Science.gov

Sample records for proline rich region

  1. Multiple Src Homology 3 Binding to the Ubiquitin Ligase Itch Conserved Proline-Rich Region.

    PubMed

    Desrochers, Guillaume; Lussier-Price, Mathieu; Omichinski, James G; Angers, Annie

    2015-12-22

    Itch is a member of the C2-WW-HECT (CWH) family of ubiquitin ligases involved in the control of inflammatory signaling pathways, several transcription factors, and sorting of surface receptors to the degradative pathway. In addition to these common domains, Itch also contains a conserved proline-rich region (PRR) allowing its interaction with Src homology 3 (SH3) domain-containing proteins. This region is composed of 20 amino acids and contains one consensus class I and three class II SH3-binding motifs. Several SH3 domain-containing partners have been shown to recognize the Itch PRR, but their binding properties have been poorly defined. Here we compare a subset of endocytic SH3 domain-containing proteins using bioluminescence resonance energy transfer, isothermal titration calorimetry, and pull-down assays. Results indicate that Endophilin is a high-affinity binding partner of Itch both in vivo and in vitro, with a calculated KD placing this complex among the highest-affinity SH3 domain-mediated interactions reported to date. All of the SH3 domains tested here bind to Itch with a 1:1 stoichiometry, except for β-PIX that binds with a 2:1 stoichiometry. Together, these results indicate that Itch PRR is a versatile binding module that can accommodate several different SH3 domain-containing proteins but has a preference for Endophilin. Interestingly, the catalytic activity of Itch toward different SH3 domain-containing proteins was similar, except for β-PIX that was not readily ubiquitylated even though it could interact with an affinity comparable to those of other substrates tested. PMID:26613292

  2. Tyrosine Nitration within the Proline-Rich Region of Tau in Alzheimer's Disease

    PubMed Central

    Reyes, Juan F.; Fu, Yifan; Vana, Laurel; Kanaan, Nicholas M.; Binder, Lester I.

    2011-01-01

    A substantial body of evidence suggests that nitrative injury contributes to neurodegeneration in Alzheimer's disease (AD) and other neurodegenerative disorders. Previously, we showed in vitro that within the tau protein the N-terminal tyrosine residues (Y18 and Y29) are more susceptible to nitrative modifications than other tyrosine sites (Y197 and Y394). Using site-specific antibodies to nitrated tau at Y18 and Y29, we identified tau nitrated in both glial (Y18) and neuronal (Y29) tau pathologies. In this study, we report the characterization of two novel monoclonal antibodies, Tau-nY197 and Tau-nY394, recognizing tau nitrated at Y197 and Y394, respectively. By Western blot analysis, Tau-nY197 labeled soluble tau and insoluble paired helical filament proteins (PHF-tau) nitrated at Y197 from control and AD brain samples. Tau-nY394 failed to label soluble tau isolated from control or severe AD samples, but labeled insoluble PHF-tau to a limited extent. Immunohistochemical analysis using Tau-nY197 revealed the hallmark tau pathology associated with AD; Tau-nY394 did not detect any pathological lesions characteristic of the disorder. These data suggest that a subset of the hallmark pathological inclusions of AD contain tau nitrated at Y197. However, nitration at Y197 was also identified in soluble tau from all control samples, including those at Braak stage 0, suggesting that nitration at this site in the proline-rich region of tau may have normal biological functions in the human brain. PMID:21514440

  3. Proline-rich Sequence Recognition

    PubMed Central

    Schlundt, Andreas; Sticht, Jana; Piotukh, Kirill; Kosslick, Daniela; Jahnke, Nadin; Keller, Sandro; Schuemann, Michael; Krause, Eberhard; Freund, Christian

    2009-01-01

    The tumor maintenance protein Tsg101 has recently gained much attention because of its involvement in endosomal sorting, virus release, cytokinesis, and cancerogenesis. The ubiquitin-E2-like variant (UEV) domain of the protein interacts with proline-rich sequences of target proteins that contain P(S/T)AP amino acid motifs and weakly binds to the ubiquitin moiety of proteins committed to sorting or degradation. Here we performed peptide spot analysis and phage display to refine the peptide binding specificity of the Tsg101 UEV domain. A mass spectrometric proteomics approach that combines domain-based pulldown experiments, binding site inactivation, and stable isotope labeling by amino acids in cell culture (SILAC) was then used to delineate the relative importance of the peptide and ubiquitin binding sites. Clearly “PTAP” interactions dominate target recognition, and we identified several novel binders as for example the poly(A)-binding protein 1 (PABP1), Sec24b, NFκB2, and eIF4b. For PABP1 and eIF4b the interactions were confirmed in the context of the corresponding full-length proteins in cellular lysates. Therefore, our results strongly suggest additional roles of Tsg101 in cellular regulation of mRNA translation. Regulation of Tsg101 itself by the ubiquitin ligase TAL (Tsg101-associated ligase) is most likely conferred by a single PSAP binding motif that enables the interaction with Tsg101 UEV. Together with the results from the accompanying article (Kofler, M., Schuemann, M., Merz, C., Kosslick, D., Schlundt, A., Tannert, A., Schaefer, M., Lührmann, R., Krause, E., and Freund, C. (2009) Proline-rich sequence recognition: I. Marking GYF and WW domain assembly sites in early spliceosomal complexes. Mol. Cell. Proteomics 8, 2461–2473) on GYF and WW domain pathways our work defines major proline-rich sequence-mediated interaction networks that contribute to the modular assembly of physiologically relevant protein complexes. PMID:19542561

  4. Proline-rich region of non-muscle myosin light chain kinase modulates kinase activity and endothelial cytoskeletal dynamics.

    PubMed

    Belvitch, Patrick; Adyshev, Djanybek; Elangovan, Venkateswaran R; Brown, Mary E; Naureckas, Caitlin; Rizzo, Alicia N; Siegler, Jessica H; Garcia, Joe G N; Dudek, Steven M

    2014-09-01

    Disruption of the pulmonary endothelial barrier and subsequent vascular leak is a hallmark of acute lung injury. Dynamic rearrangements in the endothelial cell (EC) peripheral membrane and underlying cytoskeleton are critical determinants of barrier function. The cytoskeletal effector protein non-muscle myosin light chain kinase (nmMLCK) and the actin-binding regulatory protein cortactin are important regulators of the endothelial barrier. In the present study we functionally characterize a proline-rich region of nmMLCK previously identified as the possible site of interaction between nmMLCK and cortactin. A mutant nmMLCK construct deficient in proline residues at the putative sites of cortactin binding (amino acids 973, 976, 1019, 1022) was generated. Co-immunoprecipitation studies in human lung EC transfected with wild-type or mutant nmMLCK demonstrated similar levels of cortactin interaction at baseline and after stimulation with the barrier-enhancing agonist, sphingosine 1-phosphate (S1P). In contrast, binding studies utilizing recombinant nmMLCK fragments containing the wild-type or proline-deficient sequence demonstrated a two-fold increase in cortactin binding (p<0.01) to the mutant construct. Immunofluorescent microscopy revealed an increased stress fiber density in ECs expressing GFP-labeled mutant nmMLCK at baseline (p=0.02) and after thrombin (p=0.01) or S1P (p=0.02) when compared to wild-type. Mutant nmMLCK demonstrated an increase in kinase activity in response to thrombin (p<0.01). Kymographic analysis demonstrated an increased EC membrane retraction distance and velocity (p<0.01) in response to the barrier disrupting agent thrombin in cells expressing the mutant vs. the wild-type nmMLCK construct. These results provide evidence that critical prolines within nmMLCK (amino acids 973, 976, 1019, 1022) regulate cytoskeletal and membrane events associated with pulmonary endothelial barrier function. PMID:25072537

  5. A Linear Surface Epitope in a Proline-Rich Region of ORF3 Product of Genotype 1 Hepatitis E Virus

    PubMed Central

    Yang, Yonglin; Lin, Shaoli; Nan, Yuchen; Ma, Zexu; Yang, Liping; Zhang, Yanjin

    2016-01-01

    Hepatitis E virus (HEV) is one of the viral pathogens causing hepatitis in humans. HEV open reading frame 3 (ORF3) encodes a small multifunctional protein (VP13), which is essential for HEV infection. In this study, a linear epitope was identified in a polyproline (PXXP) motif from VP13 of genotype 1 HEV by using a monoclonal antibody. The epitope was detected in enzyme-linked immunosorbent assay (ELISA), immunoblotting and immunofluorescence assays. Epitope mapping showed that the epitope locates in a proline-rich region containing a PXXP motif in amino acid residues 66-75 of VP13. The epitope was also detected in HEV-infected liver cells and reacted with genotype 1-specific antibodies in an HEV-positive human serum sample. The results demonstrated that the epitope in the PXXP motif of the genotype 1 VP13 is linear and surface-oriented, which should facilitate in-depth studies on the viral protein and HEV biology. PMID:27548202

  6. Deletion of the huntingtin proline-rich region does not significantly affect normal huntingtin function in mice

    PubMed Central

    Neveklovska, Michelle; Clabough, Erin B. D.; Steffan, Joan S.; Zeitlin, Scott O.

    2012-01-01

    The N-terminus of Huntingtin, the protein encoded by the Huntington’s disease gene, contains a stretch of polyglutamine residues that is expanded in Huntington’s disease. The polyglutamine stretch is flanked by two conserved protein domains in vertebrates: an N1-17 domain, and a proline-rich region (PRR). The PRR can modulate the structure of the adjacent polyglutamine stretch, and is a binding site for several interacting proteins. To determine the role of the PRR in Huntingtin function, we have generated a knock-in allele of the mouse Huntington’s disease gene homolog that expresses full-length normal huntingtin lacking the PRR. Mice that are homozygous for the huntingtin PRR deletion are born at the normal Mendelian frequency, suggesting that the PRR is not required for essential huntingtin functions during embryonic development. Moreover, adult homozygous mutants did not exhibit any significant differences from wild-type controls in general motor function and motor learning. However, 18 month-old male, but not female, homozygous PRR deletion mutants exhibited deficits in the Morris water task, suggesting that age-dependent spatial learning and memory may be affected in a sex-specific fashion by the huntingtin PRR deletion. PMID:22956985

  7. A Linear Surface Epitope in a Proline-Rich Region of ORF3 Product of Genotype 1 Hepatitis E Virus.

    PubMed

    Yang, Yonglin; Lin, Shaoli; Nan, Yuchen; Ma, Zexu; Yang, Liping; Zhang, Yanjin

    2016-01-01

    Hepatitis E virus (HEV) is one of the viral pathogens causing hepatitis in humans. HEV open reading frame 3 (ORF3) encodes a small multifunctional protein (VP13), which is essential for HEV infection. In this study, a linear epitope was identified in a polyproline (PXXP) motif from VP13 of genotype 1 HEV by using a monoclonal antibody. The epitope was detected in enzyme-linked immunosorbent assay (ELISA), immunoblotting and immunofluorescence assays. Epitope mapping showed that the epitope locates in a proline-rich region containing a PXXP motif in amino acid residues 66-75 of VP13. The epitope was also detected in HEV-infected liver cells and reacted with genotype 1-specific antibodies in an HEV-positive human serum sample. The results demonstrated that the epitope in the PXXP motif of the genotype 1 VP13 is linear and surface-oriented, which should facilitate in-depth studies on the viral protein and HEV biology. PMID:27548202

  8. The role of the interaction of the vinculin proline-rich linker region with vinexin α in sensing the stiffness of the extracellular matrix.

    PubMed

    Yamashita, Hiroshi; Ichikawa, Takafumi; Matsuyama, Daisuke; Kimura, Yasuhisa; Ueda, Kazumitsu; Craig, Susan W; Harada, Ichiro; Kioka, Noriyuki

    2014-05-01

    Although extracellular matrix (ECM) stiffness is an important aspect of the extracellular microenvironment and is known to direct the lineage specification of stem cells and affect cancer progression, the molecular mechanisms that sense ECM stiffness have not yet been elucidated. In this study, we show that the proline-rich linker (PRL) region of vinculin and the PRL-region-binding protein vinexin are involved in sensing the stiffness of ECM substrates. A rigid substrate increases the level of cytoskeleton-associated vinculin, and the fraction of vinculin stably localizing at focal adhesions (FAs) is larger on rigid ECM than on soft ECM. Mutations in the PRL region or the depletion of vinexin expression impair these responses to ECM stiffness. Furthermore, vinexin depletion impairs the stiffness-dependent regulation of cell migration. These results suggest that the interaction of the PRL region of vinculin with vinexin α plays a crucial role in sensing ECM stiffness and in mechanotransduction.

  9. Structure-Activity Relationships of the Antimicrobial Peptide Arasin 1 — And Mode of Action Studies of the N-Terminal, Proline-Rich Region

    PubMed Central

    Paulsen, Victoria S.; Blencke, Hans-Matti; Benincasa, Monica; Haug, Tor; Eksteen, Jacobus J.; Styrvold, Olaf B.; Scocchi, Marco; Stensvåg, Klara

    2013-01-01

    Arasin 1 is a 37 amino acid long proline-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. In this work the active region of arasin 1 was identified through structure-activity studies using different peptide fragments derived from the arasin 1 sequence. The pharmacophore was found to be located in the proline/arginine-rich NH2 terminus of the peptide and the fragment arasin 1(1–23) was almost equally active to the full length peptide. Arasin 1 and its active fragment arasin 1(1–23) were shown to be non-toxic to human red blood cells and arasin 1(1–23) was able to bind chitin, a component of fungal cell walls and the crustacean shell. The mode of action of the fully active N-terminal arasin 1(1–23) was explored through killing kinetic and membrane permeabilization studies. At the minimal inhibitory concentration (MIC), arasin 1(1–23) was not bactericidal and had no membrane disruptive effect. In contrast, at concentrations of 5×MIC and above it was bactericidal and interfered with membrane integrity. We conclude that arasin 1(1–23) has a different mode of action than lytic peptides, like cecropin P1. Thus, we suggest a dual mode of action for arasin 1(1–23) involving membrane disruption at peptide concentrations above MIC, and an alternative mechanism of action, possibly involving intracellular targets, at MIC. PMID:23326415

  10. Proline Rich Motifs as Drug Targets in Immune Mediated Disorders

    PubMed Central

    Srinivasan, Mythily; Dunker, A. Keith

    2012-01-01

    The current version of the human immunome network consists of nearly 1400 interactions involving approximately 600 proteins. Intermolecular interactions mediated by proline-rich motifs (PRMs) are observed in many facets of the immune response. The proline-rich regions are known to preferentially adopt a polyproline type II helical conformation, an extended structure that facilitates transient intermolecular interactions such as signal transduction, antigen recognition, cell-cell communication and cytoskeletal organization. The propensity of both the side chain and the backbone carbonyls of the polyproline type II helix to participate in the interface interaction makes it an excellent recognition motif. An advantage of such distinct chemical features is that the interactions can be discriminatory even in the absence of high affinities. Indeed, the immune response is mediated by well-orchestrated low-affinity short-duration intermolecular interactions. The proline-rich regions are predominantly localized in the solvent-exposed regions such as the loops, intrinsically disordered regions, or between domains that constitute the intermolecular interface. Peptide mimics of the PRM have been suggested as potential antagonists of intermolecular interactions. In this paper, we discuss novel PRM-mediated interactions in the human immunome that potentially serve as attractive targets for immunomodulation and drug development for inflammatory and autoimmune pathologies. PMID:22666276

  11. Normal cardiac contraction in mice lacking the proline-alanine rich region and C1 domain of cardiac myosin binding protein C.

    PubMed

    van Dijk, Sabine J; Witt, Christian C; Harris, Samantha P

    2015-11-01

    Cardiac myosin binding protein C (cMyBP-C) is an essential regulator of cross bridge cycling. Through mechanisms that are incompletely understood the N-terminal domains (NTDs) of cMyBP-C can activate contraction even in the absence of calcium and can also inhibit cross bridge kinetics in the presence of calcium. In vitro studies indicated that the proline-alanine rich (p/a) region and C1 domain are involved in these processes, although effects were greater using human proteins compared to murine proteins (Shaffer et al. J Biomed Biotechnol 2010, 2010: 789798). We hypothesized that the p/a and C1 region are critical for the timing of contraction. In this study we tested this hypothesis using a mouse model lacking the p/a and C1 region (p/a-C1(-/-) mice) to investigate the in vivo relevance of these regions on cardiac performance. Surprisingly, hearts of adult p/a-C1(-/-) mice functioned normally both on a cellular and whole organ level. Force measurements in permeabilized cardiomyocytes from adult p/a-C1(-/-) mice and wild type (Wt) littermate controls demonstrated similar rates of force redevelopment both at submaximal and maximal activation. Maximal and passive force and calcium sensitivity of force were comparable between groups as well. Echocardiograms showed normal isovolumetric contraction times, fractional shortening and ejection fraction, indicating proper systolic function in p/a-C1(-/-) mouse hearts. p/a-C1(-/-) mice showed a slight but significant reduction in isovolumetric relaxation time compared to Wt littermates, yet this difference disappeared in older mice (7-8months of age). Moreover, stroke volume was preserved in p/a-C1(-/-) mice, corroborating sufficient time for normal filling of the heart. Overall, the hearts of p/a-C1(-/-) mice showed no signs of dysfunction even after chronic stress with an adrenergic agonist. Together, these results indicate that the p/a region and the C1 domain of cMyBP-C are not critical for normal cardiac contraction in

  12. Identification of polyproline II regions derived from the proline-rich nuclear receptor coactivators PNRC and PNRC2: new insights for ERα coactivator interactions.

    PubMed

    Byrne, C; Miclet, E; Broutin, I; Gallo, D; Pelekanou, V; Kampa, M; Castanas, E; Leclercq, G; Jacquot, Y

    2013-10-01

    Protein-protein interactions are crucial for signal transductions required for cell differentiation and proliferation. Their modulation is therefore key to the development of therapeutic alternatives, particularly in the context of cancer. According to literature data, the polyproline-rich nuclear receptor coactivators PNRC and PNRC2 interact with estrogen receptor (ERα) through their PxxP SH3-binding motifs. In a search to identify the molecular features governing this interaction, we explored using electronic circular dichroism (ECD) spectroscopy and molecular dynamics (MD) calculations, the capacity of a range of putative biologically active peptides derived from these proteins and containing this PxxP motif(s) to form polyproline II (PPII) domains. An additional more exhaustive structural study on a lead PPII peptide was also performed using 2D nuclear magnetic resonance (NMR) spectroscopy. With the exception of one of all the investigated peptides (PNRC-D), binding assays failed to detect any affinity for Grb2 SH3 domains, suggesting that PPII motifs issued from Grb2 antagonists have a binding mode distinct from those derived from Grb2 agonists. Instead, the peptides revealed a competitive binding ability against a synthetic peptide (ERα17p) with a putative PPII-cognate domain located within a coregulator recruitment region of ERα (AF-2 site). Our work, which constitutes the first structure-related interaction study concerning PNRC and PNRC2, supports not only the existence of PxxP-induced PPII sequences in these coregulators, but also confirms the presence of a PPII recognition site in the AF-2 of the steroid receptor ERα, a region important for transcription regulation.

  13. Investigation of cis/trans proline isomerism in a multiply occurring peptide fragment from human salivary proline-rich glycoprotein.

    PubMed

    Loomis, R E; Gonzalez, M; Loomis, P M

    1991-11-01

    The solution-state conformations of eight proline-containing peptide fragments found in human salivary proline-rich glycoprotein (PRG) were investigated in 2 x distilled water (treated with metal ion chelating resin) using 13C-nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy. The peptide sequences and acronyms were as follows: PRG9-2 = NH2-G(1)-P(2)-CONH2, PRG9-3 = NH2-G(1)P(2)-P(3)-CONH2, PRG9-4 = NH2-G(1)-P(2)-P(3)-P(4)-CONH2, PRG9-5 = NH2-G(1)-P(2)-P(3)-P(4)-H(5)-CONH2, PRG9-6 = NH2-G(1)-P(2)-P(3)-P(4)-H(5)-P(6)-CONH2, PRG9-7 = NH2-G(1)-P(2)-P(3)-P(4)-H(5)-P(6)-G(7)-CONH2, PRG9-8 = NH2-G(1)-P(2)-P(3)-P(4)-H(5)-P(6)-G(7)-K(8)-CONH2 and PRG9-9 = NH2-G(1)-P(2)-P(3)-P(4)-H(5)-P(6)-G(7)-K(8)-P(9)-CONH2. Sequence-specific resonance assignments from the 13C-NMR spectra indicated that the trans proline isomer dominated the conformations of the peptides. CD results clearly showed the presence of the poly-L-proline II helix as the major conformation in PRG9-3----PRG9-5, supplemented by beta- and/or gamma-turns in PRG9-6----PRG9-9. These data suggest that in "metal free" water, native PRG could contain several small poly-L-proline II helices along with beta- and/or gamma-turns. Since proline is the major amino acid present in native PRG, these localized conformations may contribute to PRG's global conformation and act as a primary force in determining its biological activities.

  14. Susceptibility to dental caries and the salivary proline-rich proteins.

    PubMed

    Levine, Martin

    2011-01-01

    Early childhood caries affects 28% of children aged 2-6 in the US and is not decreasing. There is a well-recognized need to identify susceptible children at birth. Caries-free adults neutralize bacterial acids in dental biofilms better than adults with severe caries. Saliva contains acidic and basic proline-rich proteins (PRPs) which attach to oral streptococci. The PRPs are encoded within a small region of chromosome 12. An acidic PRP allele (Db) protects Caucasian children from caries but is more common in African Americans. Some basic PRP allelic phenotypes have a three-fold greater frequency in caries-free adults than in those with severe caries. Early childhood caries may associate with an absence of certain basic PRP alleles which bind oral streptococci, neutralize biofilm acids, and are in linkage disequilibrium with Db in Caucasians. The encoding of basic PRP alleles is updated and a new technology for genotyping them is described. PMID:22190937

  15. Susceptibility to Dental Caries and the Salivary Proline-Rich Proteins

    PubMed Central

    Levine, Martin

    2011-01-01

    Early childhood caries affects 28% of children aged 2–6 in the US and is not decreasing. There is a well-recognized need to identify susceptible children at birth. Caries-free adults neutralize bacterial acids in dental biofilms better than adults with severe caries. Saliva contains acidic and basic proline-rich proteins (PRPs) which attach to oral streptococci. The PRPs are encoded within a small region of chromosome 12. An acidic PRP allele (Db) protects Caucasian children from caries but is more common in African Americans. Some basic PRP allelic phenotypes have a three-fold greater frequency in caries-free adults than in those with severe caries. Early childhood caries may associate with an absence of certain basic PRP alleles which bind oral streptococci, neutralize biofilm acids, and are in linkage disequilibrium with Db in Caucasians. The encoding of basic PRP alleles is updated and a new technology for genotyping them is described. PMID:22190937

  16. The Role of Histidine-Proline-Rich Glycoprotein as Zinc Chaperone for Skeletal Muscle AMP Deaminase

    PubMed Central

    Ranieri-Raggi, Maria; Moir, Arthur J. G.; Raggi, Antonio

    2014-01-01

    Metallochaperones function as intracellular shuttles for metal ions. At present, no evidence for the existence of any eukaryotic zinc-chaperone has been provided although metallochaperones could be critical for the physiological functions of Zn2+ metalloenzymes. We propose that the complex formed in skeletal muscle by the Zn2+ metalloenzyme AMP deaminase (AMPD) and the metal binding protein histidine-proline-rich glycoprotein (HPRG) acts in this manner. HPRG is a major plasma protein. Recent investigations have reported that skeletal muscle cells do not synthesize HPRG but instead actively internalize plasma HPRG. X-ray absorption spectroscopy (XAS) performed on fresh preparations of rabbit skeletal muscle AMPD provided evidence for a dinuclear zinc site in the enzyme compatible with a (μ-aqua)(μ-carboxylato)dizinc(II) core with two histidine residues at each metal site. XAS on HPRG isolated from the AMPD complex showed that zinc is bound to the protein in a dinuclear cluster where each Zn2+ ion is coordinated by three histidine and one heavier ligand, likely sulfur from cysteine. We describe the existence in mammalian HPRG of a specific zinc binding site distinct from the His-Pro-rich region. The participation of HPRG in the assembly and maintenance of skeletal muscle AMPD by acting as a zinc chaperone is also demonstrated. PMID:24970226

  17. Near-membrane ensemble elongation in the proline-rich LRP6 intracellular domain may explain the mysterious initiation of the Wnt signaling pathway

    PubMed Central

    2011-01-01

    Background LRP6 is a membrane protein crucial in the initiation of canonical Wnt/β-catenin signalling. Its function is dependent on its proline-serine rich intracellular domain. LRP6 has five PPP(S/T)P motifs that are phosphorylated during activation, starting with the site closest to the membrane. Like all long proline rich regions, there is no stable 3D structure for this isolated, contiguous region. Results In our study, we use a computational simulation tool to sample the conformational space of the LRP6 intracellular domain, under the spatial constraints imposed by (a) the membrane and (b) the close approach of the neighboring intracellular molecular complex, which is assembled on Frizzled when Wnt binds to both LRP6 and Frizzled on the opposite side of the membrane. We observe that an elongated form dominates in the LRP6 intracellular domain structure ensemble. This elongation could relieve conformational auto-inhibition of the PPP(S/T)PX(S/T) motif binding sites and allow GSK3 and CK1 to approach their phosphorylation sites, thereby activating LRP6 and the downstream pathway. Conclusions We propose a model in which the conformation of the LRP6 intracellular domain is elongated before activation. This is based on the intrusion of the Frizzled complex into the ensemble space of the proline rich region of LRP6, which alters the shape of its available ensemble space. To test whether this observed ensemble conformational change is sequence dependent, we did a control simulation with a hypothetical sequence with 50% proline and 50% serine in alternating residues. We confirm that this ensemble neighbourhood-based conformational change is independent of sequence and conclude that it is likely found in all proline rich sequences. These observations help us understand the nature of proline rich regions which are both unstructured and which seem to evolve at a higher rate of mutation, while maintaining sequence composition. PMID:22372892

  18. Post-Translational Modification and Secretion of Azelaic Acid Induced 1 (AZI1), a Hybrid Proline-Rich Protein from Arabidopsis

    PubMed Central

    Pitzschke, Andrea; Xue, Hui; Persak, Helene; Datta, Sneha; Seifert, Georg J.

    2016-01-01

    Arabidopsis EARLI-type hybrid proline-rich proteins (HyPRPs) consist of a putative N-terminal secretion signal, a proline-rich domain (PRD), and a characteristic eight-cysteine-motif (8-CM). They have been implicated in biotic and abiotic stress responses. AZI1 is required for systemic acquired resistance and it has recently been identified as a target of the stress-induced mitogen-activated protein kinase MPK3. AZI1 gel migration properties strongly indicate AZI1 to undergo major post-translational modifications. These occur in a stress-independent manner and are unrelated to phosphorylation by MAPKs. As revealed by transient expression of AZI1 in Nicotiana benthamiana and Tropaeolum majus, the Arabidopsis protein is similarly modified in heterologous plant species. Proline-rich regions, resembling arabinogalactan proteins point to a possible proline hydroxylation and subsequent O-glycosylation of AZI1. Consistently, inhibition of prolyl hydroxylase reduces its apparent protein size. AZI1 secretion was examined using Arabidopsis protoplasts and seedling exudates. Employing Agrobacterium-mediated leaf infiltration of N. benthamiana, we attempted to assess long-distance movement of AZI1. In summary, the data point to AZI1 being a partially secreted protein and a likely new member of the group of hydroxyproline-rich glycoproteins. Its dual location suggests AZI1 to exert both intra- and extracellular functions. PMID:26771603

  19. Proline-rich sequences that bind to Src homology 3 domains with individual specificities.

    PubMed Central

    Alexandropoulos, K; Cheng, G; Baltimore, D

    1995-01-01

    To study the binding specificity of Src homology 3 (SH3) domains, we have screened a mouse embryonic expression library for peptide fragments that interact with them. Several clones were identified that express fragments of proteins which, through proline-rich binding sites, exhibit differential binding specificity to various SH3 domains. Src-SH3-specific binding uses a sequence of 7 aa of the consensus RPLPXXP, in which the N-terminal arginine is very important. The SH3 domains of the Src-related kinases Fyn, Lyn, and Hck bind to this sequence with the same affinity as that of the Src SH3. In contrast, a quite different proline-rich sequence from the Btk protein kinase binds to the Fyn, Lyn, and Hck SH3 domains, but not to the Src SH3. Specific binding of the Abl SH3 requires a longer, more proline-rich sequence but no arginine. One clone that binds to both Src and Abl SH3 domains through a common site exhibits reversed binding orientation, in that an arginine indispensable for binding to all tested SH3 domains occurs at the C terminus. Another clone contains overlapping yet distinct Src and Abl SH3 binding sites. Binding to the SH3 domains is mediated by a common PXXP amino acid sequence motif present on all ligands, and specificity comes about from other interactions, often ones involving arginine. The rules governing in vivo usage of particular sites by particular SH3 domains are not clear, but one binding orientation may be more specific than another. Images Fig. 1 Fig. 2 Fig. 3 PMID:7536925

  20. The Smad4 activation domain (SAD) is a proline-rich, p300-dependent transcriptional activation domain.

    PubMed

    de Caestecker, M P; Yahata, T; Wang, D; Parks, W T; Huang, S; Hill, C S; Shioda, T; Roberts, A B; Lechleider, R J

    2000-01-21

    Transforming growth factor-beta (TGF-beta) family members signal through a unique set of intracellular proteins called Smads. Smad4, previously identified as the tumor suppressor DPC4, is functionally distinct among the Smad family, and is required for the assembly and transcriptional activation of diverse, Smad-DNA complexes. We previously identified a 48-amino acid proline-rich regulatory element within the middle linker domain of this molecule, the Smad4 activation domain (SAD), which is essential for mediating these signaling activities. We now characterize the functional activity of the SAD. Mutants lacking the SAD are still able to form complexes with other Smad family members and associated transcription factors, but cannot activate transcription in these complexes. Furthermore, the SAD itself is able to activate transcription in heterologous reporter assays, identifying it as a proline-rich transcriptional activation domain, and indicating that the SAD is both necessary and sufficient to activate Smad-dependent transcriptional responses. We show that transcriptional activation by the SAD is p300-dependent, and demonstrate that this activity is associated with a physical interaction of the SAD with the amino terminus of p300. These data identify a novel function of the middle linker region of Smad4, and define the role of the SAD as an important locus determining the transcriptional activation of the Smad complex.

  1. Proline-rich antimicrobial peptides: potential therapeutics against antibiotic-resistant bacteria.

    PubMed

    Li, Wenyi; Tailhades, Julien; O'Brien-Simpson, Neil M; Separovic, Frances; Otvos, Laszlo; Hossain, M Akhter; Wade, John D

    2014-10-01

    The increasing resistance of pathogens to antibiotics causes a huge clinical burden that places great demands on academic researchers and the pharmaceutical industry for resolution. Antimicrobial peptides, part of native host defense, have emerged as novel potential antibiotic alternatives. Among the different classes of antimicrobial peptides, proline-rich antimicrobial peptides, predominantly sourced from insects, have been extensively investigated to study their specific modes of action. In this review, we focus on recent developments in these peptides. They show a variety of modes of actions, including mechanism shift at high concentration, non-lytic mechanisms, as well as possessing different intracellular targets and lipopolysaccharide binding activity. Furthermore, proline-rich antimicrobial peptides display the ability to not only modulate the immune system via cytokine activity or angiogenesis but also possess properties of penetrating cell membranes and crossing the blood brain barrier suggesting a role as potential novel carriers. Ongoing studies of these peptides will likely lead to the development of more potent antimicrobial peptides that may serve as important additions to the armoury of agents against bacterial infection and drug delivery.

  2. Identification of a Novel Proline-Rich Antimicrobial Peptide from Brassica napus.

    PubMed

    Cao, Huihui; Ke, Tao; Liu, Renhu; Yu, Jingyin; Dong, Caihua; Cheng, Mingxing; Huang, Junyan; Liu, Shengyi

    2015-01-01

    Proline-rich antimicrobial peptides (PR-AMPs) are a group of cationic host defense peptides that are characterized by a high content of proline residues. Up to now, they have been reported in some insects, vertebrate and invertebrate animals, but are not found in plants. In this study, we performed an in silico screening of antimicrobial peptides, which led to discovery of a Brassica napus gene encoding a novel PR-AMP. This gene encodes a 35-amino acid peptide with 13 proline residues, designated BnPRP1. BnPRP1 has 40.5% identity with a known proline-rich antimicrobial peptide SP-B from the pig. BnPRP1 was artificially synthetized and cloned into the prokaryotic expression vector pET30a/His-EDDIE-GFP. Recombinant BnPRP1 was produced in Escherichia coli and has a predicted molecular mass of 3.8 kDa. Analysis of its activity demonstrated that BnPRP1 exhibited strong antimicrobial activity against Gram-positive bacterium, Gram-negative bacterium, yeast and also had strong antifungal activity against several pathogenic fungi, such as Sclerotinia sclerotiorum, Mucor sp., Magnaporthe oryzae and Botrytis cinerea. Circular dichroism (CD) revealed the main secondary structure of BnPRP1 was the random coil. BnPRP1 gene expression detected by qRT-PCR is responsive to pathogen inoculation. At 48 hours after S. sclerotiorum inoculation, the expression of BnPRP1 increased significantly in the susceptible lines while slight decrease occurred in resistant lines. These suggested that BnPRP1 might play a role in the plant defense response against S. sclerotiorum. BnPRP1 isolated from B. napus was the first PR-AMP member that was characterized in plants, and its homology sequences were found in some other Brassicaceae plants by the genome sequences analysis. Compared with the known PR-AMPs, BnPRP1 has the different primary sequences and antimicrobial activity. Above all, this study gives a chance to cast a new light on further understanding about the AMPs' mechanism and application.

  3. Identification of a Novel Proline-Rich Antimicrobial Peptide from Brassica napus.

    PubMed

    Cao, Huihui; Ke, Tao; Liu, Renhu; Yu, Jingyin; Dong, Caihua; Cheng, Mingxing; Huang, Junyan; Liu, Shengyi

    2015-01-01

    Proline-rich antimicrobial peptides (PR-AMPs) are a group of cationic host defense peptides that are characterized by a high content of proline residues. Up to now, they have been reported in some insects, vertebrate and invertebrate animals, but are not found in plants. In this study, we performed an in silico screening of antimicrobial peptides, which led to discovery of a Brassica napus gene encoding a novel PR-AMP. This gene encodes a 35-amino acid peptide with 13 proline residues, designated BnPRP1. BnPRP1 has 40.5% identity with a known proline-rich antimicrobial peptide SP-B from the pig. BnPRP1 was artificially synthetized and cloned into the prokaryotic expression vector pET30a/His-EDDIE-GFP. Recombinant BnPRP1 was produced in Escherichia coli and has a predicted molecular mass of 3.8 kDa. Analysis of its activity demonstrated that BnPRP1 exhibited strong antimicrobial activity against Gram-positive bacterium, Gram-negative bacterium, yeast and also had strong antifungal activity against several pathogenic fungi, such as Sclerotinia sclerotiorum, Mucor sp., Magnaporthe oryzae and Botrytis cinerea. Circular dichroism (CD) revealed the main secondary structure of BnPRP1 was the random coil. BnPRP1 gene expression detected by qRT-PCR is responsive to pathogen inoculation. At 48 hours after S. sclerotiorum inoculation, the expression of BnPRP1 increased significantly in the susceptible lines while slight decrease occurred in resistant lines. These suggested that BnPRP1 might play a role in the plant defense response against S. sclerotiorum. BnPRP1 isolated from B. napus was the first PR-AMP member that was characterized in plants, and its homology sequences were found in some other Brassicaceae plants by the genome sequences analysis. Compared with the known PR-AMPs, BnPRP1 has the different primary sequences and antimicrobial activity. Above all, this study gives a chance to cast a new light on further understanding about the AMPs' mechanism and application

  4. Cotton Effect in Copper-Proline Complexes in the Visible Region

    ERIC Educational Resources Information Center

    Volkov, Victor; Pfister, Rolf

    2005-01-01

    The electronic properties of Cu(II) complex with proline are considered to demonstrate the Cotton effect in the visible region. A series of experiments in optical rotatory dispersion spectroscopy with free D- and L-proline and their complexes with the Cu(II) ion in aqueous solution is suggested.

  5. A modular toolkit to inhibit proline-rich motif–mediated protein–protein interactions

    PubMed Central

    Opitz, Robert; Müller, Matthias; Reuter, Cédric; Barone, Matthias; Soicke, Arne; Roske, Yvette; Piotukh, Kirill; Huy, Peter; Beerbaum, Monika; Wiesner, Burkhard; Beyermann, Michael; Schmieder, Peter; Freund, Christian; Volkmer, Rudolf; Oschkinat, Hartmut; Schmalz, Hans-Günther; Kühne, Ronald

    2015-01-01

    Small-molecule competitors of protein–protein interactions are urgently needed for functional analysis of large-scale genomics and proteomics data. Particularly abundant, yet so far undruggable, targets include domains specialized in recognizing proline-rich segments, including Src-homology 3 (SH3), WW, GYF, and Drosophila enabled (Ena)/vasodilator-stimulated phosphoprotein (VASP) homology 1 (EVH1) domains. Here, we present a modular strategy to obtain an extendable toolkit of chemical fragments (ProMs) designed to replace pairs of conserved prolines in recognition motifs. As proof-of-principle, we developed a small, selective, peptidomimetic inhibitor of Ena/VASP EVH1 domain interactions. Highly invasive MDA MB 231 breast-cancer cells treated with this ligand showed displacement of VASP from focal adhesions, as well as from the front of lamellipodia, and strongly reduced cell invasion. General applicability of our strategy is illustrated by the design of an ErbB4-derived ligand containing two ProM-1 fragments, targeting the yes-associated protein 1 (YAP1)-WW domain with a fivefold higher affinity. PMID:25848013

  6. Colostrinin: a proline-rich polypeptide complex of potential therapeutic interest.

    PubMed

    Janusz, M; Zabłocka, A

    2013-01-01

    A proline-rich polypeptide complex (PRP) subsequently known as ColostrininTM was found for the first time in ovine colostrum as a fraction accompanying colostral IgG2. Subsequently, similar polypeptides were found in human, bovine and caprine colostrum. PRP is a complex of peptides of molecular masses from 500 to 3000 Da. It contains 25% proline residues and 40% hydrophobic amino acids. It is not species specific, and is active both in vivo and in vitro. PRP possesses immunoregulatory properties, including effects on humoral and cellular immune responses, shows regulatory activity in Th1 and Th2 cytokine induction, and has the ability to inhibit the overproduction of reactive oxygen species and nitric oxide. PRP has also shown psychotropic properties. Both immunoregulatory and psychotropic properties suggest potential clinical use of PRP for neurodegenerative disorders. Beneficial effects of PRP/Colostrinin in the case of Alzheimer's disease were shown in double-blind placebo-controlled trials, in long-term open-label studies and in multicenter clinical trials. A very important property of PRP/Colostrinin and one of its components, a nonapeptide (NP), is the prevention of Aβ aggregation and the disruption of aggregates already formed. Moreover, PRP has been found to modulate neurite outgrowth, suppress uncontrolled activation of cells, and reduce 4-HNE-mediated cellular damage. Biological response modifying activity of PRP/Colostrinin can play an important role in its use in the treatment of Alzheimer's disease and suggests its application beyond neurodegenerative disorders. PMID:24200016

  7. RNAi-based functional elucidation of PtrPRP, a gene encoding a hybrid proline rich protein, in cold tolerance of Poncirus trifoliata

    PubMed Central

    Peng, Ting; Jia, Mao-Mao; Liu, Ji-Hong

    2015-01-01

    Hybrid proline-rich proteins (HyPRPs) have been suggested to play important roles in various plant development and stress response. In this study, we report the cloning and functional analysis of PtrPRP, a HyPRP-encoding gene of Poncirus trifoliata. PtrPRP contains 176 amino acids, among which 21% are proline residues, and has an 8-cysteine motif (8 CM) domain at the C terminal, a signal peptide and a proline-rich region at the N terminal. PtrPRP is constitutively expressed in root, stem and leaf, with the highest expression levels in leaf. It was progressively induced by cold, but transiently upregulated by salt and ABA. Transgenic P. trifoliata plants with knock-down PtrPRP by RNA interference (RNAi) were generated to investigate the role of PtrPRP in cold tolerance. When challenged by low temperature, the PtrPRP-RNAi plants displayed more sensitive performance compared with wild type (WT), as shown by higher electrolyte leakage and malondialdehyde content. In addition, the RNAi lines accumulated more reactive oxygen species (ROS) and lower levels of proline relative to WT. These results suggested that PtrPRP might be positively involved in cold tolerance by maintaining membrane integrity and ROS homeostasis. PMID:26483822

  8. Epigallocatechin-3-gallate inhibits lactase but is alleviated by salivary proline-rich proteins.

    PubMed

    Naz, Shahina; Siddiqi, Rahmanullah; Dew, Tristan P; Williamson, Gary

    2011-03-23

    Lactase phlorizin hydrolase is a small intestinal brush border enzyme that catalyzes the hydrolysis of the milk sugar, lactose, and also many flavonoid glucosides. We demonstrate that epigallocatechin-3-gallate (EGCG), the principal flavonoid from green tea, inhibits in vitro hydrolysis of lactose by intestinal lactase. We then tested the hypothesis that salivary proline-rich proteins (PRPs) could modulate this inhibition and stabilize EGCG. Inhibition by EGCG of digestive enzymes (α-amylase>chymotrypsin>trypsin>lactase≫pepsin) was alleviated ∼2-6-fold by PRPs. Furthermore, PRPs appeared stable to proteolysis and also stabilized EGCG under digestive conditions in vitro. This is the first report on EGCG inhibition of lactase, and it quantifies the protective role of PRPs against EGCG inhibition of digestive enzymes.

  9. The proline-rich protein palladin is a binding partner for profilin.

    PubMed

    Boukhelifa, Malika; Moza, Monica; Johansson, Thomas; Rachlin, Andrew; Parast, Mana; Huttelmaier, Stefan; Roy, Partha; Jockusch, Brigitte M; Carpen, Olli; Karlsson, Roger; Otey, Carol A

    2006-01-01

    Palladin is an actin-associated protein that has been suggested to play critical roles in establishing cell morphology and maintaining cytoskeletal organization in a wide variety of cell types. Palladin has been shown previously to bind directly to three different actin-binding proteins vasodilator-stimulated phosphoprotein (VASP), alpha-actinin and ezrin, suggesting that it functions as an organizing unit that recruits actin-regulatory proteins to specific subcellular sites. Palladin contains sequences resembling a motif known to bind profilin. Here, we demonstrate that palladin is a binding partner for profilin, interacting with profilin via a poly proline-containing sequence in the amino-terminal half of palladin. Double-label immunofluorescence staining shows that palladin and profilin partially colocalize in actin-rich structures in cultured astrocytes. Our results suggest that palladin may play an important role in recruiting profilin to sites of actin dynamics.

  10. Proline-rich protein-like PRPL1 controls elongation of root hairs in Arabidopsis thaliana

    PubMed Central

    Boron, Agnieszka Karolina; Van Orden, Jürgen; Nektarios Markakis, Marios; Mouille, Grégory; Adriaensen, Dirk; Verbelen, Jean-Pierre; Höfte, Herman; Vissenberg, Kris

    2014-01-01

    The synthesis and composition of cell walls is dynamically adapted in response to many developmental and environmental signals. In this respect, cell wall proteins involved in controlling cell elongation are critical for cell development. Transcriptome analysis identified a gene in Arabidopsis thaliana, which was named proline-rich protein-like, AtPRPL1, based on sequence similarities from a phylogenetic analysis. The most resemblance was found to AtPRP1 and AtPRP3 from Arabidopsis, which are known to be involved in root hair growth and development. In A. thaliana four proline-rich cell wall protein genes, playing a role in building up the cross-connections between cell wall components, can be distinguished. AtPRPL1 is a small gene that in promoter::GUS (β-glucuronidase) analysis has high expression in trichoblast cells and in the collet. Chemical or mutational interference with root hair formation inhibited this expression. Altered expression levels in knock-out or overexpression lines interfered with normal root hair growth and etiolated hypocotyl development, but Fourier transform-infrared (FT-IR) analysis did not identify consistent changes in cell wall composition of root hairs and hypocotyl. Co-localization analysis of the AtPRPL1–green fluorescent protein (GFP) fusion protein and different red fluorescent protein (RFP)-labelled markers confirmed the presence of AtPRPL1–GFP in small vesicles moving over the endoplasmic reticulum. Together, these data indicate that the AtPRPL1 protein is involved in the cell’s elongation process. How exactly this is achieved remains unclear at present. PMID:25147272

  11. A Novel Vasoactive Proline-Rich Oligopeptide from the Skin Secretion of the Frog Brachycephalus ephippium.

    PubMed

    Arcanjo, Daniel Dias Rufino; Vasconcelos, Andreanne Gomes; Comerma-Steffensen, Simón Gabriel; Jesus, Joilson Ramos; Silva, Luciano Paulino; Pires Júnior, Osmindo Rodrigues; Costa-Neto, Claudio Miguel; Oliveira, Eduardo Brandt; Migliolo, Ludovico; Franco, Octávio Luiz; Restini, Carolina Baraldi Araújo; Paulo, Michele; Bendhack, Lusiane Maria; Bemquerer, Marcelo Porto; Oliveira, Aldeidia Pereira; Simonsen, Ulf; Leite, José Roberto de Souza de Almeida

    2015-01-01

    Proline-rich oligopeptides (PROs) are a large family which comprises the bradykinin-potentiating peptides (BPPs). They inhibit the activity of the angiotensin I-converting enzyme (ACE) and have a typical pyroglutamyl (Pyr)/proline-rich structure at the N- and C-terminus, respectively. Furthermore, PROs decrease blood pressure in animals. In the present study, the isolation and biological characterization of a novel vasoactive BPP isolated from the skin secretion of the frog Brachycephalus ephippium is described. This new PRO, termed BPP-Brachy, has the primary structure WPPPKVSP and the amidated form termed BPP-BrachyNH2 inhibits efficiently ACE in rat serum. In silico molecular modeling and docking studies suggest that BPP-BrachyNH2 is capable of forming a hydrogen bond network as well as multiple van der Waals interactions with the rat ACE, which blocks the access of the substrate to the C-domain active site. Moreover, in rat thoracic aorta BPP-BrachyNH2 induces potent endothelium-dependent vasodilatation with similar magnitude as captopril. In DAF-FM DA-loaded aortic cross sections examined by confocal microscopy, BPP-BrachyNH2 was found to increase the release of nitric oxide (NO). Moreover, BPP-BrachyNH2 was devoid of toxicity in endothelial and smooth muscle cell cultures. In conclusion, the peptide BPP-BrachyNH2 has a novel sequence being the first BPP isolated from the skin secretion of the Brachycephalidae family. This opens for exploring amphibians as a source of new biomolecules. The BPP-BrachyNH2 is devoid of cytotoxicity and elicits endothelium-dependent vasodilatation mediated by NO. These findings open for the possibility of potential application of these peptides in the treatment of endothelial dysfunction and cardiovascular diseases.

  12. A Novel Vasoactive Proline-Rich Oligopeptide from the Skin Secretion of the Frog Brachycephalus ephippium.

    PubMed

    Arcanjo, Daniel Dias Rufino; Vasconcelos, Andreanne Gomes; Comerma-Steffensen, Simón Gabriel; Jesus, Joilson Ramos; Silva, Luciano Paulino; Pires Júnior, Osmindo Rodrigues; Costa-Neto, Claudio Miguel; Oliveira, Eduardo Brandt; Migliolo, Ludovico; Franco, Octávio Luiz; Restini, Carolina Baraldi Araújo; Paulo, Michele; Bendhack, Lusiane Maria; Bemquerer, Marcelo Porto; Oliveira, Aldeidia Pereira; Simonsen, Ulf; Leite, José Roberto de Souza de Almeida

    2015-01-01

    Proline-rich oligopeptides (PROs) are a large family which comprises the bradykinin-potentiating peptides (BPPs). They inhibit the activity of the angiotensin I-converting enzyme (ACE) and have a typical pyroglutamyl (Pyr)/proline-rich structure at the N- and C-terminus, respectively. Furthermore, PROs decrease blood pressure in animals. In the present study, the isolation and biological characterization of a novel vasoactive BPP isolated from the skin secretion of the frog Brachycephalus ephippium is described. This new PRO, termed BPP-Brachy, has the primary structure WPPPKVSP and the amidated form termed BPP-BrachyNH2 inhibits efficiently ACE in rat serum. In silico molecular modeling and docking studies suggest that BPP-BrachyNH2 is capable of forming a hydrogen bond network as well as multiple van der Waals interactions with the rat ACE, which blocks the access of the substrate to the C-domain active site. Moreover, in rat thoracic aorta BPP-BrachyNH2 induces potent endothelium-dependent vasodilatation with similar magnitude as captopril. In DAF-FM DA-loaded aortic cross sections examined by confocal microscopy, BPP-BrachyNH2 was found to increase the release of nitric oxide (NO). Moreover, BPP-BrachyNH2 was devoid of toxicity in endothelial and smooth muscle cell cultures. In conclusion, the peptide BPP-BrachyNH2 has a novel sequence being the first BPP isolated from the skin secretion of the Brachycephalidae family. This opens for exploring amphibians as a source of new biomolecules. The BPP-BrachyNH2 is devoid of cytotoxicity and elicits endothelium-dependent vasodilatation mediated by NO. These findings open for the possibility of potential application of these peptides in the treatment of endothelial dysfunction and cardiovascular diseases. PMID:26661890

  13. A Novel Topology of Proline-rich Transmembrane Protein 2 (PRRT2)

    PubMed Central

    Rossi, Pia; Sterlini, Bruno; Castroflorio, Enrico; Marte, Antonella; Onofri, Franco; Valtorta, Flavia; Maragliano, Luca; Corradi, Anna; Benfenati, Fabio

    2016-01-01

    Proline-rich transmembrane protein 2 (PRRT2) has been identified as the single causative gene for a group of paroxysmal syndromes of infancy, including epilepsy, paroxysmal movement disorders, and migraine. On the basis of topology predictions, PRRT2 has been assigned to the recently characterized family of Dispanins, whose members share the two-transmembrane domain topology with a large N terminus and short C terminus oriented toward the outside of the cell. Because PRRT2 plays a role at the synapse, it is important to confirm the exact orientation of its N and C termini with respect to the plasma membrane to get clues regarding its possible function. Using a combination of different experimental approaches, including live immunolabeling, immunogold electron microscopy, surface biotinylation and computational modeling, we demonstrate a novel topology for this protein. PRRT2 is a type II transmembrane protein in which only the second hydrophobic segment spans the plasma membrane, whereas the first one is associated with the internal surface of the membrane and forms a helix-loop-helix structure without crossing it. Most importantly, the large proline-rich N-terminal domain is not exposed to the extracellular space but is localized intracellularly, and only the short C terminus is extracellular (Ncyt/Cexo topology). Accordingly, we show that PRRT2 interacts with the Src homology 3 domain-bearing protein Intersectin 1, an intracellular protein involved in synaptic vesicle cycling. These findings will contribute to the clarification of the role of PRRT2 at the synapse and the understanding of pathogenic mechanisms on the basis of PRRT2-related neurological disorders. PMID:26797119

  14. The involvement of proline-rich protein Mus musculus predicted gene 4736 in ocular surface functions

    PubMed Central

    Qi, Xia; Ren, Sheng-Wei; Zhang, Feng; Wang, Yi-Qiang

    2016-01-01

    AIM To research the two homologous predicted proline-rich protein genes, Mus musculus predicted gene 4736 (MP4) and proline-rich protein BstNI subfamily 1 (Prb1) which were significantly upregulated in cultured corneal organs when encountering fungal pathogen preparations. This study was to confirm the expression and potential functions of these two genes in ocular surface. METHODS A Pseudomonas aeruginosa keratitis model was established in Balb/c mice. One day post infection, mRNA level of MP4 was measured using real-time polymerase chain reaction (PCR), and MP4 protein detected by immunohistochemistry (IHC) or Western blot using a customized polyclonal anti-MP4 antibody preparation. Lacrimal glands from normal mice were also subjected to IHC staining for MP4. An online bioinformatics program, BioGPS, was utilized to screen public data to determine other potential locations of MP4. RESULTS One day after keratitis induction, MP4 was upregulated in the corneas at both mRNA level as measured using real-time PCR and protein levels as measured using Western blot and IHC. BioGPS analysis of public data suggested that the MP4 gene was most abundantly expressed in the lacrimal glands, and IHC revealed that normal murine lacrimal glands were positive for MP4 staining. CONCLUSION MP4 and Prb1 are closely related with the physiology and pathological processes of the ocular surface. Considering the significance of ocular surface abnormalities like dry eye, we propose that MP4 and Prb1 contribute to homeostasis of ocular surface, and deserve more extensive functional and disease correlation studies. PMID:27588265

  15. A Novel Vasoactive Proline-Rich Oligopeptide from the Skin Secretion of the Frog Brachycephalus ephippium

    PubMed Central

    Arcanjo, Daniel Dias Rufino; Vasconcelos, Andreanne Gomes; Comerma-Steffensen, Simón Gabriel; Jesus, Joilson Ramos; Silva, Luciano Paulino; Pires, Osmindo Rodrigues; Costa-Neto, Claudio Miguel; Oliveira, Eduardo Brandt; Migliolo, Ludovico; Franco, Octávio Luiz; Restini, Carolina Baraldi Araújo; Paulo, Michele; Bendhack, Lusiane Maria; Bemquerer, Marcelo Porto; Oliveira, Aldeidia Pereira; Simonsen, Ulf; Leite, José Roberto de Souza de Almeida

    2015-01-01

    Proline-rich oligopeptides (PROs) are a large family which comprises the bradykinin-potentiating peptides (BPPs). They inhibit the activity of the angiotensin I-converting enzyme (ACE) and have a typical pyroglutamyl (Pyr)/proline-rich structure at the N- and C-terminus, respectively. Furthermore, PROs decrease blood pressure in animals. In the present study, the isolation and biological characterization of a novel vasoactive BPP isolated from the skin secretion of the frog Brachycephalus ephippium is described. This new PRO, termed BPP-Brachy, has the primary structure WPPPKVSP and the amidated form termed BPP-BrachyNH2 inhibits efficiently ACE in rat serum. In silico molecular modeling and docking studies suggest that BPP-BrachyNH2 is capable of forming a hydrogen bond network as well as multiple van der Waals interactions with the rat ACE, which blocks the access of the substrate to the C-domain active site. Moreover, in rat thoracic aorta BPP-BrachyNH2 induces potent endothelium-dependent vasodilatation with similar magnitude as captopril. In DAF-FM DA-loaded aortic cross sections examined by confocal microscopy, BPP-BrachyNH2 was found to increase the release of nitric oxide (NO). Moreover, BPP-BrachyNH2 was devoid of toxicity in endothelial and smooth muscle cell cultures. In conclusion, the peptide BPP-BrachyNH2 has a novel sequence being the first BPP isolated from the skin secretion of the Brachycephalidae family. This opens for exploring amphibians as a source of new biomolecules. The BPP-BrachyNH2 is devoid of cytotoxicity and elicits endothelium-dependent vasodilatation mediated by NO. These findings open for the possibility of potential application of these peptides in the treatment of endothelial dysfunction and cardiovascular diseases. PMID:26661890

  16. Developmental and Hormonal Regulation of Genes Coding for Proline-Rich Proteins in Female Inflorescences and Kernels of Maize1

    PubMed Central

    Josè-Estanyol, Matilde; Puigdomènech, Pere

    1998-01-01

    The pattern of expression of two genes coding for proteins rich in proline, HyPRP (hybrid proline-rich protein) and HRGP (hydroxyproline-rich glycoprotein), has been studied in maize (Zea mays) embryos by RNA analysis and in situ hybridization. mRNA accumulation is high during the first 20 d after pollination, and disappears in the maturation stages of embryogenesis. The two genes are also expressed during the development of the pistillate spikelet and during the first stages of embryo development in adjacent but different tissues. HyPRP mRNA accumulates mainly in the scutellum and HRGP mRNA mainly in the embryo axis and the suspensor. The two genes appear to be under the control of different regulatory pathways during embryogenesis. We show that HyPRP is repressed by abscisic acid and stress treatments, with the exception of cold treatment. In contrast, HRGP is affected positively by specific stress treatments. PMID:9490753

  17. The proline-rich region of 18.5 kDa myelin basic protein binds to the SH3-domain of Fyn tyrosine kinase with the aid of an upstream segment to form a dynamic complex in vitro.

    PubMed

    De Avila, Miguel; Vassall, Kenrick A; Smith, Graham S T; Bamm, Vladimir V; Harauz, George

    2014-12-08

    The intrinsically disordered 18.5 kDa classic isoform of MBP (myelin basic protein) interacts with Fyn kinase during oligodendrocyte development and myelination. It does so primarily via a central proline-rich SH3 (Src homology 3) ligand (T92-R104, murine 18.5 kDa MBP sequence numbering) that is part of a molecular switch due to its high degree of conservation and modification by MAP (mitogen-activated protein) and other kinases, especially at residues T92 and T95. Here, we show using co-transfection experiments of an early developmental oligodendroglial cell line (N19) that an MBP segment upstream of the primary ligand is involved in MBP-Fyn-SH3 association in cellula. Using solution NMR spectroscopy in vitro, we define this segment to comprise MBP residues (T62-L68), and demonstrate further that residues (V83-P93) are the predominant SH3-target, assessed by the degree of chemical shift change upon titration. We show by chemical shift index analysis that there is no formation of local poly-proline type II structure in the proline-rich segment upon binding, and by NOE (nuclear Overhauser effect) and relaxation measurements that MBP remains dynamic even while complexed with Fyn-SH3. The association is a new example first of a non-canonical SH3-domain interaction and second of a fuzzy MBP complex.

  18. The proline-rich region of 18.5 kDa myelin basic protein binds to the SH3-domain of Fyn tyrosine kinase with the aid of an upstream segment to form a dynamic complex in vitro

    PubMed Central

    De Avila, Miguel; Vassall, Kenrick A.; Smith, Graham S. T.; Bamm, Vladimir V.; Harauz, George

    2014-01-01

    The intrinsically disordered 18.5 kDa classic isoform of MBP (myelin basic protein) interacts with Fyn kinase during oligodendrocyte development and myelination. It does so primarily via a central proline-rich SH3 (Src homology 3) ligand (T92–R104, murine 18.5 kDa MBP sequence numbering) that is part of a molecular switch due to its high degree of conservation and modification by MAP (mitogen-activated protein) and other kinases, especially at residues T92 and T95. Here, we show using co-transfection experiments of an early developmental oligodendroglial cell line (N19) that an MBP segment upstream of the primary ligand is involved in MBP–Fyn–SH3 association in cellula. Using solution NMR spectroscopy in vitro, we define this segment to comprise MBP residues (T62–L68), and demonstrate further that residues (V83–P93) are the predominant SH3-target, assessed by the degree of chemical shift change upon titration. We show by chemical shift index analysis that there is no formation of local poly-proline type II structure in the proline-rich segment upon binding, and by NOE (nuclear Overhauser effect) and relaxation measurements that MBP remains dynamic even while complexed with Fyn–SH3. The association is a new example first of a non-canonical SH3-domain interaction and second of a fuzzy MBP complex. PMID:25343306

  19. Shuttling gold nanoparticles into tumoral cells with an amphipathic proline-rich peptide.

    PubMed

    Pujals, Sílvia; Bastús, Neus G; Pereiro, Eva; López-Iglesias, Carmen; Puntes, Víctor F; Kogan, Marcelo J; Giralt, Ernest

    2009-04-17

    Cell-penetrating peptides (CPPs) are a potential tool for intracellular delivery of different kinds of cargoes. Because of their growing use in nanobiomedicine, both for diagnostics and for treatment, metal nanoparticles are an interesting cargo for CPPs. Here, gold nanoparticles (AuNps) and the amphipathic proline-rich peptide SAP have been used. Conjugation of the peptide onto the AuNps was achieved by addition of a cysteine to the SAP sequence for thiol chemisorption on gold, and the attachment was confirmed by visible spectroscopy, dynamic light scattering (DLS), zeta-potential (ZP), stability towards ionic strength (as high as 1 M NaCl), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HR-TEM) coupled to electron energy loss spectroscopy (EELS). AuNp-C-SAP internalization in HeLa cells was observed by three different microscopy techniques-TEM, confocal laser scanning microscopy (CLSM) and transmission X-ray microscopy (TXM)-and all of them have confirmed the effective intracellular delivery of AuNps by SAP. PMID:19322842

  20. Distribution of the SynDIG4/proline-rich transmembrane protein 1 in rat brain.

    PubMed

    Kirk, Lyndsey M; Ti, Shu W; Bishop, Hannah I; Orozco-Llamas, Mayra; Pham, Michelle; Trimmer, James S; Díaz, Elva

    2016-08-01

    The modulation of AMPA receptor (AMPAR) content at synapses is thought to be an underlying molecular mechanism of memory and learning. AMPAR content at synapses is highly plastic and is regulated by numerous AMPAR accessory transmembrane proteins such as TARPs, cornichons, and CKAMPs. SynDIG (synapse differentiation-induced gene) defines a family of four genes (SynDIG1-4) expressed in distinct and overlapping patterns in the brain. SynDIG1 was previously identified as a novel transmembrane AMPAR-associated protein that regulates synaptic strength. The related protein SynDIG4 [also known as Prrt1 (proline-rich transmembrane protein 1)] has recently been identified as a component of AMPAR complexes. In this study, we show that SynDIG1 and SynDIG4 have distinct yet overlapping patterns of expression in the central nervous system, with SynDIG4 having especially prominent expression in the hippocampus and particularly within CA1. In contrast to SynDIG1 and other traditional AMPAR auxiliary subunits, SynDIG4 is de-enriched at the postsynaptic density and colocalizes with extrasynaptic GluA1 puncta in primary dissociated neuron culture. These results indicate that, although SynDIG4 shares sequence similarity with SynDIG1, it might act through a unique mechanism as an auxiliary factor for extrasynaptic GluA1-containing AMPARs. J. Comp. Neurol. 524:2266-2280, 2016. © 2015 Wiley Periodicals, Inc.

  1. Structural Landscape of the Proline-Rich Domain of Sos1 Nucleotide Exchange Factor

    PubMed Central

    McDonald, Caleb B.; Bhat, Vikas; Kurouski, Dmitry; Mikles, David C.; Deegan, Brian J.; Seldeen, Kenneth L.; Lednev, Igor K.; Farooq, Amjad

    2013-01-01

    Despite its key role in mediating a plethora of cellular signaling cascades pertinent to health and disease, little is known about the structural landscape of the proline-rich (PR) domain of Sos1 guanine nucleotide exchange factor. Herein, using a battery of biophysical tools, we provide evidence that the PR domain of Sos1 is structurally disordered and adopts an extended random coil-like conformation in solution. Of particular interest is the observation that while chemical denaturation of PR domain results in the formation of a significant amount of polyproline II (PPII) helices, it has little or negligible effect on its overall size as measured by its hydrodynamic radius. Our data also show that the PR domain displays a highly dynamic conformational basin in agreement with the knowledge that the intrinsically unstructured proteins rapidly interconvert between an ensemble of conformations. Collectively, our study provides new insights into the conformational equilibrium of a key signaling molecule with important consequences on its physiological function. PMID:23528987

  2. Structural landscape of the proline-rich domain of Sos1 nucleotide exchange factor.

    PubMed

    McDonald, Caleb B; Bhat, Vikas; Kurouski, Dmitry; Mikles, David C; Deegan, Brian J; Seldeen, Kenneth L; Lednev, Igor K; Farooq, Amjad

    2013-01-01

    Despite its key role in mediating a plethora of cellular signaling cascades pertinent to health and disease, little is known about the structural landscape of the proline-rich (PR) domain of Sos1 guanine nucleotide exchange factor. Herein, using a battery of biophysical tools, we provide evidence that the PR domain of Sos1 is structurally disordered and adopts an extended random coil-like conformation in solution. Of particular interest is the observation that while chemical denaturation of PR domain results in the formation of a significant amount of polyproline II (PPII) helices, it has little or negligible effect on its overall size as measured by its hydrodynamic radius. Our data also show that the PR domain displays a highly dynamic conformational basin in agreement with the knowledge that the intrinsically unstructured proteins rapidly interconvert between an ensemble of conformations. Collectively, our study provides new insights into the conformational equilibrium of a key signaling molecule with important consequences on its physiological function. PMID:23528987

  3. Cell wall-associated ROOT HAIR SPECIFIC 10, a proline-rich receptor-like kinase, is a negative modulator of Arabidopsis root hair growth.

    PubMed

    Hwang, Youra; Lee, Hyodong; Lee, Young-Sook; Cho, Hyung-Taeg

    2016-03-01

    Plant cell growth is restricted by the cell wall, and cell wall dynamics act as signals for the cytoplasmic and nuclear events of cell growth. Among various receptor kinases, ROOT HAIR SPECIFIC 10 (RHS10) belongs to a poorly known receptor kinase subfamily with a proline-rich extracellular domain. Here, we report that RHS10 defines the root hair length of Arabidopsis thaliana by negatively regulating hair growth. RHS10 modulates the duration of root hair growth rather than the growth rate. As poplar and rice RHS10 orthologs also showed a root hair-inhibitory function, this receptor kinase-mediated function appears to be conserved in angiosperms. RHS10 showed a strong association with the cell wall, most probably through its extracellular proline-rich domain (ECD). Deletion analysis of the ECD demonstrated that a minimal extracellular part, which includes a few proline residues, is required for RHS10-mediated root hair inhibition. RHS10 suppressed the accumulation of reactive oxygen species (ROS) in the root, which are necessary for root hair growth. A yeast two-hybrid screening identified an RNase (RNS2) as a putative downstream target of RHS10. Accordingly, RHS10 overexpression decreased and RHS10 loss increased RNA levels in the hair-growing root region. Our results suggest that RHS10 mediates cell wall-associated signals to maintain proper root hair length, at least in part by regulating RNA catabolism and ROS accumulation. PMID:26884603

  4. A Proline-Rich Domain in the Genotype 4 Hepatitis E Virus ORF3 C-Terminus Is Crucial for Downstream V105DLP108 Immunoactivity.

    PubMed

    Wang, Heng; Ji, Fangxiao; Liang, Huanbin; Gu, Honglang; Ning, Zhangyong; Liu, Rongchang; Zhang, Guihong

    2015-01-01

    The hepatitis E virus (HEV) is responsible for serious viral hepatitis worldwide. Animals are considered a reservoir of HEV, particularly pigs. While HEV infection in pigs and dogs is always asymptomatic, the virus causes high death rates in patients with pre-existing chronic liver disease and pregnant women in developing countries. HEV open reading frame 2 (ORF2) has been used as a diagnostic target to detect specific antibodies against HEV in serum samples. Recent research has additionally supported the potential utility of the ORF3 protein as a target in serum anti-HEV detection. However, the epitope distribution of ORF3 protein remains ambiguous. In the current study, we showed that continuous amino acid motif, VDLP, at the C-terminus of genotype 4 HEV ORF3 is a core sequence of the ORF3 protein epitope. Moreover, cooperative interaction with upstream elements is essential for its immunoactivity. Three proline residues (P99, P102 and P103) in the upstream proline-rich domain exerted significant effects on the immunocompetence of VDLP. ELISA results revealed that SAPPLPPVVDLP and SAPPLPPVVDLPQLGL peptides containing the identified VDLP epitope display weaker reactions with anti-HEV serum than the commercial ELISA kit. Our collective findings provide valuable information on the epitope distribution characteristics of HEV ORF3 and improve our understanding of the influence of the proline-rich domain on the immunoactivity of downstream amino acids in the C-terminal region. PMID:26177202

  5. A Proline-Rich Domain in the Genotype 4 Hepatitis E Virus ORF3 C-Terminus Is Crucial for Downstream V105DLP108 Immunoactivity

    PubMed Central

    Gu, Honglang; Ning, Zhangyong; Liu, Rongchang; Zhang, Guihong

    2015-01-01

    The hepatitis E virus (HEV) is responsible for serious viral hepatitis worldwide. Animals are considered a reservoir of HEV, particularly pigs. While HEV infection in pigs and dogs is always asymptomatic, the virus causes high death rates in patients with pre-existing chronic liver disease and pregnant women in developing countries. HEV open reading frame 2 (ORF2) has been used as a diagnostic target to detect specific antibodies against HEV in serum samples. Recent research has additionally supported the potential utility of the ORF3 protein as a target in serum anti-HEV detection. However, the epitope distribution of ORF3 protein remains ambiguous. In the current study, we showed that continuous amino acid motif, VDLP, at the C-terminus of genotype 4 HEV ORF3 is a core sequence of the ORF3 protein epitope. Moreover, cooperative interaction with upstream elements is essential for its immunoactivity. Three proline residues (P99, P102 and P103) in the upstream proline-rich domain exerted significant effects on the immunocompetence of VDLP. ELISA results revealed that SAPPLPPVVDLP and SAPPLPPVVDLPQLGL peptides containing the identified VDLP epitope display weaker reactions with anti-HEV serum than the commercial ELISA kit. Our collective findings provide valuable information on the epitope distribution characteristics of HEV ORF3 and improve our understanding of the influence of the proline-rich domain on the immunoactivity of downstream amino acids in the C-terminal region. PMID:26177202

  6. Cell wall-associated ROOT HAIR SPECIFIC 10, a proline-rich receptor-like kinase, is a negative modulator of Arabidopsis root hair growth

    PubMed Central

    Hwang, Youra; Lee, Hyodong; Lee, Young-Sook; Cho, Hyung-Taeg

    2016-01-01

    Plant cell growth is restricted by the cell wall, and cell wall dynamics act as signals for the cytoplasmic and nuclear events of cell growth. Among various receptor kinases, ROOT HAIR SPECIFIC 10 (RHS10) belongs to a poorly known receptor kinase subfamily with a proline-rich extracellular domain. Here, we report that RHS10 defines the root hair length of Arabidopsis thaliana by negatively regulating hair growth. RHS10 modulates the duration of root hair growth rather than the growth rate. As poplar and rice RHS10 orthologs also showed a root hair-inhibitory function, this receptor kinase-mediated function appears to be conserved in angiosperms. RHS10 showed a strong association with the cell wall, most probably through its extracellular proline-rich domain (ECD). Deletion analysis of the ECD demonstrated that a minimal extracellular part, which includes a few proline residues, is required for RHS10-mediated root hair inhibition. RHS10 suppressed the accumulation of reactive oxygen species (ROS) in the root, which are necessary for root hair growth. A yeast two-hybrid screening identified an RNase (RNS2) as a putative downstream target of RHS10. Accordingly, RHS10 overexpression decreased and RHS10 loss increased RNA levels in the hair-growing root region. Our results suggest that RHS10 mediates cell wall-associated signals to maintain proper root hair length, at least in part by regulating RNA catabolism and ROS accumulation. PMID:26884603

  7. Salivary proline-rich proteins in mammals: Roles in oral homeostasis and counteracting dietary tannin.

    PubMed

    McArthur, C; Sanson, G D; Beal, A M

    1995-06-01

    We review information on the structure of proline-rich proteins (PRPs), their various functions related to oral homeostasis and dietary tannin, and the structural basis of these functions. Consideration of the multifunctional nature of these salivary proteins helps explain both the subtle and large variations found in structure and secretion rates both within individuals and between species. We propose that the ancestral function of PRPs is in maintaining oral homeostasis and that counteracting dietary tannins by binding with them is a derived function. PRPs are effective in oral homeostasis at low secretion levels, whereas counteracting tannin depends on high secretion levels. In the dietary habits ranging from carnivores through omnivores to exclusively planteaters, the dietary nitrogen level is progressively reduced, and plant allelochemical intake, including tannins, increases. We suggest that during this evolution from meat-eater to plant-eater, there was some point in omnivory at which selective pressure from nitrogen limitations, arising from a low nitrogen/high tannin diet, became sufficiently great for the evolution of increased secretion level and diversification of PRPs for dealing with tannin. If this hypothesis is correct, carnivorous mammals should secrete low levels of PRPs for oral homeostasis, but should never secrete high levels, unless they are secondarily carnivorous. Omnivores consuming a diet of very little animal tissue but higher levels of tannin-containing foliage or fruit should generally have the capacity to produce high levels of salivary PRPs. Browsers and frugivores should also produce high levels of PRPs, but grazers may have reduced secretion rates depending on the antiquity of the dietary habit. This hypothesis is consistent with the limited information available on the abundance, type, and distribution of PRPs in mammals. Studies are suggested which would test the functional and evolutionary arguments presented.

  8. Subcellular localization of proline-rich tyrosine kinase 2 during oocyte fertilization and early-embryo development in mice

    PubMed Central

    MENG, Xiao-qian; DAI, Yuan-yuan; JING, Lai-dong; BAI, Jing; LIU, Shu-zhen; ZHENG, Ke-gang; PAN, Jie

    2016-01-01

    Proline-rich tyrosine kinase 2 (Pyk2), a non-receptor tyrosine kinase, is a member of the focal adhesion kinase family and is highly expressed in oocytes. Using a combination of confocal microscopy and RNAi, we localized and studied the function of both Pyk2 and tyrosine-phosphorylated Pyk2 (p-Pyk2) during mouse oocyte fertilization and early embryo development. At the onset of fertilization, Pyk2 and p-Pyk2 were detected predominantly in sperm heads and the oocyte cytoplasm. Upon formation of male and female pronuclei, Pyk2 and its activated form leave the cytoplasm and accumulate in the two pronuclei. We detected Pyk2 in blastomere nuclei and found both Pyk2 and p-Pyk2 in the pre-blastula cytoplasm. Pyk2 and its activated form then disappeared from the blastula nuclei and localized to the perinuclear regions, where blastula cells come into contact with each other. Pyk2 knockdown via microinjection of siRNA into the zygote did not inhibit early embryo development. Our results suggest that Pyk2 plays multiple functional roles in mouse oocyte fertilization as well as throughout early embryo development. PMID:27086609

  9. The rad9 gene of Coprinus cinereus encodes a proline-rich protein required for meiotic chromosome condensation and synapsis

    SciTech Connect

    Seitz, L.C.; Tang, Keliang; Cummings, W.J.; Zolan, M.E.

    1996-04-01

    The rad9 gene of Coprinus cinereus is essential for the normal completion of meiosis. We examined surface-spread preparations of wild-type and rad9-1 nuclei from the meiotic stages of karyogamy through metaphase I, and we determined the primary sequence, structure, and meiotic expression of the rad9 gene. In wild-type C. cinereus, karyogamy is followed by condensation and alignment of homologous chromosomes. Condensation and axial core development largely precede synapsis, which often initiates at telomeres. A diffuse diplotene phase coincides with dissolution of the synaptonemal complex, and subsequently chromosomes further condense as the cells progress into metaphase I. In contrast, although karyogamy and nucleolar fusion are apparently normal in rad9-1 basidia, only short stretches of synaptonemal complex form. These correlate with stretches of condensed chromatin, mostly at apparent chromosome ends, and regions of presumptive triple synapsis are numerous. rad9-1 basidia enter the diffuse stages of early diplotene, and then 50% of these cells enter metaphase I by the criteria of nucleolar elimination and at least some chromatin condensation. rad9 gene expression is induced after gamma irradiation and during meiosis. The gene has 27 exons and encodes a predicted protein of 2157 amino acids, with a proline-rich amino terminus. 62 refs., 10 figs.

  10. Metachromatic staining patterns of basic proline-rich proteins from rat and human saliva in sodium dodecyl sulfate-polyacrylamide gels

    SciTech Connect

    Humphreys-Beher, M.G.; Wells, D.J.

    1984-10-01

    A series of basic proteins, rich in proline, were isolated from the salivary secretions of humans and rats. These proteins underwent metachromasia after staining with Coomassie brilliant blue R-250 in sodium dodecyl sulfate-polyacrylamide gels. The technique of destaining gels in several changes of 10% acetic acid after a 30-min staining period is a rapid method of general utility for the identification of proline-rich proteins from total cell lysates from other sources besides saliva.

  11. Destabilizing effect of proline substitutions in two helical regions of T4 lysozyme: leucine 66 to proline and leucine 91 to proline.

    PubMed

    Gray, T M; Arnoys, E J; Blankespoor, S; Born, T; Jagar, R; Everman, R; Plowman, D; Stair, A; Zhang, D

    1996-04-01

    A class of temperature-sensitive (ts) mutants of T4 lysozyme with reduced activity at 30 degrees C and no activity at 43 degrees C has been selected. These mutants, designated "tight" ts mutants, differ from most other T4 lysozyme mutants that are active at 43 degrees C, but only manifest their ts lesion by a reduced halo size around phage plaques after exposure of the growth plates to chloroform vapors. For example, in the series of T4 lysozyme mutants at position 157, the original randomly selected mutant, T1571, is the least stable of the series, yet, apart from the halo assay and subsequent in vitro protein stability measurements, this mutant is indistinguishable from wild type (WT) even at 43 degrees C. Two mutants were identified: L91P and L66P. Both insert proline residues into alpha-helical regions of the WT protein structure. The stabilities (delta delta G) as determined by urea denaturation are 8.2 kcal/mol for L91P and 7.1 kcal/mol for L66P. CD spectra indicate that no major conformational changes have occurred in the mutant structures. The structures of the mutants were modeled with a 40-ps molecular dynamics simulation using explicit solvent. For L91P, the reduction of stability appears to be due to an unsatisfied hydrogen bond in the alpha-helix and to a new buried cavity. For L66P, the reduction of stability appears to be due to a disruption of the interdomain alpha-helix, at least two unsatisfied hydrogen bonds, and a newly formed solvent-filled pocket that protrudes into the hydrophobic core, possibly reducing the stabilizing contribution of a partially buried intrachain salt bridge.

  12. A Statistical Analysis of the PPII Propensity of Amino Acid Guests in Proline-Rich Peptides

    PubMed Central

    Moradi, Mahmoud; Babin, Volodymyr; Sagui, Celeste; Roland, Christopher

    2011-01-01

    There has been considerable debate about the intrinsic PPII propensity of amino-acid residues in denatured polypeptides. Experimentally, the propensity scale is based on the behavior of guest amino-acid residues placed in the middle of polyproline hosts. We have used classical molecular dynamics simulations, with state-of-the-art force fields to carry out a comprehensive analysis of the conformational equilibria of the proline-based host oligopeptides with single guests. The tracked structural characteristics include the PPII content, the cis/trans isomerization of the prolyl bonds, the puckering of the pyrrolidine rings of the proline residues, and the secondary structural motifs. We find no evidence for an intrinsic PPII propensity in any of the guest amino acids other than proline. Instead, the PPII content as derived from experiments may be explained in terms of: 1), a local correlation between the dihedral angles of the guest amino acid and the proline residue immediately preceding it; and 2), a nonlocal correlation between the cis/trans states of the peptide bonds. In terms of the latter, we find that the presence of a guest (other than proline, tyrosine, or tryptophan) increases the trans content of most of the prolyl bonds, which results in an effective increase of the peptide PPII content. With respect to the local dihedral correlations, we find that these are well described in terms of the so-called odds-ratio statistic. Expressed in terms of free energy language, the PPII content based on the odds-ratio of the relevant residues correlate well with the experimentally measured PPII content. PMID:21320454

  13. Proline-rich sequence recognition: II. Proteomics analysis of Tsg101 ubiquitin-E2-like variant (UEV) interactions.

    PubMed

    Schlundt, Andreas; Sticht, Jana; Piotukh, Kirill; Kosslick, Daniela; Jahnke, Nadin; Keller, Sandro; Schuemann, Michael; Krause, Eberhard; Freund, Christian

    2009-11-01

    The tumor maintenance protein Tsg101 has recently gained much attention because of its involvement in endosomal sorting, virus release, cytokinesis, and cancerogenesis. The ubiquitin-E2-like variant (UEV) domain of the protein interacts with proline-rich sequences of target proteins that contain P(S/T)AP amino acid motifs and weakly binds to the ubiquitin moiety of proteins committed to sorting or degradation. Here we performed peptide spot analysis and phage display to refine the peptide binding specificity of the Tsg101 UEV domain. A mass spectrometric proteomics approach that combines domain-based pulldown experiments, binding site inactivation, and stable isotope labeling by amino acids in cell culture (SILAC) was then used to delineate the relative importance of the peptide and ubiquitin binding sites. Clearly "PTAP" interactions dominate target recognition, and we identified several novel binders as for example the poly(A)-binding protein 1 (PABP1), Sec24b, NFkappaB2, and eIF4b. For PABP1 and eIF4b the interactions were confirmed in the context of the corresponding full-length proteins in cellular lysates. Therefore, our results strongly suggest additional roles of Tsg101 in cellular regulation of mRNA translation. Regulation of Tsg101 itself by the ubiquitin ligase TAL (Tsg101-associated ligase) is most likely conferred by a single PSAP binding motif that enables the interaction with Tsg101 UEV. Together with the results from the accompanying article (Kofler, M., Schuemann, M., Merz, C., Kosslick, D., Schlundt, A., Tannert, A., Schaefer, M., Lührmann, R., Krause, E., and Freund, C. (2009) Proline-rich sequence recognition: I. Marking GYF and WW domain assembly sites in early spliceosomal complexes. Mol. Cell. Proteomics 8, 2461-2473) on GYF and WW domain pathways our work defines major proline-rich sequence-mediated interaction networks that contribute to the modular assembly of physiologically relevant protein complexes.

  14. Molecular characterization and evolution of the SPRR family of keratinocyte differentiation markers encoding small proline-rich proteins

    SciTech Connect

    Gibbs, S.; Fijneman, R.; Wiegant, J.; Van De Putte, P.; Backendorf, C. ); Van Kessel, A.D. )

    1993-06-01

    SPRR genes (formerly SPR) encode a novel class of polypeptides (small proline rich proteins) that are strongly induced during differentiation of human epidermal keratinocytes in vitro and in vivo. Recently the authors found that the N- and C-terminal domains of these proteins show strong sequence homology to loricrin and involucrin, suggesting that SPRR proteins constitute a new class of cornified envelope precursor proteins. Here they show that SPRR proteins are encoded by closely related members of a gene family, consisting of two genes for SPRR1, approximately seven genes for SPRR2, and a single gene for SPRR3. All SPRR genes are closely linked within a 300-kb DNA segment on human chromosome 1 band q21-q22, a region where the related loricrin and involucrin genes have also been mapped. The most characteristic feature of the SPRR gene family resides in the structure of the central segments of the encoded polypeptides that are built up from tandemly repeated units of either eight (SPRR1 and SPRR3) or nine (SPRR2) amino acids with the general consensus *K*PEP**. Sequencing data of the different members, together with their clustered chromosomal organization, strongly suggest that this gene family has evolved from a single progenitor gene by multiple intra- and intergenic duplications. Analysis of the different SPRR subfamilies reveals a gene-specific bias to either intra- or intergenic duplication. The authors propose that a process of homogenization has acted on the different members of one subfamily, whereas the different subfamilies appear to have diverged from each other, at the levels of both protein structure and gene regulation. 25 refs., 7 figs., 2 tab.

  15. Proline-, glutamic acid-, and leucine-rich protein 1 mediates estrogen rapid signaling and neuroprotection in the brain

    PubMed Central

    Sareddy, Gangadhara R.; Zhang, Quanguang; Wang, Ruimin; Scott, Erin; Zou, Yi; O'Connor, Jason C.; Chen, Yidong; Dong, Yan; Vadlamudi, Ratna K.; Brann, Darrell

    2015-01-01

    17-β estradiol (E2) has been implicated as neuroprotective in a variety of neurodegenerative disorders. However, the underlying mechanism remains unknown. Here, we provide genetic evidence, using forebrain-specific knockout (FBKO) mice, that proline-, glutamic acid-, and leucine-rich protein 1 (PELP1), an estrogen receptor coregulator protein, is essential for the extranuclear signaling and neuroprotective actions of E2 in the hippocampal CA1 region after global cerebral ischemia (GCI). E2-mediated extranuclear signaling (including activation of extracellular signal-regulated kinase and Akt) and antiapoptotic effects [such as attenuation of JNK signaling and increase in phosphorylation of glycogen synthase kinase-3β (GSK3β)] after GCI were compromised in PELP1 FBKO mice. Mechanistic studies revealed that PELP1 interacts with GSK3β, E2 modulates interaction of PELP1 with GSK3β, and PELP1 is a novel substrate for GSK3β. RNA-seq analysis of control and PELP1 FBKO mice after ischemia demonstrated alterations in several genes related to inflammation, metabolism, and survival in PELP1 FBKO mice, as well as a significant reduction in the activation of the Wnt/β-catenin signaling pathway. In addition, PELP1 FBKO studies revealed that PELP1 is required for E2-mediated neuroprotection and for E2-mediated preservation of cognitive function after GCI. Collectively, our data provide the first direct in vivo evidence, to our knowledge, of an essential role for PELP1 in E2-mediated rapid extranuclear signaling, neuroprotection, and cognitive function in the brain. PMID:26627258

  16. Pitiprolamide, a proline-rich dolastatin 16 analogue from the marine cyanobacterium Lyngbya majuscula from Guam.

    PubMed

    Montaser, Rana; Abboud, Khalil A; Paul, Valerie J; Luesch, Hendrik

    2011-01-28

    An unusual cyclic depsipeptide, pitiprolamide (1), was isolated from the marine cyanobacterium Lyngbya majuscula collected at Piti Bomb Holes, Guam. The structure was deduced using NMR, MS, X-ray crystallography, and enantioselective HPLC-MS techniques. Remarkably, proline represents half of the residues forming pitiprolamide (1). Other distinctive features include a 4-phenylvaline (dolaphenvaline, Dpv) moiety initially found in dolastatin 16 and the rare 2,2-dimethyl-3-hydroxyhexanoic acid (Dmhha) unit condensed in a unique sequence in one single molecule. Pitiprolamide (1) showed weak cytotoxic activity against HCT116 colon and MCF7 breast cancer cell lines, as well as weak antibacterial activities against Mycobacterium tuberculosis and Bacillus cereus.

  17. Antagonistic Effect of a Salivary Proline-Rich Peptide on the Cytosolic Ca2+ Mobilization Induced by Progesterone in Oral Squamous Cancer Cells.

    PubMed

    Palmerini, Carlo Alberto; Mazzoni, Michela; Radicioni, Giorgia; Marzano, Valeria; Granieri, Letizia; Iavarone, Federica; Longhi, Renato; Messana, Irene; Cabras, Tiziana; Sanna, Maria Teresa; Castagnola, Massimo; Vitali, Alberto

    2016-01-01

    A salivary proline-rich peptide of 1932 Da showed a dose-dependent antagonistic effect on the cytosolic Ca2+ mobilization induced by progesterone in a tongue squamous carcinoma cell line. Structure-activity studies showed that the activity of the peptide resides in the C-terminal region characterized by a proline stretch flanked by basic residues. Furthermore, lack of activity of the retro-inverso peptide analogue suggested the involvement of stereospecific recognition. Mass spectrometry-based shotgun analysis, combined with Western blotting tests and biochemical data obtained with the Progesterone Receptor Membrane Component 1 (PGRMC1) inhibitor AG205, showed strong evidence that p1932 performs its modulatory action through an interaction with the progesterone receptor PGRMC1, which is predominantly expressed in this cell line and, clearly, plays a role in progesterone induced Ca2+ response. Thus, our results point to p1932 as a modulator of the transduction signal pathway mediated by this protein and, given a well-established involvement of PGRMC1 in tumorigenesis, highlight a possible therapeutic potential of p1932 for the treatment of oral cancer.

  18. Bio-mimicking of Proline-Rich Motif Applied to Carbon Nanotube Reveals Unexpected Subtleties Underlying Nanoparticle Functionalization

    PubMed Central

    Zhang, Yuanzhao; Jimenez-Cruz, Camilo A.; Wang, Jian; Zhou, Bo; Yang, Zaixing; Zhou, Ruhong

    2014-01-01

    Here, we report computational studies of the SH3 protein domain interacting with various single-walled carbon nanotubes (SWCNT) either bare or functionalized by mimicking the proline-rich motif (PRM) ligand (PPPVPPRR) and compare it to the SH3-PRM complex binding. With prolines or a single arginine attached, the SWCNT gained slightly on specificity when compared with the bare control, whereas with multi-arginine systems the specificity dropped dramatically to our surprise. Although the electrostatic interaction provided by arginines is crucial in the recognition between PRM and SH3 domain, our results suggest that attaching multiple arginines to the SWCNT has a detrimental effect on the binding affinity. Detailed analysis of the MD trajectories found two main factors that modulate the specificity of the binding: the existence of competing acidic patches at the surface of SH3 that leads to “trapping and clamping” by the arginines, and the rigidity of the SWCNT introducing entropic penalties in the proper binding. Further investigation revealed that the same “clamping” phenomenon exits in the PRM-SH3 system, which has not been reported in previous literature. The competing effects between nanoparticle and its functionalization components revealed by our model system should be of value to current and future nanomedicine designs. PMID:25427563

  19. Pitiprolamide, a Proline-Rich Dolastatin 16 Analogue from the Marine Cyanobacterium Lyngbya majuscula from Guam

    PubMed Central

    Montaser, Rana; Abboud, Khalil A.; Paul, Valerie J.; Luesch, Hendrik

    2010-01-01

    An unusual cyclic depsipeptide, pitiprolamide (1), was isolated from the marine cyanobacterium Lyngbya majuscula collected at Piti Bomb Holes, Guam. The structure was deduced using NMR, MS, X-ray crystallography and enantioselective HPLC-MS techniques. Remarkably, proline represents half of the residues forming pitiprolamide (1). Other distinctive features include a 4-phenylvaline (dolaphenvaline, Dpv) moiety initially found in dolastatin 16 and the rare 2,2-dimethyl-3-hydroxyhexanoic acid (Dmhha) unit condensed in a unique sequence in one single molecule. Pitiprolamide (1) showed weak cytotoxic activity against HCT116 colon and MCF7 breast cancer cell lines, as well as weak antibacterial activities against Mycobacterium tuberculosis and Bacillus cereus. PMID:21138309

  20. The epidermis of scales in gecko lizards contains multiple forms of beta-keratins including basic glycine-proline-serine-rich proteins.

    PubMed

    Toni, M; Dalla Valle, L; Alibardi, L

    2007-05-01

    The epidermis of scales of gecko lizards comprises alpha- and beta-keratins. Using bidimensional electrophoresis and immunoblotting, we have characterized keratins of corneous layers of scales in geckos, especially beta-keratins in digit pad lamellae. In the latter, the formation of thin bristles (setae) allow for the adhesion and climbing vertical or inverted surfaces. alpha-Keratins of 55-66 kDa remain in the acidic and neutral range of pI, while beta-keratins of 13-18 kDa show a broader variation of pI (4-10). Some protein spots for beta-keratins correspond to previously sequenced, basic glycine-proline-serine-rich beta-keratins of 169-191 amino acids. The predicted secondary structure shows that a large part of the molecule has a random-coiled conformation, small alpha helix regions, and a central region with 2-3 strands (beta-folding). The latter, termed core-box, shows homology with feather-scale-claw keratins of birds and is involved in the formation of beta-keratin filaments. Immunolocalization of beta-keratins indicates that these proteins are mainly present in the beta-layer and oberhautchen layer, including setae. The sequenced proteins of setae form bundles of keratins that determine their elongation. This process resembles that of feather-keratin on the elongation of barbule cells in feathers. It is suggested that small proteins rich in glycine, serine, and proline evolved in reptiles and birds to reinforce the mechanical resistance of the cytokeratin cytoskeleton initially present in the epidermis of scales and feathers.

  1. N- and O-linked glycosylation site profiling of the human basic salivary proline-rich protein 3M.

    PubMed

    Manconi, Barbara; Cabras, Tiziana; Sanna, Monica; Piras, Valentina; Liori, Barbara; Pisano, Elisabetta; Iavarone, Federica; Vincenzoni, Federica; Cordaro, Massimo; Faa, Gavino; Castagnola, Massimo; Messana, Irene

    2016-05-01

    In the present study, we show that the heterogeneous mixture of glycoforms of the basic salivary proline-rich protein 3M, encoded by PRB3-M locus, is a major component of the acidic soluble fraction of human whole saliva in the first years of life. Reversed-phase high-performance liquid chromatography with high-resolution electrospray ionization mass spectrometry analysis of the intact proteoforms before and after N-deglycosylation with Peptide-N-Glycosidase F and tandem mass spectrometry sequencing of peptides obtained after Endoproteinase GluC digestion allowed the structural characterization of the peptide backbone and identification of N- and O-glycosylation sites. The heterogeneous mixture of the proteoforms derives from the combination of 8 different neutral and sialylated glycans O-linked to Threonine 50, and 33 different glycans N-linked to Asparagine residues at positions 66, 87, 108, 129, 150, 171, 192, and 213. PMID:26991339

  2. A Novel Topology of Proline-rich Transmembrane Protein 2 (PRRT2): HINTS FOR AN INTRACELLULAR FUNCTION AT THE SYNAPSE.

    PubMed

    Rossi, Pia; Sterlini, Bruno; Castroflorio, Enrico; Marte, Antonella; Onofri, Franco; Valtorta, Flavia; Maragliano, Luca; Corradi, Anna; Benfenati, Fabio

    2016-03-18

    Proline-rich transmembrane protein 2 (PRRT2) has been identified as the single causative gene for a group of paroxysmal syndromes of infancy, including epilepsy, paroxysmal movement disorders, and migraine. On the basis of topology predictions, PRRT2 has been assigned to the recently characterized family of Dispanins, whose members share the two-transmembrane domain topology with a large N terminus and short C terminus oriented toward the outside of the cell. Because PRRT2 plays a role at the synapse, it is important to confirm the exact orientation of its N and C termini with respect to the plasma membrane to get clues regarding its possible function. Using a combination of different experimental approaches, including live immunolabeling, immunogold electron microscopy, surface biotinylation and computational modeling, we demonstrate a novel topology for this protein. PRRT2 is a type II transmembrane protein in which only the second hydrophobic segment spans the plasma membrane, whereas the first one is associated with the internal surface of the membrane and forms a helix-loop-helix structure without crossing it. Most importantly, the large proline-rich N-terminal domain is not exposed to the extracellular space but is localized intracellularly, and only the short C terminus is extracellular (N cyt/C exo topology). Accordingly, we show that PRRT2 interacts with the Src homology 3 domain-bearing protein Intersectin 1, an intracellular protein involved in synaptic vesicle cycling. These findings will contribute to the clarification of the role of PRRT2 at the synapse and the understanding of pathogenic mechanisms on the basis of PRRT2-related neurological disorders. PMID:26797119

  3. A Novel Topology of Proline-rich Transmembrane Protein 2 (PRRT2): HINTS FOR AN INTRACELLULAR FUNCTION AT THE SYNAPSE.

    PubMed

    Rossi, Pia; Sterlini, Bruno; Castroflorio, Enrico; Marte, Antonella; Onofri, Franco; Valtorta, Flavia; Maragliano, Luca; Corradi, Anna; Benfenati, Fabio

    2016-03-18

    Proline-rich transmembrane protein 2 (PRRT2) has been identified as the single causative gene for a group of paroxysmal syndromes of infancy, including epilepsy, paroxysmal movement disorders, and migraine. On the basis of topology predictions, PRRT2 has been assigned to the recently characterized family of Dispanins, whose members share the two-transmembrane domain topology with a large N terminus and short C terminus oriented toward the outside of the cell. Because PRRT2 plays a role at the synapse, it is important to confirm the exact orientation of its N and C termini with respect to the plasma membrane to get clues regarding its possible function. Using a combination of different experimental approaches, including live immunolabeling, immunogold electron microscopy, surface biotinylation and computational modeling, we demonstrate a novel topology for this protein. PRRT2 is a type II transmembrane protein in which only the second hydrophobic segment spans the plasma membrane, whereas the first one is associated with the internal surface of the membrane and forms a helix-loop-helix structure without crossing it. Most importantly, the large proline-rich N-terminal domain is not exposed to the extracellular space but is localized intracellularly, and only the short C terminus is extracellular (N cyt/C exo topology). Accordingly, we show that PRRT2 interacts with the Src homology 3 domain-bearing protein Intersectin 1, an intracellular protein involved in synaptic vesicle cycling. These findings will contribute to the clarification of the role of PRRT2 at the synapse and the understanding of pathogenic mechanisms on the basis of PRRT2-related neurological disorders.

  4. Binding affinity of hydrolyzable tannins to parotid saliva and to proline-rich proteins derived from it.

    PubMed

    Bacon, J R; Rhodes, M J

    2000-03-01

    Proline-rich proteins (PRP) in human parotid saliva have a high affinity for dietary polyphenolic compounds (tannins), forming stable complexes that may modulate the biological and nutritional properties of the tannin. The formation of such complexes may also have an important role in the modulation or promotion of the sensation of oral astringency perceived when tannin-rich foods and beverages are consumed. The major classes of PRP (acidic, basic, and glycosylated) have been isolated from human saliva, and the relative binding affinities of a series of hydrolyzable tannins, which are found in a number of plant-derived foods and beverages, to these PRP classes have been determined using a competition assay. All of the classes of PRP have a high capacity for hydrolyzable tannins. Within the narrow range of binding affinities exhibited, structure/binding relationships with the levels of tannin galloylation, hexahydroxydiphenoyl esterification, and degree of polymerization were identified. No individual class of human salivary PRP appears to have an exclusive affinity for a particular type of hydrolyzable tannin.

  5. Binding affinity of hydrolyzable tannins to parotid saliva and to proline-rich proteins derived from it.

    PubMed

    Bacon, J R; Rhodes, M J

    2000-03-01

    Proline-rich proteins (PRP) in human parotid saliva have a high affinity for dietary polyphenolic compounds (tannins), forming stable complexes that may modulate the biological and nutritional properties of the tannin. The formation of such complexes may also have an important role in the modulation or promotion of the sensation of oral astringency perceived when tannin-rich foods and beverages are consumed. The major classes of PRP (acidic, basic, and glycosylated) have been isolated from human saliva, and the relative binding affinities of a series of hydrolyzable tannins, which are found in a number of plant-derived foods and beverages, to these PRP classes have been determined using a competition assay. All of the classes of PRP have a high capacity for hydrolyzable tannins. Within the narrow range of binding affinities exhibited, structure/binding relationships with the levels of tannin galloylation, hexahydroxydiphenoyl esterification, and degree of polymerization were identified. No individual class of human salivary PRP appears to have an exclusive affinity for a particular type of hydrolyzable tannin. PMID:10725160

  6. Role of Interfacial Water Molecules in Proline-rich Ligand Recognition by the Src Homology 3 Domain of Abl*

    PubMed Central

    Palencia, Andres; Camara-Artigas, Ana; Pisabarro, M. Teresa; Martinez, Jose C.; Luque, Irene

    2010-01-01

    The interaction of Abl-Src homology 3 domain (SH3) with the high affinity peptide p41 is the most notable example of the inconsistency existing between the currently accepted description of SH3 complexes and their binding thermodynamic signature. We had previously hypothesized that the presence of interfacial water molecules is partially responsible for this thermodynamic behavior. We present here a thermodynamic, structural, and molecular dynamics simulation study of the interaction of p41 with Abl-SH3 and a set of mutants designed to alter the water-mediated interaction network. Our results provide a detailed description of the dynamic properties of the interfacial water molecules and a molecular interpretation of the thermodynamic effects elicited by the mutations in terms of the modulation of the water-mediated hydrogen bond network. In the light of these results, a new dual binding mechanism is proposed that provides a better description of proline-rich ligand recognition by Abl-SH3 and that has important implications for rational design. PMID:19906645

  7. Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition

    DOE PAGESBeta

    Gagnon, Matthieu G.; Roy, Raktim N.; Lomakin, Ivan B.; Florin, Tanja; Mankin, Alexander S.; Steitz, Thomas A.

    2016-01-24

    Here, with bacterial resistance becoming a serious threat to global public health, antimicrobial peptides (AMPs) have become a promising area of focus in antibiotic research. AMPs are derived from a diverse range of species, from prokaryotes to humans, with a mechanism of action that often involves disruption of the bacterial cell membrane. Proline-rich antimicrobial peptides (PrAMPs) are instead actively transported inside the bacterial cell where they bind and inactivate specific targets. Recently, it was reported that some PrAMPs, such as Bac71–35, oncocins and apidaecins, bind and inactivate the bacterial ribosome. Here we report the crystal structures of Bac71–35, Pyrrhocoricin, Metalnikowinmore » and two oncocin derivatives, bound to the Thermus thermophilus 70S ribosome. Each of the PrAMPs blocks the peptide exit tunnel of the ribosome by simultaneously occupying three well characterized antibioticbinding sites and interferes with the initiation step of translation, thereby revealing a common mechanism of action used by these PrAMPs to inactivate protein synthesis. Our study expands the repertoire of PrAMPs and provides a framework for designing new-generation therapeutics.« less

  8. Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition.

    PubMed

    Gagnon, Matthieu G; Roy, Raktim N; Lomakin, Ivan B; Florin, Tanja; Mankin, Alexander S; Steitz, Thomas A

    2016-03-18

    With bacterial resistance becoming a serious threat to global public health, antimicrobial peptides (AMPs) have become a promising area of focus in antibiotic research. AMPs are derived from a diverse range of species, from prokaryotes to humans, with a mechanism of action that often involves disruption of the bacterial cell membrane. Proline-rich antimicrobial peptides (PrAMPs) are instead actively transported inside the bacterial cell where they bind and inactivate specific targets. Recently, it was reported that some PrAMPs, such as Bac71 -35, oncocins and apidaecins, bind and inactivate the bacterial ribosome. Here we report the crystal structures of Bac71 -35, Pyrrhocoricin, Metalnikowin and two oncocin derivatives, bound to the Thermus thermophilus 70S ribosome. Each of the PrAMPs blocks the peptide exit tunnel of the ribosome by simultaneously occupying three well characterized antibiotic-binding sites and interferes with the initiation step of translation, thereby revealing a common mechanism of action used by these PrAMPs to inactivate protein synthesis. Our study expands the repertoire of PrAMPs and provides a framework for designing new-generation therapeutics. PMID:26809677

  9. Immunolocalisation and oestrogen regulation of small proline-rich protein 2a protein in the mouse uterus.

    PubMed

    Lee, Hyang-Ah; Kim, Hye-Ryun; Lee, Young Jin; Lee, Seung-Joon; Kim, Woo Jin; Han, Seon-Sook; Yang, Se-Ran; Woo, Heung-Myong; Na, Sunghun; Song, Haengseok; Hong, Seok-Ho

    2014-06-01

    Small proline-rich protein 2a (Sprr2a) is one of the structural components of the cornified keratinocyte cell envelope that contributes to form a protective barrier in the skin against dehydration and environmental stress. Interestingly, Sprr2a mRNA is detected in the mouse uterus and is regulated by 17β-oestradiol (E2). In the present study, we investigated the effects of E2 and oestrogenic compounds on the regulation and localisation of Sprr2a protein in the mouse uterus. Immunohistochemical staining revealed that Sprr2a protein is detected only in the adult uterus, and not in the ovary, oviduct or testis. We also demonstrated that Sprr2a protein is tightly regulated by E2 in the mouse uterus and exclusively detected in luminal and glandular epithelial cells. Furthermore, Sprr2a is dose-dependently induced by oestrogenic compounds such as bisphenol A and 4-tert-octylphenol. Collectively, our studies suggest that Sprr2a protein may have a unique function in physiological events in the mouse uterus and can be used as an indicator to detect compounds with oestrogenic activity in the mouse uterus.

  10. Pigeonpea Hybrid-Proline-Rich Protein (CcHyPRP) Confers Biotic and Abiotic Stress Tolerance in Transgenic Rice

    PubMed Central

    Mellacheruvu, Sunitha; Tamirisa, Srinath; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao

    2016-01-01

    In this study, we report the overexpression of Cajanus cajan hybrid-proline-rich protein encoding gene (CcHyPRP) in rice which resulted in increased tolerance to both abiotic and biotic stresses. Compared to the control plants, the transgenic rice lines, expressing CcHyPRP, exhibited high-level tolerance against major abiotic stresses, viz., drought, salinity, and heat, as evidenced by increased biomass, chlorophyll content, survival rate, root, and shoot growth. Further, transgenic rice lines showed increased panicle size and grain number compared to the control plants under different stress conditions. The CcHyPRP transgenics, as compared to the control, revealed enhanced activities of catalase and superoxide dismutase (SOD) enzymes and reduced malondialdehyde (MDA) levels. Expression pattern of CcHyPRP::GFP fusion-protein confirmed its predominant localization in cell walls. Moreover, the CcHyPRP transgenics, as compared to the control, exhibited increased resistance to the fungal pathogen Magnaporthe grisea which causes blast disease in rice. Higher levels of bZIP and endochitinase transcripts as well as endochitinase activity were observed in transgenic rice compared to the control plants. The overall results demonstrate the intrinsic role of CcHyPRP in conferring multiple stress tolerance at the whole-plant level. The multipotent CcHyPRP seems promising as a prime candidate gene to fortify crop plants for enhanced tolerance/resistance to different stress factors. PMID:26834756

  11. Cell-cycle specific expression of a small proline-rich protein in Chinese hamster ovary cells

    SciTech Connect

    Tesfaigzi, J.

    1994-11-01

    Squamous metaplasia of the bronchial epithelium is generally believed to be involved in the neoplastic progression toward squamous cell carcinomas. Thus, it is important to understand the mechanisms controlling this type of differentiation. The induction of two families of cDNAs encoding a small proline-rich protein (sPRP), sprI and sprII, was first identified in human keratinocytes exhibiting squamous differentiation. cDNAs similar to sprI have also been identified in cultured tracheal epithelial cells undergoing squamous differentiation. The first step during the squamous differentiation process is the inhibition of cell growth; it has also been noted that a sPRP mRNA in Chinese hamster ovary (CHO) cells is induced 10-fold just before the cultures reach confluence. Thus, sPRP may stop cell division in cells undergoing squamous differentation. In support of this possibility are the recent investigations correlating expression of sPRP with cell morphology. Specific immunoreactivity to sPRP, using affinity-purified antibodies, showed a strong immunostaining in cells with a round configuration, while less staining was observed in other cells. The major part of the CHO population showed no immunoreactivity. One interpretation of this observation is that the expression of sPRP may be cell-cyle regulated. The purpose of this investigation was to determine the phase of the cell cycle where induced synthesis of sPRP mRNA occurs.

  12. Detection of proline-rich proteins for the identification of saliva by enzyme-linked immunosorbent assay.

    PubMed

    Igoh, Akihisa; Tomotake, Sho; Doi, Yusuke

    2015-05-01

    Saliva is one of the most common body fluids found at a crime scene. Therefore, identifying saliva is important in forensic science. However, the current protein marker assays used to identify saliva are not sufficiently specific. Although proline-rich proteins (PRPs) are highly specific for saliva, their forensic potential has not yet been investigated. In this study, we developed enzyme-linked immunosorbent assays (ELISAs) to detect acidic salivary PRP HaeIII subfamily 1/2 (PRH1/2) and basic salivary PRP 2 (PRB2). The specificity, sensitivity, and efficiency of the ELISAs for PRH1/2 and PRB2 were compared with those of the ELISA for statherin (STATH), a known protein marker for saliva. The levels of PRH1/2 were significantly higher in saliva and saliva stains than in other body fluids (nasal secretions, urine, semen, vaginal fluid, blood, and sweat). PRB2 and STATH were detected in both nasal secretions and saliva. The PRH1/2 ELISA showed sensitivity similar to that of STATH ELISA. The detection rate of PRH1/2 ELISA was almost similar to that of STATH ELISA, followed by the ELISA for PRB2. The PRH1/2 ELISA had higher specificity for saliva than STATH ELISA. Therefore, the PRH1/2 ELISA has potential as a method to identify saliva for forensic investigation.

  13. Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition

    PubMed Central

    Gagnon, Matthieu G.; Roy, Raktim N.; Lomakin, Ivan B.; Florin, Tanja; Mankin, Alexander S.; Steitz, Thomas A.

    2016-01-01

    With bacterial resistance becoming a serious threat to global public health, antimicrobial peptides (AMPs) have become a promising area of focus in antibiotic research. AMPs are derived from a diverse range of species, from prokaryotes to humans, with a mechanism of action that often involves disruption of the bacterial cell membrane. Proline-rich antimicrobial peptides (PrAMPs) are instead actively transported inside the bacterial cell where they bind and inactivate specific targets. Recently, it was reported that some PrAMPs, such as Bac71–35, oncocins and apidaecins, bind and inactivate the bacterial ribosome. Here we report the crystal structures of Bac71–35, Pyrrhocoricin, Metalnikowin and two oncocin derivatives, bound to the Thermus thermophilus 70S ribosome. Each of the PrAMPs blocks the peptide exit tunnel of the ribosome by simultaneously occupying three well characterized antibiotic-binding sites and interferes with the initiation step of translation, thereby revealing a common mechanism of action used by these PrAMPs to inactivate protein synthesis. Our study expands the repertoire of PrAMPs and provides a framework for designing new-generation therapeutics. PMID:26809677

  14. Pigeonpea Hybrid-Proline-Rich Protein (CcHyPRP) Confers Biotic and Abiotic Stress Tolerance in Transgenic Rice.

    PubMed

    Mellacheruvu, Sunitha; Tamirisa, Srinath; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao

    2015-01-01

    In this study, we report the overexpression of Cajanus cajan hybrid-proline-rich protein encoding gene (CcHyPRP) in rice which resulted in increased tolerance to both abiotic and biotic stresses. Compared to the control plants, the transgenic rice lines, expressing CcHyPRP, exhibited high-level tolerance against major abiotic stresses, viz., drought, salinity, and heat, as evidenced by increased biomass, chlorophyll content, survival rate, root, and shoot growth. Further, transgenic rice lines showed increased panicle size and grain number compared to the control plants under different stress conditions. The CcHyPRP transgenics, as compared to the control, revealed enhanced activities of catalase and superoxide dismutase (SOD) enzymes and reduced malondialdehyde (MDA) levels. Expression pattern of CcHyPRP::GFP fusion-protein confirmed its predominant localization in cell walls. Moreover, the CcHyPRP transgenics, as compared to the control, exhibited increased resistance to the fungal pathogen Magnaporthe grisea which causes blast disease in rice. Higher levels of bZIP and endochitinase transcripts as well as endochitinase activity were observed in transgenic rice compared to the control plants. The overall results demonstrate the intrinsic role of CcHyPRP in conferring multiple stress tolerance at the whole-plant level. The multipotent CcHyPRP seems promising as a prime candidate gene to fortify crop plants for enhanced tolerance/resistance to different stress factors. PMID:26834756

  15. A novel proline-rich glycoprotein associated with the extracellular matrix of vascular bundles of Brassica petioles.

    PubMed

    Davies, H A; Findlay, K; Daniels, M J; Dow, J M

    1997-01-01

    A panel of monoclonal antibodies (MAC204, MAC236, MAC265) which recognise extracellular matrix glycoproteins implicated in plant-microbe interactions has been used to study glycoprotein antigens in petioles of turnip (Brassica campestris L.). While MAC204 recognised two glycoproteins (gp120 and gp45) with apparent M(r) 120,000 and 45,000 in petiole extracts made with 2-amino-2-(hydroxymethyl)-1,3-propanediol (Tris) buffer containing sodium dodecyl sulfate, MAC236 recognised gp120 but not gp45, and MAC265 gave no or only weak reactivity. Tissue dissection studies established that gp120 was predominantly associated with the vascular bundle whereas gp45 was largely associated with the pith. This was consistent with results from tissue prints probed with MAC204 and MAC236 which also suggested a vascular localisation for gp120. Immunoelectronmicroscopy showed that MAC204 and MAC236 both labelled three-way junctions between cells of the phloem and sclerid fibres. Both gp120 and gp45 were shown to carry epitopes in common with known hydroxyproline-rich glycoproteins. Unlike gp45, gp120 could be extracted from petioles with Tris buffer alone and then isolated from this extract by trichloroacetic acid treatment (which left gp120 soluble), followed by size-exclusion and ion-exchange chromatography. Amino acid analysis revealed gp120 to be a novel glycoprotein, particularly rich in proline, lysine, valine and threonine but relatively poor in hydroxyproline. The most abundant sugars were arabinose and galactose. The potential role of this very basic cell surface glycoprotein in plant defence against microbes is discussed.

  16. Characterization of human reflex tear proteome reveals high expression of lacrimal proline-rich protein 4 (PRR4).

    PubMed

    Perumal, Natarajan; Funke, Sebastian; Wolters, Dominik; Pfeiffer, Norbert; Grus, Franz H

    2015-10-01

    In-depth studies on the proteome of reflex tears are still inadequate. Hence, further studies on this subject will unravel the key proteins which are conjectured to possess vital functions in the protection of the ocular surface. Therefore, this study investigated the differences in the expression levels in proteome of reflex compared to basal tears. Basal (n = 10) and reflex (n = 10) tear samples from healthy subjects were collected employing the capillary method, subsequently pooled and the proteomes were characterized employing 1DE combined with LC-ESI-MS/MS strategy for label-free quantitative (LFQ) analysis. The differentially expressed proteins were validated by 2DE combined with LC-ESI-MS/MS and targeted-MS approach called accurate inclusion mass screening (AIMS) strategies. The analysis of the reflex tear proteome demonstrated increased abundance in proline-rich protein 4 (PRR4) and zymogen granule protein 16 homolog B (ZG16B) for the first time. Other abundant lacrimal proteins, e.g. lactotransferrin and lysozyme remained constant. Predominantly, the lacrimal gland-specific PRR4 represents the major increased protein in reflex tears in an attempt to wash out irritants that come into contact with the eye. Conversely, decreased abundance in Ig alpha-1 chain C, polymeric immunoglobulin receptor, cystatin S/SN, clusterin and mammaglobin were observed. This study had further unraveled the intricate proteome regulation during reflex tearing, especially the potential role of PRR4, which may be the key player in the protection and maintenance of dynamic balance of the ocular surface. PMID:26173177

  17. Characterization of human reflex tear proteome reveals high expression of lacrimal proline-rich protein 4 (PRR4).

    PubMed

    Perumal, Natarajan; Funke, Sebastian; Wolters, Dominik; Pfeiffer, Norbert; Grus, Franz H

    2015-10-01

    In-depth studies on the proteome of reflex tears are still inadequate. Hence, further studies on this subject will unravel the key proteins which are conjectured to possess vital functions in the protection of the ocular surface. Therefore, this study investigated the differences in the expression levels in proteome of reflex compared to basal tears. Basal (n = 10) and reflex (n = 10) tear samples from healthy subjects were collected employing the capillary method, subsequently pooled and the proteomes were characterized employing 1DE combined with LC-ESI-MS/MS strategy for label-free quantitative (LFQ) analysis. The differentially expressed proteins were validated by 2DE combined with LC-ESI-MS/MS and targeted-MS approach called accurate inclusion mass screening (AIMS) strategies. The analysis of the reflex tear proteome demonstrated increased abundance in proline-rich protein 4 (PRR4) and zymogen granule protein 16 homolog B (ZG16B) for the first time. Other abundant lacrimal proteins, e.g. lactotransferrin and lysozyme remained constant. Predominantly, the lacrimal gland-specific PRR4 represents the major increased protein in reflex tears in an attempt to wash out irritants that come into contact with the eye. Conversely, decreased abundance in Ig alpha-1 chain C, polymeric immunoglobulin receptor, cystatin S/SN, clusterin and mammaglobin were observed. This study had further unraveled the intricate proteome regulation during reflex tearing, especially the potential role of PRR4, which may be the key player in the protection and maintenance of dynamic balance of the ocular surface.

  18. Regulation of Rela/p65 and Endothelial Cell Inflammation by Proline-Rich Tyrosine Kinase 2

    PubMed Central

    Bijli, Kaiser M; Fazal, Fabeha

    2012-01-01

    We investigated the role of proline-rich tyrosine kinase 2 (Pyk2) in the mechanism of NF-κB activation and endothelial cell (EC) inflammation induced by thrombin, a procoagulant serine protease released in high amounts during sepsis and other inflammatory conditions. Stimulation of ECs with thrombin resulted in a time-dependent activation of Pyk2. RNA interference knockdown of Pyk2 attenuated thrombin-induced activity of NF-κB and expression of its target genes, vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1. Pyk2 knockdown impaired thrombin-induced activation of IκB kinase (IKK) and phosphorylation (Ser32 and Ser36) of IkappaBα, but, surprisingly, failed to prevent IκBα degradation. However, depletion of IKKα or IKKβ was effective in inhibiting IκBα phosphorylation/degradation, as expected. Intriguingly, Pyk2 knockdown impaired nuclear translocation and DNA binding of RelA/p65, despite the inability to prevent IκBα degradation. In addition, Pyk2 knockdown was associated with inhibition of RelA/p65 phosphorylation at Ser536, which is important for transcriptional activity of RelA/p65. Depletion of IKKα or IKKβ each impaired RelA/p65 phosphorylation. Taken together, these data identify Pyk2 as a critical regulator of EC inflammation by virtue of engaging IKK to promote the release and the transcriptional capacity of RelA/p65, and, additionally, by its ability to facilitate the nuclear translocation of the released RelA/p65. Thus, specific targeting of Pyk2 may be an effective anti-inflammatory strategy in vascular diseases associated with EC inflammation and intravascular coagulation. PMID:22842493

  19. PNRC: a proline-rich nuclear receptor coregulatory protein that modulates transcriptional activation of multiple nuclear receptors including orphan receptors SF1 (steroidogenic factor 1) and ERRalpha1 (estrogen related receptor alpha-1).

    PubMed

    Zhou, D; Quach, K M; Yang, C; Lee, S Y; Pohajdak, B; Chen, S

    2000-07-01

    PNRC (proline-rich nuclear receptor coregulatory protein) was identified using bovine SF1 (steroidogenic factor 1) as the bait in a yeast two-hybrid screening of a human mammary gland cDNA expression library. PNRC is unique in that it has a molecular mass of 35 kDa, significantly smaller than most of the coregulatory proteins reported so far, and it is proline-rich. PNRC's nuclear localization was demonstrated by immunofluorescence and Western blot analyses. In the yeast two-hybrid assays, PNRC interacted with the orphan receptors SF1 and ERRalpha1 in a ligand-independent manner. PNRC was also found to interact with the ligand-binding domains of all the nuclear receptors tested including estrogen receptor (ER), androgen receptor (AR), glucocorticoid receptor (GR), progesterone receptor (PR), thyroid hormone receptor (TR), retinoic acid receptor (RAR), and retinoid X receptor (RXR) in a ligand-dependent manner. Functional AF2 domain is required for nuclear receptors to bind to PNRC. Furthermore, in vitro glutathione-S-transferase pull-down assay was performed to demonstrate a direct contact between PNRC and nuclear receptors such as SF1. Coimmunoprecipitation experiment using Hela cells that express PNRC and ER was performed to confirm the interaction of PNRC and nuclear receptors in vivo in a ligand-dependent manner. PNRC was found to function as a coactivator to enhance the transcriptional activation mediated by SF1, ERR1 (estrogen related receptor alpha-1), PR, and TR. By examining a series of deletion mutants of PNRC using the yeast two-hybrid assay, a 23-amino acid (aa) sequence in the carboxy-terminal region, aa 278-300, was shown to be critical and sufficient for the interaction with nuclear receptors. This region is proline rich and contains a SH3-binding motif, S-D-P-P-S-P-S. Results from the mutagenesis study demonstrated that the two conserved proline (P) residues in this motif are crucial for PNRC to interact with the nuclear receptors. The exact 23

  20. The Corepressor mSin3a Interacts with the Proline-Rich Domain of p53 and Protects p53 from Proteasome-Mediated Degradation

    PubMed Central

    Zilfou, Jack T.; Hoffman, William H.; Sank, Michael; George, Donna L.; Murphy, Maureen

    2001-01-01

    While the transactivation function of the tumor suppressor p53 is well understood, less is known about the transrepression functions of this protein. We have previously shown that p53 interacts with the corepressor protein mSin3a (hereafter designated Sin3) in vivo and that this interaction is critical for the ability of p53 to repress gene expression. In the present study, we demonstrate that expression of Sin3 results in posttranslational stabilization of both exogenous and endogenous p53, due to an inhibition of proteasome-mediated degradation of this protein. Stabilization of p53 by Sin3 requires the Sin3-binding domain, determined here to map to the proline-rich region of p53, from amino acids 61 to 75. The correlation between Sin3 binding and stabilization supports the hypothesis that this domain of p53 may normally be subject to a destabilizing influence. The finding that a synthetic mutant of p53 lacking the Sin3-binding domain has an increased half-life in cells, compared to wild-type p53, supports this premise. Interestingly, unlike retinoblastoma tumor suppressor protein, MDMX, and p14ARF, Sin3 stabilizes p53 in an MDM2-independent manner. The ability of Sin3 to stabilize p53 is consistent with the model whereby these two proteins must exist on a promoter for extended periods, in order for repression to be an effective mechanism of gene regulation. This model is consistent with our data indicating that, unlike the p300-p53 complex, the p53-Sin3 complex is immunologically detectable for prolonged periods following exposure of cells to agents of DNA damage. PMID:11359905

  1. The Crystal Structure of an Algal Prolyl 4-Hydroxylase Complexed with a Proline-rich Peptide Reveals a Novel Buried Tripeptide Binding Motif*

    PubMed Central

    Koski, M. Kristian; Hieta, Reija; Hirsilä, Maija; Rönkä, Anna; Myllyharju, Johanna; Wierenga, Rik K.

    2009-01-01

    Plant and algal prolyl 4-hydroxylases (P4Hs) are key enzymes in the synthesis of cell wall components. These monomeric enzymes belong to the 2-oxoglutarate dependent superfamily of enzymes characterized by a conserved jelly-roll framework. This algal P4H has high sequence similarity to the catalytic domain of the vertebrate, tetrameric collagen P4Hs, whereas there are distinct sequence differences with the oxygen-sensing hypoxia-inducible factor P4H subfamily of enzymes. We present here a 1.98-Å crystal structure of the algal Chlamydomonas reinhardtii P4H-1 complexed with Zn2+ and a proline-rich (Ser-Pro)5 substrate. This ternary complex captures the competent mode of binding of the peptide substrate, being bound in a left-handed (poly)l-proline type II conformation in a tunnel shaped by two loops. These two loops are mostly disordered in the absence of the substrate. The importance of these loops for the function is confirmed by extensive mutagenesis, followed up by enzyme kinetic characterizations. These loops cover the central Ser-Pro-Ser tripeptide of the substrate such that the hydroxylation occurs in a highly buried space. This novel mode of binding does not depend on stacking interactions of the proline side chains with aromatic residues. Major conformational changes of the two peptide binding loops are predicted to be a key feature of the catalytic cycle. These conformational changes are probably triggered by the conformational switch of Tyr140, as induced by the hydroxylation of the proline residue. The importance of these findings for understanding the specific binding and hydroxylation of (X-Pro-Gly)n sequences by collagen P4Hs is also discussed. PMID:19553701

  2. Penultimate proline in neuropeptides.

    PubMed

    Glover, Matthew S; Bellinger, Earl P; Radivojac, Predrag; Clemmer, David E

    2015-08-18

    A recent ion mobility spectrometry-mass spectrometry (IMS-MS) study revealed that tryptic peptide ions containing a proline residue at the second position from the N-terminus (i.e., penultimate proline) frequently adopt multiple conformations, owing to the cis-trans isomerization of Xaa(1)-Pro(2) peptide bonds [J. Am. Soc. Mass Spectrom. 2015, 26, 444]. Here, we present a statistical analysis of a neuropeptide database that illustrates penultimate proline residues are frequently found in neuropeptides. In order to probe the effect of penultimate proline on neuropeptide conformations, IMS-MS experiments were performed on two model peptides in which penultimate proline residues were known to be important for biological activity: the N-terminal region of human neuropeptide Y (NPY1-9, Tyr(1)-Pro(2)-Ser(3)-Lys(4)-Pro(5)-Asp(6)-Asn(7)-Pro(8)-Gly(9)-NH2) and a tachykinin-related peptide (CabTRP Ia, Ala(1)-Pro(2)-Ser(3)-Gly(4)-Phe(5)-Leu(6)-Gly(7)-Met(8)-Arg(9)-NH2). From these studies, it appears that penultimate prolines allow neuropeptides to populate multiple conformations arising from the cis-trans isomerization of Xaa(1)-Pro(2) peptide bonds. Although it is commonly proposed that the role of penultimate proline residues is to protect peptides from enzymatic degradation, the present results indicate that penultimate proline residues also are an important means of increasing the conformational heterogeneity of neuropeptides.

  3. Different Type 1 Fimbrial Genes and Tropisms of Commensal and Potentially Pathogenic Actinomyces spp. with Different Salivary Acidic Proline-Rich Protein and Statherin Ligand Specificities

    PubMed Central

    Li, Tong; Khah, Massoud Kheir; Slavnic, Snjezana; Johansson, Ingegerd; Strömberg, Nicklas

    2001-01-01

    Actinomyces spp. exhibit type 1 fimbria-mediated adhesion to salivary acidic proline-rich proteins (PRPs) and statherin ligands. Actinomyces spp. with different animal and tissue origins belong to three major adhesion types as relates to ligand specificity and type 1 fimbria genes. (i) In preferential acidic-PRP binding, strains of Actinomyces naeslundii genospecies 1 and 2 from human and monkey mouths displayed at least three ligand specificities characterized by preferential acidic-PRP binding. Slot blot DNA hybridization showed seven highly conserved type 1 fimbria genes (orf1- to -6 and fimP) in genospecies 1 and 2 strains, except that orf5 and orf3 were divergent in genospecies 1. (ii) In preferential statherin binding, oral Actinomyces viscosus strains of rat and hamster origin (and strain 19246 from a human case of actinomycosis) bound statherin preferentially. DNA hybridization and characterization of the type 1 fimbria genes from strain 19246 revealed a homologous gene cluster of four open reading frames (orfA to -C and fimP). Bioinformatics suggested sortase (orfB, orf4, and part of orf5), prepilin peptidase (orfC and orf6), fimbria subunit (fimP), and usher- and autotransporter-like (orfA and orf1 to -3) functions. Those gene regions corresponding to orf3 and orf5 were divergent, those corresponding to orf2, orf1, and fimP were moderately conserved, and those corresponding to orf4 and orf6 were highly conserved. Restriction fragment length polymorphism analyses using a fimP probe separated human and monkey and rat and hamster strains into phylogenetically different groups. (iii) In statherin-specific binding, strains of A. naeslundii genospecies 1 from septic and other human infections displayed a low-avidity binding to statherin. Only the orf4 and orf6 gene regions were highly conserved. Finally, rat saliva devoid of statherin bound bacterial strains avidly irrespective of ligand specificity, and specific antisera detected either type 1, type 2, or both

  4. The impact of either 4-R-hydroxyproline or 4-R-fluoroproline on the conformation and SH3m-cort binding of HPK1 proline-rich peptide.

    PubMed

    Borgogno, Andrea; Ruzza, Paolo

    2013-02-01

    SH3 domains are probably the most abundant molecular-recognition modules of the proteome. A common feature of these domains is their interaction with ligand proteins containing Pro-rich sequences. Crystal and NMR structures of SH3 domains complexes with Pro-rich peptides show that the peptide ligands are bound over a range of up to seven residues in a PPII helix conformation. Short proline-rich peptides usually adopt little or no ordered secondary structure before binding interactions, and consequently their association with the SH3 domain is characterized by unfavorable binding entropy due to a loss of rotational freedom on forming the PPII helix. With the aim to stabilize the PPII helix conformation into the proline-rich decapeptide PPPLPPKPKF (P2), we replaced some proline residues either with the 4(R)-4-fluoro-L-proline (FPro) or the 4(R)-4-hydroxy-L-proline (Hyp). The interactions of P2 analogues with the SH3 domain of cortactin (SH3(m-cort)) were analyzed by circular dichroism spectroscopy, while CD thermal transition experiments have been used to determine their propensity to adopt a PPII helix conformation. Results show that the introduction of three residues of Hyp efficiently stabilizes the PPII helix conformation, while it does not improve the affinity towards the SH3 domain, suggesting that additional forces, e.g., electrostatic interactions, are involved in the SH3(m-cort) substrate recognition.

  5. C-Terminal proline-rich sequence broadens the optimal temperature and pH ranges of recombinant xylanase from Geobacillus thermodenitrificans C5.

    PubMed

    Irfan, Muhammad; Guler, Halil Ibrahim; Ozer, Aysegul; Sapmaz, Merve Tuncel; Belduz, Ali Osman; Hasan, Fariha; Shah, Aamer Ali

    2016-09-01

    Efficient utilization of hemicellulose entails high catalytic capacity containing xylanases. In this study, proline rich sequence was fused together with a C-terminal of xylanase gene from Geobacillus thermodenitrificans C5 and designated as GthC5ProXyl. Both GthC5Xyl and GthC5ProXyl were expressed in Escherichia coli BL21 host in order to determine effect of this modification. The C-terminal oligopeptide had noteworthy effects and instantaneously extended the optimal temperature and pH ranges and progressed the specific activity of GthC5Xyl. Compared with GthC5Xyl, GthC5ProXyl revealed improved specific activity, a higher temperature (70°C versus 60°C) and pH (8 versus 6) optimum, with broad ranges of temperature and pH (60-80°C and 6.0-9.0 versus 40-60°C and 5.0-8.0, respectively). The modified enzyme retained more than 80% activity after incubating in xylan for 3h at 80°C as compared to wild -type with only 45% residual activity. Our study demonstrated that proper introduction of proline residues on C-terminal surface of xylanase family might be very effective in improvement of enzyme thermostability. Moreover, this study reveals an engineering strategy to improve the catalytic performance of enzymes. PMID:27444327

  6. Synthesis and in vitro inhibition properties of oligonucleotide conjugates carrying amphipathic proline-rich peptide derivatives of the sweet arrow peptide (SAP).

    PubMed

    Grijalvo, Santiago; Eritja, Ramon

    2012-05-01

    In this study, a series of derivatives of the amphipathic proline-rich sweet arrow peptide (SAP) were covalently linked to antisense oligonucleotides designed to inhibit Renilla luciferase gene. Oligonucleotide-peptide conjugates carrying lysine (Lys) and ornithine (Orn) residues were prepared using the stepwise approach by assembling first the peptide sequence followed by the assembly of the DNA molecule. The resulting Lys, Orn-conjugates were transformed to the corresponding arginine and homoarginine oligonucleotide-peptide conjugates by reaction with O-methylisourea. The introduction of the SAP at 3'-termini of a phosphorothioate oligonucleotide did not affect the ability to inhibit gene expression when transfected with lipofectamine. However, these conjugates were not able to enter cells without transfecting agent. Further studies using SAP as a transfection agent showed promising results for the conjugates carrying the Orn-SAP. All conjugates showed high duplex stabilities.

  7. Proline puckering parameters for collagen structure simulations

    SciTech Connect

    Wu, Di

    2015-03-15

    Collagen is made of triple helices rich in proline residues, and hence is influenced by the conformational motions of prolines. Because the backbone motions of prolines are restricted by the helical structures, the only side chain motion—proline puckering—becomes an influential factor that may affect the stability of collagen structures. In molecular simulations, a proper proline puckering population is desired so to yield valid results of the collagen properties. Here we design the proline puckering parameters in order to yield suitable proline puckering populations as demonstrated in the experimental results. We test these parameters in collagen and the proline dipeptide simulations. Compared with the results of the PDB and the quantum calculations, we propose the proline puckering parameters for the selected collagen model simulations.

  8. A hydrophobic proline-rich motif is involved in the intracellular targeting of temperature-induced lipocalin.

    PubMed

    Hernández-Gras, Francesc; Boronat, Albert

    2015-06-01

    Temperature-induced lipocalins (TILs) play an essential role in the response of plants to different abiotic stresses. In agreement with their proposed role in protecting membrane lipids, TILs have been reported to be associated to cell membranes. However, TILs show an overall hydrophilic character and do not contain any signal for membrane targeting nor hydrophobic sequences that could represent transmembrane domains. Arabidopsis TIL (AtTIL) is considered the ortholog of human ApoD, a protein known to associate to membranes through a short hydrophobic loop protruding from strands 5 and 6 of the lipocalin β-barrel. An equivalent loop (referred to as HPR motif) is also present between β-strands 5 and 6 of TILs. The HPR motif, which is highly conserved among TIL proteins, extends over as short stretch of eight amino acids and contains four invariant proline residues. Subcellular localization studies have shown that TILs are targeted to a variety of cell membranes and organelles. We have also found that the HPR motif is necessary and sufficient for the intracellular targeting of TILs. Modeling studies suggest that the HPR motif may directly anchor TILs to cell membranes, favoring in this way further contact with the polar group of membrane lipids. However, some particular features of the HPR motif open the possibility that targeting of TILs to cell membranes could be mediated by interaction with other proteins. The functional analysis of the HPR motif unveils the existence of novel mechanisms involved in the intracellular targeting of proteins in plants.

  9. Transcriptional activation by the sexual pheromone and wounding: a new gene family from Volvox encoding modular proteins with (hydroxy)proline-rich and metalloproteinase homology domains.

    PubMed

    Hallmann, A; Amon, P; Godl, K; Heitzer, M; Sumper, M

    2001-06-01

    The green alga Volvox represents the simplest kind of multicellular organism: it is composed of only two cell types, somatic and reproductive, making it suitable as a model system. The sexual development of males and females of Volvox carteri is triggered by a sex-inducing pheromone at a concentration of < 10-16 M. Early biochemical responses to the pheromone involve structural modifications within the extracellular matrix (ECM). By differential screenings of cDNA libraries made from mRNAs of pheromone-treated Volvox, four novel genes were identified that encode four closely related Volvox metalloproteinases that we use to define a new protein family, the VMPs. The existence of several features common to matrix glycoproteins, such as signal peptides, a (hydroxy)proline content of 12-25%, and Ser(Pro)2-4 repeats, suggest an extracellular localization of the VMPs within the ECM. Synthesis of VMP cDNAs is triggered not only by the sex-inducing pheromone, but also by wounding, and is restricted to the somatic cell type. Sequence comparisons suggest that the VMPs are members of the MB clan of zinc-dependent matrix metalloproteinases, although the putative zinc binding site of all VMPs is QEXXHXXGXXH rather than HEXXHXXGXXH. The presence of glutamine instead of histidine in the zinc binding motif suggests a novel family, or even clan, of peptidases. Like the matrixin family of human collagenases, Volvox VMPs exhibit a modular structure: they possess a metalloproteinase homology domain and a (hydroxy)proline-rich domain, and one of them, VMP4, also has two additional domains. Metalloproteinases seem to be crucial for biochemical modifications of the ECM during development or after wounding in the lower eukaryote Volvox with only two cell types, just as in higher organisms. PMID:11489172

  10. A small proline-rich protein, SPRR1, is upregulated early during tobacco smoke-induced squamous metaplasia in rat nasal epithelia.

    PubMed

    Tesfaigzi, J; Th'ng, J; Hotchkiss, J A; Harkema, J R; Wright, P S

    1996-05-01

    Small proline-rich proteins, believed to be precursor proteins for the crosslinked envelope formation in cells undergoing squamous differentiation, are encoded by the SPRR genes. To further investigate the role of these proteins, the time course of increased synthesis of SPRR1 mRNA in nasal epithelia of rats exposed to cigarette smoke was determined, and the deduced amino acid sequence of the rat SPRR1 was compared with those of other species. Using the pig homologue (20K) antisense cRNA probe, high levels of SPRR1 transcript were detected by in situ hybridization in squamous epithelia that line the nasal vestibule and hard palate of the rat. Basal cells of both the vestibule and palate contained low levels of the transcript, and increasing amounts were detected in the squamous layers. In rats exposed to 250 mg/m3 (total particulate matter) cigarette smoke 6 h/day for 5 days, the number of small mucous cells increased in the respiratory epithelium of the nasal septum in the early stages of squamous differentiation, but were gradually replaced by squamous metaplastic cells. During this transition, hybridization of the 20K antisense cRNA probe increased in the epithelial and mesenchymal cells, indicating that SPRR1 protein could have roles in cellular differentiation other than as a building block of the crosslinked envelope. Similarly, high levels of SPRR1 transcript were detected in the nasal transitional epithelium lining internal walls and maxilloturbinates that had undergone squamous metaplasia after cigarette smoke exposure. At 5 days after the withdrawal of cigarette smoke exposure, the morphology of the midseptal epithelium returned to that of a pseudostratified mucociliary epithelium and the epithelia lining the maxilloturbinates to that of a transitional epithelium. Accompanying this change in morphology of the tissues, the levels of SPRR1 transcripts significantly decreased in the epithelia. However, in the mesenchyme no significant decrease was observed

  11. The mod-A suppressor of nonallelic heterokaryon incompatibility in Podospora anserina encodes a proline-rich polypeptide involved in female organ formation.

    PubMed Central

    Barreau, C; Iskandar, M; Loubradou, G; Levallois, V; Bégueret, J

    1998-01-01

    Vegetative incompatibility in fungi results from the control of heterokaryon formation by the genes present at het loci. Coexpression of antagonistic het genes in the same hyphae leads to a lethal process. In Podospora anserina, self-incompatible strains containing nonallelic incompatible genes in the same nucleus are inviable as the result of a growth arrest and a lytic process. Mutations in suppressor genes (mod genes) can restore the viability. These mod mutations also interfere with developmental processes, which suggests common steps between the incompatibility reaction and cellular differentiation. The mod-A locus, responsible for growth arrest in the self-incompatible strains, is also involved in the control of the development of female organs. The mod-A gene was isolated. An open reading frame 687 amino acids long was identified. The MOD-A-encoded polypeptide is rich in proline residues, which are clustered in a domain containing a motif that displays similarity to SH3-binding motifs, which are known to be involved in protein-protein interactions. Construction of a strain deleted for mod-A confirmed that the product of this gene involved in differentiation is a key regulator of growth arrest associated with vegetative incompatibility. PMID:9611202

  12. Proline-rich tyrosine kinase 2 via enhancing signal transducer and activator of transcription 3-dependent cJun expression mediates retinal neovascularization

    PubMed Central

    Kumar, Raj; Singh, Nikhlesh K.; Rao, Gadiparthi N.

    2016-01-01

    Despite the involvement of proline-rich tyrosine kinase 2 (Pyk2) in endothelial cell angiogenic responses, its role in pathological retinal angiogenesis is not known. In the present study, we show that vascular endothelial growth factor A (VEGFA) induces Pyk2 activation in mediating human retinal microvascular endothelial cell (HRMVEC) migration, sprouting and tube formation. Downstream to Pyk2, VEGFA induced signal transducer and activator of transcription 3 (STAT3) activation and cJun expression in the modulation of HRMVEC migration, sprouting and tube formation. Consistent with these observations, hypoxia induced activation of Pyk2-STAT3-cJun signaling axis and siRNA-mediated downregulation of Pyk2, STAT3 or cJun levels substantially inhibited hypoxia-induced retinal endothelial cell proliferation, tip cell formation and neovascularization. Together, these observations suggest that activation of Pyk2-mediated STAT3-cJun signaling is required for VEGFA-induced HRMVEC migration, sprouting and tube formation in vitro and hypoxia-induced retinal endothelial cell proliferation, tip cell formation and neovascularization in vivo. PMID:27210483

  13. Isolation and characterization of cDNA clones for carrot extensin and a proline-rich 33-kDa protein

    SciTech Connect

    Chen, J.; Varner, J.E.

    1985-07-01

    Extensins are hydroxyproline-rich glycoproteins associated with most dicotyledonous plant cell walls. To isolate cDNA clones encoding extensin, the authors started by isolating poly(A) RNA from carrot root tissue, and then translating the RNA in vitro, in the presence of tritiated leucine or proline. A 33-kDa peptide was identified in the translation products as a putative extensin precursor. From a cDNA library constructed with poly(A) RNA from wounded carrots, one cDNA clone (pDC5) was identified that specifically hybridized to poly(A) RNA encoding this 33-kDa peptide. They isolated three cDNA clones (pDC11, pDC12, and pDC16) from another cDNA library using pCD5 as a probe. DNA sequence data, RNA hybridization analysis, and hybrid released in vitro translation indicate that the cDNA clones pDC11 encodes extensin and that cDNA clones pDC12 and pDC16 encode the 33-kDa peptide, which as yet has an unknown identity and function. The assumption that the 33-kDa peptide was an extensin precursor was invalid. RNA hybridization analysis showed that RNA encoded by both clone types is accumulated upon wounding.

  14. Binding Mechanism of the N-Terminal SH3 Domain of CrkII and Proline-Rich Motifs in cAbl.

    PubMed

    Bhatt, Veer S; Zeng, Danyun; Krieger, Inna; Sacchettini, James C; Cho, Jae-Hyun

    2016-06-21

    The N-terminal Src homology 3 (nSH3) domain of a signaling adaptor protein, CT-10 regulator of kinase II (CrkII), recognizes proline-rich motifs (PRMs) of binding partners, such as cAbl kinase. The interaction between CrkII and cAbl kinase is involved in the regulation of cell spreading, microbial pathogenesis, and cancer metastasis. Here, we report the detailed biophysical characterizations of the interactions between the nSH3 domain of CrkII and PRMs in cAbl. We identified that the nSH3 domain of CrkII binds to three PRMs in cAbl with virtually identical affinities. Structural studies, by using x-ray crystallography and NMR spectroscopy, revealed that the binding modes of all three nSH3:PRM complexes are highly similar to each other. Van 't Hoff analysis revealed that nSH3:PRM interaction is associated with favorable enthalpy and unfavorable entropy change. The combination of experimentally determined thermodynamic parameters, structure-based calculations, and (15)N NMR relaxation analysis highlights the energetic contribution of conformational entropy change upon the complex formation, and water molecules structured in the binding interface of the nSH3:PRM complex. Understanding the molecular basis of nSH3:PRM interaction will provide, to our knowledge, new insights for the rational design of small molecules targeting the interaction between CrkII and cAbl. PMID:27332121

  15. Structural Characterization of Proline-rich Tyrosine Kinase 2 (PYK2) Reveals a Unique (DFG-out) Conformation and Enables Inhibitor Design

    SciTech Connect

    Han, Seungil; Mistry, Anil; Chang, Jeanne S.; Cunningham, David; Griffor, Matt; Bonnette, Peter C.; Wang, Hong; Chrunyk, Boris A.; Aspnes, Gary E.; Walker, Daniel P.; Brosius, Arthur D.; Buckbinder, Leonard; Pfizer

    2009-05-21

    Proline-rich tyrosine kinase 2 (PYK2) is a cytoplasmic, non-receptor tyrosine kinase implicated in multiple signaling pathways. It is a negative regulator of osteogenesis and considered a viable drug target for osteoporosis treatment. The high-resolution structures of the human PYK2 kinase domain with different inhibitor complexes establish the conventional bilobal kinase architecture and show the conformational variability of the DFG loop. The basis for the lack of selectivity for the classical kinase inhibitor, PF-431396, within the FAK family is explained by our structural analyses. Importantly, the novel DFG-out conformation with two diarylurea inhibitors (BIRB796, PF-4618433) reveals a distinct subclass of non-receptor tyrosine kinases identifiable by the gatekeeper Met-502 and the unique hinge loop conformation of Leu-504. This is the first example of a leucine residue in the hinge loop that blocks the ATP binding site in the DFG-out conformation. Our structural, biophysical, and pharmacological studies suggest that the unique features of the DFG motif, including Leu-504 hinge-loop variability, can be exploited for the development of selective protein kinase inhibitors.

  16. The colloidal state of tannins impacts the nature of their interaction with proteins: the case of salivary proline-rich protein/procyanidins binding.

    PubMed

    Cala, Olivier; Dufourc, Erick J; Fouquet, Eric; Manigand, Claude; Laguerre, Michel; Pianet, Isabelle

    2012-12-18

    While the definition of tannins has been historically associated with its propensity to bind proteins in a nonspecific way, it is now admitted that specific interaction also occurs. The case of the astringency perception is a good example to illustrate this phenomenon: astringency is commonly described as a tactile sensation induced by the precipitation of a complex composed of proline-rich proteins present in the human saliva and tannins present in beverages such as tea or red wines. In the present work, the interactions between a human saliva protein segment and three different procyanidins (B1, B3, and C2) were investigated at the atomic level by NMR and molecular dynamics. The data provided evidence for (i) an increase in affinity compared to shortest human saliva peptides, which is accounted for by protein "wraping around" the tannin, (ii) a specificity in the interaction below tannin critical micelle concentration (CMC) of ca. 10 mM, with an affinity scale such that C2 > B1 > B3, and (iii) a nonspecific binding above tannin CMC that conducts irremediably to the precipitation of the tannins/protein complex. Such physicochemical findings describe in accurate terms saliva protein-tannin interactions and provide support for a more subtle description by oenologists of wine astringency perception in the mouth.

  17. Oncogenic Potential of the Nuclear Receptor Coregulator Proline-, Glutamic Acid–, Leucine-Rich Protein 1/Modulator of the Nongenomic Actions of the Estrogen Receptor

    PubMed Central

    Rajhans, Rajib; Nair, Sujit; Holden, Alan H.; Kumar, Rakesh; Tekmal, Rajeshwar Rao; Vadlamudi, Ratna K.

    2009-01-01

    Proline-, glutamic acid–, leucine-rich protein 1 (PELP1), a novel nuclear receptor coactivator, and its expression is deregulated in hormone-dependent cancers, including those of the breast, endometrium, and ovary. PELP1 interacts with estrogen receptor and modulates its genomic and nongenomic functions. In this study, we examined whether PELP1 functions as an oncogene. The overexpression of PELP1 in fibroblasts and epithelial model cells resulted in cellular transformation. PELP1 also enhanced the transformation potential of c-Src kinase in focus formation assays, and PELP1 overexpression potentiated estradiol-mediated cell migratory potential and anchorage-independent growth. Using PELP1-small interfering RNA, we provided evidence that endogenous PELP1 plays an essential role in E2-mediated anchorage-independent growth, cell migration, and cytoskeletal changes. When compared with control vector transfectants, breast cancer cells stably overexpressing PELP1 showed a rapid tumor growth in xenograft studies. Immunohistochemical analysis of PELP1 expression using a tumor progression array of 252 breast carcinomas and normal breast tissue specimens revealed that PELP1 expression is deregulated to a greater degree in higher grade node-positive invasive tumors than in normal breast tissue or ductal carcinoma in situ. Our data suggest that PELP1 is a potential oncogene, that its expression is deregulated during cancer progression, and that PELP1 may play a role in oncogenesis. PMID:17545633

  18. Despite sequence homologies to gluten, salivary proline-rich proteins do not elicit immune responses central to the pathogenesis of celiac disease.

    PubMed

    Tian, Na; Leffler, Daniel A; Kelly, Ciaran P; Hansen, Joshua; Marietta, Eric V; Murray, Joseph A; Schuppan, Detlef; Helmerhorst, Eva J

    2015-12-01

    Celiac disease (CD) is an inflammatory disorder triggered by ingested gluten, causing immune-mediated damage to the small-intestinal mucosa. Gluten proteins are strikingly similar in amino acid composition and sequence to proline-rich proteins (PRPs) in human saliva. On the basis of this feature and their shared destination in the gastrointestinal tract, we hypothesized that salivary PRPs may modulate gluten-mediated immune responses in CD. Parotid salivary secretions were collected from CD patients, refractory CD patients, non-CD patients with functional gastrointestinal complaints, and healthy controls. Structural similarities of PRPs with gluten were probed with anti-gliadin antibodies. Immune responses to PRPs were investigated toward CD patient-derived peripheral blood mononuclear cells and in a humanized transgenic HLA-DQ2/DQ8 mouse model for CD. Anti-gliadin antibodies weakly cross-reacted with the abundant salivary amylase but not with PRPs. Likewise, the R5 antibody, recognizing potential antigenic gluten epitopes, showed negligible reactivity to salivary proteins from all groups. Inflammatory responses in peripheral blood mononuclear cells were provoked by gliadins whereas responses to PRPs were similar to control levels, and PRPs did not compete with gliadins in immune stimulation. In vivo, PRP peptides were well tolerated and nonimmunogenic in the transgenic HLA-DQ2/DQ8 mouse model. Collectively, although structurally similar to dietary gluten, salivary PRPs were nonimmunogenic in CD patients and in a transgenic HLA-DQ2/DQ8 mouse model for CD. It is possible that salivary PRPs play a role in tolerance induction to gluten early in life. Deciphering the structural basis for the lack of immunogenicity of salivary PRPs may further our understanding of the toxicity of gluten.

  19. Effect of enamel matrix derivative and of proline-rich synthetic peptides on the differentiation of human mesenchymal stem cells toward the osteogenic lineage.

    PubMed

    Ramis, Joana Maria; Rubert, Marina; Vondrasek, Jiri; Gayà, Antoni; Lyngstadaas, Staale Petter; Monjo, Marta

    2012-06-01

    With the aim of discovering new molecules for induction of bone formation and biomineralization, combination of bioinformatics and simulation methods were used to design the structure of artificial peptides based on proline-rich domains of enamel matrix proteins. In this study, the effect of such peptides on the differentiation toward the osteogenic lineage of human umbilical cord mesenchymal stem cells (hUCMSCs) was evaluated with or without osteogenic supplements (hydrocortisone, β-glycerol phosphate, and ascorbic acid) and compared to the effect of the commercially available enamel matrix derivative (EMD). It was hypothesized that the differentiation toward the osteogenic lineage of hUCMSCs would be promoted by the treatment with the synthetic peptides when combined with differentiation media, or it could even be directed exclusively by the synthetic peptides. Osteoinductivity was assessed by cell proliferation, bone morphogenetic protein-2 secretion, and gene expression of osteogenic markers after 1, 3, and 14 days of treatment. All peptides were safe with the dosages used, showing lower cell toxicity. P2, P4, and P6 reduced cell proliferation with growing media by 10%-15%. Higher expression of early osteoblast markers was found after 3 days of treatment with EMD in combination with osteogenic supplements, while after 14 days of treatment, cells treated by the different synthetic peptides in combination with osteogenic supplements showed higher osteocalcin mRNA levels. We can conclude that osteogenic differentiation of hUCMSCs is promoted by short-term EMD treatment in combination with osteogenic supplements and by long-term treatment by the synthetic peptides in combination with osteogenic supplements, showing similar results for all the peptide variants analyzed in this study. PMID:22429009

  20. Arginine methylation and citrullination of splicing factor proline- and glutamine-rich (SFPQ/PSF) regulates its association with mRNA.

    PubMed

    Snijders, Ambrosius P; Hautbergue, Guillaume M; Bloom, Alex; Williamson, James C; Minshull, Thomas C; Phillips, Helen L; Mihaylov, Simeon R; Gjerde, Douglas T; Hornby, David P; Wilson, Stuart A; Hurd, Paul J; Dickman, Mark J

    2015-03-01

    Splicing factor proline- and glutamine-rich (SFPQ) also commonly known as polypyrimidine tract-binding protein-associated-splicing factor (PSF) and its binding partner non-POU domain-containing octamer-binding protein (NONO/p54nrb), are highly abundant, multifunctional nuclear proteins. However, the exact role of this complex is yet to be determined. Following purification of the endogeneous SFPQ/NONO complex, mass spectrometry analysis identified a wide range of interacting proteins, including those involved in RNA processing, RNA splicing, and transcriptional regulation, consistent with a multifunctional role for SFPQ/NONO. In addition, we have identified several sites of arginine methylation in SFPQ/PSF using mass spectrometry and found that several arginines in the N-terminal domain of SFPQ/PSF are asymmetrically dimethylated. Furthermore, we find that the protein arginine N-methyltransferase, PRMT1, catalyzes this methylation in vitro and that this is antagonized by citrullination of SFPQ. Arginine methylation and citrullination of SFPQ/PSF does not affect complex formation with NONO. However, arginine methylation was shown to increase the association with mRNA in mRNP complexes in mammalian cells. Finally we show that the biochemical properties of the endogenous complex from cell lysates are significantly influenced by the ionic strength during purification. At low ionic strength, the SFPQ/NONO complex forms large heterogeneous protein assemblies or aggregates, preventing the purification of the SFPQ/NONO complex. The ability of the SFPQ/NONO complex to form varying protein assemblies, in conjunction with the effect of post-translational modifications of SFPQ modulating mRNA binding, suggests key roles affecting mRNP dynamics within the cell.

  1. Arginine methylation and citrullination of splicing factor proline- and glutamine-rich (SFPQ/PSF) regulates its association with mRNA

    PubMed Central

    Snijders, Ambrosius P.; Hautbergue, Guillaume M.; Bloom, Alex; Williamson, James C.; Minshull, Thomas C.; Phillips, Helen L.; Mihaylov, Simeon R.; Gjerde, Douglas T.; Hornby, David P.; Wilson, Stuart A.; Hurd, Paul J.

    2015-01-01

    Splicing factor proline- and glutamine-rich (SFPQ) also commonly known as polypyrimidine tract-binding protein-associated-splicing factor (PSF) and its binding partner non-POU domain-containing octamer-binding protein (NONO/p54nrb), are highly abundant, multifunctional nuclear proteins. However, the exact role of this complex is yet to be determined. Following purification of the endogeneous SFPQ/NONO complex, mass spectrometry analysis identified a wide range of interacting proteins, including those involved in RNA processing, RNA splicing, and transcriptional regulation, consistent with a multifunctional role for SFPQ/NONO. In addition, we have identified several sites of arginine methylation in SFPQ/PSF using mass spectrometry and found that several arginines in the N-terminal domain of SFPQ/PSF are asymmetrically dimethylated. Furthermore, we find that the protein arginine N-methyltransferase, PRMT1, catalyzes this methylation in vitro and that this is antagonized by citrullination of SFPQ. Arginine methylation and citrullination of SFPQ/PSF does not affect complex formation with NONO. However, arginine methylation was shown to increase the association with mRNA in mRNP complexes in mammalian cells. Finally we show that the biochemical properties of the endogenous complex from cell lysates are significantly influenced by the ionic strength during purification. At low ionic strength, the SFPQ/NONO complex forms large heterogeneous protein assemblies or aggregates, preventing the purification of the SFPQ/NONO complex. The ability of the SFPQ/NONO complex to form varying protein assemblies, in conjunction with the effect of post-translational modifications of SFPQ modulating mRNA binding, suggests key roles affecting mRNP dynamics within the cell. PMID:25605962

  2. Binding preference of carbon nanotube over proline-rich motif ligand on SH3-domain: a comparison with different force fields.

    PubMed

    Shi, Biyun; Zuo, Guanghong; Xiu, Peng; Zhou, Ruhong

    2013-04-01

    With the widespread applications of nanomaterials such as carbon nanotubes, there is a growing concern on the biosafety of these engineered nanoparticles, in particular their interactions with proteins. In molecular simulations of nanoparticle-protein interactions, the choice of empirical parameters (force fields) plays a decisive role, and thus is of great importance and should be examined carefully before wider applications. Here we compare three commonly used force fields, CHARMM, OPLSAA, and AMBER in study of the competitive binding of a single wall carbon nanotube (SWCNT) with a native proline-rich motif (PRM) ligand on its target protein SH3 domain, a ubiquitous protein-protein interaction mediator involved in signaling and regulatory pathways. We find that the SWCNT displays a general preference over the PRM in binding with SH3 domain in all the three force fields examined, although the degree of preference can be somewhat different, with the AMBER force field showing the highest preference. The SWCNT prevents the ligand from reaching its native binding pocket by (i) occupying the binding pocket directly, and (ii) binding with the ligand itself and then being trapped together onto some off-sites. The π-π stacking interactions between the SWCNT and aromatic residues are found to play a significant role in its binding to the SH3 domain in all the three force fields. Further analyses show that even the SWCNT-ligand binding can also be relatively more stable than the native ligand-protein binding, indicating a serious potential disruption to the protein SH3 function.

  3. STE20/SPS1-Related Proline/Alanine-Rich Kinase Is Involved in Plasticity of GABA Signaling Function in a Mouse Model of Acquired Epilepsy

    PubMed Central

    Zhou, Jueqian; Chen, Shuda; Chen, Yishu; Chen, Ziyi; Wang, Qian; Fang, Ziyan; Zhou, Liemin

    2013-01-01

    The intracellular concentration of chloride ([Cl-]i) determines the strength and polarity of GABA neurotransmission. STE20/SPS1-related proline/alanine-rich kinase (SPAK) is known as an indirect regulator of [Cl-]i for its activation of Na-K-2 Cl-co-transporters (NKCC) and inhibition of K-Cl-co-transporters (KCC) in many organs. NKCC1 or KCC2 expression changes have been demonstrated previously in the hippocampal neurons of mice with pilocarpine-induced status epilepticus (PISE). However, it remains unclear whether SPAK modulates [Cl-]i via NKCC1 or KCC2 in the brain. Also, there are no data clearly characterizing SPAK expression in cortical or hippocampal neurons or confirming an association between SPAK and epilepsy. In the present study, we examined SPAK expression and co-expression with NKCC1 and KCC2 in the hippocampal neurons of mice with PISE, and we investigated alterations in SPAK expression in the hippocampus of such mice. Significant increases in SPAK mRNA and protein levels were detected during various stages of PISE in the PISE mice in comparison to levels in age-matched sham (control) and blank treatment (control) mice. SPAK and NKCC1 expression increased in vitro, while KCC2 was down-regulated in hippocampal neurons following hypoxic conditioning. However, SPAK overexpression did not influence the expression levels of NKCC1 or KCC2. Using co-immunoprecipitation, we determined that the intensity of interaction between SPAK and NKCC1 and between SPAK and KCC2 increased markedly after oxygen-deprivation, whereas SPAK overexpression strengthened the relationships. The [Cl-]i of hippocampal neurons changed in a corresponding manner under the different conditions. Our data suggests that SPAK is involved in the plasticity of GABA signaling function in acquired epilepsy via adjustment of [Cl-]i in hippocampal neurons. PMID:24058604

  4. Pyrrhocoricin, a proline-rich antimicrobial peptide derived from insect, inhibits the translation process in the cell-free Escherichia coli protein synthesis system.

    PubMed

    Taniguchi, Masayuki; Ochiai, Akihito; Kondo, Hiroshi; Fukuda, Shun; Ishiyama, Yohei; Saitoh, Eiichi; Kato, Tetsuo; Tanaka, Takaaki

    2016-05-01

    Previous studies have shown that pyrrhocoricin, a proline-rich antimicrobial peptide (PrAMP), killed sensitive species in a dose-dependent manner by specifically binding to DnaK. Here, on the basis of the finding that DnaK-deficient Escherichia coli strains are susceptible to PrAMPs, we used pyrrhocoricin to investigate internal targets other than DnaK. Using conventional antibiotics (bleomycin, streptomycin, and fosfomycin) that have known modes of action, first, we validated the availability of an assay using a cell-free rapid translation system (RTS), which is an in vitro protein synthesis system based on E. coli lysate, for evaluating inhibition of protein synthesis. We found that, similarly to bleomycin and streptomycin, pyrrhocoricin inhibited GFP synthesis in RTS in a concentration-dependent manner. In addition, blockage of transcription and translation steps in RTS was individually estimated using RT-PCR after gene expression to determine mRNA products and using sodium dodecyl sulfate-polyacrylamide gel electrophoresis to determine the amounts of GFP expressed from purified mRNA, respectively. The results demonstrated that this inhibition of GFP synthesis by pyrrhocoricin did not occur at the transcription step but rather at the translation step, in a manner similar to that of GFP synthesis by streptomycin, an inhibitor of the translation step by causing misreading of tRNA. These results suggest that RTS is a powerful assay system for determining if antimicrobial peptides inhibit protein synthesis and its transcription and/or translation steps. This is the first study to have shown that pyrrhocoricin inhibited protein synthesis by specifically repressing the translation step. PMID:26472128

  5. Pyrrhocoricin, a proline-rich antimicrobial peptide derived from insect, inhibits the translation process in the cell-free Escherichia coli protein synthesis system.

    PubMed

    Taniguchi, Masayuki; Ochiai, Akihito; Kondo, Hiroshi; Fukuda, Shun; Ishiyama, Yohei; Saitoh, Eiichi; Kato, Tetsuo; Tanaka, Takaaki

    2016-05-01

    Previous studies have shown that pyrrhocoricin, a proline-rich antimicrobial peptide (PrAMP), killed sensitive species in a dose-dependent manner by specifically binding to DnaK. Here, on the basis of the finding that DnaK-deficient Escherichia coli strains are susceptible to PrAMPs, we used pyrrhocoricin to investigate internal targets other than DnaK. Using conventional antibiotics (bleomycin, streptomycin, and fosfomycin) that have known modes of action, first, we validated the availability of an assay using a cell-free rapid translation system (RTS), which is an in vitro protein synthesis system based on E. coli lysate, for evaluating inhibition of protein synthesis. We found that, similarly to bleomycin and streptomycin, pyrrhocoricin inhibited GFP synthesis in RTS in a concentration-dependent manner. In addition, blockage of transcription and translation steps in RTS was individually estimated using RT-PCR after gene expression to determine mRNA products and using sodium dodecyl sulfate-polyacrylamide gel electrophoresis to determine the amounts of GFP expressed from purified mRNA, respectively. The results demonstrated that this inhibition of GFP synthesis by pyrrhocoricin did not occur at the transcription step but rather at the translation step, in a manner similar to that of GFP synthesis by streptomycin, an inhibitor of the translation step by causing misreading of tRNA. These results suggest that RTS is a powerful assay system for determining if antimicrobial peptides inhibit protein synthesis and its transcription and/or translation steps. This is the first study to have shown that pyrrhocoricin inhibited protein synthesis by specifically repressing the translation step.

  6. The primary structures of six human salivary acidic proline-rich proteins (PRP-1, PRP-2, PRP-3, PRP-4, PIF-s and PIF-f).

    PubMed Central

    Hay, D I; Bennick, A; Schlesinger, D H; Minaguchi, K; Madapallimattam, G; Schluckebier, S K

    1988-01-01

    Human glandular salivary secretions contain several acidic proline-rich phosphoproteins (PRPs). These proteins have important biological functions related to providing a protective environment for the teeth, and appear to possess other activities associated with modulation of adhesion of bacteria to oral surfaces. These functions and activities depend on the primary structures of the PRPs. Previously determined amino acid sequences of two 150-residue molecules, PRP-1 and PRP-2, and two related 106-residue proteins, PRP-3 and PRP-4, indicated that residue 4 was Asn in PRP-1 and PRP-3, and Asp in PRP-2 and PRP-4, and position 50 was Asn in all four proteins. Recent data from cDNA sequence studies and further structural studies, however, showed that the previously proposed sequences cannot be completely correct. The present work has shown that the protein previously designated as PRP-1 actually consisted of two positional isomers, PIF-s, which has Asn and Asp at positions 4 and 50 respectively, and authentic PRP-1, which has the reverse arrangement. The same isomerism is present in the smaller proteins, PIF-f and PRP-3. Since the isomeric pairs have identical compositions and charges, their presence was not previously detected. Also, by using a more highly purified preparation, it has been found that position 50 in PRP-2 and PRP-4 is Asp, rather than Asn previously reported. These new findings for the six PRPs define their complete primary structures, which are now consistent with those proposed for PRP-1 and PIF-s from cDNA data, and are also consistent with the chromatographic and electrophoretic behaviours of the six PRPs and their derived peptides. These corrected structures are important for understanding the biological functions and activities of these unusual proteins. Images Fig. 1. Fig. 4. Fig. 5. PMID:3196309

  7. A proline-rich sequence unique to MEK1 and MEK2 is required for raf binding and regulates MEK function.

    PubMed Central

    Catling, A D; Schaeffer, H J; Reuter, C W; Reddy, G R; Weber, M J

    1995-01-01

    Mammalian MEK1 and MEK2 contain a proline-rich (PR) sequence that is absent both from the yeast homologs Ste7 and Byr1 and from a recently cloned activator of the JNK/stress-activated protein kinases, SEK1/MKK4. Since this PR sequence occurs in MEKs that are regulated by Raf family enzymes but is missing from MEKs and SEKs activated independently of Raf, we sought to investigate the role of this sequence in MEK1 and MEK2 regulation and function. Deletion of the PR sequence from MEK1 blocked the ability of MEK1 to associate with members of the Raf family and markedly attenuated activation of the protein in vivo following growth factor stimulation. In addition, this sequence was necessary for efficient activation of MEK1 in vitro by B-Raf but dispensable for activation by a novel MEK1 activator which we have previously detected in fractionated fibroblast extracts. Furthermore, we found that a phosphorylation site within the PR sequence of MEK1 was required for sustained MEK1 activity in response to serum stimulation of quiescent fibroblasts. Consistent with this observation, we observed that MEK2, which lacks a phosphorylation site at the corresponding position, was activated only transiently following serum stimulation. Finally, we found that deletion of the PR sequence from a constitutively activated MEK1 mutant rendered the protein nontransforming in Rat1 fibroblasts. These observations indicate a critical role for the PR sequence in directing specific protein-protein interactions important for the activation, inactivation, and downstream functioning of the MEKs. PMID:7565670

  8. Disturbance alters local-regional richness relationships in Appalachian forests.

    PubMed

    Belote, R Travis; Sanders, Nathan J; Jones, Robert H

    2009-10-01

    Whether biological diversity within communities is limited by local interactions or regional species pools remains an important question in ecology. In this paper, we investigate how an experimentally applied tree-harvesting disturbance gradient influenced local-regional richness relationships. Plant species richness was measured at three spatial scales (2 ha = regional; 576 m2 and 1 m2 = local) on three occasions (one year pre-disturbance, one year post-disturbance, and 10 years post-disturbance) across five disturbance treatments (uncut control through clearcut) replicated throughout the southern Appalachian Mountains, USA. We investigated whether species richness in 576-m2 plots and 1-m2 subplots depended on species richness in 2-ha experimental units and whether this relationship changed through time before and after canopy disturbance. We found that, before disturbance, the relationship between local and regional richness was weak or nonexistent. One year after disturbance local richness was a positive function of regional richness, because local sites were colonized from the regional species pool. Ten years after disturbance, the positive relationship persisted, but the slope had decreased by half. These results suggest that disturbance can set the stage for strong influences of regional species pools on local community assembly in temperate forests. However, as time since disturbance increases, local controls on community assembly decouple the relationships between regional and local diversity. PMID:19886502

  9. Disturbance alters local-regional richness relationships in appalachian forests

    USGS Publications Warehouse

    Belote, R.T.; Sanders, N.J.; Jones, R.H.

    2009-01-01

    Whether biological diversity within communities is limited by local interactions or regional species pools remains an important question in ecology. In this paper, we investigate how an experimentally applied tree-harvesting disturbance gradient influenced local-regional richness relationships. Plant species richness was measured at three spatial scales (2 ha = regional; 576 m2 and 1 m2 = local) on three occasions (one year pre-disturbance, one year post-disturbance, and 10 years post-disturbance) across five disturbance treatments (uncut control through clearcut) replicated throughout the southern Appalachian Mountains, USA. We investigated whether species richness in 576-m2 plots and 1-m2 subplots depended on species richness in 2-ha experimental units and whether this relationship changed through time before and after canopy disturbance. We found that, before disturbance, the relationship between local and regional richness was weak or nonexistent. One year after disturbance local richness was a positive function of regional richness, because local sites were colonized from the regional species pool. Ten years after disturbance, the positive relationship persisted, but the slope had decreased by half. These results suggest that disturbance can set the stage for strong influences of regional species pools on local community assembly in temperate forests. However, as time since disturbance increases, local controls on community assembly decouple the relationships between regional and local diversity. ?? 2009 by the Ecological Society of America.

  10. The presence of prolines in the flanking region of an immunodominant HIV‐2 gag epitope influences the quality and quantity of the epitope generated

    PubMed Central

    Leligdowicz, Aleksandra; Kramer, Holger B.; Onyango, Clayton; Cotten, Matthew; Wright, Cynthia; Whittle, Hilton C.; McMichael, Andrew; Dong, Tao; Kessler, Benedikt M.; Rowland‐Jones, Sarah L.

    2015-01-01

    Both the recognition of HIV‐infected cells and the immunogenicity of candidate CTL vaccines depend on the presentation of a peptide epitope at the cell surface, which in turn depends on intracellular antigen processing. Differential antigen processing maybe responsible for the differences in both the quality and the quantity of epitopes produced, influencing the immunodominance hierarchy of viral epitopes. Previously, we showed that the magnitude of the HIV‐2 gag‐specific T‐cell response is inversely correlated with plasma viral load, particularly when responses are directed against an epitope, 165DRFYKSLRA173, within the highly conserved Major Homology Region of gag‐p26. We also showed that the presence of three proline residues, at positions 119, 159 and 178 of gag‐p26, was significantly correlated with low viral load. Since this proline motif was also associated with stronger gag‐specific CTL responses, we investigated the impact of these prolines on proteasomal processing of the protective 165DRFYKSLRA173 epitope. Our data demonstrate that the 165DRFYKSLRA173 epitope is most efficiently processed from precursors that contain two flanking proline residues, found naturally in low viral‐load patients. Superior antigen processing and enhanced presentation may account for the link between infection with HIV‐2 encoding the “PPP‐gag” sequence and both strong gag‐specific CTL responses as well as lower viral load. PMID:26018465

  11. Insights into cardiovascular effects of proline-rich oligopeptide (Bj-PRO-10c) revealed by structure-activity analyses: dissociation of antihypertensive and bradycardic effects.

    PubMed

    Paschoal, Juliana F B; Yamaguchi, Juliana; Miranda, José R R; Carretero, Gustavo; Melo, Robson L; Santos, Robson A S; Xavier, Carlos H; Schreier, Shirley; Camargo, Antonio C M; Ianzer, Danielle

    2014-02-01

    We have previously reported that the proline-rich decapeptide from Bothrops jararaca (Bj-PRO-10c) causes potent and sustained antihypertensive and bradycardic effects in SHR. These activities are independent of ACE inhibition. In the present study, we used the Ala-scan approach to evaluate the importance of each amino acid within the sequence of Bj-PRO-10c (Pyr(1)-Asn(2)-Trp(3)-Pro(4)-His(5)-Pro(6)-Gln(7)-Ile(8)-Pro(9)-Pro(10)). The antihypertensive and bradycardic effects of the analogues Bj-PRO-10c Ala(3), Bj-PRO-10c Ala(7), Bj-PRO-10c Ala(8) were similar to those of Bj-PRO-10c, whereas the analogues Bj-PRO-10c Ala(2), Bj-PRO-10c Ala(4), Bj-PRO-10c Ala(5), Bj-PRO-10c Ala(9), and Bj-PRO-10c Ala(10) kept the antihypertensive activity and lost bradycardic activity considerably. In contrast, Bj-PRO-10c Ala(1) and Bj-PRO-10c Ala(6) were unable to provoke any cardiovascular activity. In summary, we demonstrated that (1) the Pyr(1) and Pro(6) residues are essential for both, the antihypertensive and bradycardic effects of Bj-PRO-10c; (2) Ala-scan approach allowed dissociating blood pressure reduction and bradycardic effects. Conformational properties of the peptides were examined by means of circular dichroism (CD) spectroscopy. The different Ala-scan analogues caused either an increase or decrease in the type II polyproline helix content compared to Bj-PRO-10c. The complete loss of activity of the Pro(6) → Ala(6) mutant is probably due to the fact that in the parent peptide the His(5)-Pro(6) bond can exist in the cis configuration, which could correspond to the conformation of this bond in the bound state. Current data support the Bj-PRO-10c as a promising leader prototype to develop new agents to treat cardiovascular diseases and its co-morbidities.

  12. A conserved proline residue in the leucine zipper region of AtbZIP34 and AtbZIP61 in Arabidopsis thaliana interferes with the formation of homodimer

    SciTech Connect

    Shen Huaishun; Cao Kaiming; Wang Xiping

    2007-10-19

    Two putative Arabidopsis E group bZIP transcript factors, AtbZIP34 and AtbZIP61, are nuclear-localized and their transcriptional activation domain is in their N-terminal region. By searching GenBank, we found other eight plant homologues of AtbZIP34 and AtbZIP61. All of them have a proline residue in the third heptad of zipper region. Yeast two-hybrid assay and EMSA showed that AtbZIP34 and AtbZIP61 could not form homodimer while their mutant forms, AtbZIP34m and AtbZIP61m, which the proline residue was replaced by an alanine residue in the zipper region, could form homodimer and bind G-box element. These results suggest that the conserved proline residue interferes with the homodimer formation. However, both AtbZIP34 and AtbZIP61 could form heterodimers with members of I group and S group transcription factors in which some members involved in vascular development. So we speculate that AtbZIP34 and AtbZIP61 may participate in plant development via interacting with other group bZIP transcription factors.

  13. A conserved proline residue in the leucine zipper region of AtbZIP34 and AtbZIP61 in Arabidopsis thaliana interferes with the formation of homodimer.

    PubMed

    Shen, Huaishun; Cao, Kaiming; Wang, Xiping

    2007-10-19

    Two putative Arabidopsis E group bZIP transcript factors, AtbZIP34 and AtbZIP61, are nuclear-localized and their transcriptional activation domain is in their N-terminal region. By searching GenBank, we found other eight plant homologues of AtbZIP34 and AtbZIP61. All of them have a proline residue in the third heptad of zipper region. Yeast two-hybrid assay and EMSA showed that AtbZIP34 and AtbZIP61 could not form homodimer while their mutant forms, AtbZIP34m and AtbZIP61m, which the proline residue was replaced by an alanine residue in the zipper region, could form homodimer and bind G-box element. These results suggest that the conserved proline residue interferes with the homodimer formation. However, both AtbZIP34 and AtbZIP61 could form heterodimers with members of I group and S group transcription factors in which some members involved in vascular development. So we speculate that AtbZIP34 and AtbZIP61 may participate in plant development via interacting with other group bZIP transcription factors. PMID:17719007

  14. The proline-rich P65 protein of Mycoplasma pneumoniae is a component of the Triton X-100-insoluble fraction and exhibits size polymorphism in the strains M129 and FH.

    PubMed Central

    Proft, T; Hilbert, H; Layh-Schmitt, G; Herrmann, R

    1995-01-01

    Previously, we described the identification of a novel Mycoplasma pneumoniae M129 protein, named P65 because of its apparent molecular mass of 65 kDa estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (T. Proft and R. Herrmann, Mol. Microbiol. 13:337-348, 1994). DNA sequence analysis of the P65 open reading frame (orfp65), however, revealed an ORF encoding a protein with a molecular weight of 47,034. This discrepancy can be explained by the unusual amino acid composition of this protein. According to the deduced amino acid sequence, the N-terminal half of P65 contains several penta- and hexapeptides (DPNAY and DPNQAY) forming a proline-rich acidic domain. Secondary-structure predictions indicated beta-sheets and turns within that region, suggesting an extended and rigid conformation. Near the C terminus of P65 the tripeptide Arg-Gly-Asp (RGD) was found. This motif is known to play an important role in binding of extracellular matrix proteins to integrins. P65 could be located exclusively to the Triton X-100-insoluble cell fraction. The results of immunofluorescence microscopy and of immunoadsorption experiments indicated that P65 carries surface-exposed regions. Mild treatment of whole cells with proteases resulted in cleavage of a limited amount of P65 molecules, suggesting either that only a small percentage of P65 molecules are exposed on the surface or that protease cleavage is hampered by a compact protein conformation or by binding of an unknown component to P65. P65 exhibits size polymorphism in M. pneumoniae M129 and FH. This is caused by an intragenetic duplication of a 54-bp sequence within the FH orfp65. As a consequence, the number of DPNAY pentapeptides increased from 9 to 12 repeats in the FH strain. PMID:7768845

  15. Regional pools and environmental controls of vertebrate richness.

    PubMed

    Belmaker, Jonathan; Jetz, Walter

    2012-04-01

    Abstract The species richness of local communities depends on the richness of the regional pool and the filtering processes that preclude some regional species from occurring locally. These filters may include absolute attributes of the local environment and also how representative the local environment is of the surrounding region. The latter is consistent with a species-sorting perspective, in which regional species only occupy the local habitats to which they are adapted. Here we evaluate the relative effects of local environmental conditions, environmental representativeness, and environment-independent processes on the probability of local species occurrence, given their regional presence, of birds, mammals, and amphibians worldwide. In multipredictor models, environmental representativeness is a strong independent predictor of local species occurrence probability, with a relative contribution greater than that of absolute local environmental conditions. Furthermore, we find that local occurrence probability diminishes with increased regional richness independent of the local environment. This is consistent with reduced local occupancy in richer regions, which is a pattern that could stem from a largely neutral community assembly process. Our results support the importance of both environment-independent and species-sorting processes and suggest that regional richness and environmental representativeness should be jointly used for understanding richness gradients across scales.

  16. A novel role for proline in plant floral nectars

    NASA Astrophysics Data System (ADS)

    Carter, Clay; Shafir, Sharoni; Yehonatan, Lia; Palmer, Reid G.; Thornburg, Robert

    2006-02-01

    Plants offer metabolically rich floral nectar to attract visiting pollinators. The composition of nectar includes not only sugars, but also amino acids. We have examined the amino acid content of the nectar of ornamental tobacco and found that it is extremely rich (2 mM) in proline. Because insect pollinators preferentially utilize proline during the initial phases of insect flight and can reportedly taste proline, we determined whether honeybees showed a preference for synthetic nectars rich in proline. We therefore established an insect preference test and found that honeybees indeed prefer nectars rich in the amino acid proline. To determine whether this was a general phenomenon, we also examined the nectars of two insect-pollinated wild perennial species of soybean. These species also showed high levels of proline in their nectars demonstrating that plants often produce proline-rich floral nectar. Because insects such as honeybees prefer proline-rich nectars, we hypothesize that some plants offer proline-rich nectars as a mechanism to attract visiting pollinators.

  17. Proline-Rich Tyrosine Kinase 2 Mediates Gonadotropin-Releasing Hormone Signaling to a Specific Extracellularly Regulated Kinase-Sensitive Transcriptional Locus in the Luteinizing Hormone β-Subunit Gene

    PubMed Central

    Maudsley, Stuart; Naor, Zvi; Bonfil, David; Davidson, Lindsay; Karali, Dimitra; Pawson, Adam J.; Larder, Rachel; Pope, Caroline; Nelson, Nancy; Millar, Robert P.; Brown, Pamela

    2007-01-01

    G protein-coupled receptor regulation of gene transcription primarily occurs through the phosphorylation of transcription factors by MAPKs. This requires transduction of an activating signal via scaffold proteins that can ultimately determine the outcome by binding signaling kinases and adapter proteins with effects on the target transcription factor and locus of activation. By investigating these mechanisms, we have elucidated how pituitary gonadotrope cells decode an input GnRH signal into coherent transcriptional output from the LH β-subunit gene promoter. We show that GnRH activates c-Src and multiple members of the MAPK family, c-Jun NH2-terminal kinase 1/2, p38MAPK, and ERK1/2. Using dominant-negative point mutations and chemical inhibitors, we identified that calcium-dependent proline-rich tyrosine kinase 2 specifically acts as a scaffold for a focal adhesion/cytoskeleton-dependent complex comprised of c-Src, Grb2, and mSos that translocates an ERK-activating signal to the nucleus. The locus of action of ERK was specifically mapped to early growth response-1 (Egr-1) DNA binding sites within the LH β-subunit gene proximal promoter, which was also activated by p38MAPK, but not c-Jun NH2-terminal kinase 1/2. Egr-1 was confirmed as the transcription factor target of ERK and p38MAPK by blockade of protein expression, transcriptional activity, and DNA binding. We have identified a novel GnRH-activated proline-rich tyrosine kinase 2-dependent ERK-mediated signal transduction pathway that specifically regulates Egr-1 activation of the LH β-subunit proximal gene promoter, and thus provide insight into the molecular mechanisms required for differential regulation of gonadotropin gene expression. PMID:17327421

  18. Energetics of proline transport in corn mitochondria

    SciTech Connect

    Elthon, T.E.; Stewart, C.R.; Bonner, W.D. Jr.

    1984-08-01

    The mechanism of proline entry into the matrix region of isolated corn mitochondria (Zea mays L. Mo17 x B73) was investigated by measuring osmotically induced changes of mitochondrial size (changes in A/sub 520/) in combination with oxygen uptake measurements. Using NADH oxidation to generate the electrochemical gradient, we have determined that proline transport is stereospecific and that it can be inhibited by the proline analog L-thiazolidine-4-carboxylic acid. The energetics of proline transport was investigated by measuring the effects of FCCP (p-trifluoromethoxycarbonyl cyanide phenylhydrazone) and valinomycin on mitochondrial swelling and substrate oxidation. Proline transport and resulting oxidation were found to be partially dependent upon the energy of the electrochemical gradient. At low proline concentrations, entry was found to be primarily independent of the gradient (based on insensitivity to FCCP), whereas at higher proline concentrations a gradient-dependent mechanism became involved. Results with valimomycin indicated that proline transport and oxidation are dependent upon the pH potential across the membrane rather than the electrical (membrane) potential.

  19. Two novel mutations in the glycine-rich region of human PAX6 gene: Implications for an association of cataracts and anosmia with aniridia

    SciTech Connect

    Martha, A.; Ferrel, R.E.; Hittner, H.M.; Saunders, G.F.

    1994-09-01

    Aniridia (iris hyplasia) is a autosomal dominant congenital disorder of the eye. Mutations in the human aniridia (PAX6) gene have now been identified in many patients from various ethnic groups. In the present study we describe new mutations in this gene. Out of four mutations found, three were novel mutations; the fourth one is identical to the previously reported mutations (C{yields}T transition at nt 240). The three novel mutations analyzed were in the glycine-rich region (two) and in the proline/serine/threonine-rich (PST) region (one). Previously no mutations were reported for the glycine-rich region in humans. One of the mutations found in this region is associated with cataracts in an aniridia family. The other splice mutation found in the PST domain is associated with anosmia (lack of sensation to smell) in a sporadic aniridia case. Two of the mutations presented here, one in the glycine-rich region and the other in the PST domain, were not detected by SSCR. These mutations could be detected by using MDE gel and heteroduplex information. All mutations found in the present study are similar in that 32 of 33 PAX6 mutations result in protein truncation and haploinsufficiency.

  20. Homodimerization of the G Protein Srbeta in the Nucleotide-Free State Involves Proline cis/trans Isomerication in the Switch II Region

    SciTech Connect

    Schwartz,T.; Schmidt, D.; Brohawn, S.; Blobel, G.

    2006-01-01

    Protein translocation across and insertion into membranes is essential to all life forms. Signal peptide-bearing nascent polypeptide chains emerging from the ribosome are first sampled by the signal-recognition particle (SRP), then targeted to the membrane via the SRP receptor (SR), and, finally, transferred to the protein-conducting channel. In eukaryotes, this process is tightly controlled by the concerted action of three G proteins, the 54-kD subunit of SRP and the {alpha}- and {beta}-subunits of SR. We have determined the 2.2-Angstroms crystal structure of the nucleotide-free SR{beta} domain. Unexpectedly, the structure is a homodimer with a highly intertwined interface made up of residues from the switch regions of the G domain. The remodeling of the switch regions does not resemble any of the known G protein switch mechanisms. Biochemical analysis confirms homodimerization in vitro, which is incompatible with SR{alpha} binding. The switch mechanism involves cis/trans isomerization of a strictly conserved proline, potentially implying a new layer of regulation of cotranslational transport.

  1. Solar source regions of 3HE-rich particle events

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Lin, R. P.; Reames, D. V.; Stone, R. G.; Liggett, M.

    1985-01-01

    Hydrogen alpha X-ray, and metric and kilometric radio data to examine the solar sources of energetic 3He-rich particle events observed near earth in association with impulsive 2 to 100 keV electron events were applied. Each 3He/electron event is associated with a kilometric type 3 burst belonging to a family of such bursts characterized by similar interplanetary propagation paths from the same solar active region. The 3He/electron events correlate very well with the interplanetary low frequency radio brightnesses of these events, but progressively worse with signatures from regions closer to the Sun. When H alpha brightnings can be associated with 3He/electron events, they have onsets coinciding to within 1 min of that of the associated metric type 3 burst but are often too small to be reported. The data are consistent with the earlier idea that many type 3 bursts, the 3He/electron events, are due to particle acceleration in the corona, well above the associated H alpha and X-ray flares.

  2. Structural Biology of Proline Catabolism

    PubMed Central

    2009-01-01

    Summary The proline catabolic enzymes proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase catalyze the 4-electron oxidation of proline to glutamate. These enzymes play important roles in cellular redox control, superoxide generation, apoptosis and cancer. In some bacteria, the two enzymes are fused into the bifunctional enzyme, proline utilization A. Here we review the three-dimensional structural information that is currently available for proline catabolic enzymes. Crystal structures have been determined for bacterial monofunctional proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase, as well as the proline dehydrogenase and DNA-binding domains of proline utilization A. Some of the functional insights provided by analyses of these structures are discussed, including substrate recognition, catalytic mechanism, biochemical basis of inherited proline catabolic disorders and DNA recognition by proline utilization A. PMID:18369526

  3. High-resolution high-performance liquid chromatography with electrospray ionization mass spectrometry and tandem mass spectrometry characterization of a new isoform of human salivary acidic proline-rich proteins named Roma-Boston Ser22(Phos) → Phe variant

    PubMed Central

    Iavarone, Federica; D’Alessandro, Alfredo; Tian, Na; Cabras, Tiziana; Messana, Irene; Helmerhorst, Eva J.; Oppenheim, Frank G.; Castagnola, Massimo

    2015-01-01

    During a survey of human saliva by a top-down reversed-phase high-performance liquid chromatography with electrospray ionization mass spectrometry approach, two proteins eluting at 27.4 and 28.4 min, with average masses of 15 494 ± 1 and 11 142 ± 1 Da, were detected in a subject from Boston. The Δmass value (4352 Da) of the two proteins was similar to the difference in mass values between intact (150 amino acids, [a.a.]) and truncated acidic proline-rich proteins (aPRPs; 106 a.a.) suggesting an a.a. substitution in the first 106 residues resulting in a strong reduction in polarity, since under the same experimental conditions aPRPs eluted at ~22.5 min (intact) and 23.5 min (truncated forms). Manual inspection of the high-resolution high-performance liquid chromatography with electrospray ionization tandem mass spectra of the truncated isoform showed the replacement of the phosphorylated Ser-22 in PRP-3 with a Phe residue. Inspection of the tandem mass spectra of the intact isoform confirmed the substitution, which is allowed by the code transition TCT→TTT and is in agreement with the dramatic increase in elution time. The isoform was also detected in two other subjects, one from Boston (unrelated to the previous) and one from Rome. For this reason we propose to name this variant PRP-1 (PRP-3) RB (Roma-Boston) Ser22(phos)→Phe. PMID:24771659

  4. Proline Mechanisms of Stress Survival

    PubMed Central

    Liang, Xinwen; Zhang, Lu; Natarajan, Sathish Kumar

    2013-01-01

    Abstract Significance: The imino acid proline is utilized by different organisms to offset cellular imbalances caused by environmental stress. The wide use in nature of proline as a stress adaptor molecule indicates that proline has a fundamental biological role in stress response. Understanding the mechanisms by which proline enhances abiotic/biotic stress response will facilitate agricultural crop research and improve human health. Recent Advances: It is now recognized that proline metabolism propels cellular signaling processes that promote cellular apoptosis or survival. Studies have shown that proline metabolism influences signaling pathways by increasing reactive oxygen species (ROS) formation in the mitochondria via the electron transport chain. Enhanced ROS production due to proline metabolism has been implicated in the hypersensitive response in plants, lifespan extension in worms, and apoptosis, tumor suppression, and cell survival in animals. Critical Issues: The ability of proline to influence disparate cellular outcomes may be governed by ROS levels generated in the mitochondria. Defining the threshold at which proline metabolic enzyme expression switches from inducing survival pathways to cellular apoptosis would provide molecular insights into cellular redox regulation by proline. Are ROS the only mediators of proline metabolic signaling or are other factors involved? Future Directions: New evidence suggests that proline biosynthesis enzymes interact with redox proteins such as thioredoxin. An important future pursuit will be to identify other interacting partners of proline metabolic enzymes to uncover novel regulatory and signaling networks of cellular stress response. Antioxid. Redox Signal. 19, 998–1011. PMID:23581681

  5. Actinomyces naeslundii Displays Variant fimP and fimA Fimbrial Subunit Genes Corresponding to Different Types of Acidic Proline-Rich Protein and β-Linked Galactosamine Binding Specificity

    PubMed Central

    Hallberg, K.; Holm, C.; Öhman, U.; Strömberg, N.

    1998-01-01

    Actinomyces naeslundii genospecies 1 and 2 bind to acidic proline-rich proteins (APRPs) and statherin via type 1 fimbriae and to β-linked galactosamine (GalNAcβ) structures via type 2 fimbriae. In addition, A. naeslundii displays two types of binding specificity for both APRPs-statherin and GalNAcβ, while Actinomyces odontolyticus binds to unknown structures. To study the molecular basis for these binding specificities, DNA fragments spanning the entire or central portions of fimP (type 1) and fimA (type 2) fimbrial subunit genes were amplified by PCR from strains of genospecies 1 and 2 and hybridized with DNA from two independent collections of oral Actinomyces isolates. Isolates of genospecies 1 and 2 and A. odontolyticus, but no other Actinomyces species, were positive for hybridization with fimP and fimA full-length probes irrespective of binding to APRPs and statherin, GalNAcβ, or unknown structures. Isolates of genospecies 1 and 2, with deviating patterns of GalNAcβ1-3Galα-O-ethyl-inhibitable coaggregation with Streptococcus oralis Ss34 and MPB1, were distinguished by a fimA central probe from genospecies 1 and 2, respectively. Furthermore, isolates of genospecies 1 and 2 displaying preferential binding to APRPs over statherin were positive with a fimP central probe, while a genospecies 2 strain with the opposite binding preference was not. The sequences of fimP and fimA central gene segments were highly conserved among isolates with the same, but diversified between those with a variant, binding specificity. In conclusion, A. naeslundii exhibits variant fimP and fimA genes corresponding to diverse APRP and GalNAcβ specificities, respectively, while A. odontolyticus has a genetically related but distinct adhesin binding specificity. PMID:9712794

  6. Paxillin binding to the alpha 4 integrin subunit stimulates LFA-1 (integrin alpha L beta 2)-dependent T cell migration by augmenting the activation of focal adhesion kinase/proline-rich tyrosine kinase-2.

    PubMed

    Rose, David M; Liu, Shouchun; Woodside, Darren G; Han, Jaewon; Schlaepfer, David D; Ginsberg, Mark H

    2003-06-15

    Engagement of very late Ag-4 (integrin alpha(4)beta(1)) by ligands such as VCAM-1 markedly stimulates leukocyte migration mediated by LFA-1 (integrin alpha(L)beta(2)). This form of integrin trans-regulation in T cells requires the binding of paxillin to the alpha(4) integrin cytoplasmic domain. This conclusion is based on the abolition of trans-regulation in Jurkat T cells by an alpha(4) mutation (alpha(4)(Y991A)) that disrupts paxillin binding. Furthermore, cellular expression of an alpha(4)-binding fragment of paxillin that blocks the alpha(4)-paxillin interaction, selectively blocked VCAM-1 stimulation of alpha(L)beta(2)-dependent cell migration. The alpha(4)-paxillin association mediates trans-regulation by enhancing the activation of tyrosine kinases, focal adhesion kinase (FAK) and/or proline-rich tyrosine kinase-2 (Pyk2), based on two lines of evidence. First, disruption of the paxillin-binding site in the alpha(4) tail resulted in much less alpha(4)beta(1)-mediated phosphorylation of Pyk2 and FAK. Second, transfection with cDNAs encoding C-terminal fragments of Pyk2 and FAK, which block the function of the intact kinases, blocked alpha(4)beta(1) stimulation of alpha(L)beta(2)-dependent migration. These results define a proximal protein-protein interaction of an integrin cytoplasmic domain required for trans-regulation between integrins, and establish that augmented activation of Pyk2 and/or FAK is an immediate signaling event required for the trans-regulation of integrin alpha(L)beta(2) by alpha(4)beta(1). PMID:12794117

  7. Restoration of desmosomal junction protein expression and inhibition of H3K9-specific histone demethylase activity by cytostatic proline-rich polypeptide-1 leads to suppression of tumorigenic potential in human chondrosarcoma cells

    PubMed Central

    GALOIAN, KARINA; QURESHI, AMIR; WIDEROFF, GINA; TEMPLE, H.T.

    2015-01-01

    Disruption of cell-cell junctions and the concomitant loss of polarity, downregulation of tumor-suppressive adherens junctions and desmosomes represent hallmark phenotypes for several different cancer cells. Moreover, a variety of evidence supports the argument that these two common phenotypes of cancer cells directly contribute to tumorigenesis. In this study, we aimed to determine the status of intercellular junction proteins expression in JJ012 human malignant chondrosarcoma cells and investigate the effect of the antitumorigenic cytokine, proline-rich polypeptide-1 (PRP-1) on their expression. The cell junction pathway array data indicated downregulation of desmosomal proteins, such as desmoglein (1,428-fold), desmoplakin (620-fold) and plakoglobin (442-fold). The tight junction proteins claudin 11 and E-cadherin were also downregulated (399- and 52-fold, respectively). Among the upregulated proteins were the characteristic for tumors gap junction β-5 protein (connexin 31.1) and the pro-inflammatory pathway protein intercellular adhesion molecule (upregulated 129- and 43-fold, respectively). We demonstrated that PRP-1 restored the expression of the abovementioned downregulated in chondrosarcoma desmosomal proteins. PRP-1 inhibited H3K9-specific histone demethylase activity in chondrosarcoma cells in a dose-dependent manner (0.5 µg/ml PRP, 63%; 1 µg/ml PRP, 74%; and 10 µg/ml PRP, 91% inhibition). Members of the H3K9 family were shown to transcriptionally repress tumor suppressor genes and contribute to cancer progression. Our experimental data indicated that PRP-1 restores tumor suppressor desmosomal protein expression in JJ012 human chondrosarcoma cells and inhibits H3K9 demethylase activity, contributing to the suppression of tumorigenic potential in chondrosarcoma cells. PMID:25469290

  8. Systematic Analysis of Intracellular-targeting Antimicrobial Peptides, Bactenecin 7, Hybrid of Pleurocidin and Dermaseptin, Proline-Arginine-rich Peptide, and Lactoferricin B, by Using Escherichia coli Proteome Microarrays.

    PubMed

    Ho, Yu-Hsuan; Shah, Pramod; Chen, Yi-Wen; Chen, Chien-Sheng

    2016-06-01

    Antimicrobial peptides (AMPs) act either through membrane lysis or by attacking intracellular targets. Intracellular targeting AMPs are a resource for antimicrobial agent development. Several AMPs have been identified as intracellular targeting peptides; however, the intracellular targets of many of these peptides remain unknown. In the present study, we used an Escherichia coli proteome microarray to systematically identify the protein targets of three intracellular targeting AMPs: bactenecin 7 (Bac7), a hybrid of pleurocidin and dermaseptin (P-Der), and proline-arginine-rich peptide (PR-39). In addition, we also included the data of lactoferricin B (LfcinB) from our previous study for a more comprehensive analysis. We analyzed the unique protein hits of each AMP in the Kyoto Encyclopedia of Genes and Genomes. The results indicated that Bac7 targets purine metabolism and histidine kinase, LfcinB attacks the transcription-related activities and several cellular carbohydrate biosynthetic processes, P-Der affects several catabolic processes of small molecules, and PR-39 preferentially recognizes proteins involved in RNA- and folate-metabolism-related cellular processes. Moreover, both Bac7 and LfcinB target purine metabolism, whereas LfcinB and PR-39 target lipopolysaccharide biosynthesis. This suggested that LfcinB and Bac7 as well as LfcinB and PR-39 have a synergistic effect on antimicrobial activity, which was validated through antimicrobial assays. Furthermore, common hits of all four AMPs indicated that all of them target arginine decarboxylase, which is a crucial enzyme for Escherichia coli survival in extremely acidic environments. Thus, these AMPs may display greater inhibition to bacterial growth in extremely acidic environments. We have also confirmed this finding in bacterial growth inhibition assays. In conclusion, this comprehensive identification and systematic analysis of intracellular targeting AMPs reveals crucial insights into the intracellular

  9. Systematic Analysis of Intracellular-targeting Antimicrobial Peptides, Bactenecin 7, Hybrid of Pleurocidin and Dermaseptin, Proline-Arginine-rich Peptide, and Lactoferricin B, by Using Escherichia coli Proteome Microarrays.

    PubMed

    Ho, Yu-Hsuan; Shah, Pramod; Chen, Yi-Wen; Chen, Chien-Sheng

    2016-06-01

    Antimicrobial peptides (AMPs) act either through membrane lysis or by attacking intracellular targets. Intracellular targeting AMPs are a resource for antimicrobial agent development. Several AMPs have been identified as intracellular targeting peptides; however, the intracellular targets of many of these peptides remain unknown. In the present study, we used an Escherichia coli proteome microarray to systematically identify the protein targets of three intracellular targeting AMPs: bactenecin 7 (Bac7), a hybrid of pleurocidin and dermaseptin (P-Der), and proline-arginine-rich peptide (PR-39). In addition, we also included the data of lactoferricin B (LfcinB) from our previous study for a more comprehensive analysis. We analyzed the unique protein hits of each AMP in the Kyoto Encyclopedia of Genes and Genomes. The results indicated that Bac7 targets purine metabolism and histidine kinase, LfcinB attacks the transcription-related activities and several cellular carbohydrate biosynthetic processes, P-Der affects several catabolic processes of small molecules, and PR-39 preferentially recognizes proteins involved in RNA- and folate-metabolism-related cellular processes. Moreover, both Bac7 and LfcinB target purine metabolism, whereas LfcinB and PR-39 target lipopolysaccharide biosynthesis. This suggested that LfcinB and Bac7 as well as LfcinB and PR-39 have a synergistic effect on antimicrobial activity, which was validated through antimicrobial assays. Furthermore, common hits of all four AMPs indicated that all of them target arginine decarboxylase, which is a crucial enzyme for Escherichia coli survival in extremely acidic environments. Thus, these AMPs may display greater inhibition to bacterial growth in extremely acidic environments. We have also confirmed this finding in bacterial growth inhibition assays. In conclusion, this comprehensive identification and systematic analysis of intracellular targeting AMPs reveals crucial insights into the intracellular

  10. Influence of the yjiL-mdtM Gene Cluster on the Antibacterial Activity of Proline-Rich Antimicrobial Peptides Overcoming Escherichia coli Resistance Induced by the Missing SbmA Transporter System

    PubMed Central

    Krizsan, Andor; Knappe, Daniel

    2015-01-01

    In view of increasing health threats from multiresistant pathogens, antimicrobial peptides (AMPs) and, specifically, proline-rich AMPs (PrAMPs) have been investigated in animal models. PrAMPs enter bacteria via the ABC transporter SbmA and inhibit intracellular targets. We used phage transduction (Tn10 insertion) to screen by random mutagenesis for alternative uptake mechanisms for analogs of apidaecin 1b, a honeybee-derived PrAMP. All 24 apidaecin-resistant mutants had the Tn10 insertion in the sbmA gene. These sbmA::Tn10 insertion mutants and the Escherichia coli BW25113 ΔsbmA (JW0368) strain were still susceptible to the bactenecin PrAMP Bac7(1-35) and oncocin PrAMPs Onc18 and Onc112, as well as to Chex1-Arg20, despite significantly reduced internalizations. In a second round of random mutagenesis, the remaining susceptibility was linked to the yjiL-mdtM gene cluster. E. coli BW25113 and its ΔyjiL null mutant (JW5785) were equally susceptible to all PrAMPs tested, whereas the BW25113 ΔmdtM mutant was less susceptible to oncocins. The JW0368 yjiL::Tn10 transposon mutant (BS2) was resistant to all short PrAMPs and susceptible only to full-length Bac7 and A3-APO. Interestingly, PrAMPs appear to enter bacteria via MdtM, a multidrug resistance transporter (drug/H+ antiporter) of the major facilitator superfamily (MFS) that can efflux antibiotics, biocides, and bile salts. In conclusion, PrAMPs enter bacteria via ABC and MFS transporters that efflux antibiotics and cytotoxic compounds from the cytoplasm to the periplasm. PMID:26169420

  11. The puckering free-energy surface of proline

    NASA Astrophysics Data System (ADS)

    Wu, Di

    2013-03-01

    Proline has two preferred puckering states, which are often characterized by the pseudorotation phase angle and amplitude. Although proline's five endocyclic torsion angles can be utilized to calculate the phase angle and amplitude, it is not clear if there is any direct correlation between each torsion angle and the proline-puckering pathway. Here we have designed five proline puckering pathways utilizing each torsion angle χj (j = 1˜5) as the reaction coordinate. By examining the free-energy surfaces of the five puckering pathways, we find they can be categorized into two groups. The χ2 pathway (χ2 is about the Cβ—Cγ bond) is especially meaningful in describing proline puckering: it changes linearly with the puckering amplitude and symmetrically with the phase angle. Our results show that this conclusion applies to both trans and cis proline conformations. We have also analyzed the correlations of proline puckering and its backbone torsion angles ϕ and ψ. We show proline has preferred puckering states at the specific regions of ϕ, ψ angles. Interestingly, the shapes of ψ-χ2 free-energy surfaces are similar among the trans proline in water, cis proline in water and cis proline in the gas phase, but they differ substantially from that of the trans proline in the gas phase. Our calculations are conducted using molecular simulations; we also verify our results using the proline conformations selected from the Protein Data Bank. In addition, we have compared our results with those calculated by the quantum mechanical methods.

  12. Regional and local species richness in an insular environment: Serpentine plants in California

    USGS Publications Warehouse

    Harrison, S.; Safford, H.D.; Grace, J.B.; Viers, J.H.; Davies, K.F.

    2006-01-01

    We asked how the richness of the specialized (endemic) flora of serpentine rock outcrops in California varies at both the regional and local scales. Our study had two goals: first, to test whether endemic richness is affected by spatial habitat structure (e.g., regional serpentine area, local serpentine outcrop area, regional and local measures of outcrop isolation), and second, to conduct this test in the context of a broader assessment of environmental influences (e.g., climate, soils, vegetation, disturbance) and historical influences (e.g., geologic age, geographic province) on local and regional species richness. We measured endemic and total richness and environmental variables in 109 serpentine sites (1000-m2 paired plots) in 78 serpentine-containing regions of the state. We used structural equation modeling (SEM) to simultaneously relate regional richness to regionalscale predictors, and local richness to both local-scale and regional-scale predictors. Our model for serpentine endemics explained 66% of the variation in local endemic richness based on local environment (vegetation, soils, rock cover) and on regional endemic richness. It explained 73% of the variation in regional endemic richness based on regional environment (climate and productivity), historical factors (geologic age and geographic province), and spatial structure (regional total area of serpentine, the only significant spatial variable in our analysis). We did not find a strong influence of spatial structure on species richness. However, we were able to distinguish local vs. regional influences on species richness to a novel extent, despite the existence of correlations between local and regional conditions. ?? 2006 by the Ecological Society of America.

  13. Disentangling the determinants of species richness of vascular plants and mammals from national to regional scales.

    PubMed

    Xu, Haigen; Cao, Mingchang; Wu, Yi; Cai, Lei; Cao, Yun; Wu, Jun; Lei, Juncheng; Le, Zhifang; Ding, Hui; Cui, Peng

    2016-02-23

    Understanding the spatial patterns in species richness gets new implication for biodiversity conservation in the context of climate change and intensified human intervention. Here, we created a database of the geographical distribution of 30,519 vascular plant species and 565 mammal species from 2,376 counties across China and disentangled the determinants that explain species richness patterns both at national and regional scales using spatial linear models. We found that the determinants of species richness patterns varied among regions: elevational range was the most powerful predictor for the species richness of plants and mammals across China. However, species richness patterns in the Qinghai-Tibetan Plateau Region (QTR) are quite unique, where net primary productivity was the most important predictor. We also detected that elevational range was positively related to plant species richness when it is less than 1,900 m, whereas the relationship was not significant when elevational range is larger than 1,900 m. It indicated that elevational range often emerges as the predominant controlling factor within the regions where energy is sufficient. The effects of land use on mammal species richness should attract special attention. Our study suggests that region-specific conservation policies should be developed based on the regional features of species richness.

  14. Disentangling the determinants of species richness of vascular plants and mammals from national to regional scales

    PubMed Central

    Xu, Haigen; Cao, Mingchang; Wu, Yi; Cai, Lei; Cao, Yun; Wu, Jun; Lei, Juncheng; Le, Zhifang; Ding, Hui; Cui, Peng

    2016-01-01

    Understanding the spatial patterns in species richness gets new implication for biodiversity conservation in the context of climate change and intensified human intervention. Here, we created a database of the geographical distribution of 30,519 vascular plant species and 565 mammal species from 2,376 counties across China and disentangled the determinants that explain species richness patterns both at national and regional scales using spatial linear models. We found that the determinants of species richness patterns varied among regions: elevational range was the most powerful predictor for the species richness of plants and mammals across China. However, species richness patterns in the Qinghai-Tibetan Plateau Region (QTR) are quite unique, where net primary productivity was the most important predictor. We also detected that elevational range was positively related to plant species richness when it is less than 1,900 m, whereas the relationship was not significant when elevational range is larger than 1,900 m. It indicated that elevational range often emerges as the predominant controlling factor within the regions where energy is sufficient. The effects of land use on mammal species richness should attract special attention. Our study suggests that region-specific conservation policies should be developed based on the regional features of species richness. PMID:26902418

  15. Cluster of genes controlling proline degradation in Salmonella typhimurium.

    PubMed Central

    Ratzkin, B; Roth, J

    1978-01-01

    A cluster of genes essential for degradation of proline to glutamate (put) is located between the pyrC and pyrD loci at min 22 of the Salmonella chromosome. A series of 25 deletion mutants of this region have been isolated and used to construct a fine-structure map of the put genes. The map includes mutations affecting the proline degradative activities, proline oxidase and pyrroline-5-carboxylic dehydrogenase. Also included are mutations affecting the major proline permease and a regulatory mutation that affects both enzyme and permease production. The two enzymatic activities appear to be encoded by a single gene (putA). The regulatory mutation maps between the putA gene and the proline permease gene (putP). PMID:342507

  16. New Isomers in the Neutron-Rich Region Beyond 208Pb

    NASA Astrophysics Data System (ADS)

    Gottardo, A.; Valiente-Dobón, J. J.; Benzoni, G.; Gadea, A.; Lunardi, S.; Boutachkov, P.; Bruce, A. M.; Górska, M.; Grebosz, J.; Pietri, S.; Podolyák, Zs.; Pfützner, M.; Regan, P. H.; Weick, H.; Alcántara Núñez, J.; Algora, A.; Al-Dahan, N.; de Angelis, G.; Ayyad, Y.; Alkhomashi, N.; Allegro, P. R. P.; Bazzacco, D.; Benlliure, J.; Bowry, M.; Bracco, A.; Bunce, M.; Camera, F.; Casarejos, E.; Cortes, M. L.; Crespi, F. C. L.; Corsi, A.; Bacelar, A. M. Denis; Deo, A. Y.; Domingo-Pardo, C.; Doncel, M.; Dombradi, Zs.; Engert, T.; Eppinger, K.; Farrelly, G. F.; Farinon, F.; Farnea, E.; Geissel, H.; Gerl, J.; Goel, N.; Gregor, E.; Habermann, T.; Hoischen, R.; Janik, R.; John, P. R.; Klupp, S.; Kojouharov, I.; Kurz, N.; Lenzi, S. M.; Leoni, S.; Mandal, S.; Menegazzo, R.; Mengoni, D.; Million, B.; Modamio, V.; Morales, A. I.; Napoli, D. R.; Naqvi, F.; Nicolini, R.; Nociforo, C.; Prochazka, A.; Prokopowicz, W.; Recchia, F.; Ribas, R. V.; Reed, M. W.; Rudolph, D.; Sahin, E.; Schaffner, H.; Sharma, A.; Sitar, B.; Siwal, D.; Steiger, K.; Strmen, P.; Swan, T. P. D.; Szarka, I.; Ur, C. A.; Walker, P. M.; Wieland, O.; Wollersheim, H.-J.

    2014-03-01

    The region of neutron-rich nuclei beyond 208Pb has been very difficult to explore due to its high mass and exoticity. However, recent experimental improvements allowed one to perform a quite extended isomer decay spectroscopy of these nuclei.

  17. Landscape connectivity strengthens local-regional richness relationships in successional plant communities.

    PubMed

    Damschen, Ellen I; Brudvig, Lars A

    2012-04-01

    Local species diversity is maintained over ecological time by a balance between dispersal and species interactions. Local-regional species richness relationships are often used to investigate the relative importance of these two processes and the scales at which they operate. For communities undergoing succession, theory predicts a temporal progression in local-regional species richness relationships: from no relationship to positive linear to saturating. However, observational tests have been mixed, and experiments have been rare. Using a replicated large-scale experiment, we evaluate the impact of two dispersal-governing processes at the regional scale, connectivity and shape of the region (i.e., patches), on the progression of local-regional species richness relationships for plant communities undergoing succession. Regional connectivity accelerates the transition from no relationship to a positive linear relationship, while the shape of the region has no consistent effect nine years post-disturbance. Our results experimentally demonstrate the importance of dispersal in structuring local-regional species richness relationships over time and suggest that conservation corridors among regions can increase local diversity through regional enrichment of plant communities undergoing reassembly.

  18. Substrate channeling in proline metabolism

    PubMed Central

    Arentson, Benjamin W.; Sanyal, Nikhilesh; Becker, Donald F.

    2012-01-01

    Proline metabolism is an important pathway that has relevance in several cellular functions such as redox balance, apoptosis, and cell survival. Results from different groups have indicated that substrate channeling of proline metabolic intermediates may be a critical mechanism. One intermediate is pyrroline-5-carboxylate (P5C), which upon hydrolysis opens to glutamic semialdehyde (GSA). Recent structural and kinetic evidence indicate substrate channeling of P5C/GSA occurs in the proline catabolic pathway between the proline dehydrogenase and P5C dehydrogenase active sites of bifunctional proline utilization A (PutA). Substrate channeling in PutA is proposed to facilitate the hydrolysis of P5C to GSA which is unfavorable at physiological pH. The second intermediate, gamma-glutamyl phosphate, is part of the proline biosynthetic pathway and is extremely labile. Substrate channeling of gamma-glutamyl phosphate is thought to be necessary to protect it from bulk solvent. Because of the unfavorable equilibrium of P5C/GSA and the reactivity of gamma-glutamyl phosphate, substrate channeling likely improves the efficiency of proline metabolism. Here, we outline general strategies for testing substrate channeling and review the evidence for channeling in proline metabolism. PMID:22201749

  19. OcculterCut: A Comprehensive Survey of AT-Rich Regions in Fungal Genomes

    PubMed Central

    Testa, Alison C.; Oliver, Richard P.; Hane, James K.

    2016-01-01

    We present a novel method to measure the local GC-content bias in genomes and a survey of published fungal species. The method, enacted as “OcculterCut” (https://sourceforge.net/projects/occultercut, last accessed April 30, 2016), identified species containing distinct AT-rich regions. In most fungal taxa, AT-rich regions are a signature of repeat-induced point mutation (RIP), which targets repetitive DNA and decreases GC-content though the conversion of cytosine to thymine bases. RIP has in turn been identified as a driver of fungal genome evolution, as RIP mutations can also occur in single-copy genes neighboring repeat-rich regions. Over time RIP perpetuates “two speeds” of gene evolution in the GC-equilibrated and AT-rich regions of fungal genomes. In this study, genomes showing evidence of this process are found to be common, particularly among the Pezizomycotina. Further analysis highlighted differences in amino acid composition and putative functions of genes from these regions, supporting the hypothesis that these regions play an important role in fungal evolution. OcculterCut can also be used to identify genes undergoing RIP-assisted diversifying selection, such as small, secreted effector proteins that mediate host-microbe disease interactions. PMID:27289099

  20. Condensation of Si-rich region inside soda-lime glass by parallel femtosecond laser irradiation.

    PubMed

    Sakakura, Masaaki; Yoshimura, Kouhei; Kurita, Torataro; Shimizu, Masahiro; Shimotsuma, Yasuhiko; Fukuda, Naoaki; Hirao, Kazuyuki; Miura, Kiyotaka

    2014-06-30

    Local melting and modulation of elemental distributions can be induced inside a glass by focusing femtosecond (fs) laser pulses at high repetition rate (>100 kHz). Using only a single beam of fs laser pulses, the shape of the molten region is ellipsoidal, so the induced elemental distributions are often circular and elongate in the laser propagation direction. In this study, we show that the elongation of the fs laser-induced elemental distributions inside a soda-lime glass could be suppressed by parallel fsing of 250 kHz and 1 kHz fs laser pulses. The thickness of a Si-rich region became about twice thinner than that of a single 250 kHz laser irradiation. Interestingly, the position of the Si-rich region depended on the relative positions between 1 kHz and 250 kHz photoexcited regions. The observation of glass melt during laser exposure showed that the vortex flow of glass melt occurred and it induced the formation of a Si-rich region. Based on the simulation of the transient temperature and viscosity distributions during laser exposure, we temporally interpreted the origin of the vortex flow of glass melt and the mechanism of the formation of the Si-rich region.

  1. AT-rich region and repeated sequences - the essential elements of replication origins of bacterial replicons.

    PubMed

    Rajewska, Magdalena; Wegrzyn, Katarzyna; Konieczny, Igor

    2012-03-01

    Repeated sequences are commonly present in the sites for DNA replication initiation in bacterial, archaeal, and eukaryotic replicons. Those motifs are usually the binding places for replication initiation proteins or replication regulatory factors. In prokaryotic replication origins, the most abundant repeated sequences are DnaA boxes which are the binding sites for chromosomal replication initiation protein DnaA, iterons which bind plasmid or phage DNA replication initiators, defined motifs for site-specific DNA methylation, and 13-nucleotide-long motifs of a not too well-characterized function, which are present within a specific region of replication origin containing higher than average content of adenine and thymine residues. In this review, we specify methods allowing identification of a replication origin, basing on the localization of an AT-rich region and the arrangement of the origin's structural elements. We describe the regularity of the position and structure of the AT-rich regions in bacterial chromosomes and plasmids. The importance of 13-nucleotide-long repeats present at the AT-rich region, as well as other motifs overlapping them, was pointed out to be essential for DNA replication initiation including origin opening, helicase loading and replication complex assembly. We also summarize the role of AT-rich region repeated sequences for DNA replication regulation.

  2. Relative roles of ecological and energetic constraints, diversification rates and region history on global species richness gradients.

    PubMed

    Belmaker, Jonathan; Jetz, Walter

    2015-06-01

    Regions worldwide differ markedly in species richness. Here, for birds and mammals worldwide, we directly compare four sets of hypotheses regarding geographical richness gradients: (1) evolutionary, emphasising heterogeneity in diversification rates, (2) historical, related to differences in region ages and sizes, (3) energetic, associated with variation in productive or ambient energy and (4) ecological, reflecting differences in ecological niche diversity. Among highly independent regions, or 'evolutionary arenas', we find that richness is weakly influenced by richness-standardised ecological niche diversity, questioning the significance of ecological constraints for producing large-scale diversity gradients. In contrast, we find strong evidence for the importance of region area and its changes over time, together with a role for temperature. These predictors affect richness predominately directly without concomitant positive effects on diversification rates. This suggests that regional richness is governed by historical and evolutionary processes, which promote region-specific accumulation of diversity through time or following asymmetrical dispersal.

  3. Relative roles of ecological and energetic constraints, diversification rates and region history on global species richness gradients.

    PubMed

    Belmaker, Jonathan; Jetz, Walter

    2015-06-01

    Regions worldwide differ markedly in species richness. Here, for birds and mammals worldwide, we directly compare four sets of hypotheses regarding geographical richness gradients: (1) evolutionary, emphasising heterogeneity in diversification rates, (2) historical, related to differences in region ages and sizes, (3) energetic, associated with variation in productive or ambient energy and (4) ecological, reflecting differences in ecological niche diversity. Among highly independent regions, or 'evolutionary arenas', we find that richness is weakly influenced by richness-standardised ecological niche diversity, questioning the significance of ecological constraints for producing large-scale diversity gradients. In contrast, we find strong evidence for the importance of region area and its changes over time, together with a role for temperature. These predictors affect richness predominately directly without concomitant positive effects on diversification rates. This suggests that regional richness is governed by historical and evolutionary processes, which promote region-specific accumulation of diversity through time or following asymmetrical dispersal. PMID:25919478

  4. Importance of SARS-CoV spike protein Trp-rich region in viral infectivity

    SciTech Connect

    Lu Yanning; Neo, T.L.; Liu, D.Xi.; Tam, James P.

    2008-07-04

    SARS-CoV entry is mediated by spike glycoprotein. During the viral and host cellular membrane fusion, HR1 and HR2 form 6-helix bundle, positioning the fusion peptide closely to the C-terminal region of ectodomain to drive apposition and subsequent membrane fusion. Connecting to the HR2 region is a Trp-rich region which is absolutely conserved in members of coronaviruses. To investigate the importance of Trp-rich region in SARS-CoV entry, we produced different mutated S proteins using Alanine scan strategy. SARS-CoV pseudotyped with mutated S protein was used to measure viral infectivity. To restore the aromaticity of Ala-mutants, we performed rescue experiments using phenylalanine substitutions. Our results show that individually substituted Ala-mutants substantially decrease infectivity by >90%, global Ala-mutants totally abrogated infectivity. In contrast, Phe-substituted mutants are able to restore 10-25% infectivity comparing to the wild-type. The results suggest that the Trp-rich region of S protein is essential for SARS-CoV infectivity.

  5. Biogeographic affinity helps explain productivity-richness relationships at regional and local scales

    USGS Publications Warehouse

    Harrison, S.; Grace, J.B.

    2007-01-01

    The unresolved question of what causes the observed positive relationship between large-scale productivity and species richness has long interested ecologists and evolutionists. Here we examine a potential explanation that we call the biogeographic affinity hypothesis, which proposes that the productivity-richness relationship is a function of species' climatic tolerances that in turn are shaped by the earth's climatic history combined with evolutionary niche conservatism. Using botanical data from regions and sites across California, we find support for a key prediction of this hypothesis, namely, that the productivity-species richness relationship differs strongly and predictably among groups of higher taxa on the basis of their biogeographic affinities (i.e., between families or genera primarily associated with north-temperate, semiarid, or desert zones). We also show that a consideration of biogeographic affinity can yield new insights on how productivity-richness patterns at large geographic scales filter down to affect patterns of species richness and composition within local communities. ?? 2007 by The University of Chicago. All rights reserved.

  6. Nuclear structure in the neutron-rich doubly magic sup 78 Ni region

    SciTech Connect

    Hill, J.C.; Wohn, F.K.; Winger, J.A.; Warburton, E.K.; Gill, R.L.; Schuhmann, R.B.; Brookhaven National Lab., Upton, NY; Clark Univ., Worcester, MA )

    1989-01-01

    The magic numbers Z=28 and N=50 imply that very neutron-rich {sup 78}Ni, which has not yet been observed, is doubly magic. The {sup 78}Ni region was investigated by studying the N=50 isotones and neutron-rich Zn isotopes. Results on the level structure of {sup 83}As, {sup 74}Zn, and {sup 76}Zn populated in the decays of {sup 83}Ge, {sup 74}Cu, and {sup 76}Cu are presented. The parent nuclides were produced and mass separated using the TRISTAN facility on-line to the High-Flux Beam Reactor at Brookhaven. The systematics of the N=50 isotones and even-A Zn isotopes are discussed and compared with shell-model calculations involving active nucleons outside of a {sup 78}Ni and {sup 66}Ni core, respectively. The extent to which the {sup 78}Ni region can be considered doubly magic is assessed. 43 refs., 7 figs.

  7. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny.

    PubMed

    Kavi Kishor, Polavarapu B; Hima Kumari, P; Sunita, M S L; Sreenivasulu, Nese

    2015-01-01

    Proline is a proteogenic amino acid and accumulates both under stress and non-stress conditions as a beneficial solute in plants. Recent discoveries point out that proline plays an important role in plant growth and differentiation across life cycle. It is a key determinant of many cell wall proteins that plays important roles in plant development. The role of extensins, arabinogalactan proteins and hydroxyproline- and proline-rich proteins as important components of cell wall proteins that play pivotal roles in cell wall signal transduction cascades, plant development and stress tolerance is discussed in this review. Molecular insights are also provided here into the plausible roles of proline transporters modulating key events in plant development. In addition, the roles of proline during seed developmental transitions including storage protein synthesis are discussed. PMID:26257754

  8. Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny

    PubMed Central

    Kavi Kishor, Polavarapu B.; Hima Kumari, P.; Sunita, M. S. L.; Sreenivasulu, Nese

    2015-01-01

    Proline is a proteogenic amino acid and accumulates both under stress and non-stress conditions as a beneficial solute in plants. Recent discoveries point out that proline plays an important role in plant growth and differentiation across life cycle. It is a key determinant of many cell wall proteins that plays important roles in plant development. The role of extensins, arabinogalactan proteins and hydroxyproline- and proline-rich proteins as important components of cell wall proteins that play pivotal roles in cell wall signal transduction cascades, plant development and stress tolerance is discussed in this review. Molecular insights are also provided here into the plausible roles of proline transporters modulating key events in plant development. In addition, the roles of proline during seed developmental transitions including storage protein synthesis are discussed. PMID:26257754

  9. Multiple Determinants of Anuran Richness and Occurrence in an Agricultural Region in South-Eastern Brazil

    NASA Astrophysics Data System (ADS)

    Prado, Vitor H. M.; Rossa-Feres, Denise de C.

    2014-04-01

    In agricultural landscapes, studies that identify factors driving species richness and occupancy are important because they can guide farmers to use conservation practices that minimize species loss. In this context, anurans are threatened by habitat loss because they depend on the characteristics of both local water bodies and adjacent landscapes. We used a model selection approach to evaluate the influence of local and landscape variables in determining anuran species richness and occurrence in 40 freshwater bodies in a heavily deforested region of semideciduous Atlantic Forest in southeastern Brazil. Our aim was to develop recommendations for conservation of anuran communities in rural areas. Pond hydroperiod and area were the most important variables for explaining anuran species richness and occupancy, with greatest species richness being found in water bodies with intermediate hydroperiod and area. Other important variables that reflected individual species occupancies were the number of vegetation types and pond isolation. In addition, recent studies evidenced that water bodies near forest fragments have higher anuran abundance or diversity. In conclusion, we suggest the maintenance of semi-permanent ponds, isolated from large rivers or reservoirs and near forest fragments, as an effective strategy to conserve anuran fauna in agricultural landscapes of southeastern Brazil. Brazilian government requires the maintenance of forests as legal reserve in each farm, and farmers need to maintain ponds as drinking water for cattle or crop irrigation. For this reason, the guidelines suggested in the present study can be easily adopted, without additional costs to rural productivity.

  10. Multiple determinants of anuran richness and occurrence in an agricultural region in South-eastern Brazil.

    PubMed

    Prado, Vitor H M; Rossa-Feres, Denise de C

    2014-04-01

    In agricultural landscapes, studies that identify factors driving species richness and occupancy are important because they can guide farmers to use conservation practices that minimize species loss. In this context, anurans are threatened by habitat loss because they depend on the characteristics of both local water bodies and adjacent landscapes. We used a model selection approach to evaluate the influence of local and landscape variables in determining anuran species richness and occurrence in 40 freshwater bodies in a heavily deforested region of semideciduous Atlantic Forest in southeastern Brazil. Our aim was to develop recommendations for conservation of anuran communities in rural areas. Pond hydroperiod and area were the most important variables for explaining anuran species richness and occupancy, with greatest species richness being found in water bodies with intermediate hydroperiod and area. Other important variables that reflected individual species occupancies were the number of vegetation types and pond isolation. In addition, recent studies evidenced that water bodies near forest fragments have higher anuran abundance or diversity. In conclusion, we suggest the maintenance of semi-permanent ponds, isolated from large rivers or reservoirs and near forest fragments, as an effective strategy to conserve anuran fauna in agricultural landscapes of southeastern Brazil. Brazilian government requires the maintenance of forests as legal reserve in each farm, and farmers need to maintain ponds as drinking water for cattle or crop irrigation. For this reason, the guidelines suggested in the present study can be easily adopted, without additional costs to rural productivity.

  11. Qβ Measurements of Neutron-Rich Isotopes in the Mass Region 147≤A≤152

    NASA Astrophysics Data System (ADS)

    Ikuta, Tomohiko; Taniguchi, Akihiro; Yamamoto, Hiroshi; Kawade, Kiyoshi; Kawase, Yoichi

    1995-09-01

    The systematic Qβ measurements of 14 neutron-rich nuclei in the mass region from A=147 to A=152 have been performed with an HPGe detector. Neutron rich nuclei were mass separated from the thermal neutron induced fission of 235U using a He-jet type on-line isotope separator which has been developed at the Kyoto University Reactor (KUR). From β-ray singles and β-γ coincidence measurements, the Qβ values of 147La, 147-150Ce, 147-152Pr, 152Nd and 152Pm have been determined. The Qβ values of 152Pr and 152Nd have been measured for the first time. The atomic masses derived from the Qβ values are compared with the predictions of theoretical mass calculations.

  12. Germination of Candida albicans induced by proline.

    PubMed Central

    Dabrowa, N; Taxer, S S; Howard, D H

    1976-01-01

    Blastospores of Candida albicans germinated in proline-biotin-buffer medium incubated at 37 C. Certain other amino acids in the glatamate, asparate, and pyruvate families also fostered germinaton but generally to a lesser extent than did proline. L-Cysteine, D-proline, and certain structural analogues of L-proline inhibited proline-stimualted germination. The concentration of phosphate and glucose was crucial to amino acid-stimulated germination of C. albicans. Clinical isolates and stock cultures varied in their response to the germ tube-inducing activity of proline or other amino acids. The proline-buffer medium cannot be used in a diagnostic test for production of germ tubes by isolates of yeasts. PMID:5375

  13. Functional specialization in proline biosynthesis of melanoma.

    PubMed

    De Ingeniis, Jessica; Ratnikov, Boris; Richardson, Adam D; Scott, David A; Aza-Blanc, Pedro; De, Surya K; Kazanov, Marat; Pellecchia, Maurizio; Ronai, Ze'ev; Osterman, Andrei L; Smith, Jeffrey W

    2012-01-01

    Proline metabolism is linked to hyperprolinemia, schizophrenia, cutis laxa, and cancer. In the latter case, tumor cells tend to rely on proline biosynthesis rather than salvage. Proline is synthesized from either glutamate or ornithine; both are converted to pyrroline-5-carboxylate (P5C), and then to proline via pyrroline-5-carboxylate reductases (PYCRs). Here, the role of three isozymic versions of PYCR was addressed in human melanoma cells by tracking the fate of (13)C-labeled precursors. Based on these studies we conclude that PYCR1 and PYCR2, which are localized in the mitochondria, are primarily involved in conversion of glutamate to proline. PYCRL, localized in the cytosol, is exclusively linked to the conversion of ornithine to proline. This analysis provides the first clarification of the role of PYCRs to proline biosynthesis.

  14. Functional Specialization in Proline Biosynthesis of Melanoma

    PubMed Central

    Richardson, Adam D.; Scott, David A.; Aza-Blanc, Pedro; De, Surya K.; Kazanov, Marat; Pellecchia, Maurizio; Ronai, Ze'ev; Osterman, Andrei L.; Smith, Jeffrey W.

    2012-01-01

    Proline metabolism is linked to hyperprolinemia, schizophrenia, cutis laxa, and cancer. In the latter case, tumor cells tend to rely on proline biosynthesis rather than salvage. Proline is synthesized from either glutamate or ornithine; both are converted to pyrroline-5-carboxylate (P5C), and then to proline via pyrroline-5-carboxylate reductases (PYCRs). Here, the role of three isozymic versions of PYCR was addressed in human melanoma cells by tracking the fate of 13C-labeled precursors. Based on these studies we conclude that PYCR1 and PYCR2, which are localized in the mitochondria, are primarily involved in conversion of glutamate to proline. PYCRL, localized in the cytosol, is exclusively linked to the conversion of ornithine to proline. This analysis provides the first clarification of the role of PYCRs to proline biosynthesis. PMID:23024808

  15. Sole and stable RNA duplexes of G-rich sequences located in the 5'-untranslated region of protooncogenes.

    PubMed

    Saxena, Sarika; Miyoshi, Daisuke; Sugimoto, Naoki

    2010-08-24

    Guanine- (G-) rich nucleic acid sequences can form four-stranded structures called G-quadruplexes. It is widely held that the formation of a G-quadruplex in RNA is more feasible than in DNA because of the lack of a complementary strand in mRNA. Here, we analyzed sequences of 5'-untranslated regions of protooncogenes and surprisingly found that these regions showed an enrichment of not only guanine (G) but also cytosine (C) nucleotides. Since neighboring cytosine- (C-) rich regions can affect the formation and stability of a G-quadruplex structure, we further investigated the properties of DNA and RNA structures of G-rich and GC-rich regions. We selected typical GC-rich RNA sequences from protooncogenes and corresponding DNA sequences and investigated their structures. It was found that the GC-rich RNA sequences formed stable A-form duplexes as their major structure independent of the surrounding conditions, including the presence of different cations (Na(+), K(+), or Li(+)) or molecular crowding with 40 wt % poly(ethylene glycol) with an average molecular mass of 200 Da although there are a few exceptions in which only a combination of K(+) and molecular crowding induced a G-quadruplex structure of an extremely G-rich RNA sequence. In contrast, structural polymorphisms involving duplexes, G-quadruplexes, and i-motifs were observed for GC-rich DNA sequences depending on the surrounding factors. These results demonstrate the considerable structural and functional differences in GC-rich sequences of the genome (DNA) and transcriptosome (mRNA) with respect to the nucleic acid backbone. Moreover, it was suggested that structural study for a G-rich RNA sequence should be carried out under cell-mimicking condition where K(+) and crowding cosolutes exist.

  16. Projected impacts of climate change on regional capacities for global plant species richness.

    PubMed

    Sommer, Jan Henning; Kreft, Holger; Kier, Gerold; Jetz, Walter; Mutke, Jens; Barthlott, Wilhelm

    2010-08-01

    Climate change represents a major challenge to the maintenance of global biodiversity. To date, the direction and magnitude of net changes in the global distribution of plant diversity remain elusive. We use the empirical multi-variate relationships between contemporary water-energy dynamics and other non-climatic predictor variables to model the regional capacity for plant species richness (CSR) and its projected future changes. We find that across all analysed Intergovernmental Panel on Climate Change emission scenarios, relative changes in CSR increase with increased projected temperature rise. Between now and 2100, global average CSR is projected to remain similar to today (+0.3%) under the optimistic B1/+1.8 degrees C scenario, but to decrease significantly (-9.4%) under the 'business as usual' A1FI/+4.0 degrees C scenario. Across all modelled scenarios, the magnitude and direction of CSR change are geographically highly non-uniform. While in most temperate and arctic regions, a CSR increase is expected, the projections indicate a strong decline in most tropical and subtropical regions. Countries least responsible for past and present greenhouse gas emissions are likely to incur disproportionately large future losses in CSR, whereas industrialized countries have projected moderate increases. Independent of direction, we infer that all changes in regional CSR will probably induce on-site species turnover and thereby be a threat to native floras.

  17. Projected impacts of climate change on regional capacities for global plant species richness.

    PubMed

    Sommer, Jan Henning; Kreft, Holger; Kier, Gerold; Jetz, Walter; Mutke, Jens; Barthlott, Wilhelm

    2010-08-01

    Climate change represents a major challenge to the maintenance of global biodiversity. To date, the direction and magnitude of net changes in the global distribution of plant diversity remain elusive. We use the empirical multi-variate relationships between contemporary water-energy dynamics and other non-climatic predictor variables to model the regional capacity for plant species richness (CSR) and its projected future changes. We find that across all analysed Intergovernmental Panel on Climate Change emission scenarios, relative changes in CSR increase with increased projected temperature rise. Between now and 2100, global average CSR is projected to remain similar to today (+0.3%) under the optimistic B1/+1.8 degrees C scenario, but to decrease significantly (-9.4%) under the 'business as usual' A1FI/+4.0 degrees C scenario. Across all modelled scenarios, the magnitude and direction of CSR change are geographically highly non-uniform. While in most temperate and arctic regions, a CSR increase is expected, the projections indicate a strong decline in most tropical and subtropical regions. Countries least responsible for past and present greenhouse gas emissions are likely to incur disproportionately large future losses in CSR, whereas industrialized countries have projected moderate increases. Independent of direction, we infer that all changes in regional CSR will probably induce on-site species turnover and thereby be a threat to native floras. PMID:20335215

  18. Projected impacts of climate change on regional capacities for global plant species richness

    PubMed Central

    Sommer, Jan Henning; Kreft, Holger; Kier, Gerold; Jetz, Walter; Mutke, Jens; Barthlott, Wilhelm

    2010-01-01

    Climate change represents a major challenge to the maintenance of global biodiversity. To date, the direction and magnitude of net changes in the global distribution of plant diversity remain elusive. We use the empirical multi-variate relationships between contemporary water-energy dynamics and other non-climatic predictor variables to model the regional capacity for plant species richness (CSR) and its projected future changes. We find that across all analysed Intergovernmental Panel on Climate Change emission scenarios, relative changes in CSR increase with increased projected temperature rise. Between now and 2100, global average CSR is projected to remain similar to today (+0.3%) under the optimistic B1/+1.8°C scenario, but to decrease significantly (−9.4%) under the ‘business as usual’ A1FI/+4.0°C scenario. Across all modelled scenarios, the magnitude and direction of CSR change are geographically highly non-uniform. While in most temperate and arctic regions, a CSR increase is expected, the projections indicate a strong decline in most tropical and subtropical regions. Countries least responsible for past and present greenhouse gas emissions are likely to incur disproportionately large future losses in CSR, whereas industrialized countries have projected moderate increases. Independent of direction, we infer that all changes in regional CSR will probably induce on-site species turnover and thereby be a threat to native floras. PMID:20335215

  19. Using species distribution modeling to delineate the botanical richness patterns and phytogeographical regions of China

    NASA Astrophysics Data System (ADS)

    Zhang, Ming-Gang; Slik, J. W. Ferry; Ma, Ke-Ping

    2016-03-01

    The millions of plant specimens that have been collected and stored in Chinese herbaria over the past ~110 years have recently been digitized and geo-referenced. Here we use this unique collection data set for species distribution modeling exercise aiming at mapping & explaining the botanical richness; delineating China’s phytogeographical regions and investigating the environmental drivers of the dissimilarity patterns. We modeled distributions of 6,828 woody plants using MaxEnt and remove the collection bias using null model. The continental China was divided into different phytogeographical regions based on the dissimilarity patterns. An ordination and Getis-Ord Gi* hotspot spatial statistics were used to analysis the environmental drivers of the dissimilarity patterns. We found that the annual precipitation and temperature stability were responsible for observed species diversity. The mechanisms causing dissimilarity pattern seems differ among biogeographical regions. The identified environmental drivers of the dissimilarity patterns for southeast, southwest, northwest and northeast are annual precipitation, topographic & temperature stability, water deficit and temperature instability, respectively. For effective conservation of China’s plant diversity, identifying the historical refuge and protection of high diversity areas in each of the identified floristic regions and their subdivisions will be essential.

  20. Using species distribution modeling to delineate the botanical richness patterns and phytogeographical regions of China

    PubMed Central

    Zhang, Ming-Gang; Slik, J. W. Ferry; Ma, Ke-Ping

    2016-01-01

    The millions of plant specimens that have been collected and stored in Chinese herbaria over the past ~110 years have recently been digitized and geo-referenced. Here we use this unique collection data set for species distribution modeling exercise aiming at mapping & explaining the botanical richness; delineating China’s phytogeographical regions and investigating the environmental drivers of the dissimilarity patterns. We modeled distributions of 6,828 woody plants using MaxEnt and remove the collection bias using null model. The continental China was divided into different phytogeographical regions based on the dissimilarity patterns. An ordination and Getis-Ord Gi* hotspot spatial statistics were used to analysis the environmental drivers of the dissimilarity patterns. We found that the annual precipitation and temperature stability were responsible for observed species diversity. The mechanisms causing dissimilarity pattern seems differ among biogeographical regions. The identified environmental drivers of the dissimilarity patterns for southeast, southwest, northwest and northeast are annual precipitation, topographic & temperature stability, water deficit and temperature instability, respectively. For effective conservation of China’s plant diversity, identifying the historical refuge and protection of high diversity areas in each of the identified floristic regions and their subdivisions will be essential. PMID:26928763

  1. Localization of human platelet autoantigens to the cysteine-rich region of glycoprotein IIIa.

    PubMed Central

    Kekomaki, R; Dawson, B; McFarland, J; Kunicki, T J

    1991-01-01

    The object of this study was to further localize autoantigenic structures on IIb-IIIa and, if possible, to precisely identify the epitopes recognized by human autoantibodies. In this paper, we identify a 50-kD chymotryptic fragment of IIIa that is recognized by a high percentage of human autoantibodies, typified by the prototype IgG autoantibody RA, which binds to IIIa on intact platelets as well as in an immunoblot assay under nonreduced conditions. Using an immunoblot assay, a carboxy-terminal region of this fragment (33 kD) that contains the cysteine-rich domains of IIIa was found to carry the epitope(s) recognized by the prototype autoantibody RA. The amino-terminal amino acid sequence of the reduced 33-kD fragment, the smallest fragment that retains the RA epitope, is XPSQQDEXSP, and that of the reduced 50-kD fragment is IVQVTFD. This indicates that the 33-kD fragment consists of approximately 175 amino acids beginning at residue 479 and extending at least through residues 636-654, while the 50-kD fragment spans the same region but begins at residue 427. It is apparent that the 33-kD fragment is generated from the 50-kD fragment by additional chymotryptic hydrolysis but remains associated because of the multiple disulfide bonds that are characteristic of this cysteine-rich domain. Sera from 48% of patients with chronic ITP and 2 of 8 patients with acute ITP contain antibodies that bind to the 50-kD fragment in an ELISA. Antibodies of the same specificity are also found in one-third of patients with either secondary immune thrombocytopenia or apparent non-immune thrombocytopenia. We conclude that the 50-kD cysteine-rich region of IIIa is a frequent target of autoantibodies in ITP, but that such antibodies may also be present in cases of thrombocytopenia that cannot be linked to an apparent autoimmune process. Images PMID:1715887

  2. Bridging Between Proline Structure, Functions, Metabolism, and Involvement in Organism Physiology.

    PubMed

    Saibi, Walid; Feki, Kaouthar; Yacoubi, Ines; Brini, Faiçal

    2015-08-01

    Much is now known about proline multifunctionality and metabolism; some aspects of its biological functions are still unclear. Here, we discuss some cases in the proline, structure, definition, metabolism, compartmentalization, accumulation, plausible functions and also its implication in homeostasis and organism physiology. Indeed, we report the role of proline in cellular homeostasis, including redox balance and energy status and their implication as biocatalyst for aldolase activity. Proline can act as a signaling molecule to modulate mitochondrial functions, influence cell proliferation or cell death, and trigger specific gene expression, which can be essential for plant recovery from stresses. Although, the regulation and the function of proline accumulation, during abiotic stresses, are not yet completely understood. The engineering of proline metabolism could lead to new opportunities to improve plant tolerance against environmental stresses. This atypical amino acid has a potential role in the toxicity during growth of some microorganism, vegetal, and mammalian species. Furthermore, we note that the purpose through the work is to provide a rich, concise, and mostly cohesive source on proline, considered as a platform and an anchor between several disciplines and biological functions.

  3. Role of proline under changing environments

    PubMed Central

    Hayat, Shamsul; Hayat, Qaiser; Alyemeni, Mohammed Nasser; Wani, Arif Shafi; Pichtel, John; Ahmad, Aqil

    2012-01-01

    When exposed to stressful conditions, plants accumulate an array of metabolites, particularly amino acids. Amino acids have traditionally been considered as precursors to and constituents of proteins, and play an important role in plant metabolism and development. A large body of data suggests a positive correlation between proline accumulation and plant stress. Proline, an amino acid, plays a highly beneficial role in plants exposed to various stress conditions. Besides acting as an excellent osmolyte, proline plays three major roles during stress, i.e., as a metal chelator, an antioxidative defense molecule and a signaling molecule. Review of the literature indicates that a stressful environment results in an overproduction of proline in plants which in turn imparts stress tolerance by maintaining cell turgor or osmotic balance; stabilizing membranes thereby preventing electrolyte leakage; and bringing concentrations of reactive oxygen species (ROS) within normal ranges, thus preventing oxidative burst in plants. Reports indicate enhanced stress tolerance when proline is supplied exogenously at low concentrations. However, some reports indicate toxic effects of proline when supplied exogenously at higher concentrations. In this article, we review and discuss the effects of exogenous proline on plants exposed to various abiotic stresses. Numerous examples of successful application of exogenous proline to improve stress tolerance are presented. The roles played by exogenous proline under varying environments have been critically examined and reviewed. PMID:22951402

  4. Searching for high-K isomers in the proton-rich A ∼ 80 mass region

    NASA Astrophysics Data System (ADS)

    Bai, Zhi-Jun; Jiao, Chang-Feng; Gao, Yuan; Xu, Fu-Rong

    2016-09-01

    Configuration-constrained potential-energy-surface calculations have been performed to investigate the K isomerism in the proton-rich A ∼ 80 mass region. An abundance of high-K states are predicted. These high-K states arise from two and four-quasi-particle excitations, with Kπ = 8+ and Kπ = 16+, respectively. Their excitation energies are comparatively low, making them good candidates for long-lived isomers. Since most nuclei under study are prolate spheroids in their ground states, the oblate shapes of the predicted high-K states may indicate a combination of K isomerism and shape isomerism. Supported by National Key Basic Research Program of China (2013CB834402) and National Natural Science Foundation of China (11235001, 11320101004 and 11575007)

  5. Searching for high-K isomers in the proton-rich A ˜ 80 mass region

    NASA Astrophysics Data System (ADS)

    Bai, Zhi-Jun; Jiao, Chang-Feng; Gao, Yuan; Xu, Fu-Rong

    2016-09-01

    Configuration-constrained potential-energy-surface calculations have been performed to investigate the K isomerism in the proton-rich A ˜ 80 mass region. An abundance of high-K states are predicted. These high-K states arise from two and four-quasi-particle excitations, with Kπ = 8+ and Kπ = 16+, respectively. Their excitation energies are comparatively low, making them good candidates for long-lived isomers. Since most nuclei under study are prolate spheroids in their ground states, the oblate shapes of the predicted high-K states may indicate a combination of K isomerism and shape isomerism. Supported by National Key Basic Research Program of China (2013CB834402) and National Natural Science Foundation of China (11235001, 11320101004 and 11575007)

  6. High contrast ultrasonic imaging of resin-rich regions in graphite/epoxy composites using entropy

    NASA Astrophysics Data System (ADS)

    Hughes, Michael S.; McCarthy, John E.; Bruillard, Paul. J.; Marsh, Jon N.; Wickline, Samuel A.

    2016-02-01

    This study compares different approaches for imaging a near-surface resin-rich defect in a thin graphite/epoxy plate using backscattered ultrasound. The specimen was created by cutting a circular hole in the second ply; this region filled with excess resin from the graphite/epoxy sheets during the curing process. Backscat-tered waveforms were acquired using a 4 in. focal length, 5MHz center frequency broadband transducer, scanned on a 100 × 100 grid of points that were 0.03 × 0.03 in. apart. The specimen was scanned with the defect side closest to the transducer. Consequently, the reflection from the resin-rich region cannot be gated from the large front-wall echo. At each point in the grid 256 waveforms were averaged together and subsequently used to produce peak-to-peak, Signal Energy (sum of squared digitized waveform values), as well as entropy images of two different types (a Renyi entropy, and a joint entropy). As the figure shows, all of the entropy images exhibit better border delineation and defect contrast than the either the peak-to-peak or Signal Energy. The best results are obtained using the joint entropy of the backscattered waveforms with a reference function. Two different references are examined. The first is a reflection of the insonifying pulse from a stainless steel reflector. The second is an approximate optimum obtained from an iterative parametric search. The joint entropy images produced using this reference exhibit three times the contrast obtained in previous studies.

  7. Influence of proline position upon the ion channel activity of alamethicin.

    PubMed Central

    Kaduk, C; Duclohier, H; Dathe, M; Wenschuh, H; Beyermann, M; Molle, G; Bienert, M

    1997-01-01

    Alamethicin, a 20-residue peptaibol, induces voltage-dependent ion channels in lipid bilayers according to the barrel-stave model. To study relationships between the proline-14-induced kink region and the channel-forming behavior of the peptide, a set of alamethicin analogs with proline incorporated at positions 11, 12, 13, 14, 15, 16, and 17, respectively, as well as an analog with alanine instead of proline at position 14 were synthesized. Macroscopic conductance experiments show that the voltage dependence of the peptides is conserved although slightly influenced, but the apparent mean number of monomers forming the channels is significantly reduced when proline is not located at position 14. This is confirmed in single-channel experiments. The analogs with proline next to position 14 (i.e., 13, 15, 16) show stable conductance levels, but of reduced number, which follows the order Alam-P14 > Alam-P15 > Alam-P16 > Alam-P13. This reduction in the number of levels is connected with changes in the lifetime of the channels. Analogs with proline at position 11, 12, or 17 produce erratic, extremely short-lived current events that could not be resolved. The changes in functional properties are related to structural properties as probed by circular dichroism. The results indicate that proline at position 14 results in optimal channel activity, whereas channels formed by the analogs bearing proline at different positions are considerably less stable. PMID:9129817

  8. Proline dehydrogenase is essential for proline protection against hydrogen peroxide induced cell death

    PubMed Central

    Natarajan, Sathish Kumar; Zhu, Weidong; Liang, Xinwen; Zhang, Lu; Demers, Andrew J.; Zimmerman, Matthew C.; Simpson, Melanie A.; Becker, Donald F.

    2012-01-01

    Proline metabolism has an underlying role in apoptotic signaling that impacts tumorigenesis. Proline is oxidized to glutamate in the mitochondria with the rate limiting step catalyzed by proline dehydrogenase (PRODH). PRODH expression is inducible by p53 leading to increased proline oxidation, reactive oxygen species (ROS) formation, and induction of apoptosis. Paradoxical to its role in apoptosis, proline also protects cells against oxidative stress. Here we explore the mechanism of proline protection against hydrogen peroxide stress in melanoma WM35 cells. Treatment of WM35 cells with proline significantly increased cell viability, diminished oxidative damage of cellular lipids and proteins, and retained ATP and NADPH levels after exposure to hydrogen peroxide. Inhibition or siRNA-mediated knockdown of PRODH abolished proline protection against oxidative stress whereas knockdown of Δ1-pyrroline-5-carboxylate reductase, a key enzyme in proline biosynthesis, had no impact on proline protection. Potential linkages between proline metabolism and signaling pathways were explored. The combined inhibition of the mammalian target of rapamycin complex 1 (mTORC1) and mTORC2 eliminated proline protection. A significant increase in Akt activation was observed in proline treated cells after hydrogen peroxide stress along with a corresponding increase in the phosphorylation of the fork head transcription factor class O3a (FoxO3a). The role of PRODH in proline mediated protection was validated in the prostate carcinoma cell line, PC3. Knockdown of PRODH in PC3 cells attenuated phosphorylated levels of Akt and FoxO3a and decreased cell survival during hydrogen peroxide stress. The results provide evidence that PRODH is essential in proline protection against hydrogen peroxide mediated cell death and that proline/PRODH helps activate Akt in cancer cells. PMID:22796327

  9. Untangling human and environmental effects on geographical gradients of mammal species richness: a global and regional evaluation.

    PubMed

    Torres-Romero, Erik Joaquín; Olalla-Tárraga, Miguel Á

    2015-05-01

    Different hypotheses (geographical, ecological, evolutionary or a combination of them) have been suggested to account for the spatial variation in species richness. However, the relative importance of environment and human impacts in explaining these patterns, either globally or at the biogeographical region level, remains largely unexplored. Here, we jointly evaluate how current environmental conditions and human impacts shape global and regional gradients of species richness in terrestrial mammals. We processed IUCN global distributional data for 3939 mammal species and a set of seven environmental and two human impact variables at a spatial resolution of 96.5 × 96.5 km. We used simple, multiple and partial regression techniques to evaluate environmental and human effects on species richness. Actual evapotranspiration (AET) is the main driver of mammal species richness globally. Together with our results at the biogeographical realm level, this lends strong support for the water-energy hypothesis (i.e. global diversity gradients are best explained by the interaction of water and energy, with a latitudinal shift in the relative importance of ambient energy vs. water availability as we move from the poles to the equator). While human effects on species richness are not easily detected at a global scale due to the large proportion of shared variance with the environment, these effects significantly emerge at the regional level. In the Nearctic, Palearctic and Oriental regions, the independent contribution of human impacts is almost as important as current environmental conditions in explaining richness patterns. The intersection of human impacts with climate drives the geographical variation in mammal species richness in the Palearctic, Nearctic and Oriental regions. Using a human accessibility variable, we show, for the first time, that the zones most accessible to humans are often those where we find lower mammal species richness. PMID:25355656

  10. Untangling human and environmental effects on geographical gradients of mammal species richness: a global and regional evaluation.

    PubMed

    Torres-Romero, Erik Joaquín; Olalla-Tárraga, Miguel Á

    2015-05-01

    Different hypotheses (geographical, ecological, evolutionary or a combination of them) have been suggested to account for the spatial variation in species richness. However, the relative importance of environment and human impacts in explaining these patterns, either globally or at the biogeographical region level, remains largely unexplored. Here, we jointly evaluate how current environmental conditions and human impacts shape global and regional gradients of species richness in terrestrial mammals. We processed IUCN global distributional data for 3939 mammal species and a set of seven environmental and two human impact variables at a spatial resolution of 96.5 × 96.5 km. We used simple, multiple and partial regression techniques to evaluate environmental and human effects on species richness. Actual evapotranspiration (AET) is the main driver of mammal species richness globally. Together with our results at the biogeographical realm level, this lends strong support for the water-energy hypothesis (i.e. global diversity gradients are best explained by the interaction of water and energy, with a latitudinal shift in the relative importance of ambient energy vs. water availability as we move from the poles to the equator). While human effects on species richness are not easily detected at a global scale due to the large proportion of shared variance with the environment, these effects significantly emerge at the regional level. In the Nearctic, Palearctic and Oriental regions, the independent contribution of human impacts is almost as important as current environmental conditions in explaining richness patterns. The intersection of human impacts with climate drives the geographical variation in mammal species richness in the Palearctic, Nearctic and Oriental regions. Using a human accessibility variable, we show, for the first time, that the zones most accessible to humans are often those where we find lower mammal species richness.

  11. The oil rich Niger Delta region: a framework for improved performance of the Nigerian regulatory process.

    PubMed

    Onu, N Chukemeka Hemanachi

    2003-06-01

    The adoption of this policy framework has the ability to reconcile industry, the environment and community interests, taking into account all factors that are relevant to managing developments that are both sustainable and contributory to the achievement of industrial and community stability. The management of resource development is crucial in sustaining the Niger Delta ecosystem and the human population resident in the Niger Delta region. If these separate bodies are constituted they would have the potential to reduce and discourage: i) the vulnerability of the regulatory body to influential and powerful multinational oil companies; ii) the proclivity for unaccountability to the people of the Niger Delta region, since the people of the Niger Delta would have access to the regulatory body's classified and unclassified information, and are part of the decision-making process; and iii) a reduction in conflict between the oil mining companies and the aggrieved youths of the oil rich Niger Delta region. This policy framework also has the added advantage of producing high quality decisions and more acceptable decisions than those for which the people of the Niger Delta region are excluded from the processes that concern their existence. The agency decision-making could now become a multilateral process and thus promote and enhance the accurate, impartial and rational application of legislative directives to given cases or classes of cases. Most importantly, the Minister of Petroleum Resources should be empowered by legislation to revoke any license or lease in respect of an area designated as marginal if left undeveloped for a period of 5 years and grant a lease or license for the area to a more responsible oil company.

  12. The oil rich Niger Delta region: a framework for improved performance of the Nigerian regulatory process.

    PubMed

    Onu, N Chukemeka Hemanachi

    2003-06-01

    The adoption of this policy framework has the ability to reconcile industry, the environment and community interests, taking into account all factors that are relevant to managing developments that are both sustainable and contributory to the achievement of industrial and community stability. The management of resource development is crucial in sustaining the Niger Delta ecosystem and the human population resident in the Niger Delta region. If these separate bodies are constituted they would have the potential to reduce and discourage: i) the vulnerability of the regulatory body to influential and powerful multinational oil companies; ii) the proclivity for unaccountability to the people of the Niger Delta region, since the people of the Niger Delta would have access to the regulatory body's classified and unclassified information, and are part of the decision-making process; and iii) a reduction in conflict between the oil mining companies and the aggrieved youths of the oil rich Niger Delta region. This policy framework also has the added advantage of producing high quality decisions and more acceptable decisions than those for which the people of the Niger Delta region are excluded from the processes that concern their existence. The agency decision-making could now become a multilateral process and thus promote and enhance the accurate, impartial and rational application of legislative directives to given cases or classes of cases. Most importantly, the Minister of Petroleum Resources should be empowered by legislation to revoke any license or lease in respect of an area designated as marginal if left undeveloped for a period of 5 years and grant a lease or license for the area to a more responsible oil company. PMID:12956601

  13. Regional species richness of families and the distribution of abundance and rarity in a local community of forest Hymenoptera

    NASA Astrophysics Data System (ADS)

    Ulrich, Werner

    2005-09-01

    Recent investigations about the relationship between the number of species of taxonomic lineages and regional patterns of species abundances gave indecisive results. Here, it is shown that mean densities of species of a species-rich community of forest Hymenoptera (673 species out of 25 families) were positively related to the number of European species per family. The fraction of abundant species per family declined and the fraction of rare species increased with species richness. Species rich families contained relatively more species, which were present in only one study year (occasional species), and relatively fewer species present during the whole study period (frequent species).

  14. Assembly of pyrene-modified DNA/RNA duplexes incorporating a G-rich single strand region.

    PubMed

    Seio, Kohji; Tokugawa, Munefumi; Tsunoda, Hirosuke; Ohkubo, Akihiro; Arisaka, Fumio; Sekine, Mitsuo

    2013-12-15

    The structural properties of a DNA/RNA duplex having a pyrene residue at the 5' end of DNA and a G-rich single strand region at the 3' end of RNA were studied in detail. Fluorescence and ultracentrifugation analyses indicated the formation of a complex containing four DNA/RNA duplexes, which required a pyrene residue, G-rich sequence, RNA-type backbone, and high salt concentration. PMID:24183539

  15. Variation and Evolution in the Glutamine-Rich Repeat Region of Drosophila Argonaute-2.

    PubMed

    Palmer, William H; Obbard, Darren J

    2016-01-01

    RNA interference pathways mediate biological processes through Argonaute-family proteins, which bind small RNAs as guides to silence complementary target nucleic acids . In insects and crustaceans Argonaute-2 silences viral nucleic acids, and therefore acts as a primary effector of innate antiviral immunity. Although the function of the major Argonaute-2 domains, which are conserved across most Argonaute-family proteins, are known, many invertebrate Argonaute-2 homologs contain a glutamine-rich repeat (GRR) region of unknown function at the N-terminus . Here we combine long-read amplicon sequencing of Drosophila Genetic Reference Panel (DGRP) lines with publicly available sequence data from many insect species to show that this region evolves extremely rapidly and is hyper-variable within species. We identify distinct GRR haplotype groups in Drosophila melanogaster, and suggest that one of these haplotype groups has recently risen to high frequency in a North American population. Finally, we use published data from genome-wide association studies of viral resistance in D. melanogaster to test whether GRR haplotypes are associated with survival after virus challenge. We find a marginally significant association with survival after challenge with Drosophila C Virus in the DGRP, but we were unable to replicate this finding using lines from the Drosophila Synthetic Population Resource panel.

  16. Solar-source regions of /sup 3/He-rich particle events

    SciTech Connect

    Kahler, S.W.; Lin, R.P.; Reames, D.V.; Stone, R.G.; Liggett, M.

    1985-01-01

    Hydrogen alpha, x-ray, and metric and kilometric radio data were used to examine the solar sources of energetic (about 1 MeV/nucleon) Helium 3-rich particle events observed near earth in association with impulsive 2- to 100-keV electron events. Each /sup 3/He/electron event is associated with a kilometric type III burst belonging to a family of such bursts characterized by similar interplanetary propagation paths from the same solar-active region. The /sup 3/He/electron events correlate very well with the interplanetary low-frequency (about 188 kHz) radio brightnesses of these events, but progressively worse with signatures from regions closer to the Sun. When hydrogen alpha brightenings can be associated with /sup 3/He/electron events, they have onsets coinciding to within 1 min of that of the associated metric type III burst but are often too small to be reported. The data are consistent with the earlier idea that many type III bursts, and now, by implication, the /sup 3/He/electron events, are due to particle acceleration in the corona, well above the associated hydrogen alpha and x-ray flares.

  17. Variation and Evolution in the Glutamine-Rich Repeat Region of Drosophila Argonaute-2

    PubMed Central

    Palmer, William H.; Obbard, Darren J.

    2016-01-01

    RNA interference pathways mediate biological processes through Argonaute-family proteins, which bind small RNAs as guides to silence complementary target nucleic acids . In insects and crustaceans Argonaute-2 silences viral nucleic acids, and therefore acts as a primary effector of innate antiviral immunity. Although the function of the major Argonaute-2 domains, which are conserved across most Argonaute-family proteins, are known, many invertebrate Argonaute-2 homologs contain a glutamine-rich repeat (GRR) region of unknown function at the N-terminus . Here we combine long-read amplicon sequencing of Drosophila Genetic Reference Panel (DGRP) lines with publicly available sequence data from many insect species to show that this region evolves extremely rapidly and is hyper-variable within species. We identify distinct GRR haplotype groups in Drosophila melanogaster, and suggest that one of these haplotype groups has recently risen to high frequency in a North American population. Finally, we use published data from genome-wide association studies of viral resistance in D. melanogaster to test whether GRR haplotypes are associated with survival after virus challenge. We find a marginally significant association with survival after challenge with Drosophila C Virus in the DGRP, but we were unable to replicate this finding using lines from the Drosophila Synthetic Population Resource panel. PMID:27317784

  18. Structural studies of the metal-rich region in the ternary Ta-Nb-S system

    SciTech Connect

    Yao, Xiaoqiang.

    1991-10-07

    Six new solid solution type compounds have been prepared using high temperature techniques and characterized by means of single crystal x-ray techniques during a study of the metal-rich region of the ternary Ta-Nb-S system. The structures of Nb{sub x}Ta{sub 11-x}S{sub 4} are reminiscent of niobium-rich sulfides, rather than of tantalum-rich sulfides. The coordinations of sulfur are capped trigonal prismatic while the metal coordinations are capped distorted cubic prismatic for Nb{sub x}Ta{sub 11-x}S{sub 4}, and capped distorted cubic prismatic and pentagonal prismatic for Nb{sub 12-x}Ta{sub x}S{sub 4}. The structures of Nb{sub x}Ta{sub 5-x}S{sub 2} contain homoatomic layers sequenced S-M3-M2-M1-M2-M3-S (M is mixed Nb, Ta) generating six-layer sheets, respectively. Weak S-S interactions at 3.26 and 3.19{Angstrom} between sheets contrast with the M-M binding within and between the sheets in these two novel layered compounds. The former are presumably responsible for the observed graphitic slippage of the samples. Nb{sub 21-x}Ta{sub x}S{sub 8} and Nb{sub x}Ta{sub 2-x}S are isostructural with Nb{sub 21}S{sub 8} and Ta{sub 2}S, respectively. Extended Hueckel band calculations were carried out for two layered compounds, Nb{sub x}Ta{sub 5-x}S{sub 2} (x {approx} 1.72) and Nb{sub x}ta{sub 2-x}S (x {approx} 0.95). Based upon band calculations metallic properties can be expected for these two layered compounds. The relative preference of the metal sites for the two metal elements (Ta, Nb) in two layered compounds is explained by the results of the band calculations. 17 figs., 31 tabs., 80 refs.

  19. Why is a Flare-rich Active Region CME-poor?

    NASA Astrophysics Data System (ADS)

    Liu, Lijuan; Wang, Yuming; Wang, Jingxiu; Shen, Chenglong; Ye, Pinzhong; Liu, Rui; Chen, Jun; Zhang, Quanhao; Wang, S.

    2016-08-01

    Solar active regions (ARs) are the major sources of two of the most violent solar eruptions, namely flares and coronal mass ejections (CMEs). The largest AR in the past 24 years, NOAA AR 12192, which crossed the visible disk from 2014 October 17 to 30, unusually produced more than one hundred flares, including 32 M-class and 6 X-class ones, but only one small CME. Flares and CMEs are believed to be two phenomena in the same eruptive process. Why is such a flare-rich AR so CME-poor? We compared this AR with other four ARs; two were productive in both and two were inert. The investigation of the photospheric parameters based on the SDO/HMI vector magnetogram reveals that the flare-rich AR 12192, as with the other two productive ARs, has larger magnetic flux, current, and free magnetic energy than the two inert ARs but, in contrast to the two productive ARs, it has no strong, concentrated current helicity along both sides of the flaring neutral line, indicating the absence of a mature magnetic structure consisting of highly sheared or twisted field lines. Furthermore, the decay index above the AR 12192 is relatively low, showing strong constraint. These results suggest that productive ARs are always large and have enough current and free energy to power flares, but whether or not a flare is accompanied by a CME is seemingly related to (1) the presence of a mature sheared or twisted core field serving as the seed of the CME, or (2) a weak enough constraint of the overlying arcades.

  20. Stereoselective Synthesis of Quaternary Proline Analogues

    PubMed Central

    Calaza, M. Isabel

    2009-01-01

    This review describes available methods for the diastereoselective and asymmetric synthesis of quaternary prolines. The focus is on the preparation of α-functionalized prolines with the pyrrolidine moiety not embedded in a polycyclic frame. The diverse synthetic approaches are classified according to the bond which is formed to complete the quaternary skeleton. PMID:19655047

  1. Selective vulnerability of Rich Club brain regions is an organizational principle of structural connectivity loss in Huntington's disease.

    PubMed

    McColgan, Peter; Seunarine, Kiran K; Razi, Adeel; Cole, James H; Gregory, Sarah; Durr, Alexandra; Roos, Raymund A C; Stout, Julie C; Landwehrmeyer, Bernhard; Scahill, Rachael I; Clark, Chris A; Rees, Geraint; Tabrizi, Sarah J

    2015-11-01

    Huntington's disease can be predicted many years before symptom onset, and thus makes an ideal model for studying the earliest mechanisms of neurodegeneration. Diffuse patterns of structural connectivity loss occur in the basal ganglia and cortex early in the disease. However, the organizational principles that underlie these changes are unclear. By understanding such principles we can gain insight into the link between the cellular pathology caused by mutant huntingtin and its downstream effect at the macroscopic level. The 'rich club' is a pattern of organization established in healthy human brains, where specific hub 'rich club' brain regions are more highly connected to each other than other brain regions. We hypothesized that selective loss of rich club connectivity might represent an organizing principle underlying the distributed pattern of structural connectivity loss seen in Huntington's disease. To test this hypothesis we performed diffusion tractography and graph theoretical analysis in a pseudo-longitudinal study of 50 premanifest and 38 manifest Huntington's disease participants compared with 47 healthy controls. Consistent with our hypothesis we found that structural connectivity loss selectively affected rich club brain regions in premanifest and manifest Huntington's disease participants compared with controls. We found progressive network changes across controls, premanifest Huntington's disease and manifest Huntington's disease characterized by increased network segregation in the premanifest stage and loss of network integration in manifest disease. These regional and whole brain network differences were highly correlated with cognitive and motor deficits suggesting they have pathophysiological relevance. We also observed greater reductions in the connectivity of brain regions that have higher network traffic and lower clustering of neighbouring regions. This provides a potential mechanism that results in a characteristic pattern of structural

  2. Optimising Regionalisation Techniques: Identifying Centres of Endemism in the Extraordinarily Endemic-Rich Cape Floristic Region.

    PubMed

    Bradshaw, Peter L; Colville, Jonathan F; Linder, H Peter

    2015-01-01

    We used a very large dataset (>40% of all species) from the endemic-rich Cape Floristic Region (CFR) to explore the impact of different weighting techniques, coefficients to calculate similarity among the cells, and clustering approaches on biogeographical regionalisation. The results were used to revise the biogeographical subdivision of the CFR. We show that weighted data (down-weighting widespread species), similarity calculated using Kulczinsky's second measure, and clustering using UPGMA resulted in the optimal classification. This maximized the number of endemic species, the number of centres recognized, and operational geographic units assigned to centres of endemism (CoEs). We developed a dendrogram branch order cut-off (BOC) method to locate the optimal cut-off points on the dendrogram to define candidate clusters. Kulczinsky's second measure dendrograms were combined using consensus, identifying areas of conflict which could be due to biotic element overlap or transitional areas. Post-clustering GIS manipulation substantially enhanced the endemic composition and geographic size of candidate CoEs. Although there was broad spatial congruence with previous phytogeographic studies, our techniques allowed for the recovery of additional phytogeographic detail not previously described for the CFR.

  3. Optimising Regionalisation Techniques: Identifying Centres of Endemism in the Extraordinarily Endemic-Rich Cape Floristic Region

    PubMed Central

    Bradshaw, Peter L.; Colville, Jonathan F.; Linder, H. Peter

    2015-01-01

    We used a very large dataset (>40% of all species) from the endemic-rich Cape Floristic Region (CFR) to explore the impact of different weighting techniques, coefficients to calculate similarity among the cells, and clustering approaches on biogeographical regionalisation. The results were used to revise the biogeographical subdivision of the CFR. We show that weighted data (down-weighting widespread species), similarity calculated using Kulczinsky’s second measure, and clustering using UPGMA resulted in the optimal classification. This maximized the number of endemic species, the number of centres recognized, and operational geographic units assigned to centres of endemism (CoEs). We developed a dendrogram branch order cut-off (BOC) method to locate the optimal cut-off points on the dendrogram to define candidate clusters. Kulczinsky’s second measure dendrograms were combined using consensus, identifying areas of conflict which could be due to biotic element overlap or transitional areas. Post-clustering GIS manipulation substantially enhanced the endemic composition and geographic size of candidate CoEs. Although there was broad spatial congruence with previous phytogeographic studies, our techniques allowed for the recovery of additional phytogeographic detail not previously described for the CFR. PMID:26147438

  4. Sites of calcium uptake of fish otoliths correspond with macular regions rich of carbonic anhydrase

    NASA Astrophysics Data System (ADS)

    Beier, M.; Anken, R.; Hilbig, R.

    2006-01-01

    Based on pharmacological data, it has been suggested that the enzyme carbonic anhydrase (CAH) plays a prominent role in the mineralization of fish otoliths. To directly test this proposal, the topographical distribution of CAH was histochemically analyzed in the utricular and saccular maculae of larval cichlid fish Oreochromis mossambicus. Further investigations were focussed on the sites of otolithic calcium uptake using the fluorescent calcium tracer alizarin-complexone (AC). Both in the utricle and the saccule, CAH-reactivity was prominent in regions on both sides of the sensory macula (centrifugal (cf) and centripetal (cp) areas), which reportedly contain ionocytes, specialized cells regulating the ionic composition of the endolymph. (The terms centrifugal and centripetal were chosen instead of lateral and medial, because the saccule is positioned perpendicular to the utricle; “lateral” and “medial” thus do not allow an unambiguous allocation of the respective regions.) In the saccule, the size of cf and cp did not differ from each other, whereas, in the utricle, cp was considerably larger as compared to cf (CAH-reactivity per μm2 was nearly identical in both areas of both endorgans). AC-incubation resulted in a fluorescent band on the proximal surface of the otoliths (this surface lies next to the sensory epithelium). In saccular otoliths (sagittae), the area of the band did not differ between centrifugal and centripetal otolith regions, whereas in the utricular otoliths (lapilli), the area of the centripetal AC-band was larger in size as compared to the centrifugal one (AC-fluorescence per μm2 did not differ between the areas analyzed in both types of otoliths). These results strongly suggest that calcium/carbonate uptake of otoliths takes place especially in those regions of their proximal face which are located adjacent to CAH-rich areas of the macular epithelium. It is thus concluded that CAH is directly involved in otolith calcification. The

  5. Proline inhibits aggregation during protein refolding.

    PubMed Central

    Samuel, D.; Kumar, T. K.; Ganesh, G.; Jayaraman, G.; Yang, P. W.; Chang, M. M.; Trivedi, V. D.; Wang, S. L.; Hwang, K. C.; Chang, D. K.; Yu, C.

    2000-01-01

    The in vitro refolding of hen egg-white lysozyme is studied in the presence of various osmolytes. Proline is found to prevent aggregation during protein refolding. However, other osmolytes used in this study fail to exhibit a similar property. Experimental evidence suggests that proline inhibits protein aggregation by binding to folding intermediate(s) and trapping the folding intermediate(s) into enzymatically inactive, "aggregation-insensitive" state(s). However, elimination of proline from the refolded protein mixture results in significant recovery of the bacteriolytic activity. At higher concentrations (>1.5 M), proline is shown to form loose, higher-order molecular aggregate(s). The supramolecular assembly of proline is found to possess an amphipathic character. Formation of higher-order aggregates is believed to be crucial for proline to function as a protein folding aid. In addition to its role in osmoregulation under water stress conditions, the results of this study hint at the possibility of proline behaving as a protein folding chaperone. PMID:10716186

  6. Spectral and geological study of the sulfate-rich region of West Candor Chasma, Mars

    NASA Astrophysics Data System (ADS)

    Mangold, Nicolas; Gendrin, Aline; Gondet, Brigitte; Le Mouelic, Stephane; Quantin, Cathy; Ansan, Véronique; Bibring, Jean-Pierre; Langevin, Yves; Masson, Philippe; Neukum, Gerhard

    2008-04-01

    Sulfates have been discovered by the OMEGA spectrometer in different locations of the planet Mars. They are strongly correlated to light toned layered deposits in the equatorial regions. West Candor Chasma is the canyon with the thickest stack of layers and one with the largest area covered by sulfates. A detailed study coupling mineralogy derived from OMEGA spectral data and geology derived from HRSC imager and other datasets leads to some straightforward issues. The monohydrated sulfate kieserite is found mainly over heavily eroded scarps of light toned material. It likely corresponds to a mineral present in the initial rock formed either during formation and diagenesis of sediments, or during hydrothermal alteration at depth, because it is typically found on outcrops that are eroded and steep. Polyhydrated sulfates, that match any Ca-, Na-, Fe-, or Mg-sulfates with more than one water molecule, are preferentially present on less eroded and darker outcrops than outcrops of kieserite. These variations can be the result of a diversity in the composition and/or of the rehydration of kieserite on surfaces with longer exposure. The latter possibility of rehydration in the current, or recent, atmosphere suggests the low surface temperatures preserve sulfates from desiccation, and, also can rehydrate part of them. Strong signatures of iron oxides are present on sulfate-rich scarps and at the base of layered deposits scarps. They are correlated with TES gray hematite signature and might correspond to iron oxides present in the rock as sand-size grains, or possibly larger concretions, that are eroded and transported down by gravity at the base of the scarp. Pyroxenes are present mainly on sand dunes in the low lying terrains. Pyroxene is strongly depleted or absent in the layered deposits. When mixed with kieserite, local observations favor a spatial mixing with dunes over layered deposits. Sulfates such as those detected in the studied area require the presence of liquid

  7. Genetic analysis of proline concentration under osmotic stress in sunflower (Helianthus annuus L.)

    PubMed Central

    Khalil, Farghama; Rauf, Saeed; Monneveux, Philippe; Anwar, Shoaib; Iqbal, Zafar

    2016-01-01

    Proline concentration has been often suggested as an indicator of osmotic stress. A better understanding of the genetics of this trait is however needed. In the present study, proline concentration has been assessed, together with root and stem growth, potassium, calcium and total soluble sugars concentration and stress injury symptoms, in seedlings of sunflower hybrids and their parents grown under control and osmotic conditions. Proline strongly accumulated with osmotic stress. Its concentration exhibited a large variation among genotypes and was higher in hybrids than in parental lines. A positive association was noted between proline concentration and osmotic adjustment that was reflected in a reduction of osmotic stress induced injury, as showed by the reduced number of calli in the hybrids with higher proline concentration. Broad and narrow sense heritability was higher under osmotic stress suggesting applying the selection in osmotic stress condition. In the control treatment, dominance effects explained most of the genetic variation for proline concentration while under osmotic stress both dominance and additive variance were high. The importance of dominance and additive effects suggested that several genomic regions are controlling this trait. Good general combiners, presumably carrying positive additive alleles affecting proline concentration, were identified. PMID:27795671

  8. Evidence that COMT genotype and proline interact on negative-symptom outcomes in schizophrenia and bipolar disorder.

    PubMed

    Clelland, C L; Drouet, V; Rilett, K C; Smeed, J A; Nadrich, R H; Rajparia, A; Read, L L; Clelland, J D

    2016-01-01

    Elevated peripheral proline is associated with psychiatric disorders, and there is evidence that proline is a neuromodulator. The proline dehydrogenase (PRODH) gene, which encodes the enzyme that catalyzes proline catabolism, maps to human chromosome 22q11.2, a region conferring risk of schizophrenia. In the Prodh-null mouse, an interaction between elevated peripheral proline and another 22q11.2 gene, catechol-O-methyltransferase (COMT), on neurotransmission and behavior has been reported. We explored the relationship between fasting plasma proline levels and COMT Val(158)Met genotype on symptoms (positive, negative and total) in schizophrenia patients. In an exploratory study we also examined symptom change in patients with bipolar disorder. There was a significant interaction between peripheral proline and COMT on negative symptoms in schizophrenia (P<0.0001, n=95). In COMT Val/Val patients, high proline was associated with low Scale for the Assessment of Negative Symptom (SANS) scores. In contrast, high proline was associated with high SANS scores in patients carrying a Met allele. The relationship between proline and COMT also appears to modify negative symptoms across psychiatric illness. In bipolar disorder, a significant interaction was also observed on negative-symptom change (P=0.007, n=43). Negative symptoms are intractable and largely unaddressed by current medications. These data indicate a significant interaction between peripheral proline and COMT genotype, influencing negative symptoms in schizophrenia and bipolar disorder. That high proline has converse effects on symptoms by COMT genotype, may have implications for therapeutic decisions. PMID:27622935

  9. Evidence that COMT genotype and proline interact on negative-symptom outcomes in schizophrenia and bipolar disorder

    PubMed Central

    Clelland, C L; Drouet, V; Rilett, K C; Smeed, J A; Nadrich, R H; Rajparia, A; Read, L L; Clelland, J D

    2016-01-01

    Elevated peripheral proline is associated with psychiatric disorders, and there is evidence that proline is a neuromodulator. The proline dehydrogenase (PRODH) gene, which encodes the enzyme that catalyzes proline catabolism, maps to human chromosome 22q11.2, a region conferring risk of schizophrenia. In the Prodh-null mouse, an interaction between elevated peripheral proline and another 22q11.2 gene, catechol-O-methyltransferase (COMT), on neurotransmission and behavior has been reported. We explored the relationship between fasting plasma proline levels and COMT Val158Met genotype on symptoms (positive, negative and total) in schizophrenia patients. In an exploratory study we also examined symptom change in patients with bipolar disorder. There was a significant interaction between peripheral proline and COMT on negative symptoms in schizophrenia (P<0.0001, n=95). In COMT Val/Val patients, high proline was associated with low Scale for the Assessment of Negative Symptom (SANS) scores. In contrast, high proline was associated with high SANS scores in patients carrying a Met allele. The relationship between proline and COMT also appears to modify negative symptoms across psychiatric illness. In bipolar disorder, a significant interaction was also observed on negative-symptom change (P=0.007, n=43). Negative symptoms are intractable and largely unaddressed by current medications. These data indicate a significant interaction between peripheral proline and COMT genotype, influencing negative symptoms in schizophrenia and bipolar disorder. That high proline has converse effects on symptoms by COMT genotype, may have implications for therapeutic decisions. PMID:27622935

  10. Production and identification of new, neutron-rich nuclei in the [sup 208]Pb region

    SciTech Connect

    Rykaczewski, K. ); Szerypo, J.; Evensen, A.-H.; Kugler, E.; Lettry, J.; Ravn, H. ); Kurpeta, J.; Pkochocki, A.; Karny, M.; Szerypo, J. ); Szerypo, J. ); Andreyev, H.; Huyse, M.; Wo uml; hr, A. ); Aystuml, J.; Nieminen, A.; Huhta, M. ); Walter, G. ) Hoff, P. )

    1998-12-01

    The recently developed methods allowing the experimental studies on new neutron-rich nuclei beyond doubly-magic [sup 208]Pb are briefly described. An identification of new neutron-rich isotopes [sup 215]Pb and [sup 217]Bi, and new decay properties of [sup 216]Bi studied by means of a pulsed release element selective technique at PS Booster-ISOLDE are reported. [copyright] [ital 1998 American Institute of Physics.

  11. Metabolism of Proline, Glutamate, and Ornithine in Proline Mutant Root Tips of Zea mays (L.)

    PubMed Central

    Dierks-Ventling, Christa; Tonelli, Chiara

    1982-01-01

    In excised pro1-1 mutant and corresponding normal type roots of Zea mays L. the uptake and interconversion of [14C]proline, [14C]glutamic acid, [14C]glutamine, and [14C]ornithine and their utilization for protein synthesis was measured with the intention of finding an explanation for the proline requirement of the mutant. Uptake of these four amino acids, with the exception of proline, was the same in mutant and normal roots, but utilization differed. Higher than normal utilization rates for proline and glutamic acid were noted in mutant roots leading to increased CO2 production, free amino acid interconversion, and protein synthesis. Proline was synthesized from either glutamic acid (or glutamine) or ornithine in both mutant and normal roots; it did not accumulate but rather was used for protein synthesis. Ornithine was not a good precursor for proline in either system, but was preferentially converted to arginine and glutamine, particularly in mutant roots. The pro1-1 mutant was thus not deficient in its ability to make proline. Based on these findings, and on the fact that ornithine, arginine, glutamic acid and aspartic acid are elevated as free amino acids in mutant roots, it is suggested that in the pro1-1 mutant proline catabolism prevails over proline synthesis. PMID:16662144

  12. Effective prevention of chill-haze in beer using an acid proline-specific endoprotease from Aspergillus niger.

    PubMed

    Lopez, Michel; Edens, Luppo

    2005-10-01

    Chill-haze formation during beer production is known to involve polyphenols that interact with proline-rich proteins. We hypothesized that incubating beer wort with a proline-specific protease would extensively hydrolyze these proline-rich proteins, yielding a peptide fraction that is unable to form a haze. Predigestion of the proline-rich wheat gliadin with different proteases pointed toward a strong haze-suppressing effect by a proline-specific enzyme. This finding was confirmed in small-scale brewing experiments using a recently identified proline-specific protease with an acidic pH optimum. Subsequent pilot plant trials demonstrated that, upon its addition during the fermentation phase of beer brewing, even low levels of this acidic enzyme effectively prevented chill-haze formation in bottled beer. Results of beer foam stability measurements indicated that the enzyme treatment leaves the beer foam almost unaffected. In combination with the enzyme's cost-effectiveness and regulatory status, these preliminary test results seem to favor further industrial development of this enzymatic beer stabilization method.

  13. On the Split Personality of Penultimate Proline

    NASA Astrophysics Data System (ADS)

    Glover, Matthew S.; Shi, Liuqing; Fuller, Daniel R.; Arnold, Randy J.; Radivojac, Predrag; Clemmer, David E.

    2015-03-01

    The influence of the position of the amino acid proline in polypeptide sequences is examined by a combination of ion mobility spectrometry-mass spectrometry (IMS-MS), amino acid substitutions, and molecular modeling. The results suggest that when proline exists as the second residue from the N-terminus (i.e., penultimate proline), two families of conformers are formed. We demonstrate the existence of these families by a study of a series of truncated and mutated peptides derived from the 11-residue peptide Ser1-Pro2-Glu3-Leu4-Pro5-Ser6-Pro7-Gln8-Ala9-Glu10-Lys11. We find that every peptide from this sequence with a penultimate proline residue has multiple conformations. Substitution of Ala for Pro residues indicates that multiple conformers arise from the cis- trans isomerization of Xaa1-Pro2 peptide bonds as Xaa-Ala peptide bonds are unlikely to adopt the cis isomer, and examination of spectra from a library of 58 peptides indicates that ~80% of sequences show this effect. A simple mechanism suggesting that the barrier between the cis- and trans-proline forms is lowered because of low steric impedance is proposed. This observation may have interesting biological implications as well, and we note that a number of biologically active peptides have penultimate proline residues.

  14. Two proline porters in Escherichia coli K-12.

    PubMed Central

    Stalmach, M E; Grothe, S; Wood, J M

    1983-01-01

    Escherichia coli mutants defective at putP and putA lack proline transport via proline porter I and proline dehydrogenase activity, respectively. They retain a proline uptake system (proline porter II) that is induced during tryptophan-limited growth and are sensitive to the toxic L-proline analog, 3,4-dehydroproline. 3,4-Dehydroproline-resistant mutants derived from a putP putA mutant lack proline porter II. Auxotrophic derivatives derived from putP+ or putP bacteria can grow if provided with proline at low concentration (25 microM); those derived from the 3,4-dehydroproline-resistant mutants require high proline for growth (2.5 mM). We conclude that E. coli, like Salmonella typhimurium, possesses a second proline porter that is inactivated by mutations at the proP locus. PMID:6355059

  15. Identification and High-Density Mapping of Gene-Rich Regions in Chromosome Group 5 of Wheat

    PubMed Central

    Gill, K. S.; Gill, B. S.; Endo, T. R.; Boyko, E. V.

    1996-01-01

    The distribution of genes and recombination in the wheat genome was studied by comparing physical maps with the genetic linkage maps. The physical maps were generated by mapping 80 DNA and two phenotypic markers on an array of 65 deletion lines for homoeologous group 5 chromosomes. The genetic maps were constructed for chromosome 5B in wheat and 5D in Triticum tauschii. No marker mapped in the proximal 20% chromosome region surrounding the centromere. More than 60% of the long arm markers were present in three major clusters that physically encompassed <18% of the arm. Because 48% of the markers were cDNA clones and the distributions of the cDNA and genomic clones were similar, the marker distribution may represent the distribution of genes. The gene clusters were identified and allocated to very small chromosome regions because of a higher number of deletions in their surrounding regions. The recombination was suppressed in the centromeric regions and mainly occurred in the gene-rich regions. The bp/cM estimates varied from 118 kb for gene-rich regions to 22 Mb for gene-poor regions. The wheat genes present in these clusters are, therefore, amenable to molecular manipulations parallel to the plants with smaller genomes like rice. PMID:8725245

  16. Proline porters effect the utilization of proline as nutrient or osmoprotectant for bacteria.

    PubMed

    Wood, J M

    1988-12-01

    Proline is utilized by all organisms as a protein constituent. It may also serve as a source of carbon, energy and nitrogen for growth or as an osmoprotectant. The molecular characteristics of the proline transport systems which mediate the multiple functions of proline in the Gram negative enteric bacteria, Escherichia coli and Salmonella typhimurium, are now becoming apparent. Recent research on those organisms has provided both protocols for the genetic and biochemical characterization of the enzymes mediating proline transport and molecular probes with which the degree of homology among the proline transport systems of archaebacteria, eubacteria and eukaryotes can be assessed. This review has provided a detailed summary of recent research on proline transport in E. coli and S. typhimurium; the properties of other organisms are cited primarily to illustrate the generality of those observations and to show where homologous proline transport systems might be expected to occur. The characteristics of proline transport in eukaryotic microorganisms have recently been reviewed (Horak, 1986). PMID:3072423

  17. ESTIMATING REGIONAL SPECIES RICHNESS USING A LIMITED NUMBER OF SURVEY UNITS

    EPA Science Inventory

    The accurate and precise estimation of species richness at large spatial scales using a limited number of survey units is of great significance for ecology and biodiversity conservation. We used the distribution data of native fish and resident breeding bird species compiled for ...

  18. Solid-Phase Synthesis of Amine/Carboxyl Substituted Prolines and Proline Homologues: Scope and Limitations.

    PubMed

    Zhou, Ziniu; Scott, William L; O'Donnell, Martin J

    2016-03-15

    A solid-phase procedure is used to synthesize racemic peptidomimetics based on the fundamental peptide unit. The peptidomimetics are constructed around proline or proline homologues variably substituted at the amine and carbonyl sites. The procedure expands the diversity of substituted peptidomimetic molecules available to the Distributed Drug Discovery (D3) project. Using a BAL-based solid-phase synthetic sequence the proline or proline homologue subunit is both constructed and incorporated into the peptidomimetic by an α-alkylation, hydrolysis and intramolecular cyclization sequence. Further transformations on solid-phase provide access to a variety of piperazine derivatives representing a class of molecules known to exhibit central nervous system activity. The procedure works well with proline cores, but with larger six- and seven-membered ring homologues the nature of the carboxylic acid acylating the cyclic amine can lead to side reactions and result in poor overall yields.

  19. The Proline Regulatory Axis and Cancer

    PubMed Central

    Phang, James Ming; Liu, Wei; Hancock, Chad; Christian, Kyle J.

    2012-01-01

    Studies in metabolism and cancer have characterized changes in core pathways involving glucose and glutamine, emphasizing the provision of substrates for building cell mass. But recent findings suggest that pathways previously considered peripheral may play a critical role providing mechanisms for cell regulation. Several of these mechanisms involve the metabolism of non-essential amino acids, for example, the channeling of glycolytic intermediates into the serine pathway for one-carbon transfers. Historically, we proposed that the proline biosynthetic pathway participated in a metabolic interlock with glucose metabolism. The discovery that proline degradation is activated by p53 directed our attention to the initiation of apoptosis by proline oxidase/dehydrogenase. Now, however, we find that the biosynthetic mechanisms and the metabolic interlock may depend on the pathway from glutamine to proline, and it is markedly activated by the oncogene MYC. These findings add a new dimension to the proline regulatory axis in cancer and present attractive potential targets for cancer treatment. PMID:22737668

  20. Thermodynamic and conformational study of proline stereoisomers.

    PubMed

    Santos, Ana Filipa L O M; Notario, Rafael; Ribeiro da Silva, Manuel A V

    2014-08-28

    Amino acids play fundamental roles both as building blocks of proteins and as intermediates in metabolism. Proline, one of the 20 natural amino acids, has a primordial function in enzymes, peptide hormones, and proteins. The energetic characterization of these molecules provides information concerning stability and reactivity and has great importance in understanding the activity and behavior of larger molecules containing these structures as fragments. In the present work, parallel experimental and computational studies have been performed. The experimental studies have been based on calorimetric and effusion techniques, from which the enthalpy of formation in the crystalline phase and the enthalpy of sublimation of the sterioisomers L-, D-, and the DL-mixture of proline have been derived. Additionally, vapor pressure measurements have also enabled the determination of the entropies and Gibbs energies of sublimation, at T = 298.15 K. From the former results, the experimental standard (p(o) = 0.1 MPa) molar enthalpies of formation, in the gaseous phase, at T = 298.15 K, of L-proline, D-proline, and DL-proline have been calculated as -388.6 ± 2.3, -391.9 ± 2.0, and -391.5 ± 2.4 kJ·mol(-1), respectively. A computational study at the G3 and G4 levels has been carried out. Conformational analysis has been done and the enthalpy of formation of proline as well as other intrinsic properties such as acidity, basicity, adiabatic ionization enthalpy, electron and proton affinities, and bond dissociation enthalpies have been calculated. There is a very good agreement between calculated and experimental values, when they are available.

  1. Comparative analysis of chicken chromosome 28 provides new clues to the evolutionary fragility of gene-rich vertebrate regions

    PubMed Central

    Gordon, Laurie; Yang, Shan; Tran-Gyamfi, Mary; Baggott, Dan; Christensen, Mari; Hamilton, Aaron; Crooijmans, Richard; Groenen, Martien; Lucas, Susan; Ovcharenko, Ivan; Stubbs, Lisa

    2007-01-01

    The chicken genome draft sequence has provided a valuable resource for studies of an important agricultural and experimental model species and an important data set for comparative analysis. However, some of the most gene-rich segments are missing from chicken genome draft assemblies, limiting the analysis of a substantial number of genes and preventing a closer look at regions that are especially prone to syntenic rearrangements. To facilitate the functional and evolutionary analysis of one especially gene-rich, rearrangement-prone genomic region, we analyzed sequence from BAC clones spanning chicken microchromosome GGA28; as a complement we also analyzed a gene-sparse, stable region from GGA11. In these two regions we documented the conservation and lineage-specific gain and loss of protein-coding genes and precisely mapped the locations of 31 major human-chicken syntenic breakpoints. Altogether, we identified 72 lineage-specific genes, many of which are found at or near syntenic breaks, implicating evolutionary breakpoint regions as major sites of genetic innovation and change. Twenty-two of the 31 breakpoint regions have been reused repeatedly as rearrangement breakpoints in vertebrate evolution. Compared with stable GC-matched regions, GGA28 is highly enriched in CpG islands, as are break-prone intervals identified elsewhere in the chicken genome; evolutionary breakpoints are further enriched in GC content and CpG islands, highlighting a potential role for these features in genome instability. These data support the hypothesis that chromosome rearrangements have not occurred randomly over the course of vertebrate evolution but are focused preferentially within “fragile” regions with unusual DNA sequence characteristics. PMID:17921355

  2. Proline: Mother Nature;s cryoprotectant applied to protein crystallography

    SciTech Connect

    Pemberton, Travis A.; Still, Brady R.; Christensen, Emily M.; Singh, Harkewal; Srivastava, Dhiraj; Tanner, John J.

    2012-09-05

    L-Proline is one of Mother Nature's cryoprotectants. Plants and yeast accumulate proline under freeze-induced stress and the use of proline in the cryopreservation of biological samples is well established. Here, it is shown that L-proline is also a useful cryoprotectant for protein crystallography. Proline was used to prepare crystals of lysozyme, xylose isomerase, histidine acid phosphatase and 1-pyrroline-5-carboxylate dehydrogenase for low-temperature data collection. The crystallization solutions in these test cases included the commonly used precipitants ammonium sulfate, sodium chloride and polyethylene glycol and spanned the pH range 4.6-8.5. Thus, proline is compatible with typical protein-crystallization formulations. The proline concentration needed for cryoprotection of these crystals is in the range 2.0-3.0 M. Complete data sets were collected from the proline-protected crystals. Proline performed as well as traditional cryoprotectants based on the diffraction resolution and data-quality statistics. The structures were refined to assess the binding of proline to these proteins. As observed with traditional cryoprotectants such as glycerol and ethylene glycol, the electron-density maps clearly showed the presence of proline molecules bound to the protein. In two cases, histidine acid phosphatase and 1-pyrroline-5-carboxylate dehydrogenase, proline binds in the active site. It is concluded that L-proline is an effective cryoprotectant for protein crystallography.

  3. Latitudinal concordance between biogeographic regionalization, community structure, and richness patterns: a study on the reptiles of China.

    PubMed

    Chen, Youhua; Srivastava, Diane S

    2015-02-01

    Latitudinal patterns in species richness may be affected by both continuous variations in macroecological factors as well as discrete change between biogeographic regions. We examined whether latitudinal reptilian richness and community structure in China were best explained by three macroecological patterns (mid-domain effects, Rapoport's rule effects, or environmental correlates) within or across the ranges of biogeographic realms. The results showed that (1) there was a weak mid-domain effect within the Oriental Realm. However, the mid-domain effect was detected neither at the overall regional scale nor in the Palaearctic Realm. (2) Rapoport's rule was only weakly supported for reptilian fauna in China at lower latitudinal areas. (3) Environmental variables were more strongly correlated with species' latitudinal community structure and richness patterns at the scale of biogeographic realms. Based on the faunal similarity of reptilian community across latitudinal bands, we proposed a latitudinal delineation scheme at 34° N for dividing East Asia into Oriental and Palaearctic biogeographic realms. At last, at the functional group level, we also evaluated the relevant ecological patterns for lizard and snake species across different latitudinal bins, showing that the distributions of lizards presented strong mid-domain effects at the latitudinal ranges within the Oriental Realm and over the whole range but did not support Rapoport's rule. In comparison, snake species supported Rapoport's rule at low latitudinal zones but did not present any remarkable mid-domain effects at any spatial extents. In conclusion, biogeographic realms are an appropriate scale for studying macroecological patterns. Reptilian latitudinal richness patterns of China were explained by a combination of environmental factors and geometric constraints, while the latitudinal community structure patterns were greatly affected by environmental gradients. Functional guilds present differentiated

  4. Latitudinal concordance between biogeographic regionalization, community structure, and richness patterns: a study on the reptiles of China

    NASA Astrophysics Data System (ADS)

    Chen, Youhua; Srivastava, Diane S.

    2015-02-01

    Latitudinal patterns in species richness may be affected by both continuous variations in macroecological factors as well as discrete change between biogeographic regions. We examined whether latitudinal reptilian richness and community structure in China were best explained by three macroecological patterns (mid-domain effects, Rapoport's rule effects, or environmental correlates) within or across the ranges of biogeographic realms. The results showed that (1) there was a weak mid-domain effect within the Oriental Realm. However, the mid-domain effect was detected neither at the overall regional scale nor in the Palaearctic Realm. (2) Rapoport's rule was only weakly supported for reptilian fauna in China at lower latitudinal areas. (3) Environmental variables were more strongly correlated with species' latitudinal community structure and richness patterns at the scale of biogeographic realms. Based on the faunal similarity of reptilian community across latitudinal bands, we proposed a latitudinal delineation scheme at 34° N for dividing East Asia into Oriental and Palaearctic biogeographic realms. At last, at the functional group level, we also evaluated the relevant ecological patterns for lizard and snake species across different latitudinal bins, showing that the distributions of lizards presented strong mid-domain effects at the latitudinal ranges within the Oriental Realm and over the whole range but did not support Rapoport's rule. In comparison, snake species supported Rapoport's rule at low latitudinal zones but did not present any remarkable mid-domain effects at any spatial extents. In conclusion, biogeographic realms are an appropriate scale for studying macroecological patterns. Reptilian latitudinal richness patterns of China were explained by a combination of environmental factors and geometric constraints, while the latitudinal community structure patterns were greatly affected by environmental gradients. Functional guilds present differentiated

  5. Sinorhizobium meliloti chemoreceptor McpU mediates chemotaxis toward host plant exudates through direct proline sensing.

    PubMed

    Webb, Benjamin A; Hildreth, Sherry; Helm, Richard F; Scharf, Birgit E

    2014-06-01

    Bacterial chemotaxis is an important attribute that aids in establishing symbiosis between rhizobia and their legume hosts. Plant roots and seeds exude a spectrum of molecules into the soil to attract their bacterial symbionts. The alfalfa symbiont Sinorhizobium meliloti possesses eight chemoreceptors to sense its environment and mediate chemotaxis toward its host. The methyl accepting chemotaxis protein McpU is one of the more abundant S. meliloti chemoreceptors and an important sensor for the potent attractant proline. We established a dominant role of McpU in sensing molecules exuded by alfalfa seeds. Mass spectrometry analysis determined that a single germinating seed exudes 3.72 nmol of proline, producing a millimolar concentration near the seed surface which can be detected by the chemosensory system of S. meliloti. Complementation analysis of the mcpU deletion strain verified McpU as the key proline sensor. A structure-based homology search identified tandem Cache (calcium channels and chemotaxis receptors) domains in the periplasmic region of McpU. Conserved residues Asp-155 and Asp-182 of the N-terminal Cache domain were determined to be important for proline sensing by evaluating mutant strains in capillary and swim plate assays. Differential scanning fluorimetry revealed interaction of the isolated periplasmic region of McpU (McpU40-284) with proline and the importance of Asp-182 in this interaction. Using isothermal titration calorimetry, we determined that proline binds with a Kd (dissociation constant) of 104 μM to McpU40-284, while binding was abolished when Asp-182 was substituted by Glu. Our results show that McpU is mediating chemotaxis toward host plants by direct proline sensing.

  6. Sinorhizobium meliloti Chemoreceptor McpU Mediates Chemotaxis toward Host Plant Exudates through Direct Proline Sensing

    PubMed Central

    Webb, Benjamin A.; Hildreth, Sherry; Helm, Richard F.

    2014-01-01

    Bacterial chemotaxis is an important attribute that aids in establishing symbiosis between rhizobia and their legume hosts. Plant roots and seeds exude a spectrum of molecules into the soil to attract their bacterial symbionts. The alfalfa symbiont Sinorhizobium meliloti possesses eight chemoreceptors to sense its environment and mediate chemotaxis toward its host. The methyl accepting chemotaxis protein McpU is one of the more abundant S. meliloti chemoreceptors and an important sensor for the potent attractant proline. We established a dominant role of McpU in sensing molecules exuded by alfalfa seeds. Mass spectrometry analysis determined that a single germinating seed exudes 3.72 nmol of proline, producing a millimolar concentration near the seed surface which can be detected by the chemosensory system of S. meliloti. Complementation analysis of the mcpU deletion strain verified McpU as the key proline sensor. A structure-based homology search identified tandem Cache (calcium channels and chemotaxis receptors) domains in the periplasmic region of McpU. Conserved residues Asp-155 and Asp-182 of the N-terminal Cache domain were determined to be important for proline sensing by evaluating mutant strains in capillary and swim plate assays. Differential scanning fluorimetry revealed interaction of the isolated periplasmic region of McpU (McpU40-284) with proline and the importance of Asp-182 in this interaction. Using isothermal titration calorimetry, we determined that proline binds with a Kd (dissociation constant) of 104 μM to McpU40-284, while binding was abolished when Asp-182 was substituted by Glu. Our results show that McpU is mediating chemotaxis toward host plants by direct proline sensing. PMID:24657863

  7. 21 CFR 582.5650 - Proline.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Proline. 582.5650 Section 582.5650 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  8. 21 CFR 582.5650 - Proline.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Proline. 582.5650 Section 582.5650 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  9. 21 CFR 582.5650 - Proline.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Proline. 582.5650 Section 582.5650 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  10. Why are proteins with glutamine- and asparagine-rich regions associated with protein misfolding diseases?

    NASA Astrophysics Data System (ADS)

    Cruzeiro, Leonor

    2005-12-01

    The possibility that vibrational excited states (VESs) are the drivers of protein folding and function (the VES hypothesis) is explored to explain the reason why Gln- and Asn-rich proteins are associated with degenerative diseases. The Davydov/Scott model is extended to describe energy transfer from the water solution to the protein and vice versa. Computer simulations show that, on average, Gln and Asn residues lead to an initial larger absorption of energy from the environment to the protein, something that can explain the greater structural instability of prions. The sporadic, inherited and infectious character of prion diseases is discussed in the light of the VES hypothesis. An alternative treatment for prion diseases is suggested.

  11. Molecular cloning and construction of the coding region for human acetylcholinesterase reveals a G + C-rich attenuating structure

    SciTech Connect

    Soreq, H.; Ben-Aziz, R.; Prody, C.A.; Seidman, S.; Gnatt, A.; Neville, L.; Lieman-Hurwitz, J.; Lev-Lehman, E.; Ginzberg, D. ); Lapidot-Lifson, Y. Tel Aviv Univ. ); Zakut, H. )

    1990-12-01

    To study the primary structure of human acetylcholinesterase and its gene expression and amplification, cDNA libraries from human tissues expressing oocyte-translatable AcChoEase mRNA were constructed and screened with labeled oligodeoxynucleotide probes. Several cDNA clones were isolated that encoded a polypeptide with {ge}50% identically aligned amino acids to Torpedo AcChoEase and human butyrylcholinesterase. However, these cDNA clones were all truncated within a 300-nucleotide-long G + C-rich region with a predicted pattern of secondary structure having a high Gibbs free energy downstream from the expected 5{prime} end of the coding region. Screening of a genomic DNA library revealed the missing 5{prime} domain. When ligated to the cDNA and constructed into a transcription vector, this sequence encoded a synthetic mRNA translated in microinjected oocytes into catalytically active AcChoEase with marked preference for acetylthiocholine over butyrylthiocholine as a substrate, susceptibility to inhibition by the AcChoEase inhibitor BW284C51, and resistance to the AcChoEase inhibitor tetraisopropylpyrophosphoramide. Blot hybridization of genomic DNA from different individuals carrying amplified AcChoEase genes revealed variable intensities and restriction patterns with probes from the regions upstream and downstream from the predicted G + C-rich structure. Thus, the human AcChoEase gene includes a putative G + C-rich attenuator domain and is subject to structural alterations in cases of AcChoEase gene amplification.

  12. Silica-rich deposits and hydrated minerals at Gusev Crater, Mars: Vis-NIR spectral characterization and regional mapping

    USGS Publications Warehouse

    Rice, M.S.; Bell, J.F.; Cloutis, E.A.; Wang, A.; Ruff, S.W.; Craig, M.A.; Bailey, D.T.; Johnson, J. R.; De Souza, P.A.; Farrand, W. H.

    2010-01-01

    The Mars Exploration Rover (MER) Spirit has discovered surprisingly high concentrations of amorphous silica in soil and nodular outcrops in the Inner Basin of the Columbia Hills. In Pancam multispectral observations, we find that an absorption feature at the longest Pancam wavelength (1009 nm) appears to be characteristic of these silica-rich materials; however, spectral analyses of amorphous silica suggest that the ???1009 nm spectral feature is not a direct reflection of their silica-rich nature. Based on comparisons with spectral databases, we hypothesize that the presence of H2O or OH, either free (as water ice), adsorbed or bound in a mineral structure, is responsible for the spectral feature observed by Pancam. The Gertrude Weise soil, which is nearly pure opaline silica, may have adsorbed water cold-trapped on mineral grains. The origin of the ???1009 nm Pancam feature observed in the silica-rich nodular outcrops may result from the presence of additional hydrated minerals (specific sulfates, halides, chlorides, sodium silicates, carbonates or borates). Using the ???1009 nm feature with other spectral parameters as a "hydration signature" we have mapped the occurrence of hydrated materials along the extent of Spirit's traverse across the Columbia Hills from West Spur to Home Plate (sols 155-1696). We have also mapped this hydration signature across large panoramic images to understand the regional distribution of materials that are spectrally similar to the silica-rich soil and nodular outcrops. Our results suggest that hydrated materials are common in the Columbia Hills. ?? 2009 Elsevier Inc.

  13. Silica-rich deposits and hydrated minerals at Gusev Crater, Mars: Vis-NIR spectral characterization and regional mapping

    NASA Astrophysics Data System (ADS)

    Rice, M. S.; Bell, J. F.; Cloutis, E. A.; Wang, A.; Ruff, S. W.; Craig, M. A.; Bailey, D. T.; Johnson, J. R.; de Souza, P. A.; Farrand, W. H.

    2010-02-01

    The Mars Exploration Rover (MER) Spirit has discovered surprisingly high concentrations of amorphous silica in soil and nodular outcrops in the Inner Basin of the Columbia Hills. In Pancam multispectral observations, we find that an absorption feature at the longest Pancam wavelength (1009 nm) appears to be characteristic of these silica-rich materials; however, spectral analyses of amorphous silica suggest that the ˜1009 nm spectral feature is not a direct reflection of their silica-rich nature. Based on comparisons with spectral databases, we hypothesize that the presence of H 2O or OH, either free (as water ice), adsorbed or bound in a mineral structure, is responsible for the spectral feature observed by Pancam. The Gertrude Weise soil, which is nearly pure opaline silica, may have adsorbed water cold-trapped on mineral grains. The origin of the ˜1009 nm Pancam feature observed in the silica-rich nodular outcrops may result from the presence of additional hydrated minerals (specific sulfates, halides, chlorides, sodium silicates, carbonates or borates). Using the ˜1009 nm feature with other spectral parameters as a "hydration signature" we have mapped the occurrence of hydrated materials along the extent of Spirit's traverse across the Columbia Hills from West Spur to Home Plate (sols 155-1696). We have also mapped this hydration signature across large panoramic images to understand the regional distribution of materials that are spectrally similar to the silica-rich soil and nodular outcrops. Our results suggest that hydrated materials are common in the Columbia Hills.

  14. Modulated Binding of SATB1, a Matrix Attachment Region Protein, to the AT-Rich Sequence Flanking the Major Breakpoint Region of BCL2

    PubMed Central

    Ramakrishnan, Meera; Liu, Wen-Man; DiCroce, Patricia A.; Posner, Aleza; Zheng, Jian; Kohwi-Shigematsu, Terumi; Krontiris, Theodore G.

    2000-01-01

    The t(14,18) chromosomal translocation that occurs in human follicular lymphoma constitutively activates the BCL2 gene and disrupts control of apoptosis. Interestingly, 70% of the t(14,18) translocations are confined to three 15-bp clusters positioned within a 150-bp region (major breakpoint region or [MBR]) in the untranslated portion of terminal exon 3. We analyzed DNA-protein interactions in the MBR, as these may play some role in targeting the translocation to this region. An 87-bp segment (87MBR) immediately 3′ to breakpoint cluster 3 was essential for DNA-protein interaction monitored with mobility shift assays. We further delineated a core binding region within 87MBR: a 33-bp, very AT-rich sequence highly conserved between the human and mouse BCL2 gene (37MBR). We have purified and identified one of the core factors as the matrix attachment region (MAR) binding protein, SATB1, which is known to bind to AT-rich sequences with a high propensity to unwind. Additional factors in nuclear extracts, which we have not yet characterized further, increased SATB1 affinity for the 37MBR target four- to fivefold. Specific binding activity within 37MBR displayed cell cycle regulation in Jurkat T cells, while levels of SATB1 remained constant throughout the cell cycle. Finally, we demonstrated in vivo binding of SATB1 to the MBR, strongly suggesting the BCL2 major breakpoint region is a MAR. We discuss the potential consequences of our observations for both MBR fragility and regulatory function. PMID:10629043

  15. Identification of significantly mutated regions across cancer types highlights a rich landscape of functional molecular alterations

    PubMed Central

    Araya, Carlos L.; Cenik, Can; Reuter, Jason A.; Kiss, Gert; Pande, Vijay S.; Snyder, Michael P.; Greenleaf, William J.

    2015-01-01

    Cancer sequencing studies have primarily identified cancer-driver genes by the accumulation of protein-altering mutations. An improved method would be annotation-independent, sensitive to unknown distributions of functions within proteins, and inclusive of non-coding drivers. We employed density-based clustering methods in 21 tumor types to detect variably-sized significantly mutated regions (SMRs). SMRs reveal recurrent alterations across a spectrum of coding and non-coding elements, including transcription factor binding sites and untranslated regions mutated in up to ∼15% of specific tumor types. SMRs reveal spatial clustering of mutations at molecular domains and interfaces, often with associated changes in signaling. Mutation frequencies in SMRs demonstrate that distinct protein regions are differentially mutated among tumor types, as exemplified by a linker region of PIK3CA in which biophysical simulations suggest mutations affect regulatory interactions. The functional diversity of SMRs underscores both the varied mechanisms of oncogenic misregulation and the advantage of functionally-agnostic driver identification. PMID:26691984

  16. The "Boom" and "Bust" Patterns of Communities within the Energy Rich Region of West Virginia: A Case Study of Moundsville

    NASA Astrophysics Data System (ADS)

    Kiger, Brandon S.

    The increasing worldwide demand for energy will provide Energy Rich Regions (ERRs) the opportunity to increase their wealth and quality of living. However, a reoccurring pattern of boom and bust cycles in ERRs suggests the need for more sustainable development strategies. A mixed methods approach (case study) is employed to explore the "wicked human problems" occurring in one community, Moundsville, WV and to discover development patterns that might inform sustainable development strategies for the future. This study explores briefly the distant past development patterns, and in greater detail the pre-boom and most current boom in natural gas. First, data will be derived from a conceptual "Energy Rich Region Template" that explores the sustainability of development from the inclusive wealth forms of natural, human, and physical capital. The qualitative data analysis software (MAXQDA) is used to systematically collect and organize data and information into a community-wide knowledge base (specifically the seven years of city council minutes). This framework can assist future research dedicated to similar cases. Furthermore, this case may support communities and or policymakers in the development of a programming guide for converting the natural capital into other reproducible capital forms, thus avoiding the development cycle of boom and bust.

  17. Proline: Mother Nature’s cryoprotectant applied to protein crystallography

    SciTech Connect

    Pemberton, Travis A.; Still, Brady R.; Christensen, Emily M.; Singh, Harkewal; Srivastava, Dhiraj; Tanner, John J.

    2012-08-01

    The amino acid l-proline is shown to be a good cryoprotectant for protein crystals. Four examples are provided; the range of proline used for cryoprotection is 2.0–3.0 M. l-Proline is one of Mother Nature’s cryoprotectants. Plants and yeast accumulate proline under freeze-induced stress and the use of proline in the cryopreservation of biological samples is well established. Here, it is shown that l-proline is also a useful cryoprotectant for protein crystallography. Proline was used to prepare crystals of lysozyme, xylose isomerase, histidine acid phosphatase and 1-pyrroline-5-carboxylate dehydrogenase for low-temperature data collection. The crystallization solutions in these test cases included the commonly used precipitants ammonium sulfate, sodium chloride and polyethylene glycol and spanned the pH range 4.6–8.5. Thus, proline is compatible with typical protein-crystallization formulations. The proline concentration needed for cryoprotection of these crystals is in the range 2.0–3.0 M. Complete data sets were collected from the proline-protected crystals. Proline performed as well as traditional cryoprotectants based on the diffraction resolution and data-quality statistics. The structures were refined to assess the binding of proline to these proteins. As observed with traditional cryoprotectants such as glycerol and ethylene glycol, the electron-density maps clearly showed the presence of proline molecules bound to the protein. In two cases, histidine acid phosphatase and 1-pyrroline-5-carboxylate dehydrogenase, proline binds in the active site. It is concluded that l-proline is an effective cryoprotectant for protein crystallography.

  18. Vacuolar amino acid transporters upregulated by exogenous proline and involved in cellular localization of proline in Saccharomyces cerevisiae.

    PubMed

    Nishida, Ikuhisa; Watanabe, Daisuke; Tsolmonbaatar, Ariunzaya; Kaino, Tomohiro; Ohtsu, Iwao; Takagi, Hiroshi

    2016-07-14

    In the budding yeast Saccharomyces cerevisiae, the AVT genes (AVT1-7), which encode vacuolar amino acid transporters belonging to the amino acid vacuolar transport (AVT)-family, were significantly upregulated in response to exogenous proline. To reveal a novel role of the Avt proteins in proline homeostasis, we analyzed the effects of deletion or overexpression of the AVT genes on the subcellular distribution of amino acids after the addition of proline to the cells grown in minimal medium. Among seven AVT gene disruptants, avt1Δ and avt7Δ showed the lowest ratios of vacuolar proline. Consistently, overexpression of the AVT1 gene specifically enhanced the vacuolar localization of proline. Since double disruption of the AVT1 and AVT7 genes did not completely abrogate vacuolar accumulation of proline, it is presumed that Avt1 has a dominant role, and Avt7 and other Avt proteins have redundant functions, in the localization of proline into the vacuolar lumen. In contrast, deletion of the AVT3 gene increased vacuolar proline, although the highly expressed AVT3 gene interfered with the accumulation of proline in the vacuole. Based on these results, it appears that Avt3 is the major protein involved in the export of proline from the vacuole. We also observed vacuolar membrane localization of GFP-fused Avt1, Avt3, and Avt7 proteins. Taken together, our data suggest that the AVT genes induced by exogenous proline are involved in the bidirectional transport of proline across the vacuolar membrane. PMID:27246536

  19. The complete mitogenomes of Calameuta filiformis (Eversmann, 1847) and Calameuta idolon (Rossi, 1794) (Hymenoptera: Cephidae): The remarkable features of the elongated A+T rich region in Cephini.

    PubMed

    Korkmaz, E Mahir; Budak, Mahir; Ördek, Merve Nur; Başıbüyük, Hasan Hüseyin

    2016-01-15

    Two complete mitogenomes of the stem borers, Calameuta filiformis and Calameuta idolon, and the complete A+T-rich region of Trachelus iudaicus (Hymenoptera: Cephidae), are reported. The mitogenomes of these species are the longest reported from hymenopterans to date. A remarkable increase in length of the A+T-rich region, the longest for Hymenoptera, was found and compared across the tribe Cephini. The presence of the tRNA- and rRNA-like sequences were reported in the A+T-rich region of sawflies and they were suggested to play a role in replication and/or transcription. The long and short tandem repeats were orderly located in both sides of the A+T-rich region producing stable secondary structures. We suggest that the short tandem repeats are likely to function as a replication fork barrier.

  20. Harsh corporal punishment is associated with increased T2 relaxation time in dopamine-rich regions.

    PubMed

    Sheu, Yi-Shin; Polcari, Ann; Anderson, Carl M; Teicher, Martin H

    2010-11-01

    Harsh corporal punishment (HCP) was defined as frequent parental administration of corporal punishment (CP) for discipline, with occasional use of objects such as straps, or paddles. CP is linked to increased risk for depression and substance abuse. We examine whether long-term exposure to HCP acts as sub-traumatic stressor that contributes to brain alterations, particularly in dopaminergic pathways, which may mediate their increased vulnerability to drug and alcohol abuse. Nineteen young adults who experienced early HCP but no other forms of maltreatment and twenty-three comparable controls were studied. T2 relaxation time (T2-RT) measurements were performed with an echo planar imaging TE stepping technique and T2 maps were calculated and analyzed voxel-by-voxel to locate regional T2-RT differences between groups. Previous studies indicated that T2-RT provides an indirect index of resting cerebral blood volume. Region of interest (ROI) analyses were also conducted in caudate, putamen, nucleus accumbens, anterior cingulate cortex, dorsolateral prefrontal cortex, thalamus, globus pallidus and cerebellar hemispheres. Voxel-based relaxometry showed that HCP was associated with increased T2-RT in right caudate and putamen. ROI analyses also revealed increased T2-RT in dorsolateral prefrontal cortex, substantia nigra, thalamus and accumbens but not globus pallidus or cerebellum. There were significant associations between T2-RT measures in dopamine target regions and use of drugs and alcohol, and memory performance. Alteration in the paramagnetic or hemodynamic properties of dopaminergic cell body and projection regions were observed in subjects with HCP, and these findings may relate to their increased risk for drug and alcohol abuse.

  1. Why Is the Great Solar Active Region 12192 Flare-rich but CME-poor?

    NASA Astrophysics Data System (ADS)

    Sun, Xudong; Bobra, Monica G.; Hoeksema, J. Todd; Liu, Yang; Li, Yan; Shen, Chenglong; Couvidat, Sebastien; Norton, Aimee A.; Fisher, George H.

    2015-05-01

    Solar active region (AR) 12192 of 2014 October hosts the largest sunspot group in 24 years. It is the most prolific flaring site of Cycle 24 so far, but surprisingly produced no coronal mass ejection (CME) from the core region during its disk passage. Here, we study the magnetic conditions that prevented eruption and the consequences that ensued. We find AR 12192 to be “big but mild” its core region exhibits weaker non-potentiality, stronger overlying field, and smaller flare-related field changes compared to two other major flare-CME-productive ARs (11429 and 11158). These differences are present in the intensive-type indices (e.g., means) but generally not the extensive ones (e.g., totals). AR 12192's large amount of magnetic free energy does not translate into CME productivity. The unexpected behavior suggests that AR eruptiveness is limited by some relative measure of magnetic non-potentiality over the restriction of background field, and that confined flares may leave weaker photospheric and coronal imprints compared to their eruptive counterparts.

  2. WHY IS THE GREAT SOLAR ACTIVE REGION 12192 FLARE-RICH BUT CME-POOR?

    SciTech Connect

    Sun, Xudong; Bobra, Monica G.; Hoeksema, J. Todd; Liu, Yang; Couvidat, Sebastien; Norton, Aimee A.; Li, Yan; Fisher, George H.; Shen, Chenglong

    2015-05-10

    Solar active region (AR) 12192 of 2014 October hosts the largest sunspot group in 24 years. It is the most prolific flaring site of Cycle 24 so far, but surprisingly produced no coronal mass ejection (CME) from the core region during its disk passage. Here, we study the magnetic conditions that prevented eruption and the consequences that ensued. We find AR 12192 to be “big but mild”; its core region exhibits weaker non-potentiality, stronger overlying field, and smaller flare-related field changes compared to two other major flare-CME-productive ARs (11429 and 11158). These differences are present in the intensive-type indices (e.g., means) but generally not the extensive ones (e.g., totals). AR 12192's large amount of magnetic free energy does not translate into CME productivity. The unexpected behavior suggests that AR eruptiveness is limited by some relative measure of magnetic non-potentiality over the restriction of background field, and that confined flares may leave weaker photospheric and coronal imprints compared to their eruptive counterparts.

  3. Proline betaine is a highly effective osmoprotectant for Staphylococcus aureus.

    PubMed

    Amin, U S; Lash, T D; Wilkinson, B J

    1995-02-01

    Proline betaine is an osmoprotectant that is at least as effective as glycine betaine, and more effective than L-proline, for various strains of Staphylococcus aureus, and Staphylococcus epidermidis and Staphylococcus saprophyticus. 13C NMR studies revealed that proline betaine accumulated to high levels in osmotically stressed S. aureus, but was also detected in organisms grown in its presence in the absence of osmotic stress. Competition experiments indicated that proline betaine was taken up by the proline transport systems of S. aureus, but not by the high affinity glycine betaine transport system.

  4. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat.

    PubMed

    Vendruscolo, Eliane Cristina Gruszka; Schuster, Ivan; Pileggi, Marcos; Scapim, Carlos Alberto; Molinari, Hugo Bruno Correa; Marur, Celso Jamil; Vieira, Luiz Gonzaga Esteves

    2007-10-01

    Water deficit is one of the main abiotic factors that affect spring wheat planted in subtropical regions. Accumulation of proline appears to be a promising approach to maintain the productivity of plants under stress condition. However, morphological alterations and growth reduction are observed in transgenic plants carrying genes coding for osmoprotectants controlled by constitutive promoters. We report here the effects of water deficit on wheat plants transformed with the Vigna aconitifolia Delta(1)-pyrroline-5-carboxylate synthetase (P5CS) cDNA that encodes the key regulatory enzyme in proline biosynthesis, under the control of a stress-induced promoter complex-AIPC. Transgenic wheat plants submitted to 15 days of water shortage presented a distinct response. We have found that drought resulted in the accumulation of proline. The tolerance to water deficit observed in transgenic plants was mainly due to protection mechanisms against oxidative stress and not caused by osmotic adjustment.

  5. Conserved Proline-Directed Phosphorylation Regulates SR Protein Conformation and Splicing Function

    PubMed Central

    Keshwani, Malik M.; Aubol, Brandon E.; Fattet, Laurent; Ma, Chen-Ting; Qiu, Jinsong; Jennings, Patricia A.; Fu, Xiang-Dong; Adams, Joseph A.

    2016-01-01

    The alternative splicing of human genes is dependent on SR proteins, a family of essential splicing factors whose name derives from a signature C-terminal domain rich in arginine-serine dipeptide repeats (RS domains). Although the SRPKs (SR-specific protein kinases) phosphorylate these repeats, RS domains also contain prolines with flanking serines that are phosphorylated by a second family of protein kinases known as the CLKs (Cdc2-like kinases). The role of specific serine-proline phosphorylation within the RS domain has been difficult to assign since CLKs also phosphorylate arginine-serine dipeptides and, thus, display overlapping residue specificities with the SRPKs. In this study, we address the effects of discrete serine-proline phosphorylation on the conformation and cellular function of the SR protein SRSF1. Using chemical tagging and dephosphorylation experiments, we show that modification of serine-proline dipeptides broadly amplifies the conformational ensemble of SRSF1. The induction of these new structural forms triggers SRSF1 mobilization in the nucleus and alters its binding mechanism to an exonic splicing enhancer in precursor mRNA. These physical events correlate with changes in the alternative splicing of over one hundred human genes based on a global splicing assay. Overall, these studies draw a direct causal relationship between a specific type of chemical modification in an SR protein and the regulation of alternative gene splicing programs. PMID:25529026

  6. Conserved proline-directed phosphorylation regulates SR protein conformation and splicing function.

    PubMed

    Keshwani, Malik M; Aubol, Brandon E; Fattet, Laurent; Ma, Chen-Ting; Qiu, Jinsong; Jennings, Patricia A; Fu, Xiang-Dong; Adams, Joseph A

    2015-03-01

    The alternative splicing of human genes is dependent on SR proteins, a family of essential splicing factors whose name derives from a signature C-terminal domain rich in arginine-serine dipeptide repeats (RS domains). Although the SRPKs (SR-specific protein kinases) phosphorylate these repeats, RS domains also contain prolines with flanking serines that are phosphorylated by a second family of protein kinases known as the CLKs (Cdc2-like kinases). The role of specific serine-proline phosphorylation within the RS domain has been difficult to assign since CLKs also phosphorylate arginine-serine dipeptides and, thus, display overlapping residue specificities with the SRPKs. In the present study, we address the effects of discrete serine-proline phosphorylation on the conformation and cellular function of the SR protein SRSF1 (SR protein splicing factor 1). Using chemical tagging and dephosphorylation experiments, we show that modification of serine-proline dipeptides broadly amplifies the conformational ensemble of SRSF1. The induction of these new structural forms triggers SRSF1 mobilization in the nucleus and alters its binding mechanism to an exonic splicing enhancer in precursor mRNA. These physical events correlate with changes in the alternative splicing of over 100 human genes based on a global splicing assay. Overall, these studies draw a direct causal relationship between a specific type of chemical modification in an SR protein and the regulation of alternative gene splicing programmes.

  7. [Anuran richness and composition in the Eastern region of Iberá Wetlands Provincial Nature Reserve, Corrientes, Argentina].

    PubMed

    del Rosario, Ingaramo María; Etchepare, Eduardo Gabriel; Alvarez, Blanca Beatriz; Porcel, Eduardo

    2012-06-01

    In recent decades, the concern for biodiversity conservation has increased in importance, especially due to the loss of highly biodiverse natural areas such as wetlands. Despite the high fauna diversity inhabiting the Iberá, the information about its composition, structure and dynamics is scarce, and amphibians are typical and conspicuous representatives of these Neotropical areas. To generate new information about this group, the amphibian composition from two villages (Paraje Galarza and Colonia Carlos Pellegrini), belonging to two different fitogeographic regions in the Eastern edge of the Iberá, were described and compared. Samples were taken, from a respective area of 100km2 that included five landscape units (wetlands, streams and swamps, grasslands, forest and a permanent/temporal pond) each, during the four seasons between January 2007 and March 2008. The techniques applied were the Complete Species Inventories (Unrestricted direct search) and Visual Encounter Surveys (VES). A total of 28 species were found, and represented the 70% of the previously registered taxa for the whole wetland. Scinax similis and Rhinella azarai were recorded for the first time in the Iberá Wetlands. No significant differences were found in the anuran specific richness between the surveyed villages, since the 95% of confidence intervals for the species accumulation curves were superimposed. In both villages, the wetlands, streams and swamps, and the permanent pond landscapes, showed the higher species richness when compared to the others. According to the Chao2, Jacknifel and ICE estimators, the inventory completeness of species, oscillated among 88% and 98% for the whole area. The dendrogram analysis based on the Jaccard similarity index, showed that wetlands, streams and swamps were grouped and well separated from grasslands. To guarantee the conservation of the high anuran richness that inhabit the Iberá Wetland, we recommend that representative areas of each landscape must

  8. North African petroleum geology: regional structure and stratigraphic overview of a hydrocarbon-rich cratonic area

    SciTech Connect

    O'Connor, T.E.; Kanes, W.H.

    1985-02-01

    North Africa, including Sinai, contains some of the most important hydrocarbon-producing basins in the world. The North African Symposium is devoted to examining the exploration potential of the North African margin in light of the most recent and promising exploration discoveries. The geologic variety of the region is extraordinary and can challenge any exploration philosophy. Of primary interest are the Sirte basin of Libya, which has produced several billion barrels of oil, and the Gulf of Suez, a narrow, evaporite-capped trough with five fields that will produce more than 5 billion bbl. Both are extensional basins with minimal lateral movement and with good source rocks in direct proximity to reservoirs. Structural models of these basins give firm leads for future exploration. More difficult to evaluate are the Tethyan realm basins of the northern Sinai, and the Western Desert of Egypt, the Cyrenaican Platform of Libya, and the Tunisia-Sicily shelf area, where there are only limited subsurface data. These basins are extensional in origin also, but have been influenced by lateral tectonics. Favorable reservoirs exist, but source rocks have been a problem locally. Structural models with strong stratigraphic response offer several favorable play concepts. The Paleozoic Ghadames basin in Libya, Tunisia, and Algeria has the least complex structural history, and production appears to be limited to small structures. A series of stratigraphic models indicates additional areas with exploration potential. The Paleozoic megabasin of Morocco, with its downfaulted Triassic grabens, remains an untested but attractive area.

  9. Simulation of mixing in the quick quench region of a rich burn-quick quench mix-lean burn combustor

    NASA Technical Reports Server (NTRS)

    Shih, Tom I.-P.; Nguyen, H. Lee; Howe, Gregory W.; Li, Z.

    1991-01-01

    A computer program was developed to study the mixing process in the quick quench region of a rich burn-quick quench mix-lean burn combustor. The computer program developed was based on the density-weighted, ensemble-averaged conservation equations of mass, momentum (full compressible Navier-Stokes), total energy, and species, closed by a k-epsilon turbulence model with wall functions. The combustion process was modeled by a two-step global reaction mechanism, and NO(x) formation was modeled by the Zeldovich mechanism. The formulation employed in the computer program and the essence of the numerical method of solution are described. Some results obtained for nonreacting and reacting flows with different main-flow to dilution-jet momentum flux ratios are also presented.

  10. Structural and functional characterization of EIAV gp45 fusion peptide proximal region and asparagine-rich layer.

    PubMed

    Duan, Liangwei; Du, Jiansen; Wang, Xuefeng; Zhou, Jianhua; Wang, Xiaojun; Liu, Xinqi

    2016-04-01

    Equine infectious anaemia virus (EIAV) and human immunodeficiency virus (HIV) are members of the lentiviral genus. Similar to HIV gp41, EIAV gp45 is a fusogenic protein that mediates fusion between the viral particle and the host cell membrane. The crystal structure of gp45 reported reveals a different conformation in the here that includes the fusion peptide proximal region (FPPR) and neighboring asparagine-rich layer compared with previous HIV-1 gp41 structures. A complicated hydrogen-bond network containing a cluster of solvent molecules appears to be critical for the stability of the gp45 helical bundle. Interestingly, viral replication was relatively unaffected by site-directed mutagenesis of EIAV, in striking contrast to that of HIV-1. Based on these observations, we speculate that EIAV is more adaptable to emergent mutations, which might be important for the evolution of EIAV as a quasi-species, and could potentially contribute to the success of the EIAV vaccine. PMID:26874586

  11. Effect of copper-rich regions on tensile properties of VPPA weldments of 2219-T87 aluminum

    NASA Technical Reports Server (NTRS)

    Hartman, J. A.; Beil, R. J.; Hahn, G. T.

    1987-01-01

    This study examines the relations between tensile properties and microstructural features of variable polarity plasma arc (VPPA) weldments of 2219-T87 aluminum. Crack initiation and weld failure of transverse tensile specimens of single and multipass weldments were studied. The specimens fractured on the rising portion of the stress-strain curve prior to necking, signifying that an increase in strength would accompany an increase in ductility. Of particular interest is a shallow, typically 0.001-0.003-in. (0.03-0.08-mm) deep, copper-rich region located in the crown and root corners of the weld. This region is a primary source of crack initiation and growth, due to its brittle nature and highly strained location. The brittle regions were removed by electropolishing and machining to determine their effect on weld tensile properties. The removal increased the ductility of the weld specimens, and in the case of single pass welds, actually increased the load carrying capacity. Local strain measurements and metallographic and chemical analyses are presented.

  12. Volatile-rich Crater Interior Deposits in the Polar Regions of Mars: Evidence for Ice Cap Advance and Retreat

    NASA Technical Reports Server (NTRS)

    Russell, Patrick S.; Head, James W.; Hecht, Michael H.

    2003-01-01

    Many craters on Mars are partially filled by distinctive material emplaced by post-impact processes. This crater fill material is an interior mound which is generally separated from the walls of the crater by a trough that may be continuous along the crater circumference (i.e. a ring-shaped trough), or which may only partially contact the crater walls (i.e. a crescent-shaped trough). The fill deposit is frequently offset from the crater center and may be asymmetric in plan view. Populations of such craters include those in the circum-south polar cap region, in Arabia Terra, associated with the Medusae Fossae Formation, and in the northern lowlands proximal to the north polar cap. We focus on those craters in circumpolar regions and assess their relationship to polar cap advance and retreat, especially the possibility that fill material represents remnants of a formerly larger contiguous cap. Volatile-rich deposits have the property of being modifiable by the local stability of the solid volatile, which is governed by local energy balance. Here we test the hypothesis that asymmetries in volatile fill shape, profile, and center-location within a crater result from asymmetries in local energy balance within the crater, due mainly to variation of solar insolation and radiative effects of the crater walls over the crater interior. Model profiles of crater fill are compared with MOLA topographic profiles to assess this hypothesis. If asymmetry in morphology and location of crater fill are consistent with radiative-dominated asymmetries in energy budget within the crater, then 1) the volatile-rich composition of the fill is supported (this process should not be effective at shaping volcanic or sedimentary deposits), and 2) the dominant factor determining the observed shape of volatile-rich crater fill is the local radiative energy budget (and erosive processes such as eolian deflation are secondary or unnecessary). We also use a geographic and energy model approach to

  13. Rapid reaction kinetics of proline dehydrogenase in the multifunctional proline utilization A protein.

    PubMed

    Moxley, Michael A; Becker, Donald F

    2012-01-10

    The multifunctional proline utilization A (PutA) flavoenzyme from Escherichia coli catalyzes the oxidation of proline to glutamate in two reaction steps using separate proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate (P5C) dehydrogenase domains. Here, the kinetic mechanism of PRODH in PutA is studied by stopped-flow kinetics to determine microscopic rate constants for the proline:ubiquinone oxidoreductase mechanism. Stopped-flow data for proline reduction of the flavin cofactor (reductive half-reaction) and oxidation of reduced flavin by CoQ(1) (oxidative half-reaction) were best-fit by a double exponential from which maximum observable rate constants and apparent equilibrium dissociation constants were determined. Flavin semiquinone was not observed in the reductive or oxidative reactions. Microscopic rate constants for steps in the reductive and oxidative half-reactions were obtained by globally fitting the stopped-flow data to a simulated mechanism that includes a chemical step followed by an isomerization event. A microscopic rate constant of 27.5 s(-1) was determined for proline reduction of the flavin cofactor followed by an isomerization step of 2.2 s(-1). The isomerization step is proposed to report on a previously identified flavin-dependent conformational change [Zhang, W. et al. (2007) Biochemistry 46, 483-491] that is important for PutA functional switching but is not kinetically relevant to the in vitro mechanism. Using CoQ(1), a soluble analogue of ubiquinone, a rate constant of 5.4 s(-1) was obtained for the oxidation of flavin, thus indicating that this oxidative step is rate-limiting for k(cat) during catalytic turnover. Steady-state kinetic constants calculated from the microscopic rate constants agree with the experimental k(cat) and k(cat)/K(m) parameters.

  14. Regional Variation in Parasite Species Richness and Abundance in the Introduced Range of the Invasive Lionfish, Pterois volitans.

    PubMed

    Sellers, Andrew J; Ruiz, Gregory M; Leung, Brian; Torchin, Mark E

    2015-01-01

    Parasites can play an important role in biological invasions. While introduced species often lose parasites from their native range, they can also accumulate novel parasites in their new range. The accumulation of parasites by introduced species likely varies spatially, and more parasites may shift to new hosts where parasite diversity is high. Considering that parasitism and disease are generally more prevalent at lower latitudes, the accumulation of parasites by introduced hosts may be greater in tropical regions. The Indo-Pacific lionfish (Pterois volitans) has become widely distributed across the Western Atlantic. In this study, we compared parasitism across thirteen locations in four regions, spanning seventeen degrees of latitude in the lionfish's introduced range to examine potential spatial variation in parasitism. In addition, as an initial step to explore how indirect effects of parasitism might influence interactions between lionfish and ecologically similar native hosts, we also compared parasitism in lionfish and two co-occurring native fish species, the graysby grouper, Cephalopholis cruentata, and the lizardfish, Synodus intermedius, in the southernmost region, Panama. Our results show that accumulation of native parasites on lionfish varies across broad spatial scales, and that colonization by ectoparasites was highest in Panama, relative to the other study sites. Endoparasite richness and abundance, on the other hand, were highest in Belize where lionfish were infected by twice as many endoparasite species as lionfish in other regions. The prevalence of all but two parasite species infecting lionfish was below 25%, and we did not detect an association between parasite abundance and host condition, suggesting a limited direct effect of parasites on lionfish, even where parasitism was highest. Further, parasite species richness and abundance were significantly higher in both native fishes compared to lionfish, and parasite abundance was negatively

  15. Regional Variation in Parasite Species Richness and Abundance in the Introduced Range of the Invasive Lionfish, Pterois volitans.

    PubMed

    Sellers, Andrew J; Ruiz, Gregory M; Leung, Brian; Torchin, Mark E

    2015-01-01

    Parasites can play an important role in biological invasions. While introduced species often lose parasites from their native range, they can also accumulate novel parasites in their new range. The accumulation of parasites by introduced species likely varies spatially, and more parasites may shift to new hosts where parasite diversity is high. Considering that parasitism and disease are generally more prevalent at lower latitudes, the accumulation of parasites by introduced hosts may be greater in tropical regions. The Indo-Pacific lionfish (Pterois volitans) has become widely distributed across the Western Atlantic. In this study, we compared parasitism across thirteen locations in four regions, spanning seventeen degrees of latitude in the lionfish's introduced range to examine potential spatial variation in parasitism. In addition, as an initial step to explore how indirect effects of parasitism might influence interactions between lionfish and ecologically similar native hosts, we also compared parasitism in lionfish and two co-occurring native fish species, the graysby grouper, Cephalopholis cruentata, and the lizardfish, Synodus intermedius, in the southernmost region, Panama. Our results show that accumulation of native parasites on lionfish varies across broad spatial scales, and that colonization by ectoparasites was highest in Panama, relative to the other study sites. Endoparasite richness and abundance, on the other hand, were highest in Belize where lionfish were infected by twice as many endoparasite species as lionfish in other regions. The prevalence of all but two parasite species infecting lionfish was below 25%, and we did not detect an association between parasite abundance and host condition, suggesting a limited direct effect of parasites on lionfish, even where parasitism was highest. Further, parasite species richness and abundance were significantly higher in both native fishes compared to lionfish, and parasite abundance was negatively

  16. Regional Variation in Parasite Species Richness and Abundance in the Introduced Range of the Invasive Lionfish, Pterois volitans

    PubMed Central

    2015-01-01

    Parasites can play an important role in biological invasions. While introduced species often lose parasites from their native range, they can also accumulate novel parasites in their new range. The accumulation of parasites by introduced species likely varies spatially, and more parasites may shift to new hosts where parasite diversity is high. Considering that parasitism and disease are generally more prevalent at lower latitudes, the accumulation of parasites by introduced hosts may be greater in tropical regions. The Indo-Pacific lionfish (Pterois volitans) has become widely distributed across the Western Atlantic. In this study, we compared parasitism across thirteen locations in four regions, spanning seventeen degrees of latitude in the lionfish's introduced range to examine potential spatial variation in parasitism. In addition, as an initial step to explore how indirect effects of parasitism might influence interactions between lionfish and ecologically similar native hosts, we also compared parasitism in lionfish and two co-occurring native fish species, the graysby grouper, Cephalopholis cruentata, and the lizardfish, Synodus intermedius, in the southernmost region, Panama. Our results show that accumulation of native parasites on lionfish varies across broad spatial scales, and that colonization by ectoparasites was highest in Panama, relative to the other study sites. Endoparasite richness and abundance, on the other hand, were highest in Belize where lionfish were infected by twice as many endoparasite species as lionfish in other regions. The prevalence of all but two parasite species infecting lionfish was below 25%, and we did not detect an association between parasite abundance and host condition, suggesting a limited direct effect of parasites on lionfish, even where parasitism was highest. Further, parasite species richness and abundance were significantly higher in both native fishes compared to lionfish, and parasite abundance was negatively

  17. Magnesium Atoms in the Exosphere Above the Volatile-rich Persistently Shadowed Region of Cabeus

    NASA Astrophysics Data System (ADS)

    Wooden, D. H.; Colaprete, A.; Heldmann, J. L.; Retherford, K. D.; Hurley, D. M.; Elphic, R. C.; Ennico, K.

    2011-12-01

    We discuss properties of the lunar exosphere based on analyses of UV-visual spectrometer (VSP) (260--650 nm) data collected from the 1-degree nadir field-of-view, which narrowed in on the persistently shadowed region (PSR) of Cabeus as the spacecraft descended towards the surface. The LCROSS Mission consisted of a ~2000 kg Centaur impactor and a shepherding spacecraft (S-SC) that impacted the Moon 4 minutes after the Centaur. The LCROSS VSP spectra of the nadir-view of Cabeus PSR spectra reveal a forest of UV emission lines. Most of these emission lines were previously predicted [1,2,3] but not yet measured because the Moon has yet to been investigated at these wavelengths at such close distance. In the LCROSS UV spectra, we have identified Mg I (285.2 nm) [4] and tentatively identified lines of Ca, Fe, Ti, and Al; most emission lines appear to be from neutral atoms, with a few possible singly-ionized species, fluorescing in sunlight from near their ground states. The temporal evolution of the lines, derived after subtracting a solar reference spectrum scaled to the scattered light continuum, probe the altitude-dependence of exosphere species. Only a few species appear transient, such as the Na D lines that were released by impact [5] and expelled quickly to high altitudes (45 km, [6]). We are working to derive the column densities of the various species, with particular emphasis on MgI, by application of a fluorescence model. Some of the work involves careful re-calibration of the VSP at wavelengths shortward of 380 nm. We will report and compare the column density of magnesium over Cabeus PSR to the column density expected from exosphere models. Sputtering of materials from the floor of Cabeus may be enhanced because of the particular geometry of the solar wind flowing over polar craters acts to deflect passing ions into the polar craters and enhance sputtering rates [7,8]. Studying the lunar exosphere can tell us generally about volatile transport processes

  18. L-Proline nutrition and catabolism in Staphylococcus saprophyticus.

    PubMed

    Deutch, Charles E

    2011-05-01

    Staphylococcus saprophyticus strains ATCC 15305, ATCC 35552, and ATCC 49907 were found to require L-proline but not L-arginine for growth in a defined culture medium. All three strains could utilize L-ornithine as a proline source and contained L-ornithine aminotransferase and Δ(1)-pyrroline-5-carboxylate reductase activities; strains ATCC 35552 and ATCC 49907 could use L-arginine as a proline source and had L-arginase activity. The proline requirement also could be met by L-prolinamide, L-proline methyl ester, and the dipeptides L-alanyl-L-proline and L-leucyl-L-proline. The bacteria exhibited L-proline degradative activity as measured by the formation of Δ(1)-pyrroline-5-carboxylate. The specific activity of proline degradation was not affected by addition of L-proline or NaCl but was highest in strain ATCC 49907 after growth in Mueller-Hinton broth. A membrane fraction from this strain had L-proline dehydrogenase activity as detected both by reaction of Δ(1)-pyrroline-5-carboxylate with 2-aminobenzaldehyde (0.79 nmol min(-1) mg(-1)) and by the proline-dependent reduction of p-iodonitrotetrazolium (20.1 nmol min(-1) mg(-1)). A soluble fraction from this strain had Δ(1)-pyrroline-5-carboxylate dehydrogenase activity (88.8 nmol min(-1) mg(-1)) as determined by the NAD(+)-dependent oxidation of DL-Δ(1)-pyrroline-5-carboxylate. Addition of L-proline to several culture media did not increase the growth rate or final yield of bacteria but did stimulate growth during osmotic stress. When grown with L: -ornithine as the proline source, S. saprophyticus was most susceptible to the proline analogues L-azetidine-2-carboylate, 3,4-dehydro-DL-proline, DL-thiazolidine-2-carboxylate, and L-thiazolidine-4-carboxylate. These results indicate that proline uptake and metabolism may be a potential target of antimicrobial therapy for this organism.

  19. Identifying crossover-rich regions and their effect on meiotic homologous interactions by partitioning chromosome arms of wheat and rye.

    PubMed

    Valenzuela, Nohelia T; Perera, Esther; Naranjo, Tomás

    2013-08-01

    Chiasmata are usually formed in the distal half of cereal chromosomes. Previous studies showed that the crossover-rich region displays a more active role in homologous recognition at early meiosis than crossover-poor regions in the long arm of rye chromosome 1R, but not in the long arm of chromosome 5R. In order to determine what happens in other chromosomes of rye and wheat, we have partitioned, by wheat-rye translocations of variable-size, the distal fourth part of chromosome arms 1BS and 2BL of wheat and 1RS and 2RL of rye. Synapsis and chiasma formation in chromosome pairs with homologous (wheat-wheat or rye-rye) and homoeologous (wheat-rye) stretches, positioned distally and proximally, respectively, or vice versa, have been studied by rye chromatin labelling using fluorescence in situ hybridisation. Chromosome arm partitioning showed that the distal 12 % of 1BS form one crossover in 50 % of the cells, while the distal 6.7 % of 2RL and the distal 10.5 % of 2BL account for 94 % and 81 % of chiasmata formed in these arms. Distal homoeologous segments reduce the frequency of chiasmata and the possibility of interaction between the intercalary/proximal homologous segments. Such a reduction is related to the size of the homoeologous (translocated) segment. The effect on synapsis and chiasma formation was much lower in chromosome constructions with distal homology and proximal homoeology. All of these data support that among wheat and rye chromosomes, recombining regions are more often involved in homologous recognition and pairing than crossover-poor regions.

  20. Geography of Alaska Lake Districts: Identification, Description, and Analysis of Lake-Rich Regions of a Diverse and Dynamic State

    USGS Publications Warehouse

    Arp, Christopher D.; Jones, Benjamin M.

    2009-01-01

    Lakes are abundant landforms and important ecosystems in Alaska, but are unevenly distributed on the landscape with expansive lake-poor regions and several lake-rich regions. Such lake-rich areas are termed lake districts and have landscape characteristics that can be considered distinctive in similar respects to mountain ranges. In this report, we explore the nature of lake-rich areas by quantitatively identifying Alaska's lake districts, describing and comparing their physical characteristics, and analyzing how Alaska lake districts are naturally organized and correspond to climatic and geophysical characteristics, as well as studied and managed by people. We use a digital dataset (National Hydrography Dataset) of lakes greater than 1 hectare, which includes 409,040 individual lakes and represents 3.3 percent of the land-surface area of Alaska. The selection criteria we used to identify lake districts were (1) a lake area (termed limnetic ratio, in percent) greater than the mean for the State, and (2) a lake density (number of lakes per unit area) greater than the mean for the State using a pixel size scaled to the area of interest and number of lakes in the census. Pixels meeting these criteria were grouped and delineated and all groups greater than 1,000 square kilometers were identified as Alaska's lake districts. These lake districts were described according to lake size-frequency metrics, elevation distributions, geology, climate, and ecoregions to better understand their similarities and differences. We also looked at where lake research and relevant ecological monitoring has occurred in Alaska relative to lake districts and how lake district lands and waters are currently managed. We identified and delineated 20 lake districts in Alaska representing 16 percent of the State, but including 65 percent of lakes and 75 percent of lake area. The largest lake districts identified are the Yukon-Kuskokwim Delta, Arctic Coastal Plain, and Iliamna lake districts with

  1. The cysteine-rich region and the whey acidic protein domain are essential for anosmin-1 biological functions.

    PubMed

    Esteban, Pedro F; Murcia-Belmonte, Verónica; García-González, Diego; de Castro, Fernando

    2013-03-01

    The protein anosmin-1, coded by the KAL1 gene responsible for the X-linked form of Kallmann syndrome (KS), exerts its biological effects mainly through the interaction with and signal modulation of fibroblast growth factor receptor 1 (FGFR1). We have previously shown the interaction of the third fibronectin-like type 3 (FnIII) domain and the N-terminal region of anosmin-1 with FGFR1. Here, we demonstrate that missense mutations reported in patients with KS, C172R and N267K did not alter or substantially reduce, respectively, the binding to FGFR1. These substitutions annulled the chemoattraction of the full-length protein over subventricular zone (SVZ) neuronal precursors (NPs), but they did not annul it in the N-terminal-truncated protein (A1Nt). We also show that although not essential for binding to FGFR1, the cysteine-rich (CR) region is necessary for anosmin-1 function and that FnIII.3 cannot substitute for FnIII.1 function. Truncated proteins recapitulating nonsense mutations found in KS patients did not show the chemotropic effect on SVZ NPs, suggesting that the presence behind FnIII.1 of any part of anosmin-1 produces an unstable protein incapable of action. We also identify the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway as necessary for the chemotropic effect exerted by FGF2 and anosmin-1 on rat SVZ NPs.

  2. Proline-Directed Androgen Receptor Phosphorylation

    PubMed Central

    Gao, Yanfei; Chen, Shaoyong

    2015-01-01

    The androgen receptor (AR) has been identified for decades and mediates essential steroid functions. Like most of biological molecules, AR functional activities are modulated by post-translational modifications. This review is focused on the reported activities and significance of AR phosphorylation, with particular emphasis on proline-directed serine/threonine phosphorylation that occurs predominantly on the receptor. The marked enrichment of AR phosphorylation in the most diverse N-terminal domain suggests that targeting AR phosphorylation can be synergistic to antagonizing the C-terminal domain by clinical antiandrogens. PMID:25866551

  3. Cryobiological Characteristics of L-proline in Mammalian Oocyte Cryopreservation

    PubMed Central

    Zhang, Lu; Xue, Xu; Yan, Jie; Yan, Li-Ying; Jin, Xiao-Hu; Zhu, Xiao-Hui; He, Zhi-Zhu; Liu, Jing; Li, Rong; Qiao, Jie

    2016-01-01

    Background: L-proline is a natural, nontoxic cryoprotectant that helps cells and tissues to tolerate freezing in a variety of plants and animals. The use of L-proline in mammalian oocyte cryopreservation is rare. In this study, we explored the cryobiological characteristics of L-proline and evaluated its protective effect in mouse oocyte cryopreservation. Methods: The freezing property of L-proline was detected by Raman spectroscopy and osmometer. Mature oocytes obtained from 8-week-old B6D2F1 mice were vitrified in a solution consisting various concentration of L-proline with a reduced proportion of dimethyl sulfoxide (DMSO) and ethylene glycol (EG), comparing with the control group (15% DMSO and 15% EG without L-proline). The survival rate, 5-methylcytosine (5-mC) expression, fertilization rate, two-cell rate, and blastocyst rate in vitro were assessed by immunofluorescence and in vitro fertilization. Data were analyzed by Chi-square test. Results: L-proline can penetrate the oocyte membrane within 1 min. The osmotic pressure of 2.00 mol/L L-proline mixture is similar to that of the control group. The survival rate of the postthawed oocyte in 2.00 mol/L L-proline combining 7.5% DMSO and 10% EG is significantly higher than that of the control group. There is no difference of 5-mC expression between the L-proline combination groups and control. The fertilization rate, two-cell rate, and blastocyst rate in vitro from oocyte vitrified in 2.00 mol/L L-proline combining 7.5% DMSO and 10% EG solution are similar to that of control. Conclusions: It indicated that an appropriate concentration of L-proline can improve the cryopreservation efficiency of mouse oocytes with low concentrations of DMSO and EG, which may be applicable to human oocyte vitrification. PMID:27503023

  4. Unconventional N-H…N Hydrogen Bonds Involving Proline Backbone Nitrogen in Protein Structures.

    PubMed

    Deepak, R N V Krishna; Sankararamakrishnan, Ramasubbu

    2016-05-10

    Contrary to DNA double-helical structures, hydrogen bonds (H-bonds) involving nitrogen as the acceptor are not common in protein structures. We systematically searched N-H…N H-bonds in two different sets of protein structures. Data set I consists of neutron diffraction and ultrahigh-resolution x-ray structures (0.9 Å resolution or better) and the hydrogen atom positions in these structures were determined experimentally. Data set II contains structures determined using x-ray diffraction (resolution ≤ 1.8 Å) and the positions of hydrogen atoms were generated using a computational method. We identified 114 and 14,347 potential N-H…N H-bonds from these two data sets, respectively, and 56-66% of these were of the Ni+1-Hi+1…Ni type, with Ni being the proline backbone nitrogen. To further understand the nature of such unusual contacts, we performed quantum chemical calculations on the model compound N-acetyl-L-proline-N-methylamide (Ace-Pro-NMe) with coordinates taken from the experimentally determined structures. A potential energy profile generated by varying the ψ dihedral angle in Ace-Pro-NMe indicates that the conformation with the N-H…N H-bond is the most stable. An analysis of H-bond-forming proline residues reveals that more than 30% of the proline carbonyl groups are also involved in n → π(∗) interactions with the carbonyl carbon of the preceding residue. Natural bond orbital analyses demonstrate that the strength of N-H…N H-bonds is less than half of that observed for a conventional H-bond. This study clearly establishes the H-bonding capability of proline nitrogen and its prevalence in protein structures. We found many proteins with multiple instances of H-bond-forming prolines. With more than 15% of all proline residues participating in N-H…N H-bonds, we suggest a new, to our knowledge, structural role for proline in providing stability to loops and capping regions of secondary structures in proteins. PMID:27166805

  5. Unconventional N-H…N Hydrogen Bonds Involving Proline Backbone Nitrogen in Protein Structures.

    PubMed

    Deepak, R N V Krishna; Sankararamakrishnan, Ramasubbu

    2016-05-10

    Contrary to DNA double-helical structures, hydrogen bonds (H-bonds) involving nitrogen as the acceptor are not common in protein structures. We systematically searched N-H…N H-bonds in two different sets of protein structures. Data set I consists of neutron diffraction and ultrahigh-resolution x-ray structures (0.9 Å resolution or better) and the hydrogen atom positions in these structures were determined experimentally. Data set II contains structures determined using x-ray diffraction (resolution ≤ 1.8 Å) and the positions of hydrogen atoms were generated using a computational method. We identified 114 and 14,347 potential N-H…N H-bonds from these two data sets, respectively, and 56-66% of these were of the Ni+1-Hi+1…Ni type, with Ni being the proline backbone nitrogen. To further understand the nature of such unusual contacts, we performed quantum chemical calculations on the model compound N-acetyl-L-proline-N-methylamide (Ace-Pro-NMe) with coordinates taken from the experimentally determined structures. A potential energy profile generated by varying the ψ dihedral angle in Ace-Pro-NMe indicates that the conformation with the N-H…N H-bond is the most stable. An analysis of H-bond-forming proline residues reveals that more than 30% of the proline carbonyl groups are also involved in n → π(∗) interactions with the carbonyl carbon of the preceding residue. Natural bond orbital analyses demonstrate that the strength of N-H…N H-bonds is less than half of that observed for a conventional H-bond. This study clearly establishes the H-bonding capability of proline nitrogen and its prevalence in protein structures. We found many proteins with multiple instances of H-bond-forming prolines. With more than 15% of all proline residues participating in N-H…N H-bonds, we suggest a new, to our knowledge, structural role for proline in providing stability to loops and capping regions of secondary structures in proteins.

  6. Connecting proline metabolism and signaling pathways in plant senescence

    PubMed Central

    Zhang, Lu; Becker, Donald F.

    2015-01-01

    The amino acid proline has a unique biological role in stress adaptation. Proline metabolism is manipulated under stress by multiple and complex regulatory pathways and can profoundly influence cell death and survival in microorganisms, plants, and animals. Though the effects of proline are mediated by diverse signaling pathways, a common theme appears to be the generation of reactive oxygen species (ROS) due to proline oxidation being coupled to the respiratory electron transport chain. Considerable research has been devoted to understand how plants exploit proline metabolism in response to abiotic and biotic stress. Here, we review potential mechanisms by which proline metabolism influences plant senescence, namely in the petal and leaf. Recent studies of petal senescence suggest proline content is manipulated to meet energy demands of senescing cells. In the flower and leaf, proline metabolism may influence ROS signaling pathways that delay senescence progression. Future studies focusing on the mechanisms by which proline metabolic shifts occur during senescence may lead to novel methods to rescue crops under stress and to preserve post-harvest agricultural products. PMID:26347750

  7. A versatile proline/alanine transporter in the unicellular pathogen Leishmania donovani regulates amino acid homoeostasis and osmotic stress responses.

    PubMed

    Inbar, Ehud; Schlisselberg, Doreen; Suter Grotemeyer, Marianne; Rentsch, Doris; Zilberstein, Dan

    2013-01-15

    Unlike all other organisms, parasitic protozoa of the family Trypanosomatidae maintain a large cellular pool of proline that, together with the alanine pool, serve as alternative carbon sources as well as reservoirs of organic osmolytes. These reflect adaptation to their insect vectors whose haemolymphs are exceptionally rich in the two amino acids. In the present study we identify and characterize a new neutral amino acid transporter, LdAAP24, that translocates proline and alanine across the Leishmania donovani plasma membrane. This transporter fulfils multiple functions: it is the sole supplier for the intracellular pool of proline and contributes to the alanine pool; it is essential for cell volume regulation after osmotic stress; and it regulates the transport and homoeostasis of glutamate and arginine, none of which are its substrates. Notably, we provide evidence that proline and alanine exhibit different roles in the parasitic response to hypotonic shock; alanine affects swelling, whereas proline influences the rate of volume recovery. On the basis of our data we suggest that LdAAP24 plays a key role in parasite adaptation to its varying environments in host and vector, a phenomenon essential for successful parasitism.

  8. Low affinity binding of phorbol esters to protein kinase C and its recombinant cysteine-rich region in the absence of phospholipids.

    PubMed

    Kazanietz, M G; Barchi, J J; Omichinski, J G; Blumberg, P M

    1995-06-16

    Binding of phorbol esters to protein kinase C (PKC) has been regarded as dependent on phospholipids, with phosphatidylserine being the most effective for reconstituting binding. By using a purified single cysteine-rich region from PKC delta expressed in Escherichia coli we were able to demonstrate that specific binding of [3H]phorbol 12,13-dibutyrate to the receptor still takes place in the absence of the phospholipid cofactor. However, [3H]phorbol 12,13-dibutyrate bound to the cysteine-rich region with 80-fold lower affinity in the absence than in the presence of 100 micrograms/ml phosphatidylserine. Similar results were observed with the intact recombinant PKC delta isolated from insect cells. When different phorbol derivatives were examined, distinct structure-activity relations for the cysteine-rich region were found in the presence and absence of phospholipid. Our results have potential implications for PKC translocation, for inhibitor design, and for PKC structural determination. PMID:7782331

  9. Elevated Electrochemical Impedance in the Endoluminal Regions with High Shear Stress: Implication for Assessing Lipid-Rich Atherosclerotic Lesions

    PubMed Central

    Yu, Fei; Lee, Juhyun; Jen, Nelson; Li, Xiang; Zhang, Qian; Tang, Rui; Zhou, Qifa; Kim, Eun. S.; Hsiai, Tzung K.

    2012-01-01

    Background Identifying metabolically active atherosclerotic lesions remains an unmet clinical challenge during coronary intervention. Electrochemical impedance (EIS) increased in response to oxidized low density lipoprotein (oxLDL)-laden lesions. We hereby assessed whether integrating EIS with intravascular ultrasound (IVUS) and shear stress (ISS) provided a new strategy to assess oxLDL-laden lesions in the fat-fed New Zealand White (NZW) rabbits. Methods and Results A micro-heat transfer sensor was deployed to acquire the ISS profiles at baseline and post high-fat diet (HD) in the NZW rabbits (n=8). After 9 weeks of HD, serum oxLDL levels (mg/dL) increased by 140-fold, accompanied by a 1.5-fold increase in kinematic viscosity (cP) in the HD group. Time-averaged ISS (ISSave) in the thoracic aorta also increased in the HD group (baseline: 17.61±0.24 vs. 9 weeks: 25.22±0.95 dyne/cm2, n=4), but remained unchanged in the normal diet group (baseline: 22.85±0.53 dyne/cm2 vs. 9 weeks: 22.37±0.57 dyne/cm2, n=4). High-frequency Intravascular Ultrasound (IVUS) revealed atherosclerotic lesions in the regions with augmented ISSave, and concentric bipolar microelectrodes demonstrated elevated EIS signals, which were correlated with prominent anti-oxLDL immuno-staining (oxLDL-free regions: 497±55 Ω, n = 8 vs. oxLDL-rich lesions: 679±125 Ω, n = 12, P < 0.05). The equivalent circuit model for tissue resistance between the lesion-free and ox-LDL-rich lesions further validated the experimental EIS signals. Conclusions By applying electrochemical impedance in conjunction with shear stress and high-frequency ultrasound sensors, we provided a new strategy to identify oxLDL-laden lesions. The study demonstrated the feasibility of integrating EIS, ISS, and IVUS for a catheter-based approach to assess mechanically unstable plaque. PMID:23318546

  10. Proline metabolism and cancer: emerging links to glutamine and collagen

    PubMed Central

    Phang, James M.; Liu, Wei; Hancock, Chad N.; Fischer, Joseph W.

    2015-01-01

    Purpose of review Proline metabolism impacts a number of regulatory targets in both animals and plants and is especially important in cancer. Glutamine, a related amino acid, is considered second in importance only to glucose as a substrate for tumors. But proline and glutamine are interconvertible and linked in their metabolism. In animals, proline and glutamine have specific regulatory functions and their respective physiologic sources. A comparison of the metabolism of proline and glutamine would help us understand the importance of these two nonessential amino acids in cancer metabolism. Recent findings The regulatory functions of proline metabolism proposed 3 decades ago have found relevance in many areas. For cancer, these functions play a role in apoptosis, autophagy and in response to nutrient and oxygen deprivation. Importantly, proline-derived reactive oxygen species served as a driving signal for reprogramming. This model has been applied by others to metabolic regulation for the insulin-prosurvival axis, induction of adipose triglyceride lipase for lipid metabolism and regulation of embryonic stem cell development. Of special interest, modulatory proteins such as parkinson protein 7 and oral cancer overexpressed 1 interact with pyrroline-5-carboxylate reductase, a critical component of the proline regulatory axis. Although the interconvertibility of proline and glutamine has been long established, recent findings showed that the proto-oncogene, cellular myelocytomatosis oncogene, upregulates glutamine utilization (glutaminase) and routes glutamate to proline biosynthesis (pyrroline-5-carboxylate synthase, pyrroline-5-carboxylate reductases). Additionally, collagen, which contains large amounts of proline, may be metabolized to serve as a reservoir for proline. This metabolic relationship as well as the new regulatory targets of proline metabolism invites an elucidation of the differential effects of these nonessential amino acids and their production

  11. Formation and stability of the enolates of N-protonated proline methyl ester and proline zwitterion in aqueous solution: a nonenzymatic model for the first step in the racemization of proline catalyzed by proline racemase.

    PubMed

    Williams, Glenn; Maziarz, E Peter; Amyes, Tina L; Wood, Troy D; Richard, John P

    2003-07-15

    Rate constants for the hydrolysis of L-proline methyl ester to form proline and methanol in D(2)O buffered at neutral pD and 25 degrees C and the deuterium enrichment of the proline product determined by electrospray ionization mass spectrometry are reported. The data give k(DO) = 5.3 +/- 0.5 M(-1) s(-1) as the second-order rate constant for carbon deprotonation of N-protonated proline methyl ester by deuterioxide ion in D(2)O at 25 degrees C and I = 1.0 (KCl). The data provide good estimates of carbon acidities of pK(a) = 21 for N-protonated proline methyl ester and pK(a) = 29 for proline zwitterion in water and of the second-order rate constant k(HO) = 4.5 x 10(-5) M(-1) s(-1) for carbon deprotonation of proline zwitterion by hydroxide ion at 25 degrees C. There is no detectable acceleration of the deprotonation of N-protonated proline methyl ester by the Brønsted base 3-quinuclidinone in water, and it is not clear that such Brønsted catalysis would make a significant contribution to the rate acceleration for deprotonation of bound proline at proline racemase. A comparison of the first-order rate constants k(HO)[HO(-)] = 4.5 x 10(-11) s(-1) for deprotonation of free proline zwitterion in water at pH 8 and k(cat) = 2600 s(-1) for deprotonation of proline bound to the active site of proline racemase at pH 8 shows that the enzymatic rate acceleration for proline racemase is ca. 10(13)-fold. This corresponds to a 19 kcal/mol stabilization of the transition state for deprotonation of the enzyme-bound carbon acid substrate by interaction with the protein catalyst. It is suggested that (1) much of the rate acceleration of the enzymatic over the nonenzymatic reaction in water may result from transfer of the substrate proline zwitterion from the polar solvent water to a nonpolar enzyme active site and (2) the use of thiol anions rather than oxygen anions as Brønsted bases at this putative nonpolar enzyme active site may be favored, because of the smaller energetic

  12. Proline and hydroxyproline metabolism: implications for animal and human nutrition.

    PubMed

    Wu, Guoyao; Bazer, Fuller W; Burghardt, Robert C; Johnson, Gregory A; Kim, Sung Woo; Knabe, Darrell A; Li, Peng; Li, Xilong; McKnight, Jason R; Satterfield, M Carey; Spencer, Thomas E

    2011-04-01

    Proline plays important roles in protein synthesis and structure, metabolism (particularly the synthesis of arginine, polyamines, and glutamate via pyrroline-5-carboxylate), and nutrition, as well as wound healing, antioxidative reactions, and immune responses. On a per-gram basis, proline plus hydroxyproline are most abundant in collagen and milk proteins, and requirements of proline for whole-body protein synthesis are the greatest among all amino acids. Therefore, physiological needs for proline are particularly high during the life cycle. While most mammals (including humans and pigs) can synthesize proline from arginine and glutamine/glutamate, rates of endogenous synthesis are inadequate for neonates, birds, and fish. Thus, work with young pigs (a widely used animal model for studying infant nutrition) has shown that supplementing 0.0, 0.35, 0.7, 1.05, 1.4, and 2.1% proline to a proline-free chemically defined diet containing 0.48% arginine and 2% glutamate dose dependently improved daily growth rate and feed efficiency while reducing concentrations of urea in plasma. Additionally, maximal growth performance of chickens depended on at least 0.8% proline in the diet. Likewise, dietary supplementation with 0.07, 0.14, and 0.28% hydroxyproline (a metabolite of proline) to a plant protein-based diet enhanced weight gains of salmon. Based on its regulatory roles in cellular biochemistry, proline can be considered as a functional amino acid for mammalian, avian, and aquatic species. Further research is warranted to develop effective strategies of dietary supplementation with proline or hydroxyproline to benefit health, growth, and development of animals and humans.

  13. Efficacy of proline in the treatment of menopause

    PubMed Central

    Nam, Sun-Young; Yoou, Myoung-Schook

    2016-01-01

    The amino acids in the placenta have multiple functions; however, the therapeutic effects of proline remain poorly for relief postmenopausal symptoms. The aim of present study was to evaluate the effects of proline in the treatment of menopause using in vitro and in vivo models. We assessed the therapeutic effects and regulatory mechanisms of proline by using MCF-7 estrogen-dependent cells, MG63 osteoblast cells, and ovariectomized mice model. An in vivo study was carried out in eight-week-old sham and ovariectomized group. The ovariectomized mouse was further subdivided into two groups administered orally with 17β-estradiol or proline (10 mg/kg/day) for eight weeks. Proline significantly increased cell proliferation and Ki-67 levels in MCF-7 cells and enhanced cell proliferation, alkaline phosphatase activity, extracellular signal-regulated kinase phosphorylation, and glutamyl-prolyl-tRNA synthetase activation in MG63 cells. The estrogen receptor-β and estrogen-response elements luciferase activity were significantly increased by proline in MCF-7 and MG63 cells. In ovariectomized mice, oral administration of proline (10 mg/kg/day) for eight weeks significantly reduced body and vaginal weights. Proline also significantly increased serum estradiol and alkaline phosphatase levels, whereas serum luteinizing hormone was decreased by proline. In addition, detailed microcomputed tomography analysis showed that the proline notably enhanced bone mineral density, trabecular bone volume, and trabecular number in ovariectomized mice. Those findings implied that proline can be a promising candidate for the treatment of menopause. PMID:26830682

  14. Trichodiene synthase. Probing the role of the highly conserved aspartate-rich region by site-directed mutagenesis.

    PubMed

    Cane, D E; Xue, Q; Fitzsimons, B C

    1996-09-24

    Trichodiene synthase catalyzes the cyclization of farnesyl diphosphate to the sesquiterpene hydrocarbon trichodiene. The enzyme normally requires a divalent cation, Mg2+, which can be substituted by Mn2+. Trichodiene synthase from Fusarium sporotrichioides has a highly conserved aspartate rich region, aa 100-104 (DDSKD). Three mutants were constructed by site-directed mutagenesis in which each aspartate residue was individually replaced by glutamate. The mutants were each overexpressed and purified to homogeneity. The importance of Asp100 and Asp101 for catalysis was established by the observation of an increase in Km as well as a reduction in kcat in the corresponding Glu mutants. Replacement of the Asp104 residue with Glu had little effect on either Km or kcat. All three mutants produced anomalous sesquiterpene products in addition to trichodiene when incubated with farnesyl diphosphate. Interestingly, when Mg2+ was replaced by Mn2+ in the incubation buffer, the kcat/Km of both wild type trichodiene synthase and the D104E dropped significantly, while those of the other two mutants were not much affected. The proportion of anomalous products increased significantly when the D100E and D101E mutants were incubated in the presence of Mn2+. These observations all lend weight to the proposal that the aspartate residues mediate substrate binding by chelation of the divalent metal ion. Asp100 and Asp101 appear to play a relatively more important role than Asp104. PMID:8823172

  15. Role of proline and GABA in sexual reproduction of angiosperms.

    PubMed

    Biancucci, Marco; Mattioli, Roberto; Forlani, Giuseppe; Funck, Dietmar; Costantino, Paolo; Trovato, Maurizio

    2015-01-01

    Two glutamate derivatives, proline and γ-aminobutyric acid (GABA), appear to play pivotal roles in different aspects of sexual reproduction in angiosperms, although their precise function in plant reproduction and the molecular basis of their action are not yet fully understood. Proline and GABA have long been regarded as pivotal amino acids in pollen vitality and fertility. Proline may constitute up to 70% of the free amino acid pool in pollen grains and it has been recently shown that Arabidopsis mutants affected in the first and rate-limiting step in proline synthesis produce aberrant and infertile pollen grains, indicating that proline synthesis is required for pollen development and fertility. Concerning GABA, a large body of evidence points to this glutamate derivative as a key determinant of post-pollination fertilization. Intriguingly, proline has also been associated with pollination, another aspect of sexual reproduction, since honeybees were reported to show a strong preference for proline-enriched nectars. In this review, we survey current knowledge on the roles of proline and GABA in plant fertility, and discuss future perspectives potentially capable to improve our understanding on the functions of these amino acids in pollen development, pollination, and pollen tube guidance.

  16. Role of proline and GABA in sexual reproduction of angiosperms

    PubMed Central

    Biancucci, Marco; Mattioli, Roberto; Forlani, Giuseppe; Funck, Dietmar; Costantino, Paolo; Trovato, Maurizio

    2015-01-01

    Two glutamate derivatives, proline and γ-aminobutyric acid (GABA), appear to play pivotal roles in different aspects of sexual reproduction in angiosperms, although their precise function in plant reproduction and the molecular basis of their action are not yet fully understood. Proline and GABA have long been regarded as pivotal amino acids in pollen vitality and fertility. Proline may constitute up to 70% of the free amino acid pool in pollen grains and it has been recently shown that Arabidopsis mutants affected in the first and rate-limiting step in proline synthesis produce aberrant and infertile pollen grains, indicating that proline synthesis is required for pollen development and fertility. Concerning GABA, a large body of evidence points to this glutamate derivative as a key determinant of post-pollination fertilization. Intriguingly, proline has also been associated with pollination, another aspect of sexual reproduction, since honeybees were reported to show a strong preference for proline-enriched nectars. In this review, we survey current knowledge on the roles of proline and GABA in plant fertility, and discuss future perspectives potentially capable to improve our understanding on the functions of these amino acids in pollen development, pollination, and pollen tube guidance. PMID:26388884

  17. Spectroscopy of Neutron-rich Nuclei of the A{approx_equal}60 region populated through binary heavy-ion collisions

    SciTech Connect

    Lunardi, S.

    2008-11-11

    Neutron-rich nuclei of the mass A = 60 region (from V to Fe) have been studied through multi-nucleon transfer reactions by bombarding a {sup 238}U target with beams of {sup 64}Ni and {sup 70}Zn. Unambiguous identification of prompt {gamma} rays belonging to each nucleus has been achieved by using the efficient gamma-array CLARA coupled to the large-acceptance magnetic spectrometer PRISMA installed at the Legnaro National Laboratories. With the new data, the existence of the N = 32 sub-shell closure has been corroborated through the study of odd V isotopes, whereas a new region of deformation appears for neutron-rich Fe nuclei close to N = 40. The results obtained for all these nuclei are compared with shell model calculations which reproduces quite well the experimental data also for the most neutron-rich nuclei when excitations from the fp shell into the upper g{sub 9/2} orbital are allowed.

  18. Identification and physical localization of useful genes and markers to a major gene-rich region on wheat group 1S chromosomes.

    PubMed Central

    Sandhu, D; Champoux, J A; Bondareva, S N; Gill, K S

    2001-01-01

    The short arm of Triticeae homeologous group 1 chromosomes is known to contain many agronomically important genes. The objectives of this study were to physically localize gene-containing regions of the group 1 short arm, enrich these regions with markers, and study the distribution of genes and recombination. We focused on the major gene-rich region ("1S0.8 region") and identified 75 useful genes along with 93 RFLP markers by comparing 35 different maps of Poaceae species. The RFLP markers were tested by gel blot DNA analysis of wheat group 1 nullisomic-tetrasomic lines, ditelosomic lines, and four single-break deletion lines for chromosome arm 1BS. Seventy-three of the 93 markers mapped to group 1 and detected 91 loci on chromosome 1B. Fifty-one of these markers mapped to two major gene-rich regions physically encompassing 14% of the short arm. Forty-one marker loci mapped to the 1S0.8 region and 10 to 1S0.5 region. Two cDNA markers mapped in the centromeric region and the remaining 24 loci were on the long arm. About 82% of short arm recombination was observed in the 1S0.8 region and 17% in the 1S0.5 region. Less than 1% recombination was observed for the remaining 85% of the physical arm length. PMID:11290727

  19. Proline Modulates the Trypanosoma cruzi Resistance to Reactive Oxygen Species and Drugs through a Novel D, L-Proline Transporter

    PubMed Central

    Sayé, Melisa; Miranda, Mariana R.; di Girolamo, Fabio; de los Milagros Cámara, María; Pereira, Claudio A.

    2014-01-01

    Trypanosoma cruzi, the etiological agent of Chagas' disease, has a metabolism largely based on the consumption of glucose and proline. This amino acid is essential for host cells infection and intracellular differentiation. In this work we identified a proline transporter (TcAAAP069) by yeasts complementation assays and overexpression in Trypanosoma cruzi epimastigotes. TcAAAP069 is mono-specific for proline but presents an unusual feature; the lack of stereospecificity, because it is competitively inhibited by the D- enantiomer. Parasites overexpressing TcAAAP069 have an increased intracellular proline concentration, 2.6-fold higher than controls, as a consequence of a higher proline transport rate. Furthermore, augmented proline concentration correlates with an improved resistance to trypanocidal drugs and also to reactive oxygen species including hydrogen peroxide and nitric oxide, emulating natural physiological situations. The IC50s for nifurtimox, benznidazole, H2O2 and NO. were 125%, 68%, 44% and 112% higher than controls, respectively. Finally, proline metabolism generates a higher concentration (48%) of ATP in TcAAAP069 parasites. Since proline participates on essential energy pathways, stress and drug resistance responses, these results provide a novel target for the development of new drugs for the treatments for Chagas' disease. PMID:24637744

  20. On the evolutionary significance of the size and planarity of the proline ring

    NASA Astrophysics Data System (ADS)

    Behre, Jörn; Voigt, Roland; Althöfer, Ingo; Schuster, Stefan

    2012-10-01

    Proline is a proteinogenic amino acid in which the side chain forms a ring, the pyrrolidine ring. This is a five-membered ring made up of four carbons and one nitrogen. Here, we study the evolutionary significance of this ring size. It is shown that the size of the pyrrolidine ring has the advantage of being nearly planar and strain-free, based on a general mathematical assertion saying that the angular sum of a polygon is maximum if it is planar and convex. We also provide a sketch of the proof to this assertion. The optimality of the ring size of proline can be derived from a triangle inequality for angles. Quasi-planarity is physiologically significant because it allows an easier and evolutionarily old type of fit into binding grooves of proteins with which proline-rich proteins interact. Finally, we present a comparison with other planar, nearly planar and non-planar biomolecules such as neurotransmitters, hormones and toxins, involving, for example, aromatic rings, cyclopentanone and 1,3-dioxole.

  1. Roles of conserved proline and glycosyltransferase motifs of EmbC in biosynthesis of lipoarabinomannan.

    PubMed

    Berg, Stefan; Starbuck, James; Torrelles, Jordi B; Vissa, Varalakshmi D; Crick, Dean C; Chatterjee, Delphi; Brennan, Patrick J

    2005-02-18

    D-Arabinans, composed of D-arabinofuranose (D-Araf), dominate the structure of mycobacterial cell walls in two settings, as part of lipoarabinomannan (LAM) and arabinogalactan, each with markedly different structures and functions. Little is known of the complexity of their biosynthesis. beta-D-Arabinofuranosyl-1-monophosphoryldecaprenol is the only known sugar donor. EmbA, EmbB, and EmbC, products of the paralogous genes embA, embB, and embC, the sites of resistance to the anti-tuberculosis drug ethambutol (EMB), are the only known implicated enzymes. EmbA and -B apparently contribute to the synthesis of arabinogalactan, whereas EmbC is reserved for the synthesis of LAM. The Emb proteins show no overall similarity to any known proteins beyond Mycobacterium and related genera. However, functional motifs, equivalent to a proline-rich motif of several bacterial polysaccharide co-polymerases and a superfamily of glycosyltransferases, were found. Site-directed mutagenesis in glycosyltransferase superfamily C resulted in complete ablation of LAM synthesis. Point mutations in three amino acids of the proline motif of EmbC resulted in marked reduction of LAM-arabinan synthesis and accumulation of an unknown intermediate and of the known precursor lipomannan. Yet the pattern of the differently linked d-Araf units observed in wild type LAM-arabinan was largely retained in the proline motif mutants. The results allow for the presentation of a unique model of arabinan synthesis. PMID:15546869

  2. Association between simple sequence repeat-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats

    PubMed Central

    Molnár, István; Cifuentes, Marta; Schneider, Annamária; Benavente, Elena; Molnár-Láng, Márta

    2011-01-01

    Background and Aims Repetitive DNA sequences are thought to be involved in the formation of chromosomal rearrangements. The aim of this study was to analyse the distribution of microsatellite clusters in Aegilops biuncialis and Aegilops geniculata, and its relationship with the intergenomic translocations in these allotetraploid species, wild genetic resources for wheat improvement. Methods The chromosomal localization of (ACG)n and (GAA)n microsatellite sequences in Ae. biuncialis and Ae. geniculata and in their diploid progenitors Aegilops comosa and Aegilops umbellulata was investigated by sequential in situ hybridization with simple sequence repeat (SSR) probes and repeated DNA probes (pSc119·2, Afa family and pTa71) and by dual-colour genomic in situ hybridization (GISH). Thirty-two Ae. biuncialis and 19 Ae. geniculata accessions were screened by GISH for intergenomic translocations, which were further characterized by fluorescence in situ hybridization and GISH. Key Results Single pericentromeric (ACG)n signals were localized on most U and on some M genome chromosomes, whereas strong pericentromeric and several intercalary and telomeric (GAA)n sites were observed on the Aegilops chromosomes. Three Ae. biuncialis accessions carried 7Ub–7Mb reciprocal translocations and one had a 7Ub–1Mb rearrangement, while two Ae. geniculata accessions carried 7Ug–1Mg or 5Ug–5Mg translocations. Conspicuous (ACG)n and/or (GAA)n clusters were located near the translocation breakpoints in eight of the ten translocated chromosomes analysed, SSR bands and breakpoints being statistically located at the same chromosomal site in six of them. Conclusions Intergenomic translocation breakpoints are frequently mapped to SSR-rich chromosomal regions in the allopolyploid species examined, suggesting that microsatellite repeated DNA sequences might facilitate the formation of those chromosomal rearrangements. The (ACG)n and (GAA)n SSR motifs serve as additional chromosome markers

  3. Improved Atomistic Monte Carlo Simulations Demonstrate that Poly-L-Proline Adopts Heterogeneous Ensembles of Conformations of Semi-Rigid Segments Interrupted by Kinks

    PubMed Central

    Radhakrishnan, Aditya; Vitalis, Andreas; Mao, Albert H.; Steffen, Adam T.; Pappu, Rohit V.

    2012-01-01

    Poly-L-proline (PLP) polymers are useful mimics of biologically relevant proline-rich sequences. Biophysical and computational studies of PLP polymers in aqueous solutions are challenging because of the diversity of length scales and the slow time scales for conformational conversions. We describe an atomistic simulation approach that combines an improved ABSINTH implicit solvation model, with conformational sampling based on standard and novel Metropolis Monte Carlo moves. Refinements to forcefield parameters were guided by published experimental data for proline-rich systems. We assessed the validity of our simulation results through quantitative comparisons to experimental data that were not used in refining the forcefield parameters. Our analysis shows that PLP polymers form heterogeneous ensembles of conformations characterized by semi-rigid, rod-like segments interrupted by kinks, which result from a combination of internal cis peptide bonds, flexible backbone ψ-angles, and the coupling between ring puckering and backbone degrees of freedom. PMID:22329658

  4. TLR2∆22 (-196-174) significantly increases the risk of breast cancer in females carrying proline allele at codon 72 of TP53 gene: a case-control study from four ethnic groups of North Eastern region of India.

    PubMed

    Devi, K Rekha; Chenkual, Saia; Majumdar, Gautam; Ahmed, Jishan; Kaur, Tanvir; Zonunmawia, Jason C; Mukherjee, Kaustab; Phukan, Rup Kumar; Mahanta, Jagdish; Rajguru, S K; Mukherjee, Debdutta; Narain, Kanwar

    2015-12-01

    Breast cancer (BC) is the second most common cancer in women. In the North Eastern Region (NER) of India, BC is emerging as an important concern as evidenced by the data available from population and hospital-based cancer registries. Studies on genetic susceptibility to BC are important to understand the increase in the incidence of BC in NER. The present case control study was conducted to investigate the association between tumour suppressor gene TP53 codon 72 polymorphism and innate immune pathway gene TLR2∆22 (-196-174) polymorphism with BC in females of NER of India for the identification of novel biomarker of BC. Four hundred sixty-two histopathologically confirmed BC cases from four states of NER of India, and 770 healthy controls were included by organizing community surveys from the neighbourhood of cases. In our study, no significant association between TP53 codon 72 polymorphisms and the risk of BC was found. However, our study has shown that TP53 codon 72 polymorphism is an important effect modifier. In the present study it was found that females carrying 22 base-pair deletion in the promoter region of their TLR2 gene had two times (AOR= 2.18, 95 % CI 1.13-4.21, p=0.019 in dominant model; AOR= 2.17, 95 % CI 1.09-4.34, p=0.027 in co-dominant model) increased risk of BC whwn they also carry proline allele at codon 72 of their TP53 gene. PMID:26188904

  5. Elucidating proline dynamics in spider dragline silk fibre using 2H-13C HETCOR MAS NMR.

    PubMed

    Shi, Xiangyan; Yarger, Jeffery L; Holland, Gregory P

    2014-05-14

    (2)H-(13)C HETCOR MAS NMR is performed on (2)H/(13)C/(15)N-Pro enriched A. aurantia dragline silk. Proline dynamics are extracted from (2)H NMR line shapes and T1 in a site-specific manner to elucidate the backbone and side chain molecular dynamics for the MaSp2 GPGXX β-turn regions for spider dragline silk in the dry and wet, supercontracted states.

  6. Uptake of proline by the scutellum of germinating barley grain

    SciTech Connect

    Vaeisaenen, E.; Sopanen, T.

    1986-04-01

    Scutella separated from germinating grains of barley (Hordeum vulgare L. cv Himalaya) took up 1 millimolar L-(/sup 14/C)proline at an initial rate of about 6.5 micromoles gram/sup -1/ fresh weight hour/sup -1/ (pH 5, 30/sup 0/C). The uptake had a pH optimum at 5. The bulk of the uptake (93%) was via carrier-mediated active transport. All of the 19 L-amino acids tested at 10 millimolar concentration inhibited the mediated uptake of 1 millimolar proline, the inhibitions varying from 18 to 76%. By studying how large a fraction of the mediated uptake was inhibitable by asparagine, alanine, glutamine, and leucine, the mediated uptake was shown to be due to three components. Two of these are most probably attributable to the two nonspecific uptake systems proposed earlier to act in the uptake of glutamine and leucine. The third component was not inhibited by glutamine, asparagine, or alanine, but was inhibited by unlabeled proline and leucine. The uptake by this system was apparently carrier-mediated active transport. D-Proline inhibited this system as strongly as L-proline. Nine of the 16 L-amino tested at 50 millimolar concentrations did not inhibit the uptake of 1 millimolar proline by this system. Valine, leucine, isoleucine, and the basic amino acids were inhibitory, but in spite of this, they did not appear to be taken up by this system. It seems therefore that in addition to two nonspecific amino acid uptake systems the scutella have an uptake system which is specific for proline. It is likely that this proline-specific system accounts for the bulk of proline uptake in a germinating grain.

  7. The Cysteine-Rich Interdomain Region from the Highly Variable Plasmodium falciparum Erythrocyte Membrane Protein-1 Exhibits a Conserved Structure

    PubMed Central

    Su, Hua-Poo; Makobongo, Morris O.; Moore, Jaime M.; Singh, Sanjay; Miller, Louis H.; Garboczi, David N.

    2008-01-01

    Plasmodium falciparum malaria parasites, living in red blood cells, express proteins of the erythrocyte membrane protein-1 (PfEMP1) family on the red blood cell surface. The binding of PfEMP1 molecules to human cell surface receptors mediates the adherence of infected red blood cells to human tissues. The sequences of the 60 PfEMP1 genes in each parasite genome vary greatly from parasite to parasite, yet the variant PfEMP1 proteins maintain receptor binding. Almost all parasites isolated directly from patients bind the human CD36 receptor. Of the several kinds of highly polymorphic cysteine-rich interdomain region (CIDR) domains classified by sequence, only the CIDR1α domains bind CD36. Here we describe the CD36-binding portion of a CIDR1α domain, MC179, as a bundle of three α-helices that are connected by a loop and three additional helices. The MC179 structure, containing seven conserved cysteines and 10 conserved hydrophobic residues, predicts similar structures for the hundreds of CIDR sequences from the many genome sequences now known. Comparison of MC179 with the CIDR domains in the genome of the P. falciparum 3D7 strain provides insights into CIDR domain structure. The CIDR1α three-helix bundle exhibits less than 20% sequence identity with the three-helix bundles of Duffy-binding like (DBL) domains, but the two kinds of bundles are almost identical. Despite the enormous diversity of PfEMP1 sequences, the CIDR1α and DBL protein structures, taken together, predict that a PfEMP1 molecule is a polymer of three-helix bundles elaborated by a variety of connecting helices and loops. From the structures also comes the insight that DBL1α domains are approximately 100 residues larger and that CIDR1α domains are approximately 100 residues smaller than sequence alignments predict. This new understanding of PfEMP1 structure will allow the use of better-defined PfEMP1 domains for functional studies, for the design of candidate vaccines, and for understanding the

  8. Control of Si-rich region inside a sodalime glass by parallel femtosecond laser focusing at multiple spots

    NASA Astrophysics Data System (ADS)

    Sakakura, Masaaki; Kurita, Torataro; Yoshimura, Kouhei; Fukuda, Naoaki; Shimotsuma, Yasuhiko; Miura, Kiyotaka

    2015-06-01

    Thermal modification and elemental distributions inside a sodalime glass were modified by parallel irradiation with focused 250 and 1 kHz femtosecond laser pulses at multiple spots. We found that the shape of a Si distribution was modified and the position of a Si-rich layer depended on the relative focal positions between 250 and 1 kHz laser pulses. We demonstrated the formation of a ribbon-shaped Si-rich glass of about 8 μm thickness and about 33 μm width by producing a line of a Si-rich layer by translating a glass sample perpendicular to the laser propagation axis. In addition, we simulated transient temperature distribution during laser exposure and discussed the role of 1 kHz laser irradiation in the modulation of elemental distributions.

  9. Hydrogen rich gas generator

    NASA Technical Reports Server (NTRS)

    Houseman, J. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by introducing a liquid hydrocarbon fuel in the form of a spray into a partial oxidation region and mixing with a mixture of steam and air that is preheated by indirect heat exchange with the formed hydrogen rich gas, igniting the hydrocarbon fuel spray mixed with the preheated mixture of steam and air within the partial oxidation region to form a hydrogen rich gas.

  10. Microbial diversity in deep-sea sediment from the cobalt-rich crust deposit region in the Pacific Ocean.

    PubMed

    Liao, Li; Xu, Xue-Wei; Jiang, Xia-Wei; Wang, Chun-Sheng; Zhang, Dong-Sheng; Ni, Jian-Yu; Wu, Min

    2011-12-01

    Cobalt-rich crusts are important metallic mineral resources with great economic potential, usually distributed on seamounts located in the Pacific Ocean. Microorganisms are believed to play a role in the formation of crusts as well as in metal cycling. To explore the microbial diversity related to cobalt-rich crusts, 16S ribosomal RNA gene clone libraries were constructed from three consecutive sediment layers. In total, 417 bacterial clones were obtained from three bacterial clone libraries, representing 17 distinct phylogenetic groups. Proteobacteria dominated in the bacterial communities, followed by Acidobacteria and Planctomycetes. Compared with high bacterial diversity, archaea showed a remarkably low diversity, with all 137 clones belonging to marine archaeal group I except one novel euryarchaeotal clone. The microbial communities were potentially involved in sulfur, nitrogen and metal cycling in the area of cobalt-rich crusts. Sulfur oxidation and metal oxidation were potentially major sources of energy for this ecosystem. This is the first reported investigation of microbial diversity in sediments associated with cobalt-rich crusts, and it casts fresh light on the microbial ecology of these important ecosystems. PMID:22067077

  11. Anthocyanin-rich blueberry diets enhance protection of critical brain regions exposed to acute levels of 56Fe cosmic radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The protective effects of anthocyanin-rich blueberries on brain health are well documented and are particularly important under conditions of high oxidative stress which can lead to “accelerated aging”. One such scenario is exposure to space radiation, which consists of high-energy and -charge parti...

  12. Microbial diversity in deep-sea sediment from the cobalt-rich crust deposit region in the Pacific Ocean.

    PubMed

    Liao, Li; Xu, Xue-Wei; Jiang, Xia-Wei; Wang, Chun-Sheng; Zhang, Dong-Sheng; Ni, Jian-Yu; Wu, Min

    2011-12-01

    Cobalt-rich crusts are important metallic mineral resources with great economic potential, usually distributed on seamounts located in the Pacific Ocean. Microorganisms are believed to play a role in the formation of crusts as well as in metal cycling. To explore the microbial diversity related to cobalt-rich crusts, 16S ribosomal RNA gene clone libraries were constructed from three consecutive sediment layers. In total, 417 bacterial clones were obtained from three bacterial clone libraries, representing 17 distinct phylogenetic groups. Proteobacteria dominated in the bacterial communities, followed by Acidobacteria and Planctomycetes. Compared with high bacterial diversity, archaea showed a remarkably low diversity, with all 137 clones belonging to marine archaeal group I except one novel euryarchaeotal clone. The microbial communities were potentially involved in sulfur, nitrogen and metal cycling in the area of cobalt-rich crusts. Sulfur oxidation and metal oxidation were potentially major sources of energy for this ecosystem. This is the first reported investigation of microbial diversity in sediments associated with cobalt-rich crusts, and it casts fresh light on the microbial ecology of these important ecosystems.

  13. Guidelines for Dual Energy X-Ray Absorptiometry Analysis of Trabecular Bone-Rich Regions in Mice: Improved Precision, Accuracy, and Sensitivity for Assessing Longitudinal Bone Changes.

    PubMed

    Shi, Jiayu; Lee, Soonchul; Uyeda, Michael; Tanjaya, Justine; Kim, Jong Kil; Pan, Hsin Chuan; Reese, Patricia; Stodieck, Louis; Lin, Andy; Ting, Kang; Kwak, Jin Hee; Soo, Chia

    2016-05-01

    Trabecular bone is frequently studied in osteoporosis research because changes in trabecular bone are the most common cause of osteoporotic fractures. Dual energy X-ray absorptiometry (DXA) analysis specific to trabecular bone-rich regions is crucial to longitudinal osteoporosis research. The purpose of this study is to define a novel method for accurately analyzing trabecular bone-rich regions in mice via DXA. This method will be utilized to analyze scans obtained from the International Space Station in an upcoming study of microgravity-induced bone loss. Thirty 12-week-old BALB/c mice were studied. The novel method was developed by preanalyzing trabecular bone-rich sites in the distal femur, proximal tibia, and lumbar vertebrae via high-resolution X-ray imaging followed by DXA and micro-computed tomography (micro-CT) analyses. The key DXA steps described by the novel method were (1) proper mouse positioning, (2) region of interest (ROI) sizing, and (3) ROI positioning. The precision of the new method was assessed by reliability tests and a 14-week longitudinal study. The bone mineral content (BMC) data from DXA was then compared to the BMC data from micro-CT to assess accuracy. Bone mineral density (BMD) intra-class correlation coefficients of the new method ranging from 0.743 to 0.945 and Levene's test showing that there was significantly lower variances of data generated by new method both verified its consistency. By new method, a Bland-Altman plot displayed good agreement between DXA BMC and micro-CT BMC for all sites and they were strongly correlated at the distal femur and proximal tibia (r=0.846, p<0.01; r=0.879, p<0.01, respectively). The results suggest that the novel method for site-specific analysis of trabecular bone-rich regions in mice via DXA yields more precise, accurate, and repeatable BMD measurements than the conventional method.

  14. Guidelines for Dual Energy X-Ray Absorptiometry Analysis of Trabecular Bone-Rich Regions in Mice: Improved Precision, Accuracy, and Sensitivity for Assessing Longitudinal Bone Changes.

    PubMed

    Shi, Jiayu; Lee, Soonchul; Uyeda, Michael; Tanjaya, Justine; Kim, Jong Kil; Pan, Hsin Chuan; Reese, Patricia; Stodieck, Louis; Lin, Andy; Ting, Kang; Kwak, Jin Hee; Soo, Chia

    2016-05-01

    Trabecular bone is frequently studied in osteoporosis research because changes in trabecular bone are the most common cause of osteoporotic fractures. Dual energy X-ray absorptiometry (DXA) analysis specific to trabecular bone-rich regions is crucial to longitudinal osteoporosis research. The purpose of this study is to define a novel method for accurately analyzing trabecular bone-rich regions in mice via DXA. This method will be utilized to analyze scans obtained from the International Space Station in an upcoming study of microgravity-induced bone loss. Thirty 12-week-old BALB/c mice were studied. The novel method was developed by preanalyzing trabecular bone-rich sites in the distal femur, proximal tibia, and lumbar vertebrae via high-resolution X-ray imaging followed by DXA and micro-computed tomography (micro-CT) analyses. The key DXA steps described by the novel method were (1) proper mouse positioning, (2) region of interest (ROI) sizing, and (3) ROI positioning. The precision of the new method was assessed by reliability tests and a 14-week longitudinal study. The bone mineral content (BMC) data from DXA was then compared to the BMC data from micro-CT to assess accuracy. Bone mineral density (BMD) intra-class correlation coefficients of the new method ranging from 0.743 to 0.945 and Levene's test showing that there was significantly lower variances of data generated by new method both verified its consistency. By new method, a Bland-Altman plot displayed good agreement between DXA BMC and micro-CT BMC for all sites and they were strongly correlated at the distal femur and proximal tibia (r=0.846, p<0.01; r=0.879, p<0.01, respectively). The results suggest that the novel method for site-specific analysis of trabecular bone-rich regions in mice via DXA yields more precise, accurate, and repeatable BMD measurements than the conventional method. PMID:26956416

  15. Comparative aspects of tissue glutamine and proline metabolism.

    PubMed

    Bertolo, Robert F; Burrin, Douglas G

    2008-10-01

    The cellular metabolism of glutamine and proline are closely interrelated, because they can be interconverted with glutamate and ornithine via the mitochondrial pathway involving pyrroline-5-carboxylate (P5C). In adults, glutamine and proline are converted via P5C to citrulline in the gut, then citrulline is converted to arginine in the kidney. In neonates, arginine is a semiindispensable amino acid and is synthesized from proline completely in the gut; because of low P5C synthase activity, glutamine is not an important precursor for neonatal arginine synthesis. Thus, splanchnic metabolism of glutamine and proline is important, because both amino acids serve as key precursors for arginine synthesis with some developmental differences. Studies investigating splanchnic extraction demonstrate that about two-thirds of dietary glutamine and almost all dietary glutamate are extracted on first pass and the vast majority is oxidized in the gut. This capacity to extract glutamine and glutamate appears to be very large, so diets high in glutamine or glutamate probably have little impact on circulating concentrations and consequent potential toxicity. In contrast, it appears that very little proline is extracted by the gut and liver, at least in the neonate, which may result in hyperprolinemia and potential toxicity. Therefore, the upper limits of safe dietary intake for glutamine and proline, and other amino acids, appear to be substantially different depending on the extent of first-pass splanchnic extraction and irreversible catabolism.

  16. Rapid method for proline determination in grape juice and wine.

    PubMed

    Long, Danfeng; Wilkinson, Kerry L; Poole, Kate; Taylor, Dennis K; Warren, Tristan; Astorga, Alejandra M; Jiranek, Vladimir

    2012-05-01

    Proline is typically the most abundant amino acid present in grape juice and wine. The amount present is influenced by viticultural and winemaking factors and can be of diagnostic importance. A method for rapid routine quantitation of proline would therefore be of benefit for wine researchers and the industry in general. Colorimetric determination utilizing isatin as a derivatizing agent has previously been applied to plant extracts, biological fluids, and protein hydrolysates. In the current study, this method has been successfully adapted to grape juice and wine and proved to be sensitive to milligram per liter amounts of proline. At sugar concentrations above 60 g/L, interference from the isatin-proline reaction was observed, such that proline concentrations were considerably underestimated in grape juice and dessert wine. However, the method was robust for the analysis of fermentation samples and table wines. Results were within ±10% agreement with data generated from typical HPLC-based analyses. The isatin method is therefore considered suitable for the routine analysis required to support research into the utilization or release of proline by yeast during fermentation. PMID:22480274

  17. Proline improves copper tolerance in chickpea (Cicer arietinum).

    PubMed

    Singh, Vijeta; Bhatt, Indu; Aggarwal, Anjali; Tripathi, Bhumi Nath; Munjal, Ashok Kumar; Sharma, Vinay

    2010-09-01

    The present study suggests the involvement of proline in copper tolerance of four genotypes of Cicer arietinum (chickpea). Based on the data of tolerance index and lipid peroxidation, the order for copper tolerance was as follows: RSG 888 > CSG 144 > CSG 104 > RSG 44 in the selected genotypes. The basis of differential copper tolerance in chickpea genotypes was characterized by analyzing, antioxidant enzymes (superoxide dismutase, ascorbated peroxidase and catalase), phytochelatins, copper uptake, and proline accumulation. Chickpea genotypes showed stimulated superoxide dismutase activity at all tested concentrations of copper, but H(2)O(2) decomposing enzymes especially; ascorbate peroxidase did not increase with 25 and 50 microM copper treatments. Catalase activity, however, increased at lower copper concentrations but failed to stimulate at 50 microM copper. Such divergence in responses of these enzymes minimizes their importance in protecting chickpea against copper stress. The sensitive genotypes showed greater enhancement of phytochelatins than that of tolerant genotypes. Hence, the possibility of phytochelatins in improving copper tolerance in the test plant is also excluded. Interestingly, the order of proline accumulation in the chickpea genotypes (RSG 888 > CSG 144 > CSG 104 > RSG 44) was exactly similar to the order of copper tolerance. Based on hyperaccumulation of proline in tolerant genotype (RSG 44) and the reduction and improvement of lipid peroxidation and tolerance index, respectively, by proline pretreatment, we conclude that hyperaccumulation of proline improves the copper tolerance in chickpea.

  18. Relative contributions of local and regional factors to species richness and total density of butterflies and moths in semi-natural grasslands.

    PubMed

    Pöyry, Juha; Paukkunen, Juho; Heliölä, Janne; Kuussaari, Mikko

    2009-06-01

    Metapopulation theory predicts that species richness and total population density of habitat specialists increase with increasing area and regional connectivity of the habitat. To test these predictions, we examined the relative contributions of habitat patch area, connectivity of the regional habitat network and local habitat quality to species richness and total density of butterflies and day-active moths inhabiting semi-natural grasslands. We studied butterflies and moths in 48 replicate landscapes situated in southwest Finland, including a focal patch and the surrounding network of other semi-natural grasslands within a radius of 1.5 km from the focal patch. By applying the method of hierarchical partitioning, which can distinguish between independent and joint contributions of individual explanatory variables, we observed that variables of the local habitat quality (e.g. mean vegetation height and nectar plant abundance) generally showed the highest independent effect on species richness and total density of butterflies and moths. Habitat area did not show a significant independent contribution to species richness and total density of butterflies and moths. The effect of habitat connectivity was observed only for total density of the declining butterflies and moths. These observations indicate that the local habitat quality is of foremost importance in explaining variation in species richness and total density of butterflies and moths. In addition, declining butterflies and moths have larger populations in well-connected networks of semi-natural grasslands. Our results suggest that, while it is crucial to maintain high-quality habitats by management, with limited resources it would be appropriate to concentrate grassland management and restoration to areas with well-connected grassland networks in which the declining species currently have their strongest populations.

  19. A conserved active site tyrosine residue of proline dehydrogenase helps enforce the preference for proline over hydroxyproline as the substrate.

    PubMed

    Ostrander, Elizabeth L; Larson, John D; Schuermann, Jonathan P; Tanner, John J

    2009-02-10

    Proline dehydrogenase (PRODH) catalyzes the oxidation of l-proline to Delta-1-pyrroline-5-carboxylate. PRODHs exhibit a pronounced preference for proline over hydroxyproline (trans-4-hydroxy-l-proline) as the substrate, but the basis for specificity is unknown. The goal of this study, therefore, is to gain insight into the structural determinants of substrate specificity of this class of enzyme, with a focus on understanding how PRODHs discriminate between the two closely related molecules, proline and hydroxyproline. Two site-directed mutants of the PRODH domain of Escherichia coli PutA were created: Y540A and Y540S. Kinetics measurements were performed with both mutants. Crystal structures of Y540S complexed with hydroxyproline, proline, and the proline analogue l-tetrahydro-2-furoic acid were determined at resolutions of 1.75, 1.90, and 1.85 A, respectively. Mutation of Tyr540 increases the catalytic efficiency for hydroxyproline 3-fold and decreases the specificity for proline by factors of 20 (Y540S) and 50 (Y540A). The structures show that removal of the large phenol side chain increases the volume of the substrate-binding pocket, allowing sufficient room for the 4-hydroxyl of hydroxyproline. Furthermore, the introduced serine residue participates in recognition of hydroxyproline by forming a hydrogen bond with the 4-hydroxyl. This result has implications for understanding the substrate specificity of the related enzyme human hydroxyproline dehydrogenase, which has serine in place of tyrosine at this key active site position. The kinetic and structural results suggest that Tyr540 is an important determinant of specificity. Structurally, it serves as a negative filter for hydroxyproline by clashing with the 4-hydroxyl group of this potential substrate.

  20. A Conserved Active Site Tyrosine Residue of Proline Dehydrogenase Helps Enforce the Preference for Proline over Hydroxyproline as the Substrate

    SciTech Connect

    Ostrander, E.L.; Larson, J.D.; Schuermann, J.P.; Tanner, J.J.

    2009-03-02

    Proline dehydrogenase (PRODH) catalyzes the oxidation of L-proline to {Delta}-1-pyrroline-5-carboxylate. PRODHs exhibit a pronounced preference for proline over hydroxyproline (trans-4-hydroxy-L-proline) as the substrate, but the basis for specificity is unknown. The goal of this study, therefore, is to gain insight into the structural determinants of substrate specificity of this class of enzyme, with a focus on understanding how PRODHs discriminate between the two closely related molecules, proline and hydroxyproline. Two site-directed mutants of the PRODH domain of Escherichia coli PutA were created: Y540A and Y540S. Kinetics measurements were performed with both mutants. Crystal structures of Y540S complexed with hydroxyproline, proline, and the proline analogue L-tetrahydro-2-furoic acid were determined at resolutions of 1.75, 1.90, and 1.85 {angstrom}, respectively. Mutation of Tyr540 increases the catalytic efficiency for hydroxyproline 3-fold and decreases the specificity for proline by factors of 20 (Y540S) and 50 (Y540A). The structures show that removal of the large phenol side chain increases the volume of the substrate-binding pocket, allowing sufficient room for the 4-hydroxyl of hydroxyproline. Furthermore, the introduced serine residue participates in recognition of hydroxyproline by forming a hydrogen bond with the 4-hydroxyl. This result has implications for understanding the substrate specificity of the related enzyme human hydroxyproline dehydrogenase, which has serine in place of tyrosine at this key active site position. The kinetic and structural results suggest that Tyr540 is an important determinant of specificity. Structurally, it serves as a negative filter for hydroxyproline by clashing with the 4-hydroxyl group of this potential substrate.

  1. Very low sound velocities in iron-rich (Mg,Fe)O : Implications for the core-mantle boundary region.

    SciTech Connect

    Wicks, J. K.; Jackson, J. M.; Sturhahn, W.; X-Ray Science Division; California Inst. of Tech.; Jet Propulsion Lab.

    2010-08-10

    The sound velocities of (Mg{sub .16}Fe{sub .84})O have been measured to 121 GPa at ambient temperature using nuclear resonant inelastic x-ray scattering. The effect of electronic environment of the iron sites on the sound velocities were tracked in situ using synchrotron Moessbauer spectroscopy. We found the sound velocities of (Mg{sub .16}Fe{sub .84})O to be much lower than those in other presumed mantle phases at similar conditions, most notably at very high pressures. Conservative estimates of the effect of temperature and dilution on aggregate sound velocities show that only a small amount of iron-rich (Mg,Fe)O can greatly reduce the average sound velocity of an assemblage. We propose that iron-rich (Mg,Fe)O be a source of ultra-low velocity zones. Other properties of this phase, such as enhanced density and dynamic stability, strongly support the presence of iron-rich (Mg,Fe)O in localized patches above the core-mantle boundary.

  2. Proteomic and functional analysis of proline dehydrogenase 1 link proline catabolism to mitochondrial electron transport in Arabidopsis thaliana.

    PubMed

    Cabassa-Hourton, Cécile; Schertl, Peter; Bordenave-Jacquemin, Marianne; Saadallah, Kaouthar; Guivarc'h, Anne; Lebreton, Sandrine; Planchais, Séverine; Klodmann, Jennifer; Eubel, Holger; Crilat, Emilie; Lefebvre-De Vos, Delphine; Ghelis, Thanos; Richard, Luc; Abdelly, Chedly; Carol, Pierre; Braun, Hans-Peter; Savouré, Arnould

    2016-09-01

    Proline accumulates in many plant species in response to environmental stresses. Upon relief from stress, proline is rapidly oxidized in mitochondria by proline dehydrogenase (ProDH) and then by pyrroline-5-carboxylate dehydrogenase (P5CDH). Two ProDH genes have been identified in the genome of the model plant Arabidopsis thaliana To gain a better understanding of ProDH1 functions in mitochondria, proteomic analysis was performed. ProDH1 polypeptides were identified in Arabidopsis mitochondria by immunoblotting gels after 2D blue native (BN)-SDS/PAGE, probing them with an anti-ProDH antibody and analysing protein spots by MS. The 2D gels showed that ProDH1 forms part of a low-molecular-mass (70-140 kDa) complex in the mitochondrial membrane. To evaluate the contribution of each isoform to proline oxidation, mitochondria were isolated from wild-type (WT) and prodh1, prodh2, prodh1prodh2 and p5cdh mutants. ProDH activity was high for genotypes in which ProDH, most likely ProDH1, was strongly induced by proline. Respiratory measurements indicate that ProDH1 has a role in oxidizing excess proline and transferring electrons to the respiratory chain. PMID:27303048

  3. Immunity related genes in dipterans share common enrichment of AT-rich motifs in their 5' regulatory regions that are potentially involved in nucleosome formation

    PubMed Central

    Hernandez-Romano, Jesus; Carlos-Rivera, Francisco J; Salgado, Heladia; Lamadrid-Figueroa, Hector; Valverde-Garduño, Veronica; Rodriguez, Mario H; Martinez-Barnetche, Jesus

    2008-01-01

    Background Understanding the transcriptional regulation mechanisms in response to environmental challenges is of fundamental importance in biology. Transcription factors associated to response elements and the chromatin structure had proven to play important roles in gene expression regulation. We have analyzed promoter regions of dipteran genes induced in response to immune challenge, in search for particular sequence patterns involved in their transcriptional regulation. Results 5' upstream regions of D. melanogaster and A. gambiae immunity-induced genes and their corresponding orthologous genes in 11 non-melanogaster drosophilid species and Ae. aegypti share enrichment in AT-rich short motifs. AT-rich motifs are associated with nucleosome formation as predicted by two different algorithms. In A. gambiae and D. melanogaster, many immunity genes 5' upstream sequences also showed NFκB response elements, located within 500 bp from the transcription start site. In A. gambiae, the frequency of ATAA motif near the NFκB response elements was increased, suggesting a functional link between nucleosome formation/remodelling and NFκB regulation of transcription. Conclusion AT-rich motif enrichment in 5' upstream sequences in A. gambiae, Ae. aegypti and the Drosophila genus immunity genes suggests a particular pattern of nucleosome formation/chromatin organization. The co-occurrence of such motifs with the NFκB response elements suggests that these sequence signatures may be functionally involved in transcriptional activation during dipteran immune response. AT-rich motif enrichment in regulatory regions in this group of co-regulated genes could represent an evolutionary constrained signature in dipterans and perhaps other distantly species. PMID:18613977

  4. Exogenous proline relieves growth inhibition caused by NaCl in petunia cells: Metabolism of L-( sup 15 M)-proline followed by sup 15 N NMR

    SciTech Connect

    Heyser, J.W.; Chacon, M.J. )

    1989-04-01

    Exogenous proline stimulated the growth of Petunia hybrida cells on 195 mM NaCl 10-fold as compared with cells grown on 195 mM CaCl medium minus proline. L-({sup 15}N)-proline was fed to cells growing on 0 and 195 mM CaCl, and its metabolism was followed by {sup 15}N NMR analysis of cell extracts. Total proline and amino acids were determined by ninhydrin assay. Proline and primary amino acids were easily resolved in NMR spectra and the amount of {sup 15}N-label which remained in proline was determined. Reduced catabolism of proline in cells grown on NaCl was evident. The role of exogenous proline in conferring increased NaCl tolerance in this nonhalophyte will be discussed.

  5. Factors reducing and promoting the effectiveness of proline as an osmoprotectant in Escherichia coli K12.

    PubMed

    Milner, J L; McClellan, D J; Wood, J M

    1987-07-01

    Proline accumulation in Escherichia coli is mediated by three proline porters. Proline catabolism is effected by proline porter I (PPI) and proline/delta 1-pyrroline carboxylate dehydrogenase. Proline did not accumulate cytoplasmically when E. coli was subjected to osmotic stress in minimal salts medium. Although PPI is induced when proline is provided as carbon or nitrogen source, its activity decreased following growth of the bacteria in minimal salts medium of high osmotic strength. Proline dehydrogenase was induced by proline in low or high osmotic strength media. Proline porter II (PPII) was both activated and induced in osmotically stressed bacteria, though the dependencies of the two responses on medium osmolarity differed. Osmotic downshift during the transport measurement decreased the uptake of proline, serine and glutamine by bacteria cultured in media of high osmotic strength. Thus, while osmotic upshift caused specific activation of PPII, osmotic downshift caused a non-specific reduction in amino acid uptake. Glycine betaine inhibited the uptake of [14C]proline via PPII and PPIII but not via PPI. The dependence of that inhibition on glycine betaine concentration was similar when PPII was uninduced, induced or activated by osmotic stress, or induced by amino acid limited growth. Thus PPII and PPIII, not PPI, contribute to the mechanism of osmoprotection by proline and glycine betaine. The tendency for exogenous proline to accumulate in the cytoplasm of bacteria exposed to osmotic stress would, however, be countered by increased proline catabolism. PMID:3312483

  6. Coral diversity and the severity of disease outbreaks: a cross-regional comparison of Acropora white syndrome in a species-rich region (American Samoa) with a species-poor region (Northwestern Hawaiian Islands).

    USGS Publications Warehouse

    Aeby, G.S.; Bourne, D.G.; Wilson, B.; Work, Thierry M.

    2011-01-01

    The dynamics of the coral disease, Acropora white syndrome (AWS), was directly compared on reefs in the species-poor region of the Northwestern Hawaiian Islands (NWHI) and the species-rich region of American Samoa (AS) with results suggesting that biodiversity, which can affect the abundance of susceptible hosts, is important in influencing the impacts of coral disease outbreaks. The diversity-disease hypothesis predicts that decreased host species diversity should result in increased disease severity of specialist pathogens. We found that AWS was more prevalent and had a higher incidence within the NWHI as compared to AS. Individual Acropora colonies affected by AWS showed high mortality in both regions, but case fatality rate and disease severity was higher in the NWHI. The site within the NWHI had a monospecific stand of A. cytherea; a species that is highly susceptible to AWS. Once AWS entered the site, it spread easily amongst the abundant susceptible hosts. The site within AS contained numerous Acropora species, which differed in their apparent susceptibility to infection and disease severity, which in turn reduced disease spread. Manipulative studies showed AWS was transmissible through direct contact in three Acropora species. These results will help managers predict and respond to disease outbreaks.

  7. Vertebrate Dissimilarity Due to Turnover and Richness Differences in a Highly Beta-Diverse Region: The Role of Spatial Grain Size, Dispersal Ability and Distance

    PubMed Central

    Calderón-Patrón, Jaime M.; Moreno, Claudia E.; Pineda-López, Rubén; Sánchez-Rojas, Gerardo; Zuria, Iriana

    2013-01-01

    We explore the influence of spatial grain size, dispersal ability, and geographic distance on the patterns of species dissimilarity of terrestrial vertebrates, separating the dissimilarity explained by species replacement (turnover) from that resulting from richness differences. With data for 905 species of terrestrial vertebrates distributed in the Isthmus of Tehuantepec, classified into five groups according to their taxonomy and dispersal ability, we calculated total dissimilarity and its additive partitioning as two components: dissimilarity derived from turnover and dissimilarity derived from richness differences. These indices were compared using fine (10 x 10 km), intermediate (20 x 20 km) and coarse (40 x 40 km) grain grids, and were tested for any correlations with geographic distance. The results showed that total dissimilarity is high for the terrestrial vertebrates in this region. Total dissimilarity, and dissimilarity due to turnover are correlated with geographic distance, and the patterns are clearer when the grain is fine, which is consistent with the distance-decay pattern of similarity. For all terrestrial vertebrates tested on the Isthmus of Tehuantepec both the dissimilarity derived from turnover and the dissimilarity resulting from richness differences make important contributions to total dissimilarity, and dispersal ability does not seem to influence the dissimilarity patterns. These findings support the idea that conservation efforts in this region require a system of interconnected protected areas that embrace the environmental, climatic and biogeographic heterogeneity of the area. PMID:24324840

  8. The intergenic region of maize streak virus contains a GC-rich element that activates rightward transcription and binds maize nuclear factors.

    PubMed

    Fenoll, C; Schwarz, J J; Black, D M; Schneider, M; Howell, S H

    1990-12-01

    Maize streak virus (MSV) is transcribed bidirectionally from an intergenic region and rightward transcription produces an RNA that encodes the coat protein. The intergenic region contains promoter elements required for rightward transcription including an upstream activating sequence (UAS) which endows the promoter with full activity in a maize transient expression system. The UAS contains two GC-rich repeats (GC boxes) and a long inverted repeat or hairpin with a loop harboring a TAATATTAC sequence common to all geminiviruses. Deletions through the UAS demonstrated the presence of an element, called the rightward promoter element (rpe1), which is responsible for transcriptional activation. Rpe1 includes the two GC-rich boxes, which are similar in sequence to Sp1 binding sites in mammalian cells, but not the conserved hairpin loop. Rpe1 binds maize nuclear factors in vitro and the characteristics of the binding interaction have been determined by 1) binding competition with oligonucleotides, 2) methidiumpropyl-EDTA footprinting and 3) methylation interference assays. Binding of maize nuclear factors to the UAS generates two major bands, slow and fast migrating bands, in gel retardation assays. Footprinting and factor titration data suggest that the fast bands arise by the binding of factors to one GC box while the slow bands are generated by factors binding to both boxes. The data further indicate that the factors bind to the two GC-rich boxes with little cooperativity and bind on opposite faces of the DNA helix.

  9. The cysteine-rich region of raf-1 kinase contains zinc, translocates to liposomes, and is adjacent to a segment that binds GTP-ras.

    PubMed

    Ghosh, S; Xie, W Q; Quest, A F; Mabrouk, G M; Strum, J C; Bell, R M

    1994-04-01

    Different domains of the serine/threonine kinase, raf-1, were expressed as fusion proteins with glutathione S-transferase (GST) in Escherichia coli and purified to near homogeneity by affinity chromatography. A cysteine-rich domain of raf-1 was found to contain 2 mol of zinc (molar basis), similar to analogous cysteine-rich domains of protein kinase C. GST-fusion proteins, containing the cysteine-rich domain of raf-1, bound to liposomes in a phosphatidylserine-dependent manner. In contrast to protein kinase C, the translocation of raf-1 was not dependent upon diacylglycerol, phorbol ester, or calcium, nor did raf-1 bind phorbol esters. A GST-fusion protein encoding residues 1-147 of raf-1 bound to normal GTP-ras with high affinity, but not to mutant GTP-Ala35 ras; no binding was detected to GDP-ras. The binding of a smaller fusion protein (residues 1-130 of raf-1) was about 10-fold weaker, inferring that a 17-amino acid sequence represents a critical binding determinant in intact raf-1. These residues are adjacent to the amino-terminal end of, and partially extend into, the cysteine-rich domain (amino acids 139-184). A synthetic peptide corresponding to this 17-amino acid sequence blocked the interaction of raf-1 with ras. The function of the cysteine-rich region of raf-1 homologous to protein kinase C is to promote translocation of raf-1 kinase to membranes and to form part of the high affinity binding site for GTP-ras.

  10. The Importance of the KR-Rich Region of the Coat Protein of Ourmia melon virus for Host Specificity, Tissue Tropism, and Interference With Antiviral Defense.

    PubMed

    Rossi, Marika; Vallino, Marta; Abbà, Simona; Ciuffo, Marina; Balestrini, Raffaella; Genre, Andrea; Turina, Massimo

    2015-01-01

    The N-terminal region of the Ourmia melon virus (OuMV) coat protein (CP) contains a short lysine/arginine-rich (KR) region. By alanine scanning mutagenesis, we showed that the KR region influences pathogenicity and virulence of OuMV without altering viral particle assembly. A mutant, called OuMV6710, with three basic residue substitutions in the KR region, was impaired in the ability to maintain the initial systemic infection in Nicotiana benthamiana and to infect both cucumber and melon plants systemically. The integrity of this protein region was also crucial for encapsidation of viral genomic RNA; in fact, certain mutations within the KR region partially compromised the RNA encapsidation efficiency of the CP. In Arabidopsis thaliana Col-0, OuMV6710 was impaired in particle accumulation; however, this phenotype was abolished in dcl2/dcl4 and dcl2/dcl3/dcl4 Arabidopsis mutants defective for antiviral silencing. Moreover, in contrast to CPwt, in situ immunolocalization experiments indicated that CP6710 accumulates efficiently in the spongy mesophyll tissue of infected N. benthamiana and A. thaliana leaves but only occasionally infects palisade tissues. These results provided strong evidence of a crucial role for OuMV CP during viral infection and highlighted the relevance of the KR region in determining tissue tropism, host range, pathogenicity, and RNA affinity, which may be all correlated with a possible CP silencing-suppression activity.

  11. Growth inhibition by exogenous proline and its metabolism in saltgrass (Distichlis spicata) suspension cultures.

    PubMed

    Rodriguez, M M; Heyser, J W

    1988-08-01

    The growth of Distichlis spicata suspension cultures in LS medium without NaCl was inhibited 54% by 2 mM proline. In medium containing 260 mM NaCl, 10 mM proline inhibited growth by only 22%. The uptake and metabolism of 10 mM L-[1-(13)C] proline was followed by (13)C NMR and ninhydrin analyses of suspensions cultured in the presence of 0 or 260 mM NaCl. Uptake of 85 to 92% of the exogenous proline occurred within 72 h in all media. In 10 mM proline and no NaCl, cellular proline reached a maximm of 51.5 μmoles/g FW compared to 1.9 μmoles/g FW in suspensions not grown on proline. In medium containing 260 mM NaCl and proline, cellular proline reached 59-65 μmoles/g FW compared to 30-40 μmoles/g FW in controls grown without proline. The (13)C-label in the proline-C1 was either retained in proline or disappeared, presumably released as carbon dioxide, by catabolism through the TCA cycle. Since no metabolite of (13)C-proline was detected by NMR, proline was considered to be the molecule which inhibited the suspension culture growth.

  12. Proline metabolism and transport in maize seedlings at low water potential.

    PubMed

    Raymond, Marjorie J; Smirnoff, Nicholas

    2002-06-01

    The growing zone of maize seedling primary roots accumulates proline at low water potential. Endosperm removal and excision of root tips rapidly decreased the proline pool and greatly reduced proline accumulation in root tips at low water potential. Proline accumulation was not restored by exogenous amino acids. Labelling root lips with [14C]glutamate and [14C]proline showed that the rate of proline utilization (oxidation and protein synthesis) exceeded the rate of biosynthesis by five-fold at high and low water potentials. This explains the reduction in the proline pool following root and endosperm excision and the inability to accumulate proline at low water potential. The endosperm is therefore the source of the proline that accumulates in the root tips of intact seedlings. Proline constituted 10% of the amino acids released from the endosperm. [14C]Proline was transported from the scutellum to other parts of the seedling and reached the highest concentration in the root tip. Less [14C]proline was transported at low water potential but because of the lower rate of protein synthesis and oxidation, more accumulated as proline in the root tip. Despite the low biosynthesis capacity of the roots, the extent of proline accumulation in relation to water potential is precisely controlled by transport and utilization rate.

  13. Dominant roles of the polybasic proline motif and copper in the PrP23-89-mediated stress protection response.

    PubMed

    Haigh, Cathryn L; Drew, Simon C; Boland, Martin P; Masters, Colin L; Barnham, Kevin J; Lawson, Victoria A; Collins, Steven J

    2009-05-15

    Beta-cleavage of the neurodegenerative disease-associated prion protein (PrP) protects cells from death induced by oxidative insults. The beta-cleavage event produces two fragments, designated N2 and C2. We investigated the role of the N2 fragment (residues 23-89) in cellular stress response, determining mechanisms involved and regions important for this reaction. The N2 fragment differentially modulated the reactive oxygen species (ROS) response induced by serum deprivation, with amelioration when copper bound. Amino acid residues 23-50 alone mediated a ROS reduction response. PrP23-50 ROS reduction was not due to copper binding or direct antioxidant activity, but was instead mediated through proteoglycan binding partners localised in or interacting with cholesterol-rich membrane domains. Furthermore, mutational analyses of both PrP23-50 and N2 showed that their protective capacity requires the sterically constraining double proline motif within the N-terminal polybasic region. Our findings show that N2 is a biologically active fragment that is able to modulate stress-induced intracellular ROS through interaction of its structurally defined N-terminal polybasic region with cell-surface proteoglycans. PMID:19383722

  14. Direct Mass Measurements in the Light Neutron-Rich Region Using a Combined Energy and Time-of-Flight Technique

    NASA Astrophysics Data System (ADS)

    Pillai, C.; Swenson, L. W.; Vieira, D. J.; Butler, G. W.; Wouters, J. M.; Rokni, S. H.; Vaziri, K.; Remsberg, L. P.

    This experiment has demonstrated that direct mass measurements can be performed (albeit of low precision in this first attempt) using the M proportional to ET(2) method. This technique has the advantage that many particle-bound nuclei, produced in fragmentation reactions can be measured simultaneously, independent of their N or Z. The main disadvantage of this approach is that both energy and time-of-flight must be measured precisely on an absolute scale. Although some mass walk with N and Z was observed in this experiment, these uncertainties were largely removed by extrapolating the smooth dependence observed for known nuclei which lie closer to the valley of (BETA)-stability. Mass measurements for several neutron-rich light nuclei ranging from C-17 to NE-26 have been performed. In all cases these measurements agree with the latest mass compilation of Wapstra and Audi. The masses of N-20 N and F-24 have been determined for the first time.

  15. Proline induced disruption of the structure and dynamics of water.

    PubMed

    Yu, Dehong; Hennig, Marcus; Mole, Richard A; Li, Ji Chen; Wheeler, Cheryl; Strässle, Thierry; Kearley, Gordon J

    2013-12-21

    We use quasi-elastic neutron scattering spectroscopy to study the diffusive motion of water molecules at ambient temperature as a function of the solute molar fraction of the amino acid, proline. We validate molecular dynamics simulations against experimental quasielastic neutron scattering data and then use the simulations to reveal, and understand, a strong dependence of the translational self-diffusion coefficient of water on the distance to the amino acid molecule. An analysis based on the juxtaposition of water molecules in the simulation shows that the rigidity of proline imposes itself on the local water structure, which disrupts the hydrogen-bond network of water leading to an increase in the mean lifetime of hydrogen bonds. The net effect is some distortion of the proline molecule and a slowing down of the water mobility. PMID:24177249

  16. The Ccr4 Protein from Saccharomyces Cerevisiae Contains a Leucine-Rich Repeat Region Which Is Required for Its Control of Adh2 Gene Expression

    PubMed Central

    Malvar, T.; Biron, R. W.; Kaback, D. B.; Denis, C. L.

    1992-01-01

    The CCR4 gene from Saccharomyces cerevisiae is required for the transcription of the glucose-repressible alcohol dehydrogenase (ADH2). Mutations in CCR4 also suppress the transcription at the ADH2 and his4-912delta loci caused by defects in the SPT10 (CRE1) and SPT6 (CRE2) genes. The CCR4 gene was mapped to the left arm of chromosome I and cloned by complementation of function using previously isolated segments of chromosome I. DNA sequence analysis of the cloned gene defined CCR4 as a 2511 bp open reading frame that would encode a polypeptide of 837 amino acids. The CCR4 mRNA was found to be 2.8 kb in size and Western analysis identified CCR4 as a 95,000 D protein. Disruption of the CCR4 gene resulted in reduced levels of ADH2 expression under both glucose and ethanol growth conditions and in temperature sensitive growth on nonfermentative medium, phenotypes essentially indistinguishable from previously identified mutations in CCR4. The amino terminus of the CCR4 protein was found to be rich in glutamine residues similar to a number of genes which are required for transcription. More importantly, CCR4 showed similarity to a diverse set of proteins sharing a leucine-rich tandem repeat motif, the presence of which has been implicated in mediating protein-protein interactions. Deletions of several of the five leucine-rich repeats in CCR4 were shown to produce nonfunctional proteins indicating the importance of the repeats to CCR4 activity. This leucine-rich repeat region may mediate the contact CCR4 makes with another factor. PMID:1459446

  17. Dcp1 links coactivators of mRNA decapping to Dcp2 by proline recognition

    PubMed Central

    Borja, Mark S.; Piotukh, Kirill; Freund, Christian; Gross, John D.

    2011-01-01

    Cap hydrolysis is a critical step in several eukaryotic mRNA decay pathways and is carried out by the evolutionarily conserved decapping complex containing Dcp2 at the catalytic core. In yeast, Dcp1 is an essential activator of decapping and coactivators such as Edc1 and Edc2 are thought to enhance activity, though their mechanism remains elusive. Using kinetic analysis we show that a crucial function of Dcp1 is to couple the binding of coactivators of decapping to activation of Dcp2. Edc1 and Edc2 bind Dcp1 via its EVH1 proline recognition site and stimulate decapping by 1000-fold, affecting both the KM for mRNA and rate of the catalytic step. The C-terminus of Edc1 is necessary and sufficient to enhance the catalytic step, while the remainder of the protein likely increases mRNA binding to the decapping complex. Lesions in the Dcp1 EVH1 domain or the Edc1 proline-rich sequence are sufficient to block stimulation. These results identify a new role of Dcp1, which is to link the binding of coactivators to substrate recognition and activation of Dcp2. PMID:21148770

  18. Targeted Deletion of Regions Rich in Immune-Evasive Genes from the Cytomegalovirus Genome as a Novel Vaccine Strategy▿

    PubMed Central

    Čičin-Šain, Luka; Bubić, Ivan; Schnee, Margit; Ruzsics, Zsolt; Mohr, Christian; Jonjić, Stipan; Koszinowski, Ulrich H.

    2007-01-01

    Human cytomegalovirus (CMV), a ubiquitous human pathogen, is a leading cause of congenital infections and represents a serious health risk for the immunosuppressed patient. A vaccine against CMV is currently not available. CMV is characterized by its large genome and by multiple genes modulating the immunity of the host, which cluster predominantly at genome termini. Here, we tested whether the deletion of gene blocks rich in immunomodulatory genes could be used as a novel concept in the generation of immunogenic but avirulent, herpesvirus vaccines. To generate an experimental CMV vaccine, we selectively deleted 32 genes from the mouse cytomegalovirus (MCMV) genome. The resulting mutant grew to titers similar to that of wild-type MCMV in vitro. In vivo, the mutant was 10,000-fold attenuated and well tolerated, even by highly susceptible mice deficient for B, T, and NK cells or for the interferon type I receptor. Equally relevant for safety concerns, immune suppression did not lead to the mutant's reactivation from latency. Immunization with the replication-competent mutant, but not with inactivated virus, resulted in protective immunity, which increased over time. Vaccination induced MCMV-specific antibodies and a strong T-cell response. We propose that a targeted and rational approach can improve future herpesvirus vaccines and vaccine vectors. PMID:17913824

  19. Differences between high-affinity forskolin binding sites in dopamine-riche and other regions of rat brain

    SciTech Connect

    Poat, J.A.; Cripps, H.E.; Iversen, L.L.

    1988-05-01

    Forskolin labelled with (/sup 3/H) bound to high- and low-affinity sites in the rat brain. The high-affinity site was discretely located, with highest densities in the striatum, nucleus accumbens, olfactory tubercule, substantia nigra, hippocampus, and the molecular layers of the cerebellum. This site did not correlate well with the distribution of adenylate cyclase. The high-affinity striatal binding site may be associated with a stimulatory guanine nucleotide-binding protein. Thus, the number of sites was increased by the addition of Mg/sup 2 +/ and guanylyl imidodiphosphate. Cholera toxin stereotaxically injected into rat striatum increased the number of binding sites, and no further increase was noted following the subsequent addition of guanyl nucleotide. High-affinity forskolin binding sites in non-dopamine-rich brain areas (hippocampus and cerebullum) were modulated in a qualitatively different manner by guanyl nucleotides. In these areas the number of binding sites was significantly reduced by the addition of guanyl nucleotide. These results suggest that forskolin may have a potential role in identifying different functional/structural guanine nucleotide-binding proteins.

  20. Phase equilibria and elements partitioning in zirconolite-rich region of Ca-Zr-Ti-Al-Gd-Si-O system

    SciTech Connect

    Knyazev, O.A.; Stefanovsky, S.V.; Ioudintsev, S.V.; Nikonov, B.S.; Omelianenko, B.I.; Mokhov, A.V.; Yakushev, A.I.

    1997-12-31

    Zirconolite-rich ceramics were produced by the cold crucible melting technique in an air atmosphere, at 1550 {+-} 50 C and 1 atm. Four samples with overall composition (in wt.%): 4.9-14.3 CaO; 19.0-41.3 ZrO{sub 2}; 24.1-42.6 TiO{sub 2}; 1.3-11.3 Al{sub 2}O{sub 3}; 6.8-30.0 Gd{sub 2}O{sub 3}; and 1.1-8.5 SiO{sub 2} have been studied. Total phases in the ceramics consist of major zirconolite and minor rutile, perovskite, zirconia, aluminium titanate, and glass. The Gd{sub 2}O{sub 3} content in zirconolite reaches up to 31.4 wt.% corresponding to the formula: (Ca{sub 0.4},Gd{sub 0.7})Zr{sub 1.0}(Ti{sub 1.4},Al{sub 0.5})O{sub 7.0}. The data on the phase composition agree well with coupled Gd incorporation into the mineral structure: Ca(II) + Ti(IV) = Gd(III) + Al(III), and 2Gd(III) = Ca(II) + Zr(IV). The highest Gd contents observed in the other phases are 25.4% for zirconia, 12.6% in glass, 8.8% in perovskite, and 1.4% for rutile. The rest of the elements` distribution in the samples are analyzed.

  1. Identification of two proteins that bind to a pyrimidine-rich sequence in the 3'-untranslated region of GAP-43 mRNA.

    PubMed Central

    Irwin, N; Baekelandt, V; Goritchenko, L; Benowitz, L I

    1997-01-01

    GAP-43 is a membrane phosphoprotein that is important for the development and plasticity of neural connections. In undifferentiated PC12 pheochromocytoma cells, GAP-43 mRNA degrades rapidly ( t = 5 h), but becomes stable when cells are treated with nerve growth factor. To identify trans- acting factors that may influence mRNA stability, we combined column chromatography and gel mobility shift assays to isolate GAP-43 mRNA binding proteins from neonatal bovine brain tissue. This resulted in the isolation of two proteins that bind specifically and competitively to a pyrimidine-rich sequence in the 3'-untranslated region of GAP-43 mRNA. Partial amino acid sequencing revealed that one of the RNA binding proteins coincides with FBP (far upstream element binding protein), previously characterized as a protein that resembles hnRNP K and which binds to a single-stranded, pyrimidine-rich DNA sequence upstream of the c -myc gene to activate its expression. The other binding protein shares sequence homology with PTB, a polypyrimidine tract binding protein implicated in RNA splicing and regulation of translation initiation. The two proteins bind to a 26 nt pyrimidine-rich sequence lying 300 nt downstream of the end of the coding region, in an area shown by others to confer instability on a reporter mRNA in transient transfection assays. We therefore propose that FBP and the PTB-like protein may compete for binding at the same site to influence the stability of GAP-43 mRNA. PMID:9092640

  2. Mutant p53 is a transcriptional co-factor that binds to G-rich regulatory regions of active genes and generates transcriptional plasticity

    PubMed Central

    Quante, Timo; Otto, Benjamin; Brázdová, Marie; Kejnovská, Iva; Deppert, Wolfgang; Tolstonog, Genrich V.

    2012-01-01

    The molecular mechanisms underlying mutant p53 (mutp53) “gain-of-function” (GOF) are still insufficiently understood, but there is evidence that mutp53 is a transcriptional regulator that is recruited by specialized transcription factors. Here we analyzed the binding sites of mutp53 and the epigenetic status of mutp53-regulated genes that had been identified by global expression profiling upon depletion of endogenous mutp53 (R273H) expression in U251 glioblastoma cells. We found that mutp53 preferentially and autonomously binds to G/C-rich DNA around transcription start sites (TSS) of many genes characterized by active chromatin marks (H3K4me3) and frequently associated with transcription-competent RNA polymerase II. Mutp53-bound regions overlap predominantly with CpG islands and are enriched in G4-motifs that are prone to form G-quadruplex structures. In line, mutp53 binds and stabilizes a well-characterized G-quadruplex structure in vitro. Hence, we assume that binding of mutp53 to G/C-rich DNA regions associated with a large set of cancer-relevant genes is an initial step in their regulation by mutp53. Using GAS1 and HTR2A as model genes, we show that mutp53 affects several parameters of active transcription. Finally, we discuss a dual mode model of mutp53 GOF, which includes both stochastic and deterministic components. PMID:22894900

  3. Deletion mapping of the rotavirus metalloprotein NS53 (NSP1): the conserved cysteine-rich region is essential for virus-specific RNA binding.

    PubMed Central

    Hua, J; Chen, X; Patton, J T

    1994-01-01

    NS53 (NSP1), the gene 5 product of the group A rotaviruses, is a minor nonstructural protein of 486 to 495 amino acids which binds zinc and contains an amino-terminal highly conserved cysteine-rich region that may form one or two zinc fingers. To study the structure-function of the gene 5 product, wild-type and mutant forms of NS53 were produced by using a recombinant baculovirus expression system and a recombinant vaccinia virus/T7 (vTF7-3) expression system. Analysis of the RNA-binding activity of the wild-type NS53 immobilized onto protein A-Sepharose beads with NS53-specific antiserum showed that the protein exhibited specific affinity for all 11 rotavirus mRNAs. The use of short virus-specific RNA probes indicated that NS53 specifically recognizes an element located near the 5' ends of viral mRNAs. Analysis of the RNA-binding activity of deletion mutants of NS53 showed that the RNA-binding domain resides within the first 81 amino acids of the protein and that the highly conserved cysteine-rich region within this region of the protein is essential for the activity. Gel electrophoresis and Western immunoblot analyses of intracellular fractions derived from infected cells revealed that large amounts of NS53 were present in the cytosol and in association with the cytoskeletal matrix. Indirect immunofluorescence analysis of cells programmed to transiently express mutant forms of NS53 using vTF7-3 indicated that the intracellular localization domain resides between amino acids 84 and 176 of NS53. Together, these data show that the RNA-binding domain and the intracellular localization domain lie upstream from the region of NS53 previously determined not to be essential for replication of rotaviruses in cell culture (J. Hua and J. T. Patton, Virology 198:567-576, 1994). Images PMID:8189533

  4. Low-proline environments impair growth, proline transport and in vivo survival of Staphylococcus aureus strain-specific putP mutants.

    PubMed

    Schwan, William R; Wetzel, Keith J; Gomez, Timothy S; Stiles, Melissa A; Beitlich, Brian D; Grunwald, Sandra

    2004-04-01

    Staphylococcus aureus is a common cause of disease in humans, particularly in hospitalized patients. This species needs to import several amino acids to survive, including proline. Previously, it was shown that an insertion mutation in the high-affinity proline uptake gene putP in strain RN6390 affected proline uptake by the bacteria as well as reducing their ability to survive in vivo. To further delineate the effect of the putP mutation on growth of S. aureus strain RN6390, a proline uptake assay that spanned less than 1 min was done to measure transport. An eightfold difference in proline levels was observed between the wild-type strain and the high-affinity proline transport mutant strain after 15 s, indicating that the defect was only in proline transport and not a combination of proline transport, metabolism and accumulation that would have been assessed with longer assays. A putP mutant of S. aureus strain RN4220 was then grown in minimal medium with different concentrations of proline. When compared to the wild-type strain, the putP mutant strain was significantly growth impaired when the level of proline was decreased to 1.74 microM. An assessment of proline concentrations in mouse livers and spleens showed proline concentrations of 7.5 micromol per spleen and 88.4 micromol per liver. To verify that the effects on proline transport and bacterial survival were indeed caused solely by a mutation in putP, the putP mutation was complemented by cloning a full-length putP gene on a plasmid that replicates in S. aureus. Complementation of the putP mutant strains restored proline transport, in vitro growth in low-proline medium, and in vivo survival within mice. These results show that the mutation in putP led to attenuated growth in low-proline media and by corollary low-proline murine organ tissues due to less efficient transport of proline into the bacteria.

  5. Novel proline-hydroxyproline glycopeptides from the dandelion (Taraxacum officinale Wigg.) flowers: de novo sequencing and biological activity.

    PubMed

    Astafieva, Alexandra A; Enyenihi, Atim A; Rogozhin, Eugene A; Kozlov, Sergey A; Grishin, Eugene V; Odintsova, Tatyana I; Zubarev, Roman A; Egorov, Tsezi A

    2015-09-01

    Two novel homologous peptides named ToHyp1 and ToHyp2 that show no similarity to any known proteins were isolated from Taraxacum officinale Wigg. flowers by multidimensional liquid chromatography. Amino acid and mass spectrometry analyses demonstrated that the peptides have unusual structure: they are cysteine-free, proline-hydroxyproline-rich and post-translationally glycosylated by pentoses, with 5 carbohydrates in ToHyp2 and 10 in ToHyp1. The ToHyp2 peptide with a monoisotopic molecular mass of 4350.3Da was completely sequenced by a combination of Edman degradation and de novo sequencing via top down multistage collision induced dissociation (CID) and higher energy dissociation (HCD) tandem mass spectrometry (MS(n)). ToHyp2 consists of 35 amino acids, contains eighteen proline residues, of which 8 prolines are hydroxylated. The peptide displays antifungal activity and inhibits growth of Gram-positive and Gram-negative bacteria. We further showed that carbohydrate moieties have no significant impact on the peptide structure, but are important for antifungal activity although not absolutely necessary. The deglycosylated ToHyp2 peptide was less active against the susceptible fungus Bipolaris sorokiniana than the native peptide. Unique structural features of the ToHyp2 peptide place it into a new family of plant defense peptides. The discovery of ToHyp peptides in T. officinale flowers expands the repertoire of molecules of plant origin with practical applications. PMID:26259198

  6. Novel proline-hydroxyproline glycopeptides from the dandelion (Taraxacum officinale Wigg.) flowers: de novo sequencing and biological activity.

    PubMed

    Astafieva, Alexandra A; Enyenihi, Atim A; Rogozhin, Eugene A; Kozlov, Sergey A; Grishin, Eugene V; Odintsova, Tatyana I; Zubarev, Roman A; Egorov, Tsezi A

    2015-09-01

    Two novel homologous peptides named ToHyp1 and ToHyp2 that show no similarity to any known proteins were isolated from Taraxacum officinale Wigg. flowers by multidimensional liquid chromatography. Amino acid and mass spectrometry analyses demonstrated that the peptides have unusual structure: they are cysteine-free, proline-hydroxyproline-rich and post-translationally glycosylated by pentoses, with 5 carbohydrates in ToHyp2 and 10 in ToHyp1. The ToHyp2 peptide with a monoisotopic molecular mass of 4350.3Da was completely sequenced by a combination of Edman degradation and de novo sequencing via top down multistage collision induced dissociation (CID) and higher energy dissociation (HCD) tandem mass spectrometry (MS(n)). ToHyp2 consists of 35 amino acids, contains eighteen proline residues, of which 8 prolines are hydroxylated. The peptide displays antifungal activity and inhibits growth of Gram-positive and Gram-negative bacteria. We further showed that carbohydrate moieties have no significant impact on the peptide structure, but are important for antifungal activity although not absolutely necessary. The deglycosylated ToHyp2 peptide was less active against the susceptible fungus Bipolaris sorokiniana than the native peptide. Unique structural features of the ToHyp2 peptide place it into a new family of plant defense peptides. The discovery of ToHyp peptides in T. officinale flowers expands the repertoire of molecules of plant origin with practical applications.

  7. Stabilization of an α/β-hydrolase by introducing proline residues: salicylic binding protein 2 from tobacco

    PubMed Central

    Huang, Jun; Jones, Bryan J.; Kazlauskas, Romas J.

    2015-01-01

    α/β-Hydrolases are important enzymes for biocatalysis, but their stability often limits their application. As a model α/β-hydrolase, we investigated a plant esterase, salicylic acid binding protein 2 (SABP2). SABP2 shows typical stability to urea (unfolding free energy 6.9±1.5 kcal/mol) and to heat inactivation (T1/215 min 49.2±0.5 °C). Denaturation in urea occurs in two steps, but heat inactivation occurs in a single step. The first unfolding step in urea eliminates catalytic activity. Surprisingly, we found that the first unfolding likely corresponds to the unfolding of the larger catalytic domain. Replacing selected amino acid residues with proline stabilized SABP2. Proline restricts the flexibility of the unfolded protein, thereby shifting the equilibrium toward the folded conformation. Seven locations for proline substitution were chosen either by amino acid sequence alignment with a more stable homolog or by targeting flexible regions in SABP2. Introducing proline in the catalytic domain stabilized SABP2 to the first unfolding in urea for three of five cases: L46P (+0.2 M urea), S70P (+0.1) and E215P (+0.9). Introducing proline in the cap domain did not (two of two cases), supporting the assignment that the first unfolding corresponds to the catalytic domain. Proline substitutions in both domains stabilized SABP2 to heat inactivation: L46P (ΔT1/215 min = +6.4 °C), S70P (+5.4), S115P (+1.8), S141P (+4.9), and E215P (+4.2). Combining substitutions did not further increase the stability to urea denaturation, but dramatically increased resistance to heat inactivation: L46P-S70P ΔT1/215 min = +25.7 °C. This straightforward proline substitution approach may also stabilize other α/β-hydrolases. PMID:26110207

  8. STRUCTURE AND KINETICS OF MONOFUNCTIONAL PROLINE DEHYDROGENASE FROM THERMUS THERMOPHILUS

    PubMed Central

    White, Tommi A.; Krishnan, Navasona; Becker, Donald F.; Tanner, John J.

    2009-01-01

    Proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate dehydrogenase (P5CDH) catalyze the two-step oxidation of proline to glutamate. They are distinct monofunctional enzymes in all eukaryotes and some bacteria, but are fused into bifunctional enzymes known as Proline utilization A (PutA) in other bacteria. Here we report the first structure and biochemical data for a monofunctional PRODH. The 2.0 Å resolution structure of Thermus thermophilus PRODH reveals a distorted (βα)8 barrel catalytic core domain and a hydrophobic α-helical domain located above the carboxyl terminal ends of the strands of the barrel. Although the catalytic core is similar to that of the PutA PRODH domain, the FAD conformation of T. thermophilus PRODH is remarkably different and likely reflects unique requirements for membrane association and communication with P5CDH. Also, the FAD of T. thermophilus PRODH is highly solvent exposed compared to PutA due to a 4-Å shift of helix 8. Structure-based sequence analysis of the PutA/PRODH family led us to identify 9 conserved motifs involved in cofactor and substrate recognition. Biochemical studies show that the midpoint potential of the FAD is −75 mV and the kinetic parameters for proline are Km=27 mM and kcat=13 s−1. 3,4-dehydro-L-proline was found to be an efficient substrate and L-tetrahydro-2-furoic acid is a competitive inhibitor (KI=1.0 mM). Finally, we demonstrate that T. thermophilus PRODH reacts with O2 producing superoxide. This is significant because superoxide production underlies the role of human PRODH in p53-mediated apoptosis, implying commonalities between eukaryotic and bacterial monofunctional PRODHs. PMID:17344208

  9. Identification and High-Density Mapping of Gene-Rich Regions in Chromosome Group 1 of Wheat

    PubMed Central

    Gill, K. S.; Gill, B. S.; Endo, T. R.; Taylor, T.

    1996-01-01

    We studied the distribution of genes and recombination in wheat (Triticum aestivum) group 1 chromosomes by comparing high-density physical and genetic maps. Physical maps of chromosomes 1A, 1B, and 1D were generated by mapping 50 DNA markers on 56 single-break deletion lines. A consensus physical map was compared with the 1D genetic map of Triticum tauschii (68 markers) and a Triticeae group 1 consensus map (288 markers) to generate a cytogenetic ladder map (CLM). Most group 1 markers (86%) were present in five clusters that encompassed only 10% of the group 1 chromosome. This distribution may reflect that of genes because more than half of the probes were cDNA clones and 30% were PstI genomic. All 14 agronomically important genes in group 1 chromosomes were present in these clusters. Most recombination occurred in gene-cluster regions. Markers fell at an average distance of 244 kb in these regions. The CLM involving the Triticeae consensus genetic map revealed that the above distribution of genes and recombination is the same in other Triticeae species. Because of a significant number of common markers, our CLM can be used for comparative mapping and to estimate physical distances among markers in many Poaceae species including rice and maize. PMID:8978071

  10. Evaluation of immediately loaded dental implants bioactivated with platelet-rich plasma placed in the mandibular posterior region: A clinico-radiographic study

    PubMed Central

    Anand, Ullas; Mehta, D. S.

    2012-01-01

    Background and Objectives: The purpose of the present study was to clinically and radiographically assess the soft and hard tissue changes around the immediately loaded single tooth implants bioactivated with platelet-rich plasma (PRP), placed in the mandibular posterior region. Materials and Methods: A total of 11 patients having single tooth edentulous space in the mandibular posterior region were selected. An endosseous implant was placed after clinical and radiographic examination in each selected site using single stage surgical approach. The patients were followed up at 3, 6, 9, and at 12 months of post implant insertion. The patients were subjected to recording of clinical parameters like modified plaque index, modified gingival index, probing depth, and clinical implant mobility scale. Radiographs made at different intervals were subjected to assessment of bone level mesial and distal to each implant using computer assisted image analysis. Results: Scores for clinical parameters were minimal and comparable. The probing depth around the implant was measured during the follow-up period and the changes observed were statistically non-significant. None of the implants were clinically mobile during the follow-up period. Radiographically, the peri-implant bone resorption both on mesial and distal sides was within normal limit after one year of immediate loading. Finally, the overall success rate for the immediately loaded bioactivated implant placed in the mandibular posterior region was recorded as 100%. Interpretation and Conclusion: The use of platelet-rich plasma may lead to improved early bone apposition around the implant; and thus, results in increased rate of osseointegration. Single stage implant procedure with the adjunctive use of PRP enhances the ability of peri-implant healing tissue to create favorable soft and hard tissue relationships. It also gives the added advantage of psychological boost for the patient by getting fixed replacement of tooth

  11. Molecular cloning and characterization of a putative proline dehydrogenase gene in the Colorado potato beetle, Leptinotarsa decemlineata.

    PubMed

    Wan, Pin-Jun; Lü, Dong; Guo, Wen-Chao; Ahmat, Tursun; Yang, Lu; Mu, Li-Li; Li, Guo-Qing

    2014-04-01

    Leptinotarsa decemlineata adults exhibit a season-dependent activity. In spring, post-diapause beetles often fly a long distance from overwintering sites to potato fields. In summer and autumn, the flight ability is sharply reduced. Proline is the main energy substrate of L. decemlineata during flight and proline dehydrogenase (ProDH) catalyzes the first step in proline catabolism. Here we identified a putative LdProDH gene; it had three cDNA isoforms which shared the same 5'UTR and coding region, but differed in the lengths of 3'UTRs (515, 1 092 and 1 242 bp for isoforms-1, -2 and -3, respectively). LdProDH encoded a 616 amino acid protein that showed high sequence similarity to ProDH-like proteins from other insect species. LdProDH was expressed in the third and fourth instars larvae and adults, but not in pupae. Dietary ingestion of bacterially expressed LdProDH-dsRNA by adults significantly decreased its messenger RNA (mRNA) level, and caused an elevation of free proline content in the hemolymph. Further observation revealed that three canonical polyadenylation signals (AATAAA) were tandemly located in the 3'UTR of isoform-3. The first, second and third polyadenylation sites gave rise to isoforms-1, -2 and -3, respectively. Analysis of the genomic DNA uncovered that the three isoforms resulted from alternative polyadenylation. The mRNA level of isoform-1, which expressed at low levels in pre-diapause adults, became abundant in post-diapause beetles. It is indicated that the LdProDH expression is fine-tuned through 3'UTR to control proline catabolism for the season-dependent activity of L. decemlineata adults. PMID:23956209

  12. Molecular cloning and characterization of a putative proline dehydrogenase gene in the Colorado potato beetle, Leptinotarsa decemlineata.

    PubMed

    Wan, Pin-Jun; Lü, Dong; Guo, Wen-Chao; Ahmat, Tursun; Yang, Lu; Mu, Li-Li; Li, Guo-Qing

    2014-04-01

    Leptinotarsa decemlineata adults exhibit a season-dependent activity. In spring, post-diapause beetles often fly a long distance from overwintering sites to potato fields. In summer and autumn, the flight ability is sharply reduced. Proline is the main energy substrate of L. decemlineata during flight and proline dehydrogenase (ProDH) catalyzes the first step in proline catabolism. Here we identified a putative LdProDH gene; it had three cDNA isoforms which shared the same 5'UTR and coding region, but differed in the lengths of 3'UTRs (515, 1 092 and 1 242 bp for isoforms-1, -2 and -3, respectively). LdProDH encoded a 616 amino acid protein that showed high sequence similarity to ProDH-like proteins from other insect species. LdProDH was expressed in the third and fourth instars larvae and adults, but not in pupae. Dietary ingestion of bacterially expressed LdProDH-dsRNA by adults significantly decreased its messenger RNA (mRNA) level, and caused an elevation of free proline content in the hemolymph. Further observation revealed that three canonical polyadenylation signals (AATAAA) were tandemly located in the 3'UTR of isoform-3. The first, second and third polyadenylation sites gave rise to isoforms-1, -2 and -3, respectively. Analysis of the genomic DNA uncovered that the three isoforms resulted from alternative polyadenylation. The mRNA level of isoform-1, which expressed at low levels in pre-diapause adults, became abundant in post-diapause beetles. It is indicated that the LdProDH expression is fine-tuned through 3'UTR to control proline catabolism for the season-dependent activity of L. decemlineata adults.

  13. Evaluation of Z-(R,R)-IQNP for the potential imaging of m2 mAChR rich regions of the brain and heart.

    PubMed

    McPherson, D W; Greenbaum, M; Luo, H; Beets, A L; Knapp, F F

    2000-01-01

    Alterations in the function or density of the m2 muscarinic (mAChR) subtype have been postulated to play an important role in various dementias such as Alzheimer's disease. The ability to image and quantify the m2 mAChR subtype is of importance for a better understanding of the m2 subtype function in various dementias. Z-(R)-1-Azabicyclo[2.2.2]oct-3-y (R)-alpha-hydroxy-alpha-(1-iodo-1-propen-3-yl)-alpha-phenylacetate (Z-(R,R)-IQNP) has demonstrated significant uptake in cerebral regions that contain a high concentration of m2 mAChR subtype in addition to heart tissue. The present study was undertaken to determine if the uptake of Z-(R,R)-IQNP in these regions is a receptor mediated process and to identify the radiospecies responsible for binding at the receptor site. A blocking study demonstrated cerebral and cardiac levels of activity were significantly reduced by pretreatment (2-3 mg/kg) of (R)-3-quinuclidinyl benzilate, dexetimide and scopolamine, established muscarinic antagonists. A direct comparison of the cerebral and cardiac uptake of [I-125]-Z-(R,R)-IQNP and [I-131]-E-(R,R)-IQNP (high uptake in ml, m4 rich mAChR cerebral regions) demonstrated Z-(R,R)-IQNP localized to a higher degree in cerebral and cardiac regions containing a high concentration of the m2 mAChR subtype as directly compared to E-(R,R)-IQNP. In addition, a study utilizing [I-123]-Z-(R,R)-IQNP, [I-131]-iododexetimide and [I-125]-R-3-quinuclidinyl S-4-iodobenzilate, Z-(R,R)-IQNP demonstrated significantly higher uptake and longer residence time in those regions which contain a high concentration of the m2 receptor subtype. Folch extraction of global brain and heart tissue at various times post injection of [I-125]-Z-(R,R)-IQNP demonstrated that approximately 80% of the activity was extracted in the lipid soluble fraction and identified as the parent ligand by TLC and HPLC analysis. These results demonstrate Z-(R,R)-IQNP has significant uptake, long residence time and high stability in

  14. The Sodium/Proline Transporter PutP of Helicobacter pylori

    PubMed Central

    Rivera-Ordaz, Araceli; Bracher, Susanne; Sarrach, Sannia; Li, Zheng; Shi, Lei; Quick, Matthias; Hilger, Daniel; Haas, Rainer; Jung, Heinrich

    2013-01-01

    Helicobacter pylori is cause of chronic gastritis, duodenal ulcer and gastric carcinoma in humans. L-proline is a preferred energy source of the microaerophilic bacterium. Previous analyses revealed that HpputP and HpputA, the genes that are predicted to play a central role in proline metabolism as they encode for the proline transporter and proline dehydrogenase, respectively, are essential for stomach colonization. Here, the molecular basis of proline transport in H. pylori by HpPutP was investigated experimentally for the first time. Measuring radiolabeled substrate transport in H. pylori and E. coli heterologously expressing HpputP as well as in proteoliposomes reconstituted with HpPutP, we demonstrate that the observed proline transport in H. pylori is mediated by HpPutP. HpPutP is specific and exhibits a high affinity for L-proline. Notably, L-proline transport is exclusively dependent on Na+ as coupling ion, i.e., Na+/L-proline symport, reminiscent to the properties of PutP of E. coli even though H. pylori lives in a more acidic environment. Homology model-based structural comparisons and substitution analyses identified amino acids crucial for function. HpPutP-catalyzed proline uptake was efficiently inhibited by the known proline analogs 3,4-dehydro-D,L-proline and L-azetidine-2-carboxylic acid. PMID:24358297

  15. Proline-induced inhibition of glutamate release in hippocampal area CA1.

    PubMed

    Cohen, S M; Nadler, J V

    1997-09-26

    Concentrations of proline typical of human CSF have been shown to potentiate transmission at Schaffer collateral-commissural synapses on CA1 pyramidal cells of the rat hippocampus. This study tested the hypothesis that proline enhances excitatory synaptic transmission by increasing glutamate release. Two concentrations of proline were used: a concentration typical of normal human CSF (3 microM) and a concentration typical of CSF in persons with the genetic disorder hyperprolinemia type II (30 microM). Continuous exposure of hippocampal slices to either concentration of proline potentiated Schaffer collateral-commissural synaptic transmission. Proline shifted the plot of field EPSP slope against fiber volley amplitude upward. Contrary to the original hypothesis, neither concentration of proline reduced paired-pulse facilitation; 30 microM proline enhanced paired-pulse facilitation, whereas 3 microM proline had no effect. In line with its enhancement of paired-pulse facilitation, 30 microM proline reduced both the K+-evoked release of glutamate and aspartate from CA1 slices and the release of glutamate and aspartate from CA1 synaptosomes evoked by 4-aminopyridine. These results suggest that the proline-induced potentiation of Schaffer collateral-commissural synaptic transmission probably involves a postsynaptic, rather than a presynaptic, mechanism. Concentrations of proline normally found in human CSF little affect glutamate release. However, proline-induced inhibition of glutamate release may contribute to the neuropsychiatric disorders associated with hyperprolinemia type II.

  16. Enhancement of anthraquinone production in Morinda citrifolia cell suspension cultures after stimulation of the proline cycle with two proline analogs.

    PubMed

    Quevedo, Carla V; Perassolo, María; Giulietti, Ana M; Rodríguez Talou, Julián

    2012-03-01

    Synthesis of anthraquinones (AQs) involves the shikimate and 2-C-methyl-D-erythritol 4-phosphate pathways. The proline cycle is linked to the pentose phosphate pathway (PPP) to generate NADPH needed in the first steps of this pathway. The effect of two proline analogs, azetidine-2-carboxylic acid (A2C) and thiazolidine-4-carboxylic acid (T4C), were evaluated in Morinda citrifolia suspension cultures. Both analogs gave higher proline accumulation after 6 and 10 days (68 and 179% after 6 days with A2C at 25 and 50 μM, respectively, and 111% with T4C added at 100 μM). Induction of the proline cycle increased the AQ content after 6 days (~40% for 50 μM A2C and 100 μM T4C). Whereas A2C (50 μM) increased only AQ production, T4C also enhanced total phenolics. However, no induction of the PPP was observed with any of the treatments. This pathway therefore does not limit the supply of carbon skeletons to secondary metabolic pathways.

  17. Sequencing of a QTL-rich region of the Theobroma cacao genome using pooled BACs and the identification of trait specific candidate genes

    PubMed Central

    2011-01-01

    Background BAC-based physical maps provide for sequencing across an entire genome or a selected sub-genomic region of biological interest. Such a region can be approached with next-generation whole-genome sequencing and assembly as if it were an independent small genome. Using the minimum tiling path as a guide, specific BAC clones representing the prioritized genomic interval are selected, pooled, and used to prepare a sequencing library. Results This pooled BAC approach was taken to sequence and assemble a QTL-rich region, of ~3 Mbp and represented by twenty-seven BACs, on linkage group 5 of the Theobroma cacao cv. Matina 1-6 genome. Using various mixtures of read coverages from paired-end and linear 454 libraries, multiple assemblies of varied quality were generated. Quality was assessed by comparing the assembly of 454 reads with a subset of ten BACs individually sequenced and assembled using Sanger reads. A mixture of reads optimal for assembly was identified. We found, furthermore, that a quality assembly suitable for serving as a reference genome template could be obtained even with a reduced depth of sequencing coverage. Annotation of the resulting assembly revealed several genes potentially responsible for three T. cacao traits: black pod disease resistance, bean shape index, and pod weight. Conclusions Our results, as with other pooled BAC sequencing reports, suggest that pooling portions of a minimum tiling path derived from a BAC-based physical map is an effective method to target sub-genomic regions for sequencing. While we focused on a single QTL region, other QTL regions of importance could be similarly sequenced allowing for biological discovery to take place before a high quality whole-genome assembly is completed. PMID:21794110

  18. Deconvolution of mixtures with high plagioclase content for the remote interpretation of lunar plagioclase-rich regions

    NASA Astrophysics Data System (ADS)

    Serventi, Giovanna; Carli, Cristian; Sgavetti, Maria

    2016-07-01

    Anorthositic rocks are widespread on the lunar surface and have probably been formed by flotation of PL over a magma ocean. A large portion of pristine rocks are characterized by a low Mg/(Mg+Fe) ratio, and have been classified as ferroan anorthosite, and recently, after observation from SELENE Spectral Profiler,pure anorthosites regions with more than 98% PL have been recognized. In this paper, we analyze a set of mixtures with PL content similar to the ferroan anorthosites and to the pure anorthosite regions, using the Origin Software and the Modified Gaussian Model. We consider three plagioclases with varying FeOwt% contents (PL1, PL2 and PL3)andthree mafic end-members (1) 100% orthopyroxene, (2) 56% orthopyroxene and 44% clinopyroxene, and (3) 100% olivine (OL). The spectral parameters considered here are: band depth, band center, band width, c0 (the continuum intercept) and c1 (the continuum offset). Here we have shown that in pyroxene (PX)-bearing mixtures, the PX is distinguishable even in mixtures with only 1% PX and that PX band at ca. 900 nm is always deeper than PL1 band while PL2 and PL3 are deeperthan OPX 900 nm band from 95, 96% PL. In OL-bearing mixtures, OL detection limit is 2% when mixed with PL1, and 3% and 4% if mixed with PL2 and PL3. We also demonstrated how spectral parameters vary with PL%, and, generally, increasing the PL content: (1) 1250 nm band depth decreases when mixed with OL, while it deepens in mixtures with PX; (2) 1250 nm band centers generally move towards longer wavelength for PL1-bearing mixtures, while do not show significant variations considering PL2/PL3-mixtures; (3) 1250 nm band width of PL1 in E1 and E5-mixtures substantially widens while in other mixtures it only slightly varies. Here we also proposed an application to a real case, from Proclus crater, revealing how studying terrestrial analogues is fundamental to infer hypothesis on the mineralogical composition of a planetary surface, but also how the spectral

  19. High-throughput engineering of a mammalian genome reveals building principles of methylation states at CG rich regions

    PubMed Central

    Krebs, Arnaud R; Dessus-Babus, Sophie; Burger, Lukas; Schübeler, Dirk

    2014-01-01

    The majority of mammalian promoters are CpG islands; regions of high CG density that require protection from DNA methylation to be functional. Importantly, how sequence architecture mediates this unmethylated state remains unclear. To address this question in a comprehensive manner, we developed a method to interrogate methylation states of hundreds of sequence variants inserted at the same genomic site in mouse embryonic stem cells. Using this assay, we were able to quantify the contribution of various sequence motifs towards the resulting DNA methylation state. Modeling of this comprehensive dataset revealed that CG density alone is a minor determinant of their unmethylated state. Instead, these data argue for a principal role for transcription factor binding sites, a prediction confirmed by testing synthetic mutant libraries. Taken together, these findings establish the hierarchy between the two cis-encoded mechanisms that define the DNA methylation state and thus the transcriptional competence of CpG islands. DOI: http://dx.doi.org/10.7554/eLife.04094.001 PMID:25259795

  20. Involvement of the β3-α3 loop of the Proline Dehydrogenase Domain in Allosteric Regulation of Membrane Association of Proline Utilization A†,‡

    PubMed Central

    Zhu, Weidong; Haile, Ashley M.; Singh, Ranjan K.; Larson, John D.; Smithen, Danielle; Chan, Jie Y.; Tanner, John J.; Becker, Donald F.

    2013-01-01

    Proline utilization A (PutA) from Escherichia coli is a membrane-associated trifunctional flavoenzyme that catalyzes the oxidation of proline to glutamate and moonlights as a transcriptional regulator. As a regulatory protein, PutA represses transcription of the put regulon, which contains the genes encoding PutA and the proline transporter PutP. The binding of proline to the proline dehydrogenase active site and the subsequent reduction of the flavin induces high affinity membrane association of PutA and relieves repression of the put regulon, thereby causing PutA to switch from its regulatory to its enzymatic role. Here, we present evidence suggesting that residues of the β3-α3 loop of the proline dehydrogenase domain (βα)8 barrel are involved in proline-mediated allosteric regulation of PutA-membrane binding. Mutation of the conserved residues Asp370 and Glu372 in the β3-α3 loop abrogates the ability of proline to induce functional membrane association. Both in vitro lipid/membrane binding assays and in vivo cell-based assays demonstrate that mutagenesis of Asp370 (D370N/A) or Glu372 (E372A) dramatically impedes PutA functional switching. The crystal structures of the proline dehydrogenase domain mutants PutA86-630D370N and PutA86-630D370A complexed with the proline analog L-tetrahydro-2-furoic acid show that the mutations cause only minor perturbations to the active site but no major structural changes, suggesting that the lack of proline response is not due to a failure of the mutated active sites to correctly bind the substrate. Rather, these results suggest that the β3-α3 loop may be involved in transmitting the status of the proline dehydrogenase active site and flavin redox state to the distal membrane association domain. PMID:23713611

  1. Nef-induced CD4 and major histocompatibility complex class I (MHC-I) down-regulation are governed by distinct determinants: N-terminal alpha helix and proline repeat of Nef selectively regulate MHC-I trafficking.

    PubMed

    Mangasarian, A; Piguet, V; Wang, J K; Chen, Y L; Trono, D

    1999-03-01

    The Nef protein of primate lentiviruses triggers the accelerated endocytosis of CD4 and of class I major histocompatibility complex (MHC-I), thereby down-modulating the cell surface expression of these receptors. Nef acts as a connector between the CD4 cytoplasmic tail and intracellular sorting pathways both in the Golgi and at the plasma membrane, triggering the de novo formation of CD4-specific clathrin-coated pits (CCP). The downstream partners of Nef in this event are the adapter protein complex (AP) of CCP and possibly a subunit of the vacuolar ATPase. Whether Nef-induced MHC-I down-regulation stems from a similar mechanism is unknown. By comparing human immunodeficiency virus type 1 (HIV-1) Nef mutants for their ability to affect either CD4 or MHC-I expression, both in transient-transfection assays and in the context of HIV-1 infection, it was determined that Nef-induced CD4 and MHC-I down-regulation constitute genetically and functionally separate properties. Mutations affecting only CD4 regulation mapped to residues previously shown to mediate the binding of Nef to this receptor, such as W57 and L58, as well as to an AP-recruiting dileucine motif and to an acidic dipeptide in the C-terminal region of the protein. In contrast, mutation of residues in an alpha-helical region in the proximal portion of Nef and amino acid substitutions in a proline-based SH3 domain-binding motif selectively affected MHC-I down-modulation. Although both the N-terminal alpha-helix and the proline-rich region of Nef have been implicated in recruiting Src family protein kinases, the inhibitor herbimycin A did not block MHC-I down-regulation, suggesting that the latter process is not mediated through an activation of this family of tyrosine kinases. PMID:9971776

  2. Mutagenic analysis of herpes simplex virus type 1 glycoprotein L reveals the importance of an arginine-rich region for function

    SciTech Connect

    Klyachkin, Yuri M.; Geraghty, Robert J.

    2008-04-25

    Herpes simplex virus type 1 (HSV-1) glycoproteins H and L (gH and gL) are required for virus-induced membrane fusion. Expression of gH at the virion or infected cell surface is mediated by the chaperone-like activity of gL. We have previously shown that a region between amino acids 155 and 161 is critical for gL chaperone-like activity. Here, we conducted Ala substitution mutagenesis of residues in this region and found that substitution of Cys160, Arg156, Arg158, or Arg156/158/159 with Ala resulted in a gL mutant that bound gH but displayed a reduced ability in gH trafficking and membrane fusion. Substitution of Arg156 with another positively charged amino acid, Lys, restored function. Substitution of Arg158 with Lys restored function in gH trafficking and cell fusion but not virus entry. These results indicate that an arginine-rich region of gL is critical for function.

  3. The relationship of meteorological patterns with changes in floristic richness along a large elevational gradient in a seasonally dry region of southern Mexico

    NASA Astrophysics Data System (ADS)

    Salas-Morales, Silvia H.; Meave, Jorge A.; Trejo, Irma

    2015-12-01

    Globally, climate is a fundamental driver of plant species' geographical distributions, yet we still lack a good understanding of climatic variation on tropical mountains and its consequences for elevational floristic patterns. In a seasonally dry region of southern Mexico, we analysed meteorological patterns along a large elevational gradient (0-3670 m a.s.l.) and examined their relationship with changes in floristic richness. Meteorological patterns were characterised using two data sources. First, climatic information was extracted from cartography and records from a few existing meteorological stations. Additionally, air temperature and humidity were recorded hourly during 1 year with data loggers, at sites representing 200-m elevation increments. Floristic information was extracted from a database containing 10,124 records of plant collections, and organized in 200-m elevational belts. Climatic charts distinguished three climate types along the gradient, all with marked rainfall seasonality, but these bore little correspondence with the information obtained with the data loggers. Mean annual air temperature decreased with increasing elevation (lapse rate of 0.542 °C 100 m-1). Thermal oscillation was minimum around 1400 m and increased towards both extremes of the gradient. Relative humidity opposed this pattern, with maxima between 800 and 1800 m, decreasing towards the highest elevations. An analysis of temperature frequency distributions revealed meteorological features undetectable from the annual or monthly means of this variable; despite an overall gradual transition of the proportions of time recorded at different temperatures, some changes did not conform to this pattern. The first discontinuity occurred between 1000-1200 m, where dominant temperatures shifted abruptly; also noticeable was an abrupt increase of the proportion of time elapsed at 0.1-10 °C between 2400 and 2600 m. Air temperature appears to be the most influential climatic factor

  4. Normal Development and Function of T Cells in Proline Rich 7 (Prr7) Deficient Mice

    PubMed Central

    Hrdinka, Matous; Sudan, Kritika; Just, Sissy; Drobek, Ales; Stepanek, Ondrej; Schlüter, Dirk; Reinhold, Dirk; Jordan, Bryen A.; Gintschel, Patricia; Schraven, Burkhart; Kreutz, Michael R.

    2016-01-01

    Transmembrane adaptor proteins (TRAPs) are important organisers for the transduction of immunoreceptor-mediated signals. Prr7 is a TRAP that regulates T cell receptor (TCR) signalling and potently induces cell death when overexpressed in human Jurkat T cells. Whether endogenous Prr7 has a similar functional role is currently unknown. To address this issue, we analysed the development and function of the immune system in Prr7 knockout mice. We found that loss of Prr7 partially impairs development of single positive CD4+ T cells in the thymus but has no effect on the development of other T cell subpopulations, B cells, NK cells, or NKT cells. Moreover, Prr7 does not affect the TCR signalling pathway as T cells derived from Prr7 knockout and wild-type animals and stimulated in vitro express the same levels of the activation marker CD69, and retain their ability to proliferate and activate induced cell death programs. Importantly, Prr7 knockout mice retained the capacity to mount a protective immune response when challenged with Listeria monocytogenes infection in vivo. In addition, T cell effector functions (activation, migration, and reactivation) were normal following induction of experimental autoimmune encephalomyelitis (EAE) in Prr7 knockout mice. Collectively, our work shows that loss of Prr7 does not result in a major immune system phenotype and suggests that Prr7 has a dispensable function for TCR signalling. PMID:27657535

  5. Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications.

    PubMed

    Takagi, Hiroshi

    2008-11-01

    Proline is an important amino acid in terms of its biological functions and biotechnological applications. In response to osmotic stress, proline is accumulated in many bacterial and plant cells as an osmoprotectant. However, it has been shown that proline levels are not increased under various stress conditions in the yeast Saccharomyces cerevisiae cells. Proline is believed to serve multiple functions in vitro such as protein and membrane stabilization, lowering the T (m) of DNA, and scavenging of reactive oxygen species, but the mechanisms of these functions in vivo are poorly understood. Yeast cells biosynthesize proline from glutamate in the cytoplasm via the same pathway found in bacteria and plants and also convert excess proline to glutamate in the mitochondria. Based on the fact that proline has stress-protective activity, S. cerevisiae cells that accumulate proline were constructed by disrupting the PUT1 gene involved in the degradation pathway and by expressing the mutant PRO1 gene encoding the feedback inhibition-less sensitive gamma-glutamate kinase to enhance the biosynthetic activity. The engineered yeast strains successfully showed enhanced tolerance to many stresses, including freezing, desiccation, oxidation, and ethanol. However, the appropriate cellular level and localization of proline play pivotal roles in the stress-protective effect. These results indicate that the increased stress protection is observed in yeast cells under the artificial condition of proline accumulation. Proline is expected to contribute to yeast-based industries by improving the production of frozen dough and alcoholic beverages or breakthroughs in bioethanol production. PMID:18802692

  6. Proline metabolism in the conceptus: implications for fetal growth and development.

    PubMed

    Wu, G; Bazer, F W; Datta, S; Johnson, G A; Li, P; Satterfield, M C; Spencer, T E

    2008-11-01

    Although there are published studies of proline biochemistry and nutrition in cultured cells and postnatal animals, little is known about proline metabolism and function in the conceptus (embryo/fetus, associated placental membranes, and fetal fluids). Because of the invasive nature of biochemical research on placental and fetal growth, animal models are often used to test hypotheses of biological importance. Recent evidence from studies with pigs and sheep shows that proline is a major substrate for polyamine synthesis via proline oxidase, ornithine aminotransferase, and ornithine decarboxylase in placentae. Both porcine and ovine placentae have a high capacity for proline catabolism and polyamine production. In addition, allantoic and amniotic fluids contain enzymes to convert proline into ornithine, which is delivered through the circulation to placental tissues. There is exquisite metabolic coordination among integrated pathways that support highest rates of polyamine synthesis and concentrations in placentae during early gestation when placental growth is most rapid. Interestingly, reduced placental and fetal growth are associated with reductions in placental proline transport, proline oxidase activity, and concentrations of polyamines in gestating dams with either naturally occurring or malnutrition-induced growth retardation. Conversely, increasing proline availability in maternal plasma through nutritional or pharmacological modulation in pigs and sheep enhances concentrations of proline and polyamines in placentae and fetal fluids, as well as fetal growth. These novel findings suggest an important role for proline in conceptus metabolism, growth and development, as well as a potential treatment for intrauterine growth restriction, which is a significant problem in both human medicine and animal agriculture.

  7. Selenazolidine: a selenium containing proline surrogate in peptide science.

    PubMed

    Cordeau, E; Cantel, S; Gagne, D; Lebrun, A; Martinez, J; Subra, G; Enjalbal, C

    2016-09-14

    In the search for new peptide ligands containing selenium in their sequences, we investigated l-4-selenazolidine-carboxylic acid (selenazolidine, Sez) as a proline analog with the chalcogen atom in the γ-position of the ring. In contrast to proteinogenic selenocysteine (Sec) and selenomethionine (SeMet), the incorporation within a peptide sequence of such a non-natural amino acid has never been studied. There is thus a great interest in increasing the possibility of selenium insertion within peptides, especially for sequences that do not possess a sulfur containing amino acid (Cys or Met), by offering other selenated residues suitable for peptide synthesis protocols. Herein, we have evaluated selenazolidine in Boc/Bzl and Fmoc/tBu strategies through the synthesis of a model tripeptide, both in solution and on a solid support. Special attention was paid to the stability of the Sez residue in basic conditions. Thus, generic protocols have been optimized to synthesize Sez-containing peptides, through the use of an Fmoc-Xxx-Sez-OH dipeptide unit. As an example, a new analog of the vasopressin receptor-1A antagonist was prepared, in which Pro was replaced with Sez [3-(4-hydroxyphenyl)-propionyl-d-Tyr(Me)-Phe-Gln-Asn-Arg-Sez-Arg-NH2]. Both proline and such pseudo-proline containing peptides exhibited similar pharmacological properties and endopeptidase stabilities indicating that the presence of the selenium atom has minimal functional effects. Taking into account the straightforward handling of Sez as a dipeptide building block in a conventional Fmoc/tBu SPPS strategy, this result suggested a wide range of potential uses of the Sez amino acid in peptide chemistry, for instance as a viable proline surrogate as well as a selenium probe, complementary to Sec and SeMet, for NMR and mass spectrometry analytical purposes. PMID:27506250

  8. The structure of tri-proline in water probed by polarized Raman, Fourier transform infrared, vibrational circular dichroism, and electric ultraviolet circular dichroism spectroscopy.

    PubMed

    Schweitzer-Stenner, Reinhard; Eker, Fatma; Perez, Alejandro; Griebenow, Kai; Cao, Xiaolin; Nafie, Laurence A

    2003-01-01

    Tripeptidesserve as model systems for understanding the so-called random-coil state of peptides and proteins. While it is well known that polyproline or proline-rich polypeptides adopt the very regular polyproline-II (PPII) or left-handed 3(1)-helix conformation, it was thus far not clear whether this is also the predominant structure adopted by proline-containing tripeptides. To clarify this issue, we have investigated the amide I' band profile in the ir, isotropic, and anisotropic Raman, and vibrational circular dichroism (VCD) spectrum of cationic and zwitterionic tri-proline in D(2)O. The data were analyzed by modifying a recently developed algorithm, which allows one to obtain the central dihedral angles of tripeptides from the amide I' band intensities (R. Schweitzer-Stenner, Biophysical Journal, 2002, Vol. 83, pp. 523-532). Our analysis revealed that the peptide adopts a nearly canonical PPII structure in water with psi and phi values in the range of 175 degrees -165 degrees and -70 degrees -(-80 degrees ), respectively. This is fully confirmed by the respective electronic ultraviolet-CD spectra. Our result indicates that the strong PPII propensity of trans proline results from local interactions between the pyrrolidine ring and the backbone and is not due to any long-range interactions.

  9. Cloning, purification and crystallization of Thermus thermophilus proline dehydrogenase

    SciTech Connect

    White, Tommi A.; Tanner, John J.

    2005-08-01

    Cloning, purification and crystallization of T. thermophilus proline dehydrogenase is reported. The detergent n-octyl β-d-glucopyranoside was used to reduce polydispersity, which enabled crystallization. Nature recycles l-proline by converting it to l-glutamate. This four-electron oxidation process is catalyzed by the two enzymes: proline dehydrogenase (PRODH) and Δ{sup 1}-pyrroline-5-carboxylate dehydrogenase. This note reports the cloning, purification and crystallization of Thermus thermophilus PRODH, which is the prototype of a newly discovered superfamily of bacterial monofunctional PRODHs. The results presented here include production of a monodisperse protein solution through use of the detergent n-octyl β-d-glucopyranoside and the growth of native crystals that diffracted to 2.3 Å resolution at Advanced Light Source beamline 4.2.2. The space group is P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 82.2, b = 89.6, c = 94.3 Å. The asymmetric unit is predicted to contain two protein molecules and 46% solvent. Molecular-replacement trials using a fragment of the PRODH domain of the multifunctional Escherichia coli PutA protein as the search model (24% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of T. thermophilus PRODH will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative.

  10. Cyclophilin A catalyzes proline isomerization by an electrostatic handle mechanism

    SciTech Connect

    Camilloni, Carlo; Sahakyan, Aleksander B.; Holliday, Michael; Isern, Nancy G.; Zhang, Fengli; Eisenmesser, Elan Z.; Vendruscolo, Michele

    2014-07-15

    Proline isomerization is a ubiquitous process that plays a key role in the folding of proteins and in the regulation of their functions1-3. Different families of enzymes, known as peptidyl-prolyl isomerases (PPIases), catalyse this reaction, which involves the interconversion between the cis and trans isomers of the Nterminal amide bond of the amino acid proline2,3. A complete description of the mechanisms by which these enzymes function, however, has remained elusive. Here, we show that cyclophilin A, one of the most common PPIases4, provides a catalytic environment that acts on the substrate through an electrostatic lever mechanism. In this mechanism, the electrostatic field in the catalytic site turns the electric dipole associated with the carboxylic group of the amino acid preceding the proline in the substrate, thus causing the rotation of the peptide bond between the two residues. This mechanism resulted from the analysis of an ensemble of conformations populated by cyclophilin A during the enzymatic reaction using a combination of NMR measurements, molecular dynamics simulations and density functional theory calculations. We anticipate that this approach will be helpful in elucidating whether the electrostatic lever mechanism that we describe is common to other PPIases, and more generally to characterise other enzymatic processes.

  11. Anti-tumour effects of antibodies targeting the extracellular cysteine-rich region of the receptor tyrosine kinase EphB4.

    PubMed

    Stephenson, Sally-Anne; Douglas, Evelyn L; Mertens-Walker, Inga; Lisle, Jessica E; Maharaj, Mohanan S N; Herington, Adrian C

    2015-04-10

    EphB4 is a membrane-bound receptor tyrosine kinase (RTK) commonly over-produced by many epithelial cancers but with low to no expression in most normal adult tissues. EphB4 over-production promotes ligand-independent signaling pathways that increase cancer cell viability and stimulate migration and invasion. Several studies have shown that normal ligand-dependent signaling is tumour suppressive and therefore novel therapeutics which block the tumour promoting ligand-independent signaling and/or stimulate tumour suppressive ligand-dependent signaling will find application in the treatment of cancer. An EphB4-specific polyclonal antibody, targeting a region of 200 amino acids in the extracellular portion of EphB4, showed potent in vitro anti-cancer effects measured by an increase in apoptosis and a decrease in anchorage independent growth. Peptide exclusion was used to identify the epitope targeted by this antibody within the cysteine-rich region of the EphB4 protein, a sequence defined as a potential ligand interacting interface. Addition of antibody to cancer cells resulted in phosphorylation and subsequent degradation of the EphB4 protein, suggesting a mechanism that is ligand mimetic and tumour suppressive. A monoclonal antibody which specifically targets this identified extracellular epitope of EphB4 significantly reduced breast cancer xenograft growth in vivo confirming that EphB4 is a useful target for ligand-mimicking antibody-based anti-cancer therapies. PMID:25831049

  12. Anti-tumour effects of antibodies targeting the extracellular cysteine-rich region of the receptor tyrosine kinase EphB4

    PubMed Central

    Stephenson, Sally-Anne; Douglas, Evelyn L.; Mertens-Walker, Inga; Lisle, Jessica E.; Maharaj, Mohanan S.N.; Herington, Adrian C.

    2015-01-01

    EphB4 is a membrane-bound receptor tyrosine kinase (RTK) commonly over-produced by many epithelial cancers but with low to no expression in most normal adult tissues. EphB4 over-production promotes ligand-independent signaling pathways that increase cancer cell viability and stimulate migration and invasion. Several studies have shown that normal ligand-dependent signaling is tumour suppressive and therefore novel therapeutics which block the tumour promoting ligand-independent signaling and/or stimulate tumour suppressive ligand-dependent signaling will find application in the treatment of cancer. An EphB4-specific polyclonal antibody, targeting a region of 200 amino acids in the extracellular portion of EphB4, showed potent in vitro anti-cancer effects measured by an increase in apoptosis and a decrease in anchorage independent growth. Peptide exclusion was used to identify the epitope targeted by this antibody within the cysteine-rich region of the EphB4 protein, a sequence defined as a potential ligand interacting interface. Addition of antibody to cancer cells resulted in phosphorylation and subsequent degradation of the EphB4 protein, suggesting a mechanism that is ligand mimetic and tumour suppressive. A monoclonal antibody which specifically targets this identified extracellular epitope of EphB4 significantly reduced breast cancer xenograft growth in vivo confirming that EphB4 is a useful target for ligand-mimicking antibody-based anti-cancer therapies. PMID:25831049

  13. Vibrational spectroscopy of bacteriorhodopsin mutants: Evidence for the interaction of proline-186 with the retinylidene chromophore

    SciTech Connect

    Rothschild, K.J.; He, Y.W.; Mogi, T.; Marti, T.; Stern, L.J.; Khorana, H.G. )

    1990-06-26

    Fourier-transform infrared difference spectroscopy has been used to study the role of the three membrane-embedded proline residues, Pro-50, Pro-91, and Pro-186, in the structure and function of bacteriorhodopsin. All three prolines were replaced by alanine and glycine; in addition, Pro-186 was changed to valine. Difference spectra were recorded for the bR----K and bR----M photoreactions of each of these mutants and compared to those of wild-type bacteriorhodopsin. Only substitutions of Pro-186 caused significant perturbations in the frequency of the C = C and C - C stretching modes of the retinylidene chromophore. In addition, these substitutions reduced bands in the amide I and II region associated with secondary structural changes and altered signals assigned to the adjacent Tyr-185. Pro-186----Val caused the largest alterations, producing a second species similar to bR548 and nearly blocking chromophore isomerization at 78 K but not at 250 K. These results are consistent with a model of the retinal binding site in which Pro-186 and Tyr-185 are located in direct proximity to the chromophore and may be involved in linking chromophore isomerization to protein structural changes. Evidence is also found that Pro-50 may be structurally active during the bR----K transition and that substitution of this residue by glycine preserves the normal protein structural changes during the photocycle.

  14. Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery.

    PubMed

    Sharma, Sandeep; Verslues, Paul E

    2010-11-01

    Proline accumulation in response to abiotic stress is controlled partially by transcriptional regulation of key enzymes including Δ¹-pyrroline-carboxylate synthetase1 (P5CS1), proline dehydrogenase (ProDH), ornithine amino transferase (OAT) and Δ¹-pyrroline-carboxylate dehydrogenase (P5CDH). For these genes, the role of abscisic acid (ABA), role of feedback regulation by high proline and the mechanisms of gene regulation upon stress release remain unclear. An ABA-deficient (aba2-1) mutant, mutants deficient in proline accumulation (p5cs1), as well as double mutants deficient in both, were used to determine the importance of these factors in transcriptional regulation of proline metabolism. Upregulation of P5CS1 by low water potential was less dependent on ABA than that of stress-marker genes used for comparison. ProDH downregulation by low water potential and upregulation by stress release was not impaired in aba2-1, p5cs1 or p5cs1/aba2-1 compared with wild type despite differing ABA and proline levels in these mutants. Thus, ProDH is a model for characterization of novel regulatory mechanisms associated with low water potential and stress recovery. Both OAT and P5CDH were upregulated during low water potential. This contrasts with previous salt stress experiments and raises questions about the flux of metabolites through proline metabolism under low water potential when high levels of proline accumulate.

  15. Life-long norepinephrine transporter (NET) knock-out leads to the increase in the NET mRNA in brain regions rich in norepinephrine terminals.

    PubMed

    Solich, Joanna; Kolasa, Magdalena; Kusmider, Maciej; Pabian, Paulina; Faron-Gorecka, Agata; Zurawek, Dariusz; Szafran-Pilch, Kinga; Kedracka-Krok, Sylwia; Jankowska, Urszula; Swiderska, Bianka; Dziedzicka-Wasylewska, Marta

    2015-08-01

    These studies aimed to identify the genes differentially expressed in the frontal cortex of mice bearing a life-long norepinephrine transporter knock-out (NET-KO) and wild-type animals (WT). Differences in gene expression in the mouse frontal cortex were studied using a whole-genome microarray approach. Using an alternative approach, i.e. RT-PCR (reverse transcription polymerase chain reaction) with primers complementary to various exons of the NET gene, as well as TaqMan arrays, the level of mRNA encoding the NET in other brain regions of the NET-KO mice was also examined. The analyses revealed a group of 92 transcripts (27 genes) that differentiated the NET-KO mice from the WT mice. Surprisingly, the studies have shown that the mRNA encoding NET accumulated in the brain regions rich in norepinephrine nerve endings in the NET-KO mice. Because there is no other source of NET mRNA besides the noradrenergic terminals in the brain regions studied, these results might speak in favor of the presence of mRNA in axon terminals. RNA-Binding Protein Immunoprecipitation approach indicated that mRNA encoding NET was detected in the Ago2 protein/mRNA complex. In addition, the amount of Ago2 protein in the frontal cortex was significantly higher in NET-KO mice as compared with that of the WT animals. These results are important for further characterization of the NET-KO mice, which - besides other merits - might serve as a good model to study the fate of truncated mRNA in neurons.

  16. Hydrogen rich gas generator

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Rupe, J. H.; Kushida, R. O. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by injecting air and hydrocarbon fuel at one end of a cylindrically shaped chamber to form a mixture and igniting the mixture to provide hot combustion gases by partial oxidation of the hydrocarbon fuel. The combustion gases move away from the ignition region to another region where water is injected to be turned into steam by the hot combustion gases. The steam which is formed mixes with the hot gases to yield a uniform hot gas whereby a steam reforming reaction with the hydrocarbon fuel takes place to produce a hydrogen rich gas.

  17. Proline biosynthesis is required for endoplasmic reticulum stress tolerance in Saccharomyces cerevisiae.

    PubMed

    Liang, Xinwen; Dickman, Martin B; Becker, Donald F

    2014-10-01

    The amino acid proline is uniquely involved in cellular processes that underlie stress response in a variety of organisms. Proline is known to minimize protein aggregation, but a detailed study of how proline impacts cell survival during accumulation of misfolded proteins in the endoplasmic reticulum (ER) has not been performed. To address this we examined in Saccharomyces cerevisiae the effect of knocking out the PRO1, PRO2, and PRO3 genes responsible for proline biosynthesis. The null mutants pro1, pro2, and pro3 were shown to have increased sensitivity to ER stress relative to wild-type cells, which could be restored by proline or the corresponding genetic complementation. Of these mutants, pro3 was the most sensitive to tunicamycin and was rescued by anaerobic growth conditions or reduced thiol reagents. The pro3 mutant cells have higher intracellular reactive oxygen species, total glutathione, and a NADP(+)/NADPH ratio than wild-type cells under limiting proline conditions. Depletion of proline biosynthesis also inhibits the unfolded protein response (UPR) indicating proline protection involves the UPR. To more broadly test the role of proline in ER stress, increased proline biosynthesis was shown to partially rescue the ER stress sensitivity of a hog1 null mutant in which the high osmolality pathway is disrupted.

  18. The induction of free proline accumulation by endogenous ABA in Arabidopsis thaliana during drought

    SciTech Connect

    Gottlieb, M.L.; Bray, E.A. )

    1991-05-01

    Endogenous levels of abscisic acid (ABA) and free proline increase in response to drought stress. Exogenous ABA has been shown to induce proline accumulation, suggesting that ABA triggers the amino acid response. To determine if endogenous ABA induces free proline accumulation, increases in ABA and proline during drought stress were compared between wild type (WT), ABA-insensitive (abi) and ABA-deficient (aba) mutants of Arabidopsis thaliana. If elevated levels of endogenous ABA signal the proline response, then the mutants would not be expected to accumulate proline during stress. abi should be unable to respond to increased levels of endogenous ABA, while aba should be unable to accumulate sufficient ABA to elicit a proline response. Drought-stressed three week old shoots of WT, abi, and aba exhibited different patterns of endogenous ABA accumulation, but similar patterns of proline accumulation over 24 hours. Although the patterns of endogenous ABA accumulation differed, maximum levels were similar in WT and abi, but aba produced approximately 25% less. However, free proline accumulated in all three plant lines. abi exhibited a greater, more rapid increase in free proline over that in either WT or aba. aba, however, showed the same pattern and levels of accumulation as that in WT. Since free proline accumulated to at least similar levels in both WT and mutants, regardless of the levels of ABA accumulation, it may be that only a small endogenous ABA accumulation is required for proline accumulation. Alternatively, endogenous ABA may not be the direct signal for the proline response during drought stress.

  19. Sequence-specific interactions of Rep proteins with ssDNA in the AT-rich region of the plasmid replication origin.

    PubMed

    Wegrzyn, Katarzyna; Fuentes-Perez, Maria Eugenia; Bury, Katarzyna; Rajewska, Magdalena; Moreno-Herrero, Fernando; Konieczny, Igor

    2014-07-01

    The DNA unwinding element (DUE) is a sequence rich in adenine and thymine residues present within the origin region of both prokaryotic and eukaryotic replicons. Recently, it has been shown that this is the site where bacterial DnaA proteins, the chromosomal replication initiators, form a specific nucleoprotein filament. DnaA proteins contain a DNA binding domain (DBD) and belong to the family of origin binding proteins (OBPs). To date there has been no data on whether OBPs structurally different from DnaA can form nucleoprotein complexes within the DUE. In this work we demonstrate that plasmid Rep proteins, composed of two Winged Helix domains, distinct from the DBD, specifically bind to one of the strands of ssDNA within the DUE. We observed nucleoprotein complexes formed by these Rep proteins, involving both dsDNA containing the Rep-binding sites (iterons) and the strand-specific ssDNA of the DUE. Formation of these complexes required the presence of all repeated sequence elements located within the DUE. Any changes in these repeated sequences resulted in the disturbance in Rep-ssDNA DUE complex formation and the lack of origin replication activity in vivo or in vitro.

  20. High Pressure Cosmochemistry of Major Planetary Interiors: Laboratory Studies of the Water-rich Region of the System Ammonia-water

    NASA Technical Reports Server (NTRS)

    Nicol, M.; Johnson, M.; Koumvakalis, A. S.

    1985-01-01

    The behavior of gas-ice mixtures in major planets at very high pressures was studied. Some relevant pressure-temperature-composition (P-T-X) regions of the hydrogen (H2)-helium (He)-water (H2O-ammonia (NH3)-methane (CH4) phase diagram were determined. The studies, and theoretical model, of the relevant phases, are needed to interpret the compositions of ice-gas systems at conditions of planetary interest. The compositions and structures of a multiphase, multicomponent system at very high pressures care characterized, and the goal is to characterize this system over a wide range of low and high temperatures. The NH3-H2O compositions that are relevant to planetary problems yet are easy to prepare were applied. The P-T surface of water was examined and the corresponding surface for NH3 was determined. The T-X diagram of ammonia-water at atmospheric pressure was studied and two water-rich phases were found, NH3-2H2O (ammonia dihydrate), which melts incongruently, and NH3.H2O (ammonia monohydrate), which is nonstoichiometric and melts at a higher temperature than the dihydrate. It is suggested that a P-T surface at approximately the monohydrate composition and the P-X surface at room temperature is determined.

  1. Sequence-specific interactions of Rep proteins with ssDNA in the AT-rich region of the plasmid replication origin

    PubMed Central

    Wegrzyn, Katarzyna; Fuentes-Perez, Maria Eugenia; Bury, Katarzyna; Rajewska, Magdalena; Moreno-Herrero, Fernando; Konieczny, Igor

    2014-01-01

    The DNA unwinding element (DUE) is a sequence rich in adenine and thymine residues present within the origin region of both prokaryotic and eukaryotic replicons. Recently, it has been shown that this is the site where bacterial DnaA proteins, the chromosomal replication initiators, form a specific nucleoprotein filament. DnaA proteins contain a DNA binding domain (DBD) and belong to the family of origin binding proteins (OBPs). To date there has been no data on whether OBPs structurally different from DnaA can form nucleoprotein complexes within the DUE. In this work we demonstrate that plasmid Rep proteins, composed of two Winged Helix domains, distinct from the DBD, specifically bind to one of the strands of ssDNA within the DUE. We observed nucleoprotein complexes formed by these Rep proteins, involving both dsDNA containing the Rep-binding sites (iterons) and the strand-specific ssDNA of the DUE. Formation of these complexes required the presence of all repeated sequence elements located within the DUE. Any changes in these repeated sequences resulted in the disturbance in Rep-ssDNA DUE complex formation and the lack of origin replication activity in vivo or in vitro. PMID:24838560

  2. O-Glycosylation of the N-terminal Region of the Serine-rich Adhesin Srr1 of Streptococcus agalactiae Explored by Mass Spectrometry *

    PubMed Central

    Chaze, Thibault; Guillot, Alain; Valot, Benoît; Langella, Olivier; Chamot-Rooke, Julia; Di Guilmi, Anne-Marie; Trieu-Cuot, Patrick; Dramsi, Shaynoor; Mistou, Michel-Yves

    2014-01-01

    Serine-rich (Srr) proteins exposed at the surface of Gram-positive bacteria are a family of adhesins that contribute to the virulence of pathogenic staphylococci and streptococci. Lectin-binding experiments have previously shown that Srr proteins are heavily glycosylated. We report here the first mass-spectrometry analysis of the glycosylation of Streptococcus agalactiae Srr1. After Srr1 enrichment and trypsin digestion, potential glycopeptides were identified in collision induced dissociation spectra using X! Tandem. The approach was then refined using higher energy collisional dissociation fragmentation which led to the simultaneous loss of sugar residues, production of diagnostic oxonium ions and backbone fragmentation for glycopeptides. This feature was exploited in a new open source software tool (SpectrumFinder) developed for this work. By combining these approaches, 27 glycopeptides corresponding to six different segments of the N-terminal region of Srr1 [93–639] were identified. Our data unambiguously indicate that the same protein residue can be modified with different glycan combinations including N-acetylhexosamine, hexose, and a novel modification that was identified as O-acetylated-N-acetylhexosamine. Lectin binding and monosaccharide composition analysis strongly suggested that HexNAc and Hex correspond to N-acetylglucosamine and glucose, respectively. The same protein segment can be modified with a variety of glycans generating a wide structural diversity of Srr1. Electron transfer dissociation was used to assign glycosylation sites leading to the unambiguous identification of six serines and one threonine residues. Analysis of purified Srr1 produced in mutant strains lacking accessory glycosyltransferase encoding genes demonstrates that O-GlcNAcylation is an initial step in Srr1 glycosylation that is likely required for subsequent decoration with Hex. In summary, our data obtained by a combination of fragmentation mass spectrometry techniques

  3. Hypoxia stimulates binding of a cytoplasmic protein to a pyrimidine-rich sequence in the 3'-untranslated region of rat tyrosine hydroxylase mRNA.

    PubMed

    Czyzyk-Krzeska, M F; Dominski, Z; Kole, R; Millhorn, D E

    1994-04-01

    Reduced oxygen tension (hypoxia) induces a 3-fold increase in stability of mRNA for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis, in the pheochromocytoma (PC12) clonal cell line. To investigate the possibility that RNA-protein interactions are involved in mediating this increase in stability, RNA gel shift assays were performed using different fragments of labeled TH mRNA and the S-100 fraction of PC12 cytoplasmic protein extracts. We identified a sequence within the 3'-untranslated region of TH mRNA that binds cytoplasmic protein. RNase T1 mapping revealed that the protein was bound to a 28 nucleotide long sequence that is located between bases 1551-1579 of TH mRNA. Moreover, protein binding to this fragment was prevented with an antisense oligonucleotide directed against bases 1551-1579 and subsequent RNase H digestion. This fragment of the 3'-untranslated region of TH mRNA is rich in pyrimidine nucleotides, and the binding of cytoplasmic protein to this fragment was reduced by competition with other polypyrimidine sequences including poly(C) but not poly(U) polymers. The binding of the protein to TH mRNA was increased when cytoplasmic proteins were extracted from PC12 cells exposed to hypoxia (5% O2) for 24 h. Electrophoresis of the UV cross-linked RNA-protein complex on SDS-polyacrylamide gel electrophoresis revealed a complex of 74 kDa. The potential role of this protein-TH mRNA interaction in regulation of TH mRNA stability during hypoxia is discussed. PMID:7908289

  4. sup 40 Ar- sup 39 Ar and K-Ar dating of K-rich rocks from the Roccamonfina volcano, Roman Comagmatic Region, Italy

    SciTech Connect

    Di Brozolo, F.R.; Di Girolamo, P.; Turi, B.; Oddone, M. )

    1988-06-01

    Roccamonfina is the northernmost Volcano of the Campanian area of the K-rich Roman comagmatic Region of Italy. It erupted a huge amount of pyroclastics and lavas belonging to both the Leucite-Basanite and Leucitite Series (LBLS) and the Shoshonite Series (SS), spread over an area of about 300 km{sup 2}. The above series correspond to the High-K Series (HKS) and Low-K Series (LKS) of Appleton (1971), respectively. {sup 40}Ar-{sup 39}Ar and K-Ar dating of samples from both series gave ages ranging from 0.656 to 0.096 Ma for the SS and from 1.03( ) to 0.053 Ma for the LBLS. These results indicate that the products of the two series were outpoured together at least between 0.7 and 0.1 Ma age, i.e. during both the so-called pre-caldera phase and the post-caldera phase of activity. The latest products of the volcanism at Roccamonfina were erupted just before the deposition of the Grey Campanian Ignimbrite, which erupted from vents located about 50 km to the south in the Phlegrean Fields near Naples and has an age of about 33,000 years. Taking into account all the available all the available radiometric data the authors conclude that Roccamonfina was active between 1.5 and 0.05 Ma ago, in excellent agreement with the stratigraphic evidence. In this same time span is concentrated the activity of all the centers of the Roman Region north of Naples.

  5. 40Ar- 39Ar and K-Ar dating of K-rich rocks from the Roccamonfina Volcano, Roman comagmatic Region, Italy

    NASA Astrophysics Data System (ADS)

    Radicati di Brozolo, Filippo; Di Girolamo, Pio; Turi, Bruno; Oddone, Massimo

    1988-06-01

    Roccamonfina is the northernmost Volcano of the Campanian area of the K-rich Roman comagmatic Region of Italy. It erupted a huge amount of pyroclastics and lavas belonging to both the Leucite-Basanite and Leucitite Series (LBLS) and the Shoshonite Series (SS), spread over an area of about 300 km 2. The above series correspond to the High-K. Series (HKS) and Low-K Series (LKS) of APPLETON (1972), respectively. 40Ar- 39Ar and K-Ar dating of samples from both series gave ages ranging from 0.656 to 0.096 Ma for the SS and from 1.03(?) to 0.053 Ma for the LBLS. These results indicate that the products of the two series were outpoured together at least between 0.7 and 0.1 Ma ago, i.e. during both the so-called pre-caldera phase and the post-caldera phase of activity. The latest products of the volcanism at Roccamonfina were erupted just before the deposition of the Grey Campanian Ignimbrite, which erupted from vents located about 50 km to the south in the Phlegrean Fields near Naples and has an age of about 33,000 years. Taking into account all the available radiometric data, we conclude that Roccamonfina was active between 1.5 and 0.05 Ma ago, in excellent agreement with the stratigraphie evidence. In this same time span is concentrated the activity of all the centers of the Roman Region north of Naples.

  6. First Evidence for Substrate Channeling between Proline Catabolic Enzymes

    PubMed Central

    Sanyal, Nikhilesh; Arentson, Benjamin W.; Luo, Min; Tanner, John J.; Becker, Donald F.

    2015-01-01

    Proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) catalyze the four-electron oxidation of proline to glutamate via the intermediates P5C and l-glutamate-γ-semialdehyde (GSA). In Gram-negative bacteria, PRODH and P5CDH are fused together in the bifunctional enzyme proline utilization A (PutA) whereas in other organisms PRODH and P5CDH are expressed as separate monofunctional enzymes. Substrate channeling has previously been shown for bifunctional PutAs, but whether the monofunctional enzymes utilize an analogous channeling mechanism has not been examined. Here, we report the first evidence of substrate channeling in a PRODH-P5CDH two-enzyme pair. Kinetic data for the coupled reaction of PRODH and P5CDH from Thermus thermophilus are consistent with a substrate channeling mechanism, as the approach to steady-state formation of NADH does not fit a non-channeling two-enzyme model. Furthermore, inactive P5CDH and PRODH mutants inhibit NADH production and increase trapping of the P5C intermediate in coupled assays of wild-type PRODH-P5CDH enzyme pairs, indicating that the mutants disrupt PRODH-P5CDH channeling interactions. A dissociation constant of 3 μm was estimated for a putative PRODH-P5CDH complex by surface plasmon resonance (SPR). Interestingly, P5CDH binding to PRODH was only observed when PRODH was immobilized with the top face of its (βα)8 barrel exposed. Using the known x-ray crystal structures of PRODH and P5CDH from T. thermophilus, a model was built for a proposed PRODH-P5CDH enzyme channeling complex. The structural model predicts that the core channeling pathway of bifunctional PutA enzymes is conserved in monofunctional PRODH-P5CDH enzyme pairs. PMID:25492892

  7. A Thermodynamic Model for Predicting Mineral Reactivity in Supercritical Carbon Dioxide: I. Phase Behavior of Carbon Dioxide - Water - Chloride Salt Systems Across the H2O-Rich to the CO2-Rich Regions

    SciTech Connect

    Springer, Ronald D.; Wang, Zheming; Anderko, Andre; Wang, Peiming; Felmy, Andrew R.

    2012-09-05

    Phase equilibria in mixtures containing carbon dioxide, water, and chloride salts have been investigated using a combination of solubility measurements and thermodynamic modeling. The solubility of water in the CO2-rich phase of ternary mixtures of CO2, H2O and NaCl or CaCl2 was determined, using near infrared spectroscopy, at 90 atm and 40 to 100 °C. These measurements fill a gap in the experimental database for CO2 water salt systems, for which phase composition data have been available only for the H2O-rich phases. A thermodynamic model for CO2 water salt systems has been constructed on the basis of the previously developed Mixed-Solvent Electrolyte (MSE) framework, which is capable of modeling aqueous solutions over broad ranges of temperature and pressure, is valid to high electrolyte concentrations, treats mixed-phase systems (with both scCO2 and water present) and can predict the thermodynamic properties of dry and partially water-saturated supercritical CO2 over broad ranges of temperature and pressure. Within the MSE framework the standard-state properties are calculated from the Helgeson-Kirkham-Flowers equation of state whereas the excess Gibbs energy includes a long-range electrostatic interaction term expressed by a Pitzer-Debye-Hückel equation, a virial coefficient-type term for interactions between ions and a short-range term for interactions involving neutral molecules. The parameters of the MSE model have been evaluated using literature data for both the H2O-rich and CO2-rich phases in the CO2 - H2O binary and for the H2O-rich phase in the CO2 - H2O - NaCl / KCl / CaCl2 / MgCl2 ternary and multicompontent systems. The model accurately represents the properties of these systems at temperatures from 0°C to 300 °C and pressures up to ~4000 atm. Further, the solubilities of H2O in CO2-rich phases that are predicted by the model are in agreement with the new measurements for the CO2 - H2O - NaCl and CO2 - H2O - CaCl2 systems. Thus, the model can be

  8. Proline accumulation and metabolism-related genes expression profiles in Kosteletzkya virginica seedlings under salt stress

    PubMed Central

    Wang, Hongyan; Tang, Xiaoli; Wang, Honglei; Shao, Hong-Bo

    2015-01-01

    Proline accumulation is a common response to salt stress in many plants. Salt stress also increased proline concentration in roots, stems, and leaves of Kosteletzkya virginica seedling treated with 300 mM NaCl for 24 h and reached 3.75-, 4.76-, and 6.83-fold higher than controls. Further study on proline content in leaves under salt stress showed that proline content increased with increasing NaCl concentrations or time. The proline level peaked at 300 mM NaCl for 24 h and reached more than sixfold higher than control, but at 400 mM NaCl for 24 h proline content fell back slightly along with wilting symptom. To explore the cause behind proline accumulation, we first cloned full length genes related to proline metabolism including KvP5CS1, KvOAT, KvPDH, and KvProT from K. virginica and investigated their expression profiles. The results revealed that the expressions of KvP5CS1 and KvProT were sharply up-regulated by salt stress and the expression of KvOAT showed a slight increase with increasing salt concentrations or time, while the expression of KvPDH was not changed much and slightly decreased before 12 h and then returned to the original level. As the key enzyme genes for proline biosynthesis, the up-regulated expression of KvP5CS1 played a more important role than KvOAT for proline accumulation in leaves under salt stress. The low expression of KvPDH for proline catabolism also made a contribution to proline accumulation before 12 h. PMID:26483809

  9. Self-cloning baker's yeasts that accumulate proline enhance freeze tolerance in doughs.

    PubMed

    Kaino, Tomohiro; Tateiwa, Tetsuya; Mizukami-Murata, Satomi; Shima, Jun; Takagi, Hiroshi

    2008-09-01

    We constructed self-cloning diploid baker's yeast strains by disrupting PUT1, encoding proline oxidase, and replacing the wild-type PRO1, encoding gamma-glutamyl kinase, with a pro1(D154N) or pro1(I150T) allele. The resultant strains accumulated intracellular proline and retained higher-level fermentation abilities in the frozen doughs than the wild-type strain. These results suggest that proline-accumulating baker's yeast is suitable for frozen-dough baking.

  10. Steady-State Kinetic Mechanism of the Proline:Ubiquinone Oxidoreductase Activity of Proline Utilization A (PutA) from Escherichia coli

    PubMed Central

    Moxley, Michael A.; Tanner, John J.; Becker, Donald F.

    2011-01-01

    The multifunctional proline utilization A (PutA) flavoenzyme from Escherichia coli performs the oxidation of proline to glutamate in two catalytic steps using separate proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate (P5C) dehydrogenase domains. In the first reaction, the oxidation of proline is coupled to the reduction of ubiquinone (CoQ) by the PRODH domain, which has a β8α8-barrel structure that is conserved in bacterial and eukaryotic PRODH enzymes. The structural requirements of the benzoquinone moiety were examined by steady-state kinetics using CoQ analogs. PutA displayed activity with all the analogs tested; the highest kcat/Km was obtained with CoQ2. The kinetic mechanism of the PRODH reaction was investigated use a variety of steady-state approaches. Initial velocity patterns measured using proline and CoQ1, combined with dead-end and product inhibition studies, suggested a two-site ping-pong mechanism for PutA. The kinetic parameters for PutA were not strongly influenced by solvent viscosity suggesting that diffusive steps do not significantly limit the overall reaction rate. In summary, the kinetic data reported here, along with analysis of the crystal structure data for the PRODH domain, suggest that the proline:ubiquinone oxidoreductase reaction of PutA occurs via a rapid equilibrium ping-pong mechanism with proline and ubiquinone binding at two distinct sites. PMID:22040654

  11. Proline might have been the first amino acid in the primitive genetic code.

    PubMed

    Komatsu, Reina; Sawada, Risa; Umehara, Takuya; Tamura, Koji

    2014-06-01

    Stereochemical assignment of amino acids and corresponding codons or anticodons has not been successful so far. Here, we focused on proline and GGG (anticodon of tRNA(Pro)) and investigated their mutual interaction. Circular dichroism spectroscopy revealed that guanosine nucleotides (GG, GGG) formed G-quartet structures. The structures were destroyed by adding high concentrations of proline. We propose that the possibility of the reversible proline/G-quartet interaction could have contributed to the specific assignment of proline on GGG and that this coding could have been the first in the genetic code. PMID:24973301

  12. Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea).

    PubMed

    Iqbal, Noushina; Umar, Shahid; Khan, Nafees A

    2015-04-15

    Proline content and ethylene production have been shown to be involved in salt tolerance mechanisms in plants. To assess the role of nitrogen (N) in the protection of photosynthesis under salt stress, the effect of N (0, 5, 10, 20 mM) on proline and ethylene was studied in mustard (Brassica juncea). Sufficient N (10 mM) optimized proline production under non-saline conditions through an increase in proline-metabolizing enzymes, leading to osmotic balance and protection of photosynthesis through optimal ethylene production. Excess N (20 mM), in the absence of salt stress, inhibited photosynthesis and caused higher ethylene evolution but lower proline production compared to sufficient N. In contrast, under salt stress with an increased demand for N, excess N optimized ethylene production, which regulates the proline content resulting in recovered photosynthesis. The effect of excess N on photosynthesis under salt stress was further substantiated by the application of the ethylene biosynthesis inhibitor, 1-aminoethoxy vinylglycine (AVG), which inhibited proline production and photosynthesis. Without salt stress, AVG promoted photosynthesis in plants receiving excess N by inhibiting stress ethylene production. The results suggest that a regulatory interaction exists between ethylene, proline and N for salt tolerance. Nitrogen differentially regulates proline production and ethylene formation to alleviate the adverse effect of salinity on photosynthesis in mustard.

  13. Proline as a fuel for insect flight: enhancing carbohydrate oxidation in hymenopterans.

    PubMed

    Teulier, Loïc; Weber, Jean-Michel; Crevier, Julie; Darveau, Charles-A

    2016-07-13

    Bees are thought to be strict users of carbohydrates as metabolic fuel for flight. Many insects, however, have the ability to oxidize the amino acid proline at a high rate, which is a unique feature of this group of animals. The presence of proline in the haemolymph of bees and in the nectar of plants led to the hypothesis that plants may produce proline as a metabolic reward for pollinators. We investigated flight muscle metabolism of hymenopteran species using high-resolution respirometry performed on permeabilized muscle fibres. The muscle fibres of the honeybee, Apis mellifera, do not have a detectable capacity to oxidize proline, as those from the migratory locust, Locusta migratoria, used here as an outgroup representative. The closely related bumblebee, Bombus impatiens, can oxidize proline alone and more than doubles its respiratory capacity when proline is combined with carbohydrate-derived substrates. A distant wasp species, Vespula vulgaris, exhibits the same metabolic phenotype as the bumblebee, suggesting that proline oxidation is common in hymenopterans. Using a combination of mitochondrial substrates and inhibitors, we further show that in B. impatiens, proline oxidation provides reducing equivalents and electrons directly to the electron transport system. Together, these findings demonstrate that some bee and wasp species can greatly enhance the oxidation of carbohydrates using proline as fuel for flight. PMID:27412285

  14. Determination of proline in honey: comparison between official methods, optimization and validation of the analytical methodology.

    PubMed

    Truzzi, Cristina; Annibaldi, Anna; Illuminati, Silvia; Finale, Carolina; Scarponi, Giuseppe

    2014-05-01

    The study compares official spectrophotometric methods for the determination of proline content in honey - those of the International Honey Commission (IHC) and the Association of Official Analytical Chemists (AOAC) - with the original Ough method. Results show that the extra time-consuming treatment stages added by the IHC method with respect to the Ough method are pointless. We demonstrate that the AOACs method proves to be the best in terms of accuracy and time saving. The optimized waiting time for the absorbance recording is set at 35min from the removal of reaction tubes from the boiling bath used in the sample treatment. The optimized method was validated in the matrix: linearity up to 1800mgL(-1), limit of detection 20mgL(-1), limit of quantification 61mgL(-1). The method was applied to 43 unifloral honey samples from the Marche region, Italy.

  15. Determination of proline in honey: comparison between official methods, optimization and validation of the analytical methodology.

    PubMed

    Truzzi, Cristina; Annibaldi, Anna; Illuminati, Silvia; Finale, Carolina; Scarponi, Giuseppe

    2014-05-01

    The study compares official spectrophotometric methods for the determination of proline content in honey - those of the International Honey Commission (IHC) and the Association of Official Analytical Chemists (AOAC) - with the original Ough method. Results show that the extra time-consuming treatment stages added by the IHC method with respect to the Ough method are pointless. We demonstrate that the AOACs method proves to be the best in terms of accuracy and time saving. The optimized waiting time for the absorbance recording is set at 35min from the removal of reaction tubes from the boiling bath used in the sample treatment. The optimized method was validated in the matrix: linearity up to 1800mgL(-1), limit of detection 20mgL(-1), limit of quantification 61mgL(-1). The method was applied to 43 unifloral honey samples from the Marche region, Italy. PMID:24360478

  16. Expression of beta-keratin mRNAs and proline uptake in epidermal cells of growing scales and pad lamellae of gecko lizards.

    PubMed

    Alibardi, Lorenzo; Toni, Mattia; Dalla Valle, Luisa

    2007-07-01

    Beta-keratins form a large part of the proteins contained in the hard beta layer of reptilian scales. The expression of genes encoding glycine-proline-rich beta-keratins in normal and regenerating epidermis of two species of gecko lizards has been studied by in situ hybridization. The probes localize mRNAs in differentiating oberhautchen and beta cells of growing scales and in modified scales, termed pad lamellae, on the digits of gecko lizards. In situ localization at the ultrastructural level shows clusters of gold particles in the cytoplasm among beta-keratin filaments of oberhautchen and beta cells. They are also present in the differentiating elongation or setae of oberhautchen cells present in pad lamellae. Setae allow geckos to adhere and climb vertical surfaces. Oberhautchen and beta cells also incorporate tritiated proline. The fine localization of the beta-keratin mRNAs and the uptake of proline confirms the biomolecular data that identified glycine-proline-rich beta-keratin in differentiating beta cells of gecko epidermis. The present study also shows the presence of differentiating and metabolically active cells in both inner and outer oberhautchen/beta cells at the base of the outer setae localized at the tip of pad lamellae. The addition of new beta and alpha cells to the corneous layer near the tip of the outer setae explains the anterior movement of the setae along the apical free-margin of pad lamellae. The rapid replacement of setae ensures the continuous usage of the gecko's adhesive devices, the pad lamellae, during most of their active life.

  17. [Properties of post-proline cleaving enzymes from Tenebrio molitor].

    PubMed

    Goptar', I A; Kulemzina, I A; Filippova, I Iu; Lysogorskaia, E N; Oksenoĭt, E S; Zhuzhikov, D P; Dunaevskiĭ, Ia E; Belozerskiĭ, M A; Elpidina, E N

    2008-01-01

    Two post-proline cleaving enzymes PRE1 and PRE2 with molecular masses of 101 and 62 kDa, respectively, capable of hydrolyzing Z-AlaAlaPro-pNA were isolated for the first time from the midgut of the flour beetle Tenebrio molitor and characterized. PRE1 is active only in acidic media, with a maximum at pH 5.6, whereas PRE2, both in acidic and alkaline media with a maximum at pH 7.9. Using inhibitory analysis, both PRE1 and PRE2 were shown to belong to serine peptidases. Some data indicate that a Cys residue is located close to the PRE2 active site. Z-Pro-prolinal, a specific inhibitor of prolyl oligopeptidases, inhibits completely PRE2 and partially PRE1. The substrate specificities of the isolated enzymes were studied. It was shown that Z-AlaAla-Pro-pNA was the best substrate for PRE1, and Z-AlaPro-pNA, for PRE2. The combination of the studied properties allowed characterization of PRE2 as a prolyl oligopeptidase.

  18. An N-terminal glycine-rich sequence contributes to retrovirus trimer of hairpins stability

    SciTech Connect

    Wilson, Kirilee A.; Maerz, Anne L.; Baer, Severine; Drummer, Heidi E.; Poumbourios, Pantelis . E-mail: apoumbourios@burnet.edu.au

    2007-08-10

    Retroviral transmembrane proteins (TMs) contain a glycine-rich segment linking the N-terminal fusion peptide and coiled coil core. Previously, we reported that the glycine-rich segment (Met-326-Ser-337) of the human T-cell leukemia virus type 1 (HTLV-1) TM, gp21, is a determinant of membrane fusion function [K.A. Wilson, S. Baer, A.L. Maerz, M. Alizon, P. Poumbourios, The conserved glycine-rich segment linking the N-terminal fusion peptide to the coiled coil of human T-cell leukemia virus type 1 transmembrane glycoprotein gp21 is a determinant of membrane fusion function, J. Virol. 79 (2005) 4533-4539]. Here we show that the reduced fusion activity of an I334A mutant correlated with a decrease in stability of the gp21 trimer of hairpins conformation, in the context of a maltose-binding protein-gp21 chimera. The stabilizing influence of Ile-334 required the C-terminal membrane-proximal sequence Trp-431-Ser-436. Proline substitution of four of five Gly residues altered gp21 trimer of hairpins stability. Our data indicate that flexibility within and hydrophobic interactions mediated by this region are determinants of gp21 stability and membrane fusion function.

  19. An N-terminal glycine-rich sequence contributes to retrovirus trimer of hairpins stability.

    PubMed

    Wilson, Kirilee A; Maerz, Anne L; Bär, Séverine; Drummer, Heidi E; Poumbourios, Pantelis

    2007-08-10

    Retroviral transmembrane proteins (TMs) contain a glycine-rich segment linking the N-terminal fusion peptide and coiled coil core. Previously, we reported that the glycine-rich segment (Met-326-Ser-337) of the human T-cell leukemia virus type 1 (HTLV-1) TM, gp21, is a determinant of membrane fusion function [K.A. Wilson, S. Bär, A.L. Maerz, M. Alizon, P. Poumbourios, The conserved glycine-rich segment linking the N-terminal fusion peptide to the coiled coil of human T-cell leukemia virus type 1 transmembrane glycoprotein gp21 is a determinant of membrane fusion function, J. Virol. 79 (2005) 4533-4539]. Here we show that the reduced fusion activity of an I334A mutant correlated with a decrease in stability of the gp21 trimer of hairpins conformation, in the context of a maltose-binding protein-gp21 chimera. The stabilizing influence of Ile-334 required the C-terminal membrane-proximal sequence Trp-431-Ser-436. Proline substitution of four of five Gly residues altered gp21 trimer of hairpins stability. Our data indicate that flexibility within and hydrophobic interactions mediated by this region are determinants of gp21 stability and membrane fusion function. PMID:17577584

  20. Proline Metabolism Increases katG Expression and Oxidative Stress Resistance in Escherichia coli

    PubMed Central

    Zhang, Lu; Alfano, James R.

    2014-01-01

    The oxidation of l-proline to glutamate in Gram-negative bacteria is catalyzed by the proline utilization A (PutA) flavoenzyme, which contains proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate (P5C) dehydrogenase domains in a single polypeptide. Previous studies have suggested that aside from providing energy, proline metabolism influences oxidative stress resistance in different organisms. To explore this potential role and the mechanism, we characterized the oxidative stress resistance of wild-type and putA mutant strains of Escherichia coli. Initial stress assays revealed that the putA mutant strain was significantly more sensitive to oxidative stress than the parental wild-type strain. Expression of PutA in the putA mutant strain restored oxidative stress resistance, confirming that depletion of PutA was responsible for the oxidative stress phenotype. Treatment of wild-type cells with proline significantly increased hydroperoxidase I (encoded by katG) expression and activity. Furthermore, the ΔkatG strain failed to respond to proline, indicating a critical role for hydroperoxidase I in the mechanism of proline protection. The global regulator OxyR activates the expression of katG along with several other genes involved in oxidative stress defense. In addition to katG, proline increased the expression of grxA (glutaredoxin 1) and trxC (thioredoxin 2) of the OxyR regulon, implicating OxyR in proline protection. Proline oxidative metabolism was shown to generate hydrogen peroxide, indicating that proline increases oxidative stress tolerance in E. coli via a preadaptive effect involving endogenous hydrogen peroxide production and enhanced catalase-peroxidase activity. PMID:25384482

  1. T-box-mediated control of the anabolic proline biosynthetic genes of Bacillus subtilis.

    PubMed

    Brill, Jeanette; Hoffmann, Tamara; Putzer, Harald; Bremer, Erhard

    2011-04-01

    Bacillus subtilis possesses interlinked routes for the synthesis of proline. The ProJ-ProA-ProH route is responsible for the production of proline as an osmoprotectant, and the ProB-ProA-ProI route provides proline for protein synthesis. We show here that the transcription of the anabolic proBA and proI genes is controlled in response to proline limitation via a T-box-mediated termination/antitermination regulatory mechanism, a tRNA-responsive riboswitch. Primer extension analysis revealed mRNA leader transcripts of 270 and 269 nt for the proBA and proI genes, respectively, both of which are synthesized from SigA-type promoters. These leader transcripts are predicted to fold into two mutually exclusive secondary mRNA structures, forming either a terminator or an antiterminator configuration. Northern blot analysis allowed the detection of both the leader and the full-length proBA and proI transcripts. Assessment of the level of the proBA transcripts revealed that the amount of the full-length mRNA species strongly increased in proline-starved cultures. Genetic studies with a proB-treA operon fusion reporter strain demonstrated that proBA transcription is sensitively tied to proline availability and is derepressed as soon as cellular starvation for proline sets in. Both the proBA and the proI leader sequences contain a CCU proline-specific specifier codon prone to interact with the corresponding uncharged proline-specific tRNA. By replacing the CCU proline specifier codon in the proBA T-box leader with UUC, a codon recognized by a Phe-specific tRNA, we were able to synthetically re-engineer the proline-specific control of proBA transcription to a control that was responsive to starvation for phenylalanine. PMID:21233158

  2. Proline-glutamic acid-proline-lysine repetition peptide as an antigen for the serological diagnosis of strangles.

    PubMed

    Hobo, S; Niwa, H; Anzai, T

    2008-04-12

    The reactivity of the proline-glutamic acid-proline-lysine (PEPK) repetition peptide antigen in 3176 serum samples was investigated to evaluate its utility as an antigen for the serological diagnosis of strangles. The reactivity of the sera of horses infected with Streptococcus equi subspecies equi was high when the peptide had several PEPK repetitions. However, as the number of PEPK repetitions increased, the reactivity of the antigen with the sera of horses infected with Streptococcus equi subspecies zooepidemicus also increased. In horses infected experimentally with S equi, the reactivity of the PEPK antigen with five repetitions increased one week after inoculation and continued to increase during the following four weeks. The optical density (OD) values of test sera from horses infected experimentally with S equi and sera from horses that had recovered from strangles were high. The od values of sera from horses that had recovered from an experimental infection with S zooepidemicus and of sera from healthy horses were comparatively low.

  3. Proline-glutamic acid-proline-lysine peptide set as a specific antigen for the serological diagnosis of strangles.

    PubMed

    Hobo, S; Niwa, H; Anzai, T

    2006-11-01

    The reactivity of synthesised peptide sets for the M-like proteins SeM and SzPSe with sera from horses infected with Streptococcus equi or Streptococcus zooepidemicus, or control horses, was investigated by an ELISA. Seventeen horses were infected experimentally with S equi or S zooepidemicus, convalescent sera were obtained from 25 horses and control sera were obtained from 1945 horses. The serum antibody responses of individual horses to the peptide sets were highly variable. Some of the peptide sets for SeM reacted strongly with the sera from the horses infected experimentally with S equi, but also reacted with sera from some of the horses infected experimentally with S zooepidemicus. However, the proline-glutamic acid-proline-lysine (PEPK) repeats peptide set, synthesised from the PEPK repeats areas of SzPSe, reacted most strongly with the sera from the horses infected experimentally with S equi and the horses convalescing from strangles, and reacted only minimally with the sera from the horses infected experimentally with S zooepidemicus and the control horses.

  4. A Conserved Active Site Tyrosine Residue of Proline Dehydrogenase Helps Enforce the Preference for Proline over Hydroxyproline as the Substrate†,‡

    PubMed Central

    Ostrander, Elizabeth L.; Larson, John D.; Schuermann, Jonathan P.; Tanner, John J.

    2009-01-01

    Proline dehydrogenase (PRODH) catalyzes the oxidation of L-proline to Delta-1-pyrroline-5-carboxylate. PRODHs exhibit a pronounced preference for proline over hydroxyproline (trans-4-hydroxy-L-proline) as the substrate, but the basis for specificity is unknown. The goal of this study, therefore, is to gain insights into the structural determinants of substrate specificity of this class of enzyme, with a focus on understanding how PRODHs discriminate between the two closely related molecules, proline and hydroxyproline. Two site-directed mutants of the PRODH domain of Escherichia coli PutA were created: Y540A and Y540S. Kinetics measurements were performed with both mutants. Crystal structures of Y540S complexed with hydroxyproline, proline, and the proline analog L-tetrahydro-2-furoic acid were determined at resolutions of 1.75 Å, 1.90 Å and 1.85 Å. Mutation of Tyr540 increases the catalytic efficiency for hydroxyproline three-fold and decreases the specificity for proline by factors of twenty (Y540S) and fifty (Y540A). The structures show that removal of the large phenol side chain increases the volume of the substrate-binding pocket, allowing sufficient room for the 4-hydroxyl of hydroxyproline. Furthermore, the introduced serine residue participates in recognition of hydroxyproline by forming a hydrogen bond with the 4-hydroxyl. This result has implications for understanding substrate specificity of the related enzyme human hydroxyproline dehydrogenase, which has serine in place of tyrosine at this key active site position. The kinetic and structural results suggest that Tyr540 is an important determinant of specificity. Structurally, it serves as a negative filter for hydroxyproline by clashing with the 4-hydroxyl group of this potential substrate. PMID:19140736

  5. Growth of plutons by incremental emplacement of sheets in crystal-rich host: Evidence from Miocene intrusions of the Colorado River region, Nevada, USA

    USGS Publications Warehouse

    Miller, C.F.; Furbish, D.J.; Walker, B.A.; Claiborne, L.L.; Koteas, G.C.; Bleick, H.A.; Miller, J.S.

    2011-01-01

    Growing evidence supports the notion that plutons are constructed incrementally, commonly over long periods of time, yet field evidence for the multiple injections that seem to be required is commonly sparse or absent. Timescales of up to several million years, among other arguments, indicate that the dominant volume does not remain largely molten, yet if growing plutons are constructed from rapidly solidifying increments it is unlikely that intrusive contacts would escape notice. A model wherein magma increments are emplaced into melt-bearing but crystal-rich host, rather than either solid or crystal-poor material, provides a plausible explanation for this apparent conundrum. A partially solidified intrusion undoubtedly comprises zones with contrasting melt fraction and therefore strength. Depending on whether these zones behave elastically or ductilely in response to dike emplacement, intruding magma may spread to form sheets by either of two mechanisms. If the melt-bearing host is elastic on the relevant timescale, magma spreads rather than continuing to propagate upward, where it encounters a zone of higher rigidity (higher crystal fraction). Similarly, if the dike at first ascends through rigid, melt-poor material and then encounters a zone that is weak enough (poor enough in crystals) to respond ductilely, the ascending material will also spread because the dike tip ceases to propagate as in rigid material. We propose that ascending magma is thus in essence trapped, by either mechanism, within relatively crystal-poor zones. Contacts will commonly be obscure from the start because the contrast between intruding material (crystal-poorer magma) and host (crystal-richer material) is subtle, and they may be obscured even further by subsequent destabilization of the crystal-melt framework. Field evidence and zircon zoning stratigraphy in plutons of the Colorado River region of southern Nevada support the hypothesis that emplacement of magma replenishments into a

  6. Na-dependent L-proline transport by eel intestinal brush-border membrane vesicles

    SciTech Connect

    Vilella, S.; Ahearn, G.A.; Cassano, G.; Storelli, C. University of Hawaii at Manoa, Honolulu )

    1988-10-01

    L-({sup 3}H)proline uptake by brush-border membrane vesicles prepared from intestinal mucosa of the European eel, Anguilla anguilla, was stimulated by a transmembrane Na gradient (out > in.) Kinetic analysis of L-proline influx, under short-circuited membrane potential conditions, indicated the presence of an apparent single Na-dependent carrier process and a nonsaturable transfer component with an apparent diffusional permeability (P) of 1.53 {plus minus} 0.35 {mu}l{center dot}mg protein{sup {minus}1}{center dot}min{sup {minus}1}. An imposed transmembrane potential (inside negative) increased apparent L-proline binding affinity (lowered K{sub app}) without appreciably altering maximal amino acid influx (J{sub max}). Hill analysis of L-proline influx over a wide range of external Na concentrations indicated a 1:1 stoichiometry for Na-proline cotransport. Use of amino acid inhibitors of L-proline influx suggested that L-proline transfer may occur by either a classical Na-dependent A System with a wide substrate specificity or by the combination of Na-dependent PHE (phenylalanine preferring) and IMINO (proline, {alpha}-methylaminoisobutyric acid preferring) Systems.

  7. Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough.

    PubMed

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Ohtsu, Iwao; Shima, Jun; Takagi, Hiroshi

    2012-05-01

    Freeze tolerance is a necessary characteristic for industrial baker's yeast because frozen-dough baking is one of the key technologies for supplying oven-fresh bakery products to consumers. Both proline and trehalose are known to function as cryoprotectants in yeast cells. In order to enhance the freeze tolerance of yeast cells, we constructed a self-cloning diploid baker's yeast strain with simultaneous accumulation of proline, by expressing the PRO1-I150T allele, encoding the proline-feedback inhibition-less sensitive γ-glutamyl kinase, and trehalose, by disrupting the NTH1 gene, encoding neutral trehalase. The resultant strain retained higher tolerance to oxidative and freezing stresses than did the single proline- or trehalose-accumulating strain. Interestingly, our results suggest that proline and trehalose protect yeast cells from short-term and long-term freezing, respectively. Simultaneous accumulation of proline and trehalose in industrial baker's yeast also enhanced the fermentation ability in the frozen dough compared with the single accumulation of proline or trehalose. These results indicate that baker's yeast that accumulates both proline and trehalose is applicable for frozen-dough baking. PMID:22280966

  8. Proline biosynthesis augments tumor cell growth and aerobic glycolysis: involvement of pyridine nucleotides

    PubMed Central

    Liu, Wei; Hancock, Chad N.; Fischer, Joseph W.; Harman, Meredith; Phang, James M.

    2015-01-01

    The metabolism of the nonessential amino acid proline contributes to tumor metabolic reprogramming. Previously we showed that MYC increases proline biosynthesis (PB) from glutamine. Here we show MYC increases the expression of the enzymes in PB at both protein and mRNA levels. Blockade of PB decreases tumor cell growth and energy production. Addition of Δ1-pyrroline-5-carboxylate (P5C) or proline reverses the effects of P5C synthase knockdown but not P5C reductases knockdown. Importantly, the reversal effect of proline was blocked by concomitant proline dehydrogenase/oxidase (PRODH/POX) knockdown. These findings suggest that the important regulatory contribution of PB to tumor growth derives from metabolic cycling between proline and P5C rather than product proline or intermediate P5C. We further document the critical role of PB in maintaining pyridine nucleotide levels by connecting the proline cycle to glycolysis and to the oxidative arm of the pentose phosphate pathway. These findings establish a novel function of PB in tumorigenesis, linking the reprogramming of glucose, glutamine and pyridine nucleotides, and may provide a novel target for antitumor therapy. PMID:26598224

  9. Structural Basis of Transcriptional Regulation of the Proline Utilization Regulon by Multifunctional PutA

    PubMed Central

    Zhou, Yuzhen; Larson, John D.; Bottoms, Christopher A.; Arturo, Emilia C.; Henzl, Michael T.; Jenkins, Jermaine L.; Nix, Jay C.; Becker, Donald F.; Tanner, John J.

    2009-01-01

    Summary The multifunctional Escherichia coli PutA flavoprotein functions as both a membrane-associated proline catabolic enzyme and transcriptional repressor of the proline utilization genes putA and putP. To better understand the mechanism of transcriptional regulation by PutA, we have mapped the put regulatory region, determined a crystal structure of the PutA ribbon-helix-helix domain (PutA52) complexed with DNA and examined the thermodynamics of DNA binding to PutA52. Five operator sites, each containing the sequence motif 5′-GTTGCA-3′, were identified using gel-shift analysis. Three of the sites are shown to be critical for repression of putA, whereas the two other sites are important for repression of putP. The 2.25 Å resolution crystal structure of PutA52 bound to one of the operators (operator 2, 21-bp) shows that the protein contacts a 9-bp fragment, corresponding to the GTTGCA consensus motif plus three flanking base pairs. Since the operator sequences differ in flanking bases, the structure implies that PutA may have different affinities for the five operators. This hypothesis was explored using isothermal titration calorimetry. The binding of PutA52 to operator 2 is exothermic with an enthalpy of −1.8 kcal/mol and a dissociation constant of 210 nM. Substitution of the flanking bases of operator 4 into operator 2 results in an unfavorable enthalpy of 0.2 kcal/mol and 15-fold lower affinity, which shows that base pairs outside of the consensus motif impact binding. The structural and thermodynamic data suggest that hydrogen bonds between Lys9 and bases adjacent to the GTTGCA motif contribute to transcriptional regulation by fine-tuning the affinity of PutA for put control operators. PMID:18586269

  10. Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L.

    PubMed

    Xu, Jin; Yin, HengXia; Li, Xia

    2009-02-01

    Solanum nigrum is a newly discovered Cd-hyperaccumulator. In the present study, the protective effects of proline against cadmium toxicity of callus and regenerated shoots of S. nigrum are investigated based on a high frequency in vitro shoot regeneration system. Proline pretreatment reduces the reactive oxygen species levels and protects the plasma membrane integrity of callus under cadmium stress, and therefore improves the cadmium tolerance in S. nigrum. Inductively coupled plasma mass spectroscopy analysis shows that exogenous proline increases the cadmium accumulation in callus and regenerated shoots of S. nigrum. Further analysis indicates that the improvement of cadmium tolerance caused by proline pretreatment is correlated with an increase of superoxide dismutase and catalase activity and intracellular total glutathione content. The interaction between proline and enzymic or non-enzymic antioxidants is discussed. PMID:19043719

  11. Elimination of self-association as the source of the thermodynamic nonideality in aqueous proline solutions.

    PubMed

    Jones, G P; Paleg, L G; Winzor, D J

    1994-09-28

    The effect of high concentrations of proline on the diffusion coefficient of water has been examined to assess the extent to which the resulting thermodynamic nonideality could be explained on the statistical-mechanical basis of excluded volume. In fact, such a space-filling role not only accounts for the proline concentration-dependence of the diffusion coefficient of water but it also accounts for the nonideality of proline in freezing point depression and isopiestic measurements. These findings refute the conclusion (Schobert, B. and Tschesche, H. (1978) Biochim. Biophys. Acta 541, 270-277) that the stabilization of enzyme structure by high concentrations of proline stems from self-association of the imino acid via intermolecular hydrogen bonding; and thereby support the concept that the protective effect of proline on enzyme stability must reside mainly in its action as an inert, space-filling solute. PMID:7918580

  12. Evaluation of potential cationic probes for the detection of proline and betaine.

    PubMed

    Kalsoom, Umme; Breadmore, Michael C; Guijt, Rosanne M; Boyce, Mary C

    2014-12-01

    Osmoregulants are the substances that help plants to tolerate environmental extremes such as salinity and drought. Proline and betaine are two of the most commonly studied osmoregulants. An indirect UV CE method has been developed for simultaneous determination of these osmoregulants. A variety of reported probes and compounds were examined as potential probes for the indirect detection of proline and betaine. Mobility and UV-absorption properties highlighted sulfanilamide as a potential probe for indirect analysis of proline and betaine. Using 5 mM sulfanilamide at pH 2.2 with UV detection at 254 nm, proline and betaine were separated in less than 15 min. The LODs for proline and betaine were 11.6 and 28.3 μM, respectively. The developed method was successfully applied to quantification of these two osmoregulants in spinach and beetroot samples.

  13. Solvent and conformation dependence of amide I vibrations in peptides and proteins containing proline

    NASA Astrophysics Data System (ADS)

    Roy, Santanu; Lessing, Joshua; Meisl, Georg; Ganim, Ziad; Tokmakoff, Andrei; Knoester, Jasper; Jansen, Thomas L. C.

    2011-12-01

    We present a mixed quantum-classical model for studying the amide I vibrational dynamics (predominantly CO stretching) in peptides and proteins containing proline. There are existing models developed for determining frequencies of and couplings between the secondary amide units. However, these are not applicable to proline because this amino acid has a tertiary amide unit. Therefore, a new parametrization is required for infrared-spectroscopic studies of proteins that contain proline, such as collagen, the most abundant protein in humans and animals. Here, we construct the electrostatic and dihedral maps accounting for solvent and conformation effects on frequency and coupling for the proline unit. We examine the quality and the applicability of these maps by carrying out spectral simulations of a number of peptides with proline in D2O and compare with experimental observations.

  14. Prediction and Biochemical Demonstration of a Catabolic Pathway for the Osmoprotectant Proline Betaine

    PubMed Central

    Kumar, Ritesh; Zhao, Suwen; Vetting, Matthew W.; Wood, B. McKay; Sakai, Ayano; Cho, Kyuil; Solbiati, José; Almo, Steven C.; Sweedler, Jonathan V.; Jacobson, Matthew P.; Gerlt, John A.; Cronan, John E.

    2014-01-01

    ABSTRACT Through the use of genetic, enzymatic, metabolomic, and structural analyses, we have discovered the catabolic pathway for proline betaine, an osmoprotectant, in Paracoccus denitrificans and Rhodobacter sphaeroides. Genetic and enzymatic analyses showed that several of the key enzymes of the hydroxyproline betaine degradation pathway also function in proline betaine degradation. Metabolomic analyses detected each of the metabolic intermediates of the pathway. The proline betaine catabolic pathway was repressed by osmotic stress and cold stress, and a regulatory transcription factor was identified. We also report crystal structure complexes of the P. denitrificans HpbD hydroxyproline betaine epimerase/proline betaine racemase with l-proline betaine and cis-hydroxyproline betaine. PMID:24520058

  15. Environmental Stress Affects DNA Methylation of a CpG Rich Promoter Region of Serotonin Transporter Gene in a Nurse Cohort

    PubMed Central

    Alasaari, Jukka S.; Lagus, Markus; Ollila, Hanna M.; Toivola, Auli; Kivimäki, Mika; Vahtera, Jussi; Kronholm, Erkki; Härmä, Mikko; Puttonen, Sampsa; Paunio, Tiina

    2012-01-01

    Background Shift-working nurses are exposed to a stressful work environment, which puts them at an increased risk for burnout and depression. We explored the effect of environmental stress on serotonin transporter gene (SLC6A4) promoter methylation among nurses from high and low work stress environments. Methodology Using bisulfite sequencing, we investigated the methylation status of five CpG residues of a CpG-rich region in the promoter of SLC6A4 by comparing female shift working nurses from a high work stress environment (n = 24) to low work stress environment (n = 25). We also analyzed the association of 5-HTTLPR polymorphism at 5′ end of SLC6A4. Work stress was assessed by the Karasek’s Model and possible signs of burnout or depression were measured by the Maslach Burnout Index General Survey and Beck Depression Index. Methylation levels were assessed by bisulfite sequencing of DNA extracted from peripheral blood leucocytes. Restriction enzyme treatment followed by standard PCR was used to identify 5-HTTLPR genotypes. Principal Findings We found that nurses in the high stress environment had significantly lower promoter methylation levels at all five CpG residues compared to nurses in the low stress environment (p<0.01). There was no significant interaction of 5-HTTLPR genotype and work stress with methylation (p = 0.58). In unadjusted (bivariate) analysis, burnout was not significantly associated to methylation levels. However, when mutually adjusted for both, burnout and work stress were significant contributors (p = 0.038 and p<0.0001 respectively) to methylation levels. Conclusions Our findings show that environmental stress is concurrent with decreased methylation of the SLC6A4 promoter. This may lead to increased transcriptional activity of the gene, increased reuptake of serotonin from synaptic clefts, and termination of the activity of serotonin. This could present a possible coping mechanism for environmental stress in humans that

  16. The central leucine-rich repeat region of chicken TLR16 dictates unique ligand specificity and species-specific interaction with TLR2.

    PubMed

    Keestra, A Marijke; de Zoete, Marcel R; van Aubel, Rémon A M H; van Putten, Jos P M

    2007-06-01

    The ligand specificity of human TLR (hTLR) 2 is determined through the formation of functional heterodimers with either hTLR1 or hTLR6. The chicken carries two TLR (chTLR) 2 isoforms, type 1 and type 2 (chTLR2t1 and chTLR2t2), and one putative TLR1/6/10 homologue (chTLR16) of unknown function. In this study, we report that transfection of HeLa cells with the various chicken receptors yields potent NF-kappaB activation for the receptor combination of chTLR2t2 and chTLR16 only. The sensitivity of this complex was strongly enhanced by human CD14. The functional chTLR16/chTLR2t2 complex responded toward both the hTLR2/6-specific diacylated peptide S-(2,3-bispalmitoyloxypropyl)-Cys-Gly-Asp-Pro-Lys-His-Pro-Lys-Ser-Phe (FSL-1) and the hTLR2/1 specific triacylated peptide tripalmitoyl-S-(bis(palmitoyloxy)propyl)-Cys-Ser-(Lys)(3)-Lys (Pam(3)CSK(4)), indicating that chTLR16 covers the functions of both mammalian TLR1 and TLR6. Dissection of the species specificity of TLR2 and its coreceptors showed functional chTLR16 complex formation with chTLR2t2 but not hTLR2. Conversely, chTLR2t2 did not function in combination with hTLR1 or hTLR6. The use of constructed chimeric receptors in which the defined domains of chTLR16 and hTLR1 or hTLR6 had been exchanged revealed that the transfer of leucine-rich repeats (LRR) 6-16 of chTLR16 into hTLR6 was sufficient to confer dual ligand specificity to the human receptor and to establish species-specific interaction with chTLR2t2. Collectively, our data indicate that diversification of the central LRR region of the TLR2 coreceptors during evolution has put constraints on both their ligand specificity and their ability to form functional complexes with TLR2. PMID:17513760

  17. The effects of threonine phosphorylation on the stability and dynamics of the central molecular switch region of 18.5-kDa myelin basic protein.

    PubMed

    Vassall, Kenrick A; Bessonov, Kyrylo; De Avila, Miguel; Polverini, Eugenia; Harauz, George

    2013-01-01

    The classic isoforms of myelin basic protein (MBP) are essential for the formation and maintenance of myelin in the central nervous system of higher vertebrates. The protein is involved in all facets of the development, compaction, and stabilization of the multilamellar myelin sheath, and also interacts with cytoskeletal and signaling proteins. The predominant 18.5-kDa isoform of MBP is an intrinsically-disordered protein that is a candidate auto-antigen in the human demyelinating disease multiple sclerosis. A highly-conserved central segment within classic MBP consists of a proline-rich region (murine 18.5-kDa sequence -T92-P93-R94-T95-P96-P97-P98-S99-) containing a putative SH3-ligand, adjacent to a region that forms an amphipathic α-helix (P82-I90) upon interaction with membranes, or under membrane-mimetic conditions. The T92 and T95 residues within the proline-rich region can be post-translationally modified through phosphorylation by mitogen-activated protein (MAP) kinases. Here, we have investigated the structure of the α-helical and proline-rich regions in dilute aqueous buffer, and have evaluated the effects of phosphorylation at T92 and T95 on the stability and dynamics of the α-helical region, by utilizing four 36-residue peptides (S72-S107) with differing phosphorylation status. Nuclear magnetic resonance spectroscopy reveals that both the α-helical as well as the proline-rich regions are disordered in aqueous buffer, whereas they are both structured in a lipid environment (cf., Ahmed et al., Biochemistry 51, 7475-9487, 2012). Thermodynamic analysis of trifluoroethanol-titration curves monitored by circular dichroism spectroscopy reveals that phosphorylation, especially at residue T92, impedes formation of the amphipathic α-helix. This conclusion is supported by molecular dynamics simulations, which further illustrate that phosphorylation reduces the folding reversibility of the α-helix upon temperature perturbation and affect the global structure

  18. Synthesis, Release, and Recapture of Compatible Solute Proline by Osmotically Stressed Bacillus subtilis Cells

    PubMed Central

    Hoffmann, Tamara; von Blohn, Carsten; Stanek, Agnieszka; Moses, Susanne; Barzantny, Helena

    2012-01-01

    Bacillus subtilis synthesizes large amounts of the compatible solute proline as a cellular defense against high osmolarity to ensure a physiologically appropriate level of hydration of the cytoplasm and turgor. It also imports proline for this purpose via the osmotically inducible OpuE transport system. Unexpectedly, an opuE mutant was at a strong growth disadvantage in high-salinity minimal media lacking proline. Appreciable amounts of proline were detected in the culture supernatant of the opuE mutant strain, and they rose concomitantly with increases in the external salinity. We found that the intracellular proline pool of severely salinity-stressed cells of the opuE mutant was considerably lower than that of its opuE+ parent strain. This loss of proline into the medium and the resulting decrease in the intracellular proline content provide a rational explanation for the observed salt-sensitive growth phenotype of cells lacking OpuE. None of the known MscL- and MscS-type mechanosensitive channels of B. subtilis participated in the release of proline under permanently imposed high-salinity growth conditions. The data reported here show that the OpuE transporter not only possesses the previously reported role for the scavenging of exogenously provided proline as an osmoprotectant but also functions as a physiologically highly important recapturing device for proline that is synthesized de novo and subsequently released by salt-stressed B. subtilis cells. The wider implications of our findings for the retention of compatible solutes by osmotically challenged microorganisms and the roles of uptake systems for compatible solutes are considered. PMID:22685134

  19. Effect of l-Proline on Sake Brewing and Ethanol Stress in Saccharomyces cerevisiae

    PubMed Central

    Takagi, Hiroshi; Takaoka, Miki; Kawaguchi, Akari; Kubo, Yoshito

    2005-01-01

    During the fermentation of sake, cells of Saccharomyces cerevisiae are exposed to high concentrations of ethanol, thereby damaging the cell membrane and functional proteins. l-Proline protects yeast cells from damage caused by freezing or oxidative stress. In this study, we evaluated the role of intracellular l-proline in cells of S. cerevisiae grown under ethanol stress. An l-proline-accumulating laboratory strain carries a mutant allele of PRO1, pro1D154N, which encodes the Asp154Asn mutant γ-glutamyl kinase. This mutation increases the activity of γ-glutamyl kinase and γ-glutamyl phosphate reductase, which catalyze the first two steps of l-proline synthesis and which together may form a complex in vivo. When cultured in liquid medium in the presence of 9% and 18% ethanol under static conditions, the cell viability of the l-proline-accumulating laboratory strain is greater than the cell viability of the parent strain. This result suggests that intracellular accumulation of l-proline may confer tolerance to ethanol stress. We constructed a novel sake yeast strain by disrupting the PUT1 gene, which is required for l-proline utilization, and replacing the wild-type PRO1 allele with the pro1D154N allele. The resultant strain accumulated l-proline and was more tolerant to ethanol stress than was the control strain. We used the strain that could accumulate l-proline to brew sake containing five times more l-proline than what is found in sake brewed with the control strain, without affecting the fermentation profiles. PMID:16332860

  20. Ehrlichia chaffeensis Proliferation Begins with NtrY/NtrX and PutA/GlnA Upregulation and CtrA Degradation Induced by Proline and Glutamine Uptake

    PubMed Central

    Cheng, Zhihui; Lin, Mingqun

    2014-01-01

    ABSTRACT How the obligatory intracellular bacterium Ehrlichia chaffeensis begins to replicate upon entry into human monocytes is poorly understood. Here, we examined the potential role of amino acids in initiating intracellular replication. PutA converts proline to glutamate, and GlnA converts glutamate to glutamine. E. chaffeensis PutA and GlnA complemented Escherichia coli putA and glnA mutants. Methionine sulfoximine, a glutamine synthetase inhibitor, inhibited E. chaffeensis GlnA activity and E. chaffeensis infection of human cells. Incubation of E. chaffeensis with human cells rapidly induced putA and glnA expression that peaked at 24 h postincubation. E. chaffeensis took up proline and glutamine but not glutamate. Pretreatment of E. chaffeensis with a proline transporter inhibitor (protamine), a glutamine transporter inhibitor (histidine), or proline analogs inhibited E. chaffeensis infection, whereas pretreatment with proline or glutamine enhanced infection and upregulated putA and glnA faster than no treatment or glutamate pretreatment. The temporal response of putA and glnA expression was similar to that of NtrY and NtrX, a two-component system, and electrophoretic mobility shift assays showed specific binding of recombinant E. chaffeensis NtrX (rNtrX) to the promoter regions of E. chaffeensis putA and glnA. Furthermore, rNtrX transactivated E. chaffeensis putA and glnA promoter-lacZ fusions in E. coli. Growth-promoting activities of proline and glutamine were also accompanied by rapid degradation of the DNA-binding protein CtrA. Our results suggest that proline and glutamine uptake regulates putA and glnA expression through NtrY/NtrX and facilitates degradation of CtrA to initiate a new cycle of E. chaffeensis growth. PMID:25425236

  1. Use of Cis-[18F]Fluoro-Proline for Assessment of Exercise-Related Collagen Synthesis in Musculoskeletal Connective Tissue

    PubMed Central

    Skovgaard, Dorthe; Kjaer, Andreas; Heinemeier, Katja Maria; Brandt-Larsen, Malene; Madsen, Jacob; Kjaer, Michael

    2011-01-01

    Protein turnover in collagen rich tissue is influenced by exercise, but can only with difficulty be studied in vivo due to use of invasive procedure. The present study was done to investigate the possibility of applying the PET-tracer, cis-[18F]fluoro-proline (cis-Fpro), for non-invasive assessment of collagen synthesis in rat musculoskeletal tissues at rest and following short-term (3 days) treadmill running. Musculoskeletal collagen synthesis was studied in rats at rest and 24 h post-exercise. At each session, rats were PET scanned at two time points following injection of cis-FPro: (60 and 240 min p.i). SUV were calculated for Achilles tendon, calf muscle and tibial bone. The PET-derived results were compared to mRNA expression of collagen type I and III. Tibial bone had the highest SUV that increased significantly (p<0.001) from the early (60 min) to the late (240 min) PET scan, while SUV in tendon and muscle decreased (p<0.001). Exercise had no influence on SUV, which was contradicted by an increased gene expression of collagen type I and III in muscle and tendon. The clearly, visible uptake of cis-Fpro in the collagen-rich musculoskeletal tissues is promising for multi-tissue studies in vivo. The tissue-specific differences with the highest basal uptake in bone are in accordance with earlier studies relying on tissue incorporation of isotopic-labelled proline. A possible explanation of the failure to demonstrate enhanced collagen synthesis following exercise, despite augmented collagen type I and III transcription, is that SUV calculations are not sensitive enough to detect minor changes in collagen synthesis. Further studies including kinetic compartment modeling must be performed to establish whether cis-Fpro can be used for non-invasive in-vivo assessment of exercise-induced changes in musculoskeletal collagen synthesis. PMID:21347251

  2. Functional genomics and SNP analysis of human genes encoding proline metabolic enzymes

    PubMed Central

    Williams, D. Bart; Zhaorigetu, Siqin; Khalil, Shadi; Wan, Guanghua; Valle, David

    2009-01-01

    Proline metabolism in mammals involves two other amino acids, glutamate and ornithine, and five enzymatic activities, Δ1-pyrroline-5-carboxylate (P5C) reductase (P5CR), proline oxidase, P5C dehydrogenase, P5C synthase and ornithine-δ-aminotransferase (OAT). With the exception of OAT, which catalyzes a reversible reaction, the other 4 enzymes are unidirectional, suggesting that proline metabolism is purpose-driven, tightly regulated, and compartmentalized. In addition, this tri-amino-acid system also links with three other pivotal metabolic systems, namely the TCA cycle, urea cycle, and pentose phosphate pathway. Abnormalities in proline metabolism are relevant in several diseases: six monogenic inborn errors involving metabolism and/or transport of proline and its immediate metabolites have been described. Recent advances in the Human Genome Project, in silico database mining techniques, and research in dissecting the molecular basis of proline metabolism prompted us to utilize functional genomic approaches to analyze human genes which encode proline metabolic enzymes in the context of gene structure, regulation of gene expression, mRNA variants, protein isoforms, and single nucleotide polymorphisms. PMID:18506409

  3. Effect of water stress on proline accumulation of genetically modified potatoes (Solanum tuberosum L.) generating fructans.

    PubMed

    Knipp, Gabriele; Honermeier, Bernd

    2006-03-01

    This study aimed to investigate the effect of water stress on the accumulation of proline in the leaves of transgenic potato lines generating fructans. The results of the series of bifactorial experiments in 2002 and 2003 indicated an increase of the proline level in leaves of all potato lines examined under water deficit. In addition, an increase in proline concentration during plant development was observed. The proline content was related to leaf water potential and relative water content (RWC), which indicates that proline could be involved in osmoregulation of potato plants under the experimental conditions. Surprisingly, under water deficit, the proline level was lowest in most of the transgenic SST/FFT-lines, which generate fructan molecules with a high degree of polymerization. Therefore, a pleiotropic effect can not be excluded as the reason for the divergence in behavior of these transgenic lines. The present results suggest that the modification of carbohydrate metabolism, especially the high content of soluble carbohydrates, may affect water stress-induced proline accumulation.

  4. Proline transport and osmotic stress response in Escherichia coli K-12.

    PubMed Central

    Grothe, S; Krogsrud, R L; McClellan, D J; Milner, J L; Wood, J M

    1986-01-01

    Proline is accumulated in Escherichia coli via two active transport systems, proline porter I (PPI) and PPII. In our experiments, PPI was insensitive to catabolite repression and was reduced in activity twofold when bacteria were subjected to amino acid-limited growth. PPII, which has a lower affinity for proline than PPI, was induced by tryptophan-limited growth. PPII activity was elevated in bacteria that were subjected to osmotic stress during growth or the transport measurement. Neither PPI nor uptake of serine or glutamine was affected by osmotic stress. Mutation proU205, which was similar in genetic map location and phenotype to other proU mutations isolated in E. coli and Salmonella typhimurium, influenced the sensitivity of the bacteria to the toxic proline analogs azetidine-2-carboxylate and 3,4-dehydroproline, the proline requirements of auxotrophs, and the osmoprotective effect of proline. This mutation did not influence proline uptake via PPI or PPII. A very low uptake activity (6% of the PPII activity) observed in osmotically stressed bacteria lacking PPI and PPII was not observed when the proU205 lesion was introduced. PMID:3514577

  5. Mercury'S Radar Bright Region C: Mg-rich Orthopyroxene And Olivine, K-spar, Iron-free Tio2, Ca- And Mg-garnet Indicate Possible Deep Crust Or Mantle Rock Exposures

    NASA Astrophysics Data System (ADS)

    Kozlowski, Richard W.; Donaldson Hanna, K. L.; Sprague, A. L.; Helbert, J.; Maturilli, A.

    2008-09-01

    We identify mineral phases and approximate abundances on Mercury's surface for a large (600 by 600 km) region at and around radar bright region C (Harmon, 1997, Adv. Space Res.). Our results are obtained by fitting spectra obtained with the Mid-Infrared Spectrometer and Imager (MIRSI) at the Infrared Telescope Facility (IRTF) using an established spectral deconvolution algorithm (Ramsey 1996, Ph.D. Dissertation, ASU; Ramsey and Christiansen 1998, JGR). We have assembled several laboratory mineral spectral libraries (JHU, Salisbury et al. 1987, Open-File Report 87-263, USGS; JPL, http://speclib.jpl.nasa.gov; RELAB, http://www.planetary.brown.edu/relab; ASU, Christensen et al. 2000, JGR; BED, Helbert et al. 2007, Adv. Space Res.; USGS, Clark et al. 2007, USGS digital spectral library) with a wide range of known mineral compositions with grain sizes ranging from the finest separates, 0 - 45 µm, incrementally increasing to 250 - 400 µm. For the region 110° to 130° E longitude and 0° to 20° N latitude we find enstatite and Mg-rich hypersthene, K-spar (either sanidine or orthoclase), intermediate plagioclase compositions, Mg-rich olivine, an iron-free opaque phase of either (TiO2) or perovskite (CaTiO3). Small abundances of Mg- and Ca- rich garnet are also apparently present. These minerals are indicative of possible excavated upper mantle material that may be causing the high radar backscatter at this location. This work was funded by NSF AST0406796.

  6. Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana.

    PubMed

    Leprince, Anne-Sophie; Magalhaes, Nelly; De Vos, Delphine; Bordenave, Marianne; Crilat, Emilie; Clément, Gilles; Meyer, Christian; Munnik, Teun; Savouré, Arnould

    2014-01-01

    Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signaling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K), VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P) from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 (P5CS1) biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1), a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose.

  7. Proline Dehydrogenase Regulates Redox State and Respiratory Metabolism in Trypanosoma cruzi

    PubMed Central

    Paes, Lisvane Silva; Suárez Mantilla, Brian; Zimbres, Flávia Menezes; Pral, Elisabeth Mieko Furusho; Diogo de Melo, Patrícia; Tahara, Erich B.; Kowaltowski, Alicia J.; Elias, Maria Carolina; Silber, Ariel Mariano

    2013-01-01

    Over the past three decades, L-proline has become recognized as an important metabolite for trypanosomatids. It is involved in a number of key processes, including energy metabolism, resistance to oxidative and nutritional stress and osmoregulation. In addition, this amino acid supports critical parasite life cycle processes by acting as an energy source, thus enabling host-cell invasion by the parasite and subsequent parasite differentiation. In this paper, we demonstrate that L-proline is oxidized to Δ1-pyrroline-5-carboxylate (P5C) by the enzyme proline dehydrogenase (TcPRODH, E.C. 1.5.99.8) localized in Trypanosoma cruzi mitochondria. When expressed in its active form in Escherichia coli, TcPRODH exhibits a Km of 16.58±1.69 µM and a Vmax of 66±2 nmol/min mg. Furthermore, we demonstrate that TcPRODH is a FAD-dependent dimeric state protein. TcPRODH mRNA and protein expression are strongly upregulated in the intracellular epimastigote, a stage which requires an external supply of proline. In addition, when Saccharomyces cerevisiae null mutants for this gene (PUT1) were complemented with the TcPRODH gene, diminished free intracellular proline levels and an enhanced sensitivity to oxidative stress in comparison to the null mutant were observed, supporting the hypothesis that free proline accumulation constitutes a defense against oxidative imbalance. Finally, we show that proline oxidation increases cytochrome c oxidase activity in mitochondrial vesicles. Overall, these results demonstrate that TcPRODH is involved in proline-dependant cytoprotection during periods of oxidative imbalance and also shed light on the participation of proline in energy metabolism, which drives critical processes of the T. cruzi life cycle. PMID:23894476

  8. Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana

    PubMed Central

    Leprince, Anne-Sophie; Magalhaes, Nelly; De Vos, Delphine; Bordenave, Marianne; Crilat, Emilie; Clément, Gilles; Meyer, Christian; Munnik, Teun; Savouré, Arnould

    2015-01-01

    Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signaling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K), VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P) from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 (P5CS1) biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1), a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose. PMID:25628629

  9. Identification of a PutP proline permease gene homolog from Staphylococcus aureus by expression cloning of the high-affinity proline transport system in Escherichia coli.

    PubMed Central

    Wengender, P A; Miller, K J

    1995-01-01

    The important food-borne pathogen Staphylococcus aureus is distinguished by its ability to grow at low water activity values. Previous work in our laboratory and by others has revealed that proline accumulation via transport is an important osmoregulatory strategy employed by this bacterium. Furthermore, proline uptake by this bacterium has been shown to be mediated by two distinct transport systems: a high-affinity system and a low-affinity system (J.-H. Bae, and K. J. Miller, Appl. Environ. Microbiol. 58:471-475, 1992; D. E. Townsend and B. J. Wilkinson, J. Bacteriol. 174:2702-2710, 1992). In the present study, we report the cloning of the high-affinity proline transport system of S. aureus by functional expression in an Escherichia coli host. The sequence of the staphylococcal proline permease gene was predicted to encode a protein of 497 amino acids which shares 49% identity with the PutP high-affinity proline permease of E. coli. Analysis of hydropathy also indicated a common overall structure for these proteins. PMID:7887605

  10. Response of two mustard (Brassica juncea L.) cultivars differing in photosynthetic capacity subjected to proline.

    PubMed

    Wani, Arif Shafi; Irfan, Mohammad; Hayat, Shamsul; Ahmad, Aqil

    2012-01-01

    The present paper deals with the effect of exogenous application of proline as a shotgun approach on growth, photosynthesis, and antioxidative system in 25-day-old plants of two different cultivars of Brassica juncea L. (Varuna and RH-30) under natural conditions. Exogenous application of proline significantly increased plant growth, photosynthetic rate, and the activities of antioxidant enzymes, compared with untreated seedlings. Pre-sowing seed soaking in 20 mM proline, for 8 h, proved best among all the other concentrations used. PMID:21318454

  11. Self-cloning baker's yeasts that accumulate proline enhance freeze tolerance in doughs.

    PubMed

    Kaino, Tomohiro; Tateiwa, Tetsuya; Mizukami-Murata, Satomi; Shima, Jun; Takagi, Hiroshi

    2008-09-01

    We constructed self-cloning diploid baker's yeast strains by disrupting PUT1, encoding proline oxidase, and replacing the wild-type PRO1, encoding gamma-glutamyl kinase, with a pro1(D154N) or pro1(I150T) allele. The resultant strains accumulated intracellular proline and retained higher-level fermentation abilities in the frozen doughs than the wild-type strain. These results suggest that proline-accumulating baker's yeast is suitable for frozen-dough baking. PMID:18641164

  12. Proline-based Phosphoramidite Reagents for the Reductive Ligation of S-Nitrosothiols

    PubMed Central

    Xian, Ming

    2015-01-01

    S-Nitrosothiols have many biological implications but are rarely used in organic synthesis. In this work we report the development of proline-based phosphoramidite substrates that can effectively convert S-nitrosothiols to proline-based sulfenamides through a reductive ligation process. A unique property of this method is that the phosphine oxide moiety on the ligation products can be readily removed under acidic conditions. In conjugation with the facile preparation of S-nitrosothiols (RSNO) from the corresponding thiols (RSH), this method provides a new way to prepare proline-based sulfenamides from simple thiol starting materials. PMID:26758493

  13. Diastereoselective Synthesis of 5-Heteroaryl-Substituted Prolines Useful for Controlling Peptide-Bond Geometry.

    PubMed

    Ali, Rafat; Singh, Gajendra; Singh, Shalini; Ampapathi, Ravi Sankar; Haq, Wahajul

    2016-06-17

    A versatile diastereoselective Friedel-Crafts alkylation reaction of heteroaryl systems with a cyclic enecarbamate for the preparation of 5-heteroaryl-substituted proline analogues in good yields has been developed. These heterocyclic tethered cyclic amino acid building blocks constitute important structural motifs in many biologically active molecules. The impact of the substitution on proline cis/trans isomerization was explored by carrying out solution conformational studies by NMR on 5-furanyl-substituted proline-containing peptides. Conformational analysis revealed that the peptide bond is constrained in an exclusively trans conformation. PMID:27228427

  14. The influence of lactation on L-proline absorption from small intestine in the albino rat.

    PubMed

    Datta, U; Sharma, R K

    1985-01-01

    Intestinal absorption of L-proline was studied in control and lactating rats from jejunum and ileum by in vivo method and presented per unit dry weight and per unit length of the respective segment. L-proline absorption was found to be significantly reduced in lactating animals as compared to the virgin controls. The results were discussed in light of serosal to mucosal ratio. By in vitro method also jejunal and ileal uptake of L-proline were found to be significantly reduced in lactating animals as compared to the virgin controls.

  15. Identification of highly deformed even-even nuclei in the neutron- and proton-rich regions of the nuclear chart from the B(E2)↑ and E2 predictions in the generalized differential equation model

    NASA Astrophysics Data System (ADS)

    Nayak, R. C.; Pattnaik, S.

    2015-11-01

    We identify here the possible occurrence of large deformations in the neutron- and proton-rich (n-rich and p-rich) regions of the nuclear chart from extensive predictions of the values of the reduced quadrupole transition probability B(E2)↑ for the transition from the ground state to the first 2+ state and the corresponding excitation energy E2 of even-even nuclei in the recently developed generalized differential equation (GDE) model exclusively meant for these physical quantities. This is made possible from our analysis of the predicted values of these two physical quantities and the corresponding deformation parameters derived from them such as the quadrupole deformation β2, the ratio of β2 to the Weisskopf single-particle β2(sp) and the intrinsic electric quadrupole moment Q0, calculated for a large number of both known as well as hitherto unknown even-even isotopes of oxygen to fermium (0 to FM; Z = 8-100). Our critical analysis of the resulting data convincingly support possible existence of large collectivity for the nuclides 30,32Ne,34Mg, 60Ti, 42,62,64Cr,50,68Fe, 52,72Ni, 72,70,96Kr,74,76Sr,78,80,106,108Zr, 82,84,110,112Mo, 140Te,144Xe, 148Ba,122Ce, 128,156Nd,130,132,158,160Sm and 138,162,164,166Gd, whose values of β2 are found to exceed 0.3 and even 0.4 in some cases. Our findings of large deformations in the exotic n-rich regions support the existence of another “island of inversion” in the heavy-mass region possibly caused by breaking of the N = 70 subshell closure.

  16. A third L-proline permease in Salmonella typhimurium which functions in media of elevated osmotic strength.

    PubMed Central

    Csonka, L N

    1982-01-01

    Exogenous proline specifically stimulates the growth rate of enteric bacteria in media of inhibitory osmotic strength (J. H. B. Christian, Aust. J. Biol. Sci. 8:490-497, 1955). I observed that Salmonella typhimurium mutants which lack both of the previously known proline permeases (putP proP) are stimulated by proline in media of inhibitory osmolarity. I propose that there is a third proline permease which functions only in media of elevated osmolarity. This conclusion is based on the observations that, in media of elevated osmolarity, (i) the sensitivity of putP proP mutants to toxic proline analogs increases, (ii) proline requirements for maximal growth of proline auxotrophic putP proP mutants decreases, and (iii) the specific rate of incorporation of radioactive proline into protein of growing cells increases. I obtained a Tn10-induced mutation in a gene (proU) required for the functioning of the third proline permease and determined the map location to be at 59 map units of the chromosome, between srlA and tct, 66% linked to nalB in P22 transduction. My results suggest that the function of the third, osmotically stimulated permease might be to accumulate high intracellular proline levels during osmotic stress. Possible mechanisms by which proline might cause growth stimulation are discussed. PMID:7050090

  17. Adaptation of an L-Proline Adenylation Domain to Use 4-Propyl-L-Proline in the Evolution of Lincosamide Biosynthesis

    PubMed Central

    Kadlčík, Stanislav; Kučera, Tomáš; Chalupská, Dominika; Gažák, Radek; Koběrská, Markéta; Ulanová, Dana; Kopecký, Jan; Kutejová, Eva; Najmanová, Lucie; Janata, Jiří

    2013-01-01

    Clinically used lincosamide antibiotic lincomycin incorporates in its structure 4-propyl-L-proline (PPL), an unusual amino acid, while celesticetin, a less efficient related compound, makes use of proteinogenic L-proline. Biochemical characterization, as well as phylogenetic analysis and homology modelling combined with the molecular dynamics simulation were employed for complex comparative analysis of the orthologous protein pair LmbC and CcbC from the biosynthesis of lincomycin and celesticetin, respectively. The analysis proved the compared proteins to be the stand-alone adenylation domains strictly preferring their own natural substrate, PPL or L-proline. The LmbC substrate binding pocket is adapted to accomodate a rare PPL precursor. When compared with L-proline specific ones, several large amino acid residues were replaced by smaller ones opening a channel which allowed the alkyl side chain of PPL to be accommodated. One of the most important differences, that of the residue corresponding to V306 in CcbC changing to G308 in LmbC, was investigated in vitro and in silico. Moreover, the substrate binding pocket rearrangement also allowed LmbC to effectively adenylate 4-butyl-L-proline and 4-pentyl-L-proline, substrates with even longer alkyl side chains, producing more potent lincosamides. A shift of LmbC substrate specificity appears to be an integral part of biosynthetic pathway adaptation to the PPL acquisition. A set of genes presumably coding for the PPL biosynthesis is present in the lincomycin - but not in the celesticetin cluster; their homologs are found in biosynthetic clusters of some pyrrolobenzodiazepines (PBD) and hormaomycin. Whereas in the PBD and hormaomycin pathways the arising precursors are condensed to another amino acid moiety, the LmbC protein is the first functionally proved part of a unique condensation enzyme connecting PPL to the specialized amino sugar building unit. PMID:24386435

  18. Structure of the Proline Utilization A Proline Dehydrogenase Domain Inactivated by N-propargylglycine Provides Insight into Conformational Changes Induced by Substrate Binding and Flavin Reduction†,‡

    PubMed Central

    Srivastava, Dhiraj; Zhu, Weidong; Johnson, William H.; Whitman, Christian P.; Becker, Donald F.; Tanner, John J.

    2013-01-01

    Proline utilization A (PutA) from Escherichia coli is a flavoprotein that has mutually exclusive roles as a transcriptional repressor of the put regulon and a membrane-associated enzyme that catalyzes the oxidation of proline to glutamate. Previous studies have shown that the binding of proline in the proline dehydrogenase (PRODH) active site and subsequent reduction of the FAD trigger global conformational changes that enhance PutA-membrane affinity. These events cause PutA to switch from its repressor to enzymatic role, but the mechanism by which this signal is propagated from the active site to the distal membrane-binding domain is largely unknown. Here, it is shown that N-propargylglycine irreversibly inactivates PutA by covalently linking the flavin N(5) atom to the ε-amino of Lys329. Furthermore, inactivation locks PutA into a conformation that may mimic the proline reduced, membrane-associated form. The 2.15 Å resolution structure of the inactivated PRODH domain suggests that the initial events involved in broadcasting the reduced flavin state to the distal membrane binding domain include major reorganization of the flavin ribityl chain, severe (35 degree) butterfly bending of the isoalloxazine ring, and disruption of an electrostatic network involving the flavin N(5), Arg431, and Asp370. The structure also provides information about conformational changes associated with substrate binding. This analysis suggests that the active site is incompletely assembled in the absence of the substrate, and the binding of proline draws together conserved residues in helix 8 and the β1-αl loop to complete the active site. PMID:19994913

  19. The thermodynamic activity of proline in ternary solutions of different water potentials.

    PubMed

    Pahlich, E; Stadermann, T

    1984-06-01

    The particular colligative properties of proline caused us to investigate the thermodynamic activity of this amino acid in detail. The dependence of the activity coefficients γ of proline (γ = thermodynamic activity/molality) on the pH of the solutions, the composition of the solution and the water potential has been measured. The results show that the activity coefficient of proline varies according to the solute milieu. The most pronounced alterations of the activity coefficient could be observed in polyethylene glycol solutions in contrast to KCl- and saccharose solutions where the effect was less distinct. The results described provide a basis for discussing water stress induced metabolic alterations in terms of thermodynamic entities. Changed rates of proline metabolizing sequences and changed ratios of the vacuole/extravacuole distribution of this amino acid in stressed and un-stressed plants may partially be explained by thermodynamic causes.

  20. Origins of the double asymmetric induction on proline-catalyzed aldol reactions.

    PubMed

    Calderón, Félix; Doyagüez, Elisa G; Cheong, Paul Ha-Yeon; Fernández-Mayoralas, Alfonso; Houk, K N

    2008-10-17

    Computational studies to elucidate the origin of the double asymmetric induction on proline-catalyzed aldol reaction have been performed using HF/6-31G(d) calculations. The computed transition structures explain the experimental data obtained. PMID:18811197

  1. Protein kinase A stimulates binding of multiple proteins to a U-rich domain in the 3'-untranslated region of lactate dehydrogenase A mRNA that is required for the regulation of mRNA stability.

    PubMed

    Tian, D; Huang, D; Brown, R C; Jungmann, R A

    1998-10-23

    We have explored the molecular basis of the cAMP-induced stabilization of lactate dehydrogenase A (LDH-A) mRNA and identified four cytoplasmic proteins of 96, 67, 52, and 50 kDa that specifically bind to a 30-nucleotide uridine-rich sequence in the LDH 3'-untranslated region with a predicted stem-loop structure. Mutational analysis revealed that specific protein binding is dependent upon an intact primary nucleotide sequence in the loop as well as integrity of the adjoining double-stranded stem structure, thus indicating a high degree of primary and secondary structure specificity. The critical stem-loop region is located between nucleotides 1473 and 1502 relative to the mRNA cap site and contains a previously identified cAMP-stabilizing region (CSR) required for LDH-A mRNA stability regulation by the protein kinase A pathway. The 3'-untranslated region binding activity of the proteins is up-regulated after protein kinase A activation, whereas protein dephosphorylation is associated with a loss of binding activity. These results imply a cause and effect relationship between LDH-A mRNA stabilization and CSR-phosphoprotein binding activity. We propose that the U-rich CSR is a recognition signal for CSR-binding proteins and for an mRNA processing pathway that specifically stabilizes LDH mRNA in response to activation of the protein kinase A signal transduction pathway.

  2. Proline transport by brush-border membrane vesicles of lobster antennal glands

    SciTech Connect

    Behnke, R.D.; Wong, R.K.; Huse, S.M.; Reshkin, S.J.; Ahearn, G.A. )

    1990-02-01

    Purified brush-border membrane vesicles (BBMV) of lobster antennal gland labyrinth and bladder were separately formed by a magnesium precipitation technique. L-(3H)proline uptake was stimulated by a transmembrane NaCl gradient (outside (o) greater than inside (i)) to a greater extent in BBMV from labyrinth than those from the bladder. Detailed study of the labyrinth proline-transport processes revealed a specific dependence on NaCl, with negligible stimulatory effects by NaSCN, Na-gluconate, or KCl. A transmembrane proton gradient (o greater than i) was without stimulatory effect on proline transport. A transmembrane potential difference alone, in the presence of equilibrated NaCl and L-(3H)proline, led to net influx of the labeled amino acid, suggesting that the uptake process was electrogenic and capable of bringing about the net transfer of positive charge to the vesicle interior. Although a transmembrane Na gradient alone, in the presence of equilibrated Cl and L-(3H)proline, was able to bring about the net influx of the amino acid, a transmembrane Cl gradient alone under Na- and L-(3H)proline-equilibrated conditions was not, suggesting that only the Na gradient could energize the carrier process through cotransport, while the anion served an essential activating role. Proline influx by these vesicles occurred by the combination of at least one saturable Michaelis-Menten carrier system (apparent Kt = 0.37 mM; apparent JM = 1.19 nmol.mg protein-1.10 s-1) and apparent diffusion (P = 0.33 nmol.mg protein-1.10 s-1.mM-1). Static head analysis of the transport process suggested a cotransport stoichiometry of 2 Na:1 proline with essential activation by Cl ion.

  3. Proline accumulation in lemongrass (Cymbopogon flexuosus Stapf.) due to heavy metal stress.

    PubMed

    Handique, G K; Handique, A K

    2009-03-01

    Toxic heavy metals viz. lead, mercury and cadmium induced differential accumulation of proline in lemongrass (Cymbopogon flexuosus Stapf.) grown in soil amended with 50, 100, 200, 350 and 500 mg kg(-1) of the metals have been studied. Proline accumulation was found to be metal specific, organ specific and linear dose dependant. Further, proline accumulation following short term exposure (two months after transplantation) was higher than long term exposure (nine months after transplantation). Proline accumulation following short term exposure was 2.032 to 3.839 micro moles g(-1) for cadmium (50-200 mg kg(-1)); the corresponding range for mercury was 1.968 to 5.670 micro moles g(-1) and 0.830 to 4.567 micro moles g(-1) for lead (50-500 mg kg(-1) for mercury and lead). Proline accumulation was consistently higher in young tender leaf than old leaf, irrespective of the metal or duration of exposure. For cadmium treatment proline level was 2.032 to 3.839 micro moles g(-1) for young leaves while the corresponding value for old leaf was 1.728 to 2.396 micro moles g(-1) following short term exposure. The same trend was observed for the other two metals and duration of exposure. For control set proline accumulation in root was 0.425 micro moles g(-1) as against 0.805 and 0.533 micro moles g(-1) in young and old leaves respectively indicating that proline accumulation in root are lower than leaves, under both normal and stressed condition.

  4. Inhibition of prolidase activity by nickel causes decreased growth of proline auxotrophic CHO cells.

    PubMed

    Miltyk, Wojciech; Surazynski, Arkadiusz; Kasprzak, Kazimierz S; Fivash, Matthew J; Buzard, Gregory S; Phang, James M

    2005-04-15

    Occupational exposure to nickel has been epidemiologically linked to increased cancer risk in the respiratory tract. Nickel-induced cell transformation is associated with both genotoxic and epigenetic mechanisms that are poorly understood. Prolidase [E.C.3.4.13.9] is a cytosolic Mn(II)-activated metalloproteinase that specifically hydrolyzes imidodipeptides with C-terminal proline or hydroxyproline and plays an important role in the recycling of proline for protein synthesis and cell growth. Prolidase also provides free proline as substrate for proline oxidase, whose gene is activated by p53 during apoptosis. The inhibition of prolidase activity by nickel has not yet been studied. We first showed that Ni(II) chloride specifically inhibited prolidase activity in CHO-K1 cells in situ. This interpretation was possible because CHO-K1 cells are proline auxotrophs requiring added free proline or proline released from added Gly-Pro by prolidase. In a dose-dependent fashion, Ni(II) inhibited growth on Gly-Pro but did not inhibit growth on proline, thereby showing inhibition of prolidase in situ in the absence of nonspecific toxicity. Studies using cell-free extracts showed that Ni(II) inhibited prolidase activity when present during prolidase activation with Mn(II) or during incubation with Gly-Pro. In kinetic studies, we found that Ni(II) inhibition of prolidase varied with respect to Mn(II) concentration. Analysis of these data suggested that increasing concentrations of Mn(II) stabilized the enzyme protein against Ni(II) inhibition. Because prolidase is an important enzyme in collagen metabolism, inhibition of the enzyme activity by nickel could alter the metabolism of collagen and other matrix proteins, and thereby alter cell-matrix and cell-cell interactions involved in gene expression, genomic stability, cellular differentiation, and cell proliferation. PMID:15696600

  5. Boron-rich mud volcanoes of the Black Sea region: modern analogues to ancient sea-floor tourmalinites associated with Sullivan-type Pb-Zn deposits?

    USGS Publications Warehouse

    Slack, J.F.; Turner, R.J.W.; Ware, P.L.G.

    1998-01-01

    Large submarine mud volcanoes in the abyssal part of the Black Sea south of the Crimean Peninsula are similar in many respects to synsedimentary mud volcanoes in the Mesoproterozoic Belt-Purcell basin. One of the Belt-Purcell mud volcanoes directly underlies the giant Sullivan Pb-Zn-Ag deposit in southeastern British Columbia. Footwall rocks to the Sullivan deposit comprise variably tourmalinized siltstone, conglomerate, and related fragmental rock; local thin pyrrhotite-rich and spessartine-quartz beds are interpreted as Fe and Fe-Mn exhalites, respectively. Analogous Fe- and Mn-rich sediments occur near the abyssal Black Sea mud volcanoes. Massive pyrite crusts and associated carbonate chimneys discovered in relatively shallow waters (~200 m depth) west of the Crimean Peninsula indicate an active sea-floor-hydrothermal system. Subaerial mud volcanoes on the Kerch and Taman Peninsulas (~100 km north of the abyssal mud volcanoes) contain saline thermal waters that locally have very high B contents (to 915 mg/L). These data suggest that tourmalinites might be forming in or near submarine Black Sea mud volcanoes, where potential may also exist for Sullivan-type Pb-Zn mineralization.

  6. Stereochemical Sequence Ion Selectivity: Proline versus Pipecolic-acid-containing Protonated Peptides

    NASA Astrophysics Data System (ADS)

    Abutokaikah, Maha T.; Guan, Shanshan; Bythell, Benjamin J.

    2016-10-01

    Substitution of proline by pipecolic acid, the six-membered ring congener of proline, results in vastly different tandem mass spectra. The well-known proline effect is eliminated and amide bond cleavage C-terminal to pipecolic acid dominates instead. Why do these two ostensibly similar residues produce dramatically differing spectra? Recent evidence indicates that the proton affinities of these residues are similar, so are unlikely to explain the result [Raulfs et al., J. Am. Soc. Mass Spectrom. 25, 1705-1715 (2014)]. An additional hypothesis based on increased flexibility was also advocated. Here, we provide a computational investigation of the "pipecolic acid effect," to test this and other hypotheses to determine if theory can shed additional light on this fascinating result. Our calculations provide evidence for both the increased flexibility of pipecolic-acid-containing peptides, and structural changes in the transition structures necessary to produce the sequence ions. The most striking computational finding is inversion of the stereochemistry of the transition structures leading to "proline effect"-type amide bond fragmentation between the proline/pipecolic acid-congeners: R (proline) to S (pipecolic acid). Additionally, our calculations predict substantial stabilization of the amide bond cleavage barriers for the pipecolic acid congeners by reduction in deleterious steric interactions and provide evidence for the importance of experimental energy regime in rationalizing the spectra.

  7. Quest for Cells Responsible for Age-related Increase of Salivary Glycine and Proline.

    PubMed

    Hino, Shunsuke; Nishiyama, Akira; Matsuta, Tomohiko; Horie, Norio; Shimoyama, Tetsuo; Tanaka, Shoji; Sakagami, Hiroshi

    2016-01-01

    We have previously reported that salivary glycine and proline levels are increased to nearly butanoate level in elderly people. In order to identify the source of glycine and proline, we performed high-performance liquid chromatography analysis of amino acid production to a total of seven oral cells before and after stimulation with inflammation inducers. We found that production of amino acids (per a given number of cells) by normal oral mesenchymal cells (gingival fibroblast, pulp cell, periodontal ligament fibroblast) was approximately three-fold that of oral squamous cell carcinoma cell lines (HSC-2, HSC-3, HSC-4, Ca9-22), and that production of glycine and especially proline by all these seven cells was much lower than that of glutamine and glutamic acid. Treatment of three oral mesenchymal cells with interleukin (IL)-1β or lipopoly-saccharide (LPS) reproducibly increased the production of glutamic acid and glutamine, but not that of glycine and proline. Glycine and proline only marginally stimulated the IL-8 production by IL-1β-stimulated gingival fibroblast, whereas glycine dose-dependently inhibited the nitric oxide production by lipopolysaccharide-stimulated mouse macrophage-like RAW264.7 cells. These data demonstrated that normal oral mesenchymal cells are not the major source of glycine and proline that accumulates in the saliva of aged people, suggesting the involvement of the deregulation of collagen metabolism during aging. PMID:26912818

  8. Identification of a p53-response element in the promoter of the proline oxidase gene

    SciTech Connect

    Maxwell, Steve A. Kochevar, Gerald J.

    2008-05-02

    Proline oxidase (POX) is a p53-induced proapoptotic gene. We investigated whether p53 could bind directly to the POX gene promoter. Chromatin immunoprecipitation (ChIP) assays detected p53 bound to POX upstream gene sequences. In support of the ChIP results, sequence analysis of the POX gene and its 5' flanking sequences revealed a potential p53-binding site, GGGCTTGTCTTCGTGTGACTTCTGTCT, located at 1161 base pairs (bp) upstream of the transcriptional start site. A 711-bp DNA fragment containing the candidate p53-binding site exhibited reporter gene activity that was induced by p53. In contrast, the same DNA region lacking the candidate p53-binding site did not show significant p53-response activity. Electrophoretic mobility shift assay (EMSA) in ACHN renal carcinoma cell nuclear lysates confirmed that p53 could bind to the 711-bp POX DNA fragment. We concluded from these experiments that a p53-binding site is positioned at -1161 to -1188 bp upstream of the POX transcriptional start site.

  9. A spectral line list for water isotopologues in the 1100-4100 cm-1 region for application to CO2-rich planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Gamache, Robert R.; Farese, Michaella; Renaud, Candice L.

    2016-08-01

    A line list of transitions for seven isotopologues of water vapor in the 1100-4100 wavenumber range has been constructed for application to atmospheres rich in CO2. The quantum transitions for H216O, H218O, H217O, HD16O, HD18O, and HD17O are from the 2012 HITRAN database (Rothman et al., 2013) and those for D216O are from the ab initio line list of Shirin et al. (2008). The database was constructed using the best available measured parameters and augmented with theoretical calculations. The half-width, γ, its temperature dependence, n, and the line shift, δ, are for CO2 as the colliding partner or self-collisions and are determined using the Modified Complex Robert-Bonamy (MCRB) theory. The resulting line list contains 282 557 transitions and is available, in the HITRAN 2012 format, from the corresponding author or from the supplemental information of the journal.

  10. Immediate postextraction implant placement using plasma rich in growth factors technology in maxillary premolar region: a new strategy for soft tissue management.

    PubMed

    Rosano, Gabriele; Taschieri, Silvio; Del Fabbro, Massimo

    2013-02-01

    Achieving an excellent aesthetic outcome in postextraction dental implant placement in the anterior maxilla is a challenging procedure for clinicians. In fact, there is an increased risk for soft tissue recession at the facial aspect which may require supplementary connective tissue grafts to accomplish the final aesthetic result. The aim of this case report is to describe a regenerative technique using autologous plasma rich in growth factors fibrin plug for preservation of soft tissue architecture around an implant immediately placed into an extraction site in the anterior maxilla. Such a procedure allowed for guided bone regeneration without the need for vertical releasing incisions and primary healing, thus showing a pleasant gingival contour at the facial aspect after a single stage surgery. Integrating this technique into common practice could provide important benefits for the patients regarding aesthetics, without any risk of infection or transmission of diseases.

  11. Increased expression of phosphorylated forms of heat-shock protein-27 and p38MAPK in macrophage-rich regions of fibro-fatty atherosclerotic lesions in the rabbit.

    PubMed

    Shafi, Shahida; Codrington, Rosalind; Gidden, Lewis Michael; Ferns, Gordon Ashley Anthony

    2016-02-01

    We aimed to assess the expression and distribution of Hsp27, pHsp27 (Ser82), p38MAPK and p-p38MAPK in fibro-fatty atherosclerotic lesions and the myocardium of hypercholesterolaemic rabbits. Male New Zealand white rabbits were fed a high-cholesterol diet for 18 weeks, maintaining serum cholesterol at approximately 20 mmol/l over this period. Aortic arch and myocardial tissues were analysed by Western blot, immunohistochemistry and double immunofluorescence. Plasma Hsp27 levels were measured by ELISA. There was a significant increase in the expression of monomeric and dimeric forms of Hsp27, together with pHsp27 (Ser82), p38MAPK and p-p38MAPK in the fibro-fatty atherosclerotic lesions (P < 0.01; P < 0.05; P < 0.001; and P < 0.001, respectively) and the myocardial tissues (P < 0.001) from the cholesterol-fed rabbits compared with equivalent tissues from controls when the plasma concentration was low. Immunohistochemical analysis of the fibro-fatty lesions showed marked increases in Hsp27 and pHsp27 (Ser82) immunoreactivity. Double immunostaining showed intense expression of pHsp27 and p-p38MAPK in regions that were rich in macrophages, suggesting a close association with these inflammatory cells, whereas, in regions rich in smooth muscle cells, only p-p38MAPK was found to be strongly expressed. An increased expression of pHsp27 (Ser82) was spatially associated with increased p-p38MAPK within fibro-fatty atherosclerotic lesions and was colocalized to regions rich in macrophages. The initial increase in plasma Hsp27 levels may reflect the increase in systemic inflammation and oxidative stress in the early phases of disease. The falling concentrations subsequently may be coincident with the development of the advanced atherosclerotic lesions.

  12. Insertion proQ220::Tn5 alters regulation of proline porter II, a transporter of proline and glycine betaine in Escherichia coli.

    PubMed Central

    Milner, J L; Wood, J M

    1989-01-01

    Mutation pro-220::Tn5, which increases the resistance of Escherichia coli to 3,4-dehydroproline (M. E. Stalmach, S. Grothe, and J. M. Wood, J. Bacteriol. 156:481-486, 1983), is not linked to putP, proP, or proU. It was located at 40.4 min on the E. coli chromosomal linkage map, by conjugational and transductional mapping, and is now denoted proQ220::Tn5. Proline porter II was not detectable when proQ220::Tn5 proP+ bacteria were cultivated under optimal conditions or with nutritional stress (amino acid limitation). Toxic proline analog sensitivity and proline porter II activity were partially restored to proQ220::Tn5 proP+ bacteria, but not to a proQ220::Tn5 proP219 strain, by a hyperosmotic shift and by growth under osmotic stress. Elevated expression of a proP::lacZ gene fusion, for bacteria grown under osmotic stress, was not influenced by the proQ220::Tn5 insertion. We propose that the proQ locus encodes a positive regulatory element which elevates proline porter II activity. PMID:2536686

  13. Evidence for Hysteretic Substrate Channeling in the Proline Dehydrogenase and Δ1-Pyrroline-5-carboxylate Dehydrogenase Coupled Reaction of Proline Utilization A (PutA)*

    PubMed Central

    Moxley, Michael A.; Sanyal, Nikhilesh; Krishnan, Navasona; Tanner, John J.; Becker, Donald F.

    2014-01-01

    PutA (proline utilization A) is a large bifunctional flavoenzyme with proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate dehydrogenase (P5CDH) domains that catalyze the oxidation of l-proline to l-glutamate in two successive reactions. In the PRODH active site, proline undergoes a two-electron oxidation to Δ1-pyrroline-5-carboxlylate, and the FAD cofactor is reduced. In the P5CDH active site, l-glutamate-γ-semialdehyde (the hydrolyzed form of Δ1-pyrroline-5-carboxylate) undergoes a two-electron oxidation in which a hydride is transferred to NAD+-producing NADH and glutamate. Here we report the first kinetic model for the overall PRODH-P5CDH reaction of a PutA enzyme. Global analysis of steady-state and transient kinetic data for the PRODH, P5CDH, and coupled PRODH-P5CDH reactions was used to test various models describing the conversion of proline to glutamate by Escherichia coli PutA. The coupled PRODH-P5CDH activity of PutA is best described by a mechanism in which the intermediate is not released into the bulk medium, i.e., substrate channeling. Unexpectedly, single-turnover kinetic experiments of the coupled PRODH-P5CDH reaction revealed that the rate of NADH formation is 20-fold slower than the steady-state turnover number for the overall reaction, implying that catalytic cycling speeds up throughput. We show that the limiting rate constant observed for NADH formation in the first turnover increases by almost 40-fold after multiple turnovers, achieving half of the steady-state value after 15 turnovers. These results suggest that EcPutA achieves an activated channeling state during the approach to steady state and is thus a new example of a hysteretic enzyme. Potential underlying causes of activation of channeling are discussed. PMID:24352662

  14. Proline Adsorption on TiO2(1 1 0) Single Crystal Surface: A Study by High Resolution Photoelectron Spectroscopy

    SciTech Connect

    Fleming,G.; Adib, K.; Rodriguez, J.; Barteau, M.; Idriss, H.

    2007-01-01

    The surface chemistry and binding of dl-proline were investigated on the oxidised (stoichiometric) and reduced (sub-stoichiometric) TiO2(1 1 0) single crystal surfaces. TiO2 was chosen as the substrate as it best represents the surface of a biomedical implant, which bio-molecules interact with during the healing of bone/teeth fractures (molecular recognition). High resolution X-ray photoelectron spectroscopy (HR-XPS) studies of the C1s and N1s regions revealed that dl-proline is present in two forms (dissociated and zwitterionic) on the oxidised TiO2 surface. On TiO2(1 1 0) surfaces reduced by Ar+ sputtering, a significant increase in the amount of zwitterionic proline at the surface was detected when compared with the oxidised surface. Study of the temperature effect showed that in both cases the zwitterionic structure was the less stable structure. The reason for its relative instability appears to be thermodynamic.

  15. Hypoxia may increase rat insulin mRNA levels by promoting binding of the polypyrimidine tract-binding protein (PTB) to the pyrimidine-rich insulin mRNA 3'-untranslated region.

    PubMed Central

    Tillmar, Linda; Welsh, Nils

    2002-01-01

    BACKGROUND: Recent reports identify the 3'-UTR of insulin mRNA as crucial for control of insulin messenger stability. This region contains a pyrimidine-rich sequence, which is similar to the hypoxia-responsive mRNA-stabilizing element of tyrosine hydroxylase. This study aimed to determine whether hypoxia affects insulin mRNA levels. MATERIALS AND METHODS: Rat islets were incubated at normoxic or hypoxic conditions and with or without hydrogen peroxide and a nitric oxide donor. Insulin mRNA was determined by Northern hybridization. Islet homogenates were used for electrophoretic mobility shift assay with an RNA-oligonucleotide, corresponding to the pyrimidine-rich sequence of the 3'-UTR of rat insulin I mRNA. The expression of reporter gene mRNA, in islets transfected with reporter gene constructs containing the wild-type or mutated insulin mRNA pyrimidine-rich sequences, was measured by semiquantitive RT-PCR. RESULTS: Insulin mRNA was increased in response to hypoxia. This was paralleled by increased binding of the polypyrimidine tract-binding protein (PTB) to the pyrimidine-rich sequence of the 3'-UTR of insulin mRNA, which was counteracted by hydrogen peroxide. The reporter gene mRNA level containing the wild-type binding site was not increased in response to hypoxia, but mutation of the site resulted in a destabilization of the mRNA. CONCLUSIONS: The complete understanding of different diabetic conditions requires the elucidation of mechanisms that control insulin gene expression. Our data show that hypoxia may increase insulin mRNA levels by promoting the binding of PTB to the insulin mRNA 3'-UTR. Hydrogen peroxide abolishes the hypoxic effect indicating involvement of reactive oxygen species and/or the redox potential in the oxygen-signaling pathway. PMID:12359957

  16. Exclusive Use of trans-Editing Domains Prevents Proline Mistranslation*

    PubMed Central

    Vargas-Rodriguez, Oscar; Musier-Forsyth, Karin

    2013-01-01

    Aminoacyl-tRNA synthetases (ARSs) catalyze the attachment of specific amino acids to cognate tRNAs. Although the accuracy of this process is critical for overall translational fidelity, similar sizes of many amino acids provide a challenge to ARSs. For example, prolyl-tRNA synthetases (ProRSs) mischarge alanine and cysteine onto tRNAPro. Many bacterial ProRSs possess an alanine-specific proofreading domain (INS) but lack the capability to edit Cys-tRNAPro. Instead, Cys-tRNAPro is cleared by a single-domain homolog of INS, the trans-editing YbaK protein. A global bioinformatics analysis revealed that there are six types of “INS-like” proteins. In addition to INS and YbaK, four additional single-domain homologs are widely distributed throughout bacteria: ProXp-ala (formerly named PrdX), ProXp-x (annotated as ProX), ProXp-y (annotated as YeaK), and ProXp-z (annotated as PA2301). The last three are domains of unknown function. Whereas many bacteria encode a ProRS containing an INS domain in addition to YbaK, many other combinations of INS-like proteins exist throughout the bacterial kingdom. Here, we focus on Caulobacter crescentus, which encodes a ProRS with a truncated INS domain that lacks catalytic activity, as well as YbaK and ProXp-ala. We show that C. crescentus ProRS can readily form Cys- and Ala-tRNAPro, and deacylation studies confirmed that these species are cleared by C. crescentus YbaK and ProXp-ala, respectively. Substrate specificity of C. crescentus ProXp-ala is determined, in part, by elements in the acceptor stem of tRNAPro and further ensured through collaboration with elongation factor Tu. These results highlight the diversity of approaches used to prevent proline mistranslation and reveal a novel triple-sieve mechanism of editing that relies exclusively on trans-editing factors. PMID:23564458

  17. Paneth Cell-Rich Regions Separated by a Cluster of Lgr5+ Cells Initiate Crypt Fission in the Intestinal Stem Cell Niche.

    PubMed

    Langlands, Alistair J; Almet, Axel A; Appleton, Paul L; Newton, Ian P; Osborne, James M; Näthke, Inke S

    2016-06-01

    The crypts of the intestinal epithelium house the stem cells that ensure the continual renewal of the epithelial cells that line the intestinal tract. Crypt number increases by a process called crypt fission, the division of a single crypt into two daughter crypts. Fission drives normal tissue growth and maintenance. Correspondingly, it becomes less frequent in adulthood. Importantly, fission is reactivated to drive adenoma growth. The mechanisms governing fission are poorly understood. However, only by knowing how normal fission operates can cancer-associated changes be elucidated. We studied normal fission in tissue in three dimensions using high-resolution imaging and used intestinal organoids to identify underlying mechanisms. We discovered that both the number and relative position of Paneth cells and Lgr5+ cells are important for fission. Furthermore, the higher stiffness and increased adhesion of Paneth cells are involved in determining the site of fission. Formation of a cluster of Lgr5+ cells between at least two Paneth-cell-rich domains establishes the site for the upward invagination that initiates fission. PMID:27348469

  18. Paneth Cell-Rich Regions Separated by a Cluster of Lgr5+ Cells Initiate Crypt Fission in the Intestinal Stem Cell Niche

    PubMed Central

    Langlands, Alistair J.; Almet, Axel A.; Appleton, Paul L.; Newton, Ian P.; Osborne, James M.; Näthke, Inke S.

    2016-01-01

    The crypts of the intestinal epithelium house the stem cells that ensure the continual renewal of the epithelial cells that line the intestinal tract. Crypt number increases by a process called crypt fission, the division of a single crypt into two daughter crypts. Fission drives normal tissue growth and maintenance. Correspondingly, it becomes less frequent in adulthood. Importantly, fission is reactivated to drive adenoma growth. The mechanisms governing fission are poorly understood. However, only by knowing how normal fission operates can cancer-associated changes be elucidated. We studied normal fission in tissue in three dimensions using high-resolution imaging and used intestinal organoids to identify underlying mechanisms. We discovered that both the number and relative position of Paneth cells and Lgr5+ cells are important for fission. Furthermore, the higher stiffness and increased adhesion of Paneth cells are involved in determining the site of fission. Formation of a cluster of Lgr5+ cells between at least two Paneth-cell-rich domains establishes the site for the upward invagination that initiates fission. PMID:27348469

  19. Proline accumulation protects Saccharomyces cerevisiae cells in stationary phase from ethanol stress by reducing reactive oxygen species levels.

    PubMed

    Takagi, Hiroshi; Taguchi, Junpei; Kaino, Tomohiro

    2016-08-01

    During fermentation processes, Saccharomyces cerevisiae cells are exposed to multiple stresses, including a high concentration of ethanol that represents toxicity through intracellular reactive oxygen species (ROS) generation. We previously reported that proline protected yeast cells from damage caused by various stresses, such as freezing and ethanol. As an anti-oxidant, proline is suggested to scavenge intracellular ROS. In this study, we examined the role of intracellular proline during ethanol treatment in S. cerevisiae strains that accumulate different concentrations of proline. When cultured in YPD medium, there was a significant accumulation of proline in the put1 mutant strain, which is deficient in proline oxidase, in the stationary phase. Expression of the mutant PRO1 gene, which encodes the γ-glutamyl kinase variant (Asp154Asn or Ile150Thr) with desensitization to feedback inhibition by proline in the put1 mutant strain, showed a prominent increase in proline content as compared with that of the wild-type strain. The oxidation level was clearly increased in wild-type cells after exposure to ethanol, indicating that the generation of ROS occurred. Interestingly, proline accumulation significantly reduces the ROS level and increases the survival rate of yeast cells in the stationary phase under ethanol stress conditions. However, there was not a clear correlation between proline content and survival rate in yeast cells. An appropriate level of intracellular proline in yeast might be important for its stress-protective effect. Hence, the engineering of proline metabolism could be promising for breeding stress-tolerant industrial yeast strains. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26833688

  20. Improvement of culture conditions for L-proline production by a recombinant strain of Serratia marcescens.

    PubMed

    Masuda, M; Takamatu, S; Nishimura, N; Komatsubara, S; Tosa, T

    1993-12-01

    Serratia marcescens SP511 was previously reported to be an L-proline-producing strain that harbors a recombinant plasmid carrying the mutant type of the proline operon. This strain produced 65 g/L of L-proline in a medium containing 22% sucrose and urea after 5 d of incubation under the conventional culture conditions. We searched for more suitable culture conditions for more abundant L-proline production by SP511. To improve the supply of a nitrogen source to cells, ammonium was used instead of urea and fed to a culture under control of the pH of the medium. The concentrations of MgSO4 and K2HPO4 were increased, and in addition, sucrose was continuously added to the culture at a final concentration of 32%. Under these conditions, the cell amount was increased twofold over that under the previous conditions and L-proline production reached a maximum of more than 100 g/L after 4 d of incubation. PMID:8109960

  1. Elongation Factor 2 Kinase Is Regulated by Proline Hydroxylation and Protects Cells during Hypoxia

    PubMed Central

    Moore, Claire E. J.; Mikolajek, Halina; Regufe da Mota, Sergio; Wang, Xuemin; Kenney, Justin W.; Werner, Jörn M.

    2015-01-01

    Protein synthesis, especially translation elongation, requires large amounts of energy, which is often generated by oxidative metabolism. Elongation is controlled by phosphorylation of eukaryotic elongation factor 2 (eEF2), which inhibits its activity and is catalyzed by eEF2 kinase (eEF2K), a calcium/calmodulin-dependent α-kinase. Hypoxia causes the activation of eEF2K and induces eEF2 phosphorylation independently of previously known inputs into eEF2K. Here, we show that eEF2K is subject to hydroxylation on proline-98. Proline hydroxylation is catalyzed by proline hydroxylases, oxygen-dependent enzymes which are inactivated during hypoxia. Pharmacological inhibition of proline hydroxylases also stimulates eEF2 phosphorylation. Pro98 lies in a universally conserved linker between the calmodulin-binding and catalytic domains of eEF2K. Its hydroxylation partially impairs the binding of calmodulin to eEF2K and markedly limits the calmodulin-stimulated activity of eEF2K. Neuronal cells depend on oxygen, and eEF2K helps to protect them from hypoxia. eEF2K is the first example of a protein directly involved in a major energy-consuming process to be regulated by proline hydroxylation. Since eEF2K is cytoprotective during hypoxia and other conditions of nutrient insufficiency, it may be a valuable target for therapy of poorly vascularized solid tumors. PMID:25755286

  2. HR-MAS NMR metabolomics of 'Swingle' citrumelo rootstock genetically modified to overproduce proline.

    PubMed

    de Oliveira, Caroline S; Carlos, Eduardo F; Vieira, Luiz G E; Lião, Luciano M; Alcantara, Glaucia B

    2014-08-01

    The accumulation of proline is a typical physiological response to abiotic stresses in higher plants. 'Swingle' citrumelo, an important rootstock for citrus production, has been modified with a mutated Δ(1)-pyrroline-5-carboxylate synthetase gene (VaP5CSF129A) linked to the cauliflower mosaic virus 35S promoter to induce the overproduction of free proline. This paper presents a comparative metabolomic study of nontransgenic versus transgenic 'Swingle' citrumelo plants with high endogenous proline. (1)H high-resolution magic angle spinning nuclear magnetic resonance spectroscopy and multivariate analysis showed significant differences in some metabolites between the nontransgenic and transgenic leaves and roots. The overproduction of proline has reduced the sucrose content in transgenic leaves, revealing a metabolic cost for these plants. In roots, the high level of free proline acts for the adjustment of cation-anion balance, causing the reduction of acetic acid content. The same sucrose level in roots indicates that they can be considered as sucrose sink. Similar behavior may be waited for fruits produced on transgenic rootstock.

  3. UV photodissociation of proline-containing peptide ions: insights from molecular dynamics.

    PubMed

    Girod, Marion; Sanader, Zeljka; Vojkovic, Marin; Antoine, Rodolphe; MacAleese, Luke; Lemoine, Jérôme; Bonacic-Koutecky, Vlasta; Dugourd, Philippe

    2015-03-01

    UV photodissociation of proline-containing peptide ions leads to unusual product ions. In this paper, we report laser-induced dissociation of a series of proline-containing peptides at 213 nm. We observe specific fragmentation pathways corresponding to the formation of (y-2), (a + 2) and (b + 2) fragment ions. This was not observed at 266 nm or for peptides which do not contain proline residues. In order to obtain insights into the fragmentation dynamics at 213 nm, a small peptide (RPK for arginine-proline-lysine) was studied both theoretically and experimentally. Calculations of absorption spectra and non-adiabatic molecular dynamics (MD) were made. Second and third excited singlet states, S(2) and S(3), lie close to 213 nm. Non-adiabatic MD simulation starting from S(2) and S(3) shows that these transitions are followed by C-C and C-N bond activation close to the proline residue. After this first relaxation step, consecutive rearrangements and proton transfers are required to produce unusual (y-2), (a + 2) and (b + 2) fragment ions. These fragmentation mechanisms were confirmed by H/D exchange experiments.

  4. Structural and thermodynamic basis of proline-induced transmembrane complex stabilization

    PubMed Central

    Schmidt, Thomas; Situ, Alan J.; Ulmer, Tobias S.

    2016-01-01

    In membrane proteins, proline-mediated helix kinks are indispensable for the tight packing of transmembrane (TM) helices. However, kinks invariably affect numerous interhelical interactions, questioning the acceptance of proline substitutions and evolutionary origin of kinks. Here, we present the structural and thermodynamic basis of proline-induced integrin αIIbβ3 TM complex stabilization to understand the introduction of proline kinks in membrane proteins. In phospholipid bicelles, the A711P substitution in the center of the β3 TM helix changes the direction of adjacent helix segments to form a 35 ± 2° angle and predominantly repacks the segment in the inner membrane leaflet due to a swivel movement. This swivel repacks hydrophobic and electrostatic interhelical contacts within intracellular lipids, resulting in an overall TM complex stabilization of −0.82 ± 0.01 kcal/mol. Thus, proline substitutions can directly stabilize membrane proteins and such substitutions are proposed to follow the structural template of integrin αIIbβ3(A711P). PMID:27436065

  5. Slow tight-binding inhibition of prolyl endopeptidase by benzyloxycarbonyl-prolyl-prolinal.

    PubMed Central

    Bakker, A V; Jung, S; Spencer, R W; Vinick, F J; Faraci, W S

    1990-01-01

    Prolyl endopeptidase is a serine proteinase that specifically cleaves peptides on the carboxy side of proline residues. Wilk & Orlowski [(1983) J. Neurochem. 41, 69-75] have shown that benzyloxycarbonyl-prolyl-prolinal (Z-prolyl-prolinal) is a potent inhibitor of prolyl endopeptidase. We show that Z-prolyl-prolinal is a slow-binding inhibitor of mouse brain prolyl endopeptidase with Ki 0.35 +/- 0.05 nM. Kinetic analysis indicates that the mechanism is a simple, but slow, reversible equilibrium between free and bound enzyme (E + I in equilibrium EI) with rate constants for association (kon) and dissociation (koff) of 1.6 X 10(5) M-1.s-1 and approx. 4 X 10(-5) s-1 respectively. Slow-binding inhibition is dependent on the presence of the aldehyde group since the alcohol (Z-prolyl-prolinol) is a rapid and 50,000-fold poorer inhibitor (Ki 19 microM). Prolyl endopeptidase from human brain is also inhibited by Z-prolyl-prolinal with kinetics similar to those of the mouse brain enzyme. PMID:2241932

  6. Hydrogen sulfide donor sodium hydrosulfide-improved heat tolerance in maize and involvement of proline.

    PubMed

    Li, Zhong-Guang; Ding, Xiao-Jiao; Du, Pei-Fang

    2013-05-15

    Hydrogen sulfide (H2S) has long been considered as a phytotoxin, but nowadays as a cell signal molecule involved in growth, development, and the acquisition of stress tolerance in higher plants. In the present study, hydrogen sulfide donor, sodium hydrosulfide (NaHS), pretreatment markedly improved germination percentage of seeds and survival percentage of seedlings of maize under heat stress, and alleviated an increase in electrolyte leakage of roots, a decrease in tissue vitality and an accumulation of malondialdehyde (MDA) in coleoptiles of maize seedlings. In addition, pretreatment of NaHS could improve the activity of Δ(1)-pyrroline-5-carboxylate synthetase (P5CS) and lower proline dehydrogenase (ProDH) activity, which in turn induced accumulation of endogenous proline in maize seedlings. Also, application of proline could enhance endogenous proline content, followed by mitigated accumulation of MDA and increased survival percentage of maize seedlings under heat stress. These results suggest that sodium hydrosulfide pretreatment could improve heat tolerance of maize and the acquisition of this heat tolerance may be involved in proline.

  7. Use of prolines for improving growth and other properties of plants and algae

    DOEpatents

    Unkefer, Pat J.; Knight, Thomas J.; Martinez, Rodolfo A.

    2004-12-14

    Increasing the concentration of prolines, such as 2-hydroxy-5-oxoproline, in the foliar portions of plants has been shown to cause an increase in carbon dioxide fixation, growth rate, dry weight, nutritional value (amino acids), nodulation and nitrogen fixation, photosynthetically derived chemical energy, and resistance to insect pests over the same properties for wild type plants. This can be accomplished in four ways: (1) the application of a solution of the proline directly to the foliar portions of the plant by spraying these portions; (2) applying a solution of the proline to the plant roots; (3) genetically engineering the plant and screening to produce lines that over-express glutamine synthetase in the leaves which gives rise to increased concentration of the metabolite, 2-hydroxy-5-oxoproline (this proline is also known as 2-oxoglutaramate); and (4) impairing the glutamine synthetase activity in the plant roots which causes increased glutamine synthetase activity in the leaves which gives rise to increased concentration of 2-hydroxy-5-oxoproline. Prolines have also been found to induce similar effects in algae.

  8. Use of prolines for improving growth and other properties of plants and algae

    DOEpatents

    Unkefer, Pat J.; Knight, Thomas J.; Martinez, Rodolfo A.

    2003-07-15

    Increasing the concentration of prolines, such as 2-hydroxy-5-oxoproline, in the foliar portions of plants has been shown to cause an increase in carbon dioxide fixation, growth rate, dry weight, nutritional value (amino acids), nodulation and nitrogen fixation, photosynthetically derived chemical energy, and resistance to insect pests over the same properties for wild type plants. This can be accomplished in four ways: (1) the application of a solution of the proline directly to the foliar portions of the plant by spraying these portions; (2) applying a solution of the proline to the plant roots; (3) genetically engineering the plant and screening to produce lines that over-express glutamine synthetase in the leaves which gives rise to increased concentration of the metabolite, 2-hydroxy-5-oxoproline (this proline is also known as 2-oxoglutaramate); and (4) impairing the glutamine synthetase activity in the plant roots which causes increased glutamine synthetase activity in the leaves which gives rise to increased concentration of 2-hydroxy-5-oxoproline. Prolines have also been found to induce similar effects in algae.

  9. Use of prolines for improving growth and other properties of plants and algae

    DOEpatents

    Unkefer, Pat J.; Knight, Thomas J.; Martinez, Rodolfo A.

    2003-04-29

    Increasing the concentration of prolines such as 2-hydroxy-5-oxoproline, in the foliar portions of plants has been shown to cause an increase in carbon dioxide fixation, growth rate, dry weight, nutritional value (amino acids), nodulation and nitrogen fixation, photosynthetically derived chemical energy, and resistance to insect pests over the same properties for wild type plants. This can be accomplished in four ways: (1) the application of a solution of the proline directly to the foliar portions of the plant by spraying these portions; (2) applying a solution of the proline to the plant roots; (3) genetically engineering the plant and screening to produce lines that overexpress glutamine synthetase in the leaves which gives rise to increased concentration of the metabolite, 2-hydroxy-5-oxoproline (this proline is also known as 2-oxoglutaramnate); and (4) impairing the glutamine synthetase activity in the plant roots which causes increased glutamine synthetase activity in the leaves which gives rise to increased concentration of 2-hydroxy-5-oxoproline. Prolines have also been found to induce similar effects in algae.

  10. Developmental aspects of proline transport in rat renal brush border membranes.

    PubMed

    Medow, M S; Roth, K S; Goldmann, D R; Ginkinger, K; Hsu, B Y; Segal, S

    1986-10-01

    Proline uptake by rat renal brush border membrane vesicles from animals 7 days of age and older has been examined to delineate developmental changes in membrane function that may underlie the physiological hyperprolinuria of young animals. Although the two proline transport systems normally present in adult membranes were found in membranes from young animals, the proline "overshoot" resulting from a sodium ion gradient is minimal and increases with age of the animal from which the membranes were isolated. This is associated with a severalfold faster entry of 22Na into vesicles of the 7-day-old animal compared to entry into membranes prepared from adult kidneys. The very rapid dissipation of the sodium gradient thus diminishing the driving force for transmembrane proline movement may explain the changes in proline overshoot observed in membranes from young animals. The altered sodium permeability is consistent with the fact that young animals have a generalized inability to reabsorb other amino acids whose transport is known to be sodium gradient stimulated. PMID:3463985

  11. Direct linking of metabolism and gene expression in the proline utilization A protein from Escherichia coli

    PubMed Central

    Zhou, Yuzhen; Zhu, Weidong; Bellur, Padmanetra S.; Rewinkel, Dustin; Becker, Donald F.

    2009-01-01

    Summary The control of gene expression by enzymes provides a direct pathway for cells to respond to fluctuations in metabolites and nutrients. One example is the proline utilization A (PutA) protein from Escherichia coli. PutA is a membrane-associated enzyme that catalyzes the oxidation of L-proline to glutamate using a flavin containing proline dehydrogenase domain and a NAD+ dependent Δ1-pyrroline-5-carboxylate dehydrogenase domain. In some Gram-negative bacteria such as E. coli, PutA is also endowed with a ribbon-helix-helix DNA-binding domain and acts as a transcriptional repressor of the proline utilization genes. PutA switches between transcriptional repressor and enzymatic functions in response to proline availability. Molecular insights into the redox based mechanism of PutA functional switching from recent studies are reviewed. In addition, new results from cell-based transcription assays are presented which correlate PutA membrane localization with put gene expression levels. General membrane localization of PutA, however, is not sufficient to activate the put genes. PMID:18324349

  12. Structural Basis for the Inactivation of Thermus thermophilus Proline Dehydrogenase by N-Propargylglycine†‡

    PubMed Central

    White, Tommi A.; Johnson, William H.; Whitman, Christian P.; Tanner, John J.

    2009-01-01

    The flavoenzyme proline dehydrogenase catalyzes the first step of proline catabolism, the oxidation of proline to pyrroline-5-carboxylate. Here we report the first crystal structure of an irreversibly inactivated proline dehydrogenase. The 1.9 Å resolution structure of Thermus thermophilus proline dehydrogenase inactivated by the mechanism-based inhibitor N-propargylglycine shows that N5 of the flavin cofactor is covalently connected to the ε-amino group of Lys99 via a 3-carbon linkage, consistent with the mass spectral analysis of the inactivated enzyme. The isoalloxazine ring has a butterfly angle of 25°, which suggests that the flavin cofactor is reduced. Two mechanisms can account for these observations. In both, N-propargylglycine is oxidized to N-propargyliminoglycine. In one mechanism, this α,β-unsaturated iminium compound is attacked by the N5 atom of the now reduced flavin to produce a 1,4-addition product. Schiff base formation between Lys99 and the imine of the 1,4-addition product releases glycine and links the enzyme to the modified flavin. In the second mechanism, hydrolysis of N-propargyliminoglycine yields propynal and glycine. A 1,4-addition reaction with propynal coupled with Schiff base formation between Lys99 and the carbonyl group tethers the enzyme to the flavin via a 3-carbon chain. The presumed non-enzymatic hydrolysis of N-propargyliminoglycine and the subsequent rebinding of propynal to the enzyme make the latter mechanism less likely. PMID:18426222

  13. Tomato QM-Like Protein Protects Saccharomyces cerevisiae Cells against Oxidative Stress by Regulating Intracellular Proline Levels

    PubMed Central

    Chen, Changbin; Wanduragala, Srimevan; Becker, Donald F.; Dickman, Martin B.

    2006-01-01

    Exogenous proline can protect cells of Saccharomyces cerevisiae from oxidative stress. We altered intracellular proline levels by overexpressing the proline dehydrogenase gene (PUT1) of S. cerevisiae. Put1p performs the first enzymatic step of proline degradation in S. cerevisiae. Overexpression of Put1p results in low proline levels and hypersensitivity to oxidants, such as hydrogen peroxide and paraquat. A put1-disrupted yeast mutant deficient in Put1p activity has increased protection from oxidative stress and increased proline levels. Following a conditional life/death screen in yeast, we identified a tomato (Lycopersicon esculentum) gene encoding a QM-like protein (tQM) and found that stable expression of tQM in the Put1p-overexpressing strain conferred protection against oxidative damage from H2O2, paraquat, and heat. This protection was correlated with reactive oxygen species (ROS) reduction and increased proline accumulation. A yeast two-hybrid system assay was used to show that tQM physically interacts with Put1p in yeast, suggesting that tQM is directly involved in modulating proline levels. tQM also can rescue yeast from the lethality mediated by the mammalian proapoptotic protein Bax, through the inhibition of ROS generation. Our results suggest that tQM is a component of various stress response pathways and may function in proline-mediated stress tolerance in plants. PMID:16751508

  14. Evidence of a Two-Temperature Source Region in the 3He-Rich Solar Energetic Particle Event of 2000 May 1

    NASA Astrophysics Data System (ADS)

    Kartavykh, Y. Y.; Dröge, W.; Klecker, B.; Mason, G. M.; Möbius, E.; Popecki, M.; Krucker, S.

    2007-12-01

    Using instruments on the ACE and Wind spacecraft, we investigate the temporal evolution, spectra, and ionization states of solar energetic particle (SEP) Fe in the impulsive event of 2000 May 1. Proton and electron intensities and anisotropies were used to help constrain the characteristics of the interplanetary propagation, taking into account focusing, pitch-angle scattering, adiabatic deceleration, and convection. We find that the event was nearly scatter-free, with an interplanetary scattering mean free path larger than 1 AU. The Fe spectrum spectral form is consistent with stochastic acceleration, but the observed increase of the ionization state of Fe between 200-600 keV nucleon-1 is larger than can be explained using a single temperature source even after including the effect of adiabatic deceleration in the solar wind. A two-temperature source region is required to fit the observed range of Fe charge states, with the bulk (>80%) of the particles coming from a T~106 K region, and the remainder from a region with T~1.6×107 K.

  15. Proline Editing: A General and Practical Approach to the Synthesis of Functionally and Structurally Diverse Peptides. Analysis of Steric versus Stereoelectronic Effects of 4-Substituted Prolines on Conformation within Peptides

    PubMed Central

    Pandey, Anil K.; Naduthambi, Devan; Thomas, Krista M.; Zondlo, Neal J.

    2013-01-01

    Functionalized proline residues have diverse applications. Herein we describe a practical approach, proline editing, for the synthesis of peptides with stereospecifically modified proline residues. Peptides are synthesized by standard solid-phase-peptide-synthesis to incorporate Fmoc-Hydroxyproline (4R-Hyp). In an automated manner, the Hyp hydroxyl is protected and the remainder of the peptide synthesized. After peptide synthesis, the Hyp protecting group is orthogonally removed and Hyp selectively modified to generate substituted proline amino acids, with the peptide main chain functioning to “protect” the proline amino and carboxyl groups. In a model tetrapeptide (Ac-TYPN-NH2), 4R-Hyp was stereospecifically converted to 122 different 4-substituted prolyl amino acids, with 4R or 4S stereochemistry, via Mitsunobu, oxidation, reduction, acylation, and substitution reactions. 4-Substituted prolines synthesized via proline editing include incorporated structured amino acid mimetics (Cys, Asp/Glu, Phe, Lys, Arg, pSer/pThr), recognition motifs (biotin, RGD), electron-withdrawing groups to induce stereoelectronic effects (fluoro, nitrobenzoate), handles for heteronuclear NMR (19F:fluoro; pentafluorophenyl or perfluoro-tert-butyl ether; 4,4-difluoro; 77SePh) and other spectroscopies (fluorescence, IR: cyanophenyl ether), leaving groups (sulfonate, halide, NHS, bromoacetate), and other reactive handles (amine, thiol, thioester, ketone, hydroxylamine, maleimide, acrylate, azide, alkene, alkyne, aryl halide, tetrazine, 1,2-aminothiol). Proline editing provides access to these proline derivatives with no solution phase synthesis. All peptides were analyzed by NMR to identify stereoelectronic and steric effects on conformation. Proline derivatives were synthesized to permit bioorthogonal conjugation reactions, including azide-alkyne, tetrazinetrans-cyclooctene, oxime, reductive amination, native chemical ligation, Suzuki, Sonogashira, cross-metathesis, and Diels

  16. Characterization of a novel human breast cancer associated gene (BCA3) encoding an alternatively spliced proline-rich protein.

    PubMed

    Kitching, Richard; Li, Haoxia; Wong, Michael J; Kanaganayakam, Shankary; Kahn, Harriette; Seth, Arun

    2003-01-01

    As part of an integrated study of breast cancer gene expression, partial cDNAs were cloned from normal and tumor breast cells by subtractive-hybridization and differential display cloning. The DNA sequence for one of these breast cancer associated genes was used to construct the larger 1319 bp BCA3 cDNA sequence using ESTs without assigned names or functions. High-level BCA3 mRNA expression was found in breast and prostate tumor cell lines whereas normal breast and prostate tissues have low-level expression. Further analysis revealed possible functional domains and alternative splicing of BCA3 that we confirmed by RT-PCR analysis. Immunohistochemistry revealed that the protein is expressed in breast tumor cells in vivo, and not in surrounding stromal tissue. PMID:12527432

  17. Synthesis, Surface Active Properties and Cytotoxicity of Sodium N-Acyl Prolines.

    PubMed

    Sreenu, Madhumanchi; Narayana Prasad, Rachapudi Badari; Sujitha, Pombala; Kumar, Chityal Ganesh

    2015-01-01

    Sodium N-acyl prolines (NaNAPro) were synthesized using mixture of fatty acids obtained from coconut, palm, karanja, Sterculia foetida and high oleic sunflower oils via Schotten-Baumann reaction in 58-75% yields to study the synergetic effect of mixture of hydrophobic fatty acyl functionalities like saturation, unsaturation and cyclopropene fatty acids with different chain lengths and aliphatic hetero cyclic proline head group on their surface and cytotoxicity activities. The products were characterized by chromatographic and spectral techniques. The synthesized products were evaluated for their surface active properties such as surface tension, wetting power, foaming characteristics, emulsion stability, calcium tolerance, critical micelle concentration (CMC) and thermodynamic properties. The results revealed that all the products exhibited superior surface active properties like CMC, calcium tolerance and emulsion stability as compared to the standard surfactant, sodium lauryl sulphate (SLS). In addition, palm, Sterculia foetida and high oleic sunflower fatty N-acyl prolines exhibited promising cytotoxicity against different tumor cell lines.

  18. Incorporation of proline into prodigiosin by a Put mutant of Serratia marcesens.

    PubMed

    Lim, D V; Qadri, S M; Williams, R P

    1976-05-01

    A Put mutant of Serratia marcescens, deficient in proline oxidase and therefore unable to degrade proline, was used to assay for an enzymatic reaction responsible for incorporation of proline into prodigiosin. The reaction had a pH optimum of 7.5 and a Km of 1.1 X 10(-4) M at 27 C. At temperatures above 27 C, the velocity of the reaction decreased with increasing temperature and little activity was detected at 42 C. Activity of the enzyme was directly proportional to the quantity of pigment formed and was inhibited by thioproline, a substrate analog. These data suggested the presence of a unique and specific enzyme in the biosynthetic pathway for prodigiosin.

  19. H3.3 demarcates GC-rich coding and subtelomeric regions and serves as potential memory mark for virulence gene expression in Plasmodium falciparum

    PubMed Central

    Fraschka, Sabine Anne-Kristin; Henderson, Rob Wilhelmus Maria; Bártfai, Richárd

    2016-01-01

    Histones, by packaging and organizing the DNA into chromatin, serve as essential building blocks for eukaryotic life. The basic structure of the chromatin is established by four canonical histones (H2A, H2B, H3 and H4), while histone variants are more commonly utilized to alter the properties of specific chromatin domains. H3.3, a variant of histone H3, was found to have diverse localization patterns and functions across species but has been rather poorly studied in protists. Here we present the first genome-wide analysis of H3.3 in the malaria-causing, apicomplexan parasite, P. falciparum, which revealed a complex occupancy profile consisting of conserved and parasite-specific features. In contrast to other histone variants, PfH3.3 primarily demarcates euchromatic coding and subtelomeric repetitive sequences. Stable occupancy of PfH3.3 in these regions is largely uncoupled from the transcriptional activity and appears to be primarily dependent on the GC-content of the underlying DNA. Importantly, PfH3.3 specifically marks the promoter region of an active and poised, but not inactive antigenic variation (var) gene, thereby potentially contributing to immune evasion. Collectively, our data suggest that PfH3.3, together with other histone variants, indexes the P. falciparum genome to functionally distinct domains and contribute to a key survival strategy of this deadly pathogen. PMID:27555062

  20. H3.3 demarcates GC-rich coding and subtelomeric regions and serves as potential memory mark for virulence gene expression in Plasmodium falciparum.

    PubMed

    Fraschka, Sabine Anne-Kristin; Henderson, Rob Wilhelmus Maria; Bártfai, Richárd

    2016-01-01

    Histones, by packaging and organizing the DNA into chromatin, serve as essential building blocks for eukaryotic life. The basic structure of the chromatin is established by four canonical histones (H2A, H2B, H3 and H4), while histone variants are more commonly utilized to alter the properties of specific chromatin domains. H3.3, a variant of histone H3, was found to have diverse localization patterns and functions across species but has been rather poorly studied in protists. Here we present the first genome-wide analysis of H3.3 in the malaria-causing, apicomplexan parasite, P. falciparum, which revealed a complex occupancy profile consisting of conserved and parasite-specific features. In contrast to other histone variants, PfH3.3 primarily demarcates euchromatic coding and subtelomeric repetitive sequences. Stable occupancy of PfH3.3 in these regions is largely uncoupled from the transcriptional activity and appears to be primarily dependent on the GC-content of the underlying DNA. Importantly, PfH3.3 specifically marks the promoter region of an active and poised, but not inactive antigenic variation (var) gene, thereby potentially contributing to immune evasion. Collectively, our data suggest that PfH3.3, together with other histone variants, indexes the P. falciparum genome to functionally distinct domains and contribute to a key survival strategy of this deadly pathogen. PMID:27555062

  1. H3.3 demarcates GC-rich coding and subtelomeric regions and serves as potential memory mark for virulence gene expression in Plasmodium falciparum.

    PubMed

    Fraschka, Sabine Anne-Kristin; Henderson, Rob Wilhelmus Maria; Bártfai, Richárd

    2016-01-01

    Histones, by packaging and organizing the DNA into chromatin, serve as essential building blocks for eukaryotic life. The basic structure of the chromatin is established by four canonical histones (H2A, H2B, H3 and H4), while histone variants are more commonly utilized to alter the properties of specific chromatin domains. H3.3, a variant of histone H3, was found to have diverse localization patterns and functions across species but has been rather poorly studied in protists. Here we present the first genome-wide analysis of H3.3 in the malaria-causing, apicomplexan parasite, P. falciparum, which revealed a complex occupancy profile consisting of conserved and parasite-specific features. In contrast to other histone variants, PfH3.3 primarily demarcates euchromatic coding and subtelomeric repetitive sequences. Stable occupancy of PfH3.3 in these regions is largely uncoupled from the transcriptional activity and appears to be primarily dependent on the GC-content of the underlying DNA. Importantly, PfH3.3 specifically marks the promoter region of an active and poised, but not inactive antigenic variation (var) gene, thereby potentially contributing to immune evasion. Collectively, our data suggest that PfH3.3, together with other histone variants, indexes the P. falciparum genome to functionally distinct domains and contribute to a key survival strategy of this deadly pathogen.

  2. The Internal Region Leucine-rich Repeat 6 of Decorin Interacts with Low Density Lipoprotein Receptor-related Protein-1, Modulates Transforming Growth Factor (TGF)-β-dependent Signaling, and Inhibits TGF-β-dependent Fibrotic Response in Skeletal Muscles*

    PubMed Central

    Cabello-Verrugio, Claudio; Santander, Cristian; Cofré, Catalina; Acuña, Maria José; Melo, Francisco; Brandan, Enrique

    2012-01-01

    Decorin is a small proteoglycan, composed of 12 leucine-rich repeats (LRRs) that modulates the activity of transforming growth factor type β (TGF-β) and other growth factors, and thereby influences proliferation and differentiation in a wide array of physiological and pathological processes, such as fibrosis, in several tissues and organs. Previously we described two novel modulators of the TGF-β-dependent signaling pathway: LDL receptor-related protein (LRP-1) and decorin. Here we have determined the regions in decorin that are responsible for interaction with LRP-1 and are involved in TGF-β-dependent binding and signaling. Specifically, we used decorin deletion mutants, as well as peptides derived from internal LRR regions, to determine the LRRs responsible for these decorin functions. Our results indicate that LRR6 and LRR5 participate in the interaction with LRP-1 and TGF-β as well as in its dependent signaling. Furthermore, the internal region (LRR6i), composed of 11 amino acids, is responsible for decorin binding to LRP-1 and subsequent TGF-β-dependent signaling. Furthermore, using an in vivo approach, we also demonstrate that the LRR6 region of decorin can inhibit TGF-β mediated action in response to skeletal muscle injury. PMID:22203668

  3. Screening of Bread Wheat Genotypes for Drought Tolerance Using Phenotypic and Proline Analyses.

    PubMed

    Mwadzingeni, Learnmore; Shimelis, Hussein; Tesfay, Samson; Tsilo, Toi J

    2016-01-01

    Drought stress is one of the leading constraints to wheat (Triticum aestivum L.) production globally. Breeding for drought tolerance using novel genetic resources is an important mitigation strategy. This study aimed to determine the level of drought tolerance among diverse bread wheat genotypes using agronomic traits and proline analyses and to establish correlation of proline content and agronomic traits under drought-stress conditions in order to select promising wheat lines for breeding. Ninety-six diverse genotypes including 88 lines from the International Maize and Wheat Improvement Center (CIMMYT)'s heat and drought nurseries, and eight local checks were evaluated under greenhouse and field conditions during 2014/15 and 2015/16 making four testing environments. The following phenotypic traits were collected after stress imposed during the heading to anthesis period: the number of days to heading (DTH), days to maturity (DTM), productive tiller number (TN), plant height (PH), spike length (SL), spikelet per spike (SPS), kernels per spike (KPS), thousand kernel weight (TKW) and grain yield (GY) and proline content (PC). Analysis of variance, Pearson's correlation coefficient, principal component and stress tolerance index were calculated. Genotypes with high yield performance under stressed and optimum conditions maintained high values for yield components. Proline content significantly increased under stress, but weakly correlated with agronomic traits under both optimal and water limited conditions. The positive correlation observed between grain yield and proline content under-drought stress conditions provides evidence that proline accumulation might ultimately be considered as a tool for effective selection of drought tolerant genotypes. The study selected 12 genotypes with high grain yields under drought stressed conditions and favorable adaptive traits useful for breeding.

  4. Screening of Bread Wheat Genotypes for Drought Tolerance Using Phenotypic and Proline Analyses.

    PubMed

    Mwadzingeni, Learnmore; Shimelis, Hussein; Tesfay, Samson; Tsilo, Toi J

    2016-01-01

    Drought stress is one of the leading constraints to wheat (Triticum aestivum L.) production globally. Breeding for drought tolerance using novel genetic resources is an important mitigation strategy. This study aimed to determine the level of drought tolerance among diverse bread wheat genotypes using agronomic traits and proline analyses and to establish correlation of proline content and agronomic traits under drought-stress conditions in order to select promising wheat lines for breeding. Ninety-six diverse genotypes including 88 lines from the International Maize and Wheat Improvement Center (CIMMYT)'s heat and drought nurseries, and eight local checks were evaluated under greenhouse and field conditions during 2014/15 and 2015/16 making four testing environments. The following phenotypic traits were collected after stress imposed during the heading to anthesis period: the number of days to heading (DTH), days to maturity (DTM), productive tiller number (TN), plant height (PH), spike length (SL), spikelet per spike (SPS), kernels per spike (KPS), thousand kernel weight (TKW) and grain yield (GY) and proline content (PC). Analysis of variance, Pearson's correlation coefficient, principal component and stress tolerance index were calculated. Genotypes with high yield performance under stressed and optimum conditions maintained high values for yield components. Proline content significantly increased under stress, but weakly correlated with agronomic traits under both optimal and water limited conditions. The positive correlation observed between grain yield and proline content under-drought stress conditions provides evidence that proline accumulation might ultimately be considered as a tool for effective selection of drought tolerant genotypes. The study selected 12 genotypes with high grain yields under drought stressed conditions and favorable adaptive traits useful for breeding. PMID:27610116

  5. Screening of Bread Wheat Genotypes for Drought Tolerance Using Phenotypic and Proline Analyses

    PubMed Central

    Mwadzingeni, Learnmore; Shimelis, Hussein; Tesfay, Samson; Tsilo, Toi J.

    2016-01-01

    Drought stress is one of the leading constraints to wheat (Triticum aestivum L.) production globally. Breeding for drought tolerance using novel genetic resources is an important mitigation strategy. This study aimed to determine the level of drought tolerance among diverse bread wheat genotypes using agronomic traits and proline analyses and to establish correlation of proline content and agronomic traits under drought-stress conditions in order to select promising wheat lines for breeding. Ninety-six diverse genotypes including 88 lines from the International Maize and Wheat Improvement Center (CIMMYT)'s heat and drought nurseries, and eight local checks were evaluated under greenhouse and field conditions during 2014/15 and 2015/16 making four testing environments. The following phenotypic traits were collected after stress imposed during the heading to anthesis period: the number of days to heading (DTH), days to maturity (DTM), productive tiller number (TN), plant height (PH), spike length (SL), spikelet per spike (SPS), kernels per spike (KPS), thousand kernel weight (TKW) and grain yield (GY) and proline content (PC). Analysis of variance, Pearson's correlation coefficient, principal component and stress tolerance index were calculated. Genotypes with high yield performance under stressed and optimum conditions maintained high values for yield components. Proline content significantly increased under stress, but weakly correlated with agronomic traits under both optimal and water limited conditions. The positive correlation observed between grain yield and proline content under-drought stress conditions provides evidence that proline accumulation might ultimately be considered as a tool for effective selection of drought tolerant genotypes. The study selected 12 genotypes with high grain yields under drought stressed conditions and favorable adaptive traits useful for breeding.

  6. Screening of Bread Wheat Genotypes for Drought Tolerance Using Phenotypic and Proline Analyses

    PubMed Central

    Mwadzingeni, Learnmore; Shimelis, Hussein; Tesfay, Samson; Tsilo, Toi J.

    2016-01-01

    Drought stress is one of the leading constraints to wheat (Triticum aestivum L.) production globally. Breeding for drought tolerance using novel genetic resources is an important mitigation strategy. This study aimed to determine the level of drought tolerance among diverse bread wheat genotypes using agronomic traits and proline analyses and to establish correlation of proline content and agronomic traits under drought-stress conditions in order to select promising wheat lines for breeding. Ninety-six diverse genotypes including 88 lines from the International Maize and Wheat Improvement Center (CIMMYT)'s heat and drought nurseries, and eight local checks were evaluated under greenhouse and field conditions during 2014/15 and 2015/16 making four testing environments. The following phenotypic traits were collected after stress imposed during the heading to anthesis period: the number of days to heading (DTH), days to maturity (DTM), productive tiller number (TN), plant height (PH), spike length (SL), spikelet per spike (SPS), kernels per spike (KPS), thousand kernel weight (TKW) and grain yield (GY) and proline content (PC). Analysis of variance, Pearson's correlation coefficient, principal component and stress tolerance index were calculated. Genotypes with high yield performance under stressed and optimum conditions maintained high values for yield components. Proline content significantly increased under stress, but weakly correlated with agronomic traits under both optimal and water limited conditions. The positive correlation observed between grain yield and proline content under-drought stress conditions provides evidence that proline accumulation might ultimately be considered as a tool for effective selection of drought tolerant genotypes. The study selected 12 genotypes with high grain yields under drought stressed conditions and favorable adaptive traits useful for breeding. PMID:27610116

  7. Mid-infrared diagnostics of metal-rich HII regions from VLT and Spitzer spectroscopy of young massive stars in W31

    NASA Astrophysics Data System (ADS)

    Furness, J. P.; Crowther, P. A.; Morris, P. W.; Barbosa, C. L.; Blum, R. D.; Conti, P. S.; van Dyk, S. D.

    2010-04-01

    We present near-infrared Very Large Telescope/Infrared Spectrograph and Array Camera and mid-infrared (mid-IR) Spitzer/Infrared Spectrograph spectroscopy of the young massive cluster in the W31 star-forming region. H-band spectroscopy provides refined classifications for four cluster member O stars with respect to Blum et al. In addition, photospheric features are detected in the massive young stellar object (massive YSO) #26. Spectroscopy permits estimates of stellar temperatures and masses, from which a cluster age of ~0.6 Myr and distance of 3.3kpc are obtained, in excellent agreement with Blum et al. IRS spectroscopy reveals mid-IR fine structure line fluxes of [NeII-III] and [SIII-IV] for four O stars and five massive YSOs. In common with previous studies, stellar temperatures of individual stars are severely underestimated from the observed ratios of fine-structure lines, despite the use of contemporary stellar atmosphere and photoionization models. We construct empirical temperature calibrations based upon the W31 cluster stars of known spectral type, supplemented by two inner Milky Way ultracompact (UC) HII regions whose ionizing star properties are established. Calibrations involving [NeIII] 15.5 μm/[NeII] 12.8 μm, [SIV] 10.5 μm/[NeII] 12.8 μm or [ArIII] 9.0 μm/[NeII] 12.8 μm have application in deducing the spectral types of early to mid O stars for other inner Milky Way compact and UC HII regions. Finally, evolutionary phases and time-scales for the massive stellar content in W31 are discussed, due to the presence of numerous young massive stars at different formation phases in a `coeval' cluster. Based on observations made with ESO telescopes at the Paranal Observatory under programme ID 077.C-0550(A) and the Spitzer Space Telescope which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. E-mail: Paul.Crowther@shef.ac.uk

  8. L-proline: a highly effective cryoprotectant for mouse oocyte vitrification

    PubMed Central

    Zhang, Lu; Xue, Xu; Yan, Jie; Yan, Li-Ying; Jin, Xiao-Hu; Zhu, Xiao-Hui; He, Zhi-Zhu; Liu, Jing; Li, Rong; Qiao, Jie

    2016-01-01

    Recent studies have shown that L-proline is a natural osmoprotectant and an antioxidant to protect cells from injuries such as that caused by freezing and thawing in many species including plant, ram sperm and human endothelial cells. Nevertheless, this nontoxic cryoprotectant has not yet been applied to mammalian oocyte vitrification. In this study we evaluated the efficiency and safety of the new cryoprotectant in oocyte vitrification. The results indicated that L-proline improves the survival rate of vitrified oocytes, protects mitochondrial functions and could be applied as a new cryoprotectant in mouse oocyte vitrification. PMID:27412080

  9. Isolation and expression analysis of proline metabolism-related genes in Chrysanthemum lavandulifolium.

    PubMed

    Zhang, Mi; Huang, He; Dai, Silan

    2014-03-10

    Proline plays a significant role in plant resistance to abiotic stresses, and its level is determined by a combination of synthesis, catabolism and transport. The primary proteins involved are Δ(1)-pyrroline-5-carboxylate synthetase (P5CS), proline dehydrogenase (PDH) and proline transporter (ProT). To utilise proline metabolism to improve the stress resistance of Chrysanthemum×morifolium, we isolated two P5CS-homologous genes (ClP5CS1 and ClP5CS2), one PDH gene (ClPDH) and four ProT-homologous genes (ClProT1-4) (GenBANK accession numbers: KF743136-KF743142) from Chrysanthemum lavandulifolium, which is closely related to chrysanthemums and exhibits strong resistance to stresses. Expression analysis of these genes in different organs and under various stresses indicated that ClP5CSs showed substantial constitutive expression, while ClPDH was only strongly expressed in the capitulum and was inhibited under most stresses. The expression patterns of four ClProT genes presented characteristics of organ specificity and disparity under stresses. Above all, the expression of ClProT2 was restricted to above-ground organs, especially strong in the capitulum and could be obviously induced by various stress conditions. Promoters of ClPDH and ClProTs contained many cis-acting regulatory elements involved in stress responses and plant growth and development. High levels of free proline were found in flower buds, the capitulum under the non-stress condition and later periods of stress conditions except cold treatment. Interestingly, organ specificity and disparity also exist in the level of free proline under different stress conditions. Our study indicates that ClProTs play significant roles in proline accumulation and stress responses, and that ClProT2 could be used to genetically modify the stress resistance of chrysanthemums. In addition, proline metabolism might be closely related to plant flowering and floral development. PMID:24434369

  10. Densely Substituted L-Proline Esters as Catalysts for Asymmetric Michael Additions of Ketones to Nitroalkenes.

    PubMed

    Ruiz-Olalla, Andrea; Retamosa, María de Gracia; Cossío, Fernando P

    2015-06-01

    Homochiral methyl 4-aminopyrrolidine-2-carboxylates are readily obtained by means of asymmetric (3 + 2) cycloadditions between azomethine ylides and nitroalkenes, followed by catalytic hydrogenation of the intermediate 4-nitro cycloadducts. These 4-aminopyrrolidine-2-carboxylate esters belong to the L-series of natural amino acids and catalyze asymmetric Michael additions of ketones to nitroalkenes. However, the enantioselectivity observed with these novel unnatural organocatalysts is opposite to that obtained with L-proline. Since both 4-nitro and 4-amino L-proline esters are efficient organocatalysts of aldol reactions, these results permit to modulate asymmetric quimioselective aldol and conjugate addition reactions.

  11. Anomalous Seismic Velocity Drop in Iron and Biotite Rich Amphibolite to Granulite Facies Transitional Rocks from Deccan Volcanic Covered 1993 Killari Earthquake Region, Maharashtra (India): a Case Study

    NASA Astrophysics Data System (ADS)

    Pandey, O. P.; Tripathi, Priyanka; Vedanti, Nimisha; Srinivasa Sarma, D.

    2016-07-01

    65 Ma Deccan Volcanic Province of western India forms one of the largest flood basaltic eruptions on the surface of the earth. The nature of the concealed crust below this earthquake prone region, which is marked by several low velocity zones at different depths has hardly been understood. These low velocity zones have been invariably interpreted as fluid-filled zones, genetically connected to earthquake nucleation. While carrying out detailed geological and petrophysical studies on the Late Archean basement cores, obtained from a 617 m deep KLR-1 borehole, drilled in the epicentral zone of 1993 Killari earthquake region of the southern Deccan Volcanic Province, we came across several instances where we observed remarkable drop in measured P-wave velocity in a number of high density cores. We provide detailed petrographic and geological data on 11 such anomalous samples which belong to mid-crustal amphibolite to granulite facies transitional rocks. They are associated with a mean P-wave velocity of 6.02 km/s (range 5.82-6.22 km/s) conforming to granitic upper crust, but in contrast have a high mean density of 2.91 g/cm3 (range 2.75-3.08 g/cm3), which characterise mid to lower crust. This velocity drop, which is as much as 15 % in some cores, is primarily attributed to FeOT enrichment (up to about 23 wt%) during the course of mantle-fluid driven retrogressive metasomatic reactions, caused by exhumation of deep-seated mafic rocks. Presence of Iron content (mainly magnetite), widely seen as opaques in thin sections of the rocks, seems to have resulted into sharp increase in density, as well as mean atomic weight. Our study indicates that the measured V p is inversely related to FeOT content as well as mean atomic weight of the rock.

  12. The Composition of Stigmatic Exudate from Lilium longiflorum: Labeling Studies with Myo-inositol, d-Glucose, and l-Proline.

    PubMed

    Labarca, C; Kroh, M; Loewus, F

    1970-07-01

    Stigmatic exudate, a secretion product recovered from the upper surface of Lilium longiflorum pistils, has been examined. Over 99% of the exudate is accounted for as water, carbohydrate, and protein. Exclusive of water, 95% is a high molecular weight, protein-containing polysaccharide composed of galactose, arabinose, rhamnose, glucuronic acid, and galacturonic acid.Detached pistils supplied with myo-inositol-U-(14)C, myo-inositol-2-(3)H, d-glucose-1-(14)C, or l-proline-U-(14)C produce labeled stigmatic exudate. When myo-inositol is supplied, the exudate is rich in labeled arabinose and uronic acids, but some label also recycles through the hexose phosphate pool of secreting cells, causing label to appear in galactose and rhamnose residues. When glucose is provided, galactose is the major constituent labeled but all of the other carbohydrate constituents are also labeled. Proline produces a pattern very similar to that obtained with glucose.Stigmatic exudate also contains a small amount of low molecular weight carbohydrate. If myo-inositol is used to label exudate, free labeled myo-inositol cannot be detected in the low molecular weight fraction until it has been subjected to acid hydrolysis. Similarly, if d-glucose is the source of label, free labeled glucose is found in the low molecular weight fraction only after acid hydrolysis.

  13. Alanine and proline content modulate global sensitivity to discrete perturbations in disordered proteins.

    PubMed

    Perez, Romel B; Tischer, Alexander; Auton, Matthew; Whitten, Steven T

    2014-12-01

    Molecular transduction of biological signals is understood primarily in terms of the cooperative structural transitions of protein macromolecules, providing a mechanism through which discrete local structure perturbations affect global macromolecular properties. The recognition that proteins lacking tertiary stability, commonly referred to as intrinsically disordered proteins (IDPs), mediate key signaling pathways suggests that protein structures without cooperative intramolecular interactions may also have the ability to couple local and global structure changes. Presented here are results from experiments that measured and tested the ability of disordered proteins to couple local changes in structure to global changes in structure. Using the intrinsically disordered N-terminal region of the p53 protein as an experimental model, a set of proline (PRO) and alanine (ALA) to glycine (GLY) substitution variants were designed to modulate backbone conformational propensities without introducing non-native intramolecular interactions. The hydrodynamic radius (R(h)) was used to monitor changes in global structure. Circular dichroism spectroscopy showed that the GLY substitutions decreased polyproline II (PP(II)) propensities relative to the wild type, as expected, and fluorescence methods indicated that substitution-induced changes in R(h) were not associated with folding. The experiments showed that changes in local PP(II) structure cause changes in R(h) that are variable and that depend on the intrinsic chain propensities of PRO and ALA residues, demonstrating a mechanism for coupling local and global structure changes. Molecular simulations that model our results were used to extend the analysis to other proteins and illustrate the generality of the observed PRO and alanine effects on the structures of IDPs.

  14. Activating Mutations of the TRPML1 Channel Revealed by Proline-scanning Mutagenesis*

    PubMed Central

    Dong, Xian-ping; Wang, Xiang; Shen, Dongbiao; Chen, Su; Liu, Meiling; Wang, Yanbin; Mills, Eric; Cheng, Xiping; Delling, Markus; Xu, Haoxing

    2009-01-01

    The mucolipin TRP (TRPML) proteins are a family of endolysosomal cation channels with genetically established importance in humans and rodent. Mutations of human TRPML1 cause type IV mucolipidosis, a devastating pediatric neurodegenerative disease. Our recent electrophysiological studies revealed that, although a TRPML1-mediated current can only be recorded in late endosome and lysosome (LEL) using the lysosome patch clamp technique, a proline substitution in TRPML1 (TRPML1V432P) results in a large whole cell current. Thus, it remains unknown whether the large TRPML1V432P-mediated current results from an increased surface expression (trafficking), elevated channel activity (gating), or both. Here we performed systemic Pro substitutions in a region previously implicated in the gating of various 6 transmembrane cation channels. We found that several Pro substitutions displayed gain-of-function (GOF) constitutive activities at both the plasma membrane (PM) and endolysosomal membranes. Although wild-type TRPML1 and non-GOF Pro substitutions localized exclusively in LEL and were barely detectable in the PM, the GOF mutations with high constitutive activities were not restricted to LEL compartments, and most significantly, exhibited significant surface expression. Because lysosomal exocytosis is Ca2+-dependent, constitutive Ca2+ permeability due to Pro substitutions may have resulted in stimulus-independent intralysosomal Ca2+ release, hence the surface expression and whole cell current of TRPML1. Indeed, surface staining of lysosome-associated membrane protein-1 (Lamp-1) was dramatically increased in cells expressing GOF TRPML1 channels. We conclude that TRPML1 is an inwardly rectifying, proton-impermeable, Ca2+ and Fe2+/Mn2+ dually permeable cation channel that may be gated by unidentified cellular mechanisms through a conformational change in the cytoplasmic face of the transmembrane 5 (TM5). Furthermore, activation of TRPML1 in LEL may lead to the appearance of TRPML

  15. Proline Scanning Mutagenesis Reveals a Role for the Flap Endonuclease-1 Helical Cap in Substrate Unpairing*

    PubMed Central

    Patel, Nikesh; Exell, Jack C.; Jardine, Emma; Ombler, Ben; Finger, L. David; Ciani, Barbara; Grasby, Jane A.

    2013-01-01

    The prototypical 5′-nuclease, flap endonuclease-1 (FEN1), catalyzes the essential removal of single-stranded flaps during DNA replication and repair. FEN1 hydrolyzes a specific phosphodiester bond one nucleotide into double-stranded DNA. This specificity arises from double nucleotide unpairing that places the scissile phosphate diester on active site divalent metal ions. Also related to FEN1 specificity is the helical arch, through which 5′-flaps, but not continuous DNAs, can thread. The arch contains basic residues (Lys-93 and Arg-100 in human FEN1 (hFEN1)) that are conserved by all 5′-nucleases and a cap region only present in enzymes that process DNAs with 5′ termini. Proline mutations (L97P, L111P, L130P) were introduced into the hFEN1 helical arch. Each mutation was severely detrimental to reaction. However, all proteins were at least as stable as wild-type (WT) hFEN1 and bound substrate with comparable affinity. Moreover, all mutants produced complexes with 5′-biotinylated substrate that, when captured with streptavidin, were resistant to challenge with competitor DNA. Removal of both conserved basic residues (K93A/R100A) was no more detrimental to reaction than the single mutation R100A, but much less severe than L97P. The ability of protein-Ca2+ to rearrange 2-aminopurine-containing substrates was monitored by low energy CD. Although L97P and K93A/R100A retained the ability to unpair substrates, the cap mutants L111P and L130P did not. Taken together, these data challenge current assumptions related to 5′-nuclease family mechanism. Conserved basic amino acids are not required for double nucleotide unpairing and appear to act cooperatively, whereas the helical cap plays an unexpected role in hFEN1-substrate rearrangement. PMID:24126913

  16. Sequence determinants spanning -35 motif and AT-rich spacer region impacting Ehrlichia chaffeensis Sigma 70-dependent promoter activity of two differentially expressed p28 outer membrane protein genes

    PubMed Central

    Liu, Huitao; Jakkula, Laxmi U. M. R.; Von Ohlen, Tonia; Ganta, Roman R.

    2016-01-01

    Ehrlichia chaffeensis is an obligate intracellular tick-borne bacterium which causes the disease, human monocytic ehrlichiosis. Ehrlichia chaffeensis contains only two sigma factors, σ32 and σ70. It is difficult to study E. chaffeensis gene regulation due to lack of a transformation system. We developed an Escherichia coli-based transcription system to study E. chaffeensis transcriptional regulation. An E. coli strain with its σ70 repressed with trp promoter is used to express E. chaffeensis σ70. The E. coli system and our previously established in vitro transcription system were used to map transcriptional differences of two Ehrlichia genes encoding p28-outer membrane proteins 14 and 19. We mapped the -10 and -35 motifs and the AT rich spacers located between the two motifs by performing detailed mutational analysis. Mutations within the -35 motif of the genes impacted transcription differently, while -10 motif deletions had no impact. The AT-rich spacers also contributed to transcriptional differences. We further demonstrated that the domain 4.2 of E. chaffeensis σ70 is important for regulating promoter activity and the deletion of region 1.1 of E. chaffeensis σ70 causes enhancement of the promoter activity. This is the first study defining the promoters of two closely related E. chaffeensis genes. PMID:27402867

  17. Molecular phylogenetics of the species-rich angiosperm genus Goniothalamus (Annonaceae) inferred from nine chloroplast DNA regions: Synapomorphies and putative correlated evolutionary changes in fruit and seed morphology.

    PubMed

    Tang, Chin Cheung; Thomas, Daniel C; Saunders, Richard M K

    2015-11-01

    A phylogenetic study of the genus Goniothalamus (Annonaceae) is presented using maximum parsimony, maximum likelihood and Bayesian approaches, with 65 species sampled (48.5% of the genus) based on sequences of nine chloroplast DNA regions (11,214 aligned positions). The resultant phylogeny clearly indicates that Goniothalamus is monophyletic. Preliminary research initially focused on identifying synapomorphies and estimating the phylogenetic signal of selected morphological characters based on parsimony and likelihood ancestral character state reconstructions. This prescreening of characters enabled 40 to be selected for further study, and of these 15 are shown here to demonstrate significant phylogenetic signal and to provide clear synapomorphies for several infrageneric clades. Although floral structure in Goniothalamus is comparatively uniform, suggesting a common basic pattern of pollination ecology, fruit and seed morphology in the genus is very diverse and is presumably associated with different patterns of frugivory. The present study assesses correlations amongst fruit and seed characters which are putatively of functional importance with regard to frugivory and dispersal. One-way phylogenetic ANOVA indicates significant phylogenetically independent correlation between the following fruit and seed characters: fruits borne on older branches and/or on the main trunk have larger monocarps than fruits borne on young branches; and monocarps that contain seeds with a hairy testa are larger than those with glabrous seeds. We discuss fruit morphologies and potential explanations for the inferred correlations, and suggest that they may be the result of adaptation to different frugivores (birds, larger non-volant animal and primate seed dispersers, respectively).

  18. l-Hydroxyproline and d-Proline Catabolism in Sinorhizobium meliloti

    PubMed Central

    Chen, Siyun; White, Catharine E.; diCenzo, George C.; Zhang, Ye; Stogios, Peter J.; Savchenko, Alexei

    2016-01-01

    ABSTRACT Sinorhizobium meliloti forms N2-fixing root nodules on alfalfa, and as a free-living bacterium, it can grow on a very broad range of substrates, including l-proline and several related compounds, such as proline betaine, trans-4-hydroxy-l-proline (trans-4-l-Hyp), and cis-4-hydroxy-d-proline (cis-4-d-Hyp). Fourteen hyp genes are induced upon growth of S. meliloti on trans-4-l-Hyp, and of those, hypMNPQ encodes an ABC-type trans-4-l-Hyp transporter and hypRE encodes an epimerase that converts trans-4-l-Hyp to cis-4-d-Hyp in the bacterial cytoplasm. Here, we present evidence that the HypO, HypD, and HypH proteins catalyze the remaining steps in which cis-4-d-Hyp is converted to α-ketoglutarate. The HypO protein functions as a d-amino acid dehydrogenase, converting cis-4-d-Hyp to Δ1-pyrroline-4-hydroxy-2-carboxylate, which is deaminated by HypD to α-ketoglutarate semialdehyde and then converted to α-ketoglutarate by HypH. The crystal structure of HypD revealed it to be a member of the N-acetylneuraminate lyase subfamily of the (α/β)8 protein family and is consistent with the known enzymatic mechanism for other members of the group. It was also shown that S. meliloti can catabolize d-proline as both a carbon and a nitrogen source, that d-proline can complement l-proline auxotrophy, and that the catabolism of d-proline is dependent on the hyp cluster. Transport of d-proline involves the HypMNPQ transporter, following which d-proline is converted to Δ1-pyrroline-2-carboxylate (P2C) largely via HypO. The P2C is converted to l-proline through the NADPH-dependent reduction of P2C by the previously uncharacterized HypS protein. Thus, overall, we have now completed detailed genetic and/or biochemical characterization of 9 of the 14 hyp genes. IMPORTANCE Hydroxyproline is abundant in proteins in animal and plant tissues and serves as a carbon and a nitrogen source for bacteria in diverse environments, including the rhizosphere, compost, and the mammalian gut

  19. Proline-induced changes in acetylcholinesterase activity and gene expression in zebrafish brain: reversal by antipsychotic drugs.

    PubMed

    Savio, L E B; Vuaden, F C; Kist, L W; Pereira, T C; Rosemberg, D B; Bogo, M R; Bonan, C D; Wyse, A T S

    2013-10-10

    Hyperprolinemia is an inherited disorder of proline metabolism and hyperprolinemic patients can present neurological manifestations, such as seizures, cognitive dysfunctions, and schizoaffective disorders. However, the mechanisms related to these symptoms are still unclear. In the present study, we evaluated the in vivo and in vitro effects of proline on acetylcholinesterase (AChE) activity and gene expression in the zebrafish brain. For the in vivo studies, animals were exposed at two proline concentrations (1.5 and 3.0mM) during 1h or 7 days (short- or long-term treatments, respectively). For the in vitro assays, different proline concentrations (ranging from 3.0 to 1000 μM) were tested. Long-term proline exposures significantly increased AChE activity for both treated groups when compared to the control (34% and 39%). Moreover, the proline-induced increase on AChE activity was completely reverted by acute administration of antipsychotic drugs (haloperidol and sulpiride), as well as the changes induced in ache expression. When assessed in vitro, proline did not promote significant changes in AChE activity. Altogether, these data indicate that the enzyme responsible for the control of acetylcholine levels might be altered after proline exposure in the adult zebrafish. These findings contribute for better understanding of the pathophysiology of hyperprolinemia and might reinforce the use of the zebrafish as a complementary vertebrate model for studying inborn errors of amino acid metabolism. PMID:23867765

  20. Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress in Arabidopsis thaliana.

    PubMed

    Ben Rejeb, Kilani; Lefebvre-De Vos, Delphine; Le Disquet, Isabel; Leprince, Anne-Sophie; Bord