of septoclasts, whereas cartilage-derived retinoic acid-sensitive protein (CD-RAP) inducing the cell growth arrest or morphological changes was induced in septoclasts under VA deficiency. These results support and do not conflict with our hypothesis, suggesting that endogenous RA in the GP is possibly incorporated in septoclasts and utilized to regulate the activity of septoclasts resorbing the GP cartilage.

  12. Conformational Analysis of Retinoic Acids: Effects of Steric Interactions on Nonplanar Conjugated Polyenes

    PubMed Central

    Cox, Bryan D.; Muccio, Donald D.; Hamilton, Tracy P.

    2013-01-01

    Retinoic acids and other vitamin A analogs contain a trimethylcyclohexenyl ring in conjugation with a polyene chain joined at carbon-6 (C6) and carbon-7 (C7). A MP2-SCS/cc-pVDZ// B3LYP/6-31G(d) 2-D potential energy surface was computed for all-trans retinoic acid, which had 6 minima (3 enantiomeric pairs). The global minima were distorted s-gauche enantiomers (6–7 = 53°) with half-chair conformations of the ring. Distorted s-gauche enantiomers (6–7 = 55°) with inverted half-chair ring conformations were 1.7 kJ/mol above the global minima. The s-trans enantiomers (6–7 = 164°) were 11.3 kJ/mol above the global minima. Steric energies were computed by the method of Guo and Karplus to identify key structural elements in retinoic acids which determines their conformation. Small molecule crystal structures in the CCDC database with trimethylcyclohexenyl ring and exocyclic double bonds have ring-chain geometries near to one of the 6 energy minima of retinoic acids, except for retinaldehyde iminium cations. PMID:25798372

  13. 9-cis Retinoic Acid is the ALDH1A1 Product that Stimulates Melanogenesis

    PubMed Central

    Paterson, Elyse K.; Ho, Hsiang; Kapadia, Rubina; Ganesan, Anand K.

    2013-01-01

    Aldehyde dehydrogenase 1A1 (ALDH1A1), an enzyme that catalyzes the conversion of lipid aldehydes to lipid carboxylic acids, plays pleiotropic roles in UV-radiation resistance, melanogenesis, and stem cell maintenance. In this study, a combination of RNAi and pharmacologic approaches were used to determine which ALDH1A1 substrates and products regulate melanogenesis. Initial studies revealed that neither the UV-induced lipid aldehyde 4-hydroxy-2-nonenal nor the ALDH1A1 product all-trans retinoic acid appreciably induced melanogenesis. In contrast, both the ALDH1A1 substrate 9-cis retinal and its corresponding product 9-cis retinoic acid potently induced the accumulation of MITF mRNA, Tyrosinase mRNA, and melanin. ALDH1A1 depletion inhibited the ability of 9-cis retinal but not 9-cis retinoic acid to stimulate melanogenesis, indicating that ALDH1A1 regulates melanogenesis by catalyzing the conversion of 9-cis retinal to 9-cis retinoic acid. The addition of potent ALDH1A inhibitors (cyanamide or Angeli’s salt) suppressed Tyrosinase and MITF mRNA accumulation in vitro and also melanin accumulation in skin equivalents, suggesting that 9-cis retinoids regulate melanogenesis in the intact epidermis. Taken together, these studies not only identify cyanamide as a potential novel treatment for hyperpigmentary disorders, but also identify 9-cis retinoic acid as a pigment stimulatory agent that may have clinical utility in the treatment of hypopigmentary disorders, such as vitiligo. PMID:23489423

  14. In vitro and in vivo metabolism of all-trans- and 13-cis-retinoic acid in hamsters. Identification of 13-cis-4-oxoretinoic acid.

    PubMed

    Frolik, C A; Roller, P P; Roberts, A B; Sporn, M B

    1980-09-10

    Administration of either all-trans-[3H]- or 13-cis-[3H]retinoic acid to hamsters fed a normal diet results in the formation of a number of polar metabolites. At least one of these metabolites has been shown to be common to both isomers of retinoic acid and can be generated in a hamster liver 10,000 X g supernatant system using 13-cis-retinoic acid as substrate. It has been identified as 13-cis-4-oxoretinoic acid by mass spectral, ultraviolet absorption, and proton NMR characteristics, as well as by its co-migration with synthetic 13-cis-4-oxoretinoic acid in two different high pressure liquid chromatographic systems. In addition, its metabolic precursor, 13-cis-4-hydroxyretinoic acid, has been tentatively identified. These compounds are believed to be early metabolites in the elimination pathway of retinoic acid from the body.

  15. Integrating Retinoic Acid Signaling with Brain Function

    ERIC Educational Resources Information Center

    Luo, Tuanlian; Wagner, Elisabeth; Drager, Ursula C.

    2009-01-01

    The vitamin A derivative retinoic acid (RA) regulates the transcription of about a 6th of the human genome. Compelling evidence indicates a role of RA in cognitive activities, but its integration with the molecular mechanisms of higher brain functions is not known. Here we describe the properties of RA signaling in the mouse, which point to…

  16. Single-dose pharmacokinetic study of 13-cis-retinoic acid in man.

    PubMed

    Besner, J G; Leclaire, R; Band, P; Meloche, S; Deschamps, M; Mailhot, S; Moisan, R; Diorio, G

    1985-03-01

    A pharmacokinetic study of 13-cis-retinoic acid was performed in nine patients following administration of a single oral dose of 80 mg. An average lag time of 1.2 hours was observed, followed by fast absorption, with a mean half-life of 0.5 hour. Peak plasmatic concentration of 733 ng/ml occurred at 2.3 hours. The disposition profile showed a rapid distribution half-life of 1.3 hours and a terminal elimination half-life of 24.7 hours. No 13-cis-retinoic acid was detected unchanged in urine. An important interpatient variability was noted.

  17. Crystal structures of substrate-free and retinoic acid-bound cyanobacterial cytochrome P450 CYP120A1.

    PubMed

    Kühnel, Karin; Ke, Na; Cryle, Max J; Sligar, Stephen G; Schuler, Mary A; Schlichting, Ilme

    2008-06-24

    The crystal structures of substrate-free and all-trans-retinoic acid-bound CYP120A1 from Synechocystis sp. PCC 6803 were determined at 2.4 and 2.1 A resolution, respectively, representing the first structural characterization of a cyanobacterial P450. Features of CYP120A1 not observed in other P450 structures include an aromatic ladder flanking the channel leading to the active site and a triple-glycine motif within SRS5. Using spectroscopic methods, CYP120A1 is shown to bind 13-cis-retinoic acid, 9-cis-retinoic acid, and retinal with high affinity and dissociation constants of less than 1 microM. Metabolism of retinoic acid by CYP120A1 suggests that CYP120A1 hydroxylates a variety of retinoid derivatives in vivo. On the basis of the retinoic acid-bound CYP120A1 crystal structure, we propose that either carbon 2 or the methyl groups (C16 or C17) of the beta-ionone ring are modified by CYP120A1.

  18. Comparison of efficacy of chemical peeling with 25% trichloroacetic acid and 0.1% retinoic acid for facial rejuvenation.

    PubMed

    Yildirim, Selda; Gurel, Mehmet Salih; Gungor, Sule; Tekeli, Omur; Canat, Dilek

    2016-06-01

    Skin aging is a problem which negatively affects the psyche of the person, social relations, as well as work life and health and which compels the patients to find appropriate treatment methods. Numerous treatment methods have been developed in order to delay aging and to reduce the aging effects in addition to having a younger, healthier and more beautiful facial appearance. To compare the efficiency, cosmetic results and possible adverse effects of the peeling treatment with 25% trichloroacetic acid (TCA) and 0.1% retinoic acid for facial rejuvenation in patients presenting with skin aging. Fifty female patients in total presenting with medium and advanced degree skin aging were subject to this study. Two separate treatment groups were formed; the first group underwent chemical skin treatment with 25% TCA while the other group was applied with 0.1% retinoic acid treatment. Following the 4 months' treatment the patients were controlled three times in total for post lesional hypopigmentation, hyperpigmentation, scars, skin irritation and other possible changes per month. The pretreatment and first follow-up visit, and final control images were comparatively evaluated by three observers via specific software. The healing rates of the group subject to retinoic acid were statistically higher (p < 0.05) compared to patients in the TCA group in the final follow-up visit following the treatment according to the first and second observers. On the other hand, according to the third observer, patients applied with retinoic acid presented with higher healing rates compared to those treated with TCA, however; this rate was not statistically significant (p > 0.05). The frequency of TCA- and retinoic acid-associated adverse effects was similar in both groups (p > 0.05). As a result of both treatments, a reduction in the quality of life scores as well as a pronounced recovery (p = 0.001) in the quality of life of those patients with skin aging was observed. The photo aging

  19. Comparison of efficacy of chemical peeling with 25% trichloroacetic acid and 0.1% retinoic acid for facial rejuvenation

    PubMed Central

    Gurel, Mehmet Salih; Gungor, Sule; Tekeli, Omur; Canat, Dilek

    2016-01-01

    Introduction Skin aging is a problem which negatively affects the psyche of the person, social relations, as well as work life and health and which compels the patients to find appropriate treatment methods. Numerous treatment methods have been developed in order to delay aging and to reduce the aging effects in addition to having a younger, healthier and more beautiful facial appearance. Aim To compare the efficiency, cosmetic results and possible adverse effects of the peeling treatment with 25% trichloroacetic acid (TCA) and 0.1% retinoic acid for facial rejuvenation in patients presenting with skin aging. Material and methods Fifty female patients in total presenting with medium and advanced degree skin aging were subject to this study. Two separate treatment groups were formed; the first group underwent chemical skin treatment with 25% TCA while the other group was applied with 0.1% retinoic acid treatment. Following the 4 months’ treatment the patients were controlled three times in total for post lesional hypopigmentation, hyperpigmentation, scars, skin irritation and other possible changes per month. The pretreatment and first follow-up visit, and final control images were comparatively evaluated by three observers via specific software. Results The healing rates of the group subject to retinoic acid were statistically higher (p < 0.05) compared to patients in the TCA group in the final follow-up visit following the treatment according to the first and second observers. On the other hand, according to the third observer, patients applied with retinoic acid presented with higher healing rates compared to those treated with TCA, however; this rate was not statistically significant (p > 0.05). The frequency of TCA- and retinoic acid-associated adverse effects was similar in both groups (p > 0.05). As a result of both treatments, a reduction in the quality of life scores as well as a pronounced recovery (p = 0.001) in the quality of life of those patients

  20. PKC delta and NADPH oxidase in retinoic acid-induced neuroblastoma cell differentiation.

    PubMed

    Nitti, Mariapaola; Furfaro, Anna Lisa; Cevasco, Claudia; Traverso, Nicola; Marinari, Umberto Maria; Pronzato, Maria Adelaide; Domenicotti, Cinzia

    2010-05-01

    The role of reactive oxygen species (ROS) in the regulation of signal transduction processes has been well established in many cell types and recently the fine tuning of redox signalling in neurons received increasing attention. With regard to this, the involvement of NADPH oxidase (NOX) in neuronal pathophysiology has been proposed but deserves more investigation. In the present study, we used SH-SY5Y neuroblastoma cells to analyse the role of NADPH oxidase in retinoic acid (RA)-induced differentiation, pointing out the involvement of protein kinase C (PKC) delta in the activation of NOX. Retinoic acid induces neuronal differentiation as revealed by the increased expression of MAP2, the decreased cell doubling rate, and the gain in neuronal morphological features and these events are accompanied by the increased expression level of PKC delta and p67(phox), one of the components of NADPH oxidase. Using DPI to inhibit NOX activity we show that retinoic acid acts through this enzyme to induce morphological changes linked to the differentiation. Moreover, using rottlerin to inhibit PKC delta or transfection experiments to overexpress it, we show that retinoic acid acts through this enzyme to induce MAP2 expression and to increase p67(phox) membrane translocation leading to NADPH oxidase activation. These findings identify the activation of PKC delta and NADPH oxidase as crucial steps in RA-induced neuroblastoma cell differentiation. 2010 Elsevier Inc. All rights reserved.

  1. FOXP2 drives neuronal differentiation by interacting with retinoic acid signaling pathways.

    PubMed

    Devanna, Paolo; Middelbeek, Jeroen; Vernes, Sonja C

    2014-01-01

    FOXP2 was the first gene shown to cause a Mendelian form of speech and language disorder. Although developmentally expressed in many organs, loss of a single copy of FOXP2 leads to a phenotype that is largely restricted to orofacial impairment during articulation and linguistic processing deficits. Why perturbed FOXP2 function affects specific aspects of the developing brain remains elusive. We investigated the role of FOXP2 in neuronal differentiation and found that FOXP2 drives molecular changes consistent with neuronal differentiation in a human model system. We identified a network of FOXP2 regulated genes related to retinoic acid signaling and neuronal differentiation. FOXP2 also produced phenotypic changes associated with neuronal differentiation including increased neurite outgrowth and reduced migration. Crucially, cells expressing FOXP2 displayed increased sensitivity to retinoic acid exposure. This suggests a mechanism by which FOXP2 may be able to increase the cellular differentiation response to environmental retinoic acid cues for specific subsets of neurons in the brain. These data demonstrate that FOXP2 promotes neuronal differentiation by interacting with the retinoic acid signaling pathway and regulates key processes required for normal circuit formation such as neuronal migration and neurite outgrowth. In this way, FOXP2, which is found only in specific subpopulations of neurons in the brain, may drive precise neuronal differentiation patterns and/or control localization and connectivity of these FOXP2 positive cells.

  2. FOXP2 drives neuronal differentiation by interacting with retinoic acid signaling pathways

    PubMed Central

    Devanna, Paolo; Middelbeek, Jeroen; Vernes, Sonja C.

    2014-01-01

    FOXP2 was the first gene shown to cause a Mendelian form of speech and language disorder. Although developmentally expressed in many organs, loss of a single copy of FOXP2 leads to a phenotype that is largely restricted to orofacial impairment during articulation and linguistic processing deficits. Why perturbed FOXP2 function affects specific aspects of the developing brain remains elusive. We investigated the role of FOXP2 in neuronal differentiation and found that FOXP2 drives molecular changes consistent with neuronal differentiation in a human model system. We identified a network of FOXP2 regulated genes related to retinoic acid signaling and neuronal differentiation. FOXP2 also produced phenotypic changes associated with neuronal differentiation including increased neurite outgrowth and reduced migration. Crucially, cells expressing FOXP2 displayed increased sensitivity to retinoic acid exposure. This suggests a mechanism by which FOXP2 may be able to increase the cellular differentiation response to environmental retinoic acid cues for specific subsets of neurons in the brain. These data demonstrate that FOXP2 promotes neuronal differentiation by interacting with the retinoic acid signaling pathway and regulates key processes required for normal circuit formation such as neuronal migration and neurite outgrowth. In this way, FOXP2, which is found only in specific subpopulations of neurons in the brain, may drive precise neuronal differentiation patterns and/or control localization and connectivity of these FOXP2 positive cells. PMID:25309332

  3. Utilization of DR1 as true RARE in regulating the Ssm, a novel retinoic acid-target gene in the mouse testis.

    PubMed

    Han, Kyuyong; Song, Haengseok; Moon, Irene; Augustin, Robert; Moley, Kelle; Rogers, Melissa; Lim, Hyunjung

    2007-03-01

    Various nuclear receptors form dimers to activate target genes via specific response elements located within promoters or enhancers. Retinoid X receptor (RXR) serves as a dimerization partner for many nuclear receptors including retinoic acid receptor (RAR) and peroxisome proliferator-activated receptor (PPAR). Dimers show differential preference towards directly repeated response elements with 1-5 nucleotide spacing, and direct repeat 1 (DR1) is a promiscuous element which recruits RAR/RXR, RXR/RXR, and PPAR/RXR in vitro. In the present investigation, we report identification of a novel RAR/RXR target gene which is regulated by DR1s in the promoter region. This gene, namely spermatocyte-specific marker (Ssm), recruits all the three combinations of nuclear receptors in vitro, but in vivo regulation is observed by trans-retinoic acid-activated RAR/RXR dimer. Indeed, chromatin immunoprecipitation experiment demonstrates binding of RARbeta and RXRalpha in the promoter region of the Ssm. Interestingly, expression of Ssm is almost exclusively observed in spermatocytes in the adult mouse testis, where RA signaling is known to regulate developmental program of male germ cells. The results show that Ssm is a RAR/RXR target gene uniquely using DR1 and exhibits stage-specific expression in the mouse testis with potential function in later stages of spermatogenesis. This finding exemplifies usage of DR1s as retinoic acid response element (RARE) under a specific in vivo context.

  4. Recombinant human glutathione S-transferases catalyse enzymic isomerization of 13-cis-retinoic acid to all-trans-retinoic acid in vitro.

    PubMed Central

    Chen, H; Juchau, M R

    1998-01-01

    The steric conversion of 13-cis-retinoic acid (13-cRA) to all-trans-retinoic acid (t-RA) has been proposed as an activation mechanism for the observed therapeutic and teratogenic activities of 13-cRA. Here we have investigated the catalysis of isomerization of 13-cRA to t-RA by recombinant human glutathione S-transferases (GSTs). Substrate was incubated with GST in 0.1 M sodium phosphate buffer, pH 7.5, at 37 degrees C in total darkness. The t-RA generated was measured quantitatively by HPLC. Under the reaction conditions used, GSTP1-1 was far more effective than human GSTM1-1 or human GSTA1-1 in catalysing the isomerization reaction. The reaction catalysed by GSTP1-1 showed substrate saturation and the Km and Vmax values for the reaction were approx. 7 microM and 650 pmol/min per nmol respectively. The reaction rate increased linearly with increasing enzyme concentration. The reaction was inhibited both by heat treatment and by S-decylglutathione (a potent inhibitor of transferase activity associated with GST). Additions of polyclonal rabbit antiserum for human GSTP1-1 to the reaction resulted in a significant decrease in generation of t-RA (70-80%). In addition, ethacrynic acid, a selective substrate for Pi isoforms of GST, also inhibited the isomerization of 13-cRA to t-RA catalysed by GSTP1-1. Under the same reaction conditions, GSTP1-1 was much less effective in catalysing the steric conversion of 9-cis-retinoic acid to t-RA, indicating that the enzyme was stereospecific for the conversion of 13-cRA to t-RA. These observations suggest that enzymic catalysis was the primary mechanism for the GSTP1-1-dependent conversion of 13-cRA to t-RA. Reactions catalysed by a purified rat hepatic GST Pi isoenzyme proceeded more slowly than reactions catalysed by human GSTP1-1. Comparative studies also showed that there were marked species differences in catalytic activities between various purified mammalian hepatic GST mixtures. PMID:9806904

  5. Recombinant human glutathione S-transferases catalyse enzymic isomerization of 13-cis-retinoic acid to all-trans-retinoic acid in vitro.

    PubMed

    Chen, H; Juchau, M R

    1998-11-15

    The steric conversion of 13-cis-retinoic acid (13-cRA) to all-trans-retinoic acid (t-RA) has been proposed as an activation mechanism for the observed therapeutic and teratogenic activities of 13-cRA. Here we have investigated the catalysis of isomerization of 13-cRA to t-RA by recombinant human glutathione S-transferases (GSTs). Substrate was incubated with GST in 0.1 M sodium phosphate buffer, pH 7.5, at 37 degrees C in total darkness. The t-RA generated was measured quantitatively by HPLC. Under the reaction conditions used, GSTP1-1 was far more effective than human GSTM1-1 or human GSTA1-1 in catalysing the isomerization reaction. The reaction catalysed by GSTP1-1 showed substrate saturation and the Km and Vmax values for the reaction were approx. 7 microM and 650 pmol/min per nmol respectively. The reaction rate increased linearly with increasing enzyme concentration. The reaction was inhibited both by heat treatment and by S-decylglutathione (a potent inhibitor of transferase activity associated with GST). Additions of polyclonal rabbit antiserum for human GSTP1-1 to the reaction resulted in a significant decrease in generation of t-RA (70-80%). In addition, ethacrynic acid, a selective substrate for Pi isoforms of GST, also inhibited the isomerization of 13-cRA to t-RA catalysed by GSTP1-1. Under the same reaction conditions, GSTP1-1 was much less effective in catalysing the steric conversion of 9-cis-retinoic acid to t-RA, indicating that the enzyme was stereospecific for the conversion of 13-cRA to t-RA. These observations suggest that enzymic catalysis was the primary mechanism for the GSTP1-1-dependent conversion of 13-cRA to t-RA. Reactions catalysed by a purified rat hepatic GST Pi isoenzyme proceeded more slowly than reactions catalysed by human GSTP1-1. Comparative studies also showed that there were marked species differences in catalytic activities between various purified mammalian hepatic GST mixtures.

  6. Docking simulations suggest that all-trans retinoic acid could bind to retinoid X receptors.

    PubMed

    Tsuji, Motonori; Shudo, Koichi; Kagechika, Hiroyuki

    2015-10-01

    Retinoid X receptors (RXRs) are ligand-controlled transcription factors which heterodimerize with other nuclear receptors to regulate gene transcriptions associated with crucial biological events. 9-cis retinoic acid (9cRA), which transactivates RXRs, is believed to be an endogenous RXR ligand. All-trans retinoic acid (ATRA) is a natural ligand for retinoic acid receptors (RARs), which heterodimerize with RXRs. Although the concentration of 9cRA in tissues is very low, ATRA is relatively abundant and some reports show that ATRA activates RXRs. We computationally studied the possibility of ATRA binding to RXRs using two different docking methods with our developed programs to assess the binding affinities of naturally occurring retinoids. The simulations showed good correlations to the reported binding affinities of these molecules for RXRs and RARs.

  7. In vitro interaction study of retinoic acid isomers with telmisartan and amlodipine by equilibrium dialysis method using UV spectroscopy

    NASA Astrophysics Data System (ADS)

    Varghese, Susheel John; Johny, Sojimol K.; Paul, David; Ravi, Thengungal Kochupappy

    2011-07-01

    The in vitro protein binding of retinoic acid isomers (isotretinoin and tretinoin) and the antihypertensive drugs (amlodipine and telmisartan) was studied by equilibrium dialysis method. In this study, free fraction of drugs and the % of binding of drugs in the mixture to bovine serum albumin (BSA) were calculated. The influence of retinoic acid isomers on the % of protein binding of telmisartan and amlodipine at physiological pH (7.4) and temperature (37 ± 0.5 °C) was also evaluated. The in vitro displacement interaction study of drugs telmisartan and amlodipine on retinoic acid isomers and also interaction of retinoic acid isomers on telmisartan and amlodipine were carried out.

  8. Retinoic acid-induced pancreatic stellate cell quiescence reduces paracrine Wnt-β-catenin signaling to slow tumor progression.

    PubMed

    Froeling, Fieke E M; Feig, Christine; Chelala, Claude; Dobson, Richard; Mein, Charles E; Tuveson, David A; Clevers, Hans; Hart, Ian R; Kocher, Hemant M

    2011-10-01

    Patients with pancreatic ductal adenocarcinoma are deficient in vitamin A, resulting in activation of pancreatic stellate cells (PSCs). We investigated whether restoration of retinol to PSCs restores their quiescence and affects adjacent cancer cells. PSCs and cancer cell lines (AsPc1 and Capan1) were exposed to doses and isoforms of retinoic acid (RA) in 2-dimensional and 3-dimensional culture conditions (physiomimetic organotypic culture). The effects of all-trans retinoic acid (ATRA) were studied in LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre mice, a model of human pancreatic ductal adenocarcinoma. After incubation with ATRA, PSCs were quiescent and had altered expression of genes that regulate proliferation, morphology, and motility; genes that encode cytoskeletal proteins and cytokines; and genes that control other functions, irrespective of culture conditions or dosage. In the organotypic model, and in mice, ATRA induced quiescence of PSCs and thereby reduced cancer cell proliferation and translocation of β-catenin to the nucleus, increased cancer cell apoptosis, and altered tumor morphology. ATRA reduced the motility of PSCs, so these cells created a "wall" at the junction between the tumor and the matrix that prevented cancer cell invasion. Restoring secreted frizzled-related protein 4 (sFRP4) secretion to quiescent PSCs reduced Wnt-β-catenin signaling in cancer cells and their invasive ability. Human primary and metastatic pancreatic tumor tissues stained strongly for cancer cell nuclear β-catenin but had low levels of sFRP4 (in cancer cells and PSCs). RA induces quiescence and reduces motility of PSCs, leading to reduced proliferation and increased apoptosis of surrounding pancreatic cancer cells. RA isoforms might be developed as therapeutic reagents for pancreatic cancer. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  9. Increasing the intracellular availability of all-trans retinoic acid in neuroblastoma cells.

    PubMed

    Armstrong, J L; Ruiz, M; Boddy, A V; Redfern, C P F; Pearson, A D J; Veal, G J

    2005-02-28

    Recent data indicate that isomerisation to all-trans retinoic acid (ATRA) is the key mechanism underlying the favourable clinical properties of 13-cis retinoic acid (13cisRA) in the treatment of neuroblastoma. Retinoic acid (RA) metabolism is thought to contribute to resistance, and strategies to modulate this may increase the clinical efficacy of 13cisRA. The aim of this study was to test the hypothesis that retinoids, such as acitretin, which bind preferentially to cellular retinoic acid binding proteins (CRABPs), or specific inhibitors of the RA hydroxylase CYP26, such as R116010, can increase the intracellular availability of ATRA. Incubation of SH-SY5Y cells with acitretin (50 microM) or R116010 (1 or 10 microM) in combination with either 10 microM ATRA or 13cisRA induced a selective increase in intracellular levels of ATRA, while 13cisRA levels were unaffected. CRABP was induced in SH-SY5Y cells in response to RA. In contrast, acitretin had no significant effect on intracellular retinoid concentrations in those neuroblastoma cell lines that showed little or no induction of CRABP after RA treatment. Both ATRA and 13cisRA dramatically induced the expression of CYP26A1 in SH-SY5Y cells, and treatment with R116010, but not acitretin, potentiated the RA-induced expression of a reporter gene and CYP26A1. The response of neuroblastoma cells to R116010 was consistent with inhibition of CYP26, indicating that inhibition of RA metabolism may further optimise retinoid treatment in neuroblastoma.

  10. In vitro interaction study of retinoic acid isomers with telmisartan and amlodipine by equilibrium dialysis method using UV spectroscopy.

    PubMed

    Varghese, Susheel John; Johny, Sojimol K; Paul, David; Ravi, Thengungal Kochupappy

    2011-07-01

    The in vitro protein binding of retinoic acid isomers (isotretinoin and tretinoin) and the antihypertensive drugs (amlodipine and telmisartan) was studied by equilibrium dialysis method. In this study, free fraction of drugs and the % of binding of drugs in the mixture to bovine serum albumin (BSA) were calculated. The influence of retinoic acid isomers on the % of protein binding of telmisartan and amlodipine at physiological pH (7.4) and temperature (37±0.5°C) was also evaluated. The in vitro displacement interaction study of drugs telmisartan and amlodipine on retinoic acid isomers and also interaction of retinoic acid isomers on telmisartan and amlodipine were carried out. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Retinoic Acid Increases Fatty Acid Oxidation and Irisin Expression in Skeletal Muscle Cells and Impacts Irisin In Vivo.

    PubMed

    Amengual, Jaume; García-Carrizo, Francisco J; Arreguín, Andrea; Mušinović, Hana; Granados, Nuria; Palou, Andreu; Bonet, M Luisa; Ribot, Joan

    2018-01-01

    All-trans retinoic acid (ATRA) has protective effects against obesity and metabolic syndrome. We here aimed to gain further insight into the interaction of ATRA with skeletal muscle metabolism and secretory activity as important players in metabolic health. Cultured murine C2C12 myocytes were used to study direct effects of ATRA on cellular fatty acid oxidation (FAO) rate (using radioactively-labelled palmitate), glucose uptake (using radioactively-labelled 2-deoxy-D-glucose), triacylglycerol levels (by an enzymatic method), and the expression of genes related to FAO and glucose utilization (by RT-real time PCR). We also studied selected myokine production (using ELISA and immunohistochemistry) in ATRA-treated myocytes and intact mice. Exposure of C2C12 myocytes to ATRA led to increased fatty acid consumption and decreased cellular triacylglycerol levels without affecting glucose uptake, and induced the expression of the myokine irisin at the mRNA and secreted protein level in a dose-response manner. ATRA stimulatory effects on FAO-related genes and the Fndc5 gene (encoding irisin) were reproduced by agonists of peroxisome proliferator-activated receptor β/δ and retinoid X receptors, but not of retinoic acid receptors, and were partially blocked by an AMP-dependent protein kinase inhibitor. Circulating irisin levels were increased by 5-fold in ATRA-treated mice, linked to increased Fndc5 transcription in liver and adipose tissues, rather than skeletal muscle. Immunohistochemistry analysis of FNDC5 suggested that ATRA treatment enhances the release of FNDC5/irisin from skeletal muscle and the liver and its accumulation in interscapular brown and inguinal white adipose depots. These results provide new mechanistic insights on how ATRA globally stimulates FAO and enhances irisin secretion, thereby contributing to leaning effects and improved metabolic status. © 2018 The Author(s). Published by S. Karger AG, Basel.

  12. Comparative Effects of Retinoic Acid or Glycolic Acid Vehiculated in Different Topical Formulations

    PubMed Central

    Maia Campos, Patrícia Maria Berardo Gonçalves; Gaspar, Lorena Rigo; Gonçalves, Gisele Mara Silva; Pereira, Lúcia Helena Terenciane Rodrigues; Semprini, Marisa; Lopes, Ruberval Armando

    2015-01-01

    Retinoids and hydroxy acids have been widely used due to their effects in the regulation of growth and in the differentiation of epithelial cells. However, besides their similar indication, they have different mechanisms of action and thus they may have different effects on the skin; in addition, since the topical formulation efficiency depends on vehicle characteristics, the ingredients of the formulation could alter their effects. Thus the objective of this study was to compare the effects of retinoic acid (RA) and glycolic acid (GA) treatment on the hairless mouse epidermis thickness and horny layer renewal when added in gel, gel cream, or cream formulations. For this, gel, gel cream, and cream formulations (with or without 6% GA or 0.05% RA) were applied in the dorsum of hairless mice, once a day for seven days. After that, the skin was analyzed by histopathologic, morphometric, and stereologic techniques. It was observed that the effects of RA occurred independently from the vehicle, while GA had better results when added in the gel cream and cream. Retinoic acid was more effective when compared to glycolic acid, mainly in the cell renewal and the exfoliation process because it decreased the horny layer thickness. PMID:25632398

  13. Increasing the intracellular availability of all-trans retinoic acid in neuroblastoma cells

    PubMed Central

    Armstrong, J L; Ruiz, M; Boddy, A V; Redfern, C P F; Pearson, A D J; Veal, G J

    2005-01-01

    Recent data indicate that isomerisation to all-trans retinoic acid (ATRA) is the key mechanism underlying the favourable clinical properties of 13-cis retinoic acid (13cisRA) in the treatment of neuroblastoma. Retinoic acid (RA) metabolism is thought to contribute to resistance, and strategies to modulate this may increase the clinical efficacy of 13cisRA. The aim of this study was to test the hypothesis that retinoids, such as acitretin, which bind preferentially to cellular retinoic acid binding proteins (CRABPs), or specific inhibitors of the RA hydroxylase CYP26, such as R116010, can increase the intracellular availability of ATRA. Incubation of SH-SY5Y cells with acitretin (50 μM) or R116010 (1 or 10 μM) in combination with either 10 μM ATRA or 13cisRA induced a selective increase in intracellular levels of ATRA, while 13cisRA levels were unaffected. CRABP was induced in SH-SY5Y cells in response to RA. In contrast, acitretin had no significant effect on intracellular retinoid concentrations in those neuroblastoma cell lines that showed little or no induction of CRABP after RA treatment. Both ATRA and 13cisRA dramatically induced the expression of CYP26A1 in SH-SY5Y cells, and treatment with R116010, but not acitretin, potentiated the RA-induced expression of a reporter gene and CYP26A1. The response of neuroblastoma cells to R116010 was consistent with inhibition of CYP26, indicating that inhibition of RA metabolism may further optimise retinoid treatment in neuroblastoma. PMID:15714209

  14. Effect of retinoic acid on aquaporin 3 expression in keratinocytes.

    PubMed

    Xing, F; Liao, W; Jiang, P; Xu, W; Jin, X

    2016-03-11

    To explore the possible mechanism of the third-generation retinoic acid drugs (isotretinoin, acitretin, adapalene) in inducing skin and mucosa dryness and rhagades; specifically, mechanism by which these drugs influence keratinocyte cell culture models in vitro (HaCaT) and aquaporin channel (AQP3) protein expression was investigated. Isotretinoin, acitretin, and adapalene were applied to human keratinocyte HaCaT cells. Immunohistochemistry, reverse transcriptase polymerase chain reaction, and western blotting were used to detect their effects on AQP3 expression in HaCaT cells at different concentrations (0.000, 0.001, 0.010, 0.060, and 0.100 mg/mL) or different at times (0, 6, 12, 24, and 48 h). At 0.010 mg/mL, maximal AQP3 expression was observed in HaCaT cells; this was significantly higher than the expressions at the other concentrations (P < 0.05). After treatment with isotretinoin, acitretin, or adapalene at 0.010 mg/mL for 12 h, the expression of AQP3 was the highest in the isotretinoin group, followed by the acitretin group, with the lowest expression in the adapalene group. However, the differences were not statistically significant (P > 0.05). Retinoic acid can increase AQP3 expression in HaCaT cells, with significant effects observed with 0.010 mg/mL isotretinoin treatment for 12 h. The side effects, namely skin and mucosa dryness caused by retinoic acid might be related to its effects on AQP3 expression.

  15. A new approach to highly sensitive determination of retinoic acid isomers by preconcentration with CdSe quantum dots.

    PubMed

    Torabi, Behzad; Shemirani, Farzaneh

    2014-03-01

    Unusual amounts of retinoic acid (RA) isomers play an important role in abnormal morphological development of mammals; such as rat embryos. Each isomer of RA has a unique function in first steps of embryonic life. In the current study, a new method for preconcentration and simultaneous determination of all-trans retinoic acid, 13-cis retinoic acid, 9-cis retinoic acid and 9,13-di-cis retinoic acid in rat whole rudimentary embryo culture (RWEC) has been developed. RA isomers were extracted from samples by conjugation to appropriate amount of surface modified CdSe quantum dots (QDs) prior to HPLC/UV determination. In order to quickly release of the analytes with unchanged form, separated RA-QD conjugation were irradiated by intensive near infrared wavelength (NIR). Low energy NIR irradiation results in maintaining the primary forms of RA isomers during the release. The conjugation and release mechanisms were described and experimental parameters were investigated in detail. Under optimized conditions, the method was linear in the range of 0.040-34.600 pmol g(-1) for all-trans RA (R(2)=0.9996), 0.070-34.200 pmol g(-1) for 13-cis RA (R(2)=0.9992), 0.050-35.300 pmol g(-1) for 9,13-di-cis RA (R(2)=0.9998) and 0.050-32.900 pmol g(-1) for 9-cis RA (R(2)=0.9990). The present method can be useful for retinoic acid monitoring in clinical studies. © 2013 Published by Elsevier B.V.

  16. Retinoic acid postconsolidation therapy for high-risk neuroblastoma patients treated with autologous haematopoietic stem cell transplantation.

    PubMed

    Peinemann, Frank; van Dalen, Elvira C; Enk, Heike; Berthold, Frank

    2017-08-25

    Neuroblastoma is a rare malignant disease and mainly affects infants and very young children. The tumours mainly develop in the adrenal medullary tissue, with an abdominal mass as the most common presentation. About 50% of patients have metastatic disease at diagnosis. The high-risk group is characterised by metastasis and other features that increase the risk of an adverse outcome. High-risk patients have a five-year event-free survival of less than 50%. Retinoic acid has been shown to inhibit growth of human neuroblastoma cells and has been considered as a potential candidate for improving the outcome of patients with high-risk neuroblastoma. This review is an update of a previously published Cochrane Review. To evaluate the efficacy and safety of additional retinoic acid as part of a postconsolidation therapy after high-dose chemotherapy (HDCT) followed by autologous haematopoietic stem cell transplantation (HSCT), compared to placebo retinoic acid or to no additional retinoic acid in people with high-risk neuroblastoma (as defined by the International Neuroblastoma Risk Group (INRG) classification system). We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library (2016, Issue 11), MEDLINE in PubMed (1946 to 24 November 2016), and Embase in Ovid (1947 to 24 November 2016). Further searches included trial registries (on 22 December 2016), conference proceedings (on 23 March 2017) and reference lists of recent reviews and relevant studies. We did not apply limits by publication year or languages. Randomised controlled trials (RCTs) evaluating additional retinoic acid after HDCT followed by HSCT for people with high-risk neuroblastoma compared to placebo retinoic acid or to no additional retinoic acid. Primary outcomes were overall survival and treatment-related mortality. Secondary outcomes were progression-free survival, event-free survival, early toxicity, late toxicity, and health-related quality of life. We used standard

  17. Retinoic acid-induced lumbosacral neural tube defects: myeloschisis and hamartoma.

    PubMed

    Cai, WeiSong; Zhao, HongYu; Guo, JunBin; Li, Yong; Yuan, ZhengWei; Wang, WeiLin

    2007-05-01

    To observe the morphological features of the lumbosacral neural tube defects (NTDs) induced by all-trans retinoic acid (atRA) and to explore the pathogenesis of these defects. Rat embryos with lumbosacral NTDs were obtained by treating pregnant rats with administration of atRA. Rat embryos were obtained by cesarean. Fetuses were sectioned and stained with hematoxylin-eosin (H&E). Relevant structures including caudal neural tube were examined. In the atRA-treated rats, about 48% embryos showed lumbosacral NTDs. There appeared a dorsally and rostrally situated, neural-plate-like structure (myeloschisis) and a ventrally and caudally located cell mass containing multiple canals (hamartoma) in the lumbosacral NTDs induced by atRA. Retinoic acid could disturb the notochord and tail bud development in the process of primary and secondary neurulation in rat embryos, which cause lumbosacral NTDs including myeloschisis and hamartoma. The morphology is very similar to that happens in humans.

  18. Retinoic acid‐induced glandular differentiation of the oesophagus

    PubMed Central

    Chang, Chih‐Long; Lao‐Sirieix, Pierre; Save, Vicki; De La Cueva Mendez, Guillermo; Laskey, Ron; Fitzgerald, Rebecca C

    2007-01-01

    Background Retinoic acid (RA) is a powerful differentiation agent. Barrett's oesophagus occurs when duodeno‐gastro‐oesophageal reflux causes squamous epithelium (SE) tissue to become columnar epithelium tissue by an unknown mechanism. The bile acid lithocholic acid (LCA) competes for the retinoid X receptor retinoid binding site. Hence, RA pathways may be implicated in Barrett's oesophagus. Methods RA activity in tissues and cell lines treated with all‐trans retinoic acid (ATRA) with or without LCA was assessed using a reporter. Expression of p21 was determined by real‐time PCR in Barrett's oesophagus cell lines with or without LCA. SE and Barrett's oesophagus biopsy specimens were exposed to 100 μM of ATRA or 20 mM of a RA inhibitor, citral, in organ culture for >72 h. Characteristics of treated specimens, compared with untreated controls, were analysed by immunohistochemical analysis (cytokeratins (CKs), vimentin) and RT‐PCR (CKs). Confocal microscopy assessed temporal changes in co‐localisation of CK8/18 and vimentin. Cell proliferation was assessed by bromo‐deoxyuridine incorporation and immunohistochemical analysis for Ki67 and p21. Results RA biosynthesis was increased in Barrett's oesophagus compared with SE (p<0.001). LCA and ATRA caused a synergistic increase in RA signalling as shown by increased p21 (p<0.01). Morphological and molecular analysis of SE exposed to ATRA showed columnar differentiation independent of proliferation. Metaplasia could be induced from the stromal compartment alone and vimentin expression co‐localised with CK8/18 at 24 h, which separated into CK8/18‐positive glands and vimentin‐positive stroma by 48 h. Citral‐treated Barrett's oesophagus led to phenotypic and immunohistochemical characteristics of SE, which was independent of proliferation. Conclusion RA activity is increased in Barrett's oesophagus and is induced by LCA. Under conditions of altered RA activity and an intact stroma, the

  19. Nanosecond pulsed electric field suppresses development of eyes and germ cells through blocking synthesis of retinoic acid in Medaka (Oryzias latipes).

    PubMed

    Shiraishi, Eri; Hosseini, Hamid; Kang, Dong K; Kitano, Takeshi; Akiyama, Hidenori

    2013-01-01

    Application of nanosecond pulsed electric fields (nsPEFs) has attracted rising attention in various scientific fields including medical, pharmacological, and biological sciences, although its effects and molecular mechanisms leading to the effects remain poorly understood. Here, we show that a single, high-intensity (10-30 kV/cm), 60-ns PEF exposure affects gene expression and impairs development of eyes and germ cells in medaka (Oryzias latipes). Exposure of early blastula stage embryos to nsPEF down-regulated the expression of several transcription factors which are essential for eye development, causing abnormal eye formation. Moreover, the majority of the exposed genetic female embryos showed a fewer number of germ cells similar to that of the control (unexposed) genetic male at 9 days post-fertilization (dpf). However, all-trans retinoic acid (atRA) treatment following the exposure rescued proliferation of germ cells and resumption of normal eye development, suggesting that the phenotypes induced by nsPEF are caused by a decrease of retinoic acid levels. These results confirm that nsPEFs induce novel effects during embryogenesis in medaka.

  20. Activation of the CRABPII/RAR pathway by curcumin induces retinoic acid mediated apoptosis in retinoic acid resistant breast cancer cells

    PubMed Central

    Thulasiraman, Padmamalini; Garriga, Galen; Danthuluri, Veena; McAndrews, Daniel J.; Mohiuddin, Imran Q.

    2017-01-01

    Due to the anti-proliferative and anti-apoptotic effects of retinoic acid (RA), this hormone has emerged as a target for several diseases, including cancer. However, development of retinoid resistance is a critical issue and efforts to understand the retinoid signaling pathway may identify useful biomarkers for future clinical trials. Apoptotic responses of RA are exhibited through the cellular RA-binding protein II (CRABPII)/retinoic acid receptor (RAR) signaling cascade. Delivery of RA to RAR by CRABPII enhances the transcriptional activity of genes involved in cell death and cell cycle arrest. The purpose of this study was to investigate the role of curcumin in sensitizing RA-resistant triple-negative breast cancer (TNBC) cells to RA-mediated apoptosis. We provide evidence that curcumin upregulates the expression of CRABPII, RARβ and RARγ in two different TNBC cell lines. Co-treatment of the cells with curcumin and RA results in increased apoptosis as demonstrated by elevated cleavage of poly(ADP-ribose) polymerase and cleaved caspase-9. Additionally, silencing CRABPII reverses curcumin sensitization of TNBC cells to the apoptotic inducing effects of RA. These findings provide mechanistic insights into sensitizing TNBC cells to RA-mediated cell death by curcumin-induced upregulation of the CRABPII/RAR pathway. PMID:28350049

  1. Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid.

    PubMed

    Andres, Devon; Keyser, Brian M; Petrali, John; Benton, Betty; Hubbard, Kyle S; McNutt, Patrick M; Ray, Radharaman

    2013-04-18

    Immortalized neuronal cell lines can be induced to differentiate into more mature neurons by adding specific compounds or growth factors to the culture medium. This property makes neuronal cell lines attractive as in vitro cell models to study neuronal functions and neurotoxicity. The clonal human neuroblastoma BE(2)-M17 cell line is known to differentiate into a more prominent neuronal cell type by treatment with trans-retinoic acid. However, there is a lack of information on the morphological and functional aspects of these differentiated cells. We studied the effects of trans-retinoic acid treatment on (a) some differentiation marker proteins, (b) types of voltage-gated calcium (Ca2+) channels and (c) Ca2+-dependent neurotransmitter ([3H] glycine) release in cultured BE(2)-M17 cells. Cells treated with 10 μM trans-retinoic acid (RA) for 72 hrs exhibited marked changes in morphology to include neurite extensions; presence of P/Q, N and T-type voltage-gated Ca2+ channels; and expression of neuron specific enolase (NSE), synaptosomal-associated protein 25 (SNAP-25), nicotinic acetylcholine receptor α7 (nAChR-α7) and other neuronal markers. Moreover, retinoic acid treated cells had a significant increase in evoked Ca2+-dependent neurotransmitter release capacity. In toxicity studies of the toxic gas, phosgene (CG), that differentiation of M17 cells with RA was required to see the changes in intracellular free Ca2+ concentrations following exposure to CG. Taken together, retinoic acid treated cells had improved morphological features as well as neuronal characteristics and functions; thus, these retinoic acid differentiated BE(2)-M17 cells may serve as a better neuronal model to study neurobiology and/or neurotoxicity.

  2. [Application of 13-cis-retinoic acid in patients with 131I scintigraphically-negative metastases of differentiated thyroid carcinoma].

    PubMed

    Adamczewski, Zbigniew; Makarewicz, Jacek; Mikosiński, Sławomir; Knapska-Kucharska, Małgorzata; Gunerska-Szadkowska, Anna; Oszukowska, Lidia; Karwowska, Anzelmina; Lewiński, Andrzej

    2006-01-01

    The loss of iodine uptake by differentiated thyroid carcinoma (DTC) cells is a major therapeutic problem especially in patients with nonsurgical metastatic foci or local recurrence. Using 13-cis-retinoic acid, it was attempted to retain iodine uptake as a result of redifferentiation (influence by retinoic acid receptors present in DTC cells). Between 1999 and 2005, 13-cis-retinoic acid was used in 11 patients with disseminated PTC and high serum level of thyroglobulin (Tg) before (131)I treatment (2 patients were treated twice - 13 treatment cycles in total). Side effects in skin and mucous membranes were observed in all the patients, however, their intensity did not require termination of the therapy. Increase of iodine uptake was observed in 5 patients (45%). Decreased Tg concentration was observed in 9 patients. In that group, increased (131)I uptake was observed in 4 patients with distant metastases. All determinations of Tg concentrations were carried out under TSH stimulation. 13-cis-retinoic acid causes an increase of radioiodine uptake in around half of treated patients, however, the follow-up of these patients indicates that this increase does not result in either full remission or even stabilisation of neoplastic disease. The possibility should be considered to use cis-retinoic acid as an independent therapeutic approach in patients with radioiodine non-avid foci of thyroid carcinoma especially those showing high expression of RARb and RXRg receptors.

  3. Combinational treatment with retinoic acid derivatives in non-small cell lung carcinoma in vitro.

    PubMed

    Choi, Eun Jung; Whang, Young Mi; Kim, Seok Jin; Kim, Hyun Jin; Kim, Yeul Hong

    2007-09-01

    The growth inhibitory effects of four retinoic acid (RA) derivatives, 9-cis RA, 13-cis RA, N-(4-hydroxyphenyl) retinamide (4-HPR), and all-trans retinoic acid (ATRA) were compared. In addition, the effects of various combinations of these four agents were examined on non-small cell lung carcinoma (NSCLC) cell-lines, and on the expressions of retinoic acid receptors (RARs) and retinoid X receptors (RXRs) on these cells. At the clinically achievable concentration of 1 microM, only 4-HPR inhibited the growths of H1299 and H460 cells-lines. However, retinoic acid receptor beta(RAR beta) expression was up-regulated on H460 and H1299 cells treated with 1 microM of ATRA, 13-cis RA, or 9-cis RA. All NSCLC cell lines showed growth inhibition when exposed sequentially to 1 microM ATRA and 0.1 microM 4-HPR. In particular, sequential treatment with 1 microM ATRA or 13-cis RA and 4-HPR markedly inhibited H1703 cell growth; these cells exhibited no basal RAR beta expression and were refractory to 4-HPR. However, in NSCLC cell lines that expressed RAR beta, the expressional levels of RAR beta were up-regulated by ATRA alone and by sequential treatment with ATRA and 4-HPR. 4-HPR was found to be the most active of the four agents in terms of NSCLC growth-inhibition. Moreover, sequential treatments with ATRA or 13-cis RA followed by 4-HPR were found to have synergistic growth-inhibitory effects and to regulate RAR expression.

  4. Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid

    PubMed Central

    2013-01-01

    Background Immortalized neuronal cell lines can be induced to differentiate into more mature neurons by adding specific compounds or growth factors to the culture medium. This property makes neuronal cell lines attractive as in vitro cell models to study neuronal functions and neurotoxicity. The clonal human neuroblastoma BE(2)-M17 cell line is known to differentiate into a more prominent neuronal cell type by treatment with trans-retinoic acid. However, there is a lack of information on the morphological and functional aspects of these differentiated cells. Results We studied the effects of trans-retinoic acid treatment on (a) some differentiation marker proteins, (b) types of voltage-gated calcium (Ca2+) channels and (c) Ca2+-dependent neurotransmitter ([3H] glycine) release in cultured BE(2)-M17 cells. Cells treated with 10 μM trans-retinoic acid (RA) for 72 hrs exhibited marked changes in morphology to include neurite extensions; presence of P/Q, N and T-type voltage-gated Ca2+ channels; and expression of neuron specific enolase (NSE), synaptosomal-associated protein 25 (SNAP-25), nicotinic acetylcholine receptor α7 (nAChR-α7) and other neuronal markers. Moreover, retinoic acid treated cells had a significant increase in evoked Ca2+-dependent neurotransmitter release capacity. In toxicity studies of the toxic gas, phosgene (CG), that differentiation of M17 cells with RA was required to see the changes in intracellular free Ca2+ concentrations following exposure to CG. Conclusion Taken together, retinoic acid treated cells had improved morphological features as well as neuronal characteristics and functions; thus, these retinoic acid differentiated BE(2)-M17 cells may serve as a better neuronal model to study neurobiology and/or neurotoxicity. PMID:23597229

  5. A Dominant Mutation in Nuclear Receptor Interacting Protein 1 Causes Urinary Tract Malformations via Dysregulation of Retinoic Acid Signaling.

    PubMed

    Vivante, Asaf; Mann, Nina; Yonath, Hagith; Weiss, Anna-Carina; Getwan, Maike; Kaminski, Michael M; Bohnenpoll, Tobias; Teyssier, Catherine; Chen, Jing; Shril, Shirlee; van der Ven, Amelie T; Ityel, Hadas; Schmidt, Johanna Magdalena; Widmeier, Eugen; Bauer, Stuart B; Sanna-Cherchi, Simone; Gharavi, Ali G; Lu, Weining; Magen, Daniella; Shukrun, Rachel; Lifton, Richard P; Tasic, Velibor; Stanescu, Horia C; Cavaillès, Vincent; Kleta, Robert; Anikster, Yair; Dekel, Benjamin; Kispert, Andreas; Lienkamp, Soeren S; Hildebrandt, Friedhelm

    2017-08-01

    Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of CKD in the first three decades of life. However, for most patients with CAKUT, the causative mutation remains unknown. We identified a kindred with an autosomal dominant form of CAKUT. By whole-exome sequencing, we identified a heterozygous truncating mutation (c.279delG, p.Trp93fs*) of the nuclear receptor interacting protein 1 gene ( NRIP1 ) in all seven affected members. NRIP1 encodes a nuclear receptor transcriptional cofactor that directly interacts with the retinoic acid receptors (RARs) to modulate retinoic acid transcriptional activity. Unlike wild-type NRIP1, the altered NRIP1 protein did not translocate to the nucleus, did not interact with RAR α , and failed to inhibit retinoic acid-dependent transcriptional activity upon expression in HEK293 cells. Notably, we also showed that treatment with retinoic acid enhanced NRIP1 binding to RAR α RNA in situ hybridization confirmed Nrip1 expression in the developing urogenital system of the mouse. In explant cultures of embryonic kidney rudiments, retinoic acid stimulated Nrip1 expression, whereas a pan-RAR antagonist strongly reduced it. Furthermore, mice heterozygous for a null allele of Nrip1 showed a CAKUT-spectrum phenotype. Finally, expression and knockdown experiments in Xenopus laevis confirmed an evolutionarily conserved role for NRIP1 in renal development. These data indicate that dominant NRIP1 mutations can cause CAKUT by interference with retinoic acid transcriptional signaling, shedding light on the well documented association between abnormal vitamin A levels and renal malformations in humans, and suggest a possible gene-environment pathomechanism in this disease. Copyright © 2017 by the American Society of Nephrology.

  6. Retinoic Acid as a Modulator of T Cell Immunity

    PubMed Central

    Bono, Maria Rosa; Tejon, Gabriela; Flores-Santibañez, Felipe; Fernandez, Dominique; Rosemblatt, Mario; Sauma, Daniela

    2016-01-01

    Vitamin A, a generic designation for an array of organic molecules that includes retinal, retinol and retinoic acid, is an essential nutrient needed in a wide array of aspects including the proper functioning of the visual system, maintenance of cell function and differentiation, epithelial surface integrity, erythrocyte production, reproduction, and normal immune function. Vitamin A deficiency is one of the most common micronutrient deficiencies worldwide and is associated with defects in adaptive immunity. Reports from epidemiological studies, clinical trials and experimental studies have clearly demonstrated that vitamin A plays a central role in immunity and that its deficiency is the cause of broad immune alterations including decreased humoral and cellular responses, inadequate immune regulation, weak response to vaccines and poor lymphoid organ development. In this review, we will examine the role of vitamin A in immunity and focus on several aspects of T cell biology such as T helper cell differentiation, function and homing, as well as lymphoid organ development. Further, we will provide an overview of the effects of vitamin A deficiency in the adaptive immune responses and how retinoic acid, through its effect on T cells can fine-tune the balance between tolerance and immunity. PMID:27304965

  7. Retinoic acid signaling in cancer: The parable of acute promyelocytic leukemia.

    PubMed

    Ablain, Julien; de Thé, Hugues

    2014-11-15

    Inevitably fatal some 40 years, acute promyelocytic leukemia (APL) can now be cured in more than 95% of cases. This clinical success story is tightly linked to tremendous progress in our understanding of retinoic acid (RA) signaling. The discovery of retinoic acid receptor alpha (RARA) was followed by the cloning of the chromosomal translocations driving APL, all of which involve RARA. Since then, new findings on the biology of nuclear receptors have progressively enlightened the basis for the clinical efficacy of RA in APL. Reciprocally, the disease offered a range of angles to approach the cellular and molecular mechanisms of RA action. This virtuous circle contributed to make APL one of the best-understood cancers from both clinical and biological standpoints. Yet, some important questions remain unanswered including how lessons learnt from RA-triggered APL cure can help design new therapies for other malignancies. © 2014 UICC.

  8. Tripartite Motif 24 (Trim24/Tif1α) Tumor Suppressor Protein Is a Novel Negative Regulator of Interferon (IFN)/Signal Transducers and Activators of Transcription (STAT) Signaling Pathway Acting through Retinoic Acid Receptor α (Rarα) Inhibition*

    PubMed Central

    Tisserand, Johan; Khetchoumian, Konstantin; Thibault, Christelle; Dembélé, Doulaye; Chambon, Pierre; Losson, Régine

    2011-01-01

    Recent genetic studies in mice have established that the nuclear receptor coregulator Trim24/Tif1α suppresses hepatocarcinogenesis by inhibiting retinoic acid receptor α (Rara)-dependent transcription and cell proliferation. However, Rara targets regulated by Trim24 remain unknown. We report that the loss of Trim24 resulted in interferon (IFN)/STAT pathway overactivation soon after birth (week 5). Despite a transient attenuation of this pathway by the induction of several IFN/STAT pathway repressors later in the disease, this phenomenon became more pronounced in tumors. Remarkably, Rara haplodeficiency, which suppresses tumorigenesis in Trim24−/− mice, prevented IFN/STAT overactivation. Moreover, together with Rara, Trim24 bound to the retinoic acid-responsive element of the Stat1 promoter and repressed its retinoic acid-induced transcription. Altogether, these results identify Trim24 as a novel negative regulator of the IFN/STAT pathway and suggest that this repression through Rara inhibition may prevent liver cancer. PMID:21768647

  9. A human induced pluripotent stem cell-based in vitro assay predicts developmental toxicity through a retinoic acid receptor-mediated pathway for a series of related retinoid analogues.

    PubMed

    Palmer, Jessica A; Smith, Alan M; Egnash, Laura A; Colwell, Michael R; Donley, Elizabeth L R; Kirchner, Fred R; Burrier, Robert E

    2017-10-01

    The relative developmental toxicity potency of a series of retinoid analogues was evaluated using a human induced pluripotent stem (iPS) cell assay that measures changes in the biomarkers ornithine and cystine. Analogue potency was predicted, based on the assay endpoint of the ornithine/cystine (o/c) ratio, to be all-trans-retinoic acid>TTNPB>13-cis-retinoic acid≈9-cis-retinoic acid>acitretin>etretinate>retinol. These rankings correlate with in vivo data and demonstrate successful application of the assay to rank a series of related toxic and non-toxic compounds. The retinoic acid receptor α (RARα)-selective antagonist Ro 41-5253 inhibited the cystine perturbation caused by all-trans-retinoic acid, TTNPB, 13-cis-retinoic acid, 9-cis-retinoic acid, and acitretin. Ornithine was altered independent of RARα in all retinoids except acitretin. These results suggest a role for an RARα-mediated mechanism in retinoid-induced developmental toxicity through altered cystine metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Vitamin A-Retinoic Acid Signaling Regulates Hematopoietic Stem Cell Dormancy.

    PubMed

    Cabezas-Wallscheid, Nina; Buettner, Florian; Sommerkamp, Pia; Klimmeck, Daniel; Ladel, Luisa; Thalheimer, Frederic B; Pastor-Flores, Daniel; Roma, Leticia P; Renders, Simon; Zeisberger, Petra; Przybylla, Adriana; Schönberger, Katharina; Scognamiglio, Roberta; Altamura, Sandro; Florian, Carolina M; Fawaz, Malak; Vonficht, Dominik; Tesio, Melania; Collier, Paul; Pavlinic, Dinko; Geiger, Hartmut; Schroeder, Timm; Benes, Vladimir; Dick, Tobias P; Rieger, Michael A; Stegle, Oliver; Trumpp, Andreas

    2017-05-18

    Dormant hematopoietic stem cells (dHSCs) are atop the hematopoietic hierarchy. The molecular identity of dHSCs and the mechanisms regulating their maintenance or exit from dormancy remain uncertain. Here, we use single-cell RNA sequencing (RNA-seq) analysis to show that the transition from dormancy toward cell-cycle entry is a continuous developmental path associated with upregulation of biosynthetic processes rather than a stepwise progression. In addition, low Myc levels and high expression of a retinoic acid program are characteristic for dHSCs. To follow the behavior of dHSCs in situ, a Gprc5c-controlled reporter mouse was established. Treatment with all-trans retinoic acid antagonizes stress-induced activation of dHSCs by restricting protein translation and levels of reactive oxygen species (ROS) and Myc. Mice maintained on a vitamin A-free diet lose HSCs and show a disrupted re-entry into dormancy after exposure to inflammatory stress stimuli. Our results highlight the impact of dietary vitamin A on the regulation of cell-cycle-mediated stem cell plasticity. VIDEO ABSTRACT. Copyright © 2017. Published by Elsevier Inc.

  11. A comparative study of the effects of retinol and retinoic acid on histological, molecular, and clinical properties of human skin.

    PubMed

    Kong, Rong; Cui, Yilei; Fisher, Gary J; Wang, Xiaojuan; Chen, Yinbei; Schneider, Louise M; Majmudar, Gopa

    2016-03-01

    All-trans retinol, a precursor of retinoic acid, is an effective anti-aging treatment widely used in skin care products. In comparison, topical retinoic acid is believed to provide even greater anti-aging effects; however, there is limited research directly comparing the effects of retinol and retinoic acid on skin. In this study, we compare the effects of retinol and retinoic acid on skin structure and expression of skin function-related genes and proteins. We also examine the effect of retinol treatment on skin appearance. Skin histology was examined by H&E staining and in vivo confocal microscopy. Expression levels of skin genes and proteins were analyzed using RT-PCR and immunohistochemistry. The efficacy of a retinol formulation in improving skin appearance was assessed using digital image-based wrinkle analysis. Four weeks of retinoic acid and retinol treatments both increased epidermal thickness, and upregulated genes for collagen type 1 (COL1A1), and collagen type 3 (COL3A1) with corresponding increases in procollagen I and procollagen III protein expression. Facial image analysis showed a significant reduction in facial wrinkles following 12 weeks of retinol application. The results of this study demonstrate that topical application of retinol significantly affects both cellular and molecular properties of the epidermis and dermis, as shown by skin biopsy and noninvasive imaging analyses. Although the magnitude tends to be smaller, retinol induces similar changes in skin histology, and gene and protein expression as compared to retinoic acid application. These results were confirmed by the significant facial anti-aging effect observed in the retinol efficacy clinical study. © 2015 Wiley Periodicals, Inc.

  12. Increased concentrations of endogenous 13-cis- and all-trans-retinoic acids in diffuse idiopathic skeletal hyperostosis, as demonstrated by HPLC.

    PubMed

    Periquet, B; Lambert, W; Garcia, J; Lecomte, G; De Leenheer, A P; Mazieres, B; Thouvenot, J P; Arlet, J

    1991-11-09

    Endogenous 13-cis- and all-trans-retinoic acids have been quantitated in human serum using a solvent extraction procedure followed by isocratic reversed phase high performance liquid chromatography and UV detection. In healthy adults, after an overnight fasting period, the concentrations of 13-cis- and all-trans-retinoic acids yielded 5.3 +/- 2.43 nmol/l and 11.8 +/- 3.3 nmol/l, respectively (mean +/- SD). The method has been successfully applied to the analysis of both isomers in serum from patients with idiopathic skeletal hyperostosis in whom, the 13-cis- as well as all-trans-retinoic acid levels were raised as compared to the control group.

  13. Effect of retinoic acid on midkine gene expression in rat anterior pituitary cells.

    PubMed

    Maliza, Rita; Fujiwara, Ken; Azuma, Morio; Kikuchi, Motoshi; Yashiro, Takashi

    2017-06-29

    Retinoic acid (RA) is converted from retinal by retinaldehyde dehydrogenases (RALDHs) and is an essential signaling molecule in embryonic and adult tissue. We previously reported that RALDH1 was produced in the rat anterior pituitary gland and hypothesized that RA was generated in the gland. Midkine (MK) is an RA-inducible growth factor, and MK production in the rat anterior pituitary gland was recently reported. However, the mechanism that regulates gene expression of MK in the pituitary gland has not been determined. To investigate regulation of MK production in the anterior pituitary gland, we analyzed changes in MK mRNA in cultured rat anterior pituitary cells. We identified MK-expressing cells by double-staining with in situ hybridization and immunohistochemical techniques for RALDH1. MK mRNA was expressed in RALDH1-producing cells in the anterior pituitary gland. Using isolated anterior pituitary cells of rats, we examined the effect of RA on gene expression of MK. Quantitative real-time PCR revealed that 72 h exposure to a concentration of 10 -6 M of retinal and all-trans retinoic acid increased MK mRNA levels by about 2-fold. Moreover, the stimulatory effect of all-trans retinoic acid was mimicked by the RA receptor agonist Am80. This is the first report to show that RA is important in regulating MK expression in rat anterior pituitary gland.

  14. Persistent behavioral effects following early life exposure to retinoic acid or valproic acid in zebrafish

    PubMed Central

    Bailey, Jordan M.; Oliveri, Anthony N.; Karbhari, Nishika; Brooks, Roy A.J.; De La Rocha, Amberlene J.; Janardhan, Sheila; Levin, Edward D.

    2015-01-01

    BACKGROUND Moderate to severe dysregulation in retinoid signaling during early development is associated with a constellation of physical malformations and/or neural tube defects, including spina bifida. It is thought that more subtle dysregulation of this system, which might be achievable via dietary (i.e. hypervitaminosis A) or pharmacological (i.e. valproic acid) exposure in humans, will manifest on behavioral domains including sociability, without overt physical abnormalities. METHODS During early life, zebrafish were exposed to low doses of two chemicals that disrupt retinoid signaling. From 0-5 dpf, larvae were reared in aqueous solutions containing retinoic acid (0, 0.02, 0.2 or 2 nM) or valproic acid (0, 0.5, 5.0 or 50 uM). One cohort of zebrafish was assessed using a locomotor activity screen at 6-dpf; another was reared to adulthood and assessed using a neurobehavioral test battery (startle habituation, novel tank exploration, shoaling, and predator escape/avoidance). RESULTS There was no significant increase in the incidence of physical malformation among exposed fish compared to controls. Both retinoic acid and valproic acid exposures during development disrupted larval activity with persisting behavioral alterations later in life, primarily manifesting as decreased social affiliation. CONCLUSIONS Social behavior and some aspects of motor function were altered in exposed fish; the importance of examining emotional or psychological consequences of early life exposure to retinoid acting chemicals is discussed. PMID:26439099

  15. Determination of 13-cis-retinoic acid and its major metabolite, 4-oxo-13-cis-retinoic acid, in human blood by reversed-phase high-performance liquid chromatography.

    PubMed

    Vane, F M; Stoltenborg, J K; Buggé, C J

    1982-02-12

    A high-performance liquid chromatography (HPLC) method for the quantitation of 13-cis-retinoic acid (13-cis-RA) and its major metabolite, 4-oxo-13-cis-RA, in human blood has been developed. The method includes extraction of 1 ml of blood with diethyl ether at pH 6 and the analysis of the extract by reversed-phase HPLC with solvent programming and detection at 365 nm. The quantitation ranges for 13-cis-RA and 4-oxo-13-cis-RA are 10--2000 and 50--2000 ng/ml of blood, respectively. The method also provides estimates of the concentrations of all-trans-RA and 4-oxo-all-trans-RA. The mean intra- and inter-assay variabilities for all four compounds were 6% or less. The method separates 13-cis-RA and 4-oxo-13-cis-RA from 9-cis-RA, all-trans-RA, 4-oxo-all-trans-RA, and some other possible metabolites, such as hydroxy and epoxy retinoic acids. The method has been successfully applied to the analyses of over 1200 blood samples from four 13-cis-RA clinical studies.

  16. Simultaneous analysis of retinol, all-trans- and 13-cis-retinoic acid and 13-cis-4-oxoretinoic acid in plasma by liquid chromatography using on-column concentration after single-phase fluid extraction.

    PubMed

    Teerlink, T; Copper, M P; Klaassen, I; Braakhuis, B J

    1997-06-20

    A reversed-phase high-performance liquid chromatographic method for the simultaneous analysis of retinol, all-trans-retinoic acid, 13-cis-retinoic acid and 13-cis-4-oxoretinoic acid in human plasma and cell culture medium is described. Sample preparation involves precipitation of proteins and extraction of retinoids with 60% acetonitrile. After centrifugation, the acetonitrile content of the supernatant is reduced to 45%, allowing on-column concentration of analytes. Injection volumes up to 2.0 ml (equivalent to 0.525 ml of sample) can be used without compromising chromatographic resolution of all-trans-retinoic acid and 13-cis-retinoic acid. Retinoids were stable in this extract and showed no isomerization when stored in the dark in a cooled autosampler, allowing automated analysis of large series of samples. Recoveries from spiked plasma samples were between 95 and 103%. Although no internal standard was used, the inter-assay precision for all retinoids was better than 6% and 4% at concentrations of 30 nM and 100 nM, respectively. The method is a valuable tool for the study of cellular metabolism of all-trans-retinoic acid, as polar metabolites of this compound can be detected with high sensitivity in cell culture media.

  17. Ligand activation of peroxisome proliferator-activated receptor-beta/delta inhibits cell proliferation in human HaCaT keratinocytes.

    PubMed

    Borland, Michael G; Foreman, Jennifer E; Girroir, Elizabeth E; Zolfaghari, Reza; Sharma, Arun K; Amin, Shantu; Gonzalez, Frank J; Ross, A Catharine; Peters, Jeffrey M

    2008-11-01

    Although there is strong evidence that ligand activation of peroxisome proliferator-activated receptor (PPAR)-beta/delta induces terminal differentiation and attenuates cell growth, some studies suggest that PPARbeta/delta actually enhances cell proliferation. For example, it was suggested recently that retinoic acid (RA) is a ligand for PPARbeta/delta and potentiates cell proliferation by activating PPARbeta/delta. The present study examined the effect of ligand activation of PPARbeta/delta on cell proliferation, cell cycle kinetics, and target gene expression in human HaCaT keratinocytes using two highly specific PPARbeta/delta ligands [4-[[[2-[3-fluoro-4-(trifluoromethyl)phenyl]-4-methyl-5-thiazolyl]methyl]thio]-2-methylphenoxy acetic acid (GW0742) and 2-methyl-4-((4-methyl-2-(4-trifluoromethylphenyl)-1,3-thiazol-5-yl)-methylsulfanyl)phenoxy-acetic acid (GW501516)] and RA. Both PPARbeta/delta ligands and RA inhibited cell proliferation of HaCaT keratinocytes. GW0742 and GW501516 increased expression of known PPARbeta/delta target genes, whereas RA did not; RA increased the expression of known retinoic acid receptor/retinoid X receptor target genes, whereas GW0742 did not affect these genes. GW0742, GW501516, and RA did not modulate the expression of 3-phosphoinositide-dependent protein kinase or alter protein kinase B phosphorylation. GW0742 and RA increased annexin V staining as quantitatively determined by flow cytometry. The effects of GW0742 and RA were also examined in wild-type and PPARbeta/delta-null primary mouse keratinocytes to determine the specific role of PPARbeta/delta in modulating cell growth. Although inhibition of keratinocyte proliferation by GW0742 was PPARbeta/delta-dependent, inhibition of cell proliferation by RA occurred in both genotypes. Results from these studies demonstrate that ligand activation of PPARbeta/delta inhibits keratinocyte proliferation through PPARbeta/delta-dependent mechanisms. In contrast, the observed inhibition of

  18. ALDH1A1 Deficiency in Gorlin Syndrome Suggests a Central Role for Retinoic Acid and ATM Deficits in Radiation Carcinogenesis.

    PubMed

    Weber, Thomas J; Magnaldo, Thierry; Xiong, Yijia

    2014-09-11

    We hypothesize that aldehyde dehydrogenase 1A1 (ALDH1A1) deficiency will result in impaired ataxia-telangiectasia mutated (ATM) activation in a retinoic acid-sensitive fashion. Data supporting this hypothesis include (1) reduced ATM activation in irradiated primary dermal fibroblasts from ALDH1A1-deficient Gorlin syndrome patients (GDFs), relative to ALDH1A1-positive normal human dermal fibroblasts (NHDFs) and (2) increased ATM activation by X-radiation in GDFs pretreated with retinoic acid, however, the impact of donor variability on ATM activation in fibroblasts was not assessed and is a prudent consideration in future studies. Clonogenic survival of irradiated cells showed differential responses to retinoic acid as a function of treatment time. Long-term (5 Day) retinoic acid treatment functioned as a radiosensitizer and was associated with downregulation of ATM protein levels. Short-term (7 h) retinoic acid treatment showed a trend toward increased survival of irradiated cells and did not downregulate ATM protein levels. Using a newly developed IncubATR technology, which defines changes in bulk chemical bond patterns in live cells, we can discriminate between the NHDF and GDF phenotypes, but treatment of GDFs with retinoic acid does not induce reversion of bulk chemical bond patterns associated with GDFs toward the NHDF phenotype. Collectively, our preliminary investigation of the Gorlin phenotype has identified deficient ALDH1A1 expression associated with deficient ATM activation as a possible susceptibility factor that is consistent with the high incidence of spontaneous and radiation-induced carcinogenesis in these patients. The IncubATR technology exhibits sufficient sensitivity to detect phenotypic differences in live cells that may be relevant to radiation health effects.

  19. A new module in neural differentiation control: two microRNAs upregulated by retinoic acid, miR-9 and -103, target the differentiation inhibitor ID2.

    PubMed

    Annibali, Daniela; Gioia, Ubaldo; Savino, Mauro; Laneve, Pietro; Caffarelli, Elisa; Nasi, Sergio

    2012-01-01

    The transcription factor ID2 is an important repressor of neural differentiation strongly implicated in nervous system cancers. MicroRNAs (miRNAs) are increasingly involved in differentiation control and cancer development. Here we show that two miRNAs upregulated on differentiation of neuroblastoma cells--miR-9 and miR-103--restrain ID2 expression by directly targeting the coding sequence and 3' untranslated region of the ID2 encoding messenger RNA, respectively. Notably, the two miRNAs show an inverse correlation with ID2 during neuroblastoma cell differentiation induced by retinoic acid. Overexpression of miR-9 and miR-103 in neuroblastoma cells reduces proliferation and promotes differentiation, as it was shown to occur upon ID2 inhibition. Conversely, an ID2 mutant that cannot be targeted by either miRNA prevents retinoic acid-induced differentiation more efficient than wild-type ID2. These findings reveal a new regulatory module involving two microRNAs upregulated during neural differentiation that directly target expression of the key differentiation inhibitor ID2, suggesting that its alteration may be involved in neural cancer development.

  20. Independent Activation of Hepatitis B Virus Biosynthesis by Retinoids, Peroxisome Proliferators, and Bile Acids

    PubMed Central

    Reese, Vanessa C.; Oropeza, Claudia E.

    2013-01-01

    In the human hepatoma cell line HepG2, retinoic acid, clofibric acid, and bile acid treatment can only modestly increase hepatitis B virus (HBV) biosynthesis. Utilizing the human embryonic kidney cell line 293T, it was possible to demonstrate that the retinoid X receptor α (RXRα) plus its ligand can support viral biosynthesis independently of additional nuclear receptors. In addition, RXRα/peroxisome proliferator-activated receptor α (PPARα) and RXRα/farnesoid X receptor α (FXRα) heterodimeric nuclear receptors can also mediate ligand-dependent HBV transcription and replication when activated by clofibric acid and bile acid, respectively, independently of a requirement for the ligand-dependent activation of RXRα. These observations indicate that there are at least three possible modes of ligand-mediated activation of HBV transcription and replication existing within hepatocytes, suggesting that multiple independent mechanisms control viral production in the livers of infected individuals. PMID:23135717

  1. Retinoic acid: an educational "vitamin elixir" for gut-seeking T cells.

    PubMed

    Mora, J Rodrigo; von Andrian, Ulrich H

    2004-10-01

    T cell priming by dendritic cells (DC) from gut-associated lymphoid tissues gives rise to effector cells with pronounced gut tropism. The mechanism for DC-dependent imprinting of gut specificity has remained unknown. New findings point to retinoic acid, which is uniquely produced by intestinal DC, but not by DC from other lymphoid organs.

  2. Pharmacokinetics of 13-cis-retinoic acid in patients with advanced cancer.

    PubMed

    Goodman, G E; Einspahr, J G; Alberts, D S; Davis, T P; Leigh, S A; Chen, H S; Meyskens, F L

    1982-05-01

    13-cis-Retinoic acid (13-CRA) is a synthetic analog of vitamin A effective reversing preneoplastic lesions in both humans and animals. To study its physiochemical properties and disposition kinetics, we developed a rapid, sensitive, and precise high-performance liquid chromatography assay for 13-CRA in biological samples. This assay system resulted in a clear separation of 13-CRA from all-trans-retinoic acid and retinol and had a detection limit of 20 ng/ml plasma. Recovery was 89 +/- 6% (S.D.) at equivalent physiological concentrations with a precision of 8%. To study the disposition kinetics in humans, 13 patients received a p.o. bolus of 13-CRA and had blood samples collected at timed intervals. For the 10 patients studied on the first day of 13-CRA administration, the mean time to peak plasma concentration was 222 +/- 102 min. Interpatient peak 13-CRA plasma concentrations were found to be variable, suggesting irregular gastrointestinal absorption. Beta-Phase t 1/2 was approximately 25 hr. The prolonged terminal-phase plasma half-life may represent biliary excretion and enterohepatic circulation.

  3. Ligand Activation of Peroxisome Proliferator-Activated Receptor-β/δ Inhibits Cell Proliferation in Human HaCaT KeratinocytesS

    PubMed Central

    Borland, Michael G.; Foreman, Jennifer E.; Girroir, Elizabeth E.; Zolfaghari, Reza; Sharma, Arun K.; Amin, Shantu; Gonzalez, Frank J.; Ross, A. Catharine; Peters, Jeffrey M.

    2009-01-01

    Although there is strong evidence that ligand activation of peroxisome proliferator-activated receptor (PPAR)-β/δ induces terminal differentiation and attenuates cell growth, some studies suggest that PPARβ/δ actually enhances cell proliferation. For example, it was suggested recently that retinoic acid (RA) is a ligand for PPARβ/δ and potentiates cell proliferation by activating PPARβ/δ. The present study examined the effect of ligand activation of PPARβ/δ on cell proliferation, cell cycle kinetics, and target gene expression in human HaCaT keratinocytes using two highly specific PPARβ/δ ligands [4-[[[2-[3-fluoro-4-(trifluoromethyl)phenyl]-4-methyl-5-thiazolyl]methyl]thio]-2-methylphenoxy acetic acid (GW0742) and 2-methyl-4-((4-methyl-2-(4-trifluoromethylphenyl)-1,3-thiazol-5-yl)-methylsulfanyl)phenoxy-acetic acid (GW501516)] and RA. Both PPARβ/δ ligands and RA inhibited cell proliferation of HaCaT keratinocytes. GW0742 and GW501516 increased expression of known PPARβ/δ target genes, whereas RA did not; RA increased the expression of known retinoic acid receptor/retinoid X receptor target genes, whereas GW0742 did not affect these genes. GW0742, GW501516, and RA did not modulate the expression of 3-phosphoinositide-dependent protein kinase or alter protein kinase B phosphorylation. GW0742 and RA increased annexin V staining as quantitatively determined by flow cytometry. The effects of GW0742 and RA were also examined in wild-type and PPARβ/δ-null primary mouse keratinocytes to determine the specific role of PPARβ/δ in modulating cell growth. Although inhibition of keratinocyte proliferation by GW0742 was PPARβ/δ-dependent, inhibition of cell proliferation by RA occurred in both genotypes. Results from these studies demonstrate that ligand activation of PPARβ/δ inhibits keratinocyte proliferation through PPARβ/δ-dependent mechanisms. In contrast, the observed inhibition of cell proliferation in mouse and human keratinocytes by RA is

  4. ISX is a retinoic acid-sensitive gatekeeper that controls intestinal β,β-carotene absorption and vitamin A production

    PubMed Central

    Lobo, Glenn P.; Hessel, Susanne; Eichinger, Anne; Noy, Noa; Moise, Alexander R.; Wyss, Adrian; Palczewski, Krzysztof; von Lintig, Johannes

    2010-01-01

    The uptake of dietary lipids from the small intestine is a complex process that depends on the activities of specific membrane receptors with yet unknown regulatory mechanisms. Using both mouse models and human cell lines, we show here that intestinal lipid absorption by the scavenger receptor class B type 1 (SR-BI) is subject to control by retinoid signaling. Retinoic acid via retinoic acid receptors induced expression of the intestinal transcription factor ISX. ISX then repressed the expression of SR-B1 and the carotenoid-15,15′-oxygenase Bcmo1. BCMO1 acts downstream of SR-BI and converts absorbed β,β-carotene to the retinoic acid precursor, retinaldehyde. Using BCMO1-knockout mice, we demonstrated increased intestinal SR-BI expression and systemic β,β-carotene accumulation. SR-BI-dependent accumulation of β,β-carotene was prevented by dietary retinoids that induced ISX expression. Thus, our study revealed a diet-responsive regulatory network that controls β,β-carotene absorption and vitamin A production by negative feedback regulation. The role of SR-BI in the intestinal absorption of other dietary lipids, including cholesterol, fatty acids, and tocopherols, implicates retinoid signaling in the regulation of lipid absorption more generally and has clinical implications for diseases associated with dyslipidemia.—Lobo, G. P., Hessel, S., Eichinger, A., Noy, N., Moise, A. R., Wyss, A., Palczewski, K., von Lintig, J. ISX is a retinoic acid-sensitive gatekeeper that controls intestinal β,β-carotene absorption and vitamin A production. PMID:20061533

  5. Inhibition of proliferation and induction of apoptosis in soft tissue sarcoma cells by interferon-α and retinoids

    PubMed Central

    Brodowicz, T; Wiltschke, C; Kandioler-Eckersberger, D; Grunt, T W; Rudas, M; Schneider, S M; Hejna, M; Budinsky, A; Zielinski, C C

    1999-01-01

    Uncontrolled proliferation and a defect of apoptosis constitute crucial elements in the development and progression of tumours. Among many other biological response modifiers known to influence these mechanisms, the efficacy of retinoids and interferons in the treatment of various malignant entities is currently matter of discussion. In the present study, we have investigated the effects of 9-cis-retinoic acid (9cRA), 13-cis-retinoic acid (13cRA), all-trans-retinoic acid (tRA) and interferon-α on proliferation and apoptosis of human soft tissue sarcoma (STS) cell lines HTB-82 (rhabdomyosarcoma), HTB-91 (fibrosarcoma), HTB-92 (liposarcoma), HTB-93 (synovial sarcoma) and HTB-94 (chondrosarcoma) in relation to p53 genotype as well as p53 expression. HTB-91, HTB-92 and HTB-94 STS cells exhibited mutant p53, whereas wild-type p53 was found in HTB-93 STS cells, and a normal p53 status in HTB-82 STS cells, carrying a silent point mutation only. Interferon-α, irrespective of p53 status, inhibited the proliferation of all five cell lines dose- and time-dependently. Similarly, 9cRA, 13cRA and tRA decreased the proliferation of HTB-82 and HTB-93 STS cells, whereas the proliferation of p53-mutated HTB-91, HTB-92 and HTB-94 STS cells remained unchanged. Furthermore, only 9cRA and tRA were capable of inducing apoptosis in HTB-82 and HTB-93 STS cells, whereas HTB-91, HTB-92 and HTB-94 STS cells did not undergo apoptosis under the influence of 9cRA or tRA. Retinoic acid receptor (RAR)-α and RAR-β mRNA were not detectable by Northern blot analysis in the five STS cell lines, whereas mRNA for the universal retinoic acid receptor, RAR-γ, was expressed in all STS cell lines indicating that retinoid resistance was not associated with a lack of RAR expression. Apoptosis was not induced by interferon-α or 13cRA in any of the five STS cell lines tested. Our results indicate that within the panel of tested STS cell lines, inhibition of proliferation and induction of apoptosis result

  6. Retinoic Acid Signaling Mediates Hair Cell Regeneration by Repressing p27kip and sox2 in Supporting Cells.

    PubMed

    Rubbini, Davide; Robert-Moreno, Àlex; Hoijman, Esteban; Alsina, Berta

    2015-11-25

    During development, otic sensory progenitors give rise to hair cells and supporting cells. In mammalian adults, differentiated and quiescent sensory cells are unable to generate new hair cells when these are lost due to various insults, leading to irreversible hearing loss. Retinoic acid (RA) has strong regenerative capacity in several organs, but its role in hair cell regeneration is unknown. Here, we use genetic and pharmacological inhibition to show that the RA pathway is required for hair cell regeneration in zebrafish. When regeneration is induced by laser ablation in the inner ear or by neomycin treatment in the lateral line, we observe rapid activation of several components of the RA pathway, with dynamics that position RA signaling upstream of other signaling pathways. We demonstrate that blockade of the RA pathway impairs cell proliferation of supporting cells in the inner ear and lateral line. Moreover, in neuromast, RA pathway regulates the transcription of p27(kip) and sox2 in supporting cells but not fgf3. Finally, genetic cell-lineage tracing using Kaede photoconversion demonstrates that de novo hair cells derive from FGF-active supporting cells. Our findings reveal that RA has a pivotal role in zebrafish hair cell regeneration by inducing supporting cell proliferation, and shed light on the underlying transcriptional mechanisms involved. This signaling pathway might be a promising approach for hearing recovery. Hair cells are the specialized mechanosensory cells of the inner ear that capture auditory and balance sensory input. Hair cells die after acoustic trauma, ototoxic drugs or aging diseases, leading to progressive hearing loss. Mammals, in contrast to zebrafish, lack the ability to regenerate hair cells. Here, we find that retinoic acid (RA) pathway is required for hair cell regeneration in vivo in the zebrafish inner ear and lateral line. RA pathway is activated very early upon hair cell loss, promotes cell proliferation of progenitor cells

  7. Retinoic acid catabolizing enzyme CYP26C1 is a genetic modifier in SHOX deficiency.

    PubMed

    Montalbano, Antonino; Juergensen, Lonny; Roeth, Ralph; Weiss, Birgit; Fukami, Maki; Fricke-Otto, Susanne; Binder, Gerhard; Ogata, Tsutomu; Decker, Eva; Nuernberg, Gudrun; Hassel, David; Rappold, Gudrun A

    2016-12-01

    Mutations in the homeobox gene SHOX cause SHOX deficiency, a condition with clinical manifestations ranging from short stature without dysmorphic signs to severe mesomelic skeletal dysplasia. In rare cases, individuals with SHOX deficiency are asymptomatic. To elucidate the factors that modify disease severity/penetrance, we studied a three-generation family with SHOX deficiency. The variant p.Phe508Cys of the retinoic acid catabolizing enzyme CYP26C1 co-segregated with the SHOX variant p.Val161Ala in the affected individuals, while the SHOX mutant alone was present in asymptomatic individuals. Two further cases with SHOX deficiency and damaging CYP26C1 variants were identified in a cohort of 68 individuals with LWD The identified CYP26C1 variants affected its catabolic activity, leading to an increased level of retinoic acid. High levels of retinoic acid significantly decrease SHOX expression in human primary chondrocytes and zebrafish embryos. Individual morpholino knockdown of either gene shortens the pectoral fins, whereas depletion of both genes leads to a more severe phenotype. Together, our findings describe CYP26C1 as the first genetic modifier for SHOX deficiency. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  8. Enhanced high-performance liquid chromatography method for the determination of retinoic acid in plasma. Development, optimization and validation.

    PubMed

    Teglia, Carla M; Gil García, María D; Galera, María Martínez; Goicoechea, Héctor C

    2014-08-01

    When determining endogenous compounds in biological samples, the lack of blank or analyte-free matrix samples involves the use of alternative strategies for calibration and quantitation. This article deals with the development, optimization and validation of a high performance liquid chromatography method for the determination of retinoic acid in plasma, obtaining at the same time information about its isomers, taking into account the basal concentration of these endobiotica. An experimental design was used for the optimization of three variables: mobile phase composition, flow rate and column temperature through a central composite design. Four responses were selected for optimization purposes (area under the peaks, quantity of peaks, analysis time and resolution between the first principal peak and the following one). The optimum conditions resulted in a mobile phase consisting of methanol 83.4% (v/v), acetonitrile 0.6% (v/v) and acid aqueous solution 16.0% (v/v); flow rate of 0.68 mL min(-1) and an column temperature of 37.10 °C. Detection was performed at 350 nm by a diode array detector. The method was validated following a holistic approach that included not only the classical parameters related to method performance but also the robustness and the expected proportion of acceptable results lying inside predefined acceptability intervals, i.e., the uncertainty of measurements. The method validation results indicated a high selectivity and good precision characteristics that were studied at four concentration levels, with RSD less than 5.0% for retinoic acid (less than 7.5% for the LOQ concentration level), in intra and inter-assay precision studies. Linearity was proved for a range from 0.00489 to 15.109 ng mL(-1) of retinoic acid and the recovery, which was studied at four different fortification levels in phuman plasma samples, varied from 99.5% to 106.5% for retinoic acid. The applicability of the method was demonstrated by determining retinoic acid and

  9. The dual nature of retinoic acid in pemphigus and its therapeutic potential: Special focus on all-trans Retinoic Acid.

    PubMed

    Tavakolpour, Soheil; Daneshpazhooh, Maryam; Mahmoudi, Hamid Reza; Balighi, Kamran

    2016-07-01

    The efficient treatment of pemphigus with no certain side effect remained a controversial issue. Although there are various options for controlling disease severity, the majority of them may cause serious side effects. Retinoic acid (RA), an active metabolite converted from vitamin A, plays an active role in immune functions. Effects of RA, especially all-trans-Retinoic Acid (ATRA) on different types of cells involved in immune responses were analyzed in vitro and in vivo. RAs could affect the differentiation of T helper (Th) cells, B cells responses, stabilization of both natural regulatory T cells (nTregs) and regulatory B cells (Bregs) populations, and regulating the expression of critical genes in immune responses. The role of RA, based on major immune cells involved in pemphigus has not been addressed so far. In this study, we sought to determine the possible effects of RA, with a special focus on ATRA in pemphigus. All the evidences of ATRA effects on the immune system were collected and their association with the pemphigus was analyzed. According to the previous results, ATRA causes a decline in Th17 populations; increase in CD4+ induced regulatory T cells (iTregs), stabilization of nTregs, and promotion of suppressive B cells, which are critical in the improvement of pemphigus. Nevertheless, it also causes shifting of the Th1:Th2 balance toward Th2 cells, which is not favorable for pemphigus patients. In conclusion, ATRA acts via different ways in pemphigus. Due to increase in the suppressive function via iTregs, nTregs, and Bregs, it is suggested that patients with pemphigus may benefit from systemic ATRA therapy. To clarify this issue, further studies, such as clinical trials are needed. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A case of all-trans retinoic acid-induced myositis in the treatment of acute promyelocytic leukaemia.

    PubMed

    Chan, K H; Yuen, S L S; Joshua, D

    2005-12-01

    The use of all-trans retinoic acid (ATRA) is now standard therapy for the treatment of acute promyelocytic leukaemia (APML). There have been increasing reports of ATRA-induced myositis, with its frequent association with retinoic acid syndrome and Sweet's syndrome. We report a case of a young man with APML who developed ATRA-induced myositis characterized by unexplained fevers, bilateral leg swelling and a non-painful purpuric, petechial rash, with prompt resolution of symptoms and signs with high-dose steroids and cessation of ATRA. Rapid recognition of this adverse reaction and prompt institution of steroids is of prime importance given its potentially fatal course.

  11. Glutathione S-transferases act as isomerases in isomerization of 13-cis-retinoic acid to all-trans-retinoic acid in vitro.

    PubMed

    Chen, H; Juchau, M R

    1997-11-01

    A discovery that rapid enzymic isomerization of 13-cis-retinoic acid (13-cRA) to all-trans-retinoic acid (t-RA) can be catalysed by purified hepatic glutathione S-transferases (GSTs; EC 2.5.1.18) from rat is now reported. Rates of cis-trans isomerization were determined quantitatively by HPLC. GST-catalysed reactions reached equilibrium rapidly, in marked contrast with uncatalysed or GSH-catalysed isomerizations. The GST-catalysed reaction exhibited substrate saturation kinetics with a Km of approx. 8 microM. The maximal velocity of the reaction and the catalytic efficiency of GSTs were determined. The initial rate of the reaction increased linearly as a function of enzyme concentration. Catalysis by GSTs was independent of the presence of GSH, indicating that GSTs act as GSH-independent isomerases as well as transferases. Incubation with guanidine (7-8 M) or heat-inactivation of GSTs (100 degrees C for 3 min) decreased isomerase activities by approx. 50% and 75% respectively. The same heat treatment did not significantly inhibit isomerization catalysed by GSH and apoferritin, indicating that the observed decrease in isomerase activity by heat inactivation was not primarily due to oxidation of protein thiol groups in the GSTs. The specific activity of GSTs was approx. 23- and 340-fold those of GSH and apoferritin respectively when comparisons were made on the basis of free thiol concentrations, indicating that free thiol in GSTs cannot account for the majority of observed isomerase activities and suggesting that specific conformations of GSTs are important for such activities. Complete inhibition of the reaction by low concentrations of N-ethylmaleimide (10 microM) demonstrated that intact protein thiols are required for the isomerase activities of GSTs.

  12. Retinoic acid-loaded polymeric nanoparticles enhance vascular regulation of neural stem cell survival and differentiation after ischaemia

    NASA Astrophysics Data System (ADS)

    Ferreira, R.; Fonseca, M. C.; Santos, T.; Sargento-Freitas, J.; Tjeng, R.; Paiva, F.; Castelo-Branco, M.; Ferreira, L. S.; Bernardino, L.

    2016-04-01

    Stroke is one of the leading causes of death and disability worldwide. However, current therapies only reach a small percentage of patients and may cause serious side effects. We propose the therapeutic use of retinoic acid-loaded nanoparticles (RA-NP) to safely and efficiently repair the ischaemic brain by creating a favourable pro-angiogenic environment that enhances neurogenesis and neuronal restitution. Our data showed that RA-NP enhanced endothelial cell proliferation and tubule network formation and protected against ischaemia-induced death. To evaluate the effect of RA-NP on vascular regulation of neural stem cell (NSC) survival and differentiation, endothelial cell-conditioned media (EC-CM) were collected. EC-CM from healthy RA-NP-treated cells reduced NSC death and promoted proliferation while EC-CM from ischaemic RA-NP-treated cells decreased cell death, increased proliferation and neuronal differentiation. In parallel, human endothelial progenitor cells (hEPC), which are part of the endogenous repair response to vascular injury, were collected from ischaemic stroke patients. hEPC treated with RA-NP had significantly higher proliferation, which further highlights the therapeutic potential of this formulation. To conclude, RA-NP protected endothelial cells from ischaemic death and stimulated the release of pro-survival, proliferation-stimulating factors and differentiation cues for NSC. RA-NP were shown to be up to 83-fold more efficient than free RA and to enhance hEPC proliferation. These data serve as a stepping stone to use RA-NP as vasculotrophic and neurogenic agents for vascular disorders and neurodegenerative diseases with compromised vasculature.

  13. All-trans retinoic acid regulates hepatic bile acid homeostasis

    PubMed Central

    Yang, Fan; He, Yuqi; Liu, Hui-Xin; Tsuei, Jessica; Jiang, Xiaoyue; Yang, Li; Wang, Zheng-Tao; Wan, Yu-Jui Yvonne

    2014-01-01

    Retinoic acid (RA) and bile acids share common roles in regulating lipid homeostasis and insulin sensitivity. In addition, the receptor for RA (retinoid x receptor) is a permissive partner of the receptor for bile acids, farnesoid x receptor (FXR/NR1H4). Thus, RA can activate the FXR-mediated pathway as well. The current study was designed to understand the effect of all-trans RA on bile acid homeostasis. Mice were fed an all-trans RA-supplemented diet and the expression of 46 genes that participate in regulating bile acid homeostasis was studied. The data showed that all-trans RA has a profound effect in regulating genes involved in synthesis and transport of bile acids. All-trans RA treatment reduced the gene expression levels of Cyp7a1, Cyp8b1, and Akr1d1, which are involved in bile acid synthesis. All-trans RA also decreased the hepatic mRNA levels of Lrh-1 (Nr5a2) and Hnf4α (Nr2a1), which positively regulate the gene expression of Cyp7a1 and Cyp8b1. Moreover, all-trans RA induced the gene expression levels of negative regulators of bile acid synthesis including hepatic Fgfr4, Fxr, and Shp (Nr0b2) as well as ileal Fgf15. All-trans RA also decreased the expression of Abcb11 and Slc51b, which have a role in bile acid transport. Consistently, all-trans RA reduced hepatic bile acid levels and the ratio of CA/CDCA, as demonstrated by liquid chromatography-mass spectrometry. The data suggest that all-trans RA-induced SHP may contribute to the inhibition of CYP7A1 and CYP8B1, which in turn reduces bile acid synthesis and affects lipid absorption in the gastrointestinal tract. PMID:25175738

  14. Retinoic acid, hemin and hexamethylen bisacetamide interference with "in vitro" differentiation of chick embryo chondrocytes.

    PubMed

    Manduca, P; Abelmoschi, M L

    1992-01-01

    We have investigated the effect of all-trans Retinoic acid, and of substances (Hemine and Hexamethylene bisacetamide) which interfere with "in vitro" differentiation of mesenchyme derived cell lineages on the expression of specific markers of hyperthrophy in "in vitro" differentiating chick embryo chondrocytes. (Castagnola P., et al., 1986). Continuous treatment of chondrogenic cells in conditions allowing differentiation "in vitro" with Retinoic acid resulted in persistence of type I collagen synthesis and in lack of type X collagen and Ch 21 protein expression. Hemin treated cells secreted a reduced amount of type X collagen. HMBA treatment inhibited type X collagen expression and caused reduction of the ratio between type II collagen and Ch 21 synthesized. The data indicate an independent regulation of these markers during chondrocyte differentiation.

  15. Impaired Development of Left Anterior Heart Field by Ectopic Retinoic Acid Causes Transposition of the Great Arteries

    PubMed Central

    Narematsu, Mayu; Kamimura, Tatsuya; Yamagishi, Toshiyuki; Fukui, Mitsuru; Nakajima, Yuji

    2015-01-01

    Background Transposition of the great arteries is one of the most commonly diagnosed conotruncal heart defects at birth, but its etiology is largely unknown. The anterior heart field (AHF) that resides in the anterior pharyngeal arches contributes to conotruncal development, during which heart progenitors that originated from the left and right AHF migrate to form distinct conotruncal regions. The aim of this study is to identify abnormal AHF development that causes the morphology of transposition of the great arteries. Methods and Results We placed a retinoic acid–soaked bead on the left or the right or on both sides of the AHF of stage 12 to 14 chick embryos and examined the conotruncal heart defect at stage 34. Transposition of the great arteries was diagnosed at high incidence in embryos for which a retinoic acid–soaked bead had been placed in the left AHF at stage 12. Fluorescent dye tracing showed that AHF exposed to retinoic acid failed to contribute to conotruncus development. FGF8 and Isl1 expression were downregulated in retinoic acid–exposed AHF, and differentiation and expansion of cardiomyocytes were suppressed in cultured AHF in medium supplemented with retinoic acid. Conclusions The left AHF at the early looped heart stage, corresponding to Carnegie stages 10 to 11 (28 to 29 days after fertilization) in human embryos, is the region of the impediment that causes the morphology of transposition of the great arteries. PMID:25929268

  16. Retinoic acid is required for specification of the ventral eye field and for Rathke's pouch in the avian embryo.

    PubMed

    Maden, Malcolm; Blentic, Aida; Reijntjes, Susan; Seguin, Sophie; Gale, Emily; Graham, Anthony

    2007-01-01

    We have investigated the role of retinoic acid (RA) in eye development using the vitamin A deficient quail model system, which overcomes problems of retinoic acid synthesising enzyme redundancy in the embryo. In the absence of retinoic acid, the ventral optic stalk and ventral retina are missing, whereas the dorsal optic stalk and dorsal retina develop appropriately. Other ocular abnormalities observed were a thinner retina and the lack of differentiation of the lens. In an attempt to explain this, we studied the expression of various dorsally and ventrally expressed genes such as Pax2, Pax6, Tbx6, Vax2, Raldh1 and Raldh3 and noted that they were unchanged in their expression patterns. In contrast, the RA catabolising enzymes Cyp26A1 and Cyp26B1 which are known to be RA-responsive were not expressed at all in the developing eye. At much earlier stages, the expression domain of Shh in the prechordal plate was reduced, as was Nkx2.1 and we suggest a model whereby the eye field is specified according to the concentration of SHH protein that is present. We also describe another organ, Rathke's pouch which fails to develop in the absence of retinoic acid. We attribute this to the down-regulation of Bmp2, Shh and Fgf8 which are known to be involved in the induction of this structure.

  17. Supercritical fluid extraction of 13-cis retinoic acid and its photoisomers from selected pharmaceutical dosage forms.

    PubMed

    Simmons, B R; Chukwumerije, O; Stewart, J T

    1997-11-01

    13-Cis retinoic acid (Accutane) was extracted from a cream, gel, capsule and beadlet dosage from using supercritical carbon dioxide modified with 5% methanol as the mobile phase. The pump pressure and the extraction chamber and restrictor temperature were experimentally optimized at 325 atm and 45 degrees C, respectively. A 2.5-min static and 5-min dynamic extraction time were used. The supercritical fluid extraction (SFE) eluent was trapped in methanol, injected into the high-performance liquid chromatographic (HPLC) system, and quantitated by ultraviolet detection at 360 nm. Application of the SFE method to spiked placebo dosage forms gave 13-cis retinoic acid recoveries of 98.8, 98.9, 98.8 and 100% for the cream, gel, capsule and beadlet, respectively, with R.S.D.s in the range 0.6-0.9% (n = 4). Inter-day percent error and precision of the extraction were 1.1-2.0 and 0.2-2.4% (n = 3), respectively, and intra-day percent error and precision were 1.0-3.0 and 0.3-2.1% (n = 8), respectively. Percent error and precision data for spiked celite samples in the 0.05-1.0 microgram ml-1 range were 0.59-4.75 and 1.8-2.1% (n = 3), respectively. The extraction method was applied to commercial 13-cis retinoic acid dosage forms and the results compared to unextracted samples. Linear regression analysis of concentration versus peak height gave a correlation coefficient of 0.9991 with a slope of 7.468 and a y-intercept of 0.1923. The percent error and precision data were 1.3-5.3 and 0.2-1.5% (n = 4), respectively. The photoisomers of 13-cis retinoic acid were also extracted with the method and recoveries of 90.4-92.4% with R.S.D.s of 1.5-3.4% were obtained (n = 4).

  18. A New Module in Neural Differentiation Control: Two MicroRNAs Upregulated by Retinoic Acid, miR-9 and -103, Target the Differentiation Inhibitor ID2

    PubMed Central

    Savino, Mauro; Laneve, Pietro; Caffarelli, Elisa; Nasi, Sergio

    2012-01-01

    The transcription factor ID2 is an important repressor of neural differentiation strongly implicated in nervous system cancers. MicroRNAs (miRNAs) are increasingly involved in differentiation control and cancer development. Here we show that two miRNAs upregulated on differentiation of neuroblastoma cells – miR-9 and miR-103 – restrain ID2 expression by directly targeting the coding sequence and 3′ untranslated region of the ID2 encoding messenger RNA, respectively. Notably, the two miRNAs show an inverse correlation with ID2 during neuroblastoma cell differentiation induced by retinoic acid. Overexpression of miR-9 and miR-103 in neuroblastoma cells reduces proliferation and promotes differentiation, as it was shown to occur upon ID2 inhibition. Conversely, an ID2 mutant that cannot be targeted by either miRNA prevents retinoic acid-induced differentiation more efficient than wild-type ID2. These findings reveal a new regulatory module involving two microRNAs upregulated during neural differentiation that directly target expression of the key differentiation inhibitor ID2, suggesting that its alteration may be involved in neural cancer development. PMID:22848373

  19. The all-trans retinoic acid (atRA)-regulated gene Calmin (Clmn) regulates cell cycle exit and neurite outgrowth in murine neuroblastoma (Neuro2a) cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzinke, Mark A.; Clagett-Dame, Margaret, E-mail: dame@biochem.wisc.edu; Pharmaceutical Science Division, University of Wisconsin-Madison, Madison, WI 53705-2222

    2012-01-01

    The vitamin A metabolite all-trans retinoic acid (atRA) functions in nervous system development and regulates cell proliferation and differentiation. Neuroblastoma cells (SH-SY5Y and Neuro2a or N2A) exposed to atRA undergo growth inhibition and neuronal differentiation, both of which are preceded by an increase in Clmn mRNA. Treatment of N2A cells with atRA produces a reduction in phosphohistone 3 immunostaining and BrdU incorporation, both indicators of a reduction in cell proliferation. These effects are nearly eliminated in atRA-treated shClmn knockdown cells. Loss of Clmn in the mouse N2A cell line also results in a significant reduction of atRA-mediated neurite outgrowth, amore » response that can be rescued by reintroduction of the Clmn sequence. In contrast, ectopic overexpression of Clmn produces an increase in the cyclin dependent kinase inhibitor, p21{sup Cip1}, a decrease in cyclin D1 protein and an increase in hypophosphorylated Rb, showing that Clmn participates in G{sub 1}/S arrest. Clmn overexpression alone is sufficient to inhibit N2A cell proliferation, whereas both Clmn and atRA must be present to induce neurite outgrowth. This study shows that the atRA-responsive gene Clmn promotes exit from the cell cycle, a requisite event for neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer Calmin is a retinoic acid-responsive gene. Black-Right-Pointing-Pointer Calmin promotes cell cycle exit in N2A cells. Black-Right-Pointing-Pointer Calmin overexpression increases p21Cip1 and decreases cyclin D1. Black-Right-Pointing-Pointer Calmin is required for RA-induced growth inhibition and neurite outgrowth.« less

  20. Glutathione S-transferases act as isomerases in isomerization of 13-cis-retinoic acid to all-trans-retinoic acid in vitro.

    PubMed Central

    Chen, H; Juchau, M R

    1997-01-01

    A discovery that rapid enzymic isomerization of 13-cis-retinoic acid (13-cRA) to all-trans-retinoic acid (t-RA) can be catalysed by purified hepatic glutathione S-transferases (GSTs; EC 2.5.1.18) from rat is now reported. Rates of cis-trans isomerization were determined quantitatively by HPLC. GST-catalysed reactions reached equilibrium rapidly, in marked contrast with uncatalysed or GSH-catalysed isomerizations. The GST-catalysed reaction exhibited substrate saturation kinetics with a Km of approx. 8 microM. The maximal velocity of the reaction and the catalytic efficiency of GSTs were determined. The initial rate of the reaction increased linearly as a function of enzyme concentration. Catalysis by GSTs was independent of the presence of GSH, indicating that GSTs act as GSH-independent isomerases as well as transferases. Incubation with guanidine (7-8 M) or heat-inactivation of GSTs (100 degrees C for 3 min) decreased isomerase activities by approx. 50% and 75% respectively. The same heat treatment did not significantly inhibit isomerization catalysed by GSH and apoferritin, indicating that the observed decrease in isomerase activity by heat inactivation was not primarily due to oxidation of protein thiol groups in the GSTs. The specific activity of GSTs was approx. 23- and 340-fold those of GSH and apoferritin respectively when comparisons were made on the basis of free thiol concentrations, indicating that free thiol in GSTs cannot account for the majority of observed isomerase activities and suggesting that specific conformations of GSTs are important for such activities. Complete inhibition of the reaction by low concentrations of N-ethylmaleimide (10 microM) demonstrated that intact protein thiols are required for the isomerase activities of GSTs. PMID:9581548

  1. All-trans-retinoic acid inhibits collapsin response mediator protein-2 transcriptional activity during SH-SY5Y neuroblastoma cell differentiation.

    PubMed

    Fontán-Gabás, Lorena; Oliemuller, Erik; Martínez-Irujo, Juan José; de Miguel, Carlos; Rouzaut, Ana

    2007-01-01

    Neurons are highly polarized cells composed of two structurally and functionally distinct parts, the axon and the dendrite. The establishment of this asymmetric structure is a tightly regulated process. In fact, alterations in the proteins involved in the configuration of the microtubule lattice are frequent in neuro-oncologic diseases. One of these cytoplasmic mediators is the protein known as collapsin response mediator protein-2, which interacts with and promotes tubulin polymerization. In this study, we investigated collapsin response mediator protein-2 transcriptional regulation during all-trans-retinoic acid-induced differentiation of SH-SY5Y neuroblastoma cells. All-trans-retinoic acid is considered to be a potential preventive and therapeutic agent, and has been extensively used to differentiate neuroblastoma cells in vitro. Therefore, we first demonstrated that collapsin response mediator protein-2 mRNA levels are downregulated during the differentiation process. After completion of deletion construct analysis and mutagenesis and mobility shift assays, we concluded that collapsin response mediator protein-2 basal promoter activity is regulated by the transcription factors AP-2 and Pax-3, whereas E2F, Sp1 and NeuroD1 seem not to participate in its regulation. Furthermore, we finally established that reduced expression of collapsin response mediator protein-2 after all-trans-retinoic acid exposure is associated with impaired Pax-3 and AP-2 binding to their consensus sequences in the collapsin response mediator protein-2 promoter. Decreased attachment of AP-2 is a consequence of its accumulation in the cytoplasm. On the other hand, Pax-3 shows lower binding due to all-trans-retinoic acid-mediated transcriptional repression. Unraveling the molecular mechanisms behind the action of all-trans-retinoic acid on neuroblastoma cells may well offer new perspectives for its clinical application.

  2. Rapid determination of retinoic acid and its main isomers in plasma by second-order high-performance liquid chromatography data modeling.

    PubMed

    Teglia, Carla M; Cámara, María S; Goicoechea, Héctor C

    2014-12-01

    This paper reports the development of a method based on high-performance liquid chromatography (HPLC) coupled to second-order data modeling with multivariate curve resolution-alternating least-squares (MCR-ALS) for quantification of retinoic acid and its main isomers in plasma in only 5.5 min. The compounds retinoic acid (RA), 13-cis-retinoic acid, 9-cis-retinoic acid, and 9,13-di-cis-retinoic acid were partially separated by use of a Poroshell 120 EC-C18 (3.0 mm × 30 mm, 2.7 μm particle size) column. Overlapping not only among the target analytes but also with the plasma interferents was resolved by exploiting the second-order advantage of the multi-way calibration. A validation study led to the following results: trueness with recoveries of 98.5-105.9 % for RA, 95.7-110.1 % for 13-cis-RA, 97.1-110.8 % for 9-cis-RA, and 99.5-110.9 % for 9,13-di-cis-RA; repeatability with RSD of 3.5-3.1 % for RA, 3.5-1.5 % for 13-cis-RA, 4.6-2.7 % for 9-cis-RA, and 5.2-2.7 % for 9,13-di-cis-RA (low and high levels); and intermediate precision (inter-day precision) with RSD of 3.8-3.0 % for RA, 2.9-2.4 % for 13-cis-RA, 3.6-3.2 % for 9,13-di-cis-RA, and 3.2-2.9 % for 9-cis-RA (low and high levels). In addition, a robustness study revealed the method was suitable for monitoring patients with dermatological diseases treated with pharmaceutical products containing RA and 13-cis-RA.

  3. BIOCONCENTRATION AND METABOLISM OF ALL-TRANS RETINOIC ACID BY RANA SYLVATICA AND RANA CLAMITANS TADPOLES

    EPA Science Inventory

    Retinoids, which are Vitamin A derivatives, are important signaling molecules that regulate processes critical for development in all vertebrates. The objective of our study was to examine uptake and metabolism of all-trans retinoic acid...

  4. UPTAKE AND METABOLISM OF ALL-TRANS RETINOIC ACID BY THREE NATIVE NORTH AMERICAN RANIDS

    EPA Science Inventory

    Retinoids, which are Vvitamin A derivatives, are important signaling molecules that regulate processes critical for development in all vertebrates. The objective of our study was to examine uptake and metabolism of the model retinoid, all-trans retinoic acid (all-trans RA), by th...

  5. Whole organism high content screening identifies stimulators of pancreatic beta-cell proliferation.

    PubMed

    Tsuji, Naoki; Ninov, Nikolay; Delawary, Mina; Osman, Sahar; Roh, Alex S; Gut, Philipp; Stainier, Didier Y R

    2014-01-01

    Inducing beta-cell mass expansion in diabetic patients with the aim to restore glucose homeostasis is a promising therapeutic strategy. Although several in vitro studies have been carried out to identify modulators of beta-cell mass expansion, restoring endogenous beta-cell mass in vivo has yet to be achieved. To identify potential stimulators of beta-cell replication in vivo, we established transgenic zebrafish lines that monitor and allow the quantification of cell proliferation by using the fluorescent ubiquitylation-based cell cycle indicator (FUCCI) technology. Using these new reagents, we performed an unbiased chemical screen, and identified 20 small molecules that markedly increased beta-cell proliferation in vivo. Importantly, these structurally distinct molecules, which include clinically-approved drugs, modulate three specific signaling pathways: serotonin, retinoic acid and glucocorticoids, showing the high sensitivity and robustness of our screen. Notably, two drug classes, retinoic acid and glucocorticoids, also promoted beta-cell regeneration after beta-cell ablation. Thus, this study establishes a proof of principle for a high-throughput small molecule-screen for beta-cell proliferation in vivo, and identified compounds that stimulate beta-cell proliferation and regeneration.

  6. Aberrant Expression of Retinoic Acid Signaling Molecules Influences Patient Survival in Astrocytic Gliomas

    PubMed Central

    Campos, Benito; Centner, Franz-Simon; Bermejo, Justo Lorenzo; Ali, Ramadan; Dorsch, Katharina; Wan, Feng; Felsberg, Jörg; Ahmadi, Rezvan; Grabe, Niels; Reifenberger, Guido; Unterberg, Andreas; Burhenne, Jürgen; Herold-Mende, Christel

    2011-01-01

    Undifferentiated cell populations may influence tumor growth in malignant glioma. We investigated potential disruptions in the retinoic acid (RA) differentiation pathway that could lead to a loss of differentiation capacity, influencing patient prognosis. Expression of key molecules belonging to the RA differentiation pathway was analyzed in 283 astrocytic gliomas and was correlated with tumor proliferation, tumor differentiation, and patient survival. In addition, in situ concentrations of retinoids were measured in tumors, and RA signaling events were studied in vitro. Unlike other tumors, in gliomas expression of most RA signaling molecules increased with malignancy and was associated with augmented intratumoral retinoid levels in high-grade gliomas. Aberrantly expressed RA signaling molecules included i) the retinol-binding protein CRBP1, which facilitates cellular retinoid uptake; ii) ALDH1A1, capable of activating RA precursors; iii) the RA-degrading enzyme CYP26B1; and iv) the RA-binding protein FABP5, which can inhibit RA-induced differentiation. In contrast, expression of the RA-binding protein CRABP2, which fosters differentiation, was decreased in high-grade tumors. Moreover, expression of CRBP1 correlated with tumor proliferation, and FABP5 expression correlated with an undifferentiated tumor phenotype. CRBP1 and ALDH1A1 were independent prognostic markers for adverse patient survival. Our data indicate a complex and clinically relevant deregulation of RA signaling, which seems to be a central event in glioma pathogenesis. PMID:21514413

  7. Disabled-2 Mediation of Retinoic Acid Cell Growth Arrest Signal in Breast Cancer

    DTIC Science & Technology

    2002-08-01

    C. Cohen, L. E. Mendez , I. R. Horowitz, ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. A. I Godwin, and X X. Xu, submitted for publication. T...trans., 9-cis-retinoic acid) and P- caro - forming units of adenovirus were added to the cells in medium with low tene were purchased from Sigma

  8. Pharmacokinetics and metabolism of all-trans- and 13-cis-retinoic acid in pulmonary emphysema patients.

    PubMed

    Muindi, Josephia R; Roth, Michael D; Wise, Robert A; Connett, John E; O'Connor, George T; Ramsdell, Joe W; Schluger, Neil W; Romkes, Marjorie; Branch, Robert A; Sciurba, Frank C

    2008-01-01

    Retinoids promote lung alveolarization in animal models and were administered to patients as part of the Feasibility of Retinoid Therapy for Emphysema (FORTE) study. This FORTE substudy investigated the pharmacokinetic profiles of 2 retinoic acid isomers-all-trans-retinoic acid (ATRA) and 13-cis-retinoic acid (13-cRA)-in subjects with emphysema, evaluated strategies to overcome self-induced ATRA catabolism, and identified pharmacodynamic relationships. Comprehensive and limited pharmacokinetics were obtained at multiple visits in emphysema subjects treated with placebo (n = 30), intermittent dosing (4 days/week) with low-dose ATRA (1 mg/kg/day, n = 21), or high-dose ATRA (2 mg/kg/day, n = 25) or daily administration of 13-cRA (1 mg/kg/day, n = 40). High-dose ATRA produced the highest peak plasma ATRA Cmax. However, at follow-up, plasma ATRA C(max) was significantly decreased from baseline in subjects whose day 1 levels exceeded 100 ng/mL (P < .0001). In contrast, administration of 13-cRA produced lower plasma ATRA C(max) (<100 ng/mL), but the levels were significantly higher at follow-up than those on day 1 (P < .001). Plasma ATRA levels as determined on day 1 correlated with changes in pulmonary diffusing capacity at 6 months, consistent with concentration-dependent biologic effects (r2 = -0.25). The authors conclude that intermittent therapy with high-dose ATRA produced the greatest ATRA exposure, but alternative approaches for limiting self-induced ATRA catabolism should be sought.

  9. Effects of retinoic acids on the dendritic morphology of cultured hippocampal neurons.

    PubMed

    Liu, Ying; Kagechika, Hiroyuki; Ishikawa, Junko; Hirano, Hitoshi; Matsukuma, Satoshi; Tanaka, Kazuko; Nakamura, Shoji

    2008-08-01

    Vitamin A-derived retinoic acids (RAs) are known to exert a variety of biological actions, including modulatory effects on cell differentiation and apoptosis. A recent study has demonstrated that 13-cis-RA and all-trans-RA suppressed neurogenesis in the dentate gyrus of the hippocampus in adult mice. The present experiments were performed to see whether 13-cis-RA and all-trans-RA could alter the dendritic morphology of cultured hippocampal neurons via RA receptors: retinoic acid receptor (RAR) and retinoid X receptor (RXR). High doses of 13-cis-RA and all-trans-RA exerted a negative effect on the cultured hippocampal neurons, while a low dose of 13-cis-RA but not all-trans-RA caused a positive effect. The negative changes induced by 13-cis-RA and all-trans-RA were antagonized by RXR antagonists and RAR antagonists, respectively. The positive changes induced by a low dose of 13-cis-RA were blocked by both RXR antagonists and RAR antagonists. These results suggest that RAs at high concentrations cause a negative effect on the dendritic morphology of cultured hippocampal neurons through RA receptors, while RAs at low concentrations exert a positive influence on cultured hippocampal neurons.

  10. Retinoic acid temporally orchestrates colonization of the gut by vagal neural crest cells.

    PubMed

    Uribe, Rosa A; Hong, Stephanie S; Bronner, Marianne E

    2018-01-01

    The enteric nervous system arises from neural crest cells that migrate as chains into and along the primitive gut, subsequently differentiating into enteric neurons and glia. Little is known about the mechanisms governing neural crest migration en route to and along the gut in vivo. Here, we report that Retinoic Acid (RA) temporally controls zebrafish enteric neural crest cell chain migration. In vivo imaging reveals that RA loss severely compromises the integrity and migration of the chain of neural crest cells during the window of time window when they are moving along the foregut. After loss of RA, enteric progenitors accumulate in the foregut and differentiate into enteric neurons, but subsequently undergo apoptosis resulting in a striking neuronal deficit. Moreover, ectopic expression of the transcription factor meis3 and/or the receptor ret, partially rescues enteric neuron colonization after RA attenuation. Collectively, our findings suggest that retinoic acid plays a critical temporal role in promoting enteric neural crest chain migration and neuronal survival upstream of Meis3 and RET in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Influence of LOX/COX inhibitors on cell differentiation induced by all-trans retinoic acid in neuroblastoma cell lines.

    PubMed

    Redova, Martina; Chlapek, Petr; Loja, Tomas; Zitterbart, Karel; Hermanova, Marketa; Sterba, Jaroslav; Veselska, Renata

    2010-02-01

    We investigated the possible modulation by LOX/ COX inhibitors of all-trans retinoic acid (ATRA)-induced cell differentiation in two established neuroblastoma cell lines, SH-SY5Y and SK-N-BE(2). Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor of cyclooxygenase-2, were chosen for this study. The effects of the combined treatment with ATRA and LOX/COX inhibitors on neuroblastoma cells were studied using cell morphology assessment, detection of differentiation markers by immunoblotting, measurement of proliferation activity, and cell cycle analysis and apoptosis detection by flow cytometry. The results clearly demonstrated the potential of caffeic acid to enhance ATRA-induced cell differentiation, especially in the SK-N-BE(2) cell line, whereas application of celecoxib alone or with ATRA led predominantly to cytotoxic effects in both cell lines. Moreover, the higher sensitivity of the SK-N-BE(2) cell line to combined treatment with ATRA and LOX/COX inhibitors suggests that cancer stem cells are a main target for this therapeutic approach. Nevertheless, further detailed study of the phenomenon of enhanced cell differentiation by expression profiling is needed.

  12. Differential expression of decorin and biglycan genes during palatogenesis in normal and retinoic acid-treated mice.

    PubMed

    Zhang, Yuxiang; Mori, Tetsuji; Iseki, Ken; Hagino, Seita; Takaki, Hiromi; Takeuchi, Mayumi; Hikake, Tsuyoshi; Tase, Choichiro; Murakawa, Masahiro; Yokoya, Sachihiko; Wanaka, Akio

    2003-04-01

    Proteoglycans are involved in secondary palate formation. In the present study, we focused on two small leucine-rich proteoglycans, decorin and biglycan, because they assembled extracellular matrix molecules such as collagens and modulated signaling pathway of transforming growth factor-beta. To investigate the functions of decorin and biglycan in palatogenesis, we compared their mRNA expression patterns between normal palate and retinoic acid-induced cleft palate in mice by using in situ hybridization analysis during the period of embryonic day 13.5 (E13.5) to E15.5. On E13.5, decorin mRNA was expressed in the epithelia and mesenchyme on the nasal side of the developing secondary palate. During the period the palate shelves were fusing (E14.5), decorin mRNA was strongly expressed in the mesenchyme but its expression pattern was asymmetric; decorin mRNA expression area in the nasal side was broader than that in the oral side. The expression of decorin mRNA was hardly detected in the mesenchyme on either side of the medial edge epithelium. After fusion (E15.5), its expression converged to the mesenchyme just around the palatine bone. Biglycan mRNA was ubiquitously distributed throughout the palatal mesenchyme for the mid-gestation period. Its expression area became limited to the ossification area within the palate after the late gestation period. In the retinoic acid-treated mice, the area of the decorin gene expression expanded to the core region of the palate primordium where little signal was observed in control mice. On the other hand, biglycan in the retinoic acid-treated mice did not show remarkable change in its distribution patterns compared with that in the control mice. These findings suggest that decorin and biglycan play distinct roles in palatogenesis, and decorin was more actively involved in the process of secondary palate formation than biglycan. Up-regulation of decorin gene expression in the retinoic acid-treated mice might influence the

  13. Oleic Acid enhances all-trans retinoic Acid loading in nano-lipid emulsions.

    PubMed

    Chinsriwongkul, Akhayachatra; Opanasopit, Praneet; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Sila-On, Warisada; Ruktanonchai, Uracha

    2010-01-01

    The aim of this study was to investigate the enhancement of all-trans retinoic acid (ATRA) loading in nano-lipid emulsions and stability by using oleic acid. The effect of formulation factors including initial ATRA concentration and the type of oil on the physicochemical properties, that is, percentage yield, percentage drug release, and photostability of formulations, was determined. The solubility of ATRA was increased in the order of oleic acid > MCT > soybean oil > water. The physicochemical properties of ATRA-loaded lipid emulsion, including mean particle diameter and zeta potential, were modulated by changing an initial ATRA concentration as well as the type and mixing ratio of oil and oleic acid as an oil phase. The particles of lipid emulsions had average sizes of less than 250 nm and negative zeta potential. The addition of oleic acid in lipid emulsions resulted in high loading capacity. The photodegradation rate was found to be dependent on the initial drug concentration but independent of the type of oily phase used in this study. The release rates were not affected by initial ATRA concentration but were affected by the type of oil, where oleic acid showed the highest release rate of ATRA from lipid emulsions.

  14. The Effectiveness of a 5% Retinoic Acid Peel Combined with Microdermabrasion for Facial Photoaging: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial.

    PubMed

    Faghihi, Gita; Fatemi-Tabaei, Saghi; Abtahi-Naeini, Bahareh; Siadat, Amir Hossein; Sadeghian, Giti; Ali Nilforoushzadeh, Mohammad; Mohamadian-Shoeili, Hamed

    2017-01-01

    Background . Tretinoin has been shown to improve photoaged skin. This study was designed to evaluate the efficacy and tolerability of a 5% retinoic acid peel combined with microdermabrasion for facial photoaging. Materials and Methods . Forty-five patients, aged 35-70, affected by moderate-to-severe photodamage were enrolled in this trial. All patients received 3 sessions of full facial microdermabrasion and 3 sessions of either 5% retinoic acid peel or placebo after the microdermabrasion. Efficacy was measured using the Glogau scale. Patients were assessed at 2 weeks and 1, 2, and 6 months after treatment initiation. Results . The mean ± SD age of participants was 49.55 ± 11.61 years, and the majorities (73.3%) were female. Between 1 month and 2 months, participants reported slight but statistically significant improvements for all parameters ( P < 0.001). In terms of adverse effects, there were statistically significant differences reported between the 5% retinoic acid peel groups and the control group ( P < 0.001). The majority of adverse effects reported in the study were described as mild and transient. Conclusion . This study demonstrated that 5% retinoic acid peel cream combined with microdermabrasion was safe and effective in the treatment of photoaging in the Iranian population. This trial is registered with IRCT2015121112782N8.

  15. The Effectiveness of a 5% Retinoic Acid Peel Combined with Microdermabrasion for Facial Photoaging: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial

    PubMed Central

    Faghihi, Gita; Siadat, Amir Hossein; Sadeghian, Giti; Ali Nilforoushzadeh, Mohammad; Mohamadian-shoeili, Hamed

    2017-01-01

    Background. Tretinoin has been shown to improve photoaged skin. This study was designed to evaluate the efficacy and tolerability of a 5% retinoic acid peel combined with microdermabrasion for facial photoaging. Materials and Methods. Forty-five patients, aged 35–70, affected by moderate-to-severe photodamage were enrolled in this trial. All patients received 3 sessions of full facial microdermabrasion and 3 sessions of either 5% retinoic acid peel or placebo after the microdermabrasion. Efficacy was measured using the Glogau scale. Patients were assessed at 2 weeks and 1, 2, and 6 months after treatment initiation. Results. The mean ± SD age of participants was 49.55 ± 11.61 years, and the majorities (73.3%) were female. Between 1 month and 2 months, participants reported slight but statistically significant improvements for all parameters (P < 0.001). In terms of adverse effects, there were statistically significant differences reported between the 5% retinoic acid peel groups and the control group (P < 0.001). The majority of adverse effects reported in the study were described as mild and transient. Conclusion. This study demonstrated that 5% retinoic acid peel cream combined with microdermabrasion was safe and effective in the treatment of photoaging in the Iranian population. This trial is registered with IRCT2015121112782N8. PMID:28293257

  16. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement

    PubMed Central

    Muralidharan, Pooja; Sarmah, Swapnalee; Marrs, James A.

    2014-01-01

    Fetal Alcohol Spectrum Disorder (FASD) is caused by prenatal alcohol exposure, producing craniofacial, sensory, motor, and cognitive defects. FASD is highly prevalent in low socioeconomic populations, which are frequently accompanied by malnutrition. FASD-associated ocular pathologies include microphthalmia, optic nerve hypoplasia, and cataracts. The present study characterizes specific retinal tissue defects, identifies ethanol-sensitive stages during retinal development, and dissects the effect of nutrient supplements, such as retinoic acid (RA) and folic acid (FA) on ethanol-induced retinal defects. Exposure to pathophysiological concentrations of ethanol (during midblastula transition through somitogenesis; 2–24 hours post fertilization [hpf]) altered critical transcription factor expression involved in retinal cell differentiation, and produced severe retinal ganglion cell, photoreceptor, and Müller glial differentiation defects. Ethanol exposure did not alter retinal cell differentiation induction, but increased retinal cell death and proliferation. RA and FA nutrient co-supplementation rescued retinal photoreceptor and ganglion cell differentiation defects. Ethanol exposure during retinal morphogenesis stages (16–24 hpf) produced retinal defects like those seen with ethanol exposure between 2–24 hpf. Significantly, during an ethanol-sensitive time window (16–24 hpf), RA co-supplementation moderately rescued these defects, whereas FA co-supplementation showed significant rescue of optic nerve and photoreceptor differentiation defects. Interestingly, RA, but not FA, supplementation after ethanol exposure could reverse ethanol-induced optic nerve and photoreceptor differentiation defects. Our results indicate that various ethanol-sensitive events underlie FASD-associated retinal defects. Nutrient supplements like retinoids and folate were effective in alleviating ethanol-induced retinal defects. PMID:25541501

  17. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement.

    PubMed

    Muralidharan, Pooja; Sarmah, Swapnalee; Marrs, James A

    2015-03-01

    Fetal Alcohol Spectrum Disorder (FASD) is caused by prenatal alcohol exposure, producing craniofacial, sensory, motor, and cognitive defects. FASD is highly prevalent in low socioeconomic populations, which are frequently accompanied by malnutrition. FASD-associated ocular pathologies include microphthalmia, optic nerve hypoplasia, and cataracts. The present study characterizes specific retinal tissue defects, identifies ethanol-sensitive stages during retinal development, and dissects the effect of nutrient supplements, such as retinoic acid (RA) and folic acid (FA) on ethanol-induced retinal defects. Exposure to pathophysiological concentrations of ethanol (during midblastula transition through somitogenesis; 2-24 h post fertilization [hpf]) altered critical transcription factor expression involved in retinal cell differentiation, and produced severe retinal ganglion cell, photoreceptor, and Müller glial differentiation defects. Ethanol exposure did not alter retinal cell differentiation induction, but increased retinal cell death and proliferation. RA and FA nutrient co-supplementation rescued retinal photoreceptor and ganglion cell differentiation defects. Ethanol exposure during retinal morphogenesis stages (16-24 hpf) produced retinal defects like those seen with ethanol exposure between 2 and 24 hpf. Significantly, during an ethanol-sensitive time window (16-24 hpf), RA co-supplementation moderately rescued these defects, whereas FA co-supplementation showed significant rescue of optic nerve and photoreceptor differentiation defects. Interestingly, RA, but not FA, supplementation after ethanol exposure could reverse ethanol-induced optic nerve and photoreceptor differentiation defects. Our results indicate that various ethanol-sensitive events underlie FASD-associated retinal defects. Nutrient supplements like retinoids and folate were effective in alleviating ethanol-induced retinal defects. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Accelerated Skeletal Maturation in Disorders of Retinoic Acid Metabolism: A Case Report and Focused Review of the Literature.

    PubMed

    Nilsson, O; Isoherranen, N; Guo, M H; Lui, J C; Jee, Y H; Guttmann-Bauman, I; Acerini, C; Lee, W; Allikmets, R; Yanovski, J A; Dauber, A; Baron, J

    2016-11-01

    Nutritional excess of vitamin A, a precursor for retinoic acid (RA), causes premature epiphyseal fusion, craniosynostosis, and light-dependent retinopathy. Similarly, homozygous loss-of-function mutations in CYP26B1, one of the major RA-metabolizing enzymes, cause advanced bone age, premature epiphyseal fusion, and craniosynostosis. In this paper, a patient with markedly accelerated skeletal and dental development, retinal scarring, and autism-spectrum disease is presented and the role of retinoic acid in longitudinal bone growth and skeletal maturation is reviewed. Genetic studies were carried out using SNP array and exome sequencing. RA isomers were measured in the patient, family members, and in 18 age-matched healthy children using high-performance liquid chromatography coupled to tandem mass spectrometry. A genomic SNP array identified a novel 8.3 megabase microdeletion on chromosome 10q23.2-23.33. The 79 deleted genes included CYP26A1 and C1 , both major RA-metabolizing enzymes. Exome sequencing did not detect any variants that were predicted to be deleterious in the remaining alleles of these genes or other known retinoic acid-metabolizing enzymes. The patient exhibited elevated plasma total RA (16.5 vs. 12.6±1.5 nM, mean±SD, subject vs. controls) and 13- cis RA (10.7 nM vs. 6.1±1.1). The findings support the hypothesis that elevated RA concentrations accelerate bone and dental maturation in humans. CYP26A1 and C1 haploinsufficiency may contribute to the elevated retinoic acid concentrations and clinical findings of the patient, although this phenotype has not been reported in other patients with similar deletions, suggesting that other unknown genetic or environmental factors may also contribute. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Free-Energy-Based Protein Design: Re-Engineering Cellular Retinoic Acid Binding Protein II Assisted by the Moveable-Type Approach.

    PubMed

    Zhong, Haizhen A; Santos, Elizabeth M; Vasileiou, Chrysoula; Zheng, Zheng; Geiger, James H; Borhan, Babak; Merz, Kenneth M

    2018-03-14

    How to fine-tune the binding free energy of a small-molecule to a receptor site by altering the amino acid residue composition is a key question in protein engineering. Indeed, the ultimate solution to this problem, to chemical accuracy (±1 kcal/mol), will result in profound and wide-ranging applications in protein design. Numerous tools have been developed to address this question using knowledge-based models to more computationally intensive molecular dynamics simulations-based free energy calculations, but while some success has been achieved there remains room for improvement in terms of overall accuracy and in the speed of the methodology. Here we report a fast, knowledge-based movable-type (MT)-based approach to estimate the absolute and relative free energy of binding as influenced by mutations in a small-molecule binding site in a protein. We retrospectively validate our approach using mutagenesis data for retinoic acid binding to the Cellular Retinoic Acid Binding Protein II (CRABPII) system and then make prospective predictions that are borne out experimentally. The overall performance of our approach is supported by its success in identifying mutants that show high or even sub-nano-molar binding affinities of retinoic acid to the CRABPII system.

  20. Retinoic acid has different effects on UCP1 expression in mouse and human adipocytes

    PubMed Central

    2013-01-01

    Background Increased adipose thermogenesis is being considered as a strategy aimed at preventing or reversing obesity. Thus, regulation of the uncoupling protein 1 (UCP1) gene in human adipocytes is of significant interest. Retinoic acid (RA), the carboxylic acid form of vitamin A, displays agonist activity toward several nuclear hormone receptors, including RA receptors (RARs) and peroxisome proliferator-activated receptor δ (PPARδ). Moreover, RA is a potent positive regulator of UCP1 expression in mouse adipocytes. Results The effects of all-trans RA (ATRA) on UCP1 gene expression in models of mouse and human adipocyte differentiation were investigated. ATRA induced UCP1 expression in all mouse white and brown adipocytes, but inhibited or had no effect on UCP1 expression in human adipocyte cell lines and primary human white adipocytes. Experiments with various RAR agonists and a RAR antagonist in mouse cells demonstrated that the stimulatory effect of ATRA on UCP1 gene expression was indeed mediated by RARs. Consistently, a PPARδ agonist was without effect. Moreover, the ATRA-mediated induction of UCP1 expression in mouse adipocytes was independent of PPARγ coactivator-1α. Conclusions UCP1 expression is differently affected by ATRA in mouse and human adipocytes. ATRA induces UCP1 expression in mouse adipocytes through activation of RARs, whereas expression of UCP1 in human adipocytes is not increased by exposure to ATRA. PMID:24059847

  1. 8-CPT-cAMP/all-trans retinoic acid targets t(11;17) acute promyelocytic leukemia through enhanced cell differentiation and PLZF/RARα degradation

    PubMed Central

    Jiao, Bo; Ren, Zhi-Hong; Liu, Ping; Chen, Li-Juan; Shi, Jing-Yi; Dong, Ying; Ablain, Julien; Shi, Lin; Gao, Li; Hu, Jun-Pei; Ren, Rui-Bao; de Thé, Hugues; Chen, Zhu; Chen, Sai-Juan

    2013-01-01

    The refractoriness of acute promyelocytic leukemia (APL) with t(11;17)(q23;q21) to all-trans retinoic acid (ATRA)-based therapy concerns clinicians and intrigues basic researchers. By using a murine leukemic model carrying both promyelocytic leukemia zinc finger/retinoic acid receptor-α (PLZF/RARα) and RARα/PLZF fusion genes, we discovered that 8-chlorophenylthio adenosine-3′, 5′-cyclic monophosphate (8-CPT-cAMP) enhances cellular differentiation and improves gene trans-activation by ATRA in leukemic blasts. Mechanistically, in combination with ATRA, 8-CPT-cAMP activates PKA, causing phosphorylation of PLZF/RARα at Ser765 and resulting in increased dissociation of the silencing mediator for retinoic acid and thyroid hormone receptors/nuclear receptor corepressor from PLZF/RARα. This process results in changes of local chromatin and transcriptional reactivation of the retinoic acid pathway in leukemic cells. Meanwhile, 8-CPT-cAMP also potentiated ATRA-induced degradation of PLZF/RARα through its Ser765 phosphorylation. In vivo treatment of the t(11;17) APL mouse model demonstrated that 8-CPT-cAMP could significantly improve the therapeutic effect of ATRA by targeting a leukemia-initiating cell activity. This combined therapy, which induces enhanced differentiation and oncoprotein degradation, may benefit t(11;17) APL patients. PMID:23382200

  2. Retinoic Acid and Affective Disorders: The Evidence for an Association

    PubMed Central

    Bremner, J Douglas; Shearer, Kirsty; McCaffery, Peter

    2011-01-01

    Objective Isotretinoin (13-cis-retinoic acid, or 13-cis-RA) (Accutane), approved by the FDA for the treatment of acne, carries a black box warning related to the risk of depression, suicide, and psychosis. Retinoic acid (RA), the active form of vitamin A, regulates gene expression in the brain, and isotretinoin is its 13-cis isomer. Retinoids represent a group of compounds derived from vitamin A that perform a large variety of functions in many systems, in particular the CNS, and abnormal retinoid levels can have neurological effects. Although infrequent, proper recognition and treatment of psychiatric side effects in acne patients is critical given the risk of death and disability. This paper reviews the evidence for a relationship between isotretinoin, depression and suicidality. Data Sources Evidence examined includes: 1) case reports; 2) temporal association between onset of depression and exposure to the drug; 3) challenge-rechallenge cases; 4) class effect (other compounds in the same class, like vitamin A, having similar neuropsychiatric effects); 5) dose response; and 6) biologically plausible mechanisms. Study Selection All papers in the literature related to isotretinoin, depression and suicide were reviewed, as well as papers related to class effect, dose response, and biological plausibility. Data Extraction Information from individual articles in the literature was extracted. Data Synthesis The literature reviewed is consistent with an association between isotretinoin administration, depression and suicide in some individuals. Conclusions The relationship between isotretinoin and depression may have implications for a greater understanding of the neurobiology of affective disorders. PMID:21903028

  3. Classical dendritic cells mediate fibrosis directly via the retinoic acid pathway in severe eye allergy

    PubMed Central

    Ahadome, Sarah D.; Mathew, Rose; Reyes, Nancy J.; Mettu, Priyatham S.; Cousins, Scott W.; Calder, Virginia L.; Saban, Daniel R.

    2016-01-01

    Fibrosis is a shared end-stage pathway to lung, liver, and heart failure. In the ocular mucosa (conjunctiva), fibrosis leads to blindness in trachoma, pemphigoid, and allergy. The indirect fibrogenic role of DCs via T cell activation and inflammatory cell recruitment is well documented. However, here we demonstrate that DCs can directly induce fibrosis. In the mouse model of allergic eye disease (AED), classical CD11b+ DCs in the ocular mucosa showed increased activity of aldehyde dehydrogenase (ALDH), the enzyme required for retinoic acid synthesis. In vitro, CD11b+ DC–derived ALDH was associated with 9-cis-retinoic acid ligation to retinoid x receptor (RXR), which induced conjunctival fibroblast activation. In vivo, stimulating RXR led to rapid onset of ocular mucosal fibrosis, whereas inhibiting ALDH activity in DCs or selectively depleting DCs markedly reduced fibrosis. Collectively, these data reveal a profibrotic ALDH-dependent pathway by DCs and uncover a role for DC retinoid metabolism. PMID:27595139

  4. Vitamin E supplementation does not prevent ethanol-reduced hepatic retinoic acid levels in rats

    USDA-ARS?s Scientific Manuscript database

    Chronic, excessive ethanol intake can increase retinoic acid (RA) catabolism by inducing cytochrome P450 2E1 (CYP2E1). Vitamin E (VE) is an antioxidant implicated in CYP2E1 inhibition. In the current study, we hypothesized that VE supplementation inhibits CYP2E1 and decreases RA catabolism, thereby ...

  5. Three conazoles increase hepatic microsomal retinoic acid metabolism and decrease mouse hepatic retinoic acid levels in vivo.

    PubMed

    Chen, Pei-Jen; Padgett, William T; Moore, Tanya; Winnik, Witold; Lambert, Guy R; Thai, Sheau-Fung; Hester, Susan D; Nesnow, Stephen

    2009-01-15

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with cancer-preventative properties (Ward et al., Toxicol. Pathol. 2006; 34:863-78). The goals of this study were to examine effects of propiconazole, triadimefon, and myclobutanil, three triazole-containing conazoles, on the microsomal metabolism of atRA, the associated hepatic cytochrome P450 (P450) enzyme(s) involved in atRA metabolism, and their effects on hepatic atRA levels in vivo. The in vitro metabolism of atRA was quantitatively measured in liver microsomes from male CD-1 mice following four daily intraperitoneal injections of propiconazole (210 mg/kg/d), triadimefon (257 mg/kg/d) or myclobutanil (270 mg/kg/d). The formation of both 4-hydroxy-atRA and 4-oxo-atRA were significantly increased by all three conazoles. Propiconazole-induced microsomes possessed slightly greater metabolizing activities compared to myclobutanil-induced microsomes. Both propiconazole and triadimefon treatment induced greater formation of 4-hydroxy-atRA compared to myclobutanil treatment. Chemical and immuno-inhibition metabolism studies suggested that Cyp26a1, Cyp2b, and Cyp3a, but not Cyp1a1 proteins were involved in atRA metabolism. Cyp2b10/20 and Cyp3a11 genes were significantly over-expressed in the livers of both triadimefon- and propiconazole-treated mice while Cyp26a1, Cyp2c65 and Cyp1a2 genes were over-expressed in the livers of either triadimefon- or propiconazole-treated mice, and Cyp2b10/20 and Cyp3a13 genes were over-expressed in the livers of myclobutanil-treated mice. Western blot analyses indicated conazole induced-increases in Cyp2b and Cyp3a proteins. All three conazoles decreased hepatic atRA tissue levels ranging from 45-67%. The possible implications of these changes in hepatic atRA levels

  6. Activation of the kinase activity of ATM by retinoic acid is required for CREB-dependent differentiation of neuroblastoma cells.

    PubMed

    Fernandes, Norvin D; Sun, Yingli; Price, Brendan D

    2007-06-01

    The ATM protein kinase is mutated in ataxia telangiectasia, a genetic disease characterized by defective DNA repair, neurodegeneration, and growth factor signaling defects. The activity of ATM kinase is activated by DNA damage, and this activation is required for cells to survive genotoxic events. In addition to this well characterized role in DNA repair, we now demonstrate a novel role for ATM in the retinoic acid (RA)-induced differentiation of SH-SY5Y neuroblastoma cells into post-mitotic, neuronal-like cells. RA rapidly activates the activity of ATM kinase, leading to the ATM-dependent phosphorylation of the CREB protein, extrusion of neuritic processes, and differentiation of SH-SY5Y cells into neuronal-like cells. When ATM protein expression was suppressed by short hairpin RNA, the ATM-dependent phosphorylation of CREB was blocked. Furthermore, ATM-negative cells failed to differentiate into neuronal-like cells when exposed to retinoic acid; instead, they underwent cell death. Expression of a constitutively active CREBVP16 construct, or exposure to forskolin to induce CREB phosphorylation, rescued ATM negative cells and restored differentiation. Furthermore, when dominant negative CREB proteins with mutations in either the CREB phosphorylation site (CREBS133A) or the DNA binding domain (KCREB) were introduced into SH-SY5Y cells, retinoic acid-induced differentiation was blocked and the cells underwent cell death. The results demonstrate that ATM is required for the retinoic acid-induced differentiation of SH-SY5Y cells through the ATM dependent-phosphorylation of serine 133 of CREB. These results therefore define a novel mechanism for activation of the activity of ATM kinase by RA, and implicate ATM in the regulation of CREB function during RA-induced differentiation.

  7. Phase II Trial of β-All-trans-Retinoic Acid for Cervical Intraepithelial Neoplasia Delivered via a Collagen Sponge and Cervical Cap

    PubMed Central

    Graham, Vivian; Surwit, Earl S.; Weiner, Sheldon; Meyskens, Frank L.

    1986-01-01

    Retinoids are effective suppressors of the phenotypic development of cancer in many animal systems, whether the process is initiated by chemical, physical or viral carcinogens. Cases of cervical intraepithelial neoplasia are excellent for studying the effectiveness of retinoids as chemopreventive agents because the process can be closely followed by serial colposcopic and pathologic (cytology or biopsy) means and changes in the condition safely monitored. We have previously conducted a phase I study of trans-retinoic acid (Tretinoin) given topically by a collagen sponge and cervical cap. A dose of 0.372% was selected for phase II trial. We have treated 20 patients with topical retinoic acid, and a complete response with total regression of disease was obtained in 50%. Systemic and cervical side effects were mild and vaginal side effects moderate but tolerable. These results provide a clinical basis for a randomized, double-blind phase III study to definitely answer the question of whether retinoic acid is an effective chemopreventive agent for cervical cancer. ImagesFigure. 1. PMID:3765597

  8. Retinoic Acid Engineered Amniotic Membrane Used as Graft or Homogenate: Positive Effects on Corneal Alkali Burns.

    PubMed

    Joubert, Romain; Daniel, Estelle; Bonnin, Nicolas; Comptour, Aurélie; Gross, Christelle; Belville, Corinne; Chiambaretta, Frédéric; Blanchon, Loïc; Sapin, Vincent

    2017-07-01

    Alkali burns are the most common, severe chemical ocular injuries, their functional prognosis depending on corneal wound healing efficiency. The purpose of our study was to compare the benefits of amniotic membrane (AM) grafts and homogenates for wound healing in the presence or absence of previous all-trans retinoic acid (atRA) treatment. Fifty male CD1 mice with reproducible corneal chemical burn were divided into five groups, as follows: group 1 was treated with saline solution; groups 2 and 3 received untreated AM grafts or grafts treated with atRA, respectively; and groups 4 and 5 received untreated AM homogenates or homogenates treated with atRA, respectively. After 7 days of treatment, ulcer area and depth were measured, and vascular endothelial growth factor (VEGF) and matrix metalloproteinase 9 (MMP-9) were quantified. AM induction by atRA was confirmed via quantification of retinoic acid receptor β (RARβ), a well-established retinoic acid-induced gene. Significant improvements of corneal wound healing in terms of ulcer area and depth were obtained with both strategies. No major differences were found between the efficiency of AM homogenates and grafts. This positive action was increased when AM was pretreated with atRA. Furthermore, AM induced a decrease in VEGF and MMP-9 levels during the wound healing process. The atRA treatment led to an even greater decrease in the expression of both proteins. Amnion homogenate is as effective as AM grafts in promoting corneal wound healing in a mouse model. A higher positive effect was obtained with atRA treatment.

  9. NR4A orphan nuclear receptors influence retinoic acid and docosahexaenoic acid signaling via up-regulation of fatty acid binding protein 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volakakis, Nikolaos; Joodmardi, Eliza; Perlmann, Thomas, E-mail: thomas.perlmann@licr.ki.se

    2009-12-25

    The orphan nuclear receptor (NR) Nurr1 is expressed in the developing and adult nervous system and is also induced as an immediate early gene in a variety of cell types. In silico analysis of human promoters identified fatty acid binding protein 5 (FABP5), a protein shown to enhance retinoic acid-mediated PPAR{beta}/{delta} signaling, as a potential Nurr1 target gene. Nurr1 has previously been implicated in retinoid signaling via its heterodimerization partner RXR. Since NRs are commonly involved in cross-regulatory control we decided to further investigate the regulatory relationship between Nurr1 and FABP5. FABP5 expression was up-regulated by Nurr1 and other NR4Amore » NRs in HEK293 cells, and Nurr1 was shown to activate and bind to the FABP5 promoter, supporting that FABP5 is a direct downstream target of NR4A NRs. We also show that the RXR ligand docosahexaenoic acid (DHA) can induce nuclear translocation of FABP5. Moreover, via up-regulation of FABP5 Nurr1 can enhance retinoic acid-induced signaling of PPAR{beta}/{delta} and DHA-induced activation of RXR. We also found that other members of the NR4A orphan NRs can up-regulate FABP5. Thus, our findings suggest that NR4A orphan NRs can influence signaling events of other NRs via control of FABP5 expression levels.« less

  10. HPLC, MS, and pharmacokinetics of melphalan, bisantrene and 13-cis retinoic acid.

    PubMed

    Davis, T P; Peng, Y M; Goodman, G E; Alberts, D S

    1982-11-01

    High performance liquid chromatographic procedures are described for melphalan, bisantrene, and 13-cis retinoic acid, three important anticancer drugs in various stages of clinical development. The procedures require a rapid and simple sample clean-up followed by a 10-to 20-min chromatographic separation on a reversed-phase C18 column. Precisions are all less than 8% with recoveries greater than 80%. Mass spectrometry confirmation of each drug from patient sample separations is presented to provide unambiguous identification for valid pharmacokinetic parameter determination.

  11. EFFECTS OF METHOPRENE DERIVATIVES ON THE EXPRESSION OF RETINOIC ACID SENSITIVE GENES AND PROTEINS IN CULTURED CELLS

    EPA Science Inventory

    The insect juvenile hormone analog methoprene has been suggested as a possible cause of malformations in frogs and other amphibians. Methoprene has structural similarities to the ubiquitous development regulator, retinoic acid, and thus, may bind to retinoid receptors and consequ...

  12. All-Trans Retinoic Acid-Induced Deficiency of the Wnt/β-Catenin Pathway Enhances Hepatic Carcinoma Stem Cell Differentiation

    PubMed Central

    Zhang, Xia; Bai, Jianhua; Chen, Gang; Li, Li; Li, Meizhang

    2015-01-01

    Retinoic acid (RA) is an important biological signal that directly differentiates cells during embryonic development and tumorigenesis. However, the molecular mechanism of RA-mediated differentiation in hepatic cancer stem cells (hCSCs) is not well understood. In this study, we found that mRNA expressions of RA-biosynthesis-related dehydrogenases were highly expressed in hepatocellular carcinoma. All-trans retinoic acid (ATRA) differentiated hCSCs through inhibiting the function of β-catenin in vitro. ATRA also inhibited the function of PI3K-AKT and enhanced GSK-3β-dependent degradation of phosphorylated β-catenin. Furthermore, ATRA and β-catenin silencing both increased hCSC sensitivity to docetaxel treatment. Our results suggest that targeting β-catenin will provide extra benefits for ATRA-mediated treatment of hepatic cancer patients. PMID:26571119

  13. Restoration of promyelocytic leukemia protein-nuclear bodies in neuroblastoma cells enhances retinoic acid responsiveness.

    PubMed

    Yu, Jiang Hong; Nakajima, Ayako; Nakajima, Hiroshi; Diller, Lisa R; Bloch, Kenneth D; Bloch, Donald B

    2004-02-01

    Neuroblastoma is the most common solid tumor of infancy and is believed to result from impaired differentiation of neuronal crest embryonal cells. The promyelocytic leukemia protein (PML)-nuclear body is a cellular structure that is disrupted during the pathogenesis of acute promyelocytic leukemia, a disease characterized by impaired myeloid cell differentiation. During the course of studies to examine the composition and function of PML-nuclear bodies, we observed that the human neuroblastoma cell line SH-SY5Y lacked these structures and that the absence of PML-nuclear bodies was a feature of N- and I-type, but not S-type, neuroblastoma cell lines. Induction of neuroblastoma cell differentiation with 5-bromo-2'deoxyuridine, all-trans-retinoic acid, or IFN-gamma induced PML-nuclear body formation. PML-nuclear bodies were not detected in tissue sections prepared from undifferentiated neuroblastomas but were present in neuroblasts in differentiating tumors. Expression of PML in neuroblastoma cells restored PML-nuclear bodies, enhanced responsiveness to all-trans-retinoic acid, and induced cellular differentiation. Pharmacological therapies that increase PML expression may prove to be important components of combined modalities for the treatment of neuroblastoma.

  14. On-line concentration and determination of all-trans- and 13-cis- retinoic acids in rabbit serum by application of sweeping technique in micellar electrokinetic chromatography.

    PubMed

    Zhao, Yongxi; Kong, Yu; Wang, Bo; Wu, Yayan; Wu, Hong

    2007-03-30

    A simple and rapid micellar electrokinetic chromatography (MEKC) method with UV detection was developed for the simultaneous separation and determination of all-trans- and 13-cis-retinoic acids in rabbit serum by on-line sweeping concentration technique. The serum sample was simply deproteinized and centrifuged. Various parameters affecting sample enrichment and separation were systematically investigated. Under optimal conditions, the analytes could be well separated within 17min, and the relative standard deviations (RSD) of migration times and peak areas were less than 3.4%. Compared with the conventional MEKC injection method, the 18- and 19-fold improvements in sensitivity were achieved, respectively. The proposed method has been successfully applied to the determination of all-trans- and 13-cis-retinoic acids in serum samples from rabbits and could be feasible for the further pharmacokinetics study of all-trans-retinoic acid.

  15. Lipopolysaccharide effects on the proliferation of NRK52E cells via alternations in gap-junction function.

    PubMed

    Hei, Ziqing; Zhang, Ailan; Wei, Jing; Gan, Xiaoliang; Wang, Yanling; Luo, Gangjian; Li, Xiaoyun

    2012-07-01

    Gap junctions regulate proper kidney function by facilitating intercellular communication, vascular conduction, and tubular purinergic signaling. However, no clear relationship has been described between gap-junction function and acute kidney injury induced by the endotoxin lipopolysaccharide (LPS). Normal rat kidney epithelial cells (NRK52E cells) were seeded at high and low densities to promote or impede gap-junction formation, respectively, and establish distinctive levels of intercellular communication in culture. Cells were then challenged with LPS at various concentrations (10-1,000 ng/mL). LPS-induced formation and function of gap junctions were assessed by measuring changes in cell proliferation and colony-forming rates, fluorescent dye transmission to adjacent cells, expression levels of connexin43, and repositioning of confluent cells in response to the gap junction inhibitor oleamide or agonist retinoic acid. The cell proliferation rate and colony-forming rate of high- and low-density NRK52E cells were decreased upon LPS challenge, in a dose-dependent manner. The colony-forming rate of confluent high-density cells was significantly lower than that of low-density cells. Oleamide treatment raised the LPS-induced colony-forming rate of high-density cells, whereas retinoic acid decreased the rate. Neither oleamide nor retinoic acid significantly affected the LPS-induced colony-forming rate of low-density cells. Fluorescence transmission of high-density cells was reduced by LPS challenge, in a dose-dependent manner, but inclusion of retinoic acid increased the LPS-induced transmission of fluorescence. LPS challenge of either high- or low-density NRK52E cells resulted in down-regulated connexin43 expression. Gap-junction function plays an important role in concentration-dependent cytotoxic effect of LPS on normal rat kidney cells in vitro.

  16. Clinical Significance of Retinoic Acid Receptor Beta Promoter Methylation in Prostate Cancer: A Meta-Analysis.

    PubMed

    Dou, MengMeng; Zhou, XueLiang; Fan, ZhiRui; Ding, XianFei; Li, LiFeng; Wang, ShuLing; Xue, Wenhua; Wang, Hui; Suo, Zhenhe; Deng, XiaoMing

    2018-01-01

    Retinoic acid receptor beta (RAR beta) is a retinoic acid receptor gene that has been shown to play key roles during multiple cancer processes, including cell proliferation, apoptosis, migration and invasion. Numerous studies have found that methylation of the RAR beta promoter contributed to the occurrence and development of malignant tumors. However, the connection between RAR beta promoter methylation and prostate cancer (PCa) remains unknown. This meta-analysis evaluated the clinical significance of RAR beta promoter methylation in PCa. We searched all published records relevant to RAR beta and PCa in a series of databases, including PubMed, Embase, Cochrane Library, ISI Web of Science and CNKI. The rates of RAR beta promoter methylation in the PCa and control groups (including benign prostatic hyperplasia and normal prostate tissues) were summarized. In addition, we evaluated the source region of available samples and the methods used to detect methylation. To compare the incidence and variation in RAR beta promoter methylation in PCa and non-PCa tissues, the odds ratio (OR) and 95% confidence interval (CI) were calculated accordingly. All the data were analyzed with the statistical software STATA 12.0. Based on the inclusion and exclusion criteria, 15 articles assessing 1,339 samples were further analyzed. These data showed that the RAR beta promoter methylation rates in PCa tissues were significantly higher than the rates in the non-PCa group (OR=21.65, 95% CI: 9.27-50.57). Subgroup analysis according to the source region of samples showed that heterogeneity in Asia was small (I2=0.0%, P=0.430). Additional subgroup analysis based on the method used to detect RAR beta promoter methylation showed that the heterogeneity detected by MSP (methylation-specific PCR) was relatively small (I2=11.3%, P=0.343). Although studies reported different rates for RAR beta promoter methylation in PCa tissues, the total analysis demonstrated that RAR beta promoter methylation

  17. Retinoic acids and trichostatin A (TSA), a histone deacetylase inhibitor, induce human pyruvate dehydrogenase kinase 4 (PDK4) gene expression.

    PubMed

    Kwon, Hye-Sook; Huang, Boli; Ho Jeoung, Nam; Wu, Pengfei; Steussy, Calvin N; Harris, Robert A

    2006-01-01

    Induction of pyruvate dehydrogenase kinase 4 (PDK4) conserves glucose and substrates for gluconeogenesis and thereby helps regulate blood glucose levels during starvation. We report here that retinoic acids (RA) as well as Trichostatin A (TSA), an inhibitor of histone deacetylase (HDAC), regulate PDK4 gene expression. Two retinoic acid response elements (RAREs) to which retinoid X receptor alpha (RXRalpha) and retinoic acid receptor alpha (RARalpha) bind and activate transcription are present in the human PDK4 (hPDK4) proximal promoter. Sp1 and CCAAT box binding factor (CBF) bind to the region between two RAREs. Mutation of either the Sp1 or the CBF site significantly decreases basal expression, transactivation by RXRalpha/RARalpha/RA, and the ability of TSA to stimulate hPDK4 gene transcription. By the chromatin immunoprecipitation assay, RA and TSA increase acetylation of histones bound to the proximal promoter as well as occupancy of CBP and Sp1. Interaction of p300/CBP with E1A completely prevented hPDK4 gene activation by RXRalpha/RARalpha/RA and TSA. The p300/CBP may enhance acetylation of histones bound to the hPDK4 promoter and cooperate with Sp1 and CBF to stimulate transcription of the hPDK4 gene in response to RA and TSA.

  18. Preparation and in vitro characterization of retinoic acid-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) micelles.

    PubMed

    Shakiba, Ebrahim; Khazaei, Saeedeh; Hajialyani, Marziyeh; Astinchap, Bandar; Fattahi, Ali

    2017-12-01

    In order to achieve the controlled release of all-trans-retinoic acid (ATRA), poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) copolymer with average molecular weight of 5.34 kDa was synthesized. The nanosized micelles were prepared from copolymer by nano-precipitation method. Critical association concentration (CAC) of micelles was measured by fluorimetry and results indicated low CAC value of micelles (1.9 × 10 -3 g/L). ATRA was encapsulated in the core of micelles using different ratios of drug to copolymer. In the case of 10% drug to polymer ratio, more than 80% of the drug was released within 3 days, whereas for ratio of 2% more than 90% of the drug was released within 3 h. The cytotoxic study performed by MTT assay showed that H1299 survival percent decreased significantly ( P ≤ 0.05) after exposure to drug-loaded micelles, while no proliferation inhibition effect was observed by either free ATRA or blank PCL-PEG-PCL micelles.

  19. Dominant negative retinoic acid receptor initiates tumor formation in mice.

    PubMed

    Kupumbati, Tara S; Cattoretti, Giorgio; Marzan, Christine; Farias, Eduardo F; Taneja, Reshma; Mira-y-Lopez, Rafael

    2006-03-24

    Retinoic acid suppresses cell growth and promotes cell differentiation, and pharmacological retinoic acid receptor (RAR) activation is anti-tumorigenic. This begs the question of whether chronic physiological RAR activation by endogenous retinoids is likewise anti-tumorigenic. To address this question, we generated transgenic mice in which expression of a ligand binding defective dominant negative RARalpha (RARalphaG303E) was under the control of the mouse mammary tumor virus (MMTV) promoter. The transgene was expressed in the lymphoid compartment and in the mammary epithelium. Observation of aging mice revealed that transgenic mice, unlike their wild type littermates, developed B cell lymphomas at high penetrance, with a median latency of 40 weeks. MMTV-RARalphaG303E lymphomas were high grade Pax-5+, surface H+L Ig negative, CD69+ and BCL6- and cytologically and phenotypically resembled human adult high grade (Burkitt's or lymphoblastic) lymphomas. We postulated that mammary tumors might arise after a long latency period as seen in other transgenic models of breast cancer. We tested this idea by transplanting transgenic epithelium into the cleared fat pads of wild type hosts, thus bypassing lymphomagenesis. At 17 months post-transplantation, a metastatic mammary adenocarcinoma developed in one of four transplanted glands whereas no tumors developed in sixteen of sixteen endogenous glands with wild type epithelium. These findings suggest that physiological RAR activity may normally suppress B lymphocyte and mammary epithelial cell growth and that global RAR inactivation is sufficient to initiate a stochastic process of tumor development requiring multiple transforming events. Our work makes available to the research community a new animal resource that should prove useful as an experimental model of aggressive sporadic lymphoma in immunologically uncompromised hosts. We anticipate that it may also prove useful as a model of breast cancer.

  20. Comparative proteomic expression profile in all-trans retinoic acid differentiated neuroblastoma cell line.

    PubMed

    Cimmino, Flora; Spano, Daniela; Capasso, Mario; Zambrano, Nicola; Russo, Roberta; Zollo, Massimo; Iolascon, Achille

    2007-07-01

    Neuroblastoma (NB) is an infant tumor which frequently differentiates into neurons. We used two-dimensional differential in-gel electrophoresis (2D-DIGE) to analyze the cytosolic and nuclear protein expression patterns of LAN-5 cells following neuronal differentiating agent all-trans-retinoic acid treatment. We identified several candidate proteins, from which G beta2 and Prefoldin 3 may have a role on NB development. These results strength the use of proteomics to discover new putative protein targets in cancer.

  1. Role of Vitamin A/Retinoic Acid in Regulation of Embryonic and Adult Hematopoiesis.

    PubMed

    Cañete, Ana; Cano, Elena; Muñoz-Chápuli, Ramón; Carmona, Rita

    2017-02-20

    Vitamin A is an essential micronutrient throughout life. Its physiologically active metabolite retinoic acid (RA), acting through nuclear retinoic acid receptors (RARs), is a potent regulator of patterning during embryonic development, as well as being necessary for adult tissue homeostasis. Vitamin A deficiency during pregnancy increases risk of maternal night blindness and anemia and may be a cause of congenital malformations. Childhood Vitamin A deficiency can cause xerophthalmia, lower resistance to infection and increased risk of mortality. RA signaling appears to be essential for expression of genes involved in developmental hematopoiesis, regulating the endothelial/blood cells balance in the yolk sac, promoting the hemogenic program in the aorta-gonad-mesonephros area and stimulating eryrthropoiesis in fetal liver by activating the expression of erythropoietin. In adults, RA signaling regulates differentiation of granulocytes and enhances erythropoiesis. Vitamin A may facilitate iron absorption and metabolism to prevent anemia and plays a key role in mucosal immune responses, modulating the function of regulatory T cells. Furthermore, defective RA/RARα signaling is involved in the pathogenesis of acute promyelocytic leukemia due to a failure in differentiation of promyelocytes. This review focuses on the different roles played by vitamin A/RA signaling in physiological and pathological mouse hematopoiesis duddurring both, embryonic and adult life, and the consequences of vitamin A deficiency for the blood system.

  2. Ketoconazole inhibits the in vitro and in vivo metabolism of all-trans-retinoic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Wauwe, J.P.; Coene, M.C.; Goossens, J.

    1988-05-01

    Ketoconazole, an antifungal agent and inhibitor of certain mammalian cytochrome P-450-dependent enzymes, was studied for its effects on the in vitro and in vivo metabolism of all-trans-retinoic acid (RA). In vitro, ketoconazole (Ki = 0.75 microM) inhibited, in an apparently competitive manner, the cytochrome P-450-mediated metabolism to 4-hydroxy- and 4-keto-retinoic acids by hamster liver microsomes. In vivo, ketoconazole suppressed the formation of polar RA metabolites by normal rats dosed intrajugularly with 200 ng of (/sup 3/H)RA. After p.o. treatment with ketoconazole (2.5-40 mg/kg) given 1 hr before the (/sup 3/H)RA injection, the radioactivity extracted from the liver consisted of 25more » to 50% polar metabolites (control 66 +/- 1%) and 50 to 75% undegraded RA (control 34 +/- 1%) as evidenced by reverse-phase high-performance liquid chromatography. Time course experiments showed that ketoconazole's inhibitory effects lasted for 3 hr. Our data indicate the quantitative importance of the cytochrome P-450 enzymatic pathway in the biotransformation of RA. They also suggest that ketoconazole is capable of prolonging the biological half-life of RA and of improving the tissue levels of this compound.« less

  3. Effect of 2-(4-aminophenylmethyl)-6-hydroxy-3, 4-dihydronaphthalen-1(2H)-one on all-trans and 13-cis-retinoic acid levels in plasma quantified by high perfomance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Angotti, Marc; Hartmann, Rolf W; Kirby, Andrew J; Simons, Claire; Nicholls, Paul J; Sewell, Robert D E; Smith, H John

    2005-06-01

    The effect of the titled tetralone as a retinoic acid metabolism blocking agent (RAMBA) in vivo in comparison with ketoconazole, a well known cytochrome P450 inhibitor, was studied. Development of a HPLC/MS/MS method for the quantification of retinoic acid levels extracted from rat plasma was used to demonstrate that ketoconazole and the tetralone (100 mg/kg) enhanced the endogenous plasma concentration of retinoic acid. Levels of retinoid were raised from a control value of 0.11 to 0.15 and 0.17 ng/mL after treatment with tetralone and ketoconazole respectively showing that the tetralone and ketoconazole lead to comparable effects, indicating an inhibitory activity of the tetralone on retinoic acid metabolism.

  4. Blue light potentiates neurogenesis induced by retinoic acid-loaded responsive nanoparticles.

    PubMed

    Santos, Tiago; Ferreira, Raquel; Quartin, Emanuel; Boto, Carlos; Saraiva, Cláudia; Bragança, José; Peça, João; Rodrigues, Cecília; Ferreira, Lino; Bernardino, Liliana

    2017-09-01

    Neurogenic niches constitute a powerful endogenous source of new neurons that can be used for brain repair strategies. Neuronal differentiation of these cells can be regulated by molecules such as retinoic acid (RA) or by mild levels of reactive oxygen species (ROS) that are also known to upregulate RA receptor alpha (RARα) levels. Data showed that neural stem cells from the subventricular zone (SVZ) exposed to blue light (405nm laser) transiently induced NADPH oxidase-dependent ROS, resulting in β-catenin activation and neuronal differentiation, and increased RARα levels. Additionally, the same blue light stimulation was capable of triggering the release of RA from light-responsive nanoparticles (LR-NP). The synergy between blue light and LR-NP led to amplified neurogenesis both in vitro and in vivo, while offering a temporal and spatial control of RA release. In conclusion, this combinatory treatment offers great advantages to potentiate neuronal differentiation, and provides an innovative and efficient application for brain regenerative therapies. Controlling the differentiation of stem cells would support the development of promising brain regenerative therapies. Blue light transiently increased reactive oxygen species, resulting in neuronal differentiation and increased retinoic acid receptor (RARα) levels. Additionally, the same blue light stimulation was capable of triggering the release of RA from light-responsive nanoparticles (LR-NP). The synergy between blue light and LR-NP led to amplified neurogenesis, while offering a temporal and spatial control of RA release. In this sense, our approach relying on the modulation of endogenous stem cells for the generation of new neurons may support the development of novel clinical therapies. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. A retinoic acid receptor β2 agonist reduces hepatic stellate cell activation in nonalcoholic fatty liver disease.

    PubMed

    Trasino, Steven E; Tang, Xiao-Han; Jessurun, Jose; Gudas, Lorraine J

    2016-10-01

    Hepatic stellate cells (HSCs) are an important cellular target for the development of novel pharmacological therapies to prevent and treat nonalcoholic fatty liver diseases (NAFLD). Using a high fat diet (HFD) model of NAFLD, we sought to determine if synthetic selective agonists for retinoic acid receptor β2 (RARβ2) and RARγ can mitigate HSC activation and HSC relevant signaling pathways during early stages of NAFLD, before the onset of liver injury. We demonstrate that the highly selective RARβ2 agonist, AC261066, can reduce the activation of HSCs, marked by decreased HSC expression of α-smooth muscle actin (α-SMA), in mice with HFD-induced NAFLD. Livers of HFD-fed mice treated with AC261066 exhibited reduced steatosis, oxidative stress, and expression of pro-inflammatory mediators, such as tumor necrosis factor-alpha (TNFα), interleukin 1β (IL-1β), and monocyte chemotactic protein-1 (MCP-1). Kupffer cell (macrophage) expression of transforming growth factor-β1 (TGF-β1), which plays a critical role in early HSC activation, was markedly reduced in AC261066-treated, HFD-fed mice. In contrast, HFD-fed mice treated with an RARγ agonist (CD1530) showed no decreases in steatosis, HSC activation, or Kupffer cell TGF-β1 levels. In conclusion, our data demonstrate that RARβ2 is an attractive target for development of NAFLD therapies. • Hepatic stellate cells (HSCs) are an important pharmacological target for the prevention of nonalcoholic fatty liver diseases (NAFLD). • Retinoids and retinoic acid receptors (RARs) possess favorable metabolic modulating properties. • We show that an agonist for retinoic acid receptor-β2 (RARβ2), but not RARγ, mitigates HSC activation and NAFLD.

  6. CHARACTERIZATION OF CYPS IN THE METABOLISM OF ALL TRANS RETINOIC ACID BY LIVER MICROSOMES FROM MICE TREATED WITH CONAZOLES

    EPA Science Inventory

    Conazoles are fungicides used in crop protection and as pharmaceuticals. Triadimefon and propiconazole are hepatotumorigenic in mice, while myclobutanil is not. Previous toxicogenomic studies suggest that alteration of the retinoic acid metabolism pathway may involve in conazole-...

  7. Activation of RAS/ERK alone is insufficient to inhibit RXRα function and deplete retinoic acid in hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ai-Guo, E-mail: wangaiguotl@hotmail.com; Song, Ya-Nan; Chen, Jun

    2014-09-26

    Highlights: • The activation of RAS/ERK is insufficient to inhibit RXRα function and deplete RA. • The retinoid metabolism-related genes are down-regulated by ras oncogene. • The atRA has no effect on preventing hepatic tumorigenesis or curing the developed hepatic nodules. - Abstract: Activation of RAS/ERK signaling pathway, depletion of retinoid, and phosphorylation of retinoid X receptor alpha (RXRα) are frequent events found in liver tumors and thought to play important roles in hepatic tumorigenesis. However, the relationships among them still remained to be elucidated. By exploring the transgenic mouse model of hepatic tumorigenesis induced by liver-specific expression of H-ras12Vmore » oncogene, the activation of RAS/ERK, the mRNA expression levels of retinoid metabolism-related genes, the contents of retinoid metabolites, and phosphorylation of RXRα were determined. RAS/ERK signaling pathway was gradually and significantly activated in hepatic tumor adjacent normal liver tissues (P) and hepatic tumor tissues (T) of H-ras12V transgenic mice compared with normal liver tissues (Wt) of wild type mice. On the contrary, the mRNA expression levels of retinoid metabolism-related genes were significantly reduced in P and T compared with Wt. Interestingly, the retinoid metabolites 9-cis-retinoic acid (9cRA) and all-trans-retinoic acid (atRA), the well known ligands for nuclear transcription factor RXR and retinoic acid receptor (RAR), were significantly decreased only in T compared with Wt and P, although the oxidized polar metabolite of atRA, 4-keto-all-trans-retinoic-acid (4-keto-RA) was significantly decreased in both P and T compared with Wt. To our surprise, the functions of RXRα were significantly blocked only in T compared with Wt and P. Namely, the total protein levels of RXRα were significantly reduced and the phosphorylation levels of RXRα were significantly increased only in T compared with Wt and P. Treatment of H-ras12V transgenic mice at 5

  8. Characterization of cDNAs encoding the chick retinoic acid receptor gamma 2 and preferential distribution of retinoic acid receptor gamma transcripts during chick skin development.

    PubMed

    Michaille, J J; Blanchet, S; Kanzler, B; Garnier, J M; Dhouailly, D

    1994-12-01

    Retinoic acid receptors alpha, beta and gamma (RAR alpha, beta and gamma) are ligand-inductible transcriptional activators which belong to the steroid/thyroid hormone receptor superfamily. At least two major isoforms (1 and 2) of each RAR arise by differential use of two promoters and alternative splicing. In mouse, the three RAR genes are expressed in stage- and tissue-specific patterns during embryonic development. In order to understand the role of the different RARs in chick, RAR gamma 2 cDNAs were isolated from an 8.5-day (stage 35 of Hamburger and Hamilton) chick embryo skin library. The deduced chick RAR gamma 2 amino acid sequence displays uncommon features such as 21 specific amino acid replacements, 12 of them being clustered in the amino-terminal region (domains A2 and B), and a truncated acidic carboxy-terminal region (F domain). However, the pattern of RAR gamma expression in chick embryo resembles that reported in mouse, particularly in skin where RAR gamma expression occurs in both the dermal and epidermal layers at the beginning of feather formation, and is subsequently restricted to the differentiating epidermal cells. Northern blot analysis suggests that different RAR gamma isoforms could be successively required during chick development.

  9. The high sensitivity of the rabbit to the teratogenic effects of 13-cis-retinoic acid (isotretinoin) is a consequence of prolonged exposure of the embryo to 13-cis-retinoic acid and 13-cis-4-oxo-retinoic acid, and not of isomerization to all-trans-retinoic acid.

    PubMed

    Tzimas, G; Bürgin, H; Collins, M D; Hummler, H; Nau, H

    1994-01-01

    Previous studies suggested that the rabbit is much more susceptible to the teratogenic action of 13-cis-retinoic acid (13-cis-RA) than the mouse or the rat, while the teratogenicity of all-trans-RA was comparable in these species. In the present study we investigated if pharmacokinetics can explain these species- and structure-related differences. The embryotoxic and teratogenic potential of all-trans-retinoic acid (all-trans-RA) and 13-cis-RA were evaluated in the Swiss hare rabbit after oral administration of daily doses of the two drugs throughout organogenesis, from gestation day (GD) 6 to 18 (plug day = GD 0). All-trans-RA was given at dose levels of 0.7, 2 or 6 mg/kg body weight per day and 13-cis-RA at 3, 7.5 or 10 mg/kg per day. The doses needed to elicit a minimum teratogenic response were found to be 6 mg/kg per day for all-trans-RA and 10 mg/kg per day for 13-cis-RA. Using these doses, transplacental pharmacokinetics of all-trans- and 13-cis-RA were performed. Pregnant rabbits were treated once daily from GD 7 to 12 and plasma and embryo samples were collected for HPLC analysis at various time intervals after the final dose. The main plasma metabolites of all-trans- and 13-cis-RA were all-trans-beta-glucuronide (all-trans-RAG) and 13-cis-4-oxo-RA, respectively. The elimination of 13-cis-RA and its metabolites from maternal plasma were much slower than of all-trans-RA resulting in accumulation of the 13-cis-isomers in plasma. Marked differences in the placental transfer of the two drugs and their metabolites were observed. All-trans-RA and all-trans-4-oxo-RA were efficiently transferred to the rabbit embryo, reaching concentrations similar to the plasma levels. On the contrary, the 13-cis-isomers reached the embryo to a lesser extent. Despite its limited placental transfer, a considerable embryonic exposure to 13-cis-RA and 13-cis-4-oxo-RA was noticed after treatment with isotretinoin, as indicated by their area-under-the-concentration-time-curve (AUC

  10. MicroRNA-432 contributes to dopamine cocktail and retinoic acid induced differentiation of human neuroblastoma cells by targeting NESTIN and RCOR1 genes.

    PubMed

    Das, Eashita; Bhattacharyya, Nitai Pada

    2014-05-02

    MicroRNA (miRNA) regulates expression of protein coding genes and has been implicated in diverse cellular processes including neuronal differentiation, cell growth and death. To identify the role of miRNA in neuronal differentiation, SH-SY5Y and IMR-32 cells were treated with dopamine cocktail and retinoic acid to induce differentiation. Detection of miRNAs in differentiated cells revealed that expression of many miRNAs was altered significantly. Among the altered miRNAs, human brain expressed miR-432 induced neurite projections, arrested cells in G0-G1, reduced cell proliferation and could significantly repress NESTIN/NES, RCOR1/COREST and MECP2. Our results reveal that miR-432 regulate neuronal differentiation of human neuroblastoma cells. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Treatment of refractory undifferentiated acute myelogenous leukemia with all-trans-retinoic acid.

    PubMed

    Griggs, J J; Henley, S E; Rowe, J M

    1994-02-01

    A patient is described with undifferentiated acute myeloblastic leukemia refractory to two courses of daunorubicin and cytosine arabinoside. Because some the myeloblasts developed morphologic features of promyelocytes, the patient was treated with all-trans-retinoic acid (ATRA) in an attempt to promote maturation. Cytogenetic studies and sensitive molecular analysis did not reveal any abnormality classically associated with acute promyelocytic leukemia. Serial bone marrow biopsies demonstrated myeloid maturation, and the patient uneventfully went into a sustained complete remission. A review of the literature confirms this to be an apparently hitherto undescribed response to ATRA that may have therapeutic implications in similar patients.

  12. LIMB DEFECTS INDUCED BY RETINOIC ACID SIGNALING ANTAGONISM AND SYNTHESIS INHIBITION ARE CONSISTENT WITH ETHANOL-INDUCED LIMB DEFECTS

    EPA Science Inventory

    Limb defects induced by retinoic acid signaling antagonism and synthesis inhibition are consistent with ethanol-induced limb defects

    Johnson CS1, Sulik KK1,2, Hunter, ES III3
    1Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, NC....

  13. Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue

    PubMed Central

    Landrier, Jean-Francois; Kasiri, Elnaz; Karkeni, Esma; Mihály, Johanna; Béke, Gabriella; Weiss, Kathrin; Lucas, Renata; Aydemir, Gamze; Salles, Jérome; Walrand, Stéphane; de Lera, Angel R.; Rühl, Ralph

    2017-01-01

    Adiponectin is an adipocyte-derived adipokine with potent antidiabetic, anti-inflammatory, and antiatherogenic activity. Long-term, high-fat diet results in gain of body weight, adiposity, further inflammatory-based cardiovascular diseases, and reduced adiponectin secretion. Vitamin A derivatives/retinoids are involved in several of these processes, which mainly take place in white adipose tissue (WAT). In this study, we examined adiponectin expression as a function of dietary high-fat and high–vitamin A conditions in mice. A decrease of adiponectin expression in addition to an up-regulation of aldehyde dehydrogenase A1 (ALDH1A1), retinoid signaling, and retinoic acid response element signaling was selectively observed in WAT of mice fed a normal–vitamin A, high-fat diet. Reduced adiponectin expression in WAT was also observed in mice fed a high–vitamin A diet. Adipocyte cell culture revealed that endogenous and synthetic retinoic acid receptor (RAR)α- and RARγ-selective agonists, as well as a synthetic retinoid X receptor agonist, efficiently reduced adiponectin expression, whereas ALDH1A1 expression only increased with RAR agonists. We conclude that reduced adiponectin expression under high-fat dietary conditions is dependent on 1) increased ALDH1A1 expression in adipocytes, which does not increase all-trans-retinoic acid levels; 2) further RAR ligand–induced, WAT-selective, increased retinoic acid response element–mediated signaling; and 3) RAR ligand–dependent reduction of adiponectin expression.—Landrier, J.-F., Kasiri, E., Karkeni, E., Mihály, J., Béke, G., Weiss, K., Lucas, R., Aydemir, G., Salles, J., Walrand, S., de Lera, A. R., Rühl, R. Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue. PMID:27729412

  14. Retinoic acid deficiency impairs the vestibular function.

    PubMed

    Romand, Raymond; Krezel, Wojciech; Beraneck, Mathieu; Cammas, Laura; Fraulob, Valérie; Messaddeq, Nadia; Kessler, Pascal; Hashino, Eri; Dollé, Pascal

    2013-03-27

    The retinaldehyde dehydrogenase 3 (Raldh3) gene encodes a major retinoic acid synthesizing enzyme and is highly expressed in the inner ear during embryogenesis. We found that mice deficient in Raldh3 bear severe impairment in vestibular functions. These mutant mice exhibited spontaneous circling/tilted behaviors and performed poorly in several vestibular-motor function tests. In addition, video-oculography revealed a complete loss of the maculo-ocular reflex and a significant reduction in the horizontal angular vestibulo-ocular reflex, indicating that detection of both linear acceleration and angular rotation were compromised in the mutants. Consistent with these behavioral and functional deficiencies, morphological anomalies, characterized by a smaller vestibular organ with thinner semicircular canals and a significant reduction in the number of otoconia in the saccule and the utricle, were consistently observed in the Raldh3 mutants. The loss of otoconia in the mutants may be attributed, at least in part, to significantly reduced expression of Otop1, which encodes a protein known to be involved in calcium regulation in the otolithic organs. Our data thus reveal a previously unrecognized role of Raldh3 in structural and functional development of the vestibular end organs.

  15. SIGNALLING THROUGH RETINOIC ACID RECEPTORS IN CARDIAC DEVELOPMENT: DOING THE RIGHT THINGS AT THE RIGHT TIMES

    PubMed Central

    Xavier-Neto, José; Costa, Ângela M. Sousa; Figueira, Ana Carolina M.; Caiaffa, Carlo Donato; do Amaral, Fabio Neves; Peres, Lara Maldanis Cerqueira; da Silva, Bárbara Santos Pires; Santos, Luana Nunes; Moise, Alexander R.; Castillo, Hozana Andrade

    2015-01-01

    Retinoic acid (RA) is a terpenoid that is synthesized from Vitamin A/retinol (ROL) and binds to the nuclear receptors retinoic acid receptor (RAR)/retinoid X receptor (RXR) to control multiple developmental processes in vertebrates. The available clinic and experimental data provide uncontested evidence for the pleiotropic roles of RA signalling in development of multiple embryonic structures and organs such eyes, central nervous system, gonads, lungs and heart. The development of any of these above-mentioned embryonic organ systems can be effectively utilized to showcase the many strategies utilized by RA signalling. However, it is very likely that the strategies employed to transfer RA signals during cardiac development comprise the majority of the relevant and sophisticated ways through which retinoid signals can be conveyed in a complex biological system. Here, we provide the reader with arguments indicating that RA signalling is exquisitely regulated according to specific phases of cardiac development and that RA signalling itself is one of the major regulators of the timing of cardiac morphogenesis and differentiation. We will focus on the role of signalling by RA receptors (RARs) in early phases of heart development. PMID:25134739

  16. Regulation of retinoic acid synthetic enzymes by WT1 and HDAC inhibitors in 293 cells.

    PubMed

    Li, Yifan; Wang, Lei; Ai, Weipeng; He, Nianhui; Zhang, Lin; Du, Jihui; Wang, Yong; Mao, Xingjian; Ren, Junqi; Xu, Dan; Zhou, Bei; Li, Rong; Mai, Liwen

    2017-09-01

    All-trans retinoic acid (atRA), which is mainly generated endogenously via two steps of oxidation from vitamin A (retinol), plays an indispensible role in the development of the kidney and many other organs. Enzymes that catalyze the oxidation of retinol to generate atRA, including aldehyde dehydrogenase 1 family (ALDH1)A1, ALDH1A2 and ALDH1A3, exhibit complex expression patterns at different stages of renal development. However, molecular triggers that control these differential expression levels are poorly understood. In this study, we provide in vitro evidence to demonstrate that Wilms' tumor 1 (WT1) negatively regulates the expression of the atRA synthetic enzymes, ALDH1A1, ALDH1A2 and ALDH1A3, in the 293 cell line, leading to significant blockage of atRA production. Furthermore, we demonstrate that the suppression of ALDH1A1 by WT1 can be markedly attenuated by histone deacetylase inhibitors (HDACis). Taken together, we provide evidence to indicate that WT1 and HDACs are strong regulators of endogenous retinoic acid synthetic enzymes in 293 cells, indicating that they may be involved in the regulation of atRA synthesis.

  17. Chicken homeobox gene Msx-1: structure, expression in limb buds and effect of retinoic acid.

    PubMed

    Yokouchi, Y; Ohsugi, K; Sasaki, H; Kuroiwa, A

    1991-10-01

    A chicken gene carrying a homeobox highly homologous to the Drosophila muscle segment homeobox (msh) gene was isolated and designated as Msx-1. Conceptual translation from the longest ORF gave a protein of 259 amino acids lacking the conserved hexapeptide. Northern analysis detected a single 2.6 kb transcript. As early as day 2 of incubation, the transcript was detected but was not found in adult tissue. In situ hybridization analysis revealed that Msx-1 expression is closely related to a particular mesenchymal cell lineage during limb bud formation. In early stage embryos, Msx-1 was expressed in the somatopleure. When primordial mesenchyme cells for limb bud were generated from the Wolffian ridge of the somatopleure, Msx-1 expression began to diminish in the posterior half of the limb bud then in the presumptive cartilage-forming mesenchyme. In developing limb buds, remarkable expression was seen in the apical ectodermal ridge (AER), which is responsible for the sustained outgrowth and development of the limb. The Msx-1 transcripts were found in the limb mesenchymal cells in the region covering the necrotic zone and ectodermal cells overlying such mesenchymal cells. Both ectodermal and mesenchymal expression in limb bud were rapidly suppressed by local treatment of retinoic acid which can generate mirror-image duplication of digits. This indicates that retinoic acid alters the marginal presumptive non-cartilage forming mesenchyme cell lineage through suppression of Msx-1 expression.

  18. Expression and Regulation of the Retinoic Acid Receptor Beta Gene in Human Mammary Epithelial Cells

    DTIC Science & Technology

    1996-09-01

    Balb/c nu/nu female mice. We have obtained experimental design advice from Dr. Janet Price, University of Texas, M.D. Anderson Cancer Center, Houston...author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation...identified eight genes regulated by retinoic acid in either breast cancer cell lines and/or normal HMECs. We have continued to evaluate the methodology to

  19. DIFFERENTIAL EXPRESSION OF RETINOIC ACID BIOSYNTHETIC AND METABOLISM GENES IN LIVERS FROM MICE TREATED WITH HEPATOTUMORIGENIC AND NON-HEPATOTUMORIGENIC CONAZOLES

    EPA Science Inventory

    Conazoles are fungicides used in crop protection and as pharmaceuticals. Triadimefon and propiconazole are hepatotumorigenic in mice, while myclobutanil is not. Previous toxicogenomic studies suggest that alteration of the retinoic acid metabolism pathway may play a key event in ...

  20. A splice donor mutation in NAA10 results in the dysregulation of the retinoic acid signaling pathway and causes Lenz microphthalmia syndrome

    PubMed Central

    Esmailpour, Taraneh; Riazifar, Hamidreza; Liu, Linan; Donkervoort, Sandra; Huang, Vincent H; Madaan, Shreshtha; Shoucri, Bassem M; Busch, Anke; Wu, Jie; Towbin, Alexander; Chadwick, Robert B; Sequeira, Adolfo; Vawter, Marquis P; Sun, Guoli; Johnston, Jennifer J; Biesecker, Leslie G; Kawaguchi, Riki; Sun, Hui; Kimonis, Virginia; Huang, Taosheng

    2014-01-01

    Introduction Lenz microphthalmia syndrome (LMS) is a genetically heterogeneous X-linked disorder characterised by microphthalmia/anophthalmia, skeletal abnormalities, genitourinary malformations, and anomalies of the digits, ears, and teeth. Intellectual disability and seizure disorders are seen in about 60% of affected males. To date, no gene has been identified for LMS in the microphthalmia syndrome 1 locus (MCOPS1). In this study, we aim to find the disease-causing gene for this condition. Methods and results Using exome sequencing in a family with three affected brothers, we identified a mutation in the intron 7 splice donor site (c.471+2T→A) of the N-acetyltransferase NAA10 gene. NAA10 has been previously shown to be mutated in patients with Ogden syndrome, which is clinically distinct from LMS. Linkage studies for this family mapped the disease locus to Xq27-Xq28, which was consistent with the locus of NAA10. The mutation co-segregated with the phenotype and cDNA analysis showed aberrant transcripts. Patient fibroblasts lacked expression of full length NAA10 protein and displayed cell proliferation defects. Expression array studies showed significant dysregulation of genes associated with genetic forms of anophthalmia such as BMP4, STRA6, and downstream targets of BCOR and the canonical WNT pathway. In particular, STRA6 is a retinol binding protein receptor that mediates cellular uptake of retinol/vitamin A and plays a major role in regulating the retinoic acid signalling pathway. A retinol uptake assay showed that retinol uptake was decreased in patient cells. Conclusions We conclude that the NAA10 mutation is the cause of LMS in this family, likely through the dysregulation of the retinoic acid signalling pathway. PMID:24431331

  1. ALTERATIONS IN A11 TRANS RETINOIC ACID METABOLISM IN LIVER MICROSOMES FROM MICE TREATED WITH HEPATOTUMORIGENIC AND NON-HEPATOTUMORIGENIC CONAZOLES

    EPA Science Inventory

    Conazoles are fungicides used in crop protection and as pharmaceuticals. Triadimefon and propiconazole are hepatotumorigenic in mice, while myclobutanil is not. Previous toxicogenomic studies suggest that alteration of the retinoic acid metabolism pathway may be a key event in co...

  2. Adenovirus E1A functions as a cofactor for retinoic acid receptor beta (RAR beta) through direct interaction with RAR beta.

    PubMed

    Folkers, G E; van der Saag, P T

    1995-11-01

    Transcription regulation by DNA-bound activators is thought to be mediated by a direct interaction between these proteins and TATA-binding protein (TBP), TFIIB, or TBP-associated factors, although occasionally cofactors or adapters are required. For ligand-induced activation by the retinoic acid receptor-retinoid X receptor (RAR-RXR) heterodimer, the RAR beta 2 promoter is dependent on the presence of E1A or E1A-like activity, since this promoter is activated by retinoic acid only in cells expressing such proteins. The mechanism underlying this E1A requirement is largely unknown. We now show that direct interaction between RAR and E1A is a requirement for retinoic acid-induced RAR beta 2 activation. The activity of the hormone-dependent activation function 2 (AF-2) of RAR beta is upregulated by E1A, and an interaction between this region and E1A was observed, but not with AF-1 or AF-2 of RXR alpha. This interaction is dependent on conserved region III (CRIII), the 13S mRNA-specific region of E1A. Deletion analysis within this region indicated that the complete CRIII is needed for activation. The putative zinc finger region is crucial, probably as a consequence of interaction with TBP. Furthermore, the region surrounding amino acid 178, partially overlapping with the TBP binding region, is involved in both binding to and activation by AF-2. We propose that E1A functions as a cofactor by interacting with both TBP and RAR, thereby stabilizing the preinitiation complex.

  3. Adhesion to the extracellular matrix is positively regulated by retinoic acid in HepG2 cells.

    PubMed

    Massimi, Mara; Devirgiliis, Laura Conti

    2007-02-01

    In this work, we aimed to investigate the possible modulation of cell-matrix interactions by retinoic acid (RA), in view of the well-known role of the extracellular matrix (ECM) and integrins in hepatocyte differentiation and proliferation. For this purpose, we analysed the adhesion ability of HepG2 cells on different substrates in the presence and absence of RA evaluating both the expression and cellular localisation of major proteins involved in focal contacts, using Western blot and confocal microscopy. A positive and substrate-dependent effect of RA on cell-matrix adhesion was observed after long-term culture. The increased adhesiveness in the treated cells was accompanied by an enhanced expression of beta1 and alpha3 integrin subunits, together with a redistribution of beta1 receptors clustered at the basal surface. In contrast, the levels of focal adhesion kinase (FAK), paxillin and alpha-actinin were unchanged, as was the phosphorylation state of FAK. Nonetheless, a stronger association between beta1 integrin and intracytoplasmatic proteins of focal contacts was observed in coimmunoprecipitation experiments after RA treatment, suggesting improved connection with the actin cytoskeleton. These results are consistent with previously described antiproliferative and differentiative effects of RA on transformed hepatocytes, and confirm the hypothesis of a direct influence of RA on specific adhesion molecules.

  4. Effect of ellagic acid on proliferation, cell adhesion and apoptosis in SH-SY5Y human neuroblastoma cells.

    PubMed

    Fjaeraa, Christina; Nånberg, Eewa

    2009-05-01

    Ellagic acid, a polyphenolic compound found in berries, fruits and nuts, has been shown to possess growth-inhibiting and apoptosis promoting activities in cancer cell lines in vitro. The objective of this study was to investigate the effect of ellagic acid in human neuroblastoma SH-SY5Y cells. In cultures of SH-SY5Y cells incubated with ellagic acid, time- and concentration-dependent inhibitory effects on cell number were demonstrated. Ellagic acid induced cell detachment, decreased cell viability and induced apoptosis as measured by DNA strand breaks. Ellagic acid-induced alterations in cell cycle were also observed. Simultaneous treatment with all-trans retinoic acid did not rescue the cells from ellagic acid effects. Furthermore, the results suggested that pre-treatment with all-trans retinoic acid to induce differentiation and cell cycle arrest did not rescue the cells from ellagic acid-induced cell death.

  5. RETINOIC ACID INDUCTION OF CLEFT PALATE IN EGF AND TGF-ALPHA KNOCKOUT MICE: STAGE SPECIFIC INFLUENCES OF GROWTH FACTOR EXPRESSION

    EPA Science Inventory

    ABBOTT, B. D., LEFFLER, K.E. AND BUCKALEW, A.R, Reproductive Toxicology Division, NHEERL, ORD, US EPA, Research Triangle Park, North Carolina. Retinoic acid induction of cleft palate (CP) in EGF and TGF knockout mice: Stage specific influences of growth factor expression.
    <...

  6. Retinoic acid from the meninges regulates cortical neuron generation.

    PubMed

    Siegenthaler, Julie A; Ashique, Amir M; Zarbalis, Konstantinos; Patterson, Katelin P; Hecht, Jonathan H; Kane, Maureen A; Folias, Alexandra E; Choe, Youngshik; May, Scott R; Kume, Tsutomu; Napoli, Joseph L; Peterson, Andrew S; Pleasure, Samuel J

    2009-10-30

    Extrinsic signals controlling generation of neocortical neurons during embryonic life have been difficult to identify. In this study we demonstrate that the dorsal forebrain meninges communicate with the adjacent radial glial endfeet and influence cortical development. We took advantage of Foxc1 mutant mice with defects in forebrain meningeal formation. Foxc1 dosage and loss of meninges correlated with a dramatic reduction in both neuron and intermediate progenitor production and elongation of the neuroepithelium. Several types of experiments demonstrate that retinoic acid (RA) is the key component of this secreted activity. In addition, Rdh10- and Raldh2-expressing cells in the dorsal meninges were either reduced or absent in the Foxc1 mutants, and Rdh10 mutants had a cortical phenotype similar to the Foxc1 null mutants. Lastly, in utero RA treatment rescued the cortical phenotype in Foxc1 mutants. These results establish RA as a potent, meningeal-derived cue required for successful corticogenesis.

  7. Retinoic acid from the meninges regulates cortical neuron generation

    PubMed Central

    Siegenthaler, Julie A.; Ashique, Amir M.; Zarbalis, Konstantinos; Patterson, Katelin P.; Hecht, Jonathan H.; Kane, Maureen A.; Folias, Alexandra E.; Choe, Youngshik; May, Scott R.; Kume, Tsutomu; Napoli, Joseph L.; Peterson, Andrew S.; Pleasure, Samuel J.

    2009-01-01

    Summary Extrinsic signals controlling generation of neocortical neurons during embryonic life have been difficult to identify. In this study we demonstrate that the dorsal forebrain meninges communicate with the adjacent radial glial endfeet and influence cortical development. We took advantage of Foxc1 mutant mice with defects in forebrain meningeal formation. Foxc1 dosage and loss of meninges correlated with a dramatic reduction in both neuron and intermediate progenitor production and elongation of the neuroepithelium. Several types of experiments demonstrate that retinoic acid (RA) is the key component of this secreted activity. In addition, Rdh10 and Raldh2 expressing cells in the dorsal meninges were either reduced or absent in the Foxc1 mutants and Rdh10 mutants had a cortical phenotype similar to the Foxc1-null mutants. Lastly, in utero RA treatment rescued the cortical phenotype in Foxc1 mutants. These results establish RA as a potent, meningeal-derived cue required for successful corticogenesis. PMID:19879845

  8. Crystal structure of human aldehyde dehydrogenase 1A3 complexed with NAD+ and retinoic acid

    PubMed Central

    Moretti, Andrea; Li, Jianfeng; Donini, Stefano; Sobol, Robert W.; Rizzi, Menico; Garavaglia, Silvia

    2016-01-01

    The aldehyde dehydrogenase family 1 member A3 (ALDH1A3) catalyzes the oxidation of retinal to the pleiotropic factor retinoic acid using NAD+. The level of ALDHs enzymatic activity has been used as a cancer stem cell marker and seems to correlate with tumour aggressiveness. Elevated ALDH1A3 expression in mesenchymal glioma stem cells highlights the potential of this isozyme as a prognosis marker and drug target. Here we report the first crystal structure of human ALDH1A3 complexed with NAD+ and the product all-trans retinoic acid (REA). The tetrameric ALDH1A3 folds into a three domain-based architecture highly conserved along the ALDHs family. The structural analysis revealed two different and coupled conformations for NAD+ and REA that we propose to represent two snapshots along the catalytic cycle. Indeed, the isoprenic moiety of REA points either toward the active site cysteine, or moves away adopting the product release conformation. Although ALDH1A3 shares high sequence identity with other members of the ALDH1A family, our structural analysis revealed few peculiar residues in the 1A3 isozyme active site. Our data provide information into the ALDH1As catalytic process and can be used for the structure-based design of selective inhibitors of potential medical interest. PMID:27759097

  9. Differential regulation of ParaHox genes by retinoic acid in the invertebrate chordate amphioxus (Branchiostoma floridae).

    PubMed

    Osborne, Peter W; Benoit, Gérard; Laudet, Vincent; Schubert, Michael; Ferrier, David E K

    2009-03-01

    The ParaHox cluster is the evolutionary sister to the Hox cluster. Like the Hox cluster, the ParaHox cluster displays spatial and temporal regulation of the component genes along the anterior/posterior axis in a manner that correlates with the gene positions within the cluster (a feature called collinearity). The ParaHox cluster is however a simpler system to study because it is composed of only three genes. We provide a detailed analysis of the amphioxus ParaHox cluster and, for the first time in a single species, examine the regulation of the cluster in response to a single developmental signalling molecule, retinoic acid (RA). Embryos treated with either RA or RA antagonist display altered ParaHox gene expression: AmphiGsx expression shifts in the neural tube, and the endodermal boundary between AmphiXlox and AmphiCdx shifts its anterior/posterior position. We identified several putative retinoic acid response elements and in vitro assays suggest some may participate in RA regulation of the ParaHox genes. By comparison to vertebrate ParaHox gene regulation we explore the evolutionary implications. This work highlights how insights into the regulation and evolution of more complex vertebrate arrangements can be obtained through studies of a simpler, unduplicated amphioxus gene cluster.

  10. Cell-type-specific regulation of the retinoic acid receptor mediated by the orphan nuclear receptor TLX.

    PubMed

    Kobayashi, M; Yu, R T; Yasuda, K; Umesono, K

    2000-12-01

    Malformations in the eye can be caused by either an excess or deficiency of retinoids. An early target gene of the retinoid metabolite, retinoic acid (RA), is that encoding one of its own receptors, the retinoic acid receptor beta (RARbeta). To better understand the mechanisms underlying this autologous regulation, we characterized the chick RARbeta2 promoter. The region surrounding the transcription start site of the avian RARbeta2 promoter is over 90% conserved with the corresponding region in mammals and confers strong RA-dependent transactivation in primary cultured embryonic retina cells. This response is selective for RAR but not retinoid X receptor-specific agonists, demonstrating a principal role for RAR(s) in retina cells. Retina cells exhibit a far higher sensitivity to RA than do fibroblasts or osteoblasts, a property we found likely due to expression of the orphan nuclear receptor TLX. Ectopic expression of TLX in fibroblasts resulted in increased sensitivity to RA induction, an effect that is conserved between chick and mammals. We have identified a cis element, the silencing element relieved by TLX (SET), within the RARbeta2 promoter region which confers TLX- and RA-dependent transactivation. These results indicate an important role for TLX in autologous regulation of the RARbeta gene in the eye.

  11. Cell-Type-Specific Regulation of the Retinoic Acid Receptor Mediated by the Orphan Nuclear Receptor TLX†

    PubMed Central

    Kobayashi, Mime; Yu, Ruth T.; Yasuda, Kunio; Umesono, Kazuhiko

    2000-01-01

    Malformations in the eye can be caused by either an excess or deficiency of retinoids. An early target gene of the retinoid metabolite, retinoic acid (RA), is that encoding one of its own receptors, the retinoic acid receptor β (RARβ). To better understand the mechanisms underlying this autologous regulation, we characterized the chick RARβ2 promoter. The region surrounding the transcription start site of the avian RARβ2 promoter is over 90% conserved with the corresponding region in mammals and confers strong RA-dependent transactivation in primary cultured embryonic retina cells. This response is selective for RAR but not retinoid X receptor-specific agonists, demonstrating a principal role for RAR(s) in retina cells. Retina cells exhibit a far higher sensitivity to RA than do fibroblasts or osteoblasts, a property we found likely due to expression of the orphan nuclear receptor TLX. Ectopic expression of TLX in fibroblasts resulted in increased sensitivity to RA induction, an effect that is conserved between chick and mammals. We have identified a cis element, the silencing element relieved by TLX (SET), within the RARβ2 promoter region which confers TLX- and RA-dependent transactivation. These results indicate an important role for TLX in autologous regulation of the RARβ gene in the eye. PMID:11073974

  12. 9-cis-Retinoic Acid Promotes Cell Adhesion Through Integrin Dependent and Independent Mechanisms Across Immune Lineages

    PubMed Central

    Whelan, Jarrett T.; Chen, Jianming; Miller, Jabin; Morrow, Rebekah L.; Lingo, Joshuah D.; Merrell, Kaitlin; Shaikh, Saame Raza; Bridges, Lance C.

    2012-01-01

    Retinoids are essential in the proper establishment and maintenance of immunity. Although retinoids are implicated in immune related processes, their role in immune cell adhesion has not been well established. In this study, the effect of 9-cis-retinoic acid (9-cis-RA) on human hematopoietic cell adhesion was investigated. 9-cis-RA treatment specifically induced cell adhesion of the human immune cell lines HuT-78, NB4, RPMI 8866, and U937. Due to the prominent role of integrin receptors in mediating immune cell adhesion, we sought to evaluate if cell adhesion was integrin-dependent. By employing a variety of integrin antagonist including function-blocking antibodies and EDTA, we establish that 9-cis-RA prompts immune cell adhesion through established integrin receptors in addition to a novel integrin-independent process. The novel integrin-independent adhesion required the presence of retinoid and was attenuated by treatment with synthetic corticosteroids. Finally, we demonstrate that 9-cis-RA treatment of primary murine B-cells induces ex vivo adhesion that persists in the absence of integrin function. Our study is the first to demonstrate that 9-cis-retinoic acid influences immune cell adhesion through at least two functionally distinct mechanisms. PMID:22925918

  13. Quantitative volumetric analysis of a retinoic acid induced hypoplastic model of chick thymus, using Image-J.

    PubMed

    Haque, Ayesha; Khan, Muhammad Yunus

    2017-09-01

    To assess the total volume change in a retinoic acid-induced, hypoplastic model of a chick thymus using Image-J. This experimental study was carried out at the anatomy department of College of Physicians and Surgeons, Islamabad, Pakistan, from February 2009 to February 2010, and comprised fertilised chicken eggs. The eggs were divided into experimental group A and control group C. Group A was injected with 0.3µg of retinoic acid via yolk sac to induce a defective model of a thymus with hypoplasia. The chicks were sacrificed on embryonic day 15 and at hatching. The thymus of each animal was processed, serially sectioned and stained. The total area of each section of thymus was calculated using Image-J. This total area was summed and multiplied with the thickness of each section to obtain volume. Of the 120 eggs, there were 60(50%) in each group. Image analysis revealed a highly significant decrease in the volume of the chick thymus in the experimental group A than its matched control at the time of hatching (p=0.001). Moreover, volumetric depletion progressed with time, being substantially pronounced at hatching compared to the embryonic stage. The volume changes were significant and were effectively quantified using Image-J.

  14. A retinoic acid-inducible mRNA from F9 teratocarcinoma cells encodes a novel protease inhibitor homologue.

    PubMed

    Wang, S Y; Gudas, L J

    1990-09-15

    We have previously isolated several cDNA clones specific for mRNA species that increase in abundance during the retinoic acid-associated differentiation of F9 teratocarcinoma stem cells. One of these mRNAs, J6, encodes a approximately 40 kDa protein as assayed by hybrid selection and in vitro translation (Wang, S.-Y., LaRosa, G., and Gudas, L. J. (1985) Dev. Biol. 107, 75-86). The time course of J6 mRNA expression is similar to those of both laminin B1 and collagen IV (alpha 1) messages following retinoic acid addition. To address the functional role of this protein, we have isolated a full-length cDNA clone complementary to this approximately 40-kDa protein mRNA. Sequence analysis reveals an open reading frame of 406 amino acids (Mr 45,652). The carboxyl-terminal portion of this predicted protein contains a region that is homologous to the reactive sites found among members of the serpin (serine protease inhibitor) family. The predicted reactive site (P1-P1') of this J6 protein is Arg-Ser, which is the same as that of antithrombin III. Like ovalbumin and human monocyte-derived plasminogen activator inhibitor (mPAI-2), which are members of the serpin gene family, the J6 protein appears to have no typical amino-terminal signal sequence.

  15. All-trans retinoic acid impairs the vasculogenic mimicry formation ability of U87 stem-like cells through promoting differentiation

    PubMed Central

    LING, GENG-QIANG; LIU, YI-JING; KE, YI-QUAN; CHEN, LEI; JIANG, XIAO-DAN; JIANG, CHUAN-LU; YE, WEI

    2015-01-01

    The poor therapeutic effect of traditional antiangiogenic therapy on glioblastoma multiforme (GBM) may be attributed to vasculogenic mimicry (VM), which was previously reported to be promoted by cancer stem-like cells (SLCs). All-trans retinoic acid (ATRA), a potent reagent which drives differentiation, was reported to be able to eradicate cancer SLCs in certain malignancies. The aim of the present study was to investigate the effects of ATRA on the VM formation ability of U87 glioblastoma SLCs. The expression of cancer SLC markers CD133 and nestin was detected using immunocytochemistry in order to identify U87 SLCs. In addition, the differentiation of these SLCs was observed through detecting the expression of glial fibrillary acidic protein (GFAP), β-tubulin III and galactosylceramidase (Galc) using immunofluorescent staining. The results showed that the expression levels of GFAP, β-tubulin III and Galc were upregulated following treatment with ATRA in a dose-dependent manner. Furthermore, ATRA significantly reduced the proliferation, invasiveness, tube formation and vascular endothelial growth factor (VEGF) secretion of U87 SLCs. In conclusion, the VM formation ability of SLCs was found to be negatively correlated with differentiation. These results therefore suggested that ATRA may serve as a promising novel agent for the treatment of GBM due to its role in reducing VM formation. PMID:25760394

  16. Differentiation of human SH-SY5Y neuroblastoma cells by all-trans retinoic acid activates the interleukin-18 system.

    PubMed

    Sallmon, Hannes; Hoene, Victoria; Weber, Sven C; Dame, Christof

    2010-02-01

    The clinical prognosis of children with high-stage neuroblastoma is still poor. Therapeutic approaches include surgery and cellular differentiation by retinoic acid, but also experimental interleukin-based immune modulation. However, the molecular mechanisms of all-trans retinoic acid (ATRA)-induced differentiation of neuroblastoma cells are incompletely understood. Herein, we examined the effect of ATRA on the activity of the interleukin-18 (IL-18) system in human SH-SY5Y neuroblastoma cells. It is shown that SH-SY5Y cells express IL-18 receptor (IL-18R) and the secreted antagonist IL-18-binding protein (IL-18BP), but no IL-18. SH-SY5Y cells are highly sensitive to ATRA treatment and react by cellular differentiation from a neuroblastic toward a more neuronal phenotype. This was associated with induction of IL-18 and reduction of IL-18BP expression, while IL-18R expression remained stable. Thereby, we identified the IL-18 system as a novel target of ATRA in neuroblastoma cells that might contribute to the therapeutic properties of retinoids in treatment of neuroblastoma.

  17. The role of retinoic acid receptors and their cognate ligands in reproduction in a context of triorganotin based endocrine disrupting chemicals.

    PubMed

    Macejova, Dana; Toporova, L; Brtko, J

    2016-07-01

    Retinoic acid (RA), an active form of vitamin A, regulates the embryonic development, male and female reproduction and induces important effects on the cell development, proliferation, and differentiation. These effects are mediated by the retinoid (RAR) and rexinoid nuclear receptors (RXR), which are considered to be a ligand-activated, DNA-binding, trans-acting, and transcription-modulating proteins, involved in a general molecular mechanism responsible for the transcriptional responses in target genes. Organotin compounds are typical environmental contaminants and suspected endocrine disrupting substances. They may affect processes of reproductive system in mammals, predominantly via nuclear receptor signaling pathways. Triorganotins, such as tributyltin chloride (TBTCl) and triphenyltin chloride (TPTCl), are capable to bind to RXR molecules, and thus represent potent agonists of RXR subtypes of nuclear receptors not sharing any structural characteristics with endogenous ligands of nuclear receptors. Th is article summarizes selected effects of biologically active retinoids and rexinoids on both male and female reproduction and also deals with the effects of organotin compounds evoking endocrine disrupting actions in reproduction.

  18. Control of Innate and Adaptive Lymphocytes by the RAR-Retinoic Acid Axis.

    PubMed

    Kim, Chang H

    2018-02-01

    Lymphocytes, such as T cells, B cells, and innate lymphoid cells (ILCs), play central roles in regulating immune responses. Retinoic acids (RAs) are vitamin A metabolites, produced and metabolized by certain tissue cells and myeloid cells in a tissue-specific manner. It has been established that RAs induce gut-homing receptors on T cells, B cells, and ILCs. A mounting body of evidence indicates that RAs exert far-reaching effects on functional differentiation and fate of these lymphocytes. For example, RAs promote effector T cell maintenance, generation of induced gut-homing regulatory and effector T cell subsets, antibody production by B cells, and functional maturation of ILCs. Key functions of RAs in regulating major groups of innate and adaptive lymphocytes are highlighted in this article.

  19. ATP7A is a novel target of retinoic acid receptor β2 in neuroblastoma cells

    PubMed Central

    Bohlken, A; Cheung, B B; Bell, J L; Koach, J; Smith, S; Sekyere, E; Thomas, W; Norris, M; Haber, M; Lovejoy, D B; Richardson, D R; Marshall, G M

    2009-01-01

    Increased retinoic acid receptor β (RARβ2) gene expression is a hallmark of cancer cell responsiveness to retinoid anticancer effects. Moreover, low basal or induced RARβ2 expression is a common feature of many human cancers, suggesting that RARβ2 may act as a tumour suppressor gene in the absence of supplemented retinoid. We have previously shown that low RARβ2 expression is a feature of advanced neuroblastoma. Here, we demonstrate that the ABC domain of the RARβ2 protein alone was sufficient for the growth inhibitory effects of RARβ2 on neuroblastoma cells. ATP7A, the copper efflux pump, is a retinoid-responsive gene, was upregulated by ectopic overexpression of RARβ2. The ectopic overexpression of the RARβ2 ABC domain was sufficient to induce ATP7A expression, whereas, RARβ2 siRNA blocked the induction of ATP7A expression in retinoid-treated neuroblastoma cells. Forced downregulation of ATP7A reduced copper efflux and increased viability of retinoid-treated neuroblastoma cells. Copper supplementation enhanced cell growth and reduced retinoid-responsiveness, whereas copper chelation reduced the viability and proliferative capacity. Taken together, our data demonstrates ATP7A expression is regulated by retinoic acid receptor β and it has effects on intracellular copper levels, revealing a link between the anticancer action of retinoids and copper metabolism. PMID:19127267

  20. Identifying the receptor subtype selectivity of retinoid X and retinoic acid receptors via quantum mechanics.

    PubMed

    Tsuji, Motonori; Shudo, Koichi; Kagechika, Hiroyuki

    2017-03-01

    Understanding and identifying the receptor subtype selectivity of a ligand is an important issue in the field of drug discovery. Using a combination of classical molecular mechanics and quantum mechanical calculations, this report assesses the receptor subtype selectivity for the human retinoid X receptor (hRXR) and retinoic acid receptor (hRAR) ligand-binding domains (LBDs) complexed with retinoid ligands. The calculated energies show good correlation with the experimentally reported binding affinities. The technique proposed here is a promising method as it reveals the origin of the receptor subtype selectivity of selective ligands.

  1. Cellular Retinoic Acid Binding Proteins: Genomic and Non-genomic Functions and their Regulation.

    PubMed

    Wei, Li-Na

    Cellular retinoic acid binding proteins (CRABPs) are high-affinity retinoic acid (RA) binding proteins that mainly reside in the cytoplasm. In mammals, this family has two members, CRABPI and II, both highly conserved during evolution. The two proteins share a very similar structure that is characteristic of a "β-clam" motif built up from10-strands. The proteins are encoded by two different genes that share a very similar genomic structure. CRABPI is widely distributed and CRABPII has restricted expression in only certain tissues. The CrabpI gene is driven by a housekeeping promoter, but can be regulated by numerous factors, including thyroid hormones and RA, which engage a specific chromatin-remodeling complex containing either TRAP220 or RIP140 as coactivator and corepressor, respectively. The chromatin-remodeling complex binds the DR4 element in the CrabpI gene promoter to activate or repress this gene in different cellular backgrounds. The CrabpII gene promoter contains a TATA-box and is rapidly activated by RA through an RA response element. Biochemical and cell culture studies carried out in vitro show the two proteins have distinct biological functions. CRABPII mainly functions to deliver RA to the nuclear RA receptors for gene regulation, although recent studies suggest that CRABPII may also be involved in other cellular events, such as RNA stability. In contrast, biochemical and cell culture studies suggest that CRABPI functions mainly in the cytoplasm to modulate intracellular RA availability/concentration and to engage other signaling components such as ERK activity. However, these functional studies remain inconclusive because knocking out one or both genes in mice does not produce definitive phenotypes. Further studies are needed to unambiguously decipher the exact physiological activities of these two proteins.

  2. Vitamin E supplementation does not prevent ethanol-reduced hepatic retinoic acid levels in rats

    PubMed Central

    Chung, Jayong; Veeramachaneni, Sudipta; Liu, Chun; Mernitz, Heather; Russell, Robert M.; Wang, Xiang-Dong

    2009-01-01

    Chronic, excessive ethanol intake can increase retinoic acid (RA) catabolism by inducing cytochrome P450 2E1 (CYP2E1). Vitamin E (VE) is an antioxidant implicated in CYP2E1 inhibition. In the current study, we hypothesized that VE supplementation inhibits CYP2E1 and decreases RA catabolism, thereby preventing ethanol-induced hepatocyte hyperproliferation. For 1 month, four groups of Sprague-Dawley rats were fed a Lieber-DeCarli liquid ethanol (36% of the total calories) diet as follows: either ethanol alone (Alc group) or ethanol in combination with 0.1 mg/kg body wt of all-trans RA (Alc+RA group), 2 mg/kg body wt of VE (Alc+VE group), or both together (Alc+RA+VE group). Control rats were pair-fed a liquid diet with an isocaloric amount of maltodextrin instead of ethanol. The ethanol-fed groups had three-fold higher hepatic CYP2E1 levels, 50% lower hepatic RA levels, and significantly increased hepatocyte proliferation when compared with the controls. The ethanol-fed rats given VE had more than four-fold higher hepatic VE concentrations than did ethanol-fed rats without VE, but this did not prevent ethanol induction of CYP2E1, lower hepatic retinoid levels, or hepatocellular hyperproliferation. Further, VE supplementation could not prevent RA catabolism in liver microsomal fractions of the ethanol-fed rats in vitro. These results show that VE supplementation can neither inhibit ethanol-induced changes in RA catabolism nor prevent ethanol-induced hepatocyte hyperproliferation in the rat liver. PMID:19854382

  3. Is retinoic acid genetic machinery a chordate innovation?

    PubMed

    Cañestro, Cristian; Postlethwait, John H; Gonzàlez-Duarte, Roser; Albalat, Ricard

    2006-01-01

    Development of many chordate features depends on retinoic acid (RA). Because the action of RA during development seems to be restricted to chordates, it had been previously proposed that the "invention" of RA genetic machinery, including RA-binding nuclear hormone receptors (Rars), and the RA-synthesizing and RA-degrading enzymes Aldh1a (Raldh) and Cyp26, respectively, was an important step for the origin of developmental mechanisms leading to the chordate body plan. We tested this hypothesis by conducting an exhaustive survey of the RA machinery in genomic databases for twelve deuterostomes. We reconstructed the evolution of these genes in deuterostomes and showed for the first time that RA genetic machinery--that is Aldh1a, Cyp26, and Rar orthologs--is present in nonchordate deuterostomes. This finding implies that RA genetic machinery was already present during early deuterostome evolution, and therefore, is not a chordate innovation. This new evolutionary viewpoint argues against the hypothesis that the acquisition of gene families underlying RA metabolism and signaling was a key event for the origin of chordates. We propose a new hypothesis in which lineage-specific duplication and loss of RA machinery genes could be related to the morphological radiation of deuterostomes.

  4. Direct inhibition of retinoic acid catabolism by fluoxetine.

    PubMed

    Hellmann-Regen, Julian; Uhlemann, Ria; Regen, Francesca; Heuser, Isabella; Otte, Christian; Endres, Matthias; Gertz, Karen; Kronenberg, Golo

    2015-09-01

    Recent evidence from animal and human studies suggests neuroprotective effects of the SSRI fluoxetine, e.g., in the aftermath of stroke. The underlying molecular mechanisms remain to be fully defined. Because of its effects on the cytochrome P450 system (CYP450), we hypothesized that neuroprotection by fluoxetine is related to altered metabolism of retinoic acid (RA), whose CYP450-mediated degradation in brain tissue constitutes an important step in the regulation of its site-specific auto- and paracrine actions. Using traditional pharmacological in vitro assays, the effects of fluoxetine on RA degradation were probed in crude synaptosomes from rat brain and human-derived SH-SY5Y cells, and in cultures of neuron-like SH-SY5Y cells. Furthermore, retinoid-dependent effects of fluoxetine on neuronal survival following glutamate exposure were investigated in rat primary neurons cells using specific retinoid receptor antagonists. Experiments revealed dose-dependent inhibition of synaptosomal RA degradation by fluoxetine along with dose-dependent increases in RA levels in cell cultures. Furthermore, fluoxetine's neuroprotective effects against glutamate excitotoxicity in rat primary neurons were demonstrated to partially depend on RA signaling. Taken together, these findings demonstrate for the first time that the potent, pleiotropic antidepressant fluoxetine directly interacts with RA homeostasis in brain tissue, thereby exerting its neuroprotective effects.

  5. Serum levels of albumin, triglycerides, total protein and glucose in rats are altered after oral treatment with low doses of 13-cis-retinoic acid or all-trans-retinoic acid.

    PubMed

    Cisneros, F J; Gough, B J; Patton, R E; Ferguson, S A

    2005-01-01

    Currently used to treat severe acne, 13-cis-retinoic acid (13-cis-RA) is under investigation for its anticancer effects as is the isomer, all-trans-retinoic acid (all-trans-RA). Here, the effects of oral 13-cis-RA or all-trans-RA treatment on serum chemistry, leptin and adiponectin levels were evaluated. Adult Sprague-Dawley rats were gavaged once daily for 7 consecutive days with 13-cis-RA (7.5 or 15 mg kg(-1)), all-trans-RA (10 or 15 mg kg(-1)) (n=24/sex/dose), or soy oil (n=16/sex) and blood was sampled 30-480 min after the last gavage. The body weight was unaffected; however, the liver/body weight ratios were increased by both doses of all-trans-RA. Sex differences were noted for levels of cholesterol, creatine, triglycerides, albumin, alanine aminotransferase and total protein. Both doses of all-trans-RA reduced albumin levels to approximately 90% of the control and total protein levels to approximately 93% of the control while substantially elevating triglyceride levels to approximately 66%-99% above the control. Additionally, triglyceride levels of the 15 mg kg(-1) 13-cis RA group were approximately 62% higher than the controls and total protein levels were approximately 5% less. Glucose levels were affected by sex and RA treatment in that males treated with 15 mg kg(-1) of 13-cis-RA or 10 mg kg(-1) all-trans-RA had lower (13%-19%) levels than the same-sex controls; however, females were not similarly affected. Neither 13-cis-RA nor all-trans-RA treatment had significant effects on the levels of blood urea nitrogen, aspartate amino transferase, leptin or adiponectin. On a mg kg(-1) basis, all-trans-RA was more potent than 13-cis-RA. These results replicate previous findings of RA-induced increased triglyceride levels. Additionally, several new findings indicate there may be sex-specific effects of RA treatment. Finally, neither treatment appeared to alter the typical diurnal cycles of these endpoints. Copyright (c) 2005 John Wiley & Sons, Ltd.

  6. Rational design of a colorimetric pH sensor from a soluble retinoic acid chaperone.

    PubMed

    Berbasova, Tetyana; Nosrati, Meisam; Vasileiou, Chrysoula; Wang, Wenjing; Lee, Kin Sing Stephen; Yapici, Ipek; Geiger, James H; Borhan, Babak

    2013-10-30

    Reengineering of cellular retinoic acid binding protein II (CRABPII) to be capable of binding retinal as a protonated Schiff base is described. Through rational alterations of the binding pocket, electrostatic perturbations of the embedded retinylidene chromophore that favor delocalization of the iminium charge lead to exquisite control in the regulation of chromophoric absorption properties, spanning the visible spectrum (474-640 nm). The pKa of the retinylidene protonated Schiff base was modulated from 2.4 to 8.1, giving rise to a set of proteins of varying colors and pH sensitivities. These proteins were used to demonstrate a concentration-independent, ratiometric pH sensor.

  7. BMP4 Cooperates with Retinoic Acid to Induce the Expression of Differentiation Markers in Cultured Mouse Spermatogonia

    PubMed Central

    Feng, Yanmin; Feng, Xue; Wang, Xiuxia; Gan, Haiyun; Wang, Lixian; Lin, Xiwen

    2016-01-01

    Spermatogenesis is sustained by the proliferation and differentiation of spermatogonial stem cells (SSCs). However, the molecules controlling these processes remain largely unknown. Here, we developed a simplified high concentration serum-containing system for the culture of mouse SSCs. Analysis of SSCs markers and transplantation results revealed that the cultured spermatogonia retained stem cell characteristics after long-term in vitro propagation. Using this culture system, the expression and function of bone morphogenetic protein 4 (BMP4) were explored. Immunostaining showed that BMP4 was predominantly expressed in germ cells and that its level increased as spermatogenesis progresses. BMP4 receptors BMPR1A and BMPRII were present in spermatogonia, spermatocytes, and round spermatids. Moreover, despite the mRNAs of these two genes being present in mouse Sertoli cells, only BMPRII was detected by using Western blotting assays. While exogenous BMP4 by itself did not induce the expression of Stra8 and c-Kit, two marker genes of differentiating spermatogonia, a significant cooperative effect of BMP4 and retinoic acid (RA) was observed. Moreover, pretreatment of cultured spermatogonia with the BMP4 antagonist Noggin could inhibit RA-induced expression of these two marker genes. In conclusion, BMP4 may exert autocrine effects and act cooperatively with RA to induce the differentiation of spermatogonia in vivo. PMID:27795714

  8. Molecular mechanism of 9-cis-retinoic acid inhibition of adipogenesis in 3T3-L1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagara, Chiaki; Takahashi, Katsuhiko; Kagechika, Hiroyuki

    2013-03-29

    Highlights: ► We examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1. ► 9-cis-RA inhibited lipid accumulation in adipogenetically-induced 3T3-L1 cells. ► A RXR pan-antagonist suppressed the inhibitory effects of 9-cis-RA on adipogenesis. ► This antagonist had no effects on RXRα and PPARγ levels in 9-cis-RA-treated cells. ► 9-cis-RA-induced decrease in both RXRα and PPARγ was independent of RXR activation. -- Abstract: Retinoic acid (RA) signaling is mediated by specific nuclear hormone receptors. Here we examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1 cells. 9-cis-RA inhibits the lipid accumulation of adipogenetically induced 3T3-L1 cells. Themore » complex of retinoid X receptor α (RXRα) with peroxisome proliferator-activated receptor γ (PPARγ) is a major transcription factor in the process of adipogenesis, and the levels of these molecules were decreased by 9-cis-RA treatment. A RXR pan-antagonist suppressed 9-cis-RA’s inhibitory effects on adipogenesis, but not on the intracellular levels of both RXRα and PPARγ. These results suggest that 9-cis-RA could inhibit adipogenesis by activating RXR, and decrease both RXR and PPARγs levels in a RXR activation-independent manner.« less

  9. EXPRESSION OF EGFR AND ITS LIGANDS IN RESPONSE TO TCDD OR RETINOIC ACID IN EGF AND TGFALPHA KO FETAL MOUSE PALATE

    EPA Science Inventory

    EXPRESSION OF EGFR AND ITS LIGANDS IN RESPONSE TO TCDD OR RETINOIC ACID IN EGF AND TGF" KO FETAL MOUSE PALATE. Abbott, Barbara D.1; Boyd, Hadiya2; Wood, Carmen1; Held, Gary1. 1.EPA, ORD, NHEERL, RTD, US EPA, Research Triangle Park, NC, USA. 2MARC Program, NCCU, Durham, NC, USA. <...

  10. Retinoic Acid-Related Orphan Receptors (RORs): Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism

    PubMed Central

    Cook, Donald N.; Kang, Hong Soon; Jetten, Anton M.

    2015-01-01

    In this overview, we provide an update on recent progress made in understanding the mechanisms of action, physiological functions, and roles in disease of retinoic acid related orphan receptors (RORs). We are particularly focusing on their roles in the regulation of adaptive and innate immunity, brain function, retinal development, cancer, glucose and lipid metabolism, circadian rhythm, metabolic and inflammatory diseases and neuropsychiatric disorders. We also summarize the current status of ROR agonists and inverse agonists, including their regulation of ROR activity and their therapeutic potential for management of various diseases in which RORs have been implicated. PMID:26878025

  11. Cloning of a gene (RIG-G) associated with retinoic acid-induced differentiation of acute promyelocytic leukemia cells and representing a new member of a family of interferon-stimulated genes

    PubMed Central

    Yu, Man; Tong, Jian-Hua; Mao, Mao; Kan, Li-Xin; Liu, Meng-Min; Sun, Yi-Wu; Fu, Gang; Jing, Yong-Kui; Yu, Long; Lepaslier, Denis; Lanotte, Michel; Wang, Zhen-Yi; Chen, Zhu; Waxman, Samuel; Wang, Ya-Xin; Tan, Jia-Zhen; Chen, Sai-Juan

    1997-01-01

    In a cell line (NB4) derived from a patient with acute promyelocytic leukemia, all-trans-retinoic acid (ATRA) and interferon (IFN) induce the expression of a novel gene we call RIG-G (for retinoic acid-induced gene G). This gene codes for a 58-kDa protein containing 490 amino acids with several potential sites for post-translational modification. In untreated NB4 cells, the expression of RIG-G is undetectable. ATRA treatment induces the transcriptional expression of RIG-G relatively late (12–24 hr) in a protein synthesis-dependent manner, whereas IFN-α induces its expression early (30 min to 3 hr). Database search has revealed a high-level homology between RIG-G and several IFN-stimulated genes in human (ISG54K, ISG56K, and IFN-inducible and retinoic acid-inducible 58K gene) and some other species, defining a well conserved gene family. The gene is composed of two exons and has been mapped by fluorescence in situ hybridization to chromosome 10q24, where two other human IFN-stimulated gene members are localized. A synergistic induction of RIG-G expression in NB4 cells by combined treatment with ATRA and IFNs suggests that a collaboration exists between their respective signaling pathways. PMID:9207104

  12. Retinoic Acid signaling regulates Krt5 and Krt14 independently of stem cell markers in submandibular salivary gland epithelium

    PubMed Central

    Abashev, Timur M.; Metzler, Melissa A.; Wright, Diana M.; Sandell, Lisa L.

    2017-01-01

    Background Retinoic Acid (RA), the active metabolite of Vitamin A, has been demonstrated to be important for growth and branching morphogenesis of mammalian embryonic salivary gland epithelium. However, it is not known whether RA functions directly within epithelial cells or in associated tissues that influence morphogenesis of salivary epithelium. Moreover, downstream targets of RA regulation have not been identified. Results Here we show that canonical RA signaling occurs in multiple tissues of embryonic mouse salivary glands, including epithelium, associated parasympathetic ganglion neurons, and non-neuronal mesenchyme. By culturing epithelium explants in isolation from other tissues we demonstrate that RA influences epithelium morphogenesis by direct action in that tissue. Moreover, we demonstrate that inhibition of RA signaling represses cell proliferation and expression of FGF10 signaling targets, and upregulates expression of basal epithelial keratins Krt5 and Krt14. Importantly, we show that the stem cell gene Kit is regulated inversely from Krt5/Krt14 by RA signaling. Conclusions RA regulates Krt5 and Krt14 expression independently of stem cell character in developing salivary epithelium. RA, or chemical inhibitors of RA signaling, could potentially be used for modulating growth and differentiation of epithelial stem cells for the purpose of re-populating damaged glands or generating bioengineered organs. PMID:27884045

  13. Age-related change in the retinoid X receptor beta gene expression in peripheral blood mononuclear cells of healthy volunteers: effect of 13-cis retinoic acid supplementation.

    PubMed

    Brtko, J; Rock, E; Nezbedova, P; Krizanova, O; Dvorcakova, M; Minet-Quinard, R; Farges, M-C; Ribalta, J; Winklhofer-Roob, B M; Vasson, M-P; Macejova, D

    2007-01-01

    The regulation of cell growth and differentiation and also expression of a number of genes by retinoids are mediated by nuclear retinoid receptors (RARs and/or RXRs). In this study we investigated age-related alteration in both RAR and RXR receptor subtypes gene expression and tissue transglutaminase (tTG) activity before and after supplementation with 13-cis retinoic acid (13cRA) in human peripheral blood mononuclear cells (PBMCs). Healthy men (40) were divided in two groups according to their age (young group: 26.1+/-4.1 years and old group: 65.4+/-3.8 years). Each volunteer received 13cRA (Curacné), 0.5mg/(kgday)) during a period of 4 weeks. We have shown that RXRbeta expression was decreased significantly (p=0.0108) in PBMCs of elderly men when compared to that of young volunteers. Distribution of retinoic acid receptor subtype expression in PBMCs was found in the order: RXRbeta>RARgamma>RXRalpha>RARalpha. The tTG activity in PBMCs reflected a trend to be enhanced after 13-cis retinoic acid supplementation. In conclusion, we demonstrate a significant decrease in the expression of RXRbeta subtype of rexinoid receptors in PBMCs of healthy elderly men. Our data suggest that in healthy elderly men reduction of RXRbeta expression in PBMCs might be a common feature of physiological senescence.

  14. Retinoic acid receptor signalling directly regulates osteoblast and adipocyte differentiation from mesenchymal progenitor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, A.C.; Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Victoria 3065; Kocovski, P.

    Low and high serum retinol levels are associated with increased fracture risk and poor bone health. We recently showed retinoic acid receptors (RARs) are negative regulators of osteoclastogenesis. Here we show RARs are also negative regulators of osteoblast and adipocyte differentiation. The pan-RAR agonist, all-trans retinoic acid (ATRA), directly inhibited differentiation and mineralisation of early osteoprogenitors and impaired the differentiation of more mature osteoblast populations. In contrast, the pan-RAR antagonist, IRX4310, accelerated differentiation of early osteoprogenitors. These effects predominantly occurred via RARγ and were further enhanced by an RARα agonist or antagonist, respectively. RAR agonists similarly impaired adipogenesis in osteogenicmore » cultures. RAR agonist treatment resulted in significant upregulation of the Wnt antagonist, Sfrp4. This accompanied reduced nuclear and cytosolic β-catenin protein and reduced expression of the Wnt target gene Axin2, suggesting impaired Wnt/β-catenin signalling. To determine the effect of RAR inhibition in post-natal mice, IRX4310 was administered to male mice for 10 days and bones were assessed by µCT. No change to trabecular bone volume was observed, however, radial bone growth was impaired. These studies show RARs directly influence osteoblast and adipocyte formation from mesenchymal cells, and inhibition of RAR signalling in vivo impairs radial bone growth in post-natal mice. - Graphical abstract: Schematic shows RAR ligand regulation of osteoblast differentiation in vitro. RARγ antagonists±RARα antagonists promote osteoblast differentiation. RARγ and RARα agonists alone or in combination block osteoblast differentiation, which correlates with upregulation of Sfrp4, and downregulation of nuclear and cytosolic β-catenin and reduced expression of the Wnt target gene Axin2. Red arrows indicate effects of RAR agonists on mediators of Wnt signalling.« less

  15. Regulation of URG4/URGCP and PPARα gene expressions after retinoic acid treatment in neuroblastoma cells.

    PubMed

    Avci, Cigir Biray; Dodurga, Yavuz; Gundogdu, Gulsah; Caglar, Hasan Onur; Kucukatay, Vural; Gunduz, Cumhur; Satiroglu-Tufan, N Lale

    2013-12-01

    Neuroblastoma (NB), originating from neural crest cells, is the most common extracranial tumor of childhood. Retinoic acid (RA) which is the biological active form of vitamin A regulates differentiation of NB cells, and RA derivatives have been used for NB treatment. PPARα (peroxisome proliferator-activated receptor) plays an important role in the oxidation of fatty acids, carcinogenesis, and differentiation. URG4/URGCP gene is a proto-oncogene and that overexpression of URG4/URGCP is associated with metastasis and tumor recurrence in osteosarcoma. It has been known that URG4/URGCP gene is an overexpressed gene in hepatocellular carcinoma and gastric cancers. This study aims to detect gene expression patterns of PPARα and URG4/URGCP genes in SH-SY5Y NB cell line after RA treatment. Expressions levels of PPARα and URG4/URGCP genes were analyzed after RA treatment for reducing differentiation in SH-SY5Y NB cell line. To induce differentiation, the cells were treated with 10 μM RA in the dark for 3-10 days. Gene expression of URG4/URGCP and PPARα genes were presented as the yield of polymerase chain reaction (PCR) products from target genes compared with the yield of PCR products from the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene. SH-SY5Y cells possess small processes in an undifferentiated state, and after treatment with RA, the cells developed long neurites, resembling a neuronal phenotype. PPARα gene expression increased in RA-treated groups; URG4/URGCP gene expression decreased in SH-SY5Y cells after RA treatment compared with that in the control cells. NB cell differentiation might associate with PPARα and URG4/URGCP gene expression profile after RA treatment.

  16. 9-Cis-Retinoic Acid Induces Growth Inhibition in Retinoid-Sensitive Breast Cancer and Sea Urchin Embryonic Cells via Retinoid X Receptor α and Replication Factor C3

    PubMed Central

    Maeng, Sejung; Kim, Gil Jung; Choi, Eun Ju; Yang, Hyun Ok; Lee, Dong-Sup

    2012-01-01

    There is widespread interest in defining factors and mechanisms that suppress the proliferation of cancer cells. Retinoic acid (RA) is a potent suppressor of mammary cancer and developmental embryonic cell proliferation. However, the molecular mechanisms by which 9-cis-RA signaling induces growth inhibition in RA-sensitive breast cancer and embryonic cells are not apparent. Here, we provide evidence that the inhibitory effect of 9-cis-RA on cell proliferation depends on 9-cis-RA-dependent interaction of retinoid X receptor α (RXRα) with replication factor C3 (RFC3), which is a subunit of the RFC heteropentamer that opens and closes the circular proliferating cell nuclear antigen (PCNA) clamp on DNA. An RFC3 ortholog in a sea urchin cDNA library was isolated by using the ligand-binding domain of RXRα as bait in a yeast two-hybrid screening. The interaction of RFC3 with RXRα depends on 9-cis-RA and bexarotene, but not on all-trans-RA or an RA receptor (RAR)-selective ligand. Truncation and mutagenesis experiments demonstrated that the C-terminal LXXLL motifs in both human and sea urchin RFC3 are critical for the interaction with RXRα. The transient interaction between 9-cis-RA-activated RXRα and RFC3 resulted in reconfiguration of the PCNA-RFC complex. Furthermore, we found that knockdown of RXRα or overexpression of RFC3 impairs the ability of 9-cis-RA to inhibit proliferation of MCF-7 breast cancer cells and sea urchin embryogenesis. Our results indicate that 9-cis-RA-activated RXRα suppresses the growth of RA-sensitive breast cancer and embryonic cells through RFC3. PMID:22949521

  17. Induction of HoxB Transcription by Retinoic Acid Requires Actin Polymerization

    PubMed Central

    Ferrai, Carmelo; Naum-Onganía, Gabriela; Longobardi, Elena; Palazzolo, Martina; Disanza, Andrea; Diaz, Victor M.; Crippa, Massimo P.; Scita, Giorgio

    2009-01-01

    We have analyzed the role of actin polymerization in retinoic acid (RA)-induced HoxB transcription, which is mediated by the HoxB regulator Prep1. RA induction of the HoxB genes can be prevented by the inhibition of actin polymerization. Importantly, inhibition of actin polymerization specifically affects the transcription of inducible Hox genes, but not that of their transcriptional regulators, the RARs, nor of constitutively expressed, nor of actively transcribed Hox genes. RA treatment induces the recruitment to the HoxB2 gene enhancer of a complex composed of “elongating” RNAPII, Prep1, β-actin, and N-WASP as well as the accessory splicing components p54Nrb and PSF. We show that inhibition of actin polymerization prevents such recruitment. We conclude that inducible Hox genes are selectively sensitive to the inhibition of actin polymerization and that actin polymerization is required for the assembly of a transcription complex on the regulatory region of the Hox genes. PMID:19477923

  18. Induction of HoxB transcription by retinoic acid requires actin polymerization.

    PubMed

    Ferrai, Carmelo; Naum-Onganía, Gabriela; Longobardi, Elena; Palazzolo, Martina; Disanza, Andrea; Diaz, Victor M; Crippa, Massimo P; Scita, Giorgio; Blasi, Francesco

    2009-08-01

    We have analyzed the role of actin polymerization in retinoic acid (RA)-induced HoxB transcription, which is mediated by the HoxB regulator Prep1. RA induction of the HoxB genes can be prevented by the inhibition of actin polymerization. Importantly, inhibition of actin polymerization specifically affects the transcription of inducible Hox genes, but not that of their transcriptional regulators, the RARs, nor of constitutively expressed, nor of actively transcribed Hox genes. RA treatment induces the recruitment to the HoxB2 gene enhancer of a complex composed of "elongating" RNAPII, Prep1, beta-actin, and N-WASP as well as the accessory splicing components p54Nrb and PSF. We show that inhibition of actin polymerization prevents such recruitment. We conclude that inducible Hox genes are selectively sensitive to the inhibition of actin polymerization and that actin polymerization is required for the assembly of a transcription complex on the regulatory region of the Hox genes.

  19. Cytotoxic effect induced by retinoic acid loaded into galactosyl-sphingosine containing liposomes on human hepatoma cell lines.

    PubMed

    Díaz, Cecilia; Vargas, Ernesto; Gätjens-Boniche, Omar

    2006-11-15

    Two retinoids, ATRA and 13cisRA, were incorporated into liposomes of different composition and charge and added to two hepatoma cell lines with different degree of transformation to measure cytotoxicity by MTT assay. Retinoid-free cationic liposomes were more toxic than the other kinds (anionic and made only of PC) but were also the best delivery system for retinoic acid to induce specific cytotoxic effects on these tumor hepatoma cell lines. Galactosyl-sphingosine containing cationic liposomes increased the cytotoxic effect induced by ATRA on Hep3B cells when compared to glucosyl-sphingosine cationic liposomes, but did not improve the effect induced by free retinoid or ATRA loaded into liposomes without glycolipids. This suggests that in this cell line, ATRA is being incorporated by a mechanism mediated by the asialoglycoprotein receptor, but at the same time, non-specific sugar-independent capture is also taking place as well as free diffusion of ATRA directly through the membrane. Galactose-specific effect was not observed in HepG2 cells treated with ATRA or both cell lines treated with 13cisRA. In fact, treatment of HepG2 cells with retinoids entrapped into liposomes likely induces proliferation instead of cytotoxicity, a result that interferes with the measurement of cell death by MTT. Compared to the specific effect of ATRA entrapped into cationic liposomes, vesicles made only by PC, did not mediate a specific mechanism, since differences between ATRA in galactosyl- and glucosyl-shpingosine PC-liposomes were not statistically significant. The specific mechanism was not present in the myoblastic cell line C2C12, where ATRA incorporated into galactosyl- and glucosyl-sphingosine containing cationic and PC-liposomes, was able to induce cytotoxicity at the same extent. Micelles containing ATRA and galactosyl-sphingosine had a significantly more toxic effect than the retinoid administered together with glucosyl-sphingosine, in Hep3B cells. Also, micelles containing

  20. Further evidence of a relationship between the retinoic acid receptor alpha locus and nonsyndromic cleft lip with or without cleft palate (CL [+-] P)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, D.; Field, L.; Ray, A.

    1993-11-01

    Chenevix-Trench et al. (1992) reported a significant difference between nonsyndromic cleft lip with or without cleft palate (CL [+-] P) cases and unrelated controls in the frequency of alleles at the retinoic acid receptor alpha (RARA) PstI RFLP located at 17q21.1. They also observed borderline significant (P = .055) differences between allele frequencies in subjects with cleft lip and palate (CL + P) compared with those with cleft lip only (CL). Retinoic acid (RA) is a known teratogen capable of producing cleft palate in rodents (Abbott and Birnbaum 1990). Chenevix-Tench et al. (1992) hypothesized that variation in susceptibility to themore » effects of RA in humans may result from alterations at the RARA locus. We have investigated association and linkage between CL [+-] P and a microsatellite marker (D17S579) located at 17q21 (Hall et al. 1992), selected for its proximity to RARA, in 14 extended multiplex families from rural West Bengal, India.« less

  1. Retinoic acid stability in stem cell cultures.

    PubMed

    Sharow, Kyle A; Temkin, Boris; Asson-Batres, Mary Ann

    2012-01-01

    It has been reported that retinoids, such as retinoic acid (RA) and retinol (ROL), dissolved in aqueous solutions are susceptible to oxidative damage when exposed to light, air, and relatively high temperatures, conditions that are normal for culturing stem cells. Thus, questions arise regarding the interpretation of results obtained from studies of mouse embryonic stem cells exposed to retinoids because their isomerization state, their stability in culture conditions, and their interactions with other potential differentiation factors in growth media could influence developmental processes under study. Media samples were supplemented with retinoids and exposed to cell culture conditions with and without mouse embryonic stem cells (mESC), and retinoids were extracted and analyzed using HPLC. To determine whether retinoids are stable in media supplemented with fetal bovine serum (FBS) or in chemically-defined, serum-free media, mESC adapted to each type of growth media were investigated. Studies reported here indicate there was little loss or isomerization of at-RA, 9-cis-RA, 13-cis-RA, or ROL in cell cultures grown in serum-supplemented media when cell cultures were maintained in the dark and manipulated and observed under yellow light. In contrast, the stability of both at-RA and ROL were determined to be greatly reduced in serum-free media as compared with serum-supplemented media. Addition of 6 mg/ml bovine serum albumin was found to stabilize retinoids in serum-free media. It was also determined that ROL is less stable than RA in cell culture conditions.

  2. High-dose dexamethasone or all-trans-retinoic acid restores the balance of macrophages towards M2 in immune thrombocytopenia.

    PubMed

    Feng, Q; Xu, M; Yu, Y Y; Hou, Y; Mi, X; Sun, Y X; Ma, S; Zuo, X Y; Shao, L L; Hou, M; Zhang, X H; Peng, J

    2017-09-01

    Essentials M1/M2 imbalance is involved in many autoimmune diseases, and could be restored. The expressions and functions of M1 and M2 were investigated in an in vitro culture system. A preferred M1 polarization is involved in the pathogenesis of immune thrombocytopenia (ITP). High-dose dexamethasone or all-trans-retinoic acid restores M1/M2 balance in ITP patients. Background Immune thrombocytopenia (ITP) is an autoimmune disorder. Deficiency of immune tolerance in antigen-presenting cells and cross-communication between antigen-presenting cells and T cells are involved in the pathogenesis of ITP. Macrophages can polarize into proinflammatory M1 or anti-inflammatory M2 phenotypes in response to different environmental stimuli, and have diverse immunologic functions. Objectives To investigate the M1/M2 imbalance in ITP and whether high-dose dexamethasone (HD-DXM) or all-trans-retinoic acid (ATRA) could restore this imbalance. Methods The numbers of M1 and M2 macrophages in the spleens of ITP patients and patients with traumatic spleen rupture were analyzed by immunofluorescence. Monocyte-derived macrophages were cultured and induced with cytokines and drugs. The expression of M1 and M2 markers and functions of M1 and M2 macrophages before and after modulation by HD-DXM or ATRA were evaluated with flow cytometry and ELISA. Results There was preferred M1 polarization in ITP spleens as compared with healthy controls. Monocyte-derived macrophages from ITP patients had increased expression of M1 markers and impaired immunosuppressive functions. Either HD-DXM or ATRA corrected this imbalance by decreasing the expression of M1 markers and increasing the expression of M2 markers. Moreover, HD-DXM-modulated or ATRA-modulated macrophages suppressed both CD4 + and CD8 + T-cell proliferation and expanded CD4 + CD49 + LAG3 + type 1 T-regulatory cells. HD-DXM or ATRA modulated macrophages to shift the T-cell cytokine profile towards Th2. Treating patients with HD-DXM or ATRA

  3. Topical isotretinoin vs. topical retinoic acid in the treatment of acne vulgaris.

    PubMed

    Domínguez, J; Hojyo, M T; Celayo, J L; Domínguez-Soto, L; Teixeira, F

    1998-01-01

    This is a clinical, prospective, and longitudinal study comparing the efficacy and incidence of averse effects of topical isotretinoin against those of topical retinoic acid in the treatment of acne vulgaris. The 30 participants were recruited from the patients attending the outpatient clinic of the Department of Dermatology of "Dr Manuel Gea González" General Hospital in Mexico City. They belonged to either sex and any race, their ages ranged between 13 and 30 years, and they presented with 15 to 100 facial inflammatory lesions (papulo-pustules) and/or 15 to 100 noninflammatory lesions (comedones) and no more than three nodulo-cystic lesions. The criteria of exclusion were as follows: pregnancy or lactation, systemic treatment with steroids, antibiotics, antiandrogens, or oral retinoids in the preceding 24 months, treatment with ultraviolet radiation, hypersensitivity to retinoids, or a severe systemic illness. From 44 interviewed patients, 14 were excluded. A detailed clinical history was obtained from the remaining individuals, the degree of seborrhea was recorded, and acne lesions were counted. Each patient received either isotretinoin gel 0.05% or retinoic acid cream 0.05%. The patients were instructed to wash their faces in the mornings and evenings with a neutral soap, and to apply the product after the evening cleansing. The patients were examined again after 2, 4, 8, and 12 weeks of treatment and, at each appointment, the number of lesions was recorded and the severity of acne was graded according to the classification of Plewig and Kligman. The seriousness of the adverse effects, such as stinging, pruritus, erythema, xerosis, and desquamation, was evaluated blindly by an investigator who did not know what group the patient belonged to, and graded as 1 = mild, 2 = moderate, and 3 = severe. The efficacy of each drug was determined by the reduction in the number of lesions between weeks 0 and 12 of treatment. An excellent response corresponded to a 76

  4. Association of Rpn10 with high molecular weight complex is enhanced during retinoic acid-induced differentiation of neuroblastoma cells.

    PubMed

    Tayama, Yoko; Kawahara, Hiroyuki; Minami, Ryosuke; Shimada, Masumi; Yokosawa, Hideyoshi

    2007-12-01

    The ubiquitin-binding Rpn10 protein serves as an ubiquitin receptor that delivers client proteins to the 26S proteasome, the protein degradation complex. It has been suggested that the ubiquitin-dependent protein degradation is critical for neuronal differentiation and for preventing neurodegenerative diseases. Our previous study indicated the importance of Rpn10 in control of cellular differentiation (Shimada et al., Mol Biol Cell 17:5356-5371, 2006), though the functional relevance of Rpn10 in neuronal cell differentiation remains a mystery to be uncovered. In the present study, we have examined the level of Rpn10 in a proteasome-containing high molecular weight (HMW) protein fraction prepared from the mouse neuroblastoma cell line Neuro2a. We here report that the protein level of Rpn10 in HMW fraction from un-differentiated Neuro2a cells was significantly lower than that of other cultured cell lines. We have found that retinoic acid-induced neural differentiation of Neuro2a cells significantly stimulates the incorporation of Rpn10 into HMW fractions, although the amounts of 26S proteasome subunits were not changed. Our findings provide the first evidence that the modulation of Rpn10 is linked to the control of retinoic acid-induced differentiation of neuroblastoma cells.

  5. Retinoic Acid 4-Hydroxylase Inducibility and Clinical Response to Isotretinoin in Acne Patients

    PubMed Central

    Wang, Frank; Kwak, Heh Shin R.; Elbuluk, Nada; Kaczmarek, Anya L.; Hamilton, Ted; Voorhees, John J.; Fisher, Gary J.; Kang, Sewon

    2011-01-01

    Background The cytochrome P450 enzyme CYP26 (retinoic acid 4-hydroxylase) initiates the catabolism of all-trans retinoic acid (tRA) and limits the effects of tRA. The CYP26 enzyme acts on tRA, but not 13-cis RA (isotretinoin), a retinoid used to treat severe acne. However, 13-cis RA can isomerize to tRA, which can then be metabolized by CYP26. Objective In healthy subjects, we assessed the variability of CYP26 enzymatic activity. We then investigated whether response to oral 13-cis RA among acne patients correlates with variability in CYP26 expression. Methods In healthy subjects, we isolated microsomal fractions from the epidermis of keratome biopsies and measured CYP26 enzymatic activity in untreated skin and skin treated with tRA. Enzymatic activity was determined based on rate of formation of 4-hydroxy RA (pg/min) per mg microsomal protein. Using real-time PCR we quantified CYP26 mRNA induction after tRA application in acne patients who responded or did not respond to one course of 13-cis RA. Results In normal skin (N=118), CYP26 enzymatic activity was widely variable (1–180 pg/min per mg microsomal fraction; mean 42.7 ± 3.5). Furthermore, CYP26 enzymatic activity was inducible in a dose-dependent manner in normal skin following tRA application, but not correlated with age or sex (N=29). In acne patients, CYP26 mRNA induction following 0.1% tRA application did not differ (P>0.05) between subjects who responded (N=8, 587±325 fold) or did not respond (N=8, 657±227 fold) to one course of 13-cis RA. Limitations The small number of acne patients treated with 13-cis RA was a major limitation. Conclusion Factors other than CYP26 activity may determine response to isotretinoin in acne. PMID:19525031

  6. The p85α regulatory subunit of PI3K mediates cAMP-PKA and retinoic acid biological effects on MCF7 cell growth and migration.

    PubMed

    Donini, Caterina F; Di Zazzo, Erika; Zuchegna, Candida; Di Domenico, Marina; D'Inzeo, Sonia; Nicolussi, Arianna; Avvedimento, Enrico V; Coppa, Anna; Porcellini, Antonio

    2012-05-01

    Phosphoinositide-3-OH kinase (PI3K) signalling regulates various cellular processes, including cell survival, growth, proliferation and motility, and is among the most frequently mutated pathways in cancer. Although the involvement of p85αPI3K SH2 domain in signal transduction has been extensively studied, the function of the SH3 domain at the N-terminus remains elusive. A serine (at codon 83) adjacent to the N-terminal SH3 domain in the PI3K regulatory subunit p85αPI3K that is phosphorylated by protein kinase A (PKA) in vivo and in vitro has been identified. Virtually all receptors binding p85αPI3K can cooperate with cAMP-PKA signals via phosphorylation of p85αPI3KSer83. To analyse the role of p85αPI3KSer83 in retinoic acid (RA) and cAMP signalling, in MCF7 cells, we used p85αPI3K mutated forms, in which Ser83 has been substituted with alanine (p85A) to prevent phosphorylation or with aspartic acid (p85D) to mimic the phosphorylated residue. We demonstrated that p85αPI3KSer83 is crucial for the synergistic enhancement of RARα/p85αPI3K binding induced by cAMP/RA co-treatment in MCF7 cells. Growth curves, colorimetric MTT assay and cell cycle analysis demonstrated that phosphorylation of p85αPI3KSer83 plays an important role in the control of MCF7 cell proliferation and in RA-induced inhibition of proliferation. Wound healing and transwell experiments demonstrated that p85αPI3KSer83 was also essential both for the control of migratory behaviour and for the reduction of motility induced by RA. This study points to p85αPI3KSer83 as the physical link between different pathways (cAMP-PKA, RA and FAK), and as an important regulator of MCF7 cell proliferation and migration.

  7. Knockdown of SALL4 Protein Enhances All-trans Retinoic Acid-induced Cellular Differentiation in Acute Myeloid Leukemia Cells*

    PubMed Central

    Liu, Li; Liu, Liang; Leung, Lai-Han; Cooney, Austin J.; Chen, Changyi; Rosengart, Todd K.; Ma, Yupo; Yang, Jianchang

    2015-01-01

    All-trans retinoic acid (ATRA) is a differentiation agent that revolutionized the treatment of acute promyelocytic leukemia. However, it has not been useful for other types of acute myeloid leukemia (AML). Here we explored the effect of SALL4, a stem cell factor, on ATRA-induced AML differentiation in both ATRA-sensitive and ATRA-resistant AML cells. Aberrant SALL4 expression has been found in nearly all human AML cases, whereas, in normal bone marrow and peripheral blood cells, its expression is only restricted to hematopoietic stem/progenitor cells. We reason that, in AMLs, SALL4 activation may prevent cell differentiation and/or protect self-renewal that is seen in normal hematopoietic stem/progenitor cells. Indeed, our studies show that ATRA-mediated myeloid differentiation can be largely blocked by exogenous expression of SALL4, whereas ATRA plus SALL4 knockdown causes significantly increased AML differentiation and cell death. Mechanistic studies indicate that SALL4 directly associates with retinoic acid receptor α and modulates ATRA target gene expression. SALL4 is shown to recruit lysine-specific histone demethylase 1 (LSD1) to target genes and alter the histone methylation status. Furthermore, coinhibition of LSD1 and SALL4 plus ATRA treatment exhibited the strongest anti-AML effect. These findings suggest that SALL4 plays an unfavorable role in ATRA-based regimes, highlighting an important aspect of leukemia therapy. PMID:25737450

  8. Ultrasound-enhanced delivery of doxorubicin/all-trans retinoic acid-loaded nanodiamonds into tumors.

    PubMed

    Li, Huanan; Zeng, Deping; Wang, Zhenyu; Fang, Liaoqiong; Li, Faqi; Wang, Zhibiao

    2018-03-14

    To build up a combined therapy strategy to address limitations of the enhanced permeability and retention (EPR) effect and improve the efficiency of tumor therapy. A pH-sensitive nanocomplex for co-delivery of doxorubicin (DOX) and all-trans retinoic acid (ATRA) was developed based on nanodiamonds (DOX/ATRA-NDs) to enhance intracellular retention of drugs. Meanwhile, ultrasound was employed to enhance tumor vascular penetration of DOX-ATRA-NDs. The distribution of DOX/ATRA-NDs in the tumor tissues increased threefold when ultrasound was applied at 1 MHz and 0.6 W/cm 2 . Comparing with unmodified chemotherapeutics, the combined therapy induced more tumor cells apoptosis and greater tumor growth inhibition in both liver and breast tumor models. DOX-ATRA-NDs demonstrate great potential in clinical applications.

  9. Potential for all-trans retinoic acid (tretinoin) to enhance interferon-alpha treatment response in chronic myelogenous leukemia, melanoma, myeloma and renal cell carcinoma.

    PubMed

    Kast, Richard E

    2008-10-01

    This note mechanistically accounts for recent unexplained findings that all-trans retinoic acid (ATRA, also termed tretinoin) exerts an anti-viral effect against hepatitis C virus (HCV) in chronically infected patients, in whom ATRA also showed synergy with interferon-alpha. How HCV replication was suppressed was unclear. Both effects of ATRA can be accounted for by ATRA's upregulation of RIG protein, an 18 kDa product of retinoic induced gene-1. Increased RIG then couples ATRA to increased Type 1 interferons' production. Details of this mechanism predict that ATRA will similarly augment interferon-a activity in treating chronic myelogenous leukemia, melanoma, myeloma and renal cell carcinoma and that the addition of ribavirin and/or bexarotene will each incrementally enhance interferon-a responses in these cancers.

  10. Retinoic acid concentrations in patients with squamous cell carcinoma of the head and neck.

    PubMed

    Wahlberg, P; Fex, G

    1996-02-01

    The serum concentrations of all-trans (atRA) and 13-cis (13cRA) retinoic acid were determined by high performance liquid chromatography in 27 patients with squamous cell carcinoma of the head and neck and in 80 healthy controls. This investigation seemed relevant as ethanol is an aetiological factor in these cancers and has been suggested to interfere with the synthesis of atRA. Neither the serum concentration of atRA nor that of 13cRA differed between patients and controls. The serum atRA concentration did not differ between fasting and non-fasting patients, but the serum 13cRA concentration was significantly higher in non-fasting than in fasting patients, probably due to the dietary retinoid content.

  11. Determination of endogenous levels of 13-cis-retinoic acid (isotretinoin), all-trans-retinoic acid (tretinoin) and their 4-oxo metabolites in human and animal plasma by high-performance liquid chromatography with automated column switching and ultraviolet detection.

    PubMed

    Wyss, R; Bucheli, F

    1997-10-24

    A highly sensitive HPLC method with automated column switching was developed for the simultaneous determination of endogenous levels of 13-cis-retinoic acid (isotretinoin), all-trans-retinoic acid (tretinoin) and their 4-oxo metabolites in plasma samples from man, Cynomolgus monkey, rabbit, rat and mouse. Plasma (0.4 ml) was deproteinated by adding ethanol (1.5 ml) containing the internal standard acitretin. After centrifugation, 1.4 ml of the supernatant were directly injected onto the precolumn packed with LiChrospher 100 RP-18 (5 microm). 1.25% ammonium acetate and acetic acid-ethanol (8:2, v/v) was used as mobile phase during injection and 1% ammonium acetate and 2% acetic acid-ethanol (102:4, v/v) was added, on-line, to decrease the elution strength of the injection solution. After backflush purging of the precolumn, the retained components were transferred to the analytical column in the backflush mode, separated by gradient elution and detected at 360 nm. Two coupled Superspher 100 RP-18 endcapped columns (both 250x4 mm) were used for the separation, together with a mobile phase consisting of acetonitrile-water-10% ammonium acetate-acetic acid: (A) 600:300:60:10 (v/v/v/v), (B) 950:20:5:20 (v/v/v/v), and (C) 990:5:0:5 (v/v/v/v). The method was linear in the range 0.3-100 ng/ml, at least, with a quantification limit of 0.3 ng/ml. The mean recoveries from human plasma were 93.2%-94.4% and the mean inter-assay precision was 2.8%-3.2% (range 0.3-100 ng/ml). Similar results were obtained for animal plasma. The analytes were found to be stable in the plasma of all investigated species stored at -20 degrees C for 4.3 months and at -80 degrees C for 9 months, at least. At this temperature, human plasma samples were even stable for 2 years. The method was successfully applied to more than 6000 human and 1000 animal plasma samples from clinical and toxicokinetic studies. Endogenous levels determined in control patients and pregnant women were similar to published data

  12. Retinoic acid reduces chemotherapy-induced neuropathy in an animal model and patients with lung cancer

    PubMed Central

    Hernández-Pedro, N.; Fernández-González- Aragón, M.C.; Saavedra-Pérez, D.; Campos-Parra, A.D.; Ríos-Trejo, M.Á.; Cerón-Lizárraga, T.; Martínez-Barrera, L.; Pineda, B.; Ordóñez, G.; Ortiz-Plata, A.; Granados-Soto, V.; Sotelo, J.

    2011-01-01

    Objective: To evaluate the effect of all-trans retinoic acid (ATRA) as treatment for chemotherapy-induced peripheral neuropathy in an experimental animal model and in a randomized, double-blinded, controlled trial in patients with non-small-cell lung cancer (NSCLC). Methods: Forty male Wistar rats were randomized in 5 groups: group A, control; groups B and C, treated with cisplatin; and groups D and E, treated with paclitaxel. ATRA (20 mg/kg PO) was administered for 15 days in groups C and E. We evaluated neuropathy and nerve regeneration–related morphologic changes in sciatic nerve, the concentration of nerve growth factor (NGF), and retinoic acid receptor (RAR)–α and RAR-β expression. In addition, 95 patients with NSCLC under chemotherapy treatment were randomized to either ATRA (20 mg/m2/d) or placebo. Serum NGF, neurophysiologic tests, and clinical neurotoxicity were assessed. Results: The experimental animals developed neuropathy and axonal degeneration, associated with decreased NGF levels in peripheral nerves. Treatment with ATRA reversed sensorial changes and nerve morphology; this was associated with increased NGF levels and RAR-β expression. Patients treated with chemotherapy had clinical neuropathy and axonal loss assessed by neurophysiology, which was related to decreased NGF levels. ATRA reduced axonal degeneration demonstrated by nerve conduction velocity and clinical manifestations of neuropathy grades ≥2. Conclusions: ATRA reduced chemotherapy-induced experimental neuropathy, increased NGF levels, and induced RAR-β expression in nerve. In patients, reduction of NGF in serum was associated with the severity of neuropathy; ATRA treatment reduced the electrophysiologic alterations. Classification of evidence: This study provides Class II evidence that ATRA improves nerve conduction in patients with chemotherapy-induced peripheral neuropathy. Neurology® 2011;77:987–995 PMID:21865574

  13. A retinoic acid response element that overlaps an estrogen response element mediates multihormonal sensitivity in transcriptional activation of the lactoferrin gene.

    PubMed

    Lee, M O; Liu, Y; Zhang, X K

    1995-08-01

    The lactoferrin gene is highly expressed in many different tissues, and its expression is controlled by different regulators. In this report, we have defined a retinoic acid response element (RARE) in the 5'-flanking region of the lactoferrin gene promoter. The lactoferrin-RARE is composed of two AGGTCA-like motifs arranged as a direct repeat with 1-bp spacing (DR-1). A gel retardation assay demonstrated that it bound strongly with retinoid X receptor (RXR) homodimers and RXR-retinoic acid receptor (RAR) heterodimers as well as chicken ovalbumin upstream promoter transcription factor (COUP-TF) orphan receptor. In CV-1 cells, the lactoferrin-RARE linked with a heterologous thymidine kinase promoter was strongly activated by RXR homodimers in response to 9-cis-retinoic acid (9-cis-RA) but not to all-trans-RA. When the COUP-TF orphan receptor was cotransfected, the 9-cis-RA-induced RXR homodimer activity was strongly repressed. A unique feature of the lactoferrin-RARE is that it has an AGGTCA-like motif in common with an estrogen-responsive element (ERE). The composite RARE/ERE contributes to the functional interaction between retinoid receptors and the estrogen receptor (ER) and their ligands. In CV-1 cells, cotransfection of the retinoid and estrogen receptors led to mutual inhibition of the other's activity, while an RA-dependent inhibition of ER activity was observed in breast cancer cells. Furthermore, the lactoferrin-RARE/ERE showed differential transactivation activity in different cell types. RAs could activate the lactoferrin-RARE/ERE in human leukemia HL-60 cells and U937 cells but not in human breast cancer cells. By gel retardation analyses, we demonstrated that strong binding of the endogenous COUP-TF in breast cancer cells to the composite element contributed to diminished RA response in these cells. Thus, the lactoferrin-RARE/ERE functions as a signaling switch module that mediates multihormonal responsiveness in the regulation of lactoferrin gene

  14. Running increases neurogenesis without retinoic acid receptor activation in the adult mouse dentate gyrus.

    PubMed

    Aberg, Elin; Perlmann, Thomas; Olson, Lars; Brené, Stefan

    2008-01-01

    Both vitamin A deficiency and high doses of retinoids can result in learning and memory impairments, depression as well as decreases in cell proliferation, neurogenesis and cell survival. Physical activity enhances hippocampal neurogenesis and can also exert an antidepressant effect. Here we elucidate a putative link between running, retinoid signaling, and neurogenesis in hippocampus. Adult transgenic reporter mice designed to detect ligand-activated retinoic acid receptors (RAR) or retinoid X receptors (RXR) were used to localize the distribution of activated RAR or RXR at the single-cell level in the brain. Two months of voluntary wheel-running induced an increase in hippocampal neurogenesis as indicated by an almost two-fold increase in doublecortin-immunoreactive cells. Running activity was correlated with neurogenesis. Under basal conditions a distinct pattern of RAR-activated cells was detected in the granule cell layer of the dentate gyrus (DG), thalamus, and cerebral cortex layers 3-4 and to a lesser extent in hippocampal pyramidal cell layers CA1-CA3. Running did not change the number of RAR-activated cells in the DG. There was no correlation between running and RAR activation or between RAR activation and neurogenesis in the DG of hippocampus. Only a few scattered activated retinoid X receptors were found in the DG under basal conditions and after wheel-running, but RXR was detected in other areas such as in the hilus region of hippocampus and in layer VI of cortex cerebri. RAR agonists affect mood in humans and reduce neurogenesis, learning and memory in animal models. In our study, long-term running increased neurogenesis but did not alter RAR ligand activation in the DG in individually housed mice. Thus, our data suggest that the effects of exercise on neurogenesis and other plasticity changes in the hippocampal formation are mediated by mechanisms that do not involve retinoid receptor activation. (c) 2008 Wiley-Liss, Inc.

  15. Retinoic acid signaling is dispensable for somatic development and function in the mammalian ovary.

    PubMed

    Minkina, Anna; Lindeman, Robin E; Gearhart, Micah D; Chassot, Anne-Amandine; Chaboissier, Marie-Christine; Ghyselinck, Norbert B; Bardwell, Vivian J; Zarkower, David

    2017-04-15

    Retinoic acid (RA) is a potent inducer of cell differentiation and plays an essential role in sex-specific germ cell development in the mammalian gonad. RA is essential for male gametogenesis and hence fertility. However, RA can also disrupt sexual cell fate in somatic cells of the testis, promoting transdifferentiation of male Sertoli cells to female granulosa-like cells when the male sexual regulator Dmrt1 is absent. The feminizing ability of RA in the Dmrt1 mutant somatic testis suggests that RA might normally play a role in somatic cell differentiation or cell fate maintenance in the ovary. To test for this possibility we disrupted RA signaling in somatic cells of the early fetal ovary using three genetic strategies and one pharmaceutical approach. We found that deleting all three RA receptors (RARs) in the XX somatic gonad at the time of sex determination did not significantly affect ovarian differentiation, follicle development, or female fertility. Transcriptome analysis of adult triple mutant ovaries revealed remarkably little effect on gene expression in the absence of somatic RAR function. Likewise, deletion of three RA synthesis enzymes (Aldh1a1-3) at the time of sex determination did not masculinize the ovary. A dominant-negative RAR transgene altered granulosa cell proliferation, likely due to interference with a non-RA signaling pathway, but did not prevent granulosa cell specification and oogenesis or abolish fertility. Finally, culture of fetal XX gonads with an RAR antagonist blocked germ cell meiotic initiation but did not disrupt sex-biased gene expression. We conclude that RA signaling, although crucial in the ovary for meiotic initiation, is not required for granulosa cell specification, differentiation, or reproductive function. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Alterations of intercellular junctions in peritoneal mesothelial cells from patients undergoing dialysis: effect of retinoic Acid.

    PubMed

    Retana, Carmen; Sanchez, Elsa; Perez-Lopez, Alejandro; Cruz, Armando; Lagunas, Jesus; Cruz, Carmen; Vital, Socorro; Reyes, Jose L

    2015-01-01

    Dialysis patients are classified according to their peritoneal permeability as low transporter (LT, low solute permeability) or high transporter (HT, high solute permeability). Tight junction (TJ) proteins are critical to maintain ions, molecules and water paracellular transport through peritoneum. Exposure to peritoneal dialysis solutions causes damage to TJ in human peritoneal mesothelial cells (HPMCs). We analyzed the quantity, distribution and function of TJ proteins: claudin-1, -2 and -8, ZO-1 and occludin, in HPMC cultures from LT and HT patients. Since all-trans retinoic acid (ATRA) might modify the expression of TJ proteins, we studied its effect on HPMCs. Control HPMCs were isolated from human omentum, while HT or LT cells were obtained from dialysis effluents. Cells were cultured in presence of ATRA 0, 50 or 100 nM. Transepithelial electrical resistance (TER) measurement, immunostaining and Western blot analyses were performed. HT exhibited lower TER than control and LT monolayers. Immunofluorescence for TJ was weak and discontinuous along the cell contour, in LT and HT. Furthermore, claudin-1, occludin and ZO-1 expressions were decreased. In all groups, claudin-2 was localized at nuclei. We observed that ATRA improved TJ distribution and increased TJ expression in HT. This retinoid did not modify claudin-2 and -8 expressions. All-trans retinoic acid decreased TER in HT, but had no effect in LT. Tight junctions were altered in HPMCs from dialyzed patients. The HT monolayer has lower TER than LT, which might be associated with the peritoneal permeability in these patients. ATRA might be a therapeutic alternative to maintain mesothelial integrity, since it improved TJ localization and expression. Copyright © 2015 International Society for Peritoneal Dialysis.

  17. Alterations of Intercellular Junctions in Peritoneal Mesothelial Cells from Patients Undergoing Dialysis: Effect of Retinoic Acid

    PubMed Central

    Retana, Carmen; Sanchez, Elsa; Perez-Lopez, Alejandro; Cruz, Armando; Lagunas, Jesus; Cruz, Carmen; Vital, Socorro; Reyes, Jose L.

    2015-01-01

    ♦ Background: Dialysis patients are classified according to their peritoneal permeability as low transporter (LT, low solute permeability) or high transporter (HT, high solute permeability). Tight junction (TJ) proteins are critical to maintain ions, molecules and water paracellular transport through peritoneum. Exposure to peritoneal dialysis solutions causes damage to TJ in human peritoneal mesothelial cells (HPMCs). We analyzed the quantity, distribution and function of TJ proteins: claudin-1, -2 and -8, ZO-1 and occludin, in HPMC cultures from LT and HT patients. Since all-trans retinoic acid (ATRA) might modify the expression of TJ proteins, we studied its effect on HPMCs. ♦ Methods: Control HPMCs were isolated from human omentum, while HT or LT cells were obtained from dialysis effluents. Cells were cultured in presence of ATRA 0, 50 or 100 nM. Transepithelial electrical resistance (TER) measurement, immunostaining and Western blot analyses were performed. ♦ Results: HT exhibited lower TER than control and LT monolayers. Immunofluorescence for TJ was weak and discontinuous along the cell contour, in LT and HT. Furthermore, claudin-1, occludin and ZO-1 expressions were decreased. In all groups, claudin-2 was localized at nuclei. We observed that ATRA improved TJ distribution and increased TJ expression in HT. This retinoid did not modify claudin-2 and -8 expressions. All-trans retinoic acid decreased TER in HT, but had no effect in LT. ♦ Conclusions: Tight junctions were altered in HPMCs from dialyzed patients. The HT monolayer has lower TER than LT, which might be associated with the peritoneal permeability in these patients. ATRA might be a therapeutic alternative to maintain mesothelial integrity, since it improved TJ localization and expression. PMID:24584604

  18. Retinoic acid signaling regulates Krt5 and Krt14 independently of stem cell markers in submandibular salivary gland epithelium.

    PubMed

    Abashev, Timur M; Metzler, Melissa A; Wright, Diana M; Sandell, Lisa L

    2017-02-01

    Retinoic acid (RA), the active metabolite of vitamin A, has been demonstrated to be important for growth and branching morphogenesis of mammalian embryonic salivary gland epithelium. However, it is not known whether RA functions directly within epithelial cells or in associated tissues that influence morphogenesis of salivary epithelium. Moreover, downstream targets of RA regulation have not been identified. Here, we show that canonical RA signaling occurs in multiple tissues of embryonic mouse salivary glands, including epithelium, associated parasympathetic ganglion neurons, and nonneuronal mesenchyme. By culturing epithelium explants in isolation from other tissues, we demonstrate that RA influences epithelium morphogenesis by direct action in that tissue. Moreover, we demonstrate that inhibition of RA signaling represses cell proliferation and expression of FGF10 signaling targets, and upregulates expression of basal epithelial keratins Krt5 and Krt14. Importantly, we show that the stem cell gene Kit is regulated inversely from Krt5/Krt14 by RA signaling. RA regulates Krt5 and Krt14 expression independently of stem cell character in developing salivary epithelium. RA, or chemical inhibitors of RA signaling, could potentially be used for modulating growth and differentiation of epithelial stem cells for the purpose of re-populating damaged glands or generating bioengineered organs. Developmental Dynamics 246:135-147, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. 13-cis-retinoic acid competitively inhibits 3 alpha-hydroxysteroid oxidation by retinol dehydrogenase RoDH-4: a mechanism for its anti-androgenic effects in sebaceous glands?

    PubMed

    Karlsson, Teresa; Vahlquist, Anders; Kedishvili, Natalia; Törmä, Hans

    2003-03-28

    Retinol dehydrogenase-4 (RoDH-4) converts retinol and 13-cis-retinol to corresponding aldehydes in human liver and skin in the presence of NAD(+). RoDH-4 also converts 3 alpha-androstanediol and androsterone into dihydrotestosterone and androstanedione, which may stimulate sebum secretion. This oxidative 3 alpha-hydroxysteroid dehydrogenase (3 alpha-HSD) activity of RoDH-4 is competitively inhibited by retinol and 13-cis-retinol. Here, we further examine the substrate specificity of RoDH-4 and the inhibition of its 3 alpha-HSD activity by retinoids. Recombinant RoDH-4 oxidized 3,4-didehydroretinol-a major form of vitamin A in the skin-to its corresponding aldehyde. 13-cis-retinoic acid (isotretinoin), 3,4-didehydroretinoic acid, and 3,4-didehydroretinol, but not all-trans-retinoic acid or the synthetic retinoids acitretin and adapalene, were potent competitive inhibitors of the oxidative 3 alpha-HSD activity of RoDH-4, i.e., reduced the formation of dihydrotestosterone and androstandione in vitro. Extrapolated to the in vivo situation, this effect might explain the unique sebosuppressive effect of isotretinoin when treating acne.

  20. Transcription Factor TBX1 Overexpression Induces Downregulation of Proteins Involved in Retinoic Acid Metabolism: A Comparative Proteomic Analysis

    PubMed Central

    Caterino, Marianna; Ruoppolo, Margherita; Fulcoli, Gabriella; Huynth, Tuong; Orrù, Stefania; Baldini, Antonio; Salvatore, Francesco

    2009-01-01

    TBX1 haploinsufficiency is considered a major contributor to the del22q11.2/DiGeorge syndrome (DGS) phenotype. We have used proteomic tools to look at all the major proteins involved in the TBX1-mediated pathways in an attempt to better understand the molecular interactions instrumental to its cellular functions. We found more than 90 proteins that could be targeted by TBX1 through different mechanisms. The most interesting observation is that overexpression of TBX1 results in down-regulation of two proteins involved in retinoic acid metabolism. PMID:19178302

  1. Retinoic acid-induced differentiation of retrovirus-infected HL-60 cells is associated with enhanced transcription from the viral long terminal repeat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, S.J.

    1988-11-01

    The author infected different human leukemic cell lines with an amphotropic retrovirus vector (designated PA317/N2) which confers G418 resistance and contains the Moloney murine leukemia virus long terminal repeat. In retrovirus-infected G418-resistant HL-60 cells, induction of granulocyte differentiation by retinoic acid was invariably accompanied by a marked increase (5- to 10-fold) in the transcriptional activity of the integrated retroviral long terminal repeat.

  2. Retinoic acid regulates several genes in bile acid and lipid metabolism via upregulation of small heterodimer partner in hepatocytes.

    PubMed

    Mamoon, Abulkhair; Subauste, Angela; Subauste, Maria C; Subauste, Jose

    2014-10-25

    Retinoic acid (RA) affects multiple aspects of development, embryogenesis and cell differentiation processes. The liver is a major organ that stores RA suggesting that retinoids play an important role in the function of hepatocytes. In our previous studies, we have demonstrated the involvement of small heterodimer partner (SHP) in RA-induced signaling in a non-transformed hepatic cell line AML 12. In the present study, we have identified several critical genes in lipid homeostasis (Apoa1, Apoa2 and ApoF) that are repressed by RA-treatment in a SHP dependent manner, in vitro and also in vivo with the use of the SHP null mice. In a similar manner, RA also represses several critical genes involved in bile acid metabolism (Cyp7a1, Cyp8b1, Mdr2, Bsep, Baat and Ntcp) via upregulation of SHP. Collectively our data suggest that SHP plays a major role in RA-induced potential changes in pathophysiology of metabolic disorders in the liver. Copyright © 2014. Published by Elsevier B.V.

  3. Morphological Differentiation Towards Neuronal Phenotype of SH-SY5Y Neuroblastoma Cells by Estradiol, Retinoic Acid and Cholesterol.

    PubMed

    Teppola, Heidi; Sarkanen, Jertta-Riina; Jalonen, Tuula O; Linne, Marja-Leena

    2016-04-01

    Human SH-SY5Y neuroblastoma cells maintain their potential for differentiation and regression in culture conditions. The induction of differentiation could serve as a strategy to inhibit cell proliferation and tumor growth. Previous studies have shown that differentiation of SH-SY5Y cells can be induced by all-trans-retinoic-acid (RA) and cholesterol (CHOL). However, signaling pathways that lead to terminal differentiation of SH-SY5Y cells are still largely unknown. The goal of this study was to examine in the RA and CHOL treated SH-SY5Y cells the additive impacts of estradiol (E2) and brain-derived neurotrophic factor (BDNF) on cell morphology, cell population growth, synaptic vesicle recycling and presence of neurofilaments. The above features indicate a higher level of neuronal differentiation. Our data show that treatment for 10 days in vitro (DIV) with RA alone or when combined with E2 (RE) or CHOL (RC), but not when combined with BDNF (RB), significantly (p < 0.01) inhibited the cell population growth. Synaptic vesicle recycling, induced by high-K(+) depolarization, was significantly increased in all treatments where RA was included (RE, RC, RB, RCB), and when all agents were added together (RCBE). Specifically, our results show for the first time that E2 treatment can alone increase synaptic vesicle recycling in SH-SY5Y cells. This work contributes to the understanding of the ways to improve suppression of neuroblastoma cells' population growth by inducing maturation and differentiation.

  4. Oridonin stabilizes retinoic acid receptor alpha through ROS-activated NF-κB signaling.

    PubMed

    Cao, Yang; Wei, Wei; Zhang, Nan; Yu, Qing; Xu, Wen-Bin; Yu, Wen-Jun; Chen, Guo-Qiang; Wu, Ying-Li; Yan, Hua

    2015-04-10

    Retinoic acid receptor alpha (RARα) plays an essential role in the regulation of many biological processes, such as hematopoietic cell differentiation, while abnormal RARα function contributes to the pathogenesis of certain diseases including cancers, especially acute promyelocytic leukemia (APL). Recently, oridonin, a natural diterpenoid isolated from Rabdosia rubescens, was demonstrated to regulate RARα by increasing its protein level. However, the underlying molecular mechanism for this action has not been fully elucidated. In the APL cell line, NB4, the effect of oridonin on RARα protein was analyzed by western blot and real-time quantitative RT-PCR analyses. Flow cytometry was performed to detect intracellular levels of reactive oxygen species (ROS). The association between nuclear factor-kappa B (NF-κB) signaling and the effect of oridonin was assessed using specific inhibitors, shRNA gene knockdown, and immunofluorescence assays. In addition, primary leukemia cells were treated with oridonin and analyzed by western blot in this study. RARα possesses transcriptional activity in the presence of its ligand, all-trans retinoic acid (ATRA). Oridonin remarkably stabilized the RARα protein, which retained transcriptional activity. Oridonin also moderately increased intracellular ROS levels, while pretreatment with the ROS scavenger, N-acetyl-l-cysteine (NAC), dramatically abrogated RARα stabilization by oridonin. More intriguingly, direct exposure to low concentrations of H2O2 also increased RARα protein but not mRNA levels, suggesting a role for ROS in oridonin stabilization of RARα protein. Further investigations showed that NAC antagonized oridonin-induced activation of NF-κB signaling, while the NF-κB signaling inhibitor, Bay 11-7082, effectively blocked the oridonin increase in RARα protein levels. In line with this, over-expression of IκΒα (A32/36), a super-repressor form of IκΒα, or NF-κB-p65 knockdown inhibited oridonin or H2O2-induced

  5. Effects of in utero retinoic acid exposure on mouse pelage hair follicle development.

    PubMed

    García-Fernández, Rosa A; Pérez-Martínez, Claudia; Escudero-Diez, Alfredo; García-Iglesias, Maria J

    2002-06-01

    We investigated in vivo the histological and immunohistochemical responses of mouse hair pelage follicle morphogenesis to prenatal exposure to a potentially nonteratogenic dose of all-trans-retinoic acid (RA), as a basis studying the preventive effect of RA on adult mouse skin carcinogenesis. In pregnant mice, a single oral dose of RA at 30 mg kg-1 body weight given on day 11.5 of gestation caused no RA-induced changes in the morphology or temporal expression patterns of keratins during pelage hair follicle morphogenesis. The only differential effect of RA was a statistically significant increase in the number of BrdU-positive nuclei in hair bulbs from RA exposed fetuses compared with nonexposed mice. The absence of adverse RA effects suggests that this experimental design may represent a valuable protocol for use in studies on the in vivo effects of this retinoid on different skin diseases.

  6. Adjuvant potential of low dose all-trans retinoic acid during oral typhoid vaccination in Zambian men

    PubMed Central

    Lisulo, M M; Kapulu, M C; Banda, R; Sinkala, E; Kayamba, V; Sianongo, S; Kelly, P

    2014-01-01

    There is an urgent need to identify ways of enhancing the mucosal immune response to oral vaccines. Rotavirus vaccine protection is much lower in Africa and Asia than in industrialized countries, and no oral vaccine has efficacy approaching the best systemic vaccines. All-trans retinoic acid (ATRA) up-regulates expression of α4β7 integrin and CCR9 on lymphocytes in laboratory animals, increasing their gut tropism. The aim of this study was to establish the feasibility of using ATRA as an oral adjuvant for oral typhoid vaccination. In order to establish that standard doses of oral ATRA can achieve serum concentrations greater than 10 nmol/l, we measured ATRA, 9-cis and 13-cis retinoic acid in serum of 14 male volunteers before and 3 h after 10 mg ATRA. We then evaluated the effect of 10 mg ATRA given 1 h before, and for 7 days following, oral typhoid vaccine in eight men, and in 24 men given various control interventions. We measured immunoglobulin (Ig)A directed against lipopolysaccharide (LPS)and protein preparations of vaccine antigens in whole gut lavage fluid (WGLF) and both IgA and IgG in serum, 1 day prior to vaccination and on day 14. Median [interquartile range (IQR)] Cmax was 26·2 (11·7–39·5) nmol/l, with no evidence of cumulation over 8 days. No adverse events were observed. Specific IgA responses to LPS (P = 0·02) and protein (P = 0·04) were enhanced in WGLF, but no effect was seen on IgA or IgG in serum. ATRA was well absorbed, well tolerated and may be a promising candidate oral adjuvant. PMID:24237035

  7. Formation of oral and pharyngeal dentition in teleosts depends on differential recruitment of retinoic acid signaling

    PubMed Central

    Gibert, Yann; Bernard, Laure; Debiais-Thibaud, Melanie; Bourrat, Franck; Joly, Jean-Stephane; Pottin, Karen; Meyer, Axel; Retaux, Sylvie; Stock, David W.; Jackman, William R.; Seritrakul, Pawat; Begemann, Gerrit; Laudet, Vincent

    2010-01-01

    One of the goals of evolutionary developmental biology is to link specific adaptations to changes in developmental pathways. The dentition of cypriniform fishes, which in contrast to many other teleost fish species possess pharyngeal teeth but lack oral teeth, provides a suitable model to study the development of feeding adaptations. Here, we have examined the involvement of retinoic acid (RA) in tooth development and show that RA is specifically required to induce the pharyngeal tooth developmental program in zebrafish. Perturbation of RA signaling at this stage abolished tooth induction without affecting the development of tooth-associated ceratobranchial bones. We show that this inductive event is dependent on RA synthesis from aldh1a2 in the ventral posterior pharynx. Fibroblast growth factor (FGF) signaling has been shown to be critical for tooth induction in zebrafish, and its loss has been associated with oral tooth loss in cypriniform fishes. Pharmacological treatments targeting the RA and FGF pathways revealed that both pathways act independently during tooth induction. In contrast, we find that in Mexican tetra and medaka, species that also possess oral teeth, both oral and pharyngeal teeth are induced independently of RA. Our analyses suggest an evolutionary scenario in which the gene network controlling tooth development obtained RA dependency in the lineage leading to the cypriniforms. The loss of pharyngeal teeth in this group was cancelled out through a shift in aldh1a2 expression, while oral teeth might have been lost ultimately due to deficient RA signaling in the oral cavity.—Gibert, Y., Bernard, L., Debiais-Thibaud, M., Bourrat, F., Joly, J.-S., Pottin, K., Meyer, A., Retaux, S., Stock, D. W., Jackman, W. R., Seritrakul, P., Begemann, G., Laudet, V. Formation of oral and pharyngeal dentition in teleosts depends on differential recruitment of retinoic acid signaling. PMID:20445074

  8. Transcriptional regulation of genes involved in retinoic acid metabolism in Senegalese sole larvae.

    PubMed

    Boglino, Anaïs; Ponce, Marian; Cousin, Xavier; Gisbert, Enric; Manchado, Manuel

    2017-01-01

    The aim of this study was the characterization of transcriptional regulatory pathways mediated by retinoic acid (RA) in Senegalese sole larvae. For this purpose, pre-metamorphic larvae were treated with a low concentration of DEAB, an inhibitor of RALDH enzyme, until the end of metamorphosis. No differences in growth, eye migration or survival were observed. Nevertheless, gene expression analysis revealed a total of 20 transcripts differentially expressed during larval development and only six related with DEAB treatments directly involved in RA metabolism and actions (rdh10a, aldh1a2, crbp1, igf2r, rarg and cyp26a1) to adapt to a low-RA environment. In a second experiment, post-metamorphic larvae were exposed to the all-trans RA (atRA) observing an opposite regulation for those genes involved in RA synthesis and degradation (rdh10a, aldh1a2, crbp1 and cyp26a1) as well as other related with thyroid- (dio2) and IGF-axes (igfbp1, igf2r and igfbp5) to balance RA levels. In a third experiment, DEAB-pretreated post-metamorphic larvae were exposed to atRA and TTNPB (a specific RAR agonist). Both drugs down-regulated rdh10a and aldh1a2 and up-regulated cyp26a1 expression demonstrating their important role in RA homeostasis. Moreover, five retinoic receptors that mediate RA actions, the thyroid receptor thrb, and five IGF binding proteins changed differentially their expression. Overall, this study demonstrates that exogenous RA modulates the expression of some genes involved in the RA synthesis, degradation and cellular transport through RAR-mediated regulatory pathways establishing a negative feedback regulatory mechanism necessary to balance endogenous RA levels and gradients. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Oral treatment with retinoic acid decreases bone mass in rats.

    PubMed

    Hotchkiss, Charlotte E; Latendresse, John; Ferguson, Sherry A

    2006-12-01

    13-cis-retinoic acid (13-cis-RA, isotretinoin) is used to treat severe recalcitrant acne. Other retinoids have adverse effects on bone. Recent studies of human patients treated with 13-cis-RA have had varying results, perhaps because of variability among patients and the lack of control groups. The effects of retinoids have been studied in rodents, but little information is available regarding the effects of clinically relevant retinoid doses as evaluated by use of bone densitometric techniques. We treated rats for 15 or 20 wk with 13-cis-RA, all-trans-RA, or soybean oil (control) by gavage. We used dual-energy X-ray absorptiometry, histomorphometry, and histologic evaluation to evaluate effects on bone. Spontaneous long bone fractures occurred in some rats treated with 15 mg/kg all-trans-RA daily. Bone mineral density, bone mineral content, bone diameter, and cortical thickness of the femur were reduced in rats treated daily with 10 or 15 mg/kg all-trans-RA or 30 mg/kg 13-cis-RA. The lumbar spine was not affected. Although the effects of 13-cis-RA were not as dramatic as those of all-trans-RA, further study of the effects of 13-cis-RA on long bones is warranted.

  10. The role of CYP26 enzymes in retinoic acid clearance.

    PubMed

    Thatcher, Jayne E; Isoherranen, Nina

    2009-08-01

    Retinoic acid (RA) is a critical signaling molecule that regulates gene transcription and the cell cycle. Understanding of RA signaling has increased dramatically over the past decades, but the connection between whole body RA homeostasis and gene regulation in individual cells is still unclear. It has been proposed that cytochrome P450 family 26 (CYP26) enzymes have a role in determining the cellular exposure to RA by inactivating RA in cells that do not need RA. The CYP26 enzymes have been shown to metabolize RA efficiently and they are also inducible by RA in selected systems. However, their expression patterns in different cell types and a mechanistic understanding of their function is still lacking. Based on preliminary kinetic data and protein expression levels, one may predict that if CYP26A1 is expressed in the liver at even very low levels, it will be the major RA hydroxylase in this tissue. As such, it is an attractive pharmacological target for drug development when one aims to increase circulating or cellular RA concentrations. To further the understanding of how CYP26 enzymes contribute to the regulation of RA homeostasis, structural information of the CYP26s, commercially available recombinant enzymes and good specific and sensitive antibodies are needed.

  11. The role of CYP26 enzymes in retinoic acid clearance

    PubMed Central

    Thatcher, Jayne E.; Isoherranen, Nina

    2009-01-01

    Retinoic acid (RA) is a critical signaling molecule that regulates gene transcription and the cell cycle. Understanding of RA signaling has increased dramatically over the past decades, but the connection between whole body RA homeostasis and gene regulation in individual cells is still unclear. It has been proposed that cytochrome P450 family 26 (CYP26) enzymes have a role in determining the cellular exposure to RA by inactivating RA in cells that do not need RA. The CYP26 enzymes have been shown to metabolize RA efficiently and they are also inducible by RA in selected systems. However, their expression patterns in different cell types and a mechanistic understanding of their function is still lacking. Based on preliminary kinetic data and protein expression levels, one may predict that if CYP26A1 is expressed in the liver at even very low levels, it will be the major RA hydroxylase in this tissue. As such, it is an attractive pharmacological target for drug development when one aims to increase circulating or cellular RA concentrations. To further the understanding of how CYP26 enzymes contribute to the regulation of RA homeostasis, structural information of the CYP26’s, commercially available recombinant enzymes and good specific and sensitive antibodies are needed. PMID:19519282

  12. Inhibition of Fatty Acid Metabolism Reduces Human Myeloma Cells Proliferation

    PubMed Central

    Tirado-Vélez, José Manuel; Joumady, Insaf; Sáez-Benito, Ana; Cózar-Castellano, Irene; Perdomo, Germán

    2012-01-01

    Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40–70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma. PMID:23029529

  13. No association between endogenous retinoic acid and human papillomavirus clearance or incident cervical lesions in Brazilian women

    PubMed Central

    Siegel, Erin M.; Salemi, Jason L.; Craft, Neal E.; Villa, Luisa L.; Ferenczy, Alex; Franco, Eduardo L.; Giuliano, Anna R.

    2010-01-01

    Background Although oncogenic human papillomavirus (HPV) infections have been established as the necessary cause of cervical cancer, most HPV infections are transient and rarely progress to squamous cervical lesions. The activity of HPV is tightly associated with epithelial cell differentiation; therefore regulators of differentiation, such as retinoic acid, have been considered targets for the prevention of HPV-associated squamous intraepithelial lesion (SIL) development. Purpose The purpose of this study was to determine the association between circulating retinoic acid (RA) and early events in cervical carcinogenesis, specifically type-specific HPV clearance and SIL detection. Methods Archived blood samples from 643 women participating in the Ludwig-McGill Cohort in São Paulo, Brazil were analyzed by high-pressure liquid chromatography for three RA isomers (all-trans, 13-cis, and 9-cis RA). A type-specific HPV clearance event was defined as two consecutive visits negative for that HPV type during follow-up for the 364 HPV positive women. Among the 643 women in this analysis, 78 were diagnosed with incident SIL. Results The probability of clearing an oncogenic HPV infection was not significantly different across RA isomer quartiles. There was a suggestion that increasing all-trans RA increased rate of non-oncogenic HPV clearance (p-trend=0.05). There was no association observed between serum RA levels and incident SIL. Conclusions Our results suggest that elevated circulating RA isomer levels do not increase rates of HPV clearance or reduce risk of incident SIL. The role of RA in the inhibition of HPV induced carcinogenesis, as demonstrated in vitro, lacks confirmatory evidence within epidemiologic studies among women. PMID:20606041

  14. All-trans Retinoic Acid Upregulates Reduced CD38 Transcription in Lymphoblastoid Cell Lines from Autism Spectrum Disorder

    PubMed Central

    Riebold, Mathias; Mankuta, David; Lerer, Elad; Israel, Salomon; Zhong, Songfa; Nemanov, Luba; Monakhov, Mikhail V; Levi, Shlomit; Yirmiya, Nurit; Yaari, Maya; Malavasi, Fabio; Ebstein, Richard P

    2011-01-01

    Deficits in social behavior in mice lacking the CD38 gene have been attributed to impaired secretion of oxytocin. In humans, similar deficits in social behavior are associated with autistic spectrum disorder (ASD), for which genetic variants of CD38 have been pinpointed as provisional risk factors. We sought to explore, in an in vitro model, the feasibility of the theory that restoring the level of CD38 in ASD patients could be of potential clinical benefit. CD38 transcription is highly sensitive to several cytokines and vitamins. One of these, all-trans retinoic acid (ATRA), a known inducer of CD38, was added during cell culture and tested on a large sample of N = 120 lymphoblastoid cell (LBC) lines from ASD patients and their parents. Analysis of CD38 mRNA levels shows that ATRA has an upmodulatory potential on LBC derived from ASD patients as well as from their parents. The next crucial issue addressed in our study was the relationship between levels of CD38 expression and psychological parameters. The results obtained indicate a positive correlation between CD38 expression levels and patient scores on the Vineland Adaptive Behavior Scale. In addition, analysis of the role of genetic polymorphisms in the dynamics of the molecule revealed that the genotype of a single-nucleotide polymorphism (rs6449182; C>G variation) in the CpG island of intron 1, harboring the retinoic-acid response element, exerts differential roles in CD38 expression in ASD and in parental LBC. In conclusion, our results provide an empirical basis for the development of a pharmacological ASD treatment strategy based on retinoids. PMID:21528155

  15. Cleft lip with or without cleft palate: Associations with transforming growth factor alpha and retinoic acid receptor loci

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chenevix-Trench, G.; Jones, K.; Green, A.C.

    1992-12-01

    The first association study of cleft lip with or without cleft palate (CL/P), with candidate genes, found an association with the transforming growth-factor alpha (TGFA) locus. This finding has since been replicated, in whole or in part, in three independent studies. Here the authors extend their original analysis of the TGFA TaqI RFLP to two other TGFA RFLPs and seven other RFLPs at five candidate genes in 117 nonsyndromic cases of CL/P and 113 controls. The other candidate genes were the retinoic acid receptor (RARA), the bcl-2 oncogene, and the homeobox genes 2F, 2G, and EN2. Significant associations with themore » TGFA TaqI and BamHI RFLPs were confirmed, although associations of clefting with previously reported haplotypes did not reach significance. Of particular interest, in view of the known teratogenic role of retinoic acid, was a significant association with the RARA PstI RFLP (P = .016; not corrected for multiple testing). The effect on risk of the A2 allele appears to be additive, and although the A2A2 homozygote only has an odds ratio of about 2 and recurrence risk to first-degree relatives ([lambda][sub 1]) of 1.06, because it is so common it may account for as much as a third of the attributable risk of clefting. There is no evidence of interaction between the TGFA and RARA polymorphisms on risk, and jointly they appear to account for almost half the attributable risk of clefting. 43 refs., 1 fig., 4 tabs.« less

  16. DNA Methylation of Cellular Retinoic Acid-Binding Proteins in Cervical Cancer.

    PubMed

    Arellano-Ortiz, Ana L; Salcedo-Vargas, Mauricio; Vargas-Requena, Claudia L; López-Díaz, José A; De la Mora-Covarrubias, Antonio; Silva-Espinoza, Juan C; Jiménez-Vega, Florinda

    2016-01-01

    This study determined the methylation status of cellular retinoic acid-binding protein ( CRABP ) gene promoters and associated them with demographic characteristics, habits, and the presence of human papilloma virus (HPV) in patients with cervical cancer (CC), low and high squamous intraepithelial lesions, and no intraepithelial lesion. Women (n = 158) were selected from the Colposcopy Clinic of Sanitary Jurisdiction II in Ciudad Juarez, Chihuahua, Mexico. Demographic characteristics and habit information were collected. Cervical biopsy and endocervical scraping were used to determine methylation in promoter regions by methylation-specific polymerase chain reaction technique. We found hemi-methylation patterns in the promoter regions of CRABP1 and CRABP2 ; there was 28.5% hemi-methylation in CRABP1 and 7.0% in that of CRABP2 . Methylation in CRABP1 was associated with age (≥35 years, P = 0.002), family history of cancer ( P = 0.032), the presence of HPV-16 ( P = 0.013), and no alcohol intake ( P = 0.035). These epigenetic changes could be involved in the CC process, and CRABP1 has the potential to be a predictive molecular marker of retinoid therapy response.

  17. DNA Methylation of Cellular Retinoic Acid-Binding Proteins in Cervical Cancer

    PubMed Central

    Arellano-Ortiz, Ana L.; Salcedo-Vargas, Mauricio; Vargas-Requena, Claudia L.; López-Díaz, José A.; De la Mora-Covarrubias, Antonio; Silva-Espinoza, Juan C.; Jiménez-Vega, Florinda

    2016-01-01

    This study determined the methylation status of cellular retinoic acid-binding protein (CRABP) gene promoters and associated them with demographic characteristics, habits, and the presence of human papilloma virus (HPV) in patients with cervical cancer (CC), low and high squamous intraepithelial lesions, and no intraepithelial lesion. Women (n = 158) were selected from the Colposcopy Clinic of Sanitary Jurisdiction II in Ciudad Juarez, Chihuahua, Mexico. Demographic characteristics and habit information were collected. Cervical biopsy and endocervical scraping were used to determine methylation in promoter regions by methylation-specific polymerase chain reaction technique. We found hemi-methylation patterns in the promoter regions of CRABP1 and CRABP2; there was 28.5% hemi-methylation in CRABP1 and 7.0% in that of CRABP2. Methylation in CRABP1 was associated with age (≥35 years, P = 0.002), family history of cancer (P = 0.032), the presence of HPV-16 (P = 0.013), and no alcohol intake (P = 0.035). These epigenetic changes could be involved in the CC process, and CRABP1 has the potential to be a predictive molecular marker of retinoid therapy response. PMID:27867303

  18. Dual origin of relapses in retinoic-acid resistant acute promyelocytic leukemia.

    PubMed

    Lehmann-Che, Jacqueline; Bally, Cécile; Letouzé, Eric; Berthier, Caroline; Yuan, Hao; Jollivet, Florence; Ades, Lionel; Cassinat, Bruno; Hirsch, Pierre; Pigneux, Arnaud; Mozziconacci, Marie-Joelle; Kogan, Scott; Fenaux, Pierre; de Thé, Hugues

    2018-05-24

    Retinoic acid (RA) and arsenic target the t(15;17)(q24;q21) PML/RARA driver of acute promyelocytic leukemia (APL), their combination now curing over 95% patients. We report exome sequencing of 64 matched samples collected from patients at initial diagnosis, during remission, and following relapse after historical combined RA-chemotherapy treatments. A first subgroup presents a high incidence of additional oncogenic mutations disrupting key epigenetic or transcriptional regulators (primarily WT1) or activating MAPK signaling at diagnosis. Relapses retain these cooperating oncogenes and exhibit additional oncogenic alterations and/or mutations impeding therapy response (RARA, NT5C2). The second group primarily exhibits FLT3 activation at diagnosis, which is lost upon relapse together with most other passenger mutations, implying that these relapses derive from ancestral pre-leukemic PML/RARA-expressing cells that survived RA/chemotherapy. Accordingly, clonogenic activity of PML/RARA-immortalized progenitors ex vivo is only transiently affected by RA, but selectively abrogated by arsenic. Our studies stress the role of cooperating oncogenes in direct relapses and suggest that targeting pre-leukemic cells by arsenic contributes to its clinical efficacy.

  19. Inhibition of Smooth Muscle Proliferation by Urea-Based Alkanoic Acids via Peroxisome Proliferator-Activated Receptor α–Dependent Repression of Cyclin D1

    PubMed Central

    Ng, Valerie Y.; Morisseau, Christophe; Falck, John R.; Hammock, Bruce D.; Kroetz, Deanna L.

    2007-01-01

    Objective Proliferation of smooth muscle cells is implicated in cardiovascular complications. Previously, a urea-based soluble epoxide hydrolase inhibitor was shown to attenuate smooth muscle cell proliferation. We examined the possibility that urea-based alkanoic acids activate the nuclear receptor peroxisome proliferator-activated receptor α (PPARα) and the role of PPARα in smooth muscle cell proliferation. Methods and Results Alkanoic acids transactivated PPARα, induced binding of PPARα to its response element, and significantly induced the expression of PPARα-responsive genes, showing their function as PPARα agonists. Furthermore, the alkanoic acids attenuated platelet-derived growth factor–induced smooth muscle cell proliferation via repression of cyclin D1 expression. Using small interfering RNA to decrease endogenous PPARα expression, it was determined that PPARα was partially involved in the cyclin D1 repression. The antiproliferative effects of alkanoic acids may also be attributed to their inhibitory effects on soluble epoxide hydrolase, because epoxyeicosatrienoic acids alone inhibited smooth muscle cell proliferation. Conclusions These results show that attenuation of smooth muscle cell proliferation by urea-based alkanoic acids is mediated, in part, by the activation of PPARα. These acids may be useful for designing therapeutics to treat diseases characterized by excessive smooth muscle cell proliferation. PMID:16917105

  20. Minor malformations characteristic of the retinoic acid embryopathy and other birth outcomes in children of women exposed to topical tretinoin during early pregnancy.

    PubMed

    Loureiro, Kirsten D; Kao, Kelly K; Jones, Kenneth Lyons; Alvarado, Sonia; Chavez, Carmen; Dick, Lyn; Felix, Robert; Johnson, Diana; Chambers, Christina D

    2005-07-15

    Topical tretinoin (Retin-A) is used to treat acne and photodamaged skin. Its teratogenic potential is of concern due to its similarity to isotretinoin (Accutane), a recognized human teratogen. Through the California Teratogen Information Service and Clinical Research Program, between 1983 and 2003, 106 pregnant women with first-trimester exposure to topical tretinoin were prospectively ascertained and followed. Birth outcomes, including pregnancy loss, major structural defects, and pre- and postnatal growth were compared to 389 similarly and prospectively ascertained women with no topical tretinoin exposure during pregnancy. Because a distinct pattern of malformation had already been described for isotretinoin, we also compared exposed (n = 62) and unexposed (n = 191) infants on the prevalence of a specific subset of minor malformations selected to represent the spectrum of defects comprising the retinoic acid embyopathy. There were no significant differences between groups in the proportion of pregnancies ending in spontaneous abortion (6.6% in exposed vs. 8.5% in unexposed; P = 0.53), or infants with major structural defects (2.2% in exposed vs. 1.2% in unexposed; P = 0.62). In addition, the groups were similar in birth weight, length and head circumference, and there were no significant differences between groups in length of gestation. Furthermore, the prevalence of one or more retinoic acid-specific minor malformations did not differ significantly between groups (12.9% in exposed vs. 9.9% in unexposed; P = 0.51). First-trimester topical tretinoin exposure in this study was not associated with an increased risk of any adverse pregnancy outcome evaluated. Specifically, there was no indication that topical tretinoin is associated with an increased risk for minor malformations that are consistent with the retinoic acid embryopathy. Although it is impossible to exclude the possibility that some women/infants may be uniquely susceptible to topical tretinoin exposure

  1. Identification of a Novel Non-retinoid Pan Inverse Agonist of the Retinoic Acid Receptors

    PubMed Central

    Busby, Scott A.; Kumar, Naresh; Kuruvilla, Dana S.; Istrate, Monica A.; Conkright, Juliana J.; Wang, Yongjun; Kamenecka, Theodore M.; Cameron, Michael D.; Roush, William R.; Burris, Thomas P.; Griffin, Patrick R.

    2011-01-01

    Retinoids are potent forms of vitamin A and are involved in a broad range of physiological processes and the pharmacological effects of retinoids are primarily mediated by the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs). Several natural and synthetic RAR modulators have proven to be clinically useful for a number of therapeutic indications including cancer, psoriasis, and diabetes. Unfortunately, these agents lead to a number of significant side effects. Most synthetic retinoid ligands are based on the retinoid scaffold and thus have similarities to the natural ligand with all previously disclosed RAR ligands having a carboxylic acid that makes a critical ionic bridge within the ligand binding domain of the receptors. The potential therapeutic value offered from RAR modulation provides the impetus to identify novel ligands based on unique scaffolds that may offer improved toxicity and pharmacokinetic profiles. Here we describe the identification of an atypical RAR inverse agonist that represents the first non-acid, non-retinoid direct modulator of RAR receptor subfamily. SR-0065 functions as a pan-RAR inverse agonist suppressing the basal activity of RARα, RARβ, and RARγ as well as inhibiting agonist induced RAR activity. SR-0065 treatment enhanced receptor interaction with a peptide representative of the corepressor SMRT and in cells SR-0065 enhances recruitment of SMRT to RARγ. The acid form of SR-0065, SR-1758, was inactive in all assays. Thus, SR-0065 represents a new class of non-acid, non-retinoid RAR modulator that may be used as a point to initiate development of improved RAR-targeted drugs. PMID:21381756

  2. Enhancement of caffeic acid phenethyl ester on all-trans retinoic acid-induced differentiation in human leukemia HL-60 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, H.-C.; Kuo, W.-H.; Lee, Y.-J.

    2006-10-01

    All-trans retinoic acid (ATRA) induces complete remission in a high proportion of patients with acute promyelocytic leukemia (APL); however, the response is sometimes very slow. Furthermore, relapse and resistance to treatment often occur despite continued treatment with ATRA. Thereafter, combination treatment strategies have been suggested to circumvent these problems. The present study demonstrates that caffeic acid phenethyl ester (CAPE), a major component of honeybee propolis, enhanced ATRA-induced granulocytic differentiation in HL-60, a human promyelocytic cell line. The differentiation was assessed by Wright-Giemsa stain, nitroblue tetrazolium reduction, and membrane differentiation marker CD11b. In addition, CAPE enhanced ATRA-induced cell cycle arrest atmore » the G1 phase by decreasing the association of cdk2-cyclin E complex. Finally, it was demonstrated that CAPE promoted the ATRA-mediated nuclear transcription activation of RAR{alpha} assessed by EMSA assay and enhanced the expression of target genes including RAR{alpha}, C/EBP{epsilon}, and p21 protein resulting in the differentiation development of leukemia. It is suggested that CAPE possesses the potential to enhance the efficiency of ATRA in the differentiation therapy of APL.« less

  3. Plasma pharmacokinetics and metabolism of 13-cis- and all-trans-retinoic acid in the cynomolgus monkey and the identification of 13-cis- and all-trans-retinoyl-beta-glucuronides. A comparison to one human case study with isotretinoin.

    PubMed

    Kraft, J C; Slikker, W; Bailey, J R; Roberts, L G; Fischer, B; Wittfoht, W; Nau, H

    1991-01-01

    In order to compare the disposition and metabolism of 13-cis-retinoic acid (13-cis-RA) and all-trans-retinoic acid (all-trans-RA) in the nonpregnant female cynomolgus monkey, the plasma concentrations of the parent compound, the oxidized metabolites 4-oxo-13-cis-retinoic acid and 4-oxo-all-trans-retinoic acid, and the conjugate metabolites 13-cis-retinoyl-beta-glucuronide (13-cis-RAG) and all trans-retinoyl-beta-glucuronide (all-trans-RAG), were determined on day 1 and day 10 after oral dosing of 2 and 10 mg 13-cis- and all-trans-RA/kg/day. Both 13-cis-RAG and all-trans-RAG have been identified as major plasma metabolites in these studies using thermospray/HPLC/mass-spectrometry of the intact conjugates. AUC comparisons from 0-24 hr after administration indicated that 13-cis-RA treatment resulted in primarily cis metabolites and all-trans-RA treatment resulted in primarily trans metabolites, although low levels of isomerization products were observed. Comparison of the two doses (2 and 10 mg/kg, po) revealed that the AUCs were proportional to the dose administered. Although qualitatively similar, elimination of 13-cis-RA in the monkey was more rapid than in the human, and approximately a 10-fold greater dose of 13-cis-RA was required in the monkey to produce the AUC values comparable to the human. The elimination of all-trans-RA in monkey was faster than that of 13-cis-RA and tended to increase with repeated dosing.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Effects of retinoids and thiazolidinediones on proliferation, insulin release, insulin mRNA, GLUT 2 transporter protein and mRNA of INS-1 cells.

    PubMed

    Blumentrath, J; Neye, H; Verspohl, E J

    2001-09-01

    Both 9-cis-retinoic acid (9cRA) and all-trans-retinoic acid (ATRA) are active metabolites of vitamin A (retinol). There exists an interaction between retinoid receptors and peroxisome proliferator-activated receptors (PPARgamma). To define their functions in an insulin secreting system the effects of ATRA, 9cRA and the PPARgamma agonist rosiglitazone on cell proliferation, insulin release and glucose transporter (GLUT) 2 of INS-1 cells were tested. Retinoic acid receptor (RAR-alpha and -gamma) and retinoid X receptor (RXR-alpha and -beta) proteins are present (immunoblots). Both 9cRA and ATRA inhibit INS-1 cell proliferation ([3H]-thymidine assay) in a concentration dependent manner. Both 9cRA and ATRA increased insulin release, but only ATRA ralsed the GLUT 2 mRNA in a bell-shaped concentration response curve after 48 h. The insulinotropic effect of one compound is not significantly superimposed by the other indicating that the same binding sites are used by 9cRA and ATRA. The acute and chronic effects of the PPARgamma agonist rosiglitazone on insulin release were additionally determined since glitazones act as transcription factors together with RXR agonists. At high concentrations (100 microM) rosiglitazone inhibited glucose (8.3 mM) stimulated insulin secretion (acute experiment over 60 min). Insulin secretion, however, was increased during a 24 h treatment at a concentration of 10 microM and again inhibited at 100 microM. Changes in preproinsulin mRNA expression were not observed. Rosiglitazone (100 microM) increased GLUT 2 mRNA paralleled by an increase of GLUT 2 protein, but only after 24 h of treatment. This data indicate that RAR and RXR mediate insulin release. The changes in GLUT 2 have no direct impact on insulin release; the inhibition seen at high concentrations of either compound is possibly the result of the observed inhibition of cell proliferation. Effects of rosiglitazone on preproinsulin mRNA and GLUT 2 (mRNA and protein) do not play a role in

  5. Retinoic Acid Therapy Resistance Progresses from Unilineage to Bilineage in HL-60 Leukemic Blasts

    PubMed Central

    Jensen, Holly A.; Bunaciu, Rodica P.; Ibabao, Christopher N.; Myers, Rebecca; Varner, Jeffrey D.; Yen, Andrew

    2014-01-01

    Emergent resistance can be progressive and driven by global signaling aberrations. All-trans retinoic acid (RA) is the standard therapeutic agent for acute promyelocytic leukemia, but 10–20% of patients are not responsive, and initially responsive patients relapse and develop retinoic acid resistance. The patient-derived, lineage-bipotent acute myeloblastic leukemia (FAB M2) HL-60 cell line is a potent tool for characterizing differentiation-induction therapy responsiveness and resistance in t(15;17)-negative cells. Wild-type (WT) HL-60 cells undergo RA-induced granulocytic differentiation, or monocytic differentiation in response to 1,25-dihydroxyvitamin D3 (D3). Two sequentially emergent RA-resistant HL-60 cell lines, R38+ and R38-, distinguishable by RA-inducible CD38 expression, do not arrest in G1/G0 and fail to upregulate CD11b and the myeloid-associated signaling factors Vav1, c-Cbl, Lyn, Fgr, and c-Raf after RA treatment. Here, we show that the R38+ and R38- HL-60 cell lines display a progressive reduced response to D3-induced differentiation therapy. Exploiting the biphasic dynamic of induced HL-60 differentiation, we examined if resistance-related defects occurred during the first 24 h (the early or “precommitment” phase) or subsequently (the late or “lineage-commitment” phase). HL-60 were treated with RA or D3 for 24 h, washed and retreated with either the same, different, or no differentiation agent. Using flow cytometry, D3 was able to induce CD38, CD11b and CD14 expression, and G1/G0 arrest when present during the lineage-commitment stage in R38+ cells, and to a lesser degree in R38- cells. Clustering analysis of cytometry and quantified Western blot data indicated that WT, R38+ and R38- HL-60 cells exhibited decreasing correlation between phenotypic markers and signaling factor expression. Thus differentiation induction therapy resistance can develop in stages, with initial partial RA resistance and moderate vitamin D3 responsiveness

  6. Retinoic Acid Isomers Facilitate Apolipoprotein E Production and Lipidation in Astrocytes through the Retinoid X Receptor/Retinoic Acid Receptor Pathway*

    PubMed Central

    Zhao, Jing; Fu, Yuan; Liu, Chia-Chen; Shinohara, Mitsuru; Nielsen, Henrietta M.; Dong, Qiang; Kanekiyo, Takahisa; Bu, Guojun

    2014-01-01

    Apolipoprotein E (apoE) is the major cholesterol transport protein in the brain. Among the three human APOE alleles (APOE2, APOE3, and APOE4), APOE4 is the strongest genetic risk factor for late-onset Alzheimer disease (AD). The accumulation of amyloid-β (Aβ) is a central event in AD pathogenesis. Increasing evidence demonstrates that apoE isoforms differentially regulate AD-related pathways through both Aβ-dependent and -independent mechanisms; therefore, modulating apoE secretion, lipidation, and function might be an attractive approach for AD therapy. We performed a drug screen for compounds that modulate apoE production in immortalized astrocytes derived from apoE3-targeted replacement mice. Here, we report that retinoic acid (RA) isomers, including all-trans-RA, 9-cis-RA, and 13-cis-RA, significantly increase apoE secretion to ∼4-fold of control through retinoid X receptor (RXR) and RA receptor. These effects on modulating apoE are comparable with the effects recently reported for the RXR agonist bexarotene. Furthermore, all of these compounds increased the expression of the cholesterol transporter ABCA1 and ABCG1 levels and decreased cellular uptake of Aβ in an apoE-dependent manner. Both bexarotene and 9-cis-RA promote the lipidation status of apoE, in which 9-cis-RA promotes a stronger effect and exhibits less cytotoxicity compared with bexarotene. Importantly, we showed that oral administration of bexarotene and 9-cis-RA significantly increases apoE, ABCA1, and ABCG1 levels in mouse brains. Taken together, our results demonstrate that RXR/RA receptor agonists, including several RA isomers, are effective modulators of apoE secretion and lipidation and may be explored as potential drugs for AD therapy. PMID:24599963

  7. All-trans retinoic acid attenuates bleomycin-induced pulmonary fibrosis via downregulating EphA2-EphrinA1 signaling.

    PubMed

    Leem, Ah Young; Shin, Mi Hwa; Douglas, Ivor S; Song, Joo Han; Chung, Kyung Soo; Kim, Eun Young; Jung, Ji Ye; Kang, Young Ae; Chang, Joon; Kim, Young Sam; Park, Moo Suk

    2017-09-23

    The role of all-trans retinoic acid (ATRA) in pulmonary fibrosis is relatively unknown, although this metabolite modulates cell differentiation, proliferation, and development. We aimed to evaluate the role of ATRA in bleomycin-induced pulmonary fibrosis, and whether the mechanism involves EphA2-EphrinA1 and PI3K-Akt signaling. We evaluated three groups of mice: a control group (intraperitoneal DMSO injection 3 times weekly after PBS instillation), bleomycin group (intraperitoneal DMSO injection 3 times weekly after bleomycin instillation), and bleomycin + ATRA group (intraperitoneal ATRA injection 3 times weekly after bleomycin instillation). The cell counts and protein concentration in the bronchoalveolar lavage fluid (BALF), changes in histopathology, Ashcroft score, hydroxyproline assay, expression of several signal pathway proteins including EphA2-EphrinA1, and PI3K-Akt, and cytokine levels were compared among the groups. We found that bleomycin significantly increased the protein concentration in the BALF, Ashcroft score in lung tissue, and hydroxyproline contents in lung lysates. Furthermore, bleomycin upregulated EphA2, EphrinA1, PI3K 110γ, Akt, IL-6 and TNF-α. However, administration of ATRA attenuated the upregulation of EphA2-EphrinA1 and PI3K-Akt after bleomycin instillation, and decreased pulmonary fibrosis. In addition, ATRA suppressed IL-6 and TNF-α production induced by bleomycin-induced injury. Collectively, these data suggest that ATRA attenuates bleomycin-induced pulmonary fibrosis by regulating EphA2-EphrinA1 and PI3K-Akt signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Development of a novel microemulsion for oral absorption enhancement of all-trans retinoic acid.

    PubMed

    Subongkot, Thirapit; Ngawhirunpat, Tanasait

    2017-01-01

    This study was aimed to develop a novel microemulsion that contained oleth-5 as a surfactant to enhance the oral absorption of all-trans retinoic acid (ATRA). The prepared microemulsion was evaluated for its particle size, shape, zeta potential, in vitro release, in vitro intestinal absorption, intestinal membrane cytotoxicity and stability. The obtained microemulsion was spherical in shape with a particle size of <200 nm and a negative surface charge. The in vitro release of the ATRA-loaded microemulsion was best fit with the zero-order model. This microemulsion significantly improved the intestinal absorption of ATRA. Confocal laser scanning microscopy analysis using a fluorescent dye-loaded microemulsion also confirmed the intestinal absorption result. The intestinal membrane cytotoxicity of the ATRA-loaded microemulsion did not differ from an edible oil (fish oil). Stability testing showed that the ATRA-loaded microemulsion was more stable at 25°C than 40°C.

  9. The retinoic acid receptor agonist Am80 increases mucosal inflammation in an IL-6 dependent manner during Trichuris muris infection.

    PubMed

    Hurst, Rebecca J M; De Caul, Adam; Little, Matthew C; Kagechika, Hiroyuki; Else, Kathryn J

    2013-11-01

    Vitamin A metabolites, such as all-trans-retinoic acid (RA) that act through the nuclear receptor; retinoic acid receptor (RAR), have been shown to polarise T cells towards Th2, and to be important in resistance to helminth infections. Co-incidentally, people harbouring intestinal parasites are often supplemented with vitamin A, as both vitamin A deficiency and parasite infections often occur in the same regions of the globe. However, the impact of vitamin A supplementation on gut inflammation caused by intestinal parasites is not yet completely understood. Here, we use Trichuris muris, a helminth parasite that buries into the large intestine of mice causing mucosal inflammation, as a model of both human trichuriasis and IBD, treat with an RARα/β agonist (Am80) and quantify the ensuing pathological changes in the gut. Critically, we show, for the first time, that rather than playing an anti-inflammatory role, Am80 actually exacerbates helminth-driven inflammation, demonstrated by an increased colonic crypt length and a significant CD4(+) T cell infiltrate. Further, we established that the Am80-driven crypt hyperplasia and CD4(+) T cell infiltrate were dependent on IL-6, as both were absent in Am80-treated IL-6 knock-out mice. This study presents novel data showing a pro-inflammatory role of RAR ligands in T. muris infection, and implies an undesirable effect for the administration of vitamin A during chronic helminth infection.

  10. Retinoic acid receptor alpha drives cell cycle progression and is associated with increased sensitivity to retinoids in T-cell lymphoma.

    PubMed

    Wang, Xueju; Dasari, Surendra; Nowakowski, Grzegorz S; Lazaridis, Konstantinos N; Wieben, Eric D; Kadin, Marshall E; Feldman, Andrew L; Boddicker, Rebecca L

    2017-04-18

    Peripheral T-cell lymphomas (PTCLs) are aggressive non-Hodgkin lymphomas with generally poor outcomes following standard therapy. Few candidate therapeutic targets have been identified to date. Retinoic acid receptor alpha (RARA) is a transcription factor that modulates cell growth and differentiation in response to retinoids. While retinoids have been used to treat some cutaneous T-cell lymphomas (CTCLs), their mechanism of action and the role of RARA in CTCL and other mature T-cell lymphomas remain poorly understood. After identifying a PTCL with a RARAR394Q mutation, we sought to characterize the role of RARA in T-cell lymphoma cells. Overexpressing wild-type RARA or RARAR394Q significantly increased cell growth in RARAlow cell lines, while RARA knockdown induced G1 arrest and decreased expression of cyclin-dependent kinases CDK2/4/6 in RARAhigh cells. The retinoids, AM80 (tamibarotene) and all-trans retinoic acid, caused dose-dependent growth inhibition, G1 arrest, and CDK2/4/6 down-regulation. Genes down-regulated in transcriptome data were enriched for cell cycle and G1-S transition. Finally, RARA overexpression augmented chemosensitivity to retinoids. In conclusion, RARA drives cyclin-dependent kinase expression, G1-S transition, and cell growth in T-cell lymphoma. Synthetic retinoids inhibit these functions in a dose-dependent fashion and are most effective in cells with high RARA expression, indicating RARA may represent a therapeutic target in some PTCLs.

  11. Keratinocyte growth factor expression in human gingival fibroblasts and stimulation of in vitro gene expression by retinoic acid.

    PubMed

    Mackenzie, I C; Gao, Z

    2001-04-01

    Keratinocyte growth factor (KGF) is a stromally derived growth factor of the fibroblast growth factor (FGF) family with paracrine effects targeted to influence the growth and differentiation of epithelia. Regional and temporal changes in KGF expression play important roles in the development and maintenance of epithelial structures and in epithelial wound healing. Differing patterns of expression of KGF by fibroblasts in the gingival region could therefore be related to the observed regional variation in the differentiation and behavior of gingival epithelia. The in vitro and in vivo patterns of expression of KGF mRNA in human gingival and periodontal fibroblasts were examined using reverse transcription polymerase chain reactions (RT-PCR) and in situ hybridization with digoxigenin-labeled riboprobes. The patterns observed for human gingiva were compared with those for human skin and for murine tissues. Gingival and periodontal fibroblasts showed expression of KGF transcripts in vitro, and the degree of expression was markedly influenced by the presence of retinoic acid, an agent known to influence patterns of epithelial differentiation. Sections of human and murine gingiva and skin showed regionally variable expression of transcripts with the cells expressing KGF in the subepithelial, rather than the deeper, connective tissues and periodontium. The results point to a role of KGF in the maintenance of normal growth and differentiation of gingival epithelia. A lack of KGF expression by periodontal fibroblasts in vivo is expected to hinder apical epithelial migration and thus stabilize the epithelial attachment. The effects of retinoic acid (RA) on KGF expression in vitro provide an indirect mechanism by which RA may regulate the growth and differentiation of gingival epithelia.

  12. Retinoic Acid Isomers Up-Regulate ATP Binding Cassette A1 and G1 and Cholesterol Efflux in Rat Astrocytes: Implications for Their Therapeutic and Teratogenic Effects

    PubMed Central

    Chen, Jing; Costa, Lucio G.

    2011-01-01

    Recent studies suggest that retinoids may be effective in the treatment of Alzheimer's disease, although exposure to an excess of retinoids during gestation causes teratogenesis. Cholesterol is essential for brain development, but high levels of cholesterol have been associated with Alzheimer's disease. We hypothesized that retinoic acid may affect cholesterol homeostasis in rat astrocytes, which regulate cholesterol distribution in the brain, through the up-regulation of cholesterol transporters ATP binding cassette (Abc)a1 and Abcg1. Tretinoin, 13-cis retinoic acid (13-cis-RA), 9-cis-RA, and the selective retinoid X receptor (RXR) agonist methoprene significantly increased cholesterol efflux induced by cholesterol acceptors and protein levels of Abca1 by 2.3- (±0.25), 3.6- (±0.42), 4.1- (±0.5), and 1.75- (±0.43) fold, respectively, and Abcg1 by 2.1- (±0.26), 2.2- (±0.33), 2.5- (±0.23), and 2.2- (±0.21) fold, respectively. 13-cis-RA and 9-cis-RA also significantly increased mRNA levels of Abca1 (maximal induction 7.3 ± 0.42 and 2.7 ± 0.17, respectively) and Abcg1 (maximal induction 2.0 ± 0.18 and 1.8 ± 0.09, respectively), and the levels of membrane-bound Abca1 (2.5 ± 0.3 and 2.5 ± 0.40-fold increase, respectively), whereas they significantly decreased intracellular cholesterol content without affecting cholesterol synthesis. The effect of 9-cis-RA on cholesterol homeostasis in astrocytes can be ascribed to the activation of RXR, whereas the effects of 13-cis-RA and tretinoin were independent of either RXRs or retinoic acid receptors. These findings suggest that retinoids affect cholesterol homeostasis in astrocytes and that this effect may be involved in both their therapeutic and teratogenic actions. PMID:21628419

  13. Nuclear CD38 in retinoic acid-induced HL-60 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yalcintepe, Leman; Albeniz, Isil; Adin-Cinar, Suzan

    2005-02-01

    The cell surface antigen, CD38, is a 45-kDa transmembrane protein which is predominantly expressed on hematopoietic cells during differentiation. As a bifunctional ectoenzyme, it catalyzes the synthesis of cyclic ADP-ribose (cADPR) from NAD{sup +} and hydrolysis of either NAD{sup +} or cADPR to ADP-ribose. All-trans-retinoic acid (RA) is a potent and specific inducer of CD38 in myeloid cells. In this report, we demonstrate that the nuclei of RA-treated human HL-60 myeloblastic cells reveal enzymatic activities inherent to CD38. Thus, GDP-ribosyl cyclase and NAD{sup +} glycohydrolase activities in the nuclear fraction increased very significantly in response to incubation with RA. Withmore » Western blotting, we detected in the nuclear protein fraction from RA-treated cells a {approx}43-kDa protein band which was reactive with the CD38-specific monoclonal antibody OKT10. The expression of CD38 in HL-60 nuclei was also shown with FACScan analysis. RA treatment gave rise to an increase in in vitro ADP ribosylation of the {approx}43-kDa nuclear protein. Moreover, nuclei isolated from RA-treated HL-60 cells revealed calcium release in response to cADPR, whereas a similar response was not observed in control nuclei. These results suggest that CD38 is expressed in HL-60 cell nuclei during RA-induced differentiation.« less

  14. Retinoic acid stimulates interstitial collagenase messenger ribonucleic acid in osteosarcoma cells

    NASA Technical Reports Server (NTRS)

    Connolly, T. J.; Clohisy, J. C.; Shilt, J. S.; Bergman, K. D.; Partridge, N. C.; Quinn, C. O.

    1994-01-01

    The rat osteoblastic osteosarcoma cell line UMR 106-01 secretes interstitial collagenase in response to retinoic acid (RA). The present study demonstrates by Northern blot analysis that RA causes an increase in collagenase messenger RNA (mRNA) at 6 h, which is maximal at 24 h (20.5 times basal) and declines toward basal level by 72 h. This stimulation is dose dependent, with a maximal response at 5 x 10(-7) M RA. Nuclear run-on assays show a greater than 20-fold increase in the rate of collagenase mRNA transcription between 12-24 h after RA treatment. Cycloheximide blocks RA stimulation of collagenase mRNA, demonstrating the need for de novo protein synthesis. RA not only causes an increase in collagenase secretion, but is known to decrease collagen synthesis in UMR 106-01 cells. In this study, the increase in collagenase mRNA is accompanied by a concomitant decrease in the level of alpha 1(I) procollagen mRNA, which is maximal at 24 h (70% decrease), with a return to near-control levels by 72 h. Nuclear run-on assays demonstrated that the decrease in alpha 1 (I) procollagen expression does not have a statistically significant transcriptional component. RA did not statistically decrease the stability of alpha 1 (I) procollagen mRNA (calculated t1/2 = 8.06 +/- 0.30 and 9.01 +/- 0.62 h in the presence and absence of RA, respectively). However, transcription and stability together probably contribute to the major decrease in stable alpha 1 (I) procollagen mRNA observed. Cycloheximide treatment inhibits basal level alpha 1 (I) procollagen mRNA accumulation, demonstrating the need for on-going protein synthesis to maintain basal expression of this gene.

  15. Oral Vitamin A and Retinoic Acid Supplementation Stimulates Antibody Production and Splenic Stra6 Expression in Tetanus Toxoid–Immunized Mice12

    PubMed Central

    Tan, Libo; Wray, Amanda E.; Ross, A. Catharine

    2012-01-01

    Coadministration of retinoic acid (RA) and polyinosinic acid:polycytidylic acid (PIC) has been shown to cooperatively enhance the anti–tetanus toxoid (anti-TT) vaccine response in adult mice. Germinal center formation in the spleen is critical for a normal antibody response. Recent studies have identified Stimulated by Retinoic Acid-6 (Stra6) as the cell membrane receptor for retinol-binding protein (RBP) in many organs, including spleen. The objectives of the present studies were to test whether orally administered vitamin A (VA) itself, either alone or combined with RA, and/or treatment with PIC regulates Stra6 gene expression in mouse spleen and, concomitantly, antibody production. Eight-week-old C57BL/6 mice were immunized with TT. In an initial kinetic study, oral VA (6 mg/kg) increased anti-TT IgM and IgG production as well as splenic Stra6 mRNA expression. In treatment studies that were analyzed 9 d postimmunization, retinoids including VA, RA, VA and RA combined, and PIC significantly increased plasma anti-TT IgM and IgG (P < 0.05) and splenic Stra6 mRNA (P < 0.05). Treatments that included PIC elevated plasma anti-TT IgM and IgG concentrations >20-fold (P < 0.01). Immunohistochemistry of STRA6 protein in mouse spleen confirmed its increase after immunization and retinoid treatment. In conclusion, retinoid treatments that included VA, RA, VA and RA combined, and the combination of retinoid and PIC stimulated the expression of Stra6 in spleen, which potentially could increase the local uptake of retinol. Concomitantly, these treatments increased the systemic antigen-specific antibody response. The ability of oral retinoids to stimulate systemic immunity has implications for public health and therapeutic use of VA. PMID:22739370

  16. Effect of arachidonic acid metabolites on thymocyte proliferation.

    PubMed

    Delebassée, S; Gualde, N

    1988-01-01

    The influences of prostaglandin E2 (PGE2), 15-hydroxyeicosatetraenoic acid (15-HETE) and leukotrienes (LT) on the proliferative response of mature (PNA-) and immature (PNA+) mouse thymocytes was investigated. Both PNA+ and PNA- thymocytes proliferated when cultured with concanavalin A plus interleukin-2. PGE2 in concentrations of 10(-6) to 10(-9) M caused significant inhibition of proliferation of both PNA+ and PNA- thymocytes in these cultures. In contrast, the lipoxygenase products 15-HETE, LTB4, LTC4 and LTD4 caused marked increases in proliferation of PNA+ thymocytes while having no effect on PNA- cells. Therefore, the effect of leukotrienes on thymocyte proliferation depends upon the level of cell maturation and mainly affects immature PNA+ thymocytes.

  17. Retinoic Acid Excess Impairs Amelogenesis Inducing Enamel Defects

    PubMed Central

    Morkmued, Supawich; Laugel-Haushalter, Virginie; Mathieu, Eric; Schuhbaur, Brigitte; Hemmerlé, Joseph; Dollé, Pascal; Bloch-Zupan, Agnès; Niederreither, Karen

    2017-01-01

    Abnormalities of enamel matrix proteins deposition, mineralization, or degradation during tooth development are responsible for a spectrum of either genetic diseases termed Amelogenesis imperfecta or acquired enamel defects. To assess if environmental/nutritional factors can exacerbate enamel defects, we investigated the role of the active form of vitamin A, retinoic acid (RA). Robust expression of RA-degrading enzymes Cyp26b1 and Cyp26c1 in developing murine teeth suggested RA excess would reduce tooth hard tissue mineralization, adversely affecting enamel. We employed a protocol where RA was supplied to pregnant mice as a food supplement, at a concentration estimated to result in moderate elevations in serum RA levels. This supplementation led to severe enamel defects in adult mice born from pregnant dams, with most severe alterations observed for treatments from embryonic day (E)12.5 to E16.5. We identified the enamel matrix proteins enamelin (Enam), ameloblastin (Ambn), and odontogenic ameloblast-associated protein (Odam) as target genes affected by excess RA, exhibiting mRNA reductions of over 20-fold in lower incisors at E16.5. RA treatments also affected bone formation, reducing mineralization. Accordingly, craniofacial ossification was drastically reduced after 2 days of treatment (E14.5). Massive RNA-sequencing (RNA-seq) was performed on E14.5 and E16.5 lower incisors. Reductions in Runx2 (a key transcriptional regulator of bone and enamel differentiation) and its targets were observed at E14.5 in RA-exposed embryos. RNA-seq analysis further indicated that bone growth factors, extracellular matrix, and calcium homeostasis were perturbed. Genes mutated in human AI (ENAM, AMBN, AMELX, AMTN, KLK4) were reduced in expression at E16.5. Our observations support a model in which elevated RA signaling at fetal stages affects dental cell lineages. Thereafter enamel protein production is impaired, leading to permanent enamel alterations. PMID:28111553

  18. Effects of cytarabine on activation of human T cells - cytarabine has concentration-dependent effects that are modulated both by valproic acid and all-trans retinoic acid.

    PubMed

    Ersvaer, Elisabeth; Brenner, Annette K; Vetås, Kristin; Reikvam, Håkon; Bruserud, Øystein

    2015-05-02

    Cytarabine is used in the treatment of acute myeloid leukemia (AML). Low-dose cytarabine can be combined with valproic acid and all-trans retinoic acid (ATRA) as AML-stabilizing treatment. We have investigated the possible risk of immunotoxicity by this combination. We examined the effects of cytarabine combined with valproic acid and ATRA on in vitro activated human T cells, and we tested cytarabine at concentrations reached during in vivo treatment with high doses, conventional doses and low doses. T cells derived from blood donors were activated in vitro in cell culture medium alone or supplemented with ATRA (1 μM), valproic acid (500 or 1000 μM) or cytarabine (0.01-44 μM). Cell characteristics were assessed by flow cytometry. Supernatants were analyzed for cytokines by ELISA or Luminex. Effects on primary human AML cell viability and proliferation of low-dose cytarabine (0.01-0.5 μM) were also assessed. Statistical tests include ANOVA and Cluster analyses. Only cytarabine 44 μM had both antiproliferative and proapoptotic effects. Additionally, this concentration increased the CD4:CD8 T cell ratio, prolonged the expression of the CD69 activation marker, inhibited CD95L and heat shock protein (HSP) 90 release, and decreased the release of several cytokines. In contrast, the lowest concentrations (0.35 and 0.01 μM) did not have or showed minor antiproliferative or cytotoxic effects, did not alter activation marker expression (CD38, CD69) or the release of CD95L and HSP90, but inhibited the release of certain T cell cytokines. Even when these lower cytarabine concentrations were combined with ATRA and/or valproic acid there was still no or minor effects on T cell viability. However, these combinations had strong antiproliferative effects, the expression of both CD38 and CD69 was altered and there was a stronger inhibition of the release of FasL, HSP90 as well as several cytokines. Cytarabine (0.01-0.05 μM) showed a dose-dependent antiproliferative effect on

  19. Tissue transglutaminase contributes to the all-trans-retinoic acid-induced differentiation syndrome phenotype in the NB4 model of acute promyelocytic leukemia.

    PubMed

    Csomós, Krisztián; Német, István; Fésüs, László; Balajthy, Zoltán

    2010-11-11

    Treatment of acute promyelocytic leukemia (APL) with all-trans-retinoic acid (ATRA) results in terminal differentiation of leukemic cells toward neutrophil granulocytes. Administration of ATRA leads to massive changes in gene expression, including down-regulation of cell proliferation-related genes and induction of genes involved in immune function. One of the most induced genes in APL NB4 cells is transglutaminase 2 (TG2). RNA interference-mediated stable silencing of TG2 in NB4 cells (TG2-KD NB4) coupled with whole genome microarray analysis revealed that TG2 is involved in the expression of a large number of ATRA-regulated genes. The affected genes participate in granulocyte functions, and their silencing lead to reduced adhesive, migratory, and phagocytic capacity of neutrophils and less superoxide production. The expression of genes related to cell-cycle control also changed, suggesting that TG2 regulates myeloid cell differentiation. CC chemokines CCL2, CCL3, CCL22, CCL24, and cytokines IL1B and IL8 involved in the development of differentiation syndrome are expressed at significantly lower level in TG2-KD NB4 than in wild-type NB4 cells upon ATRA treatment. Based on our results, we propose that reduced expression of TG2 in differentiating APL cells may suppress effector functions of neutrophil granulocytes and attenuate the ATRA-induced inflammatory phenotype of differentiation syndrome.

  20. The Mucosal Adjuvant Cholera Toxin B Instructs Non-Mucosal Dendritic Cells to Promote IgA Production Via Retinoic Acid and TGF-β

    PubMed Central

    Gloudemans, Anouk K.; Plantinga, Maud; Guilliams, Martin; Willart, Monique A.; Ozir-Fazalalikhan, Arifa; van der Ham, Alwin; Boon, Louis; Harris, Nicola L.; Hammad, Hamida; Hoogsteden, Henk C.; Yazdanbakhsh, Maria; Hendriks, Rudi W.

    2013-01-01

    It is currently unknown how mucosal adjuvants cause induction of secretory immunoglobulin A (IgA), and how T cell-dependent (TD) or -independent (TI) pathways might be involved. Mucosal dendritic cells (DCs) are the primary antigen presenting cells driving TI IgA synthesis, by producing a proliferation-inducing ligand (APRIL), B cell activating factor (BAFF), Retinoic Acid (RA), TGF-β or nitric oxide (NO). We hypothesized that the mucosal adjuvant Cholera Toxin subunit B (CTB) could imprint non-mucosal DCs to induce IgA synthesis, and studied the mechanism of its induction. In vitro, CTB-treated bone marrow derived DCs primed for IgA production by B cells without the help of T cells, yet required co-signaling by different Toll-like receptor (TLR) ligands acting via the MyD88 pathway. CTB-DC induced IgA production was blocked in vitro or in vivo when RA receptor antagonist, TGF-β signaling inhibitor or neutralizing anti-TGF-β was added, demonstrating the involvement of RA and TGF-β in promoting IgA responses. There was no major involvement for BAFF, APRIL or NO. This study highlights that synergism between CTB and MyD88-dependent TLR signals selectively imprints a TI IgA-inducing capacity in non-mucosal DCs, explaining how CTB acts as an IgA promoting adjuvant. PMID:23527272

  1. The mucosal adjuvant cholera toxin B instructs non-mucosal dendritic cells to promote IgA production via retinoic acid and TGF-β.

    PubMed

    Gloudemans, Anouk K; Plantinga, Maud; Guilliams, Martin; Willart, Monique A; Ozir-Fazalalikhan, Arifa; van der Ham, Alwin; Boon, Louis; Harris, Nicola L; Hammad, Hamida; Hoogsteden, Henk C; Yazdanbakhsh, Maria; Hendriks, Rudi W; Lambrecht, Bart N; Smits, Hermelijn H

    2013-01-01

    It is currently unknown how mucosal adjuvants cause induction of secretory immunoglobulin A (IgA), and how T cell-dependent (TD) or -independent (TI) pathways might be involved. Mucosal dendritic cells (DCs) are the primary antigen presenting cells driving TI IgA synthesis, by producing a proliferation-inducing ligand (APRIL), B cell activating factor (BAFF), Retinoic Acid (RA), TGF-β or nitric oxide (NO). We hypothesized that the mucosal adjuvant Cholera Toxin subunit B (CTB) could imprint non-mucosal DCs to induce IgA synthesis, and studied the mechanism of its induction. In vitro, CTB-treated bone marrow derived DCs primed for IgA production by B cells without the help of T cells, yet required co-signaling by different Toll-like receptor (TLR) ligands acting via the MyD88 pathway. CTB-DC induced IgA production was blocked in vitro or in vivo when RA receptor antagonist, TGF-β signaling inhibitor or neutralizing anti-TGF-β was added, demonstrating the involvement of RA and TGF-β in promoting IgA responses. There was no major involvement for BAFF, APRIL or NO. This study highlights that synergism between CTB and MyD88-dependent TLR signals selectively imprints a TI IgA-inducing capacity in non-mucosal DCs, explaining how CTB acts as an IgA promoting adjuvant.

  2. All-Trans-Retinoic Acid Stimulates Overexpression of Tumor Protein D52 (TPD52, Isoform 3) and Neuronal Differentiation of IMR-32 Cells.

    PubMed

    Kotapalli, Sudha Sravanti; Dasari, Chandrashekhar; Duscharla, Divya; Kami Reddy, Karthik Reddy; Kasula, Manjula; Ummanni, Ramesh

    2017-12-01

    Tumor protein D52 (TPD52), a proto-oncogene is overexpressed in a variety of epithelial carcinomas and plays an important role in cell proliferation, migration, and cell death. In the present study we found that the treatment of IMR-32 neuroblastoma (NB) cells with retinoic acid (RA) stimulates an increase in expression of TPD52. TPD52 expression is detectable after 72 h, can be maintained till differentiation of NB cells suggesting that TPD52 is involved in differentiation. Here, we demonstrate that TPD52 is essential for RA to promote differentiation of NB cells. Our results show that exogenous expression of EGFP-TPD52 in IMR-32 cells resulted cell differentiation even without RA. RA by itself and with overexpression of TPD52 can increase the ability of NB cells differentiation. Interestingly, transfection of IMR-32 cells with a specific small hairpin RNA for efficient knockdown of TPD52 attenuated RA induced NB cells differentiation. Transcriptional and translational level expression of neurotropic (BDNF, NGF, Nestin) and differentiation (β III tubulin, NSE, TH) factors in NB cells with altered TPD52 expression and/or RA treatment confirmed essential function of TPD52 in cellular differentiation. Furthermore, we show that TPD52 protects cells from apoptosis and arrest cell proliferation by varying expression of p27Kip1, activation of Akt and ERK1/2 thus promoting cell differentiation. Additionally, inhibition of STAT3 activation by its specific inhibitor arrested NB cells differentiation by EGFP-TPD52 overexpression with or without RA. Taken together, our data reveal that TPD52 act through activation of JAK/STAT signaling pathway to undertake NB cells differentiation induced by RA. J. Cell. Biochem. 118: 4358-4369, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Increased retinoic acid levels through ablation of Cyp26b1 determine the processes of embryonic skin barrier formation and peridermal development

    PubMed Central

    Okano, Junko; Lichti, Ulrike; Mamiya, Satoru; Aronova, Maria; Zhang, Guofeng; Yuspa, Stuart H.; Hamada, Hiroshi; Sakai, Yasuo; Morasso, Maria I.

    2012-01-01

    The process by which the periderm transitions to stratified epidermis with the establishment of the skin barrier is unknown. Understanding the cellular and molecular processes involved is crucial for the treatment of human pathologies, where abnormal skin development and barrier dysfunction are associated with hypothermia and perinatal dehydration. For the first time, we demonstrate that retinoic acid (RA) levels are important for periderm desquamation, embryonic skin differentiation and barrier formation. Although excess exogenous RA has been known to have teratogenic effects, little is known about the consequences of elevated endogenous retinoids in skin during embryogenesis. Absence of cytochrome P450, family 26, subfamily b, polypeptide 1 (Cyp26b1), a retinoic-acid-degrading enzyme, results in aberrant epidermal differentiation and filaggrin expression, defective cornified envelopes and skin barrier formation, in conjunction with peridermal retention. We show that these alterations are RA dependent because administration of exogenous RA in vivo and to organotypic skin cultures phenocopy Cyp26b1−/− skin abnormalities. Furthermore, utilizing the Flaky tail (Ft/Ft) mice, a mouse model for human ichthyosis, characterized by mutations in the filaggrin gene, we establish that proper differentiation and barrier formation is a prerequisite for periderm sloughing. These results are important in understanding pathologies associated with abnormal embryonic skin development and barrier dysfunction. PMID:22366455

  4. Identification of COUP-TFII Orphan Nuclear Receptor as a Retinoic Acid-Activated Receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruse, Schoen W; Suino-Powell, Kelly; Zhou, X Edward

    2010-01-12

    The chicken ovalbumin upstream promoter-transcription factors (COUP-TFI and II) make up the most conserved subfamily of nuclear receptors that play key roles in angiogenesis, neuronal development, organogenesis, cell fate determination, and metabolic homeostasis. Although the biological functions of COUP-TFs have been studied extensively, little is known of their structural features or aspects of ligand regulation. Here we report the ligand-free 1.48 {angstrom} crystal structure of the human COUP-TFII ligand-binding domain. The structure reveals an autorepressed conformation of the receptor, where helix {alpha}10 is bent into the ligand-binding pocket and the activation function-2 helix is folded into the cofactor binding site,more » thus preventing the recruitment of coactivators. In contrast, in multiple cell lines, COUP-TFII exhibits constitutive transcriptional activity, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, and ligand binding, substantially reduce the COUP-TFII transcriptional activity. Importantly, retinoid acids are able to promote COUP-TFII to recruit coactivators and activate a COUP-TF reporter construct. Although the concentration needed is higher than the physiological levels of retinoic acids, these findings demonstrate that COUP-TFII is a ligand-regulated nuclear receptor, in which ligands activate the receptor by releasing it from the autorepressed conformation.« less

  5. Retinoid acid-induced microRNA-27b-3p impairs C2C12 myoblast proliferation and differentiation by suppressing α-dystrobrevin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nan; Tang, Yi; Liu, Bo

    We previously reported that excess retinoic acid (RA) resulted in hypoplastic and derangement of myofilaments in embryonic tongue by inhibiting myogenic proliferation and differentiation through CamKIID pathway. Our further studies revealed that the expression of a series of miRNAs was altered by RA administration in embryonic tongue as well as in C2C12 cells. Thus, if excess RA impairs myogenic proliferation and differentiation through miRNAs is taken into account. In present study, miR-27b-3p was found up-regulated in RA-treated C2C12 cells as in embryonic tongue, and predicted to target the 3′UTR of α-dystrobrevin (DTNA). Luciferase reporter assays confirmed the direct interaction betweenmore » miR-27b-3p and the 3′UTR of DTNA. MiR-27b-3p mimics recapitulated the RA repression on DTNA expression, C2C12 proliferation and differentiation, while the miR-27b-3p inhibitor circumvented these defects resulting from excess RA. As expected, the effects of siDTNA on C2C12 were coincided with those by RA treatment or miR-27b-3p mimics. Therefore, these findings indicated that excess RA inhibited the myoblast proliferation and differentiation by up-regulating miR-27b-3p to target DTNA, which implied a new mechanism in myogenic hypoplasia. - Highlights: • A mechanism that RA results in tongue deformity by disrupting the myogenesis. • A non-muscle specific miR mediating the RA suppression on tongue myogenesis. • A target gene of non-muscle specific miR involved in RA induced tongue deformity.« less

  6. NPM and BRG1 mediate transcriptional resistance to retinoic acid in Acute Promyelocytic Leukemia

    PubMed Central

    Nichol, Jessica N.; Galbraith, Matthew D.; Kleinman, Claudia L.; Espinosa, Joaquín M.; Miller, Wilson H.

    2016-01-01

    Summary Perturbation in the transcriptional control of genes driving differentiation is an established paradigm whereby oncogenic fusion proteins promote leukemia. From a retinoic acid (RA) sensitive Acute Promyelocytic Leukemia (APL) cell line, we derived an RA-resistant clone characterized by a block in transcription initiation, despite maintaining wild-type PML/RARA expression. We uncovered an aberrant interaction between PML/RARA, Nucleophosmin (NPM) and Topoisomerase II Beta (TOP2B). Surprisingly, RA stimulation in these cells results in enhanced chromatin association of the nucleosome remodeler BRG1. Inhibition of NPM or TOP2B abrogated BRG1 recruitment. Furthermore, NPM inhibition and targeting BRG1 restored differentiation when combined with RA. Here, we demonstrate a role for NPM and BRG1 in obstructing RA-differentiation and implicate chromatin remodeling in mediating therapeutic resistance in malignancies. NPM mutations are the most common genetic change in patients with acute leukemia (AML) therefore, our model may be applicable to other more common leukemias driven by NPM. PMID:26997274

  7. Alterations in vitamin A/retinoic acid homeostasis in diet-induced obesity and insulin resistance.

    PubMed

    Mody, Nimesh

    2017-11-01

    Vitamin A is an essential micronutrient for life and the phytochemical β-carotene, also known as pro-vitamin A, is an important dietary source of this vitamin. Vitamin A (retinol) is the parent compound of all bioactive retinoids but it is retinoic acid (RA) that is the active metabolite of vitamin A. The plasma concentration of retinol is maintained in a narrow range and its normal biological activities strictly regulated since excessive intake can lead to toxicity and thus also be detrimental to life. The present review will give an overview of how vitamin A homeostasis is maintained and move on to focus on the link between circulating vitamin A and metabolic disease states. Finally, we will examine how pharmacological or genetic alterations in vitamin A homeostasis and RA-signalling can influence body fat and blood glucose levels including a novel link to the liver secreted hormone fibroblast growth factor 21, an important metabolic regulator.

  8. Development of a novel microemulsion for oral absorption enhancement of all-trans retinoic acid

    PubMed Central

    Subongkot, Thirapit; Ngawhirunpat, Tanasait

    2017-01-01

    This study was aimed to develop a novel microemulsion that contained oleth-5 as a surfactant to enhance the oral absorption of all-trans retinoic acid (ATRA). The prepared microemulsion was evaluated for its particle size, shape, zeta potential, in vitro release, in vitro intestinal absorption, intestinal membrane cytotoxicity and stability. The obtained microemulsion was spherical in shape with a particle size of <200 nm and a negative surface charge. The in vitro release of the ATRA-loaded microemulsion was best fit with the zero-order model. This microemulsion significantly improved the intestinal absorption of ATRA. Confocal laser scanning microscopy analysis using a fluorescent dye-loaded microemulsion also confirmed the intestinal absorption result. The intestinal membrane cytotoxicity of the ATRA-loaded microemulsion did not differ from an edible oil (fish oil). Stability testing showed that the ATRA-loaded microemulsion was more stable at 25°C than 40°C. PMID:28831254

  9. Retinoic acid induces nuclear accumulation of Raf1 during differentiation of HL-60 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, James; Bunaciu, Rodica P.; Reiterer, Gudrun

    All trans-retinoic acid (RA) is a standard therapeutic agent used in differentiation induction therapy treatment of acute promyelocytic leukemia (APL). RA and its metabolites use a diverse set of signal transduction pathways during the differentiation program. In addition to the direct transcriptional targets of the nuclear RAR and RXR receptors, signals derived from membrane receptors and the Raf-MEK-ERK pathway are required. Raf1 phosphorylation and the prolonged activation of Raf1 persisting during the entire differentiation process are required for RA-dependent differentiation of HL-60 cells. Here we identify a nuclear redistribution of Raf1 during the RA-induced differentiation of HL-60 cells. In addition,more » the nuclear accumulation of Raf1 correlates with an increase in Raf1 phosphorylated at serine 621. The serine 621 phosphorylated Raf1 is predominantly localized in the nucleus. The RA-dependent nuclear accumulation of Raf1 suggests a novel nuclear role for Raf1 during the differentiation process.« less

  10. An Effective Model of the Retinoic Acid Induced HL-60 Differentiation Program.

    PubMed

    Tasseff, Ryan; Jensen, Holly A; Congleton, Johanna; Dai, David; Rogers, Katharine V; Sagar, Adithya; Bunaciu, Rodica P; Yen, Andrew; Varner, Jeffrey D

    2017-10-30

    In this study, we present an effective model All-Trans Retinoic Acid (ATRA)-induced differentiation of HL-60 cells. The model describes reinforcing feedback between an ATRA-inducible signalsome complex involving many proteins including Vav1, a guanine nucleotide exchange factor, and the activation of the mitogen activated protein kinase (MAPK) cascade. We decomposed the effective model into three modules; a signal initiation module that sensed and transformed an ATRA signal into program activation signals; a signal integration module that controlled the expression of upstream transcription factors; and a phenotype module which encoded the expression of functional differentiation markers from the ATRA-inducible transcription factors. We identified an ensemble of effective model parameters using measurements taken from ATRA-induced HL-60 cells. Using these parameters, model analysis predicted that MAPK activation was bistable as a function of ATRA exposure. Conformational experiments supported ATRA-induced bistability. Additionally, the model captured intermediate and phenotypic gene expression data. Knockout analysis suggested Gfi-1 and PPARg were critical to the ATRAinduced differentiation program. These findings, combined with other literature evidence, suggested that reinforcing feedback is central to hyperactive signaling in a diversity of cell fate programs.

  11. Effects of tracheal occlusion with retinoic acid administration on normal lung development.

    PubMed

    Delabaere, Amélie; Marceau, Geoffroy; Coste, Karen; Blanchon, Loïc; Déchelotte, Pierre-Jean; Blanc, Pierre; Sapin, Vincent; Gallot, Denis

    2017-05-01

    Tracheal occlusion (TO) is an investigational therapy for severe congenital diaphragmatic hernia that decreases pulmonary hypoplasia, but sustained TO also induces deficient surfactant synthesis. Intramuscular maternal administration of retinoic acid (RA) in a surgical rabbit model of congenital diaphragmatic hernia showed a beneficial effect on lung maturation. We evaluated the potential of RA delivery into the trachea and studied the combined effects of TO and RA on normal lung development. Experiments were performed on normal rabbit fetuses. Liposomes and capric triglyceride (Miglyol ® ), alone and with RA, were administered in the trachea just before TO (d26). Lung morphology and surfactant production were studied at term (d30). Tracheal occlusion increased lung weight and enhanced alveolar development but increased apoptotic activity and decreased surfactant expression. Tracheal injection of RA improved surfactant production to levels of normal controls. We established the potential of liposome and Miglyol as RA vehicle for delivering this bioactive molecule in the fetal airways. Tracheal RA injection seems to oppose the effects of TO in fetuses with normal lungs. © 2017 John Wiley & Sons, Ltd. © 2017 John Wiley & Sons, Ltd.

  12. Boric acid inhibits human prostate cancer cell proliferation.

    PubMed

    Barranco, Wade T; Eckhert, Curtis D

    2004-12-08

    The role of boron in biology includes coordinated regulation of gene expression in mixed bacterial populations and the growth and proliferation of higher plants and lower animals. Here we report that boric acid, the dominant form of boron in plasma, inhibits the proliferation of prostate cancer cell lines, DU-145 and LNCaP, in a dose-dependent manner. Non-tumorigenic prostate cell lines, PWR-1E and RWPE-1, and the cancer line PC-3 were also inhibited, but required concentrations higher than observed human blood levels. Studies using DU-145 cells showed that boric acid induced a cell death-independent proliferative inhibition, with little effect on cell cycle stage distribution and mitochondrial function.

  13. Determination of the cellular retinoic-acid-binding protein in dysplastic epithelia of the cervix uteri, differentiated into apo and holo forms.

    PubMed

    Volz-Köster, S; Volz, J; Kiefer, A; Biesalski, H K

    2000-01-01

    The appearance of the cervical mucosa is regulated by different factors including retinoic acid. Hormone-dependent alteration of the cervix uteri mucosa is accompanied by a decrease or increase of cytoplasmatic retinoic-acid-binding protein (CRABP). To elucidate whether this hormone-dependent alteration of CRABP is preserved in the case of neoplasms of the cervix uteri, we measured the level of total and apo-CRABP in normal and neoplastically transformed cervical cells. In a prospective pilot study, standardised biopsies of normal epithelium and cervical intra-epithelial neoplasm grade 3 (CIN III) were taken from 24 patients. A newly developed method was used to determine the intra-epithelial level of apo- and total CRABP. The concentration of total CRABP in normal squamous epithelium compared with that in intra-epithelial neoplasm grade 3 is very significantly lower in the CIN III areas (normal: 3.66 +/- 1.46 pmol/ mg wet weight +/- SD; CIN III 1.43 +/- 0.59 pmol/mg P < 0.01). In addition CRABP in the apo form is lower in normal than in neoplastic epithelium (Wilcoxon test for paired non-parametric values: P < 0.05; mean for all patients: normal: 1.65 + 0.82 pmol/mg; CIN III: 1.14 +/- 0.23 pmol/mg). From our results we conclude that, in neoplastically transformed cells, the hormone-dependent CRABP cycle is interrupted. Whether this has consequences for the further development of the neoplastic cells has to be elucidated.

  14. Retinoic acid biosynthesis catalyzed by retinal dehydrogenases relies on a rate-limiting conformational transition associated with substrate recognition

    PubMed Central

    Bchini, Raphaël; Vasiliou, Vasilis; Branlant, Guy; Talfournier, François; Rahuel-Clermont, Sophie

    2012-01-01

    Retinoic acid (RA), a metabolite of vitamin A, exerts pleiotropic effects throughout life in vertebrate organisms. Thus, RA action must be tightly regulated through the coordinated action of biosynthetic and degradating enzymes. The last step of retinoic acid biosynthesis is irreversibly catalyzed by the NAD-dependent retinal dehydrogenases (RALDH), which are members of the aldehyde dehydrogenase (ALDH) superfamily. Low intracellular retinal concentrations imply efficient substrate molecular recognition to ensure high affinity and specificity of RALDHs for retinal. This study addresses the molecular basis of retinal recognition in human ALDH1A1 (or RALDH1) and rat ALDH1A2 (or RALDH2), through the comparison of the catalytic behavior of retinal analogs and use of the fluorescence properties of retinol. We show that, in contrast to long chain unsaturated substrates, the rate-limiting step of retinal oxidation by RALDHs is associated with acylation. Use of the fluorescence resonance energy transfer upon retinol interaction with RALDHs provides evidence that retinal recognition occurs in two steps: binding into the substrate access channel, and a slower structural reorganization with a rate constant of the same magnitude as the kcat for retinal oxidation: 0.18 vs. 0.07 s−1 and 0.25 vs. 0.1 s−1 for ALDH1A1 and ALDH1A2, respectively. This suggests that the conformational transition of the RALDH-retinal complex significantly contributes to the rate-limiting step that controls the kinetics of retinal oxidation, as a prerequisite for the formation of a catalytically competent Michaelis complex. This conclusion is consistent with the general notion that structural flexibility within the active site of ALDH enzymes has been shown to be an integral component of catalysis. PMID:23220587

  15. All-trans retinoic acid increases the expression of oxidative myosin heavy chain through the PPARδ pathway in bovine muscle cells derived from satellite cells.

    PubMed

    Kim, Jongkyoo; Wellmann, Kimberly B; Smith, Zachary K; Johnson, Bradley J

    2018-04-24

    All-trans retinoic acid (ATRA) has been associated with various physiological phenomenon in mammalian adipose tissue and skeletal muscle. We hypothesized that ATRA may affect skeletal muscle fiber type in bovine satellite cell culture through various transcriptional processes. Bovine primary satellite cell (BSC) culture experiments were conducted to determine dose effects of ATRA on expression of genes and protein levels related to skeletal muscle fiber type and metabolism. The semimembranosus from crossbred steers (n = 2 steers), aged approximately 24 months, were used to isolate BSC for 3 separate assays. Myogenic differentiation was induced using 3% horse serum upon cultured BSC with increasing doses (0, 1, 10, 100, 1000 nM) of ATRA. After 96 h of incubation, cells were harvested and used to measure the gene expression of protein kinase B (Akt), AMP-activated protein kinase alpha (AMPK), glucose transporter 4 (GLUT4), myogenin, lipoprotein lipase (LPL), myosin heavy chain (MHC) I, MHC IIA,MHC IIX, insulin like growth factor -1 (IGF-1), Peroxisome proliferator activated receptor gamma (PPARγ), PPARδ, and Smad transcription factor 3 (SMAD3) mRNA relative to ribosomal protein subunit 9 (RPS9). The mRNA expression of LPL was increased (P < 0.05) with 100 and 1000nM of ATRA. Expression of GLUT4 was altered (P < 0.05) by ATRA. The treatment of ATRA (1000nM) also increased (P < 0.05) mRNA gene expression of SMAD3. The gene expression of both PPARδ and PPARγ were increased (P < 0.05) with 1000nM of ATRA. Protein level of PPARδ was also affected (P < 0.05) by 1000nM of ATRA and resulted in a greater (P < 0.05) protein level of PPARδ compared to CON. All-trans retinoic acid (10nM) increased gene expression of MHC I (P < 0.05) compared to CON. Expression of MHC IIA was also influenced (P < 0.05) by ATRA. The mRNA expression of MHC IIX was decreased (P < 0.05) with 100 and 1000nM of ATRA.In muscle cells, ATRA may cause muscle fibers to transition towards the MHC

  16. Fred Hutchinson Cancer Research Center (FHCRC-1): Identification of drug targets for combination therapy with Retinoic Acid in Neuroblastoma | Office of Cancer Genomics

    Cancer.gov

    Retinoic Acid (RA) is employed in the clinic during the “consolidation” phase of treatment regimens for high-risk neuroblastoma.  While the addition of RA has greatly increased the survival of children with neuroblastoma, there is still a high frequency of relapse.  With the goal of identifying novel drug combinations that would enhance the effect of RA on neuroblastoma, an siRNA screen in the presence or absence of sub-lethal concentrations of RA was carried out.

  17. Fred Hutchinson Cancer Research Center (FHCRC1): Identification of drug targets for combination therapy with Retinoic Acid in Neuroblastoma | Office of Cancer Genomics

    Cancer.gov

    Retinoic Acid (RA) is employed in the clinic during the “consolidation” phase of treatment regimens for high-risk neuroblastoma.  While the addition of RA has greatly increased the survival of children with neuroblastoma, there is still a high frequency of relapse.  With the goal of identifying novel drug combinations that would enhance the effect of RA on neuroblastoma, an siRNA screen in the presence or absence of sub-lethal concentrations of RA was carried out.

  18. A new look at immune privilege of the eye: dual role for the vision-related molecule retinoic acid.

    PubMed

    Zhou, Ru; Horai, Reiko; Mattapallil, Mary J; Caspi, Rachel R

    2011-10-15

    The eye is an immunologically privileged and profoundly immunosuppressive environment. Early studies reported inhibition of T cell proliferation, IFN-γ production, and generation of regulatory T cells (Tregs) by aqueous humor (AH) and identified TGF-β as a critical factor. However, T cell subsets including Foxp3(+) Treg and Th17 were unknown at that time, as was the role of retinoic acid (RA) in Treg induction. Consequently, the effect of the ocular microenvironment on T cell lineage commitment and function, and the role of RA in this process, had not been explored. We now use gene-manipulated mice and highly purified T cell populations to demonstrate that AH suppresses lineage commitment and acquisition of Th1 and Th17 effector function of naive T cells, manifested as reduction of lineage-specific transcription factors and cytokines. Instead, AH promoted its massive conversion to Foxp3(+) Tregs that expressed CD25, GITR, CTLA-4, and CD103 and were functionally suppressive. TGF-β and RA were both needed and synergized for Treg conversion by AH, with TGF-β-enhancing T cell expression of RA receptor α. Newly converted Foxp3(+) Tregs were unstable, but were stabilized upon continued exposure to AH or by the DNA demethylating agent 5-aza-2'-deoxycytidine. In contrast, T cells already committed to effector function were resistant to the suppressive and Treg-inducing effects of AH. We conclude that RA in the eye plays a dual role: in vision and in immune privilege. Nevertheless, primed effector T cells are relatively insensitive to AH, helping to explain their ability to induce uveitis despite an inhibitory ocular microenvironment.

  19. Retinoic Acid Receptor-Related Orphan Receptors: Critical Roles in Tumorigenesis

    PubMed Central

    Fan, Jinshuo; Lv, Zhilei; Yang, Guanghai; Liao, Ting ting; Xu, Juanjuan; Wu, Feng; Huang, Qi; Guo, Mengfei; Hu, Guorong; Zhou, Mei; Duan, Limin; Liu, Shuqing; Jin, Yang

    2018-01-01

    Retinoic acid receptor-related orphan receptors (RORs) include RORα (NR1F1), RORβ (NR1F2), and RORγ (NR1F3). These receptors are reported to activate transcription through ligand-dependent interactions with co-regulators and are involved in the development of secondary lymphoid tissues, autoimmune diseases, inflammatory diseases, the circadian rhythm, and metabolism homeostasis. Researches on RORs contributing to cancer-related processes have been growing, and they provide evidence that RORs are likely to be considered as potential therapeutic targets in many cancers. RORα has been identified as a potential therapeutic target for breast cancer and has been investigated in melanoma, colorectal colon cancer, and gastric cancer. RORβ is mainly expressed in the central nervous system, but it has also been studied in pharyngeal cancer, uterine leiomyosarcoma, and colorectal cancer, in addition to neuroblastoma, and recent studies suggest that RORγ is involved in various cancers, including lymphoma, melanoma, and lung cancer. Some studies found RORγ to be upregulated in cancer tissues compared with normal tissues, while others indicated the opposite results. With respect to the mechanisms of RORs in cancer, previous studies on the regulatory mechanisms of RORs in cancer were mostly focused on immune cells and cytokines, but lately there have been investigations concentrating on RORs themselves. Thus, this review summarizes reports on the regulation of RORs in cancer and highlights potential therapeutic targets in cancer. PMID:29904382

  20. Teratogenic effects of retinoic acid on neurulation in mice embryos.

    PubMed

    Nobakht, M; Zirak, A; Mehdizadeh, M; Tabatabaeei, P

    2006-02-21

    Retinoic acids (RA) are natural chemicals that exert a hormone-like activity and a variety of biological effects on early development of mouse. In this study, the probable teratogenic effects of RA on CNS have been investigated in pregnant mice (n = 20) divided into four groups: (1) untreated controls, (2) controls which received a single dose of DMSO, (3) a group that received 40 mg/kg, and (4) a group that received 60 mg/kg of all-trans RA in DMSO, respectively on the eighth day of gestation. Embryos whose dams had received 40 and 60 mg/kg doses of RA, showed malformations and decreased size. At 40 mg/kg dosage level, 50% of the embryos had closed neural tubes while at 60 mg/kg dosage level the neural tube failed to close. The neuroblast mantle layers were disorganized in the 40 mg/kg and even more in the 60 mg/kg exposed group compared to the controls. In mitosis, the density of chromatin was increased in the 60 mg/kg dose group. Compared to controls the 40 and 60 mg/kg dose groups of RA treated dams decreases in the luminal longitudinal and internal measures were observed. Also the thickness of ventricular, mantle and marginal layers was smaller. Wide intercellular spaces due to the degenerated cells at high doses of RA as well as an accumulation of intercellular fluid were observed. Therefore, the wedge shape of neuroepithelium was abolished, preventing the elevation of the neural wall.

  1. Inhibition of phosphatidylinositol 3-kinase causes apoptosis in retinoic acid differentiated hl-60 leukemia cells.

    PubMed

    Ma, Jin; Liu, Qiang; Zeng, Yi-Xin

    2004-01-01

    Phosphatidylinositol 3-kinase (PI3-K) signaling may inhibit apoptosis in neoplastic cells. The PI-3K inhibitor wortmannin renders cells apoptosis-prone. Inducers of differentiation may also cause apoptosis. To detect the effect of wortmannin on the survival of differentiated human acute promyeloid leukemia cells, HL-60 cells were induced to differentiation with treatment of all trans-retinoic acid (ATRA) followed by treatment with wortmannin. Results showed that apoptosis occurred in cells that underwent differentiation, but not in undifferentiated HL-60 cells. The pro-apoptotic molecule, Bad, played a role in this apoptotic mechanism. Thus, the survival of differentiated HL-60 cells induced by ATRA depends on the ability of the PI3-K pathway to transduce survival signals; the PI3-K inhibitor, wortmannin, can induce apoptosis of differentiated HL-60 cells. These results may indicate a novel method for treating cancer with differentiation induction and signal pathway regulation.

  2. Identification of insulin as a novel retinoic acid receptor-related orphan receptor α target gene.

    PubMed

    Kuang, Jiangying; Hou, Xiaoming; Zhang, Jinlong; Chen, Yulong; Su, Zhiguang

    2014-03-18

    Insulin plays an important role in regulation of lipid and glucose metabolism. Retinoic acid receptor-related orphan receptor α (RORα) modulates physiopathological processes such as dyslipidemia and diabetes. In this study, we found overexpression of RORα in INS1 cells resulted in increased expression and secretion of insulin. Suppression of endogenous RORα caused a decrease of insulin expression. Luciferase and electrophoretic mobility shift assay (EMSA) assays demonstrated that RORα activated insulin transcription via direct binding to its promoter. RORα was also observed to regulate BETA2 expression, which is one of the insulin active transfactors. In vivo analyses showed that the insulin transcription is increased by the synthetic RORα agonist SR1078. These findings identify RORα as a transcriptional activator of insulin and suggest novel therapeutic opportunities for management of the disease. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Combination Therapy of All-Trans Retinoic Acid With Ursodeoxycholic Acid in Patients With Primary Sclerosing Cholangitis: A Human Pilot Study.

    PubMed

    Assis, David N; Abdelghany, Osama; Cai, Shi-Ying; Gossard, Andrea A; Eaton, John E; Keach, Jill C; Deng, Yanhong; Setchell, Kenneth D R; Ciarleglio, Maria; Lindor, Keith D; Boyer, James L

    2017-02-01

    To perform an exploratory pilot study of all-trans retinoic acid (ATRA) combined with ursodeoxycholic acid (UDCA) in patients with primary sclerosing cholangitis (PSC). PSC is a progressive disorder for which there is no accepted therapy. Studies in human hepatocyte cultures and in animal models of cholestasis indicate that ATRA might have beneficial effects in cholestatic disorders. ATRA (45 mg/m/d, divided and given twice daily) was combined with moderate-dose UDCA in patients with PSC who had incomplete response to UDCA monotherapy. The combination was administered for 12 weeks, followed by a 12-week washout in which patients returned to UDCA monotherapy. We measured alkaline phosphatase (ALP), alanine aminotransferase (ALT), bilirubin, cholesterol, bile acids, and the bile acid intermediate 7α-hydroxy-4-cholesten-3-one (C4) at baseline, week 12, and after washout. Fifteen patients completed 12 weeks of therapy. The addition of ATRA to UDCA reduced the median serum ALP levels (277±211 to 243±225 U/L, P=0.09) although this, the primary endpoint, did not reach significance. In contrast, median serum ALT (76±55 to 46±32 U/L, P=0.001) and C4 (9.8±19 to 7.9±11 ng/mL, P=0.03) levels significantly decreased. After washout, ALP and C4 levels nonsignificantly increased, whereas ALT levels significantly increased (46±32 to 74±74, P=0.0006), returning to baseline. In this human pilot study, the combination of ATRA and UDCA did not achieve the primary endpoint (ALP); however, it significantly reduced ALT and the bile acid intermediate C4. ATRA appears to inhibit bile acid synthesis and reduce markers of inflammation, making it a potential candidate for further study in PSC (NCT 01456468).

  4. NLS-RARα promotes proliferation and inhibits differentiation in HL-60 cells.

    PubMed

    Hu, Xiu-Xiu; Zhong, Liang; Zhang, Xi; Gao, Yuan-Mei; Liu, Bei-Zhong

    2014-01-01

    A unique mRNA produced in leukemic cells from a t(15;17) acute promyelocytic leukemia (APL) patient encodes a fusion protein between the retinoic acid receptor α (RARα) and a myeloid gene product called PML. Studies have reported that neutrophil elastase (NE) cleaves bcr-1-derived PML-RARα in early myeloid cells, leaving only the nuclear localization signal (NLS) of PML attached to RARα. The resultant NLS-RARα fusion protein mainly localizes to, and functions within, the cell nucleus. It is speculated that NLS-RARα may act in different ways from the wild-type RARα, but its biological characteristics have not been reported. This study takes two approaches. Firstly, the NLS-RARα was silenced with pNLS-RARα-shRNA. The mRNA and protein expression of NLS-RARα were detected by RT-PCR and Western blot respectively. Cell proliferation in vitro was assessed by MTT assay. Flow cytometry (FCM) was used to detect the differentiation of cells. Secondly, the NLS-RARα was over-expressed by preparation of recombinant adenovirus HL-60/pAd-NLS-RARα. The assays of mRNA and protein expression of NLS-RARα, and cell proliferation, were as above. By contrast, cell differentiation was stimulated by all trans retinoic acid (ATRA) (2.5µmol/L) at 24h after virus infection of pAd-NLS-RARα, and then detected by CD11b labeling two days later. The transcription and translation of C-MYC was detected in HL-60/pAd-NLS-RARα cells which treated by ATRA. Our results showed that compared to the control groups, the expression of NLS-RARα was significantly reduced in the HL-60/pNLS-RARα-shRNA cells, and increased dramatically in the HL-60/pAd-NLS-RARα cells. The proliferation was remarkably inhibited in the HL-60/pNLS-RARα-shRNA cells in a time-dependent manner, but markedly promoted in the HL-60/pAd-NLS-RARα cells. FCM outcome revealed the differentiation increased in HL-60/pNLS-RARα-shRNA cells, and decreased in the HL-60/pAd-NLS-RARα cells treated with 2.5µmol/L ATRA. The

  5. Cellular retinoic acid bioavailability in various pathologies and its therapeutic implication.

    PubMed

    Osanai, Makoto

    2017-06-01

    Retinoic acid (RA), an active metabolite of vitamin A, is a critical signaling molecule in various cell types. We found that RA depletion caused by expression of the RA-metabolizing enzyme CYP26A1 promotes carcinogenesis, implicating CYP26A1 as a candidate oncogene. Several studies of CYP26s have suggested that the biological effect of RA on target cells is primarily determined by "cellular RA bioavailability", which is defined as the RA level in an individual cell, rather than by the serum concentration of RA. Consistently, stellate cells store approximately 80% of vitamin A in the body, and the state of cellular RA bioavailability regulates their function. Based on the similarities between stellate cells and astrocytes, we demonstrated that retinal astrocytes regulate tight junction-based endothelial integrity in a paracrine manner. Since diabetic retinopathy is characterized by increased vascular permeability in its early pathogenesis, RA normalized retinal astrocytes that are compromised in diabetes, resulting in suppression of vascular leakiness. RA also attenuated the loss of the epithelial barrier in murine experimental colitis. The concept of "cellular RA bioavailability" in various diseases will be directed at understanding various pathologies caused by RA insufficiency, implying the potential feasibility of a therapeutic strategy targeting the stellate cell system. © 2017 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  6. 9-cis-retinoic acid increases apolipoprotein AI secretion and mRNA expression in HepG2 cells.

    PubMed

    Haghpassand, M; Moberly, J B

    1995-10-01

    HepG2 cells were studied as a model for regulation of hepatic apolipoprotein AI (apo AI) secretion and gene expression by 9-cis-retinoic acid. HepG2 cells cultured on plastic dishes were exposed to 9-cis-retinoic acid (9-cis-RA) for 48 h with a complete media change at 24 h. Apo AI mass in cultured media was determined by ELISA, by quantitative immunoblotting and by steady-state 35S-methionine labeling. Messenger RNA levels were determined by RNase protection using probes for apo AI and the housekeeping gene, glyceraldehyde 3-phosphate dehydrogenase (G3PDH). 9-cis-RA increased secretion of apo AI by 52% at doses of 10 and 1 microM (6.3 +/- 0.6 vs. 4.2 +/- 0.3; P < 0.005; 6.1 +/- 0.3 vs. 4.0 +/- 0.7 ng of apo AI/mg cell protein, P < 0.05) and by 35% at 0.1 microM (5.5 +/- 0.6 vs. 4.1 +/- 0.4 ng apo AI/mg protein, P < 0.05, n = 4). Immunoblotting results were consistent with results from ELISA (70% increase at 10 microM 9-cis-RA, P < 0.001; 34% increase at 1 microM, P < 0.005, n = 3). Metabolically labeled apoAI in the medium was increased by 39% following steady-state labeling in the presence of 10 microM 9-cis-RA (597 +/- 7 vs. 430 +/- 13 DPM/microliters media; P < 0.001; n = 4). 9-cis-RA (10 microM) also increased HepG2 cell apo AI mRNA expression by 76% (68 700 +/- 400 vs. 38 900 +/- 2700 DPM, P < 0.01, n = 4), whereas expression of G3PDH mRNA was slightly decreased (14%, P < 0.05). Thus, 9-cis-RA stimulates apo AI expression in HepG2 cells, suggesting a role for retinoids in activating endogenous apo AI gene expression.

  7. Combination of retinoic acid, dimethyl sulfoxide and 5-azacytidine promotes cardiac differentiation of human fetal liver-derived mesenchymal stem cells.

    PubMed

    Deng, Fuxue; Lei, Han; Hu, Yunfeng; He, Linjing; Fu, Hang; Feng, Rui; Feng, Panpan; Huang, Wei; Wang, Xi; Chang, Jing

    2016-03-01

    There are controversial reports about cardiac differentiation potential of mesenchymal stem cells (MSCs), and there is still no well-defined protocol for the induction of cardiac differentiation. The effects of retinoic acid (RA) and dimethyl sulfoxide (DMSO) on the proliferation and differentiation of human fetal liver-derived MSCs (HFMSCs) as well as the pluripotent state induced by 5-azacytidine (5-aza) in vitro were investigated. MSCs were isolated from fetal livers and cultured in accordance with previous reports. Cells were plated and were treated for 24 h by the combination of 5-aza, RA and DMSO in different doses. Different culture conditions were tested in our study, including temperature, oxygen content and medium. Three weeks later, cells were harvested for the certification of cardiac differentiation as well as the pluripotency, which indicated by cardiac markers and Oct4. It was found that the cardiac differentiation was only induced when HFMSCs were treated in the following conditions: in high-dose combination (5-aza 50 μM + RA 10(-1) μM + DMSO 1 %) in cardiac differentiation medium at 37 °C and 20 % O2. The results of immunohistochemistry and quantitative RT-PCR showed that about 40 % of the cells positively expressed Nkx2.5, desmin and cardiac troponin I, as well as Oct4. No beating cells were observed during the period. The combined treatment with RA, DMSO and 5-aza in high-dose could promote HFMSCs to differentiate into cardiomyocyte-like cells and possibly through the change of their pluripotent state.

  8. Folic Acid supplementation stimulates notch signaling and cell proliferation in embryonic neural stem cells.

    PubMed

    Liu, Huan; Huang, Guo-Wei; Zhang, Xu-Mei; Ren, Da-Lin; X Wilson, John

    2010-09-01

    The present study investigated the effect of folic acid supplementation on the Notch signaling pathway and cell proliferation in rat embryonic neural stem cells (NSCs). The NSCs were isolated from E14-16 rat brain and grown as neurospheres in serum-free suspension culture. Individual cultures were assigned to one of 3 treatment groups that differed according to the concentration of folic acid in the medium: Control (baseline folic acid concentration of 4 mg/l), low folic acid supplementation (4 mg/l above baseline, Folate-L) and high folic acid supplementation (40 mg/l above baseline, Folate-H). NSCs were identified by their expression of immunoreactive nestin and proliferating cells by incorporation of 5'bromo-2'deoxyuridine. Cell proliferation was also assessed by methyl thiazolyl tetrazolium assay. Notch signaling was analyzed by real-time PCR and western blot analyses of the expression of Notch1 and hairy and enhancer of split 5 (Hes5). Supplementation of NSCs with folic acid increased the mRNA and protein expression levels of Notch1 and Hes5. Folic acid supplementation also stimulated NSC proliferation dose-dependently. Embryonic NSCs respond to folic acid supplementation with increased Notch signaling and cell proliferation. This mechanism may mediate the effects of folic acid supplementation on neurogenesis in the embryonic nervous system.

  9. Transcription factor TLX1 controls retinoic acid signaling to ensure spleen development

    PubMed Central

    Lenti, Elisa; Farinello, Diego; Penkov, Dmitry; Castagnaro, Laura; Lavorgna, Giovanni; Wuputra, Kenly; Tjaden, Naomi E. Butler; Bernassola, Francesca; Caridi, Nicoletta; Wagner, Michael; Kozinc, Katja; Niederreither, Karen; Blasi, Francesco; Pasini, Diego; Trainor, Paul A.

    2016-01-01

    The molecular mechanisms that underlie spleen development and congenital asplenia, a condition linked to increased risk of overwhelming infections, remain largely unknown. The transcription factor TLX1 controls cell fate specification and organ expansion during spleen development, and Tlx1 deletion causes asplenia in mice. Deregulation of TLX1 expression has recently been proposed in the pathogenesis of congenital asplenia in patients carrying mutations of the gene-encoding transcription factor SF-1. Herein, we have shown that TLX1-dependent regulation of retinoic acid (RA) metabolism is critical for spleen organogenesis. In a murine model, loss of Tlx1 during formation of the splenic anlage increased RA signaling by regulating several genes involved in RA metabolism. Uncontrolled RA activity resulted in premature differentiation of mesenchymal cells and reduced vasculogenesis of the splenic primordium. Pharmacological inhibition of RA signaling in Tlx1-deficient animals partially rescued the spleen defect. Finally, spleen growth was impaired in mice lacking either cytochrome P450 26B1 (Cyp26b1), which results in excess RA, or retinol dehydrogenase 10 (Rdh10), which results in RA deficiency. Together, these findings establish TLX1 as a critical regulator of RA metabolism and provide mechanistic insights into the molecular determinants of human congenital asplenia. PMID:27214556

  10. NPM and BRG1 Mediate Transcriptional Resistance to Retinoic Acid in Acute Promyelocytic Leukemia.

    PubMed

    Nichol, Jessica N; Galbraith, Matthew D; Kleinman, Claudia L; Espinosa, Joaquín M; Miller, Wilson H

    2016-03-29

    Perturbation in the transcriptional control of genes driving differentiation is an established paradigm whereby oncogenic fusion proteins promote leukemia. From a retinoic acid (RA)-sensitive acute promyelocytic leukemia (APL) cell line, we derived an RA-resistant clone characterized by a block in transcription initiation, despite maintaining wild-type PML/RARA expression. We uncovered an aberrant interaction among PML/RARA, nucleophosmin (NPM), and topoisomerase II beta (TOP2B). Surprisingly, RA stimulation in these cells results in enhanced chromatin association of the nucleosome remodeler BRG1. Inhibition of NPM or TOP2B abrogated BRG1 recruitment. Furthermore, NPM inhibition and targeting BRG1 restored differentiation when combined with RA. Here, we demonstrate a role for NPM and BRG1 in obstructing RA differentiation and implicate chromatin remodeling in mediating therapeutic resistance in malignancies. NPM mutations are the most common genetic change in patients with acute leukemia (AML); therefore, our model may be applicable to other more common leukemias driven by NPM. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Activation of Notch1 inhibits medial edge epithelium apoptosis in all-trans retinoic acid-induced cleft palate in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yadong; Dong, Shiyi; Wang, Weicai

    Administration of all-trans retinoic acid (atRA) on E12.0 (embryonic day 12.0) leads to failure of medial edge epithelium (MEE) disappearance and cleft palate. However, the molecular mechanism underlying the relationship between atRA and MEE remains to be identified. In this study, atRA (200 mg/kg) administered by gavage induced a 75% incidence of cleft palate in C57BL/6 mice. Notch1 was up-regulated in MEE cells in the atRA-treated group compared with the controls at E15.0, together with reduced apoptosis and elevated proliferation. Next, we investigated the mechanisms underlying atRA, Notch1 and MEE degradation in palate organ culture. Our results revealed that down-regulation ofmore » Notch1 partially rescued the inhibition of atRA-induced palate fusion. Molecular analysis indicated that atRA increased the expression of Notch1 and Rbpj and decreased the expression of P21. In addition, depletion of Notch1 expression decreased the expression of Rbpj and increased the expression of P21. Moreover, inhibition of Rbpj expression partially reversed atRA-induced MEE persistence and increased P21 expression. These findings demonstrate that atRA inhibits MEE degradation, which in turn induces a cleft palate, possibly through the Notch1/RBPjk/P21 signaling pathway. - Highlights: • atRA exposure on E12.0 induced MEE persistence and cleft palate. • Notch1 was up-regulated in MEE cells in the atRA-treated embryos. • atRA inhibits MEE degradation, which in turn induces cleft palate, possibly through the Notch1/RBPjk/P21 signaling pathway.« less

  12. Regeneration of the gut requires retinoic acid in the budding ascidian Polyandrocarpa misakiensis.

    PubMed

    Kaneko, Nagamoto; Katsuyama, You; Kawamura, Kazuo; Fujiwara, Shigeki

    2010-06-01

    The protochordate ascidian Polyandrocarpa misakiensis has a striking ability to regenerate. When the posterior half of the adult body is amputated, the anterior half completely loses the esophagus, stomach and intestine. These organs are reconstituted in a week. Histological observation revealed that the regeneration involves transdifferentiation of the atrial epithelium near the cut surface. The morphological features of the gut primordium were similar to those observed in the developing bud of this species. Inhibitors of the synthesis of retinoic acid (RA) suppressed the formation of the gut. 13-cis RA rescued the regenerates from the inhibitor-induced hypoplasia. These results suggest that RA is required for the regeneration of the gut. A gene encoding the RA receptor (Pm-RAR) and its target gene, TRAMP, were expressed in and around the regenerating gut. Pm-RAR-specific and TRAMP-specific double-stranded RNA molecules inhibited the regeneration of the gut, indicating that the RA signal is mediated at least in part by Pm-RAR and TRAMP. These results suggested that RA triggers the transdifferentiation of the atrial epithelium into the gut in regenerating animals, as it does during asexual reproduction.

  13. Identification of heparin-binding EGF-like growth factor as a target in intercellular regulation of epidermal basal cell growth by suprabasal retinoic acid receptors.

    PubMed Central

    Xiao, J H; Feng, X; Di, W; Peng, Z H; Li, L A; Chambon, P; Voorhees, J J

    1999-01-01

    The role of retinoic acid receptors (RARs) in intercellular regulation of cell growth was assessed by targeting a dominant-negative RARalpha mutant (dnRARalpha) to differentiated suprabasal cells of mouse epidermis. dnRARalpha lacks transcriptional activation but not DNA-binding and receptor dimerization functions. Analysis of transgenic mice revealed that dnRARalpha dose-dependently impaired induction of basal cell proliferation and epidermal hyperplasia by all-trans RA (tRA). dnRARalpha formed heterodimers with endogenous retinoid X receptor-alpha (RXRalpha) over RA response elements in competition with remaining endogenous RARgamma-RXRalpha heterodimers, and dose-dependently impaired retinoid-dependent gene transcription. To identify genes regulated by retinoid receptors and involved in cell growth control, we analyzed the retinoid effects on expression of the epidermal growth factor (EGF) receptor, EGF, transforming growth factor-alpha, heparin-binding EGF-like growth factor (HB-EGF) and amphiregulin genes. In normal epidermis, tRA rapidly and selectively induced expression of HB-EGF but not the others. This induction occurred exclusively in suprabasal cells. In transgenic epidermis, dnRARalpha dose-dependently inhibited tRA induction of suprabasal HB-EGF and subsequent basal cell hyperproliferation. Together, our observations suggest that retinoid receptor heterodimers located in differentiated suprabasal cells mediate retinoid induction of HB-EGF, which in turn stimulates basal cell growth via intercellular signaling. These events may underlie retinoid action in epidermal regeneration during wound healing. PMID:10075925

  14. Investigation of the Hepatotoxic and Immunotoxic Effects of the Peroxisome Proliferator Perfluorodecanoic Acid

    DTIC Science & Technology

    1991-04-30

    np. A #127 6Investigation of the Hepatotoxic and OHIO Immunotoxic Effects of the Peroxisome AJE Proliferator Perfluorodecanoic Acid Donald E. Frazier...Investigation of the Hepatotoxic and Immunotoxic Effects G-AFOSR 90-0371 of the Peroxisome Proliferator Perfluorodecanoic Acid TA - 2312/A5 L AUTMOS) Donald E...involved evaluation of the immunotoxic and toxic effects of perfluorodecanoic acid (PFDA). Eight day exposure to PFDA caused thymic atrophy with marked

  15. Early molecular events during retinoic acid induced differentiation of neuromesodermal progenitors

    PubMed Central

    Cunningham, Thomas J.; Colas, Alexandre

    2016-01-01

    ABSTRACT Bipotent neuromesodermal progenitors (NMPs) residing in the caudal epiblast drive coordinated body axis extension by generating both posterior neuroectoderm and presomitic mesoderm. Retinoic acid (RA) is required for body axis extension, however the early molecular response to RA signaling is poorly defined, as is its relationship to NMP biology. As endogenous RA is first seen near the time when NMPs appear, we used WNT/FGF agonists to differentiate embryonic stem cells to NMPs which were then treated with a short 2-h pulse of 25 nM RA or 1 µM RA followed by RNA-seq transcriptome analysis. Differential expression analysis of this dataset indicated that treatment with 25 nM RA, but not 1 µM RA, provided physiologically relevant findings. The 25 nM RA dataset yielded a cohort of previously known caudal RA target genes including Fgf8 (repressed) and Sox2 (activated), plus novel early RA signaling targets with nearby conserved RA response elements. Importantly, validation of top-ranked genes in vivo using RA-deficient Raldh2−/− embryos identified novel examples of RA activation (Nkx1-2, Zfp503, Zfp703, Gbx2, Fgf15, Nt5e) or RA repression (Id1) of genes expressed in the NMP niche or progeny. These findings provide evidence for early instructive and permissive roles of RA in controlling differentiation of NMPs to neural and mesodermal lineages. PMID:27793834

  16. Synergistic induction of 1,25-dihydroxyvitamin D(3)- and all-trans-retinoic acid-induced differentiation of HL-60 leukemia cells by yomogin, a sesquiterpene lactone from Artemisia princeps.

    PubMed

    Kim, Seung Hyun; Kim, Tae Sung

    2002-10-01

    Many anti-inflammatory agents are known to significantly enhance the terminal differentiation of some cancer cells such as leukemia cells. In this study, the effect of yomogin, a eudesmane sesquiterpene lactone isolated from Artemisia princeps with anti-inflammatory activity, was investigated in human promyelocytic leukemia HL-60 cells. Yomogin by itself induced small increases in cell differentiation, with less than 19 % of the cells attaining a differentiated phenotype. Importantly, yomogin synergistically enhanced differentiation of HL-60 cells in a dose-dependent manner when combined with either 5 nM 1,25-dihydroxyvitamin D(3) [1,25-(OH)(2) D(3)] or 50 nM all- trans retinoic acid (all- trans RA). Cytofluorometric analysis and morphologic studies indicated that the combinations of yomogin and 1,25-(OH)(2) D(3) stimulated differentiation to monocytes whereas the combinations of yomogin and all- trans RA stimulated differentiation to granulocytes. These results suggest that yomogin may be useful in combination with 1,25-(OH)(2) D(3) or all- trans-RA in the differentiation therapy for myeloid leukemias. Abbreviations. 1,25-(OH)(2) D(3) :1,25-dihydroxyvitamin D(3) FITC:fluorescein isothiocyanate NBT:nitroblue tetrazolium RA:retinoic acid PE:phytoerythrin

  17. Prenatal retinoic acid upregulates connexin 43 (Cx43) gene expression in pulmonary hypoplasia in the nitrofen-induced congenital diaphragmatic hernia rat model.

    PubMed

    Ruttenstock, Elke Maria; Doi, Takashi; Dingemann, Jens; Puri, Prem

    2012-02-01

    Connexin 43 (Cx43), a major gap junction protein, is necessary for alveologenesis and plays an important role in the differentiation of type II to type I alveolar epithelial cells. Knockout mice of Cx43 display severe pulmonary hypoplasia (PH). Prenatal administration of retinoic acid (RA) is known to stimulate alveologenesis in nitrofen-induced PH. Recent studies revealed that retinoids upregulate Cx43 expression. We hypothesized that gene expression of Cx43 is downregulated during alveologenesis and that administration of RA upregulates Cx43 expression in the nitrofen-induced PH. Pregnant rats were exposed to olive oil or nitrofen on day 9 (D9) of gestation. Retinoic acid was given intraperitoneally on D18, D19, and D20. Fetal lungs were harvested on D18 and D21 and divided into control, nitrofen, control+RA (D21), and nitrofen+RA (D21). The Cx43 expression levels were determined using reverse transcription polymerase chain reaction and immunohistochemistry. On D18 and D21, Cx43 relative messenger RNA expression levels were significantly downregulated in nitrofen compared with those in the control group. On D21, expression levels of Cx43 were significantly upregulated in nitrofen+RA and control+RA compared with those in nitrofen group. Immunohistochemical studies confirmed these results. Downregulation of Cx43 expression may interfere with normal alveologenesis. Upregulation of Cx43 pulmonary gene expression after RA treatment may promote lung growth by stimulating alveologenesis in nitrofen-induced PH. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Genome-wide Analysis of RARβ Transcriptional Targets in Mouse Striatum Links Retinoic Acid Signaling with Huntington's Disease and Other Neurodegenerative Disorders.

    PubMed

    Niewiadomska-Cimicka, Anna; Krzyżosiak, Agnieszka; Ye, Tao; Podleśny-Drabiniok, Anna; Dembélé, Doulaye; Dollé, Pascal; Krężel, Wojciech

    2017-07-01

    Retinoic acid (RA) signaling through retinoic acid receptors (RARs), known for its multiple developmental functions, emerged more recently as an important regulator of adult brain physiology. How RAR-mediated regulation is achieved is poorly known, partly due to the paucity of information on critical target genes in the brain. Also, it is not clear how reduced RA signaling may contribute to pathophysiology of diverse neuropsychiatric disorders. We report the first genome-wide analysis of RAR transcriptional targets in the brain. Using chromatin immunoprecipitation followed by high-throughput sequencing and transcriptomic analysis of RARβ-null mutant mice, we identified genomic targets of RARβ in the striatum. Characterization of RARβ transcriptional targets in the mouse striatum points to mechanisms through which RAR may control brain functions and display neuroprotective activity. Namely, our data indicate with statistical significance (FDR 0.1) a strong contribution of RARβ in controlling neurotransmission, energy metabolism, and transcription, with a particular involvement of G-protein coupled receptor (p = 5.0e -5 ), cAMP (p = 4.5e -4 ), and calcium signaling (p = 3.4e -3 ). Many identified RARβ target genes related to these pathways have been implicated in Alzheimer's, Parkinson's, and Huntington's disease (HD), raising the possibility that compromised RA signaling in the striatum may be a mechanistic link explaining the similar affective and cognitive symptoms in these diseases. The RARβ transcriptional targets were particularly enriched for transcripts affected in HD. Using the R6/2 transgenic mouse model of HD, we show that partial sequestration of RARβ in huntingtin protein aggregates may account for reduced RA signaling reported in HD.

  19. Ethanol impairs activation of retinoic acid receptors in cerebellar granule cells in a rodent model of fetal alcohol spectrum disorders.

    PubMed

    Kumar, Ambrish; Singh, Chandra K; DiPette, Donald D; Singh, Ugra S

    2010-05-01

    Ethanol is the main addictive and neurotoxic constituent of alcohol. Ethanol exposure during embryonic development causes dysfunction of the central nervous system (CNS) and leads to fetal alcohol spectrum disorders. The cerebellum is one of the CNS regions that are particularly vulnerable to ethanol toxic effects. Retinoic acid (RA) is a physiologically active metabolite of vitamin A that is locally synthesized in the cerebellum. Studies have shown that RA is required for neuronal development, but it remains unknown if ethanol impairs RA signaling and thus induces neuronal malformations. In this study, we tested the hypothesis that ethanol impairs the expression and activation of RA receptors in cerebellum and in cerebellar granule cells. The cerebellum of ethanol unexposed and exposed pups was used to study the expression of retinoic acid receptors (RARs or RXRs) by immunohistochemistry and by Western blot analysis. We also studied the effect of ethanol on expression of RA receptors in the cerebellar granule cells. Activation of RA receptors (DNA-binding activities) in response to high-dose ethanol was determined by electrophoretic mobility shift and supershift assays. Findings from these studies demonstrated that ethanol exposure reduced the expression of RARalpha/gamma while it increased the expression of RXRalpha/gamma in the cerebellum and in cerebellar granule neurons. Immuno-histological studies further strengthened the expression pattern of RA receptors in response to ethanol. The DNA-binding activity of RARs was reduced, while DNA-binding activity of RXRs was increased in response to ethanol exposure. For the first time, our studies have demonstrated that high-dose ethanol affects the expression and activation of RA receptors, which could impair the signaling events and induce harmful effects on the survival and differentiation of cerebellar granule cells. Taken together, these findings could provide insight into the treatment options for brain defects

  20. Desalted Duck Egg White Peptides Promote Calcium Uptake and Modulate Bone Formation in the Retinoic Acid-Induced Bone Loss Rat and Caco-2 Cell Model.

    PubMed

    Hou, Tao; Liu, Yanshuang; Kolba, Nikolai; Guo, Danjun; He, Hui

    2017-05-12

    Desalted duck egg white peptides (DPs) have been proven to promote calcium uptake in Caco-2 cells and rats treated with a calcium-deficient diet. The retinoic acid-induced bone loss model was used to evaluate the effect of DPs on calcium absorption and bone formation. Three-month-old Wistar female rats were treated with 0.9% saline, DPs (800 mg/kg), or alendronate (5 mg/kg) for three weeks immediately after retinoic acid treatment (80 mg/kg) once daily for two weeks. The model group was significantly higher in serum bone alkaline phosphatase than the other three groups ( p < 0.05), but lower in calcium absorption rate, serum osteocalcin, bone weight index, bone calcium content, bone mineral density, and bone max load. After treatment with DPs or alendronate, the absorption rate increased and some serum and bone indices recovered. The morphology results indicated bone tissue form were ameliorated and numbers of osteoclasts decreased after supplementation with DPs or alendronate. The in vitro study showed that the transient receptor potential vanilloid 6 (TRPV6) calcium channel was the main transport pathway of both DPs and Val-Ser-Glu-Glu peptitde (VSEE), which was identified from DPs. Our results indicated that DPs could be a promising alternative to current therapeutic agents for bone loss because of the promotion of calcium uptake and regulation of bone formation.

  1. The retinoic acid signaling pathway regulates anterior/posterior patterning in the nerve cord and pharynx of amphioxus, a chordate lacking neural crest.

    PubMed

    Escriva, Hector; Holland, Nicholas D; Gronemeyer, Hinrich; Laudet, Vincent; Holland, Linda Z

    2002-06-01

    Amphioxus, the closest living invertebrate relative of the vertebrates, has a notochord, segmental axial musculature, pharyngeal gill slits and dorsal hollow nerve cord, but lacks neural crest. In amphioxus, as in vertebrates, exogenous retinoic acid (RA) posteriorizes the embryo. The mouth and gill slits never form, AmphiPax1, which is normally downregulated where gill slits form, remains upregulated and AmphiHox1 expression shifts anteriorly in the nerve cord. To dissect the role of RA signaling in patterning chordate embryos, we have cloned the single retinoic acid receptor (AmphiRAR), retinoid X receptor (AmphiRXR) and an orphan receptor (AmphiTR2/4) from amphioxus. AmphiTR2/4 inhibits AmphiRAR-AmphiRXR-mediated transactivation in the presence of RA by competing for DR5 or IR7 retinoic acid response elements (RAREs). The 5' untranslated region of AmphiTR2/4 contains an IR7 element, suggesting possible auto- and RA-regulation. The patterns of AmphiTR2/4 and AmphiRAR expression during embryogenesis are largely complementary: AmphiTR2/4 is strongly expressed in the cerebral vesicle (homologous to the diencephalon plus anterior midbrain), while AmphiRAR expression is high in the equivalent of the hindbrain and spinal cord. Similarly, while AmphiTR2/4 is expressed most strongly in the anterior and posterior thirds of the endoderm, the highest AmphiRAR expression is in the middle third. Expression of AmphiRAR is upregulated by exogenous RA and completely downregulated by the RA antagonist BMS009. Moreover, BMS009 expands the pharynx posteriorly; the first three gill slit primordia are elongated and shifted posteriorly, but do not penetrate, and additional, non-penetrating gill slit primordia are induced. Thus, in an organism without neural crest, initiation and penetration of gill slits appear to be separate events mediated by distinct levels of RA signaling in the pharyngeal endoderm. Although these compounds have little effect on levels of AmphiTR2/4 expression, RA

  2. The retinoic acid signaling pathway regulates anterior/posterior patterning in the nerve cord and pharynx of amphioxus, a chordate lacking neural crest

    NASA Technical Reports Server (NTRS)

    Escriva, Hector; Holland, Nicholas D.; Gronemeyer, Hinrich; Laudet, Vincent; Holland, Linda Z.

    2002-01-01

    Amphioxus, the closest living invertebrate relative of the vertebrates, has a notochord, segmental axial musculature, pharyngeal gill slits and dorsal hollow nerve cord, but lacks neural crest. In amphioxus, as in vertebrates, exogenous retinoic acid (RA) posteriorizes the embryo. The mouth and gill slits never form, AmphiPax1, which is normally downregulated where gill slits form, remains upregulated and AmphiHox1 expression shifts anteriorly in the nerve cord. To dissect the role of RA signaling in patterning chordate embryos, we have cloned the single retinoic acid receptor (AmphiRAR), retinoid X receptor (AmphiRXR) and an orphan receptor (AmphiTR2/4) from amphioxus. AmphiTR2/4 inhibits AmphiRAR-AmphiRXR-mediated transactivation in the presence of RA by competing for DR5 or IR7 retinoic acid response elements (RAREs). The 5' untranslated region of AmphiTR2/4 contains an IR7 element, suggesting possible auto- and RA-regulation. The patterns of AmphiTR2/4 and AmphiRAR expression during embryogenesis are largely complementary: AmphiTR2/4 is strongly expressed in the cerebral vesicle (homologous to the diencephalon plus anterior midbrain), while AmphiRAR expression is high in the equivalent of the hindbrain and spinal cord. Similarly, while AmphiTR2/4 is expressed most strongly in the anterior and posterior thirds of the endoderm, the highest AmphiRAR expression is in the middle third. Expression of AmphiRAR is upregulated by exogenous RA and completely downregulated by the RA antagonist BMS009. Moreover, BMS009 expands the pharynx posteriorly; the first three gill slit primordia are elongated and shifted posteriorly, but do not penetrate, and additional, non-penetrating gill slit primordia are induced. Thus, in an organism without neural crest, initiation and penetration of gill slits appear to be separate events mediated by distinct levels of RA signaling in the pharyngeal endoderm. Although these compounds have little effect on levels of AmphiTR2/4 expression, RA

  3. Regulatory CD8{sup +} T cells induced by exposure to all-trans retinoic acid and TGF-{beta} suppress autoimmune diabetes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishi, Minoru; Yasuda, Hisafumi, E-mail: yasuda@med.kobe-u.ac.jp; Abe, Yasuhisa

    Antigen-specific regulatory CD4{sup +} T cells have been described but there are few reports on regulatory CD8{sup +} T cells. We generated islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific regulatory CD8{sup +} T cells from 8.3-NOD transgenic mice. CD8{sup +} T cells from 8.3-NOD splenocytes were cultured with IGRP, splenic dendritic cells (SpDCs), TGF-{beta}, and all-trans retinoic acid (ATRA) for 5 days. CD8{sup +} T cells cultured with either IGRP alone or IGRP and SpDCs in the absence of TGF-{beta} and ATRA had low Foxp3{sup +} expression (1.7 {+-} 0.9% and 3.2 {+-} 4.5%, respectively). In contrast, CD8{sup +} T cellsmore » induced by exposure to IGRP, SpDCs, TGF-{beta}, and ATRA showed the highest expression of Foxp3{sup +} in IGRP-reactive CD8{sup +} T cells (36.1 {+-} 10.6%), which was approximately 40-fold increase compared with that before induction culture. CD25 expression on CD8{sup +} T cells cultured with IGRP, SpDCs, TGF-{beta}, and ATRA was only 7.42%, whereas CD103 expression was greater than 90%. These CD8{sup +} T cells suppressed the proliferation of diabetogenic CD8{sup +} T cells from 8.3-NOD splenocytes in vitro and completely prevented diabetes onset in NOD-scid mice in cotransfer experiments with diabetogenic splenocytes from NOD mice in vivo. Here we show that exposure to ATRA and TGF-{beta} induces CD8{sup +}Foxp3{sup +} T cells ex vivo, which suppress diabetogenic T cells in vitro and in vivo.« less

  4. Visualization of an endogenous retinoic acid gradient across embryonic development.

    PubMed

    Shimozono, Satoshi; Iimura, Tadahiro; Kitaguchi, Tetsuya; Higashijima, Shin-Ichi; Miyawaki, Atsushi

    2013-04-18

    In vertebrate development, the body plan is determined by primordial morphogen gradients that suffuse the embryo. Retinoic acid (RA) is an important morphogen involved in patterning the anterior-posterior axis of structures, including the hindbrain and paraxial mesoderm. RA diffuses over long distances, and its activity is spatially restricted by synthesizing and degrading enzymes. However, gradients of endogenous morphogens in live embryos have not been directly observed; indeed, their existence, distribution and requirement for correct patterning remain controversial. Here we report a family of genetically encoded indicators for RA that we have termed GEPRAs (genetically encoded probes for RA). Using the principle of fluorescence resonance energy transfer we engineered the ligand-binding domains of RA receptors to incorporate cyan-emitting and yellow-emitting fluorescent proteins as fluorescence resonance energy transfer donor and acceptor, respectively, for the reliable detection of ambient free RA. We created three GEPRAs with different affinities for RA, enabling the quantitative measurement of physiological RA concentrations. Live imaging of zebrafish embryos at the gastrula and somitogenesis stages revealed a linear concentration gradient of endogenous RA in a two-tailed source-sink arrangement across the embryo. Modelling of the observed linear RA gradient suggests that the rate of RA diffusion exceeds the spatiotemporal dynamics of embryogenesis, resulting in stability to perturbation. Furthermore, we used GEPRAs in combination with genetic and pharmacological perturbations to resolve competing hypotheses on the structure of the RA gradient during hindbrain formation and somitogenesis. Live imaging of endogenous concentration gradients across embryonic development will allow the precise assignment of molecular mechanisms to developmental dynamics and will accelerate the application of approaches based on morphogen gradients to tissue engineering and

  5. A RETINOIC ACID β2-RECEPTOR AGONIST EXERTS CARDIOPROTECTIVE EFFECTS.

    PubMed

    Marino, Alice; Sakamoto, Takuya; Tang, Xiao-Han; Gudas, Lorraine J; Levi, Roberto

    2018-06-15

    We previously discovered that oral treatment with AC261066, a synthetic selective agonist for the retinoic acid β2-receptor (RARβ2), decreases oxidative stress in the liver, pancreas, and kidney of mice fed a high-fat diet (HFD). Since hyperlipidemic states are causally associated with myocardial ischemia and oxidative stress, we have now investigated the effects of AC261066 in an ex-vivo ischemia/reperfusion (I/R) injury model in hearts of two prototypic dysmetabolic mice. We found that a 6-week oral treatment with AC261066 in both genetically hypercholesterolemic (ApoE-/-) and obese (HFD-fed) wild-type mice exerts protective effects when their hearts are subsequently subjected to I/R ex vivo in the absence of added drug. In ApoE-/- mice this cardioprotection ensued without hyperlipidemic changes. Cardioprotection consisted of an attenuation of infarct size, diminution of norepinephrine (NE) spillover, and alleviation of reperfusion arrhythmias. This cardioprotection was associated with a reduction in oxidative stress and mast cell (MC) degranulation. We suggest that the reduction in myocardial injury and adrenergic activation, and the antiarrhythmic effects result from decreased formation of oxygen radicals and toxic aldehydes known to elicit the release of MC-derived renin, promoting the activation of local renin-angiotensin system (RAS) leading to enhanced NE release and reperfusion arrhythmias. Because these beneficial effects of AC261066 occurred at the ex-vivo level following oral drug treatment, our data suggest that AC261066 could be viewed as a therapeutic means to reduce I/R injury of the heart, and potentially also considered in the treatment of other cardiovascular ailments such as chronic arrhythmias, and cardiac failure. The American Society for Pharmacology and Experimental Therapeutics.

  6. Peroxisome proliferator-activated receptor-β/δ inhibits human neuroblastoma cell tumorigenesis by inducing p53- and SOX2-mediated cell differentiation.

    PubMed

    Yao, Pei-Li; Chen, Liping; Dobrzański, Tomasz P; Zhu, Bokai; Kang, Boo-Hyon; Müller, Rolf; Gonzalez, Frank J; Peters, Jeffrey M

    2017-05-01

    Neuroblastoma is a common childhood cancer typically treated by inducing differentiation with retinoic acid (RA). Peroxisome proliferator-activated receptor-β/δ, (PPARβ/δ) is known to promote terminal differentiation of many cell types. In the present study, PPARβ/δ was over-expressed in three human neuroblastoma cell lines, NGP, SK-N-BE(2), and IMR-32, that exhibit high, medium, and low sensitivity, respectively, to retinoic acid-induced differentiation to determine if PPARβ/δ and retinoic acid receptors (RARs) could be jointly targeted to increase the efficacy of treatment. All-trans-RA (atRA) decreased expression of SRY (sex determining region Y)-box 2 (SOX2), a stem cell regulator and marker of de-differentiation, in NGP and SK-N-BE(2) cells with inactive or mutant tumor suppressor p53, respectively. However, atRA did not suppress SOX2 expression in IMR-32 cells carrying wild-type p53. Over-expression and/or ligand activation of PPARβ/δ reduced the average volume and weight of ectopic tumor xenografts from NGP, SK-N-BE(2), or IMR-32 cells compared to controls. Compared with that found with atRA, PPARβ/δ suppressed SOX2 expression in NGP and SK-N-BE(2) cells and ectopic xenografts, and was also effective in suppressing SOX2 expression in IMR-32 cells that exhibit higher p53 expression compared to the former cell lines. Combined, these observations demonstrate that activating or over-expressing PPARβ/δ induces cell differentiation through p53- and SOX2-dependent signaling pathways in neuroblastoma cells and tumors. This suggests that combinatorial activation of both RARα and PPARβ/δ may be suitable as an alternative therapeutic approach for RA-resistant neuroblastoma patients. Published [2016]. This article is a U.S. Government work and is in the public domain in the USA.

  7. Vitamin D3 and its synthetic analogue secocholestra-trien-1,2, 24-triol influence the metabolism and the isomerization of retinoic acid in human keratinocytes.

    PubMed

    Jugert, F K; Roos, T C; Notzon, I; Merk, H F

    1998-01-01

    Vitamin D and vitamin A acid share metabolic pathways thereby influencing their benefit as a given drug. Little is known concerning their metabolic interactions in epidermal cells. We compared the influence of 1,25-dihydroxycholecalciferol (vitamin D3 - VD3) and its synthetic analogue secocholestra-trien-1,3,24-triol (tacalcitol - TAC) in combination with different calcium concentrations (Ca) on the metabolism and the isomerization of retinoic acid (RA) in cultured primary human keratinocytes. After preincubation with 0.09, 0.6 and 1.2 mM Ca for 24 h, followed by the addition of 10(-6), 10(-8) or 10(-10) M VD3 or TAC, we added 10(-5) M 13-cis-RA (isotretinoin). 24 h later, concentrations of RA isomers and oxidated RA metabolites were measured by RP-HPLC. VD3 (10(-6) M) inhibited the isomerization of 13-cis-RA to all-trans-RA (tretinoin) and 9-cis-RA independently from the Ca concentration in the culture medium. 10(-6)-10(-10) M TAC equally inhibit the 4-hydroxylation of all-trans-RA significantly (12.8 vs. 6.7% of total RA), thereby reducing the amount of irreversible inactivated 4-oxo-all-trans-RA, leading to a higher persistence of all-trans-RA, the active hormone. Both VD3 and its analogue TAC influence the metabolism of RA, a well-known regulator of epithelial cell proliferation and differentiation processes, in two distinct ways. Further studies are necessary to test the hypothesis that the hormone activity of RA can be increased by concomitant treatment with VD3 which prolongs the persistence of 13-cis-RA, and TAC elevating the intracellular concentration of all-trans-RA.

  8. All-trans retinoic acid protects against arsenic-induced uterine toxicity in female Sprague-Dawley rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, A.; Chatterji, U., E-mail: urmichatterji@gmail.com

    2011-12-15

    Background and purpose: Arsenic exposure frequently leads to reproductive failures by disrupting the rat uterine histology, hormonal integrity and estrogen signaling components of the rat uterus, possibly by generating reactive oxygen species. All-trans retinoic acid (ATRA) was assessed as a prospective therapeutic agent for reversing reproductive disorders. Experimental approach: Rats exposed to arsenic for 28 days were allowed to either recover naturally or were treated simultaneously with ATRA for 28 days or treatment continued up to 56 days. Hematoxylin-eosin double staining was used to evaluate changes in the uterine histology. Serum gonadotropins and estradiol were assayed by ELISA. Expression ofmore » the estrogen receptor (ER{alpha}), an estrogen responsive gene vascular endothelial growth factor (VEGF), and cell cycle regulatory proteins, cyclin D1 and CDK4, was assessed by RT-PCR, immunohistochemistry and western blot analysis. Key results: ATRA ameliorated sodium arsenite-induced decrease in circulating estradiol and gonadotropin levels in a dose- and time-dependent manner, along with recovery of luminal epithelial cells and endometrial glands. Concomitant up regulation of ER{alpha}, VEGF, cyclin D1, CDK4 and Ki-67 was also observed to be more prominent for ATRA-treated rats as compared to the rats that were allowed to recover naturally for 56 days. Conclusions and implications: Collectively, the results reveal that ATRA reverses arsenic-induced disruption of the circulating levels of gonadotropins and estradiol, and degeneration of luminal epithelial cells and endometrial glands of the rat uterus, indicating resumption of their functional status. Since structural and functional maintenance of the pubertal uterus is under the influence of estradiol, ATRA consequently up regulated the estrogen receptor and resumed cellular proliferation, possibly by an antioxidant therapeutic approach against arsenic toxicity. Highlights: Black

  9. Metabolism of 13-cis-retinoic acid by a rat liver 9000g supernatant preparation.

    PubMed

    Vane, F M; Buggé, C J; Williams, T H

    1982-01-01

    The in vitro metabolites formed on incubation of 13-cis-retinoic acid (13-cis-RA, isotretinoin) with a 9000g rat liver supernatant system were isolated by HPLC and identified by their mass and NMR spectra. The major metabolic pathway was hydroxylation at C4 to give 4-hydroxy-13-cis-RA, which was rapidly oxidized to 4-oxo-13-cis-RA, the major isolated metabolite. Further metabolism of this 4-oxo metabolite led to two novel compounds, 2-hydroxy-4-oxo-13-cis-RA and 3-hydroxy-4-oxo-13-cis-RA. In addition, small amounts of 13-cis-RA and 4-oxo-13-cis-RA were enzymatically converted to their all-trans isomers. Support for these pathways was obtained by the metabolism of reference samples of 4-hydroxy-13-cis-RA, 4-oxo-13-cis-RA, all-trans-RA, and 4-oxo-all-trans-RA. The predominant formation of 4-oxo metabolites of 13-cis-RA in this in vitro rat system and the results from previously reported in vivo metabolism studies suggest that oxidation at C4 is a major metabolic pathway of 13-cis-RA in both rats and humans.

  10. A forward chemical screen in zebrafish identifies a retinoic acid derivative with receptor specificity.

    PubMed

    Das, Bhaskar C; McCartin, Kellie; Liu, Ting-Chun; Peterson, Randall T; Evans, Todd

    2010-04-02

    Retinoids regulate key developmental pathways throughout life, and have potential uses for differentiation therapy. It should be possible to identify novel retinoids by coupling new chemical reactions with screens using the zebrafish embryonic model. We synthesized novel retinoid analogues and derivatives by amide coupling, obtaining 80-92% yields. A small library of these compounds was screened for bioactivity in living zebrafish embryos. We found that several structurally related compounds significantly affect development. Distinct phenotypes are generated depending on time of exposure, and we characterize one compound (BT10) that produces specific cardiovascular defects when added 1 day post fertilization. When compared to retinoic acid (ATRA), BT10 shows similar but not identical changes in the expression pattern of embryonic genes that are known targets of the retinoid pathway. Reporter assays determined that BT10 interacts with all three RAR receptor sub-types, but has no activity for RXR receptors, at all concentrations tested. Our screen has identified a novel retinoid with specificity for retinoid receptors. This lead compound may be useful for manipulating components of retinoid signaling networks, and may be further derivatized for enhanced activity.

  11. Correlation of Hsp110 expression with caspase-3 and -9 during apoptosis induced by in vivo embryonic exposition to retinoic acid or irradiation in early mouse craniofacial development.

    PubMed

    Gashegu, J; Vanmuylder, N; Philippson, C; Choa-Duterre, M; Rooze, M; Louryan, S

    2006-05-01

    To analyze the expression and role of three proteins (HSP110, caspase-3 and caspase-9) during craniofacial development. Seven pregnant C57Bl/6J mice received, by force-feeding at gestation day 9 (E9), 80 mg/kg of all-trans retinoic acid mixed to sesame oil. Seven pregnant NMRI mice received two grays irradiation at the same gestation day. Control mice of both strains (seven mice for each strain) were not submitted to any treatment. Embryos were obtained at various stages after exposition (3, 6, 12 and 24 h), fixed, dehydrated and embedded. Coronal sections (5 microm) were made. Slide staining occurred alternatively using anti-Hsp110, anti-caspase-3 and anti-caspase-9 immunohistochemistry. Expression of HSP110, caspase-3 and caspase-9 was found in cells of well-known locations of programmed cell death. After retinoic acid exposure, expressions were increased especially in neural crest cells of mandibular and hyoid arches. Quantification of positive cells shows that caspase-9 and Hsp110 were expressed before caspase-3. After irradiation, the expression of the three proteins quickly increased with a maximum 3 h after irradiation. For all three models of apoptosis (physiological, retinoic-induced and irradiation-induced) HSP110 positive cells were more numerous than caspase-3 positive cells. Caspase-3 positive cells were more numerous than caspase-9 positive cells especially in mesectodermal irradiation-induced apoptotic cells. The findings show a potential function of HSP110 in apoptosis during embryo development. Caspase-3-expressing cells are more numerous than cells expressing caspase-9, especially irradiation-induced apoptotic neural crest cells. This suggests that other caspases, still to be identified, may activate caspase-3 in this model.

  12. Ethanol induced hepatic mitochondrial dysfunction is attenuated by all trans retinoic acid supplementation.

    PubMed

    Nair, Saritha S; Prathibha, P; Rejitha, S; Indira, M

    2015-08-15

    Alcoholics have reduced vitamin A levels in serum since vitamin A and ethanol share the same metabolic pathway. Vitamin A supplementation has an additive effect on ethanol induced toxicity. Hence in this study, we assessed the impact of supplementation of all trans retinoic acid (ATRA), an active metabolite of vitamin A on ethanol induced disruptive alterations in liver mitochondria. Male Sprague Dawley rats were grouped as follows: I: Control; II: Ethanol (4 g/kg b.wt./day); III: ATRA (100 μg/kg b.wt./day); and IV: Ethanol (4 g/kg b.wt./day)+ATRA (100 μg/kg b.wt./day). Duration of the experiment was 90 days, after which the animals were sacrificed for the study. The key enzymes of energy metabolism, reactive oxygen species, mitochondrial membrane potential and hepatic mRNA expressions of Bax, Bcl-2, c-fos and c-jun were assessed. Ethanol administration increased the reactive oxygen species generation in mitochondria. It also decreased the activities of the enzymes of citric acid cycle and oxidative phosphorylation. ATP content and mitochondrial membrane potential were decreased and cytosolic cytochrome c was increased consequently enhancing apoptosis. All these alterations were altered significantly on ATRA supplementation along with ethanol. These results were reinforced by our histopathological studies. ATRA supplementation to ethanol fed rats, led to reduction in oxidative stress, decreased calcium overload in the matrix and increased mitochondrial membrane potential, which might have altered the mitochondrial energy metabolism and elevated ATP production thereby reducing the apoptotic alterations. Hence ATRA supplementation seemed to be an effective intervention against alcohol induced mitochondrial dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Uptake of Retinoic Acid-Modified PMMA Nanoparticles in LX-2 and Liver Tissue by Raman Imaging and Intravital Microscopy.

    PubMed

    Yildirim, Turgay; Matthäus, Christian; Press, Adrian T; Schubert, Stephanie; Bauer, Michael; Popp, Jürgen; Schubert, Ulrich S

    2017-10-01

    A primary amino-functionalized methyl methacrylate-based statistical copolymer is covalently coupled with retinoic acid (RA) and a fluorescent dye (DY590) in order to investigate the feasibility of the RA containing polymeric nanoparticles for Raman imaging studies and to study the possible selectivity of RA for hepatic stellate cells via intravital microscopy. Cationic nanoparticles are prepared by utilizing the nanoprecipitation method using modified polymers. Raman studies show that RA functional nanoparticles can be detectable in all tested cells without any need of additional label. Moreover, intravital microscopy indicates that DY590 is eliminated through the hepatobiliary route but not if used as covalently attached tracing molecule for nanoparticles. However, it is a suitable probe for sensitive detection of polymeric nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells

    PubMed Central

    ZHAO, BING; HU, MENGCAI

    2013-01-01

    Gallic acid is a trihydroxybenzoic acid, also known as 3,4,5-trihydroxybenzoic acid, which is present in plants worldwide, including Chinese medicinal herbs. Gallic acid has been shown to have cytotoxic effects in certain cancer cells, without damaging normal cells. The objective of the present study was to determine whether gallic acid is able to inhibit human cervical cancer cell viability, proliferation and invasion and suppress cervical cancer cell-mediated angiogenesis. Treatment of HeLa and HTB-35 human cancer cells with gallic acid decreased cell viability in a dose-dependent manner. BrdU proliferation and tube formation assays indicated that gallic acid significantly decreased human cervical cancer cell proliferation and tube formation in human umbilical vein endothelial cells, respectively. Additionally, gallic acid decreased HeLa and HTB-35 cell invasion in vitro. Western blot analysis demonstrated that the expression of ADAM17, EGFR, p-Akt and p-Erk was suppressed by gallic acid in the HeLa and HTB-35 cell lines. These data indicate that the suppression of ADAM17 and the downregulation of the EGFR, Akt/p-Akt and Erk/p-Erk signaling pathways may contribute to the suppression of cancer progression by Gallic acid. Gallic acid may be a valuable candidate for the treatment of cervical cancer. PMID:24843386

  15. Thyroid hormone activation of retinoic acid synthesis in hypothalamic tanycytes.

    PubMed

    Stoney, Patrick N; Helfer, Gisela; Rodrigues, Diana; Morgan, Peter J; McCaffery, Peter

    2016-03-01

    Thyroid hormone (TH) is essential for adult brain function and its actions include several key roles in the hypothalamus. Although TH controls gene expression via specific TH receptors of the nuclear receptor class, surprisingly few genes have been demonstrated to be directly regulated by TH in the hypothalamus, or the adult brain as a whole. This study explored the rapid induction by TH of retinaldehyde dehydrogenase 1 (Raldh1), encoding a retinoic acid (RA)-synthesizing enzyme, as a gene specifically expressed in hypothalamic tanycytes, cells that mediate a number of actions of TH in the hypothalamus. The resulting increase in RA may then regulate gene expression via the RA receptors, also of the nuclear receptor class. In vivo exposure of the rat to TH led to a significant and rapid increase in hypothalamic Raldh1 within 4 hours. That this may lead to an in vivo increase in RA is suggested by the later induction by TH of the RA-responsive gene Cyp26b1. To explore the actions of RA in the hypothalamus as a potential mediator of TH control of gene regulation, an ex vivo hypothalamic rat slice culture method was developed in which the Raldh1-expressing tanycytes were maintained. These slice cultures confirmed that TH did not act on genes regulating energy balance but could induce Raldh1. RA has the potential to upregulate expression of genes involved in growth and appetite, Ghrh and Agrp. This regulation is acutely sensitive to epigenetic changes, as has been shown for TH action in vivo. These results indicate that sequential triggering of two nuclear receptor signalling systems has the capability to mediate some of the functions of TH in the hypothalamus. © 2015 Wiley Periodicals, Inc.

  16. Prostaglandin H synthase-catalyzed oxidation of all-trans- and 13-cis-retinoic acid to carbon-centered and peroxyl radical intermediates.

    PubMed

    Freyaldenhoven, M A; Lloyd, R V; Samokyszyn, V M

    1996-06-01

    Due to the importance of all-trans-retinoic acid (RA) in the treatment of various dermatological conditions and the wide distribution of prostaglandin H synthase (PGHS) in tissues, we have further examined the mechanisms involved in the hydroperoxide-dependent cooxidation of RA and its isomer, 13-cis-retinoic acid ((13Z)-RA), by PGHS. Hydroperoxide-dependent, PGHS-catalyzed oxidation of RA and (13Z)-RA was shown to form free radical adducts, using electron spin resonance (ESR) spin trapping techniques and 5-phenyl-4-penten-1-yl hydroperoxide (PPHP) or 13-hydroperoxy-9-cis-11-trans-octadecadienoic acid (13-OOH-18:2) as hydroperoxide substrates. Utilization of the spin trap alpha-phenyl-N-tert-butylnitrone (PBN) resulted in the detection of (13Z)-RA-PBN and RA-PBN adducts whose spectra were characterized by hyperfine coupling constants of aH = 4.16/aN = 15.69 and aH = 3.01/aN =15.92, respectively. Identical experiments under anaerobic conditions were carried out using the spin trap 2-methyl-2-nitrosopropane (NtB) which yielded nitroxide adducts whose spectra were characterized by a triplet of doublets with values of aH = 3.49/aN = 15.84 for the (13Z)-RA adduct and aH = 3.49/aN = 15.88 for the RA adduct. These results are indicative of secondary carbon-centered radical formation. We also used (+)-benzo[a]pyrene 7(S),8(S)-dihydrodiol ((+)-BP-7,8-diol) as a peroxyl radical probe. The results demonstrated the formation of (+)-BP-7,8-diol-derived tetrols, with the trans-anti tetrol representing the major oxidation product in systems undergoing PPHP-dependent, PGHS-catalyzed oxidation of (13Z)-RA or RA. These results are consistent with the formation of peroxyl radicals in these systems. In all experiments, the (13Z)-RA isomer appeared to be a better substrate for the enzyme compared to the all-trans isomer. Collectively these results provide further evidence to support the previously proposed mechanism for retinoid oxidation by PGHS involving the intermediacy of C4 carbon

  17. The effects of platelet activating factor and retinoic acid on the expression of ELAM-1 and ICAM-1 and the functions of neutrophils

    PubMed Central

    1995-01-01

    Preincubation of pulmonary microvascular endothelial cells (PMVECs) with platelet-activating factor (PAF) for 3.5 h increased the adhesion rate of polymorphonuclear leukocytes (PMNs) to PMVECs from 57.3% to 72.8% (p < 0.01). Preincubation of PMNs with PAF also increased PMN-PMVEC adhesion rate. All-trans retinoic acid (RA) blocked the adherence of untreated PMNs to PAF-pretreated PMVECs but not the adherence of PAF-pretreated PMNs to untreated PMVECs. PAF increased the expression of intercellular adhesion molecule-1 (ICAM-1) and E-selection (ELAM-1) on PMVECs, PMN chemotaxis to zymosan-activated serum and histamine, and PMN aggregation and the release of acid phosphatase from PMNs. Co-incubation of RA inhibited PAF-induced PMN aggregation, the release of acid phosphatase from PMNs, and PMN chemotaxis to zymosan-activated serum and histamine while the expression of ICAM-1 and ELAM-1 did not change. Our results suggest that RA can be used to ameliorate PMN-mediated inflammation. PMID:18475624

  18. Interaction of LY171883 and other peroxisome proliferators with fatty-acid-binding protein isolated from rat liver.

    PubMed Central

    Cannon, J R; Eacho, P I

    1991-01-01

    Fatty-acid-binding protein (FABP) is a 14 kDa protein found in hepatic cytosol which binds and transports fatty acids and other hydrophobic ligands throughout the cell. The purpose of this investigation was to determine whether LY171883, a leukotriene D4 antagonist, and other peroxisome proliferators bind to FABP and displace an endogenous fatty acid. [3H]Oleic acid was used to monitor the elution of FABP during chromatographic purification. [14C]LY171883 had a similar elution profile when substituted in the purification, indicating a common interaction with FABP. LY171883 and its structural analogue, LY189585, as well as the hypolipidaemic peroxisome proliferators clofibric acid, ciprofibrate, bezafibrate and WY14,643, displaced [3H]oleic acid binding to FABP. Analogues of LY171883 that do not induce peroxisome proliferation only weakly displaced oleate binding. [3H]Ly171883 bound directly to FABP with a Kd of 10.8 microM, compared with a Kd of 0.96 microM for [3H]oleate. LY171883 binding was inhibited by LY189585, clofibric acid, ciprofibrate and bezafibrate. These findings demonstrate that peroxisome proliferators, presumably due to their structural similarity to fatty acids, are able to bind to FABP and displace an endogenous ligand from its binding site. Interaction of peroxisome proliferators with FABP may be involved in perturbations of fatty acid metabolism caused by these agents as well as in the development of the pleiotropic response of peroxisome proliferation. Images Fig. 2. PMID:1747111

  19. HOXA9 is critical in the proliferation, differentiation, and malignancy of leukaemia cells both in vitro and in vivo.

    PubMed

    Chen, Shibing; Yu, Juan; Lv, Xin; Zhang, Lijuan

    2017-10-01

    Progress in the understanding of the molecular mechanism for acute myeloid leukaemia is of great significance to generate new potential targets for treatment. Recent studies showed that HOXA9, a homeodomain-containing transcription factor, is commonly deregulated in acute leukaemia. In this study, we elucidated the direct correlation between HoxA9 expression and progression of leukaemia using 2 different types of leukaemia cells HL-60 and MOLT-3. The HoxA9 expression level was decreased in leukaemia cells with the treatment of all-trans retinoic acid or arsenic trioxide (As 2 O 3 ). Downregulation of HoxA9 could impair the proliferation and promote the leukaemia cell death. HoxA9 silencing also potentiated the differentiation of leukaemia cells, and in vivo studies demonstrated that HoxA9 downregulation could interfere the tumour growth. Interestingly, HoxA9 silencing also led to the alteration in miRNA expression, mediating the promoting effect on the leukaemia cell differentiation. Therefore, this work provided a promising and potentially efficient target to leukaemia treatment, indicating that HoxA9 is likely to be an ideal candidate in the gene therapy against acute myeloid leukaemia. In this study, we elucidated the critical role of HoxA9 in the proliferation and differentiation of leukaemia cells both in vitro and in vivo. The effect of HoxA9 modulation was correlated with the clinical effect of all-trans retinoic acid and As 2 O 3 . Furthermore, HoxA9 also regulated the miRNA expression, controlling the leukaemia cell differentiation. Therefore, this work provided new insights into molecular mechanism underlying the leukaemia treatment, potentially putting forward a brand new target to the gene therapy against leukaemia. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Effect of graphene oxide on undifferentiated and retinoic acid-differentiated SH-SY5Y cells line

    NASA Astrophysics Data System (ADS)

    Lv, Min; Zhang, Yujie; Liang, Le; Wei, Min; Hu, Wenbing; Li, Xiaoming; Huang, Qing

    2012-06-01

    Graphene oxide (GO), has created an unprecedented opportunity for development and application in biology, due to its abundant functional groups and well water solubility. Recently, the potential toxicity of GO in the environment and in humans has garnered more and more attention. In this paper, we systematically studied the cytotoxicity of GO nanosheets via examining the effect of GO on the morphology, viability and differentiation of a human neuroblastoma SH-SY5Y cell line, which was an ideal model used to study neuronal disease in vitro. The results suggested that GO had no obvious cytotoxicity at low concentration (<80 μg mL-1) for 96 h, but the viability of cells exhibited dose- and time-dependent decreases at high concentration (>=80 μg mL-1). Moreover, GO did not induce apoptosis. Very interestingly, GO significantly enhanced the differentiation of SH-SY5Y induced-retinoic acid (RA) by evaluating neurite length and the expression of neuronal marker MAP2. These data provide a promising application for neurodegenerative diseases.

  1. Role of UDP-glucuronosyltransferase isoforms in 13-cis retinoic acid metabolism in humans.

    PubMed

    Rowbotham, Sophie E; Illingworth, Nicola A; Daly, Ann K; Veal, Gareth J; Boddy, Alan V

    2010-07-01

    13-cis Retinoic acid (13cisRA, isotretinoin) is an important drug in both dermatology, and the treatment of high-risk neuroblastoma. 13cisRA is known to undergo cytochrome P450-mediated oxidation, mainly by CYP2C8, but phase II metabolic pathways have not been characterized. In the present study, the glucuronidation activities of human liver (HLM) and intestinal microsomes (HIM), as well as a panel of human UDP-glucuronosyltransferases (UGTs) toward both 13cisRA and the 4-oxo metabolite, 4-oxo 13cisRA, were compared using high-performance liquid chromatography. Both HLM and, to a greater extent, HIM catalyzed the glucuronidation of 13cisRA and 4-oxo 13cisRA. Based on the structures of 13cisRA and 4-oxo 13cisRA, the glucuronides formed are conjugated at the terminal carboxylic acid. Further analysis revealed that UGT1A1, UGT1A3, UGT1A7, UGT1A8, and UGT1A9 were the major isoforms responsible for the glucuronidation of both substrates. For 13cisRA, a pronounced substrate inhibition was observed with individual UGTs and with HIM. UGT1A3 exhibited the highest rate of activity toward both substrates, and a high rate of activity toward 13cisRA glucuronidation was also observed with UGT1A7. However, for both substrates, K(m) values were above concentrations reported in clinical studies. Therefore, UGT1A9 is likely to be the most important enzyme in the glucuronidation of both substrates as this enzyme had the lowest K(m) and is expressed in both the intestine and at high levels in the liver.

  2. Restoring Retinoic Acid Attenuates Intestinal Inflammation and Tumorigenesis in APCMin/+ Mice.

    PubMed

    Penny, Hweixian Leong; Prestwood, Tyler R; Bhattacharya, Nupur; Sun, Fionna; Kenkel, Justin A; Davidson, Matthew G; Shen, Lei; Zuniga, Luis A; Seeley, E Scott; Pai, Reetesh; Choi, Okmi; Tolentino, Lorna; Wang, Jinshan; Napoli, Joseph L; Engleman, Edgar G

    2016-11-01

    Chronic intestinal inflammation accompanies familial adenomatous polyposis (FAP) and is a major risk factor for colorectal cancer in patients with this disease, but the cause of such inflammation is unknown. Because retinoic acid (RA) plays a critical role in maintaining immune homeostasis in the intestine, we hypothesized that altered RA metabolism contributes to inflammation and tumorigenesis in FAP. To assess this hypothesis, we analyzed RA metabolism in the intestines of patients with FAP as well as APC Min/+ mice, a model that recapitulates FAP in most respects. We also investigated the impact of intestinal RA repletion and depletion on tumorigenesis and inflammation in APC Min/+ mice. Tumors from both FAP patients and APC Min/+ mice displayed striking alterations in RA metabolism that resulted in reduced intestinal RA. APC Min/+ mice placed on a vitamin A-deficient diet exhibited further reductions in intestinal RA with concomitant increases in inflammation and tumor burden. Conversely, restoration of RA by pharmacologic blockade of the RA-catabolizing enzyme CYP26A1 attenuated inflammation and diminished tumor burden. To investigate the effect of RA deficiency on the gut immune system, we studied lamina propria dendritic cells (LPDC) because these cells play a central role in promoting tolerance. APC Min/+ LPDCs preferentially induced Th17 cells, but reverted to inducing Tregs following restoration of intestinal RA in vivo or direct treatment of LPDCs with RA in vitro These findings demonstrate the importance of intestinal RA deficiency in tumorigenesis and suggest that pharmacologic repletion of RA could reduce tumorigenesis in FAP patients. Cancer Immunol Res; 4(11); 917-26. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. Cell Identity Switching Regulated by Retinoic Acid Signaling Maintains Homogeneous Segments in the Hindbrain.

    PubMed

    Addison, Megan; Xu, Qiling; Cayuso, Jordi; Wilkinson, David G

    2018-06-04

    The patterning of tissues to form subdivisions with distinct and homogeneous regional identity is potentially disrupted by cell intermingling. Transplantation studies suggest that homogeneous segmental identity in the hindbrain is maintained by identity switching of cells that intermingle into another segment. We show that switching occurs during normal development and is mediated by feedback between segment identity and the retinoic acid degrading enzymes, cyp26b1 and cyp26c1. egr2, which specifies the segmental identity of rhombomeres r3 and r5, underlies the lower expression level of cyp26b1 and cyp26c1 in r3 and r5 compared with r2, r4, and r6. Consequently, r3 or r5 cells that intermingle into adjacent segments encounter cells with higher cyp26b1/c1 expression, which we find is required for downregulation of egr2b expression. Furthermore, egr2b expression is regulated in r2, r4, and r6 by non-autonomous mechanisms that depend upon the number of neighbors that express egr2b. These findings reveal that a community regulation of retinoid signaling maintains homogeneous segmental identity. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Heterodimers of Retinoic Acid Receptors and Thyroid Hormone Receptors Display Unique Combinatorial Regulatory Properties

    PubMed Central

    Lee, Sangho; Privalsky, Martin L.

    2009-01-01

    Nuclear receptors are ligand-regulated transcription factors that regulate key aspects of metazoan development, differentiation, and homeostasis. Nuclear receptors recognize target genes by binding to specific DNA recognition sequences, denoted hormone response elements (HREs). Many nuclear receptors can recognize HREs as either homodimers or heterodimers. Retinoid X receptors (RXRs), in particular, serve as important heterodimer partners for many other nuclear receptors, including thyroid hormone receptors (TRs), and RXR/TR heterodimers have been proposed to be the primary mediators of target gene regulation by T3 hormone. Here, we report that the retinoic acid receptors (RARs), a distinct class of nuclear receptors, are also efficient heterodimer partners for TRs. These RAR/TR heterodimers form with similar affinities as RXR/TR heterodimers on an assortment of consensus and natural HREs, and preferentially assemble with the RAR partner 5′ of the TR moiety. The corepressor and coactivator recruitment properties of these RAR/TR heterodimers and their transcriptional activities in vivo are distinct from those observed with the corresponding RXR heterodimers. Our studies indicate that RXRs are not unique in their ability to partner with TRs, and that RARs can also serve as robust heterodimer partners and combinatorial regulators of T3-modulated gene expression. PMID:15650024

  5. Silicone sheet containing all-trans retinoic acid and hydroquinone for the treatment of epidermal melanosis.

    PubMed

    Iida, Shoko; Takushima, Akihiko; Ohura, Norihiko; Sato, Suguru; Kurita, Masakazu; Harii, Kiyonori

    2013-08-01

    Although bleaching treatment using all-trans retinoic acid (RA) and hydroquinone (HQ) improves epidermal melanosis, the application of two medications and the irritant dermatitis induced by RA inconvenience patients. To overcome these problems, we developed a silicone sheet containing RA and HQ. To compare the efficacy of a silicone sheet containing RA and HQ with that of conventional bleaching treatment. Silicone sheets containing 1% RA and 5% HQ were applied at night during the bleaching phase of 4 weeks, followed by application of sheets containing 5% HQ during the healing phase of 4 weeks. Hemifacial epidermal melanosis, for which the sheets were applied, was compared with a contralateral face which was treated conventionally using RA and HQ. Twenty-four Japanese women who were enrolled in this study and followed up for more than 6 months were analyzed. RA/HQ sheets improved epidermal melanosis, as did the conventional bleaching method, but irritant dermatitis occurred less in patients treated using silicone sheets. RA/HQ sheets, which are easily applied to face skin, can improve epidermal melanosis to the same extent as conventional bleaching. © 2013 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  6. Connexin-dependent gap junction enhancement is involved in the synergistic effect of sorafenib and all-trans retinoic acid on HCC growth inhibition.

    PubMed

    Yang, Yan; Qin, Shu-Kui; Wu, Qiong; Wang, Zi-Shu; Zheng, Rong-Sheng; Tong, Xu-Hui; Liu, Hao; Tao, Liang; He, Xian-Di

    2014-02-01

    Increasing gap junction activity in tumor cells provides a target by which to enhance antineoplastic therapies. Previously, several naturally occurring agents, including all-trans retinoic acid (ATRA) have been demonstrated to increase gap junctional intercellular communication (GJIC) in a number of types of cancer cells. In the present study, we investigated in vitro whether ATRA modulates the response of human hepatocellular carcinoma (HCC) cells to sorafenib, the only proven oral drug for advanced HCC, and the underlying mechanisms. HepG2 and SMMC-7721 cells were treated with sorafenib and/or ATRA, and cell proliferation and apoptosis were analyzed; the role of GJIC was also explored. We found that ATRA, at non-toxic concentrations, enhanced sorafenib-induced growth inhibition in both HCC cell lines, and this effect was abolished by two GJIC inhibitors, 18-α-GA and oleamide. Whereas lower concentrations of sorafenib (5 µM) or ATRA (0.1 or 10 µM) alone modestly induced GJIC activity, the combination of sorafenib plus ATRA resulted in a strong enhancement of GJIC. However, the action paradigm differed in the HepG2 and SMMC-7721 cells, with the dominant effect of GJIC dependent on the cell-specific connexin increase in protein amounts and relocalization. RT-PCR assay further revealed a transcriptional modification of the key structural connexin in the two cell lines. Thus, a connexin-dependent gap junction enhancement may play a central role in ATRA plus sorafenib synergy in inhibiting HCC cell growth. Since both agents are available for human use, the combination treatment represents a future profitable strategy for the treatment of advanced HCC.

  7. Placental transfer and developmental effects of 9-cis retinoic acid in mice.

    PubMed

    Kochhar, D M; Jiang, H; Penner, J D; Heyman, R A

    1995-04-01

    9-cis retinoic acid (RA) is a naturally occurring isomer of all-trans RA. While both isomers can bind with high affinity and activate RA receptors, only 9-cis RA is the specific ligand for the retinoid X receptors. 9-cis RA has also been shown to be much more potent than all-trans RA in inducing digit duplication in the chick embryo wing bud. To gain further insight into its mechanisms, here we investigated the teratogenic activity in pregnant mice of 9-cis RA and compared it with those of all-trans RA and 13-cis RA. Using frequency and severity of limb reduction defects as well as palatal clefts in the resultant fetuses as indicators, we found that orally administered 9-cis RA was one-half as potent a teratogen as all-trans RA. That 9-cis RA was intrinsically less active than all-trans RA was deduced by comparing the inhibitory activities of the two retinoids in the limb bud mesenchymal cell micromass cultures using chondrogenesis as an end-point. Since placental transfer of cis isomers of RA is generally poor, we monitored the identities and amounts of retinoids in the embryo after administration of 9-cis RA to the mother. We found that 9-cis RA undergoes extensive metabolism and isomerization during absorption resulting in a number of metabolites in the maternal circulation within 30 min after administration. Although some of these metabolites remain to be identified, the most abundant RA isomers in the plasma coeluted with 13-cis RA.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. 13-cis Retinoic Acid Inhibits Development and Progression of Chronic Allograft Nephropathy

    PubMed Central

    Adams, Judith; Kiss, Eva; Arroyo, Ana B.V.; Bonrouhi, Mahnaz; Sun, Qiang; Li, Zhen; Gretz, Norbert; Schnitger, Anna; Zouboulis, Christos C.; Wiesel, Manfred; Wagner, Jürgen; Nelson, Peter J.; Gröne, Hermann-Josef

    2005-01-01

    Chronic allograft nephropathy is characterized by chronic inflammation and fibrosis. Because retinoids exhibit anti-proliferative, anti-inflammatory, and anti-fibrotic functions, the effects of low and high doses of 13-cis-retinoic acid (13cRA) were studied in a chronic Fisher344→Lewis transplantation model. In 13cRA animals, independent of dose (2 or 20 mg/kg body weight/day) and start (0 or 14 days after transplantation) of 13cRA administration, serum creatinine was significantly lower and chronic rejection damage was dramatically reduced, including subendothelial fibrosis of preglomerular vessels and chronic tubulointerstitial damage. The number of infiltrating mononuclear cells and their proliferative activity were significantly diminished. The mRNA expression of chemokines (MCP-1/CCL2, MIP-1α/CCL3, IP-10/CXCL10, RANTES/CCL5) and proteins associated with fibrosis (plasminogen activator inhibitor-1, transforming growth factor-β1, and collagens I and III) were strikingly lower in treated allografts. In vitro, activated peritoneal macrophages of 13cRA-treated rats showed a pronounced decrease in protein secretion of inflammatory cytokines (eg, tumor necrosis factor-α, interleukin-6). The suppression of the proinflammatory chemokine RANTES/CCL5 × 13cRA in fibroblasts could be mapped to a promoter module comprising IRF-1 and nuclear factor-κB binding elements, but direct binding of retinoid receptors to promoter elements could be excluded. In summary, 13cRA acted as a potent immunosuppressive and anti-fibrotic agent able to prevent and inhibit progression of chronic allograft nephropathy. PMID:15972972

  9. MicroRNA-31 negatively regulates peripherally derived regulatory T-cell generation by repressing retinoic acid-inducible protein 3

    PubMed Central

    Zhang, Lingyun; Ke, Fang; Liu, Zhaoyuan; Bai, Jing; Liu, Jinlin; Yan, Sha; Xu, Zhenyao; Lou, Fangzhou; Wang, Hong; Zhu, Huiyuan; Sun, Yang; Cai, Wei; Gao, Yuanyuan; Li, Qun; Yu, Xue-Zhong; Qian, Youcun; Hua, Zichun; Deng, Jiong; Li, Qi-Jing; Wang, Honglin

    2015-01-01

    Peripherally derived regulatory T (pTreg) cell generation requires T-cell receptor (TCR) signalling and the cytokines TGF-β1 and IL-2. Here we show that TCR signalling induces the microRNA miR-31, which negatively regulates pTreg-cell generation. miR-31 conditional deletion results in enhanced induction of pTreg cells, and decreased severity of experimental autoimmune encephalomyelitis (EAE). Unexpectedly, we identify Gprc5a as a direct target of miR-31. Gprc5a is known as retinoic acid-inducible protein 3, and its deficiency leads to impaired pTreg-cell induction and increased EAE severity. By generating miR-31 and Gprc5a double knockout mice, we show that miR-31 promotes the development of EAE through inhibiting Gprc5a. Thus, our data identify miR-31 and its target Gprc5a as critical regulators for pTreg-cell generation, suggesting a previously unrecognized epigenetic mechanism for dysfunctional Treg cells in autoimmune diseases. PMID:26165721

  10. Cloning retinoid and peroxisome proliferator-activated nuclear receptors of the Pacific oyster and in silico binding to environmental chemicals

    PubMed Central

    Vogeler, Susanne; Galloway, Tamara S.; Isupov, Michail

    2017-01-01

    Disruption of nuclear receptors, a transcription factor superfamily regulating gene expression in animals, is one proposed mechanism through which pollution causes effects in aquatic invertebrates. Environmental pollutants have the ability to interfere with the receptor’s functions through direct binding and inducing incorrect signals. Limited knowledge of invertebrate endocrinology and molecular regulatory mechanisms, however, impede the understanding of endocrine disruptive effects in many aquatic invertebrate species. Here, we isolated three nuclear receptors of the Pacific oyster, Crassostrea gigas: two isoforms of the retinoid X receptor, CgRXR-1 and CgRXR-2, a retinoic acid receptor ortholog CgRAR, and a peroxisome proliferator-activated receptor ortholog CgPPAR. Computer modelling of the receptors based on 3D crystal structures of human proteins was used to predict each receptor’s ability to bind to different ligands in silico. CgRXR showed high potential to bind and be activated by 9-cis retinoic acid and the organotin tributyltin (TBT). Computer modelling of CgRAR revealed six residues in the ligand binding domain, which prevent the successful interaction with natural and synthetic retinoid ligands. This supports an existing theory of loss of retinoid binding in molluscan RARs. Modelling of CgPPAR was less reliable due to high discrepancies in sequence to its human ortholog. Yet, there are suggestions of binding to TBT, but not to rosiglitazone. The effect of potential receptor ligands on early oyster development was assessed after 24h of chemical exposure. TBT oxide (0.2μg/l), all-trans retinoic acid (ATRA) (0.06 mg/L) and perfluorooctanoic acid (20 mg/L) showed high effects on development (>74% abnormal developed D-shelled larvae), while rosiglitazone (40 mg/L) showed no effect. The results are discussed in relation to a putative direct (TBT) disruption effect on nuclear receptors. The inability of direct binding of ATRA to CgRAR suggests either a

  11. DR-78, a novel Drosophila melanogaster genomic DNA fragment highly homologous to the DNA-binding domain of thyroid hormone-retinoic acid-vitamin D receptor subfamily.

    PubMed

    Martín-Blanco, E; Kornberg, T B

    1993-11-16

    Degenerate oligodeoxyribonucleotides were designed for both ends of the DNA-binding domain of members of the nuclear receptor superfamily. PCR amplified Drosophila melanogaster DNA was purified and cloned (DR plasmids). Genomic lambda DASH clones were identified at high stringency with an amplified DR-78 plasmid DNA and isolated. The partial sequence shows a very probable open reading frame which would encode a peptide highly homologous to members of the thyroid hormone-retinoic acid-vitamin D receptor subfamily. The fragment corresponds to a single copy gene and was mapped at position 78D of chromosome three by in situ hybridization.

  12. Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor

    PubMed Central

    Krall, Abigail S.; Xu, Shili; Graeber, Thomas G.; Braas, Daniel; Christofk, Heather R.

    2016-01-01

    Cellular amino acid uptake is critical for mTOR complex 1 (mTORC1) activation and cell proliferation. However, the regulation of amino acid uptake is not well-understood. Here we describe a role for asparagine as an amino acid exchange factor: intracellular asparagine exchanges with extracellular amino acids. Through asparagine synthetase knockdown and altering of media asparagine concentrations, we show that intracellular asparagine levels regulate uptake of amino acids, especially serine, arginine and histidine. Through its exchange factor role, asparagine regulates mTORC1 activity and protein synthesis. In addition, we show that asparagine regulation of serine uptake influences serine metabolism and nucleotide synthesis, suggesting that asparagine is involved in coordinating protein and nucleotide synthesis. Finally, we show that maintenance of intracellular asparagine levels is critical for cancer cell growth. Collectively, our results indicate that asparagine is an important regulator of cancer cell amino acid homeostasis, anabolic metabolism and proliferation. PMID:27126896

  13. Teratogenicity and transplacental pharmacokinetics of 13-cis-retinoic acid in rabbits.

    PubMed

    Eckhoff, C; Chari, S; Kromka, M; Staudner, H; Juhasz, L; Rudiger, H; Agnish, N

    1994-03-01

    No embryotoxic or teratogenic effects, considered to be treatment related, were observed in rabbits after daily oral doses of 3 mg/kg of 13-cis-retinoic acid (13-cis-RA) from Day 8 to Day 11 of gestation. In contrast, treatment with 15 mg/kg/day significantly increased the rate of fetal resorptions (22%) and 13 out of 68 surviving fetuses (16%) were malformed. Pharmacokinetic studies with both dosing regimens of 13-cis-RA in pregnant rabbits showed that on Day 11 of gestation, high concentrations of parent compound, 13-cis-RA, and its major metabolite, 13-cis-4-oxoRA, existed in maternal plasma. Much lower concentrations were found for all-trans-4-oxoRA and all-trans-RA. The area under the concentration-time curve (AUC) of all-trans-RA following the 15 mg/kg/day dosing regimen of 13-cis-RA was only 1.2% that of parent compound 13-cis-RA. At this dose, embryo levels of 13-cis-RA, 13-cis-4-oxoRA, and all-trans-4-oxoRA were 2.5-, 4.7-, and 3.6-fold higher by AUC comparison (24-hr period of Day 11) compared with the dose of 3 mg/kg. However, embryo levels of all-trans-RA were virtually identical at both doses and were, in fact, somewhat lower than endogenous concentrations measured in untreated rabbit embryos. In contrast to mice, where isomerization from 13-cis- to all-trans-RA was suggested to be crucial for the teratogenic action of 13-cis-RA, we found that the teratogenic action of 13-cis-RA (15 mg/kg/day) in rabbits is characterized by increased whole embryo concentrations of 13-cis-RA, 13-cis-4-oxoRA, and all-trans-4-oxoRA, but not of all-trans-RA.

  14. Gangrenous cheilitis associated with all-trans retinoic acid therapy for acute promyelocytic leukemia.

    PubMed

    Tanaka, Mariko; Fukushima, Noriyasu; Itamura, Hidekazu; Urata, Chisako; Yokoo, Masako; Ide, Masaru; Hisatomi, Takashi; Tomimasu, Rika; Sueoka, Eisaburo; Kimura, Shinya

    2010-01-01

    A 67-year-old Japanese woman who presented with erythema on the abdomen and pancytopenia was found to have acute promyelocytic leukemia (APL). A skin biopsy revealed invasion of APL cells. She was started on induction treatment with all-trans retinoic acid (ATRA) at 45 mg/m(2). On day 4, the leukemic cell number had increased to over 1.0 x 10(9)/L. Consequently, chemotherapy with idarubicin and cytarabine was initiated. On day 10, dryness of the lips appeared. The lower lip swelled and developed painful black eschars. A high fever was also present. Despite discontinuing ATRA on day 20 and administering antibiotics, an anti-fungal agent and valaciclovir, these signs did not improve. Histopathologically, the biopsied lip revealed infiltration of neutrophils and vasculitis. The patient was given ATRA on days 29 and 30 due to an increase in APL cell numbers, after which the gangrenous cheilitis extended over the whole lip. On day 49, the patient was started on re-induction treatment with arsenic trioxide. She achieved complete remission and the gangrenous cheilitis slowly healed over the following 8 weeks. Since the clinical features of the gangrenous cheilitis in this case were similar to those of ATRA-associated scrotal ulcers, it appears that activated neutrophils derived from differentiated APL cells may have caused the gangrenous cheilitis. Physicians should be alert to the development of gangrenous cheilitis during treatment with ATRA.

  15. Retinoic acid-induced alveolar cellular growth does not improve function after right pneumonectomy.

    PubMed

    Dane, D Merrill; Yan, Xiao; Tamhane, Rahul M; Johnson, Robert L; Estrera, Aaron S; Hogg, Deborah C; Hogg, Richard T; Hsia, Connie C W

    2004-03-01

    To determine whether all-trans retinoic acid (RA) treatment enhances lung function during compensatory lung growth in fully mature animals, adult male dogs (n = 4) received 2 mg x kg(-1) x day(-1) po RA 4 days/wk beginning the day after right pneumonectomy (R-PNX, 55-58% resection). Litter-matched male R-PNX controls (n = 4) received placebo. After 3 mo, transpulmonary pressure (TPP)-lung volume relationship, diffusing capacities for carbon monoxide and nitric oxide, cardiac output, and septal volume (V(tiss-RB)) were measured under anesthesia by a rebreathing technique at two lung volumes. Lung air and tissue volumes (V(air-CT) and V(tiss-CT)) were also measured from high-resolution computerized tomographic (CT) scans at a constant TPP. In RA-treated dogs compared with controls, TPP-lung volume relationships were similar. Diffusing capacities for carbon monoxide and nitric oxide were significantly impaired at a lower lung volume but similar at a high lung volume. Whereas V(tiss-RB) was significantly lower at both lung volumes in RA-treated animals, V(air-CT) and V(tiss-CT) were not different between groups; results suggest uneven distribution of ventilation consistent with distortion of alveolar geometry and/or altered small airway function induced by RA. We conclude that RA does not improve resting pulmonary function during the early months after R-PNX despite histological evidence of its action in enhancing alveolar cellular growth in the remaining lung.

  16. FGF and retinoic acid activity gradients control the timing of neural crest cell emigration in the trunk

    PubMed Central

    Martínez-Morales, Patricia L.; Diez del Corral, Ruth; Olivera-Martínez, Isabel; Quiroga, Alejandra C.; Das, Raman M.; Barbas, Julio A.; Storey, Kate G.

    2011-01-01

    Coordination between functionally related adjacent tissues is essential during development. For example, formation of trunk neural crest cells (NCCs) is highly influenced by the adjacent mesoderm, but the molecular mechanism involved is not well understood. As part of this mechanism, fibroblast growth factor (FGF) and retinoic acid (RA) mesodermal gradients control the onset of neurogenesis in the extending neural tube. In this paper, using gain- and loss-of-function experiments, we show that caudal FGF signaling prevents premature specification of NCCs and, consequently, premature epithelial–mesenchymal transition (EMT) to allow cell emigration. In contrast, rostrally generated RA promotes EMT of NCCs at somitic levels. Furthermore, we show that FGF and RA signaling control EMT in part through the modulation of elements of the bone morphogenetic protein and Wnt signaling pathways. These data establish a clear role for opposition of FGF and RA signaling in control of the timing of NCC EMT and emigration and, consequently, coordination of the development of the central and peripheral nervous system during vertebrate trunk elongation. PMID:21807879

  17. Chronic treatment with 13-cis-retinoic acid changes aggressive behaviours in the resident-intruder paradigm in rats.

    PubMed

    Trent, Simon; Drew, Cheney J G; Mitchell, Paul J; Bailey, Sarah J

    2009-12-01

    Retinoids, vitamin A related compounds, have an established role in the development of the nervous system and are increasingly recognized to play a role in adult brain function. The synthetic retinoid, 13-cis-retinoic acid (13-cis-RA, Roaccutane) is widely used to treat severe acne but has been linked to an increased risk of neuropsychiatric side effects, including depression. Here we report that chronic administration with 13-cis-RA (1 mg/kg i.p. daily, 7-14 days) in adult rats reduced aggression- and increased flight-related behaviours in the resident-intruder paradigm. However, in the forced swim, sucrose consumption and open field tests treatment for up to 6 weeks with 13-cis-RA did not modify behaviour in adult or juvenile animals. The behavioural change observed in the resident-intruder paradigm is directly opposite to that observed with chronic antidepressant administration. These findings indicate that when a suitably sensitive behavioural test is employed then chronic administration of 13-cis-RA in adult rats induces behavioural changes consistent with a pro-depressant action.

  18. Interleukin-33-Activated Islet-Resident Innate Lymphoid Cells Promote Insulin Secretion through Myeloid Cell Retinoic Acid Production.

    PubMed

    Dalmas, Elise; Lehmann, Frank M; Dror, Erez; Wueest, Stephan; Thienel, Constanze; Borsigova, Marcela; Stawiski, Marc; Traunecker, Emmanuel; Lucchini, Fabrizio C; Dapito, Dianne H; Kallert, Sandra M; Guigas, Bruno; Pattou, Francois; Kerr-Conte, Julie; Maechler, Pierre; Girard, Jean-Philippe; Konrad, Daniel; Wolfrum, Christian; Böni-Schnetzler, Marianne; Finke, Daniela; Donath, Marc Y

    2017-11-21

    Pancreatic-islet inflammation contributes to the failure of β cell insulin secretion during obesity and type 2 diabetes. However, little is known about the nature and function of resident immune cells in this context or in homeostasis. Here we show that interleukin (IL)-33 was produced by islet mesenchymal cells and enhanced by a diabetes milieu (glucose, IL-1β, and palmitate). IL-33 promoted β cell function through islet-resident group 2 innate lymphoid cells (ILC2s) that elicited retinoic acid (RA)-producing capacities in macrophages and dendritic cells via the secretion of IL-13 and colony-stimulating factor 2. In turn, local RA signaled to the β cells to increase insulin secretion. This IL-33-ILC2 axis was activated after acute β cell stress but was defective during chronic obesity. Accordingly, IL-33 injections rescued islet function in obese mice. Our findings provide evidence that an immunometabolic crosstalk between islet-derived IL-33, ILC2s, and myeloid cells fosters insulin secretion. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Ex vivo culture of human fetal gonads: manipulation of meiosis signalling by retinoic acid treatment disrupts testis development.

    PubMed

    Jørgensen, A; Nielsen, J E; Perlman, S; Lundvall, L; Mitchell, R T; Juul, A; Rajpert-De Meyts, E

    2015-10-01

    What are the effects of experimentally manipulating meiosis signalling by addition of retinoic acid (RA) in cultured human fetal gonads? RA-treatment accelerated meiotic entry in cultured fetal ovary samples, while addition of RA resulted in a dysgenetic gonadal phenotype in fetal testis cultures. One of the first manifestations of sex differentiation is the initiation of meiosis in fetal ovaries. In contrast, meiotic entry is actively prevented in the fetal testis at this developmental time-point. It has previously been shown that RA-treatment mediates initiation of meiosis in human fetal ovary ex vivo. This was a controlled ex vivo study of human fetal gonads treated with RA in 'hanging-drop' tissue cultures. The applied experimental set-up preserves germ cell-somatic niche interactions and the investigated outcomes included tissue integrity and morphology, cell proliferation and survival and the expression of markers of meiosis and sex differentiation. Tissue from 24 first trimester human fetuses was included in this study, all from elective terminations at gestational week (GW) 7-12. Gonads were cultured for 2 weeks with and without addition of 1 µM RA. Samples were subsequently formalin-fixed and investigated by immunohistochemistry and cell counting. Proteins investigated and quantified included; octamer-binding transcription factor 4 (OCT4), transcription factor AP-2 gamma (AP2γ) (embryonic germ cell markers), SRY (sex determining region Y)-box 9 (SOX9), anti-Müllerian hormone (AMH) (immature Sertoli cell markers), COUP transcription factor 2 (COUP-TFII) (marker of interstitial cells), forkhead box L2 (FOXL2) (granulosa cell marker), H2A histone family, member X (γH2AX) (meiosis marker), doublesex and mab-3 related transcription factor 1 (DMRT1) (meiosis regulator), cleaved poly ADP ribose polymerase (PARP), cleaved Caspase 3 (apoptosis markers) and Ki-67 antigen (Ki-67) (proliferation marker). Also, proliferation was determined using a 5'-bromo-2

  20. Inhibition of retinoic acid catabolism by minocycline: evidence for a novel mode of action?

    PubMed

    Regen, Francesca; Hildebrand, Martin; Le Bret, Nathalie; Herzog, Irmelin; Heuser, Isabella; Hellmann-Regen, Julian

    2015-06-01

    Retinoic acid (RA) represents an essential and highly potent endogenous retinoid with pronounced anti-inflammatory properties and potent anti-acne activity, and has recently been suggested to share a common anti-inflammatory mode of action with tetracycline antibiotics. We hypothesized that tetracyclines may directly interfere with RA homeostasis via inhibition of its local cytochrome P450 (CYP450)-mediated degradation, an essential component of tightly regulated skin RA homeostasis. To test this hypothesis, we performed controlled in vitro RA metabolism assays using rat skin microsomes and measured RA levels in a RA-synthesizing human keratinocyte cell line, both in the presence and in the absence of minocycline, a tetracycline popular in acne treatment. Interestingly, minocycline potently blocked RA degradation in rat skin microsomes, and strikingly enhanced RA levels in RA-synthesizing cell cultures, in a dose-dependent manner. These findings indicate a potential role for CYP-450-mediated RA metabolism in minocycline's pleiotropic mode of action and anti-acne efficacy and could account for the overlap between minocycline and RA-induced effects at the level of their molecular mode of action, but also clinically at the level of the rare side effect of pseudotumor cerebri, which is observed for both, RA and minocycline treatment. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Mesodermal retinoic acid signaling regulates endothelial cell coalescence in caudal pharyngeal arch artery vasculogenesis

    PubMed Central

    Li, Peng; Pashmforoush, Mohammad; Sucov, Henry M.

    2011-01-01

    Disruption of retinoic acid signaling causes a variety of pharyngeal arch artery and great vessel defects, as well as malformations in many other tissues, including those derived from the pharyngeal endoderm. Previous studies implied that arch artery defects in the context of defective RA signaling occur secondary to pharyngeal pouch segmentation defects, although this model has never been experimentally verified. In this study, we examined arch artery morphogenesis during mouse development, and the role of RA in this process. We show in normal embryos that the arch arteries form by vasculogenic differentiation of pharyngeal mesoderm. Using various genetic backgrounds and tissue-specific mutation approaches, we segregate pharyngeal arch artery and pharyngeal pouch defects in RA receptor mutants, and show that RA signal transduction only in pharyngeal mesoderm is required for arch artery formation. RA does not control pharyngeal mesodermal differentiation to endothelium, but instead promotes the aggregation of endothelial cells into nascent vessels. Expression of VE-cadherin was substantially reduced in RAR mutants, and this deficiency may underlie the arch artery defects. The consequences of disrupted mesodermal and endodermal RA signaling were restricted to the 4th and 6th arch arteries and to the 4th pharyngeal pouch, respectively, suggesting that different regulatory mechanisms control the formation of the more anterior arch arteries and pouches. PMID:22040871

  2. Curcumin synergistically increases effects of β-interferon and retinoic acid on breast cancer cells in vitro and in vivo by up-regulation of GRIM-19 through STAT3-dependent and STAT3-independent pathways.

    PubMed

    Ren, Min; Wang, Ying; Wu, Xiaodong; Ge, Suxia; Wang, Benzhong

    2017-03-01

    The study aimed to investigate the effects of combination treatment of curcumin and β-interferon (IFN-β)/retinoic acid (RA) on breast cancer cells, including cell viability, apoptosis and migration, and to determine the mechanisms related to GRIM-19 through STAT3-dependent and STAT3-independent pathways. The following groups were used for the in vitro experiment: control siRNA, GRIM-19 siRNA, IFN-β/RA and IFN-β/RA + curcumin. Cell viability is by the MTT method, cell apoptosis by flow cytometry and cell migration by wound healing experiment; GRIM-19, STAT3, survivin, Bcl-2, GADD153 and COX-2 expression was measured by Western blot. In vivo experiment, MCF-7 cells were subcutaneously injected into nude mice. GRIM-19 siRNA promoted MCF-7 cell proliferation and migration; inhibited cell apoptosis; and promoted the expression of STAT3, survivin, Bcl-2 and MMP-9. IFN-β/RA inhibited cell proliferation and migration; promoted cell apoptosis; up-regulated GRIM-19; and inhibited the expression of STAT3, survivin, Bcl-2 and MMP-9. Combination treatment of curcumin and IFN-β/RA had a stronger effect than that of the IFN-β/RA group. In addition, curcumin and IFN-β/RA combination inhibited the expression of COX-2 and up-regulated GADD153. Curcumin synergistically increases the effects of IFN-β/RA on breast cancer cells. The mechanism may be related to the up-regulation of GRIM-19 through STAT3-dependent and STAT3-independent pathways.

  3. 9-cis-retinoic acid represses estrogen-induced expression of the very low density apolipoprotein II gene.

    PubMed

    Schippers, I J; Kloppenburg, M; Snippe, L; Ab, G

    1994-11-01

    The chicken very low density apolipoprotein II (apoVLDLII) gene is estrogen-inducible and specifically expressed in liver. We examined the possible involvement of the retinoid X receptor (RXR) and its ligand 9-cis-retinoic acid (9-cis-RA) in the activation of the apoVLDLII promoter. We first concentrated on a potential RXR recognition site, which deviates at only one position from a perfect direct A/GGGTCA repeat spaced by one nucleotide (DR-1) and was earlier identified as a common HNF-4/COUP-TF recognition site. However, band shift analysis revealed that this imperfect DR-1 motif does not interact with RXR alpha-homodimers. In accordance with this observation we found that this regulatory element does not mediate transactivation through RXR alpha in the presence of 9-cis-RA. However, our experiments revealed another, unexpected, effect of 9-cis-RA. Instead of stimulating, 9-cis-RA attenuated estrogen-induced expression of transfected estrogen-responsive VLDL-CAT reporter plasmids. This repression appeared to take place through the main estrogen response element (ERE) of the gene. Importantly, 9-cis-RA also strongly repressed the estrogen-induced expression of the endogenous apoVLDLII gene in cultured chicken hepatoma cells.

  4. Developmental toxicity of perfluorononanoic acid is dependent on peroxisome proliferator activated receptor-alpha.

    EPA Science Inventory

    Perfluorononanoic acid (PFNA) is one of the predominant perfluoroalkyl acids in the environment and in tissues of humans and wildlife. PFNA strongly activates the mouse and human peroxisome proliferator-activated receptor-alpha (PPARα) in vitro and negatively impacts development ...

  5. Mechanism of retinoic acid-induced transcription: histone code, DNA oxidation and formation of chromatin loops.

    PubMed

    Zuchegna, Candida; Aceto, Fabiana; Bertoni, Alessandra; Romano, Antonella; Perillo, Bruno; Laccetti, Paolo; Gottesman, Max E; Avvedimento, Enrico V; Porcellini, Antonio

    2014-01-01

    Histone methylation changes and formation of chromatin loops involving enhancers, promoters and 3' end regions of genes have been variously associated with active transcription in eukaryotes. We have studied the effect of activation of the retinoic A receptor, at the RARE-promoter chromatin of CASP9 and CYP26A1 genes, 15 and 45 min following RA exposure, and we found that histone H3 lysines 4 and 9 are demethylated by the lysine-specific demethylase, LSD1 and by the JMJ-domain containing demethylase, D2A. The action of the oxidase (LSD1) and a dioxygenase (JMJD2A) in the presence of Fe++ elicits an oxidation wave that locally modifies the DNA and recruits the enzymes involved in base and nucleotide excision repair (BER and NER). These events are essential for the formation of chromatin loop(s) that juxtapose the RARE element with the 5' transcription start site and the 3' end of the genes. The RARE bound-receptor governs the 5' and 3' end selection and directs the productive transcription cycle of RNA polymerase. These data mechanistically link chromatin loops, histone methylation changes and localized DNA repair with transcription. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Clinical study of a retinoic acid-loaded microneedle patch for seborrheic keratosis or senile lentigo.

    PubMed

    Hirobe, Sachiko; Otsuka, Risa; Iioka, Hiroshi; Quan, Ying-Shu; Kamiyama, Fumio; Asada, Hideo; Okada, Naoki; Nakagawa, Shinsaku

    2017-01-01

    Pigmented lesions such as of seborrheic keratosis and senile lentigo, which are commonly seen on skin of people>50years of age, are considered unattractive and disfiguring because of their negative psychological impact. Drug therapy using all-trans retinoic acid (ATRA) is an attractive option for self-treatment at home. We have developed an ATRA-loaded microneedle patch (ATRA-MN) and confirmed the pharmacological effects of ATRA-MN application in mice. Here, we describe a clinical study to evaluate the safety and efficacy of ATRA-MN in subjects with seborrheic keratosis or senile lentigo. ATRA-MN was applied to the lesion site of each subject for 6h once per week for 4weeks. The skin irritation reaction was scored to assess adverse reactions and blood tests were performed to evaluate the presence of systemic adverse reactions. To assess the treatment effect using ATRA-MN, the desquamation and whitening ability of the investigational skin was observed. Desquamation of the stratum corneum was observed following four ATRA-MN applications at 1-week intervals, but ATRA-MN applications did not induce severe local or systemic adverse effects. These results showed that ATRA-MN treatment is promising as a safe and effective therapy for seborrheic keratosis and senile lentigo. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Association of serum retinoic acid with hepatic steatosis and liver injury in nonalcoholic fatty liver disease.

    PubMed

    Liu, Yan; Chen, Hongen; Wang, Jingjing; Zhou, Wenjing; Sun, Ruifang; Xia, Min

    2015-07-01

    Retinoic acid (RA), an active metabolite of vitamin A (retinol), has been implicated in the regulation of lipid metabolism and hepatic steatosis in animal models. However, the relation between RA and liver histology in patients with nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) is unknown. This study aimed at examining the association of RA with NAFLD and NASH in Chinese subjects. Serum RA concentration was determined by ELISA in 41 control subjects, 45 patients with NAFLD, and 38 patients with NASH. The associations of RA with adiposity, serum glucose, lipid profiles, and markers of liver damage were studied. Moreover, both mRNA and protein levels of retinoic X receptor α (RXRα) in the liver were analyzed in subjects with different degrees of hepatic steatosis. Serum RA concentrations in patients with NAFLD (1.42 ± 0.47 ng/mL) and NASH (1.14 ± 0.26 ng/mL) were significantly lower than those in control subjects (2.70 ± 0.52 ng/mL) (P < 0.01). Furthermore, serum RA concentrations were significantly different between subjects with normal glucose tolerance and those with type 2 diabetes in control [2.87 ± 0.52 (n = 28) vs. 2.32 ± 0.44 ng/mL (n = 13)], NAFLD [1.61 ± 0.37 (n = 29) vs. 1.28 ± 0.41 ng/mL (n = 16)], and NASH [1.35 ± 0.34 (n = 24) vs. 1.07 ± 0.29 ng/mL (n = 14)] groups. In human liver tissue, RXRα mRNA expression was inversely correlated with the exacerbation of hepatic steatosis. Both serum RA concentrations and RXRα mRNA levels were inversely correlated with intrahepatic triglyceride content (r = -0.700, P < 0.001, and r = -0.611, P = 0.002, respectively). Compared with grade 0 severity, the concentration of RXRα protein was lower in more severe grades in patients with NAFLD. These results show that circulating RA concentrations were lower in subjects with NAFLD and were associated with hepatic lipid metabolism and insulin resistance. This trial was registered at clinicaltrials.gov as NCT01940263. © 2015

  8. Simultaneous determination of all-trans and 13-cis retinoic acids and their 4-oxo metabolites by adsorption liquid chromatography after solid-phase extraction.

    PubMed

    Lefebvre, P; Agadir, A; Cornic, M; Gourmel, B; Hue, B; Dreux, C; Degos, L; Chomienne, C

    1995-04-07

    All-trans retinoic acid (all-trans RA), the active metabolite of vitamin A, has been demonstrated to be an efficient alternative to chemotherapy in the treatment of acute promyelocytic leukemia (APL), the AML3 subtype of the FAB cytological classification. Complete remission is obtained by inducing terminal granulocytic differentiation of the leukemic cells. To study all-trans RA pharmacokinetics in patients with APL, a rapid, precise and selective high-performance liquid chromatographic (HPLC) assay was developed. This method is easy and shows good repeatability (C.V. = 8.41-12.44%), reproducibility (C.V. = 9.19-14.73%), accuracy (C.V. = 3.5-11%) and sensitivity with a detection limit of 5 pmol/ml. The analysis is performed using normal-phase HPLC in an isocratic mode with UV detection after solid-phase extraction on octadecyl (C18) columns. The mobile phase is hexane-dichloromethane-dioxane (78:18:4, v/v) containing 1% acetic acid.

  9. Induction of apoptosis by N-(4-hydroxyphenyl)retinamide and its association with reactive oxygen species, nuclear retinoic acid receptors, and apoptosis-related genes in human prostate carcinoma cells.

    PubMed

    Sun, S Y; Yue, P; Lotan, R

    1999-03-01

    The synthetic retinoid N-(4-hydroxyphenyl)retinamide (4HPR) has been shown to induce apoptosis in various malignant cells including human prostate carcinoma cells (HPC). We examined several possible mechanisms by which 4HPR could induce apoptosis in HPC cells. 4HPR exhibited concentration- and time-dependent decrease in cell number both in androgen-dependent (LNCaP) and -independent (DU145 and PC-3) cells. The 4HPR concentrations causing 50% decrease in cell number in LNCaP, DU145, and PC-3 cultures were 0.9 +/- 0.16, 4.4 +/- 0.45, and 3.0 +/- 1.0 microM, respectively, indicating that LNCaP cells were more sensitive to 4HPR than the other cells. 4HPR-induced apoptosis in all three cell lines was evidenced by increased enzymatic labeling of DNA breaks and formation of a DNA ladder. 4HPR increased the level of reactive oxygen species, especially in LNCaP cells. 4HPR-induced apoptosis could be suppressed in LNCaP cells by antioxidant and in DU145 cells by a nuclear retinoic acid receptor-specific antagonist, suggesting the involvement of reactive oxygen species or retinoic acid receptors in mediating apoptosis induced by 4HPR in the different HPC cells. Furthermore, 4HPR modulated the expression levels of some apoptosis-related gene (p21, c-myc, and c-jun), which may also contribute to the induction of apoptosis by 4HPR in HPC cells.

  10. RAI14 (retinoic acid induced protein 14) is an F-actin regulator

    PubMed Central

    Qian, Xiaojing; Mruk, Dolores D.; Cheng, Yan-ho; Cheng, C. Yan

    2013-01-01

    RAI14 (retinoic acid induced protein 14) is an actin-binding protein first identified in the liver. In the testis, RAI14 is expressed by both Sertoli and germ cells in the seminiferous epithelium. Besides binding to actin in the testis, RAI14 is also a binding protein for palladin, an actin cross-linking and bundling protein. A recent report has shown that RAI14 displays stage-specific and spatiotemporal expression at the ES [ectoplasmic specialization, a testis-specific filamentous (F)-actin-rich adherens junction] in the seminiferous epithelium of adult rat testes during the epithelial cycle of spermatogenesis, illustrating its likely involvement in F-actin organization at the ES. Functional studies in which RAI14 was knocked down by RNAi in Sertoli cells in vitro and also in testicular cells in vivo have illustrated its role in conferring the integrity of actin filament bundles at the ES, perturbing the Sertoli cell tight junction (TJ)-pemeability barrier function in vitro, and also spermatid polarity and adhesion in vivo, thereby regulating spermatid transport at spermiation. Herein, we critically evaluate these earlier findings and also provide a likely hypothetic model based on the functional role of RAI14 at the ES, and how RAI14 is working with palladin and other actin regulatory proteins in the testis to regulate the transport of (1) spermatids and (2) preleptotene spermatocytes across the seminiferous epithelium and the blood-testis barrier (BTB), respectively, during spermatogenesis. This model should serve as a framework upon which functional experiments can be designed to better understand the biology of RAI14 and other actin-binding and regulatory proteins in the testis. PMID:23885305

  11. Docosahexaenoic acid (DHA) effects on proliferation and steroidogenesis of bovine granulosa cells.

    PubMed

    Maillard, Virginie; Desmarchais, Alice; Durcin, Maeva; Uzbekova, Svetlana; Elis, Sebastien

    2018-04-26

    Docosahexaenoic acid (DHA) is a n-3 polyunsaturated fatty acid (PUFA) belonging to a family of biologically active fatty acids (FA), which are known to have numerous health benefits. N-3 PUFAs affect reproduction in cattle, and notably directly affect follicular cells. In terms of reproduction in cattle, n-3 PUFA-enriched diets lead to increased follicle size or numbers. The objective of the present study was to analyze the effects of DHA (1, 10, 20 and 50 μM) on proliferation and steroidogenesis (parametric and/or non parametric (permutational) ANOVA) of bovine granulosa cells in vitro and mechanisms of action through protein expression (Kruskal-Wallis) and signaling pathways (non parametric ANOVA) and to investigate whether DHA could exert part of its action through the free fatty acid receptor 4 (FFAR4). DHA (10 and 50 μM) increased granulosa cell proliferation and DHA 10 μM led to a corresponding increase in proliferating cell nuclear antigen (PCNA) expression level. DHA also increased progesterone secretion at 1, 20 and 50 μM, and estradiol secretion at 1, 10 and 20 μM. Consistent increases in protein levels were also reported for the steroidogenic enzymes, cytochrome P450 family 11 subfamily A member 1 (CYP11A1) and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 (HSD3B1), and of the cholesterol transporter steroidogenic acute regulatory protein (StAR), which are necessary for production of progesterone or androstenedione. FFAR4 was expressed in all cellular types of bovine ovarian follicles, and in granulosa cells it was localized close to the cellular membrane. TUG-891 treatment (1 and 50 μM), a FFAR4 agonist, increased granulosa cell proliferation and MAPK14 phosphorylation in a similar way to that observed with DHA treatment. However, TUG-891 treatment (1, 10 and 50 μM) showed no effect on progesterone or estradiol secretion. These data show that DHA stimulated proliferation and steroidogenesis of bovine

  12. Retinoic Acid Is Essential for Th1 Cell Lineage Stability and Prevents Transition to a Th17 Cell Program

    PubMed Central

    Brown, Chrysothemis C.; Esterhazy, Daria; Sarde, Aurelien; London, Mariya; Pullabhatla, Venu; Osma-Garcia, Ines; al-Bader, Raya; Ortiz, Carla; Elgueta, Raul; Arno, Matthew; de Rinaldis, Emanuele; Mucida, Daniel; Lord, Graham M.; Noelle, Randolph J.

    2015-01-01

    Summary CD4+ T cells differentiate into phenotypically distinct T helper cells upon antigenic stimulation. Regulation of plasticity between these CD4+ T-cell lineages is critical for immune homeostasis and prevention of autoimmune disease. However, the factors that regulate lineage stability are largely unknown. Here we investigate a role for retinoic acid (RA) in the regulation of lineage stability using T helper 1 (Th1) cells, traditionally considered the most phenotypically stable Th subset. We found that RA, through its receptor RARα, sustains stable expression of Th1 lineage specifying genes, as well as repressing genes that instruct Th17-cell fate. RA signaling is essential for limiting Th1-cell conversion into Th17 effectors and for preventing pathogenic Th17 responses in vivo. Our study identifies RA-RARα as a key component of the regulatory network governing maintenance and plasticity of Th1-cell fate and defines an additional pathway for the development of Th17 cells. PMID:25769610

  13. Retinoid Pathway and Cancer Therapeutics

    PubMed Central

    Bushue, Nathan; Wan, Yu-Jui Yvonne

    2010-01-01

    The retinoids are a class of compounds that are structurally related to vitamin A. Retinoic acid, which is the active metabolite of retinol, regulates a wide range of biological processes including development, differentiation, proliferation, and apoptosis. Retinoids exert their effects through a variety of binding proteins including cellular retinol binding protein (CRBP), retinol-binding proteins (RBP), cellular retinoic acid-binding protein (CRABP), and nuclear receptors i.e. retinoic acid receptor (RAR) and retinoid × receptor (RXR). Because of the pleiotropic effects of retinoids, understanding the function of these binding proteins and nuclear receptors assists us in developing compounds that have specific effects. This review summarizes our current understanding of how retinoids are processed and act with the emphasis on the application of retinoids in cancer treatment and prevention. PMID:20654663

  14. Toxic responses of Sox2 gene in the regeneration of the earthworm Eisenia foetida exposed to Retnoic acid.

    PubMed

    Tao, Jing; Rong, Wei; Diao, Xiaoping; Zhou, Hailong

    2018-01-01

    Exogenous retinoic acid delays and disturbs the regeneration of Eisenia foetida. The stem cell pluripotency factor, Sox2, can play a crucial role in cell reprogramming and dedifferentiation. In this study, we compared the regeneration of Eisenia foetida in different segments after amputation and the effects of retinoic acid on the regeneration of different segments. The results showed that the regeneration speed of the head and tail was slightly faster than the middle part, and retinoic acid disrupted and delayed the regeneration of the earthworm. The qRT-PCR and Western blot analysis showed that the expression of the Sox2 gene and Sox2 protein was highest on the seventh day in different segments (p<0.05). After treatment with retinoic acid, the expression level of the Sox2 gene and Sox2 protein was significantly reduced (p<0.05). The results indicated that the regeneration of earthworms and the formation of blastema are related to the expression of the Sox2 gene and protein. Retinoic acid delays and interferes with the regeneration of the earthworm by affecting the expression levels of the Sox2 gene and protein. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia

    PubMed Central

    Shen, Zhi-Xiang; Shi, Zhan-Zhong; Fang, Jing; Gu, Bai-Wei; Li, Jun-Min; Zhu, Yong-Mei; Shi, Jing-Yi; Zheng, Pei-Zheng; Yan, Hua; Liu, Yuan-Fang; Chen, Yu; Shen, Yang; Wu, Wen; Tang, Wei; Waxman, Samuel; de Thé, Hugues; Wang, Zhen-Yi; Chen, Sai-Juan; Chen, Zhu

    2004-01-01

    Both all-trans retinoic acid (ATRA) and arsenic trioxide (As2O3) have proven to be very effective in obtaining high clinical complete remission (CR) rates in acute promyelocytic leukemia (APL), but they had not been used jointly in an integrated treatment protocol for remission induction or maintenance among newly diagnosed APL patients. In this study, 61 newly diagnosed APL subjects were randomized into three treatment groups, namely by ATRA, As2O3, and the combination of the two drugs. CR was determined by hematological analysis, tumor burden was examined with real-time quantitative RT-PCR of the PML-RARα (promyelocytic leukemia-retinoic acid receptor α) fusion transcripts, and side effects were evaluated by means of clinical examinations. Mechanisms possibly involved were also investigated with cellular and molecular biology methods. Although CR rates in three groups were all high (≥90%), the time to achieve CR differed significantly, with that of the combination group being the shortest one. Earlier recovery of platelet count was also found in this group. The disease burden as reflected by fold change of PML-RARα transcripts at CR decreased more significantly in combined therapy as compared with ATRA or As2O3 mono-therapy (P < 0.01). This difference persisted after consolidation (P < 0.05). Importantly, all 20 cases in the combination group remained in CR whereas 7 of 37 cases treated with mono-therapy relapsed (P < 0.05) after a follow-up of 8–30 months (median: 18 months). Synergism of ATRA and As2O3 on apoptosis and degradation of PML-RARα oncoprotein might provide a plausible explanation for superior efficacy of combinative therapy in clinic. In conclusion, the ATRA/As2O3 combination for remission/maintenance therapy of APL brings much better results than either of the two drugs used alone in terms of the quality of CR and the status of the disease-free survival. PMID:15044693

  16. Retinoic acid induces expression of SLP-76: expression with c-FMS enhances ERK activation and retinoic acid-induced differentiation/G0 arrest of HL-60 cells.

    PubMed

    Yen, Andrew; Varvayanis, Susi; Smith, James L; Lamkin, Thomas J

    2006-02-01

    Retinoic acid (RA) is known to cause MAPK signaling which propels G0 arrest and myeloid differentiation of HL-60 human myeloblastic leukemia cells. The present studies show that RA up-regulated expression of SLP-76 (Src-homology 2 domain-containing leukocyte-specific phospho-protein of 76 kDa), which became a prominent tyrosine-phosphorylated protein in RA-treated cells. SLP-76 is a known adaptor molecule associated with T-cell receptor and MAPK signaling. To characterize functional effects of SLP-76 expression in RA-induced differentiation and G0 arrest, HL-60 cells were stably transfected with SLP-76. Expression of SLP-76 had no discernable effect on RA-induced ERK activation, subsequent functional differentiation, or the rate of RA-induced G0 arrest. To determine the effects of SLP-76 in the presence of a RA-regulated receptor, SLP-76 was stably transfected into HL-60 cells already overexpressing the colony stimulating factor-1 (CSF-1) receptor, c-FMS, from a previous stable transfection. SLP-76 now enhanced RA-induced ERK activation, compared to parental c-FMS transfectants. It also enhanced RA-induced differentiation, evidenced by enhanced paxillin expression, inducible oxidative metabolism and superoxide production. RA-induced RB tumor suppressor protein hypophosphorylation was also enhanced, as was RA-induced G0 cell cycle arrest. A triple Y to F mutant SLP-76 known to be a dominant negative in T-cell receptor signaling failed to enhance RA-induced paxillin expression, but enhanced RA-induced ERK activation, differentiation and G0 arrest essentially as well as wild-type SLP-76. Thus, SLP-76 overexpression in the presence of c-FMS, a RA-induced receptor, had the effect of enhancing RA-induced cell differentiation. This is the first indication to our knowledge that RA induces the expression of an adapter molecule to facilitate induced differentiation via co-operation between c-FMS and SLP-76.

  17. Omega-3 free fatty acids attenuate insulin-promoted breast cancer cell proliferation.

    PubMed

    Guo, Yang; Zhu, Sheng-Long; Wu, Yi-Kuan; He, Zhao; Chen, Yong-Quan

    2017-06-01

    High insulin levels in obese people are considered as a risk factor to induce breast carcinogenesis. And consumption of fish oils which mainly contain omega-3 fatty acids is associated with a reduced risk of breast cancer. However, whether omega-3 free fatty acids (FFAs) modulate insulin signaling pathway to prevent breast cancer is poorly understood. The current study tested the hypothesis that omega-3 FFAs attenuate insulin-induced breast cancer cell proliferation and regulate insulin signaling pathway. We show here that omega-3 FFAs attenuate MCF-7 cell proliferation and Akt and Erk1/2 phosphorylation levels stimulated by insulin. Knockdown Shp2 by siRNA resulted in significantly elevated omega-3 FFAs-activated Akt phosphorylation but failed to change insulin-stimulated Akt and Erk1/2 phosphorylation. And viable cell number was not affected by either downregulation of Shp2 expression or Erk1/2 inhibitor U0126 treatment. These observations indicated that omega-3 FFAs attenuate insulin-promoted breast cancer cell proliferation and insulin-activated Akt phosphorylation. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Control of retinoic acid synthesis and FGF expression in the nasal pit is required to pattern the craniofacial skeleton.

    PubMed

    Song, Y; Hui, J N; Fu, K K; Richman, J M

    2004-12-15

    Endogenous retinoids are important for patterning many aspects of the embryo including the branchial arches and frontonasal region of the embryonic face. The nasal placodes express retinaldehyde dehydrogenase-3 (RALDH3) and thus retinoids from the placode are a potential patterning influence on the developing face. We have carried out experiments that have used Citral, a RALDH antagonist, to address the function of retinoid signaling from the nasal pit in a whole embryo model. When Citral-soaked beads were implanted into the nasal pit of stage 20 chicken embryos, the result was a specific loss of derivatives from the lateral nasal prominences. Providing exogenous retinoic acid residue development of the beak demonstrating that most Citral-induced defects were produced by the specific blocking of RA synthesis. The mechanism of Citral effects was a specific increase in programmed cell death on the lateral (lateral nasal prominence) but not the medial side (frontonasal mass) of the nasal pit. Gene expression studies were focused on the Bone Morphogenetic Protein (BMP) pathway, which has a well-established role in programmed cell death. Unexpectedly, blocking RA synthesis decreased rather than increased Msx1, Msx2, and Bmp4 expression. We also examined cell survival genes, the most relevant of which was Fgf8, which is expressed around the nasal pit and in the frontonasal mass. We found that Fgf8 was not initially expressed along the lateral side of the nasal pit at the start of our experiments, whereas it was expressed on the medial side. Citral prevented upregulation of Fgf8 along the lateral edge and this may have contributed to the specific increase in programmed cell death in the lateral nasal prominence. Consistent with this idea, exogenous FGF8 was able to prevent cell death, rescue most of the morphological defects and was able to prevent a decrease in retinoic acid receptorbeta (Rarbeta) expression caused by Citral. Together, our results demonstrate that

  19. Phenotypic Characterization of Retinoic Acid Differentiated SH-SY5Y Cells by Transcriptional Profiling

    PubMed Central

    Korecka, Joanna A.; van Kesteren, Ronald E.; Blaas, Eva; Spitzer, Sonia O.; Kamstra, Jorke H.; Smit, August B.; Swaab, Dick F.; Verhaagen, Joost; Bossers, Koen

    2013-01-01

    Multiple genetic and environmental factors play a role in the development and progression of Parkinson’s disease (PD). The main neuropathological hallmark of PD is the degeneration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta. To study genetic and molecular contributors to the disease process, there is a great need for readily accessible cells with prominent DAergic features that can be used for reproducible in vitro cellular screening. Here, we investigated the molecular phenotype of retinoic acid (RA) differentiated SH-SY5Y cells using genome wide transcriptional profiling combined with gene ontology, transcription factor and molecular pathway analysis. We demonstrated that RA induces a general neuronal differentiation program in SH-SY5Y cells and that these cells develop a predominantly mature DAergic-like neurotransmitter phenotype. This phenotype is characterized by increased dopamine levels together with a substantial suppression of other neurotransmitter phenotypes, such as those for noradrenaline, acetylcholine, glutamate, serotonin and histamine. In addition, we show that RA differentiated SH-SY5Y cells express the dopamine and noradrenalin neurotransmitter transporters that are responsible for uptake of MPP(+), a well known DAergic cell toxicant. MPP(+) treatment alters mitochondrial activity according to its proposed cytotoxic effect in DAergic neurons. Taken together, RA differentiated SH-SY5Y cells have a DAergic-like phenotype, and provide a good cellular screening tool to find novel genes or compounds that affect cytotoxic processes that are associated with PD. PMID:23724009

  20. Complementary effect of hydroquinone and retinoic acid on corneocyte desquamation with their combination use.

    PubMed

    Cheong, Kyung Ah; Lee, Tae Ryong; Lee, Ai-Young

    2017-08-01

    Retinoic acid (RA) enhances skin-lightening capabilities of hydroquinone (HQ), at least in part, by facilitating desquamation which leads to increase penetration of HQ. The desquamation also affects skin irritation levels. The mechanism of RA-induced desquamation, however, has not been completely explored and no such data has been available for HQ uses. To examine the role of HQ, RA, and their combination in the desquamation. Primary cultured normal human keratinocytes, which were treated with HQ and/or RA in presence or absence of serine-specific inhibitor Kazal type5 (SPINK5)/lympho-epithelial Kazal-type-related inhibitor (LEKTI) knockdown or recombinant human SPINK5/LEKTI, and biopsied skin samples applied with HQ or RA were examined. Expression levels of corneodesmosin (CDSN), desmocollin1 (DSC1), kallikrein5 (KLK5), KLK7, and SPINK5/LEKTI, and proteolysis activity against extracted human skin epidermal protein were determined using time-course real-time PCR, Western blotting, ELISA, and immunofluorescence staining. HQ increased but RA decreased the synthesis of CDSN and DSC1. HQ reduced corneodesmosome degradation by the upregulation of SPINK5/LEKTI, whereas RA showed opposite results without upregulation of SPINK5/LEKTI. The combination of HQ and RA was close to the sum of the individual components. HQ reduced corneocyte desquamation. However, RA enhanced desquamation. The combination induced more desquamation than HQ but less than RA. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  1. Direct activation of chordoblasts by retinoic acid is required for segmented centra mineralization during zebrafish spine development.

    PubMed

    Pogoda, Hans-Martin; Riedl-Quinkertz, Iris; Löhr, Heiko; Waxman, Joshua S; Dale, Rodney M; Topczewski, Jacek; Schulte-Merker, Stefan; Hammerschmidt, Matthias

    2018-05-08

    Zebrafish mutants with increased retinoic acid (RA) signaling due to the loss of the RA-inactivating enzyme Cyp26b1 develop a hyper-mineralized spine with gradually fusing vertebral body precursors (centra). However, the underlying cellular mechanisms remain incompletely understood. Here, we show that cells of the notochord epithelium named chordoblasts are sensitive to RA signaling. Chordoblasts are uniformly distributed along the anteroposterior axis and initially generate the continuous collagenous notochord sheath. However, subsequently and iteratively, subsets of these cells undergo further RA-dependent differentiation steps, acquire a stellate-like shape, downregulate expression of the collagen gene col2a1a , switch on cyp26b1 expression and trigger metameric sheath mineralization. This mineralization fails to appear upon chordoblast-specific cell ablation or RA signal transduction blockade. Together, our data reveal that, despite their different developmental origins, the activities and regulation of chordoblasts are very similar to those of osteoblasts, including their RA-induced transition from osteoid-producing cells to osteoid-mineralizing ones. Furthermore, our data point to a requirement for locally controlled RA activity within the chordoblast layer in order to generate the segmented vertebral column. © 2018. Published by The Company of Biologists Ltd.

  2. Retinoic Acid and Arsenic Synergize to Eradicate Leukemic Cells in a Mouse Model of Acute Promyelocytic Leukemia

    PubMed Central

    Lallemand-Breitenbach, Valérie; Guillemin, Marie-Claude; Janin, Anne; Daniel, Marie-Thérèse; Degos, Laurent; Kogan, Scott C.; Michael Bishop, J.; de Thé, Hugues

    1999-01-01

    In acute promyelocytic leukemia (APL) patients, retinoic acid (RA) triggers differentiation while arsenic trioxide (arsenic) induces both a partial differentiation and apoptosis. Although their mechanisms of action are believed to be distinct, these two drugs both induce the catabolism of the oncogenic promyelocytic leukemia (PML)/RARα fusion protein. While APL cell lines resistant to one agent are sensitive to the other, the benefit of combining RA and arsenic in cell culture is controversial, and thus far, no data are available in patients. Using syngenic grafts of leukemic blasts from PML/RARα transgenic mice as a model for APL, we demonstrate that arsenic induces apoptosis and modest differentiation, and prolongs mouse survival. Furthermore, combining arsenic with RA accelerates tumor regression through enhanced differentiation and apoptosis. Although RA or arsenic alone only prolongs survival two- to threefold, associating the two drugs leads to tumor clearance after a 9-mo relapse-free period. These studies establishing RA/arsenic synergy in vivo prompt the use of combined arsenic/RA treatments in APL patients and exemplify how mouse models of human leukemia can be used to design or optimize therapies. PMID:10190895

  3. Retinoic acid plays an evolutionarily conserved and biphasic role in pancreas development

    PubMed Central

    Huang, Wei; Wang, Guangliang; Delaspre, Fabien; Vitery, Maria del Carmen; Beer, Rebecca L.

    2015-01-01

    As the developing zebrafish pancreas matures, hormone-producing endocrine cells differentiate from pancreatic Notch-responsive cells (PNCs) that reside within the ducts. These new endocrine cells form small clusters known as secondary (2°) islets. We use the formation of 2° islets in the pancreatic tail of the larval zebrafish as a model of β-cell neogenesis. Pharmacological inhibition of Notch signaling leads to precocious endocrine differentiation and the early appearance of 2° islets in the tail of the pancreas. Following a chemical screen, we discovered that blocking the retinoic acid (RA)-signaling pathway also leads to the induction of 2° islets. Conversely, the addition of exogenous RA blocks the differentiation caused by Notch inhibition. In this report we characterize the interaction of these two pathways. We first verified that signaling via both RA and Notch ligands act together to regulate pancreatic progenitor differentiation. We produced a transgenic RA reporter, which demonstrated that PNCs directly respond to RA signaling through the canonical transcriptional pathway. Next, using a genetic lineage tracing approach, we demonstrated these progenitors produce endocrine cells following inhibition of RA signaling. Lastly, inhibition of RA signaling using a cell-type specific inducible cre/lox system revealed that RA signaling acts cell-autonomously in PNCs to regulate their differentiation. Importantly, the action of RA inhibition on endocrine formation is evolutionarily conserved, as shown by the differentiation of human embryonic stem cells in a model of human pancreas development. Together, these results revealed a biphasic function for RA in pancreatogenesis. As previously shown by others, RA initially plays an essential role during embryogenesis as it patterns the endoderm and specifies the pancreatic field. We reveal here that later in development RA is involved in negatively regulating the further differentiation of pancreatic progenitors and

  4. Suppressive role of OGT-mediated O-GlcNAcylation of BAP1 in retinoic acid signaling.

    PubMed

    Moon, Seungtae; Lee, Yong-Kyu; Lee, Sang-Wang; Um, Soo-Jong

    2017-10-07

    BRCA1-associated protein 1 (BAP1) has been implicated in diverse biological functions, including tumor suppression. However, its regulation via glycosylation and its role in embryonic stem (ES) cells are poorly defined. BAP1 was recently reported to interact with O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT). Here, we confirmed the physical interaction and investigated its functional significance. The O-GlcNAcylation of BAP1, which requires OGT, was examined in vivo and in vitro, and was proven using alloxan, an OGT inhibitor. OGT promoted the BAP1-induced repression of retinoic acid (RA)-induced RA receptor (RAR) activation. The repressive activity of BAP1 was relieved by alloxan but exacerbated by PUGNAc, an O-GlcNAcase (OGA) inhibitor. Finally, we addressed the role of O-GlcNAcylation in the RA-induced differentiation of murine ES cells. Alkaline phosphatase staining revealed the cooperation of RA and alloxan for impairing the pluripotency of ES cells. This cooperation was also observed by measuring the size of embryonic bodies and the expression of Sox2, a pluripotency marker. Overall, our data suggest that OGT-mediated O-GlcNAcylation of BAP1 prefers the maintenance of pluripotency, whereas its inhibition facilitates RA-induced differentiation in ES cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Retinol Promotes In Vitro Growth of Proximal Colon Organoids through a Retinoic Acid-Independent Mechanism

    PubMed Central

    Nibe, Yoichi; Akiyama, Shintaro; Matsumoto, Yuka; Nozaki, Kengo; Fukuda, Masayoshi; Hayashi, Ayumi; Mizutani, Tomohiro; Oshima, Shigeru; Watanabe, Mamoru; Nakamura, Tetsuya

    2016-01-01

    Retinol (ROL), the alcohol form of vitamin A, is known to control cell fate decision of various types of stem cells in the form of its active metabolite, retinoic acid (RA). However, little is known about whether ROL has regulatory effects on colonic stem cells. We examined in this study the effect of ROL on the growth of murine normal colonic cells cultured as organoids. As genes involved in RA synthesis from ROL were differentially expressed along the length of the colon, we tested the effect of ROL on proximal and distal colon organoids separately. We found that organoid forming efficiency and the expression level of Lgr5, a marker gene for colonic stem cells were significantly enhanced by ROL in the proximal colon organoids, but not in the distal ones. Interestingly, neither retinaldehyde (RAL), an intermediate product of the ROL-RA pathway, nor RA exhibited growth promoting effects on the proximal colon organoids, suggesting that ROL-dependent growth enhancement in organoids involves an RA-independent mechanism. This was confirmed by the observation that an inhibitor for RA-mediated gene transcription did not abrogate the effect of ROL on organoids. This novel role of ROL in stem cell maintenance in the proximal colon provides insights into the mechanism of region-specific regulation for colonic stem cell maintenance. PMID:27564706

  6. Dexamethasone, all trans retinoic acid and interferon alpha 2a in patients with refractory multiple myeloma.

    PubMed

    Avilés, A; Rosas, A; Huerta-Guzmán, J; Talavera, A; Cleto, S

    1999-02-01

    Few effective regimen are available for patients with refractory multiple myeloma (RMM). Generally, responses are scarce and disease free survival is very short. We developed a new therapeutic option in these patients using dexamethasone (40 mg/m2, i.v., daily, days 1 to 4), all-trans retinoic acid (45 mg/m2, po, daily, days 5 to 14) and interferon alpha 2a (9.0 MU, daily, subcutaneously, days 5 to 14). The treatment was administered every 21 days for 6 cycles. In a pilot study, 12 patients, heavily treated with chemotherapy and radiotherapy and in some cases with interferon, were allocated to receive the afore mentioned treatment. Response was observed in 10 patients (83%). With a median follow-up of 36.1 months (range 27 to 41), seven patients remain alive and disease-free without any treatment. Two patients were failures and have died due to tumor progression. Toxicity was mild and all patients received treatment according to the planned doses of drugs. The use of biological modifiers in combination with dexamethasone offer a safe and effective therapeutic option in patients with refractory multiple myeloma. More studies are warranted to define the role of this type of treatment.

  7. Ferulic acid inhibits proliferation and promotes apoptosis via blockage of PI3K/Akt pathway in osteosarcoma cell.

    PubMed

    Wang, Ting; Gong, Xia; Jiang, Rong; Li, Hongzhong; Du, Weimin; Kuang, Ge

    2016-01-01

    Ferulic acid, a ubiquitous phenolic acid abundant in corn, wheat and flax, has potent anti-tumor effect in various cancer cell lines. However, the anti-tumor effect of ferulic acid on osteosarcoma remains unclear. Therefore, we conduct current study to examine the effect of ferulic acid on osteosarcoma cells and explore the underlying mechanisms. In present study, ferulic acid inhibited proliferation and induced apoptosis in both 143B and MG63 osteosarcoma cells dose-dependently, indicated by MTT assay and Annexin V-FITC apoptosis detection. Additionally, ferulic acid induced G0/G1 phase arrest and down-regulated the expression of cell cycle-related protein, CDK 2, CDK 4, CDK 6, confirmed by flow cytometry assay and western blotting. Moreover, ferulic acid upregulated Bax, downregulated Bcl-2, and subsequently enhanced caspase-3 activity. More importantly, ferulic acid dose-dependently inhibited PI3K/Akt activation. Using adenoviruses expressing active Akt, the anti-proliferation and pro-apoptosis of ferulic acid were reverted. Our results demonstrated that ferulic acid might inhibit proliferation and induce apoptosis via inhibiting PI3K/Akt pathway in osteosarcoma cells. Ferulic acid is a novel therapeutic agent for osteosarcoma.

  8. Ferulic acid inhibits proliferation and promotes apoptosis via blockage of PI3K/Akt pathway in osteosarcoma cell

    PubMed Central

    Wang, Ting; Gong, Xia; Jiang, Rong; Li, Hongzhong; Du, Weimin; Kuang, Ge

    2016-01-01

    Ferulic acid, a ubiquitous phenolic acid abundant in corn, wheat and flax, has potent anti-tumor effect in various cancer cell lines. However, the anti-tumor effect of ferulic acid on osteosarcoma remains unclear. Therefore, we conduct current study to examine the effect of ferulic acid on osteosarcoma cells and explore the underlying mechanisms. In present study, ferulic acid inhibited proliferation and induced apoptosis in both 143B and MG63 osteosarcoma cells dose-dependently, indicated by MTT assay and Annexin V-FITC apoptosis detection. Additionally, ferulic acid induced G0/G1 phase arrest and down-regulated the expression of cell cycle-related protein, CDK 2, CDK 4, CDK 6, confirmed by flow cytometry assay and western blotting. Moreover, ferulic acid upregulated Bax, downregulated Bcl-2, and subsequently enhanced caspase-3 activity. More importantly, ferulic acid dose-dependently inhibited PI3K/Akt activation. Using adenoviruses expressing active Akt, the anti-proliferation and pro-apoptosis of ferulic acid were reverted. Our results demonstrated that ferulic acid might inhibit proliferation and induce apoptosis via inhibiting PI3K/Akt pathway in osteosarcoma cells. Ferulic acid is a novel therapeutic agent for osteosarcoma. PMID:27158383

  9. Retinoic Acid Metabolic Genes, Meiosis, and Gonadal Sex Differentiation in Zebrafish

    PubMed Central

    Rodríguez-Marí, Adriana; Cañestro, Cristian; BreMiller, Ruth A.; Catchen, Julian M.; Yan, Yi-Lin; Postlethwait, John H.

    2013-01-01

    To help understand the elusive mechanisms of zebrafish sex determination, we studied the genetic machinery regulating production and breakdown of retinoic acid (RA) during the onset of meiosis in gonadogenesis. Results uncovered unexpected mechanistic differences between zebrafish and mammals. Conserved synteny and expression analyses revealed that cyp26a1 in zebrafish and its paralog Cyp26b1 in tetrapods independently became the primary genes encoding enzymes available for gonadal RA-degradation, showing lineage-specific subfunctionalization of vertebrate genome duplication (VGD) paralogs. Experiments showed that zebrafish express aldh1a2, which encodes an RA-synthesizing enzyme, in the gonad rather than in the mesonephros as in mouse. Germ cells in bipotential gonads of all zebrafish analyzed were labeled by the early meiotic marker sycp3, suggesting that in zebrafish, the onset of meiosis is not sexually dimorphic as it is in mouse and is independent of Stra8, which is required in mouse but was lost in teleosts. Analysis of dead-end knockdown zebrafish depleted of germ cells revealed the germ cell-independent onset and maintenance of gonadal aldh1a2 and cyp26a1 expression. After meiosis initiated, somatic cell expression of cyp26a1 became sexually dimorphic: up-regulated in testes but not ovaries. Meiotic germ cells expressing the synaptonemal complex gene sycp3 occupied islands of somatic cells that lacked cyp26a1 expression, as predicted by the hypothesis that Cyp26a1 acts as a meiosis-inhibiting factor. Consistent with this hypothesis, females up-regulated cyp26a1 in oocytes that entered prophase-I meiotic arrest, and down-regulated cyp26a1 in oocytes resuming meiosis. Co-expression of cyp26a1 and the pluripotent germ cell stem cell marker pou5f1(oct4) in meiotically arrested oocytes was consistent with roles in mouse to promote germ cell survival and to prevent apoptosis, mechanisms that are central for tipping the sexual fate of gonads towards the female

  10. Nicotine-mediated suppression of the retinoic acid metabolizing enzyme CYP26A1 limits the oncogenic potential of breast cancer.

    PubMed

    Osanai, Makoto; Lee, Gang-Hong

    2011-06-01

    Tobacco smoke influences cancer development in tissues that are not directly exposed, and epidemiological studies have indicated that smoking women might experience decreased risk of breast cancer as a result of antiestrogenic effects. However, it remains to be clarified whether nicotine, one of the major addictive and best-investigated constituents of tobacco smoke, has any effect on breast cancer. Our recent work demonstrated that the retinoic acid metabolizing enzyme CYP26A1 enhances oncogenic and cell survival properties of breast carcinoma cells, implying a role as an oncogene. Here, we present evidence that nicotine significantly suppresses constitutive expression of CYP26A1, and that cells treated with nicotine exhibit enhanced sensitivity to apoptosis. In addition, nicotine may inhibit anchorage independent growth, cellular invasiveness and motility. These data show that nicotine can limit CYP26A1-mediated oncogenic characteristics, and suggest mechanisms by which nicotine might inhibit breast cancer development. © 2011 Japanese Cancer Association.

  11. Urinary retinoic acid receptor-β2 gene promoter methylation and hyaluronidase activity as noninvasive tests for diagnosis of bladder cancer.

    PubMed

    Eissa, Sanaa; Zohny, Samir F; Shehata, Hanan Hussien; Hegazy, Marwa G A; Salem, Ahmed M; Esmat, Mohamed

    2012-04-01

    We evaluated the significance of urinary retinoic acid receptor-β2 (RAR-β2) gene promoter methylation and hyaluronidase activity in comparison with voided urine cytology (VUC) in diagnosis of bladder cancer. This study included 100 patients diagnosed with bladder cancer, 65 patients with benign urological disorders and 51 healthy volunteers. Urine supernatant was used for determining hyaluronidase activity by zymography while urine sediment was used for cytology and detection of methylated RAR-β2 gene promoter by methylation specific nested PCR. The sensitivity and specificity were 53% and 90.5% for VUC, 65% and 89.7% for percent methylation fraction of RAR-β2 gene promoter, and 89% and 90.5% for hyaluronidase activity; combination of the three parameters increased sensitivity to 95%. A significant association was observed between investigated markers and advanced grade tumor. Combined use of RAR-β2 gene promoter methylation, hyaluronidase activity and VUC is promising non-invasive tool for bladder cancer detection. Copyright © 2012. Published by Elsevier Inc.

  12. Spatiotemporal manipulation of retinoic acid activity in zebrafish hindbrain development via photo-isomerization.

    PubMed

    Xu, Lijun; Feng, Zhiping; Sinha, Deepak; Ducos, Bertrand; Ebenstein, Yuval; Tadmor, Arbel D; Gauron, Carole; Le Saux, Thomas; Lin, Shuo; Weiss, Shimon; Vriz, Sophie; Jullien, Ludovic; Bensimon, David

    2012-09-01

    All-trans retinoic acid (RA) is a key player in many developmental pathways. Most methods used to study its effects in development involve continuous all-trans RA activation by incubation in a solution of all-trans RA or by implanting all-trans RA-soaked beads at desired locations in the embryo. Here we show that the UV-driven photo-isomerization of 13-cis RA to the trans-isomer (and vice versa) can be used to non-invasively and quantitatively control the concentration of all-trans RA in a developing embryo in time and space. This facilitates the global or local perturbation of developmental pathways with a pulse of all-trans RA of known concentration or its inactivation by UV illumination. In zebrafish embryos in which endogenous synthesis of all-trans RA is impaired, incubation for as little as 5 minutes in 1 nM all-trans RA (a pulse) or 5 nM 13-cis RA followed by 1-minute UV illumination is sufficient to rescue the development of the hindbrain if performed no later than bud stage. However, if subsequent to this all-trans RA pulse the embryo is illuminated (no later than bud stage) for 1 minute with UV light (to isomerize, i.e. deactivate, all-trans RA), the rescue of hindbrain development is impaired. This suggests that all-trans RA is sequestered in embryos that have been transiently exposed to it. Using 13-cis RA isomerization with UV light, we further show that local illumination at bud stage of the head region (but not the tail) is sufficient to rescue hindbrain formation in embryos whose all-trans RA synthetic pathway has been impaired.

  13. Curcumin and docosahexaenoic acid block insulin-induced colon carcinoma cell proliferation.

    PubMed

    Fenton, Jenifer I; McCaskey, Sarah J

    2013-03-01

    Diets high in fish and curcumin are associated with a decreased risk of CRC. Insulin resistance and obesity are associated with increased CRC risk and higher reoccurrence rates. We utilized cell culture to determine if dietary compounds could reduce insulin-induced cell proliferation comparing the response in normal and metastatic colon epithelial cells. We treated model normal murine colon epithelial cells (YAMC) and adenocarcinoma cells (MC38) with docosahexaenoic acid (DHA) or curcumin alone and then co-treatments of the diet-derived compound and insulin were combined. Cell proliferation was stimulated with insulin (1 ug/mL) to model insulin resistance in obesity. Despite the presence of insulin, proliferation was reduced in the MC38 cells treated with 10 μM curcumin (p<0.001) and 50 μM DHA (p<0.001). Insulin stimulated MAPK and MEK phosphorylation was inhibited by DHA and curcumin in MC38 cancer cells. Here we show that curcumin and DHA can block insulin-induced colon cancer cell proliferation in vitro via a MEK mediated mechanism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Progressive loss of sensitivity to growth control by retinoic acid and transforming growth factor-beta at late stages of human papillomavirus type 16-initiated transformation of human keratinocytes.

    PubMed

    Creek, K E; Geslani, G; Batova, A; Pirisi, L

    1995-01-01

    Retinoids (vitamin A and its natural and synthetic derivatives) have shown potential as chemopreventive agents, and diets poor in vitamin A and/or its precursor beta-carotene have been linked to an increased risk of cancer at several sites including the cervix. Human papillomavirus (HPV) plays an important role in the etiology of cervical cancer. We have developed an in vitro model of cancer progression using human keratinocytes (HKc) immortalized by HPV16 DNA (HKc/HPV16). Although immortal, early passage HKc/HPV16, like normal HKc, require epidermal growth factor (EGF) and bovine pituitary extract (BPE) for proliferation and undergo terminal differentiation in response to serum and calcium. However, following prolonged culture, growth factor independent HKc/HPV16 lines that no longer require EGF and BPE can be selected (HKc/GFI). Further selection of HKc/GFI produces lines that are resistant to serum- and calcium- induced terminal differentiation (HKc/DR). HKc/DR, but not early passage HKc/HPV16, are susceptible to malignant conversion following transfection with viral Harvey ras or Herpes simplex virus type II DNA. We have investigated the sensitivity of low to high passage HKc/HPV16 and HKc/GFI to growth control by all-trans-retinoic acid (RA, an active metabolite of vitamin A). Early passage HKc/HPV16 are very sensitive to growth inhibition by RA, and in these cells RA decreases the expression of the HPV16 oncogenes E6 and E7. However, as the cells progress in culture they lose their sensitivity to RA. Growth inhibition by RA may be mediated through the cytokine transforming growth factor-beta (TGF-beta), a potent inhibitor of epithelial cell proliferation. RA treatment of HKc/HPV16 and HKc/GFI results in a dose-and time-dependent induction (maximal of 3-fold) in secreted levels of TGF-beta. Also, Northern blot analysis of mRNA isolated from HKc/HPV16 demonstrated that RA treatment induced TGF-beta 1 and TGF-beta 2 expression about 3- and 50-fold, respectively

  15. Retinoic acid signaling acts via Hox1 to establish the posterior limit of the pharynx in the chordate amphioxus.

    PubMed

    Schubert, Michael; Yu, Jr-Kai; Holland, Nicholas D; Escriva, Hector; Laudet, Vincent; Holland, Linda Z

    2005-01-01

    In the invertebrate chordate amphioxus, as in vertebrates, retinoic acid (RA) specifies position along the anterior/posterior axis with elevated RA signaling in the middle third of the endoderm setting the posterior limit of the pharynx. Here we show that AmphiHox1 is also expressed in the middle third of the developing amphioxus endoderm and is activated by RA signaling. Knockdown of AmphiHox1 function with an antisense morpholino oligonucleotide shows that AmphiHox1 mediates the role of RA signaling in setting the posterior limit of the pharynx by repressing expression of pharyngeal markers in the posterior foregut/midgut endoderm. The spatiotemporal expression of these endodermal genes in embryos treated with RA or the RA antagonist BMS009 indicates that Pax1/9, Pitx and Notch are probably more upstream than Otx and Nodal in the hierarchy of genes repressed by RA signaling. This work highlights the potential of amphioxus, a genomically simple, vertebrate-like invertebrate chordate, as a paradigm for understanding gene hierarchies similar to the more complex ones of vertebrates.

  16. Mechanism underlying the suppressor activity of retinoic acid on IL4-induced IgE synthesis and its physiological implication.

    PubMed

    Seo, Goo-Young; Lee, Jeong-Min; Jang, Young-Saeng; Kang, Seung Goo; Yoon, Sung-Il; Ko, Hyun-Jeong; Lee, Geun-Shik; Park, Seok-Rae; Nagler, Cathryn R; Kim, Pyeung-Hyeun

    2017-12-01

    The present study extends an earlier report that retinoic acid (RA) down-regulates IgE Ab synthesis in vitro. Here, we show the suppressive activity of RA on IgE production in vivo and its underlying mechanisms. We found that RA down-regulated IgE class switching recombination (CSR) mainly through RA receptor α (RARα). Additionally, RA inhibited histone acetylation of germ-line ε (GL ε) promoter, leading to suppression of IgE CSR. Consistently, serum IgE levels were substantially elevated in vitamin A-deficient (VAD) mice and this was more dramatic in VAD-lecithin:retinol acyltransferase deficient (LRAT -/- ) mice. Further, serum mouse mast cell protease-1 (mMCP-1) level was elevated while frequency of intestinal regulatory T cells (Tregs) were diminished in VAD LRAT -/- mice, reflecting that deprivation of RA leads to allergic immune response. Taken together, our results reveal that RA has an IgE-repressive activity in vivo, which may ameliorate IgE-mediated allergic disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The AhR agonist VAF347 augments retinoic acid-induced differentiation in leukemia cells

    PubMed Central

    Ibabao, Christopher N.; Bunaciu, Rodica P.; Schaefer, Deanna M.W.; Yen, Andrew

    2015-01-01

    In binary cell-fate decisions, driving one lineage and suppressing the other are conjoined. We have previously reported that aryl hydrocarbon receptor (AhR) promotes retinoic acid (RA)-induced granulocytic differentiation of lineage bipotent HL-60 myeloblastic leukemia cells. VAF347, an AhR agonist, impairs the development of CD14+CD11b+ monocytes from granulo-monocytic (GM) stage precursors. We thus hypothesized that VAF347 propels RA-induced granulocytic differentiation and impairs D3-induced monocytic differentiation of HL-60 cells. Our results show that VAF347 enhanced RA-induced cell cycle arrest, CD11b integrin expression and neutrophil respiratory burst. Granulocytic differentiation is known to be driven by MAPK signaling events regulated by Fgr and Lyn Src-family kinases, the CD38 cell membrane receptor, the Vav1 GEF, the c-Cbl adaptor, as well as AhR, all of which are embodied in a putative signalsome. We found that the VAF347 AhR ligand regulates the signalsome. VAF347 augments RA-induced expression of AhR, Lyn, Vav1, and c-Cbl as well as p47phox. Several interactions of partners in the signalsome appear to be enhanced: Fgr interaction with c-Cbl, CD38, and with pS259c-Raf and AhR interaction with c-Cbl and Lyn. Thus, we report that, while VAF347 impedes monocytic differentiation induced by 1,25-dihydroxyvitamin D3, VAF347 promotes RA-induced differentiation. This effect seems to involve but not to be limited to Lyn, Vav1, c-Cbl, AhR, and Fgr. PMID:25941627

  18. Carotenoid supplementation and retinoic acid in immunoglobulin A regulation of the gut microbiota dysbiosis.

    PubMed

    Lyu, Yi; Wu, Lei; Wang, Fang; Shen, Xinchun; Lin, Dingbo

    2018-04-01

    Dysbiosis, a broad spectrum of imbalance of the gut microbiota, may progress to microbiota dysfunction. Dysbiosis is linked to some human diseases, such as inflammation-related disorders and metabolic syndromes. However, the underlying mechanisms of the pathogenesis of dysbiosis remain elusive. Recent findings suggest that the microbiome and gut immune responses, like immunoglobulin A production, play critical roles in the gut homeostasis and function, and the progression of dysbiosis. In the past two decades, much progress has been made in better understanding of production of immunoglobulin A and its association with commensal microbiota. The present minireview summarizes the recent findings in the gut microbiota dysbiosis and dysfunction of immunoglobulin A induced by the imbalance of pathogenic bacteria and commensal microbiota. We also propose the potentials of dietary carotenoids, such as β-carotene and astaxanthin, in the improvement of the gut immune system maturation and immunoglobulin A production, and the consequent promotion of the gut health. Impact statement The concept of carotenoid metabolism in the gut health has not been well established in the literature. Here, we review and discuss the roles of retinoic acid and carotenoids, including pro-vitamin A carotenoids and xanthophylls in the maturation of the gut immune system and IgA production. This is the first review article about the carotenoid supplements and the metabolites in the regulation of the gut microbiome. We hope this review would provide a new direction for the management of the gut microbiota dysbiosis by application of bioactive carotenoids and the metabolites.

  19. The AhR agonist VAF347 augments retinoic acid-induced differentiation in leukemia cells.

    PubMed

    Ibabao, Christopher N; Bunaciu, Rodica P; Schaefer, Deanna M W; Yen, Andrew

    2015-01-01

    In binary cell-fate decisions, driving one lineage and suppressing the other are conjoined. We have previously reported that aryl hydrocarbon receptor (AhR) promotes retinoic acid (RA)-induced granulocytic differentiation of lineage bipotent HL-60 myeloblastic leukemia cells. VAF347, an AhR agonist, impairs the development of CD14(+)CD11b(+) monocytes from granulo-monocytic (GM) stage precursors. We thus hypothesized that VAF347 propels RA-induced granulocytic differentiation and impairs D3-induced monocytic differentiation of HL-60 cells. Our results show that VAF347 enhanced RA-induced cell cycle arrest, CD11b integrin expression and neutrophil respiratory burst. Granulocytic differentiation is known to be driven by MAPK signaling events regulated by Fgr and Lyn Src-family kinases, the CD38 cell membrane receptor, the Vav1 GEF, the c-Cbl adaptor, as well as AhR, all of which are embodied in a putative signalsome. We found that the VAF347 AhR ligand regulates the signalsome. VAF347 augments RA-induced expression of AhR, Lyn, Vav1, and c-Cbl as well as p47(phox). Several interactions of partners in the signalsome appear to be enhanced: Fgr interaction with c-Cbl, CD38, and with pS259c-Raf and AhR interaction with c-Cbl and Lyn. Thus, we report that, while VAF347 impedes monocytic differentiation induced by 1,25-dihydroxyvitamin D3, VAF347 promotes RA-induced differentiation. This effect seems to involve but not to be limited to Lyn, Vav1, c-Cbl, AhR, and Fgr.

  20. Retinoic acid and arsenic trioxide in the treatment of acute promyelocytic leukemia: current perspectives.

    PubMed

    McCulloch, Derek; Brown, Christina; Iland, Harry

    2017-01-01

    Acute promyelocytic leukemia (APL) is a distinct subtype of acute myeloid leukemia (AML) with a unique morphological appearance, associated coagulopathy and canonical balanced translocation of genetic material between chromosomes 15 and 17. APL was first described as a distinct subtype of AML in 1957 by Dr Leif Hillestad who recognized the pattern of an acute leukemia associated with fibrinolysis, hypofibrinogenemia and catastrophic hemorrhage. In the intervening years, the characteristic morphology of APL has been described fully with both classical hypergranular and variant microgranular forms. Both are characterized by a balanced translocation between the long arms of chromosomes 15 and 17, [t(15;17)(q24;q21)], giving rise to a unique fusion gene PML-RARA and an abnormal chimeric transcription factor (PML-RARA), which disrupts normal myeloid differentiation programs. The success of current treatments for APL is in marked contrast to the vast majority of patients with non-promyelocytic AML. The overall prognosis in non-promyelocytic AML is poor, and although there has been an improvement in overall survival in patients aged <60 years, only 30%-40% of younger patients are still alive 5 years after diagnosis. APL therapy has diverged from standard AML therapy through the empirical discovery of two agents that directly target the molecular basis of the disease. The evolution of treatment over the last 4 decades to include all- trans retinoic acid and arsenic trioxide, with chemotherapy limited to patients with high-risk disease, has led to complete remission in 90%-100% of patients in trials and rates of overall survival between 86% and 97%.

  1. Differential activity of 2-methylene-19-nor vitamin D analogs on growth factor gene expression in rhino mouse skin and comparison to all-trans retinoic acid.

    PubMed

    Ahrens, Jamie M; Jones, James D; Nieves, Nirca J; Mitzey, Ann M; DeLuca, Hector F; Clagett-Dame, Margaret

    2017-01-01

    While all 2-methylene-19-nor analogs of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) tested produce an increase in epidermal thickness in the rhino mouse, only a subset reduce utricle size (comedolysis). All-trans retinoic acid (atRA) also causes epidermal thickening and a reduction in utricle size in the rhino mouse. We now report that 2-methylene-19-nor-(20S)-1α-hydroxybishomopregnacalciferol (2MbisP), a comedolytic analog, increases epidermal thickening more rapidly than does atRA, while both reduce utricle area at an equal rate. Whereas unlike atRA, 2MbisP does not alter the epidermal growth factor receptor ligand, heparin-binding epidermal growth factor-like growth factor, it does increase the expression of both amphiregulin and epigen mRNA, even after a single dose. In situ hybridization reveals an increase in these transcripts throughout the closing utricle as well as in the interfollicular epidermis. The mRNAs for other EGFR ligands including betacellulin and transforming growth factor-α, as well as the epidermal growth factor receptor are largely unaffected by 2MbisP. Another analog, 2-methylene-19-nor-(20S)-26,27-dimethylene-1α,25-dihydroxyvitamin D3 (CAGE-3), produces epidermal thickening but fails to reduce utricle size or increase AREG mRNA levels. CAGE-3 modestly increases epigen mRNA levels, but only after 5 days of dosing. Thus, 2-MbisP produces unique changes in epidermal growth factor receptor ligand mRNAs that may be responsible for both epidermal proliferation and a reduction in utricle size.

  2. Free fatty acids block glucose-induced β-cell proliferation in mice by inducing cell cycle inhibitors p16 and p18.

    PubMed

    Pascoe, Jordan; Hollern, Douglas; Stamateris, Rachel; Abbasi, Munira; Romano, Lia C; Zou, Baobo; O'Donnell, Christopher P; Garcia-Ocana, Adolfo; Alonso, Laura C

    2012-03-01

    Pancreatic β-cell proliferation is infrequent in adult humans and is not increased in type 2 diabetes despite obesity and insulin resistance, suggesting the existence of inhibitory factors. Free fatty acids (FFAs) may influence proliferation. In order to test whether FFAs restrict β-cell proliferation in vivo, mice were intravenously infused with saline, Liposyn II, glucose, or both, continuously for 4 days. Lipid infusion did not alter basal β-cell proliferation, but blocked glucose-stimulated proliferation, without inducing excess β-cell death. In vitro exposure to FFAs inhibited proliferation in both primary mouse β-cells and in rat insulinoma (INS-1) cells, indicating a direct effect on β-cells. Two of the fatty acids present in Liposyn II, linoleic acid and palmitic acid, both reduced proliferation. FFAs did not interfere with cyclin D2 induction or nuclear localization by glucose, but increased expression of inhibitor of cyclin dependent kinase 4 (INK4) family cell cycle inhibitors p16 and p18. Knockdown of either p16 or p18 rescued the antiproliferative effect of FFAs. These data provide evidence for a novel antiproliferative form of β-cell glucolipotoxicity: FFAs restrain glucose-stimulated β-cell proliferation in vivo and in vitro through cell cycle inhibitors p16 and p18. If FFAs reduce proliferation induced by obesity and insulin resistance, targeting this pathway may lead to new treatment approaches to prevent diabetes.

  3. Critical determinant of intestinal permeability and oral bioavailability of pegylated all trans-retinoic acid prodrug-based nanomicelles: Chain length of poly (ethylene glycol) corona.

    PubMed

    Li, Zhenbao; Han, Xiaopeng; Zhai, Yinglei; Lian, He; Zhang, Dong; Zhang, Wenjuan; Wang, Yongjun; He, Zhonggui; Liu, Zheng; Sun, Jin

    2015-06-01

    Pegylation method is widely used to prolong the blood circulation time of proteins and nanoparticles after intravenous administration, but the effect of surface poly (ethylene glycol) (PEG) chain length on oral absorption of the pegylated nanoparticles is poorly reported. The aim of our study was to investigate the influence of PEG corona chain length on membrane permeability and oral bioavailability of the amphiphilic pegylated prodrug-based nanomicelles, taking all trans-retinoic acid (ATRA) as a model drug. The amphiphilic ATRA-PEG conjugates were synthesized by esterification reaction between all trans-retinoic acid and mPEGs (mPEG500, mPEG1000, mPEG2000, and mPEG5000). The conjugates could self-assemble in aqueous medium to form nanomicelles by emulsion-solvent evaporation method. The resultant nanomicelles were in spherical shape with an average diameter of 13-20 nm. The drug loading efficiency of ATRA-PEG500, ATRA-PEG1000, ATRA-PEG2000, and ATRA-PEG5000 was about 38.4, 26.6, 13.1, and 5.68 wt%, respectively. With PEG chain length ranging from 500 to 5000, ATRA-PEG nanomicelles exhibited a bell shape of chemical stability in different pH buffers, intestinal homogenate and plasma. More importantly, they were all rapidly hydrolyzed into the parent drug in hepatic homogenate, with the half-time values being 0.3-0.4h. In comparison to ATRA solution and ATRA prodrug-based nanomicelles, ATRA-PEG1000 showed the highest intestinal permeability. After oral administration, ATRA-PEG2000 and ATRA-PEG5000 nanomicelles were not nearly absorbed, while the oral bioavailability of ATRA-PEG500 and ATRA-PEG1000 demonstrated about 1.2- and 2.0-fold higher than ATRA solution. Our results indicated that PEG1000 chain length of ATRA-PEG prodrug nanomicelles has the optimal oral bioavailability probably due to improved stability and balanced mucus penetration capability and cell binding, and that the PEG chain length on a surface of nanoparticles cannot exceed a key threshold with

  4. Retinol Dehydrogenase-10 Regulates Pancreas Organogenesis and Endocrine Cell Differentiation via Paracrine Retinoic Acid Signaling.

    PubMed

    Arregi, Igor; Climent, Maria; Iliev, Dobromir; Strasser, Jürgen; Gouignard, Nadège; Johansson, Jenny K; Singh, Tania; Mazur, Magdalena; Semb, Henrik; Artner, Isabella; Minichiello, Liliana; Pera, Edgar M

    2016-12-01

    Vitamin A-derived retinoic acid (RA) signals are critical for the development of several organs, including the pancreas. However, the tissue-specific control of RA synthesis in organ and cell lineage development has only poorly been addressed in vivo. Here, we show that retinol dehydrogenase-10 (Rdh10), a key enzyme in embryonic RA production, has important functions in pancreas organogenesis and endocrine cell differentiation. Rdh10 was expressed in the developing pancreas epithelium and surrounding mesenchyme. Rdh10 null mutant mouse embryos exhibited dorsal pancreas agenesis and a hypoplastic ventral pancreas with retarded tubulogenesis and branching. Conditional disruption of Rdh10 from the endoderm caused increased mortality, reduced body weight, and lowered blood glucose levels after birth. Endodermal Rdh10 deficiency led to a smaller dorsal pancreas with a reduced density of early glucagon + and insulin + cells. During the secondary transition, the reduction of Neurogenin3 + endocrine progenitors in the mutant dorsal pancreas accounted for fewer α- and β-cells. Changes in the expression of α- and β-cell-specific transcription factors indicated that Rdh10 might also participate in the terminal differentiation of endocrine cells. Together, our results highlight the importance of both mesenchymal and epithelial Rdh10 for pancreogenesis and the first wave of endocrine cell differentiation. We further propose a model in which the Rdh10-expressing exocrine tissue acts as an essential source of RA signals in the second wave of endocrine cell differentiation.

  5. Combination of 4-hydroxyanisole and all-trans retinoic acid produces synergistic skin depigmentation in swine.

    PubMed

    Nair, X; Parab, P; Suhr, L; Tramposch, K M

    1993-08-01

    A combination of 4-hydroxyanisole (4HA) and all-trans retinoic acid (TRA) was found to synergistically cause moderate to complete depigmentation of Yucatan swine skin. Two hyperpigmentation models were used: Natural dark-skinned swine, a potential model for melasma-like disorders, and ultraviolet light-stimulated hyperpigmentation, a model of solar lentigines. Test materials were applied twice daily, 5 d/week, to dorsal flank skin. Application sites were graded at weekly intervals for skin color using a 0 to 4 grading scale. After 8 weeks of treatment of naturally dark swine skin, a combination of 2% 4HA and 0.01% TRA produced grade 2 hypopigmentation (definite but moderate hypopigmentation). In contrast, 2% 4HA alone or 0.01% TRA alone did not produce significant hypopigmentation. After cessation of treatment, the 4HA/TRA-treated sites reverted to normal color within 7-12 weeks. The 4HA/TRA combination completely reversed the hyperpigmentation induced by ultraviolet light after 8 weeks of treatment. In vitro skin-penetration studies using hairless mouse and human skin show that skin penetration of 4HA was not significantly affected by adding 0.01% TRA. These data suggest that the observed synergy is not due to enhanced bioavailability of 4HA. We have demonstrated that combining low concentrations of 4HA and TRA results in effective skin lightening without causing irreversible depigmentation and with minimal local skin irritation.

  6. Retinoic acid signaling determines the fate of uterine stroma in the mouse Müllerian duct

    PubMed Central

    Nakajima, Tadaaki; Iguchi, Taisen; Sato, Tomomi

    2016-01-01

    The Müllerian duct develops into the oviduct, uterus, and vagina, all of which are quite distinct in their morphology and function. The epithelial fate of these female reproductive organs in developing mice is determined by factors secreted from the stroma; however, how stromal differentiation occurs in the female reproductive organs derived from the Müllerian duct is still unclear. In the present study, roles of retinoic acid (RA) signaling in developing female reproductive tracts were investigated. Retinol dehydrogenase 10 (RDH10) and aldehyde dehydrogenase family 1 subfamily A2 (ALDH1A2) mRNAs and proteins and transactivation activity of endogenous RA were found in the stroma of proximal Müllerian ducts and gradually decreased from the proximal to caudal regions in fetal mice. In organ-cultured Müllerian ducts, retinaldehyde or RA treatment induced uterine epithelial differentiation, defined as a layer of columnar epithelial cells negative for oviductal and vaginal epithelial markers. In contrast, inhibition of RA receptor (RAR) signaling induced vaginal epithelial differentiation, characterized as vaginal epithelial marker genes–positive stratified epithelium. Grafting experiments of the organ-cultured Müllerian duct revealed irreversible epithelial fate determination. Although RAR did not directly bind to the homeobox A10 (Hoxa10) promoter region, RA–RAR signaling stimulated Hoxa10 expression. Thus, RA–RAR signaling in the Müllerian duct determines the fate of stroma to form the future uterus and vagina. PMID:27911779

  7. Expression analysis of some genes regulated by retinoic acid in controls and triadimefon-exposed embryos: is the amphibian Xenopus laevis a suitable model for gene-based comparative teratology?

    PubMed

    Di Renzo, Francesca; Rossi, Federica; Bacchetta, Renato; Prati, Mariangela; Giavini, Erminio; Menegola, Elena

    2011-06-01

    The use of nonmammal models in teratological studies is a matter of debate and seems to be justified if the embryotoxic mechanism involves conserved processes. Published data on mammals and Xenopus laevis suggest that azoles are teratogenic by altering the endogenous concentration of retinoic acid (RA). The expression of some genes (Shh, Ptch-1, Gsc, and Msx2) controlled by retinoic acid is downregulated in rat embryos exposed at the phylotypic stage to the triazole triadimefon (FON). In order to propose X. laevis as a model for gene-based comparative teratology, this work evaluates the expression of Shh, Ptch-1, Gsc, and Msx2 in FON-exposed X. laevis embryos. Embryos, exposed to a high concentration level (500 µM) of FON from stage 13 till 17, were examined at stages 17, 27, and 47. Stage 17 and 27 embryos were processed to perform quantitative RT-PCR. The developmental rate was never affected by FON at any considered stage. FON-exposed stage 47 larvae showed the typical craniofacial malformations. A significant downregulation of Gsc was observed in FON-exposed stage 17 embryos. Shh, Ptch-1, Msx2 showed a high fluctuation of expression both in control and in FON-exposed samples both at stages 17 and 27. The downregulation of Gsc mimics the effects of FON on rat embryos, showing for this gene a common effect of FON in the two vertebrate classes. The high fluctuation observed in the gene expression of the other genes, however, suggests that X. laevis at this stage has limited utility for gene-based comparative teratology. © 2011 Wiley-Liss, Inc.

  8. Neuroprotective properties of ciliary neurotrophic factor on retinoic acid (RA)-predifferentiated SH-SY5Y neuroblastoma cells.

    PubMed

    Wang, Ke; Zhou, Fanfan; Zhu, Xue; Zhang, Kai; Huang, Biao; Zhu, Lan; Zhu, Ling

    2014-01-01

    Ciliary neurotrophic factor (CNTF) is a neurocytokine, which could promote survival and/or differentiation in many cell types. In this study, the biological effects of CNTF on retinoic acid (RA)-predifferentiated SH-SY5Y neuroblastoma cells and the underlying molecular mechanism of this effect were investigated for the first time. The results showed that RA was able to increase cells susceptibility to CNTF via regulating the expression levels of CNTF receptors. A further study revealed that CNTF could induce phosphorylation of STAT3, Akt and ERK1/2 in RA-predifferentiated SH-SY5Y neuroblastoma cells, while the promoting activity of CNTF on survival and neurite growth of cells was attenuated by co-treatment with JAK2 inhibitor AG490 (25 μM), STAT3 inhibitor Curcumin (50 μM), PI3K inhibitor LY-294002 (50 µM), but not by co-treatment with MEK inhibitor PD98059 (50 μM). These findings suggested that JAK2/STAT3, as well as PI3K/Akt, play important roles in mediating the survival and neurite growth response of RA-predifferentiated cells to CNTF. Our study may be useful to further understand the functional role of CNTF and offer a convenient model to explore the therapeutic potential of CNTF in neurodegenerative diseases.

  9. Rdh10a Provides a Conserved Critical Step in the Synthesis of Retinoic Acid during Zebrafish Embryogenesis.

    PubMed

    D'Aniello, Enrico; Ravisankar, Padmapriyadarshini; Waxman, Joshua S

    2015-01-01

    The first step in the conversion of vitamin A into retinoic acid (RA) in embryos requires retinol dehydrogenases (RDHs). Recent studies have demonstrated that RDH10 is a critical core component of the machinery that produces RA in mouse and Xenopus embryos. If the conservation of Rdh10 function in the production of RA extends to teleost embryos has not been investigated. Here, we report that zebrafish Rdh10a deficient embryos have defects consistent with loss of RA signaling, including anteriorization of the nervous system and enlarged hearts with increased cardiomyocyte number. While knockdown of Rdh10a alone produces relatively mild RA deficient phenotypes, Rdh10a can sensitize embryos to RA deficiency and enhance phenotypes observed when Aldh1a2 function is perturbed. Moreover, excess Rdh10a enhances embryonic sensitivity to retinol, which has relatively mild teratogenic effects compared to retinal and RA treatment. Performing Rdh10a regulatory expression analysis, we also demonstrate that a conserved teleost rdh10a enhancer requires Pax2 sites to drive expression in the eyes of transgenic embryos. Altogether, our results demonstrate that Rdh10a has a conserved requirement in the first step of RA production within vertebrate embryos.

  10. Rdh10a Provides a Conserved Critical Step in the Synthesis of Retinoic Acid during Zebrafish Embryogenesis

    PubMed Central

    D’Aniello, Enrico; Ravisankar, Padmapriyadarshini; Waxman, Joshua S.

    2015-01-01

    The first step in the conversion of vitamin A into retinoic acid (RA) in embryos requires retinol dehydrogenases (RDHs). Recent studies have demonstrated that RDH10 is a critical core component of the machinery that produces RA in mouse and Xenopus embryos. If the conservation of Rdh10 function in the production of RA extends to teleost embryos has not been investigated. Here, we report that zebrafish Rdh10a deficient embryos have defects consistent with loss of RA signaling, including anteriorization of the nervous system and enlarged hearts with increased cardiomyocyte number. While knockdown of Rdh10a alone produces relatively mild RA deficient phenotypes, Rdh10a can sensitize embryos to RA deficiency and enhance phenotypes observed when Aldh1a2 function is perturbed. Moreover, excess Rdh10a enhances embryonic sensitivity to retinol, which has relatively mild teratogenic effects compared to retinal and RA treatment. Performing Rdh10a regulatory expression analysis, we also demonstrate that a conserved teleost rdh10a enhancer requires Pax2 sites to drive expression in the eyes of transgenic embryos. Altogether, our results demonstrate that Rdh10a has a conserved requirement in the first step of RA production within vertebrate embryos. PMID:26394147

  11. Promotive Effect of Minoxidil Combined with All-trans Retinoic Acid (tretinoin) on Human Hair Growth in Vitro

    PubMed Central

    Kwon, Oh Sang; Pyo, Hyun Keol; Oh, Youn Jin; Han, Ji Hyun; Lee, Se Rah; Chung, Jin Ho; Eun, Hee Chul

    2007-01-01

    Minoxidil induces hair growth in male pattern baldness and prolongs the anagen phase. All-trans retinoic acid (ATRA) has been reported to act synergistically with minoxidil in vivo: they can enhance more dense hair regrowth than either compound alone. We evaluated the effect of minoxidil combined with ATRA on hair growth in vitro. The effect of co-treatment of minoxidil and ATRA on hair growth was studied in hair follicle organ culture. In cultured human dermal papilla cells (DPCs) and normal human epidermal keratinocytes, the expressions of Erk, Akt, Bcl-2, Bax, P53 and P21 were evaluated by immunoblot analysis. Minoxidil plus ATRA additively promoted hair growth in vitro, compared with minoxidil alone. In addition, minoxidil plus ATRA elevated phosphorylated Erk, phosphorylated Akt and the ratio of Bcl-2/Bax, but decreased the expressions of P53 and P21 more effectively than by minoxidil alone. Our results suggest that minoxidil plus ATRA would additively enhance hair growth by mediating dual functions: 1) the prolongation of cell survival by activating the Erk and Akt signaling pathways, and 2) the prevention of apoptosis of DPCs and epithelial cells by increasing the ratio of Bcl-2/Bax and downregulating the expressions of P53 and P21. PMID:17449938

  12. Novel protective role of the circadian nuclear receptor retinoic acid-related orphan receptor-α in diabetic cardiomyopathy.

    PubMed

    Zhao, Yichao; Xu, Longwei; Ding, Song; Lin, Nan; Ji, Qingqi; Gao, Lingchen; Su, Yuanyuan; He, Ben; Pu, Jun

    2017-04-01

    Diabetic cardiomyopathy is a major complication that significantly contributes to morbidity and mortality in diabetics with few therapies. Moreover, antidiabetic drugs reported inconsistent or even adverse cardiovascular effects, suggesting that it is important to exploit novel therapeutic targets against diabetic cardiomyopathy. Here, we observed that the nuclear melatonin receptor, the retinoic acid-related orphan receptor-α (RORα), was downregulated in diabetic hearts. By utilizing a mouse line with RORα disruption, we demonstrated that RORα deficiency led to significantly augmented diastolic dysfunction and cardiac remodeling induced by diabetes. Microscopic and molecular analyses further indicated that the detrimental effects of RORα deficiency were associated with aggravated myocardial apoptosis, autophagy dysfunction, and oxidative stress by disrupting antioxidant gene expression. By contrast, restoration of cardiac RORα levels in transgenic mice significantly improved cardiac functional and structural parameters at 8 weeks after diabetes induction. Consistent with genetic manipulation, pharmacological activation of RORα by melatonin and SR1078 (a synthetic agonist) showed beneficial effects against diabetic cardiomyopathy, while the RORα inhibitor SR3335 significantly exacerbated cardiac impairments in diabetic mice. Collectively, these findings suggest that cardiac-targeted manipulation of nuclear melatonin receptor RORα may hold promise for delaying diabetic cardiomyopathy development. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Newborn serum retinoic acid level is associated with variants of genes in the retinol metabolism pathway.

    PubMed

    Manolescu, Daniel C; El-Kares, Reyhan; Lakhal-Chaieb, Lajmi; Montpetit, Alexandre; Bhat, Pangala V; Goodyer, Paul

    2010-06-01

    Retinoic acid (RA) is a critical regulator of gene expression during embryonic development. In rodents, moderate maternal vitamin A deficiency leads to subtle morphogenetic defects and inactivation of RA pathway genes causes major disturbances of embryogenesis. In this study, we quantified RA in umbilical cord blood of 145 healthy full-term Caucasian infants from Montreal. Sixty seven percent of values were <10 nmol/L (84 were <0.07 nmol/L) and 33% had moderate or high levels. Variation in RA could not be explained by parallel variation in its precursor, retinol (ROL). However, we found that the (A) allele of the rs12591551 single nucleotide polymorphism (SNP) in the ALDH1A2 gene (ALDH1A2rs12591551(A)), occurring in 19% of newborns, was associated with 2.5-fold higher serum RA levels. ALDH1A2 encodes retinaldehyde dehydrogenase (RALDH) 2, which synthesizes RA in fetal tissues. We also found that homozygosity for the (A) allele of the rs12724719 SNP in the CRABP2 gene (CRABP2rs12724719(A/A)) was associated with 4.4-fold increase in umbilical cord serum RA. CRABP2 facilitates RA binding to its cognate receptor complex and transfer to the nucleus. We hypothesize that individual variation in RA pathway genes may account for subtle variations in RA-dependent human embryogenesis.

  14. Hyaluronic acid influence on platelet-induced airway smooth muscle cell proliferation.

    PubMed

    Svensson Holm, Ann-Charlotte B; Bengtsson, Torbjörn; Grenegård, Magnus; Lindström, Eva G

    2012-03-10

    Hyaluronic acid (HA) is one of the main components of the extracellular matrix (ECM) and is expressed throughout the body including the lung and mostly in areas surrounding proliferating and migrating cells. Furthermore, platelets have been implicated as important players in the airway remodelling process, e.g. due to their ability to induce airway smooth muscle cell (ASMC) proliferation. The aim of the present study was to investigate the role of HA, the HA-binding surface receptor CD44 and focal adhesion kinase (FAK) in platelet-induced ASMC proliferation. Proliferation of ASMC was measured using the MTS-assay, and we found that the CD44 blocking antibody and the HA synthase inhibitor 4-Methylumbelliferone (4-MU) significantly inhibited platelet-induced ASMC proliferation. The interaction between ASMC and platelets was studied by fluorescent staining of F-actin. In addition, the ability of ASMC to synthesise HA was investigated by fluorescent staining using biotinylated HA-binding protein and a streptavidin conjugate. We observed that ASMC produced HA and that a CD44 blocking antibody and 4-MU significantly inhibited platelet binding to the area surrounding the ASMC. Furthermore, the FAK-inhibitor PF 573228 inhibited platelet-induced ASMC proliferation. Co-culture of ASMC and platelets also resulted in increased phosphorylation of FAK as detected by Western blot analysis. In addition, 4-MU significantly inhibited the increased FAK-phosphorylation. In conclusion, our findings demonstrate that ECM has the ability to influence platelet-induced ASMC proliferation. Specifically, we propose that HA produced by ASMC is recognised by platelet CD44. The platelet/HA interaction is followed by FAK activation and increased proliferation of co-cultured ASMC. We also suggest that the mitogenic effect of platelets represents a potential important and novel mechanism that may contribute to airway remodelling. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Self-assembled polymeric nanocarriers for the targeted delivery of retinoic acid to the hair follicle

    NASA Astrophysics Data System (ADS)

    Lapteva, Maria; Möller, Michael; Gurny, Robert; Kalia, Yogeshvar N.

    2015-11-01

    Acne vulgaris is a highly prevalent dermatological disease of the pilosebaceous unit (PSU). An inability to target drug delivery to the PSU results in poor treatment efficacy and the incidence of local side-effects. Cutaneous application of nanoparticulate systems is reported to induce preferential accumulation in appendageal structures. The aim of this work was to prepare stable polymeric micelles containing retinoic acid (RA) using a biodegradable and biocompatible diblock methoxy-poly(ethylene glycol)-poly(hexylsubstituted lactic acid) copolymer (MPEG-dihexPLA) and to evaluate their ability to deliver RA to skin. An innovative punch biopsy sample preparation method was developed to selectively quantify follicular delivery; the amounts of RA present were compared to those in bulk skin, (i.e. without PSU), which served as the control. RA was successfully incorporated into micelle nanocarriers and protected from photoisomerization by inclusion of Quinoline Yellow. Incorporation into the spherical, homogeneous and nanometer-scale micelles (dn < 20 nm) increased the aqueous solubility of RA by >400-fold. Drug delivery experiments in vitro showed that micelles were able to deliver RA to porcine and human skins more efficiently than Retin-A® Micro (0.04%), a marketed gel containing RA loaded microspheres, (7.1 +/- 1.1% vs. 0.4 +/- 0.1% and 7.5 +/- 0.8% vs. 0.8 +/- 0.1% of the applied dose, respectively). In contrast to a non-colloidal RA solution, Effederm® (0.05%), both the RA loaded MPEG-dihexPLA polymeric micelles (0.005%) and Retin-A® Micro (0.04%) displayed selectivity for delivery to the PSU with 2-fold higher delivery to PSU containing samples than to control samples. Moreover, the micelle formulation outperformed Retin-A® Micro in terms of delivery efficiency to PSU presenting human skin (10.4 +/- 3.2% vs. 0.6 +/- 0.2%, respectively). The results indicate that the polymeric micelle formulation enabled an increased and targeted delivery of RA to the PSU

  16. Single and combined effect of retinoic acid and rapamycin modulate the generation, activity and homing potential of induced human regulatory T cells

    PubMed Central

    Candia, Enzo; Reyes, Paz; Covian, Camila; Rodriguez, Francisco; Wainstein, Nicolas; Morales, Jorge; Mosso, Claudio; Rosemblatt, Mario

    2017-01-01

    Adoptive transfer of CD4+CD25+FOXP3+ regulatory T cells (Treg cells) has been successfully utilized to treat graft versus host disease and represents a promising strategy for the treatment of autoimmune diseases and transplant rejection. The aim of this study was to evaluate the effects of all-trans retinoic acid (atRA) and rapamycin (RAPA) on the number, phenotype, homing markers expression, DNA methylation, and function of induced human Treg cells in short-term cultures. Naive T cells were polyclonally stimulated and cultured for five days in the presence of different combinations of IL-2, TGF-β1, atRA and RAPA. The resulting cells were characterized by the expression of FOXP3, activation, surface and homing markers. Methylation of the Conserved Non-coding Sequence 2 was also evaluated. Functional comparison of the different culture conditions was performed by suppression assays in vitro. Culturing naive human T cells with IL-2/TGFβ1 resulted in the generation of 54.2% of Treg cells (CD4+CD25+FOXP3+) whereas the addition of 100 nM atRA increased the yield of Treg cells to 66% (p = 0.0088). The addition of RAPA did not increase the number of Treg cells in any of these settings. Treg cells generated in the presence of atRA had an increased expression of the β7 integrin to nearly 100% of the generated Treg cells, while RAPA treated cells showed enhanced expression of CXCR4. The differential expression of homing molecules highlights the possibility of inducing Treg cells with differential organ-specific homing properties. Neither atRA nor RAPA had an effect on the highly methylated CNS2 sites, supporting reports that their contribution to the lineage stability of Treg cells is not mediated by methylation changes in this locus. Treg cells generated in the presence of RAPA show the most potent suppression effect on the proliferation of effector cells. PMID:28746369

  17. 9-Cis retinoic acid protects against methamphetamine-induced neurotoxicity in nigrostriatal dopamine neurons.

    PubMed

    Reiner, David J; Yu, Seong-Jin; Shen, Hui; He, Yi; Bae, Eunkyung; Wang, Yun

    2014-04-01

    Methamphetamine (MA) is a drug of abuse as well as a dopaminergic neurotoxin. 9-Cis retinoic acid (9cRA), a biologically active derivative of vitamin A, has protective effects against damage caused by H(2)O(2) and oxygen-glucose deprivation in vitro as well as infarction and terminal deoxynucleotidyl transferase-mediated dNTP nick-end labeling (TUNEL) labeling in ischemic brain. The purpose of this study was to examine if there was a protective role for 9cRA against MA toxicity in nigrostriatal dopaminergic neurons. Primary dopaminergic neurons, prepared from rat embryonic ventral mesencephalic tissue, were treated with MA. High doses of MA decreased tyrosine hydroxylase (TH) immunoreactivity while increasing TUNEL labeling. These toxicities were significantly reduced by 9cRA. 9cRA also inhibited the export of Nur77 from nucleus to cytosol, a response that activates apoptosis. The interaction of 9cRA and MA in vivo was next examined in adult rats. 9cRA was delivered intracerebroventricularly; MA was given (5 mg/kg, 4×) one day later. Locomotor behavior was measured 2 days after surgery for a period of 48 h. High doses of MA significantly reduced locomotor activity and TH immunoreactivity in striatum. Administration of 9cRA antagonized these changes. Previous studies have shown that 9cRA can induce bone morphogenetic protein-7 (BMP7) expression and that administration of BMP7 attenuates MA toxicity. We demonstrated that MA treatment significantly reduced BMP7 mRNA expression in nigra. Noggin (a BMP antagonist) antagonized 9cRA-induced behavioral recovery and 9cRA-induced normalization of striatal TH levels. Our data suggest that 9cRA has a protective effect against MA-mediated neurodegeneration in dopaminergic neurons via upregulation of BMP.

  18. 9-cis retinoic acid protects against methamphetamine-induced neurotoxicity in nigrostriatal dopamine neurons

    PubMed Central

    Reiner, David J; Yu, Seong-Jin; Shen, Hui; He, Yi; Bae, Eunkyung; Wang, Yun

    2013-01-01

    Methamphetamine (MA) is a drug of abuse as well as a dopaminergic neurotoxin. 9-cis retinoic acid (9cRA), a biologically active derivative of vitamin A, has protective effects against damage caused by H2O2 and oxygen-glucose deprivation in vitro as well as infarction and TUNEL labeling in ischemic brain. The purpose of this study was to examine if there was a protective role for 9cRA against MA toxicity in nigrostriatal dopaminergic neurons. Primary dopaminergic neurons, prepared from rat embryonic ventral mesencephalic tissue, were treated with MA. High doses of MA decreased tyrosine hydroxylase (TH) immunoreactivity while increasing TUNEL labeling. These toxicities were significantly reduced by 9cRA. 9cRA also inhibited the export of Nur77 from nucleus to cytosol, a response that activates apoptosis. The interaction of 9cRA and MA in vivo was next examined in adult rats. 9cRA was delivered intracerebroventricularly; MA was given (5 mg/kg, 4x) one day later. Locomotor behavior was measured two days after surgery for a period of 48 hours. High doses of MA significantly reduced locomotor activity and TH immunoreactivity in striatum. Administration of 9cRA antagonized these changes. Previous studies have shown that 9cRA can induce bone morphogenetic protein-7 (BMP7) expression and that administration of BMP7 attenuates MA toxicity. We demonstrated that MA treatment significantly reduced BMP7 mRNA expression in nigra. Noggin (a BMP antagonist) antagonized 9cRA-induced behavioral recovery and 9cRA-induced normalization of striatal TH levels. Our data suggest that 9cRA has a protective effect against MA -mediated neurodegeneration in dopaminergic neurons via upregulation of BMP. PMID:23884514

  19. All-trans-retinoic acid activates the pro-invasive Src-YAP-Interleukin 6 axis in triple-negative MDA-MB-231 breast cancer cells while cerivastatin reverses this action.

    PubMed

    Mezquita, Belén; Mezquita, Pau; Pau, Montserrat; Gasa, Laura; Navarro, Lourdes; Samitier, Mireia; Pons, Miquel; Mezquita, Cristóbal

    2018-05-04

    All-trans-retinoic acid (RA), the active metabolite of vitamin A, can reduce the malignant phenotype in some types of cancer and paradoxically also can promote cancer growth and invasion in others. For instance, it has been reported that RA induces tumor suppression in tumor xenografts of MDA-MB-468 breast cancer cells while increasing tumor growth and metastases in xenografts of MDA-MB-231 breast cancer cells. The signaling pathways involved in the pro-invasive action of retinoic acid remain mostly unknown. We show here that RA activates the pro-invasive axis Src-YAP-Interleukin 6 (Src-YAP-IL6) in triple negative MDA-MB-231 breast cancer cells, yielding to increased invasion of these cells. On the contrary, RA inhibits the Src-YAP-IL6 axis of triple-negative MDA-MB-468 cells, which results in decreased invasion phenotype. In both types of cells, inhibition of the Src-YAP-IL6 axis by the Src inhibitor PP2 drastically reduces migration and invasion. Src inhibition also downregulates the expression of a pro-invasive isoform of VEGFR1 in MDA-MB-231 breast cancer cells. Furthermore, interference of YAP nuclear translocation using the statin cerivastatin reverses the upregulation of Interleukin 6 (IL-6) and the pro-invasive effect of RA on MDA-MB-231 breast cancer cells and also decreases invasion and viability of MDA-MB-468 breast cancer cells. These results altogether suggest that RA induces pro-invasive or anti-invasive actions in two triple-negative breast cancer cell lines due to its ability to activate or inhibit the Src-YAP-IL6 axis in different cancer cells. The pro-invasive effect of RA can be reversed by the statin cerivastatin.

  20. DICHLOROACETIC ACID (DCA) INHIBITS PROLIFERATION AND APOPTOSIS IN NORMAL HEPATOCYTES OF MALE F344 RATS

    EPA Science Inventory

    Dichloroacetic acid (DCA} inhibits proliferation and apoptosis in nonnal hepatocytes of
    male F344 rats.

    Large segments of the population are chronically exposed to dichloroacetic acid (DCA}: DCA is a by product of the chlorine disinfection of drinking water, a metab...

  1. Improved Outcomes With Retinoic Acid and Arsenic Trioxide Compared With Retinoic Acid and Chemotherapy in Non-High-Risk Acute Promyelocytic Leukemia: Final Results of the Randomized Italian-German APL0406 Trial.

    PubMed

    Platzbecker, Uwe; Avvisati, Giuseppe; Cicconi, Laura; Thiede, Christian; Paoloni, Francesca; Vignetti, Marco; Ferrara, Felicetto; Divona, Mariadomenica; Albano, Francesco; Efficace, Fabio; Fazi, Paola; Sborgia, Marco; Di Bona, Eros; Breccia, Massimo; Borlenghi, Erika; Cairoli, Roberto; Rambaldi, Alessandro; Melillo, Lorella; La Nasa, Giorgio; Fiedler, Walter; Brossart, Peter; Hertenstein, Bernd; Salih, Helmut R; Wattad, Mohammed; Lübbert, Michael; Brandts, Christian H; Hänel, Mathias; Röllig, Christoph; Schmitz, Norbert; Link, Hartmut; Frairia, Chiara; Pogliani, Enrico Maria; Fozza, Claudio; D'Arco, Alfonso Maria; Di Renzo, Nicola; Cortelezzi, Agostino; Fabbiano, Francesco; Döhner, Konstanze; Ganser, Arnold; Döhner, Hartmut; Amadori, Sergio; Mandelli, Franco; Ehninger, Gerhard; Schlenk, Richard F; Lo-Coco, Francesco

    2017-02-20

    Purpose The initial results of the APL0406 trial showed that the combination of all- trans-retinoic acid (ATRA) and arsenic trioxide (ATO) is at least not inferior to standard ATRA and chemotherapy (CHT) in first-line therapy of low- or intermediate-risk acute promyelocytic leukemia (APL). We herein report the final analysis on the complete series of patients enrolled onto this trial. Patients and Methods The APL0406 study was a prospective, randomized, multicenter, open-label, phase III noninferiority trial. Eligible patients were adults between 18 and 71 years of age with newly diagnosed, low- or intermediate-risk APL (WBC at diagnosis ≤ 10 × 10 9 /L). Overall, 276 patients were randomly assigned to receive ATRA-ATO or ATRA-CHT between October 2007 and January 2013. Results Of 263 patients evaluable for response to induction, 127 (100%) of 127 patients and 132 (97%) of 136 patients achieved complete remission (CR) in the ATRA-ATO and ATRA-CHT arms, respectively ( P = .12). After a median follow-up of 40.6 months, the event-free survival, cumulative incidence of relapse, and overall survival at 50 months for patients in the ATRA-ATO versus ATRA-CHT arms were 97.3% v 80%, 1.9% v 13.9%, and 99.2% v 92.6%, respectively ( P < .001, P = .0013, and P = .0073, respectively). Postinduction events included two relapses and one death in CR in the ATRA-ATO arm and two instances of molecular resistance after third consolidation, 15 relapses, and five deaths in CR in the ATRA-CHT arm. Two patients in the ATRA-CHT arm developed a therapy-related myeloid neoplasm. Conclusion These results show that the advantages of ATRA-ATO over ATRA-CHT increase over time and that there is significantly greater and more sustained antileukemic efficacy of ATO-ATRA compared with ATRA-CHT in low- and intermediate-risk APL.

  2. Uniaxially aligned electrospun cellulose acetate nanofibers for thin layer chromatographic screening of hydroquinone and retinoic acid adulterated in cosmetics.

    PubMed

    Tidjarat, Siripran; Winotapun, Weerapath; Opanasopit, Praneet; Ngawhirunpat, Tanasait; Rojanarata, Theerasak

    2014-11-07

    Uniaxially aligned cellulose acetate (CA) nanofibers were successfully fabricated by electrospinning and applied to use as stationary phase for thin layer chromatography. The control of alignment was achieved by using a drum collector rotating at a high speed of 6000 rpm. Spin time of 6h was used to produce the fiber thickness of about 10 μm which was adequate for good separation. Without any chemical modification after the electrospinning process, CA nanofibers could be readily devised for screening hydroquinone (HQ) and retinoic acid (RA) adulterated in cosmetics using the mobile phase consisting of 65:35:2.5 methanol/water/acetic acid. It was found that the separation run on the aligned nanofibers over a distance of 5 cm took less than 15 min which was two to three times faster than that on the non-aligned ones. On the aligned nanofibers, the masses of HQ and RA which could be visualized were 10 and 25 ng, respectively, which were two times lower than those on the non-aligned CA fibers and five times lower than those on conventional silica plates due to the appearance of darker and sharper of spots on the aligned nanofibers. Furthermore, the proposed method efficiently resolved HQ from RA and ingredients commonly found in cosmetic creams. Due to the satisfactory analytical performance, facile and inexpensive production process, uniaxially aligned electrospun CA nanofibers are promising alternative media for planar chromatography. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Retinoic acid-induced CHD5 upregulation and neuronal differentiation of neuroblastoma.

    PubMed

    Higashi, Mayumi; Kolla, Venkatadri; Iyer, Radhika; Naraparaju, Koumudi; Zhuang, Tiangang; Kolla, Sriharsha; Brodeur, Garrett M

    2015-08-07

    Chromodomain-helicase DNA binding protein 5 (CHD5) is an important tumor suppressor gene deleted from 1p36.31 in neuroblastomas (NBs). High CHD5 expression is associated with a favorable prognosis, but deletion or low expression is frequent in high-risk tumors. We explored the role of CHD5 expression in the neuronal differentiation of NB cell lines. NB cell lines SH-SY5Y (SY5Y), NGP, SK-N-DZ, IMR5, LAN5, SK-N-FI, NB69 and SH-EP were treated with 1-10 μM 13-cis-retinoic acid (13cRA) for 3-12 days. qRT-PCR and Western blot analyses were performed to measure mRNA and protein expression levels, respectively. Morphological differences were examined by both phase contrast and immunofluorescence studies. Treatment of SY5Y cells with 13cRA caused upregulation of CHD5 expression in a time- and dose-dependent manner (1, 5, or 10 μM for 7 or 12 days) and also induced neuronal differentiation. Furthermore, both NGP and SK-N-DZ cells showed CHD5 upregulation and neuronal differentiation after 13cRA treatment. In contrast, 13cRA treatment of IMR5, LAN5, or SK-N-FI induced neither CHD5 expression nor neuronal differentiation. NB69 cells showed two different morphologies (neuronal and substrate adherent) after 12 days treatment with 10 μM of 13cRA. CHD5 expression was high in the neuronal cells, but low/absent in the flat, substrate adherent cells. Finally, NGF treatment caused upregulation of CHD5 expression and neuronal differentiation in SY5Y cells transfected to express TrkA (SY5Y-TrkA) but not in TrkA-null parental SY5Y cells, and both changes were blocked by a pan-TRK inhibitor. Treatment with 13cRA induces neuronal differentiation only in NB cells that upregulate CHD5. In addition, NGF induced CHD5 upregulation and neuronal differentiation only in TrkA expressing cells. Together, these results suggest that CHD5 is downstream of TrkA, and CHD5 expression may be crucial for neuronal differentiation induced by either 13cRA or TrkA/NGF signaling.

  4. Antiviral activity of human oligoadenylate synthetases-like (OASL) is mediated by enhancing retinoic acid-inducible gene I (RIG-I) signaling

    PubMed Central

    Zhu, Jianzhong; Zhang, Yugen; Ghosh, Arundhati; Cuevas, Rolando A.; Forero, Adriana; Dhar, Jayeeta; Ibsen, Mikkel Søes; Schmid-Burgk, Jonathan Leo; Schmidt, Tobias; Ganapathiraju, Madhavi K.; Fujita, Takashi; Hartmann, Rune; Barik, Sailen; Hornung, Veit; Coyne, Carolyn B.; Sarkar, Saumendra N.

    2014-01-01

    SUMMARY Virus infection is sensed in the cytoplasm by retinoic acid-inducible gene I (RIG-I, also known as DDX58), which requires RNA and polyubiquitin binding to induce type I interferon (IFN), and activate cellular innate immunity. We show that the human IFN-inducible oligoadenylate synthetases-like (OASL) protein had antiviral activity and mediated RIG-I activation by mimicking polyubiquitin. Loss of OASL expression reduced RIG-I signaling and enhanced virus replication in human cells. Conversely, OASL expression suppressed replication of a number of viruses in a RIG-I-dependent manner and enhanced RIG-I-mediated IFN induction. OASL interacted and colocalized with RIG-I, and through its C-terminal ubiquitin-like domain specifically enhanced RIG-I signaling. Bone marrow derived macrophages from mice deficient for Oasl2 showed that among the two mouse orthologs of human OASL; Oasl2 is functionally similar to human OASL. Our findings show a mechanism by which human OASL contributes to host antiviral responses by enhancing RIG-I activation. PMID:24931123

  5. REST, regulated by RA through miR-29a and the proteasome pathway, plays a crucial role in RPC proliferation and differentiation.

    PubMed

    Wang, Yuyao; Zhang, Dandan; Tang, Zhimin; Zhang, Yi; Gao, Huiqin; Ni, Ni; Shen, Bingqiao; Sun, Hao; Gu, Ping

    2018-04-18

    One of the primary obstacles in the application of retinal progenitor cells (RPCs) to the treatment of retinal degenerative diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP), is their limited ability to proliferate and differentiate into specific retinal neurons. In this study, we revealed that repressor element-1-silencing transcription factor (REST), whose expression could be transcriptionally and post-transcriptionally mediated by retinoic acid (RA, one isomeride of a vitamin A derivative used as a differentiation-inducing agent in many disease treatments), plays a pivotal role in the regulation of proliferation and differentiation of RPCs. Our results show that direct knockdown of endogenous REST reduced RPC proliferation but accelerated RPC differentiation toward retinal neurons, which phenocopied the observed effects of RA on RPCs. Further studies disclosed that the expression level of REST could be downregulated by RA not only through upregulating microRNA (miR)-29a, which directly interacted with the 3'-untranslated region (3'-UTR) of the REST mRNA, but also through promoting REST proteasomal degradation. These results show us a novel functional protein, REST, which regulates RPC proliferation and differentiation, can be mediated by RA. Understanding the mechanisms of REST and RA in RPC fate determination enlightens a promising future for the application of REST and RA in the treatment of retinal degeneration diseases.

  6. Retinoic acid regulates size, pattern and alignment of tissues at the head-trunk transition.

    PubMed

    Lee, Keun; Skromne, Isaac

    2014-11-01

    At the head-trunk transition, hindbrain and spinal cord alignment to occipital and vertebral bones is crucial for coherent neural and skeletal system organization. Changes in neural or mesodermal tissue configuration arising from defects in the specification, patterning or relative axial placement of territories can severely compromise their integration and function. Here, we show that coordination of neural and mesodermal tissue at the zebrafish head-trunk transition crucially depends on two novel activities of the signaling factor retinoic acid (RA): one specifying the size and the other specifying the axial position relative to mesodermal structures of the hindbrain territory. These activities are each independent but coordinated with the well-established function of RA in hindbrain patterning. Using neural and mesodermal landmarks we demonstrate that the functions of RA in aligning neural and mesodermal tissues temporally precede the specification of hindbrain and spinal cord territories and the activation of hox transcription. Using cell transplantation assays we show that RA activity in the neuroepithelium regulates hindbrain patterning directly and territory size specification indirectly. This indirect function is partially dependent on Wnts but independent of FGFs. Importantly, RA specifies and patterns the hindbrain territory by antagonizing the activity of the spinal cord specification gene cdx4; loss of Cdx4 rescues the defects associated with the loss of RA, including the reduction in hindbrain size and the loss of posterior rhombomeres. We propose that at the head-trunk transition, RA coordinates specification, patterning and alignment of neural and mesodermal tissues that are essential for the organization and function of the neural and skeletal systems. © 2014. Published by The Company of Biologists Ltd.

  7. Low-dose oral isotretinoin versus topical retinoic acid for photoaging: a randomized, comparative study.

    PubMed

    Bagatin, Edileia; Guadanhim, Lilia R S; Enokihara, Milvia M S S; Sanudo, Adriana; Talarico, Sérgio; Miot, Helio A; Gibson, Lawrence

    2014-01-01

    Oral isotretinoin (ISO) is the only drug which promotes prolonged remission or cure of severe acne. It also has other properties, supporting its use for non-acne indications. Retinoic acid (RA) is gold standard treatment for photoaging. ISO for photoaging treatment was reported in non-controlled trials as alternative to RA, which causes skin irritation. To compare clinical, histological, and immunohistochemical effects of low-dose ISO and 0.05% topical RA to treat photoaging. Randomized, comparative, evaluator-blinded, single-center study. Twenty-four healthy, Caucasian, 50 to 75-year-old men and women (menopausal or sterilized) with advanced photoaging were included. Twelve subjects received ISO, 20 mg/day, and 12 subjects were treated with RA cream, for six months; both treatments were administered every other day, and moisturizer and sunscreen were also used. Outcome measures included patient assessments, blinded photographic evaluations, Life Quality Index, histological (HE, Verhoeff) and immunohistochemical (p53, collagen type I) evaluations, adverse events, liver function, lipid profile, and blood count. Statistical analysis with generalized estimating equations and repeated measures ANOVA tests was used. Eleven subjects in each group completed the study. Patient and photographic assessments showed overall improvement in skin appearance. Quality-of-life scores were reduced for all subjects. Histological analysis revealed corneal layer diminution, epidermal thickness increase, and elastosis reduction. Immunohistochemical findings revealed significant epidermal p53 reduction and dermal collagen 1 increase. No differences were found between groups; laboratory tests showed no significant alterations. Despite being safe and effective, low-dose ISO was not superior to 0.05% RA for advanced photoaging treatment. © 2013 The International Society of Dermatology.

  8. Polydimethylsiloxane (PDMS) modulates CD38 expression, absorbs retinoic acid and may perturb retinoid signalling.

    PubMed

    Futrega, Kathryn; Yu, Jianshi; Jones, Jace W; Kane, Maureen A; Lott, William B; Atkinson, Kerry; Doran, Michael R

    2016-04-21

    Polydimethylsiloxane (PDMS) is the most commonly used material in the manufacture of customized cell culture devices. While there is concern that uncured PDMS oligomers may leach into culture medium and/or hydrophobic molecules may be absorbed into PDMS structures, there is no consensus on how or if PDMS influences cell behaviour. We observed that human umbilical cord blood (CB)-derived CD34(+) cells expanded in standard culture medium on PDMS exhibit reduced CD38 surface expression, relative to cells cultured on tissue culture polystyrene (TCP). All-trans retinoic acid (ATRA) induces CD38 expression, and we reasoned that this hydrophobic molecule might be absorbed by PDMS. Through a series of experiments we demonstrated that ATRA-mediated CD38 expression was attenuated when cultures were maintained on PDMS. Medium pre-incubated on PDMS for extended durations resulted in a time-dependant reduction of ATRA in the medium and increasingly attenuated CD38 expression. This indicated a time-dependent absorption of ATRA into the PDMS. To better understand how PDMS might generally influence cell behaviour, Ingenuity Pathway Analysis (IPA) was used to identify potential upstream regulators. This analysis was performed for differentially expressed genes in primary cells including CD34(+) haematopoietic progenitor cells, mesenchymal stromal cells (MSC), and keratinocytes, and cell lines including prostate cancer epithelial cells (LNCaP), breast cancer epithelial cells (MCF-7), and myeloid leukaemia cells (KG1a). IPA predicted that the most likely common upstream regulator of perturbed pathways was ATRA. We demonstrate here that ATRA is absorbed by PDMS in a time-dependent manner and results in the concomitant reduced expression of CD38 on the cell surface of CB-derived CD34(+) cells.

  9. Reduction of MDSCs with all-trans retinoic acid improves CAR therapy efficacy for sarcomas

    PubMed Central

    Long, Adrienne H.; Highfill, Steven L.; Cui, Yongzhi; Smith, Jillian P.; Walker, Alec J.; Ramakrishna, Sneha; El-Etriby, Rana; Galli, Susana; Tsokos, Maria G.; Orentas, Rimas J.; Mackall, Crystal L.

    2016-01-01

    Genetically engineered T cells expressing CD19-specific chimeric antigen receptors (CARs) have shown impressive activity against B cell malignancies, and preliminary results suggest that T cells expressing a first generation disialoganglioside (GD2)-specific CAR can also provide clinical benefit in patients with neuroblastoma. We sought to assess the potential of GD2-CAR therapies to treat pediatric sarcomas. We observed that 18/18 (100%) of osteosarcomas, 2/15 (13%) of rhabdomyosarcomas, and 7/35 (20%) of Ewing sarcomas expressed GD2. T cells engineered to express a third generation GD2-CAR incorporating the 14g2a-scFv with the CD28, OX40, and CD3ζ signaling domains (14g2a.CD28.OX40.ζ) mediated efficient and comparable lysis of both GD2+ sarcoma and neuroblastoma cell lines in vitro. However in xenograft models, GD2-CAR T cells had no antitumor effect against GD2+ sarcoma, despite effectively controlling GD2+ neuroblastoma. We observed that pediatric sarcoma xenografts, but not neuroblastoma xenografts, induced large populations of monocytic and granulocytic murine myeloid-derived suppressor cells (MDSCs) that inhibited human CAR T-cell responses in vitro. Treatment of sarcoma-bearing mice with all-trans retinoic acid (ATRA) largely eradicated monocytic MDSCs and diminished the suppressive capacity of granulocytic MDSCs. Combined therapy using GD2-CAR T cells plus ATRA significantly improved antitumor efficacy against sarcoma xenografts. We conclude that retinoids provide a clinically accessible class of agents capable of diminishing the suppressive effects of MDSCs, and that co-administration of retinoids may enhance the efficacy of CAR therapies targeting solid tumors. PMID:27549124

  10. Local sources of retinoic acid coincide with retinoid-mediated transgene activity during embryonic development.

    PubMed Central

    Colbert, M C; Linney, E; LaMantia, A S

    1993-01-01

    We have assessed whether retinoic acid (RA) comes from local sources or is available widely to activate gene expression in embryos. We used an RA-responsive indicator cell line, L-C2A5, to localize RA sources. In these cells, an RA-sensitive promoter/lacZ reporter construct used previously by us to produce indicator transgenic mice is induced globally by RA in medium or locally by RA released at physiological concentrations (1 nM) from AG-1X2 resin beads. Furthermore, the cells are differentially responsive to the 9-cis and all-trans isomers of RA at low concentrations. Indicator transgenic mice with the same promoter/reporter construct were used to identify regions of RA-mediated gene activation. There are distinct domains of lacZ expression in the cervical and lumbar spinal cords of embryonic indicator mice. This pattern might reflect localized RA sources or restricted spatial and temporal expression of RA receptors, binding proteins, or other factors. To resolve this issue we compared the pattern of transgene activation in indicator cell monolayers cocultured with normal embryonic spinal cords with that in transgenic spinal cords. The explants induced reporter gene expression in L-C2A5 monolayers in a pattern identical to that in transgenic mice: alar regions of the cervical and lumbar cord were positive whereas those in the thoracic and sacral regions were not. We conclude that restricted sources of RA in the developing spinal cord mediate the local activation of RA-inducible genes. Thus, region-specific gene activation in embryos can be mediated by precisely localized sources of inductive molecules like RA. Images Fig. 1 Fig. 2 Fig. 3 PMID:8341670

  11. Synthesis and biological evaluation of 2-heteroarylthioalkanoic acid analogues of clofibric acid as peroxisome proliferator-activated receptor alpha agonists.

    PubMed

    Giampietro, Letizia; Ammazzalorso, Alessandra; Giancristofaro, Antonella; Lannutti, Fabio; Bettoni, Giancarlo; De Filippis, Barbara; Fantacuzzi, Marialuigia; Maccallini, Cristina; Petruzzelli, Michele; Morgano, Annalisa; Moschetta, Antonio; Amoroso, Rosa

    2009-10-22

    A series of 2-heteroarylthioalkanoic acids were synthesized through systematic structural modifications of clofibric acid and evaluated for human peroxisome proliferator-activated receptor alpha (PPARalpha) transactivation activity, with the aim of obtaining new hypolipidemic compounds. Some thiophene and benzothiazole derivatives showing a good activation of the receptor alpha were screened for activity against the PPARgamma isoform. The gene induction of selected compounds was also investigated in the human hepatoma cell line.

  12. Bile acid receptor TGR5 overexpression is associated with decreased intestinal mucosal injury and epithelial cell proliferation in obstructive jaundice.

    PubMed

    Ji, Chen-Guang; Xie, Xiao-Li; Yin, Jie; Qi, Wei; Chen, Lei; Bai, Yun; Wang, Na; Zhao, Dong-Qiang; Jiang, Xiao-Yu; Jiang, Hui-Qing

    2017-04-01

    Bile acids stimulate intestinal epithelial proliferation in vitro. We sought to investigate the role of the bile acid receptor TGR5 in the protection of intestinal epithelial proliferation in obstructive jaundice. Intestinal tissues and serum samples were obtained from patients with malignant obstructive jaundice and from bile duct ligation (BDL) rats. Intestinal permeability and morphological changes in the intestinal mucosa were observed. The functions of TGR5 in cell proliferation in intestinal epithelial injury were determined by overexpression or knockdown studies in Caco-2 and FHs 74 Int cells pretreated with lipopolysaccharide (LPS). Internal biliary drainage was superior to external biliary drainage in recovering intestinal permeability and mucosal histology in patients with obstructive jaundice. In BDL rats, feeding of chenodeoxycholic acid (CDCA) decreased intestinal mucosa injury. The levels of PCNA, a marker of proliferation, increased in response to CDCA feeding and were paralleled by elevated TGR5 expression. CDCA upregulated TGR5 expression and promoted proliferation in Caco-2 and FHs 74 Int cells pretreated with LPS. Overexpression of TGR5 resulted in increased PCNA, cell viability, EdU incorporation, and the proportion of cells in S phase, whereas knockdown of TGR5 had the opposite effect. Our data indicate that bile acids promote intestinal epithelial cell proliferation and decrease mucosal injury by upregulating TGR5 expression in obstructive jaundice. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Undifferentiated murine embryonic stem cells used to model the effects of the blue-green algal toxin cylindrospermopsin on preimplantation embryonic cell proliferation.

    PubMed

    Reid, Katherine J; Lang, Kenneth; Froscio, Suzanne; Humpage, Andrew J; Young, Fiona M

    2015-11-01

    Undifferentiated mouse embryonic stem cell (mES) proliferation in vitro resembles aspects of in vivo pre-implantation embryonic development. mES were used to assess the embryo-toxicity of cylindrospermopsin (CYN), a water contaminant with an Australian Drinking Water Guideline (ADWG) of 1 μg/L. mES exposed to 0-1 μg/mL CYN for 24-168 h were subjected to an optimised crystal violet viability assay. mES exposed to retinoic acid ± 1 μg/L CYN differentiated into neural-like cells confirmed by morphological examination and RT-PCR for Oct4, Brachyury and Nestin. The CYN No Observed Effect Concentration (OEC) was 0.5 μg/mL, the Lowest OEC was 1 μg/mL (p < 0.001, n = 3), and the IC50 was 0.86 μg/mL after 24 h. The ADWG 1 μg/L CYN did not affect differentiation or proliferation after 72 h, but decreased proliferation after 168 h (p < 0.05). We conclude that higher algal bloom-associated CYN concentrations have the potential to impair in vivo pre-implantation development, and the mES crystal violet assay has broad application to screening environmental toxins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Active Pin1 is a key target of all-trans retinoic acid in acute promyelocytic leukemia and breast cancer.

    PubMed

    Wei, Shuo; Kozono, Shingo; Kats, Lev; Nechama, Morris; Li, Wenzong; Guarnerio, Jlenia; Luo, Manli; You, Mi-Hyeon; Yao, Yandan; Kondo, Asami; Hu, Hai; Bozkurt, Gunes; Moerke, Nathan J; Cao, Shugeng; Reschke, Markus; Chen, Chun-Hau; Rego, Eduardo M; Lo-Coco, Francesco; Cantley, Lewis C; Lee, Tae Ho; Wu, Hao; Zhang, Yan; Pandolfi, Pier Paolo; Zhou, Xiao Zhen; Lu, Kun Ping

    2015-05-01

    A common key regulator of oncogenic signaling pathways in multiple tumor types is the unique isomerase Pin1. However, available Pin1 inhibitors lack the required specificity and potency for inhibiting Pin1 function in vivo. By using mechanism-based screening, here we find that all-trans retinoic acid (ATRA)--a therapy for acute promyelocytic leukemia (APL) that is considered the first example of targeted therapy in cancer, but whose drug target remains elusive--inhibits and degrades active Pin1 selectively in cancer cells by directly binding to the substrate phosphate- and proline-binding pockets in the Pin1 active site. ATRA-induced Pin1 ablation degrades the protein encoded by the fusion oncogene PML-RARA and treats APL in APL cell and animal models as well as in human patients. ATRA-induced Pin1 ablation also potently inhibits triple-negative breast cancer cell growth in human cells and in animal models by acting on many Pin1 substrate oncogenes and tumor suppressors. Thus, ATRA simultaneously blocks multiple Pin1-regulated cancer-driving pathways, an attractive property for treating aggressive and drug-resistant tumors.

  15. Developmental Effects of Perfluorononanoic acid in the Mouse Are Dependent on Peroxisome Proliferator-Activated Receptor-alpha

    EPA Science Inventory

    Perfluorononanoic acid (PFNA) is one ofthe perfluoroalkyl acids found in the environment and in tissues of humans and wildlife. Prenatal exposure to PFNA negatively impacts survival and development of mice and activates the mouse and human peroxisome proliferator-activated recept...

  16. Developmental Effects of Perfluorononanoic Acid in the Mouse Are Dependent on Peroxisome Proliferator-Activated Receptor-alpha.

    EPA Science Inventory

    Perfluorononanoic acid (PFNA) is one of the perfluoroalkyl acids found in the environment and in tissues of humans and wildlife. Prenatal exposure to PFNA negatively impacts survival and development of mice and activates the mouse and human peroxisome proliferator-activated recep...

  17. Abscisic-acid-induced cellular apoptosis and differentiation in glioma via the retinoid acid signaling pathway.

    PubMed

    Zhou, Nan; Yao, Yu; Ye, Hongxing; Zhu, Wei; Chen, Liang; Mao, Ying

    2016-04-15

    Retinoid acid (RA) plays critical roles in regulating differentiation and apoptosis in a variety of cancer cells. Abscisic acid (ABA) and RA are direct derivatives of carotenoids and share structural similarities. Here we proposed that ABA may also play a role in cellular differentiation and apoptosis by sharing a similar signaling pathway with RA that may be involved in glioma pathogenesis. We reported for the first time that the ABA levels were twofold higher in low-grade gliomas compared with high-grade gliomas. In glioma tissues, there was a positive correlation between the ABA levels and the transcription of cellular retinoic acid-binding protein 2 (CRABP2) and a negative correlation between the ABA levels and transcription of fatty acid-binding protein 5 (FABP5). ABA treatment induced a significant increase in the expression of CRABP2 and a decrease in the expression of peroxisome proliferator-activated receptor (PPAR) in glioblastoma cells. Remarkably, both cellular apoptosis and differentiation were increased in the glioblastoma cells after ABA treatment. ABA-induced cellular apoptosis and differentiation were significantly reduced by selectively silencing RAR-α, while RAR-α overexpression exaggerated the ABA-induced effects. These results suggest that ABA may play a role in the pathogenesis of glioma by promoting cellular apoptosis and differentiation through the RA signaling pathway. © 2015 UICC.

  18. Differentiated all-trans retinoic acid response of naive CD4+CD25– cells isolated from rats with collagen-induced arthritis and healthy ones under in vitro conditions

    PubMed Central

    Żyromska, Edyta; Piasecki, Tomasz; Rossowska, Joanna; Kędzierska, Anna; Nowak, Marcin; Żyromski, Marcin; Chełmońska-Soyta, Anna

    2017-01-01

    Aim o the study To compare the potential of CD4+CD25– cells, isolated from both healthy rats and rats with CIA (Collagen-Induced Arthritis), for differentiation into regulatory T cells in the presence of all-trans retinoic acid in order to learn more about the activation mechanisms and therapeutic potential of regulatory T cells. Material and methods Sorted CD4+CD25– cells were cultured in vitro with/without ATRA, and then the frequency of regulatory T cells and their ability to secrete IL-10 by CD4+ FOXP3+ cells was examined. Gene expression of the foxp3, rarα, rarβ, rxrβ, and ppar β/δ and protein expression of the Rarα, Rarβ, and Rxrβ in cells after stimulation with ATRA were also investigated. Results CD4+CD25– cells isolated from healthy animals or from animals with CIA are characterised by different potential of the differentiation into CD4+CD25+ FOXP3+ cells. Retinoic acid receptor Rxrβ is present in the CD4+CD25– cells isolated from rats with CIA. Conclusions We showed that although ATRA did not increase the frequency of Treg in culture, it significantly increased expression of rarβ and rxrβ only in lymphocytes taken from diseased animals and foxp3 expression only in healthy animals. Moreover, after ATRA stimulation, the frequency of Treg-produced IL-10 tended to be lower in diseased animals than in the healthy group. The results imply that the potential of naïve cell CD4 lymphocytes to differentiate into Tregs and their putative suppressive function is dependent on the donor’s health status. PMID:28680330

  19. Identification of Phosphoproteins as Possible Differentiation Markers in All-Trans-Retinoic Acid-Treated Neuroblastoma Cells

    PubMed Central

    Mandili, Giorgia; Marini, Cristina; Carta, Franco; Zanini, Cristina; Prato, Mauro; Khadjavi, Amina

    2011-01-01

    Background Neuroblastic tumors account for 9–10% of pediatric tumors and neuroblastoma (NB) is the first cause of death in pre-school age children. NB is classified in four stages, depending on the extent of spreading. A fifth type of NB, so-called stage 4S (S for special), includes patients with metastatic tumors but with an overall survival that approximates 75% at five years. In most of these cases, the tumor regresses spontaneously and regression is probably associated with delayed neuroblast cell differentiation. Methodology/Principal Findings In order to identify new early markers to follow and predict this process for diagnostic and therapeutics intents, we mimicked the differentiation process treating NB cell line SJ-NK-P with all-trans-retinoic acid (ATRA) at different times; therefore the cell proteomic pattern by mass spectrometry and the phosphoproteomic pattern by a 2-DE approach coupled with anti-phosphoserine and anti-phosphotyrosine western blotting were studied. Conclusions/Significance Proteomic analysis identified only two proteins whose expression was significantly different in treated cells versus control cells: nucleoside diphosphate kinase A (NDKA) and reticulocalbin-1 (RCN1), which were both downregulated after 9 days of ATRA treatment. However, phosphoproteomic analysis identified 8 proteins that were differentially serine-phosphorylated and 3 that were differentially tyrosine-phosphorylated after ATRA treatment. All proteins were significantly regulated (at least 0.5-fold down-regulated). Our results suggest that differentially phosphorylated proteins could be considered as more promising markers of differentiation for NB than differentially expressed proteins. PMID:21573212

  20. Induction of intermediate mesoderm by retinoic acid receptor signaling from differentiating mouse embryonic stem cells.

    PubMed

    Oeda, Shiho; Hayashi, Yohei; Chan, Techuan; Takasato, Minoru; Aihara, Yuko; Okabayashi, Koji; Ohnuma, Kiyoshi; Asashima, Makoto

    2013-01-01

    Renal lineages including kidney are derived from intermediate mesoderm, which are differentiated from a subset of caudal undifferentiated mesoderm. The inductive mechanisms of mammalian intermediate mesoderm and renal lineages are still poorly understood. Mouse embryonic stem cells (mESCs) can be a good in vitro model to reconstitute the developmental pathway of renal lineages and to analyze the mechanisms of the sequential differentiation. We examined the effects of Activin A and retinoic acid (RA) on the induction of intermediate mesoderm from mESCs under defined, serum-free, adherent, monolayer culture conditions. We measured the expression level of intermediate mesodermal marker genes and examined the developmental potential of the differentiated cells into kidney using an ex vivo transplantation assay. Adding Activin A followed by RA to mESC cultures induced the expression of marker genes and proteins for intermediate mesoderm, odd-skipped related 1 (Osr1) and Wilm’s Tumor 1 (Wt1). These differentiated cells integrated into laminin-positive tubular cells and Pax2-positive renal cells in cultured embryonic kidney explants. We demonstrated that intermediate mesodermal marker expression was also induced by RA receptor (RAR) agonist, but not by retinoid X receptor (RXR) agonists. Furthermore, the expression of these markers was decreased by RAR antagonists. We directed the differentiation of mESCs into intermediate mesoderm using Activin A and RA and revealed the role of RAR signaling in this differentiation. These methods and findings will improve our understanding of renal lineage development and could contribute to the regenerative medicine of kidney.

  1. Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells

    PubMed Central

    Hosios, Aaron M.; Hecht, Vivian C.; Danai, Laura V.; Johnson, Marc O.; Rathmell, Jeffrey C.; Steinhauser, Matthew L.; Manalis, Scott R.; Vander Heiden, Matthew G.

    2016-01-01

    Cells must duplicate their mass in order to proliferate. Glucose and glutamine are the major nutrients consumed by proliferating mammalian cells, but the extent to which these and other nutrients contribute to cell mass is unknown. We quantified the fraction of cell mass derived from different nutrients and find that the majority of carbon mass in cells is derived from other amino acids, which are consumed at much lower rates than glucose and glutamine. While glucose carbon has diverse fates, glutamine contributes most to protein, and this suggests that glutamine’s ability to replenish TCA cycle intermediates (anaplerosis) is primarily used for amino acid biosynthesis. These findings demonstrate that rates of nutrient consumption are indirectly associated with mass accumulation and suggest that high rates of glucose and glutamine consumption support rapid cell proliferation beyond providing carbon for biosynthesis. PMID:26954548

  2. Novel insights into a retinoic-acid-induced cleft palate based on Rac1 regulation of the fibronectin arrangement.

    PubMed

    Tang, Qinghuang; Li, Liwen; Lee, Min-Jung; Ge, Qing; Lee, Jong-Min; Jung, Han-Sung

    2016-03-01

    Retinoic acid (RA)-induced cleft palate results from both extrinsic obstructions by the tongue and internal factors within the palatal shelves. Our previous study showed that the spatiotemporal expression of Rac1 regulates the fibronectin (FN) arrangement through cell density alterations that play an important role in palate development. In this study, we investigate the involvement of the Rac1 regulation of the FN arrangement in RA-induced cleft palate. Our results demonstrate that RA-induced intrinsic alterations in palatal shelves, including a delayed progress of cell condensation, delay palate development, even after the removal of the tongue. Further analysis shows that RA treatment diminishes the region-distinctive expression of Rac1 within the palatal shelves, which reversely alters the fibrillar arrangement of FN. Furthermore, RA treatment disrupts the formation of lamellipodia, which are indicative structures of cell migration that are regulated by Rac1. These results suggest that the Rac1 regulation of the FN arrangement is involved in RA-induced cleft palate through the regulation of cell migration, which delays the progress of cell condensation and subsequently influences the FN arrangement, inducing a delay in palate development. Our study provides new insights into the RA-induced impairment of palatal shelf elevation based on cell migration dynamics.

  3. Mediator complex cooperatively regulates transcription of retinoic acid target genes with Polycomb Repressive Complex 2 during neuronal differentiation.

    PubMed

    Fukasawa, Rikiya; Iida, Satoshi; Tsutsui, Taiki; Hirose, Yutaka; Ohkuma, Yoshiaki

    2015-11-01

    The Mediator complex (Mediator) plays key roles in transcription and functions as the nexus for integration of various transcriptional signals. Previously, we screened for Mediator cyclin-dependent kinase (CDK)-interacting factors and identified three proteins related to chromatin regulation. One of them, SUZ12 is required for both stability and activity of Polycomb Repressive Complex 2 (PRC2). PRC2 primarily suppresses gene expression through histone H3 lysine 27 trimethylation, resulting in stem cell maintenance and differentiation; perturbation of this process leads to oncogenesis. Recent work showed that Mediator contributes to the embryonic stem cell state through DNA loop formation, which is strongly associated with chromatin architecture; however, it remains unclear how Mediator regulates gene expression in cooperation with chromatin regulators (i.e. writers, readers and remodelers). We found that Mediator CDKs interact directly with the PRC2 subunit EZH2, as well as SUZ12. Known PRC2 target genes were deregulated by Mediator CDK knockdown during neuronal differentiation, and both Mediator and PRC2 complexes co-occupied the promoters of developmental genes regulated by retinoic acid. Our results provide a mechanistic link between Mediator and PRC2 during neuronal differentiation. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  4. Cell fate specification in the lingual epithelium is controlled by antagonistic activities of Sonic hedgehog and retinoic acid.

    PubMed

    El Shahawy, Maha; Reibring, Claes-Göran; Neben, Cynthia L; Hallberg, Kristina; Marangoni, Pauline; Harfe, Brian D; Klein, Ophir D; Linde, Anders; Gritli-Linde, Amel

    2017-07-01

    The interaction between signaling pathways is a central question in the study of organogenesis. Using the developing murine tongue as a model, we uncovered unknown relationships between Sonic hedgehog (SHH) and retinoic acid (RA) signaling. Genetic loss of SHH signaling leads to enhanced RA activity subsequent to loss of SHH-dependent expression of Cyp26a1 and Cyp26c1. This causes a cell identity switch, prompting the epithelium of the tongue to form heterotopic minor salivary glands and to overproduce oversized taste buds. At developmental stages during which Wnt10b expression normally ceases and Shh becomes confined to taste bud cells, loss of SHH inputs causes the lingual epithelium to undergo an ectopic and anachronic expression of Shh and Wnt10b in the basal layer, specifying de novo taste placode induction. Surprisingly, in the absence of SHH signaling, lingual epithelial cells adopted a Merkel cell fate, but this was not caused by enhanced RA signaling. We show that RA promotes, whereas SHH, acting strictly within the lingual epithelium, inhibits taste placode and lingual gland formation by thwarting RA activity. These findings reveal key functions for SHH and RA in cell fate specification in the lingual epithelium and aid in deciphering the molecular mechanisms that assign cell identity.

  5. Cell fate specification in the lingual epithelium is controlled by antagonistic activities of Sonic hedgehog and retinoic acid

    PubMed Central

    Neben, Cynthia L.; Harfe, Brian D.; Linde, Anders

    2017-01-01

    The interaction between signaling pathways is a central question in the study of organogenesis. Using the developing murine tongue as a model, we uncovered unknown relationships between Sonic hedgehog (SHH) and retinoic acid (RA) signaling. Genetic loss of SHH signaling leads to enhanced RA activity subsequent to loss of SHH-dependent expression of Cyp26a1 and Cyp26c1. This causes a cell identity switch, prompting the epithelium of the tongue to form heterotopic minor salivary glands and to overproduce oversized taste buds. At developmental stages during which Wnt10b expression normally ceases and Shh becomes confined to taste bud cells, loss of SHH inputs causes the lingual epithelium to undergo an ectopic and anachronic expression of Shh and Wnt10b in the basal layer, specifying de novo taste placode induction. Surprisingly, in the absence of SHH signaling, lingual epithelial cells adopted a Merkel cell fate, but this was not caused by enhanced RA signaling. We show that RA promotes, whereas SHH, acting strictly within the lingual epithelium, inhibits taste placode and lingual gland formation by thwarting RA activity. These findings reveal key functions for SHH and RA in cell fate specification in the lingual epithelium and aid in deciphering the molecular mechanisms that assign cell identity. PMID:28715412

  6. Associations of cord blood fatty acids with lymphocyte proliferation, IL-13, and IFN-γ

    PubMed Central

    Gold, Diane R.; Willwerth, Ben M.; Tantisira, Kelan G.; Finn, Patricia W.; Schaub, Bianca; Perkins, David L.; Tzianabos, Arthur; Ly, Ngoc P.; Schroeter, Christian; Gibbons, Fiona; Campos, Hannia; Oken, Emily; Gillman, Matthew W.; Palmer, Lyle J.; Ryan, Louise M.; Weiss, Scott T.

    2006-01-01

    Background. N-3 and n-6 polyunsaturated fatty acids (PUFAs) have been hypothesized to have opposing influences on neonatal immune responses that might influence the risk of allergy or asthma. However, both n-3 eicosapentaenoic acid (EPA) and n-6 arachidonic acid (AA) are required for normal fetal development. Objective. We evaluated whether cord blood fatty acid levels were related to neonatal immune responses and whether n-3 and n-6 PUFA responses differed. Methods. We examined the relation of cord blood plasma n-3 and n-6 PUFAs (n = 192) to antigen- and mitogen-stimulated cord blood lymphocyte proliferation (n = 191) and cytokine (IL-13 and IFN-γ; n = 167) secretion in a US birth cohort. Results. Higher levels of n-6 linoleic acid were correlated with higher IL-13 levels in response to Bla g 2 (cockroach, P = .009) and Der f 1 (dust mite, P = .02). Higher n-3 EPA and n-6 AA levels were each correlated with reduced lymphocyte proliferation and IFN-γ levels in response to Bla g 2 and Der f 1 stimulation. Controlling for potential confounders, EPA and AA had similar independent effects on reduced allergen-stimulated IFN-γ levels. If neonates had either EPA or AA levels in the highest quartile, their Der f 1 IFN-γ levels were 90% lower (P = .0001) than those with both EPA and AA levels in the lowest 3 quartiles. Reduced AA/EPA ratio was associated with reduced allergen-stimulated IFN-γ level. Conclusion. Increased levels of fetal n-3 EPA and n-6 AA might have similar effects on attenuation of cord blood lymphocyte proliferation and IFN-γ secretion. Clinical implications. The implications of these findings for PMID:16630954

  7. Induction of Chemoresistance by All-Trans Retinoic Acid via a Noncanonical Signaling in Multiple Myeloma Cells

    PubMed Central

    Jiang, Kesheng; Huang, Qiaoli; Chen, Yicheng; Qian, Feng

    2014-01-01

    Despite the successful application of all-trans retinoic acid (ATRA) in multiple myeloma treatment, ATRA-induced chemoresistance in the myeloma patients is very common in clinic. In this study, we evaluated the effect of ATRA on the expression of apurinic endonuclease/redox factor-1 (Ape/Ref-1) in the U266 and RPMI-8226 myeloma cells to explore the chemoresistance mechanism involved. ATRA treatment induced upregulation of Ape/Ref-1 via a noncanonical signaling pathway, leading to enhanced pro-survival activity counteracting melphalan (an alkylating agent). ATRA rapidly activated p38-MSK (mitogen- and stress activated protein kinase) cascade to phosphorylate cAMP response element-binding protein (CREB). Phosphorylated CREB was recruited to the Ape/Ref-1 promoter to evoke the gene expression. The stimulation of ATRA on Ape/Ref-1 expression was attenuated by either p38-MSK inhibitors or overexpression of dominant-negative MSK1 mutants. Moreover, ATRA-mediated Ape/Ref-1 upregulation was correlated with histone modification and activation of CBP/p300, an important cofactors for CREB transcriptional activity. C646, a competitive CBP/p300 inhibitor, abolished the upregulation of Ape/Ref-1 induced by ATRA. Intriguingly, CBP rather than p300 played a dominant role in the expression of Ape/Ref-1. Hence, our study suggests the existence of a noncanonical mechanism involving p38-MSK-CREB cascade and CBP induction to mediate ATRA-induced Ape/Ref-1 expression and acquired chemoresistance in myeloma cells. PMID:24416428

  8. All-trans retinoic acid results in irregular repair of septa and fails to inhibit proinflammatory macrophages.

    PubMed

    Seifart, C; Muyal, J P; Plagens, A; Yildirim, A Ö; Kohse, K; Grau, V; Sandu, S; Reinke, C; Tschernig, T; Vogelmeier, C; Fehrenbach, H

    2011-08-01

    All-trans retinoic acid (ATRA) is controversially discussed in emphysema therapy. We re-evaluated ATRA in the elastase model and hypothesised that beneficial effects should be reflected by increased alveolar surface area, elastin expression and downregulation of inflammatory mediators and matrix metalloproteinases (MMPs). Emphysema was induced by porcine pancreatic elastase versus saline in Sprague-Dawley rats. On days 26-37, rats received daily intraperitoneal injections with ATRA (500 μg · kg(-1) body weight) versus olive oil. Lungs were removed at day 38. Rat alveolar epithelial L2 cells were incubated with/without elastase followed by ATRA- or vehicle-treatment, respectively. ATRA only partially ameliorated structural defects. Alveolar walls exhibited irregular architecture: increased arithmetic mean thickness, reduction in surface coverage by alveolar epithelial cells type II. ATRA only partially restored reduced soluble elastin. It tended to increase the ratio of ED1(+):ED2(+) macrophages. Bronchoalveolar lavage (BAL) cells exhibited a proinflammatory state and high expression of interleukin-1β, cytokine-induced neutrophil chemoattractant-1, tumour necrosis factor-α, nuclear factor-κB, MMP-2, MMP-9, MMP-12, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 in emphysema, with ATRA exerting only few effects. MMP-7 was highly induced by ATRA in healthy but not in emphysematous lungs. ATRA reduced both MMP-2 and TIMP-1 activity in BAL fluid of emphysematous lungs. ATRA-therapy may bear the risk of unwanted side-effects on alveolar septal architecture in emphysematous lungs.

  9. Prenatal administration of retinoic acid upregulates insulin-like growth factor receptors in the nitrofen-induced hypoplastic lung.

    PubMed

    Ruttenstock, Elke; Doi, Takashi; Dingemann, Jens; Puri, Prem

    2011-04-01

    Pulmonary hypoplasia (PH) is the main cause of mortality in newborns with congenital diaphragmatic hernia (CDH). Prenatal administration of retinoic acid (RA) stimulates alveologenesis in the nitrofen-induced pulmonary hypoplasia. Insulin-like growth factor receptors (IGFRs) play a crucial role in alveologenesis during lung development. We recently demonstrated that IGFRs were downregulated in later stages of lung development in the nitrofen CDH model. Several studies suggest the ability of RA to regulate insulin-like growth factor signaling. We hypothesized that IGFRs pulmonary gene expression is upregulated after the administration of RA in the nitrofen-induced CDH model. Pregnant rats were exposed to either olive oil or nitrofen on day 9 (D9) of gestation. RA was given intraperitoneally on days D18, D19, and D20. Fetal lungs were dissected on D21 and divided into control, control + RA, CDH, and CDH + RA group. IGFRs gene and protein expression were determined using RT-PCR and immunohistochemistry. mRNA expression levels of IGFRs were significantly increased in control + RA and CDH + RA compared with CDH group. Immunoreactivity of IGFRs was markedly increased in control + RA and CDH + RA compared with CDH lungs. Upregulation of pulmonary gene and protein expression of IGFRs after prenatal RA treatment in the nitrofen model suggests that RA may promote lung growth by stimulating IGFRs mediated alveologenesis. © 2011 Wiley-Liss, Inc.

  10. Isocitrate dehydrogenase 1 mutations prime the all-trans retinoic acid myeloid differentiation pathway in acute myeloid leukemia

    PubMed Central

    Boutzen, Héléna; Saland, Estelle; Larrue, Clément; de Toni, Fabienne; Gales, Lara; Castelli, Florence A.; Cathebas, Mathilde; Zaghdoudi, Sonia; Stuani, Lucille; Kaoma, Tony; Riscal, Romain; Yang, Guangli; Hirsch, Pierre; David, Marion; De Mas-Mansat, Véronique; Delabesse, Eric; Vallar, Laurent; Delhommeau, François; Jouanin, Isabelle; Ouerfelli, Ouathek; Le Cam, Laurent; Linares, Laetitia K.; Junot, Christophe; Portais, Jean-Charles; Vergez, François; Récher, Christian

    2016-01-01

    Acute myeloid leukemia (AML) is characterized by the accumulation of malignant blasts with impaired differentiation programs caused by recurrent mutations, such as the isocitrate dehydrogenase (IDH) mutations found in 15% of AML patients. These mutations result in the production of the oncometabolite (R)-2-hydroxyglutarate (2-HG), leading to a hypermethylation phenotype that dysregulates hematopoietic differentiation. In this study, we identified mutant R132H IDH1-specific gene signatures regulated by key transcription factors, particularly CEBPα, involved in myeloid differentiation and retinoid responsiveness. We show that treatment with all-trans retinoic acid (ATRA) at clinically achievable doses markedly enhanced terminal granulocytic differentiation in AML cell lines, primary patient samples, and a xenograft mouse model carrying mutant IDH1. Moreover, treatment with a cell-permeable form of 2-HG sensitized wild-type IDH1 AML cells to ATRA-induced myeloid differentiation, whereas inhibition of 2-HG production significantly reduced ATRA effects in mutant IDH1 cells. ATRA treatment specifically decreased cell viability and induced apoptosis of mutant IDH1 blasts in vitro. ATRA also reduced tumor burden of mutant IDH1 AML cells xenografted in NOD–Scid–IL2rγnull mice and markedly increased overall survival, revealing a potent antileukemic effect of ATRA in the presence of IDH1 mutation. This therapeutic strategy holds promise for this AML patient subgroup in future clinical studies. PMID:26951332

  11. Exogenous FABP4 increases breast cancer cell proliferation and activates the expression of fatty acid transport proteins.

    PubMed

    Guaita-Esteruelas, Sandra; Bosquet, Alba; Saavedra, Paula; Gumà, Josep; Girona, Josefa; Lam, Eric W-F; Amillano, Kepa; Borràs, Joan; Masana, Lluís

    2017-01-01

    Adipose tissue plays an important role in tumor progression, because it provides nutrients and adipokines to proliferating cells. Fatty acid binding protein 4 (FABP4) is a key adipokine for fatty acid transport. In metabolic pathologies, plasma levels of FABP4 are increased. However, the role of this circulating protein is unknown. Recent studies have demonstrated that FABP4 might have a role in tumor progression, but the molecular mechanisms involved are still unclear. In this study, we analysed the role of eFABP4 (exogenous FABP4) in breast cancer progression. MCF-7 and MDA-MB-231 breast cancer cells did not express substantial levels of FABP4 protein, but intracellular FABP4 levels increased after eFABP4 incubation. Moreover, eFABP4 enhanced the proliferation of these breast cancer cells but did not have any effect on MCF-7 and MDA-MB-231 cell migration. Additionally, eFABP4 induced the AKT and MAPK signaling cascades in breast cancer cells, and the inhibition of these pathways reduced the eFBAP4-mediated cell proliferation. Interestingly, eFABP4 treatment in MCF-7 cells increased levels of the transcription factor FoxM1 and the fatty acid transport proteins CD36 and FABP5. In summary, we showed that eFABP4 plays a key role in tumor proliferation and activates the expression of fatty acid transport proteins in MCF-7 breast cancer cells. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Synergistic activation of Arg1 gene by retinoic acid and IL-4 involves chromatin remodeling for transcription initiation and elongation coupling

    PubMed Central

    Lee, Bomi; Wu, Cheng-Ying; Lin, Yi-Wei; Park, Sung Wook; Wei, Li-Na

    2016-01-01

    All-trans Retinoic acid (RA) and its derivatives are potent therapeutics for immunological functions including wound repair. However, the molecular mechanism of RA modulation in innate immunity is poorly understood, especially in macrophages. We found that topical application of RA significantly improves wound healing and that RA and IL-4 synergistically activate Arg1, a critical gene for tissue repair, in M2 polarized macrophages. This involves feed forward regulation of Raldh2, a rate-limiting enzyme for RA biosynthesis, and requires Med25 to coordinate RAR, STAT6 and chromatin remodeler, Brg1 to remodel the +1 nucleosome of Arg1 for transcription initiation. By recruiting elongation factor TFIIS, Med25 also facilitates transcriptional initiation-elongation coupling. This study uncovers synergistic activation of Arg1 by RA and IL-4 in M2 macrophages that involves feed forward regulation of RA synthesis and dual functions of Med25 in nucleosome remodeling and transcription initiation-elongation coupling that underlies robust modulatory activity of RA in innate immunity. PMID:27166374

  13. Micro liquid chromatography-mass spectrometry with direct liquid introduction used for separation and quantitation of all-trans- and 13-cis-retinoic acids and their 4-oxo metabolites in human plasma.

    PubMed

    Ranalder, U B; Lausecker, B B; Huselton, C

    1993-07-23

    The separation and quantitation of the pentafluorobenzyl derivatives of all-trans- and 13-cis-retinoic acids and their 4-oxo metabolites in human plasma on micro high-performance liquid chromatographic columns (0.32 mm I.D.) is described. The column outlet was directly coupled to the source of a quadrupole mass spectrometer via a simple SFC-frit interface. Negative ion chemical ionization conditions were obtained by coaxial introduction of ammonia as a reagent gas. A signal-to-noise ratio well above 3 was obtained for 1 pg of each analyte injected. The limit of quantitation calculated from spiked biological plasma extracts was 0.3 ng/ml.

  14. Transcriptional regulation by retinoic acid of interleukin-2 alpha receptors in human B cells.

    PubMed Central

    Bhatti, L; Sidell, N

    1994-01-01

    In this study, we demonstrated that retinoic acid (RA) up-regulated interleukin-2 receptor-alpha (IL-2R alpha) expression on two human B-cell lines, IE8.6 and SKW6.4. Deleted forms of the human IL-2R alpha promoter linked to the bacterial chloramphenicol acetyltransferase reporter gene were transfected into IE8.6 cells in order to define RA-responsive regulatory domains. Experiments using the -1.6 kb construct, which contains all known regulatory regions in the IL-2R alpha promoter, indicated that RA could induce IL-2R alpha promoter activity. The basal activity of the -471 construct was initially low, but was markedly enhanced by the addition of RA. Deletion of promoter sequences between -471 and -317 resulted in a significant augmentation of basal promoter activity and abolished promoter induction by RA. This finding revealed a requirement for sequences 5' of base -317 for RA-induced promoter activation, raising the possibility of the presence of both a RA response element and a negative regulatory element (NRE) upstream of base -317. Transfection studies with internal deletion mutants with the putative NRE removed resulted in increases in basal promoter activity and unresponsiveness to RA similar to the -317 construct. In contrast, an internal deletion mutant with the NRE intact had low basal activity and was inducible by RA similar to the -471 construct. Taken together, our results suggested that RA-induced activation of the IL-2R alpha promoter was through changes in the function of a NRE present between bases -400 and -368. This 31-base pair element may interact with an adjacent RA-responsive regulatory site as well as being responsible for down-regulation of basal IL-2R alpha expression under certain conditions. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:8157276

  15. 'RetinoGenetics': a comprehensive mutation database for genes related to inherited retinal degeneration.

    PubMed

    Ran, Xia; Cai, Wei-Jun; Huang, Xiu-Feng; Liu, Qi; Lu, Fan; Qu, Jia; Wu, Jinyu; Jin, Zi-Bing

    2014-01-01

    Inherited retinal degeneration (IRD), a leading cause of human blindness worldwide, is exceptionally heterogeneous with clinical heterogeneity and genetic variety. During the past decades, tremendous efforts have been made to explore the complex heterogeneity, and massive mutations have been identified in different genes underlying IRD with the significant advancement of sequencing technology. In this study, we developed a comprehensive database, 'RetinoGenetics', which contains informative knowledge about all known IRD-related genes and mutations for IRD. 'RetinoGenetics' currently contains 4270 mutations in 186 genes, with detailed information associated with 164 phenotypes from 934 publications and various types of functional annotations. Then extensive annotations were performed to each gene using various resources, including Gene Ontology, KEGG pathways, protein-protein interaction, mutational annotations and gene-disease network. Furthermore, by using the search functions, convenient browsing ways and intuitive graphical displays, 'RetinoGenetics' could serve as a valuable resource for unveiling the genetic basis of IRD. Taken together, 'RetinoGenetics' is an integrative, informative and updatable resource for IRD-related genetic predispositions. Database URL: http://www.retinogenetics.org/. © The Author(s) 2014. Published by Oxford University Press.

  16. Retinoic Acid Improves Morphology of Cultured Peritoneal Mesothelial Cells from Patients Undergoing Dialysis

    PubMed Central

    Retana, Carmen; Sanchez, Elsa I.; Gonzalez, Sirenia; Perez-Lopez, Alejandro; Cruz, Armando; Lagunas-Munoz, Jesus; Alfaro-Cruz, Carmen; Vital-Flores, Socorro; Reyes, José L.

    2013-01-01

    Patients undergoing continuous ambulatory peritoneal dialysis are classified according to their peritoneal permeability as low transporter (low solute permeability) or High transporter (high solute permeability). Factors that determine the differences in permeability between them have not been fully disclosed. We investigated morphological features of cultured human peritoneal mesothelial cells from low or high transporter patients and its response to All trans retinoic Acid (ATRA, vitamin A active metabolite), as compared to non-uremic human peritoneal mesothelial cells. Control cells were isolated from human omentum. High or low transporter cells were obtained from dialysis effluents. Cells were cultured in media containing ATRA (0, 50, 100 or 200 nM). We studied length and distribution of microvilli and cilia (scanning electron microscopy), epithelial (cytokeratin, claudin-1, ZO-1 and occludin) and mesenchymal (vimentin and α-smooth muscle actin) transition markers by immunofluorescence and Western blot, and transforming growth factor β1 expression by Western blot. Low and high transporter exhibited hypertrophic cells, reduction in claudin-1, occludin and ZO-1 expression, cytokeratin and vimentin disorganization and positive α-smooth muscle actin label. Vimentin, α-smooth muscle actin and transforming growth factor- β1 were overexpressed in low transporter. Ciliated cells were diminished in low and high transporters. Microvilli number and length were severely reduced in high transporter. ATRA reduced hypertrophic cells number in low transporter. It also improved cytokeratin and vimentin organization, decreased vimentin and α-smooth muscle actin expression, and increased claudin 1, occludin and ZO-1 expression, in low and high transporter. In low transporter, ATRA reduced transforming growth factor-β1 expression. ATRA augmented percentage of ciliated cells in low and high transporter. It also augmented cilia length in high transporter. Alterations in

  17. Prenatal retinoic acid increases lipofibroblast expression in hypoplastic rat lungs with experimental congenital diaphragmatic hernia.

    PubMed

    Friedmacher, Florian; Fujiwara, Naho; Hofmann, Alejandro D; Takahashi, Hiromizu; Alvarez, Luis A J; Gosemann, Jan-Hendrik; Puri, Prem

    2014-06-01

    Prenatal administration of all-trans retinoic acid (ATRA) has been shown to stimulate alveolarization in nitrofen-induced pulmonary hypoplasia (PH) associated with congenital diaphragmatic hernia (CDH). Lipid-containing interstitial lipofibroblasts (LIFs), characterized by adipocyte differentiation-related protein (ADRP), play a critical role in alveolar development by coordinating lipid homeostasis. Previous studies have demonstrated that ATRA positively affects LIF expression in developing lungs. We hypothesized that pulmonary LIF expression is increased after prenatal ATRA treatment in the nitrofen model of CDH-associated PH. Timed-pregnant rats were treated with nitrofen or vehicle on E9.5, followed by injection of ATRA or placebo on E18.5, E19.5, and E20.5. Fetal lungs were dissected on E21.5 and divided into Control+Placebo, Control+ATRA, Nitrofen+Placebo, and Nitrofen+ATRA. Pulmonary gene expression levels of ADRP were analyzed by quantitative real-time polymerase chain reaction, and LIF expression was investigated by ADRP immunohistochemistry, oil-red-O-, and immunofluorescence-double-staining. Relative mRNA expression of pulmonary ADRP was significantly increased in Nitrofen+ATRA compared to Nitrofen+Placebo (0.31±0.02 vs. 0.08±0.01; P<0.0001). ADRP immunoreactivity and oil-red-O-staining were markedly increased in alveolar interstitium of Nitrofen+ATRA compared to Nitrofen+Placebo. Immunofluorescence-double-staining confirmed markedly increased LIF expression in alveolar walls of Nitrofen+ATRA compared to Nitrofen+Placebo. Increased LIF expression after prenatal treatment with ATRA in nitrofen-induced PH suggests that ATRA may have a therapeutic potential in attenuating CDH-associated PH by stimulating alveolar development. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Prenatal administration of retinoic acid upregulates connective tissue growth factor in the nitrofen CDH model.

    PubMed

    Ruttenstock, Elke Maria; Doi, Takashi; Dingemann, Jens; Puri, Prem

    2011-06-01

    Recent studies have suggested that retinoids may be involved in the molecular mechanisms of pulmonary hypoplasia (PH) in congenital diaphragmatic hernia (CDH). Connective tissue growth factor (CTGF) plays a key role in foetal lung development and remodelling during later gestation. CTGF knockout mice exhibit PH with similar characteristics to the human and nitrofen-induced PH. Prenatal administration of retinoic acid (RA) has been shown to stimulate alveologenesis in nitrofen-induced PH. In vitro studies have revealed that RA can induce CTGF gene expression. We hypothesized that pulmonary gene expression of CTGF is downregulated during the later stages of lung development, and that prenatal administration of RA upregulates CTGF in the nitrofen CDH model. Pregnant rats were exposed to either olive oil or nitrofen on day 9 (D9) of gestation. RA was given intraperitoneally on D18, D19 and D20. Foetuses were harvested on D21 and divided into control, CDH, control + RA and CDH + RA group. Pulmonary CTGF gene and protein expression levels were determined using RT-PCR and immunohistochemistry. On D21, CTGF relative mRNA expression levels were significantly downregulated in CDH group compared to controls. After RA treatment, expression levels of CTGF were significantly upregulated in CDH + RA and control + RA compared to the CDH group. Immunohistochemical studies confirmed these results. Downregulation of pulmonary CTGF gene and protein expression during later stages of lung development may interfere with normal alveologenesis in the nitrofen CDH model. Upregulation of CTGF pulmonary gene expression after prenatal RA treatment may promote lung growth by promoting alveologenesis in the nitrofen-induced CDH model.

  19. Retinoic Acid Signaling Is Essential for Valvulogenesis by Affecting Endocardial Cushions Formation in Zebrafish Embryos.

    PubMed

    Li, Junbo; Yue, Yunyun; Zhao, Qingshun

    2016-02-01

    Retinoic acid (RA) plays important roles in many stages of heart morphogenesis. Zebrafish embryos treated with exogenous RA display defective atrio-ventricular canal (AVC) specification. However, whether endogenous RA signaling takes part in cardiac valve formation remains unknown. Herein, we investigated the role of RA signaling in cardiac valve development by knocking down aldh1a2, the gene encoding an enzyme that is mainly responsible for RA synthesis during early development, in zebrafish embryos. The results showed that partially knocking down aldh1a2 caused defective formation of primitive cardiac valve leaflets at 108 hpf (hour post-fertilization). Inhibiting endogenous RA signaling by 4-diethylaminobenzal-dehyde revealed that 16-26 hpf was a key time window when RA signaling affects the valvulogenesis. The aldh1a2 morphants had defective formation of endocardial cushion (EC) at 76 hpf though they had almost normal hemodynamics and cardiac chamber specification at early development. Examining the expression patterns of AVC marker genes including bmp4, bmp2b, nppa, notch1b, and has2, we found the morphants displayed abnormal development of endocardial AVC but almost normal development of myocardial AVC at 50 hpf. Being consistent with the reduced expression of notch1b in endocardial AVC, the VE-cadherin gene cdh5, the downstream gene of Notch signaling, was ectopically expressed in AVC of aldh1a2 morphants at 50 hpf, and overexpression of cdh5 greatly affected the formation of EC in the embryos at 76 hpf. Taken together, our results suggest that RA signaling plays essential roles in zebrafish cardiac valvulogenesis.

  20. Local sequence information in cellular retinoic acid-binding protein I: specific residue roles in beta-turns.

    PubMed

    Rotondi, Kenneth S; Gierasch, Lila M

    2003-01-01

    We have recently shown that two of the beta-turns (III and IV) in the ten-stranded, beta-clam protein, cellular retinoic acid-binding protein I (CRABP I), are favored in short peptide fragments, arguing that they are encoded by local interactions (K. S. Rotondi and L. M. Gierasch, Biochemistry, 2003, Vol. 42, pp. 7976-7985). In this paper we examine these turns in greater detail to dissect the specific local interactions responsible for their observed native conformational biases. Conformations of peptides corresponding to the turn III and IV fragments were examined under conditions designed to selectively disrupt stabilizing interactions, using pH variation, chaotrope addition, or mutagenesis to probe specific side-chain influences. We find that steric constraints imposed by excluded volume effects between near neighbor residues (i,i+2), favorable polar (i,i+2) interactions, and steric permissiveness of glycines are the principal factors accounting for the observed native bias in these turns. Longer-range stabilizing interactions across the beta-turns do not appear to play a significant role in turn stability in these short peptides, in contrast to their importance in hairpins. Additionally, our data add to a growing number of examples of the 3:5 type I turn with a beta-bulge as a class of turns with high propensity to form locally defined structure. Current work is directed at the interplay between the local sequence information in the turns and more long-range influences in the mechanism of folding of this predominantly beta-sheet protein. Copyright 2004 Wiley Periodicals, Inc.

  1. The impact of oral arsenic and all-trans-retinoic acid on coagulopathy in acute promyelocytic leukemia.

    PubMed

    Zhu, Hong-Hu; Guo, Zhi-Ping; Jia, Jin-Song; Jiang, Qian; Jiang, Hao; Huang, Xiao-Jun

    2018-02-01

    The aim of our study was to evaluate the impact of oral arsenic (the realgar-indigo naturalis formula, RIF) and all-trans retinoic acid (ATRA) on coagulopathy in acute promyelocytic leukemia (APL) compared with intravenous arsenic trioxide (ATO) and ATRA during induction. Mitoxantrone was added to all the patients at a dose of 1.4mg/m 2 per day for 5-7 days. D-dimer levels, prothrombin time (PT), fibrinogen (Fbg) levels and the platelet count were comparably analyzed among 83 newly diagnosed APL patients treated with RIF (n=45) or with ATO (n=38). Since induction therapy with RIF and ATRA, the median levels of Fbg, PT and platelets were recovered to the normal range within 4days, 10days and 28days, respectively. The last day of platelet and plasma transfusion was day 12 (range: 0-24 days) and day 3 (range: 0-27 days), respectively. Among the 42 patients with a disseminated intravascular coagulation (DIC) score=4, the consumption of transfused platelets was less in the RIF group than that in the ATO group (P=0.037). In the 17 patients with a DIC score <4, prompt recovery of Fbg levels (P=0.028) was observed in the RIF group compared with that in the ATO group (P=0.401). RIF and ATO showed similar effects on the recovery of coagulopathy in APL patients. RIF had a potential beneficial effect in accelerating the recovery of thrombocytopenia and hypofibrinogenemia for subclinical DIC patients. Copyright © 2017. Published by Elsevier Ltd.

  2. Alpha lipoic acid selectively inhibits proliferation and adhesion to fibronectin of v-H-ras-transformed 3Y1 cells.

    PubMed

    Yamasaki, Masao; Iwase, Masahiro; Kawano, Kazuo; Sakakibara, Yoichi; Suiko, Masahito; Nishiyama, Kazuo

    2012-05-01

    Here, we focused on the effects of racemic α-lipoic acid on proliferation and adhesion properties of 3Y1 rat fibroblasts and the v-H-ras-transformed derivative, HR-3Y1-2 cells. Racemic α-lipoic acid inhibited proliferation of HR-3Y1-2 but not 3Y1 cells at 0.3 and 1.0 mM. R-(+)-α-lipoic acid also inhibited proliferation of HR-3Y1-2 cells equivalent to that of racemic α-lipoic acid. In addition, racemic α-lipoic acid decreased intracellular reactive oxygen species levels in HR-3Y1 cells but not 3Y1 cells. Next, we evaluated the effects of racemic α-lipoic acid on cell adhesion to fibronectin. The results indicated that racemic α-lipoic acid decreased adhesive ability of HR-3Y1-2 cells to fibronectin-coated plates. As blocking antibody experiment revealed that β1-integrin plays a key role in cell adhesion in this experimental system, the effects of racemic α-lipoic acid on the expression of β1-integrin were examined. The results indicated that racemic α-lipoic acid selectively downregulated the expression of cell surface β1-integrin expression in HR-3Y1-2 cells. Intriguingly, exogenous hydrogen peroxide upregulated cell surface β1-integrin expression in 3Y1 cells. Taken together, these data suggest that reduction of intracellular reactive oxygen species levels by α-lipoic acid could be an effective means of ameliorating abnormal growth and adhesive properties in v-H-ras transformed cells.

  3. Retinoic acid prevents immunogenicity of milk lipocalin Bos d 5 through binding to its immunodominant T-cell epitope.

    PubMed

    Hufnagl, Karin; Ghosh, Debajyoti; Wagner, Stefanie; Fiocchi, Alessandro; Dahdah, Lamia; Bianchini, Rodolfo; Braun, Nina; Steinborn, Ralf; Hofer, Martin; Blaschitz, Marion; Roth, Georg A; Hofstetter, Gerlinde; Roth-Walter, Franziska; Pacios, Luis F; Jensen-Jarolim, Erika

    2018-01-25

    The major cow's milk allergen Bos d 5 belongs to the lipocalin protein family, with an intramolecular pocket for hydrophobic ligands. We investigated whether Bos d 5 when loaded with the active vitamin A metabolite retinoic acid (RA), would elicit differential immune responses compared to the unloaded state. By in silico docking an affinity energy of -7.8 kcal/mol was calculated for RA into Bos d 5. Loading of RA to Bos d 5 could be achieved in vitro, as demonstrated by ANS displacement assay, but had no effect on serum IgE binding in tolerant or challenge-positive milk allergic children. Bioinformatic analysis revealed that RA binds to the immunodominant T-cell epitope region of Bos d 5. In accordance, Bos d 5 significantly suppressed the CD3+ CD4+ cell numbers, proliferative response and IL-10, IL-13 and IFN-γ secretion from stimulated human PBMCs only when complexed with RA. This phenomenon was neither associated with apoptosis of T-cells nor with the activation of Foxp3+ T-cells, but correlated likely with enhanced stability to lysosomal digestion due to a predicted overlap of Cathepsin S cleavage sites with the RA binding site. Taken together, proper loading of Bos d 5 with RA may suppress its immunogenicity and prevent its allergenicity.

  4. Inhibition of hypoxia inducible factors combined with all-trans retinoic acid treatment enhances glial transdifferentiation of neuroblastoma cells.

    PubMed

    Cimmino, Flora; Pezone, Lucia; Avitabile, Marianna; Acierno, Giovanni; Andolfo, Immacolata; Capasso, Mario; Iolascon, Achille

    2015-06-09

    Neuroblastoma (NBL) is a heterogeneous tumor characterized by a wide range of clinical manifestations. A high tumor cell differentiation grade correlates to a favorable stage and positive outcome. Expression of the hypoxia inducible factors HIF1-α (HIF1A gene) and HIF2-α (EPAS1 gene) and/or hypoxia-regulated pathways has been shown to promote the undifferentiated phenotype of NBL cells. Our hypothesis is that HIF1A and EPAS1 expression represent one of the mechanisms responsible for the lack of responsiveness of NBL to differentiation therapy. Clinically, high levels of HIF1A and EPAS1 expression were associated with inferior survival in two NBL microarray datasets, and patient subgroups with lower expression of HIF1A and EPAS1 showed significant enrichment of pathways related to neuronal differentiation. In NBL cell lines, the combination of all-trans retinoic acid (ATRA) with HIF1A or EPAS1 silencing led to an acquired glial-cell phenotype and enhanced expression of glial-cell differentiation markers. Furthermore, HIF1A or EPAS1 silencing might promote cell senescence independent of ATRA treatment. Taken together, our data suggest that HIF inhibition coupled with ATRA treatment promotes differentiation into a more benign phenotype and cell senescence in vitro. These findings open the way for additional lines of attack in the treatment of NBL minimal residue disease.

  5. Inhibition of hypoxia inducible factors combined with all-trans retinoic acid treatment enhances glial transdifferentiation of neuroblastoma cells

    PubMed Central

    Cimmino, Flora; Pezone, Lucia; Avitabile, Marianna; Acierno, Giovanni; Andolfo, Immacolata; Capasso, Mario; Iolascon, Achille

    2015-01-01

    Neuroblastoma (NBL) is a heterogeneous tumor characterized by a wide range of clinical manifestations. A high tumor cell differentiation grade correlates to a favorable stage and positive outcome. Expression of the hypoxia inducible factors HIF1-α (HIF1A gene) and HIF2-α (EPAS1 gene) and/or hypoxia-regulated pathways has been shown to promote the undifferentiated phenotype of NBL cells. Our hypothesis is that HIF1A and EPAS1 expression represent one of the mechanisms responsible for the lack of responsiveness of NBL to differentiation therapy. Clinically, high levels of HIF1A and EPAS1 expression were associated with inferior survival in two NBL microarray datasets, and patient subgroups with lower expression of HIF1A and EPAS1 showed significant enrichment of pathways related to neuronal differentiation. In NBL cell lines, the combination of all-trans retinoic acid (ATRA) with HIF1A or EPAS1 silencing led to an acquired glial-cell phenotype and enhanced expression of glial-cell differentiation markers. Furthermore, HIF1A or EPAS1 silencing might promote cell senescence independent of ATRA treatment. Taken together, our data suggest that HIF inhibition coupled with ATRA treatment promotes differentiation into a more benign phenotype and cell senescence in vitro. These findings open the way for additional lines of attack in the treatment of NBL minimal residue disease. PMID:26057707

  6. Development and characterization of polymer-oil nanostructured carrier (PONC) for controlled delivery of all-trans retinoic acid (ATRA)

    NASA Astrophysics Data System (ADS)

    Narvekar, Mayuri M.

    The commonly used PLGA-based delivery systems are often limited by their inadequate drug loading and release properties. This study reports the integration of oil into PLGA to form the prototype of a hybrid drug carrier PONC. Our primary goal is to confer the key strength of lipid-based drug carriers, i.e. efficient encapsulation of lipophilic compounds, to a PLGA system without taking away its various useful qualities. The PONC were formulated by emulsification solvent evaporation technique, which were then characterized for particle size, encapsulation efficiency, drug release and anticancer efficacy. The ATRA loaded PONC showed excellent encapsulation efficiency and release kinetics. Even after surface functionalization with PEG , controlled drug release kinetics was maintained, with 88.5% of the encapsulated ATRA released from the PEG-PONC in a uniform manner over 120 hours. It also showed favorable physicochemical properties and serum stability. PEG-PONC has demonstrated substantially superior activity over the free ATRA in ovarian cancer cells that are non-responsive to the standard chemotherapy. The newly developed PEG-PONC significantly reduced the IC50 values (p<0.05) in the chemoresistant cells in both MTT and colony formation assays. Hence, this new ATRA-nanoformulation may offer promising means for the delivery of lipophilic compounds like all-trans retinoic acid to treat highly resistant ovarian cancer.

  7. Ectopic cross-talk between thyroid and retinoic acid signaling: A possible etiology for spinal neural tube defects.

    PubMed

    Li, Huili; Bai, Baoling; Zhang, Qin; Bao, Yihua; Guo, Jin; Chen, Shuyuan; Miao, Chunyue; Liu, Xiaozhen; Zhang, Ting

    2015-12-01

    Previous studies have highlighted the connections between neural tube defects (NTDs) and both thyroid hormones (TH) and vitamin A. However, whether the two hormonal signaling pathways interact in NTDs has remained unclear. We measured the expression levels of TH signaling genes in human fetuses with spinal NTDs associated with maternal hyperthyroidism as well as levels of retinoic acid (RA) signaling genes in mouse fetuses exposed to an overdose of RA using NanoString or real-time PCR on spinal cord tissues. Interactions between the two signaling pathways were detected by ChIP assays. The data revealed attenuated DIO2/DIO3 switching in fetuses with NTDs born to hyperthyroid mothers. The promoters of the RA signaling genes CRABP1 and RARB were ectopically occupied by increased RXRG and RXRB but displayed decreased levels of inhibitory histone modifications, suggesting that elevated TH signaling abnormally stimulates RA signaling genes. Conversely, in the mouse model, the observed decrease in Dio3 expression could be explained by increased levels of inhibitory histone modifications in the Dio3 promoter region, suggesting that overactive RA signaling may ectopically derepress TH signaling. This study thus raises in vivo a possible abnormal cross-promotion between two different hormonal signals through their common RXRs and the subsequent recruitment of histone modifications, prompting further investigation into their involvement in the etiology of spinal NTDs. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Retinoic acid-induced differentiation increases the rate of oxygen consumption and enhances the spare respiratory capacity of mitochondria in SH-SY5Y cells

    PubMed Central

    Xun, Zhiyin; Lee, Do-Yup; Lim, James; Canaria, Christie A.; Barnebey, Adam; Yanonne, Steven M.; McMurray, Cynthia T.

    2012-01-01

    Retinoic acid (RA) is used in differentiation therapy to treat a variety of cancers including neuroblastoma. The contributing factors for its therapeutic efficacy are poorly understood. However, mitochondria (MT) have been implicated as key effectors in RA-mediated differentiation process. Here we utilize the SH-SY5Y human neuroblastoma cell line as a model to examine how RA influences MT during the differentiation process. We find that RA confers an approximately 6-fold increase in the oxygen consumption rate while the rate of glycolysis modestly increases. RA treatment does not increase the number of MT or cause measurable changes in the composition of the electron transport chain. Rather, RA treatment significantly increases the mitochondrial spare respiratory capacity. We propose a competition model for the therapeutic effects of RA. Specifically, the high metabolic rate in differentiated cells limits the availability of metabolic nutrients for use by the undifferentiated cells and suppresses their growth. Thus, RA treatment provides a selective advantage for the differentiated state. PMID:22336883

  9. Activation of Peroxisome Proliferator-activated Receptor α Induces Lysosomal Biogenesis in Brain Cells

    PubMed Central

    Ghosh, Arunava; Jana, Malabendu; Modi, Khushbu; Gonzalez, Frank J.; Sims, Katherine B.; Berry-Kravis, Elizabeth; Pahan, Kalipada

    2015-01-01

    Lysosomes are ubiquitous membrane-enclosed organelles filled with an acidic interior and are central to the autophagic, endocytic, or phagocytic pathway. In contrast to its classical function as the waste management machinery, lysosomes are now considered to be an integral part of various cellular signaling processes. The diverse functionality of this single organelle requires a very complex and coordinated regulation of its activity with transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, at its core. However, mechanisms by which TFEB is regulated are poorly understood. This study demonstrates that gemfibrozil, an agonist of peroxisome proliferator-activated receptor (PPAR) α, alone and in conjunction with all-trans-retinoic acid is capable of enhancing TFEB in brain cells. We also observed that PPARα, but not PPARβ and PPARγ, is involved in gemfibrozil-mediated up-regulation of TFEB. Reporter assay and chromatin immunoprecipitation studies confirmed the recruitment of retinoid X receptor α, PPARα, and PGC1α on the PPAR-binding site on the Tfeb promoter as well. Subsequently, the drug-mediated induction of TFEB caused an increase in lysosomal protein and the lysosomal abundance in cell. Collectively, this study reinforces the link between lysosomal biogenesis and lipid metabolism with TFEB at the crossroads. Furthermore, gemfibrozil may be of therapeutic value in the treatment of lysosomal storage disorders in which autophagy-lysosome pathway plays an important role. PMID:25750174

  10. CD44 and TLR4 mediate hyaluronic acid regulation of Lgr5+ stem cell proliferation, crypt fission, and intestinal growth in postnatal and adult mice.

    PubMed

    Riehl, Terrence E; Santhanam, Srikanth; Foster, Lynne; Ciorba, Matthew; Stenson, William F

    2015-12-01

    Hyaluronic acid, a glycosaminoglycan in the extracellular matrix, binds to CD44 and Toll-like receptor 4 (TLR4). We previously addressed the role of hyaluronic acid in small intestinal and colonic growth in mice. We addressed the role of exogenous hyaluronic acid by giving hyaluronic acid intraperitoneally and the role of endogenous hyaluronic acid by giving PEP-1, a peptide that blocks hyaluronic acid binding to its receptors. Exogenous hyaluronic acid increased epithelial proliferation but had no effect on intestinal length. PEP-1 resulted in a shortened small intestine and colon and diminished epithelial proliferation. In the current study, we sought to determine whether the effects of hyaluronic acid on growth were mediated by signaling through CD44 or TLR4 by giving exogenous hyaluronic acid or PEP-1 twice a week from 3-8 wk of age to wild-type, CD44(-/-), and TLR4(-/-) mice. These studies demonstrated that signaling through both CD44 and TLR4 were important in mediating the effects of hyaluronic acid on growth in the small intestine and colon. Extending our studies to early postnatal life, we assessed the effects of exogenous hyaluronic acid and PEP-1 on Lgr5(+) stem cell proliferation and crypt fission. Administration of PEP-1 to Lgr5(+) reporter mice from postnatal day 7 to day 14 decreased Lgr5(+) cell proliferation and decreased crypt fission. These studies indicate that endogenous hyaluronic acid increases Lgr5(+) stem cell proliferation, crypt fission, and intestinal lengthening and that these effects are dependent on signaling through CD44 and TLR4. Copyright © 2015 the American Physiological Society.

  11. Cardiac compartment-specific overexpression of a modified retinoic acid receptor produces dilated cardiomyopathy and congestive heart failure in transgenic mice.

    PubMed

    Colbert, M C; Hall, D G; Kimball, T R; Witt, S A; Lorenz, J N; Kirby, M L; Hewett, T E; Klevitsky, R; Robbins, J

    1997-10-15

    Retinoids play a critical role in cardiac morphogenesis. To examine the effects of excessive retinoid signaling on myocardial development, transgenic mice that overexpress a constitutively active retinoic acid receptor (RAR) controlled by either the alpha- or beta-myosin heavy chain (MyHC) promoter were generated. Animals carrying the alpha-MyHC-RAR transgene expressed RARs in embryonic atria and in adult atria and ventricles, but developed no signs of either malformations or disease. In contrast, beta-MyHC-RAR animals, where expression was activated in fetal ventricles, developed a dilated cardiomyopathy that varied in severity with transgene copy number. Characteristic postmortem lesions included biventricular chamber dilation and left atrial thrombosis; the incidence and severity of these lesions increased with increasing copy number. Transcript analyses showed that molecular markers of hypertrophy, alpha-skeletal actin, atrial natriuretic factor and beta-MyHC, were upregulated. Cardiac performance of transgenic hearts was evaluated using the isolated perfused working heart model as well as in vivo, by transthoracic M-mode echocardiography. Both analyses showed moderate to severe impairment of left ventricular function and reduced cardiac contractility. Thus, expression of a constitutively active RAR in developing atria and/ or in postnatal ventricles is relatively benign, while ventricular expression during gestation can lead to significant cardiac dysfunction.

  12. Cardiac compartment-specific overexpression of a modified retinoic acid receptor produces dilated cardiomyopathy and congestive heart failure in transgenic mice.

    PubMed Central

    Colbert, M C; Hall, D G; Kimball, T R; Witt, S A; Lorenz, J N; Kirby, M L; Hewett, T E; Klevitsky, R; Robbins, J

    1997-01-01

    Retinoids play a critical role in cardiac morphogenesis. To examine the effects of excessive retinoid signaling on myocardial development, transgenic mice that overexpress a constitutively active retinoic acid receptor (RAR) controlled by either the alpha- or beta-myosin heavy chain (MyHC) promoter were generated. Animals carrying the alpha-MyHC-RAR transgene expressed RARs in embryonic atria and in adult atria and ventricles, but developed no signs of either malformations or disease. In contrast, beta-MyHC-RAR animals, where expression was activated in fetal ventricles, developed a dilated cardiomyopathy that varied in severity with transgene copy number. Characteristic postmortem lesions included biventricular chamber dilation and left atrial thrombosis; the incidence and severity of these lesions increased with increasing copy number. Transcript analyses showed that molecular markers of hypertrophy, alpha-skeletal actin, atrial natriuretic factor and beta-MyHC, were upregulated. Cardiac performance of transgenic hearts was evaluated using the isolated perfused working heart model as well as in vivo, by transthoracic M-mode echocardiography. Both analyses showed moderate to severe impairment of left ventricular function and reduced cardiac contractility. Thus, expression of a constitutively active RAR in developing atria and/ or in postnatal ventricles is relatively benign, while ventricular expression during gestation can lead to significant cardiac dysfunction. PMID:9329959

  13. Lipid peroxide, alpha-tocopherol and retinoid levels in plasma and liver of rats fed diets containing beta-carotene and 13-cis-retinoic acid.

    PubMed

    Alam, S Q; Alam, B S

    1983-12-01

    The effect of feeding large amounts of beta-carotene and 13-cis-retinoic acid (RA) on plasma and liver levels of alpha-tocopherol, lipid peroxides and retinoids was studied. Groups of young male rats were fed semipurified diets supplemented with 0, 100 mg/kg beta-carotene, 20 and 100 mg/kg 13-cis-RA. After feeding the various diets for 11 weeks, rats were killed and the concentrations of lipid peroxides, alpha-tocopherol, and retinoids were measured in blood plasma and liver. Peroxide levels were increased and alpha-tocopherol levels were decreased in plasma as well as liver of rats fed diets containing 13-cis-RA; this effect seems to be dose dependent, beta-Carotene had no significant effect on either of the above parameters. There was a decrease in the liver and plasma concentrations of retinol in rats fed 13-cis-RA; the levels of RA were generally higher in these two groups. The results suggest that the mechanism whereby 13-cis-RA increases the tissue peroxide levels may be related to its ability to decrease alpha-tocopherol levels.

  14. Retinoic Acid Modulates Interferon-γ Production by Hepatic Natural Killer T Cells via Phosphatase 2A and the Extracellular Signal-Regulated Kinase Pathway

    PubMed Central

    Chang, Heng-Kwei

    2015-01-01

    Retinoic acid (RA), an active metabolite converted from vitamin A, plays an active role in immune function, such as defending against infections and immune regulation. Although RA affects various types of immune cells, including antigen-presenting cells, B lymphocytes, and T lymphocytes, whether it affects natural killer T (NKT) cells remain unknown. In this study, we found that RA decreased interferon (IFN)-γ production by activated NKT cells through T-cell receptor (TCR) and CD28. We also found that RA reduced extracellular signal-regulated kinase (ERK) phosphorylation, but increased phosphatase 2A (PP2A) activity in TCR/CD28-stimulated NKT cells. The increased PP2A activity, at least partly, contributed to the reduction of ERK phosphorylation. Since inhibition of ERK activation decreases IFN-γ production by TCR/CD28-stimulated NKT cells, RA may downregulate IFN-γ production by TCR/CD28-stimulated NKT cells through the PP2A-ERK pathway. Our results demonstrated a novel function of RA in modulating the IFN-γ expression by activated NKT cells. PMID:25343668

  15. Expression of HOXB2, a retinoic acid signaling target in pancreatic cancer and pancreatic intraepithelial neoplasia.

    PubMed

    Segara, Davendra; Biankin, Andrew V; Kench, James G; Langusch, Catherine C; Dawson, Amanda C; Skalicky, David A; Gotley, David C; Coleman, Maxwell J; Sutherland, Robert L; Henshall, Susan M

    2005-05-01

    Despite significant progress in understanding the molecular pathology of pancreatic cancer and its precursor lesion: pancreatic intraepithelial neoplasia (PanIN), there remain no molecules with proven clinical utility as prognostic or therapeutic markers. Here, we used oligonucleotide microarrays to interrogate mRNA expression of pancreatic cancer tissue and normal pancreas to identify novel molecular pathways dysregulated in the development and progression of pancreatic cancer. RNA was hybridized to Affymetrix Genechip HG-U133 oligonucleotide microarrays. A relational database integrating data from publicly available resources was created to identify candidate genes potentially relevant to pancreatic cancer. The protein expression of one candidate, homeobox B2 (HOXB2), in PanIN and pancreatic cancer was assessed using immunohistochemistry. We identified aberrant expression of several components of the retinoic acid (RA) signaling pathway (RARalpha, MUC4, Id-1, MMP9, uPAR, HB-EGF, HOXB6, and HOXB2), many of which are known to be aberrantly expressed in pancreatic cancer and PanIN. HOXB2, a downstream target of RA, was up-regulated 6.7-fold in pancreatic cancer compared with normal pancreas. Immunohistochemistry revealed ectopic expression of HOXB2 in 15% of early PanIN lesions and 48 of 128 (38%) pancreatic cancer specimens. Expression of HOXB2 was associated with nonresectable tumors and was an independent predictor of poor survival in resected tumors. We identified aberrant expression of RA signaling components in pancreatic cancer, including HOXB2, which was expressed in a proportion of PanIN lesions. Ectopic expression of HOXB2 was associated with a poor prognosis for all patients with pancreatic cancer and was an independent predictor of survival in patients who underwent resection.

  16. Retinoic acid receptor-related orphan receptor α-induced activation of adenosine monophosphate-activated protein kinase results in attenuation of hepatic steatosis.

    PubMed

    Kim, Eun-Jin; Yoon, Young-Sil; Hong, Suckchang; Son, Ho-Young; Na, Tae-Young; Lee, Min-Ho; Kang, Hyun-Jin; Park, Jinyoung; Cho, Won-Jea; Kim, Sang-Gun; Koo, Seung-Hoi; Park, Hyeung-geun; Lee, Mi-Ock

    2012-05-01

    There is increasing evidence that the retinoic acid receptor-related orphan receptor α (RORα) plays an important role in the regulation of metabolic pathways, particularly of fatty acid and cholesterol metabolism; however, the role of RORα in the regulation of hepatic lipogenesis has not been studied. Here, we report that RORα attenuates hepatic steatosis, probably via activation of the adenosine monophosphate (AMP)-activated protein kinase (AMPK) and repression of the liver X receptor α (LXRα). First, RORα and its activator, cholesterol sulfate (CS), induced phosphorylation of AMPK, which was accompanied by the activation of serine-threonine kinase liver kinase B1 (LKB1). Second, the activation of RORα, either by transient transfection or CS treatment, decreased the TO901317-induced transcriptional expression of LXRα and its downstream target genes, such as the sterol regulatory element binding protein-1 (SREBP-1) and fatty acid synthase. RORα interacted physically with LXRα and inhibited the LXRα response element in the promoter of LXRα, indicating that RORα interrupts the autoregulatory activation loop of LXRα. Third, infection with adenovirus encoding RORα suppressed the lipid accumulation that had been induced by a free-fatty-acid mixture in cultured cells. Furthermore, we observed that the level of expression of the RORα protein was decreased in the liver of mice that were fed a high-fat diet. Restoration of RORα via tail-vein injection of adenovirus (Ad)-RORα decreased the high-fat-diet-induced hepatic steatosis. Finally, we synthesized thiourea derivatives that activated RORα, thereby inducing activation of AMPK and repression of LXRα. These compounds decreased hepatic triglyceride levels and lipid droplets in the high-fat-diet-fed mice. We found that RORα induced activation of AMPK and inhibition of the lipogenic function of LXRα, which may be key phenomena that provide the beneficial effects of RORα against hepatic steatosis

  17. Retinoic acid-related orphan receptor alpha reprograms glucose metabolism in glutamine-deficient hepatoma cells.

    PubMed

    Byun, Jun-Kyu; Choi, Yeon-Kyung; Kang, Yu Na; Jang, Byoung Kuk; Kang, Koo Jeong; Jeon, Yong Hyun; Lee, Ho-Won; Jeon, Jae-Han; Koo, Seung-Hoi; Jeong, Won-Il; Harris, Robert A; Lee, In-Kyu; Park, Keun-Gyu

    2015-03-01

    The metabolism of glutamine and glucose is recognized as a promising therapeutic target for the treatment of cancer; however, targeted molecules that mediate glutamine and glucose metabolism in cancer cells have not been addressed. Here, we show that restricting the supply of glutamine in hepatoma cells, including HepG2 and Hep3B cells, markedly increased the expression of retinoic acid-related orphan receptor alpha (RORα). Up-regulation of RORα in glutamine-deficient hepatoma cells resulted from an increase in the level of cellular reactive oxygen species and in the nicotinamide adenine dinucleotide phosphate/nicotinamide adenine dinucleotide phosphate reduced (NADP+ /NADPH) ratio, which was consistent with a reduction in the glutathione/glutathione disulfide (GSH/GSSG) ratio. Adenovirus (Ad)-mediated overexpression of RORα (Ad-RORα) or treatment with the RORα activator, SR1078, reduced aerobic glycolysis and down-regulated biosynthetic pathways in hepatoma cells. Ad-RORα and SR1078 reduced the expression of pyruvate dehydrogenase kinase 2 (PDK2) and inhibited the phosphorylation of pyruvate dehydrogenase and subsequently shifted pyruvate to complete oxidation. The RORα-mediated decrease in PDK2 levels was caused by up-regulation of p21, rather than p53. Furthermore, RORα inhibited hepatoma growth both in vitro and in a xenograft model in vivo. We also found that suppression of PDK2 inhibited hepatoma growth in a xenograft model. These findings mimic the altered glucose utilization and hepatoma growth caused by glutamine deprivation. Finally, tumor tissue from 187 hepatocellular carcinoma patients expressed lower levels of RORα than adjacent nontumor tissue, supporting a potential beneficial effect of RORα activation in the treatment of liver cancer. RORα mediates reprogramming of glucose metabolism in hepatoma cells in response to glutamine deficiency. The relationships established here between glutamine metabolism, RORα expression and signaling, and

  18. Retinoic acid and Wnt/beta-catenin have complementary roles in anterior/posterior patterning embryos of the basal chordate amphioxus.

    PubMed

    Onai, Takayuki; Lin, Hsiu-Chin; Schubert, Michael; Koop, Demian; Osborne, Peter W; Alvarez, Susana; Alvarez, Rosana; Holland, Nicholas D; Holland, Linda Z

    2009-08-15

    A role for Wnt/beta-catenin signaling in axial patterning has been demonstrated in animals as basal as cnidarians, while roles in axial patterning for retinoic acid (RA) probably evolved in the deuterostomes and may be chordate-specific. In vertebrates, these two pathways interact both directly and indirectly. To investigate the evolutionary origins of interactions between these two pathways, we manipulated Wnt/beta-catenin and RA signaling in the basal chordate amphioxus during the gastrula stage, which is the RA-sensitive period for anterior/posterior (A/P) patterning. The results show that Wnt/beta-catenin and RA signaling have distinctly different roles in patterning the A/P axis of the amphioxus gastrula. Wnt/beta-catenin specifies the identity of the ends of the embryo (high Wnt = posterior; low Wnt = anterior) but not intervening positions. Thus, upregulation of Wnt/beta-catenin signaling induces ectopic expression of posterior markers at the anterior tip of the embryo. In contrast, RA specifies position along the A/P axis, but not the identity of the ends of the embryo-increased RA signaling strongly affects the domains of Hox expression along the A/P axis but has little or no effect on the expression of either anterior or posterior markers. Although the two pathways may both influence such things as specification of neuronal identity, interactions between them in A/P patterning appear to be minimal.

  19. Phenotypic chemical screening using a zebrafish neural crest EMT reporter identifies retinoic acid as an inhibitor of epithelial morphogenesis

    PubMed Central

    Jimenez, Laura; Wang, Jindong; Morrison, Monique A.; Whatcott, Clifford; Soh, Katherine K.; Warner, Steven; Bearss, David; Jette, Cicely A.; Stewart, Rodney A.

    2016-01-01

    ABSTRACT The epithelial-to-mesenchymal transition (EMT) is a highly conserved morphogenetic program essential for embryogenesis, regeneration and cancer metastasis. In cancer cells, EMT also triggers cellular reprogramming and chemoresistance, which underlie disease relapse and decreased survival. Hence, identifying compounds that block EMT is essential to prevent or eradicate disseminated tumor cells. Here, we establish a whole-animal-based EMT reporter in zebrafish for rapid drug screening, called Tg(snai1b:GFP), which labels epithelial cells undergoing EMT to produce sox10-positive neural crest (NC) cells. Time-lapse and lineage analysis of Tg(snai1b:GFP) embryos reveal that cranial NC cells delaminate from two regions: an early population delaminates adjacent to the neural plate, whereas a later population delaminates from within the dorsal neural tube. Treating Tg(snai1b:GFP) embryos with candidate small-molecule EMT-inhibiting compounds identified TP-0903, a multi-kinase inhibitor that blocked cranial NC cell delamination in both the lateral and medial populations. RNA sequencing (RNA-Seq) analysis and chemical rescue experiments show that TP-0903 acts through stimulating retinoic acid (RA) biosynthesis and RA-dependent transcription. These studies identify TP-0903 as a new therapeutic for activating RA in vivo and raise the possibility that RA-dependent inhibition of EMT contributes to its prior success in eliminating disseminated cancer cells. PMID:26794130

  20. Immunotoxicity of perfluorooctanoic acid and perfluorooctane sulfonate and the role of peroxisome proliferator-activated receptor alpha

    EPA Science Inventory

    Peroxisome proliferators, including perfluorooctanoic acid (PFOA), are environmentally widespread and persistent and multiple toxicities have been reported in experimental animals and humans. These compounds trigger biological activity via activation of the alpha isotype of pero...