Joint Energy Supply and Routing Path Selection for Rechargeable Wireless Sensor Networks.
Tang, Liangrui; Cai, Jinqi; Yan, Jiangyu; Zhou, Zhenyu
2018-06-17
The topic of network lifetime has been attracting much research attention because of its importance in prolonging the standing operation of battery-restricted wireless sensor networks, and the rechargeable wireless sensor network has emerged as a promising solution. In this paper, we propose a joint energy supply and routing path selection algorithm to extend the network lifetime based on an initiative power supply. We develop a two-stage energy replenishment strategy to supplement the energy consumption of nodes as much as possible. Furthermore, the influence of charging factors on the selection of next-hop nodes in data routing is considered. The simulation results show that our algorithm effectively prolong the network lifetime, and different demands of network delay and energy consumption can be obtained by dynamically adjusting parameters.
Energy optimization in mobile sensor networks
NASA Astrophysics Data System (ADS)
Yu, Shengwei
Mobile sensor networks are considered to consist of a network of mobile robots, each of which has computation, communication and sensing capabilities. Energy efficiency is a critical issue in mobile sensor networks, especially when mobility (i.e., locomotion control), routing (i.e., communications) and sensing are unique characteristics of mobile robots for energy optimization. This thesis focuses on the problem of energy optimization of mobile robotic sensor networks, and the research results can be extended to energy optimization of a network of mobile robots that monitors the environment, or a team of mobile robots that transports materials from stations to stations in a manufacturing environment. On the energy optimization of mobile robotic sensor networks, our research focuses on the investigation and development of distributed optimization algorithms to exploit the mobility of robotic sensor nodes for network lifetime maximization. In particular, the thesis studies these five problems: 1. Network-lifetime maximization by controlling positions of networked mobile sensor robots based on local information with distributed optimization algorithms; 2. Lifetime maximization of mobile sensor networks with energy harvesting modules; 3. Lifetime maximization using joint design of mobility and routing; 4. Optimal control for network energy minimization; 5. Network lifetime maximization in mobile visual sensor networks. In addressing the first problem, we consider only the mobility strategies of the robotic relay nodes in a mobile sensor network in order to maximize its network lifetime. By using variable substitutions, the original problem is converted into a convex problem, and a variant of the sub-gradient method for saddle-point computation is developed for solving this problem. An optimal solution is obtained by the method. Computer simulations show that mobility of robotic sensors can significantly prolong the lifetime of the whole robotic sensor network while consuming negligible amount of energy for mobility cost. For the second problem, the problem is extended to accommodate mobile robotic nodes with energy harvesting capability, which makes it a non-convex optimization problem. The non-convexity issue is tackled by using the existing sequential convex approximation method, based on which we propose a novel procedure of modified sequential convex approximation that has fast convergence speed. For the third problem, the proposed procedure is used to solve another challenging non-convex problem, which results in utilizing mobility and routing simultaneously in mobile robotic sensor networks to prolong the network lifetime. The results indicate that joint design of mobility and routing has an edge over other methods in prolonging network lifetime, which is also the justification for the use of mobility in mobile sensor networks for energy efficiency purpose. For the fourth problem, we include the dynamics of the robotic nodes in the problem by modeling the networked robotic system using hybrid systems theory. A novel distributed method for the networked hybrid system is used to solve the optimal moving trajectories for robotic nodes and optimal network links, which are not answered by previous approaches. Finally, the fact that mobility is more effective in prolonging network lifetime for a data-intensive network leads us to apply our methods to study mobile visual sensor networks, which are useful in many applications. We investigate the joint design of mobility, data routing, and encoding power to help improving the video quality while maximizing the network lifetime. This study leads to a better understanding of the role mobility can play in data-intensive surveillance sensor networks.
Luo, Hanjiang; Guo, Zhongwen; Wu, Kaishun; Hong, Feng; Feng, Yuan
2009-01-01
Underwater acoustic sensor networks (UWA-SNs) are envisioned to perform monitoring tasks over the large portion of the world covered by oceans. Due to economics and the large area of the ocean, UWA-SNs are mainly sparsely deployed networks nowadays. The limited battery resources is a big challenge for the deployment of such long-term sensor networks. Unbalanced battery energy consumption will lead to early energy depletion of nodes, which partitions the whole networks and impairs the integrity of the monitoring datasets or even results in the collapse of the entire networks. On the contrary, balanced energy dissipation of nodes can prolong the lifetime of such networks. In this paper, we focus on the energy balance dissipation problem of two types of sparsely deployed UWA-SNs: underwater moored monitoring systems and sparsely deployed two-dimensional UWA-SNs. We first analyze the reasons of unbalanced energy consumption in such networks, then we propose two energy balanced strategies to maximize the lifetime of networks both in shallow and deep water. Finally, we evaluate our methods by simulations and the results show that the two strategies can achieve balanced energy consumption per node while at the same time prolong the networks lifetime. PMID:22399970
Gao, Ying; Wkram, Chris Hadri; Duan, Jiajie; Chou, Jarong
2015-01-01
In order to prolong the network lifetime, energy-efficient protocols adapted to the features of wireless sensor networks should be used. This paper explores in depth the nature of heterogeneous wireless sensor networks, and finally proposes an algorithm to address the problem of finding an effective pathway for heterogeneous clustering energy. The proposed algorithm implements cluster head selection according to the degree of energy attenuation during the network’s running and the degree of candidate nodes’ effective coverage on the whole network, so as to obtain an even energy consumption over the whole network for the situation with high degree of coverage. Simulation results show that the proposed clustering protocol has better adaptability to heterogeneous environments than existing clustering algorithms in prolonging the network lifetime. PMID:26690440
Li, Ruiying; Ma, Wenting; Huang, Ning; Kang, Rui
2017-01-01
A sophisticated method for node deployment can efficiently reduce the energy consumption of a Wireless Sensor Network (WSN) and prolong the corresponding network lifetime. Pioneers have proposed many node deployment based lifetime optimization methods for WSNs, however, the retransmission mechanism and the discrete power control strategy, which are widely used in practice and have large effect on the network energy consumption, are often neglected and assumed as a continuous one, respectively, in the previous studies. In this paper, both retransmission and discrete power control are considered together, and a more realistic energy-consumption-based network lifetime model for linear WSNs is provided. Using this model, we then propose a generic deployment-based optimization model that maximizes network lifetime under coverage, connectivity and transmission rate success constraints. The more accurate lifetime evaluation conduces to a longer optimal network lifetime in the realistic situation. To illustrate the effectiveness of our method, both one-tiered and two-tiered uniformly and non-uniformly distributed linear WSNs are optimized in our case studies, and the comparisons between our optimal results and those based on relatively inaccurate lifetime evaluation show the advantage of our method when investigating WSN lifetime optimization problems.
An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks
Salim, Shelly; Moh, Sangman
2016-01-01
A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD) scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead. PMID:27376290
An Energy-Efficient Game-Theory-Based Spectrum Decision Scheme for Cognitive Radio Sensor Networks.
Salim, Shelly; Moh, Sangman
2016-06-30
A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD) scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead.
Multiple-predators-based capture process on complex networks
NASA Astrophysics Data System (ADS)
Ramiz Sharafat, Rajput; Pu, Cunlai; Li, Jie; Chen, Rongbin; Xu, Zhongqi
2017-03-01
The predator/prey (capture) problem is a prototype of many network-related applications. We study the capture process on complex networks by considering multiple predators from multiple sources. In our model, some lions start from multiple sources simultaneously to capture the lamb by biased random walks, which are controlled with a free parameter $\\alpha$. We derive the distribution of the lamb's lifetime and the expected lifetime $\\left\\langle T\\right\\rangle $. Through simulation, we find that the expected lifetime drops substantially with the increasing number of lions. We also study how the underlying topological structure affects the capture process, and obtain that locating on small-degree nodes is better than large-degree nodes to prolong the lifetime of the lamb. Moreover, dense or homogeneous network structures are against the survival of the lamb.
On Prolonging Network Lifetime through Load-Similar Node Deployment in Wireless Sensor Networks
Li, Qiao-Qin; Gong, Haigang; Liu, Ming; Yang, Mei; Zheng, Jun
2011-01-01
This paper is focused on the study of the energy hole problem in the Progressive Multi-hop Rotational Clustered (PMRC)-structure, a highly scalable wireless sensor network (WSN) architecture. Based on an analysis on the traffic load distribution in PMRC-based WSNs, we propose a novel load-similar node distribution strategy combined with the Minimum Overlapping Layers (MOL) scheme to address the energy hole problem in PMRC-based WSNs. In this strategy, sensor nodes are deployed in the network area according to the load distribution. That is, more nodes shall be deployed in the range where the average load is higher, and then the loads among different areas in the sensor network tend to be balanced. Simulation results demonstrate that the load-similar node distribution strategy prolongs network lifetime and reduces the average packet latency in comparison with existing nonuniform node distribution and uniform node distribution strategies. Note that, besides the PMRC structure, the analysis model and the proposed load-similar node distribution strategy are also applicable to other multi-hop WSN structures. PMID:22163809
Mechanisms for Prolonging Network Lifetime in Wireless Sensor Networks
ERIC Educational Resources Information Center
Yang, Yinying
2010-01-01
Sensors are used to monitor and control the physical environment. A Wireless Sensor Network (WSN) is composed of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it [18][5]. Sensor nodes measure various parameters of the environment and transmit data collected to one or more sinks, using…
Time-dependent breakdown of fiber networks: Uncertainty of lifetime
NASA Astrophysics Data System (ADS)
Mattsson, Amanda; Uesaka, Tetsu
2017-05-01
Materials often fail when subjected to stresses over a prolonged period. The time to failure, also called the lifetime, is known to exhibit large variability of many materials, particularly brittle and quasibrittle materials. For example, a coefficient of variation reaches 100% or even more. Its distribution shape is highly skewed toward zero lifetime, implying a large number of premature failures. This behavior contrasts with that of normal strength, which shows a variation of only 4%-10% and a nearly bell-shaped distribution. The fundamental cause of this large and unique variability of lifetime is not well understood because of the complex interplay between stochastic processes taking place on the molecular level and the hierarchical and disordered structure of the material. We have constructed fiber network models, both regular and random, as a paradigm for general material structures. With such networks, we have performed Monte Carlo simulations of creep failure to establish explicit relationships among fiber characteristics, network structures, system size, and lifetime distribution. We found that fiber characteristics have large, sometimes dominating, influences on the lifetime variability of a network. Among the factors investigated, geometrical disorders of the network were found to be essential to explain the large variability and highly skewed shape of the lifetime distribution. With increasing network size, the distribution asymptotically approaches a double-exponential form. The implication of this result is that, so-called "infant mortality," which is often predicted by the Weibull approximation of the lifetime distribution, may not exist for a large system.
Li, Shuo; Peng, Jun; Liu, Weirong; Zhu, Zhengfa; Lin, Kuo-Chi
2013-12-19
Recent research has indicated that using the mobility of the actuator in wireless sensor and actuator networks (WSANs) to achieve mobile data collection can greatly increase the sensor network lifetime. However, mobile data collection may result in unacceptable collection delays in the network if the path of the actuator is too long. Because real-time network applications require meeting data collection delay constraints, planning the path of the actuator is a very important issue to balance the prolongation of the network lifetime and the reduction of the data collection delay. In this paper, a multi-hop routing mobile data collection algorithm is proposed based on dynamic polling point selection with delay constraints to address this issue. The algorithm can actively update the selection of the actuator's polling points according to the sensor nodes' residual energies and their locations while also considering the collection delay constraint. It also dynamically constructs the multi-hop routing trees rooted by these polling points to balance the sensor node energy consumption and the extension of the network lifetime. The effectiveness of the algorithm is validated by simulation.
A network coding based routing protocol for underwater sensor networks.
Wu, Huayang; Chen, Min; Guan, Xin
2012-01-01
Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs). Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR).We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC) comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime.
A Network Coding Based Routing Protocol for Underwater Sensor Networks
Wu, Huayang; Chen, Min; Guan, Xin
2012-01-01
Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs). Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR).We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC) comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime. PMID:22666045
Li, Shuo; Peng, Jun; Liu, Weirong; Zhu, Zhengfa; Lin, Kuo-Chi
2014-01-01
Recent research has indicated that using the mobility of the actuator in wireless sensor and actuator networks (WSANs) to achieve mobile data collection can greatly increase the sensor network lifetime. However, mobile data collection may result in unacceptable collection delays in the network if the path of the actuator is too long. Because real-time network applications require meeting data collection delay constraints, planning the path of the actuator is a very important issue to balance the prolongation of the network lifetime and the reduction of the data collection delay. In this paper, a multi-hop routing mobile data collection algorithm is proposed based on dynamic polling point selection with delay constraints to address this issue. The algorithm can actively update the selection of the actuator's polling points according to the sensor nodes' residual energies and their locations while also considering the collection delay constraint. It also dynamically constructs the multi-hop routing trees rooted by these polling points to balance the sensor node energy consumption and the extension of the network lifetime. The effectiveness of the algorithm is validated by simulation. PMID:24451455
A Power-Optimized Cooperative MAC Protocol for Lifetime Extension in Wireless Sensor Networks.
Liu, Kai; Wu, Shan; Huang, Bo; Liu, Feng; Xu, Zhen
2016-10-01
In wireless sensor networks, in order to satisfy the requirement of long working time of energy-limited nodes, we need to design an energy-efficient and lifetime-extended medium access control (MAC) protocol. In this paper, a node cooperation mechanism that one or multiple nodes with higher channel gain and sufficient residual energy help a sender relay its data packets to its recipient is employed to achieve this objective. We first propose a transmission power optimization algorithm to prolong network lifetime by optimizing the transmission powers of the sender and its cooperative nodes to maximize their minimum residual energy after their data packet transmissions. Based on it, we propose a corresponding power-optimized cooperative MAC protocol. A cooperative node contention mechanism is designed to ensure that the sender can effectively select a group of cooperative nodes with the lowest energy consumption and the best channel quality for cooperative transmissions, thus further improving the energy efficiency. Simulation results show that compared to typical MAC protocol with direct transmissions and energy-efficient cooperative MAC protocol, the proposed cooperative MAC protocol can efficiently improve the energy efficiency and extend the network lifetime.
A Power-Optimized Cooperative MAC Protocol for Lifetime Extension in Wireless Sensor Networks
Liu, Kai; Wu, Shan; Huang, Bo; Liu, Feng; Xu, Zhen
2016-01-01
In wireless sensor networks, in order to satisfy the requirement of long working time of energy-limited nodes, we need to design an energy-efficient and lifetime-extended medium access control (MAC) protocol. In this paper, a node cooperation mechanism that one or multiple nodes with higher channel gain and sufficient residual energy help a sender relay its data packets to its recipient is employed to achieve this objective. We first propose a transmission power optimization algorithm to prolong network lifetime by optimizing the transmission powers of the sender and its cooperative nodes to maximize their minimum residual energy after their data packet transmissions. Based on it, we propose a corresponding power-optimized cooperative MAC protocol. A cooperative node contention mechanism is designed to ensure that the sender can effectively select a group of cooperative nodes with the lowest energy consumption and the best channel quality for cooperative transmissions, thus further improving the energy efficiency. Simulation results show that compared to typical MAC protocol with direct transmissions and energy-efficient cooperative MAC protocol, the proposed cooperative MAC protocol can efficiently improve the energy efficiency and extend the network lifetime. PMID:27706079
An Energy Balanced and Lifetime Extended Routing Protocol for Underwater Sensor Networks.
Wang, Hao; Wang, Shilian; Zhang, Eryang; Lu, Luxi
2018-05-17
Energy limitation is an adverse problem in designing routing protocols for underwater sensor networks (UWSNs). To prolong the network lifetime with limited battery power, an energy balanced and efficient routing protocol, called energy balanced and lifetime extended routing protocol (EBLE), is proposed in this paper. The proposed EBLE not only balances traffic loads according to the residual energy, but also optimizes data transmissions by selecting low-cost paths. Two phases are operated in the EBLE data transmission process: (1) candidate forwarding set selection phase and (2) data transmission phase. In candidate forwarding set selection phase, nodes update candidate forwarding nodes by broadcasting the position and residual energy level information. The cost value of available nodes is calculated and stored in each sensor node. Then in data transmission phase, high residual energy and relatively low-cost paths are selected based on the cost function and residual energy level information. We also introduce detailed analysis of optimal energy consumption in UWSNs. Numerical simulation results on a variety of node distributions and data load distributions prove that EBLE outperforms other routing protocols (BTM, BEAR and direct transmission) in terms of network lifetime and energy efficiency.
Energy efficient strategy for throughput improvement in wireless sensor networks.
Jabbar, Sohail; Minhas, Abid Ali; Imran, Muhammad; Khalid, Shehzad; Saleem, Kashif
2015-01-23
Network lifetime and throughput are one of the prime concerns while designing routing protocols for wireless sensor networks (WSNs). However, most of the existing schemes are either geared towards prolonging network lifetime or improving throughput. This paper presents an energy efficient routing scheme for throughput improvement in WSN. The proposed scheme exploits multilayer cluster design for energy efficient forwarding node selection, cluster heads rotation and both inter- and intra-cluster routing. To improve throughput, we rotate the role of cluster head among various nodes based on two threshold levels which reduces the number of dropped packets. We conducted simulations in the NS2 simulator to validate the performance of the proposed scheme. Simulation results demonstrate the performance efficiency of the proposed scheme in terms of various metrics compared to similar approaches published in the literature.
Energy Efficient Strategy for Throughput Improvement in Wireless Sensor Networks
Jabbar, Sohail; Minhas, Abid Ali; Imran, Muhammad; Khalid, Shehzad; Saleem, Kashif
2015-01-01
Network lifetime and throughput are one of the prime concerns while designing routing protocols for wireless sensor networks (WSNs). However, most of the existing schemes are either geared towards prolonging network lifetime or improving throughput. This paper presents an energy efficient routing scheme for throughput improvement in WSN. The proposed scheme exploits multilayer cluster design for energy efficient forwarding node selection, cluster heads rotation and both inter- and intra-cluster routing. To improve throughput, we rotate the role of cluster head among various nodes based on two threshold levels which reduces the number of dropped packets. We conducted simulations in the NS2 simulator to validate the performance of the proposed scheme. Simulation results demonstrate the performance efficiency of the proposed scheme in terms of various metrics compared to similar approaches published in the literature. PMID:25625902
Li, Ruiying; Liu, Xiaoxi; Xie, Wei; Huang, Ning
2014-12-10
Sensor-deployment-based lifetime optimization is one of the most effective methods used to prolong the lifetime of Wireless Sensor Network (WSN) by reducing the distance-sensitive energy consumption. In this paper, data retransmission, a major consumption factor that is usually neglected in the previous work, is considered. For a homogeneous WSN, monitoring a circular target area with a centered base station, a sensor deployment model based on regular hexagonal grids is analyzed. To maximize the WSN lifetime, optimization models for both uniform and non-uniform deployment schemes are proposed by constraining on coverage, connectivity and success transmission rate. Based on the data transmission analysis in a data gathering cycle, the WSN lifetime in the model can be obtained through quantifying the energy consumption at each sensor location. The results of case studies show that it is meaningful to consider data retransmission in the lifetime optimization. In particular, our investigations indicate that, with the same lifetime requirement, the number of sensors needed in a non-uniform topology is much less than that in a uniform one. Finally, compared with a random scheme, simulation results further verify the advantage of our deployment model.
An Energy-Aware Hybrid ARQ Scheme with Multi-ACKs for Data Sensing Wireless Sensor Networks.
Zhang, Jinhuan; Long, Jun
2017-06-12
Wireless sensor networks (WSNs) are one of the important supporting technologies of edge computing. In WSNs, reliable communications are essential for most applications due to the unreliability of wireless links. In addition, network lifetime is also an important performance metric and needs to be considered in many WSN studies. In the paper, an energy-aware hybrid Automatic Repeat-reQuest protocol (ARQ) scheme is proposed to ensure energy efficiency under the guarantee of network transmission reliability. In the scheme, the source node sends data packets continuously with the correct window size and it does not need to wait for the acknowledgement (ACK) confirmation for each data packet. When the destination receives K data packets, it will return multiple copies of one ACK for confirmation to avoid ACK packet loss. The energy consumption of each node in flat circle network applying the proposed scheme is statistical analyzed and the cases under which it is more energy efficiency than the original scheme is discussed. Moreover, how to select parameters of the scheme is addressed to extend the network lifetime under the constraint of the network reliability. In addition, the energy efficiency of the proposed schemes is evaluated. Simulation results are presented to demonstrate that a node energy consumption reduction could be gained and the network lifetime is prolonged.
Wang, Jin; Li, Bin; Xia, Feng; Kim, Chang-Seob; Kim, Jeong-Uk
2014-08-18
Traffic patterns in wireless sensor networks (WSNs) usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption.
Wang, Jin; Li, Bin; Xia, Feng; Kim, Chang-Seob; Kim, Jeong-Uk
2014-01-01
Traffic patterns in wireless sensor networks (WSNs) usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption. PMID:25196015
An Energy Centric Cluster-Based Routing Protocol for Wireless Sensor Networks.
Hosen, A S M Sanwar; Cho, Gi Hwan
2018-05-11
Clustering is an effective way to prolong the lifetime of a wireless sensor network (WSN). The common approach is to elect cluster heads to take routing and controlling duty, and to periodically rotate each cluster head's role to distribute energy consumption among nodes. However, a significant amount of energy dissipates due to control messages overhead, which results in a shorter network lifetime. This paper proposes an energy-centric cluster-based routing mechanism in WSNs. To begin with, cluster heads are elected based on the higher ranks of the nodes. The rank is defined by residual energy and average distance from the member nodes. With the role of data aggregation and data forwarding, a cluster head acts as a caretaker for cluster-head election in the next round, where the ranks' information are piggybacked along with the local data sending during intra-cluster communication. This reduces the number of control messages for the cluster-head election as well as the cluster formation in detail. Simulation results show that our proposed protocol saves the energy consumption among nodes and achieves a significant improvement in the network lifetime.
An Energy Centric Cluster-Based Routing Protocol for Wireless Sensor Networks
Hosen, A. S. M. Sanwar; Cho, Gi Hwan
2018-01-01
Clustering is an effective way to prolong the lifetime of a wireless sensor network (WSN). The common approach is to elect cluster heads to take routing and controlling duty, and to periodically rotate each cluster head’s role to distribute energy consumption among nodes. However, a significant amount of energy dissipates due to control messages overhead, which results in a shorter network lifetime. This paper proposes an energy-centric cluster-based routing mechanism in WSNs. To begin with, cluster heads are elected based on the higher ranks of the nodes. The rank is defined by residual energy and average distance from the member nodes. With the role of data aggregation and data forwarding, a cluster head acts as a caretaker for cluster-head election in the next round, where the ranks’ information are piggybacked along with the local data sending during intra-cluster communication. This reduces the number of control messages for the cluster-head election as well as the cluster formation in detail. Simulation results show that our proposed protocol saves the energy consumption among nodes and achieves a significant improvement in the network lifetime. PMID:29751663
A Hybrid Lifetime Extended Directional Approach for WBANs
Li, Changle; Yuan, Xiaoming; Yang, Li; Song, Yueyang
2015-01-01
Wireless Body Area Networks (WBANs) can provide real-time and reliable health monitoring, attributing to the human-centered and sensor interoperability properties. WBANs have become a key component of the ubiquitous eHealth (electronic health) revolution that prospers on the basis of information and communication technologies. The prime consideration in WBAN is how to maximize the network lifetime with battery-powered sensor nodes in energy constraint. Novel solutions in Medium Access Control (MAC) protocols are imperative to satisfy the particular BAN scenario and the need of excellent energy efficiency in healthcare applications. In this paper, we propose a hybrid Lifetime Extended Directional Approach (LEDA) MAC protocol based on IEEE 802.15.6 to reduce energy consumption and prolong network lifetime. The LEDA MAC protocol takes full advantages of directional superiority in energy saving that employs multi-beam directional mode in Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) and single-beam directional mode in Time Division Multiple Access (TDMA) for alternative in data reservation and transmission according to the traffic varieties. Moreover, the impacts of some inherent problems of directional antennas such as deafness and hidden terminal problem can be decreased owing to that all nodes generate individual beam according to user priorities designated. Furthermore, LEDA MAC employs a Dynamic Polled Allocation Period (DPAP) for burst data transmissions to increase the network reliability and adaptability. Extensive analysis and simulation results show that the proposed LEDA MAC protocol achieves extended network lifetime with improved performance compared with IEEE 802.15.6. PMID:26556357
Memetic Algorithm-Based Multi-Objective Coverage Optimization for Wireless Sensor Networks
Chen, Zhi; Li, Shuai; Yue, Wenjing
2014-01-01
Maintaining effective coverage and extending the network lifetime as much as possible has become one of the most critical issues in the coverage of WSNs. In this paper, we propose a multi-objective coverage optimization algorithm for WSNs, namely MOCADMA, which models the coverage control of WSNs as the multi-objective optimization problem. MOCADMA uses a memetic algorithm with a dynamic local search strategy to optimize the coverage of WSNs and achieve the objectives such as high network coverage, effective node utilization and more residual energy. In MOCADMA, the alternative solutions are represented as the chromosomes in matrix form, and the optimal solutions are selected through numerous iterations of the evolution process, including selection, crossover, mutation, local enhancement, and fitness evaluation. The experiment and evaluation results show MOCADMA can have good capabilities in maintaining the sensing coverage, achieve higher network coverage while improving the energy efficiency and effectively prolonging the network lifetime, and have a significant improvement over some existing algorithms. PMID:25360579
Memetic algorithm-based multi-objective coverage optimization for wireless sensor networks.
Chen, Zhi; Li, Shuai; Yue, Wenjing
2014-10-30
Maintaining effective coverage and extending the network lifetime as much as possible has become one of the most critical issues in the coverage of WSNs. In this paper, we propose a multi-objective coverage optimization algorithm for WSNs, namely MOCADMA, which models the coverage control of WSNs as the multi-objective optimization problem. MOCADMA uses a memetic algorithm with a dynamic local search strategy to optimize the coverage of WSNs and achieve the objectives such as high network coverage, effective node utilization and more residual energy. In MOCADMA, the alternative solutions are represented as the chromosomes in matrix form, and the optimal solutions are selected through numerous iterations of the evolution process, including selection, crossover, mutation, local enhancement, and fitness evaluation. The experiment and evaluation results show MOCADMA can have good capabilities in maintaining the sensing coverage, achieve higher network coverage while improving the energy efficiency and effectively prolonging the network lifetime, and have a significant improvement over some existing algorithms.
Open-WiSe: a solar powered wireless sensor network platform.
González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur
2012-01-01
Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators.
Open-WiSe: A Solar Powered Wireless Sensor Network Platform
González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur
2012-01-01
Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators. PMID:22969396
Yu, Shidi; Liu, Xiao; Liu, Anfeng; Xiong, Naixue; Cai, Zhiping; Wang, Tian
2018-05-10
Due to the Software Defined Network (SDN) technology, Wireless Sensor Networks (WSNs) are getting wider application prospects for sensor nodes that can get new functions after updating program codes. The issue of disseminating program codes to every node in the network with minimum delay and energy consumption have been formulated and investigated in the literature. The minimum-transmission broadcast (MTB) problem, which aims to reduce broadcast redundancy, has been well studied in WSNs where the broadcast radius is assumed to be fixed in the whole network. In this paper, an Adaption Broadcast Radius-based Code Dissemination (ABRCD) scheme is proposed to reduce delay and improve energy efficiency in duty cycle-based WSNs. In the ABCRD scheme, a larger broadcast radius is set in areas with more energy left, generating more optimized performance than previous schemes. Thus: (1) with a larger broadcast radius, program codes can reach the edge of network from the source in fewer hops, decreasing the number of broadcasts and at the same time, delay. (2) As the ABRCD scheme adopts a larger broadcast radius for some nodes, program codes can be transmitted to more nodes in one broadcast transmission, diminishing the number of broadcasts. (3) The larger radius in the ABRCD scheme causes more energy consumption of some transmitting nodes, but radius enlarging is only conducted in areas with an energy surplus, and energy consumption in the hot-spots can be reduced instead due to some nodes transmitting data directly to sink without forwarding by nodes in the original hot-spot, thus energy consumption can almost reach a balance and network lifetime can be prolonged. The proposed ABRCD scheme first assigns a broadcast radius, which doesn’t affect the network lifetime, to nodes having different distance to the code source, then provides an algorithm to construct a broadcast backbone. In the end, a comprehensive performance analysis and simulation result shows that the proposed ABRCD scheme shows better performance in different broadcast situations. Compared to previous schemes, the transmission delay is reduced by 41.11~78.42%, the number of broadcasts is reduced by 36.18~94.27% and the energy utilization ratio is improved up to 583.42%, while the network lifetime can be prolonged up to 274.99%.
An Adaption Broadcast Radius-Based Code Dissemination Scheme for Low Energy Wireless Sensor Networks
Yu, Shidi; Liu, Xiao; Cai, Zhiping; Wang, Tian
2018-01-01
Due to the Software Defined Network (SDN) technology, Wireless Sensor Networks (WSNs) are getting wider application prospects for sensor nodes that can get new functions after updating program codes. The issue of disseminating program codes to every node in the network with minimum delay and energy consumption have been formulated and investigated in the literature. The minimum-transmission broadcast (MTB) problem, which aims to reduce broadcast redundancy, has been well studied in WSNs where the broadcast radius is assumed to be fixed in the whole network. In this paper, an Adaption Broadcast Radius-based Code Dissemination (ABRCD) scheme is proposed to reduce delay and improve energy efficiency in duty cycle-based WSNs. In the ABCRD scheme, a larger broadcast radius is set in areas with more energy left, generating more optimized performance than previous schemes. Thus: (1) with a larger broadcast radius, program codes can reach the edge of network from the source in fewer hops, decreasing the number of broadcasts and at the same time, delay. (2) As the ABRCD scheme adopts a larger broadcast radius for some nodes, program codes can be transmitted to more nodes in one broadcast transmission, diminishing the number of broadcasts. (3) The larger radius in the ABRCD scheme causes more energy consumption of some transmitting nodes, but radius enlarging is only conducted in areas with an energy surplus, and energy consumption in the hot-spots can be reduced instead due to some nodes transmitting data directly to sink without forwarding by nodes in the original hot-spot, thus energy consumption can almost reach a balance and network lifetime can be prolonged. The proposed ABRCD scheme first assigns a broadcast radius, which doesn’t affect the network lifetime, to nodes having different distance to the code source, then provides an algorithm to construct a broadcast backbone. In the end, a comprehensive performance analysis and simulation result shows that the proposed ABRCD scheme shows better performance in different broadcast situations. Compared to previous schemes, the transmission delay is reduced by 41.11~78.42%, the number of broadcasts is reduced by 36.18~94.27% and the energy utilization ratio is improved up to 583.42%, while the network lifetime can be prolonged up to 274.99%. PMID:29748525
A Game Theoretic Approach for Balancing Energy Consumption in Clustered Wireless Sensor Networks.
Yang, Liu; Lu, Yinzhi; Xiong, Lian; Tao, Yang; Zhong, Yuanchang
2017-11-17
Clustering is an effective topology control method in wireless sensor networks (WSNs), since it can enhance the network lifetime and scalability. To prolong the network lifetime in clustered WSNs, an efficient cluster head (CH) optimization policy is essential to distribute the energy among sensor nodes. Recently, game theory has been introduced to model clustering. Each sensor node is considered as a rational and selfish player which will play a clustering game with an equilibrium strategy. Then it decides whether to act as the CH according to this strategy for a tradeoff between providing required services and energy conservation. However, how to get the equilibrium strategy while maximizing the payoff of sensor nodes has rarely been addressed to date. In this paper, we present a game theoretic approach for balancing energy consumption in clustered WSNs. With our novel payoff function, realistic sensor behaviors can be captured well. The energy heterogeneity of nodes is considered by incorporating a penalty mechanism in the payoff function, so the nodes with more energy will compete for CHs more actively. We have obtained the Nash equilibrium (NE) strategy of the clustering game through convex optimization. Specifically, each sensor node can achieve its own maximal payoff when it makes the decision according to this strategy. Through plenty of simulations, our proposed game theoretic clustering is proved to have a good energy balancing performance and consequently the network lifetime is greatly enhanced.
Residual energy level based clustering routing protocol for wireless sensor networks
NASA Astrophysics Data System (ADS)
Yuan, Xu; Zhong, Fangming; Chen, Zhikui; Yang, Deli
2015-12-01
The wireless sensor networks, which nodes prone to premature death, with unbalanced energy consumption and a short life time, influenced the promotion and application of this technology in internet of things in agriculture. This paper proposes a clustering routing protocol based on the residual energy level (RELCP). RELCP includes three stages: the selection of cluster head, establishment of cluster and data transmission. RELCP considers the remaining energy level and distance to base station, while election of cluster head nodes and data transmitting. Simulation results demonstrate that the protocol can efficiently balance the energy dissipation of all nodes, and prolong the network lifetime.
Xu, Zhezhuang; Chen, Liquan; Liu, Ting; Cao, Lianyang; Chen, Cailian
2015-10-20
Multi-hop data collection in wireless sensor networks (WSNs) is a challenge issue due to the limited energy resource and transmission range of wireless sensors. The hybrid clustering and routing (HCR) strategy has provided an effective solution, which can generate a connected and efficient cluster-based topology for multi-hop data collection in WSNs. However, it suffers from imbalanced energy consumption, which results in the poor performance of the network lifetime. In this paper, we evaluate the energy consumption of HCR and discover an important result: the imbalanced energy consumption generally appears in gradient k = 1, i.e., the nodes that can communicate with the sink directly. Based on this observation, we propose a new protocol called HCR-1, which includes the adaptive relay selection and tunable cost functions to balance the energy consumption. The guideline of setting the parameters in HCR-1 is provided based on simulations. The analytical and numerical results prove that, with minor modification of the topology in Sensors 2015, 15 26584 gradient k = 1, the HCR-1 protocol effectively balances the energy consumption and prolongs the network lifetime.
Yang, Jing; Xu, Mai; Zhao, Wei; Xu, Baoguo
2010-01-01
For monitoring burst events in a kind of reactive wireless sensor networks (WSNs), a multipath routing protocol (MRP) based on dynamic clustering and ant colony optimization (ACO) is proposed. Such an approach can maximize the network lifetime and reduce the energy consumption. An important attribute of WSNs is their limited power supply, and therefore some metrics (such as energy consumption of communication among nodes, residual energy, path length) were considered as very important criteria while designing routing in the MRP. Firstly, a cluster head (CH) is selected among nodes located in the event area according to some parameters, such as residual energy. Secondly, an improved ACO algorithm is applied in the search for multiple paths between the CH and sink node. Finally, the CH dynamically chooses a route to transmit data with a probability that depends on many path metrics, such as energy consumption. The simulation results show that MRP can prolong the network lifetime, as well as balance of energy consumption among nodes and reduce the average energy consumption effectively.
Low Duty-Cycling MAC Protocol for Low Data-Rate Medical Wireless Body Area Networks
Zhang, Chongqing; Wang, Yinglong; Liang, Yongquan; Shu, Minglei; Zhang, Jinquan; Ni, Lina
2017-01-01
Wireless body area networks (WBANs) are severely energy constrained, and how to improve the energy efficiency so as to prolong the network lifetime as long as possible is one of the most important goals of WBAN research. Low data-rate WBANs are promising to cut down the energy consumption and extend the network lifetime. Considering the characteristics and demands of low data-rate WBANs, a low duty-cycling medium access control (MAC) protocol is specially designed for this kind of WBAN in this paper. Longer superframes are exploited to cut down the energy consumed on the transmissions and receptions of redundant beacon frames. Insertion time slots are embedded into the inactive part of a superframe to deliver the frames and satisfy the quality of service (QoS) requirements. The number of the data subsections in an insertion time slot can be adaptively adjusted so as to accommodate low data-rate WBANs with different traffic. Simulation results show that the proposed MAC protocol performs well under the condition of low data-rate monitoring traffic. PMID:28509849
A Study on Wireless Charging for Prolonging the Lifetime of Wireless Sensor Networks.
Tu, Weijian; Xu, Xianghua; Ye, Tingcong; Cheng, Zongmao
2017-07-04
Wireless charging is an important issue in wireless sensor networks, since it can provide an emerging and effective solution in the absence of other power supplies. The state-of-the-art methods employ a mobile car and a predefined moving path to charge the sensor nodes in the network. Previous studies only consider a factor of the network (i.e., residual energy of sensor node) as a constraint to design the wireless charging strategy. However, other factors, such as the travelled distance of the mobile car, can also affect the effectiveness of wireless charging strategy. In this work, we study wireless charging strategy based on the analysis of a combination of two factors, including the residual energy of sensor nodes and the travelled distance of the charging car. Firstly, we theoretically analyze the limited size of the sensor network to match the capability of a charging car. Then, the networked factors are selected as the weights of traveling salesman problem (TSP) to design the moving path of the charging car. Thirdly, the charging time of each sensor node is computed based on the linear programming problem for the charging car. Finally, a charging period for the network is studied. The experimental results show that the proposed approach can significantly maximize the lifetime of the wireless sensor network.
Synaptic tagging, evaluation of memories, and the distal reward problem.
Päpper, Marc; Kempter, Richard; Leibold, Christian
2011-01-01
Long-term synaptic plasticity exhibits distinct phases. The synaptic tagging hypothesis suggests an early phase in which synapses are prepared, or "tagged," for protein capture, and a late phase in which those proteins are integrated into the synapses to achieve memory consolidation. The synapse specificity of the tags is consistent with conventional neural network models of associative memory. Memory consolidation through protein synthesis, however, is neuron specific, and its functional role in those models has not been assessed. Here, using a theoretical network model, we test the tagging hypothesis on its potential to prolong memory lifetimes in an online-learning paradigm. We find that protein synthesis, though not synapse specific, prolongs memory lifetimes if it is used to evaluate memory items on a cellular level. In our model we assume that only "important" memory items evoke protein synthesis such that these become more stable than "unimportant" items, which do not evoke protein synthesis. The network model comprises an equilibrium distribution of synaptic states that is very susceptible to the storage of new items: Most synapses are in a state in which they are plastic and can be changed easily, whereas only those synapses that are essential for the retrieval of the important memory items are in the stable late phase. The model can solve the distal reward problem, where the initial exposure of a memory item and its evaluation are temporally separated. Synaptic tagging hence provides a viable mechanism to consolidate and evaluate memories on a synaptic basis.
Chen, Xi; Xu, Yixuan; Liu, Anfeng
2017-04-19
High transmission reliability, energy efficiency, and long lifetime are pivotal issues for wireless body area networks (WBANs. However, these performance metrics are not independent of each other, making it hard to obtain overall improvements through optimizing one single aspect. Therefore, a Cross Layer Design Optimal (CLDO) scheme is proposed to simultaneously optimize transmission reliability, energy efficiency, and lifetime of WBANs from several layers. Firstly, due to the fact that the transmission power of nodes directly influences the reliability of links, the optimized transmission power of different nodes is deduced, which is able to maximize energy efficiency in theory under the premise that requirements on delay and jitter are fulfilled. Secondly, a relay decision algorithm is proposed to choose optimized relay nodes. Using this algorithm, nodes will choose relay nodes that ensure a balance of network energy consumption, provided that all nodes transmit with optimized transmission power and the same packet size. Thirdly, the energy consumption of nodes is still unbalanced even with optimized transmission power because of their different locations in the topology of the network. In addition, packet size also has an impact on final performance metrics. Therefore, a synthesized cross layer method for optimization is proposed. With this method, the transmission power of nodes with more residual energy will be enhanced while suitable packet size is determined for different links in the network, leading to further improvements in the WBAN system. Both our comprehensive theoretical analysis and experimental results indicate that the performance of our proposed scheme is better than reported in previous studies. Relative to the relay selection and power control game (RSPCG) scheme, the CLDO scheme can enhance transmission reliability by more than 44.6% and prolong the lifetime by as much as 33.2%.
Chen, Xi; Xu, Yixuan; Liu, Anfeng
2017-01-01
High transmission reliability, energy efficiency, and long lifetime are pivotal issues for wireless body area networks (WBANs). However, these performance metrics are not independent of each other, making it hard to obtain overall improvements through optimizing one single aspect. Therefore, a Cross Layer Design Optimal (CLDO) scheme is proposed to simultaneously optimize transmission reliability, energy efficiency, and lifetime of WBANs from several layers. Firstly, due to the fact that the transmission power of nodes directly influences the reliability of links, the optimized transmission power of different nodes is deduced, which is able to maximize energy efficiency in theory under the premise that requirements on delay and jitter are fulfilled. Secondly, a relay decision algorithm is proposed to choose optimized relay nodes. Using this algorithm, nodes will choose relay nodes that ensure a balance of network energy consumption, provided that all nodes transmit with optimized transmission power and the same packet size. Thirdly, the energy consumption of nodes is still unbalanced even with optimized transmission power because of their different locations in the topology of the network. In addition, packet size also has an impact on final performance metrics. Therefore, a synthesized cross layer method for optimization is proposed. With this method, the transmission power of nodes with more residual energy will be enhanced while suitable packet size is determined for different links in the network, leading to further improvements in the WBAN system. Both our comprehensive theoretical analysis and experimental results indicate that the performance of our proposed scheme is better than reported in previous studies. Relative to the relay selection and power control game (RSPCG) scheme, the CLDO scheme can enhance transmission reliability by more than 44.6% and prolong the lifetime by as much as 33.2%. PMID:28422062
IMHRP: Improved Multi-Hop Routing Protocol for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Huang, Jianhua; Ruan, Danwei; Hong, Yadong; Zhao, Ziming; Zheng, Hong
2017-10-01
Wireless sensor network (WSN) is a self-organizing system formed by a large number of low-cost sensor nodes through wireless communication. Sensor nodes collect environmental information and transmit it to the base station (BS). Sensor nodes usually have very limited battery energy. The batteries cannot be charged or replaced. Therefore, it is necessary to design an energy efficient routing protocol to maximize the network lifetime. This paper presents an improved multi-hop routing protocol (IMHRP) for homogeneous networks. In the IMHRP protocol, based on the distances to the BS, the CH nodes are divided into internal CH nodes and external CH nodes. The set-up phase of the protocol is based on the LEACH protocol and the minimum distance between CH nodes are limited to a special constant distance, so a more uniform distribution of CH nodes is achieved. In the steady-state phase, the routes of different CH nodes are created on the basis of the distances between the CH nodes. The energy efficiency of communication can be maximized. The simulation results show that the proposed algorithm can more effectively reduce the energy consumption of each round and prolong the network lifetime compared with LEACH protocol and MHT protocol.
Sefuba, Maria; Walingo, Tom; Takawira, Fambirai
2015-09-18
This paper presents an Energy Efficient Medium Access Control (MAC) protocol for clustered wireless sensor networks that aims to improve energy efficiency and delay performance. The proposed protocol employs an adaptive cross-layer intra-cluster scheduling and an inter-cluster relay selection diversity. The scheduling is based on available data packets and remaining energy level of the source node (SN). This helps to minimize idle listening on nodes without data to transmit as well as reducing control packet overhead. The relay selection diversity is carried out between clusters, by the cluster head (CH), and the base station (BS). The diversity helps to improve network reliability and prolong the network lifetime. Relay selection is determined based on the communication distance, the remaining energy and the channel quality indicator (CQI) for the relay cluster head (RCH). An analytical framework for energy consumption and transmission delay for the proposed MAC protocol is presented in this work. The performance of the proposed MAC protocol is evaluated based on transmission delay, energy consumption, and network lifetime. The results obtained indicate that the proposed MAC protocol provides improved performance than traditional cluster based MAC protocols.
A Distance-based Energy Aware Routing algorithm for wireless sensor networks.
Wang, Jin; Kim, Jeong-Uk; Shu, Lei; Niu, Yu; Lee, Sungyoung
2010-01-01
Energy efficiency and balancing is one of the primary challenges for wireless sensor networks (WSNs) since the tiny sensor nodes cannot be easily recharged once they are deployed. Up to now, many energy efficient routing algorithms or protocols have been proposed with techniques like clustering, data aggregation and location tracking etc. However, many of them aim to minimize parameters like total energy consumption, latency etc., which cause hotspot nodes and partitioned network due to the overuse of certain nodes. In this paper, a Distance-based Energy Aware Routing (DEAR) algorithm is proposed to ensure energy efficiency and energy balancing based on theoretical analysis of different energy and traffic models. During the routing process, we consider individual distance as the primary parameter in order to adjust and equalize the energy consumption among involved sensors. The residual energy is also considered as a secondary factor. In this way, all the intermediate nodes will consume their energy at similar rate, which maximizes network lifetime. Simulation results show that the DEAR algorithm can reduce and balance the energy consumption for all sensor nodes so network lifetime is greatly prolonged compared to other routing algorithms.
Sefuba, Maria; Walingo, Tom; Takawira, Fambirai
2015-01-01
This paper presents an Energy Efficient Medium Access Control (MAC) protocol for clustered wireless sensor networks that aims to improve energy efficiency and delay performance. The proposed protocol employs an adaptive cross-layer intra-cluster scheduling and an inter-cluster relay selection diversity. The scheduling is based on available data packets and remaining energy level of the source node (SN). This helps to minimize idle listening on nodes without data to transmit as well as reducing control packet overhead. The relay selection diversity is carried out between clusters, by the cluster head (CH), and the base station (BS). The diversity helps to improve network reliability and prolong the network lifetime. Relay selection is determined based on the communication distance, the remaining energy and the channel quality indicator (CQI) for the relay cluster head (RCH). An analytical framework for energy consumption and transmission delay for the proposed MAC protocol is presented in this work. The performance of the proposed MAC protocol is evaluated based on transmission delay, energy consumption, and network lifetime. The results obtained indicate that the proposed MAC protocol provides improved performance than traditional cluster based MAC protocols. PMID:26393608
Simple Random Sampling-Based Probe Station Selection for Fault Detection in Wireless Sensor Networks
Huang, Rimao; Qiu, Xuesong; Rui, Lanlan
2011-01-01
Fault detection for wireless sensor networks (WSNs) has been studied intensively in recent years. Most existing works statically choose the manager nodes as probe stations and probe the network at a fixed frequency. This straightforward solution leads however to several deficiencies. Firstly, by only assigning the fault detection task to the manager node the whole network is out of balance, and this quickly overloads the already heavily burdened manager node, which in turn ultimately shortens the lifetime of the whole network. Secondly, probing with a fixed frequency often generates too much useless network traffic, which results in a waste of the limited network energy. Thirdly, the traditional algorithm for choosing a probing node is too complicated to be used in energy-critical wireless sensor networks. In this paper, we study the distribution characters of the fault nodes in wireless sensor networks, validate the Pareto principle that a small number of clusters contain most of the faults. We then present a Simple Random Sampling-based algorithm to dynamic choose sensor nodes as probe stations. A dynamic adjusting rule for probing frequency is also proposed to reduce the number of useless probing packets. The simulation experiments demonstrate that the algorithm and adjusting rule we present can effectively prolong the lifetime of a wireless sensor network without decreasing the fault detected rate. PMID:22163789
Huang, Rimao; Qiu, Xuesong; Rui, Lanlan
2011-01-01
Fault detection for wireless sensor networks (WSNs) has been studied intensively in recent years. Most existing works statically choose the manager nodes as probe stations and probe the network at a fixed frequency. This straightforward solution leads however to several deficiencies. Firstly, by only assigning the fault detection task to the manager node the whole network is out of balance, and this quickly overloads the already heavily burdened manager node, which in turn ultimately shortens the lifetime of the whole network. Secondly, probing with a fixed frequency often generates too much useless network traffic, which results in a waste of the limited network energy. Thirdly, the traditional algorithm for choosing a probing node is too complicated to be used in energy-critical wireless sensor networks. In this paper, we study the distribution characters of the fault nodes in wireless sensor networks, validate the Pareto principle that a small number of clusters contain most of the faults. We then present a Simple Random Sampling-based algorithm to dynamic choose sensor nodes as probe stations. A dynamic adjusting rule for probing frequency is also proposed to reduce the number of useless probing packets. The simulation experiments demonstrate that the algorithm and adjusting rule we present can effectively prolong the lifetime of a wireless sensor network without decreasing the fault detected rate.
A Game Theoretic Approach for Balancing Energy Consumption in Clustered Wireless Sensor Networks
Lu, Yinzhi; Xiong, Lian; Tao, Yang; Zhong, Yuanchang
2017-01-01
Clustering is an effective topology control method in wireless sensor networks (WSNs), since it can enhance the network lifetime and scalability. To prolong the network lifetime in clustered WSNs, an efficient cluster head (CH) optimization policy is essential to distribute the energy among sensor nodes. Recently, game theory has been introduced to model clustering. Each sensor node is considered as a rational and selfish player which will play a clustering game with an equilibrium strategy. Then it decides whether to act as the CH according to this strategy for a tradeoff between providing required services and energy conservation. However, how to get the equilibrium strategy while maximizing the payoff of sensor nodes has rarely been addressed to date. In this paper, we present a game theoretic approach for balancing energy consumption in clustered WSNs. With our novel payoff function, realistic sensor behaviors can be captured well. The energy heterogeneity of nodes is considered by incorporating a penalty mechanism in the payoff function, so the nodes with more energy will compete for CHs more actively. We have obtained the Nash equilibrium (NE) strategy of the clustering game through convex optimization. Specifically, each sensor node can achieve its own maximal payoff when it makes the decision according to this strategy. Through plenty of simulations, our proposed game theoretic clustering is proved to have a good energy balancing performance and consequently the network lifetime is greatly enhanced. PMID:29149075
Cross-layer cluster-based energy-efficient protocol for wireless sensor networks.
Mammu, Aboobeker Sidhik Koyamparambil; Hernandez-Jayo, Unai; Sainz, Nekane; de la Iglesia, Idoia
2015-04-09
Recent developments in electronics and wireless communications have enabled the improvement of low-power and low-cost wireless sensors networks (WSNs). One of the most important challenges in WSNs is to increase the network lifetime due to the limited energy capacity of the network nodes. Another major challenge in WSNs is the hot spots that emerge as locations under heavy traffic load. Nodes in such areas quickly drain energy resources, leading to disconnection in network services. In such an environment, cross-layer cluster-based energy-efficient algorithms (CCBE) can prolong the network lifetime and energy efficiency. CCBE is based on clustering the nodes to different hexagonal structures. A hexagonal cluster consists of cluster members (CMs) and a cluster head (CH). The CHs are selected from the CMs based on nodes near the optimal CH distance and the residual energy of the nodes. Additionally, the optimal CH distance that links to optimal energy consumption is derived. To balance the energy consumption and the traffic load in the network, the CHs are rotated among all CMs. In WSNs, energy is mostly consumed during transmission and reception. Transmission collisions can further decrease the energy efficiency. These collisions can be avoided by using a contention-free protocol during the transmission period. Additionally, the CH allocates slots to the CMs based on their residual energy to increase sleep time. Furthermore, the energy consumption of CH can be further reduced by data aggregation. In this paper, we propose a data aggregation level based on the residual energy of CH and a cost-aware decision scheme for the fusion of data. Performance results show that the CCBE scheme performs better in terms of network lifetime, energy consumption and throughput compared to low-energy adaptive clustering hierarchy (LEACH) and hybrid energy-efficient distributed clustering (HEED).
A Study on Wireless Charging for Prolonging the Lifetime of Wireless Sensor Networks
Tu, Weijian; Xu, Xianghua; Ye, Tingcong; Cheng, Zongmao
2017-01-01
Wireless charging is an important issue in wireless sensor networks, since it can provide an emerging and effective solution in the absence of other power supplies. The state-of-the-art methods employ a mobile car and a predefined moving path to charge the sensor nodes in the network. Previous studies only consider a factor of the network (i.e., residual energy of sensor node) as a constraint to design the wireless charging strategy. However, other factors, such as the travelled distance of the mobile car, can also affect the effectiveness of wireless charging strategy. In this work, we study wireless charging strategy based on the analysis of a combination of two factors, including the residual energy of sensor nodes and the travelled distance of the charging car. Firstly, we theoretically analyze the limited size of the sensor network to match the capability of a charging car. Then, the networked factors are selected as the weights of traveling salesman problem (TSP) to design the moving path of the charging car. Thirdly, the charging time of each sensor node is computed based on the linear programming problem for the charging car. Finally, a charging period for the network is studied. The experimental results show that the proposed approach can significantly maximize the lifetime of the wireless sensor network. PMID:28677639
An energy-efficient data gathering protocol in large wireless sensor network
NASA Astrophysics Data System (ADS)
Wang, Yamin; Zhang, Ruihua; Tao, Shizhong
2006-11-01
Wireless sensor network consisting of a large number of small sensors with low-power transceiver can be an effective tool for gathering data in a variety of environment. The collected data must be transmitted to the base station for further processing. Since a network consists of sensors with limited battery energy, the method for data gathering and routing must be energy efficient in order to prolong the lifetime of the network. In this paper, we presented an energy-efficient data gathering protocol in wireless sensor network. The new protocol used data fusion technology clusters nodes into groups and builds a chain among the cluster heads according to a hybrid of the residual energy and distance to the base station. Results in stochastic geometry are used to derive the optimum parameter of our algorithm that minimizes the total energy spent in the network. Simulation results show performance superiority of the new protocol.
Chen, Qing; Zhang, Jinxiu; Hu, Ze
2017-01-01
This article investigates the dynamic topology control problem of satellite cluster networks (SCNs) in Earth observation (EO) missions by applying a novel metric of stability for inter-satellite links (ISLs). The properties of the periodicity and predictability of satellites’ relative position are involved in the link cost metric which is to give a selection criterion for choosing the most reliable data routing paths. Also, a cooperative work model with reliability is proposed for the situation of emergency EO missions. Based on the link cost metric and the proposed reliability model, a reliability assurance topology control algorithm and its corresponding dynamic topology control (RAT) strategy are established to maximize the stability of data transmission in the SCNs. The SCNs scenario is tested through some numeric simulations of the topology stability of average topology lifetime and average packet loss rate. Simulation results show that the proposed reliable strategy applied in SCNs significantly improves the data transmission performance and prolongs the average topology lifetime. PMID:28241474
Chen, Qing; Zhang, Jinxiu; Hu, Ze
2017-02-23
This article investigates the dynamic topology control problemof satellite cluster networks (SCNs) in Earth observation (EO) missions by applying a novel metric of stability for inter-satellite links (ISLs). The properties of the periodicity and predictability of satellites' relative position are involved in the link cost metric which is to give a selection criterion for choosing the most reliable data routing paths. Also, a cooperative work model with reliability is proposed for the situation of emergency EO missions. Based on the link cost metric and the proposed reliability model, a reliability assurance topology control algorithm and its corresponding dynamic topology control (RAT) strategy are established to maximize the stability of data transmission in the SCNs. The SCNs scenario is tested through some numeric simulations of the topology stability of average topology lifetime and average packet loss rate. Simulation results show that the proposed reliable strategy applied in SCNs significantly improves the data transmission performance and prolongs the average topology lifetime.
NASA Astrophysics Data System (ADS)
Zheng, C. H.; Xu, G. Q.; Park, Y. I.; Lim, W. S.; Cha, S. W.
2014-02-01
The lifetime of fuel cell stacks is a major issue currently, especially for automotive applications. In order to take into account the lifetime of fuel cell stacks while considering the fuel consumption minimization in fuel cell hybrid vehicles (FCHVs), a Pontryagin's Minimum Principle (PMP)-based power management strategy is proposed in this research. This strategy has the effect of prolonging the lifetime of fuel cell stacks. However, there is a tradeoff between the fuel cell stack lifetime and the fuel consumption when this strategy is applied to an FCHV. Verifying the positive economic influence of this strategy is necessary in order to demonstrate its superiority. In this research, the economic influence of the proposed strategy is assessed according to an evaluating cost which is dependent on the fuel cell stack cost, the hydrogen cost, the fuel cell stack lifetime, and the lifetime prolonging impact on the fuel cell stack. Simulation results derived from the proposed power management strategy are also used to evaluate the economic influence. As a result, the positive economic influence of the proposed PMP-based power management strategy is proved for both current and future FCHVs.
Improvement of the SEP protocol based on community structure of node degree
NASA Astrophysics Data System (ADS)
Li, Donglin; Wei, Suyuan
2017-05-01
Analyzing the Stable election protocol (SEP) in wireless sensor networks and aiming at the problem of inhomogeneous cluster-heads distribution and unreasonable cluster-heads selectivity and single hop transmission in the SEP, a SEP Protocol based on community structure of node degree (SEP-CSND) is proposed. In this algorithm, network node deployed by using grid deployment model, and the connection between nodes established by setting up the communication threshold. The community structure constructed by node degree, then cluster head is elected in the community structure. On the basis of SEP, the node's residual energy and node degree is added in cluster-heads election. The information is transmitted with mode of multiple hops between network nodes. The simulation experiments showed that compared to the classical LEACH and SEP, this algorithm balances the energy consumption of the entire network and significantly prolongs network lifetime.
Mi, Shichao; Han, Hui; Chen, Cailian; Yan, Jian; Guan, Xinping
2016-02-19
Heterogeneous wireless sensor networks (HWSNs) can achieve more tasks and prolong the network lifetime. However, they are vulnerable to attacks from the environment or malicious nodes. This paper is concerned with the issues of a consensus secure scheme in HWSNs consisting of two types of sensor nodes. Sensor nodes (SNs) have more computation power, while relay nodes (RNs) with low power can only transmit information for sensor nodes. To address the security issues of distributed estimation in HWSNs, we apply the heterogeneity of responsibilities between the two types of sensors and then propose a parameter adjusted-based consensus scheme (PACS) to mitigate the effect of the malicious node. Finally, the convergence property is proven to be guaranteed, and the simulation results validate the effectiveness and efficiency of PACS.
Joint Resource Optimization for Cognitive Sensor Networks with SWIPT-Enabled Relay.
Lu, Weidang; Lin, Yuanrong; Peng, Hong; Nan, Tian; Liu, Xin
2017-09-13
Energy-constrained wireless networks, such as wireless sensor networks (WSNs), are usually powered by fixed energy supplies (e.g., batteries), which limits the operation time of networks. Simultaneous wireless information and power transfer (SWIPT) is a promising technique to prolong the lifetime of energy-constrained wireless networks. This paper investigates the performance of an underlay cognitive sensor network (CSN) with SWIPT-enabled relay node. In the CSN, the amplify-and-forward (AF) relay sensor node harvests energy from the ambient radio-frequency (RF) signals using power splitting-based relaying (PSR) protocol. Then, it helps forward the signal of source sensor node (SSN) to the destination sensor node (DSN) by using the harvested energy. We study the joint resource optimization including the transmit power and power splitting ratio to maximize CSN's achievable rate with the constraint that the interference caused by the CSN to the primary users (PUs) is within the permissible threshold. Simulation results show that the performance of our proposed joint resource optimization can be significantly improved.
GTRF: a game theory approach for regulating node behavior in real-time wireless sensor networks.
Lin, Chi; Wu, Guowei; Pirozmand, Poria
2015-06-04
The selfish behaviors of nodes (or selfish nodes) cause packet loss, network congestion or even void regions in real-time wireless sensor networks, which greatly decrease the network performance. Previous methods have focused on detecting selfish nodes or avoiding selfish behavior, but little attention has been paid to regulating selfish behavior. In this paper, a Game Theory-based Real-time & Fault-tolerant (GTRF) routing protocol is proposed. GTRF is composed of two stages. In the first stage, a game theory model named VA is developed to regulate nodes' behaviors and meanwhile balance energy cost. In the second stage, a jumping transmission method is adopted, which ensures that real-time packets can be successfully delivered to the sink before a specific deadline. We prove that GTRF theoretically meets real-time requirements with low energy cost. Finally, extensive simulations are conducted to demonstrate the performance of our scheme. Simulation results show that GTRF not only balances the energy cost of the network, but also prolongs network lifetime.
Performance Optimization of Priority Assisted CSMA/CA Mechanism of 802.15.6 under Saturation Regime
Shakir, Mustafa; Rehman, Obaid Ur; Rahim, Mudassir; Alrajeh, Nabil; Khan, Zahoor Ali; Khan, Mahmood Ashraf; Niaz, Iftikhar Azim; Javaid, Nadeem
2016-01-01
Due to the recent development in the field of Wireless Sensor Networks (WSNs), the Wireless Body Area Networks (WBANs) have become a major area of interest for the developers and researchers. Human body exhibits postural mobility due to which distance variation occurs and the status of connections amongst sensors change time to time. One of the major requirements of WBAN is to prolong the network lifetime without compromising on other performance measures, i.e., delay, throughput and bandwidth efficiency. Node prioritization is one of the possible solutions to obtain optimum performance in WBAN. IEEE 802.15.6 CSMA/CA standard splits the nodes with different user priorities based on Contention Window (CW) size. Smaller CW size is assigned to higher priority nodes. This standard helps to reduce delay, however, it is not energy efficient. In this paper, we propose a hybrid node prioritization scheme based on IEEE 802.15.6 CSMA/CA to reduce energy consumption and maximize network lifetime. In this scheme, optimum performance is achieved by node prioritization based on CW size as well as power in respective user priority. Our proposed scheme reduces the average back off time for channel access due to CW based prioritization. Additionally, power based prioritization for a respective user priority helps to minimize required number of retransmissions. Furthermore, we also compare our scheme with IEEE 802.15.6 CSMA/CA standard (CW assisted node prioritization) and power assisted node prioritization under postural mobility in WBAN. Mathematical expressions are derived to determine the accurate analytical model for throughput, delay, bandwidth efficiency, energy consumption and life time for each node prioritization scheme. With the intention of analytical model validation, we have performed the simulations in OMNET++/MIXIM framework. Analytical and simulation results show that our proposed hybrid node prioritization scheme outperforms other node prioritization schemes in terms of average network delay, average throughput, average bandwidth efficiency and network lifetime. PMID:27598167
DCBRP: a deterministic chain-based routing protocol for wireless sensor networks.
Marhoon, Haydar Abdulameer; Mahmuddin, M; Nor, Shahrudin Awang
2016-01-01
Wireless sensor networks (WSNs) are a promising area for both researchers and industry because of their various applications The sensor node expends the majority of its energy on communication with other nodes. Therefore, the routing protocol plays an important role in delivering network data while minimizing energy consumption as much as possible. The chain-based routing approach is superior to other approaches. However, chain-based routing protocols still expend substantial energy in the Chain Head (CH) node. In addition, these protocols also have the bottleneck issues. A novel routing protocol which is Deterministic Chain-Based Routing Protocol (DCBRP). DCBRP consists of three mechanisms: Backbone Construction Mechanism, Chain Head Selection (CHS), and the Next Hop Connection Mechanism. The CHS mechanism is presented in detail, and it is evaluated through comparison with the CCM and TSCP using an ns-3 simulator. It show that DCBRP outperforms both CCM and TSCP in terms of end-to-end delay by 19.3 and 65%, respectively, CH energy consumption by 18.3 and 23.0%, respectively, overall energy consumption by 23.7 and 31.4%, respectively, network lifetime by 22 and 38%, respectively, and the energy*delay metric by 44.85 and 77.54%, respectively. DCBRP can be used in any deterministic node deployment applications, such as smart cities or smart agriculture, to reduce energy depletion and prolong the lifetimes of WSNs.
Node Redeployment Algorithm Based on Stratified Connected Tree for Underwater Sensor Networks
Liu, Jun; Jiang, Peng; Wu, Feng; Yu, Shanen; Song, Chunyue
2016-01-01
During the underwater sensor networks (UWSNs) operation, node drift with water environment causes network topology changes. Periodic node location examination and adjustment are needed to maintain good network monitoring quality as long as possible. In this paper, a node redeployment algorithm based on stratified connected tree for UWSNs is proposed. At every network adjustment moment, self-examination and adjustment on node locations are performed firstly. If a node is outside the monitored space, it returns to the last location recorded in its memory along straight line. Later, the network topology is stratified into a connected tree that takes the sink node as the root node by broadcasting ready information level by level, which can improve the network connectivity rate. Finally, with synthetically considering network coverage and connectivity rates, and node movement distance, the sink node performs centralized optimization on locations of leaf nodes in the stratified connected tree. Simulation results show that the proposed redeployment algorithm can not only keep the number of nodes in the monitored space as much as possible and maintain good network coverage and connectivity rates during network operation, but also reduce node movement distance during node redeployment and prolong the network lifetime. PMID:28029124
Kong, Lingping; Liu, Gang; Gong, Jue; Hu, Qingyang; Schaller, Richard D.; Dera, Przemyslaw; Zhang, Dongzhou; Liu, Zhenxian; Yang, Wenge; Zhu, Kai; Tang, Yuzhao; Wang, Chuanyi; Wei, Su-Huai; Xu, Tao; Mao, Ho-kwang
2016-01-01
The organic–inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley–Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to ∼100% increase) under mild pressures at ∼0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing any adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon–electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance. PMID:27444014
An Energy-Efficient Underground Localization System Based on Heterogeneous Wireless Networks
Yuan, Yazhou; Chen, Cailian; Guan, Xinping; Yang, Qiuling
2015-01-01
A precision positioning system with energy efficiency is of great necessity for guaranteeing personnel safety in underground mines. The location information of the miners' should be transmitted to the control center timely and reliably; therefore, a heterogeneous network with the backbone based on high speed Industrial Ethernet is deployed. Since the mobile wireless nodes are working in an irregular tunnel, a specific wireless propagation model cannot fit all situations. In this paper, an underground localization system is designed to enable the adaptation to kinds of harsh tunnel environments, but also to reduce the energy consumption and thus prolong the lifetime of the network. Three key techniques are developed and implemented to improve the system performance, including a step counting algorithm with accelerometers, a power control algorithm and an adaptive packets scheduling scheme. The simulation study and experimental results show the effectiveness of the proposed algorithms and the implementation. PMID:26016918
Improved Scheduling Mechanisms for Synchronous Information and Energy Transmission.
Qin, Danyang; Yang, Songxiang; Zhang, Yan; Ma, Jingya; Ding, Qun
2017-06-09
Wireless energy collecting technology can effectively reduce the network time overhead and prolong the wireless sensor network (WSN) lifetime. However, the traditional energy collecting technology cannot achieve the balance between ergodic channel capacity and average collected energy. In order to solve the problem of the network transmission efficiency and the limited energy of wireless devices, three improved scheduling mechanisms are proposed: improved signal noise ratio (SNR) scheduling mechanism (IS2M), improved N-SNR scheduling mechanism (INS2M) and an improved Equal Throughput scheduling mechanism (IETSM) for different channel conditions to improve the whole network performance. Meanwhile, the average collected energy of single users and the ergodic channel capacity of three scheduling mechanisms can be obtained through the order statistical theory in Rayleig, Ricean, Nakagami- m and Weibull fading channels. It is concluded that the proposed scheduling mechanisms can achieve better balance between energy collection and data transmission, so as to provide a new solution to realize synchronous information and energy transmission for WSNs.
NASA Astrophysics Data System (ADS)
Vadivel, R.; Bhaskaran, V. Murali
2010-10-01
The main reason for packet loss in ad hoc networks is the link failure or node failure. In order to increase the path stability, it is essential to distinguish and moderate the failures. By knowing individual link stability along a path, path stability can be identified. In this paper, we develop an adaptive reliable routing protocol using combined link stability estimation for mobile ad hoc networks. The main objective of this protocol is to determine a Quality of Service (QoS) path along with prolonging the network life time and to reduce the packet loss. We calculate a combined metric for a path based on the parameters Link Expiration Time, Node Remaining Energy and Node Velocity and received signal strength to predict the link stability or lifetime. Then, a bypass route is established to retransmit the lost data, when a link failure occurs. By simulation results, we show that the proposed reliable routing protocol achieves high delivery ratio with reduced delay and packet drop.
Improved Scheduling Mechanisms for Synchronous Information and Energy Transmission
Qin, Danyang; Yang, Songxiang; Zhang, Yan; Ma, Jingya; Ding, Qun
2017-01-01
Wireless energy collecting technology can effectively reduce the network time overhead and prolong the wireless sensor network (WSN) lifetime. However, the traditional energy collecting technology cannot achieve the balance between ergodic channel capacity and average collected energy. In order to solve the problem of the network transmission efficiency and the limited energy of wireless devices, three improved scheduling mechanisms are proposed: improved signal noise ratio (SNR) scheduling mechanism (IS2M), improved N-SNR scheduling mechanism (INS2M) and an improved Equal Throughput scheduling mechanism (IETSM) for different channel conditions to improve the whole network performance. Meanwhile, the average collected energy of single users and the ergodic channel capacity of three scheduling mechanisms can be obtained through the order statistical theory in Rayleig, Ricean, Nakagami-m and Weibull fading channels. It is concluded that the proposed scheduling mechanisms can achieve better balance between energy collection and data transmission, so as to provide a new solution to realize synchronous information and energy transmission for WSNs. PMID:28598395
Rodrigues, Joel J. P. C.
2014-01-01
This paper exploits sink mobility to prolong the lifetime of sensor networks while maintaining the data transmission delay relatively low. A location predictive and time adaptive data gathering scheme is proposed. In this paper, we introduce a sink location prediction principle based on loose time synchronization and deduce the time-location formulas of the mobile sink. According to local clocks and the time-location formulas of the mobile sink, nodes in the network are able to calculate the current location of the mobile sink accurately and route data packets timely toward the mobile sink by multihop relay. Considering that data packets generating from different areas may be different greatly, an adaptive dwelling time adjustment method is also proposed to balance energy consumption among nodes in the network. Simulation results show that our data gathering scheme enables data routing with less data transmission time delay and balance energy consumption among nodes. PMID:25302327
A Survey on an Energy-Efficient and Energy-Balanced Routing Protocol for Wireless Sensor Networks.
Ogundile, Olayinka O; Alfa, Attahiru S
2017-05-10
Wireless sensor networks (WSNs) form an important part of industrial application. There has been growing interest in the potential use of WSNs in applications such as environment monitoring, disaster management, health care monitoring, intelligence surveillance and defence reconnaissance. In these applications, the sensor nodes (SNs) are envisaged to be deployed in sizeable numbers in an outlying area, and it is quite difficult to replace these SNs after complete deployment in many scenarios. Therefore, as SNs are predominantly battery powered devices, the energy consumption of the nodes must be properly managed in order to prolong the network lifetime and functionality to a rational time. Different energy-efficient and energy-balanced routing protocols have been proposed in literature over the years. The energy-efficient routing protocols strive to increase the network lifetime by minimizing the energy consumption in each SN. On the other hand, the energy-balanced routing protocols protract the network lifetime by uniformly balancing the energy consumption among the nodes in the network. There have been various survey papers put forward by researchers to review the performance and classify the different energy-efficient routing protocols for WSNs. However, there seems to be no clear survey emphasizing the importance, concepts, and principles of load-balanced energy routing protocols for WSNs. In this paper, we provide a clear picture of both the energy-efficient and energy-balanced routing protocols for WSNs. More importantly, this paper presents an extensive survey of the different state-of-the-art energy-efficient and energy-balanced routing protocols. A taxonomy is introduced in this paper to classify the surveyed energy-efficient and energy-balanced routing protocols based on their proposed mode of communication towards the base station (BS). In addition, we classified these routing protocols based on the solution types or algorithms, and the input decision variables defined in the routing algorithm. The strengths and weaknesses of the choice of the decision variables used in the design of these energy-efficient and energy-balanced routing protocols are emphasised. Finally, we suggest possible research directions in order to optimize the energy consumption in sensor networks.
A Survey on an Energy-Efficient and Energy-Balanced Routing Protocol for Wireless Sensor Networks
Ogundile, Olayinka O.; Alfa, Attahiru S.
2017-01-01
Wireless sensor networks (WSNs) form an important part of industrial application. There has been growing interest in the potential use of WSNs in applications such as environment monitoring, disaster management, health care monitoring, intelligence surveillance and defence reconnaissance. In these applications, the sensor nodes (SNs) are envisaged to be deployed in sizeable numbers in an outlying area, and it is quite difficult to replace these SNs after complete deployment in many scenarios. Therefore, as SNs are predominantly battery powered devices, the energy consumption of the nodes must be properly managed in order to prolong the network lifetime and functionality to a rational time. Different energy-efficient and energy-balanced routing protocols have been proposed in literature over the years. The energy-efficient routing protocols strive to increase the network lifetime by minimizing the energy consumption in each SN. On the other hand, the energy-balanced routing protocols protract the network lifetime by uniformly balancing the energy consumption among the nodes in the network. There have been various survey papers put forward by researchers to review the performance and classify the different energy-efficient routing protocols for WSNs. However, there seems to be no clear survey emphasizing the importance, concepts, and principles of load-balanced energy routing protocols for WSNs. In this paper, we provide a clear picture of both the energy-efficient and energy-balanced routing protocols for WSNs. More importantly, this paper presents an extensive survey of the different state-of-the-art energy-efficient and energy-balanced routing protocols. A taxonomy is introduced in this paper to classify the surveyed energy-efficient and energy-balanced routing protocols based on their proposed mode of communication towards the base station (BS). In addition, we classified these routing protocols based on the solution types or algorithms, and the input decision variables defined in the routing algorithm. The strengths and weaknesses of the choice of the decision variables used in the design of these energy-efficient and energy-balanced routing protocols are emphasised. Finally, we suggest possible research directions in order to optimize the energy consumption in sensor networks. PMID:28489054
Long-Term Animal Observation by Wireless Sensor Networks with Sound Recognition
NASA Astrophysics Data System (ADS)
Liu, Ning-Han; Wu, Chen-An; Hsieh, Shu-Ju
Due to wireless sensor networks can transmit data wirelessly and can be disposed easily, they are used in the wild to monitor the change of environment. However, the lifetime of sensor is limited by the battery, especially when the monitored data type is audio, the lifetime is very short due to a huge amount of data transmission. By intuition, sensor mote analyzes the sensed data and decides not to deliver them to server that can reduce the expense of energy. Nevertheless, the ability of sensor mote is not powerful enough to work on complicated methods. Therefore, it is an urgent issue to design a method to keep analyzing speed and accuracy under the restricted memory and processor. This research proposed an embedded audio processing module in the sensor mote to extract and analyze audio features in advance. Then, through the estimation of likelihood of observed animal sound by the frequencies distribution, only the interesting audio data are sent back to server. The prototype of WSN system is built and examined in the wild to observe frogs. According to the results of experiments, the energy consumed by sensors through our method can be reduced effectively to prolong the observing time of animal detecting sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokorna, Sarka; Jurkiewicz, Piotr; Hof, Martin, E-mail: martin.hof@jh-inst.cas.cz
2014-12-14
Time-dependent fluorescence shift (TDFS) of Laurdan embedded in phospholipid bilayers reports on hydration and mobility of the phospholipid acylgroups. Exchange of H{sub 2}O with D{sub 2}O prolongs the lifetime of lipid-water and lipid-water-lipid interactions, which is reflected in a significantly slower TDFS kinetics. Combining TDFS measurements in H{sub 2}O and D{sub 2}O hydrated bilayers with atomistic molecular dynamics (MD) simulations provides a unique tool for characterization of the hydrogen bonding at the acylgroup level of lipid bilayers. In this work, we use this approach to study the influence of fluoride anions on the properties of cationic bilayers composed of trimethylammonium-propanemore » (DOTAP). The results obtained for DOTAP are confronted with those for neutral phosphatidylcholine (DOPC) bilayers. Both in DOTAP and DOPC H{sub 2}O/D{sub 2}O exchange prolongs hydrogen-bonding lifetime and does not disturb bilayer structure. These results are confirmed by MD simulations. TDFS experiments show, however, that for DOTAP this effect is cancelled in the presence of fluoride ions. We interpret these results as evidence that strongly hydrated fluoride is able to steal water molecules that bridge lipid carbonyls. Consequently, when attracted to DOTAP bilayer, fluoride disrupts the local hydrogen-bonding network, and the differences in TDFS kinetics between H{sub 2}O and D{sub 2}O hydrated bilayers are no longer observed. A distinct behavior of fluoride is also evidenced by MD simulations, which show different lipid-ion binding for Cl{sup −} and F{sup −}.« less
Hu, Wenbo; Guo, Lihong; Bai, Lei; Miao, Xiaofei; Ni, Yun; Wang, Qi; Zhao, Hui; Xie, Meng; Li, Lin; Lu, Xiaomei; Huang, Wei; Fan, Quli
2018-05-28
Two-photon fluorescence lifetime imaging (TP-FLIM) not only permits imaging deep inside the tissues with precise spatial manipulation but also circumvents tissue autofluorescence, holding tremendous promise in molecular imaging. However, the serious lack of suitable contrast agents with long fluorescence lifetime and efficient two-photon absorption (TPA) greatly limits the advance of TP-FLIM. This study reports a simple approach to fabricate water-soluble organic semiconducting nanoparticles [thioxanthone (TXO) NPs] with ultralong fluorescence lifetime and efficient TPA for in vivo TP-FLIM. The approach utilizes the aggregation of a specifically selected thermally activated delayed fluorescence (TADF) fluorophore to prolong its fluorescence lifetime. Encapsulating the TADF fluorophore within an amphiphilic copolymer not only maximizes its aggregation but also obtains TXO NPs with efficient TPA. Importantly, as-prepared TXO NPs exhibit a considerably long fluorescence lifetime at a magnitude of 4.2 µs, which is almost 1000 times larger than that of existing organic contrast agents. Moreover, such long fluorescence lifetime is almost oxygen-inert, readily realizing both in vitro and in vivo TP-FLIM. This work may set valuable guidance for designing organic semiconducting materials with ultralong fluorescence lifetimes to fulfill the potential of FLIM. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimizing Cluster Heads for Energy Efficiency in Large-Scale Heterogeneous Wireless Sensor Networks
Gu, Yi; Wu, Qishi; Rao, Nageswara S. V.
2010-01-01
Many complex sensor network applications require deploying a large number of inexpensive and small sensors in a vast geographical region to achieve quality through quantity. Hierarchical clustering is generally considered as an efficient and scalable way to facilitate the management and operation of such large-scale networks and minimize the total energy consumption for prolonged lifetime. Judicious selection of cluster heads for data integration and communication is critical to the success of applications based on hierarchical sensor networks organized as layered clusters. We investigate the problem of selecting sensor nodes in a predeployed sensor network to be the cluster heads tomore » minimize the total energy needed for data gathering. We rigorously derive an analytical formula to optimize the number of cluster heads in sensor networks under uniform node distribution, and propose a Distance-based Crowdedness Clustering algorithm to determine the cluster heads in sensor networks under general node distribution. The results from an extensive set of experiments on a large number of simulated sensor networks illustrate the performance superiority of the proposed solution over the clustering schemes based on k -means algorithm.« less
Energy efficient mechanisms for high-performance Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Alsaify, Baha'adnan
2009-12-01
Due to recent advances in microelectronics, the development of low cost, small, and energy efficient devices became possible. Those advances led to the birth of the Wireless Sensor Networks (WSNs). WSNs consist of a large set of sensor nodes equipped with communication capabilities, scattered in the area to monitor. Researchers focus on several aspects of WSNs. Such aspects include the quality of service the WSNs provide (data delivery delay, accuracy of data, etc...), the scalability of the network to contain thousands of sensor nodes (the terms node and sensor node are being used interchangeably), the robustness of the network (allowing the network to work even if a certain percentage of nodes fails), and making the energy consumption in the network as low as possible to prolong the network's lifetime. In this thesis, we present an approach that can be applied to the sensing devices that are scattered in an area for Sensor Networks. This work will use the well-known approach of using a awaking scheduling to extend the network's lifespan. We designed a scheduling algorithm that will reduce the delay's upper bound the reported data will experience, while at the same time keeps the advantages that are offered by the use of the awaking scheduling -- the energy consumption reduction which will lead to the increase in the network's lifetime. The wakeup scheduling is based on the location of the node relative to its neighbors and its distance from the Base Station (the terms Base Station and sink are being used interchangeably). We apply the proposed method to a set of simulated nodes using the "ONE Simulator". We test the performance of this approach with three other approaches -- Direct Routing technique, the well known LEACH algorithm, and a multi-parent scheduling algorithm. We demonstrate a good improvement on the network's quality of service and a reduction of the consumed energy.
A Method of Data Aggregation for Wearable Sensor Systems
Shen, Bo; Fu, Jun-Song
2016-01-01
Data aggregation has been considered as an effective way to decrease the data to be transferred in sensor networks. Particularly for wearable sensor systems, smaller battery has less energy, which makes energy conservation in data transmission more important. Nevertheless, wearable sensor systems usually have features like frequently dynamic changes of topologies and data over a large range, of which current aggregating methods can’t adapt to the demand. In this paper, we study the system composed of many wearable devices with sensors, such as the network of a tactical unit, and introduce an energy consumption-balanced method of data aggregation, named LDA-RT. In the proposed method, we develop a query algorithm based on the idea of ‘happened-before’ to construct a dynamic and energy-balancing routing tree. We also present a distributed data aggregating and sorting algorithm to execute top-k query and decrease the data that must be transferred among wearable devices. Combining these algorithms, LDA-RT tries to balance the energy consumptions for prolonging the lifetime of wearable sensor systems. Results of evaluation indicate that LDA-RT performs well in constructing routing trees and energy balances. It also outperforms the filter-based top-k monitoring approach in energy consumption, load balance, and the network’s lifetime, especially for highly dynamic data sources. PMID:27347953
Lifetime's Limited Feminism: Defining and Deconstructing Television for Women.
ERIC Educational Resources Information Center
Hundley, Heather
The Lifetime Television Network has established itself within the cable industry as the only network that explicitly gendercasts its programming. Lifetime specifically markets itself as "Television for Women"; however, what that means exactly is not clear. On the one hand, Lifetime does not want to be noted as the "feminist network." Yet, former…
NASA Astrophysics Data System (ADS)
Tuna, G.; Örenbaş, H.; Daş, R.; Kogias, D.; Baykara, M.; K, K.
2016-03-01
Wireless Sensor Networks (WSNs) when combined with various energy harvesting solutions managing to prolong the overall lifetime of the system and enhanced capabilities of the communication protocols used by modern sensor nodes are efficiently used in are efficiently used in Smart Grid (SG), an evolutionary system for the modernization of existing power grids. However, wireless communication technology brings various types of security threats. In this study, firstly the use of WSNs for SG applications is presented. Second, the security related issues and challenges as well as the security threats are presented. In addition, proposed security mechanisms for WSN-based SG applications are discussed. Finally, an easy- to-implement and simple attack detection framework to prevent attacks directed to sink and gateway nodes with web interfaces is proposed and its efficiency is proved using a case study.
Salim, Shelly; Moh, Sangman; Choi, Dongmin; Chung, Ilyong
2014-08-11
A cognitive radio sensor network (CRSN) is a wireless sensor network whose sensor nodes are equipped with cognitive radio capability. Clustering is one of the most challenging issues in CRSNs, as all sensor nodes, including the cluster head, have to use the same frequency band in order to form a cluster. However, due to the nature of heterogeneous channels in cognitive radio, it is difficult for sensor nodes to find a cluster head. This paper proposes a novel energy-efficient and compact clustering scheme named clustering with temporary support nodes (CENTRE). CENTRE efficiently achieves a compact cluster formation by adopting two-phase cluster formation with fixed duration. By introducing a novel concept of temporary support nodes to improve the cluster formation, the proposed scheme enables sensor nodes in a network to find a cluster head efficiently. The performance study shows that not only is the clustering process efficient and compact but it also results in remarkable energy savings that prolong the overall network lifetime. In addition, the proposed scheme decreases both the clustering overhead and the average distance between cluster heads and their members.
Secure Data Aggregation with Fully Homomorphic Encryption in Large-Scale Wireless Sensor Networks.
Li, Xing; Chen, Dexin; Li, Chunyan; Wang, Liangmin
2015-07-03
With the rapid development of wireless communication technology, sensor technology, information acquisition and processing technology, sensor networks will finally have a deep influence on all aspects of people's lives. The battery resources of sensor nodes should be managed efficiently in order to prolong network lifetime in large-scale wireless sensor networks (LWSNs). Data aggregation represents an important method to remove redundancy as well as unnecessary data transmission and hence cut down the energy used in communication. As sensor nodes are deployed in hostile environments, the security of the sensitive information such as confidentiality and integrity should be considered. This paper proposes Fully homomorphic Encryption based Secure data Aggregation (FESA) in LWSNs which can protect end-to-end data confidentiality and support arbitrary aggregation operations over encrypted data. In addition, by utilizing message authentication codes (MACs), this scheme can also verify data integrity during data aggregation and forwarding processes so that false data can be detected as early as possible. Although the FHE increase the computation overhead due to its large public key size, simulation results show that it is implementable in LWSNs and performs well. Compared with other protocols, the transmitted data and network overhead are reduced in our scheme.
Salim, Shelly; Moh, Sangman; Choi, Dongmin; Chung, Ilyong
2014-01-01
A cognitive radio sensor network (CRSN) is a wireless sensor network whose sensor nodes are equipped with cognitive radio capability. Clustering is one of the most challenging issues in CRSNs, as all sensor nodes, including the cluster head, have to use the same frequency band in order to form a cluster. However, due to the nature of heterogeneous channels in cognitive radio, it is difficult for sensor nodes to find a cluster head. This paper proposes a novel energy-efficient and compact clustering scheme named clustering with temporary support nodes (CENTRE). CENTRE efficiently achieves a compact cluster formation by adopting two-phase cluster formation with fixed duration. By introducing a novel concept of temporary support nodes to improve the cluster formation, the proposed scheme enables sensor nodes in a network to find a cluster head efficiently. The performance study shows that not only is the clustering process efficient and compact but it also results in remarkable energy savings that prolong the overall network lifetime. In addition, the proposed scheme decreases both the clustering overhead and the average distance between cluster heads and their members. PMID:25116905
Ren, Peng; Qian, Jiansheng
2016-01-01
This study proposes a novel power-efficient and anti-fading clustering based on a cross-layer that is specific to the time-varying fading characteristics of channels in the monitoring of coal mine faces with wireless sensor networks. The number of active sensor nodes and a sliding window are set up such that the optimal number of cluster heads (CHs) is selected in each round. Based on a stable expected number of CHs, we explore the channel efficiency between nodes and the base station by using a probe frame and the joint surplus energy in assessing the CH selection. Moreover, the sending power of a node in different periods is regulated by the signal fade margin method. The simulation results demonstrate that compared with several common algorithms, the power-efficient and fading-aware clustering with a cross-layer (PEAFC-CL) protocol features a stable network topology and adaptability under signal time-varying fading, which effectively prolongs the lifetime of the network and reduces network packet loss, thus making it more applicable to the complex and variable environment characteristic of a coal mine face. PMID:27338380
ESAM: Endocrine inspired Sensor Activation Mechanism for multi-target tracking in WSNs
NASA Astrophysics Data System (ADS)
Adil Mahdi, Omar; Wahab, Ainuddin Wahid Abdul; Idris, Mohd Yamani Idna; Znaid, Ammar Abu; Khan, Suleman; Al-Mayouf, Yusor Rafid Bahar
2016-10-01
Target tracking is a significant application of wireless sensor networks (WSNs) in which deployment of self-organizing and energy efficient algorithms is required. The tracking accuracy increases as more sensor nodes are activated around the target but more energy is consumed. Thus, in this study, we focus on limiting the number of sensors by forming an ad-hoc network that operates autonomously. This will reduce the energy consumption and prolong the sensor network lifetime. In this paper, we propose a fully distributed algorithm, an Endocrine inspired Sensor Activation Mechanism for multi target-tracking (ESAM) which reflecting the properties of real life sensor activation system based on the information circulating principle in the endocrine system of the human body. Sensor nodes in our network are secreting different hormones according to certain rules. The hormone level enables the nodes to regulate an efficient sleep and wake up cycle of nodes to reduce the energy consumption. It is evident from the simulation results that the proposed ESAM in autonomous sensor network exhibits a stable performance without the need of commands from a central controller. Moreover, the proposed ESAM generates more efficient and persistent results as compared to other algorithms for tracking an invading object.
Yang, Wenya; Dall, Timothy M; Zhang, Yiduo; Zhang, Shiping; Arday, David R; Dorn, Patricia W; Jain, Anjali
2012-12-01
Despite the documented benefits of quitting smoking, studies have found that smokers who quit may have higher lifetime medical costs, in part because of increased risk for medical conditions, such as type 2 diabetes, brought on by associated weight gain. Using a simulation model and data on 612,332 adult smokers in the US Department of Defense's TRICARE Prime health plan in 2008, we estimated that cessation accompanied by weight gain would increase average life expectancy by 3.7 years, and that the average lifetime reduction in medical expenditures from improved health ($5,600) would be offset by additional expenditures resulting from prolonged life ($7,300). Results varied by age and sex: For females ages 18-44 at time of cessation, there would be net savings of $1,200 despite additional medical expenditures from prolonged life. Avoidance of weight gain after quitting smoking would increase average life expectancy by four additional months and reduce mean extra spending resulting from prolonged life by $700. Overall, the average net lifetime health care cost increase of $1,700 or less per ex-smoker would be modest and, for employed people, more than offset by even one year's worth of productivity gains. These results boost the case for smoking cessation programs in the military in particular, along with not selling cigarettes in commissaries or at reduced prices.
A Network Selection Algorithm Considering Power Consumption in Hybrid Wireless Networks
NASA Astrophysics Data System (ADS)
Joe, Inwhee; Kim, Won-Tae; Hong, Seokjoon
In this paper, we propose a novel network selection algorithm considering power consumption in hybrid wireless networks for vertical handover. CDMA, WiBro, WLAN networks are candidate networks for this selection algorithm. This algorithm is composed of the power consumption prediction algorithm and the final network selection algorithm. The power consumption prediction algorithm estimates the expected lifetime of the mobile station based on the current battery level, traffic class and power consumption for each network interface card of the mobile station. If the expected lifetime of the mobile station in a certain network is not long enough compared the handover delay, this particular network will be removed from the candidate network list, thereby preventing unnecessary handovers in the preprocessing procedure. On the other hand, the final network selection algorithm consists of AHP (Analytic Hierarchical Process) and GRA (Grey Relational Analysis). The global factors of the network selection structure are QoS, cost and lifetime. If user preference is lifetime, our selection algorithm selects the network that offers longest service duration due to low power consumption. Also, we conduct some simulations using the OPNET simulation tool. The simulation results show that the proposed algorithm provides longer lifetime in the hybrid wireless network environment.
Dynamics of history-dependent epidemics in temporal networks
NASA Astrophysics Data System (ADS)
Sunny, Albert; Kotnis, Bhushan; Kuri, Joy
2015-08-01
The structural properties of temporal networks often influence the dynamical processes that occur on these networks, e.g., bursty interaction patterns have been shown to slow down epidemics. In this paper, we investigate the effect of link lifetimes on the spread of history-dependent epidemics. We formulate an analytically tractable activity-driven temporal network model that explicitly incorporates link lifetimes. For Markovian link lifetimes, we use mean-field analysis for computing the epidemic threshold, while the effect of non-Markovian link lifetimes is studied using simulations. Furthermore, we also study the effect of negative correlation between the number of links spawned by an individual and the lifetimes of those links. Such negative correlations may arise due to the finite cognitive capacity of the individuals. Our investigations reveal that heavy-tailed link lifetimes slow down the epidemic, while negative correlations can reduce epidemic prevalence. We believe that our results help shed light on the role of link lifetimes in modulating diffusion processes on temporal networks.
Anisimov, V N; Khavinson, V Kh; Alimova, I N; Semchenko, A V; Yashin, A I
2002-08-01
Female transgenic FVB/N mice carrying the breast cancer gene HER-2/neu received epithalon (Ala-Glu-Asp-Gly) in a dose of 1 mg subcutaneously 5 times a week to from the 2nd month of life to death. Epithalon prolonged the average and maximum lifetimes of mice by 13.5 (p<0.05) and 13.9%, respectively. The peptide prolonged the average lifetime of animals without neoplasms (by 34.2%, p<0.05). Epithalon decelerated the development of age-related disturbances in reproductive activity and suppressed the formation of neoplasms. The peptide decreased the incidence of breast adenocarcinomas, lungs metastases (by 1.6 times, p<0.05), and multiple tumors (by 2 times). Epithalon 3.7-fold increased the number of mice without breast tumors (p<0.05), while the number of animals with 6 or more breast tumors decreased by 3 times (p<0.05). Epithalon prolonged the lifetime of mice with breast tumors by 1.4 times (p<0.05). These results indicate that Epithalon possesses geroprotective activity and inhibits breast carcinogenesis in transgenic mice, which is probably related to suppression of HER-2/neu expression.
La Rosa, Marcello; Denisov, Sergey A.
2018-01-01
Abstract The size‐tunable emission of luminescent quantum dots (QDs) makes them highly interesting for applications that range from bioimaging to optoelectronics. For the same applications, engineering their luminescence lifetime, in particular, making it longer, would be as important; however, no rational approach to reach this goal is available to date. We describe a strategy to prolong the emission lifetime of QDs through electronic energy shuttling to the triplet excited state of a surface‐bound molecular chromophore. To implement this idea, we made CdSe QDs of different sizes and carried out self‐assembly with a pyrene derivative. We observed that the conjugates exhibit delayed luminescence, with emission decays that are prolonged by more than 3 orders of magnitude (lifetimes up to 330 μs) compared to the parent CdSe QDs. The mechanism invokes unprecedented reversible quantum dot to organic chromophore electronic energy transfer. PMID:29383800
Chen, Yi-Ting; Horng, Mong-Fong; Lo, Chih-Cheng; Chu, Shu-Chuan; Pan, Jeng-Shyang; Liao, Bin-Yih
2013-03-20
Transmission power optimization is the most significant factor in prolonging the lifetime and maintaining the connection quality of wireless sensor networks. Un-optimized transmission power of nodes either interferes with or fails to link neighboring nodes. The optimization of transmission power depends on the expected node degree and node distribution. In this study, an optimization approach to an energy-efficient and full reachability wireless sensor network is proposed. In the proposed approach, an adjustment model of the transmission range with a minimum node degree is proposed that focuses on topology control and optimization of the transmission range according to node degree and node density. The model adjusts the tradeoff between energy efficiency and full reachability to obtain an ideal transmission range. In addition, connectivity and reachability are used as performance indices to evaluate the connection quality of a network. The two indices are compared to demonstrate the practicability of framework through simulation results. Furthermore, the relationship between the indices under the conditions of various node degrees is analyzed to generalize the characteristics of node densities. The research results on the reliability and feasibility of the proposed approach will benefit the future real deployments.
Chen, Yi-Ting; Horng, Mong-Fong; Lo, Chih-Cheng; Chu, Shu-Chuan; Pan, Jeng-Shyang; Liao, Bin-Yih
2013-01-01
Transmission power optimization is the most significant factor in prolonging the lifetime and maintaining the connection quality of wireless sensor networks. Un-optimized transmission power of nodes either interferes with or fails to link neighboring nodes. The optimization of transmission power depends on the expected node degree and node distribution. In this study, an optimization approach to an energy-efficient and full reachability wireless sensor network is proposed. In the proposed approach, an adjustment model of the transmission range with a minimum node degree is proposed that focuses on topology control and optimization of the transmission range according to node degree and node density. The model adjusts the tradeoff between energy efficiency and full reachability to obtain an ideal transmission range. In addition, connectivity and reachability are used as performance indices to evaluate the connection quality of a network. The two indices are compared to demonstrate the practicability of framework through simulation results. Furthermore, the relationship between the indices under the conditions of various node degrees is analyzed to generalize the characteristics of node densities. The research results on the reliability and feasibility of the proposed approach will benefit the future real deployments. PMID:23519351
Power allocation strategies to minimize energy consumption in wireless body area networks.
Kailas, Aravind
2011-01-01
The wide scale deployment of wireless body area networks (WBANs) hinges on designing energy efficient communication protocols to support the reliable communication as well as to prolong the network lifetime. Cooperative communications, a relatively new idea in wireless communications, offers the benefits of multi-antenna systems, thereby improving the link reliability and boosting energy efficiency. In this short paper, the advantages of resorting to cooperative communications for WBANs in terms of minimized energy consumption are investigated. Adopting an energy model that encompasses energy consumptions in the transmitter and receiver circuits, and transmitting energy per bit, it is seen that cooperative transmission can improve energy efficiency of the wireless network. In particular, the problem of optimal power allocation is studied with the constraint of targeted outage probability. Two strategies of power allocation are considered: power allocation with and without posture state information. Using analysis and simulation-based results, two key points are demonstrated: (i) allocating power to the on-body sensors making use of the posture information can reduce the total energy consumption of the WBAN; and (ii) when the channel condition is good, it is better to recruit less relays for cooperation to enhance energy efficiency.
Cluster-based adaptive power control protocol using Hidden Markov Model for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Vinutha, C. B.; Nalini, N.; Nagaraja, M.
2017-06-01
This paper presents strategies for an efficient and dynamic transmission power control technique, in order to reduce packet drop and hence energy consumption of power-hungry sensor nodes operated in highly non-linear channel conditions of Wireless Sensor Networks. Besides, we also focus to prolong network lifetime and scalability by designing cluster-based network structure. Specifically we consider weight-based clustering approach wherein, minimum significant node is chosen as Cluster Head (CH) which is computed stemmed from the factors distance, remaining residual battery power and received signal strength (RSS). Further, transmission power control schemes to fit into dynamic channel conditions are meticulously implemented using Hidden Markov Model (HMM) where probability transition matrix is formulated based on the observed RSS measurements. Typically, CH estimates initial transmission power of its cluster members (CMs) from RSS using HMM and broadcast this value to its CMs for initialising their power value. Further, if CH finds that there are variations in link quality and RSS of the CMs, it again re-computes and optimises the transmission power level of the nodes using HMM to avoid packet loss due noise interference. We have demonstrated our simulation results to prove that our technique efficiently controls the power levels of sensing nodes to save significant quantity of energy for different sized network.
Secure Data Aggregation with Fully Homomorphic Encryption in Large-Scale Wireless Sensor Networks
Li, Xing; Chen, Dexin; Li, Chunyan; Wang, Liangmin
2015-01-01
With the rapid development of wireless communication technology, sensor technology, information acquisition and processing technology, sensor networks will finally have a deep influence on all aspects of people’s lives. The battery resources of sensor nodes should be managed efficiently in order to prolong network lifetime in large-scale wireless sensor networks (LWSNs). Data aggregation represents an important method to remove redundancy as well as unnecessary data transmission and hence cut down the energy used in communication. As sensor nodes are deployed in hostile environments, the security of the sensitive information such as confidentiality and integrity should be considered. This paper proposes Fully homomorphic Encryption based Secure data Aggregation (FESA) in LWSNs which can protect end-to-end data confidentiality and support arbitrary aggregation operations over encrypted data. In addition, by utilizing message authentication codes (MACs), this scheme can also verify data integrity during data aggregation and forwarding processes so that false data can be detected as early as possible. Although the FHE increase the computation overhead due to its large public key size, simulation results show that it is implementable in LWSNs and performs well. Compared with other protocols, the transmitted data and network overhead are reduced in our scheme. PMID:26151208
Jin, Zhigang; Ma, Yingying; Su, Yishan; Li, Shuo; Fu, Xiaomei
2017-07-19
Underwater sensor networks (UWSNs) have become a hot research topic because of their various aquatic applications. As the underwater sensor nodes are powered by built-in batteries which are difficult to replace, extending the network lifetime is a most urgent need. Due to the low and variable transmission speed of sound, the design of reliable routing algorithms for UWSNs is challenging. In this paper, we propose a Q-learning based delay-aware routing (QDAR) algorithm to extend the lifetime of underwater sensor networks. In QDAR, a data collection phase is designed to adapt to the dynamic environment. With the application of the Q-learning technique, QDAR can determine a global optimal next hop rather than a greedy one. We define an action-utility function in which residual energy and propagation delay are both considered for adequate routing decisions. Thus, the QDAR algorithm can extend the network lifetime by uniformly distributing the residual energy and provide lower end-to-end delay. The simulation results show that our protocol can yield nearly the same network lifetime, and can reduce the end-to-end delay by 20-25% compared with a classic lifetime-extended routing protocol (QELAR).
Ma, Yingying; Su, Yishan; Li, Shuo; Fu, Xiaomei
2017-01-01
Underwater sensor networks (UWSNs) have become a hot research topic because of their various aquatic applications. As the underwater sensor nodes are powered by built-in batteries which are difficult to replace, extending the network lifetime is a most urgent need. Due to the low and variable transmission speed of sound, the design of reliable routing algorithms for UWSNs is challenging. In this paper, we propose a Q-learning based delay-aware routing (QDAR) algorithm to extend the lifetime of underwater sensor networks. In QDAR, a data collection phase is designed to adapt to the dynamic environment. With the application of the Q-learning technique, QDAR can determine a global optimal next hop rather than a greedy one. We define an action-utility function in which residual energy and propagation delay are both considered for adequate routing decisions. Thus, the QDAR algorithm can extend the network lifetime by uniformly distributing the residual energy and provide lower end-to-end delay. The simulation results show that our protocol can yield nearly the same network lifetime, and can reduce the end-to-end delay by 20–25% compared with a classic lifetime-extended routing protocol (QELAR). PMID:28753951
L2-LBMT: A Layered Load Balance Routing Protocol for underwater multimedia data transmission
NASA Astrophysics Data System (ADS)
Lv, Ze; Tang, Ruichun; Tao, Ye; Sun, Xin; Xu, Xiaowei
2017-12-01
Providing highly efficient underwater transmission of mass multimedia data is challenging due to the particularities of the underwater environment. Although there are many schemes proposed to optimize the underwater acoustic network communication protocols, from physical layer, data link layer, network layer to transport layer, the existing routing protocols for underwater wireless sensor network (UWSN) still cannot well deal with the problems in transmitting multimedia data because of the difficulties involved in high energy consumption, low transmission reliability or high transmission delay. It prevents us from applying underwater multimedia data to real-time monitoring of marine environment in practical application, especially in emergency search, rescue operation and military field. Therefore, the inefficient transmission of marine multimedia data has become a serious problem that needs to be solved urgently. In this paper, A Layered Load Balance Routing Protocol (L2-LBMT) is proposed for underwater multimedia data transmission. In L2-LBMT, we use layered and load-balance Ad Hoc Network to transmit data, and adopt segmented data reliable transfer (SDRT) protocol to improve the data transport reliability. And a 3-node variant of tornado (3-VT) code is also combined with the Ad Hoc Network to transmit little emergency data more quickly. The simulation results show that the proposed protocol can balance energy consumption of each node, effectively prolong the network lifetime and reduce transmission delay of marine multimedia data.
La Rosa, Marcello; Denisov, Sergey A; Jonusauskas, Gediminas; McClenaghan, Nathan D; Credi, Alberto
2018-03-12
The size-tunable emission of luminescent quantum dots (QDs) makes them highly interesting for applications that range from bioimaging to optoelectronics. For the same applications, engineering their luminescence lifetime, in particular, making it longer, would be as important; however, no rational approach to reach this goal is available to date. We describe a strategy to prolong the emission lifetime of QDs through electronic energy shuttling to the triplet excited state of a surface-bound molecular chromophore. To implement this idea, we made CdSe QDs of different sizes and carried out self-assembly with a pyrene derivative. We observed that the conjugates exhibit delayed luminescence, with emission decays that are prolonged by more than 3 orders of magnitude (lifetimes up to 330 μs) compared to the parent CdSe QDs. The mechanism invokes unprecedented reversible quantum dot to organic chromophore electronic energy transfer. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Photocurrent generation in SnO2 thin film by surface charged chemisorption O ions
NASA Astrophysics Data System (ADS)
Lee, Po-Ming; Liao, Ching-Han; Lin, Chia-Hua; Liu, Cheng-Yi
2018-06-01
We report a photocurrent generation mechanism in the SnO2 thin film surface layer by the charged chemisorption O ions on the SnO2 thin film surface induced by O2-annealing. A critical build-in electric field in the SnO2 surface layer resulted from the charged O ions on SnO2 surface prolongs the lifetime and reduces the recombination probability of the photo-excited electron-hole pairs by UV-laser irradiation (266 nm) in the SnO2 surface layer, which is the key for the photocurrent generation in the SnO2 thin film surface layer. The critical lifetime of prolonged photo-excited electron-hole pair is calculated to be 8.3 ms.
Liu, Dongyi; Zhao, Yingjie; Wang, Zhijia; Xu, Kejing; Zhao, Jianzhang
2018-03-07
Os(ii) complexes are particularly interesting for triplet-triplet annihilation (TTA) upconversion, due to the strong direct S 0 → T 1 photoexcitation, as in this way, energy loss is minimized and large anti-Stokes shift can be achieved for TTA upconversion. However, Os(bpy) 3 has an intrinsic short T 1 state lifetime (56 ns), which is detrimental for the intermolecular triplet-triplet energy transfer (TTET), one of the crucial steps in TTA upconversion. In order to prolong the triplet state lifetime, we prepared an Os(ii) tris(bpy) complex with a Bodipy moiety attached, so that an extended T 1 state lifetime is achieved by excited state electronic configuration mixing or triplet state equilibrium between the coordination center-localized state ( 3 MLCT state) and Bodipy ligand-localized state ( 3 IL state). With steady-state and time-resolved transient absorption/emission spectroscopy, we proved that the 3 MLCT is slightly above the 3 IL state (by 0.05 eV), and the triplet state lifetime was prolonged by 31-fold (from 56 ns to 1.73 μs). The TTA upconversion quantum yield was increased by 4-fold as compared to that of the unsubstituted Os(ii) complex.
Zone-Based Routing Protocol for Wireless Sensor Networks
Venkateswarlu Kumaramangalam, Muni; Adiyapatham, Kandasamy; Kandasamy, Chandrasekaran
2014-01-01
Extensive research happening across the globe witnessed the importance of Wireless Sensor Network in the present day application world. In the recent past, various routing algorithms have been proposed to elevate WSN network lifetime. Clustering mechanism is highly successful in conserving energy resources for network activities and has become promising field for researches. However, the problem of unbalanced energy consumption is still open because the cluster head activities are tightly coupled with role and location of a particular node in the network. Several unequal clustering algorithms are proposed to solve this wireless sensor network multihop hot spot problem. Current unequal clustering mechanisms consider only intra- and intercluster communication cost. Proper organization of wireless sensor network into clusters enables efficient utilization of limited resources and enhances lifetime of deployed sensor nodes. This paper considers a novel network organization scheme, energy-efficient edge-based network partitioning scheme, to organize sensor nodes into clusters of equal size. Also, it proposes a cluster-based routing algorithm, called zone-based routing protocol (ZBRP), for elevating sensor network lifetime. Experimental results show that ZBRP out-performs interims of network lifetime and energy conservation with its uniform energy consumption among the cluster heads. PMID:27437455
Zone-Based Routing Protocol for Wireless Sensor Networks.
Venkateswarlu Kumaramangalam, Muni; Adiyapatham, Kandasamy; Kandasamy, Chandrasekaran
2014-01-01
Extensive research happening across the globe witnessed the importance of Wireless Sensor Network in the present day application world. In the recent past, various routing algorithms have been proposed to elevate WSN network lifetime. Clustering mechanism is highly successful in conserving energy resources for network activities and has become promising field for researches. However, the problem of unbalanced energy consumption is still open because the cluster head activities are tightly coupled with role and location of a particular node in the network. Several unequal clustering algorithms are proposed to solve this wireless sensor network multihop hot spot problem. Current unequal clustering mechanisms consider only intra- and intercluster communication cost. Proper organization of wireless sensor network into clusters enables efficient utilization of limited resources and enhances lifetime of deployed sensor nodes. This paper considers a novel network organization scheme, energy-efficient edge-based network partitioning scheme, to organize sensor nodes into clusters of equal size. Also, it proposes a cluster-based routing algorithm, called zone-based routing protocol (ZBRP), for elevating sensor network lifetime. Experimental results show that ZBRP out-performs interims of network lifetime and energy conservation with its uniform energy consumption among the cluster heads.
Throughput Maximization for Sensor-Aided Cognitive Radio Networks with Continuous Energy Arrivals
Nguyen, Thanh-Tung; Koo, Insoo
2015-01-01
We consider a Sensor-Aided Cognitive Radio Network (SACRN) in which sensors capable of harvesting energy are distributed throughout the network to support secondary transmitters for sensing licensed channels in order to improve both energy and spectral efficiency. Harvesting ambient energy is one of the most promising solutions to mitigate energy deficiency, prolong device lifetime, and partly reduce the battery size of devices. So far, many works related to SACRN have considered single secondary users capable of harvesting energy in whole slot as well as short-term throughput. In the paper, we consider two types of energy harvesting sensor nodes (EHSN): Type-I sensor nodes will harvest ambient energy in whole slot duration, whereas type-II sensor nodes will only harvest energy after carrying out spectrum sensing. In the paper, we also investigate long-term throughput in the scheduling window, and formulate the throughput maximization problem by considering energy-neutral operation conditions of type-I and -II sensors and the target detection probability. Through simulations, it is shown that the sensing energy consumption of all sensor nodes can be efficiently managed with the proposed scheme to achieve optimal long-term throughput in the window. PMID:26633393
A General Self-Organized Tree-Based Energy-Balance Routing Protocol for Wireless Sensor Network
NASA Astrophysics Data System (ADS)
Han, Zhao; Wu, Jie; Zhang, Jie; Liu, Liefeng; Tian, Kaiyun
2014-04-01
Wireless sensor network (WSN) is a system composed of a large number of low-cost micro-sensors. This network is used to collect and send various kinds of messages to a base station (BS). WSN consists of low-cost nodes with limited battery power, and the battery replacement is not easy for WSN with thousands of physically embedded nodes, which means energy efficient routing protocol should be employed to offer a long-life work time. To achieve the aim, we need not only to minimize total energy consumption but also to balance WSN load. Researchers have proposed many protocols such as LEACH, HEED, PEGASIS, TBC and PEDAP. In this paper, we propose a General Self-Organized Tree-Based Energy-Balance routing protocol (GSTEB) which builds a routing tree using a process where, for each round, BS assigns a root node and broadcasts this selection to all sensor nodes. Subsequently, each node selects its parent by considering only itself and its neighbors' information, thus making GSTEB a dynamic protocol. Simulation results show that GSTEB has a better performance than other protocols in balancing energy consumption, thus prolonging the lifetime of WSN.
An Effective Cuckoo Search Algorithm for Node Localization in Wireless Sensor Network.
Cheng, Jing; Xia, Linyuan
2016-08-31
Localization is an essential requirement in the increasing prevalence of wireless sensor network (WSN) applications. Reducing the computational complexity, communication overhead in WSN localization is of paramount importance in order to prolong the lifetime of the energy-limited sensor nodes and improve localization performance. This paper proposes an effective Cuckoo Search (CS) algorithm for node localization. Based on the modification of step size, this approach enables the population to approach global optimal solution rapidly, and the fitness of each solution is employed to build mutation probability for avoiding local convergence. Further, the approach restricts the population in the certain range so that it can prevent the energy consumption caused by insignificant search. Extensive experiments were conducted to study the effects of parameters like anchor density, node density and communication range on the proposed algorithm with respect to average localization error and localization success ratio. In addition, a comparative study was conducted to realize the same localization task using the same network deployment. Experimental results prove that the proposed CS algorithm can not only increase convergence rate but also reduce average localization error compared with standard CS algorithm and Particle Swarm Optimization (PSO) algorithm.
An Effective Cuckoo Search Algorithm for Node Localization in Wireless Sensor Network
Cheng, Jing; Xia, Linyuan
2016-01-01
Localization is an essential requirement in the increasing prevalence of wireless sensor network (WSN) applications. Reducing the computational complexity, communication overhead in WSN localization is of paramount importance in order to prolong the lifetime of the energy-limited sensor nodes and improve localization performance. This paper proposes an effective Cuckoo Search (CS) algorithm for node localization. Based on the modification of step size, this approach enables the population to approach global optimal solution rapidly, and the fitness of each solution is employed to build mutation probability for avoiding local convergence. Further, the approach restricts the population in the certain range so that it can prevent the energy consumption caused by insignificant search. Extensive experiments were conducted to study the effects of parameters like anchor density, node density and communication range on the proposed algorithm with respect to average localization error and localization success ratio. In addition, a comparative study was conducted to realize the same localization task using the same network deployment. Experimental results prove that the proposed CS algorithm can not only increase convergence rate but also reduce average localization error compared with standard CS algorithm and Particle Swarm Optimization (PSO) algorithm. PMID:27589756
Cheng, Wenchi; Zhang, Hailin
2017-01-01
Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks. PMID:28832509
Gao, Ya; Cheng, Wenchi; Zhang, Hailin
2017-08-23
Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks.
Prolonged fatigue in Ukraine and the United States: Prevalence and risk factors
Friedberg, Fred; Tintle, Nathan; Clark, Jake; Bromet, Evelyn J.
2015-01-01
Background Prolonged, severe, unalleviated fatigue may be disabling whether it occurs on its own or in conjunction with medical or psychiatric conditions. This paper compares the prevalence and correlates of prolonged fatigue in general population samples in Ukraine versus the U.S. Methods Population surveys were conducted in 2002 in both Ukraine (Ukraine World Mental Health [WMH] Survey) and the U.S. (National Comorbidity Survey-Replication; NCS-R). Both surveys administered the Composite International Diagnostic Interview (CIDI 3.0), which contained modules assessing: neurasthenia (prolonged fatigue); mood, anxiety, and alcohol/drug use disorders; chronic medical conditions; and demographic characteristics. Multivariable logistic regression was used to examine risk factors in each country. Results The lifetime prevalence of prolonged fatigue was higher in Ukraine (5.2%) than the U.S. (3.7%). In both countries, one-fifth of individuals with prolonged fatigue had no medical or DSM-IV psychiatric condition. Also in both settings, fatigue was significantly associated with sociodemographic characteristics (being female, not working, and married before) as well as early onset and adult episodes of mood/anxiety disorder. Fatigue prevalence in Ukraine increased with age, but decreased in the U.S. at age 70. Unique risk factors for fatigue in Ukraine included lower socio-economic status, Ukrainian vs Russian ethnicity, and cardiovascular disease. Unique risk factors in the U.S. were parental depression/anxiety, adult episodes of alcohol/drugs, pain conditions, and other health problems. Conclusions The lifetime prevalence of prolonged fatigue in Ukraine was 40% higher than that found in U.S. data. In addition, fatigue prevalence increased sharply with age in Ukraine perhaps due to limited social and medical resources and greater comorbidity. PMID:26807341
Yago, Tadayuki; Lou, Jizhong; Wu, Tao; Yang, Jun; Miner, Jonathan J; Coburn, Leslie; López, José A; Cruz, Miguel A; Dong, Jing-Fei; McIntire, Larry V; McEver, Rodger P; Zhu, Cheng
2008-09-01
Arterial blood flow enhances glycoprotein Ibalpha (GPIbalpha) binding to vWF, which initiates platelet adhesion to injured vessels. Mutations in the vWF A1 domain that cause type 2B von Willebrand disease (vWD) reduce the flow requirement for adhesion. Here we show that increasing force on GPIbalpha/vWF bonds first prolonged ("catch") and then shortened ("slip") bond lifetimes. Two type 2B vWD A1 domain mutants, R1306Q and R1450E, converted catch bonds to slip bonds by prolonging bond lifetimes at low forces. Steered molecular dynamics simulations of GPIbalpha dissociating from the A1 domain suggested mechanisms for catch bonds and their conversion by the A1 domain mutations. Catch bonds caused platelets and GPIbalpha-coated microspheres to roll more slowly on WT vWF and WT A1 domains as flow increased from suboptimal levels, explaining flow-enhanced rolling. Longer bond lifetimes at low forces eliminated the flow requirement for rolling on R1306Q and R1450E mutant A1 domains. Flowing platelets agglutinated with microspheres bearing R1306Q or R1450E mutant A1 domains, but not WT A1 domains. Therefore, catch bonds may prevent vWF multimers from agglutinating platelets. A disintegrin and metalloproteinase with a thrombospondin type 1 motif-13 (ADAMTS-13) reduced platelet agglutination with microspheres bearing a tridomain A1A2A3 vWF fragment with the R1450E mutation in a shear-dependent manner. We conclude that in type 2B vWD, prolonged lifetimes of vWF bonds with GPIbalpha on circulating platelets may allow ADAMTS-13 to deplete large vWF multimers, causing bleeding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Vivek; Richardson, Joseph; Zhang, Yanliang
Most wireless sensor network (comprising of thousands of WSNs) applications require operation over extended periods of time beginning with their deployment. Network lifetime is extremely critical for most applications and is one of the limiting factors for energy-constrained networks. Based on applications, there are wide ranges of different energy sources suitable for powering WSNs. A battery is traditionally used to power WSNs. The deployed WSN is required to last for long time. Due to finite amount of energy present in batteries, it is not feasible to replace batteries. Recently there has been a new surge in the area of energymore » harvesting were ambient energy in the environment can be utilized to prolong the lifetime of WSNs. Some of the sources of ambient energies are solar power, thermal gradient, human motion and body heat, vibrations, and ambient RF energy. The design and development of TEGs to power WSNs that would remain active for a long period of time requires comprehensive understanding of WSN operational. This motivates the research in modeling the lifetime, i.e., power consumption, of a WSN by taking into consideration various node and network level activities. A WSN must perform three essential tasks: sense events, perform quick local information processing of sensed events, and wirelessly exchange locally processed data with the base station or with other WSNs in the network. Each task has a power cost per unit tine and an additional cost when switching between tasks. There are number of other considerations that must also be taken into account when computing the power consumption associated with each task. The considerations includes: number of events occurring in a fixed active time period and the duration of each event, event-information processing time, total communication time, number of retransmission, etc. Additionally, at the network level the communication of information data packets between WSNs involves collisions, latency, and retransmission, which result in unanticipated power losses. This report focuses rigorous stochastic modeling of power demand for a schedule-driven WSN utilizing Institute of Electrical and Electronics Engineers 802.11 and 802.15.4 communication protocols. The model captures the generic operation of a schedule-driven WSN when an external event occurs, i.e., sensing, following by processing, and followed by communication. The report will present development of an expression to compute the expected energy consumption per operational cycle of a schedule-driven WSN by taking into consideration the node level activities, i.e., sensing and processing, and the network level activities, i.e., channel access, packet collision, retransmission attempts, and transmission of a data packet.« less
Origin of long lifetime of band-edge charge carriers in organic–inorganic lead iodide perovskites
Chen, Tianran; Chen, Wei-Liang; Foley, Benjamin J.; Lee, Jooseop; Ruff, Jacob P. C.; Ko, J. Y. Peter; Brown, Craig M.; Harriger, Leland W.; Zhang, Depei; Park, Changwon; Yoon, Mina; Chang, Yu-Ming; Choi, Joshua J.; Lee, Seung-Hun
2017-01-01
Long carrier lifetime is what makes hybrid organic–inorganic perovskites high-performance photovoltaic materials. Several microscopic mechanisms behind the unusually long carrier lifetime have been proposed, such as formation of large polarons, Rashba effect, ferroelectric domains, and photon recycling. Here, we show that the screening of band-edge charge carriers by rotation of organic cation molecules can be a major contribution to the prolonged carrier lifetime. Our results reveal that the band-edge carrier lifetime increases when the system enters from a phase with lower rotational entropy to another phase with higher entropy. These results imply that the recombination of the photoexcited electrons and holes is suppressed by the screening, leading to the formation of polarons and thereby extending the lifetime. Thus, searching for organic–inorganic perovskites with high rotational entropy over a wide range of temperature may be a key to achieve superior solar cell performance. PMID:28673975
Origin of long lifetime of band-edge charge carriers in organic-inorganic lead iodide perovskites.
Chen, Tianran; Chen, Wei-Liang; Foley, Benjamin J; Lee, Jooseop; Ruff, Jacob P C; Ko, J Y Peter; Brown, Craig M; Harriger, Leland W; Zhang, Depei; Park, Changwon; Yoon, Mina; Chang, Yu-Ming; Choi, Joshua J; Lee, Seung-Hun
2017-07-18
Long carrier lifetime is what makes hybrid organic-inorganic perovskites high-performance photovoltaic materials. Several microscopic mechanisms behind the unusually long carrier lifetime have been proposed, such as formation of large polarons, Rashba effect, ferroelectric domains, and photon recycling. Here, we show that the screening of band-edge charge carriers by rotation of organic cation molecules can be a major contribution to the prolonged carrier lifetime. Our results reveal that the band-edge carrier lifetime increases when the system enters from a phase with lower rotational entropy to another phase with higher entropy. These results imply that the recombination of the photoexcited electrons and holes is suppressed by the screening, leading to the formation of polarons and thereby extending the lifetime. Thus, searching for organic-inorganic perovskites with high rotational entropy over a wide range of temperature may be a key to achieve superior solar cell performance.
Energy Efficient Approach in RFID Network
NASA Astrophysics Data System (ADS)
Mahdin, Hairulnizam; Abawajy, Jemal; Salwani Yaacob, Siti
2016-11-01
Radio Frequency Identification (RFID) technology is among the key technology of Internet of Things (IOT). It is a sensor device that can monitor, identify, locate and tracking physical objects via its tag. The energy in RFID is commonly being used unwisely because they do repeated readings on the same tag as long it resides in the reader vicinity. Repeated readings are unnecessary because it only generate duplicate data that does not contain new information. The reading process need to be schedule accordingly to minimize the chances of repeated readings to save the energy. This will reduce operational cost and can prolong the tag's battery lifetime that cannot be replaced. In this paper, we propose an approach named SELECT to minimize energy spent during reading processes. Experiments conducted shows that proposed algorithm contribute towards significant energy savings in RFID compared to other approaches.
An Efficient Data-Gathering Routing Protocol for Underwater Wireless Sensor Networks.
Javaid, Nadeem; Ilyas, Naveed; Ahmad, Ashfaq; Alrajeh, Nabil; Qasim, Umar; Khan, Zahoor Ali; Liaqat, Tayyaba; Khan, Majid Iqbal
2015-11-17
Most applications of underwater wireless sensor networks (UWSNs) demand reliable data delivery over a longer period in an efficient and timely manner. However, the harsh and unpredictable underwater environment makes routing more challenging as compared to terrestrial WSNs. Most of the existing schemes deploy mobile sensors or a mobile sink (MS) to maximize data gathering. However, the relatively high deployment cost prevents their usage in most applications. Thus, this paper presents an autonomous underwater vehicle (AUV)-aided efficient data-gathering (AEDG) routing protocol for reliable data delivery in UWSNs. To prolong the network lifetime, AEDG employs an AUV for data collection from gateways and uses a shortest path tree (SPT) algorithm while associating sensor nodes with the gateways. The AEDG protocol also limits the number of associated nodes with the gateway nodes to minimize the network energy consumption and to prevent the gateways from overloading. Moreover, gateways are rotated with the passage of time to balance the energy consumption of the network. To prevent data loss, AEDG allows dynamic data collection at the AUV depending on the limited number of member nodes that are associated with each gateway. We also develop a sub-optimal elliptical trajectory of AUV by using a connected dominating set (CDS) to further facilitate network throughput maximization. The performance of the AEDG is validated via simulations, which demonstrate the effectiveness of AEDG in comparison to two existing UWSN routing protocols in terms of the selected performance metrics.
An Efficient Data-Gathering Routing Protocol for Underwater Wireless Sensor Networks
Javaid, Nadeem; Ilyas, Naveed; Ahmad, Ashfaq; Alrajeh, Nabil; Qasim, Umar; Khan, Zahoor Ali; Liaqat, Tayyaba; Khan, Majid Iqbal
2015-01-01
Most applications of underwater wireless sensor networks (UWSNs) demand reliable data delivery over a longer period in an efficient and timely manner. However, the harsh and unpredictable underwater environment makes routing more challenging as compared to terrestrial WSNs. Most of the existing schemes deploy mobile sensors or a mobile sink (MS) to maximize data gathering. However, the relatively high deployment cost prevents their usage in most applications. Thus, this paper presents an autonomous underwater vehicle (AUV)-aided efficient data-gathering (AEDG) routing protocol for reliable data delivery in UWSNs. To prolong the network lifetime, AEDG employs an AUV for data collection from gateways and uses a shortest path tree (SPT) algorithm while associating sensor nodes with the gateways. The AEDG protocol also limits the number of associated nodes with the gateway nodes to minimize the network energy consumption and to prevent the gateways from overloading. Moreover, gateways are rotated with the passage of time to balance the energy consumption of the network. To prevent data loss, AEDG allows dynamic data collection at the AUV depending on the limited number of member nodes that are associated with each gateway. We also develop a sub-optimal elliptical trajectory of AUV by using a connected dominating set (CDS) to further facilitate network throughput maximization. The performance of the AEDG is validated via simulations, which demonstrate the effectiveness of AEDG in comparison to two existing UWSN routing protocols in terms of the selected performance metrics. PMID:26593924
Yin, Yihang; Liu, Fengzheng; Zhou, Xiang; Li, Quanzhong
2015-08-07
Wireless sensor networks (WSNs) have been widely used to monitor the environment, and sensors in WSNs are usually power constrained. Because inner-node communication consumes most of the power, efficient data compression schemes are needed to reduce the data transmission to prolong the lifetime of WSNs. In this paper, we propose an efficient data compression model to aggregate data, which is based on spatial clustering and principal component analysis (PCA). First, sensors with a strong temporal-spatial correlation are grouped into one cluster for further processing with a novel similarity measure metric. Next, sensor data in one cluster are aggregated in the cluster head sensor node, and an efficient adaptive strategy is proposed for the selection of the cluster head to conserve energy. Finally, the proposed model applies principal component analysis with an error bound guarantee to compress the data and retain the definite variance at the same time. Computer simulations show that the proposed model can greatly reduce communication and obtain a lower mean square error than other PCA-based algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Lingping; Liu, Gang; Gong, Jue
The organic-inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley-Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to -100% increase) under mild pressures at -0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing anymore » adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon-electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance.« less
ERIC Educational Resources Information Center
Cairns, Deborah; Brown, Jayne; Tolson, Debbie; Darbyshire, Chris
2014-01-01
Background: The negative health impacts of prolonged caregiving are widely reported. However, there is a paucity of evidence concerning the impacts of a lifetime of caring on older parents of offspring with learning disabilities. Design and Methods: An exploratory postal survey including the Medical Outcome Study (Short Form) 36 version 2…
A Lifetime Maximization Relay Selection Scheme in Wireless Body Area Networks.
Zhang, Yu; Zhang, Bing; Zhang, Shi
2017-06-02
Network Lifetime is one of the most important metrics in Wireless Body Area Networks (WBANs). In this paper, a relay selection scheme is proposed under the topology constrains specified in the IEEE 802.15.6 standard to maximize the lifetime of WBANs through formulating and solving an optimization problem where relay selection of each node acts as optimization variable. Considering the diversity of the sensor nodes in WBANs, the optimization problem takes not only energy consumption rate but also energy difference among sensor nodes into account to improve the network lifetime performance. Since it is Non-deterministic Polynomial-hard (NP-hard) and intractable, a heuristic solution is then designed to rapidly address the optimization. The simulation results indicate that the proposed relay selection scheme has better performance in network lifetime compared with existing algorithms and that the heuristic solution has low time complexity with only a negligible performance degradation gap from optimal value. Furthermore, we also conduct simulations based on a general WBAN model to comprehensively illustrate the advantages of the proposed algorithm. At the end of the evaluation, we validate the feasibility of our proposed scheme via an implementation discussion.
Fuzzy Logic-Based Guaranteed Lifetime Protocol for Real-Time Wireless Sensor Networks.
Shah, Babar; Iqbal, Farkhund; Abbas, Ali; Kim, Ki-Il
2015-08-18
Few techniques for guaranteeing a network lifetime have been proposed despite its great impact on network management. Moreover, since the existing schemes are mostly dependent on the combination of disparate parameters, they do not provide additional services, such as real-time communications and balanced energy consumption among sensor nodes; thus, the adaptability problems remain unresolved among nodes in wireless sensor networks (WSNs). To solve these problems, we propose a novel fuzzy logic model to provide real-time communication in a guaranteed WSN lifetime. The proposed fuzzy logic controller accepts the input descriptors energy, time and velocity to determine each node's role for the next duration and the next hop relay node for real-time packets. Through the simulation results, we verified that both the guaranteed network's lifetime and real-time delivery are efficiently ensured by the new fuzzy logic model. In more detail, the above-mentioned two performance metrics are improved up to 8%, as compared to our previous work, and 14% compared to existing schemes, respectively.
Lin, Yunyue; Wu, Qishi; Cai, Xiaoshan; ...
2010-01-01
Data transmission from sensor nodes to a base station or a sink node often incurs significant energy consumption, which critically affects network lifetime. We generalize and solve the problem of deploying multiple base stations to maximize network lifetime in terms of two different metrics under one-hop and multihop communication models. In the one-hop communication model, the sensors far away from base stations always deplete their energy much faster than others. We propose an optimal solution and a heuristic approach based on the minimal enclosing circle algorithm to deploy a base station at the geometric center of each cluster. In themore » multihop communication model, both base station location and data routing mechanism need to be considered in maximizing network lifetime. We propose an iterative algorithm based on rigorous mathematical derivations and use linear programming to compute the optimal routing paths for data transmission. Simulation results show the distinguished performance of the proposed deployment algorithms in maximizing network lifetime.« less
A Comprehensive Study of Data Collection Schemes Using Mobile Sinks in Wireless Sensor Networks
Khan, Abdul Waheed; Abdullah, Abdul Hanan; Anisi, Mohammad Hossein; Bangash, Javed Iqbal
2014-01-01
Recently sink mobility has been exploited in numerous schemes to prolong the lifetime of wireless sensor networks (WSNs). Contrary to traditional WSNs where sensory data from sensor field is ultimately sent to a static sink, mobile sink-based approaches alleviate energy-holes issues thereby facilitating balanced energy consumption among nodes. In mobility scenarios, nodes need to keep track of the latest location of mobile sinks for data delivery. However, frequent propagation of sink topological updates undermines the energy conservation goal and therefore should be controlled. Furthermore, controlled propagation of sinks' topological updates affects the performance of routing strategies thereby increasing data delivery latency and reducing packet delivery ratios. This paper presents a taxonomy of various data collection/dissemination schemes that exploit sink mobility. Based on how sink mobility is exploited in the sensor field, we classify existing schemes into three classes, namely path constrained, path unconstrained, and controlled sink mobility-based schemes. We also organize existing schemes based on their primary goals and provide a comparative study to aid readers in selecting the appropriate scheme in accordance with their particular intended applications and network dynamics. Finally, we conclude our discussion with the identification of some unresolved issues in pursuit of data delivery to a mobile sink. PMID:24504107
Gu, Xiangping; Zhou, Xiaofeng; Sun, Yanjing
2018-02-28
Compressive sensing (CS)-based data gathering is a promising method to reduce energy consumption in wireless sensor networks (WSNs). Traditional CS-based data-gathering approaches require a large number of sensor nodes to participate in each CS measurement task, resulting in high energy consumption, and do not guarantee load balance. In this paper, we propose a sparser analysis that depends on modified diffusion wavelets, which exploit sensor readings' spatial correlation in WSNs. In particular, a novel data-gathering scheme with joint routing and CS is presented. A modified ant colony algorithm is adopted, where next hop node selection takes a node's residual energy and path length into consideration simultaneously. Moreover, in order to speed up the coverage rate and avoid the local optimal of the algorithm, an improved pheromone impact factor is put forward. More importantly, theoretical proof is given that the equivalent sensing matrix generated can satisfy the restricted isometric property (RIP). The simulation results demonstrate that the modified diffusion wavelets' sparsity affects the sensor signal and has better reconstruction performance than DFT. Furthermore, our data gathering with joint routing and CS can dramatically reduce the energy consumption of WSNs, balance the load, and prolong the network lifetime in comparison to state-of-the-art CS-based methods.
Energy-efficient algorithm for broadcasting in ad hoc wireless sensor networks.
Xiong, Naixue; Huang, Xingbo; Cheng, Hongju; Wan, Zheng
2013-04-12
Broadcasting is a common and basic operation used to support various network protocols in wireless networks. To achieve energy-efficient broadcasting is especially important for ad hoc wireless sensor networks because sensors are generally powered by batteries with limited lifetimes. Energy consumption for broadcast operations can be reduced by minimizing the number of relay nodes based on the observation that data transmission processes consume more energy than data reception processes in the sensor nodes, and how to improve the network lifetime is always an interesting issue in sensor network research. The minimum-energy broadcast problem is then equivalent to the problem of finding the minimum Connected Dominating Set (CDS) for a connected graph that is proved NP-complete. In this paper, we introduce an Efficient Minimum CDS algorithm (EMCDS) with help of a proposed ordered sequence list. EMCDS does not concern itself with node energy and broadcast operations might fail if relay nodes are out of energy. Next we have proposed a Minimum Energy-consumption Broadcast Scheme (MEBS) with a modified version of EMCDS, and aimed at providing an efficient scheduling scheme with maximized network lifetime. The simulation results show that the proposed EMCDS algorithm can find smaller CDS compared with related works, and the MEBS can help to increase the network lifetime by efficiently balancing energy among nodes in the networks.
Yago, Tadayuki; Lou, Jizhong; Wu, Tao; Yang, Jun; Miner, Jonathan J.; Coburn, Leslie; López, José A.; Cruz, Miguel A.; Dong, Jing-Fei; McIntire, Larry V.; McEver, Rodger P.; Zhu, Cheng
2008-01-01
Arterial blood flow enhances glycoprotein Ibα (GPIbα) binding to vWF, which initiates platelet adhesion to injured vessels. Mutations in the vWF A1 domain that cause type 2B von Willebrand disease (vWD) reduce the flow requirement for adhesion. Here we show that increasing force on GPIbα/vWF bonds first prolonged (“catch”) and then shortened (“slip”) bond lifetimes. Two type 2B vWD A1 domain mutants, R1306Q and R1450E, converted catch bonds to slip bonds by prolonging bond lifetimes at low forces. Steered molecular dynamics simulations of GPIbα dissociating from the A1 domain suggested mechanisms for catch bonds and their conversion by the A1 domain mutations. Catch bonds caused platelets and GPIbα-coated microspheres to roll more slowly on WT vWF and WT A1 domains as flow increased from suboptimal levels, explaining flow-enhanced rolling. Longer bond lifetimes at low forces eliminated the flow requirement for rolling on R1306Q and R1450E mutant A1 domains. Flowing platelets agglutinated with microspheres bearing R1306Q or R1450E mutant A1 domains, but not WT A1 domains. Therefore, catch bonds may prevent vWF multimers from agglutinating platelets. A disintegrin and metalloproteinase with a thrombospondin type 1 motif–13 (ADAMTS-13) reduced platelet agglutination with microspheres bearing a tridomain A1A2A3 vWF fragment with the R1450E mutation in a shear-dependent manner. We conclude that in type 2B vWD, prolonged lifetimes of vWF bonds with GPIbα on circulating platelets may allow ADAMTS-13 to deplete large vWF multimers, causing bleeding. PMID:18725999
Guo, Wenzhong; Hong, Wei; Zhang, Bin; Chen, Yuzhong; Xiong, Naixue
2014-01-01
Mobile security is one of the most fundamental problems in Wireless Sensor Networks (WSNs). The data transmission path will be compromised for some disabled nodes. To construct a secure and reliable network, designing an adaptive route strategy which optimizes energy consumption and network lifetime of the aggregation cost is of great importance. In this paper, we address the reliable data aggregation route problem for WSNs. Firstly, to ensure nodes work properly, we propose a data aggregation route algorithm which improves the energy efficiency in the WSN. The construction process achieved through discrete particle swarm optimization (DPSO) saves node energy costs. Then, to balance the network load and establish a reliable network, an adaptive route algorithm with the minimal energy and the maximum lifetime is proposed. Since it is a non-linear constrained multi-objective optimization problem, in this paper we propose a DPSO with the multi-objective fitness function combined with the phenotype sharing function and penalty function to find available routes. Experimental results show that compared with other tree routing algorithms our algorithm can effectively reduce energy consumption and trade off energy consumption and network lifetime. PMID:25215944
Predicting the Lifetime of Dynamic Networks Experiencing Persistent Random Attacks.
Podobnik, Boris; Lipic, Tomislav; Horvatic, Davor; Majdandzic, Antonio; Bishop, Steven R; Eugene Stanley, H
2015-09-21
Estimating the critical points at which complex systems abruptly flip from one state to another is one of the remaining challenges in network science. Due to lack of knowledge about the underlying stochastic processes controlling critical transitions, it is widely considered difficult to determine the location of critical points for real-world networks, and it is even more difficult to predict the time at which these potentially catastrophic failures occur. We analyse a class of decaying dynamic networks experiencing persistent failures in which the magnitude of the overall failure is quantified by the probability that a potentially permanent internal failure will occur. When the fraction of active neighbours is reduced to a critical threshold, cascading failures can trigger a total network failure. For this class of network we find that the time to network failure, which is equivalent to network lifetime, is inversely dependent upon the magnitude of the failure and logarithmically dependent on the threshold. We analyse how permanent failures affect network robustness using network lifetime as a measure. These findings provide new methodological insight into system dynamics and, in particular, of the dynamic processes of networks. We illustrate the network model by selected examples from biology, and social science.
Fuzzy Logic-Based Guaranteed Lifetime Protocol for Real-Time Wireless Sensor Networks
Shah, Babar; Iqbal, Farkhund; Abbas, Ali; Kim, Ki-Il
2015-01-01
Few techniques for guaranteeing a network lifetime have been proposed despite its great impact on network management. Moreover, since the existing schemes are mostly dependent on the combination of disparate parameters, they do not provide additional services, such as real-time communications and balanced energy consumption among sensor nodes; thus, the adaptability problems remain unresolved among nodes in wireless sensor networks (WSNs). To solve these problems, we propose a novel fuzzy logic model to provide real-time communication in a guaranteed WSN lifetime. The proposed fuzzy logic controller accepts the input descriptors energy, time and velocity to determine each node’s role for the next duration and the next hop relay node for real-time packets. Through the simulation results, we verified that both the guaranteed network’s lifetime and real-time delivery are efficiently ensured by the new fuzzy logic model. In more detail, the above-mentioned two performance metrics are improved up to 8%, as compared to our previous work, and 14% compared to existing schemes, respectively. PMID:26295238
Extending the Lifetime of Perovskite Solar Cells using a Perfluorinated Dopant.
Salado, Manuel; Ramos, F Javier; Manzanares, Valentin M; Gao, Peng; Nazeeruddin, Mohammad Khaja; Dyson, Paul J; Ahmad, Shahzada
2016-09-22
The principle limitation of perovskite solar cells is related to their instability and, hence, their limited lifetime. Herein, we employ an imidazolium iodide dopant, 1-methyl-3-(1H,1H,2H,2H-nonafluorohexyl)-imidazolium iodide, containing a perfluorous appendage, which leads to prolonged (unencapsulated, under Ar atmosphere) device activities exceeding 100 days without compromising the power conversion efficiency and other photovoltaic parameters. The extended lifetime of the device can be attributed, at least in part, to the hydrophobic nature of the imidazolium iodide salt. The functionalization of the perovskite material was found to have negligible influence on the perovskite crystal structure. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Channel Deviation-Based Power Control in Body Area Networks.
Van, Son Dinh; Cotton, Simon L; Smith, David B
2018-05-01
Internet enabled body area networks (BANs) will form a core part of future remote health monitoring and ambient assisted living technology. In BAN applications, due to the dynamic nature of human activity, the off-body BAN channel can be prone to deep fading caused by body shadowing and multipath fading. Using this knowledge, we present some novel practical adaptive power control protocols based on the channel deviation to simultaneously prolong the lifetime of wearable devices and reduce outage probability. The proposed schemes are both flexible and relatively simple to implement on hardware platforms with constrained resources making them inherently suitable for BAN applications. We present the key algorithm parameters used to dynamically respond to the channel variation. This allows the algorithms to achieve a better energy efficiency and signal reliability in everyday usage scenarios such as those in which a person undertakes many different activities (e.g., sitting, walking, standing, etc.). We also profile their performance against traditional, optimal, and other existing schemes for which it is demonstrated that not only does the outage probability reduce significantly, but the proposed algorithms also save up to average transmit power compared to the competing schemes.
Service-Oriented Node Scheduling Scheme for Wireless Sensor Networks Using Markov Random Field Model
Cheng, Hongju; Su, Zhihuang; Lloret, Jaime; Chen, Guolong
2014-01-01
Future wireless sensor networks are expected to provide various sensing services and energy efficiency is one of the most important criterions. The node scheduling strategy aims to increase network lifetime by selecting a set of sensor nodes to provide the required sensing services in a periodic manner. In this paper, we are concerned with the service-oriented node scheduling problem to provide multiple sensing services while maximizing the network lifetime. We firstly introduce how to model the data correlation for different services by using Markov Random Field (MRF) model. Secondly, we formulate the service-oriented node scheduling issue into three different problems, namely, the multi-service data denoising problem which aims at minimizing the noise level of sensed data, the representative node selection problem concerning with selecting a number of active nodes while determining the services they provide, and the multi-service node scheduling problem which aims at maximizing the network lifetime. Thirdly, we propose a Multi-service Data Denoising (MDD) algorithm, a novel multi-service Representative node Selection and service Determination (RSD) algorithm, and a novel MRF-based Multi-service Node Scheduling (MMNS) scheme to solve the above three problems respectively. Finally, extensive experiments demonstrate that the proposed scheme efficiently extends the network lifetime. PMID:25384005
Gun violence in Americans' social network during their lifetime.
Kalesan, Bindu; Weinberg, Janice; Galea, Sandro
2016-12-01
The overall burden of gun violence death and injury in the US is now well understood. However, no study has shown the extent to which gun violence is associated with the individual lives of Americans. We used fatal and non-fatal gun injury rates in 2013 from Centers for Disease Control and Prevention's Web-based Injury Statistics Query and Reporting System (WISQARS) and generally accepted estimates about the size of an American's social network to determine the likelihood that any given person will know someone in their personal social network who is a victim of gun violence during their lifetime. We derived estimates in the overall population and among racial/ethnic groups and by gun-injury intent. The likelihood of knowing a gun violence victim within any given personal network over a lifetime is 99.85% (99.8% to 99.9%). The likelihood among non-Hispanic white, black, Hispanic and other race Americans were 97.1%, 99.9%, 99.5% and 88.9% respectively. Nearly all Americans of all racial/ethnic groups are likely to know a victim of gun violence in their social network during their lifetime. Copyright © 2016 Elsevier Inc. All rights reserved.
Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems.
Huang, Shuqiang; Tao, Ming
2017-01-22
Wireless sensor network topology optimization is a highly important issue, and topology control through node selection can improve the efficiency of data forwarding, while saving energy and prolonging lifetime of the network. To address the problem of connecting a wireless sensor network to the Internet in cyber-physical systems, here we propose a geometric gateway deployment based on a competitive swarm optimizer algorithm. The particle swarm optimization (PSO) algorithm has a continuous search feature in the solution space, which makes it suitable for finding the geometric center of gateway deployment; however, its search mechanism is limited to the individual optimum (pbest) and the population optimum (gbest); thus, it easily falls into local optima. In order to improve the particle search mechanism and enhance the search efficiency of the algorithm, we introduce a new competitive swarm optimizer (CSO) algorithm. The CSO search algorithm is based on an inter-particle competition mechanism and can effectively avoid trapping of the population falling into a local optimum. With the improvement of an adaptive opposition-based search and its ability to dynamically parameter adjustments, this algorithm can maintain the diversity of the entire swarm to solve geometric K -center gateway deployment problems. The simulation results show that this CSO algorithm has a good global explorative ability as well as convergence speed and can improve the network quality of service (QoS) level of cyber-physical systems by obtaining a minimum network coverage radius. We also find that the CSO algorithm is more stable, robust and effective in solving the problem of geometric gateway deployment as compared to the PSO or Kmedoids algorithms.
Xu, Lina; O'Hare, Gregory M P; Collier, Rem
2017-07-05
Wireless Sensor Networks (WSNs) are typically composed of thousands of sensors powered by limited energy resources. Clustering techniques were introduced to prolong network longevity offering the promise of green computing. However, most existing work fails to consider the network coverage when evaluating the lifetime of a network. We believe that balancing the energy consumption in per unit area rather than on each single sensor can provide better-balanced power usage throughout the network. Our former work-Balanced Energy-Efficiency (BEE) and its Multihop version BEEM can not only extend the network longevity, but also maintain the network coverage. Following WSNs, Internet of Things (IoT) technology has been proposed with higher degree of diversities in terms of communication abilities and user scenarios, supporting a large range of real world applications. The IoT devices are embedded with multiple communication interfaces, normally referred as Multiple-In and Multiple-Out (MIMO) in 5G networks. The applications running on those devices can generate various types of data. Every interface has its own characteristics, which may be preferred and beneficial in some specific user scenarios. With MIMO becoming more available on the IoT devices, an advanced clustering solution for highly dynamic IoT systems is missing and also pressingly demanded in order to cater for differing user applications. In this paper, we present a smart clustering algorithm (Smart-BEEM) based on our former work BEE(M) to accomplish energy efficient and Quality of user Experience (QoE) supported communication in cluster based IoT networks. It is a user behaviour and context aware approach, aiming to facilitate IoT devices to choose beneficial communication interfaces and cluster headers for data transmission. Experimental results have proved that Smart-BEEM can further improve the performance of BEE and BEEM for coverage sensitive longevity.
O’Hare, Gregory M. P.; Collier, Rem
2017-01-01
Wireless Sensor Networks (WSNs) are typically composed of thousands of sensors powered by limited energy resources. Clustering techniques were introduced to prolong network longevity offering the promise of green computing. However, most existing work fails to consider the network coverage when evaluating the lifetime of a network. We believe that balancing the energy consumption in per unit area rather than on each single sensor can provide better-balanced power usage throughout the network. Our former work—Balanced Energy-Efficiency (BEE) and its Multihop version BEEM can not only extend the network longevity, but also maintain the network coverage. Following WSNs, Internet of Things (IoT) technology has been proposed with higher degree of diversities in terms of communication abilities and user scenarios, supporting a large range of real world applications. The IoT devices are embedded with multiple communication interfaces, normally referred as Multiple-In and Multiple-Out (MIMO) in 5G networks. The applications running on those devices can generate various types of data. Every interface has its own characteristics, which may be preferred and beneficial in some specific user scenarios. With MIMO becoming more available on the IoT devices, an advanced clustering solution for highly dynamic IoT systems is missing and also pressingly demanded in order to cater for differing user applications. In this paper, we present a smart clustering algorithm (Smart-BEEM) based on our former work BEE(M) to accomplish energy efficient and Quality of user Experience (QoE) supported communication in cluster based IoT networks. It is a user behaviour and context aware approach, aiming to facilitate IoT devices to choose beneficial communication interfaces and cluster headers for data transmission. Experimental results have proved that Smart-BEEM can further improve the performance of BEE and BEEM for coverage sensitive longevity. PMID:28678164
Markov Chain Model-Based Optimal Cluster Heads Selection for Wireless Sensor Networks
Ahmed, Gulnaz; Zou, Jianhua; Zhao, Xi; Sadiq Fareed, Mian Muhammad
2017-01-01
The longer network lifetime of Wireless Sensor Networks (WSNs) is a goal which is directly related to energy consumption. This energy consumption issue becomes more challenging when the energy load is not properly distributed in the sensing area. The hierarchal clustering architecture is the best choice for these kind of issues. In this paper, we introduce a novel clustering protocol called Markov chain model-based optimal cluster heads (MOCHs) selection for WSNs. In our proposed model, we introduce a simple strategy for the optimal number of cluster heads selection to overcome the problem of uneven energy distribution in the network. The attractiveness of our model is that the BS controls the number of cluster heads while the cluster heads control the cluster members in each cluster in such a restricted manner that a uniform and even load is ensured in each cluster. We perform an extensive range of simulation using five quality measures, namely: the lifetime of the network, stable and unstable region in the lifetime of the network, throughput of the network, the number of cluster heads in the network, and the transmission time of the network to analyze the proposed model. We compare MOCHs against Sleep-awake Energy Efficient Distributed (SEED) clustering, Artificial Bee Colony (ABC), Zone Based Routing (ZBR), and Centralized Energy Efficient Clustering (CEEC) using the above-discussed quality metrics and found that the lifetime of the proposed model is almost 1095, 2630, 3599, and 2045 rounds (time steps) greater than SEED, ABC, ZBR, and CEEC, respectively. The obtained results demonstrate that the MOCHs is better than SEED, ABC, ZBR, and CEEC in terms of energy efficiency and the network throughput. PMID:28241492
A Target Coverage Scheduling Scheme Based on Genetic Algorithms in Directional Sensor Networks
Gil, Joon-Min; Han, Youn-Hee
2011-01-01
As a promising tool for monitoring the physical world, directional sensor networks (DSNs) consisting of a large number of directional sensors are attracting increasing attention. As directional sensors in DSNs have limited battery power and restricted angles of sensing range, maximizing the network lifetime while monitoring all the targets in a given area remains a challenge. A major technique to conserve the energy of directional sensors is to use a node wake-up scheduling protocol by which some sensors remain active to provide sensing services, while the others are inactive to conserve their energy. In this paper, we first address a Maximum Set Covers for DSNs (MSCD) problem, which is known to be NP-complete, and present a greedy algorithm-based target coverage scheduling scheme that can solve this problem by heuristics. This scheme is used as a baseline for comparison. We then propose a target coverage scheduling scheme based on a genetic algorithm that can find the optimal cover sets to extend the network lifetime while monitoring all targets by the evolutionary global search technique. To verify and evaluate these schemes, we conducted simulations and showed that the schemes can contribute to extending the network lifetime. Simulation results indicated that the genetic algorithm-based scheduling scheme had better performance than the greedy algorithm-based scheme in terms of maximizing network lifetime. PMID:22319387
Autofluorescence Lifetimes in Geographic Atrophy in Patients With Age-Related Macular Degeneration.
Dysli, Chantal; Wolf, Sebastian; Zinkernagel, Martin S
2016-05-01
To investigate fluorescence lifetime characteristics in patients with geographic atrophy (GA) in eyes with age-related macular degeneration and to correlate the measurements with clinical data and optical coherence tomography (OCT) findings. Patients with GA were imaged with a fluorescence lifetime imaging ophthalmoscope. Retinal autofluorescence lifetimes were measured in a short and a long spectral channel (498-560 nm and 560-720 nm). Mean retinal fluorescence lifetimes were analyzed within GA and the surrounding retina, and data were correlated with best corrected visual acuity and OCT measurements. Fluorescence lifetime maps of 41 eyes of 41 patients (80 ± 7 years) with GA were analyzed. Mean lifetimes within areas of atrophy were prolonged by 624 ± 276 ps (+152%) in the short spectral channel and 418 ± 186 ps (+83%) in the long spectral channel compared to the surrounding tissue. Autofluorescence lifetime abnormalities in GA occurred with particular patterns, similar to those seen in fundus autofluorescence intensity images. Within the fovea short mean autofluorescence lifetimes were observed, presumably representing macular pigment. Short lifetimes were preserved even in the absence of foveal sparing but were decreased in patients with advanced retinal atrophy in OCT. Short lifetimes in the fovea correlated with better best corrected visual acuity in both spectral channels. This study established that autofluorescence lifetime changes in GA present with explicit patterns. We hypothesize that the short lifetimes seen within the atrophy may be used to estimate damage induced by atrophy and to monitor disease progression in the context of natural history or interventional therapeutic studies.
Replacement predictions for drinking water networks through historical data.
Malm, Annika; Ljunggren, Olle; Bergstedt, Olof; Pettersson, Thomas J R; Morrison, Gregory M
2012-05-01
Lifetime distribution functions and current network age data can be combined to provide an assessment of the future replacement needs for drinking water distribution networks. Reliable lifetime predictions are limited by a lack of understanding of deterioration processes for different pipe materials under varied conditions. An alternative approach is the use of real historical data for replacement over an extended time series. In this paper, future replacement needs are predicted through historical data representing more than one hundred years of drinking water pipe replacement in Gothenburg, Sweden. The verified data fits well with commonly used lifetime distribution curves. Predictions for the future are discussed in the context of path dependence theory. Copyright © 2012 Elsevier Ltd. All rights reserved.
Distance-Based and Low Energy Adaptive Clustering Protocol for Wireless Sensor Networks
Gani, Abdullah; Anisi, Mohammad Hossein; Ab Hamid, Siti Hafizah; Akhunzada, Adnan; Khan, Muhammad Khurram
2016-01-01
A wireless sensor network (WSN) comprises small sensor nodes with limited energy capabilities. The power constraints of WSNs necessitate efficient energy utilization to extend the overall network lifetime of these networks. We propose a distance-based and low-energy adaptive clustering (DISCPLN) protocol to streamline the green issue of efficient energy utilization in WSNs. We also enhance our proposed protocol into the multi-hop-DISCPLN protocol to increase the lifetime of the network in terms of high throughput with minimum delay time and packet loss. We also propose the mobile-DISCPLN protocol to maintain the stability of the network. The modelling and comparison of these protocols with their corresponding benchmarks exhibit promising results. PMID:27658194
Hwang, I-Shyan
2017-01-01
The K-coverage configuration that guarantees coverage of each location by at least K sensors is highly popular and is extensively used to monitor diversified applications in wireless sensor networks. Long network lifetime and high detection quality are the essentials of such K-covered sleep-scheduling algorithms. However, the existing sleep-scheduling algorithms either cause high cost or cannot preserve the detection quality effectively. In this paper, the Pre-Scheduling-based K-coverage Group Scheduling (PSKGS) and Self-Organized K-coverage Scheduling (SKS) algorithms are proposed to settle the problems in the existing sleep-scheduling algorithms. Simulation results show that our pre-scheduled-based KGS approach enhances the detection quality and network lifetime, whereas the self-organized-based SKS algorithm minimizes the computation and communication cost of the nodes and thereby is energy efficient. Besides, SKS outperforms PSKGS in terms of network lifetime and detection quality as it is self-organized. PMID:29257078
Routing to preserve energy in wireless networks
NASA Astrophysics Data System (ADS)
Block, Frederick J., IV
Many applications for wireless radio networks require that some or all radios in the network rely on batteries as energy sources. In many cases, battery replacement is infeasible, expensive, or impossible. Communication protocols for such networks should be designed to preserve limited energy supplies. Because the choice of a route to a traffic sink influences how often radios must transmit and receive, poor route selection can quickly deplete the batteries of certain nodes. Previous work has shown that a network's lifetime can be extended by assigning higher routing costs to nodes with little remaining energy and nodes that must use high transmitter power to reach neighbor radios. Although using remaining energy levels in routing metrics can increase network lifetime, in practice, there may be significant error in a node's estimate of its battery level. The effect of battery level uncertainty on routing is examined. Routing metrics are presented that are designed to explicitly account for uncertainty in remaining energy. Simulation results using several statistical models for this uncertainty show that the proposed metrics perform well. In addition to knowledge of current battery levels, estimates of how quickly radios are consuming energy may be helpful in extending network lifetime. We present a family of routing metrics that incorporate a radio's rate of energy consumption. Simulation results show that the proposed family of metrics performs well under a variety of traffic models and network topologies. Route selection can also be complicated by time-varying link conditions. Radios may be subject to interference from other nearby communication systems, hostile jammers, and other, non-communication sources of noise. A route that first appears to have only a small cost may later require much greater energy expenditure when transmitting packets. Frequent route selection can help radios avoid using links with interference, but additional routing control messages increase energy consumption. We investigate the effects of time-varying interference on the lifetime of ad hoc networks. It is shown that there is a tradeoff between packet delay and node lifetime. We show that it is possible to design the system to perform well under a wide variety of channel conditions.
Putranto, Dedy Septono Catur; Priambodo, Purnomo Sidi; Hartanto, Djoko; Du, Wei; Satoh, Hiroaki; Ono, Atsushi; Inokawa, Hiroshi
2014-09-08
Low-frequency noise and hole lifetime in silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistors (MOSFETs) are analyzed, considering their use in photon detection based on single-hole counting. The noise becomes minimum at around the transition point between front- and back-channel operations when the substrate voltage is varied, and increases largely on both negative and positive sides of the substrate voltage showing peculiar Lorentzian (generation-recombination) noise spectra. Hole lifetime is evaluated by the analysis of drain current histogram at different substrate voltages. It is found that the peaks in the histogram corresponding to the larger number of stored holes become higher as the substrate bias becomes larger. This can be attributed to the prolonged lifetime caused by the higher electric field inside the body of SOI MOSFET. It can be concluded that, once the inversion channel is induced for detection of the photo-generated holes, the small absolute substrate bias is favorable for short lifetime and low noise, leading to high-speed operation.
On Maximizing the Lifetime of Wireless Sensor Networks by Optimally Assigning Energy Supplies
Asorey-Cacheda, Rafael; García-Sánchez, Antonio Javier; García-Sánchez, Felipe; García-Haro, Joan; Gonzalez-Castaño, Francisco Javier
2013-01-01
The extension of the network lifetime of Wireless Sensor Networks (WSN) is an important issue that has not been appropriately solved yet. This paper addresses this concern and proposes some techniques to plan an arbitrary WSN. To this end, we suggest a hierarchical network architecture, similar to realistic scenarios, where nodes with renewable energy sources (denoted as primary nodes) carry out most message delivery tasks, and nodes equipped with conventional chemical batteries (denoted as secondary nodes) are those with less communication demands. The key design issue of this network architecture is the development of a new optimization framework to calculate the optimal assignment of renewable energy supplies (primary node assignment) to maximize network lifetime, obtaining the minimum number of energy supplies and their node assignment. We also conduct a second optimization step to additionally minimize the number of packet hops between the source and the sink. In this work, we present an algorithm that approaches the results of the optimization framework, but with much faster execution speed, which is a good alternative for large-scale WSN networks. Finally, the network model, the optimization process and the designed algorithm are further evaluated and validated by means of computer simulation under realistic conditions. The results obtained are discussed comparatively. PMID:23939582
On maximizing the lifetime of Wireless Sensor Networks by optimally assigning energy supplies.
Asorey-Cacheda, Rafael; García-Sánchez, Antonio Javier; García-Sánchez, Felipe; García-Haro, Joan; González-Castano, Francisco Javier
2013-08-09
The extension of the network lifetime of Wireless Sensor Networks (WSN) is an important issue that has not been appropriately solved yet. This paper addresses this concern and proposes some techniques to plan an arbitrary WSN. To this end, we suggest a hierarchical network architecture, similar to realistic scenarios, where nodes with renewable energy sources (denoted as primary nodes) carry out most message delivery tasks, and nodes equipped with conventional chemical batteries (denoted as secondary nodes) are those with less communication demands. The key design issue of this network architecture is the development of a new optimization framework to calculate the optimal assignment of renewable energy supplies (primary node assignment) to maximize network lifetime, obtaining the minimum number of energy supplies and their node assignment. We also conduct a second optimization step to additionally minimize the number of packet hops between the source and the sink. In this work, we present an algorithm that approaches the results of the optimization framework, but with much faster execution speed, which is a good alternative for large-scale WSN networks. Finally, the network model, the optimization process and the designed algorithm are further evaluated and validated by means of computer simulation under realistic conditions. The results obtained are discussed comparatively.
Tsouri, Gill R.; Prieto, Alvaro; Argade, Nikhil
2012-01-01
Global routing protocols in wireless body area networks are considered. Global routing is augmented with a novel link cost function designed to balance energy consumption across the network. The result is a substantial increase in network lifetime at the expense of a marginal increase in energy per bit. Network maintenance requirements are reduced as well, since balancing energy consumption means all batteries need to be serviced at the same time and less frequently. The proposed routing protocol is evaluated using a hardware experimental setup comprising multiple nodes and an access point. The setup is used to assess network architectures, including an on-body access point and an off-body access point with varying number of antennas. Real-time experiments are conducted in indoor environments to assess performance gains. In addition, the setup is used to record channel attenuation data which are then processed in extensive computer simulations providing insight on the effect of protocol parameters on performance. Results demonstrate efficient balancing of energy consumption across all nodes, an average increase of up to 40% in network lifetime corresponding to a modest average increase of 0.4 dB in energy per bit, and a cutoff effect on required transmission power to achieve reliable connectivity. PMID:23201987
Tsouri, Gill R; Prieto, Alvaro; Argade, Nikhil
2012-09-26
Global routing protocols in wireless body area networks are considered. Global routing is augmented with a novel link cost function designed to balance energy consumption across the network. The result is a substantial increase in network lifetime at the expense of a marginal increase in energy per bit. Network maintenance requirements are reduced as well, since balancing energy consumption means all batteries need to be serviced at the same time and less frequently. The proposed routing protocol is evaluated using a hardware experimental setup comprising multiple nodes and an access point. The setup is used to assess network architectures, including an on-body access point and an off-body access point with varying number of antennas. Real-time experiments are conducted in indoor environments to assess performance gains. In addition, the setup is used to record channel attenuation data which are then processed in extensive computer simulations providing insight on the effect of protocol parameters on performance. Results demonstrate efficient balancing of energy consumption across all nodes, an average increase of up to 40% in network lifetime corresponding to a modest average increase of 0.4 dB in energy per bit, and a cutoff effect on required transmission power to achieve reliable connectivity.
Adaptive Information Dissemination Control to Provide Diffdelay for the Internet of Things.
Liu, Xiao; Liu, Anfeng; Huang, Changqin
2017-01-12
Applications running on the Internet of Things, such as the Wireless Sensor and Actuator Networks (WSANs) platform, generally have different quality of service (QoS) requirements. For urgent events, it is crucial that information be reported to the actuator quickly, and the communication cost is the second factor. However, for interesting events, communication costs, network lifetime and time all become important factors. In most situations, these different requirements cannot be satisfied simultaneously. In this paper, an adaptive communication control based on a differentiated delay (ACCDS) scheme is proposed to resolve this conflict. In an ACCDS, source nodes of events adaptively send various searching actuators routings (SARs) based on the degree of sensitivity to delay while maintaining the network lifetime. For a delay-sensitive event, the source node sends a large number of SARs to actuators to identify and inform the actuators in an extremely short time; thus, action can be taken quickly but at higher communication costs. For delay-insensitive events, the source node sends fewer SARs to reduce communication costs and improve network lifetime. Therefore, an ACCDS can meet the QoS requirements of different events using a differentiated delay framework. Theoretical analysis simulation results indicate that an ACCDS provides delay and communication costs and differentiated services; an ACCDS scheme can reduce the network delay by 11.111%-53.684% for a delay-sensitive event and reduce the communication costs by 5%-22.308% for interesting events, and reduce the network lifetime by about 28.713%.
Adaptive Information Dissemination Control to Provide Diffdelay for the Internet of Things
Liu, Xiao; Liu, Anfeng; Huang, Changqin
2017-01-01
Applications running on the Internet of Things, such as the Wireless Sensor and Actuator Networks (WSANs) platform, generally have different quality of service (QoS) requirements. For urgent events, it is crucial that information be reported to the actuator quickly, and the communication cost is the second factor. However, for interesting events, communication costs, network lifetime and time all become important factors. In most situations, these different requirements cannot be satisfied simultaneously. In this paper, an adaptive communication control based on a differentiated delay (ACCDS) scheme is proposed to resolve this conflict. In an ACCDS, source nodes of events adaptively send various searching actuators routings (SARs) based on the degree of sensitivity to delay while maintaining the network lifetime. For a delay-sensitive event, the source node sends a large number of SARs to actuators to identify and inform the actuators in an extremely short time; thus, action can be taken quickly but at higher communication costs. For delay-insensitive events, the source node sends fewer SARs to reduce communication costs and improve network lifetime. Therefore, an ACCDS can meet the QoS requirements of different events using a differentiated delay framework. Theoretical analysis simulation results indicate that an ACCDS provides delay and communication costs and differentiated services; an ACCDS scheme can reduce the network delay by 11.111%–53.684% for a delay-sensitive event and reduce the communication costs by 5%–22.308% for interesting events, and reduce the network lifetime by about 28.713%. PMID:28085097
Moraiti, Cleopatra A; Nakas, Christos T; Papadopoulos, Nikos T
2012-08-01
In temperate areas, dormancy (diapause and/or quiescence) enables herbivorous insect species to persist and thrive by synchronizing growth and reproduction with the seasonal phenology of their host plants. Within-population variability in dormancy increases survival chances under unpredictable environmental changes. However, prolonged dormancy may be costly, incurring trade-offs in important adult fitness traits such as life span and reproduction. We used the European cherry fruit fly, Rhagoletis cerasi, a stenophagous, univoltine species that overwinters in the pupal stage for usually one or more years to test the hypotheses that prolonged dormancy of pupae has trade-offs with body size, survival and reproduction of the resulting adults. We used two geographically isolated populations of R. cerasi to compare the demographic traits of adults obtained from pupae subjected to one or two cycles of warm-cold periods (annual and prolonged dormancy respectively). Regardless of population, adults from pupae that experienced prolonged dormancy were larger than counterparts emerging within 1year. Prolonged dormancy did not affect adult longevity but both lifetime fecundity and oviposition were significantly decreased. Extension of the life cycle of some individuals in R. cerasi populations in association with prolonged dormancy is likely a bet-hedging strategy. Copyright © 2012 Elsevier Ltd. All rights reserved.
Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems
Huang, Shuqiang; Tao, Ming
2017-01-01
Wireless sensor network topology optimization is a highly important issue, and topology control through node selection can improve the efficiency of data forwarding, while saving energy and prolonging lifetime of the network. To address the problem of connecting a wireless sensor network to the Internet in cyber-physical systems, here we propose a geometric gateway deployment based on a competitive swarm optimizer algorithm. The particle swarm optimization (PSO) algorithm has a continuous search feature in the solution space, which makes it suitable for finding the geometric center of gateway deployment; however, its search mechanism is limited to the individual optimum (pbest) and the population optimum (gbest); thus, it easily falls into local optima. In order to improve the particle search mechanism and enhance the search efficiency of the algorithm, we introduce a new competitive swarm optimizer (CSO) algorithm. The CSO search algorithm is based on an inter-particle competition mechanism and can effectively avoid trapping of the population falling into a local optimum. With the improvement of an adaptive opposition-based search and its ability to dynamically parameter adjustments, this algorithm can maintain the diversity of the entire swarm to solve geometric K-center gateway deployment problems. The simulation results show that this CSO algorithm has a good global explorative ability as well as convergence speed and can improve the network quality of service (QoS) level of cyber-physical systems by obtaining a minimum network coverage radius. We also find that the CSO algorithm is more stable, robust and effective in solving the problem of geometric gateway deployment as compared to the PSO or Kmedoids algorithms. PMID:28117735
A Distributed and Energy-Efficient Algorithm for Event K-Coverage in Underwater Sensor Networks.
Jiang, Peng; Xu, Yiming; Liu, Jun
2017-01-19
For event dynamic K-coverage algorithms, each management node selects its assistant node by using a greedy algorithm without considering the residual energy and situations in which a node is selected by several events. This approach affects network energy consumption and balance. Therefore, this study proposes a distributed and energy-efficient event K-coverage algorithm (DEEKA). After the network achieves 1-coverage, the nodes that detect the same event compete for the event management node with the number of candidate nodes and the average residual energy, as well as the distance to the event. Second, each management node estimates the probability of its neighbor nodes' being selected by the event it manages with the distance level, the residual energy level, and the number of dynamic coverage event of these nodes. Third, each management node establishes an optimization model that uses expectation energy consumption and the residual energy variance of its neighbor nodes and detects the performance of the events it manages as targets. Finally, each management node uses a constrained non-dominated sorting genetic algorithm (NSGA-II) to obtain the Pareto set of the model and the best strategy via technique for order preference by similarity to an ideal solution (TOPSIS). The algorithm first considers the effect of harsh underwater environments on information collection and transmission. It also considers the residual energy of a node and a situation in which the node is selected by several other events. Simulation results show that, unlike the on-demand variable sensing K-coverage algorithm, DEEKA balances and reduces network energy consumption, thereby prolonging the network's best service quality and lifetime.
Rodgers, Edmund W; Fu, Jing Jing; Krenz, Wulf-Dieter C; Baro, Deborah J
2011-11-09
The phases at which network neurons fire in rhythmic motor outputs are critically important for the proper generation of motor behaviors. The pyloric network in the crustacean stomatogastric ganglion generates a rhythmic motor output wherein neuronal phase relationships are remarkably invariant across individuals and throughout lifetimes. The mechanisms for maintaining these robust phase relationships over the long-term are not well described. Here we show that tonic nanomolar dopamine (DA) acts at type 1 DA receptors (D1Rs) to enable an activity-dependent mechanism that can contribute to phase maintenance in the lateral pyloric (LP) neuron. The LP displays continuous rhythmic bursting. The activity-dependent mechanism was triggered by a prolonged decrease in LP burst duration, and it generated a persistent increase in the maximal conductance (G(max)) of the LP hyperpolarization-activated current (I(h)), but only in the presence of steady-state DA. Interestingly, micromolar DA produces an LP phase advance accompanied by a decrease in LP burst duration that abolishes normal LP network function. During a 1 h application of micromolar DA, LP phase recovered over tens of minutes because, the activity-dependent mechanism enabled by steady-state DA was triggered by the micromolar DA-induced decrease in LP burst duration. Presumably, this mechanism restored normal LP network function. These data suggest steady-state DA may enable homeostatic mechanisms that maintain motor network output during protracted neuromodulation. This DA-enabled, activity-dependent mechanism to preserve phase may be broadly relevant, as diminished dopaminergic tone has recently been shown to reduce I(h) in rhythmically active neurons in the mammalian brain.
Eslaminejad, Mohammadreza; Razak, Shukor Abd
2012-01-01
Wireless sensor networks basically consist of low cost sensor nodes which collect data from environment and relay them to a sink, where they will be subsequently processed. Since wireless nodes are severely power-constrained, the major concern is how to conserve the nodes' energy so that network lifetime can be extended significantly. Employing one static sink can rapidly exhaust the energy of sink neighbors. Furthermore, using a non-optimal single path together with a maximum transmission power level may quickly deplete the energy of individual nodes on the route. This all results in unbalanced energy consumption through the sensor field, and hence a negative effect on the network lifetime. In this paper, we present a comprehensive taxonomy of the various mechanisms applied for increasing the network lifetime. These techniques, whether in the routing or cross-layer area, fall within the following types: multi-sink, mobile sink, multi-path, power control and bio-inspired algorithms, depending on the protocol operation. In this taxonomy, special attention has been devoted to the multi-sink, power control and bio-inspired algorithms, which have not yet received much consideration in the literature. Moreover, each class covers a variety of the state-of-the-art protocols, which should provide ideas for potential future works. Finally, we compare these mechanisms and discuss open research issues. PMID:23202008
Eslaminejad, Mohammadreza; Razak, Shukor Abd
2012-10-09
Wireless sensor networks basically consist of low cost sensor nodes which collect data from environment and relay them to a sink, where they will be subsequently processed. Since wireless nodes are severely power-constrained, the major concern is how to conserve the nodes' energy so that network lifetime can be extended significantly. Employing one static sink can rapidly exhaust the energy of sink neighbors. Furthermore, using a non-optimal single path together with a maximum transmission power level may quickly deplete the energy of individual nodes on the route. This all results in unbalanced energy consumption through the sensor field, and hence a negative effect on the network lifetime. In this paper, we present a comprehensive taxonomy of the various mechanisms applied for increasing the network lifetime. These techniques, whether in the routing or cross-layer area, fall within the following types: multi-sink, mobile sink, multi-path, power control and bio-inspired algorithms, depending on the protocol operation. In this taxonomy, special attention has been devoted to the multi-sink, power control and bio-inspired algorithms, which have not yet received much consideration in the literature. Moreover, each class covers a variety of the state-of-the-art protocols, which should provide ideas for potential future works. Finally, we compare these mechanisms and discuss open research issues.
Dysli, Chantal; Wolf, Sebastian; Tran, Hoai Viet; Zinkernagel, Martin S
2016-12-01
The purpose of this study was to investigate fundus autofluorescence lifetimes in patients with choroideremia and to identify tissue-specific lifetime characteristics and potential prognostic markers. Autofluorescence lifetimes of the retina were measured in two spectral channels (498-560 nm and 560-720 nm) in patients with choroideremia and age-matched healthy controls. Furthermore, autofluorescence intensities and spectral-domain optical coherence tomography (OCT) data were acquired and compared to fundus autofluorescence lifetime data. Sixteen eyes from 8 patients with advanced choroideremia (mean ± SD age, 55 ± 13 years) were included in this study and compared with 10 age-matched healthy participants. Whereas fundus autofluorescence intensity measurement identified areas of remaining retinal pigment epithelium (RPE), autofluorescence lifetime maps identified areas with remaining photoreceptor layers in OCT but RPE atrophy. In these areas, mean (±SEM) lifetimes were 567 ± 59 ps in the short and 603 ± 49 ps in the long spectral channels (+98% and +88% compared to controls). In areas of combined RPE atrophy and loss of photoreceptors, autofluorescence lifetimes were significantly prolonged by 1116 ± 63 ps (+364%) in the short and by 915 ± 52 ps (+270%) in the long spectral channels compared with controls. Because autofluorescence lifetimes identify areas of remaining photoreceptors in the absence of RPE, this imaging modality may be useful to monitor disease progression in the natural course of disease and in context of potential future therapeutic interventions.
FUNDUS AUTOFLUORESCENCE LIFETIMES AND CENTRAL SEROUS CHORIORETINOPATHY.
Dysli, Chantal; Berger, Lieselotte; Wolf, Sebastian; Zinkernagel, Martin S
2017-11-01
To quantify retinal fluorescence lifetimes in patients with central serous chorioretinopathy (CSC) and to identify disease specific lifetime characteristics over the course of disease. Forty-seven participants were included in this study. Patients with central serous chorioretinopathy were imaged with fundus photography, fundus autofluorescence, optical coherence tomography, and fluorescence lifetime imaging ophthalmoscopy (FLIO) and compared with age-matched controls. Retinal autofluorescence was excited using a 473-nm blue laser light and emitted fluorescence light was detected in 2 distinct wavelengths channels (498-560 nm and 560-720 nm). Clinical features, mean retinal autofluorescence lifetimes, autofluorescence intensity, and corresponding optical coherence tomography (OCT) images were further analyzed. Thirty-five central serous chorioretinopathy patients with a mean visual acuity of 78 ETDRS letters (range, 50-90; mean Snellen equivalent: 20/32) and 12 age-matched controls were included. In the acute stage of central serous chorioretinopathy, retinal fluorescence lifetimes were shortened by 15% and 17% in the respective wavelength channels. Multiple linear regression analysis showed that fluorescence lifetimes were significantly influenced by the disease duration (P < 0.001) and accumulation of photoreceptor outer segments (P = 0.03) but independent of the presence or absence of subretinal fluid. Prolonged central macular autofluorescence lifetimes, particularly in eyes with retinal pigment epithelial atrophy, were associated with poor visual acuity. This study establishes that autofluorescence lifetime changes occurring in central serous chorioretinopathy exhibit explicit patterns which can be used to estimate perturbations of the outer retinal layers with a high degree of statistical significance.
High current polarized electron source
NASA Astrophysics Data System (ADS)
Suleiman, R.; Adderley, P.; Grames, J.; Hansknecht, J.; Poelker, M.; Stutzman, M.
2018-05-01
Jefferson Lab operates two DC high voltage GaAs photoguns with compact inverted insulators. One photogun provides the polarized electron beam at the Continuous Electron Beam Accelerator Facility (CEBAF) up to 200 µA. The other gun is used for high average current photocathode lifetime studies at a dedicated test facility up to 4 mA of polarized beam and 10 mA of un-polarized beam. GaAs-based photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed facilities that must operate in excess of tens of mA of polarized average current. This contribution describes techniques to maintain good vacuum while delivering high beam currents, and techniques that minimize damage due to ion bombardment, the dominant mechanism that reduces photocathode yield. Advantages of higher DC voltage include reduced space-charge emittance growth and the potential for better photocathode lifetime. Highlights of R&D to improve the performance of polarized electron sources and prolong the lifetime of strained-superlattice GaAs are presented.
Danger in the Classroom: The Continuing Problem of Asbestos in the Public Schools.
ERIC Educational Resources Information Center
Lang, Robert D.
Asbestos in school buildings continues to threaten the future health of children. Because of prolonged exposure while their metabolism and activity levels are relatively high and their cellular development is relatively rapid, children and adolescents have a lifetime risk of developing asbestos-related diseases--such as asbestosis, mesothelioma,…
Increasing of eddy activity in the northeastern Pacific during 1993-2011
NASA Astrophysics Data System (ADS)
Ding, M.; Lin, P.; Liu, H.; Chai, F.
2017-12-01
We study the long-term behaviors of eddy activity in the northeastern Pacific (NEP) and the dynamic mechanism behind them based on the 3rd version of the mesoscale eddy trajectories dataset released by Chelton et al. (2013) combined with other observation and reanalysis datasets. Both the eddy kinetic energy (EKE) and eddy occurrence number (EON) present prominent increasing trends, with inter-annual and decadal variabilities northeast of the Hawaii-Emperor seamounts. The increasing trend of the EON is mainly due to prolongation of the eddy lifetime associated with the eddy intensification, particularly for anticyclonic eddies (AEs). Weakened surface winds tend to prolong the eddy lifetimes, as the eddy attenuation time scale is inversely proportional to the wind speed. The enhanced anticyclonic wind stress curl (WSC) anomalies inject more energy into the AE over the study region and provide a more suitable environment for AEs growth. The decadal climate modes, such as the Pacific decadal oscillation (PDO) and the North Pacific gyre oscillation (NPGO), may also modulate eddy activities in the NEP by exerting fluctuations in the surface wind system.
A Very Low Power MAC (VLPM) Protocol for Wireless Body Area Networks
Ullah, Niamat; Khan, Pervez; Kwak, Kyung Sup
2011-01-01
Wireless Body Area Networks (WBANs) consist of a limited number of battery operated nodes that are used to monitor the vital signs of a patient over long periods of time without restricting the patient’s movements. They are an easy and fast way to diagnose the patient’s status and to consult the doctor. Device as well as network lifetime are among the most important factors in a WBAN. Prolonging the lifetime of the WBAN strongly depends on controlling the energy consumption of sensor nodes. To achieve energy efficiency, low duty cycle MAC protocols are used, but for medical applications, especially in the case of pacemakers where data have time-limited relevance, these protocols increase latency which is highly undesirable and leads to system instability. In this paper, we propose a low power MAC protocol (VLPM) based on existing wakeup radio approaches which reduce energy consumption as well as improving the response time of a node. We categorize the traffic into uplink and downlink traffic. The nodes are equipped with both a low power wake-up transmitter and receiver. The low power wake-up receiver monitors the activity on channel all the time with a very low power and keeps the MCU (Micro Controller Unit) along with main radio in sleep mode. When a node [BN or BNC (BAN Coordinator)] wants to communicate with another node, it uses the low-power radio to send a wakeup packet, which will prompt the receiver to power up its primary radio to listen for the message that follows shortly. The wake-up packet contains the desired node’s ID along with some other information to let the targeted node to wake-up and take part in communication and let all other nodes to go to sleep mode quickly. The VLPM protocol is proposed for applications having low traffic conditions. For high traffic rates, optimization is needed. Analytical results show that the proposed protocol outperforms both synchronized and unsynchronized MAC protocols like T-MAC, SCP-MAC, B-MAC and X-MAC in terms of energy consumption and response time. PMID:22163818
A decentralized fuzzy C-means-based energy-efficient routing protocol for wireless sensor networks.
Alia, Osama Moh'd
2014-01-01
Energy conservation in wireless sensor networks (WSNs) is a vital consideration when designing wireless networking protocols. In this paper, we propose a Decentralized Fuzzy Clustering Protocol, named DCFP, which minimizes total network energy dissipation to promote maximum network lifetime. The process of constructing the infrastructure for a given WSN is performed only once at the beginning of the protocol at a base station, which remains unchanged throughout the network's lifetime. In this initial construction step, a fuzzy C-means algorithm is adopted to allocate sensor nodes into their most appropriate clusters. Subsequently, the protocol runs its rounds where each round is divided into a CH-Election phase and a Data Transmission phase. In the CH-Election phase, the election of new cluster heads is done locally in each cluster where a new multicriteria objective function is proposed to enhance the quality of elected cluster heads. In the Data Transmission phase, the sensing and data transmission from each sensor node to their respective cluster head is performed and cluster heads in turn aggregate and send the sensed data to the base station. Simulation results demonstrate that the proposed protocol improves network lifetime, data delivery, and energy consumption compared to other well-known energy-efficient protocols.
A Decentralized Fuzzy C-Means-Based Energy-Efficient Routing Protocol for Wireless Sensor Networks
2014-01-01
Energy conservation in wireless sensor networks (WSNs) is a vital consideration when designing wireless networking protocols. In this paper, we propose a Decentralized Fuzzy Clustering Protocol, named DCFP, which minimizes total network energy dissipation to promote maximum network lifetime. The process of constructing the infrastructure for a given WSN is performed only once at the beginning of the protocol at a base station, which remains unchanged throughout the network's lifetime. In this initial construction step, a fuzzy C-means algorithm is adopted to allocate sensor nodes into their most appropriate clusters. Subsequently, the protocol runs its rounds where each round is divided into a CH-Election phase and a Data Transmission phase. In the CH-Election phase, the election of new cluster heads is done locally in each cluster where a new multicriteria objective function is proposed to enhance the quality of elected cluster heads. In the Data Transmission phase, the sensing and data transmission from each sensor node to their respective cluster head is performed and cluster heads in turn aggregate and send the sensed data to the base station. Simulation results demonstrate that the proposed protocol improves network lifetime, data delivery, and energy consumption compared to other well-known energy-efficient protocols. PMID:25162060
An Energy-Efficient Mobile Sink-Based Unequal Clustering Mechanism for WSNs.
Gharaei, Niayesh; Abu Bakar, Kamalrulnizam; Mohd Hashim, Siti Zaiton; Hosseingholi Pourasl, Ali; Siraj, Mohammad; Darwish, Tasneem
2017-08-11
Network lifetime and energy efficiency are crucial performance metrics used to evaluate wireless sensor networks (WSNs). Decreasing and balancing the energy consumption of nodes can be employed to increase network lifetime. In cluster-based WSNs, one objective of applying clustering is to decrease the energy consumption of the network. In fact, the clustering technique will be considered effective if the energy consumed by sensor nodes decreases after applying clustering, however, this aim will not be achieved if the cluster size is not properly chosen. Therefore, in this paper, the energy consumption of nodes, before clustering, is considered to determine the optimal cluster size. A two-stage Genetic Algorithm (GA) is employed to determine the optimal interval of cluster size and derive the exact value from the interval. Furthermore, the energy hole is an inherent problem which leads to a remarkable decrease in the network's lifespan. This problem stems from the asynchronous energy depletion of nodes located in different layers of the network. For this reason, we propose Circular Motion of Mobile-Sink with Varied Velocity Algorithm (CM2SV2) to balance the energy consumption ratio of cluster heads (CH). According to the results, these strategies could largely increase the network's lifetime by decreasing the energy consumption of sensors and balancing the energy consumption among CHs.
Wijngaarden, M A; Veer, I M; Rombouts, S A R B; van Buchem, M A; Willems van Dijk, K; Pijl, H; van der Grond, J
2015-01-01
We hypothesized that brain circuits involved in reward and salience respond differently to fasting in obese versus lean individuals. We compared functional connectivity networks related to food reward and saliency after an overnight fast (baseline) and after a prolonged fast of 48 h in lean versus obese subjects. We included 13 obese (2 males, 11 females, BMI 35.4 ± 1.2 kg/m(2), age 31 ± 3 years) and 11 lean subjects (2 males, 9 females, BMI 23.2 ± 0.5 kg/m(2), age 28 ± 3 years). Resting-state functional magnetic resonance imaging scans were made after an overnight fast (baseline) and after a prolonged 48 h fast. Functional connectivity of the amygdala, hypothalamus and posterior cingulate cortex (default-mode) networks was assessed using seed-based correlations. At baseline, we found a stronger connectivity between hypothalamus and left insula in the obese subjects. This effect diminished upon the prolonged fast. After prolonged fasting, connectivity of the hypothalamus with the dorsal anterior cingulate cortex (dACC) increased in lean subjects and decreased in obese subjects. Amygdala connectivity with the ventromedial prefrontal cortex was stronger in lean subjects at baseline, which did not change upon the prolonged fast. No differences in posterior cingulate cortex connectivity were observed. In conclusion, obesity is marked by alterations in functional connectivity networks involved in food reward and salience. Prolonged fasting differentially affected hypothalamic connections with the dACC and the insula between obese and lean subjects. Our data support the idea that food reward and nutrient deprivation are differently perceived and/or processed in obesity. Copyright © 2015 Elsevier B.V. All rights reserved.
Optimal dynamic voltage scaling for wireless sensor nodes with real-time constraints
NASA Astrophysics Data System (ADS)
Cassandras, Christos G.; Zhuang, Shixin
2005-11-01
Sensors are increasingly embedded in manufacturing systems and wirelessly networked to monitor and manage operations ranging from process and inventory control to tracking equipment and even post-manufacturing product monitoring. In building such sensor networks, a critical issue is the limited and hard to replenish energy in the devices involved. Dynamic voltage scaling is a technique that controls the operating voltage of a processor to provide desired performance while conserving energy and prolonging the overall network's lifetime. We consider such power-limited devices processing time-critical tasks which are non-preemptive, aperiodic and have uncertain arrival times. We treat voltage scaling as a dynamic optimization problem whose objective is to minimize energy consumption subject to hard or soft real-time execution constraints. In the case of hard constraints, we build on prior work (which engages a voltage scaling controller at task completion times) by developing an intra-task controller that acts at all arrival times of incoming tasks. We show that this optimization problem can be decomposed into two simpler ones whose solution leads to an algorithm that does not actually require solving any nonlinear programming problems. In the case of soft constraints, this decomposition must be partly relaxed, but it still leads to a scalable (linear in the number of tasks) algorithm. Simulation results are provided to illustrate performance improvements in systems with intra-task controllers compared to uncontrolled systems or those using inter-task control.
Critical issues in assuring long lifetime and fail-safe operation of optical communications network
NASA Astrophysics Data System (ADS)
Paul, Dilip K.
1993-09-01
Major factors in assuring long lifetime and fail-safe operation in optical communications networks are reviewed in this paper. Reliable functionality to design specifications, complexity of implementation, and cost are the most critical issues. As economics is the driving force to set the goals as well as priorities for the design, development, safe operation, and maintenance schedules of reliable networks, a balance is sought between the degree of reliability enhancement, cost, and acceptable outage of services. Protecting both the link and the network with high reliability components, hardware duplication, and diversity routing can ensure the best network availability. Case examples include both fiber optic and lasercom systems. Also, the state-of-the-art reliability of photonics in space environment is presented.
FUNDUS AUTOFLUORESCENCE LIFETIMES AND CENTRAL SEROUS CHORIORETINOPATHY
Dysli, Chantal; Berger, Lieselotte; Wolf, Sebastian
2017-01-01
Purpose: To quantify retinal fluorescence lifetimes in patients with central serous chorioretinopathy (CSC) and to identify disease specific lifetime characteristics over the course of disease. Methods: Forty-seven participants were included in this study. Patients with central serous chorioretinopathy were imaged with fundus photography, fundus autofluorescence, optical coherence tomography, and fluorescence lifetime imaging ophthalmoscopy (FLIO) and compared with age-matched controls. Retinal autofluorescence was excited using a 473-nm blue laser light and emitted fluorescence light was detected in 2 distinct wavelengths channels (498–560 nm and 560–720 nm). Clinical features, mean retinal autofluorescence lifetimes, autofluorescence intensity, and corresponding optical coherence tomography (OCT) images were further analyzed. Results: Thirty-five central serous chorioretinopathy patients with a mean visual acuity of 78 ETDRS letters (range, 50–90; mean Snellen equivalent: 20/32) and 12 age-matched controls were included. In the acute stage of central serous chorioretinopathy, retinal fluorescence lifetimes were shortened by 15% and 17% in the respective wavelength channels. Multiple linear regression analysis showed that fluorescence lifetimes were significantly influenced by the disease duration (P < 0.001) and accumulation of photoreceptor outer segments (P = 0.03) but independent of the presence or absence of subretinal fluid. Prolonged central macular autofluorescence lifetimes, particularly in eyes with retinal pigment epithelial atrophy, were associated with poor visual acuity. Conclusion: This study establishes that autofluorescence lifetime changes occurring in central serous chorioretinopathy exhibit explicit patterns which can be used to estimate perturbations of the outer retinal layers with a high degree of statistical significance. PMID:28099314
Eun, Yongsoon
2017-01-01
Underwater Acoustic Sensor Network (UASN) comes with intrinsic constraints because it is deployed in the aquatic environment and uses the acoustic signals to communicate. The examples of those constraints are long propagation delay, very limited bandwidth, high energy cost for transmission, very high signal attenuation, costly deployment and battery replacement, and so forth. Therefore, the routing schemes for UASN must take into account those characteristics to achieve energy fairness, avoid energy holes, and improve the network lifetime. The depth based forwarding schemes in literature use node’s depth information to forward data towards the sink. They minimize the data packet duplication by employing the holding time strategy. However, to avoid void holes in the network, they use two hop node proximity information. In this paper, we propose the Energy and Depth variance-based Opportunistic Void avoidance (EDOVE) scheme to gain energy balancing and void avoidance in the network. EDOVE considers not only the depth parameter, but also the normalized residual energy of the one-hop nodes and the normalized depth variance of the second hop neighbors. Hence, it avoids the void regions as well as balances the network energy and increases the network lifetime. The simulation results show that the EDOVE gains more than 15% packet delivery ratio, propagates 50% less copies of data packet, consumes less energy, and has more lifetime than the state of the art forwarding schemes. PMID:28954395
Bouk, Safdar Hussain; Ahmed, Syed Hassan; Park, Kyung-Joon; Eun, Yongsoon
2017-09-26
Underwater Acoustic Sensor Network (UASN) comes with intrinsic constraints because it is deployed in the aquatic environment and uses the acoustic signals to communicate. The examples of those constraints are long propagation delay, very limited bandwidth, high energy cost for transmission, very high signal attenuation, costly deployment and battery replacement, and so forth. Therefore, the routing schemes for UASN must take into account those characteristics to achieve energy fairness, avoid energy holes, and improve the network lifetime. The depth based forwarding schemes in literature use node's depth information to forward data towards the sink. They minimize the data packet duplication by employing the holding time strategy. However, to avoid void holes in the network, they use two hop node proximity information. In this paper, we propose the Energy and Depth variance-based Opportunistic Void avoidance (EDOVE) scheme to gain energy balancing and void avoidance in the network. EDOVE considers not only the depth parameter, but also the normalized residual energy of the one-hop nodes and the normalized depth variance of the second hop neighbors. Hence, it avoids the void regions as well as balances the network energy and increases the network lifetime. The simulation results show that the EDOVE gains more than 15 % packet delivery ratio, propagates 50 % less copies of data packet, consumes less energy, and has more lifetime than the state of the art forwarding schemes.
A Distributed and Energy-Efficient Algorithm for Event K-Coverage in Underwater Sensor Networks
Jiang, Peng; Xu, Yiming; Liu, Jun
2017-01-01
For event dynamic K-coverage algorithms, each management node selects its assistant node by using a greedy algorithm without considering the residual energy and situations in which a node is selected by several events. This approach affects network energy consumption and balance. Therefore, this study proposes a distributed and energy-efficient event K-coverage algorithm (DEEKA). After the network achieves 1-coverage, the nodes that detect the same event compete for the event management node with the number of candidate nodes and the average residual energy, as well as the distance to the event. Second, each management node estimates the probability of its neighbor nodes’ being selected by the event it manages with the distance level, the residual energy level, and the number of dynamic coverage event of these nodes. Third, each management node establishes an optimization model that uses expectation energy consumption and the residual energy variance of its neighbor nodes and detects the performance of the events it manages as targets. Finally, each management node uses a constrained non-dominated sorting genetic algorithm (NSGA-II) to obtain the Pareto set of the model and the best strategy via technique for order preference by similarity to an ideal solution (TOPSIS). The algorithm first considers the effect of harsh underwater environments on information collection and transmission. It also considers the residual energy of a node and a situation in which the node is selected by several other events. Simulation results show that, unlike the on-demand variable sensing K-coverage algorithm, DEEKA balances and reduces network energy consumption, thereby prolonging the network’s best service quality and lifetime. PMID:28106837
An Energy Efficient Cooperative Hierarchical MIMO Clustering Scheme for Wireless Sensor Networks
Nasim, Mehwish; Qaisar, Saad; Lee, Sungyoung
2012-01-01
In this work, we present an energy efficient hierarchical cooperative clustering scheme for wireless sensor networks. Communication cost is a crucial factor in depleting the energy of sensor nodes. In the proposed scheme, nodes cooperate to form clusters at each level of network hierarchy ensuring maximal coverage and minimal energy expenditure with relatively uniform distribution of load within the network. Performance is enhanced by cooperative multiple-input multiple-output (MIMO) communication ensuring energy efficiency for WSN deployments over large geographical areas. We test our scheme using TOSSIM and compare the proposed scheme with cooperative multiple-input multiple-output (CMIMO) clustering scheme and traditional multihop Single-Input-Single-Output (SISO) routing approach. Performance is evaluated on the basis of number of clusters, number of hops, energy consumption and network lifetime. Experimental results show significant energy conservation and increase in network lifetime as compared to existing schemes. PMID:22368459
On the relevance of using open wireless sensor networks in environment monitoring.
Bagula, Antoine B; Inggs, Gordon; Scott, Simon; Zennaro, Marco
2009-01-01
This paper revisits the problem of the readiness for field deployments of wireless sensor networks by assessing the relevance of using Open Hardware and Software motes for environment monitoring. We propose a new prototype wireless sensor network that fine-tunes SquidBee motes to improve the life-time and sensing performance of an environment monitoring system that measures temperature, humidity and luminosity. Building upon two outdoor sensing scenarios, we evaluate the performance of the newly proposed energy-aware prototype solution in terms of link quality when expressed by the Received Signal Strength, Packet Loss and the battery lifetime. The experimental results reveal the relevance of using the Open Hardware and Software motes when setting up outdoor wireless sensor networks.
McCall, Patrick M.; Gardel, Margaret L.; Munro, Edwin M.
2017-01-01
Actomyosin-based cortical flow is a fundamental engine for cellular morphogenesis. Cortical flows are generated by cross-linked networks of actin filaments and myosin motors, in which active stress produced by motor activity is opposed by passive resistance to network deformation. Continuous flow requires local remodeling through crosslink unbinding and and/or filament disassembly. But how local remodeling tunes stress production and dissipation, and how this in turn shapes long range flow, remains poorly understood. Here, we study a computational model for a cross-linked network with active motors based on minimal requirements for production and dissipation of contractile stress: Asymmetric filament compliance, spatial heterogeneity of motor activity, reversible cross-links and filament turnover. We characterize how the production and dissipation of network stress depend, individually, on cross-link dynamics and filament turnover, and how these dependencies combine to determine overall rates of cortical flow. Our analysis predicts that filament turnover is required to maintain active stress against external resistance and steady state flow in response to external stress. Steady state stress increases with filament lifetime up to a characteristic time τm, then decreases with lifetime above τm. Effective viscosity increases with filament lifetime up to a characteristic time τc, and then becomes independent of filament lifetime and sharply dependent on crosslink dynamics. These individual dependencies of active stress and effective viscosity define multiple regimes of steady state flow. In particular our model predicts that when filament lifetimes are shorter than both τc and τm, the dependencies of effective viscosity and steady state stress on filament turnover cancel one another, such that flow speed is insensitive to filament turnover, and shows a simple dependence on motor activity and crosslink dynamics. These results provide a framework for understanding how animal cells tune cortical flow through local control of network remodeling. PMID:29253848
Ramaswamy, Rajesh; Sbalzarini, Ivo F; González-Segredo, Nélido
2011-01-28
Stochastic effects from correlated noise non-trivially modulate the kinetics of non-linear chemical reaction networks. This is especially important in systems where reactions are confined to small volumes and reactants are delivered in bursts. We characterise how the two noise sources confinement and burst modulate the relaxation kinetics of a non-linear reaction network around a non-equilibrium steady state. We find that the lifetimes of species change with burst input and confinement. Confinement increases the lifetimes of all species that are involved in any non-linear reaction as a reactant. Burst monotonically increases or decreases lifetimes. Competition between burst-induced and confinement-induced modulation may hence lead to a non-monotonic modulation. We quantify lifetime as the integral of the time autocorrelation function (ACF) of concentration fluctuations around a non-equilibrium steady state of the reaction network. Furthermore, we look at the first and second derivatives of the ACF, each of which is affected in opposite ways by burst and confinement. This allows discriminating between these two noise sources. We analytically derive the ACF from the linear Fokker-Planck approximation of the chemical master equation in order to establish a baseline for the burst-induced modulation at low confinement. Effects of higher confinement are then studied using a partial-propensity stochastic simulation algorithm. The results presented here may help understand the mechanisms that deviate stochastic kinetics from its deterministic counterpart. In addition, they may be instrumental when using fluorescence-lifetime imaging microscopy (FLIM) or fluorescence-correlation spectroscopy (FCS) to measure confinement and burst in systems with known reaction rates, or, alternatively, to correct for the effects of confinement and burst when experimentally measuring reaction rates.
Optimal Location through Distributed Algorithm to Avoid Energy Hole in Mobile Sink WSNs
Qing-hua, Li; Wei-hua, Gui; Zhi-gang, Chen
2014-01-01
In multihop data collection sensor network, nodes near the sink need to relay on remote data and, thus, have much faster energy dissipation rate and suffer from premature death. This phenomenon causes energy hole near the sink, seriously damaging the network performance. In this paper, we first compute energy consumption of each node when sink is set at any point in the network through theoretical analysis; then we propose an online distributed algorithm, which can adjust sink position based on the actual energy consumption of each node adaptively to get the actual maximum lifetime. Theoretical analysis and experimental results show that the proposed algorithms significantly improve the lifetime of wireless sensor network. It lowers the network residual energy by more than 30% when it is dead. Moreover, the cost for moving the sink is relatively smaller. PMID:24895668
Intelligent Cooperative MAC Protocol for Balancing Energy Consumption
NASA Astrophysics Data System (ADS)
Wu, S.; Liu, K.; Huang, B.; Liu, F.
To extend the lifetime of wireless sensor networks, we proposed an intelligent balanced energy consumption cooperative MAC protocol (IBEC-CMAC) based on the multi-node cooperative transmission model. The protocol has priority to access high-quality channels for reducing energy consumption of each transmission. It can also balance the energy consumption among cooperative nodes by using high residual energy nodes instead of excessively consuming some node's energy. Simulation results show that IBEC-CMAC can obtain longer network lifetime and higher energy utilization than direct transmission.
Geibel, Sven; Lörinczi, Èva; Bamberg, Ernst; Friedrich, Thomas
2013-01-01
The light-driven proton pump bacteriorhodopsin (BR) from Halobacterium salinarum is tightly regulated by the [H+] gradient and transmembrane potential. BR exhibits optoelectric properties, since spectral changes during the photocycle are kinetically controlled by voltage, which predestines BR for optical storage or processing devices. BR mutants with prolonged lifetime of the blue-shifted M intermediate would be advantageous, but the optoelectric properties of such mutants are still elusive. Using expression in Xenopus oocytes and two-electrode voltage-clamping, we analyzed photocurrents of BR mutants with kinetically destabilized (F171C, F219L) or stabilized (D96N, D96G) M intermediate in response to green light (to probe H+ pumping) and blue laser flashes (to probe accumulation/decay of M). These mutants have divergent M lifetimes. As for BR-WT, this strictly correlates with the voltage dependence of H+ pumping. BR-F171C and BR-F219L showed photocurrents similar to BR-WT. Yet, BR-F171C showed a weaker voltage dependence of proton pumping. For both mutants, blue laser flashes applied during and after green-light illumination showed reduced M accumulation and shorter M lifetime. In contrast, BR-D96G and BR-D96N exhibited small photocurrents, with nonlinear current-voltage curves, which increased strongly in the presence of azide. Blue laser flashes showed heavy M accumulation and prolonged M lifetime, which accounts for the strongly reduced H+ pumping rate. Hyperpolarizing potentials augmented these effects. The combination of M-stabilizing and -destabilizing mutations in BR-D96G/F171C/F219L (BR-tri) shows that disruption of the primary proton donor Asp-96 is fatal for BR as a proton pump. Mechanistically, M destabilizing mutations cannot compensate for the disruption of Asp-96. Accordingly, BR-tri and BR-D96G photocurrents were similar. However, BR-tri showed negative blue laser flash-induced currents even without actinic green light, indicating that Schiff base deprotonation in BR-tri exists in the dark, in line with previous spectroscopic investigations. Thus, M-stabilizing mutations, including the triple mutation, drastically interfere with electrochemical H+ gradient generation. PMID:24019918
On Applicability of Network Coding Technique for 6LoWPAN-based Sensor Networks.
Amanowicz, Marek; Krygier, Jaroslaw
2018-05-26
In this paper, the applicability of the network coding technique in 6LoWPAN-based sensor multihop networks is examined. The 6LoWPAN is one of the standards proposed for the Internet of Things architecture. Thus, we can expect the significant growth of traffic in such networks, which can lead to overload and decrease in the sensor network lifetime. The authors propose the inter-session network coding mechanism that can be implemented in resource-limited sensor motes. The solution reduces the overall traffic in the network, and in consequence, the energy consumption is decreased. Used procedures take into account deep header compressions of the native 6LoWPAN packets and the hop-by-hop changes of the header structure. Applied simplifications reduce signaling traffic that is typically occurring in network coding deployments, keeping the solution usefulness for the wireless sensor networks with limited resources. The authors validate the proposed procedures in terms of end-to-end packet delay, packet loss ratio, traffic in the air, total energy consumption, and network lifetime. The solution has been tested in a real wireless sensor network. The results confirm the efficiency of the proposed technique, mostly in delay-tolerant sensor networks.
Long-Term Effects of Attentional Performance on Functional Brain Network Topology
Breckel, Thomas P. K.; Thiel, Christiane M.; Bullmore, Edward T.; Zalesky, Andrew; Patel, Ameera X.; Giessing, Carsten
2013-01-01
Individuals differ in their cognitive resilience. Less resilient people demonstrate a greater tendency to vigilance decrements within sustained attention tasks. We hypothesized that a period of sustained attention is followed by prolonged changes in the organization of “resting state” brain networks and that individual differences in cognitive resilience are related to differences in post-task network reorganization. We compared the topological and spatial properties of brain networks as derived from functional MRI data (N = 20) recorded for 6 mins before and 12 mins after the performance of an attentional task. Furthermore we analysed changes in brain topology during task performance and during the switches between rest and task conditions. The cognitive resilience of each individual was quantified as the rate of increase in response latencies over the 32-minute time course of the attentional paradigm. On average, functional networks measured immediately post-task demonstrated significant and prolonged changes in network organization compared to pre-task networks with higher connectivity strength, more clustering, less efficiency, and shorter distance connections. Individual differences in cognitive resilience were significantly correlated with differences in the degree of recovery of some network parameters. Changes in network measures were still present in less resilient individuals in the second half of the post-task period (i.e. 6–12 mins after task completion), while resilient individuals already demonstrated significant reductions of functional connectivity and clustering towards pre-task levels. During task performance brain topology became more integrated with less clustering and higher global efficiency, but linearly decreased with ongoing time-on-task. We conclude that sustained attentional task performance has prolonged, “hang-over” effects on the organization of post-task resting-state brain networks; and that more cognitively resilient individuals demonstrate faster rates of network recovery following a period of attentional effort. PMID:24040185
How long would SDH/SONET be prolonged?
NASA Astrophysics Data System (ADS)
Tao, Zhiyong; Mao, Qian
2004-04-01
As we all know, the increasing speed of data traffic is exceeding gradually from voice in today"s communication network. The main reason is the explosive of Internet. The controversy with IP over ATM/SDH/Optical becomes hotter and hotter, Many people in the telecommunication field are doubt: HOW LONG WOULD SDH/SONET BE PROLONGED? WHAT KIND OF SDH EQUIPMENTS COULD BE USED IN THE NETWORK? With the analysis from several aspects: services in the network, new development with SDH technology, market in transport equipment, This paper is considered that the SDH with some new features would be predominant transport technology in the recent years.
Tian, Wenliang; Meng, Fandi; Liu, Li; Li, Ying; Wang, Fuhui
2017-01-01
A concept for prediction of organic coatings, based on the alternating hydrostatic pressure (AHP) accelerated tests, has been presented. An AHP accelerated test with different pressure values has been employed to evaluate coating degradation. And a back-propagation artificial neural network (BP-ANN) has been established to predict the service property and the service lifetime of coatings. The pressure value (P), immersion time (t) and service property (impedance modulus |Z|) are utilized as the parameters of the network. The average accuracies of the predicted service property and immersion time by the established network are 98.6% and 84.8%, respectively. The combination of accelerated test and prediction method by BP-ANN is promising to evaluate and predict coating property used in deep sea. PMID:28094340
ERIC Educational Resources Information Center
McNeal, McKenzie, III.
2012-01-01
Current networking architectures and communication protocols used for Wireless Sensor Networks (WSNs) have been designed to be energy efficient, low latency, and long network lifetime. One major issue that must be addressed is the security in data communication. Due to the limited capabilities of low cost and small sized sensor nodes, designing…
Fluvastatin as a micropore lifetime enhancer for sustained delivery across microneedle-treated skin.
Ghosh, Priyanka; Brogden, Nicole K; Stinchcomb, Audra L
2014-02-01
Microneedles (MNs), a physical skin permeation enhancement technique, facilitate drug delivery across the skin, thus enhancing the number of drugs that can be delivered transdermally in therapeutically relevant concentrations. The micropores created in the skin by MNs reseal because of normal healing processes of the skin, thus limiting the duration of the drug delivery window. Pore lifetime enhancement strategies can increase the effectiveness of MNs as a drug delivery mechanism by prolonging the delivery window. Fluvastatin (FLU), a HMGCoA reductase inhibitor, was used in this study to enhance the pore lifetime by inhibiting the synthesis of cholesterol, a major component of the stratum corneum lipids. The study showed that using FLU as a pretreatment it is possible to enhance the pore lifetime of MN-treated skin and thus allow for sustained drug delivery. The skin recovered within a 30-45-min time period following the removal of occlusion, and there was no significant irritation observed due to the treatment compared to the control sites. Thus, it can be concluded that localized skin treatment with FLU can be used to extend micropore lifetime and deliver drugs for up to 7 days across MN-treated skin. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Long-Term Memory Stabilized by Noise-Induced Rehearsal
Wei, Yi
2014-01-01
Cortical networks can maintain memories for decades despite the short lifetime of synaptic strengths. Can a neural network store long-lasting memories in unstable synapses? Here, we study the effects of ongoing spike-timing-dependent plasticity (STDP) on the stability of memory patterns stored in synapses of an attractor neural network. We show that certain classes of STDP rules can stabilize all stored memory patterns despite a short lifetime of synapses. In our model, unstructured neural noise, after passing through the recurrent network connections, carries the imprint of all memory patterns in temporal correlations. STDP, combined with these correlations, leads to reinforcement of all stored patterns, even those that are never explicitly visited. Our findings may provide the functional reason for irregular spiking displayed by cortical neurons and justify models of system memory consolidation. Therefore, we propose that irregular neural activity is the feature that helps cortical networks maintain stable connections. PMID:25411507
NASA Astrophysics Data System (ADS)
Ikeda, Nobutoshi
2017-12-01
In network models that take into account growth properties, deletion of old nodes has a serious impact on degree distributions, because old nodes tend to become hub nodes. In this study, we aim to provide a simple explanation for why hubs can exist even in conditions where the number of nodes is stationary due to the deletion of old nodes. We show that an exponential increase in the degree of nodes is a natural consequence of the balance between the deletion and addition of nodes as long as a preferential attachment mechanism holds. As a result, the largest degree is determined by the magnitude relationship between the time scale of the exponential growth of degrees and lifetime of old nodes. The degree distribution exhibits a power-law form ˜ k -γ with exponent γ = 1 when the lifetime of nodes is constant. However, various values of γ can be realized by introducing distributed lifetime of nodes.
Guimarães, Dayan Adionel; Sakai, Lucas Jun; Alberti, Antonio Marcos; de Souza, Rausley Adriano Amaral
2016-01-01
In this paper, a simple and flexible method for increasing the lifetime of fixed or mobile wireless sensor networks is proposed. Based on past residual energy information reported by the sensor nodes, the sink node or another central node dynamically optimizes the communication activity levels of the sensor nodes to save energy without sacrificing the data throughput. The activity levels are defined to represent portions of time or time-frequency slots in a frame, during which the sensor nodes are scheduled to communicate with the sink node to report sensory measurements. Besides node mobility, it is considered that sensors’ batteries may be recharged via a wireless power transmission or equivalent energy harvesting scheme, bringing to the optimization problem an even more dynamic character. We report large increased lifetimes over the non-optimized network and comparable or even larger lifetime improvements with respect to an idealized greedy algorithm that uses both the real-time channel state and the residual energy information. PMID:27657075
Guimarães, Dayan Adionel; Sakai, Lucas Jun; Alberti, Antonio Marcos; de Souza, Rausley Adriano Amaral
2016-09-20
In this paper, a simple and flexible method for increasing the lifetime of fixed or mobile wireless sensor networks is proposed. Based on past residual energy information reported by the sensor nodes, the sink node or another central node dynamically optimizes the communication activity levels of the sensor nodes to save energy without sacrificing the data throughput. The activity levels are defined to represent portions of time or time-frequency slots in a frame, during which the sensor nodes are scheduled to communicate with the sink node to report sensory measurements. Besides node mobility, it is considered that sensors' batteries may be recharged via a wireless power transmission or equivalent energy harvesting scheme, bringing to the optimization problem an even more dynamic character. We report large increased lifetimes over the non-optimized network and comparable or even larger lifetime improvements with respect to an idealized greedy algorithm that uses both the real-time channel state and the residual energy information.
Modeling of BN Lifetime Prediction of a System Based on Integrated Multi-Level Information
Wang, Xiaohong; Wang, Lizhi
2017-01-01
Predicting system lifetime is important to ensure safe and reliable operation of products, which requires integrated modeling based on multi-level, multi-sensor information. However, lifetime characteristics of equipment in a system are different and failure mechanisms are inter-coupled, which leads to complex logical correlations and the lack of a uniform lifetime measure. Based on a Bayesian network (BN), a lifetime prediction method for systems that combine multi-level sensor information is proposed. The method considers the correlation between accidental failures and degradation failure mechanisms, and achieves system modeling and lifetime prediction under complex logic correlations. This method is applied in the lifetime prediction of a multi-level solar-powered unmanned system, and the predicted results can provide guidance for the improvement of system reliability and for the maintenance and protection of the system. PMID:28926930
Modeling of BN Lifetime Prediction of a System Based on Integrated Multi-Level Information.
Wang, Jingbin; Wang, Xiaohong; Wang, Lizhi
2017-09-15
Predicting system lifetime is important to ensure safe and reliable operation of products, which requires integrated modeling based on multi-level, multi-sensor information. However, lifetime characteristics of equipment in a system are different and failure mechanisms are inter-coupled, which leads to complex logical correlations and the lack of a uniform lifetime measure. Based on a Bayesian network (BN), a lifetime prediction method for systems that combine multi-level sensor information is proposed. The method considers the correlation between accidental failures and degradation failure mechanisms, and achieves system modeling and lifetime prediction under complex logic correlations. This method is applied in the lifetime prediction of a multi-level solar-powered unmanned system, and the predicted results can provide guidance for the improvement of system reliability and for the maintenance and protection of the system.
Lifetime Maximization via Hole Alleviation in IoT Enabling Heterogeneous Wireless Sensor Networks.
Wadud, Zahid; Javaid, Nadeem; Khan, Muhammad Awais; Alrajeh, Nabil; Alabed, Mohamad Souheil; Guizani, Nadra
2017-07-21
In Internet of Things (IoT) enabled Wireless Sensor Networks (WSNs), there are two major factors which degrade the performance of the network. One is the void hole which occurs in a particular region due to unavailability of forwarder nodes. The other is the presence of energy hole which occurs due to imbalanced data traffic load on intermediate nodes. Therefore, an optimum transmission strategy is required to maximize the network lifespan via hole alleviation. In this regard, we propose a heterogeneous network solution that is capable to balance energy dissipation among network nodes. In addition, the divide and conquer approach is exploited to evenly distribute number of transmissions over various network areas. An efficient forwarder node selection is performed to alleviate coverage and energy holes. Linear optimization is performed to validate the effectiveness of our proposed work in term of energy minimization. Furthermore, simulations are conducted to show that our claims are well grounded. Results show the superiority of our work as compared to the baseline scheme in terms of energy consumption and network lifetime.
Lifetime Maximization via Hole Alleviation in IoT Enabling Heterogeneous Wireless Sensor Networks
Wadud, Zahid; Khan, Muhammad Awais; Alrajeh, Nabil; Alabed, Mohamad Souheil; Guizani, Nadra
2017-01-01
In Internet of Things (IoT) enabled Wireless Sensor Networks (WSNs), there are two major factors which degrade the performance of the network. One is the void hole which occurs in a particular region due to unavailability of forwarder nodes. The other is the presence of energy hole which occurs due to imbalanced data traffic load on intermediate nodes. Therefore, an optimum transmission strategy is required to maximize the network lifespan via hole alleviation. In this regard, we propose a heterogeneous network solution that is capable to balance energy dissipation among network nodes. In addition, the divide and conquer approach is exploited to evenly distribute number of transmissions over various network areas. An efficient forwarder node selection is performed to alleviate coverage and energy holes. Linear optimization is performed to validate the effectiveness of our proposed work in term of energy minimization. Furthermore, simulations are conducted to show that our claims are well grounded. Results show the superiority of our work as compared to the baseline scheme in terms of energy consumption and network lifetime. PMID:28753990
A Temperature-Dependent Battery Model for Wireless Sensor Networks.
Rodrigues, Leonardo M; Montez, Carlos; Moraes, Ricardo; Portugal, Paulo; Vasques, Francisco
2017-02-22
Energy consumption is a major issue in Wireless Sensor Networks (WSNs), as nodes are powered by chemical batteries with an upper bounded lifetime. Estimating the lifetime of batteries is a difficult task, as it depends on several factors, such as operating temperatures and discharge rates. Analytical battery models can be used for estimating both the battery lifetime and the voltage behavior over time. Still, available models usually do not consider the impact of operating temperatures on the battery behavior. The target of this work is to extend the widely-used Kinetic Battery Model (KiBaM) to include the effect of temperature on the battery behavior. The proposed Temperature-Dependent KiBaM (T-KiBaM) is able to handle operating temperatures, providing better estimates for the battery lifetime and voltage behavior. The performed experimental validation shows that T-KiBaM achieves an average accuracy error smaller than 0.33%, when estimating the lifetime of Ni-MH batteries for different temperature conditions. In addition, T-KiBaM significantly improves the original KiBaM voltage model. The proposed model can be easily adapted to handle other battery technologies, enabling the consideration of different WSN deployments.
A Temperature-Dependent Battery Model for Wireless Sensor Networks
Rodrigues, Leonardo M.; Montez, Carlos; Moraes, Ricardo; Portugal, Paulo; Vasques, Francisco
2017-01-01
Energy consumption is a major issue in Wireless Sensor Networks (WSNs), as nodes are powered by chemical batteries with an upper bounded lifetime. Estimating the lifetime of batteries is a difficult task, as it depends on several factors, such as operating temperatures and discharge rates. Analytical battery models can be used for estimating both the battery lifetime and the voltage behavior over time. Still, available models usually do not consider the impact of operating temperatures on the battery behavior. The target of this work is to extend the widely-used Kinetic Battery Model (KiBaM) to include the effect of temperature on the battery behavior. The proposed Temperature-Dependent KiBaM (T-KiBaM) is able to handle operating temperatures, providing better estimates for the battery lifetime and voltage behavior. The performed experimental validation shows that T-KiBaM achieves an average accuracy error smaller than 0.33%, when estimating the lifetime of Ni-MH batteries for different temperature conditions. In addition, T-KiBaM significantly improves the original KiBaM voltage model. The proposed model can be easily adapted to handle other battery technologies, enabling the consideration of different WSN deployments. PMID:28241444
Song, Linyong; Ye, Qiang; Ge, Xueping; Misra, Anil; Tamerler, Candan; Spencer, Paulette
2018-02-01
Ingress of bacteria and fluids at the interfacial gaps between the restorative composite biomaterial and the tooth structure contribute to recurrent decay and failure of the composite restoration. The inability of the material to increase the pH at the composite/tooth interface facilitates the outgrowth of bacteria. Neutralizing the microenvironment at the tooth/composite interface offers promise for reducing the damage provoked by cariogenic and aciduric bacteria. We address this problem by designing a dental adhesive composed of hybrid network to provide buffering and autonomous strengthening simultaneously. Two amino functional silanes, 2-hydroxy-3-morpholinopropyl (3-(triethoxysilyl)propyl) carbamate and 2-hydroxy-3-morpholinopropyl (3-(trimethoxysilyl)propyl) carbamate were synthesized and used as co-monomers. Combining free radical initiated polymerization (polymethacrylate-based network) and photoacid-induced sol-gel reaction (polysiloxane) results in the hybrid network formation. Resulting formulations were characterized with regard to real-time photo-polymerization, water sorption, leached species, neutralization, and mechanical properties. Results from real-time FTIR spectroscopic studies indicated that ethoxy was less reactive than methoxy substituent. The neutralization results demonstrated that the methoxy-containing adhesives have acute and delayed buffering capabilities. The mechanical properties of synthetic copolymers tested in dry conditions were improved via condensation reaction of the hydrolyzed organosilanes. The leaching from methoxy containing copolymers was significantly reduced. The sol-gel reaction provided a chronic and persistent reaction in wet condition-performance that offers potential for reducing secondary decay and increasing the functional lifetime of dental adhesives. The interfacial gaps between the restorative composite biomaterial and the tooth structure contributes to recurrent decay and failure of the composite restoration. The inability of the material to increase the pH at the composite/tooth interface facilitates the outgrowth of more cariogenic and aciduric bacteria. This paper reports a novel, synthetic resin that provides buffering capability and autonomous strengthening characteristics. In this work, two amino functional silanes were synthesized and the effect of alkoxy substitutions on the photoacid-induced sol-gel reaction was investigated. We evaluated the neutralization capability (monitoring the pH of lactic acid solution) and the autonomous strengthening property (monitoring the mechanical properties of the hybrid copolymers under wet conditions and quantitatively analyzing the leachable species by HPLC). The novel resin investigated in this study offers the potential benefits of reducing the risk of recurrent decay and prolonging the functional lifetime of dental adhesives. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Dysli, Chantal; Dysli, Muriel; Zinkernagel, Martin S; Enzmann, Volker
2016-12-01
Fluorescence lifetime imaging ophthalmoscopy (FLIO) was used to investigate retinal autofluorescence lifetimes in mouse models of pharmacologically induced retinal degeneration over time. Sodium iodate (NaIO 3 , 35 mg/kg intravenously) was used to induce retinal pigment epithelium (RPE) degeneration with subsequent loss of photoreceptors (PR) whereas N-methyl-N-nitrosourea (MNU, 45 mg/kg intraperitoneally) was employed for degeneration of the photoreceptor cell layer alone. All mice were measured at day 3, 7, 14, and 28 after the respective injection of NaIO 3 , MNU or NaCl (control). Fluorescence lifetime imaging was performed using a fluorescence lifetime imaging ophthalmoscope (Heidelberg Engineering, Heidelberg, Germany). Fluorescence was excited at 473 nm and fluorescence lifetimes were measured in a short and a long spectral channel (498-560 nm and 560-720 nm). Corresponding optical coherence tomography (OCT) images were consecutively acquired and histology was performed at the end of the experiments. Segmentation of OCT images and histology verified the cell type-specific degeneration process over time. Retinal autofluorescence lifetimes increased from day 3 to day 28 in mice after NaIO 3 treatment. Finally, at day 28, fluorescence lifetimes were prolonged by 8% in the short and 61% in the long spectral channel compared to control animals (p = 0.21 and p = 0.004, respectively). In mice after MNU treatment, the mean retinal autofluorescence lifetimes were already decreased at day 3 and retinal lifetimes were finally shortened by 27% in the short and 51% in the long spectral channel at day 28 (p = 0.0028). In conclusion, degeneration of the RPE with subsequent photoreceptor degeneration by NaIO 3 lead to longer mean fluorescence lifetimes of the retina compared to control mice, whereas during specific degeneration of the photoreceptor layer induced by MNU shorter lifetimes were measured. Therefore, short retinal fluorescence lifetimes may originate from the RPE and may be modified by the overlaying retinal layers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gaviria, Silvia Lucia; Espinola, Maria; Restrepo, Diana; Lotero, Juliana; Berbesi, Dedsy Y.; Sierra, Gloria Maria; Chaskel, Roberto; Espinel, Zelde; Shultz, James M.
2016-01-01
ABSTRACT Colombia, South America is currently transitioning to post-conflict status following 6 decades of armed conflict. The population has experienced extensive exposures to potentially traumatic events throughout the lifespan. Sources of trauma exposure include the prolonged armed insurgency, narco-trafficking violence, urban gang violence, violent actions of criminal bands, intra-familial violence, gender-based violence, and sex trafficking. Exposure to potentially traumatic events is related to a variety of psychiatric outcomes, in particular, posttraumatic stress disorder. Given this context of lifetime trauma exposure, socio-demographic patterns of posttraumatic stress disorder were explored in a sample of residents of Medellin, Colombia, the nation's second largest city and a nexus for multiple types of trauma exposure. PMID:28265488
Characterization of Retinitis Pigmentosa Using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO).
Andersen, Karl M; Sauer, Lydia; Gensure, Rebekah H; Hammer, Martin; Bernstein, Paul S
2018-06-01
We investigated fundus autofluorescence (FAF) lifetimes in patients with retinitis pigmentosa (RP) using fluorescence lifetime imaging ophthalmoscopy (FLIO). A total of 33 patients (mean age, 40.0 ± 17.0 years) with RP and an age-matched healthy group were included. The Heidelberg FLIO was used to detect FAF decays in short (SSC; 498-560 nm) and long (LSC; 560-720 nm) spectral channels. We investigated a 30° retinal field and calculated the amplitude-weighted mean fluorescence lifetime (τ m ). Additionally, macular pigment measurements, macular optical coherence tomography (OCT) scans, fundus photographs, visual fields, and fluorescein angiograms were recorded. Genetic studies were performed on nearly all patients. In RP, FLIO shows a typical pattern of prolonged τ m in atrophic regions in the outer macula (SSC, 419 ± 195 ps; LSC, 401 ± 111 ps). Within the relatively preserved retina in the macular region, ring-shaped patterns were found, most distinctive in patients with autosomal dominant RP inheritance. Mean FAF lifetimes were shortened in rings in the LSC. Central areas remained relatively unaffected. FLIO uniquely presents a distinct and specific signature in eyes affected with RP. The ring patterns show variations that indicate genetically determined pathologic processes. Shortening of FAF lifetimes in the LSC may indicate disease progression, as was previously demonstrated for Stargardt disease. Therefore, FLIO might be able to indicate disease progression in RP as well. Hyperfluorescent FLIO rings with short FAF lifetimes may provide insight into the pathophysiologic disease status of RP-affected retinas potentially providing a more detailed assessment of disease progression.
QoS and energy aware cooperative routing protocol for wildfire monitoring wireless sensor networks.
Maalej, Mohamed; Cherif, Sofiane; Besbes, Hichem
2013-01-01
Wireless sensor networks (WSN) are presented as proper solution for wildfire monitoring. However, this application requires a design of WSN taking into account the network lifetime and the shadowing effect generated by the trees in the forest environment. Cooperative communication is a promising solution for WSN which uses, at each hop, the resources of multiple nodes to transmit its data. Thus, by sharing resources between nodes, the transmission quality is enhanced. In this paper, we use the technique of reinforcement learning by opponent modeling, optimizing a cooperative communication protocol based on RSSI and node energy consumption in a competitive context (RSSI/energy-CC), that is, an energy and quality-of-service aware-based cooperative communication routing protocol. Simulation results show that the proposed algorithm performs well in terms of network lifetime, packet delay, and energy consumption.
Goreham, Renee V; Schroeder, Kathryn L; Holmes, Amy; Bradley, Siobhan J; Nann, Thomas
2018-01-24
The authors describe the synthesis of water-soluble and fluorescent graphene oxide quantum dots via acid exfoliation of graphite nanoparticles. The resultant graphene oxide quantum dots (GoQDs) were then modified with folic acid. Folic acid receptors are overexpressed in cancer cells and hence can bind to functionalized graphene oxide quantum dots. On excitation at 305 nm, the GoQDs display green fluorescence with a peak wavelength at ~520 nm. The modified GoQDs are non-toxic to macrophage cells even after prolonged exposure and high concentrations. Fluorescence lifetime imaging and multiphoton microscopy was used (in combination) to image HeCaT cells exposed to GoQDs, resulting in a superior method for bioimaging. Graphical abstract Schematic representation of graphene oxide quantum dots, folic acid modified graphene oxide quantum dots (red), and the use of fluorescence lifetime to discriminate against green auto-fluorescence of HeCaT cells.
Quasi-steady-state air plasma channel produced by a femtosecond laser pulse sequence
Lu, Xin; Chen, Shi-You; Ma, Jing-Long; Hou, Lei; Liao, Guo-Qian; Wang, Jin-Guang; Han, Yu-Jing; Liu, Xiao-Long; Teng, Hao; Han, Hai-Nian; Li, Yu-Tong; Chen, Li-Ming; Wei, Zhi-Yi; Zhang, Jie
2015-01-01
A long air plasma channel can be formed by filamentation of intense femtosecond laser pulses. However, the lifetime of the plasma channel produced by a single femtosecond laser pulse is too short (only a few nanoseconds) for many potential applications based on the conductivity of the plasma channel. Therefore, prolonging the lifetime of the plasma channel is one of the key challenges in the research of femtosecond laser filamentation. In this study, a unique femtosecond laser source was developed to produce a high-quality femtosecond laser pulse sequence with an interval of 2.9 ns and a uniformly distributed single-pulse energy. The metre scale quasi-steady-state plasma channel with a 60–80 ns lifetime was formed by such pulse sequences in air. The simulation study for filamentation of dual femtosecond pulses indicated that the plasma channel left by the previous pulse was weakly affected the filamentation of the next pulse in sequence under our experimental conditions. PMID:26493279
Moving multiple sinks through wireless sensor networks for lifetime maximization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrioli, Chiara; Carosi, Alessio; Basagni, Stefano
2008-01-01
Unattended sensor networks typically watch for some phenomena such as volcanic events, forest fires, pollution, or movements in animal populations. Sensors report to a collection point periodically or when they observe reportable events. When sensors are too far from the collection point to communicate directly, other sensors relay messages for them. If the collection point location is static, sensor nodes that are closer to the collection point relay far more messages than those on the periphery. Assuming all sensor nodes have roughly the same capabilities, those with high relay burden experience battery failure much faster than the rest of themore » network. However, since their death disconnects the live nodes from the collection point, the whole network is then dead. We consider the problem of moving a set of collectors (sinks) through a wireless sensor network to balance the energy used for relaying messages, maximizing the lifetime of the network. We show how to compute an upper bound on the lifetime for any instance using linear and integer programming. We present a centralized heuristic that produces sink movement schedules that produce network lifetimes within 1.4% of the upper bound for realistic settings. We also present a distributed heuristic that produces lifetimes at most 25:3% below the upper bound. More specifically, we formulate a linear program (LP) that is a relaxation of the scheduling problem. The variables are naturally continuous, but the LP relaxes some constraints. The LP has an exponential number of constraints, but we can satisfy them all by enforcing only a polynomial number using a separation algorithm. This separation algorithm is a p-median facility location problem, which we can solve efficiently in practice for huge instances using integer programming technology. This LP selects a set of good sensor configurations. Given the solution to the LP, we can find a feasible schedule by selecting a subset of these configurations, ordering them via a traveling salesman heuristic, and computing feasible transitions using matching algorithms. This algorithm assumes sinks can get a schedule from a central server or a leader sink. If the network owner prefers the sinks make independent decisions, they can use our distributed heuristic. In this heuristic, sinks maintain estimates of the energy distribution in the network and move greedily (with some coordination) based on local search. This application uses the new SUCASA (Solver Utility for Customization with Automatic Symbol Access) facility within the PICO (Parallel Integer and Combinatorial Optimizer) integer programming solver system. SUCASA allows rapid development of customized math programming (search-based) solvers using a problem's natural multidimensional representation. In this case, SUCASA also significantly improves runtime compared to implementations in the ampl math programming language or in perl.« less
Ning, Yingying; Tang, Juan; Liu, Yi-Wei; Jing, Jing; Sun, Yuansheng; Zhang, Jun-Long
2018-04-21
Herein, we report the design and synthesis of biocompatible Yb 3+ complexes for near-infrared (NIR) living cell imaging. Upon excitation at either the visible (Soret band) or red region (Q band), these β-fluorinated Yb 3+ complexes display high NIR luminescence (quantum yields up to 23% and 13% in dimethyl sulfoxide and water, respectively) and have higher stabilities and prolonged decay lifetimes (up to 249 μs) compared to the β-non-fluorinated counterparts. This renders the β-fluorinated Yb 3+ complexes as a new class of biological optical probes in both steady-state imaging and time-resolved fluorescence lifetime imaging (FLIM). NIR confocal fluorescence images showed strong and specific intracellular Yb 3+ luminescence signals when the biocompatible Yb 3+ complexes were uptaken into the living cells. Importantly, FLIM measurements showed an intracellular lifetime distribution between 100 and 200 μs, allowing an effective discrimination from cell autofluorescence, and afforded high signal-to-noise ratios as firstly demonstrated in the NIR region. These results demonstrated the prospects of NIR lanthanide complexes as biological probes for NIR steady-state fluorescence and time-resolved fluorescence lifetime imaging.
A Game-Theoretic Response Strategy for Coordinator Attack in Wireless Sensor Networks
Liu, Jianhua; Yue, Guangxue; Shang, Huiliang; Li, Hongjie
2014-01-01
The coordinator is a specific node that controls the whole network and has a significant impact on the performance in cooperative multihop ZigBee wireless sensor networks (ZWSNs). However, the malicious node attacks coordinator nodes in an effort to waste the resources and disrupt the operation of the network. Attacking leads to a failure of one round of communication between the source nodes and destination nodes. Coordinator selection is a technique that can considerably defend against attack and reduce the data delivery delay, and increase network performance of cooperative communications. In this paper, we propose an adaptive coordinator selection algorithm using game and fuzzy logic aiming at both minimizing the average number of hops and maximizing network lifetime. The proposed game model consists of two interrelated formulations: a stochastic game for dynamic defense and a best response policy using evolutionary game formulation for coordinator selection. The stable equilibrium best policy to response defense is obtained from this game model. It is shown that the proposed scheme can improve reliability and save energy during the network lifetime with respect to security. PMID:25105171
A game-theoretic response strategy for coordinator attack in wireless sensor networks.
Liu, Jianhua; Yue, Guangxue; Shen, Shigen; Shang, Huiliang; Li, Hongjie
2014-01-01
The coordinator is a specific node that controls the whole network and has a significant impact on the performance in cooperative multihop ZigBee wireless sensor networks (ZWSNs). However, the malicious node attacks coordinator nodes in an effort to waste the resources and disrupt the operation of the network. Attacking leads to a failure of one round of communication between the source nodes and destination nodes. Coordinator selection is a technique that can considerably defend against attack and reduce the data delivery delay, and increase network performance of cooperative communications. In this paper, we propose an adaptive coordinator selection algorithm using game and fuzzy logic aiming at both minimizing the average number of hops and maximizing network lifetime. The proposed game model consists of two interrelated formulations: a stochastic game for dynamic defense and a best response policy using evolutionary game formulation for coordinator selection. The stable equilibrium best policy to response defense is obtained from this game model. It is shown that the proposed scheme can improve reliability and save energy during the network lifetime with respect to security.
Cassidy, Rachel N; Meisel, Matthew K; DiGuiseppi, Graham; Balestrieri, Sara; Barnett, Nancy P
2018-05-19
A trend has recently emerged of individuals using electronic nicotine delivery systems (ENDS) or similar devices to vaporize cannabis, either in the form of high-potency THC concentrates or cannabis plant material. Peer use is central to the adoption of substance use behaviors in young adulthood, but little is known about peer influence for initiating cannabis vaping. A longitudinal investigation of first-year college students (N = 1313) using social network methods was conducted to determine the prevalence of vaping cannabis, differences in networks between individuals who initiate vaping cannabis, and predictors of initiation of vaping cannabis across two time points. The surveys were available for two weeks beginning in the sixth week of each semester. We found that 9.4% vaped in their lifetime but not since the first survey, 7.5% vaped in their lifetime and since the first survey, and 5.9% reported vaping cannabis at the second survey. Lifetime cannabis use, lifetime ENDS use, and number of peers who initiated vaping cannabis from Time 1 to Time 2 were significantly associated with increased odds of the initiation of vaping cannabis; the number of any-cannabis-using or any-ENDS-using peers was not associated with increased odds of initiating vaping cannabis. Individuals with the greatest risk of initiation of vaping cannabis during the first year of college are those with a prior history of other cannabis use and ENDS use and who have peers in their network who initiate cannabis vaping. Copyright © 2018 Elsevier B.V. All rights reserved.
Rejuvenation of automotive fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yu Seung; Langlois, David A.
A process for rejuvenating fuel cells has been demonstrated to improve the performance of polymer exchange membrane fuel cells with platinum/ionomer electrodes. The process involves dehydrating a fuel cell and exposing at least the cathode of the fuel cell to dry gas (nitrogen, for example) at a temperature higher than the operating temperature of the fuel cell. The process may be used to prolong the operating lifetime of an automotive fuel cell.
Yu, Hongli; Chen, Guilin; Zhao, Shenghui; Chang, Chih-Yung; Chin, Yu-Ting
2016-01-01
Energy recharging has received much attention in recent years. Several recharging mechanisms were proposed for achieving perpetual lifetime of a given Wireless Sensor Network (WSN). However, most of them require a mobile recharger to visit each sensor and then perform the recharging task, which increases the length of the recharging path. Another common weakness of these works is the requirement for the mobile recharger to stop at the location of each sensor. As a result, it is impossible for recharger to move with a constant speed, leading to inefficient movement. To improve the recharging efficiency, this paper takes “recharging while moving” into consideration when constructing the recharging path. We propose a Recharging Path Construction (RPC) mechanism, which enables the mobile recharger to recharge all sensors using a constant speed, aiming to minimize the length of recharging path and improve the recharging efficiency while achieving the requirement of perpetual network lifetime of a given WSN. Performance studies reveal that the proposed RPC outperforms existing proposals in terms of path length and energy utilization index, as well as visiting cycle. PMID:28025567
A new bistable electroactive polymer for prolonged cycle lifetime of refreshable Braille displays
NASA Astrophysics Data System (ADS)
Ren, Zhi; Niu, Xiaofan; Chen, Dustin; Hu, Wei; Pei, Qibing
2014-03-01
ABSTRACT: Bistable electroactive polymers (BSEP) amalgamating electrically induced large-strain actuation and shape memory effect present a unique opportunity for refreshable Braille displays. A new BSEP material with long-chain crosslinkers to achieve prolonged cycle lifetime of refreshable Braille displays is reported here. The modulus of the BSEP material decreases by more than three orders of magnitude from a rigid, plastic state to a rubbery state when heated above the polymer's glass transition temperature. In its rubbery state, the polymer film can be electrically actuated to buckle convexly when a high voltage is applied across a circular active area. Modifying the concentration of long-chain crosslinkers in the polymer allows not only for fine-tuning of the polymer's glass transition temperature and elasticity in the rubbery state, but also enhancement of the actuation stability. For a raised height of 0.4 mm by a Braille dot with a 1.3 mm diameter, actuation can be repeated over 2000 cycles at 70°C in the rubbery state. The actuated dome shape can be fixed by cooling the polymer below the glass transition temperature. This refreshable rigid-to-rigid actuation simultaneously provides large-strain actuation and large force support. Devices capable of displaying Braille characters over a page-size area consisting of 324 Braille cells have been fabricated.
Distributed Multihop Clustering Approach for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Israr, Nauman; Awan, Irfan
Prolonging the life time of Wireless Sensor Networks (WSNs) has been the focus of current research. One of the issues that needs to be addressed along with prolonging the network life time is to ensure uniform energy consumption across the network in WSNs especially in case of random network deployment. Cluster based routing algorithms are believed to be the best choice for WSNs because they work on the principle of divide and conquer and also improve the network life time considerably compared to flat based routing schemes. In this paper we propose a new routing strategy based on two layers clustering which exploits the redundancy property of the network in order to minimise duplicate data transmission and also make the intercluster and intracluster communication multihop. The proposed algorithm makes use of the nodes in a network whose area coverage is covered by the neighbouring nodes. These nodes are marked as temporary cluster heads and later use these temporary cluster heads randomly for multihop intercluster communication. Performance studies indicate that the proposed algorithm solves effectively the problem of load balancing across the network and is more energy efficient compared to the enhanced version of widely used Leach algorithm.
NASA Astrophysics Data System (ADS)
Reben, M.; Golis, E.; Filipecki, J.; Sitarz, M.; Kotynia, K.; Jeleń, P.; Grelowska, I.
2014-08-01
PALS in comparison with FTIR studies have been applied to investigate the structure of different oxide glasses. Three components of the positron lifetime τ (τ1 para- and τ3 ortho-positronium and τ2 intermediate lifetime component) and their intensities were obtained. The results of the calculation of mean values of positron lifetimes for the investigated glasses showed the existence of a long-living component on the positron annihilation lifetime spectra. From the Tao-Eldrup formula we can estimate the size of free volume. On the basis of the measurements we can conclude that the size and fraction of free volume reaches the biggest value for the fused silica glass. The degree of network polymerisation increases void size.
Microstructural Characterization of Polymers by Positron Lifetime Spectroscopy
NASA Technical Reports Server (NTRS)
Singh, Jag J.
1996-01-01
Positrons provide a versatile probe for monitoring microstructural features of molecular solids. In this paper, we report on positron lifetime measurements in two different types of polymers. The first group comprises polyacrylates processed on earth and in space. The second group includes fully-compatible and totally-incompatible Semi-Interpenetrating polymer networks of thermosetting and thermoplastic polyimides. On the basis of lifetime measurements, it is concluded that free volumes are a direct reflection of physical/electromagnetic properties of the host polymers.
NASA Astrophysics Data System (ADS)
Semenova, N. I.; Strelkova, G. I.; Anishchenko, V. S.; Zakharova, A.
2017-06-01
We describe numerical results for the dynamics of networks of nonlocally coupled chaotic maps. Switchings in time between amplitude and phase chimera states have been first established and studied. It has been shown that in autonomous ensembles, a nonstationary regime of switchings has a finite lifetime and represents a transient process towards a stationary regime of phase chimera. The lifetime of the nonstationary switching regime can be increased to infinity by applying short-term noise perturbations.
Efficient Data Gathering in 3D Linear Underwater Wireless Sensor Networks Using Sink Mobility
Akbar, Mariam; Javaid, Nadeem; Khan, Ayesha Hussain; Imran, Muhammad; Shoaib, Muhammad; Vasilakos, Athanasios
2016-01-01
Due to the unpleasant and unpredictable underwater environment, designing an energy-efficient routing protocol for underwater wireless sensor networks (UWSNs) demands more accuracy and extra computations. In the proposed scheme, we introduce a mobile sink (MS), i.e., an autonomous underwater vehicle (AUV), and also courier nodes (CNs), to minimize the energy consumption of nodes. MS and CNs stop at specific stops for data gathering; later on, CNs forward the received data to the MS for further transmission. By the mobility of CNs and MS, the overall energy consumption of nodes is minimized. We perform simulations to investigate the performance of the proposed scheme and compare it to preexisting techniques. Simulation results are compared in terms of network lifetime, throughput, path loss, transmission loss and packet drop ratio. The results show that the proposed technique performs better in terms of network lifetime, throughput, path loss and scalability. PMID:27007373
Efficient Data Gathering in 3D Linear Underwater Wireless Sensor Networks Using Sink Mobility.
Akbar, Mariam; Javaid, Nadeem; Khan, Ayesha Hussain; Imran, Muhammad; Shoaib, Muhammad; Vasilakos, Athanasios
2016-03-19
Due to the unpleasant and unpredictable underwater environment, designing an energy-efficient routing protocol for underwater wireless sensor networks (UWSNs) demands more accuracy and extra computations. In the proposed scheme, we introduce a mobile sink (MS), i.e., an autonomous underwater vehicle (AUV), and also courier nodes (CNs), to minimize the energy consumption of nodes. MS and CNs stop at specific stops for data gathering; later on, CNs forward the received data to the MS for further transmission. By the mobility of CNs and MS, the overall energy consumption of nodes is minimized. We perform simulations to investigate the performance of the proposed scheme and compare it to preexisting techniques. Simulation results are compared in terms of network lifetime, throughput, path loss, transmission loss and packet drop ratio. The results show that the proposed technique performs better in terms of network lifetime, throughput, path loss and scalability.
Recruitment dynamics in adaptive social networks
NASA Astrophysics Data System (ADS)
Shkarayev, Maxim S.; Schwartz, Ira B.; Shaw, Leah B.
2013-06-01
We model recruitment in adaptive social networks in the presence of birth and death processes. Recruitment is characterized by nodes changing their status to that of the recruiting class as a result of contact with recruiting nodes. Only a susceptible subset of nodes can be recruited. The recruiting individuals may adapt their connections in order to improve recruitment capabilities, thus changing the network structure adaptively. We derive a mean-field theory to predict the dependence of the growth threshold of the recruiting class on the adaptation parameter. Furthermore, we investigate the effect of adaptation on the recruitment level, as well as on network topology. The theoretical predictions are compared with direct simulations of the full system. We identify two parameter regimes with qualitatively different bifurcation diagrams depending on whether nodes become susceptible frequently (multiple times in their lifetime) or rarely (much less than once per lifetime).
Recruitment dynamics in adaptive social networks.
Shkarayev, Maxim S; Schwartz, Ira B; Shaw, Leah B
2013-01-01
We model recruitment in adaptive social networks in the presence of birth and death processes. Recruitment is characterized by nodes changing their status to that of the recruiting class as a result of contact with recruiting nodes. Only a susceptible subset of nodes can be recruited. The recruiting individuals may adapt their connections in order to improve recruitment capabilities, thus changing the network structure adaptively. We derive a mean field theory to predict the dependence of the growth threshold of the recruiting class on the adaptation parameter. Furthermore, we investigate the effect of adaptation on the recruitment level, as well as on network topology. The theoretical predictions are compared with direct simulations of the full system. We identify two parameter regimes with qualitatively different bifurcation diagrams depending on whether nodes become susceptible frequently (multiple times in their lifetime) or rarely (much less than once per lifetime).
Long-term memory stabilized by noise-induced rehearsal.
Wei, Yi; Koulakov, Alexei A
2014-11-19
Cortical networks can maintain memories for decades despite the short lifetime of synaptic strengths. Can a neural network store long-lasting memories in unstable synapses? Here, we study the effects of ongoing spike-timing-dependent plasticity (STDP) on the stability of memory patterns stored in synapses of an attractor neural network. We show that certain classes of STDP rules can stabilize all stored memory patterns despite a short lifetime of synapses. In our model, unstructured neural noise, after passing through the recurrent network connections, carries the imprint of all memory patterns in temporal correlations. STDP, combined with these correlations, leads to reinforcement of all stored patterns, even those that are never explicitly visited. Our findings may provide the functional reason for irregular spiking displayed by cortical neurons and justify models of system memory consolidation. Therefore, we propose that irregular neural activity is the feature that helps cortical networks maintain stable connections. Copyright © 2014 the authors 0270-6474/14/3415804-12$15.00/0.
Energy Efficient Cluster Based Scheduling Scheme for Wireless Sensor Networks
Srie Vidhya Janani, E.; Ganesh Kumar, P.
2015-01-01
The energy utilization of sensor nodes in large scale wireless sensor network points out the crucial need for scalable and energy efficient clustering protocols. Since sensor nodes usually operate on batteries, the maximum utility of network is greatly dependent on ideal usage of energy leftover in these sensor nodes. In this paper, we propose an Energy Efficient Cluster Based Scheduling Scheme for wireless sensor networks that balances the sensor network lifetime and energy efficiency. In the first phase of our proposed scheme, cluster topology is discovered and cluster head is chosen based on remaining energy level. The cluster head monitors the network energy threshold value to identify the energy drain rate of all its cluster members. In the second phase, scheduling algorithm is presented to allocate time slots to cluster member data packets. Here congestion occurrence is totally avoided. In the third phase, energy consumption model is proposed to maintain maximum residual energy level across the network. Moreover, we also propose a new packet format which is given to all cluster member nodes. The simulation results prove that the proposed scheme greatly contributes to maximum network lifetime, high energy, reduced overhead, and maximum delivery ratio. PMID:26495417
Preserving Source Location Privacy for Energy Harvesting WSNs.
Huang, Changqin; Ma, Ming; Liu, Yuxin; Liu, Anfeng
2017-03-30
Fog (From cOre to edGe) computing employs a huge number of wireless embedded devices to enable end users with anywhere-anytime-to-anything connectivity. Due to their operating nature, wireless sensor nodes often work unattended, and hence are exposed to a variety of attacks. Preserving source-location privacy plays a key role in some wireless sensor network (WSN) applications. In this paper, a redundancy branch convergence-based preserved source location privacy scheme (RBCPSLP) is proposed for energy harvesting sensor networks, with the following advantages: numerous routing branches are created in non-hotspot areas with abundant energy, and those routing branches can merge into a few routing paths before they reach the hotspot areas. The generation time, the duration of routing, and the number of routing branches are then decided independently based on the amount of energy obtained, so as to maximize network energy utilization, greatly enhance privacy protection, and provide long network lifetimes. Theoretical analysis and experimental results show that the RBCPSLP scheme allows a several-fold improvement of the network energy utilization as well as the source location privacy preservation, while maximizing network lifetimes.
Preserving Source Location Privacy for Energy Harvesting WSNs
Huang, Changqin; Ma, Ming; Liu, Yuxin; Liu, Anfeng
2017-01-01
Fog (From cOre to edGe) computing employs a huge number of wireless embedded devices to enable end users with anywhere-anytime-to-anything connectivity. Due to their operating nature, wireless sensor nodes often work unattended, and hence are exposed to a variety of attacks. Preserving source-location privacy plays a key role in some wireless sensor network (WSN) applications. In this paper, a redundancy branch convergence-based preserved source location privacy scheme (RBCPSLP) is proposed for energy harvesting sensor networks, with the following advantages: numerous routing branches are created in non-hotspot areas with abundant energy, and those routing branches can merge into a few routing paths before they reach the hotspot areas. The generation time, the duration of routing, and the number of routing branches are then decided independently based on the amount of energy obtained, so as to maximize network energy utilization, greatly enhance privacy protection, and provide long network lifetimes. Theoretical analysis and experimental results show that the RBCPSLP scheme allows a several-fold improvement of the network energy utilization as well as the source location privacy preservation, while maximizing network lifetimes. PMID:28358341
Path scheduling for multiple mobile actors in wireless sensor network
NASA Astrophysics Data System (ADS)
Trapasiya, Samir D.; Soni, Himanshu B.
2017-05-01
In wireless sensor network (WSN), energy is the main constraint. In this work we have addressed this issue for single as well as multiple mobile sensor actor network. In this work, we have proposed Rendezvous Point Selection Scheme (RPSS) in which Rendezvous Nodes are selected by set covering problem approach and from that, Rendezvous Points are selected in a way to reduce the tour length. The mobile actors tour is scheduled to pass through those Rendezvous Points as per Travelling Salesman Problem (TSP). We have also proposed novel rendezvous node rotation scheme for fair utilisation of all the nodes. We have compared RPSS with Stationery Actor scheme as well as RD-VT, RD-VT-SMT and WRP-SMT for performance metrics like energy consumption, network lifetime, route length and found the better outcome in all the cases for single actor. We have also applied RPSS for multiple mobile actor case like Multi-Actor Single Depot (MASD) termination and Multi-Actor Multiple Depot (MAMD) termination and observed by extensive simulation that MAMD saves the network energy in optimised way and enhance network lifetime compared to all other schemes.
An Overview of Novel Power Sources for Advanced Munitions
2009-04-27
selected gas when desired. Prevention of rapid heat loss is a critical factor in prolonging operating lifetime as molten salt thermal batteries...4c. A higher number of end heat pellets not only provides more heat for bringing the battery internals above the eutectic point of the electrolyte but...maintenance. Finally, the combination of high vapor pressure and high ionic salt content typically found in catholyte formulations has caused foul- ing
Campos, Andre N.; Souza, Efren L.; Nakamura, Fabiola G.; Nakamura, Eduardo F.; Rodrigues, Joel J. P. C.
2012-01-01
Target tracking is an important application of wireless sensor networks. The networks' ability to locate and track an object is directed linked to the nodes' ability to locate themselves. Consequently, localization systems are essential for target tracking applications. In addition, sensor networks are often deployed in remote or hostile environments. Therefore, density control algorithms are used to increase network lifetime while maintaining its sensing capabilities. In this work, we analyze the impact of localization algorithms (RPE and DPE) and density control algorithms (GAF, A3 and OGDC) on target tracking applications. We adapt the density control algorithms to address the k-coverage problem. In addition, we analyze the impact of network density, residual integration with density control, and k-coverage on both target tracking accuracy and network lifetime. Our results show that DPE is a better choice for target tracking applications than RPE. Moreover, among the evaluated density control algorithms, OGDC is the best option among the three. Although the choice of the density control algorithm has little impact on the tracking precision, OGDC outperforms GAF and A3 in terms of tracking time. PMID:22969329
Julie, E Golden; Selvi, S Tamil
2016-01-01
Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes.
Julie, E. Golden; Selvi, S. Tamil
2016-01-01
Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes. PMID:26881269
Coevolution of strategy-selection time scale and cooperation in spatial prisoner's dilemma game
NASA Astrophysics Data System (ADS)
Rong, Zhihai; Wu, Zhi-Xi; Chen, Guanrong
2013-06-01
In this paper, we investigate a networked prisoner's dilemma game where individuals' strategy-selection time scale evolves based on their historical learning information. We show that the more times the current strategy of an individual is learnt by his neighbors, the longer time he will stick on the successful behavior by adaptively adjusting the lifetime of the adopted strategy. Through characterizing the extent of success of the individuals with normalized payoffs, we show that properly using the learned information can form a positive feedback mechanism between cooperative behavior and its lifetime, which can boost cooperation on square lattices and scale-free networks.
Gong, Zheng; Bao, Jianhua; Nagai, Keiji; Iyoda, Tomokazu; Kawauchi, Takehiro; Piotrowiak, Piotr
2016-05-12
The ability of a dendritic network to intercept electrons and extend the lifetime of a short-lived photoinduced charge separated (CS) state was investigated in a homologous family of methyl viologen (MV(2+)) dendrons spanning four generations, G0 through G3. The CS state in the parent pyrene-methylene-viologen G0 system with a single acceptor exhibits an extremely short lifetime of τ = 0.72 ps. The expansion of the viologen network introduces slower components to the recombination kinetics by allowing the injected electron to migrate further away from the donor. The long-lived fraction of the population increases monotonically in the order G3 > G2 > G1 > G0, while the respective recombination rates decrease. In the highest generation of the dendron ∼14% of the CS state population experiences a 10-fold or greater lifetime extension. Long range tunneling across multiple viologen units and sequential site-to-site hopping both contribute to the overall effect. The large excess energy deposited in the apical viologen upon charge separation and the presence of an extended network of low lying π-orbitals likely facilitate shuttling the electron further down the dendron.
Life Extension Activities for the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Walyus, Keith D.; Pepe, Joyce A. K.; Prior, Michael
2004-01-01
With the cancellation of the Hubble Space Telescope (HST) Servicing Mission 4 (SM4), the HST Project will face numerous challenges to keep the Telescope operating during the remainder of the decade. As part of the SM4, the HST Project had planned to install various upgrades to the Telescope including the installation of new batteries and new rate integrating gyros. Without these upgrades, reliability analysis indicates that the spacecraft will lose the capability to conduct science operations later this decade. The HST team will be severely challenged to maximize the Telescope's remaining operational lifetime, while still trying to maximize - its science output and quality. Two of the biggest areas of concern are the age and condition of the batteries and gyros. Together they offer the largest potential extension in Telescope lifetime and present the biggest challenges to the HST team. The six Ni-H batteries on HST are the original batteries from launch. With fourteen years of operational life, these batteries have collectively lasted longer than any other comparable mission. Yet as with all batteries, their capacity has been declining. Engineers are examining various methods to prolong the life of these mission critical batteries, and retard the rate of degradation. This paper will focus on these and other efforts to prolong the life of the HST, thus enabling it to remain a world-class observatory for as long as possible.
Piao, Ji-Gang; Gao, Feng; Yang, Lihua
2016-01-13
How to destroy drug-resistant tumor cells remains an ongoing challenge for cancer treatment. We herein report on a therapeutic nanoparticle, aHLP-PDA, which has an acid-activated hemolytic polymer (aHLP) grafted onto photothermal polydopamine (PDA) nanosphere via boronate ester bond, in efforts to ablate drug-resistant tumors. Upon exposure to oxidative stress and/or near-infrared laser irradiation, aHLP-PDA nanoparticle responsively releases aHLP, likely via responsive cleavage of boronate ester bond, and thus responsively exhibits acid-facilitated mammalian-membrane-disruptive activity. In vitro cell studies with drug-resistant and/or thermo-tolerant cancer cells show that the aHLP-PDA nanoparticle demonstrates preferential cytotoxicity at acidic pH over physiological pH. When administered intravenously, the aHLP-PDA nanoparticle exhibits significantly prolonged blood circulation lifetime and enhanced tumor uptake compared to bare PDA nanosphere, likely owing to aHLP's stealth effects conferred by its zwitterionic nature at blood pH. As a result, the aHLP-PDA nanoparticle effectively ablates drug-resistant tumors, leading to 100% mouse survival even on the 32nd day after suspension of photothermal treatment, as demonstrated with the mouse model. This work suggests that a combination of nanotechnology with lessons learned in bacterial antibiotic resistance may offer a feasible and effective strategy for treating drug-resistant cancers often found in relapsing patients.
Adaptive Aggregation Routing to Reduce Delay for Multi-Layer Wireless Sensor Networks.
Li, Xujing; Liu, Anfeng; Xie, Mande; Xiong, Neal N; Zeng, Zhiwen; Cai, Zhiping
2018-04-16
The quality of service (QoS) regarding delay, lifetime and reliability is the key to the application of wireless sensor networks (WSNs). Data aggregation is a method to effectively reduce the data transmission volume and improve the lifetime of a network. In the previous study, a common strategy required that data wait in the queue. When the length of the queue is greater than or equal to the predetermined aggregation threshold ( N t ) or the waiting time is equal to the aggregation timer ( T t ), data are forwarded at the expense of an increase in the delay. The primary contributions of the proposed Adaptive Aggregation Routing (AAR) scheme are the following: (a) the senders select the forwarding node dynamically according to the length of the data queue, which effectively reduces the delay. In the AAR scheme, the senders send data to the nodes with a long data queue. The advantages are that first, the nodes with a long data queue need a small amount of data to perform aggregation; therefore, the transmitted data can be fully utilized to make these nodes aggregate. Second, this scheme balances the aggregating and data sending load; thus, the lifetime increases. (b) An improved AAR scheme is proposed to improve the QoS. The aggregation deadline ( T t ) and the aggregation threshold ( N t ) are dynamically changed in the network. In WSNs, nodes far from the sink have residual energy because these nodes transmit less data than the other nodes. In the improved AAR scheme, the nodes far from the sink have a small value of T t and N t to reduce delay, and the nodes near the sink are set to a large value of T t and N t to reduce energy consumption. Thus, the end to end delay is reduced, a longer lifetime is achieved, and the residual energy is fully used. Simulation results demonstrate that compared with the previous scheme, the performance of the AAR scheme is improved. This scheme reduces the delay by 14.91%, improves the lifetime by 30.91%, and increases energy efficiency by 76.40%.
Adaptive Aggregation Routing to Reduce Delay for Multi-Layer Wireless Sensor Networks
Li, Xujing; Xie, Mande; Zeng, Zhiwen; Cai, Zhiping
2018-01-01
The quality of service (QoS) regarding delay, lifetime and reliability is the key to the application of wireless sensor networks (WSNs). Data aggregation is a method to effectively reduce the data transmission volume and improve the lifetime of a network. In the previous study, a common strategy required that data wait in the queue. When the length of the queue is greater than or equal to the predetermined aggregation threshold (Nt) or the waiting time is equal to the aggregation timer (Tt), data are forwarded at the expense of an increase in the delay. The primary contributions of the proposed Adaptive Aggregation Routing (AAR) scheme are the following: (a) the senders select the forwarding node dynamically according to the length of the data queue, which effectively reduces the delay. In the AAR scheme, the senders send data to the nodes with a long data queue. The advantages are that first, the nodes with a long data queue need a small amount of data to perform aggregation; therefore, the transmitted data can be fully utilized to make these nodes aggregate. Second, this scheme balances the aggregating and data sending load; thus, the lifetime increases. (b) An improved AAR scheme is proposed to improve the QoS. The aggregation deadline (Tt) and the aggregation threshold (Nt) are dynamically changed in the network. In WSNs, nodes far from the sink have residual energy because these nodes transmit less data than the other nodes. In the improved AAR scheme, the nodes far from the sink have a small value of Tt and Nt to reduce delay, and the nodes near the sink are set to a large value of Tt and Nt to reduce energy consumption. Thus, the end to end delay is reduced, a longer lifetime is achieved, and the residual energy is fully used. Simulation results demonstrate that compared with the previous scheme, the performance of the AAR scheme is improved. This scheme reduces the delay by 14.91%, improves the lifetime by 30.91%, and increases energy efficiency by 76.40%. PMID:29659535
A Data Fusion Method in Wireless Sensor Networks
Izadi, Davood; Abawajy, Jemal H.; Ghanavati, Sara; Herawan, Tutut
2015-01-01
The success of a Wireless Sensor Network (WSN) deployment strongly depends on the quality of service (QoS) it provides regarding issues such as data accuracy, data aggregation delays and network lifetime maximisation. This is especially challenging in data fusion mechanisms, where a small fraction of low quality data in the fusion input may negatively impact the overall fusion result. In this paper, we present a fuzzy-based data fusion approach for WSN with the aim of increasing the QoS whilst reducing the energy consumption of the sensor network. The proposed approach is able to distinguish and aggregate only true values of the collected data as such, thus reducing the burden of processing the entire data at the base station (BS). It is also able to eliminate redundant data and consequently reduce energy consumption thus increasing the network lifetime. We studied the effectiveness of the proposed data fusion approach experimentally and compared it with two baseline approaches in terms of data collection, number of transferred data packets and energy consumption. The results of the experiments show that the proposed approach achieves better results than the baseline approaches. PMID:25635417
NASA Astrophysics Data System (ADS)
Zhang, Bin; Chen, Cheng; Han, Junbo; Jin, Chuan; Chen, Jianxin; Wang, Xingjun
2018-04-01
The effect of the thermal annealing on the optical and spin properties in GaAs0.44Sb0.56 epilayers grown on InP was investigated via photoreflectance, power-dependent and time-resolved photoluminescence spectroscopy as well as optical orientation measurement. The carrier's localization and the optical spin detection efficiency increase with an increase of annealing temperature up to 600 °C. The enhancement of the spin detection efficiency is attributed to both the shortening of the electron lifetime and the prolonging of the spin lifetime as a result of the enhanced carriers' localization induced by the annealing process. Our results provided an approach to enhance spin detection efficiency of GaAsSb with its PL emission in the 1.55 μm region.
Reduction of capacity decay in vanadium flow batteries by an electrolyte-reflow method
NASA Astrophysics Data System (ADS)
Wang, Ke; Liu, Le; Xi, Jingyu; Wu, Zenghua; Qiu, Xinping
2017-01-01
Electrolyte imbalance is a major issue with Vanadium flow batteries (VFBs) as it has a significant impact on electrolyte utilization and cycle life over extended charge-discharge cycling. This work seeks to reduce capacity decay and prolong cycle life of VFBs by adopting a novel electrolyte-reflow method. Different current density and various start-up time of the method are investigated in the charge-discharge tests. The results show that the capacity decay rate is reduced markedly and the cycle life is prolonged substantially by this method. In addition, the coulomb efficiency, voltage efficiency and energy efficiency remain stable during the whole cycle life test, which indicates this method has little impact on the long lifetime performance of the VFBs. The method is low-cost, simple, effective, and can be applied in industrial VFB productions.
Dynamic Task Allocation in Multi-Hop Multimedia Wireless Sensor Networks with Low Mobility
Jin, Yichao; Vural, Serdar; Gluhak, Alexander; Moessner, Klaus
2013-01-01
This paper presents a task allocation-oriented framework to enable efficient in-network processing and cost-effective multi-hop resource sharing for dynamic multi-hop multimedia wireless sensor networks with low node mobility, e.g., pedestrian speeds. The proposed system incorporates a fast task reallocation algorithm to quickly recover from possible network service disruptions, such as node or link failures. An evolutional self-learning mechanism based on a genetic algorithm continuously adapts the system parameters in order to meet the desired application delay requirements, while also achieving a sufficiently long network lifetime. Since the algorithm runtime incurs considerable time delay while updating task assignments, we introduce an adaptive window size to limit the delay periods and ensure an up-to-date solution based on node mobility patterns and device processing capabilities. To the best of our knowledge, this is the first study that yields multi-objective task allocation in a mobile multi-hop wireless environment under dynamic conditions. Simulations are performed in various settings, and the results show considerable performance improvement in extending network lifetime compared to heuristic mechanisms. Furthermore, the proposed framework provides noticeable reduction in the frequency of missing application deadlines. PMID:24135992
Energy Efficient Probabilistic Broadcasting for Mobile Ad-Hoc Network
NASA Astrophysics Data System (ADS)
Kumar, Sumit; Mehfuz, Shabana
2017-06-01
In mobile ad-hoc network (MANETs) flooding method is used for broadcasting route request (RREQ) packet from one node to another node for route discovery. This is the simplest method of broadcasting of RREQ packets but it often results in broadcast storm problem, originating collisions and congestion of packets in the network. A probabilistic broadcasting is one of the widely used broadcasting scheme for route discovery in MANETs and provides solution for broadcasting storm problem. But it does not consider limited energy of the battery of the nodes. In this paper, a new energy efficient probabilistic broadcasting (EEPB) is proposed in which probability of broadcasting RREQs is calculated with respect to remaining energy of nodes. The analysis of simulation results clearly indicate that an EEPB route discovery scheme in ad-hoc on demand distance vector (AODV) can increase the network lifetime with a decrease in the average power consumption and RREQ packet overhead. It also decreases the number of dropped packets in the network, in comparison to other EEPB schemes like energy constraint gossip (ECG), energy aware gossip (EAG), energy based gossip (EBG) and network lifetime through energy efficient broadcast gossip (NEBG).
Adjustable Trajectory Design Based on Node Density for Mobile Sink in WSNs
Yang, Guisong; Liu, Shuai; He, Xingyu; Xiong, Naixue; Wu, Chunxue
2016-01-01
The design of movement trajectories for mobile sink plays an important role in data gathering for Wireless Sensor Networks (WSNs), as it affects the network coverage, and packet delivery ratio, as well as the network lifetime. In some scenarios, the whole network can be divided into subareas where the nodes are randomly deployed. The node densities of these subareas are quite different, which may result in a decreased packet delivery ratio and network lifetime if the movement trajectory of the mobile sink cannot adapt to these differences. To address these problems, we propose an adjustable trajectory design method based on node density for mobile sink in WSNs. The movement trajectory of the mobile sink in each subarea follows the Hilbert space-filling curve. Firstly, the trajectory is constructed based on network size. Secondly, the adjustable trajectory is established based on node density in specific subareas. Finally, the trajectories in each subarea are combined to acquire the whole network’s movement trajectory for the mobile sink. In addition, an adaptable power control scheme is designed to adjust nodes’ transmitting range dynamically according to the movement trajectory of the mobile sink in each subarea. The simulation results demonstrate that the proposed trajectories can adapt to network changes flexibly, thus outperform both in packet delivery ratio and in energy consumption the trajectories designed only based on the network size and the whole network node density. PMID:27941662
NASA Technical Reports Server (NTRS)
Singh, Jag J.; Pater, Ruth H.; Eftekhari, Abe
1996-01-01
Thermoset and thermoplastic polyimides have complementary physical and mechanical properties. Whereas thermoset polyimides are brittle and generally easier to process, thermoplastic polyimides are tough but harder to process. A combination of these two types of polyimides may help produce polymers more suitable for aerospace applications. Semi-Interpenetrating Polymer Networks (S-IPN) of thermoset LaRC(TM)-RP46 and thermoplastic LaRC(TM)-IA polyimides were prepared in weight percent ratios ranging from 100:0 to 0:100. Positron lifetime measurements were made in these samples to correlate their free volume features with physical and mechanical properties. As expected, positronium atoms are not formed in these samples. The second lifetime component has been used to infer the positron trap dimensions. The 'free volume' goes through a minimum at a ratio of about 50:50, and this suggests that S-IPN samples are not merely solid solutions of the two polymers. These data and related structural properties of the S-IPN samples are discussed.
Kundu, Achintya; Błasiak, Bartosz; Lim, Joon-Hyung; Kwak, Kyungwon; Cho, Minhaeng
2016-03-03
The water hydrogen-bonding network at a lipid bilayer surface is crucial to understanding membrane structures and its functional activities. With a phospholipid multibilayer mimicking a biological membrane, we study the temperature dependence of water hydrogen-bonding structure, distribution, and dynamics at a lipid multibilayer surface using femtosecond mid-IR pump-probe spectroscopy. We observe two distinguished vibrational lifetime components. The fast component (0.6 ps) is associated with water interacting with a phosphate part, whereas the slow component (1.9 ps) is with bulk-like choline-associated water. With increasing temperature, the vibrational lifetime of phosphate-associated water remains constant though its relative fraction dramatically increases. The OD stretch vibrational lifetime of choline-bound water slows down in a sigmoidal fashion with respect to temperature, indicating a noticeable change of the water environment upon the phase transition. The water structure and dynamics are thus shown to be in quantitative correlation with the structural change of liquid multibilayer upon the gel-to-liquid crystal phase transition.
Predicting astronaut radiation doses from major solar particle events using artificial intelligence
NASA Astrophysics Data System (ADS)
Tehrani, Nazila H.
1998-06-01
Space radiation is an important issue for manned space flight. For long missions outside of the Earth's magnetosphere, there are two major sources of exposure. Large Solar Particle Events (SPEs) consisting of numerous energetic protons and other heavy ions emitted by the Sun, and the Galactic Cosmic Rays (GCRs) that constitute an isotropic radiation field of low flux and high energy. In deep-space missions both SPEs and GCRs can be hazardous to the space crew. SPEs can provide an acute dose, which is a large dose over a short period of time. The acute doses from a large SPE that could be received by an astronaut with shielding as thick as a spacesuit maybe as large as 500 cGy. GCRs will not provide acute doses, but may increase the lifetime risk of cancer from prolonged exposures in a range of 40-50 cSv/yr. In this research, we are using artificial intelligence to model the dose-time profiles during a major solar particle event. Artificial neural networks are reliable approximators for nonlinear functions. In this study we design a dynamic network. This network has the ability to update its dose predictions as new input dose data is received while the event is occurring. To accomplish this temporal behavior of the system we use an innovative Sliding Time-Delay Neural Network (STDNN). By using a STDNN one can predict doses received from large SPEs while the event is happening. The parametric fits and actual calculated doses for the skin, eye and bone marrow are used. The parametric data set obtained by fitting the Weibull functional forms to the calculated dose points has been divided into two subsets. The STDNN has been trained using some of these parametric events. The other subset of parametric data and the actual doses are used for testing with the resulting weights and biases of the first set. This is done to show that the network can generalize. Results of this testing indicate that the STDNN is capable of predicting doses from events that it has not seen before.
Tritium-powered radiation sensor network
NASA Astrophysics Data System (ADS)
Litz, Marc S.; Russo, Johnny A.; Katsis, Dimos
2016-05-01
Isotope power supplies offer long-lived (100 years using 63Ni), low-power energy sources, enabling sensors or communications nodes for the lifetime of infrastructure. A tritium beta-source (12.5-year half-life) encapsulated in a phosphor-lined vial couples directly to a photovoltaic (PV) to generate a trickle current into an electrical load. An inexpensive design is described using commercial-of-the-shelf (COTS) components that generate 100 μWe for nextgeneration compact electronics/sensors. A matched radiation sensor has been built for long-duration missions utilizing microprocessor-controlled sleep modes, low-power electronic components, and a passive interrupt driven environmental wake-up. The low-power early-warning radiation detector network and isotope power source enables no-maintenance mission lifetimes.
Increasing of the lifetime of large forging dies by repairwelding
NASA Astrophysics Data System (ADS)
Duchek, M.; Koukolikova, M.; Kotous, J.; Majer, M.
2018-02-01
Repair welding is often used for rebuilding discarded or failed forging dies. It saves the cost of new tools. Increased useful life of repaired dies is another motivation for repair welding. This article focuses on the development of new filler materials for this purpose. The main goal was to prolong the life of tools of DIN 1.2714 material. Filler wires of two chemistries were made and several samples were experimentally welded. Metallographic and tribological analyses were carried out.
NASA Astrophysics Data System (ADS)
Fauji, Shantanu
We consider the problem of energy efficient and fault tolerant in--network aggregation for wireless sensor networks (WSNs). In-network aggregation is the process of aggregation while collecting data from sensors to the base station. This process should be energy efficient due to the limited energy at the sensors and tolerant to the high failure rates common in sensor networks. Tree based in--network aggregation protocols, although energy efficient, are not robust to network failures. Multipath routing protocols are robust to failures to a certain degree but are not energy efficient due to the overhead in the maintenance of multiple paths. We propose a new protocol for in-network aggregation in WSNs, which is energy efficient, achieves high lifetime, and is robust to the changes in the network topology. Our protocol, gossip--based protocol for in-network aggregation (GPIA) is based on the spreading of information via gossip. GPIA is not only adaptive to failures and changes in the network topology, but is also energy efficient. Energy efficiency of GPIA comes from all the nodes being capable of selective message reception and detecting convergence of the aggregation early. We experimentally show that GPIA provides significant improvement over some other competitors like the Ridesharing, Synopsis Diffusion and the pure version of gossip. GPIA shows ten fold, five fold and two fold improvement over the pure gossip, the synopsis diffusion and Ridesharing protocols in terms of network lifetime, respectively. Further, GPIA retains gossip's robustness to failures and improves upon the accuracy of synopsis diffusion and Ridesharing.
NASA Astrophysics Data System (ADS)
Banerjee, Torsha
Unlike conventional networks, wireless sensor networks (WSNs) are limited in power, have much smaller memory buffers, and possess relatively slower processing speeds. These characteristics necessitate minimum transfer and storage of information in order to prolong the network lifetime. In this dissertation, we exploit the spatio-temporal nature of sensor data to approximate the current values of the sensors based on readings obtained from neighboring sensors and itself. We propose a Tree based polynomial REGression algorithm, (TREG) that addresses the problem of data compression in wireless sensor networks. Instead of aggregated data, a polynomial function (P) is computed by the regression function, TREG. The coefficients of P are then passed to achieve the following goals: (i) The sink can get attribute values in the regions devoid of sensor nodes, and (ii) Readings over any portion of the region can be obtained at one time by querying the root of the tree. As the size of the data packet from each tree node to its parent remains constant, the proposed scheme scales very well with growing network density or increased coverage area. Since physical attributes exhibit a gradual change over time, we propose an iterative scheme, UPDATE_COEFF, which obviates the need to perform the regression function repeatedly and uses approximations based on previous readings. Extensive simulations are performed on real world data to demonstrate the effectiveness of our proposed aggregation algorithm, TREG. Results reveal that for a network density of 0.0025 nodes/m2, a complete binary tree of depth 4 could provide the absolute error to be less than 6%. A data compression ratio of about 0.02 is achieved using our proposed algorithm, which is almost independent of the tree depth. In addition, our proposed updating scheme makes the aggregation process faster while maintaining the desired error bounds. We also propose a Polynomial-based scheme that addresses the problem of Event Region Detection (PERD) for WSNs. When a single event occurs, a child of the tree sends a Flagged Polynomial (FP) to its parent, if the readings approximated by it falls outside the data range defining the existing phenomenon. After the aggregation process is over, the root having the two polynomials, P and FP can be queried for FP (approximating the new event region) instead of flooding the whole network. For multiple such events, instead of computing a polynomial corresponding to each new event, areas with same data range are combined by the corresponding tree nodes and the aggregated coefficients are passed on. Results reveal that a new event can be detected by PERD while error in detection remains constant and is less than a threshold of 10%. As the node density increases, accuracy and delay for event detection are found to remain almost constant, making PERD highly scalable. Whenever an event occurs in a WSN, data is generated by closeby sensors and relaying the data to the base station (BS) make sensors closer to the BS run out of energy at a much faster rate than sensors in other parts of the network. This gives rise to an unequal distribution of residual energy in the network and makes those sensors with lower remaining energy level die at much faster rate than others. We propose a scheme for enhancing network Lifetime using mobile cluster heads (CH) in a WSN. To maintain remaining energy more evenly, some energy-rich nodes are designated as CHs which move in a controlled manner towards sensors rich in energy and data. This eliminates multihop transmission required by the static sensors and thus increases the overall lifetime of the WSN. We combine the idea of clustering and mobile CH to first form clusters of static sensor nodes. A collaborative strategy among the CHs further increases the lifetime of the network. Time taken for transmitting data to the BS is reduced further by making the CHs follow a connectivity strategy that always maintain a connected path to the BS. Spatial correlation of sensor data can be further exploited for dynamic channel selection in Cellular Communication. In such a scenario within a licensed band, wireless sensors can be deployed (each sensor tuned to a frequency of the channel at a particular time) to sense the interference power of the frequency band. In an ideal channel, interference temperature (IT) which is directly proportional to the interference power, can be assumed to vary spatially with the frequency of the sub channel. We propose a scheme for fitting the sub channel frequencies and corresponding ITs to a regression model for calculating the IT of a random sub channel for further analysis of the channel interference at the base station. Our scheme, based on the readings reported by Sensors helps in Dynamic Channel Selection (S-DCS) in extended C-band for assignment to unlicensed secondary users. S-DCS proves to be economic from energy consumption point of view and it also achieves accuracy with error bound within 6.8%. Again, users are assigned empty sub channels without actually probing them, incurring minimum delay in the process. The overall channel throughput is maximized along with fairness to individual users.
On the existence of tropical anvil clouds
NASA Astrophysics Data System (ADS)
Seeley, J.; Jeevanjee, N.; Langhans, W.; Romps, D.
2017-12-01
In the deep tropics, extensive anvil clouds produce a peak in cloud cover below the tropopause. The dominant paradigm for cloud cover attributes this anvil peak to a layer of enhanced mass convergence in the clear-sky upper-troposphere, which is presumed to force frequent detrainment of convective anvils. However, cloud cover also depends on the lifetime of cloudy air after it detrains, which raises the possibility that anvil clouds may be the signature of slow cloud decay rather than enhanced detrainment. Here we measure the cloud decay timescale in cloud-resolving simulations, and find that cloudy updrafts that detrain in the upper troposphere take much longer to dissipate than their shallower counterparts. We show that cloud lifetimes are long in the upper troposphere because the saturation specific humidity becomes orders of magnitude smaller than the typical condensed water loading of cloudy updrafts. This causes evaporative cloud decay to act extremely slowly, thereby prolonging cloud lifetimes in the upper troposphere. As a consequence, extensive anvil clouds still occur in a convecting atmosphere that is forced to have no preferential clear-sky convergence layer. On the other hand, when cloud lifetimes are fixed at a characteristic lower-tropospheric value, extensive anvil clouds do not form. Our results support a revised understanding of tropical anvil clouds, which attributes their existence to the microphysics of slow cloud decay rather than a peak in clear-sky convergence.
Cirrus Cloud Seeding has Potential to Cool Climate
NASA Technical Reports Server (NTRS)
Storelvmo, T.; Kristjansson, J. E.; Muri, H.; Pfeffer, M.; Barahona, D.; Nenes, A.
2013-01-01
Cirrus clouds, thin ice clouds in the upper troposphere, have a net warming effect on Earth s climate. Consequently, a reduction in cirrus cloud amount or optical thickness would cool the climate. Recent research indicates that by seeding cirrus clouds with particles that promote ice nucleation, their lifetimes and coverage could be reduced. We have tested this hypothesis in a global climate model with a state-of-the-art representation of cirrus clouds and find that cirrus cloud seeding has the potential to cancel the entire warming caused by human activity from pre-industrial times to present day. However, the desired effect is only obtained for seeding particle concentrations that lie within an optimal range. With lower than optimal particle concentrations, a seeding exercise would have no effect. Moreover, a higher than optimal concentration results in an over-seeding that could have the deleterious effect of prolonging cirrus lifetime and contributing to global warming.
Lau, Jillian S Y; Kiss, Christopher; Roberts, Erika; Horne, Kylie; Korman, Tony M; Woolley, Ian
2017-01-18
The rise of antimicrobial use in the twentieth century has significantly reduced morbidity due to infection, however it has also brought with it the rise of increasing resistance. Some patients are on prolonged, if not "life-long" course of antibiotics. The reasons for this are varied, and include non-infectious indications. We aimed to study the characteristics of this potential source of antibiotic resistance, by exploring the antibiotic dispensing practices and describing the population of patients on long-term antibiotic therapy. A retrospective cross-sectional study of antibiotic dispensing records was performed at a large university hospital-based healthcare network in Melbourne, Australia. Outpatient prescriptions were extracted from the hospital pharmacy database over a 6 month period in 2014. Medical records of these patients were reviewed to determine the indication for prescription, including microbiology, the intended duration, and the prescribing unit. A descriptive analysis was performed on this data. 66,127 dispensing episodes were reviewed. 202 patients were found to have been prescribed 1 or more antibiotics with an intended duration of 1 year or longer. 69/202 (34%) of these patients were prescribed prolonged antibiotics for primary prophylaxis in the setting of immunosuppression. 43/202 (21%) patients were prescribed long-term suppressive antibiotics for infections of thought incurable (e.g. vascular graft infections), and 34/43 (79%) were prescribed by Infectious Diseases doctors. 66/202 (33%) patients with cystic fibrosis were prescribed prolonged courses of macrolides or fluoroquinolones, by respiratory physicians. There was great heterogeneity noted in indications for prolonged antibiotic courses, as well as antibiotic agents utilised. Our study found that that continuous antibiotic therapy represented only a small proportion of overall antibiotic prescribing at our health network. Prolonged courses of antibiotics were used mainly to suppress infections thought incurable, but also as primary and secondary prophylaxis and as anti-inflammatory agents. More research is needed to understand the impact of long-term antibiotic consumption on both patients and microbial ecology.
Hu, D; Sarder, P; Ronhovde, P; Orthaus, S; Achilefu, S; Nussinov, Z
2014-01-01
Inspired by a multiresolution community detection based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Furthermore, using the proposed method, the mean-square error in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The multiresolution community detection method appeared to perform better than a popular spectral clustering-based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in mean-square error with increasing resolution. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Orthaus, Sandra; Achilefu, Samuel; Nussinov, Zohar
2014-01-01
Inspired by a multi-resolution community detection (MCD) based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Further, using the proposed method, the mean-square error (MSE) in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The MCD method appeared to perform better than a popular spectral clustering based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in MSE with increasing resolution. PMID:24251410
Energy Aware Clustering Algorithms for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian
2011-09-01
The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.
What Prolongs a Butterfly's Life?: Trade-Offs between Dormancy, Fecundity and Body Size
Haeler, Elena; Fiedler, Konrad; Grill, Andrea
2014-01-01
In butterflies, life span often increases only at the expense of fecundity. Prolonged life span, on the other hand, provides more opportunities for oviposition. Here, we studied the association between life span and summer dormancy in two closely related species of Palearctic Meadow Brown butterflies, the endemic Maniola nurag and the widespread M. jurtina, from two climatic provenances, a Mediterranean and a Central European site, and tested the relationships between longevity, body size and fecundity. We experimentally induced summer dormancy and hence prolonged the butterflies’ life in order to study the effects of such a prolonged life. We were able to modulate longevity only in Mediterranean females by rearing them under summer photoperiodic conditions (light 16 h : dark 8 h), thereby more than doubling their natural life span, to up to 246 days. Central European individuals kept their natural average live span under all treatments, as did Mediterranean individuals under autumn treatment (light 11: dark 13). Body size only had a significant effect in the smaller species, M. nurag, where it affected the duration of dormancy and lifetime fecundity. In the larger species, M. jurtina, a prolonged adult life span did, surprisingly, not convey any fecundity loss. In M. nurag, which generally deposited fewer eggs, extended life had a fecundity cost. We conclude that Mediterranen M. jurtina butterflies have an extraordinary plasticity in aging which allows them to extend life span in response to adverse environmental conditions and relieve the time limitation on egg-laying while maintaining egg production at equal levels. PMID:25390334
NASA Astrophysics Data System (ADS)
Paradzah, Alexander T.; Diale, Mmantsae; Maabong, Kelebogile; Krüger, Tjaart P. J.
2018-04-01
Hematite is a widely investigated material for applications in solar water oxidation due primarily to its small bandgap. However, full realization of the material continues to be hampered by fast electron-hole recombination rates among other weaknesses such as low hole mobility, short hole diffusion length and low conductivity. To address the problem of fast electron-hole recombination, researchers have resorted to growth of nano-structured hematite, doping and use of under-layers. Under-layer materials enhance the photo-current by minimising electron-hole recombination through suppressing of back electron flow from the substrate, such as fluorine-doped tin oxide (FTO), to hematite. We have carried out ultrafast transient absorption spectroscopy on hematite in which Nb2O5 and SnO2 materials were used as interfacial layers to enhance hole lifetimes. The transient absorption data was fit with four different lifetimes ranging from a few hundred femtoseconds to a few nanoseconds. We show that the electron-hole recombination is slower in samples where interfacial layers are used than in pristine hematite. We also develop a model through target analysis to illustrate the effect of under-layers on electron-hole recombination rates in hematite thin films.
Epoch Lifetimes in the Dynamics of a Competing Population
NASA Astrophysics Data System (ADS)
Yeung, C. H.; Ma, Y. P.; Wong, K. Y. Michael
We propose a dynamical model of a competing population whose agents have a tendency to balance their decisions in time. The model is applicable to financial markets in which the agents trade with finite capital, or other multiagent systems such as routers in communication networks attempting to transmit multiclass traffic in a fair way. We find an oscillatory behavior due to the segregation of agents into two groups. Each group remains winning over epochs. The aggregation of smart agents is able to explain the lifetime distribution of epochs to 8 decades of probability. The existence of the super agents further refines the lifetime distribution of short epochs.
The Impact of Content-Based Network Technologies on Perceptions of Nutrition Literacy
ERIC Educational Resources Information Center
Brewer, Hannah; Church, E. Mitchell; Brewer, Steven L.
2016-01-01
Background: Consumers are exposed to obesogenic environments on a regular basis. Building nutrition literacy is critical for sustaining healthy dietary habits for a lifetime and reducing the prevalence of chronic disease. Purpose: There is a need to investigate the impact of content-based network (CBN) technologies on perceptions of nutrition…
Smart border: ad-hoc wireless sensor networks for border surveillance
NASA Astrophysics Data System (ADS)
He, Jun; Fallahi, Mahmoud; Norwood, Robert A.; Peyghambarian, Nasser
2011-06-01
Wireless sensor networks have been proposed as promising candidates to provide automated monitoring, target tracking, and intrusion detection for border surveillance. In this paper, we demonstrate an ad-hoc wireless sensor network system for border surveillance. The network consists of heterogeneously autonomous sensor nodes that distributively cooperate with each other to enable a smart border in remote areas. This paper also presents energy-aware and sleeping algorithms designed to maximize the operating lifetime of the deployed sensor network. Lessons learned in building the network and important findings from field experiments are shared in the paper.
A Trust-Based Adaptive Probability Marking and Storage Traceback Scheme for WSNs
Liu, Anfeng; Liu, Xiao; Long, Jun
2016-01-01
Security is a pivotal issue for wireless sensor networks (WSNs), which are emerging as a promising platform that enables a wide range of military, scientific, industrial and commercial applications. Traceback, a key cyber-forensics technology, can play an important role in tracing and locating a malicious source to guarantee cybersecurity. In this work a trust-based adaptive probability marking and storage (TAPMS) traceback scheme is proposed to enhance security for WSNs. In a TAPMS scheme, the marking probability is adaptively adjusted according to the security requirements of the network and can substantially reduce the number of marking tuples and improve network lifetime. More importantly, a high trust node is selected to store marking tuples, which can avoid the problem of marking information being lost. Experimental results show that the total number of marking tuples can be reduced in a TAPMS scheme, thus improving network lifetime. At the same time, since the marking tuples are stored in high trust nodes, storage reliability can be guaranteed, and the traceback time can be reduced by more than 80%. PMID:27043566
IEEE-802.15.4-based low-power body sensor node with RF energy harvester.
Tran, Thang Viet; Chung, Wan-Young
2014-01-01
This paper proposes the design and implementation of a low-voltage and low-power body sensor node based on the IEEE 802.15.4 standard to collect electrocardiography (ECG) and photoplethysmography (PPG) signals. To achieve compact size, low supply voltage, and low power consumption, the proposed platform is integrated into a ZigBee mote, which contains a DC-DC booster, a PPG sensor interface module, and an ECG front-end circuit that has ultra-low current consumption. The input voltage of the proposed node is very low and has a wide range, from 0.65 V to 3.3 V. An RF energy harvester is also designed to charge the battery during the working mode or standby mode of the node. The power consumption of the proposed node reaches 14 mW in working mode to prolong the battery lifetime. The software is supported by the nesC language under the TinyOS environment, which enables the proposed node to be easily configured to function as an individual health monitoring node or a node in a wireless body sensor network (BSN). The proposed node is used to set up a wireless BSN that can simultaneously collect ECG and PPG signals and monitor the results on the personal computer.
Sphingosine and Sphingosine Kinase 1 Involvement in Endocytic Membrane Trafficking*
Lima, Santiago; Milstien, Sheldon; Spiegel, Sarah
2017-01-01
The balance between cholesterol and sphingolipids within the plasma membrane has long been implicated in endocytic membrane trafficking. However, in contrast to cholesterol functions, little is still known about the roles of sphingolipids and their metabolites. Perturbing the cholesterol/sphingomyelin balance was shown to induce narrow tubular plasma membrane invaginations enriched with sphingosine kinase 1 (SphK1), the enzyme that converts the bioactive sphingolipid metabolite sphingosine to sphingosine-1-phosphate, and suggested a role for sphingosine phosphorylation in endocytic membrane trafficking. Here we show that sphingosine and sphingosine-like SphK1 inhibitors induced rapid and massive formation of vesicles in diverse cell types that accumulated as dilated late endosomes. However, much smaller vesicles were formed in SphK1-deficient cells. Moreover, inhibition or deletion of SphK1 prolonged the lifetime of sphingosine-induced vesicles. Perturbing the plasma membrane cholesterol/sphingomyelin balance abrogated vesicle formation. This massive endosomal influx was accompanied by dramatic recruitment of the intracellular SphK1 and Bin/Amphiphysin/Rvs domain-containing proteins endophilin-A2 and endophilin-B1 to enlarged endosomes and formation of highly dynamic filamentous networks containing endophilin-B1 and SphK1. Together, our results highlight the importance of sphingosine and its conversion to sphingosine-1-phosphate by SphK1 in endocytic membrane trafficking. PMID:28049734
Characteristics of Food Industry Web Sites and "Advergames" Targeting Children
ERIC Educational Resources Information Center
Culp, Jennifer; Bell, Robert A.; Cassady, Diana
2010-01-01
Objective: To assess the content of food industry Web sites targeting children by describing strategies used to prolong their visits and foster brand loyalty; and to document health-promoting messages on these Web sites. Design: A content analysis was conducted of Web sites advertised on 2 children's networks, Cartoon Network and Nickelodeon. A…
NASA Astrophysics Data System (ADS)
Ojha, Prasanta K.; Rath, Sangram K.; Sharma, Sandeep K.; Sudarshan, Kathi; Pujari, Pradeep K.; Chongdar, Tapas K.; Gokhale, Nitin M.
2015-01-01
The role of La+3/Sr+2 ratios, which is varied from 0.08 to 5.09, on density, molar volume, packing fraction, free volume, thermal and electrical properties in strontium lanthanum aluminoborosilicate based glass sealants intended for solid oxide fuel cell (SOFC) applications is evaluated. The studies reveal expansion of the glass network evident from increasing molar volume and decreasing packing fraction of glasses with progressive La+3 substitutions. The molecular origin of these macroscopic structural features can be accounted for by the free volume parameters measured from positron annihilation lifetime spectroscopy (PALS). The La+3 induced expanded glass networks show increased number of subnanoscopic voids with larger sizes, as revealed from the ortho-positronium (o-Ps) lifetime and its intensity. A remarkably direct correspondence between the molar volume and fractional free volume trend is established with progressive La2O3 substitution in the glasses. The effect of these structural changes on the glass transition temperature, softening temperature, coefficient of thermal expansion, thermal stability as well as electrical conductivity has been studied.
Qiao, Zhensong; Yang, Xiaopeng; Yang, Shuhua; Zhang, Liqiang; Cao, Bingqiang
2016-06-28
3D MnO2 nanorod/welded Ag-nanowire-network supercapacitor electrodes were prepared. Welding treatment of the Ag nanowire-network leads to low resistance and long lifetime. Galvanostatic charge/discharge (GCD) induces an ever-lasting morphology changing from flower-like to honeycomb-like for MnO2, which manifests as increasing specific capacitance to 663.4 F g(-1) after 7000 GCD cycles.
Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts
NASA Astrophysics Data System (ADS)
Milina, Maria; Mitchell, Sharon; Crivelli, Paolo; Cooke, David; Pérez-Ramírez, Javier
2014-05-01
Deactivation due to coking limits the lifetime of zeolite catalysts in the production of chemicals and fuels. Superior performance can be achieved through hierarchically structuring the zeolite porosity, yet no relation has been established between the mesopore architecture and the catalyst lifetime. Here we introduce a top-down demetallation strategy to locate mesopores in different regions of MFI-type crystals with identical bulk porous and acidic properties. In contrast, well-established bottom-up strategies as carbon templating and seed silanization fail to yield materials with matching characteristics. Advanced characterization tools capable of accurately discriminating the mesopore size, distribution and connectivity are applied to corroborate the concept of mesopore quality. Positron annihilation lifetime spectroscopy proves powerful to quantify the global connectivity of the intracrystalline pore network, which, as demonstrated in the conversions of methanol or of propanal to hydrocarbons, is closely linked to the lifetime of zeolite catalysts. The findings emphasize the need to aptly tailor hierarchical materials for maximal catalytic advantage.
Li, Xiaofang; Xu, Lizhong; Wang, Huibin; Song, Jie; Yang, Simon X.
2010-01-01
The traditional Low Energy Adaptive Cluster Hierarchy (LEACH) routing protocol is a clustering-based protocol. The uneven selection of cluster heads results in premature death of cluster heads and premature blind nodes inside the clusters, thus reducing the overall lifetime of the network. With a full consideration of information on energy and distance distribution of neighboring nodes inside the clusters, this paper proposes a new routing algorithm based on differential evolution (DE) to improve the LEACH routing protocol. To meet the requirements of monitoring applications in outdoor environments such as the meteorological, hydrological and wetland ecological environments, the proposed algorithm uses the simple and fast search features of DE to optimize the multi-objective selection of cluster heads and prevent blind nodes for improved energy efficiency and system stability. Simulation results show that the proposed new LEACH routing algorithm has better performance, effectively extends the working lifetime of the system, and improves the quality of the wireless sensor networks. PMID:22219670
NASA Astrophysics Data System (ADS)
Zhang, Quan-Ping; Liu, Jun-Hua; Liu, Hai-Dong; Jia, Fei; Zhou, Yuan-Lin; Zheng, Jian
2017-10-01
Adding ceramic or conductive fillers into polymers for increasing permittivity is a direct and effective approach to enhance the actuation strain of dielectric elastomer actuators (DEAs). Unfortunately, the major dielectric loss caused by weak interfaces potentially harms the electro-mechanical stability and lifetime of DEAs. Here, we construct a desired macromolecular network with a long chain length and low cross-link density to reduce the elastic modulus of silicone elastomers. Selecting a high molecular weight of polymethylvinylsiloxane and a low dose of the cross-linker leads the soft but tough networks with rich entanglements, poor cross-links, and a low amount of defects. Then, a ductile material with low elastic modulus but high elongation at break is obtained. It accounts for much more excellent actuation strain of Hl in comparison to that of the other silicone elastomers. Importantly, without other fillers, the ultralow dielectric loss, conductivity, and firm networks possibly promote the electro-mechanical stability and lifetime for the DEA application.
[Treatment of the incurably ill].
Barolin, G S
2000-01-01
Modern medicine has a) drastically prolonged the average lifetime, and b) dying from a relatively brief transition phase, has in many cases become a long-lasting process. This demands an increased orientation of medicine, away from the pure goal of "healing" to the task of a long-lasting accompaniment. This means geriatric rehabilitation and ultimately accompaniment for the dying. New ethical and juridical problems arise thereof for the doctor which will be discussed here. However, also society is challenged. We need systematic installment of rehabilitation activities into nursing homes, and a rehabilitation insurance.
Effect of electric field on RbCl quantum pseudodot qubit
NASA Astrophysics Data System (ADS)
Liang, Zhi-Hui; Xiao, Jing-Lin
2018-04-01
By employing the variational method of Pekar type, we study the effects of electric field on RbCl quantum pseudodot (QPD) qubits. Our results confirm that (1) the electron oscillates in the RbCl QPD with a certain period; (2) the electron's probability density is a raising function of electric field; (3) the oscillating frequency is an increasing one of the electric field and the two-dimensional electron gas chemical potential. Two ways are found for prolonging the lifetime of the qubit and suppressing the decoherence in the quantum information field.
Gain degradation and efficiencies of spiral electron multipliers
NASA Technical Reports Server (NTRS)
Judge, R. J. R.; Palmer, D. A.
1973-01-01
The characteristics of spiral electron multipliers as functions of accumulated counts were investigated. The mean gain of the multipliers showed a steady decline from about 100 million when new, to about one million after 100 billion events when biased in a saturation mode. For prolonged use in a space environment, improved life expectancy might be obtained with a varying bias voltage adjusted to maintain the gain comfortably above a given discrimination level. Pulse-height distributions at various stages of the lifetime and variations of efficiency with energy of detected electrons are presented.
Microstructural Characterization of Polymers with Positrons
NASA Technical Reports Server (NTRS)
Singh, Jag J.
1997-01-01
Positrons provide a versatile probe for monitoring microstructural features of molecular solids. In this paper, we report on positron lifetime measurements in two different types of polymers. The first group comprises polyacrylates processed on earth and in space. The second group includes fully-compatible and totally-incompatible Semi-Interpenetrating polymer networks of thermosetting and thermoplastic polyimides. On the basis of lifetime measurements, it is concluded that free volumes are a direct reflection of physical/electromagnetic properties of the host polymers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Caitlyn Christian
An evaporation barrier is required to enhance the lifetime of electrophoretic deposition (EPD) displays. As EPD functions on the basis of reversible deposition and resuspension of colloids suspended in a solvent, evaporation of the solvent ultimately leads to device failure. Incorporation of a thiol-polybutadiene elastomer into EPD displays enabled display lifetime surpassing six months in counting and catalyzed rigid display transition into a flexible package. Final flexible display transition to mass production compels an electronic-ink approach to encapsulate display suspension within an elastomer shell. Final thiol-polybutadiene photosensitive resin network microstructure was idealized to be dense, homogeneous, and expose an elasticmore » response to deformation. Research at hand details an approach to understanding microstructural change within display elastomers. Polybutadiene-based resin properties are modified via polymer chain structure, with and without added aromatic urethane methacrylate difunctionality, and in measuring network response to variation in thiol and initiator concentration. Dynamic mechanical analysis results signify that cross-linked segments within a difunctionalized polybutadiene network were on average eight times more elastically active than that of linked segments within a non-functionalized polybutadiene network. Difunctionalized polybutadiene samples also showed a 2.5 times greater maximum elastic modulus than non-functionalized samples. Hybrid polymer composed of both polybutadiene chains encompassed TE-2000 stiffness and B-1000 elasticity for use in encapsulating display suspension. Later experiments measured kinetic and rheological response due to alteration in dithiol cross-linker chain length via real time Fourier transform infrared spectroscopy and real-time dynamic rheology. Distinct differences were discovered between dithiol resin systems, as maximum thiol conversion achieved in short and long chain length dithiols was 86% and 11%, respectively. Oscillatory real-time rheological experiments confirmed a more uniform network to better dissipate applied shear in short chain length dithiol systems, as long chain length dithiols relayed a steep internal stress build-up due to less cross-links and chain entanglements. Thorough understanding of network formation aids the production of a stronger and impermeable elastomeric barrier for preservation of EPD displays.« less
NASA Astrophysics Data System (ADS)
Kouhlane, Y.; Bouhafs, D.; Khelifati, N.; Belhousse, S.; Menari, H.; Guenda, A.; Khelfane, A.
2016-11-01
The electrical properties of Czochralski silicon (Cz-Si) p-type boron-doped bare wafers have been investigated after rapid thermal processing (RTP) with different peak temperatures. Treated wafers were exposed to light for various illumination times, and the effective carrier lifetime ( τ eff) measured using the quasi-steady-state photoconductance (QSSPC) technique. τ eff values dropped after prolonged illumination exposure due to light-induced degradation (LID) related to electrical activation of boron-oxygen (BO) complexes, except in the sample treated with peak temperature of 785°C, for which the τ eff degradation was less pronounced. Also, a reduction was observed when using the 830°C peak temperature, an effect that was enhanced by alteration of the wafer morphology (roughness). Furthermore, the electrical resistivity presented good stability under light exposure as a function of temperature compared with reference wafers. Additionally, the optical absorption edge shifted to higher wavelength, leading to increased free-carrier absorption by treated wafers. Moreover, a theoretical model is used to understand the lifetime degradation and regeneration behavior as a function of illumination time. We conclude that RTP plays an important role in carrier lifetime regeneration for Cz-Si wafers via modification of optoelectronic and structural properties. The balance between an optimized RTP cycle and the rest of the solar cell elaboration process can overcome the negative effect of LID and contribute to achievement of higher solar cell efficiency and module performance.
Ritter, Philipp S; Marx, Carolin; Lewtschenko, Natalia; Pfeiffer, Steffi; Leopold, Karolina; Bauer, Michael; Pfennig, Andrea
2012-10-01
Sleep is highly altered during affective episodes in patients with bipolar disorder. There is accumulating evidence that sleep is also altered in euthymic states. A deficit in sleep regulation may be a vulnerability factor with aetiological relevance in the development of the disease. This study aims to explore the objective, subjective and lifetime sleep characteristics of patients with manifest bipolar disorder and persons with an elevated risk of developing the disease. Twenty-two patients with bipolar I and II disorder, nine persons with an elevated risk of developing the disorder and 28 healthy controls were evaluated with a structured interview to characterize subjective and lifetime sleeping habits. In addition, participants wore an actimeter for six nights. Patients with bipolar disorder had longer sleep latency and duration compared with healthy controls as determined by actigraphy. The subjective and lifetime sleep characteristics of bipolar patients differed significantly from healthy controls. The results of participants with an elevated risk of developing the disorder had subjective and lifetime characteristics that were largely analogous to those of patients with manifest bipolar disorder. In particular, both groups described recurring insomnia and hypersomnia, sensitivity to shifts in circadian rhythm, difficulties awakening and prolonged sleep latency. This study provides further evidence that sleep and circadian timing are profoundly altered in patients with bipolar disorder. It may also tentatively suggest that sleep may be altered prior to the first manic episode in subjects at high risk.
Lappalainen, Kirsi; Manninen, Pirjo; Räsänen, Kimmo
2017-02-01
The purpose of this study was to explore the associations of prolonged unemployment, health, and work ability among young workers using data from the 2008-2010 Occupational Health Counselling project in Kuopio, Eastern Finland. The total sample for this study was 190 young unemployed adults. The questionnaire included the Work Ability Index (WAI), the Beck Depression Inventory, the Alcohol Use Disorders Identification Test, and the Occupational Health Counselling Survey. Multivariate analyses revealed that men had a higher prevalence of prolonged unemployment than women. Using drugs for purposes other than treatment was associated independently with an increased prevalence of prolonged unemployment. Low WAI scores were associated with a higher prevalence of prolonged unemployment. This study showed that attention should be paid to male workers, those who have poor or moderate work ability and workers who use drugs. Young unemployed workers should be recognized at an early stage. A comprehensive, flexible network of community resources is essential to support young unemployed adults.
Engineering tough, highly compressible, biodegradable hydrogels by tuning the network architecture.
Gu, Dunyin; Tan, Shereen; Xu, Chenglong; O'Connor, Andrea J; Qiao, Greg G
2017-06-20
By precisely tuning the network architecture, tough, highly compressible hydrogels were engineered. The hydrogels were made by interconnecting high-functionality hydrophobic domains through linear tri-block chains, consisting of soft hydrophilic middle blocks, flanked with flexible hydrophobic blocks. In showing their applicability, the efficient encapsulation and prolonged release of hydrophobic drugs were achieved.
NASA Astrophysics Data System (ADS)
Cornaton, F.; Park, Y.; Normani, S.; Sudicky, E.; Sykes, J.
2005-12-01
Long-term solutions for the disposal of toxic wastes usually involve isolation of the wastes in a deep subsurface geologic environment. In the case of spent nuclear fuel, the safety of the host repository depends on two main barriers: the engineered barrier and the natural geological barrier. If radionuclide leakage occurs from the engineered barrier, the geological medium represents the ultimate barrier that is relied upon to ensure safety. Consequently, an evaluation of radionuclide travel times from the repository to the biosphere is critically important in a performance assessment analysis. In this study, we develop a travel time framework based on the concept of groundwater lifetime expectancy as a safety indicator. Lifetime expectancy characterizes the time radionuclides will spend in the subsurface after their release from the repository and prior to discharging into the biosphere. The probability density function of lifetime expectancy is computed throughout the host rock by solving the backward-in-time solute transport equation subject to a properly posed set of boundary conditions. It can then be used to define optimal repository locations. In a second step, the risk associated with selected sites can be evaluated by simulating an appropriate contaminant release history. The proposed methodology is applied in the context of a typical Canadian Shield environment. Based on a statistically-generated three-dimension network of fracture zones embedded in the granitic host rock, the sensitivity and the uncertainty of lifetime expectancy to the hydraulic and dispersive properties of the fracture network, including the impact of conditioning via their surface expressions, is computed in order to demonstrate the utility of the methodology.
Rice, Eric; Milburn, Norweeta G; Monro, William
2011-03-01
Peer-based prevention programs for homeless youth are complicated by the potential for reinforcing high-risk behaviors among participants. The goal of this study is to understand how homeless youth could be linked to positive peers in prevention programming by understanding where in social and physical space positive peers for homeless youth are located, how these ties are associated with substance use, and the role of social networking technologies (e.g., internet and cell phones) in this process. Personal social network data were collected from 136 homeless adolescents in Los Angeles, CA. Respondents reported on composition of their social networks with respect to: home-based peers and parents (accessed via social networking technology; e.g., the internet, cell phone, texting), homeless peers and agency staff (accessed face-to-face) and whether or not network members were substance-using or non-substance-using. Associations between respondent's lifetime cocaine, heroin, and methamphetamine use and recent (previous 30 days) alcohol and marijuana use were assessed by the number of non-substance-using versus substance-using ties in multivariate linear regression models. 43% of adolescents reported a non-substance-using home-based tie. More of these ties were associated with less recent alcohol use. 62% of adolescents reported a substance-using homeless tie. More of these ties were associated with more recent marijuana use as well as more lifetime heroin and methamphetamine use. For homeless youth, who are physically disconnected from positive peers, social networking technologies can be used to facilitate the sorts of positive social ties that effective peer-based prevention programs require.
FTUC: A Flooding Tree Uneven Clustering Protocol for a Wireless Sensor Network.
He, Wei; Pillement, Sebastien; Xu, Du
2017-11-23
Clustering is an efficient approach in a wireless sensor network (WSN) to reduce the energy consumption of nodes and to extend the lifetime of the network. Unfortunately, this approach requires that all cluster heads (CHs) transmit their data to the base station (BS), which gives rise to the long distance communications problem, and in multi-hop routing, the CHs near the BS have to forward data from other nodes that lead those CHs to die prematurely, creating the hot zones problem. Unequal clustering has been proposed to solve these problems. Most of the current algorithms elect CH only by considering their competition radius, leading to unevenly distributed cluster heads. Furthermore, global distances values are needed when calculating the competition radius, which is a tedious task in large networks. To face these problems, we propose a flooding tree uneven clustering protocol (FTUC) suited for large networks. Based on the construction of a tree type sub-network to calculate the minimum and maximum distances values of the network, we then apply the unequal cluster theory. We also introduce referenced position circles to evenly elect cluster heads. Therefore, cluster heads are elected depending on the node's residual energy and their distance to a referenced circle. FTUC builds the best inter-cluster communications route by evaluating a cluster head cost function to find the best next hop to the BS. The simulation results show that the FTUC algorithm decreases the energy consumption of the nodes and balances the global energy consumption effectively, thus extending the lifetime of the network.
Health conditions in methamphetamine-dependent adults 3 years after treatment.
Mooney, Larissa J; Glasner-Edwards, Suzette; Marinelli-Casey, Patricia; Hillhouse, Maureen; Ang, Alfonso; Hunter, Jeremy; Haning, William; Colescott, Paula; Ling, Walter; Rawson, Richard
2009-09-01
: Medical conditions in methamphetamine (MA) users have not been well characterized. Using both self-report and physical examination data, the aims of this study were to (1) describe the frequency of medical conditions in a sample of MA users 3 years posttreatment; (2) evaluate the association between medical conditions and MA use frequency; and (3) examine the relationship of route of administration with medical outcomes. : MA-dependent adults (N = 301) who participated in the Methamphetamine Treatment Project were interviewed and examined 3 years after treatment. Medical, demographic, and substance use characteristics were assessed using the Addiction Severity Index and Life Experiences Timeline. Current and lifetime medical conditions, electrocardiogram characteristics, and physical examination abnormalities were assessed. : Among the most frequently reported lifetime conditions were wounds and burns (40.5%, N = 122) and severe dental problems (33%, N = 99), and a significant proportion of the sample evidenced prolonged corrected QT interval (19.6%, N = 43). Although health conditions were not associated with MA use frequency during follow-up, intravenous MA use was significantly associated with missing teeth (odds ratio = 2.4; 95% confidence interval, 1.2-4.7) and hepatitis C antibodies (odds ratio = 13.1; confidence interval, 5.6-30.1). : In this sample of MA users, dental problems and corrected QT prolongation were observed at elevated rates. Although posttreatment MA use frequency was not associated with a majority of medical outcomes, intravenous MA use exacerbated risk for dental pathology and hepatitis C. Longer term follow-up research is needed to elucidate health trajectories of MA users.
Iron Chelation Nanoparticles with Delayed Saturation as an Effective Therapy for Parkinson Disease.
Wang, Nan; Jin, Xin; Guo, Dongbo; Tong, Gangsheng; Zhu, Xinyuan
2017-02-13
Iron accumulation in substantia nigra pars compacta (SNpc) has been proved to be a prominent pathophysiological feature of Parkinson's diseases (PD), which can induce the death of dopaminergic (DA) neurons, up-regulation of reactive oxygen species (ROS), and further loss of motor control. In recent years, iron chelation therapy has been demonstrated to be an effective treatment for PD, which has shown significant improvements in clinical trials. However, the current iron chelators are suboptimal due to their short circulation time, side effects, and lack of proper protection from chelation with ions in blood circulation. In this work, we designed and constructed iron chelation therapeutic nanoparticles protected by a zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) to delay the saturation of iron chelators in blood circulation and prolong the in vivo lifetime, with HIV-1 trans-activating transcriptor (TAT) served as a shuttle to enhance the blood-brain barrier (BBB) permeability. We explored and investigated whether the Parkinsonian neurodegeneration and the corresponding symptoms in behaviors and physiologies could be prevented or reversed both in vitro and in vivo. The results demonstrated that iron chelator loaded therapeutic nanoparticles could reverse functional deficits in Parkinsonian mice not only physiologically but also behaviorally. On the contrary, both untreated PD mice and non-TAT anchored nanoparticle treated PD mice showed similar loss in DA neurons and difficulties in behaviors. Therefore, with protection of zwitterionic polymer and prolonged in vivo lifetime, iron chelator loaded nanoparticles with delayed saturation provide a PD phenotype reversion therapy and significantly improve the living quality of the Parkinsonian mice.
Modelling the global tropospheric molecular hydrogen cycle
NASA Astrophysics Data System (ADS)
Pieterse, G.
2013-01-01
Would urban air quality and climate improve if we replaced the fossil fuels by molecular hydrogen (H2) as an energy carrier? A quantitative answer to this question requires a thorough understanding of the current role of H2 in the Earth’s atmosphere. On its own, H2 does not impact climate, as for example carbon dioxide or methane. However, increasing levels of H2 in the stratosphere can lead to increased ozone loss due to the formation of polar stratospheric clouds. Additionally, the atmospheric lifetime of methane could increase because both H2 and methane are removed by photochemical oxidation with the hydroxyl radical. Consequently, the lifetime of the strong greenhouse gas methane could be prolonged. During the last two decades, more and more experimental data have become available to put tighter constraints on the different sources and sinks that contribute to the global H2 cycle. However, the main removal process, dry deposition due to microbial/enzymatic decomposition of H2 in the soils, still has a rather large uncertainty between 40-99 Tg/yr globally. This is a highly uncertain number compared to the estimated overall amount of 136-166 Tg present in the troposphere. The photochemical removal of H2 from the atmosphere is estimated at 14-24 Tg/yr. Together with the estimates for the burden and dry deposition, this implies a tropospheric lifetime of H2 between 1.1-3.1 years. The atmospheric H2 is replenished by emissions from the Earth’s surfaces due to fossil fuel burning (5-25 Tg/yr), biomass burning (7-21 Tg/yr) and nitrogen fixation processes in the oceans (1-11 Tg/yr) and soils (0-11 Tg/yr). H2 is photochemically produced from methane (15-21 Tg/yr) and non-methane hydrocarbons (10-25 Tg/yr) in the atmosphere. These uncertainties suggest that at present, the global hydrogen cycle is poorly understood. However, this statement would do little justice to the scientific quality of most studies so far. The main purpose of the research in this thesis is to show that the global tropospheric budget of H2 can be constrained quite well with available measurements. The study starts with the derivation of a full hydrogen isotope chemistry scheme to use the measured deuterium content in atmospheric H2 as an additional constraint for the global budget. This new chemistry scheme is subsequently evaluated and the most important parameters in the photochemistry are identified. A condensed version of the new chemistry scheme is implemented in the global TM5 model. The new model results are verified using available measurements of H2 mixing ratios and isotopic compositions from two global flask sampling networks and the EuroHydros network. Finally, a new tropospheric budget is derived for H2. The tropospheric burden is estimated at 165±8 Tg and the removal of H2 by deposition and photochemical oxidation are estimated at 53±4 and 23±2 Tg/yr, respectively. The main (photochemical) source is estimated at 37±4 Tg/yr. From these numbers, a tropospheric lifetime of 2.2±0.2 yr for H2 is derived. These new ranges of uncertainty allow for a much more accurate evaluation of the impact of future increases in H2 emissions on air quality and climate.
Li, Zhe; Ho Chiu, Kar; Shahid Ashraf, Raja; Fearn, Sarah; Dattani, Rajeev; Cheng Wong, Him; Tan, Ching-Hong; Wu, Jiaying; Cabral, João T; Durrant, James R
2015-10-15
Morphological stability is a key requirement for outdoor operation of organic solar cells. We demonstrate that morphological stability and lifetime of polymer/fullerene based solar cells under thermal stress depend strongly on the substrate interface on which the active layer is deposited. In particular, we find that the stability of benchmark PCDTBT/PCBM solar cells under modest thermal stress is substantially increased in inverted solar cells employing a ZnO substrate compared to conventional devices employing a PSS substrate. This improved stability is observed to correlate with PCBM nucleation at the 50 nm scale, which is shown to be strongly influenced by different substrate interfaces. Employing this approach, we demonstrate remarkable thermal stability for inverted PCDTBT:PC70BM devices on ZnO substrates, with negligible (<2%) loss of power conversion efficiency over 160 h under 85 °C thermal stress and minimal thermally induced "burn-in" effect. We thus conclude that inverted organic solar cells, in addition to showing improved environmental stability against ambient humidity exposure as widely reported previously, can also demonstrate enhanced morphological stability. As such we show that the choice of suitable substrate interfaces may be a key factor in achieving prolonged lifetimes for organic solar cells under thermal stress conditions.
Watching conformational- and photo-dynamics of single fluorescent proteins in solution.
Goldsmith, Randall H; Moerner, W E
2010-03-01
Observing the dynamics of single biomolecules over prolonged time periods is difficult to achieve without significantly altering the molecule through immobilization. It can, however, be accomplished using the Anti-Brownian ELectrokinetic (ABEL) Trap, which allows extended investigation of solution-phase biomolecules - without immobilization -through real-time electrokinetic feedback. Here we apply the ABEL trap to study an important photosynthetic antenna protein, Allophycocyanin (APC). The technique allows the observation of single molecules of solution-phase APC for more than one second. We observe a complex relationship between fluorescence intensity and lifetime that cannot be explained by simple static kinetic models. Light-induced conformational changes are shown to occur and evidence is obtained for fluctuations in the spontaneous emission lifetime, which is typically assumed to be constant. Our methods provide a new window into the dynamics of fluorescent proteins and the observations are relevant for the interpretation of in vivo single-molecule imaging experiments, bacterial photosynthetic regulation, and biomaterials for solar energy harvesting.
Watching conformational- and photo-dynamics of single fluorescent proteins in solution
Goldsmith, Randall H.
2010-01-01
Observing the dynamics of single biomolecules over prolonged time periods is difficult to achieve without significantly altering the molecule through immobilization. It can, however, be accomplished using the Anti-Brownian ELectrokinetic (ABEL) Trap, which allows extended investigation of solution-phase biomolecules - without immobilization -through real-time electrokinetic feedback. Here we apply the ABEL trap to study an important photosynthetic antenna protein, Allophycocyanin (APC). The technique allows the observation of single molecules of solution-phase APC for more than one second. We observe a complex relationship between fluorescence intensity and lifetime that cannot be explained by simple static kinetic models. Light-induced conformational changes are shown to occur and evidence is obtained for fluctuations in the spontaneous emission lifetime, which is typically assumed to be constant. Our methods provide a new window into the dynamics of fluorescent proteins and the observations are relevant for the interpretation of in vivo single-molecule imaging experiments, bacterial photosynthetic regulation, and biomaterials for solar energy harvesting. PMID:20625479
Watching conformational- and photodynamics of single fluorescent proteins in solution
NASA Astrophysics Data System (ADS)
Goldsmith, Randall H.; Moerner, W. E.
2010-03-01
Observing the dynamics of single biomolecules over prolonged time periods is difficult to achieve without significantly altering the molecule through immobilization. It can, however, be accomplished using the anti-Brownian electrokinetic trap, which allows extended investigation of solution-phase biomolecules-without immobilization-through real-time electrokinetic feedback. Here we apply the trap to study an important photosynthetic antenna protein, allophycocyanin. The technique allows the observation of single molecules of solution-phase allophycocyanin for more than one second. We observe a complex relationship between fluorescence intensity and lifetime that cannot be explained by simple static kinetic models. Light-induced conformational changes are shown to occur and evidence is obtained for fluctuations in the spontaneous emission lifetime, which is typically assumed to be constant. Our methods provide a new window into the dynamics of fluorescent proteins and the observations are relevant for the interpretation of in vivo single-molecule imaging experiments, bacterial photosynthetic regulation and biomaterials for solar energy harvesting.
Control of amplitude chimeras by time delay in oscillator networks
NASA Astrophysics Data System (ADS)
Gjurchinovski, Aleksandar; Schöll, Eckehard; Zakharova, Anna
2017-04-01
We investigate the influence of time-delayed coupling in a ring network of nonlocally coupled Stuart-Landau oscillators upon chimera states, i.e., space-time patterns with coexisting partially coherent and partially incoherent domains. We focus on amplitude chimeras, which exhibit incoherent behavior with respect to the amplitude rather than the phase and are transient patterns, and we show that their lifetime can be significantly enhanced by coupling delay. To characterize their transition to phase-lag synchronization (coherent traveling waves) and other coherent structures, we generalize the Kuramoto order parameter. Contrasting the results for instantaneous coupling with those for constant coupling delay, for time-varying delay, and for distributed-delay coupling, we demonstrate that the lifetime of amplitude chimera states and related partially incoherent states can be controlled, i.e., deliberately reduced or increased, depending upon the type of coupling delay.
Role of Endoplasmic Reticulum Stress in Metabolic Disease and Other Disorders
Ozcan, Lale; Tabas, Ira
2012-01-01
Perturbations in the normal functions of the endoplasmic reticulum (ER) trigger a signaling network that coordinates adaptive and apoptotic responses. There is accumulating evidence implicating prolonged ER stress in the development and progression of many diseases, including neurodegeneration, atherosclerosis, type 2 diabetes, liver disease, and cancer. With the improved understanding of the underlying molecular mechanisms, therapeutic interventions that target the ER stress response would be potential strategies to treat various diseases driven by prolonged ER stress. PMID:22248326
Yang, Xiao-Bing; Wu, Wan-Yin; Long, Shun-Qin; Deng, Hong; Pan, Zong-Qi
2014-12-01
Some patients with non-small-cell lung cancer (NSCLC) respond well to the EGFR tyrosine kinase inhibitor gefitinib. Chinese herbal medicine (CHM) was effective in improving the quality of life and prolonging overall survival in patient with NSCLC. We aim to determine whether gefitinib plus CHM could prolong the progression-free survival (PFS) or median survival time (MST) in patients with NSCLC than gefitinib alone. We retrospectively analyzed 159 non-small-cell lung cancer patients with the method of retrospective case-control study, matching factors included gender, age categories (30-39,40-49,50-59,60-69,70-79), pathological stage (IIIB or IV), smoking status (never: <100 lifetime cigarettes, or ever: ≥100 lifetime cigarettes), pathology, and performance status. Among the 159 patients, 100 patients treated with gefitinib (250mg/day orally) plus CHM ("Fuzheng Kang'ai" decoction, a Chinese herbal medicine, 250ml/bid/day orally), 59 patients treated with gefitinib (250mg/day orally) only. PFS and MST were analyzed for the whole population. 58 pairs were matched successfully. 1 patient (treated with gefitinib) with the age of 27 years failed to be matched. Progression-free survival was significantly longer in patients treated with gefitinib plus CHM than with gefitinib: median PFS was 13.1 months (95% CI 6.50-19.70) with gefitinib plus CHM versus 11.43 months (95% CI 7.95-14.91) with gefitinib (log-rank P=0.013). Median overall survival was longer with gefitinib plus CHM than with gefitinib: median MST was 22.83 months (95% CI 17.51-28.16) with gefitinib plus CHM versus 18.7 months (95% CI 16.83-20.57) with gefitinib (log-rank P=0.049). The most common adverse event was rash, the incidence in the gefitinib plus CHM group was 41.38% while in the gefitinib group was 24.14% (P=0.048). This case-control analysis suggested that treatment with gefitinib plus CHM prolonged PFS and MST compared with gefitinib in patients with NSCLC, and it is worthy of further study. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Sequential associative memory with nonuniformity of the layer sizes.
Teramae, Jun-Nosuke; Fukai, Tomoki
2007-01-01
Sequence retrieval has a fundamental importance in information processing by the brain, and has extensively been studied in neural network models. Most of the previous sequential associative memory embedded sequences of memory patterns have nearly equal sizes. It was recently shown that local cortical networks display many diverse yet repeatable precise temporal sequences of neuronal activities, termed "neuronal avalanches." Interestingly, these avalanches displayed size and lifetime distributions that obey power laws. Inspired by these experimental findings, here we consider an associative memory model of binary neurons that stores sequences of memory patterns with highly variable sizes. Our analysis includes the case where the statistics of these size variations obey the above-mentioned power laws. We study the retrieval dynamics of such memory systems by analytically deriving the equations that govern the time evolution of macroscopic order parameters. We calculate the critical sequence length beyond which the network cannot retrieve memory sequences correctly. As an application of the analysis, we show how the present variability in sequential memory patterns degrades the power-law lifetime distribution of retrieved neural activities.
On the Minimization of Fluctuations in the Response Times of Autoregulatory Gene Networks
Murugan, Rajamanickam; Kreiman, Gabriel
2011-01-01
The temporal dynamics of the concentrations of several proteins are tightly regulated, particularly for critical nodes in biological networks such as transcription factors. An important mechanism to control transcription factor levels is through autoregulatory feedback loops where the protein can bind its own promoter. Here we use theoretical tools and computational simulations to further our understanding of transcription-factor autoregulatory loops. We show that the stochastic dynamics of feedback and mRNA synthesis can significantly influence the speed of response of autoregulatory genetic networks toward external stimuli. The fluctuations in the response-times associated with the accumulation of the transcription factor in the presence of negative or positive autoregulation can be minimized by confining the ratio of mRNA/protein lifetimes within 1:10. This predicted range of mRNA/protein lifetime agrees with ranges observed empirically in prokaryotes and eukaryotes. The theory can quantitatively and systematically account for the influence of regulatory element binding and unbinding dynamics on the transcription-factor concentration rise-times. The simulation results are robust against changes in several system parameters of the gene expression machinery. PMID:21943410
NASA Astrophysics Data System (ADS)
Ma, Yuhua; Wang, Jiajia; Xu, Shimei; Feng, Shun; Wang, Jide
2018-02-01
In this work, one facile and green method was developed to resolve the instinct defects of pure Ag2O and increase visible-light photocatalytic activity of Ag2O-based catalyst. In which, Ag2O was immobilized in sodium alginate-reduced graphene oxide (ALG-rGO) aerogel beads. The as-prepared aerogel beads showed a well-defined interconnected three-dimensional porous network and displayed the highest photocatalytic activity with a mass ratio of 40:1 (ALG:rGO). For the degradation of cationic Rhodamine B (RhB) and anionic dye Orange II (OII) dyes, rate constants were 1.95 × 10-2 min-1 and 4.13 × 10-2 min-1, which were 2.4 and 3.1 times higher than those of Ag2O/ALG aerogel beads, respectively. The further studies demonstrated that presence of rGO can effectively decrease the size of Ag2O, extend photoresponding range (UV to near-infrared light spectrum), speed-up separate photogenerated electrons and holes, retard charge recombination, and prolong electron lifetime and effective carrier diffusion length. The potential mechanism for RhB and OII degrading was expounded, and main active species in the degradation reactions of dyes were investigated by a series of trapping experiments. It offered a promising photocatalyst to purify the wastewater, and provided a sophisticated understanding of the pivotal role rGO acting in photocatalysis.
Shu, Tongxin; Xia, Min; Chen, Jiahong; Silva, Clarence de
2017-11-05
Power management is crucial in the monitoring of a remote environment, especially when long-term monitoring is needed. Renewable energy sources such as solar and wind may be harvested to sustain a monitoring system. However, without proper power management, equipment within the monitoring system may become nonfunctional and, as a consequence, the data or events captured during the monitoring process will become inaccurate as well. This paper develops and applies a novel adaptive sampling algorithm for power management in the automated monitoring of the quality of water in an extensive and remote aquatic environment. Based on the data collected on line using sensor nodes, a data-driven adaptive sampling algorithm (DDASA) is developed for improving the power efficiency while ensuring the accuracy of sampled data. The developed algorithm is evaluated using two distinct key parameters, which are dissolved oxygen (DO) and turbidity. It is found that by dynamically changing the sampling frequency, the battery lifetime can be effectively prolonged while maintaining a required level of sampling accuracy. According to the simulation results, compared to a fixed sampling rate, approximately 30.66% of the battery energy can be saved for three months of continuous water quality monitoring. Using the same dataset to compare with a traditional adaptive sampling algorithm (ASA), while achieving around the same Normalized Mean Error (NME), DDASA is superior in saving 5.31% more battery energy.
Shu, Tongxin; Xia, Min; Chen, Jiahong; de Silva, Clarence
2017-01-01
Power management is crucial in the monitoring of a remote environment, especially when long-term monitoring is needed. Renewable energy sources such as solar and wind may be harvested to sustain a monitoring system. However, without proper power management, equipment within the monitoring system may become nonfunctional and, as a consequence, the data or events captured during the monitoring process will become inaccurate as well. This paper develops and applies a novel adaptive sampling algorithm for power management in the automated monitoring of the quality of water in an extensive and remote aquatic environment. Based on the data collected on line using sensor nodes, a data-driven adaptive sampling algorithm (DDASA) is developed for improving the power efficiency while ensuring the accuracy of sampled data. The developed algorithm is evaluated using two distinct key parameters, which are dissolved oxygen (DO) and turbidity. It is found that by dynamically changing the sampling frequency, the battery lifetime can be effectively prolonged while maintaining a required level of sampling accuracy. According to the simulation results, compared to a fixed sampling rate, approximately 30.66% of the battery energy can be saved for three months of continuous water quality monitoring. Using the same dataset to compare with a traditional adaptive sampling algorithm (ASA), while achieving around the same Normalized Mean Error (NME), DDASA is superior in saving 5.31% more battery energy. PMID:29113087
Wireless sensor placement for structural monitoring using information-fusing firefly algorithm
NASA Astrophysics Data System (ADS)
Zhou, Guang-Dong; Yi, Ting-Hua; Xie, Mei-Xi; Li, Hong-Nan
2017-10-01
Wireless sensor networks (WSNs) are promising technology in structural health monitoring (SHM) applications for their low cost and high efficiency. The limited wireless sensors and restricted power resources in WSNs highlight the significance of optimal wireless sensor placement (OWSP) during designing SHM systems to enable the most useful information to be captured and to achieve the longest network lifetime. This paper presents a holistic approach, including an optimization criterion and a solution algorithm, for optimally deploying self-organizing multi-hop WSNs on large-scale structures. The combination of information effectiveness represented by the modal independence and the network performance specified by the network connectivity and network lifetime is first formulated to evaluate the performance of wireless sensor configurations. Then, an information-fusing firefly algorithm (IFFA) is developed to solve the OWSP problem. The step sizes drawn from a Lévy distribution are adopted to drive fireflies toward brighter individuals. Following the movement with Lévy flights, information about the contributions of wireless sensors to the objective function as carried by the fireflies is fused and applied to move inferior wireless sensors to better locations. The reliability of the proposed approach is verified via a numerical example on a long-span suspension bridge. The results demonstrate that the evaluation criterion provides a good performance metric of wireless sensor configurations, and the IFFA outperforms the simple discrete firefly algorithm.
Teets, Nicholas M; Kawarasaki, Yuta; Lee, Richard E; Denlinger, David L
2012-04-01
Larvae of the Antarctic midge, Belgica antarctica, routinely face periods of limited water availability in their natural environments on the Antarctic Peninsula. As a result, B. antarctica is one of the most dehydration-tolerant insects studied, surviving up to 70% loss of its body water. While previous studies have characterized the physiological effects of a single bout of dehydration, in nature larvae are likely to experience multiple bouts of dehydration throughout their lifetime. Thus, we examined the physiological consequences of repeated dehydration and compared results to larvae exposed to a single, prolonged period of dehydration. For the repeated dehydration experiment, larvae were exposed to 1-5 cycles of 24 h dehydration at 75% RH followed by 24 h rehydration. Each bout of dehydration resulted in 30-40% loss of body water, with a concomitant 2- to 3-fold increase in body fluid osmolality. While nearly 100% of larvae survived a single bout of dehydration, <65% of larvae survived five such cycles. Larvae subjected to multiple bouts of dehydration also experienced severe depletion of carbohydrate energy reserves; glycogen and trehalose content decreased with each successive cycle, with larvae losing 89% and 48% of their glycogen and trehalose, respectively, after five cycles of dehydration/rehydration. Larvae exposed to prolonged dehydration (99% RH for 10d) had 26% less water, 43% less glycogen, and 27% less lipid content than controls, but did not experience any mortality. Thus, both repeated and prolonged dehydration results in substantial energetic costs that are likely to negatively impact fitness. Copyright © 2011 Elsevier Ltd. All rights reserved.
Charge transport network dynamics in molecular aggregates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Nicholas E.; Chen, Lin X.; Ratner, Mark A.
2016-07-20
Due to the nonperiodic nature of charge transport in disordered systems, generating insight into static charge transport networks, as well as analyzing the network dynamics, can be challenging. Here, we apply time-dependent network analysis to scrutinize the charge transport networks of two representative molecular semiconductors: a rigid n-type molecule, perylenediimide, and a flexible p-type molecule, bBDT(TDPP)2. Simulations reveal the relevant timescale for local transfer integral decorrelation to be ~100 fs, which is shown to be faster than that of a crystalline morphology of the same molecule. Using a simple graph metric, global network changes are observed over timescales competitive withmore » charge carrier lifetimes. These insights demonstrate that static charge transport networks are qualitatively inadequate, whereas average networks often overestimate network connectivity. Finally, a simple methodology for tracking dynamic charge transport properties is proposed.« less
Proactive schema based link lifetime estimation and connectivity ratio.
Bachir, Bouamoud; Ali, Ouacha; Ahmed, Habbani; Mohamed, Elkoutbi
2014-01-01
The radio link between a pair of wireless nodes is affected by a set of random factors such as transmission range, node mobility, and environment conditions. The properties of such radio links are continually experienced when nodes status balances between being reachable and being unreachable; thereby on completion of each experience the statistical distribution of link lifetime is updated. This aspect is emphasized in mobile ad hoc network especially when it is deployed in some fields that require intelligent processing of data information such as aerospace domain.
Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level.
Bono, Jacopo; Clopath, Claudia
2017-09-26
Synaptic plasticity is thought to be the principal neuronal mechanism underlying learning. Models of plastic networks typically combine point neurons with spike-timing-dependent plasticity (STDP) as the learning rule. However, a point neuron does not capture the local non-linear processing of synaptic inputs allowed for by dendrites. Furthermore, experimental evidence suggests that STDP is not the only learning rule available to neurons. By implementing biophysically realistic neuron models, we study how dendrites enable multiple synaptic plasticity mechanisms to coexist in a single cell. In these models, we compare the conditions for STDP and for synaptic strengthening by local dendritic spikes. We also explore how the connectivity between two cells is affected by these plasticity rules and by different synaptic distributions. Finally, we show that how memory retention during associative learning can be prolonged in networks of neurons by including dendrites.Synaptic plasticity is the neuronal mechanism underlying learning. Here the authors construct biophysical models of pyramidal neurons that reproduce observed plasticity gradients along the dendrite and show that dendritic spike dependent LTP which is predominant in distal sections can prolong memory retention.
The Current State of Silicone-Based Dielectric Elastomer Transducers.
Madsen, Frederikke B; Daugaard, Anders E; Hvilsted, Søren; Skov, Anne L
2016-03-01
Silicone elastomers are promising materials for dielectric elastomer transducers (DETs) due to their superior properties such as high efficiency, reliability and fast response times. DETs consist of thin elastomer films sandwiched between compliant electrodes, and they constitute an interesting class of transducer due to their inherent lightweight and potentially large strains. For the field to progress towards industrial implementation, a leap in material development is required, specifically targeting longer lifetime and higher energy densities to provide more efficient transduction at lower driving voltages. In this review, the current state of silicone elastomers for DETs is summarised and critically discussed, including commercial elastomers, composites, polymer blends, grafted elastomers and complex network structures. For future developments in the field it is essential that all aspects of the elastomer are taken into account, namely dielectric losses, lifetime and the very often ignored polymer network integrity and stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo
2011-01-01
Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a Lighting Automatic Control System (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane’s surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design. PMID:22164114
Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo
2011-01-01
Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a lighting automatic control system (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane's surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozkanlar, Abdullah, E-mail: abdullah.ozkanlar@wsu.edu; Zhou, Tiecheng; Clark, Aurora E., E-mail: auclark@wsu.edu
2014-12-07
The definition of a hydrogen bond (H-bond) is intimately related to the topological and dynamic properties of the hydrogen bond network within liquid water. The development of a universal H-bond definition for water is an active area of research as it would remove many ambiguities in the network properties that derive from the fixed definition employed to assign whether a water dimer is hydrogen bonded. This work investigates the impact that an electronic-structure based definition, an energetic, and a geometric definition of the H-bond has upon both topological and dynamic network behavior of simulated water. In each definition, the usemore » of a cutoff (either geometric or energetic) to assign the presence of a H-bond leads to the formation of transiently bonded or broken dimers, which have been quantified within the simulation data. The relative concentration of transient species, and their duration, results in two of the three definitions sharing similarities in either topological or dynamic features (H-bond distribution, H-bond lifetime, etc.), however no two definitions exhibit similar behavior for both classes of network properties. In fact, two networks with similar local network topology (as indicated by similar average H-bonds) can have dramatically different global network topology (as indicated by the defect state distributions) and altered H-bond lifetimes. A dynamics based correction scheme is then used to remove artificially transient H-bonds and to repair artificially broken bonds within the network such that the corrected network exhibits the same structural and dynamic properties for two H-bond definitions (the properties of the third definition being significantly improved). The algorithm described represents a significant step forward in the development of a unified hydrogen bond network whose properties are independent of the original hydrogen bond definition that is employed.« less
Quality of Service Metrics in Wireless Sensor Networks: A Survey
NASA Astrophysics Data System (ADS)
Snigdh, Itu; Gupta, Nisha
2016-03-01
Wireless ad hoc network is characterized by autonomous nodes communicating with each other by forming a multi hop radio network and maintaining connectivity in a decentralized manner. This paper presents a systematic approach to the interdependencies and the analogy of the various factors that affect and constrain the wireless sensor network. This article elaborates the quality of service parameters in terms of methods of deployment, coverage and connectivity which affect the lifetime of the network that have been addressed, till date by the different literatures. The analogy of the indispensable rudiments was discussed that are important factors to determine the varied quality of service achieved, yet have not been duly focused upon.
A Routing Protocol for Multisink Wireless Sensor Networks in Underground Coalmine Tunnels
Xia, Xu; Chen, Zhigang; Liu, Hui; Wang, Huihui; Zeng, Feng
2016-01-01
Traditional underground coalmine monitoring systems are mainly based on the use of wired transmission. However, when cables are damaged during an accident, it is difficult to obtain relevant data on environmental parameters and the emergency situation underground. To address this problem, the use of wireless sensor networks (WSNs) has been proposed. However, the shape of coalmine tunnels is not conducive to the deployment of WSNs as they are long and narrow. Therefore, issues with the network arise, such as extremely large energy consumption, very weak connectivity, long time delays, and a short lifetime. To solve these problems, in this study, a new routing protocol algorithm for multisink WSNs based on transmission power control is proposed. First, a transmission power control algorithm is used to negotiate the optimal communication radius and transmission power of each sink. Second, the non-uniform clustering idea is adopted to optimize the cluster head selection. Simulation results are subsequently compared to the Centroid of the Nodes in a Partition (CNP) strategy and show that the new algorithm delivers a good performance: power efficiency is increased by approximately 70%, connectivity is increased by approximately 15%, the cluster interference is diminished by approximately 50%, the network lifetime is increased by approximately 6%, and the delay is reduced with an increase in the number of sinks. PMID:27916917
A Routing Protocol for Multisink Wireless Sensor Networks in Underground Coalmine Tunnels.
Xia, Xu; Chen, Zhigang; Liu, Hui; Wang, Huihui; Zeng, Feng
2016-11-30
Traditional underground coalmine monitoring systems are mainly based on the use of wired transmission. However, when cables are damaged during an accident, it is difficult to obtain relevant data on environmental parameters and the emergency situation underground. To address this problem, the use of wireless sensor networks (WSNs) has been proposed. However, the shape of coalmine tunnels is not conducive to the deployment of WSNs as they are long and narrow. Therefore, issues with the network arise, such as extremely large energy consumption, very weak connectivity, long time delays, and a short lifetime. To solve these problems, in this study, a new routing protocol algorithm for multisink WSNs based on transmission power control is proposed. First, a transmission power control algorithm is used to negotiate the optimal communication radius and transmission power of each sink. Second, the non-uniform clustering idea is adopted to optimize the cluster head selection. Simulation results are subsequently compared to the Centroid of the Nodes in a Partition (CNP) strategy and show that the new algorithm delivers a good performance: power efficiency is increased by approximately 70%, connectivity is increased by approximately 15%, the cluster interference is diminished by approximately 50%, the network lifetime is increased by approximately 6%, and the delay is reduced with an increase in the number of sinks.
Hydrophobic thiol-ene surfaces fabricated via plasma activation and photo polymerization
NASA Astrophysics Data System (ADS)
Champathet, P.; Ervithayasuporn, V.; Osotchan, T.; Dangtip, S.
2017-09-01
Alumina, such as glazed alumina for electrical insulator, operated in an open field subjects to a very harsh condition; resulting in lifetime shortening. Coating hydrophobic layer on alumina surface can help prolonging its lifetime. In this study, 25 ×25 mm alumina sheets were used as substrates. The hydrophobic composite polymers were prepared from (3-mercaptopropyl)trimethoxysilane(MPTMS), 2,4,6,8-tetramethyl-2,4,6,8tetravinylcyclotetra siloxane(TMTVSi), pentaerythritoltetra(3-mercaptopropionate)(PETMP), 2,2-dimethoxy-2-phe nylaceto phenone(photoinitiator) and heptadecafluorodecylmethacrylate(HEFDMA) via the thiol-ene reaction. The alumina sheets were first activated by dielectric-barrier discharge plasma to improve its adhesion. All the polymers were found to optimize at the ratio of (MPTMS:TMTVSi:PETMP:HDFDMA) to 4:2:1:2 for coating on the alumina substrate. To enhance polymerization, 2,2-dimethoxy-2-phenylaceto phenome was also used as a photoinitiator A proper mixing sequence in the thiol-ene reaction results in film with excellent surface retention after prolong soaking in solvent such as acetone. FTIR shows that S-H and C=C functional groups have significantly changed after photopolymerization and thermally cured. The static contact angle increase from mere 53.0°±1.5° of the uncoated substrate to 120.0°±1.2° after coating. SEM shows the film with clear appearance of a few-micron thick. Under AFM, the coated surface roughness was about 9.3 nm with evenly distributed spikes of a few nanometer in height. The cross-cut test also confirmed the film was very smooth and none of the square of the films detached.
Availability Issues in Wireless Visual Sensor Networks
Costa, Daniel G.; Silva, Ivanovitch; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo
2014-01-01
Wireless visual sensor networks have been considered for a large set of monitoring applications related with surveillance, tracking and multipurpose visual monitoring. When sensors are deployed over a monitored field, permanent faults may happen during the network lifetime, reducing the monitoring quality or rendering parts or the entire network unavailable. In a different way from scalar sensor networks, camera-enabled sensors collect information following a directional sensing model, which changes the notions of vicinity and redundancy. Moreover, visual source nodes may have different relevancies for the applications, according to the monitoring requirements and cameras' poses. In this paper we discuss the most relevant availability issues related to wireless visual sensor networks, addressing availability evaluation and enhancement. Such discussions are valuable when designing, deploying and managing wireless visual sensor networks, bringing significant contributions to these networks. PMID:24526301
Multimodal network models for robust transportation systems.
DOT National Transportation Integrated Search
2009-10-01
Since transportation infrastructure projects have a lifetime of many decades, project developers must consider : not only the current demand for the project but also the future demand. Future demand is of course uncertain and should : be treated as s...
Committed CO2 Emissions of China's Coal-fired Power Plants
NASA Astrophysics Data System (ADS)
Suqin, J.
2016-12-01
The extent of global warming is determined by the cumulative effects of CO2 in the atmosphere. Coal-fired power plants, the largest anthropogenic source of CO2 emissions, produce large amount of CO2 emissions during their lifetimes of operation (committed emissions), which thus influence the future carbon emission space under specific targets on mitigating climate change (e.g., the 2 degree warming limit relative to pre-industrial levels). Comprehensive understanding of committed CO2 emissions for coal-fired power generators is urgently needed in mitigating global climate change, especially in China, the largest global CO2emitter. We calculated China's committed CO2 emissions from coal-fired power generators installed during 1993-2013 and evaluated their impact on future emission spaces at the provincial level, by using local specific data on the newly installed capacities. The committed CO2 emissions are calculated as the product of the annual coal consumption from newly installed capacities, emission factors (CO2emissions per unit crude coal consumption) and expected lifetimes. The sensitivities about generators lifetimes and the drivers on provincial committed emissions are also analyzed. Our results show that these relatively recently installed coal-fired power generators will lead to 106 Gt of CO2 emissions over the course of their lifetimes, which is more than three times the global CO2 emissions from fossil fuels in 2010. More than 80% (85 Gt) of their total committed CO2 will be emitted after 2013, which are referred to as the remaining emissions. Due to the uncertainties of generators lifetime, these remaining emissions would increase by 45 Gt if the lifetimes of China's coal-fired power generators were prolonged by 15 years. Furthermore, the remaining emissions are very different among various provinces owing to local developments and policy disparities. Provinces with large amounts of secondary industry and abundant coal reserves have higher committed emissions. The national and provincial CO2 emission mitigation objectives might be greatly restricted by existing and planned power plants in China. The policy implications of our results have also been discussed.
Cost-Effectiveness of Intensive versus Standard Blood-Pressure Control.
Bress, Adam P; Bellows, Brandon K; King, Jordan B; Hess, Rachel; Beddhu, Srinivasan; Zhang, Zugui; Berlowitz, Dan R; Conroy, Molly B; Fine, Larry; Oparil, Suzanne; Morisky, Donald E; Kazis, Lewis E; Ruiz-Negrón, Natalia; Powell, Jamie; Tamariz, Leonardo; Whittle, Jeff; Wright, Jackson T; Supiano, Mark A; Cheung, Alfred K; Weintraub, William S; Moran, Andrew E
2017-08-24
In the Systolic Blood Pressure Intervention Trial (SPRINT), adults at high risk for cardiovascular disease who received intensive systolic blood-pressure control (target, <120 mm Hg) had significantly lower rates of death and cardiovascular disease events than did those who received standard control (target, <140 mm Hg). On the basis of these data, we wanted to determine the lifetime health benefits and health care costs associated with intensive control versus standard control. We used a microsimulation model to apply SPRINT treatment effects and health care costs from national sources to a hypothetical cohort of SPRINT-eligible adults. The model projected lifetime costs of treatment and monitoring in patients with hypertension, cardiovascular disease events and subsequent treatment costs, treatment-related risks of serious adverse events and subsequent costs, and quality-adjusted life-years (QALYs) for intensive control versus standard control of systolic blood pressure. We determined that the mean number of QALYs would be 0.27 higher among patients who received intensive control than among those who received standard control and would cost approximately $47,000 more per QALY gained if there were a reduction in adherence and treatment effects after 5 years; the cost would be approximately $28,000 more per QALY gained if the treatment effects persisted for the remaining lifetime of the patient. Most simulation results indicated that intensive treatment would be cost-effective (51 to 79% below the willingness-to-pay threshold of $50,000 per QALY and 76 to 93% below the threshold of $100,000 per QALY), regardless of whether treatment effects were reduced after 5 years or persisted for the remaining lifetime. In this simulation study, intensive systolic blood-pressure control prevented cardiovascular disease events and prolonged life and did so at levels below common willingness-to-pay thresholds per QALY, regardless of whether benefits were reduced after 5 years or persisted for the patient's remaining lifetime. (Funded by the National Heart, Lung, and Blood Institute and others; SPRINT ClinicalTrials.gov number, NCT01206062 .).
Relay Selection for Cooperative Relaying in Wireless Energy Harvesting Networks
NASA Astrophysics Data System (ADS)
Zhu, Kaiyan; Wang, Fei; Li, Songsong; Jiang, Fengjiao; Cao, Lijie
2018-01-01
Energy harvesting from the surroundings is a promising solution to provide energy supply and extend the life of wireless sensor networks. Recently, energy harvesting has been shown as an attractive solution to prolong the operation of cooperative networks. In this paper, we propose a relay selection scheme to optimize the amplify-and-forward (AF) cooperative transmission in wireless energy harvesting cooperative networks. The harvesting energy and channel conditions are considered to select the optimal relay as cooperative relay to minimize the outage probability of the system. Simulation results show that our proposed relay selection scheme achieves better outage performance than other strategies.
Configuration of Wireless Cooperative/Sensor Networks
2008-05-25
WSN), the advantages of cooperation can be further exploited by optimally allocating the energy and bandwidth resources among users based on the... consumption and extend system lifetime [Sin98]. The implementation of a minimum energy routing protocol is discussed in [Dos02a, Dos02b]. An online...power consumption in the network given the required SER at the destination. For example, with source power Ps=20dB, the EP algorithm requires one relay
Exploiting node mobility for energy optimization in wireless sensor networks
NASA Astrophysics Data System (ADS)
El-Moukaddem, Fatme Mohammad
Wireless Sensor Networks (WSNs) have become increasingly available for data-intensive applications such as micro-climate monitoring, precision agriculture, and audio/video surveillance. A key challenge faced by data-intensive WSNs is to transmit the sheer amount of data generated within an application's lifetime to the base station despite the fact that sensor nodes have limited power supplies such as batteries or small solar panels. The availability of numerous low-cost robotic units (e.g. Robomote and Khepera) has made it possible to construct sensor networks consisting of mobile sensor nodes. It has been shown that the controlled mobility offered by mobile sensors can be exploited to improve the energy efficiency of a network. In this thesis, we propose schemes that use mobile sensor nodes to reduce the energy consumption of data-intensive WSNs. Our approaches differ from previous work in two main aspects. First, our approaches do not require complex motion planning of mobile nodes, and hence can be implemented on a number of low-cost mobile sensor platforms. Second, we integrate the energy consumption due to both mobility and wireless communications into a holistic optimization framework. We consider three problems arising from the limited energy in the sensor nodes. In the first problem, the network consists of mostly static nodes and contains only a few mobile nodes. In the second and third problems, we assume essentially that all nodes in the WSN are mobile. We first study a new problem called max-data mobile relay configuration (MMRC ) that finds the positions of a set of mobile sensors, referred to as relays, that maximize the total amount of data gathered by the network during its lifetime. We show that the MMRC problem is surprisingly complex even for a trivial network topology due to the joint consideration of the energy consumption of both wireless communication and mechanical locomotion. We present optimal MMRC algorithms and practical distributed implementations for several important network topologies and applications. Second, we consider the problem of minimizing the total energy consumption of a network. We design an iterative algorithm that improves a given configuration by relocating nodes to new positions. We show that this algorithm converges to the optimal configuration for the given transmission routes. Moreover, we propose an efficient distributed implementation that does not require explicit synchronization. Finally, we consider the problem of maximizing the lifetime of the network. We propose an approach that exploits the mobility of the nodes to balance the energy consumption throughout the network. We develop efficient algorithms for single and multiple round approaches. For all three problems, we evaluate the efficiency of our algorithms through simulations. Our simulation results based on realistic energy models obtained from existing mobile and static sensor platforms show that our approaches significantly improve the network's performance and outperform existing approaches.
An ACOR-Based Multi-Objective WSN Deployment Example for Lunar Surveying.
López-Matencio, Pablo
2016-02-06
Wireless sensor networks (WSNs) can gather in situ real data measurements and work unattended for long periods, even in remote, rough places. A critical aspect of WSN design is node placement, as this determines sensing capacities, network connectivity, network lifetime and, in short, the whole operational capabilities of the WSN. This paper proposes and studies a new node placement algorithm that focus on these aspects. As a motivating example, we consider a network designed to describe the distribution of helium-3 (³He), a potential enabling element for fusion reactors, on the Moon. ³He is abundant on the Moon's surface, and knowledge of its distribution is essential for future harvesting purposes. Previous data are inconclusive, and there is general agreement that on-site measurements, obtained over a long time period, are necessary to better understand the mechanisms involved in the distribution of this element on the Moon. Although a mission of this type is extremely complex, it allows us to illustrate the main challenges involved in a multi-objective WSN placement problem, i.e., selection of optimal observation sites and maximization of the lifetime of the network. To tackle optimization, we use a recent adaptation of the ant colony optimization (ACOR) metaheuristic, extended to continuous domains. Solutions are provided in the form of a Pareto frontier that shows the optimal equilibria. Moreover, we compared our scheme with the four-directional placement (FDP) heuristic, which was outperformed in all cases.
Stability-Aware Geographic Routing in Energy Harvesting Wireless Sensor Networks
Hieu, Tran Dinh; Dung, Le The; Kim, Byung-Seo
2016-01-01
A new generation of wireless sensor networks that harvest energy from environmental sources such as solar, vibration, and thermoelectric to power sensor nodes is emerging to solve the problem of energy limitation. Based on the photo-voltaic model, this research proposes a stability-aware geographic routing for reliable data transmissions in energy-harvesting wireless sensor networks (EH-WSNs) to provide a reliable routes selection method and potentially achieve an unlimited network lifetime. Specifically, the influences of link quality, represented by the estimated packet reception rate, on network performance is investigated. Simulation results show that the proposed method outperforms an energy-harvesting-aware method in terms of energy consumption, the average number of hops, and the packet delivery ratio. PMID:27187414
NASA Astrophysics Data System (ADS)
Gupta, Anubhav; Banerjee, Tanmoy; Dutta, Partha Sharathi
2017-10-01
Understanding the influence of the structure of a dispersal network on the species persistence and modeling a realistic species dispersal in nature are two central issues in spatial ecology. A realistic dispersal structure which favors the persistence of interacting ecological systems was studied [M. D. Holland and A. Hastings, Nature (London) 456, 792 (2008), 10.1038/nature07395], where it was shown that a randomization of the structure of a dispersal network in a metapopulation model of prey and predator increases the species persistence via clustering, prolonged transient dynamics, and amplitudes of population fluctuations. In this paper, by contrast, we show that a deterministic network topology in a metapopulation can also favor asynchrony and prolonged transient dynamics if species dispersal obeys a long-range interaction governed by a distance-dependent power law. To explore the effects of power-law coupling, we take a realistic ecological model, namely, the Rosenzweig-MacArthur model in each patch (node) of the network of oscillators, and show that the coupled system is driven from synchrony to asynchrony with an increase in the power-law exponent. Moreover, to understand the relationship between species persistence and variations in power-law exponent, we compute a correlation coefficient to characterize cluster formation, a synchrony order parameter, and median predator amplitude. We further show that smaller metapopulations with fewer patches are more vulnerable to extinction as compared to larger metapopulations with a higher number of patches. We believe that the present work improves our understanding of the interconnection between the random network and the deterministic network in theoretical ecology.
Sauer, Lydia; Klemm, Matthias; Peters, Sven; Schweitzer, Dietrich; Schmidt, Johanna; Kreilkamp, Lukas; Ramm, Lisa; Meller, Daniel; Hammer, Martin
2018-05-01
To investigate fundus autofluorescence (FAF) lifetimes in geographic atrophy (GA) with a focus on macular pigment (MP) and foveal sparing. The study included 35 eyes from 28 patients (mean age 79.2 ± 8.0 years) with GA. A 30° retinal field, centred at the macula, was investigated using fluorescence lifetime imaging ophthalmoscopy (FLIO). The FLIO technology is based on a Heidelberg Engineering Spectralis system. Decays of FAF were detected in a short (498-560 nm, SSC) and long (560-720 nm, LSC) spectral channel. The mean fluorescence lifetime, τ m , was calculated from a three-exponential approximation of the FAF decays. Macular optical coherence tomography (OCT) scans as well as fundus photography were recorded. Review of FLIO data reveals specific patterns of significantly prolonged τ m in regions of GA (SSC 616 ± 343 ps, LSC 615 ± 154 ps) as compared to non-atrophic regions. Large τ m differences between the fovea and atrophic areas correlate with better visual acuity (VA). Shorter τ m at the fovea than within other non-atrophic regions indicates sparing, which was identified in 16 eyes. Seventy per cent of patients treated with lutein supplementation showed foveal sparing, whereas the rate among non-supplemented patients was 22%. Using FLIO, we present a novel way to detect foveal sparing, investigate MP, and analyse variability of τ m in different foveal regions (including the prognostic valuable border region) in GA. These findings support the potential utility of FLIO in monitoring disease progression. The findings also highlight the possibly protective effect of lutein supplementation, with implication in recording the presence and distributional pattern of MP. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Terra Mission Operations: Launch to the Present (and Beyond)
NASA Technical Reports Server (NTRS)
Thome, Kurt; Kelly, Angelita; Moyer, Eric; Mantziaras, Dimitrios; Case, Warren
2014-01-01
The Terra satellite, flagship of NASAs long-term Earth Observing System (EOS) Program, continues to provide useful earth science observations well past its 5-year design lifetime. This paper describes the evolution of Terra operations, including challenges and successes and the steps taken to preserve science requirements and prolong spacecraft life. Working cooperatively with the Terra science and instrument teams, including NASAs international partners, the mission operations team has successfully kept the Terra operating continuously, resolving challenges and adjusting operations as needed. Terra retains all of its observing capabilities (except Short Wave Infrared) despite its age. The paper also describes concepts for future operations.
Liu, Meitang; Wang, Tianlei; Ma, Hongwen; Fu, Yu; Hu, Kunran; Guan, Chao
2014-01-01
In this present report, luminescent ordered multilayer thin films (OMFs) based on oppositely-charged inorganic nanosheets and the different oppositely-charged chromophores were fabricated via layer-by-layer assembly method. Exfoliated layered double hydroxides (LDHs) and montmorillonite (MMT) nanosheets with opposite charges can be expected to provide a pseudo electronic microenvironment (PEM) which has not been declared in previous literatures, and transition metal-bearing LDHs nanosheets can offer an additional ferromagnetic effect (FME) for the chromophores at the same time. Surprisingly, the luminescent lifetimes of those OMFs with PEM and FME are significantly prolonged compared with that of the pristine chromophores, even much longer than those of OMFs without oppositely-charged and ferromagnetic architecture. Therefore, it is highly expected that the PEM and FME formed by oppositely-charged and transition metal-bearing inorganic nanosheets have remarkable influence on obtaining better optical property, which suggests a new potential way to manipulate, control and develop the novel light-emitting materials and optical devices. PMID:25413710
Repetitive cleaning of a stainless steel first mirror using radio frequency plasma
NASA Astrophysics Data System (ADS)
Peng, Jiao; Yan, Rong; Ding, Rui; Chen, Junling; Zhu, Dahuan; Zhang, Zengming
2017-10-01
First mirrors (FMs) are crucial components of optical diagnostic systems in present-day tokamaks and future fusion reactors. Their lifetimes should be extremely limited due to their proximity to burning plasma, greatly influencing the safe operation of corresponding diagnostics. Repetitive cleaning is expected to provide a solution to the frequent replacement of contaminated FMs, thus prolonging their lifetimes. Three repetitive cleaning cycles using radio frequency plasma were applied to stainless steel (SS) FM samples, to evaluate the change of the mirrors’ optical properties and morphology during each cycle. Amorphous carbon films were deposited on mirror surfaces under identical conditions in three cycles. In three cycles with identical cleaning parameters, the total reflectivity was restored at up to 95%. Nevertheless, with successive cleaning cycles, the FM surfaces gradually appeared to roughen due to damage to the grain boundaries. Correspondingly, the diffuse reflectivity increased from a few percent to 20% and 27% after the second and third cycles. After optimizing the cleaning parameters of the second and third cycles, the roughness showed a significant decrease, and simultaneously the increase of diffuse reflectivity was remarkably improved.
Short relaxation times but long transient times in both simple and complex reaction networks
Henry, Adrien; Martin, Olivier C.
2016-01-01
When relaxation towards an equilibrium or steady state is exponential at large times, one usually considers that the associated relaxation time τ, i.e. the inverse of the decay rate, is the longest characteristic time in the system. However, that need not be true, other times such as the lifetime of an infinitesimal perturbation can be much longer. In the present work, we demonstrate that this paradoxical property can arise even in quite simple systems such as a linear chain of reactions obeying mass action (MA) kinetics. By mathematical analysis of simple reaction networks, we pin-point the reason why the standard relaxation time does not provide relevant information on the potentially long transient times of typical infinitesimal perturbations. Overall, we consider four characteristic times and study their behaviour in both simple linear chains and in more complex reaction networks taken from the publicly available database ‘Biomodels’. In all these systems, whether involving MA rates, Michaelis–Menten reversible kinetics, or phenomenological laws for reaction rates, we find that the characteristic times corresponding to lifetimes of tracers and of concentration perturbations can be significantly longer than τ. PMID:27411726
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, A.K.
1995-12-01
Semi-interpenetrating (S-IPN) network polyimids were made from different proportions of LaRC RP46 (a thermosetpolyimid) and LaRC BDTA-ODA (a thermoplastic polyimid). The ultimate goal of this networking is to improve the mechanical properties of the thermoset polyimid. Positron lifetime study was made to calculate lifetime based on second component of the life time spectra and the free volume & microvoid size. All these properties tend to decrease steadily with increasing thermoset content except at the 50 percent thermoset level where these properties show sudden drop. This result contradicts with the initial expectation that the blend properties should change gradually if itmore » were a solid solution of thermoset (TSP) and thermoplastic (TPP) components. Thermal analyses (TMA, DSC, DMA & TGA) were run to complement the positron life time studies. The TMA and DSC studies confirm the contradiction mentioned above. Further experimentation with S-IPN polymers made at TSP/TTP content around 50/50 level are being conducted to explain this anomaly. Scanning electron microscope study of the S-IPN polyimid samples is under way in order to detect morphological differences which might help explain the phenomenon mentioned above.« less
Energy-Efficient Crowdsensing of Human Mobility and Signal Levels in Cellular Networks
Foremski, Paweł; Gorawski, Michał; Grochla, Krzysztof; Polys, Konrad
2015-01-01
The paper presents a practical application of the crowdsensing idea to measure human mobility and signal coverage in cellular networks. Currently, virtually everyone is carrying a mobile phone, which may be used as a sensor to gather research data by measuring, e.g., human mobility and radio signal levels. However, many users are unwilling to participate in crowdsensing experiments. This work begins with the analysis of the barriers for engaging people in crowdsensing. A survey showed that people who agree to participate in crowdsensing expect a minimum impact on their battery lifetime and phone usage habits. To address these requirements, this paper proposes an application for measuring the location and signal strength data based on energy-efficient GPS tracking, which allows one to perform the measurements of human mobility and radio signal levels with minimum energy utilization and without any engagement of the user. The method described combines measurements from the accelerometer with effective management of the GPS to monitor the user mobility with the decrease in battery lifetime by approximately 20%. To show the applicability of the proposed platform, the sample results of signal level distribution and coverage maps gathered for an LTE network and representing human mobility are shown. PMID:26340633
Analytical network process based optimum cluster head selection in wireless sensor network.
Farman, Haleem; Javed, Huma; Jan, Bilal; Ahmad, Jamil; Ali, Shaukat; Khalil, Falak Naz; Khan, Murad
2017-01-01
Wireless Sensor Networks (WSNs) are becoming ubiquitous in everyday life due to their applications in weather forecasting, surveillance, implantable sensors for health monitoring and other plethora of applications. WSN is equipped with hundreds and thousands of small sensor nodes. As the size of a sensor node decreases, critical issues such as limited energy, computation time and limited memory become even more highlighted. In such a case, network lifetime mainly depends on efficient use of available resources. Organizing nearby nodes into clusters make it convenient to efficiently manage each cluster as well as the overall network. In this paper, we extend our previous work of grid-based hybrid network deployment approach, in which merge and split technique has been proposed to construct network topology. Constructing topology through our proposed technique, in this paper we have used analytical network process (ANP) model for cluster head selection in WSN. Five distinct parameters: distance from nodes (DistNode), residual energy level (REL), distance from centroid (DistCent), number of times the node has been selected as cluster head (TCH) and merged node (MN) are considered for CH selection. The problem of CH selection based on these parameters is tackled as a multi criteria decision system, for which ANP method is used for optimum cluster head selection. Main contribution of this work is to check the applicability of ANP model for cluster head selection in WSN. In addition, sensitivity analysis is carried out to check the stability of alternatives (available candidate nodes) and their ranking for different scenarios. The simulation results show that the proposed method outperforms existing energy efficient clustering protocols in terms of optimum CH selection and minimizing CH reselection process that results in extending overall network lifetime. This paper analyzes that ANP method used for CH selection with better understanding of the dependencies of different components involved in the evaluation process.
Analytical network process based optimum cluster head selection in wireless sensor network
Javed, Huma; Jan, Bilal; Ahmad, Jamil; Ali, Shaukat; Khalil, Falak Naz; Khan, Murad
2017-01-01
Wireless Sensor Networks (WSNs) are becoming ubiquitous in everyday life due to their applications in weather forecasting, surveillance, implantable sensors for health monitoring and other plethora of applications. WSN is equipped with hundreds and thousands of small sensor nodes. As the size of a sensor node decreases, critical issues such as limited energy, computation time and limited memory become even more highlighted. In such a case, network lifetime mainly depends on efficient use of available resources. Organizing nearby nodes into clusters make it convenient to efficiently manage each cluster as well as the overall network. In this paper, we extend our previous work of grid-based hybrid network deployment approach, in which merge and split technique has been proposed to construct network topology. Constructing topology through our proposed technique, in this paper we have used analytical network process (ANP) model for cluster head selection in WSN. Five distinct parameters: distance from nodes (DistNode), residual energy level (REL), distance from centroid (DistCent), number of times the node has been selected as cluster head (TCH) and merged node (MN) are considered for CH selection. The problem of CH selection based on these parameters is tackled as a multi criteria decision system, for which ANP method is used for optimum cluster head selection. Main contribution of this work is to check the applicability of ANP model for cluster head selection in WSN. In addition, sensitivity analysis is carried out to check the stability of alternatives (available candidate nodes) and their ranking for different scenarios. The simulation results show that the proposed method outperforms existing energy efficient clustering protocols in terms of optimum CH selection and minimizing CH reselection process that results in extending overall network lifetime. This paper analyzes that ANP method used for CH selection with better understanding of the dependencies of different components involved in the evaluation process. PMID:28719616
Abedini, Andisheh; Plesner, Annette; Cao, Ping; Ridgway, Zachary; Zhang, Jinghua; Tu, Ling-Hsien; Middleton, Chris T; Chao, Brian; Sartori, Daniel J; Meng, Fanling; Wang, Hui; Wong, Amy G; Zanni, Martin T; Verchere, C Bruce; Raleigh, Daniel P; Schmidt, Ann Marie
2016-01-01
Islet amyloidosis by IAPP contributes to pancreatic β-cell death in diabetes, but the nature of toxic IAPP species remains elusive. Using concurrent time-resolved biophysical and biological measurements, we define the toxic species produced during IAPP amyloid formation and link their properties to induction of rat INS-1 β-cell and murine islet toxicity. These globally flexible, low order oligomers upregulate pro-inflammatory markers and induce reactive oxygen species. They do not bind 1-anilnonaphthalene-8-sulphonic acid and lack extensive β-sheet structure. Aromatic interactions modulate, but are not required for toxicity. Not all IAPP oligomers are toxic; toxicity depends on their partially structured conformational states. Some anti-amyloid agents paradoxically prolong cytotoxicity by prolonging the lifetime of the toxic species. The data highlight the distinguishing properties of toxic IAPP oligomers and the common features that they share with toxic species reported for other amyloidogenic polypeptides, providing information for rational drug design to treat IAPP induced β-cell death. DOI: http://dx.doi.org/10.7554/eLife.12977.001 PMID:27213520
TETRAMETHRIN AND DDT INHIBIT SPONTANEOUS FIRING IN CORTICAL NEURONAL NETWORKS
The insecticidal and neurotoxic effects of pyrethroids result from prolonged sodium channel inactivation, which causes alterations in neuronal firing and communication. Previously, we determined the relative potencies of 11 type I and type II pyrethroid insecticides using microel...
NASA Astrophysics Data System (ADS)
Jiang, Zhong-Yuan; Ma, Jian-Feng
Existing routing strategies such as the global dynamic routing [X. Ling, M. B. Hu, R. Jiang and Q. S. Wu, Phys. Rev. E 81, 016113 (2010)] can achieve very high traffic capacity at the cost of extremely long packet traveling delay. In many real complex networks, especially for real-time applications such as the instant communication software, extremely long packet traveling time is unacceptable. In this work, we propose to assign a finite Time-to-Live (TTL) parameter for each packet. To guarantee every packet to arrive at its destination within its TTL, we assume that a packet is retransmitted by its source once its TTL expires. We employ source routing mechanisms in the traffic model to avoid the routing-flaps induced by the global dynamic routing. We compose extensive simulations to verify our proposed mechanisms. With small TTL, the effects of packet retransmission on network traffic capacity are obvious, and the phase transition from flow free state to congested state occurs. For the purpose of reducing the computation frequency of the routing table, we employ a computing cycle Tc within which the routing table is recomputed once. The simulation results show that the traffic capacity decreases with increasing Tc. Our work provides a good insight into the understanding of effects of packet retransmission with finite packet lifetime on traffic capacity in scale-free networks.
Gallucci, Luca; Menna, Costantino; Angrisani, Leopoldo; Asprone, Domenico; Moriello, Rosario Schiano Lo; Bonavolontà, Francesco; Fabbrocino, Francesco
2017-11-07
Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC) structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN) that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM) approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesny, D. L.; Oluseyi, H. M.; Orange, N. B.
We report on the identification of dynamic flaring non-potential structures on quiet Sun (QS) supergranular network scales. Data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory allow for the high spatial and temporal resolution of this diverse class of compact structures. The rapidly evolving non-potential events presented here, with lifetimes <10 minutes, are on the order of 10″ in length. Thus, they contrast significantly with well-known active region (AR) non-potential structures such as high-temperature X-ray and EUV sigmoids (>100″) and micro-sigmoids (>10″) with lifetimes on the order of hours to days. The photospheric magnetic field environment derivedmore » from the Helioseismic and Magnetic Imager shows a lack of evidence for these flaring non-potential fields being associated with significant concentrations of bipolar magnetic elements. Of much interest to our events is the possibility of establishing them as precursor signatures of eruptive dynamics, similar to notions for AR sigmoids and micro-sigmoids, but associated with uneventful magnetic network regions. We suggest that the mixed network flux of QS-like magnetic environments, though unresolved, can provide sufficient free magnetic energy for flaring non-potential plasma structuring. The appearance of non-potential magnetic fields could be a fundamental process leading to self-organized criticality in the QS-like supergranular network and contribute to coronal heating, as these events undergo rapid helicial and vortical relaxations.« less
NASA Astrophysics Data System (ADS)
Cornaton, F. J.; Park, Y.-J.; Normani, S. D.; Sudicky, E. A.; Sykes, J. F.
2008-04-01
Long-term solutions for the disposal of toxic wastes usually involve isolation of the wastes in a deep subsurface geologic environment. In the case of spent nuclear fuel, if radionuclide leakage occurs from the engineered barrier, the geological medium represents the ultimate barrier that is relied upon to ensure safety. Consequently, an evaluation of radionuclide travel times from a repository to the biosphere is critically important in a performance assessment analysis. In this study, we develop a travel time framework based on the concept of groundwater lifetime expectancy as a safety indicator. Lifetime expectancy characterizes the time that radionuclides will spend in the subsurface after their release from the repository and prior to discharging into the biosphere. The probability density function of lifetime expectancy is computed throughout the host rock by solving the backward-in-time solute transport adjoint equation subject to a properly posed set of boundary conditions. It can then be used to define optimal repository locations. The risk associated with selected sites can be evaluated by simulating an appropriate contaminant release history. The utility of the method is illustrated by means of analytical and numerical examples, which focus on the effect of fracture networks on the uncertainty of evaluated lifetime expectancy.
Cluster Size Optimization in Sensor Networks with Decentralized Cluster-Based Protocols
Amini, Navid; Vahdatpour, Alireza; Xu, Wenyao; Gerla, Mario; Sarrafzadeh, Majid
2011-01-01
Network lifetime and energy-efficiency are viewed as the dominating considerations in designing cluster-based communication protocols for wireless sensor networks. This paper analytically provides the optimal cluster size that minimizes the total energy expenditure in such networks, where all sensors communicate data through their elected cluster heads to the base station in a decentralized fashion. LEACH, LEACH-Coverage, and DBS comprise three cluster-based protocols investigated in this paper that do not require any centralized support from a certain node. The analytical outcomes are given in the form of closed-form expressions for various widely-used network configurations. Extensive simulations on different networks are used to confirm the expectations based on the analytical results. To obtain a thorough understanding of the results, cluster number variability problem is identified and inspected from the energy consumption point of view. PMID:22267882
Energy Efficient In-network RFID Data Filtering Scheme in Wireless Sensor Networks
Bashir, Ali Kashif; Lim, Se-Jung; Hussain, Chauhdary Sajjad; Park, Myong-Soon
2011-01-01
RFID (Radio frequency identification) and wireless sensor networks are backbone technologies for pervasive environments. In integration of RFID and WSN, RFID data uses WSN protocols for multi-hop communications. Energy is a critical issue in WSNs; however, RFID data contains a lot of duplication. These duplications can be eliminated at the base station, but unnecessary transmissions of duplicate data within the network still occurs, which consumes nodes’ energy and affects network lifetime. In this paper, we propose an in-network RFID data filtering scheme that efficiently eliminates the duplicate data. For this we use a clustering mechanism where cluster heads eliminate duplicate data and forward filtered data towards the base station. Simulation results prove that our approach saves considerable amounts of energy in terms of communication and computational cost, compared to existing filtering schemes. PMID:22163999
Controlled release of cavity states into propagating modes induced via a single qubit
NASA Astrophysics Data System (ADS)
Pfaff, Wolfgang; Constantin, Marius; Reagor, Matthew; Axline, Christopher; Blumoff, Jacob; Chou, Kevin; Leghtas, Zaki; Touzard, Steven; Heeres, Reinier; Reinhold, Philip; Ofek, Nissim; Sliwa, Katrina; Frunzio, Luigi; Mirrahimi, Mazyar; Lehnert, Konrad; Jiang, Liang; Devoret, Michel; Schoelkopf, Robert
Photonic states stored in long-lived cavities are a promising platform for scalable quantum computing and for the realization of quantum networks. An important aspect in such a cavity-based architecture will be the controlled conversion of stored photonic states into propagating ones. This will allow, for instance, quantum state transfer between remote cavities. We demonstrate the controlled release of quantum states from a microwave resonator with millisecond lifetime in a 3D circuit QED system. Dispersive coupling of the cavity to a transmon qubit allows us to enable a four-wave mixing process that transfers the stored state into a second resonator from which it can leave the system through a transmission line. This permits us to evacuate the cavity on time scales that are orders of magnitude faster than the intrinsic lifetime. This Q-switching process can in principle be fully coherent, making our system highly promising for quantum state transfer between nodes in a quantum network of high-Q cavities.
Pawar, Rajendra C; Kang, Suhee; Park, Jung Hyun; Kim, Jong-Ho; Ahn, Sunghoon; Lee, Caroline S
2016-08-08
A one-dimensional (1D) nanostructure having a porous network is an exceptional photocatalytic material to generate hydrogen (H2) and decontaminate wastewater using solar energy. In this report, we synthesized nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) via a facile and template-free chemical approach at room temperature. The use of concentrated acids induced etching and lift-off because of strong oxidation and protonation. Compared with the bulk g-C3N4, the porous 1D microrod structure showed five times higher photocatalytic degradation performance toward methylene blue dye (MB) under visible light irradiation. The photocatalytic H2 evolution of the 1D nanostructure (34 μmol g(-1)) was almost 26 times higher than that of the bulk g-C3N4 structure (1.26 μmol g(-1)). Additionally, the photocurrent stability of this nanoporous 1D morphology over 24 h indicated remarkable photocorrosion resistance. The improved photocatalytic activities were attributed to prolonged carrier lifetime because of its quantum confinement effect, effective separation and transport of charge carriers, and increased number of active sites from interconnected nanopores throughout the microrods. The present 1D nanostructure would be highly suited for photocatalytic water purification as well as water splitting devices. Finally, this facile and room temperature strategy to fabricate the nanostructures is very cost-effective.
NASA Astrophysics Data System (ADS)
Pawar, Rajendra C.; Kang, Suhee; Park, Jung Hyun; Kim, Jong-Ho; Ahn, Sunghoon; Lee, Caroline S.
2016-08-01
A one-dimensional (1D) nanostructure having a porous network is an exceptional photocatalytic material to generate hydrogen (H2) and decontaminate wastewater using solar energy. In this report, we synthesized nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) via a facile and template-free chemical approach at room temperature. The use of concentrated acids induced etching and lift-off because of strong oxidation and protonation. Compared with the bulk g-C3N4, the porous 1D microrod structure showed five times higher photocatalytic degradation performance toward methylene blue dye (MB) under visible light irradiation. The photocatalytic H2 evolution of the 1D nanostructure (34 μmol g-1) was almost 26 times higher than that of the bulk g-C3N4 structure (1.26 μmol g-1). Additionally, the photocurrent stability of this nanoporous 1D morphology over 24 h indicated remarkable photocorrosion resistance. The improved photocatalytic activities were attributed to prolonged carrier lifetime because of its quantum confinement effect, effective separation and transport of charge carriers, and increased number of active sites from interconnected nanopores throughout the microrods. The present 1D nanostructure would be highly suited for photocatalytic water purification as well as water splitting devices. Finally, this facile and room temperature strategy to fabricate the nanostructures is very cost-effective.
Pawar, Rajendra C.; Kang, Suhee; Park, Jung Hyun; Kim, Jong-ho; Ahn, Sunghoon; Lee, Caroline S.
2016-01-01
A one-dimensional (1D) nanostructure having a porous network is an exceptional photocatalytic material to generate hydrogen (H2) and decontaminate wastewater using solar energy. In this report, we synthesized nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) via a facile and template-free chemical approach at room temperature. The use of concentrated acids induced etching and lift-off because of strong oxidation and protonation. Compared with the bulk g-C3N4, the porous 1D microrod structure showed five times higher photocatalytic degradation performance toward methylene blue dye (MB) under visible light irradiation. The photocatalytic H2 evolution of the 1D nanostructure (34 μmol g−1) was almost 26 times higher than that of the bulk g-C3N4 structure (1.26 μmol g−1). Additionally, the photocurrent stability of this nanoporous 1D morphology over 24 h indicated remarkable photocorrosion resistance. The improved photocatalytic activities were attributed to prolonged carrier lifetime because of its quantum confinement effect, effective separation and transport of charge carriers, and increased number of active sites from interconnected nanopores throughout the microrods. The present 1D nanostructure would be highly suited for photocatalytic water purification as well as water splitting devices. Finally, this facile and room temperature strategy to fabricate the nanostructures is very cost-effective. PMID:27498979
Determinants of Sexual Network Structure and Their Impact on Cumulative Network Measures
Schmid, Boris V.; Kretzschmar, Mirjam
2012-01-01
There are four major quantities that are measured in sexual behavior surveys that are thought to be especially relevant for the performance of sexual network models in terms of disease transmission. These are (i) the cumulative distribution of lifetime number of partners, (ii) the distribution of partnership durations, (iii) the distribution of gap lengths between partnerships, and (iv) the number of recent partners. Fitting a network model to these quantities as measured in sexual behavior surveys is expected to result in a good description of Chlamydia trachomatis transmission in terms of the heterogeneity of the distribution of infection in the population. Here we present a simulation model of a sexual contact network, in which we explored the role of behavioral heterogeneity of simulated individuals on the ability of the model to reproduce population-level sexual survey data from the Netherlands and UK. We find that a high level of heterogeneity in the ability of individuals to acquire and maintain (additional) partners strongly facilitates the ability of the model to accurately simulate the powerlaw-like distribution of the lifetime number of partners, and the age at which these partnerships were accumulated, as surveyed in actual sexual contact networks. Other sexual network features, such as the gap length between partnerships and the partnership duration, could–at the current level of detail of sexual survey data against which they were compared–be accurately modeled by a constant value (for transitional concurrency) and by exponential distributions (for partnership duration). Furthermore, we observe that epidemiological measures on disease prevalence in survey data can be used as a powerful tool for building accurate sexual contact networks, as these measures provide information on the level of mixing between individuals of different levels of sexual activity in the population, a parameter that is hard to acquire through surveying individuals. PMID:22570594
An energy efficient multiple mobile sinks based routing algorithm for wireless sensor networks
NASA Astrophysics Data System (ADS)
Zhong, Peijun; Ruan, Feng
2018-03-01
With the fast development of wireless sensor networks (WSNs), more and more energy efficient routing algorithms have been proposed. However, one of the research challenges is how to alleviate the hot spot problem since nodes close to static sink (or base station) tend to die earlier than other sensors. The introduction of mobile sink node can effectively alleviate this problem since sink node can move along certain trajectories, causing hot spot nodes more evenly distributed. In this paper, we mainly study the energy efficient routing method with multiple mobile sinks support. We divide the whole network into several clusters and study the influence of mobile sink number on network lifetime. Simulation results show that the best network performance appears when mobile sink number is about 3 under our simulation environment.
Launay, C P; Rivière, H; Kabeshova, A; Beauchet, O
2015-09-01
To examine performance criteria (i.e., sensitivity, specificity, positive predictive value [PPV], negative predictive value [NPV], likelihood ratios [LR], area under receiver operating characteristic curve [AUROC]) of a 10-item brief geriatric assessment (BGA) for the prediction of prolonged length hospital stay (LHS) in older patients hospitalized in acute care wards after an emergency department (ED) visit, using artificial neural networks (ANNs); and to describe the contribution of each BGA item to the predictive accuracy using the AUROC value. A total of 993 geriatric ED users admitted to acute care wards were included in this prospective cohort study. Age >85years, gender male, polypharmacy, non use of formal and/or informal home-help services, history of falls, temporal disorientation, place of living, reasons and nature for ED admission, and use of psychoactive drugs composed the 10 items of BGA and were recorded at the ED admission. The prolonged LHS was defined as the top third of LHS. The ANNs were conducted using two feeds forward (multilayer perceptron [MLP] and modified MLP). The best performance was reported with the modified MLP involving the 10 items (sensitivity=62.7%; specificity=96.6%; PPV=87.1; NPV=87.5; positive LR=18.2; AUC=90.5). In this model, presence of chronic conditions had the highest contributions (51.3%) in AUROC value. The 10-item BGA appears to accurately predict prolonged LHS, using the ANN MLP method, showing the best criteria performance ever reported until now. Presence of chronic conditions was the main contributor for the predictive accuracy. Copyright © 2015 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
Use of HCI to screen for developmental neurotoxicity
The development of the nervous system is a prolonged process. It starts with the generation of neuroepithelial cells during embryogenesis and is not complete until the final stages of synaptic remodeling in the young adult. The outcome is a functionally connected neural network t...
Critical behavior of the contact process in a multiscale network
NASA Astrophysics Data System (ADS)
Ferreira, Silvio C.; Martins, Marcelo L.
2007-09-01
Inspired by dengue and yellow fever epidemics, we investigated the contact process (CP) in a multiscale network constituted by one-dimensional chains connected through a Barabási-Albert scale-free network. In addition to the CP dynamics inside the chains, the exchange of individuals between connected chains (travels) occurs at a constant rate. A finite epidemic threshold and an epidemic mean lifetime diverging exponentially in the subcritical phase, concomitantly with a power law divergence of the outbreak’s duration, were found. A generalized scaling function involving both regular and SF components was proposed for the quasistationary analysis and the associated critical exponents determined, demonstrating that the CP on this hybrid network and nonvanishing travel rates establishes a new universality class.
Mimicking nature: Self-strengthening properties in a dental adhesive.
Song, Linyong; Ye, Qiang; Ge, Xueping; Misra, Anil; Spencer, Paulette
2016-04-15
Chemical and enzymatic hydrolysis provoke a cascade of events that undermine methacrylate-based adhesives and the bond formed at the tooth/composite interface. Infiltration of noxious agents, e.g. enzymes, bacteria, and so forth, into the spaces created by the defective bond will ultimately lead to failure of the composite restoration. This paper reports a novel, synthetic resin that provides enhanced hydrolytic stability as a result of intrinsic reinforcement of the polymer network. The behavior of this novel resin, which contains γ-methacryloxyproyl trimethoxysilane (MPS) as its Si-based compound, is reminiscent of self-strengthening properties found in nature. The efforts in this paper are focused on two essential aspects: the visible-light irradiation induced (photoacid-induced) sol-gel reaction and the mechanism leading to intrinsic self-strengthening. The FTIR band at 2840cm(-1) corresponding to CH3 symmetric stretch in -Si-O-CH3 was used to evaluate the sol-gel reaction. Results from the real-time FTIR indicated that the newly developed resin showed a limited sol-gel reaction (<5%) during visible-light irradiation, but after 48h dark storage, the reaction was over 65%. The condensation of methoxysilane mainly occurred under wet conditions. The storage moduli and glass transition temperature of the copolymers increased in wet conditions with the increasing MPS content. The cumulative amounts of leached species decreased significantly when the MPS-containing adhesive was used. The results suggest that the polymethacrylate-based network, which formed first as a result of free radical initiated polymerization, retarded the photoacid-induced sol-gel reaction. The sol-gel reaction provided a persistent, intrinsic reinforcement of the polymer network in both neutral and acidic conditions. This behavior led to enhanced mechanical properties of the dental adhesives under conditions that simulate the wet, oral environment. A self-strengthening dental adhesive system was developed through a dual curing process, which involves the free radical photopolymerization followed by slow hydrolysis and condensation (photoacid-induced sol-gel reaction) of alkoxylsilane groups. The concept of "living" photoacid-induced sol-gel reaction with visible-light irradiation was confirmed in the polymer. The sol-gel reaction was retarded by the polymethacrylate network, which was generated first; the network extended the life and retained the activity of silanol groups. The self-strengthening behavior was evaluated by monitoring the mechanical properties of the hybrid copolymers under wet conditions. The present research demonstrates the sol-gel reaction in highly crosslinked network as a potentially powerful strategy to prolong the functional lifetime of engineered biomaterials in wet environments. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Decreased triple network connectivity in patients with post-traumatic stress disorder
NASA Astrophysics Data System (ADS)
Liu, Yang; Li, Liang; Li, Baojuan; Zhang, Xi; Lu, Hongbing
2017-03-01
The triple network model provides a common framework for understanding affective and neurocognitive dysfunctions across multiple disorders, including central executive network (CEN), default mode network (DMN), and salience network (SN). Considering the effect of traumatic experience on post-traumatic stress disorder (PTSD), this study aims to explore the alteration of triple network connectivity in a specific PTSD induced by a single prolonged trauma exposure. With arterial spin labeling sequence, three networks were identified using independent component analysis in 10 PTSD patients and 10 healthy survivors, who experienced the same coal mining flood disaster. In PTSD patients, decreased connectivity was identified in left middle frontal gyrus of CEN, left precuneus and bilateral superior frontal gyrus of DMN, and right anterior insula of SN. The decreased connectivity in left middle frontal gyrus was identified to associate with clinical severity. These results indicated the decreased triple network connectivity, which not only supported the proposal of the triple network model, but also prompted possible neurobiology mechanism of cognitive dysfunction for this kind of PTSD.
4H-SiC JFET Multilayer Integrated Circuit Technologies Tested Up to 1000 K
NASA Technical Reports Server (NTRS)
Spry, D. J.; Neudeck, P. G.; Chen, L.; Chang, C. W.; Lukco, D.; Beheim, G. M.
2015-01-01
Testing of semiconductor electronics at temperatures above their designed operating envelope is recognized as vital to qualification and lifetime prediction of circuits. This work describes the high temperature electrical testing of prototype 4H silicon carbide (SiC) junction field effect transistor (JFET) integrated circuits (ICs) technology implemented with multilayer interconnects; these ICs are intended for prolonged operation at temperatures up to 773K (500 C). A 50 mm diameter sapphire wafer was used in place of the standard NASA packaging for this experiment. Testing was carried out between 300K (27 C) and 1150K (877 C) with successful electrical operation of all devices observed up to 1000K (727 C).
Cfd Simulation of Capillary Rise of Liquid in Cylindrical Container with Lateral Vanes
NASA Astrophysics Data System (ADS)
Liu, Xiaolin; Huang, Yiyong; Li, Guangyu
2016-06-01
Orbit refueling is one of the most significant technologies, which has vital strategic meaning. It can enhance the flexibility and prolong the lifetime of the spacecrafts. Space propellant management is one of the key technologies in orbit refueling. Based on the background of space propellant management, CFD simulations of capillary rise of liquid in Cylindrical container with lateral vanes in space condition were carried out in this paper. The influence of the size and the number of the vanes to the capillary flow were analyzed too. The results can be useful to the design and optimization of the propellant management device in the vane type surface tension tank.
On the prolonged lifetime of the El Chichon sulfuric acid aerosol cloud
NASA Technical Reports Server (NTRS)
Hofmann, D. J.; Rosen, J. M.
1987-01-01
The observed decay of the aerosol mixing ratio following the eruption of El Chichon appears to have been 20-30 percent slower than that following the eruption of Fuego in 1974, even though the sulfuric acid droplets were observed to grow to considerably larger sizes after El Chichon. This suggests the possible presence of a condensation nuclei and sulfuric acid vapor source and continued growth phenomena occurring well after the El Chichon eruption. It is proposed that the source of these nuclei and the associated vapor may be derived from annual evaporation and condensation of aerosol in the high polar regions during stratospheric warming events, with subsequent spreading to lower latitudes.
NASA Astrophysics Data System (ADS)
Lippuner, Jonas; Fernández, Rodrigo; Roberts, Luke F.; Foucart, Francois; Kasen, Daniel; Metzger, Brian D.; Ott, Christian D.
2017-11-01
We investigate the nucleosynthesis of heavy elements in the winds ejected by accretion discs formed in neutron star mergers. We compute the element formation in disc outflows from hypermassive neutron star (HMNS) remnants of variable lifetime, including the effect of angular momentum transport in the disc evolution. We employ long-term axisymmetric hydrodynamic disc simulations to model the ejecta, and compute r-process nucleosynthesis with tracer particles using a nuclear reaction network containing ∼8000 species. We find that the previously known strong correlation between HMNS lifetime, ejected mass and average electron fraction in the outflow is directly related to the amount of neutrino irradiation on the disc, which dominates mass ejection at early times in the form of a neutrino-driven wind. Production of lanthanides and actinides saturates at short HMNS lifetimes (≲10 ms), with additional ejecta contributing to a blue optical kilonova component for longer-lived HMNSs. We find good agreement between the abundances from the disc outflow alone and the solar r-process distribution only for short HMNS lifetimes (≲10 ms). For longer lifetimes, the rare-earth and third r-process peaks are significantly underproduced compared to the solar pattern, requiring additional contributions from the dynamical ejecta. The nucleosynthesis signature from a spinning black hole (BH) can only overlap with that from an HMNS of moderate lifetime (≲60 ms). Finally, we show that angular momentum transport not only contributes with a late-time outflow component, but that it also enhances the neutrino-driven component by moving material to shallower regions of the gravitational potential, in addition to providing additional heating.
NASA Astrophysics Data System (ADS)
Banerjee, Koushik; Sharma, Hemant; Sengupta, Anasuya
Wireless sensor networks (WSNs) are ad hoc wireless networks that are written off as spread out structure and ad hoc deployment. Sensor networks have all the rudimentary features of ad hoc networks but to altered points—for instance, considerably lesser movement and far more energy necessities. Commonly used technology for communication is radio frequency (RF) communications. Free-space optics (FSO) is relatively new technology which has the prospective to deliver remarkable increases in network lifetime of WSN. Hybrid RF/FSO communications has been suggested to decrease power consumption by a single sensor node. It is observed that security plays a very important role for either RF WSN or hybrid RF/FSO WSN as those are vulnerable to numerous threats. In this paper, various possible attacks in RF/FSO WSN are discussed and aimed to propose some way out from those attacks.
Multi-mode clustering model for hierarchical wireless sensor networks
NASA Astrophysics Data System (ADS)
Hu, Xiangdong; Li, Yongfu; Xu, Huifen
2017-03-01
The topology management, i.e., clusters maintenance, of wireless sensor networks (WSNs) is still a challenge due to its numerous nodes, diverse application scenarios and limited resources as well as complex dynamics. To address this issue, a multi-mode clustering model (M2 CM) is proposed to maintain the clusters for hierarchical WSNs in this study. In particular, unlike the traditional time-trigger model based on the whole-network and periodic style, the M2 CM is proposed based on the local and event-trigger operations. In addition, an adaptive local maintenance algorithm is designed for the broken clusters in the WSNs using the spatial-temporal demand changes accordingly. Numerical experiments are performed using the NS2 network simulation platform. Results validate the effectiveness of the proposed model with respect to the network maintenance costs, node energy consumption and transmitted data as well as the network lifetime.
Study on the effect of sink moving trajectory on wireless sensor networks
NASA Astrophysics Data System (ADS)
Zhong, Peijun; Ruan, Feng
2018-03-01
Wireless sensor networks are developing very fast in recent years, due to their wide potential applications. However there exists the so-called hot spot problem, namely the nodes close to static sink node tend to die earlier than other nodes since they have heavier burden to forward. The introduction of mobile sink node can effectively alleviate this problem since sink node can move along certain trajectories, causing hot spot nodes more evenly distributed. In this paper, we make extensive experimental simulations for circular sensor network, with one mobile sink moving along different radius circumference. The whole network is divided into several clusters and there is one cluster head (CH) inside each cluster. The ordinary sensors communicate with CH and CHs construct a chain until the sink node. Simulation results show that the best network performance appears when sink moves along 0.25 R in terms of network lifetime.
NASA Astrophysics Data System (ADS)
Jiang, Fayu; Zhang, Jun; Yang, Shuhong
2016-04-01
Microflares are small dynamic signatures observed in X-ray and extreme-ultraviolet channels. Because of their impulsive emission enhancements and wide distribution, they are thought to be closely related to coronal heating. By using the high resolution 171 Å images from the Atmospheric Imaging Assembly and the lines-of-sight magnetograms obtained by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we trace 10794 microflares in a quiet region near the disk center with a field of view of 960''× 1068'' during 24 hr. The microflares have an occurrence rate of 4.4 × 103 hr-1 extrapolated over the whole Sun. Their average brightness, size, and lifetime are 1.7 I0 (of the quiet Sun), 9.6 Mm2, and 3.6 min, respectively. There exists a mutual positive correlation between the microflares' brightness, area and lifetime. In general, the microflares distribute uniformly across the solar disk, but form network patterns locally, which are similar to and matched with the magnetic network structures. Typical cases show that the microflares prefer to occur in magnetic cancellation regions of network boundaries. We roughly calculate the upper limit of energy flux supplied by the microflares and find that the result is still a factor of ˜15 below the coronal heating requirement.
NASA Astrophysics Data System (ADS)
Jiang, Fayu; Zhang, Jun; Yang, Shuhong
2015-06-01
Microflares are small dynamic signatures observed in X-ray and extreme-ultraviolet channels. Because of their impulsive emission enhancements and wide distribution, they are thought to be closely related to coronal heating. By using the high-resolution 171 Å images from the Atmospheric Imaging Assembly and the lines-of-sight magnetograms obtained by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we trace 10794 microflares in a quiet region near the disk center with a field of view of 960″ × 1068″ during 24 hr. The microflares have an occurrence rate of 4.4 × 103 hr-1 extrapolated over the whole Sun. Their average brightness, size, and lifetime are 1.7I0 (of the quiet Sun), 9.6 Mm2, and 3.6 min, respectively. There exists a mutual positive correlation between the microflares' brightness, area, and lifetime. In general, the microflares distribute uniformly across the solar disk, but form network patterns locally, which are similar to and matched with the magnetic network structures. Typical cases show that the microflares prefer to occur in magnetic cancellation regions of network boundaries. We roughly calculate the upper limit of energy flux supplied by the microflares and find that the result is still a factor of ˜ 15 below the coronal heating requirement.
Low-complex energy-aware image communication in visual sensor networks
NASA Astrophysics Data System (ADS)
Phamila, Yesudhas Asnath Victy; Amutha, Ramachandran
2013-10-01
A low-complex, low bit rate, energy-efficient image compression algorithm explicitly designed for resource-constrained visual sensor networks applied for surveillance, battle field, habitat monitoring, etc. is presented, where voluminous amount of image data has to be communicated over a bandwidth-limited wireless medium. The proposed method overcomes the energy limitation of individual nodes and is investigated in terms of image quality, entropy, processing time, overall energy consumption, and system lifetime. This algorithm is highly energy efficient and extremely fast since it applies energy-aware zonal binary discrete cosine transform (DCT) that computes only the few required significant coefficients and codes them using enhanced complementary Golomb Rice code without using any floating point operations. Experiments are performed using the Atmel Atmega128 and MSP430 processors to measure the resultant energy savings. Simulation results show that the proposed energy-aware fast zonal transform consumes only 0.3% of energy needed by conventional DCT. This algorithm consumes only 6% of energy needed by Independent JPEG Group (fast) version, and it suits for embedded systems requiring low power consumption. The proposed scheme is unique since it significantly enhances the lifetime of the camera sensor node and the network without any need for distributed processing as was traditionally required in existing algorithms.
Classroom Norms and Individual Smoking Behavior in Middle School
ERIC Educational Resources Information Center
Yarnell, Lisa M.; Brown, H. Shelton, III; Pasch, Keryn E.; Perry, Cheryl L.; Komro, Kelli A.
2012-01-01
Objectives: To investigate whether smoking prevalence in grade-level networks influences individual smoking, suggesting that peers are important social multipliers in teen smoking. Methods: We measured gender-specific, grade-level recent and life-time smoking among urban middle-school students who participated in Project Northland Chicago in a…
An efficient coordination protocol for wireless sensor networks
NASA Astrophysics Data System (ADS)
Paruchuri, Vamsi; Durresi, Arjan; Durresi, Mimoza; Barolli, Leonard
2005-10-01
Backbones infrastructures in wireless sensor networks reduce the communication overhead and energy consumption. In this paper, we present BackBone Routing (BBR), a fully distributed protocol for construction and rotation of backbone networks. BBR reduces energy consumption without significantly diminishing the capacity or connectivity of the network. Another key feature of BBR is its energy balancing nature by distributing the role of being Backbone Node among all the nodes. BBR builds on the observation that when a region of a shared-channel wireless network has a sufficient density of nodes, only a small number of them need be on at any time to forward traffic for active connections. Improvement in system lifetime due to BBR increases as the ratio of idle-to-sleep energy consumption increases, and increases as the density of the network increases. Our experiments show that BBR is more efficient in saving energy and extending network life without deteriorating network performance when compared with geographical shortest path routing.
Criticality of forcing directions on the fragmentation and resilience of grid networks.
Abundo, Cheryl; Monterola, Christopher; Legara, Erika Fille
2014-08-27
A general framework for probing the dynamic evolution of spatial networks comprised of nodes applying force amongst each other is presented. Aside from the already reported magnitude of forces and elongation thresholds, we show that preservation of links in a network is also crucially dependent on how nodes are connected and how edges are directed. We demonstrate that the time it takes for the networks to reach its equilibrium network structure follows a robust power law relationship consistent with Basquin's law with an exponent that can be tuned by changing only the force directions. Further, we illustrate that networks with different connection structures, node positions and edge directions have different Basquin's exponent which can be used to distinguish spatial directed networks from each other. Using an extensive waiting time simulation that spans up to over 16 orders of magnitude, we establish that the presence of memory combined with the scale-free bursty dynamics of edge breaking at the micro level leads to the evident macroscopic power law distribution of network lifetime.
Gallucci, Luca; Menna, Costantino; Angrisani, Leopoldo; Asprone, Domenico
2017-01-01
Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC) structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN) that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM) approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions. PMID:29112128
Pyrethroids are widely used in agricultural, industrial and residential settings to control insect pests. Pyrethroids prolong sodium channel inactivation, although their complete mode of action is not fully understood. We previously reported that permethrin (a Type I pyrethroid) ...
Development of an early warning sensor and network for brown-\\0xAD\\0x2010out conditions.
DOT National Transportation Integrated Search
2016-03-31
Brownout conditions on motorways are caused by windblown dust and sand from upwind areas where : soils are susceptible to wind erosion. Owing in part to prolonged droughts that have dried : soils and denuded vegetation and biological crusts, large, m...
Television, Censorship and South Africa.
ERIC Educational Resources Information Center
Giffard, C. Anthony; Cohen, Lisa
Network television news has often been accused of inciting and prolonging incidents of public violence, whether riots or terrorism, and in South Africa this type of thinking has led to increasingly stringent restrictions on both domestic and foreign media covering the violent unrest there. A study determined a chronology of events and analyzed the…
SIR rumor spreading model considering the effect of difference in nodes’ identification capabilities
NASA Astrophysics Data System (ADS)
Wang, Ya-Qi; Wang, Jing
In this paper, we study the effect of difference in network nodes’ identification capabilities on rumor propagation. A novel susceptible-infected-removed (SIR) model is proposed, based on the mean-field theory, to investigate the dynamical behaviors of such model on homogeneous networks and inhomogeneous networks, respectively. Theoretical analysis and simulation results demonstrate that when we consider the influence of difference in nodes’ identification capabilities, the critical thresholds obviously increase, but the final rumor sizes are apparently reduced. We also find that the difference in nodes’ identification capabilities prolongs the time of rumor propagation reaching a steady state, and decreases the number of nodes that finally accept rumors. Additionally, under the influence of difference of nodes’ identification capabilities, compared with the homogeneous networks, the rumor transmission rate on the inhomogeneous networks is relatively large.
NASA Astrophysics Data System (ADS)
Kolosov, Mikhail S.; Bragin, D. E.; Dergacheva, Olga Y.; Vanzha, O.; Oparina, L.; Uzdensky, Anatoly B.
2004-08-01
The role of different intercellular signaling pathways involving adenylate cyclase (AC), receptor tyrosine kinase (RTK), tyrosine and serine/threonine protein phosphatases (PTP or PP, respectively) in the response of crayfish mechanoreceptor neuron (MRN) and surrounding glial cells to photodynamic effect of aluminum phthalocyanine Photosens have been studied. AC inhibition by MDL-12330A decreased neuron lifetime, whereas AC activation by forskolin increase it. Thus, increase in cAMP produced by activated AC protects SRN against photodynamic inactivation. Similarly, RTK inhibition by genistein decreased neuron lifetime, while inhibition of PTP or PP that remove phosphate groups from proteins, prolonged neuronal activity. AC inhibition reduced photoinduced damage of the plasma membrane, and, therefore, necrosis in neuronal and glial cells. RTK inhibition protected only neurons against PDT-induced membrane permeabilization while glial cells became lesser permeable under ortovanadate-mediated PTP inhibition. AC activation also prevented PDT-induced apoptosis in glial cells. PP inhibition enhanced apoptotic processes in photosensitized glial cells. Therefore, both intercellular signaling pathways involving AC and TRK are involved in the maintenance of neuronal activity, integrity of the neuronal and glial plasma membranes and in apoptotic processes in glia under photosensitization.
Zhang, Yu; Sailer, Irena; Lawn, Brian R
2013-01-01
Objectives Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. Data/sources The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Conclusions Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically-assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Clinical significance Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. PMID:24135295
Choi, Jihye; Cho, Hyun; Kim, Jin-Young; Jung, Dong Jin; Ahn, Kook Jin; Kang, Hang-Bong; Choi, Jung-Seok; Chun, Ji-Won; Kim, Dai-Jin
2017-04-28
Adaptive gaming use has positive effects, whereas depression has been reported to be prevalent in Internet gaming disorder (IGD). However, the neural correlates underlying the association between depression and Internet gaming remain unclear. Moreover, the neuroanatomical profile of the striatum in IGD is relatively less clear despite its important role in addiction. We found lower gray matter (GM) density in the left dorsolateral prefrontal cortex (DLPFC) in the IGD group than in the Internet gaming control (IGC) group and non-gaming control (NGC) group, and the GM density was associated with lifetime usage of Internet gaming, depressed mood, craving, and impulsivity in the gaming users. Striatal volumetric analysis detected a significant reduction in the right nucleus accumbens (NAcc) in the IGD group and its association with lifetime usage of gaming and depression. These findings suggest that alterations in the brain structures involved in the reward system are associated with IGD-related behavioral characteristics. Furthermore, the DLPFC, involved in cognitive control, was observed to serve as a mediator in the association between prolonged gaming and depressed mood. This finding may provide insight into an intervention strategy for treating IGD with comorbid depression.
Ohno, Kohji; Akashi, Tatsuki; Tsujii, Yoshinobu; Yamamoto, Masaya; Tabata, Yasuhiko
2012-03-12
The physiological properties of polymer brush-afforded silica particles prepared by surface-initiated living radical polymerization were investigated in terms of the circulation lifetime in the blood and distribution in tissues. Hydrophilic polymers consisting mainly of poly(poly(ethylene glycol) methyl ether methacrylate) were grafted onto silica particles by surface-initiated atom transfer radical polymerization that was mediated by a copper complex to produce hairy hybrid particles. A series of hybrid particles was synthesized by varying the diameter of the silica core and the chain length of the polymer brush to examine the relationship between their physicochemical and physiological properties. The hybrid particles were injected intravenously into mice to investigate systematically their blood clearance and body distribution. It was revealed that the structural features of the hybrid particles significantly affected their in vivo pharmacokinetics. Some hybrid particles exhibited an excellently prolonged circulation lifetime in the blood with a half life of ∼20 h. When such hybrid particles were injected intravenously into a tumor-bearing mouse, they preferentially accumulated in tumor tissue. The tumor-targeted delivery was optically visualized using hybrid particles grafted with fluorescence-labeled polymer brushes.
Nanoparticles Incorporated inside Single-Crystals: Enhanced Fluorescent Properties
Liu, Yujing; Zang, Huidong; Wang, Ling; ...
2016-09-25
Incorporation of guest materials inside single-crystalline hosts leads to single-crystal composites that have become more and more frequently seen in both biogenic and synthetic crystals. The unique composite structure together with long-range ordering promises special properties that are, however, less often demonstrated. In this study, we examine the fluorescent properties of quantum dots (QDs) and polymer dots (Pdots) encapsulated inside the hosts of calcite single-crystals. Two CdTe QDs and two Pdots are incorporated into growing calcite crystals, as the QDs and Pdots are dispersed in the crystallization media of agarose gels. As a result, enhanced fluorescent properties are obtained frommore » the QDs and Pdots inside calcite single-crystals with greatly improved photostability and significantly prolonged fluorescence lifetime, compared to those in solutions and gels. Particularly, the fluorescence lifetime increases by 0.5-1.6 times after the QDs or Pdots are incorporated. The enhanced fluorescent properties indicate the advantages of encapsulation by single-crystal hosts that provide dense shells to isolate the fluorescent nanoparticles from atmosphere. As such, this work has implications for advancing the research of single-crystal composites toward their functional design.« less
Persistence of climate changes due to a range of greenhouse gases.
Solomon, Susan; Daniel, John S; Sanford, Todd J; Murphy, Daniel M; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre
2010-10-26
Emissions of a broad range of greenhouse gases of varying lifetimes contribute to global climate change. Carbon dioxide displays exceptional persistence that renders its warming nearly irreversible for more than 1,000 y. Here we show that the warming due to non-CO(2) greenhouse gases, although not irreversible, persists notably longer than the anthropogenic changes in the greenhouse gas concentrations themselves. We explore why the persistence of warming depends not just on the decay of a given greenhouse gas concentration but also on climate system behavior, particularly the timescales of heat transfer linked to the ocean. For carbon dioxide and methane, nonlinear optical absorption effects also play a smaller but significant role in prolonging the warming. In effect, dampening factors that slow temperature increase during periods of increasing concentration also slow the loss of energy from the Earth's climate system if radiative forcing is reduced. Approaches to climate change mitigation options through reduction of greenhouse gas or aerosol emissions therefore should not be expected to decrease climate change impacts as rapidly as the gas or aerosol lifetime, even for short-lived species; such actions can have their greatest effect if undertaken soon enough to avoid transfer of heat to the deep ocean.
Zhang, Yu; Sailer, Irena; Lawn, Brian R
2013-12-01
Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. Copyright © 2013 Elsevier Ltd. All rights reserved.
Evaporation Rates for Liquid Water and Ice Under Current Martian Conditions
NASA Technical Reports Server (NTRS)
Sears, D. W. G.; Moore, S. R.; Meier, A.; Chittenden, J.; Kareev, M.; Farmer, C. B.
2004-01-01
A number of studies have been concerned with the evaporation rates under martian conditions in order to place limits on the possible survival time of both liquid water and ice exposed on the surface of Mars. Such studies also aid in assessing the efficacy of an overlying layer of dust or loose regolith material in providing a barrier to free evaporation and thus prolong the lifetime of water in locations where its availability to putative living organisms would be significant. A better quantitative understanding of the effects of phase changes of water in the near surface environment would also aid the evaluation of the possible role of water in the formation of currently observed features, such as gullies in cliff walls and relatively short-term changes in the albedo of small surface areas ('dark stains'). Laboratory measurements aimed at refinement of our knowledge of these values are described here. The establishment of accurate values for evaporation rates and their dependence on the physical conditions of temperature, pressure and energy input, is an important benchmark for the further investigation of the efficacy of barriers to free evaporation in providing a prolonged period of survival of the water, particularly as a liquid.
Radiation burdens for humans on prolonged exomagnetospheric voyages.
Moore, F D
1992-03-01
The severity of radiation exposure for astronauts outside the magnetosphere poses a critical unanswered question bearing on the use of manned vehicles in extended exploration of the solar system (moon, Mars). Such prolonged exomagnetospheric voyages (1-3 years) enter a radiologic environment more severe than that of low earth orbit, an annual dose equivalent in the range of 0.3-0.5 Sv (30-50 rem), and a lifetime excess cancer fatality risk of 3-5% due to low linear-energy-transfer components of galactic cosmic radiation alone. To this calculus must be added estimates for high-atomic-number, high-energy particles, the probability of solar particle events, and the limited effectiveness of shielding. For a 3-year Mars voyage these could elevate the dose equivalent to 1.5-2.25 Sv (150-225 rem) total (0.5-0.75 Sv [50-75 rem] annual) and risks to 5-9% excess cancer fatality. Both the mission (civilian scientific research) and the alternatives (unmanned robotic devices) enter the policy decision here. This paper presents a brief review of pertinent physical and biological data and of research urgently needed before reaching a decision on this question.
Temporal lobe epilepsy and affective disorders: the role of the subgenual anterior cingulate cortex.
Stretton, J; Pope, R A; Winston, G P; Sidhu, M K; Symms, M; Duncan, J S; Koepp, M; Thompson, P J; Foong, J
2015-02-01
Reduced deactivation within the default mode network (DMN) is common in individuals with primary affective disorders relative to healthy volunteers (HVs). It is unknown whether similar network abnormalities are present in temporal lobe epilepsy (TLE) patients with a history of affective psychopathology. 17 TLE patients with a lifetime affective diagnosis, 31 TLE patients with no formal psychiatric history and 30 HVs were included. We used a visuo-spatial 'n-back' paradigm to compare working memory (WM) network activation between these groups. Post hoc analyses included voxel-based morphometry and diffusion tensor imaging. The Beck Depression Inventory-Fast Screen and Beck Anxiety Inventory were completed on the day of scanning. Each group activated the fronto-parietal WM networks and deactivated the typical DMN in response to increasing task demands. Group comparison revealed that TLE patients with lifetime affective morbidity showed significantly greater deactivation in subgenual anterior cingulate cortex (sACC) than either the TLE-only or the HVs (p<0.001). This effect persisted after covarying for current psychotropic medication and severity of current depressive/anxiety symptoms (all p<0.001). Correlational analysis revealed that this finding was not driven by differences in task performance. There were no significant differences in grey matter volume or structural connectivity between the TLE groups. Our results provide novel evidence suggesting that affective psychopathology in TLE has a neurobiological correlate, and in this context the sACC performs differently compared with network activity in primary affective disorders. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Data Gathering and Energy Transfer Dilemma in UAV-Assisted Flying Access Network for IoT.
Arabi, Sara; Sabir, Essaid; Elbiaze, Halima; Sadik, Mohamed
2018-05-11
Recently, Unmanned Aerial Vehicles (UAVs) have emerged as an alternative solution to assist wireless networks, thanks to numerous advantages they offer in comparison to terrestrial fixed base stations. For instance, a UAV can be used to embed a flying base station providing an on-demand nomadic access to network services. A UAV can also be used to wirelessly recharge out-of-battery ground devices. In this paper, we aim to deal with both data collection and recharging depleted ground Internet-of-Things (IoT) devices through a UAV station used as a flying base station. To extend the network lifetime, we present a novel use of UAV with energy harvesting module and wireless recharging capabilities. However, the UAV is used as an energy source to empower depleted IoT devices. On one hand, the UAV charges depleted ground IoT devices under three policies: (1) low-battery first scheme; (2) high-battery first scheme; and (3) random scheme. On the other hand, the UAV station collects data from IoT devices that have sufficient energy to transmit their packets, and in the same phase, the UAV exploits the Radio Frequency (RF) signals transmitted by IoT devices to extract and harvest energy. Furthermore, and as the UAV station has a limited coverage time due to its energy constraints, we propose and investigate an efficient trade-off between ground users recharging time and data gathering time. Furthermore, we suggest to control and optimize the UAV trajectory in order to complete its travel within a minimum time, while minimizing the energy spent and/or enhancing the network lifetime. Extensive numerical results and simulations show how the system behaves under different scenarios and using various metrics in which we examine the added value of UAV with energy harvesting module.
Sakai, Hiroshi; Tokuhara, Shunsuke; Murakami, Michio; Kosaka, Koji; Oguma, Kumiko; Takizawa, Satoshi
2016-01-01
Due to decreasing water demands in Japan, hydraulic retention times of water in piped supply systems has been extended, resulting in a longer contact time with disinfectants. However, the effects of extended contact time on the formation of various disinfection byproducts (DBPs), including carbonaceous DBPs such as trihalomethane (THM) and haloacetic acid (HAA), and nitrogenous DBPs such as nitrosodimethylamine (NDMA) and nitrosomorpholine (NMor), have not yet been investigated in detail. Herein, we compared the formation of these DBPs by chlorination and chloramination for five water samples collected from rivers and a dam in Japan, all of which represent municipal water supply sources. Water samples were treated by either filtration or a combination of coagulation and filtration. Treated samples were subjected to a DBP formation potential test by either chlorine or chloramine for contact times of 1 day or 4 days. Four THM species, nine HAA species, NDMA, and NMor were measured by GC-ECD or UPLC-MS/MS. Lifetime cancer risk was calculated based on the Integrated Risk Information System unit risk information. The experiment and analysis focused on (i) prolonged contact time from 1 day to 4 days, (ii) reduction efficiency by conventional treatment, (iii) correlations between DBP formation potentials and water quality parameters, and (iv) the contribution of each species to total risk. With an increased contact time from 1 day to 4 days, THM formation increased to 420% by chloramination. Coagulation-filtration treatment showed that brominated species in THMs are less likely to be reduced. With the highest unit risk among THM species, dibromochloromethane (DBCM) showed a high correlation with bromine, but not with organic matter parameters. NDMA contributed to lifetime cancer risk. The THM formation pathway should be revisited in terms of chloramination and bromine incorporation. It is also recommended to investigate nitrosamine formation potential by chloramination. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wang, Haimin; Zirin, Harold; Ai, Guoxiang
1991-01-01
Several series of coordinated observations on decaying active regions and enhanced magnetic network regions on the sun were carried out jointly at Big Bear Solar Observatory and at the Huairou Solar Observing Station of the Bejing Astronomical Observatory in China. The magnetic field evolution in several regions was followed closely for three to seven days. The magnetic flux transport from the remnants of decayed active regions was studied, along with the evolution and lifetime of the magnetic network which defines the boundaries of supergranules. The magnetic flux transport in an enhanced network region was studied in detail and found to be negative. Also briefly described are some properties of moving magnetic features around a sunspot. Results of all of the above studies are presented.
Mowbray, Orion
2014-01-01
Many individuals wait until alcohol use becomes severe before treatment is sought. However, social networks, or the number of social groups an individual belongs to, may play a moderating role in this relationship. Logistic regression examined the interaction of alcohol consumption and social networks as a predictor of treatment utilization while adjusting for sociodemographic and clinical variables among 1,433 lifetime alcohol-dependent respondents from wave 2 of the National Epidemiologic Survey on Alcohol Related Conditions (NESARC). Results showed that social networks moderate the relationship between alcohol consumption and treatment utilization such that for individuals with few network ties, the relationship between alcohol consumption and treatment utilization was diminished, compared to the relationship between alcohol consumption and treatment utilization for individuals with many network ties. Findings offer insight into how social networks, at times, can influence individuals to pursue treatment, while at other times, influence individuals to stay out of treatment, or seek treatment substitutes. PMID:24462223
Markov State Models of gene regulatory networks.
Chu, Brian K; Tse, Margaret J; Sato, Royce R; Read, Elizabeth L
2017-02-06
Gene regulatory networks with dynamics characterized by multiple stable states underlie cell fate-decisions. Quantitative models that can link molecular-level knowledge of gene regulation to a global understanding of network dynamics have the potential to guide cell-reprogramming strategies. Networks are often modeled by the stochastic Chemical Master Equation, but methods for systematic identification of key properties of the global dynamics are currently lacking. The method identifies the number, phenotypes, and lifetimes of long-lived states for a set of common gene regulatory network models. Application of transition path theory to the constructed Markov State Model decomposes global dynamics into a set of dominant transition paths and associated relative probabilities for stochastic state-switching. In this proof-of-concept study, we found that the Markov State Model provides a general framework for analyzing and visualizing stochastic multistability and state-transitions in gene networks. Our results suggest that this framework-adopted from the field of atomistic Molecular Dynamics-can be a useful tool for quantitative Systems Biology at the network scale.
Optimizing the switching time for 400 kV SF6 circuit breakers
NASA Astrophysics Data System (ADS)
Ciulica, D.
2018-01-01
This paper presents real-time voltage and current analysis for optimizing the wave switching point of the circuit breaker SF6. Circuit Breaker plays an important role in power systems. It provides protection for equipment in embedded stations in transport networks. SF6 Circuit Breaker is very important equipment in Power Systems, which is used for up to 400 kV due to its excellent performance. The controlled switching is used to eliminate transient modes and electrodynamic and dielectric charges in the network at manual switching of capacitor, shunt reactors and power transformers. These effects reduce the reliability and lifetime of the equipment installed on the network, or may lead to erroneous protection.
Modeling of Current Consumption in 802.15.4/ZigBee Sensor Motes
Casilari, Eduardo; Cano-García, Jose M.; Campos-Garrido, Gonzalo
2010-01-01
Battery consumption is a key aspect in the performance of wireless sensor networks. One of the most promising technologies for this type of networks is 802.15.4/ZigBee. This paper presents an empirical characterization of battery consumption in commercial 802.15.4/ZigBee motes. This characterization is based on the measurement of the current that is drained from the power source under different 802.15.4 communication operations. The measurements permit the definition of an analytical model to predict the maximum, minimum and mean expected battery lifetime of a sensor networking application as a function of the sensor duty cycle and the size of the sensed data. PMID:22219671
Modeling of current consumption in 802.15.4/ZigBee sensor motes.
Casilari, Eduardo; Cano-García, Jose M; Campos-Garrido, Gonzalo
2010-01-01
Battery consumption is a key aspect in the performance of wireless sensor networks. One of the most promising technologies for this type of networks is 802.15.4/ZigBee. This paper presents an empirical characterization of battery consumption in commercial 802.15.4/ZigBee motes. This characterization is based on the measurement of the current that is drained from the power source under different 802.15.4 communication operations. The measurements permit the definition of an analytical model to predict the maximum, minimum and mean expected battery lifetime of a sensor networking application as a function of the sensor duty cycle and the size of the sensed data.
Link-state-estimation-based transmission power control in wireless body area networks.
Kim, Seungku; Eom, Doo-Seop
2014-07-01
This paper presents a novel transmission power control protocol to extend the lifetime of sensor nodes and to increase the link reliability in wireless body area networks (WBANs). We first experimentally investigate the properties of the link states using the received signal strength indicator (RSSI). We then propose a practical transmission power control protocol based on both short- and long-term link-state estimations. Both the short- and long-term link-state estimations enable the transceiver to adapt the transmission power level and target the RSSI threshold range, respectively, to simultaneously satisfy the requirements of energy efficiency and link reliability. Finally, the performance of the proposed protocol is experimentally evaluated in two experimental scenarios-body posture change and dynamic body motion-and compared with the typical WBAN transmission power control protocols, a real-time reactive scheme, and a dynamic postural position inference mechanism. From the experimental results, it is found that the proposed protocol increases the lifetime of the sensor nodes by a maximum of 9.86% and enhances the link reliability by reducing the packet loss by a maximum of 3.02%.
Antonopoulos, Christos; Asimogloy, Katerina; Chiti, Sarah; D'Onofrio, Luca; Gianfranceschi, Simone; He, Danping; Iodice, Antonio; Koubias, Stavros; Koulamas, Christos; Lavagno, Luciano; Lazarescu, Mihai T; Mujica, Gabriel; Papadopoulos, George; Portilla, Jorge; Redondo, Luis; Riccio, Daniele; Riesgo, Teresa; Rodriguez, Daniel; Ruello, Giuseppe; Samoladas, Vasilis; Stoyanova, Tsenka; Touliatos, Gerasimos; Valvo, Angela; Vlahoy, Georgia
2016-06-02
In this article we present the main results obtained in the ARTEMIS-JU WSN-DPCM project between October 2011 and September 2015. The first objective of the project was the development of an integrated toolset for Wireless sensor networks (WSN) application planning, development, commissioning and maintenance, which aims to support application domain experts, with limited WSN expertise, to efficiently develop WSN applications from planning to lifetime maintenance. The toolset is made of three main tools: one for planning, one for application development and simulation (which can include hardware nodes), and one for network commissioning and lifetime maintenance. The tools are integrated in a single platform which promotes software reuse by automatically selecting suitable library components for application synthesis and the abstraction of the underlying architecture through the use of a middleware layer. The second objective of the project was to test the effectiveness of the toolset for the development of two case studies in different domains, one for detecting the occupancy state of parking lots and one for monitoring air concentration of harmful gasses near an industrial site.
NASA Technical Reports Server (NTRS)
Singh, Jag J.; Pater, Ruth H.; Eftekhari, Abe
1998-01-01
Thermoset and thermoplastic polyimides have complementary physical/mechanical properties. Whereas thermoset polyimides are brittle and generally easier to process, thermoplastic polyimides are tough but harder to process. It is expected that a combination of these two types of polyimides may help produce polymers more suitable for aerospace applications. Semi-Interpenetrating Polymer Networks (S-IPNs) of thermoset LaRC(Trademark)-RP46 and thermoplastic LARC(Trademark)-IA polyimides were prepared in weight percent ratios ranging from 100:0 to 0: 100. Positron lifetime measurements were made in these samples to correlate their free volume features with physical/mechanical properties. As expected, positronium atoms are not formed in these samples. The second life time component has been used to infer the positron trap dimensions. The "free volume" goes through a minimum at about 50:50 ratio, suggesting that S-IPN samples are not merely solid solutions of the two polymers. These data and related structural properties of the S-IPN samples have been discussed in this paper.
Antonopoulos, Christos; Asimogloy, Katerina; Chiti, Sarah; D’Onofrio, Luca; Gianfranceschi, Simone; He, Danping; Iodice, Antonio; Koubias, Stavros; Koulamas, Christos; Lavagno, Luciano; Lazarescu, Mihai T.; Mujica, Gabriel; Papadopoulos, George; Portilla, Jorge; Redondo, Luis; Riccio, Daniele; Riesgo, Teresa; Rodriguez, Daniel; Ruello, Giuseppe; Samoladas, Vasilis; Stoyanova, Tsenka; Touliatos, Gerasimos; Valvo, Angela; Vlahoy, Georgia
2016-01-01
In this article we present the main results obtained in the ARTEMIS-JU WSN-DPCM project between October 2011 and September 2015. The first objective of the project was the development of an integrated toolset for Wireless sensor networks (WSN) application planning, development, commissioning and maintenance, which aims to support application domain experts, with limited WSN expertise, to efficiently develop WSN applications from planning to lifetime maintenance. The toolset is made of three main tools: one for planning, one for application development and simulation (which can include hardware nodes), and one for network commissioning and lifetime maintenance. The tools are integrated in a single platform which promotes software reuse by automatically selecting suitable library components for application synthesis and the abstraction of the underlying architecture through the use of a middleware layer. The second objective of the project was to test the effectiveness of the toolset for the development of two case studies in different domains, one for detecting the occupancy state of parking lots and one for monitoring air concentration of harmful gasses near an industrial site. PMID:27271622
Energy Aware Cluster-Based Routing in Flying Ad-Hoc Networks.
Aadil, Farhan; Raza, Ali; Khan, Muhammad Fahad; Maqsood, Muazzam; Mehmood, Irfan; Rho, Seungmin
2018-05-03
Flying ad-hoc networks (FANETs) are a very vibrant research area nowadays. They have many military and civil applications. Limited battery energy and the high mobility of micro unmanned aerial vehicles (UAVs) represent their two main problems, i.e., short flight time and inefficient routing. In this paper, we try to address both of these problems by means of efficient clustering. First, we adjust the transmission power of the UAVs by anticipating their operational requirements. Optimal transmission range will have minimum packet loss ratio (PLR) and better link quality, which ultimately save the energy consumed during communication. Second, we use a variant of the K-Means Density clustering algorithm for selection of cluster heads. Optimal cluster heads enhance the cluster lifetime and reduce the routing overhead. The proposed model outperforms the state of the art artificial intelligence techniques such as Ant Colony Optimization-based clustering algorithm and Grey Wolf Optimization-based clustering algorithm. The performance of the proposed algorithm is evaluated in term of number of clusters, cluster building time, cluster lifetime and energy consumption.
Xie, Yicheng; Chen, Shangbin; Wu, Yujin; Murphy, Timothy H
2014-11-05
Relatively few studies have examined plasticity of inhibitory neuronal networks following stroke in vivo, primarily due to the inability to selectively monitor inhibition. We assessed the structure of parvalbumin (PV) interneurons during a 5 min period of global ischemia and reperfusion in mice, which mimicked cerebral ischemia during cardiac arrest or forms of transient ischemic attack. The dendritic structure of PV-neurons in cortical superficial layers was rapidly swollen and beaded during global ischemia, but recovered within 5-10 min following reperfusion. Using optogenetics and a multichannel optrode, we investigated the function of PV-neurons in mouse forelimb somatosensory cortex. We demonstrated pharmacologically that PV-channelrhodopsin-2 (ChR2) stimulation evoked activation in layer IV/V, which resulted in rapid current sinks mediated by photocurrent and action potentials (a measure of PV-neuron excitability), which was then followed by current sources mediated by network GABAergic synaptic activity. During ischemic depolarization, the PV-ChR2-evoked current sinks (excitability) were suppressed, but recovered rapidly following reperfusion concurrent with repolarization of the DC-EEG. In contrast, the current sources reflecting GABAergic synaptic network activity recovered slowly and incompletely, and was coincident with the partial recovery of the forepaw stimulation-evoked current sinks in layer IV/V 30 min post reperfusion. Our in vivo data suggest that the excitability of PV inhibitory neurons was suppressed during global ischemia and rapidly recovered during reperfusion. In contrast, PV-ChR2 stimulation-evoked GABAergic synaptic network activity exhibited a prolonged suppression even ∼1 h after reperfusion, which could contribute to the dysfunction of sensation and cognition following transient global ischemia. Copyright © 2014 the authors 0270-6474/14/3414890-12$15.00/0.
Complex network analysis of resting-state fMRI of the brain.
Anwar, Abdul Rauf; Hashmy, Muhammad Yousaf; Imran, Bilal; Riaz, Muhammad Hussnain; Mehdi, Sabtain Muhammad Muntazir; Muthalib, Makii; Perrey, Stephane; Deuschl, Gunther; Groppa, Sergiu; Muthuraman, Muthuraman
2016-08-01
Due to the fact that the brain activity hardly ever diminishes in healthy individuals, analysis of resting state functionality of the brain seems pertinent. Various resting state networks are active inside the idle brain at any time. Based on various neuro-imaging studies, it is understood that various structurally distant regions of the brain could be functionally connected. Regions of the brain, that are functionally connected, during rest constitutes to the resting state network. In the present study, we employed the complex network measures to estimate the presence of community structures within a network. Such estimate is named as modularity. Instead of using a traditional correlation matrix, we used a coherence matrix taken from the causality measure between different nodes. Our results show that in prolonged resting state the modularity starts to decrease. This decrease was observed in all the resting state networks and on both sides of the brain. Our study highlights the usage of coherence matrix instead of correlation matrix for complex network analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cree, Johnathan Vee; Delgado-Frias, Jose
Large scale wireless sensor networks have been proposed for applications ranging from anomaly detection in an environment to vehicle tracking. Many of these applications require the networks to be distributed across a large geographic area while supporting three to five year network lifetimes. In order to support these requirements large scale wireless sensor networks of duty-cycled devices need a method of efficient and effective autonomous configuration/maintenance. This method should gracefully handle the synchronization tasks duty-cycled networks. Further, an effective configuration solution needs to recognize that in-network data aggregation and analysis presents significant benefits to wireless sensor network and should configuremore » the network in a way such that said higher level functions benefit from the logically imposed structure. NOA, the proposed configuration and maintenance protocol, provides a multi-parent hierarchical logical structure for the network that reduces the synchronization workload. It also provides higher level functions with significant inherent benefits such as but not limited to: removing network divisions that are created by single-parent hierarchies, guarantees for when data will be compared in the hierarchy, and redundancies for communication as well as in-network data aggregation/analysis/storage.« less
An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network.
Vimalarani, C; Subramanian, R; Sivanandam, S N
2016-01-01
Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.
A Social Network Supported CAI Model for Tacit Knowledge Acquisition
ERIC Educational Resources Information Center
Chen, S. N.; Luh, D. B.
2018-01-01
Freehand sketching is one of the most important and commonly used methods of generating and sharing budding ideas during the conceptual development portion of the preliminary phase of design. To develop one's skills, prolonged practice, acquiring instant feedback and suggestions while practicing are invaluable. The two key and indispensable parts…
Topology control algorithm for wireless sensor networks based on Link forwarding
NASA Astrophysics Data System (ADS)
Pucuo, Cairen; Qi, Ai-qin
2018-03-01
The research of topology control could effectively save energy and increase the service life of network based on wireless sensor. In this paper, a arithmetic called LTHC (link transmit hybrid clustering) based on link transmit is proposed. It decreases expenditure of energy by changing the way of cluster-node’s communication. The idea is to establish a link between cluster and SINK node when the cluster is formed, and link-node must be non-cluster. Through the link, cluster sends information to SINK nodes. For the sake of achieving the uniform distribution of energy on the network, prolongate the network survival time, and improve the purpose of communication, the communication will cut down much more expenditure of energy for cluster which away from SINK node. In the two aspects of improving the traffic and network survival time, we find that the LTCH is far superior to the traditional LEACH by experiments.
Vida, Imre; Bartos, Marlene; Jonas, Peter
2006-01-05
Networks of GABAergic neurons are key elements in the generation of gamma oscillations in the brain. Computational studies suggested that the emergence of coherent oscillations requires hyperpolarizing inhibition. Here, we show that GABA(A) receptor-mediated inhibition in mature interneurons of the hippocampal dentate gyrus is shunting rather than hyperpolarizing. Unexpectedly, when shunting inhibition is incorporated into a structured interneuron network model with fast and strong synapses, coherent oscillations emerge. In comparison to hyperpolarizing inhibition, networks with shunting inhibition show several advantages. First, oscillations are generated with smaller tonic excitatory drive. Second, network frequencies are tuned to the gamma band. Finally, robustness against heterogeneity in the excitatory drive is markedly improved. In single interneurons, shunting inhibition shortens the interspike interval for low levels of drive but prolongs it for high levels, leading to homogenization of neuronal firing rates. Thus, shunting inhibition may confer increased robustness to gamma oscillations in the brain.
NASA Technical Reports Server (NTRS)
Spry, David J.; Neudeck, Philip G.; Liangyu, Chen; Evans, Laura J.; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.
2015-01-01
The fabrication and prolonged 500 C electrical testing of 4H-SiC junction field effect transistor (JFET) integrated circuits (ICs) with two levels of metal interconnect is reported in another submission to this conference proceedings. While some circuits functioned more than 1000 hours at 500 C, the majority of packaged ICs from this wafer electrically failed after less than 200 hours of operation in the same test conditions. This work examines the root physical degradation and failure mechanisms believed responsible for observed large discrepancies in 500 C operating time. Evidence is presented for four distinct issues that significantly impacted 500 C IC operational yield and lifetime for this wafer.
NASA Technical Reports Server (NTRS)
Spry, David J.; Neudeck, Philip G.; Chen, Liangyu; Evans, Laura J.; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.
2015-01-01
The fabrication and prolonged 500 C electrical testing of 4H-SiC junction field effect transistor (JFET) integrated circuits (ICs) with two levels of metal interconnect is reported in another submission to this conference proceedings. While some circuits functioned more than 3000 hours at 500 C, the majority of packaged ICs from this wafer electrically failed after less than 200 hours of operation in the same test conditions. This work examines the root physical degradation and failure mechanisms believed responsible for observed large discrepancies in 500 C operating time. Evidence is presented for four distinct issues that significantly impacted 500 C IC operational yield and lifetime for this wafer.
Dish concentrators for solar thermal energy - Status and technology development
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1981-01-01
Comparisons are presented of point-focusing, or 'dish' solar concentrator system features, development status, and performance levels demonstrated to date. In addition to the requirements of good optical efficiency and high geometric concentration ratios, the most important future consideration in solar thermal energy dish concentrator design will be the reduction of installed and lifetime costs, as well as the materials and labor costs of production. It is determined that technology development initiatives are needed in such areas as optical materials, design wind speeds and wind loads, structural configuration and materials resistance to prolonged exposure, and the maintenance of optical surfaces. The testing of complete concentrator systems, with energy-converting receivers and controls, is also necessary. Both reflector and Fresnel lens concentrator systems are considered.
NASA Technical Reports Server (NTRS)
Tawfik, Hazem H.
1996-01-01
Thermally sprayed coatings have been extensively used to enhance materials properties and provide surface protection against their working environments in a number of industrial applications. Thermal barrier coatings (TBC) are used to reduce the thermal conductivity of aerospace turbine blades and improve the turbine overall thermal efficiency. TBC allows higher gas operating temperatures and lower blade material temperatures due to the thermal insulation provided by these ceramic coatings. In the automotive industry, coatings are currently applied to a number of moving parts that are subjected to friction and wear inside the engine such as pistons, cylinder liners, valves and crankshafts to enhance their wear resistance and prolong their useful operation and lifetime.
Mansano, Raul K; Godoy, Eduardo P; Porto, Arthur J V
2014-12-18
Recent advances in wireless networking technology and the proliferation of industrial wireless sensors have led to an increasing interest in using wireless networks for closed loop control. The main advantages of Wireless Networked Control Systems (WNCSs) are the reconfigurability, easy commissioning and the possibility of installation in places where cabling is impossible. Despite these advantages, there are two main problems which must be considered for practical implementations of WNCSs. One problem is the sampling period constraint of industrial wireless sensors. This problem is related to the energy cost of the wireless transmission, since the power supply is limited, which precludes the use of these sensors in several closed-loop controls. The other technological concern in WNCS is the energy efficiency of the devices. As the sensors are powered by batteries, the lowest possible consumption is required to extend battery lifetime. As a result, there is a compromise between the sensor sampling period, the sensor battery lifetime and the required control performance for the WNCS. This paper develops a model-based soft sensor to overcome these problems and enable practical implementations of WNCSs. The goal of the soft sensor is generating virtual data allowing an actuation on the process faster than the maximum sampling period available for the wireless sensor. Experimental results have shown the soft sensor is a solution to the sampling period constraint problem of wireless sensors in control applications, enabling the application of industrial wireless sensors in WNCSs. Additionally, our results demonstrated the soft sensor potential for implementing energy efficient WNCS through the battery saving of industrial wireless sensors.
Non-invasive dynamic near-infrared imaging and quantification of vascular leakage in vivo.
Proulx, Steven T; Luciani, Paola; Alitalo, Annamari; Mumprecht, Viviane; Christiansen, Ailsa J; Huggenberger, Reto; Leroux, Jean-Christophe; Detmar, Michael
2013-07-01
Preclinical vascular research has been hindered by a lack of methods that can sensitively image and quantify vascular perfusion and leakage in vivo. In this study, we have developed dynamic near-infrared imaging methods to repeatedly visualize and quantify vascular leakage in mouse skin in vivo, and we have applied these methods to transgenic mice with overexpression of vascular endothelial growth factors VEGF-A or -C. Near-infrared dye conjugates were developed to identify a suitable vascular tracer that had a prolonged circulation lifetime and slow leakage into normal tissue after intravenous injection. Dynamic simultaneous imaging of ear skin and a large blood vessel in the leg enabled determination of the intravascular signal (blood volume fraction) from the tissue signal shortly after injection and quantifications of vascular leakage into the extravascular tissue over time. This method allowed for the sensitive detection of increased blood vascularity and leakage rates in K14-VEGF-A transgenic mice and also reliably measured inflammation-induced changes of vascularity and leakage over time in the same mice. Measurements after injection of recombinant VEGF-A surprisingly revealed increased blood vascular leakage and lymphatic clearance in K14-VEGF-C transgenic mice which have an expanded cutaneous lymphatic vessel network, potentially indicating unanticipated effects of lymphatic drainage on vascular leakage. Increased vascular leakage was also detected in subcutaneous tumors, confirming that the method can also be applied to deeper tissues. This new imaging method might facilitate longitudinal investigations of the in vivo effects of drug candidates, including angiogenesis inhibitors, in preclinical disease models.
Non-invasive dynamic near-infrared imaging and quantification of vascular leakage in vivo
Proulx, Steven T.; Luciani, Paola; Alitalo, Annamari; Mumprecht, Viviane; Christiansen, Ailsa J.; Huggenberger, Reto
2013-01-01
Preclinical vascular research has been hindered by a lack of methods that can sensitively image and quantify vascular perfusion and leakage in vivo. In this study, we have developed dynamic near-infrared imaging methods to repeatedly visualize and quantify vascular leakage in mouse skin in vivo, and we have applied these methods to transgenic mice with overexpression of vascular endothelial growth factors VEGF-A or -C. Near-infrared dye conjugates were developed to identify a suitable vascular tracer that had a prolonged circulation lifetime and slow leakage into normal tissue after intravenous injection. Dynamic simultaneous imaging of ear skin and a large blood vessel in the leg enabled determination of the intravascular signal (blood volume fraction) from the tissue signal shortly after injection and quantifications of vascular leakage into the extravascular tissue over time. This method allowed for the sensitive detection of increased blood vascularity and leakage rates in K14-VEGF-A transgenic mice and also reliably measured inflammation-induced changes of vascularity and leakage over time in the same mice. Measurements after injection of recombinant VEGF-A surprisingly revealed increased blood vascular leakage and lymphatic clearance in K14-VEGF-C transgenic mice which have an expanded cutaneous lymphatic vessel network, potentially indicating unanticipated effects of lymphatic drainage on vascular leakage. Increased vascular leakage was also detected in subcutaneous tumors, confirming that the method can also be applied to deeper tissues. This new imaging method might facilitate longitudinal investigations of the in vivo effects of drug candidates, including angiogenesis inhibitors, in preclinical disease models. PMID:23325334
Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Xu, Jun; Yang, Jianfeng; Zhou, Haiying; Shi, Hongling; Zhou, Peng
2015-01-01
Memory and energy optimization strategies are essential for the resource-constrained wireless sensor network (WSN) nodes. In this article, a new memory-optimized and energy-optimized multithreaded WSN operating system (OS) LiveOS is designed and implemented. Memory cost of LiveOS is optimized by using the stack-shifting hybrid scheduling approach. Different from the traditional multithreaded OS in which thread stacks are allocated statically by the pre-reservation, thread stacks in LiveOS are allocated dynamically by using the stack-shifting technique. As a result, memory waste problems caused by the static pre-reservation can be avoided. In addition to the stack-shifting dynamic allocation approach, the hybrid scheduling mechanism which can decrease both the thread scheduling overhead and the thread stack number is also implemented in LiveOS. With these mechanisms, the stack memory cost of LiveOS can be reduced more than 50% if compared to that of a traditional multithreaded OS. Not is memory cost optimized, but also the energy cost is optimized in LiveOS, and this is achieved by using the multi-core “context aware” and multi-core “power-off/wakeup” energy conservation approaches. By using these approaches, energy cost of LiveOS can be reduced more than 30% when compared to the single-core WSN system. Memory and energy optimization strategies in LiveOS not only prolong the lifetime of WSN nodes, but also make the multithreaded OS feasible to run on the memory-constrained WSN nodes. PMID:25545264
A hybrid protection approaches for denial of service (DoS) attacks in wireless sensor networks
NASA Astrophysics Data System (ADS)
Gunasekaran, Mahalakshmi; Periakaruppan, Subathra
2017-06-01
Wireless sensor network (WSN) contains the distributed autonomous devices with the sensing capability of physical and environmental conditions. During the clustering operation, the consumption of more energy causes the draining in battery power that leads to minimum network lifetime. Hence, the WSN devices are initially operated on low-power sleep mode to maximise the lifetime. But, the attacks arrival cause the disruption in low-power operating called denial of service (DoS) attacks. The conventional intrusion detection (ID) approaches such as rule-based and anomaly-based methods effectively detect the DoS attacks. But, the energy consumption and false detection rate are more. The absence of attack information and broadcast of its impact to the other cluster head (CH) leads to easy DoS attacks arrival. This article combines the isolation and routing tables to detect the attack in the specific cluster and broadcasts the information to other CH. The intercommunication between the CHs prevents the DoS attacks effectively. In addition, the swarm-based defence approach is proposed to migrate the fault channel to normal operating channel through frequency hop approaches. The comparative analysis between the proposed table-based intrusion detection systems (IDSs) and swarm-based defence approaches with the traditional IDS regarding the parameters of transmission overhead/efficiency, energy consumption, and false positive/negative rates proves the capability of DoS prediction/prevention in WSN.
An On-Demand Emergency Packet Transmission Scheme for Wireless Body Area Networks.
Al Ameen, Moshaddique; Hong, Choong Seon
2015-12-04
The rapid developments of sensor devices that can actively monitor human activities have given rise to a new field called wireless body area network (BAN). A BAN can manage devices in, on and around the human body. Major requirements of such a network are energy efficiency, long lifetime, low delay, security, etc. Traffic in a BAN can be scheduled (normal) or event-driven (emergency). Traditional media access control (MAC) protocols use duty cycling to improve performance. A sleep-wake up cycle is employed to save energy. However, this mechanism lacks features to handle emergency traffic in a prompt and immediate manner. To deliver an emergency packet, a node has to wait until the receiver is awake. It also suffers from overheads, such as idle listening, overhearing and control packet handshakes. An external radio-triggered wake up mechanism is proposed to handle prompt communication. It can reduce the overheads and improve the performance through an on-demand scheme. In this work, we present a simple-to-implement on-demand packet transmission scheme by taking into considerations the requirements of a BAN. The major concern is handling the event-based emergency traffic. The performance analysis of the proposed scheme is presented. The results showed significant improvements in the overall performance of a BAN compared to state-of-the-art protocols in terms of energy consumption, delay and lifetime.
Kriener, Birgit; Enger, Håkon; Tetzlaff, Tom; Plesser, Hans E.; Gewaltig, Marc-Oliver; Einevoll, Gaute T.
2014-01-01
Random networks of integrate-and-fire neurons with strong current-based synapses can, unlike previously believed, assume stable states of sustained asynchronous and irregular firing, even without external random background or pacemaker neurons. We analyze the mechanisms underlying the emergence, lifetime and irregularity of such self-sustained activity states. We first demonstrate how the competition between the mean and the variance of the synaptic input leads to a non-monotonic firing-rate transfer in the network. Thus, by increasing the synaptic coupling strength, the system can become bistable: In addition to the quiescent state, a second stable fixed-point at moderate firing rates can emerge by a saddle-node bifurcation. Inherently generated fluctuations of the population firing rate around this non-trivial fixed-point can trigger transitions into the quiescent state. Hence, the trade-off between the magnitude of the population-rate fluctuations and the size of the basin of attraction of the non-trivial rate fixed-point determines the onset and the lifetime of self-sustained activity states. During self-sustained activity, individual neuronal activity is moreover highly irregular, switching between long periods of low firing rate to short burst-like states. We show that this is an effect of the strong synaptic weights and the finite time constant of synaptic and neuronal integration, and can actually serve to stabilize the self-sustained state. PMID:25400575
Kriener, Birgit; Enger, Håkon; Tetzlaff, Tom; Plesser, Hans E; Gewaltig, Marc-Oliver; Einevoll, Gaute T
2014-01-01
Random networks of integrate-and-fire neurons with strong current-based synapses can, unlike previously believed, assume stable states of sustained asynchronous and irregular firing, even without external random background or pacemaker neurons. We analyze the mechanisms underlying the emergence, lifetime and irregularity of such self-sustained activity states. We first demonstrate how the competition between the mean and the variance of the synaptic input leads to a non-monotonic firing-rate transfer in the network. Thus, by increasing the synaptic coupling strength, the system can become bistable: In addition to the quiescent state, a second stable fixed-point at moderate firing rates can emerge by a saddle-node bifurcation. Inherently generated fluctuations of the population firing rate around this non-trivial fixed-point can trigger transitions into the quiescent state. Hence, the trade-off between the magnitude of the population-rate fluctuations and the size of the basin of attraction of the non-trivial rate fixed-point determines the onset and the lifetime of self-sustained activity states. During self-sustained activity, individual neuronal activity is moreover highly irregular, switching between long periods of low firing rate to short burst-like states. We show that this is an effect of the strong synaptic weights and the finite time constant of synaptic and neuronal integration, and can actually serve to stabilize the self-sustained state.
An On-Demand Emergency Packet Transmission Scheme for Wireless Body Area Networks
Al Ameen, Moshaddique; Hong, Choong Seon
2015-01-01
The rapid developments of sensor devices that can actively monitor human activities have given rise to a new field called wireless body area network (BAN). A BAN can manage devices in, on and around the human body. Major requirements of such a network are energy efficiency, long lifetime, low delay, security, etc. Traffic in a BAN can be scheduled (normal) or event-driven (emergency). Traditional media access control (MAC) protocols use duty cycling to improve performance. A sleep-wake up cycle is employed to save energy. However, this mechanism lacks features to handle emergency traffic in a prompt and immediate manner. To deliver an emergency packet, a node has to wait until the receiver is awake. It also suffers from overheads, such as idle listening, overhearing and control packet handshakes. An external radio-triggered wake up mechanism is proposed to handle prompt communication. It can reduce the overheads and improve the performance through an on-demand scheme. In this work, we present a simple-to-implement on-demand packet transmission scheme by taking into considerations the requirements of a BAN. The major concern is handling the event-based emergency traffic. The performance analysis of the proposed scheme is presented. The results showed significant improvements in the overall performance of a BAN compared to state-of-the-art protocols in terms of energy consumption, delay and lifetime. PMID:26690161
Fluorescence lifetime images of different green fluorescent proteins in fly brain
NASA Astrophysics Data System (ADS)
Lai, Sih-Yu; Lin, Y. Y.; Chiang, A. S.; Huang, Y. C.
2009-02-01
The mechanisms of learning and memory are the most important functions in an animal brain. Investigating neuron circuits and network maps in a brain is the first step toward understanding memory and learning behavior. Since Drosophila brain is the major model for understanding brain functions, we measure the florescence lifetimes of different GFP-based reporters expressed in a fly brain. In this work, two Gal4 drivers, OK 107 and MZ 19 were used. Intracellular calcium ([Ca2+]) concentration is an importation indicator of neuronal activity. Therefore, several groups have developed GFP-based calcium sensors, among which G-CaMP is the most popular and reliable. The fluorescence intensity of G-CaMP will increase when it binds to calcium ion; however, individual variation from different animals prevents quantitative research. In this work, we found that the florescence lifetime of G-CaMP will shrink from 1.8 ns to 1.0 ns when binding to Ca2+. This finding can potentially help us to understand the neuron circuits by fluorescence lifetime imaging microscopy (FLIM). Channelrhodopsin-2 (ChR2) is a light-activated ion-channel protein on a neuron cell membrane. In this work, we express ChR2 and G-CaMP in a fly brain. Using a pulsed 470-nm laser to activate the neurons, we can also record the fluorescence lifetime changes in the structure. Hence, we can trace and manipulate a specific circuit in this animal. This method provides more flexibility in brain research.
Genetic Algorithm Application in Optimization of Wireless Sensor Networks
Norouzi, Ali; Zaim, A. Halim
2014-01-01
There are several applications known for wireless sensor networks (WSN), and such variety demands improvement of the currently available protocols and the specific parameters. Some notable parameters are lifetime of network and energy consumption for routing which play key role in every application. Genetic algorithm is one of the nonlinear optimization methods and relatively better option thanks to its efficiency for large scale applications and that the final formula can be modified by operators. The present survey tries to exert a comprehensive improvement in all operational stages of a WSN including node placement, network coverage, clustering, and data aggregation and achieve an ideal set of parameters of routing and application based WSN. Using genetic algorithm and based on the results of simulations in NS, a specific fitness function was achieved, optimized, and customized for all the operational stages of WSNs. PMID:24693235
ERIC Educational Resources Information Center
Journal of Law and Education, 1996
1996-01-01
Educators today see the vast network of online information resources known as the Internet as the key to a lifetime of educational learning and development. Discusses pornography, obscenity, defamation, and intellectual property issues, especially the uploading and downloading of information. Concludes with the Shelby County (Kentucky) Schools…
ERIC Educational Resources Information Center
Drame, Elizabeth R.; Kamphoff, Kaytie
2014-01-01
Educating students with disabilities in an inclusive general education setting has been shown to increase academic achievement, increase peer acceptance, increase self esteem, create a richer friendship network, and have positive lifetime benefits (higher salaried jobs, independent living). In addition, inclusion can have benefits for students…
On-demand transfer of trapped photons on a chip.
Konoike, Ryotaro; Nakagawa, Haruyuki; Nakadai, Masahiro; Asano, Takashi; Tanaka, Yoshinori; Noda, Susumu
2016-05-01
Photonic crystal nanocavities, which have modal volumes of the order of a cubic wavelength in the material, are of great interest as flexible platforms for manipulating photons. Recent developments in ultra-high quality factor nanocavities with long photon lifetimes have encouraged us to develop an ultra-compact and flexible photon manipulation technology where photons are trapped in networks of such nanocavities. The most fundamental requirement is the on-demand transfer of photons to and from the trapped states of arbitrary nanocavities. We experimentally demonstrate photon transfer between two nearly resonant nanocavities at arbitrary positions on a chip, triggered by the irradiation of a third nonresonant nanocavity using an optical control pulse. We obtain a high transfer efficiency of ~90% with a photon lifetime of ~200 ps.
Applying Semantic Web Services and Wireless Sensor Networks for System Integration
NASA Astrophysics Data System (ADS)
Berkenbrock, Gian Ricardo; Hirata, Celso Massaki; de Oliveira Júnior, Frederico Guilherme Álvares; de Oliveira, José Maria Parente
In environments like factories, buildings, and homes automation services tend to often change during their lifetime. Changes are concerned to business rules, process optimization, cost reduction, and so on. It is important to provide a smooth and straightforward way to deal with these changes so that could be handled in a faster and low cost manner. Some prominent solutions use the flexibility of Wireless Sensor Networks and the meaningful description of Semantic Web Services to provide service integration. In this work, we give an overview of current solutions for machinery integration that combine both technologies as well as a discussion about some perspectives and open issues when applying Wireless Sensor Networks and Semantic Web Services for automation services integration.
CENet: A Cabinet Environmental Sensing Network
Zhang, Zusheng; Yu, Fengqi; Chen, Liang; Cao, Guangmin
2010-01-01
For data center cooling and intelligent substation systems, real time cabinet environmental monitoring is a strong requirement. Monitoring data, such as temperature, humidity, and noise, is important for operators to manage the facilities in cabinets. We here propose a sensing network, called CENet, which is energy efficient and reliable for cabinet environmental monitoring. CENet achieves above 93% reliable data yield and sends fewer beacons compared to periodic beaconing. It does so through a data-aided routing protocol. In addition, based on B-MAC, we propose a scheduling scheme to increase the lifetime of the network by reducing unnecessary message snooping and channel listening, thus it is more energy efficient than B-MAC. The performance of CENet is evaluated by simulations and experiments. PMID:22205856
Low Latency MAC Protocol in Wireless Sensor Networks Using Timing Offset
NASA Astrophysics Data System (ADS)
Choi, Seung Sik
This paper proposes a low latency MAC protocol that can be used in sensor networks. To extend the lifetime of sensor nodes, the conventional solution is to synchronize active/sleep periods of all sensor nodes. However, due to these synchronized sensor nodes, packets in the intermediate nodes must wait until the next node wakes up before it can forward a packet. This induces a large delay in sensor nodes. To solve this latency problem, a clustered sensor network which uses two types of sensor nodes and layered architecture is considered. Clustered heads in each cluster are synchronized with different timing offsets to reduce the sleep delay. Using this concept, the latency problem can be solved and more efficient power usage can be obtained.
NASA Astrophysics Data System (ADS)
Adabi, Sepideh; Adabi, Sahar; Rezaee, Ali
According to the traditional definition of Wireless Sensor Networks (WSNs), static sensors have limited the feasibility of WSNs in some kind of approaches, so the mobility was introduced in WSN. Mobile nodes in a WSN come equipped with battery and from the point of deployment, this battery reserve becomes a valuable resource since it cannot be replenished. Hence, maximizing the network lifetime by minimizing the energy is an important challenge in Mobile WSN. Energy conservation can be accomplished by different approaches. In this paper, we presented an energy conservation solution based on Cellular Automata. The main objective of this solution is based on dynamically adjusting the transmission range and switching between operational states of the sensor nodes.
BPTAP: A New Approach to IP over DTN
NASA Technical Reports Server (NTRS)
Tsao, Philip; Nguyen, Sam
2012-01-01
Traditional Internet protocols have been widely deployed for a variety of applications. However such protocols generally perform poorly in situations in which, round trip delays are very large (interplanetary distances) or . persistent connectivity is not always available (widely dispersed MANET). Delay/Disruption Tolerant Network (DTN) technology was invented to address these issues: (1) . Relay nodes "take custody" of blocks of network traffic on a hop-by -hop basis and retransmit them in cases of expected or unexpected link outage (2) Bundle lifetime may be configured for long round trip light times. BPTAP is novel by encapsulating Ethernet frames in BP
Lifetime Residential Mobility History and Self-Rated Health at Midlife
Lin, Kuan-Chia; Huang, Hui-Chuan; Bai, Ya-Mei; Kuo, Pei-Chun
2012-01-01
Background Little research focuses on the influence of lifetime residential mobility on health at midlife. We used a national survey of participant recall of residential mobility to assess this issue and explore the mediating and moderating effects of personal and environmental context. Methods In March 2010, we collected data from people in Taiwan aged 40 to 60 years. Based on the household registration system, data were collected using the population proportional-to-size sampling method and a computer-assisted telephone interview. A total of 2834 participants completed the interview. Based on the 3490 registered households, the overall response rate was 81.2%. Results The mean cumulative frequency of geographic relocation (CFGR) was 3.06 ± 2.78 times and ranged from 0 to 21. After carefully adjusting for the heterogeneity of demographic and socioeconomic propensity, total CFGR was significantly positively associated with negative self-rated mental (odds ratio [OR] and 95% CI for increase per time: 1.06, 1.02–1.16) and physical (OR and 95% CI for increase per time: 1.16, 1.05–1.26) health. Social network support lessened the impact of total CFGR on self-rated mental health. In addition to the primary effect, the interaction (residential environmental satisfaction × total CFGR) significantly moderated negative mental health and negative physical health. Conclusions Lifetime residential mobility history independently influenced midlife health. Social network support and satisfaction with the residential environment in past and current living places further mediated or moderated midlife health. Findings from these different perspectives offer insights for future medical care projects and epidemiologic studies. PMID:22197767
Highly Reliable PON Optical Splitters for Optical Access Networks in Outside Environments
NASA Astrophysics Data System (ADS)
Watanabe, Hiroshi; Araki, Noriyuki; Fujimoto, Hisashi
Broadband optical access services are spreading throughout the world, and the number of fiber to the home (FTTH) subscribers is increasing rapidly. Telecom operators are constructing passive optical networks (PONs) to provide optical access services. Externally installed optical splitters for PONs are very important passive devices in optical access networks, and they must provide satisfactory performance as outdoor plant over long periods. Therefore, we calculate the failure rate of optical access networks and assign a failure rate to the optical splitters in optical access networks. The maximum cumulative failure rate of 1 × 8 optical splitters was calculated as 0.025 for an optical access fiber length of 2.1km and a 20-year operating lifetime. We examined planar lightwave circuit (PLC) type optical splitters for use as outside plant in terms of their optical characteristics and environmental reliability. We confirmed that PLC type optical splitters have sufficient optical performance for a PON splitter and sufficient reliability as outside plant in accordance with ITU-T standard values. We estimated the lifetimes of three kinds of PLC type optical splitters by using accelerated aging tests. The estimated failure rate of these splitters installed in optical access networks was below the target value for the cumulative failure rate, and we confirmed that they have sufficient reliability to maintain the quality of the network service. We developed 1 × 8 optical splitter modules with plug and socket type optical connectors and optical fiber cords for optical aerial closures designed for use as outside plant. These technologies make it easy to install optical splitters in an aerial optical closure. The optical splitter modules have sufficient optical performance levels for PONs because the insertion loss at the commercially used wavelengths of 1.31 and 1.55µm is less than the criterion established by ITU-T Recommendation G.671 for optical splitters. We performed a temperature cycling test, and a low temperature storage and damp heat test to confirm the long-term reliability of these modules. They exhibited sufficient reliability as regards heat and moisture because the maximum loss change was less than 0.3dB.
Effectiveness of link prediction for face-to-face behavioral networks.
Tsugawa, Sho; Ohsaki, Hiroyuki
2013-01-01
Research on link prediction for social networks has been actively pursued. In link prediction for a given social network obtained from time-windowed observation, new link formation in the network is predicted from the topology of the obtained network. In contrast, recent advances in sensing technology have made it possible to obtain face-to-face behavioral networks, which are social networks representing face-to-face interactions among people. However, the effectiveness of link prediction techniques for face-to-face behavioral networks has not yet been explored in depth. To clarify this point, here we investigate the accuracy of conventional link prediction techniques for networks obtained from the history of face-to-face interactions among participants at an academic conference. Our findings were (1) that conventional link prediction techniques predict new link formation with a precision of 0.30-0.45 and a recall of 0.10-0.20, (2) that prolonged observation of social networks often degrades the prediction accuracy, (3) that the proposed decaying weight method leads to higher prediction accuracy than can be achieved by observing all records of communication and simply using them unmodified, and (4) that the prediction accuracy for face-to-face behavioral networks is relatively high compared to that for non-social networks, but not as high as for other types of social networks.
Impact of reduced scale free network on wireless sensor network
NASA Astrophysics Data System (ADS)
Keshri, Neha; Gupta, Anurag; Mishra, Bimal Kumar
2016-12-01
In heterogeneous wireless sensor network (WSN) each data-packet traverses through multiple hops over restricted communication range before it reaches the sink. The amount of energy required to transmit a data-packet is directly proportional to the number of hops. To balance the energy costs across the entire network and to enhance the robustness in order to improve the lifetime of WSN becomes a key issue of researchers. Due to high dimensionality of an epidemic model of WSN over a general scale free network, it is quite difficult to have close study of network dynamics. To overcome this complexity, we simplify a general scale free network by partitioning all of its motes into two classes: higher-degree motes and lower-degree motes, and equating the degrees of all higher-degree motes with lower-degree motes, yielding a reduced scale free network. We develop an epidemic model of WSN based on reduced scale free network. The existence of unique positive equilibrium is determined with some restrictions. Stability of the system is proved. Furthermore, simulation results show improvements made in this paper have made the entire network have a better robustness to the network failure and the balanced energy costs. This reduced model based on scale free network theory proves more applicable to the research of WSN.
Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System.
Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit
2017-02-01
Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more lowpower sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting.
Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System
Wu, Fan; Rüdiger, Christoph; Yuce, Mehmet Rasit
2017-01-01
Wireless sensor networks (WSNs) play an increasingly important role in monitoring applications in many areas. With the emergence of the Internet-of-Things (IoT), many more low-power sensors will need to be deployed in various environments to collect and monitor data about environmental factors in real time. Providing power supply to these sensor nodes becomes a critical challenge for realizations of IoT applications as sensor nodes are normally battery-powered and have a limited lifetime. This paper proposes a wireless sensor network that is powered by solar energy harvesting. The sensor network monitors the environmental data with low-power sensor electronics and forms a network using multiple XBee wireless modules. A detailed performance analysis of the network system under solar energy harvesting has been presented. The sensor network system and the proposed energy-harvesting techniques are configured to achieve a continuous energy source for the sensor network. The proposed energy-harvesting system has been successfully designed to enable an energy solution in order to keep sensor nodes active and reliable for a whole day. The paper also outlines some of our experiences in real-time implementation of a sensor network system with energy harvesting. PMID:28157148
Mifflin, Steve W.
2017-01-01
μ-Opioid receptors are distributed widely in the brain stem respiratory network, and opioids with selectivity for μ-type receptors slow in vivo respiratory rhythm in lowest effective doses. Several studies have reported μ-opioid receptor effects on the three-phase rhythm of respiratory neurons, but there are until now no reports of opioid effects on oscillatory activity within respiratory discharges. In this study, effects of the μ-opioid receptor agonist fentanyl on spike train discharge properties of several different types of rhythm-modulating medullary respiratory neuron discharges were analyzed. Doses of fentanyl that were just sufficient for prolongation of discharges and slowing of the three-phase respiratory rhythm also produced pronounced enhancement of spike train properties. Oscillation and burst patterns detected by autocorrelation measurements were greatly enhanced, and interspike intervals were prolonged. Spike train properties under control conditions and after fentanyl were uniform within each experiment, but varied considerably between experiments, which might be related to variability in acid-base balance in the brain stem extracellular fluid. Discharge threshold was shifted to more negative levels of membrane potential. The effects on threshold are postulated to result from opioid-mediated disinhibition and postsynaptic enhancement of N-methyl-d- aspartate receptor current. Lowering of firing threshold, enhancement of spike train oscillations and bursts and prolongation of discharges by lowest effective doses of fentanyl could represent compensatory adjustments in the brain stem respiratory network to override opioid blunting of CO2/pH chemosensitivity. PMID:28202437
Lalley, Peter M; Mifflin, Steve W
2017-05-01
μ-Opioid receptors are distributed widely in the brain stem respiratory network, and opioids with selectivity for μ-type receptors slow in vivo respiratory rhythm in lowest effective doses. Several studies have reported μ-opioid receptor effects on the three-phase rhythm of respiratory neurons, but there are until now no reports of opioid effects on oscillatory activity within respiratory discharges. In this study, effects of the μ-opioid receptor agonist fentanyl on spike train discharge properties of several different types of rhythm-modulating medullary respiratory neuron discharges were analyzed. Doses of fentanyl that were just sufficient for prolongation of discharges and slowing of the three-phase respiratory rhythm also produced pronounced enhancement of spike train properties. Oscillation and burst patterns detected by autocorrelation measurements were greatly enhanced, and interspike intervals were prolonged. Spike train properties under control conditions and after fentanyl were uniform within each experiment, but varied considerably between experiments, which might be related to variability in acid-base balance in the brain stem extracellular fluid. Discharge threshold was shifted to more negative levels of membrane potential. The effects on threshold are postulated to result from opioid-mediated disinhibition and postsynaptic enhancement of N -methyl-d- aspartate receptor current. Lowering of firing threshold, enhancement of spike train oscillations and bursts and prolongation of discharges by lowest effective doses of fentanyl could represent compensatory adjustments in the brain stem respiratory network to override opioid blunting of CO 2 /pH chemosensitivity. Copyright © 2017 the American Physiological Society.
Diclofenac delays micropore closure following microneedle treatment in human subjects.
Brogden, Nicole K; Milewski, Mikolaj; Ghosh, Priyanka; Hardi, Lucia; Crofford, Leslie J; Stinchcomb, Audra L
2012-10-28
Drugs absorbed poorly through the skin are commonly delivered via injection with a hypodermic needle, which is painful and increases the risk of transmitting infectious diseases. Microneedles (MNs) selectively and painlessly permeabilize the outermost skin layer, allowing otherwise skin-impermeable drugs to cross the skin through micron-sized pores and reach therapeutic concentrations. However, rapid healing of the micropores prevents further drug delivery, blunting the clinical utility of this unique transdermal technique. We present the first human study demonstrating that micropore lifetime can be extended following MN treatment. Subjects received one-time MN treatment and daily topical application of diclofenac sodium. Micropore closure was measured with impedance spectroscopy, and area under the admittance-time curve (AUC) was calculated. AUC was significantly higher at MN+diclofenac sodium sites vs. placebo, suggesting slower rates of micropore healing. Colorimetry measurements confirmed the absence of local erythema and irritation. This mechanistic human proof-of-concept study demonstrates that micropore lifetime can be prolonged with simple topical administration of a non-specific cyclooxygenase inhibitor, suggesting the involvement of subclinical inflammation in micropore healing. These results will allow for longer patch wear time with MN-enhanced delivery, thus increasing patient compliance and expanding the transdermal field to a wider variety of clinical conditions. Copyright © 2012 Elsevier B.V. All rights reserved.
Diclofenac delays micropore closure following microneedle treatment in human subjects
Brogden, Nicole K.; Milewski, Mikolaj; Ghosh, Priyanka; Hardi, Lucia; Crofford, Leslie J.; Stinchcomb, Audra L.
2013-01-01
Drugs absorbed poorly through the skin are commonly delivered via injection with a hypodermic needle, which is painful and increases the risk of transmitting infectious diseases. Microneedles (MNs) selectively and painlessly permeabilize the outermost skin layer, allowing otherwise skin-impermeable drugs to cross the skin through micron-sized pores and reach therapeutic concentrations. However, rapid healing of the micropores prevents further drug delivery, blunting the clinical utility of this unique transdermal technique. We present the first human study demonstrating that micropore lifetime can be extended following MN treatment. Subjects received one-time MN treatment and daily topical application of diclofenac sodium. Micropore closure was measured with impedance spectroscopy, and area under the admittance–time curve (AUC) was calculated. AUC was significantly higher at MN + diclofenac sodium sites vs. placebo, suggesting slower rates of micropore healing. Colorimetry measurements confirmed the absence of local erythema and irritation. This mechanistic human proof-of-concept study demonstrates that micropore lifetime can be prolonged with simple topical administration of a non-specific cyclooxygenase inhibitor, suggesting the involvement of subclinical inflammation in micropore healing. These results will allow for longer patch wear time with MN-enhanced delivery, thus increasing patient compliance and expanding the transdermal field to a wider variety of clinical conditions. PMID:22929967
NASA Technical Reports Server (NTRS)
Williams, R. M.; Jeffries-Nakamura, B.; Underwood, M. L.; O'Connor, D.; Ryan, M. A.; Kikkert, S.; Bankston, C. P.
1990-01-01
A detailed and fundamental model for the electrochemical behavior of AMTEC electrodes is developed which can aid in interpreting the processes which occur during prolonged operation of these electrodes. Because the sintering and grain growth of metal particles is also a well-understood phenomenon, the changes in electrode performance which accompany its morphological evolution may be anticipated and modeled. The grain growth rate observed for porous Mo AMTEC electrodes is significantly higher than that predicted from surface diffusion data obtained at higher temperatures and incorporated into the grain growth model. The grain growth observed under AMTEC conditions is also somewhat higher than that measured for Mo films on BASE (beta-alumina solid electrolyte) substrates in vacuum or at similar temperatures. Results of modeling indicate that thin Mo electrodes may show significant performance degradation for extended operation (greater than 10,000 h) at higher operating temperatures (greater than 1150 K), whereas W/Rh and W/Pt electrodes are expected to show adequate performance at 1200 K for lifetimes greater than 10,000 h. It is pointed out that current collection grids and leads must consist of refractory metals such as Mo and W which do not accelerate sintering or metal migration.
Rosso, S.; Zanetti, R.; Martinez, C.; Tormo, M. J.; Schraub, S.; Sancho-Garnier, H.; Franceschi, S.; Gafà, L.; Perea, E.; Navarro, C.; Laurent, R.; Schrameck, C.; Talamini, R.; Tumino, R.; Wechsler, J.
1996-01-01
The role of sun exposure in development of basal cell and squamous cell carcinomas among different populations from south Europe was investigated. Between 1989 and 1993 we interviewed incident cases and a random population sample of controls from five centres where a cancer registry was operating, whereas we selected a sample of hospital-based cases and controls from the other three centres. We gathered information on life-long exposure to sunlight during different activities. Results are analysed for 1549 basal cell carcinoma (BCC) cases and 228 squamous cell carcinoma (SCC) cases compared with 1795 controls. We observed a statistically significant increase of risk of SCC with increasing sun exposure beyond a threshold of 70,000 cumulated hours of exposure in a lifetime. Sun exposures during work and holidays were, however, inversely correlated. Odds ratios (ORs) of SCC were up to eight or nine times the reference for the highest exposures (200,000 cumulated hours or more). BCC exhibited a 2-fold increase of risk for lower exposure (8000-10,000 cumulated hours in a lifetime) with a plateau and a slight decrease of risk for the highest exposures (100,000 cumulated hours or more). Outdoor work showed a significantly increased risk of SCC (OR 1.6 for more than 54,000 cumulated hours of exposure in a lifetime), whereas recreational activities such as sun exposure during holidays at the beach (OR 1.6 for more than 2600 cumulated hours of exposure in a lifetime) or during water sports (OR 1.6 for more than 2600 cumulated hours of exposure in a lifetime) were associated with an increased risk of BCC. Risk patterns were different in poor or good tanners with a significant risk trend for good tanners, whereas poor tanners were on a plateau of increased risk at any level of exposure. Solar radiation is associated with a risk of BCC even for relatively short periods of exposure such as during holidays and sports, whereas SCC develops later if exposure continues. The skin's ability to tan modulates the risk of BCC; subjects who tan poorly have a steady risk increase, whereas people who tan easily develop cancer only after prolonged exposures. PMID:8645596
Secure and Cost-Effective Distributed Aggregation for Mobile Sensor Networks
Guo, Kehua; Zhang, Ping; Ma, Jianhua
2016-01-01
Secure data aggregation (SDA) schemes are widely used in distributed applications, such as mobile sensor networks, to reduce communication cost, prolong the network life cycle and provide security. However, most SDA are only suited for a single type of statistics (i.e., summation-based or comparison-based statistics) and are not applicable to obtaining multiple statistic results. Most SDA are also inefficient for dynamic networks. This paper presents multi-functional secure data aggregation (MFSDA), in which the mapping step and coding step are introduced to provide value-preserving and order-preserving and, later, to enable arbitrary statistics support in the same query. MFSDA is suited for dynamic networks because these active nodes can be counted directly from aggregation data. The proposed scheme is tolerant to many types of attacks. The network load of the proposed scheme is balanced, and no significant bottleneck exists. The MFSDA includes two versions: MFSDA-I and MFSDA-II. The first one can obtain accurate results, while the second one is a more generalized version that can significantly reduce network traffic at the expense of less accuracy loss. PMID:27120599
Michael K. Young
2011-01-01
Movements by stream fishes have long been the subject of study and controversy. Although much discussion has focused on what proportion of fish adopt mobility within particular life stages, a larger issue involves the lifetime movements of individuals. I evaluated movements of different sizes and ages of Colorado River cutthroat trout (Oncorhynchus clarkii pleuriticus...
Energy Efficient Real-Time Scheduling Using DPM on Mobile Sensors with a Uniform Multi-Cores
Kim, Youngmin; Lee, Chan-Gun
2017-01-01
In wireless sensor networks (WSNs), sensor nodes are deployed for collecting and analyzing data. These nodes use limited energy batteries for easy deployment and low cost. The use of limited energy batteries is closely related to the lifetime of the sensor nodes when using wireless sensor networks. Efficient-energy management is important to extending the lifetime of the sensor nodes. Most effort for improving power efficiency in tiny sensor nodes has focused mainly on reducing the power consumed during data transmission. However, recent emergence of sensor nodes equipped with multi-cores strongly requires attention to be given to the problem of reducing power consumption in multi-cores. In this paper, we propose an energy efficient scheduling method for sensor nodes supporting a uniform multi-cores. We extend the proposed T-Ler plane based scheduling for global optimal scheduling of a uniform multi-cores and multi-processors to enable power management using dynamic power management. In the proposed approach, processor selection for a scheduling and mapping method between the tasks and processors is proposed to efficiently utilize dynamic power management. Experiments show the effectiveness of the proposed approach compared to other existing methods. PMID:29240695
Reputation drives cooperative behaviour and network formation in human groups.
Cuesta, Jose A; Gracia-Lázaro, Carlos; Ferrer, Alfredo; Moreno, Yamir; Sánchez, Angel
2015-01-19
Cooperativeness is a defining feature of human nature. Theoreticians have suggested several mechanisms to explain this ubiquitous phenomenon, including reciprocity, reputation, and punishment, but the problem is still unsolved. Here we show, through experiments conducted with groups of people playing an iterated Prisoner's Dilemma on a dynamic network, that it is reputation what really fosters cooperation. While this mechanism has already been observed in unstructured populations, we find that it acts equally when interactions are given by a network that players can reconfigure dynamically. Furthermore, our observations reveal that memory also drives the network formation process, and cooperators assort more, with longer link lifetimes, the longer the past actions record. Our analysis demonstrates, for the first time, that reputation can be very well quantified as a weighted mean of the fractions of past cooperative acts and the last action performed. This finding has potential applications in collaborative systems and e-commerce.
Reputation drives cooperative behaviour and network formation in human groups
Cuesta, Jose A.; Gracia-Lázaro, Carlos; Ferrer, Alfredo; Moreno, Yamir; Sánchez, Angel
2015-01-01
Cooperativeness is a defining feature of human nature. Theoreticians have suggested several mechanisms to explain this ubiquitous phenomenon, including reciprocity, reputation, and punishment, but the problem is still unsolved. Here we show, through experiments conducted with groups of people playing an iterated Prisoner's Dilemma on a dynamic network, that it is reputation what really fosters cooperation. While this mechanism has already been observed in unstructured populations, we find that it acts equally when interactions are given by a network that players can reconfigure dynamically. Furthermore, our observations reveal that memory also drives the network formation process, and cooperators assort more, with longer link lifetimes, the longer the past actions record. Our analysis demonstrates, for the first time, that reputation can be very well quantified as a weighted mean of the fractions of past cooperative acts and the last action performed. This finding has potential applications in collaborative systems and e-commerce. PMID:25598347
Strus, Mark C; Chiaramonti, Ann N; Kim, Young Lae; Jung, Yung Joon; Keller, Robert R
2011-07-01
We investigate the electrical reliability of nanoscale lines of highly aligned, networked, metallic/semiconducting single-walled carbon nanotubes (SWCNTs) fabricated through a template-based fluidic assembly process. We find that these SWCNT networks can withstand DC current densities larger than 10 MA cm(-2) for several hours and, in some cases, several days. We develop test methods that show that the degradation rate, failure predictability and total device lifetime can be linked to the initial resistance. Scanning electron and transmission electron microscopy suggest that fabrication variability plays a critical role in the rate of degradation, and we offer an empirical method of quickly determining the long-term performance of a network. We find that well-fabricated lines subject to constant electrical stress show a linear accumulation of damage reminiscent of electromigration in metallic interconnects, and we explore the underlying physical mechanisms that could cause such behavior.
Management of Large-Scale Wireless Sensor Networks Utilizing Multi-Parent Recursive Area Hierarchies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cree, Johnathan V.; Delgado-Frias, Jose
2013-04-19
Autonomously configuring and self-healing a largescale wireless sensor network requires a light-weight maintenance protocol that is scalable. Further, in a battery powered wireless sensor network duty-cycling a node’s radio can reduce the power consumption of a device and extend the lifetime of a network. With duty-cycled nodes the power consumption of a node’s radio depends on the amount of communication is must perform and by reducing the communication the power consumption can also be reduced. Multi-parent hierarchies can be used to reduce the communication cost when constructing a recursive area clustering hierarchy when compared to singleparent solutions that utilize inefficientmore » communication methods such as flooding and information propagation via single-hop broadcasts. The multi-parent hierarchies remain scalable and provides a level of redundancy for the hierarchy.« less
Reliability of Wireless Sensor Networks
Dâmaso, Antônio; Rosa, Nelson; Maciel, Paulo
2014-01-01
Wireless Sensor Networks (WSNs) consist of hundreds or thousands of sensor nodes with limited processing, storage, and battery capabilities. There are several strategies to reduce the power consumption of WSN nodes (by increasing the network lifetime) and increase the reliability of the network (by improving the WSN Quality of Service). However, there is an inherent conflict between power consumption and reliability: an increase in reliability usually leads to an increase in power consumption. For example, routing algorithms can send the same packet though different paths (multipath strategy), which it is important for reliability, but they significantly increase the WSN power consumption. In this context, this paper proposes a model for evaluating the reliability of WSNs considering the battery level as a key factor. Moreover, this model is based on routing algorithms used by WSNs. In order to evaluate the proposed models, three scenarios were considered to show the impact of the power consumption on the reliability of WSNs. PMID:25157553
Cost-Effectiveness of Tolvaptan in Autosomal Dominant Polycystic Kidney Disease
Erickson, Kevin F.; Chertow, Glenn M.; Goldhaber-Fiebert, Jeremy D.
2014-01-01
Background: In the Tolvaptan Efficacy and Safety in Management of Autosomal Dominant Polycystic Kidney Disease and its Outcomes (TEMPO) trial, tolvaptan significantly reduced expansion of kidney volume and loss of kidney function. Objective: To determine how benefits observed in the TEMPO trial might relate to longer-term health outcomes such as progression to end-stage renal disease (ESRD) and mortality in addition to its cost-effectiveness. Design: A decision-analytic model. Data Sources: Published literature. Target Population: Persons with early Autosomal Dominant Polycystic Kidney Disease (ADPKD). Time Horizon: Lifetime. Perspective: Societal. Interventions: We compared a strategy where patients receive tolvaptan therapy until death, development of ESRD, or liver complications to one where they do not receive tolvaptan. Outcome Measures: Median age at ESRD onset, life expectancy, discounted quality-adjusted life years (QALYs) and lifetime costs (in 2010 USD), and incremental cost-effectiveness ratios. Results of Base Case Analysis: Tolvaptan prolonged the median age at ESRD onset by 6.5 years and increased life expectancy by 2.6 years. At a drug cost of $5,760 per month, tolvaptan cost $744,100 per QALY gained compared to standard care. Results of Sensitivity Analysis: For patients with ADPKD progressing more slowly, tolvaptan’s cost per QALY gained was even higher. Limitations: Although the TEMPO trial followed patients for 3 years, our main analysis assumed that the clinical benefits of tolvaptan persisted over patients’ lifetimes. Conclusions and Relevance: Assuming that tolvaptan’s benefits persist longer term, the drug may slow progression to ESRD and reduce mortality. However, barring an approximately 95% reduction in the price of tolvaptan, its cost-effectiveness does not compare favorably with many other commonly accepted medical interventions. PMID:24042366
A cost-effectiveness analysis of hormone replacement therapy in the menopause.
Cheung, A P; Wren, B G
1992-03-02
To evaluate the cost-effectiveness of hormone replacement therapy in the menopause with particular reference to osteoporotic fracture and myocardial infarction. The multiple-decrement form of the life table was the mathematical model used to follow women of age 50 through their lifetime under the "no hormone replacement" and "hormone replacement" assumptions. Standard demographic and health economic techniques were used to calculate the corresponding lifetime differences in direct health care costs (net costs in dollars) and health effects ("net effectiveness" in terms of life expectancy and quality, in "quality-adjusted life-years"). This was then expressed as a cost-effectiveness ratio or the cost ($) per quality-adjusted life-year (QALY) for each of the chosen hormone replacement regimens. All women of age 50 in New South Wales, Australia (n = 27,021). The analysis showed that the lifetime net increments in direct medical care costs were largely contributed by hormone drug and consultation costs. Hormone replacement was associated with increased quality-adjusted life expectancy, a large percentage of which was attributed to a relief of menopausal symptoms. Cost-effectiveness ratios ranged from under 10,000 to over a million dollars per QALY. Factors associated with improved cost-effectiveness were prolonged treatment duration, the presence of menopausal symptoms, minimum progestogen side effects (in the case of oestrogen with progestogen regimens), oestrogen use after hysterectomy and the inclusion of cardiac benefits in addition to fracture prevention. Hormone replacement therapy for symptomatic women is cost-effective when factors that enhance its efficiency are considered. Short-term treatment of asymptomatic women for prevention of osteoporotic fractures and myocardial infarction is an inefficient use of health resources. Cost-effectiveness of hormone replacement in asymptomatic women is dependent on the magnitude of cardiac benefits associated with hormone use and the treatment duration.
Accelerator based fusion reactor
NASA Astrophysics Data System (ADS)
Liu, Keh-Fei; Chao, Alexander Wu
2017-08-01
A feasibility study of fusion reactors based on accelerators is carried out. We consider a novel scheme where a beam from the accelerator hits the target plasma on the resonance of the fusion reaction and establish characteristic criteria for a workable reactor. We consider the reactions d+t\\to n+α,d+{{}3}{{H}\\text{e}}\\to p+α , and p+{{}11}B\\to 3α in this study. The critical temperature of the plasma is determined from overcoming the stopping power of the beam with the fusion energy gain. The needed plasma lifetime is determined from the width of the resonance, the beam velocity and the plasma density. We estimate the critical beam flux by balancing the energy of fusion production against the plasma thermo-energy and the loss due to stopping power for the case of an inert plasma. The product of critical flux and plasma lifetime is independent of plasma density and has a weak dependence on temperature. Even though the critical temperatures for these reactions are lower than those for the thermonuclear reactors, the critical flux is in the range of {{10}22}-{{10}24}~\\text{c}{{\\text{m}}-2}~{{\\text{s}}-1} for the plasma density {ρt}={{10}15}~\\text{c}{{\\text{m}}-3} in the case of an inert plasma. Several approaches to control the growth of the two-stream instability are discussed. We have also considered several scenarios for practical implementation which will require further studies. Finally, we consider the case where the injected beam at the resonance energy maintains the plasma temperature and prolongs its lifetime to reach a steady state. The equations for power balance and particle number conservation are given for this case.
Hayashi, Teruo; Hayashi, Eri; Fujimoto, Michiko; Sprong, Hein; Su, Tsung-Ping
2012-01-01
The glycosphingolipid biosynthesis is initiated by monoglycosylation of ceramides, the action of which is catalyzed either by UDP-glucose:ceramide glucosyltransferase or by UDP-galactose:ceramide galactosyltransferase (CGalT). CGalT is expressed predominantly at the endoplasmic reticulum (ER) of oligodendrocytes and is responsible for synthesizing galactosylceramides (GalCer) that play an important role in regulation of axon conductance. However, despite the importance of ceramide monoglycosylation enzymes in a spectrum of cellular functions, the mechanism that fine tunes activities of those enzymes is largely unknown. In the present study, we demonstrated that the sigma-1 receptor (Sig-1R) chaperone, the mammalian homologue of a yeast C8-C7 sterol isomerase, controls the protein level and activity of the CGalT enzyme via a distinct ER-associated degradation system involving Insig. The Sig-1R forms a complex with Insig via its transmembrane domain partly in a sterol-dependent manner and associates with CGalT at the ER. The knockdown of Sig-1Rs dramatically prolonged the lifetime of CGalT without affecting the trimming of N-linked oligosaccharides at CGalT. The increased lifetime leads to the up-regulation of CGalT protein as well as elevated enzymatic activity in CHO cells stably expressing CGalT. Knockdown of Sig-1Rs also decreased CGalT degradation endogenously expressed in D6P2T-schwannoma cells. Our data suggest that Sig-1Rs negatively regulate the activity of GalCer synthesis under physiological conditions by enhancing the degradation of CGalT through regulation of the dynamics of Insig in the lipid-activated ER-associated degradation system. The GalCer synthesis may thus be influenced by sterols at the ER. PMID:23105111
Occupational solvent exposure and brain function: an fMRI study.
Tang, Cheuk Ying; Carpenter, David M; Eaves, Emily L; Ng, Johnny; Ganeshalingam, Nimalya; Weisel, Clifford; Qian, Hua; Lange, Gudrun; Fiedler, Nancy L
2011-07-01
Deficits in cognitive function have been demonstrated among workers chronically exposed to solvents, but the neural basis for these deficits has not been shown. We used functional magnetic resonance imaging (fMRI) to compare pathophysiological changes in brain function between solvent-exposed and control workers. Painters, drywall tapers, and carpenters were recruited from the International Union of Painters and Allied Trades, District Council 9 in New York City and District Council 21 in Philadelphia, Pennsylvania, and from the Carpenters Union in New Jersey. Twenty-seven solvent-exposed and 27 control subjects of similar age, education, and occupational status completed the N-Back working memory test during fMRI. After controlling for confounders (age; lifetime marijuana, cocaine, and alcohol use; blood lead; symptoms of depression; verbal intelligence), voxelwise group analysis and regional activation levels were compared and then correlated with an index of lifetime solvent exposure. Solvent-exposed workers' performance on the N-Back was significantly worse than that of controls. Activation of the anterior cingulate, prefrontal, and parietal cortices--areas serving working memory function and attention--was also significantly lower for solvent-exposed workers relative to controls. After controlling for confounders, we observed a negative correlation between lifetime solvent exposure and activation in these same regions among the solvent-exposed workers. This study is one of the few to document neural structures affected by exposure to solvents. Our findings provide a biological mechanism for the neurobehavioral deficits in working memory and attention that have previously been reported by other groups studying the effects of chronic exposure to solvents. These imaging markers, which are consistent with the neurobehavioral measures in our subject population, are consistent with altered brain pathology caused by prolonged exposure to solvent mixtures during construction work.
Occupational Solvent Exposure and Brain Function: An fMRI Study
Carpenter, David M.; Eaves, Emily L.; Ng, Johnny; Ganeshalingam, Nimalya; Weisel, Clifford; Qian, Hua; Lange, Gudrun; Fiedler, Nancy L.
2011-01-01
Background: Deficits in cognitive function have been demonstrated among workers chronically exposed to solvents, but the neural basis for these deficits has not been shown. Objectives: We used functional magnetic resonance imaging (fMRI) to compare pathophysiological changes in brain function between solvent-exposed and control workers. Methods: Painters, drywall tapers, and carpenters were recruited from the International Union of Painters and Allied Trades, District Council 9 in New York City and District Council 21 in Philadelphia, Pennsylvania, and from the Carpenters Union in New Jersey. Twenty-seven solvent-exposed and 27 control subjects of similar age, education, and occupational status completed the N-Back working memory test during fMRI. After controlling for confounders (age; lifetime marijuana, cocaine, and alcohol use; blood lead; symptoms of depression; verbal intelligence), voxelwise group analysis and regional activation levels were compared and then correlated with an index of lifetime solvent exposure. Results: Solvent-exposed workers’ performance on the N-Back was significantly worse than that of controls. Activation of the anterior cingulate, prefrontal, and parietal cortices—areas serving working memory function and attention—was also significantly lower for solvent-exposed workers relative to controls. After controlling for confounders, we observed a negative correlation between lifetime solvent exposure and activation in these same regions among the solvent-exposed workers. Conclusions: This study is one of the few to document neural structures affected by exposure to solvents. Our findings provide a biological mechanism for the neurobehavioral deficits in working memory and attention that have previously been reported by other groups studying the effects of chronic exposure to solvents. These imaging markers, which are consistent with the neurobehavioral measures in our subject population, are consistent with altered brain pathology caused by prolonged exposure to solvent mixtures during construction work. PMID:21296712
Mansano, Raul K.; Godoy, Eduardo P.; Porto, Arthur J. V.
2014-01-01
Recent advances in wireless networking technology and the proliferation of industrial wireless sensors have led to an increasing interest in using wireless networks for closed loop control. The main advantages of Wireless Networked Control Systems (WNCSs) are the reconfigurability, easy commissioning and the possibility of installation in places where cabling is impossible. Despite these advantages, there are two main problems which must be considered for practical implementations of WNCSs. One problem is the sampling period constraint of industrial wireless sensors. This problem is related to the energy cost of the wireless transmission, since the power supply is limited, which precludes the use of these sensors in several closed-loop controls. The other technological concern in WNCS is the energy efficiency of the devices. As the sensors are powered by batteries, the lowest possible consumption is required to extend battery lifetime. As a result, there is a compromise between the sensor sampling period, the sensor battery lifetime and the required control performance for the WNCS. This paper develops a model-based soft sensor to overcome these problems and enable practical implementations of WNCSs. The goal of the soft sensor is generating virtual data allowing an actuation on the process faster than the maximum sampling period available for the wireless sensor. Experimental results have shown the soft sensor is a solution to the sampling period constraint problem of wireless sensors in control applications, enabling the application of industrial wireless sensors in WNCSs. Additionally, our results demonstrated the soft sensor potential for implementing energy efficient WNCS through the battery saving of industrial wireless sensors. PMID:25529208
Social networks and alcohol use disorders: findings from a nationally representative sample
Mowbray, Orion; Quinn, Adam; Cranford, James A.
2014-01-01
Background While some argue that social network ties of individuals with alcohol use disorders (AUD) are robust, there is evidence to suggest that individuals with AUDs have few social network ties, which are a known risk factor for health and wellness. Objectives Social network ties to friends, family, co-workers and communities of individuals are compared among individuals with a past-year diagnosis of alcohol dependence or alcohol abuse to individuals with no lifetime diagnosis of AUD. Method Respondents from Wave 2 of the National Epidemiologic Survey on Alcohol Related Conditions (NESARC) were assessed for the presence of past-year alcohol dependence or past-year alcohol abuse, social network ties, sociodemographics and clinical characteristics. Results Bivariate analyses showed that both social network size and social network diversity was significantly smaller among individuals with alcohol dependence, compared to individuals with alcohol abuse or no AUD. When social and clinical factors related to AUD status were controlled, multinomial logistic models showed that social network diversity remained a significant predictor of AUD status, while social network size did not differ among AUD groups. Conclusion Social networks of individuals with AUD may be different than individuals with no AUD, but this claim is dependent on specific AUD diagnosis and how social networks are measured. PMID:24405256
EPMOSt: An Energy-Efficient Passive Monitoring System for Wireless Sensor Networks
Garcia, Fernando P.; Andrade, Rossana M. C.; Oliveira, Carina T.; de Souza, José Neuman
2014-01-01
Monitoring systems are important for debugging and analyzing Wireless Sensor Networks (WSN). In passive monitoring, a monitoring network needs to be deployed in addition to the network to be monitored, named the target network. The monitoring network captures and analyzes packets transmitted by the target network. An energy-efficient passive monitoring system is necessary when we need to monitor a WSN in a real scenario because the lifetime of the monitoring network is extended and, consequently, the target network benefits from the monitoring for a longer time. In this work, we have identified, analyzed and compared the main passive monitoring systems proposed for WSN. During our research, we did not identify any passive monitoring system for WSN that aims to reduce the energy consumption of the monitoring network. Therefore, we propose an Energy-efficient Passive MOnitoring SysTem for WSN named EPMOSt that provides monitoring information using a Simple Network Management Protocol (SNMP) agent. Thus, any management tool that supports the SNMP protocol can be integrated with this monitoring system. Experiments with real sensors were performed in several scenarios. The results obtained show the energy efficiency of the proposed monitoring system and the viability of using it to monitor WSN in real scenarios. PMID:24949639
Energy-Efficient Control with Harvesting Predictions for Solar-Powered Wireless Sensor Networks.
Zou, Tengyue; Lin, Shouying; Feng, Qijie; Chen, Yanlian
2016-01-04
Wireless sensor networks equipped with rechargeable batteries are useful for outdoor environmental monitoring. However, the severe energy constraints of the sensor nodes present major challenges for long-term applications. To achieve sustainability, solar cells can be used to acquire energy from the environment. Unfortunately, the energy supplied by the harvesting system is generally intermittent and considerably influenced by the weather. To improve the energy efficiency and extend the lifetime of the networks, we propose algorithms for harvested energy prediction using environmental shadow detection. Thus, the sensor nodes can adjust their scheduling plans accordingly to best suit their energy production and residual battery levels. Furthermore, we introduce clustering and routing selection methods to optimize the data transmission, and a Bayesian network is used for warning notifications of bottlenecks along the path. The entire system is implemented on a real-time Texas Instruments CC2530 embedded platform, and the experimental results indicate that these mechanisms sustain the networks' activities in an uninterrupted and efficient manner.
An Overview of Data Routing Approaches for Wireless Sensor Networks
Anisi, Mohammad Hossein; Abdullah, Abdul Hanan; Razak, Shukor Abd; Ngadi, Md. Asri
2012-01-01
Recent years have witnessed a growing interest in deploying large populations of microsensors that collaborate in a distributed manner to gather and process sensory data and deliver them to a sink node through wireless communications systems. Currently, there is a lot of interest in data routing for Wireless Sensor Networks (WSNs) due to their unique challenges compared to conventional routing in wired networks. In WSNs, each data routing approach follows a specific goal (goals) according to the application. Although the general goal of every data routing approach in WSNs is to extend the network lifetime and every approach should be aware of the energy level of the nodes, data routing approaches may focus on one (or some) specific goal(s) depending on the application. Thus, existing approaches can be categorized according to their routing goals. In this paper, the main goals of data routing approaches in sensor networks are described. Then, the best known and most recent data routing approaches in WSNs are classified and studied according to their specific goals. PMID:23443040
Prolonging thermal barrier coated specimen life by thermal cycle management
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Mcdonald, G.; Poolos, N. P.
1981-01-01
Thermal barrier coatings applied to the heated side of engine components such as seals, combustor, and blades of a gas turbine offer a potential increase in efficiency through the use of higher gas temperatures or less cooling air or benefits arising from extended component life by reducing component metal temperatures. The considered investigation has the objective to show that while a thermal barrier coated (TBC) specimen can be brought to a fixed temperature using various fuel-air ratio (F/A) values, lower calculated stresses are associated with lower (F/A) values. This implies that control of (F/A) values (i.e., rates of heat input) during the starting transient and to a lesser extent during shutdown and operation, offers a potential method of improving TBC lifetime through thermal cycle management.
NASA Technical Reports Server (NTRS)
Poberezhskiy, Ilya; Chang, Daniel; Erlig, Hernan
2011-01-01
Non Planar Ring Oscillator (NPRO) lasers are highly attractive for metrology applications. NPRO reliability for prolonged space missions is limited by reliability of 808 nm pump diodes. Combined laser farm aging parameter allows comparing different bias approaches. Monte-Carlo software developed to calculate the reliability of laser pump architecture, perform parameter sensitivity studies To meet stringent Space Interferometry Mission (SIM) Lite lifetime reliability / output power requirements, we developed a single-mode Laser Pump Module architecture that: (1) provides 2 W of power at 808 nm with >99.7% reliability for 5.5 years (2) consists of 37 de-rated diode lasers operating at -5C, with outputs combined in a very low loss 37x1 all-fiber coupler
Maintenance of contamination sensitive surfaces on board long-term space vehicles
NASA Technical Reports Server (NTRS)
Phillips, A.; Maag, C.
1984-01-01
In the current age, highly sensitive instruments are being flown on spacecraft, and questions of contamination have become important. The present investigation is concerned with the available approaches which can provide long-term protection for contamination sensitive surfaces. Aspects and sources of spacecraft contamination are examined, taking into account materials outgassing, particulates, propulsion system interaction, overboard venting, man-made and cosmic debris, and atomic oxygen/ambient atmosphere interaction. Suitable protection approaches provided by current technology are discussed, giving attention to aperture covers, a possibility for a retractable cover design, gaseous purges, options for prolonging the lifetime of the thermal control system, and plume shields. Some new possibilities considered are related to an early warning system for excessive amounts of contamination, a molecular/wake shield, and the use of atomic oxygen.
A near-wearless and extremely long lifetime amorphous carbon film under high vacuum
Wang, Liping; Zhang, Renhui; Jansson, Ulf; Nedfors, Nils
2015-01-01
Prolonging wear life of amorphous carbon films under vacuum was an enormous challenge. In this work, we firstly reported that amorphous carbon film as a lubricant layer containing hydrogen, oxygen, fluorine and silicon (a-C:H:O:F:Si) exhibited low friction (~0.1), ultra-low wear rate (9.0 × 10–13 mm3 N–1 mm–1) and ultra-long wear life (>2 × 106 cycles) under high vacuum. We systematically examined microstructure and composition of transfer film for understanding of the underlying frictional mechanism, which suggested that the extraordinarily excellent tribological properties were attributed to the thermodynamically and structurally stable FeF2 nanocrystallites corroborated using first-principles calculations, which were induced by the tribochemical reaction. PMID:26059254
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thiele, A.; Herold, M.; Lenk, I.
Transgenic potato (Solanum tuberosum) plants expressing Arabidopsis phytochrome B were characterized morphologically and physiologically under white light in a greenhouse to explore their potential for improved photosynthesis and higher tuber yields. As expected, overexpression of functional phytochrome B caused pleiotropic effects such as semidwarfism, decreased apical dominance, a higher number of smaller but thicker leaves, and increased pigmentation. Because of increased numbers of chloroplasts in elongated palisade cells, photosynthesis per leaf area and in each individual plant increased. In addition, photosynthesis was less sensitive to photoinactivation under prolonged light stress. The beginning of senescence was not delayed, but deceleration ofmore » chlorophyll degradation extended the lifetime of photosynthetically active plants. Both the higher photosynthetic performance and the longer lifespan of the transgenic plants allowed greater biomass production, resulting in extended underground organs with increased tuber yields.« less
Potential Cost-Effectiveness of Ambulatory Cardiac Rhythm Monitoring After Cryptogenic Stroke.
Yong, Jean Hai Ein; Thavorn, Kednapa; Hoch, Jeffrey S; Mamdani, Muhammad; Thorpe, Kevin E; Dorian, Paul; Sharma, Mike; Laupacis, Andreas; Gladstone, David J
2016-09-01
Prolonged ambulatory ECG monitoring after cryptogenic stroke improves detection of covert atrial fibrillation, but its long-term cost-effectiveness is uncertain. We estimated the cost-effectiveness of noninvasive ECG monitoring in patients aged ≥55 years after a recent cryptogenic stroke and negative 24-hour ECG. A Markov model used observed rates of atrial fibrillation detection and anticoagulation from a randomized controlled trial (EMBRACE) and the published literature to predict lifetime costs and effectiveness (ischemic strokes, hemorrhages, life-years, and quality-adjusted life-years [QALYs]) for 30-day ECG (primary analysis) and 7-day or 14-day ECG (secondary analysis), when compared with a repeat 24-hour ECG. Prolonged ECG monitoring (7, 14, or 30 days) was predicted to prevent more ischemic strokes, decrease mortality, and improve QALYs. If anticoagulation reduced stroke risk by 50%, 30-day ECG (at a cost of USD $447) would be highly cost-effective ($2000 per QALY gained) for patients with a 4.5% annual ischemic stroke recurrence risk. Cost-effectiveness was sensitive to stroke recurrence risk and anticoagulant effectiveness, which remain uncertain, especially at higher costs of monitoring. Shorter duration (7 or 14 days) monitoring was cost saving and more effective than an additional 24-hour ECG; its cost-effectiveness was less sensitive to changes in ischemic stroke risk and treatment effect. After a cryptogenic stroke, 30-day ECG monitoring is likely cost-effective for preventing recurrent strokes; 14-day monitoring is an attractive value alternative, especially for lower risk patients. These results strengthen emerging recommendations for prolonged ECG monitoring in secondary stroke prevention. Cost-effectiveness in practice will depend on careful patient selection. © 2016 American Heart Association, Inc.
Wiedenhofer, Dominik; Steinberger, Julia K; Eisenmenger, Nina; Haas, Willi
2015-08-01
Material stocks are an important part of the social metabolism. Owing to long service lifetimes of stocks, they not only shape resource flows during construction, but also during use, maintenance, and at the end of their useful lifetime. This makes them an important topic for sustainable development. In this work, a model of stocks and flows for nonmetallic minerals in residential buildings, roads, and railways in the EU25, from 2004 to 2009 is presented. The changing material composition of the stock is modeled using a typology of 72 residential buildings, four road and two railway types, throughout the EU25. This allows for estimating the amounts of materials in in-use stocks of residential buildings and transportation networks, as well as input and output flows. We compare the magnitude of material demands for expansion versus those for maintenance of existing stock. Then, recycling potentials are quantitatively explored by comparing the magnitude of estimated input, waste, and recycling flows from 2004 to 2009 and in a business-as-usual scenario for 2020. Thereby, we assess the potential impacts of the European Waste Framework Directive, which strives for a significant increase in recycling. We find that in the EU25, consisting of highly industrialized countries, a large share of material inputs are directed at maintaining existing stocks. Proper management of existing transportation networks and residential buildings is therefore crucial for the future size of flows of nonmetallic minerals.
Steinberger, Julia K.; Eisenmenger, Nina; Haas, Willi
2015-01-01
Summary Material stocks are an important part of the social metabolism. Owing to long service lifetimes of stocks, they not only shape resource flows during construction, but also during use, maintenance, and at the end of their useful lifetime. This makes them an important topic for sustainable development. In this work, a model of stocks and flows for nonmetallic minerals in residential buildings, roads, and railways in the EU25, from 2004 to 2009 is presented. The changing material composition of the stock is modeled using a typology of 72 residential buildings, four road and two railway types, throughout the EU25. This allows for estimating the amounts of materials in in‐use stocks of residential buildings and transportation networks, as well as input and output flows. We compare the magnitude of material demands for expansion versus those for maintenance of existing stock. Then, recycling potentials are quantitatively explored by comparing the magnitude of estimated input, waste, and recycling flows from 2004 to 2009 and in a business‐as‐usual scenario for 2020. Thereby, we assess the potential impacts of the European Waste Framework Directive, which strives for a significant increase in recycling. We find that in the EU25, consisting of highly industrialized countries, a large share of material inputs are directed at maintaining existing stocks. Proper management of existing transportation networks and residential buildings is therefore crucial for the future size of flows of nonmetallic minerals. PMID:27524878
An Energy Aware Adaptive Sampling Algorithm for Energy Harvesting WSN with Energy Hungry Sensors.
Srbinovski, Bruno; Magno, Michele; Edwards-Murphy, Fiona; Pakrashi, Vikram; Popovici, Emanuel
2016-03-28
Wireless sensor nodes have a limited power budget, though they are often expected to be functional in the field once deployed for extended periods of time. Therefore, minimization of energy consumption and energy harvesting technology in Wireless Sensor Networks (WSN) are key tools for maximizing network lifetime, and achieving self-sustainability. This paper proposes an energy aware Adaptive Sampling Algorithm (ASA) for WSN with power hungry sensors and harvesting capabilities, an energy management technique that can be implemented on any WSN platform with enough processing power to execute the proposed algorithm. An existing state-of-the-art ASA developed for wireless sensor networks with power hungry sensors is optimized and enhanced to adapt the sampling frequency according to the available energy of the node. The proposed algorithm is evaluated using two in-field testbeds that are supplied by two different energy harvesting sources (solar and wind). Simulation and comparison between the state-of-the-art ASA and the proposed energy aware ASA (EASA) in terms of energy durability are carried out using in-field measured harvested energy (using both wind and solar sources) and power hungry sensors (ultrasonic wind sensor and gas sensors). The simulation results demonstrate that using ASA in combination with an energy aware function on the nodes can drastically increase the lifetime of a WSN node and enable self-sustainability. In fact, the proposed EASA in conjunction with energy harvesting capability can lead towards perpetual WSN operation and significantly outperform the state-of-the-art ASA.
Bazzani, Armando; Castellani, Gastone C; Cooper, Leon N
2010-05-01
We analyze the effects of noise correlations in the input to, or among, Bienenstock-Cooper-Munro neurons using the Wigner semicircular law to construct random, positive-definite symmetric correlation matrices and compute their eigenvalue distributions. In the finite dimensional case, we compare our analytic results with numerical simulations and show the effects of correlations on the lifetimes of synaptic strengths in various visual environments. These correlations can be due either to correlations in the noise from the input lateral geniculate nucleus neurons, or correlations in the variability of lateral connections in a network of neurons. In particular, we find that for fixed dimensionality, a large noise variance can give rise to long lifetimes of synaptic strengths. This may be of physiological significance.
Online Social Networking and Mental Health
2014-01-01
Abstract During the past decade, online social networking has caused profound changes in the way people communicate and interact. It is unclear, however, whether some of these changes may affect certain normal aspects of human behavior and cause psychiatric disorders. Several studies have indicated that the prolonged use of social networking sites (SNS), such as Facebook, may be related to signs and symptoms of depression. In addition, some authors have indicated that certain SNS activities might be associated with low self-esteem, especially in children and adolescents. Other studies have presented opposite results in terms of positive impact of social networking on self-esteem. The relationship between SNS use and mental problems to this day remains controversial, and research on this issue is faced with numerous challenges. This concise review focuses on the recent findings regarding the suggested connection between SNS and mental health issues such as depressive symptoms, changes in self-esteem, and Internet addiction. PMID:25192305
Georgia's Surface-Water Resources and Streamflow Monitoring Network, 2006
Nobles, Patricia L.; ,
2006-01-01
The U.S. Geological Survey (USGS) network of 223 real-time monitoring stations, the 'Georgia HydroWatch,' provides real-time water-stage data, with streamflow computed at 198 locations, and rainfall recorded at 187 stations. These sites continuously record data on 15-minute intervals and transmit the data via satellite to be incorporated into the USGS National Water Information System database. These data are automatically posted to the USGS Web site for public dissemination (http://waterdata.usgs.gov/ga/nwis/nwis). The real-time capability of this network provides information to help emergency-management officials protect human life and property during floods, and mitigate the effects of prolonged drought. The map at right shows the USGS streamflow monitoring network for Georgia and major watersheds. Streamflow is monitored at 198 sites statewide, more than 80 percent of which include precipitation gages. Various Federal, State, and local agencies fund these streamflow monitoring stations.
Online social networking and mental health.
Pantic, Igor
2014-10-01
During the past decade, online social networking has caused profound changes in the way people communicate and interact. It is unclear, however, whether some of these changes may affect certain normal aspects of human behavior and cause psychiatric disorders. Several studies have indicated that the prolonged use of social networking sites (SNS), such as Facebook, may be related to signs and symptoms of depression. In addition, some authors have indicated that certain SNS activities might be associated with low self-esteem, especially in children and adolescents. Other studies have presented opposite results in terms of positive impact of social networking on self-esteem. The relationship between SNS use and mental problems to this day remains controversial, and research on this issue is faced with numerous challenges. This concise review focuses on the recent findings regarding the suggested connection between SNS and mental health issues such as depressive symptoms, changes in self-esteem, and Internet addiction.
Rescue of endemic states in interconnected networks with adaptive coupling
NASA Astrophysics Data System (ADS)
Vazquez, F.; Serrano, M. Ángeles; Miguel, M. San
2016-07-01
We study the Susceptible-Infected-Susceptible model of epidemic spreading on two layers of networks interconnected by adaptive links, which are rewired at random to avoid contacts between infected and susceptible nodes at the interlayer. We find that the rewiring reduces the effective connectivity for the transmission of the disease between layers, and may even totally decouple the networks. Weak endemic states, in which the epidemics spreads when the two layers are interconnected but not in each layer separately, show a transition from the endemic to the healthy phase when the rewiring overcomes a threshold value that depends on the infection rate, the strength of the coupling and the mean connectivity of the networks. In the strong endemic scenario, in which the epidemics is able to spread on each separate network -and therefore on the interconnected system- the prevalence in each layer decreases when increasing the rewiring, arriving to single network values only in the limit of infinitely fast rewiring. We also find that rewiring amplifies finite-size effects, preventing the disease transmission between finite networks, as there is a non zero probability that the epidemics stays confined in only one network during its lifetime.
Rescue of endemic states in interconnected networks with adaptive coupling
Vazquez, F.; Serrano, M. Ángeles; Miguel, M. San
2016-01-01
We study the Susceptible-Infected-Susceptible model of epidemic spreading on two layers of networks interconnected by adaptive links, which are rewired at random to avoid contacts between infected and susceptible nodes at the interlayer. We find that the rewiring reduces the effective connectivity for the transmission of the disease between layers, and may even totally decouple the networks. Weak endemic states, in which the epidemics spreads when the two layers are interconnected but not in each layer separately, show a transition from the endemic to the healthy phase when the rewiring overcomes a threshold value that depends on the infection rate, the strength of the coupling and the mean connectivity of the networks. In the strong endemic scenario, in which the epidemics is able to spread on each separate network –and therefore on the interconnected system– the prevalence in each layer decreases when increasing the rewiring, arriving to single network values only in the limit of infinitely fast rewiring. We also find that rewiring amplifies finite-size effects, preventing the disease transmission between finite networks, as there is a non zero probability that the epidemics stays confined in only one network during its lifetime. PMID:27380771
Effect of Cross-Linking on Free Volume Properties of PEG Based Thiol-Ene Networks
NASA Astrophysics Data System (ADS)
Ramakrishnan, Ramesh; Vasagar, Vivek; Nazarenko, Sergei
According to the Fox and Loshaek theory, in elastomeric networks, free volume decreases linearly with the cross-link density increase. The aim of this study is to show whether the poly(ethylene glycol) (PEG) based multicomponent thiol-ene elastomeric networks demonstrate this model behavior? Networks with a broad cross-link density range were prepared by changing the ratio of the trithiol crosslinker to PEG dithiol and then UV cured with PEG diene while maintaining 1:1 thiol:ene stoichiometry. Pressure-volume-temperature (PVT) data of the networks was generated from the high pressure dilatometry experiments which was fit using the Simha-Somcynsky Equation-of-State analysis to obtain the fractional free volume of the networks. Using Positron Annihilation Lifetime Spectroscopy (PALS) analysis, the average free volume hole size of the networks was also quantified. The fractional free volume and the average free volume hole size showed a linear change with the cross-link density confirming that the Fox and Loshaek theory can be applied to this multicomponent system. Gas diffusivities of the networks showed a good correlation with free volume. A free volume based model was developed to describe the gas diffusivity trends as a function of cross-link density.
Data Gathering and Energy Transfer Dilemma in UAV-Assisted Flying Access Network for IoT
Arabi, Sara; Sadik, Mohamed
2018-01-01
Recently, Unmanned Aerial Vehicles (UAVs) have emerged as an alternative solution to assist wireless networks, thanks to numerous advantages they offer in comparison to terrestrial fixed base stations. For instance, a UAV can be used to embed a flying base station providing an on-demand nomadic access to network services. A UAV can also be used to wirelessly recharge out-of-battery ground devices. In this paper, we aim to deal with both data collection and recharging depleted ground Internet-of-Things (IoT) devices through a UAV station used as a flying base station. To extend the network lifetime, we present a novel use of UAV with energy harvesting module and wireless recharging capabilities. However, the UAV is used as an energy source to empower depleted IoT devices. On one hand, the UAV charges depleted ground IoT devices under three policies: (1) low-battery first scheme; (2) high-battery first scheme; and (3) random scheme. On the other hand, the UAV station collects data from IoT devices that have sufficient energy to transmit their packets, and in the same phase, the UAV exploits the Radio Frequency (RF) signals transmitted by IoT devices to extract and harvest energy. Furthermore, and as the UAV station has a limited coverage time due to its energy constraints, we propose and investigate an efficient trade-off between ground users recharging time and data gathering time. Furthermore, we suggest to control and optimize the UAV trajectory in order to complete its travel within a minimum time, while minimizing the energy spent and/or enhancing the network lifetime. Extensive numerical results and simulations show how the system behaves under different scenarios and using various metrics in which we examine the added value of UAV with energy harvesting module. PMID:29751662
Cooperative Spatial Retreat for Resilient Drone Networks.
Kang, Jin-Hyeok; Kwon, Young-Min; Park, Kyung-Joon
2017-05-03
Drones are broadening their scope to various applications such as networking, package delivery, agriculture, rescue, and many more. For proper operation of drones, reliable communication should be guaranteed because drones are remotely controlled. When drones experience communication failure due to bad channel condition, interference, or jamming in a certain area, one existing solution is to exploit mobility or so-called spatial retreat to evacuate them from the communication failure area. However, the conventional spatial retreat scheme moves drones in random directions, which results in inefficient movement with significant evacuation time and waste of battery lifetime. In this paper, we propose a novel spatial retreat technique that takes advantage of cooperation between drones for resilient networking, which is called cooperative spatial retreat (CSR). Our performance evaluation shows that the proposed CSR significantly outperforms existing schemes.
Optimised cross-layer synchronisation schemes for wireless sensor networks
NASA Astrophysics Data System (ADS)
Nasri, Nejah; Ben Fradj, Awatef; Kachouri, Abdennaceur
2017-07-01
This paper aims at synchronisation between the sensor nodes. Indeed, in the context of wireless sensor networks, it is necessary to take into consideration the energy cost induced by the synchronisation, which can represent the majority of the energy consumed. On communication, an already identified hard point consists in imagining a fine synchronisation protocol which must be sufficiently robust to the intermittent energy in the sensors. Hence, this paper worked on aspects of performance and energy saving, in particular on the optimisation of the synchronisation protocol using cross-layer design method such as synchronisation between layers. Our approach consists in balancing the energy consumption between the sensors and choosing the cluster head with the highest residual energy in order to guarantee the reliability, integrity and continuity of communication (i.e. maximising the network lifetime).
Integrating Metal-Oxide-Decorated CNT Networks with a CMOS Readout in a Gas Sensor
Lee, Hyunjoong; Lee, Sanghoon; Kim, Dai-Hong; Perello, David; Park, Young June; Hong, Seong-Hyeon; Yun, Minhee; Kim, Suhwan
2012-01-01
We have implemented a tin-oxide-decorated carbon nanotube (CNT) network gas sensor system on a single die. We have also demonstrated the deposition of metallic tin on the CNT network, its subsequent oxidation in air, and the improvement of the lifetime of the sensors. The fabricated array of CNT sensors contains 128 sensor cells for added redundancy and increased accuracy. The read-out integrated circuit (ROIC) was combined with coarse and fine time-to-digital converters to extend its resolution in a power-efficient way. The ROIC is fabricated using a 0.35 μm CMOS process, and the whole sensor system consumes 30 mA at 5 V. The sensor system was successfully tested in the detection of ammonia gas at elevated temperatures. PMID:22736966
Initial stage of physical ageing in network glasses
NASA Astrophysics Data System (ADS)
Golovchak, R.; Ingram, A.; Kozdras, A.; Vlcek, M.; Roiland, C.; Bureau, B.; Shpotyuk, O.
2012-11-01
An atomistic view on Johari-Goldstein secondary β-relaxation processes responsible for structural relaxation far below the glass transition temperature (Tg ) in network glasses is developed for the archetypal chalcogenide glass, As20Se80, using positron annihilation lifetime, differential scanning calorimetry, Raman scattering and nuclear magnetic resonance techniques. Increased density fluctuations are shown to be responsible for the initial stage of physical ageing in these materials at the temperatures below Tg . They are correlated with changes in thermodynamic parameters of structural relaxation through the glass-to-supercooled liquid transition interval. General shrinkage, occurred during the next stage of physical ageing, is shown to be determined by the ability of system to release these redundant open volumes from the glass bulk through the densification process of glass network.
Recognition of early stage thigmotaxis in Morris water maze test with convolutional neural network.
Higaki, Akinori; Mogi, Masaki; Iwanami, Jun; Min, Li-Juan; Bai, Hui-Yu; Shan, Bao-Shuai; Kan-No, Harumi; Ikeda, Shuntaro; Higaki, Jitsuo; Horiuchi, Masatsugu
2018-01-01
The Morris water maze test (MWM) is a useful tool to evaluate rodents' spatial learning and memory, but the outcome is susceptible to various experimental conditions. Thigmotaxis is a commonly observed behavioral pattern which is thought to be related to anxiety or fear. This behavior is associated with prolonged escape latency, but the impact of its frequency in the early stage on the final outcome is not clearly understood. We analyzed swim path trajectories in male C57BL/6 mice with or without bilateral common carotid artery stenosis (BCAS) treatment. There was no significant difference in the frequencies of particular types of trajectories according to ischemic brain surgery. The mouse groups with thigmotaxis showed significantly prolonged escape latency and lower cognitive score on day 5 compared to those without thigmotaxis. As the next step, we made a convolutional neural network (CNN) model to recognize the swim path trajectories. Our model could distinguish thigmotaxis from other trajectories with 96% accuracy and specificity as high as 0.98. These results suggest that thigmotaxis in the early training stage is a predictive factor for impaired performance in MWM, and machine learning can detect such behavior easily and automatically.
Identifying enhanced cortico-basal ganglia loops associated with prolonged dance training
Li, Gujing; He, Hui; Huang, Mengting; Zhang, Xingxing; Lu, Jing; Lai, Yongxiu; Luo, Cheng; Yao, Dezhong
2015-01-01
Studies have revealed that prolonged, specialized training combined with higher cognitive conditioning induces enhanced brain alternation. In particular, dancers with long-term dance experience exhibit superior motor control and integration with their sensorimotor networks. However, little is known about the functional connectivity patterns of spontaneous intrinsic activities in the sensorimotor network of dancers. Our study examined the functional connectivity density (FCD) of dancers with a mean period of over 10 years of dance training in contrast with a matched non-dancer group without formal dance training using resting-state fMRI scans. FCD was mapped and analyzed, and the functional connectivity (FC) analyses were then performed based on the difference of FCD. Compared to the non-dancers, the dancers exhibited significantly increased FCD in the precentral gyri, postcentral gyri and bilateral putamen. Furthermore, the results of the FC analysis revealed enhanced connections between the middle cingulate cortex and the bilateral putamen and between the precentral and the postcentral gyri. All findings indicated an enhanced functional integration in the cortico-basal ganglia loops that govern motor control and integration in dancers. These findings might reflect improved sensorimotor function for the dancers consequent to long-term dance training. PMID:26035693
Ultra-low power wireless sensing for long-term structural health monitoring
NASA Astrophysics Data System (ADS)
Bilbao, Argenis; Hoover, Davis; Rice, Jennifer; Chapman, Jamie
2011-04-01
Researchers have made significant progress in recent years towards realizing long-term structural health monitoring (SHM) utilizing wireless smart sensor networks (WSSNs). These efforts have focused on improving the performance and robustness of such networks to achieve high quality data acquisition and in-network processing. One of the primary challenges still facing the use of smart sensors for long-term monitoring deployments is their limited power resources. Periodically accessing the sensor nodes to change batteries is not feasible or economical in many deployment cases. While energy harvesting techniques show promise for prolonging unattended network life, low-power design and operation are still critically important. This research presents a new, fully integrated ultra-low power wireless smart sensor node and a flexible base station, both designed for long-term SHM applications. The power consumption of the sensor nodes and base station has been minimized through careful hardware selection and the implementation of power-aware network software, without sacrificing flexibility and functionality.
Tonelli, Paul; Mouret, Jean-Baptiste
2013-01-01
A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1) the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks, and (2) synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been mainly studied separately. The present paper shows that they are actually deeply connected. Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental encoding inspired by morphogen gradients (similar to HyperNEAT). Our results suggest that using a developmental encoding could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result is likely the consequence of the bias of developmental encodings towards regular structures: (1) in our experimental setup, encodings that tend to produce more regular networks yield networks with better general learning abilities; (2) whatever the encoding is, networks that are the more regular are statistically those that have the best learning abilities. PMID:24236099
Fiber Access Networks: Reliability Analysis and Swedish Broadband Market
NASA Astrophysics Data System (ADS)
Wosinska, Lena; Chen, Jiajia; Larsen, Claus Popp
Fiber access network architectures such as active optical networks (AONs) and passive optical networks (PONs) have been developed to support the growing bandwidth demand. Whereas particularly Swedish operators prefer AON, this may not be the case for operators in other countries. The choice depends on a combination of technical requirements, practical constraints, business models, and cost. Due to the increasing importance of reliable access to the network services, connection availability is becoming one of the most crucial issues for access networks, which should be reflected in the network owner's architecture decision. In many cases protection against failures is realized by adding backup resources. However, there is a trade off between the cost of protection and the level of service reliability since improving reliability performance by duplication of network resources (and capital expenditures CAPEX) may be too expensive. In this paper we present the evolution of fiber access networks and compare reliability performance in relation to investment and management cost for some representative cases. We consider both standard and novel architectures for deployment in both sparsely and densely populated areas. While some recent works focused on PON protection schemes with reduced CAPEX the current and future effort should be put on minimizing the operational expenditures (OPEX) during the access network lifetime.
Chen, Dustin; Zhao, Fangchao; Tong, Kwing; ...
2016-07-08
Here, the extended lifetime of organic light-emitting diodes (OLEDs) based on enhanced electrical stability of a silver nanowire (AgNW) transparent conductive electrode is reported. Specifically, in depth investigation is performed on the ability of atomic layer deposition deposited zinc oxide (ZnO) on AgNWs to render the nanowires electrically stable during electrical stressing at the range of operational current density used for OLED lighting. ZnO-coated AgNWs have been observed to show no electrical, optical, or morphological degradation, while pristine AgNW electrodes have become unusable for optoelectronic devices due to dramatic decreases in conductivity, transparency, and fragmentation of the nanowire network atmore » ≈150 mA cm -2. When fabricated into OLED substrates, resulting OLEDs fabricated on the ZnO-AgNW platform exhibit a 140% increase in lifetime when compared to OLEDs fabricated on indium tin oxide (ITO)/glass, and ≈20% when compared to OLEDs fabricated on AgNW based substrates. While both ZnO-coated and pristine AgNW substrates outperform ITO/glass due to the lower current densities required to drive the device, morphological stability in response to current stressing is responsible for the enhancement of lifetime of ZnO-AgNW based OLEDs compared to pristine AgNW based OLEDs.« less
Jiang, Ailian; Zheng, Lihong
2018-03-29
Low cost, high reliability and easy maintenance are key criteria in the design of routing protocols for wireless sensor networks (WSNs). This paper investigates the existing ant colony optimization (ACO)-based WSN routing algorithms and the minimum hop count WSN routing algorithms by reviewing their strengths and weaknesses. We also consider the critical factors of WSNs, such as energy constraint of sensor nodes, network load balancing and dynamic network topology. Then we propose a hybrid routing algorithm that integrates ACO and a minimum hop count scheme. The proposed algorithm is able to find the optimal routing path with minimal total energy consumption and balanced energy consumption on each node. The algorithm has unique superiority in terms of searching for the optimal path, balancing the network load and the network topology maintenance. The WSN model and the proposed algorithm have been implemented using C++. Extensive simulation experimental results have shown that our algorithm outperforms several other WSN routing algorithms on such aspects that include the rate of convergence, the success rate in searching for global optimal solution, and the network lifetime.
2018-01-01
Low cost, high reliability and easy maintenance are key criteria in the design of routing protocols for wireless sensor networks (WSNs). This paper investigates the existing ant colony optimization (ACO)-based WSN routing algorithms and the minimum hop count WSN routing algorithms by reviewing their strengths and weaknesses. We also consider the critical factors of WSNs, such as energy constraint of sensor nodes, network load balancing and dynamic network topology. Then we propose a hybrid routing algorithm that integrates ACO and a minimum hop count scheme. The proposed algorithm is able to find the optimal routing path with minimal total energy consumption and balanced energy consumption on each node. The algorithm has unique superiority in terms of searching for the optimal path, balancing the network load and the network topology maintenance. The WSN model and the proposed algorithm have been implemented using C++. Extensive simulation experimental results have shown that our algorithm outperforms several other WSN routing algorithms on such aspects that include the rate of convergence, the success rate in searching for global optimal solution, and the network lifetime. PMID:29596336
Prediction-based Dynamic Energy Management in Wireless Sensor Networks
Wang, Xue; Ma, Jun-Jie; Wang, Sheng; Bi, Dao-Wei
2007-01-01
Energy consumption is a critical constraint in wireless sensor networks. Focusing on the energy efficiency problem of wireless sensor networks, this paper proposes a method of prediction-based dynamic energy management. A particle filter was introduced to predict a target state, which was adopted to awaken wireless sensor nodes so that their sleep time was prolonged. With the distributed computing capability of nodes, an optimization approach of distributed genetic algorithm and simulated annealing was proposed to minimize the energy consumption of measurement. Considering the application of target tracking, we implemented target position prediction, node sleep scheduling and optimal sensing node selection. Moreover, a routing scheme of forwarding nodes was presented to achieve extra energy conservation. Experimental results of target tracking verified that energy-efficiency is enhanced by prediction-based dynamic energy management.
Application Level Processing for Long-Lived and Information Rich Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Wilkins, R.; Gaura, E.; Brusey, J.
2013-12-01
A primary design goal in Wireless Sensor Networks (WSNs) is to ensure the longest possible node lifetime with the available power budget while still meeting application requirements. Since radio transmissions often consume the most power in WSN devices, it follows that a node should aim to maximise its lifetime by transmitting only the data or information required to enable the motivating application. Full raw data streams are often not required since summaries of data are sufficient to meet application needs summaries are often performed at a central point after collection). When raw data is not a requirement, it makes sense to perform as much application-specific processing on-node as possible to minimise the amount of transmissions a node must make. For example, in home environment monitoring, the amount of time a room spends within an acceptable temperature range is more important than the raw stream of temperature measurements. The work presents Bare Necessities (BN) which implements the calculation of application-specific summaries on-node. In the case of knowing the amount time a room spends within an acceptable temperature range, BN encodes the raw signal as a distribution over bins (e.g. a bin might comprise temperatures between 18 °C and 22 °C). BN conserves power by only transmitting when changes to the distribution occur only sending the bare necessities of information the end user is interested in (thus the algorithm name). In the case of home monitoring it has been shown that BN can lead to a packet transmission reduction of 99.98%, increasing a nodes lifetime by a factor of 14 when compared to sense-and-send nodes. A summary of the Bare Necessities process at the node.
Effectiveness of Link Prediction for Face-to-Face Behavioral Networks
Tsugawa, Sho; Ohsaki, Hiroyuki
2013-01-01
Research on link prediction for social networks has been actively pursued. In link prediction for a given social network obtained from time-windowed observation, new link formation in the network is predicted from the topology of the obtained network. In contrast, recent advances in sensing technology have made it possible to obtain face-to-face behavioral networks, which are social networks representing face-to-face interactions among people. However, the effectiveness of link prediction techniques for face-to-face behavioral networks has not yet been explored in depth. To clarify this point, here we investigate the accuracy of conventional link prediction techniques for networks obtained from the history of face-to-face interactions among participants at an academic conference. Our findings were (1) that conventional link prediction techniques predict new link formation with a precision of 0.30–0.45 and a recall of 0.10–0.20, (2) that prolonged observation of social networks often degrades the prediction accuracy, (3) that the proposed decaying weight method leads to higher prediction accuracy than can be achieved by observing all records of communication and simply using them unmodified, and (4) that the prediction accuracy for face-to-face behavioral networks is relatively high compared to that for non-social networks, but not as high as for other types of social networks. PMID:24339956
1983-03-01
network dissolution, electron beam simulated desorption, electron signal decay, oxidation, oxide layer , growth kinetics, silicon carbide, assivation...surface layers on silicate glasses are reviewed. A type IIIB glass surface is proposed. The mechanisms of hydrothermal attack of two phase lithia...method to make reliable lifetime predictions. Use of electron beam techniques is essential for understanding surface layers formed on glasses (Section III
Susceptibility to Childhood Pneumonia: A Genome-Wide Analysis.
Hayden, Lystra P; Cho, Michael H; McDonald, Merry-Lynn N; Crapo, James D; Beaty, Terri H; Silverman, Edwin K; Hersh, Craig P
2017-01-01
Previous studies have indicated that in adult smokers, a history of childhood pneumonia is associated with reduced lung function and chronic obstructive pulmonary disease. There have been few previous investigations using genome-wide association studies to investigate genetic predisposition to pneumonia. This study aims to identify the genetic variants associated with the development of pneumonia during childhood and over the course of the lifetime. Study subjects included current and former smokers with and without chronic obstructive pulmonary disease participating in the COPDGene Study. Pneumonia was defined by subject self-report, with childhood pneumonia categorized as having the first episode at <16 years. Genome-wide association studies for childhood pneumonia (843 cases, 9,091 control subjects) and lifetime pneumonia (3,766 cases, 5,659 control subjects) were performed separately in non-Hispanic whites and African Americans. Non-Hispanic white and African American populations were combined in the meta-analysis. Top genetic variants from childhood pneumonia were assessed in network analysis. No single-nucleotide polymorphisms reached genome-wide significance, although we identified potential regions of interest. In the childhood pneumonia analysis, this included variants in NGR1 (P = 6.3 × 10 -8 ), PAK6 (P = 3.3 × 10 -7 ), and near MATN1 (P = 2.8 × 10 -7 ). In the lifetime pneumonia analysis, this included variants in LOC339862 (P = 8.7 × 10 -7 ), RAPGEF2 (P = 8.4 × 10 -7 ), PHACTR1 (P = 6.1 × 10 -7 ), near PRR27 (P = 4.3 × 10 -7 ), and near MCPH1 (P = 2.7 × 10 -7 ). Network analysis of the genes associated with childhood pneumonia included top networks related to development, blood vessel morphogenesis, muscle contraction, WNT signaling, DNA damage, apoptosis, inflammation, and immune response (P ≤ 0.05). We have identified genes potentially associated with the risk of pneumonia. Further research will be required to confirm these associations and to determine biological mechanisms. NCT00608764.
Social network models predict movement and connectivity in ecological landscapes
Fletcher, R.J.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, W.M.
2011-01-01
Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.
Perez-Rodriguez, M Mercedes; Baca-Garcia, Enrique; Oquendo, Maria A; Wang, Shuai; Wall, Melanie M; Liu, Shang-Min; Blanco, Carlos
2014-04-01
Acculturation is the process by which immigrants acquire the culture of the dominant society. Little is known about the relationship between acculturation and suicidal ideation and attempts among US Hispanics. Our aim was to examine the impact of 5 acculturation measures (age at migration, time in the United States, social network composition, language, race/ethnic orientation) on suicidal ideation and attempts in the largest available nationally representative sample of US Hispanics. Study participants were US Hispanics (N = 6,359) from Wave 2 of the 2004-2005 National Epidemiologic Survey of Alcohol and Related Conditions (N = 34,653). We used linear χ(2) tests and logistic regression models to analyze the association between acculturation and risk of suicidal ideation and attempts. Factors associated with a linear increase in lifetime risk for suicidal ideation and attempts were (1) younger age at migration (linear χ(2)(1) = 57.15; P < .0001), (2) longer time in the United States (linear χ(2)(1)= 36.09; P < .0001), (3) higher degree of English-language orientation (linear χ(2)(1) = 74.08; P <.0001), (4) lower Hispanic composition of social network (linear χ(2)(1) = 36.34; P < .0001), and (5) lower Hispanic racial/ethnic identification (linear χ(2)(1) = 47.77; P <.0001). Higher levels of perceived discrimination were associated with higher lifetime risk for suicidal ideation (β = 0.051; P < .001) and attempts (β = 0.020; P = .003). There was a linear association between multiple dimensions of acculturation and lifetime suicidal ideation and attempts. Discrimination was also associated with lifetime risk for suicidal ideation and attempts. Our results highlight protective aspects of the traditional Hispanic culture, such as high social support, coping strategies, and moral objections to suicide, which are modifiable factors and potential targets for public health interventions aimed at decreasing suicide risk. Culturally sensitive mental health resources need to be made more available to decrease discrimination and stigma. © Copyright 2014 Physicians Postgraduate Press, Inc.
Balme, Guy A; Robinson, Hugh S; Pitman, Ross T; Hunter, Luke T B
2017-09-01
Deciding when to terminate care of offspring is a key consideration for parents. Prolonging care may increase fitness of current offspring, but it can also reduce opportunities for future reproduction. Despite its evolutionary importance, few studies have explored the optimal duration of parental care, particularly among large carnivores. We used a 40-year dataset to assess the trade-offs associated with the length of maternal care in leopards in the Sabi Sand Game Reserve, South Africa. We compared the costs imposed by care on the survival and residual reproductive value of leopard mothers against the benefits derived from maternal care in terms of increased offspring survival, recruitment and reproduction. We also examined the demographic and ecological factors affecting the duration of care in the light of five explanatory hypotheses: litter size, sex allocation, resource limitation, timing of independence and terminal investment. Duration of care exhibited by female leopards varied markedly, from 9 to 35 months. Mothers did not appear to suffer any short- or long-term survival costs from caring for cubs, but extending care reduced the number of litters that mothers could produce during their lifetimes. Interestingly, the duration of care did not appear to affect the post-independence survival or reproductive success of offspring (although it may have indirectly affected offspring survival by influencing dispersal distance). However, results from generalised linear mixed models showed that mothers prolonged care during periods of prey scarcity, supporting the resource limitation hypothesis. Female leopards also cared for sons longer than daughters, in line with the sex-allocation hypothesis. Cub survival is an important determinant of the lifetime reproductive success in leopards. By buffering offspring against environmental perturbation without jeopardising their own survivorship, female leopards apparently "hedge their bets" with current offspring rather than gamble on future offspring which have a small probability of surviving. In many species, parents put their own needs before that of their offspring. Leopard mothers appear sensitive to their offspring's demands, and adjust levels of care accordingly. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
QOS-aware error recovery in wireless body sensor networks using adaptive network coding.
Razzaque, Mohammad Abdur; Javadi, Saeideh S; Coulibaly, Yahaya; Hira, Muta Tah
2014-12-29
Wireless body sensor networks (WBSNs) for healthcare and medical applications are real-time and life-critical infrastructures, which require a strict guarantee of quality of service (QoS), in terms of latency, error rate and reliability. Considering the criticality of healthcare and medical applications, WBSNs need to fulfill users/applications and the corresponding network's QoS requirements. For instance, for a real-time application to support on-time data delivery, a WBSN needs to guarantee a constrained delay at the network level. A network coding-based error recovery mechanism is an emerging mechanism that can be used in these systems to support QoS at very low energy, memory and hardware cost. However, in dynamic network environments and user requirements, the original non-adaptive version of network coding fails to support some of the network and user QoS requirements. This work explores the QoS requirements of WBSNs in both perspectives of QoS. Based on these requirements, this paper proposes an adaptive network coding-based, QoS-aware error recovery mechanism for WBSNs. It utilizes network-level and user-/application-level information to make it adaptive in both contexts. Thus, it provides improved QoS support adaptively in terms of reliability, energy efficiency and delay. Simulation results show the potential of the proposed mechanism in terms of adaptability, reliability, real-time data delivery and network lifetime compared to its counterparts.
Lim, Kyung-Geun; Choi, Mi-Ri; Kim, Ji-Hoon; Kim, Dong Hun; Jung, Gwan Ho; Park, Yongsup; Lee, Jong-Lam; Lee, Tae-Woo
2014-04-01
Although rapid progress has been made recently in bulk heterojunction organic solar cells, systematic studies on an ultrathin interfacial layer at the electron extraction contact have not been conducted in detail, which is important to improve both the device efficiency and the lifetime. We find that an ultrathin BaF2 layer at the electron extraction contact strongly influences the open-circuit voltage (Voc ) as the nanomorphology evolves with increasing BaF2 thickness. A vacuum-deposited ultrathin BaF2 layer grows by island growth, so BaF2 layers with a nominal thickness less than that of single-coverage layer (≈3 nm) partially cover the polymeric photoactive layer. As the nominal thickness of the BaF2 layer increased to that of a single-coverage layer, the Voc and power conversion efficiency (PCE) of the organic photovoltaic cells (OPVs) increased but the short-circuit current remained almost constant. The fill factor and the PCE decreased abruptly as the thickness of the BaF2 layer exceeded that of a single-coverage layer, which was ascribed to the insulating nature of BaF2 . We find the major cause of the increased Voc observed in these devices is the lowered work function of the cathode caused by the reaction and release of Ba from thin BaF2 films upon deposition of Al. The OPV device with the BaF2 layer showed a slightly improved maximum PCE (4.0 %) and a greatly (approximately nine times) increased device half-life under continuous simulated solar irradiation at 100 mW cm(-2) as compared with the OPV without an interfacial layer (PCE=2.1 %). We found that the photodegradation of the photoactive layer was not a major cause of the OPV degradation. The hugely improved lifetime with cathode interface modification suggests a significant role of the cathode interfacial layer that can help to prolong device lifetimes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2012-01-01
Background Despite educational and public health campaigns to convey the risks of indoor tanning, many individuals around the world continue to engage in this behavior. Few descriptive studies of indoor tanning have collected information pertaining to the lifetime history of indoor tanning, thereby limiting our ability to understand indoor tanning patterns and potentially target interventions for individuals who not only initiate, but continue to persistently engage in indoor tanning. Methods In-person interviews elicited detailed retrospective information on lifetime history of indoor tanning among white individuals (n = 401) under age 40 seen by a dermatologist for a minor benign skin condition. These individuals were controls in a case-control study of early-onset basal cell carcinoma. Outcomes of interest included ever indoor tanning in both males and females, as well as persistent indoor tanning in females - defined as females over age 31 who tanned indoors at least once in the last three or all four of four specified age periods (ages 11-15, 16-20, 21-30 and 31 or older). Multivariate logistic regression was used to identify sociodemographic and lifestyle correlates of ever and persistent indoor tanning in females. Results Approximately three-quarters (73.3%) of females and 38.3% of males ever tanned indoors, with a median age of initiation of 17.0 and 21.5, respectively. Among indoor tanners, 39.3% of females and 21.7% of males reported being burned while indoor tanning. Female ever indoor tanners were younger, had darker color eyes, and sunbathed more frequently than females who never tanned indoors. Using unique lifetime exposure data, 24.7% of female indoor tanners 31 and older persistently tanned indoors starting as teenagers. Female persistent indoor tanners drank significantly more alcohol, were less educated, had skin that tanned with prolonged sun exposure, and sunbathed outdoors more frequently than non-persistent tanners. Conclusions Indoor tanning was strikingly common in this population, especially among females. Persistent indoor tanners had other high-risk behaviors (alcohol, sunbathing), suggesting that multi-faceted behavioral interventions aimed at health promotion/disease prevention may be needed in this population. PMID:22324969
Cognitive impairment in Epilepsy: The Role of Network Abnormalities
Holmes, Gregory L.
2015-01-01
The challenges to individuals with epilepsy extend far beyond the seizures. Co-morbidities in epilepsy are very common and are often more problematic to individuals than the seizures themselves. In this review, the pathophysiological mechanisms of cognitive impairment are discussed. While etiology of the epilepsy has a significant influence on cognition there is increasing evidence that prolonged or recurrent seizures can cause or exacerbate cognitive impairment. Alterations in signaling pathways and neuronal network function play a major role in both the pathophysiology of epilepsy and the epilepsy comorbidities. However, the biological underpinnings of cognitive impairment can be distinct from the pathophysiological processes that cause seizures. PMID:25905906
Transmission of HIV in sexual networks in sub-Saharan Africa and Europe
NASA Astrophysics Data System (ADS)
van de Vijver, David A. M. C.; Prosperi, Mattia C. F.; Ramasco, José J.
2013-09-01
We are reviewing the literature regarding sexual networks and HIV transmission in sub-Saharan Africa and Europe. On Likoma Island in Malawi, a sexual network was reconstructed using a sociometric survey in which individuals named their sexual partners. The sexual network identified one giant component including half of all sexually active individuals. More than 25% of respondents were linked through independent chains of sexual relations. HIV was more common in the sparser regions of the network due to over-representation of groups with higher HIV prevalence. A study from KwaZulu-Natal in South-Africa collected egocentric data about sexual partners and found that new infections in women in a particular area was associated with the number of life-time partners in men. Data about sexual networks and HIV transmission are not reported in Europe. It is, however, found that the annual number of sexual partners follows a scale-free network. Phylogenetic studies that determine genetic relatedness between HIV isolates obtained from infected individuals, found that patients in the early stages of infections explain a high number of new infections. In conclusion, the limited information that is available suggest that sexual networks play a role in spread of HIV. Obtaining more information about sexual networks can be of benefit for modeling studies on HIV transmission and prevention.
Aghdasi, Hadi S; Abbaspour, Maghsoud; Moghadam, Mohsen Ebrahimi; Samei, Yasaman
2008-08-04
Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS) and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN). With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture). This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.
Promotion of cooperation induced by two-sided players in prisoner's dilemma game
NASA Astrophysics Data System (ADS)
Su, Zhen; Li, Lixiang; Xiao, Jinghua; Podobnik, B.; Stanley, H. Eugene
2018-01-01
We examine how real-world individuals and companies can either reach an agreement or fail to reach an agreement after several stages of negotiation. We use a modified prisoner's dilemma game with two-sided players who can either cooperate or not cooperate with their neighbors. We find that the presence of even a small number of these two-sided players substantially promotes the cooperation because, unlike the rock-paper-scissors scenario, when the cooperators change to the non-cooperators to gain a payoff, they can turn to the two-sided players and continue negotiating. We find that the network structure influences the spread of strategies. Lattice and regular-random (RR) networks benefit the spread of both non-cooperation and two-sided strategies, but scale-free (SF) networks stop both strategies. We also find that the Erdös-R e ´ nyi (ER) network promotes the two-sided strategy and blocks the spread of non-cooperation. As the ER network density decreases, and the network degree is lowered the lifetime of non-cooperators increases. Our results expand our understanding of the role played by the two-sided strategy in the growth of the cooperative behavior in networks.
Kreutzer, Joose; Ylä-Outinen, Laura; Mäki, Antti-Juhana; Ristola, Mervi; Narkilahti, Susanna; Kallio, Pasi
2017-03-15
Typically, live cell analyses are performed outside an incubator in an ambient air, where the lack of sufficient CO 2 supply results in a fast change of pH and the high evaporation causes concentration drifts in the culture medium. That limits the experiment time for tens of minutes. In many applications, e.g. in neurotoxicity studies, a prolonged measurement of extracellular activity is, however, essential. We demonstrate a simple cell culture chamber that enables stable culture conditions during prolonged extracellular recordings on a microelectrode array (MEA) outside an incubator. The proposed chamber consists of a gas permeable silicone structure that enables gas transfer into the chamber. We show that the culture chamber supports the growth of the human embryonic stem cell (hESC)-derived neurons both inside and outside an incubator. The structure provides very low evaporation, stable pH and osmolarity, and maintains strong signaling of hESC-derived neuronal networks over three-day MEA experiments. Existing systems are typically complex including continuous perfusion of medium or relatively large amount of gas to supply. The proposed chamber requires only a supply of very low flow rate (1.5ml/min) of non-humidified 5% CO 2 gas. Utilizing dry gas supply makes the proposed chamber simple to use. Using the proposed culture structure on top of MEA, we can maintain hESC-derived neural networks over three days outside an incubator. Technically, the structure requires very low flow rate of dry gas supporting, however, low evaporation and maintaining the pH of the culture. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Xiaojie; Zheng, Hong; Shou, Tao; Tang, Chunming; Miao, Kun; Wang, Ping
2017-03-29
Osteosarcoma is the most common malignant bone tumour. Due to the high metastasis rate and drug resistance of this disease, multi-drug regimens are necessary to control tumour cells at various stages of the cell cycle, eliminate local or distant micrometastases, and reduce the emergence of drug-resistant cells. Many adjuvant chemotherapy protocols have shown different efficacies and controversial results. Therefore, we classified the types of drugs used for adjuvant chemotherapy and evaluated the differences between single- and multi-drug chemotherapy regimens using network meta-analysis. We searched electronic databases, including PubMed (MEDLINE), EmBase, and the Cochrane Library, through November 2016 using the keywords "osteosarcoma", "osteogenic sarcoma", "chemotherapy", and "random*" without language restrictions. The major outcome in the present analysis was progression-free survival (PFS), and the secondary outcome was overall survival (OS). We used a random effect network meta-analysis for mixed multiple treatment comparisons. We included 23 articles assessing a total of 5742 patients in the present systematic review. The analysis of PFS indicated that the T12 protocol (including adriamycin, bleomycin, cyclophosphamide, dactinomycin, methotrexate, cisplatin) plays a more critical role in osteosarcoma treatment (surface under the cumulative ranking (SUCRA) probability 76.9%), with a better effect on prolonging the PFS of patients when combined with ifosfamide (94.1%) or vincristine (81.9%). For the analysis of OS, we separated the regimens to two groups, reflecting the disconnection. The T12 protocol plus vincristine (94.7%) or the removal of cisplatinum (89.4%) is most likely the best regimen. We concluded that multi-drug regimens have a better effect on prolonging the PFS and OS of osteosarcoma patients, and the T12 protocol has a better effect on prolonging the PFS of osteosarcoma patients, particularly in combination with ifosfamide or vincristine. The OS analysis showed that the T12 protocol plus vincristine or the T12 protocol with the removal of cisplatinum might be a better regimen for improving the OS of patients. However, well-designed randomized controlled trials of chemotherapeutic protocols are still necessary.
Yang, Liu; Lu, Yinzhi; Zhong, Yuanchang; Wu, Xuegang; Yang, Simon X
2015-12-26
Energy resource limitation is a severe problem in traditional wireless sensor networks (WSNs) because it restricts the lifetime of network. Recently, the emergence of energy harvesting techniques has brought with them the expectation to overcome this problem. In particular, it is possible for a sensor node with energy harvesting abilities to work perpetually in an Energy Neutral state. In this paper, a Multi-hop Energy Neutral Clustering (MENC) algorithm is proposed to construct the optimal multi-hop clustering architecture in energy harvesting WSNs, with the goal of achieving perpetual network operation. All cluster heads (CHs) in the network act as routers to transmit data to base station (BS) cooperatively by a multi-hop communication method. In addition, by analyzing the energy consumption of intra- and inter-cluster data transmission, we give the energy neutrality constraints. Under these constraints, every sensor node can work in an energy neutral state, which in turn provides perpetual network operation. Furthermore, the minimum network data transmission cycle is mathematically derived using convex optimization techniques while the network information gathering is maximal. Simulation results show that our protocol can achieve perpetual network operation, so that the consistent data delivery is guaranteed. In addition, substantial improvements on the performance of network throughput are also achieved as compared to the famous traditional clustering protocol LEACH and recent energy harvesting aware clustering protocols.
Yang, Liu; Lu, Yinzhi; Zhong, Yuanchang; Wu, Xuegang; Yang, Simon X.
2015-01-01
Energy resource limitation is a severe problem in traditional wireless sensor networks (WSNs) because it restricts the lifetime of network. Recently, the emergence of energy harvesting techniques has brought with them the expectation to overcome this problem. In particular, it is possible for a sensor node with energy harvesting abilities to work perpetually in an Energy Neutral state. In this paper, a Multi-hop Energy Neutral Clustering (MENC) algorithm is proposed to construct the optimal multi-hop clustering architecture in energy harvesting WSNs, with the goal of achieving perpetual network operation. All cluster heads (CHs) in the network act as routers to transmit data to base station (BS) cooperatively by a multi-hop communication method. In addition, by analyzing the energy consumption of intra- and inter-cluster data transmission, we give the energy neutrality constraints. Under these constraints, every sensor node can work in an energy neutral state, which in turn provides perpetual network operation. Furthermore, the minimum network data transmission cycle is mathematically derived using convex optimization techniques while the network information gathering is maximal. Simulation results show that our protocol can achieve perpetual network operation, so that the consistent data delivery is guaranteed. In addition, substantial improvements on the performance of network throughput are also achieved as compared to the famous traditional clustering protocol LEACH and recent energy harvesting aware clustering protocols. PMID:26712764
Trade-off Analysis of Underwater Acoustic Sensor Networks
NASA Astrophysics Data System (ADS)
Tuna, G.; Das, R.
2017-09-01
In the last couple of decades, Underwater Acoustic Sensor Networks (UASNs) were started to be used for various commercial and non-commercial purposes. However, in underwater environments, there are some specific inherent constraints, such as high bit error rate, variable and large propagation delay, limited bandwidth capacity, and short-range communications, which severely degrade the performance of UASNs and limit the lifetime of underwater sensor nodes as well. Therefore, proving reliability of UASN applications poses a challenge. In this study, we try to balance energy consumption of underwater acoustic sensor networks and minimize end-to-end delay using an efficient node placement strategy. Our simulation results reveal that if the number of hops is reduced, energy consumption can be reduced. However, this increases end-to-end delay. Hence, application-specific requirements must be taken into consideration when determining a strategy for node deployment.
A neural network model of foraging decisions made under predation risk.
Coleman, Scott L; Brown, Vincent R; Levine, Daniel S; Mellgren, Roger L
2005-12-01
This article develops the cognitive-emotional forager (CEF) model, a novel application of a neural network to dynamical processes in foraging behavior. The CEF is based on a neural network known as the gated dipole, introduced by Grossberg, which is capable of representing short-term affective reactions in a manner similar to Solomon and Corbit's (1974) opponent process theory. The model incorporates a trade-off between approach toward food and avoidance of predation under varying levels of motivation induced by hunger. The results of simulations in a simple patch selection paradigm, using a lifetime fitness criterion for comparison, indicate that the CEF model is capable of nearly optimal foraging and outperforms a run-of-luck rule-of-thumb model. Models such as the one presented here can illuminate the underlying cognitive and motivational components of animal decision making.
ZeroCal: Automatic MAC Protocol Calibration
NASA Astrophysics Data System (ADS)
Meier, Andreas; Woehrle, Matthias; Zimmerling, Marco; Thiele, Lothar
Sensor network MAC protocols are typically configured for an intended deployment scenario once and for all at compile time. This approach, however, leads to suboptimal performance if the network conditions deviate from the expectations. We present ZeroCal, a distributed algorithm that allows nodes to dynamically adapt to variations in traffic volume. Using ZeroCal, each node autonomously configures its MAC protocol at runtime, thereby trying to reduce the maximum energy consumption among all nodes. While the algorithm is readily usable for any asynchronous low-power listening or low-power probing protocol, we validate and demonstrate the effectiveness of ZeroCal on X-MAC. Extensive testbed experiments and simulations indicate that ZeroCal quickly adapts to traffic variations. We further show that ZeroCal extends network lifetime by 50% compared to an optimal configuration with identical and static MAC parameters at all nodes.
Almeida, Fernando R.; Brayner, Angelo; Rodrigues, Joel J. P. C.; Maia, Jose E. Bessa
2017-01-01
An efficient strategy for reducing message transmission in a wireless sensor network (WSN) is to group sensors by means of an abstraction denoted cluster. The key idea behind the cluster formation process is to identify a set of sensors whose sensed values present some data correlation. Nowadays, sensors are able to simultaneously sense multiple different physical phenomena, yielding in this way multidimensional data. This paper presents three methods for clustering sensors in WSNs whose sensors collect multidimensional data. The proposed approaches implement the concept of multidimensional behavioral clustering. To show the benefits introduced by the proposed methods, a prototype has been implemented and experiments have been carried out on real data. The results prove that the proposed methods decrease the amount of data flowing in the network and present low root-mean-square error (RMSE). PMID:28590450
Cooperative Spatial Retreat for Resilient Drone Networks †
Kang, Jin-Hyeok; Kwon, Young-Min; Park, Kyung-Joon
2017-01-01
Drones are broadening their scope to various applications such as networking, package delivery, agriculture, rescue, and many more. For proper operation of drones, reliable communication should be guaranteed because drones are remotely controlled. When drones experience communication failure due to bad channel condition, interference, or jamming in a certain area, one existing solution is to exploit mobility or so-called spatial retreat to evacuate them from the communication failure area. However, the conventional spatial retreat scheme moves drones in random directions, which results in inefficient movement with significant evacuation time and waste of battery lifetime. In this paper, we propose a novel spatial retreat technique that takes advantage of cooperation between drones for resilient networking, which is called cooperative spatial retreat (CSR). Our performance evaluation shows that the proposed CSR significantly outperforms existing schemes. PMID:28467390
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien, C; Elgorriaga, I; McConaghy, C
2001-07-03
Emerging CMOS and MEMS technologies enable the implementation of a large number of wireless distributed microsensors that can be easily and rapidly deployed to form highly redundant, self-configuring, and ad hoc sensor networks. To facilitate ease of deployment, these sensors should operate on battery for extended periods of time. A particular challenge in maintaining extended battery lifetime lies in achieving communications with low power. This paper presents a direct-sequence spread-spectrum modem architecture that provides robust communications for wireless sensor networks while dissipating very low power. The modem architecture has been verified in an FPGA implementation that dissipates only 33 mWmore » for both transmission and reception. The implementation can be easily mapped to an ASIC technology, with an estimated power performance of less than 1 mW.« less
Almeida, Fernando R; Brayner, Angelo; Rodrigues, Joel J P C; Maia, Jose E Bessa
2017-06-07
An efficient strategy for reducing message transmission in a wireless sensor network (WSN) is to group sensors by means of an abstraction denoted cluster. The key idea behind the cluster formation process is to identify a set of sensors whose sensed values present some data correlation. Nowadays, sensors are able to simultaneously sense multiple different physical phenomena, yielding in this way multidimensional data. This paper presents three methods for clustering sensors in WSNs whose sensors collect multidimensional data. The proposed approaches implement the concept of multidimensional behavioral clustering . To show the benefits introduced by the proposed methods, a prototype has been implemented and experiments have been carried out on real data. The results prove that the proposed methods decrease the amount of data flowing in the network and present low root-mean-square error (RMSE).