Science.gov

Sample records for promieniowanie uv-c lub

  1. Negative thermal expansion and anomalies of heat capacity of LuB50 at low temperatures.

    PubMed

    Novikov, V V; Zhemoedov, N A; Matovnikov, A V; Mitroshenkov, N V; Kuznetsov, S V; Bud'ko, S L

    2015-09-28

    Heat capacity and thermal expansion of LuB50 boride were experimentally studied in the 2-300 K temperature range. The data reveal an anomalous contribution to the heat capacity at low temperatures. The value of this contribution is proportional to the first degree of temperature. It was identified that this anomaly in heat capacity is caused by the effect of disorder in the LuB50 crystalline structure and it can be described in the soft atomic potential model (SAP). The parameters of the approximation were determined. The temperature dependence of LuB50 heat capacity in the whole temperature range was approximated by the sum of SAP contribution, Debye and two Einstein components. The parameters of SAP contribution for LuB50 were compared to the corresponding values for LuB66, which was studied earlier. Negative thermal expansion at low temperatures was experimentally observed for LuB50. The analysis of the experimental temperature dependence for the Gruneisen parameter of LuB50 suggested that the low-frequency oscillations, described in SAP mode, are responsible for the negative thermal expansion. Thus, the glasslike character of the behavior of LuB50 thermal characteristics at low temperatures was confirmed.

  2. Negative thermal expansion and anomalies of heat capacity of LuB50 at low temperatures

    DOE PAGES

    Novikov, V. V.; Zhemoedov, N. A.; Matovnikov, A. V.; ...

    2015-07-20

    Heat capacity and thermal expansion of LuB50 boride were experimentally studied in the 2–300 K temperature range. The data reveal an anomalous contribution to the heat capacity at low temperatures. The value of this contribution is proportional to the first degree of temperature. It was identified that this anomaly in heat capacity is caused by the effect of disorder in the LuB50 crystalline structure and it can be described in the soft atomic potential model (SAP). The parameters of the approximation were determined. The temperature dependence of LuB50 heat capacity in the whole temperature range was approximated by the summore » of SAP contribution, Debye and two Einstein components. The parameters of SAP contribution for LuB50 were compared to the corresponding values for LuB66, which was studied earlier. Negative thermal expansion at low temperatures was experimentally observed for LuB50. The analysis of the experimental temperature dependence for the Gruneisen parameter of LuB50 suggested that the low-frequency oscillations, described in SAP mode, are responsible for the negative thermal expansion. As a result, the glasslike character of the behavior of LuB50 thermal characteristics at low temperatures was confirmed.« less

  3. Impact of Room Location on UV-C Irradiance and UV-C Dosage and Antimicrobial Effect Delivered by a Mobile UV-C Light Device.

    PubMed

    Boyce, John M; Farrel, Patricia A; Towle, Dana; Fekieta, Renee; Aniskiewicz, Michael

    2016-06-01

    OBJECTIVE To evaluate ultraviolet C (UV-C) irradiance, UV-C dosage, and antimicrobial effect achieved by a mobile continuous UV-C device. DESIGN Prospective observational study. METHODS We used 6 UV light sensors to determine UV-C irradiance (W/cm2) and UV-C dosage (µWsec/cm2) at various distances from and orientations relative to the UV-C device during 5-minute and 15-minute cycles in an ICU room and a surgical ward room. In both rooms, stainless-steel disks inoculated with methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), and Clostridium difficile spores were placed next to sensors, and UV-C dosages and log10 reductions of target organisms achieved during 5-minute and 15-minute cycles were determined. Mean irradiance and dosage readings were compared using ANOVA. RESULTS Mean UV-C irradiance was nearly 1.0E-03 W/cm2 in direct sight at a distance of 1.3 m (4 ft) from the device but was 1.12E-05 W/cm2 on a horizontal surface in a shaded area 3.3 m (10 ft) from the device (P4 to 1-3 for MRSA, >4 to 1-2 for VRE and >4 to 0 log10 for C. difficile spores, depending on the distance from, and orientation relative to, the device with 5-minute and 15-minute cycles. CONCLUSION UV-C irradiance, dosage, and antimicrobial effect received from a mobile UV-C device varied substantially based on location in a room relative to the UV-C device. Infect Control Hosp Epidemiol 2016;37:667-672.

  4. Heat capacity and thermal expansion of icosahedral lutetium boride LuB66

    SciTech Connect

    Novikov, V V; Avdashchenko, D V; Matovnikov, A V; Mitroshenkov, N V; Bud’ko, S L

    2014-01-07

    The experimental values of heat capacity and thermal expansion for lutetium boride LuB66 in the temperature range of 2-300 K were analysed in the Debye-Einstein approximation. It was found that the vibration of the boron sub-lattice can be considered within the Debye model with high characteristic temperatures; low-frequency vibration of weakly connected metal atoms is described by the Einstein model.

  5. Synthesis and Characterization of a Lubricin Mimic (mLub) To Reduce Friction and Adhesion on the Articular Cartilage Surface

    PubMed Central

    Lawrence, Alexandra; Xu, Xin; Bible, Melissa D.; Calve, Sarah; Neu, Corey P.; Panitch, Alyssa

    2015-01-01

    The lubricating proteoglycan, lubricin, facilitates the remarkable low friction and wear properties of articular cartilage in the synovial joints of the body. Lubricin lines the joint surfaces and plays a protective role as a boundary lubricant in sliding contact; decreased expression of lubricin is associated with cartilage degradation and the pathogenesis of osteoarthritis. An unmet need for early osteoarthritis treatment is the development of therapeutic molecules that mimic lubricin function and yet are also resistant to enzymatic degradation common in the damaged joint. Here, we engineered a lubricin mimic (mLub) that is less susceptible to enzymatic degradation and binds to the articular surface to reduce friction. mLub was synthesized using a chondroitin sulfate backbone with type II collagen and hyaluronic acid (HA) binding peptides to promote interaction with the articular surface and synovial fluid constituents. In vitro and in vivo characterization confirmed the binding ability of mLub to isolated type II collagen and HA, and to the cartilage surface. Following trypsin treatment to the cartilage surface, application of mLub, in combination with purified or commercially available hyaluronan, reduced the coefficient of friction, and adhesion, to control levels as assessed over macro- to micro-scales by rheometry and atomic force microscopy. In vivo studies demonstrate an mLub residency time of less than 1 week. Enhanced lubrication by mLub reduces surface friction and adhesion, which may suppress the progression of degradation and cartilage loss in the joint. mLub therefore shows potential for treatment in early osteoarthritis following injury. PMID:26398308

  6. Radiochromic film dosimetry for UV-C treatments of apple fruit

    USDA-ARS?s Scientific Manuscript database

    Radiochromic films were evaluated for their suitability to estimate UV-C doses and dose uniformity on apple fruit surface. Parameters investigated included film type, color changes of the films in response to different UV-C doses, color stability of films, UV-C light intensity, and temperature. In...

  7. Removal of EDTA by UV-C/hydrogen peroxide.

    PubMed

    Baeza, C; Rossner, A; Jardim, W F; Litter, M I; Mansilla, H D

    2003-10-01

    Mineralization of a 5 mM EDTA solution at pH 3 was evaluated via TOC removal under UV-C irradiation in the presence of H2O2 at various conditions. The highest TOC removal (78%) was obtained using a 40:1 H2O2/EDTA molar ratio, after 540 min irradiation. However, a 20:1 ratio gave slightly lower results, being economically more attractive. Best results of TOC removal were obtained under pH controlled conditions. Addition of TiO2 (1 g l(-1)) was detrimental, even in the presence of H2O2, indicating that at this concentration, TiO2 inhibits the mineralization, probably by scattering or by screening of the light.

  8. Inactivation of Listeria monocytogenes on Frozen Red Raspberries by Using UV-C Light.

    PubMed

    Liao, Yen-Te; Syamaladevi, Roopesh M; Zhang, Hongchao; Killinger, Karen; Sablani, Shyam

    2017-04-01

    In this study, the efficacy of UV-C treatment was determined on the reduction of foodborne pathogens on artificially contaminated frozen food surfaces. At first, the UV-C inactivation rates on 100 μl of the respective cocktails of Escherichia coli O157:H7, Salmonella , and Listeria monocytogenes covered underneath 0.5-cm-thick ice were examined. Simultaneously, the energy percentage of UV-C transmitted through the ice was determined. The experiments showed that more than 65% of the UV-C light energy passed through the ice and that UV-C susceptibility was in the descending order of E. coli O157:H7, Salmonella , and L. monocytogenes . L. monocytogenes , the most UV-C-resistant strain, was then selected to test on frozen raspberries. The UV-C inactivation kinetic data of L. monocytogenes were well described using the Weibull equation. During 720 s of UV-C exposure, with a total dose of 7.8 × 10(2) mJ/cm(2), a 1.5-log CFU/g reduction of L. monocytogenes population on the surface of frozen red raspberries was noted. No significant differences in total anthocyanins, total phenolics, and total antioxidant activity were observed between UV-C-treated and untreated frozen berries immediately after treatment. At the end of 9 months of storage at -35°C, UV-C-treated berries had statistically lower total phenolics, higher total anthocyanins, and similar total antioxidant activity compared with untreated berries. This study shows that UV-C light can be used to reduce the L. monocytogenes population on frozen raspberries.

  9. Proteomic Analyses of Changes in Synechococcus sp. PCC7942 Following UV-C Stress.

    PubMed

    Peng, Xi; Yang, Jie; Gao, Yang

    2017-01-25

    UV-C's effects on the physiological and biochemical processes of cyanobacteria have been well characterized. However, the molecular mechanisms of cyanobacteria's tolerance to UV-C still needs further investigation. This research attempts to decode the variation in protein abundances in cyanobacteria after UV-C stress. Different expression levels of proteins in the cytoplasm of Synechococcus sp. PCC7942 under UV-C stress were investigated by using a comparative proteomic approach. Forty-seven UV-C-regulated proteins were identified by MALDI-TOF analysis and classified by Gene Ontology (GO). After studying their pathways, the proteins were mainly enriched in the groups of protein folding, inorganic ion transport, and energy production. By focusing on these areas, this study reveals the correlation between UV-C stress-responsive proteins and the physiological changes of Synechococcus sp. PCC7942 under UV-C radiation. These findings may open up new areas for further exploration in the homeostatic mechanisms associated with cyanobacteria responses to UV-C radiation. This article is protected by copyright. All rights reserved.

  10. UV-C radiation as a factor reducing microbiological contamination of fish meal.

    PubMed

    Skowron, Krzysztof; Bauza-Kaszewska, Justyna; Dobrzański, Zbigniew; Paluszak, Zbigniew; Skowron, Karolina Jadwiga

    2014-01-01

    Fish meals, added to feeds as a source of protein, may contain pathogenic bacteria. Therefore, effective methods for their sanitizing, such as UV-C radiation, are needed to minimize the epidemiological risk. The objective of this study was to evaluate the effect of UV-C radiation on the sanitary state of fish meals. The research materials included salmon and cod meals. Samples of the fish meals were inoculated with suspensions of Salmonella, E. coli, enterococci, and C. sporogenes spores and exposed to the following surface UV-C fluencies: 0-400 J·m⁻² for bacteria and 0-5000 J·m⁻² for spores. For the vegetative forms, the highest theoretical lethal UV-C dose, ranging from 670.99 to 688.36 J·m⁻² depending on the meal type, was determined for Salmonella. The lowest UV-C fluency of 363.34-363.95 J·m⁻² was needed for the inactivation of Enterococcus spp. Spores were considerably more resistant, and the UV-C doses necessary for inactivation were 159571.1 J·m⁻² in salmon meal and 66836.9 J·m⁻² in cod meal. The application of UV-C radiation for the sanitization of fish meals proved to be a relatively effective method for vegetative forms of bacteria but was practically ineffective for spores.

  11. UV-C Radiation as a Factor Reducing Microbiological Contamination of Fish Meal

    PubMed Central

    Dobrzański, Zbigniew; Skowron, Karolina Jadwiga

    2014-01-01

    Fish meals, added to feeds as a source of protein, may contain pathogenic bacteria. Therefore, effective methods for their sanitizing, such as UV-C radiation, are needed to minimize the epidemiological risk. The objective of this study was to evaluate the effect of UV-C radiation on the sanitary state of fish meals. The research materials included salmon and cod meals. Samples of the fish meals were inoculated with suspensions of Salmonella, E. coli, enterococci, and C. sporogenes spores and exposed to the following surface UV-C fluencies: 0–400 J·m−2 for bacteria and 0–5000 J·m−2 for spores. For the vegetative forms, the highest theoretical lethal UV-C dose, ranging from 670.99 to 688.36 J·m−2 depending on the meal type, was determined for Salmonella. The lowest UV-C fluency of 363.34–363.95 J·m−2 was needed for the inactivation of Enterococcus spp. Spores were considerably more resistant, and the UV-C doses necessary for inactivation were 159571.1 J·m−2 in salmon meal and 66836.9 J·m−2 in cod meal. The application of UV-C radiation for the sanitization of fish meals proved to be a relatively effective method for vegetative forms of bacteria but was practically ineffective for spores. PMID:24578670

  12. Blood Group Antigens C, Lub and P1 May Have a Role in HIV Infection in Africans.

    PubMed

    Motswaledi, Modisa Sekhamo; Kasvosve, Ishmael; Oguntibeju, Oluwafemi Omoniyi

    2016-01-01

    Botswana is among the world's countries with the highest rates of HIV infection. It is not known whether or not this susceptibility to infection is due to genetic factors in the population. Accumulating evidence, however, points to the role of erythrocytes as potential mediators of infection. We therefore sought to establish the role, if any, of some erythrocyte antigens in HIV infection in a cross-section of the population. 348 (346 HIV-negative and 2 HIV-positive) samples were obtained from the National Blood Transfusion Service as residual samples, while 194 HIV-positive samples were obtained from the Botswana-Harvard HIV Reference Laboratory. Samples were grouped for twenty three antigens. Chi-square or Fischer Exact analyses were used to compare the frequencies of the antigens in the two groups. A stepwise, binary logistic regression was used to study the interaction of the various antigens in the light of HIV-status. The Rh antigens C and E were associated with HIV-negative status, while blood group Jka, P1 and Lub were associated with HIV-positive status. A stepwise binary logistic regression analysis yielded group C as the most significant protective blood group while Lub and P1 were associated with significantly higher odds ratio in favor of HIV-infection. The lower-risk-associated group C was significantly lower in Africans compared to published data for Caucasians and might partially explain the difference in susceptibility to HIV-1. The most influential antigen C, which also appears to be protective, is significantly lower in Africans than published data for Caucasians or Asians. On the other hand, there appear to be multiple antigens associated with increased risk that may override the protective role of C. A study of the distribution of these antigens in other populations may shed light on their roles in the HIV pandemic.

  13. Changes of flavonoid content and antioxidant capacity in blueberries after UV-C illumination

    USDA-ARS?s Scientific Manuscript database

    The levels of flavonoids in blueberries were found to increase after illumination with UV-C. Phytochemicals affected included resveratrol, myricetin 3-arabinoside, quercetin 3-galactoside, quercetin derivative, kaempferol derivative, delphinidin-3-galactoside, cyaniding 3-galactoside, delphinidin 3-...

  14. Mechanisms of photosynthetic inactivation on growth suppression of Microcystis aeruginosa under UV-C stress.

    PubMed

    Tao, Yi; Mao, Xianzhong; Hu, Jiangyong; Mok, H O L; Wang, Lingyun; Au, D W T; Zhu, Jia; Zhang, Xihui

    2013-10-01

    This study aims to investigate the effects of UV-C irradiation on photosynthetic processes of Microcystis aeruginosa to unravel the mechanism(s) involved in how and in what ways UV-C mediates growth suppression and cellular recovery. Changes in the concentration of photosynthetic pigments, photochemical efficiency, PS II core protein (D1) content, and the coding genes expressions were measured. The results indicate that UV-C doses at 20-200 mJ cm(-2) lead to rapid reduction in gene expression of both psbA (for D1) and cpc (for phycocyanin), but the suppression was short term and recoverable within 3 d of post-UV incubation. Conversely, UV-C doses at ≥50 mJ cm(-2) could induce marked decline in photochemical efficiency (represented by the optimal PS II quantum yield, FV/FM, and the effective PS II quantum yield, Y) as well as decreases in D1 content and water soluble pigments (phycoerythrins, phycocyanins, allophycocyanins) in M. aeruginosa during the post UV-C incubation period. The results suggest that interruption of both the light energy harvesting apparatus (especially the water soluble pigments) and the photochemical process mainly accounted for the growth suppression effect in UV-C irradiated M. aeruginosa. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Daily Preharvest UV-C Light Maintains the High Stilbenoid Concentration in Grapes.

    PubMed

    Guerrero, Raúl F; Cantos-Villar, Emma; Puertas, Belén; Richard, Tristan

    2016-06-29

    The fact that it is possible to induce stilbenoid synthesis in grapevine (Vitis vinifera) by UV-C light allows the possibility of stimulating grapevine phytoalexin production to increase disease resistance and immunity, and subsequently to limit the use of pesticides in vineyards. UV-C light was applied daily during three days before the harvesting of table grape variety Crimson seedless to study the accumulation of stilbenoid compounds during ripeness. The E-resveratrol concentration was monitored during daily preharvest UV-C light application and compared with that after a single application. Daily periodic preharvest UV-C light treatment showed a cumulative effect on grape stilbenoids. An 86-fold stilbenoid level increase (sum of E-resveratrol, E-piceatannol, ε-viniferin, E-piceid, isorhapontigenin, ω-viniferin, and Z-piceid) in grapes was achieved. The effects of UV-C light on stilbenoid in grape cane was also addressed for the first time. Stilbenoid oligomers such as hopeaphenol, ampelopsin A, and r-viniferin were quantified in cane samples. Quality grape parameters indicated an acceleration of ripening in UV-C samples.

  16. Integrating coagulation-flocculation and UV-C or H2O2/UV-C as alternatives for pre- or complete treatment of biodiesel effluents.

    PubMed

    Costa, Nayara M; Silva, Valdislaine M; Damaceno, Gizele; Sousa, Raquel M F; Richter, Eduardo M; Machado, Antonio E H; Trovó, Alam G

    2017-12-01

    The feasibility of biodiesel effluent treatment combining coagulation-flocculation with a photolytic process was evaluated, being the photolytic process involving the irradiation of the effluent by UV-C, or by UV-C irradiation with simultaneous addition of H2O2 (H2O2/UV-C). The coagulation-flocculation was performed at the natural pH of the effluent (pH 2.9) using different Fe(3+) salts (chloride, nitrate and sulfate) at different concentrations (0.25, 0.50 and 1.0 mmol L(-1)) of the counterions. The best results were achieved using 0.50 mmol L(-1) Fe(NO3)3. Following, the degradation of the organic load and toxicity reduction of the pre-treated effluent by UV-C irradiation was evaluated. The H2O2/UV-C process showed to be advantageous, mainly when multiple additions of H2O2 were used during the course of the reaction. Additionally, the influence of the initial pH on the degradation was also evaluated. A high level of mineralization (94%) was achieved after 6 h of irradiation concomitantly with multiple additions of 2,000 mg L(-1) H2O2, and with the effluent at the natural pH. Thus, using coagulation-flocculation followed by the H2O2/UV-C process, it was possible to achieve a favourable condition for reuse of the pre-treated effluent, since, in addition to the significant reduction of the organic load, the final DBO5 (<120 mg L(-1)) and oils & fats (<50 mg L(-1)) are below the limits established by the Brazilian legislation. Furthermore, a reduction of 78% of acute toxicity to V. fischeri (from 89% to 20%) was reached. The results suggest, therefore, that this process is a viable option for treatment of this kind of effluent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. UV-C irradiation delays mitotic progression by recruiting Mps1 to kinetochores.

    PubMed

    Zhang, Xiaojuan; Ling, Youguo; Wang, Wenjun; Zhang, Yanhong; Ma, Qingjun; Tan, Pingping; Song, Ting; Wei, Congwen; Li, Ping; Liu, Xuedong; Ma, Runlin Z; Zhong, Hui; Cao, Cheng; Xu, Quanbin

    2013-04-15

    The effect of UV irradiation on replicating cells during interphase has been studied extensively. However, how the mitotic cell responds to UV irradiation is less well defined. Herein, we found that UV-C irradiation (254 nm) increases recruitment of the spindle checkpoint proteins Mps1 and Mad2 to the kinetochore during metaphase, suggesting that the spindle assembly checkpoint (SAC) is reactivated. In accordance with this, cells exposed to UV-C showed delayed mitotic progression, characterized by a prolonged chromosomal alignment during metaphase. UV-C irradiation also induced the DNA damage response and caused a significant accumulation of γ-H2AX on mitotic chromosomes. Unexpectedly, the mitotic delay upon UV-C irradiation is not due to the DNA damage response but to the relocation of Mps1 to the kinetochore. Further, we found that UV-C irradiation activates Aurora B kinase. Importantly, the kinase activity of Aurora B is indispensable for full recruitment of Mps1 to the kinetochore during both prometaphase and metaphase. Taking these findings together, we propose that UV irradiation delays mitotic progression by evoking the Aurora B-Mps1 signaling cascade, which exerts its role through promoting the association of Mps1 with the kinetochore in metaphase.

  18. Effect of UV-C light on the microbial and sensory quality of seasoned dried seafood.

    PubMed

    Lee, Eun-Seon; Park, Shin Young; Ha, Sang-Do

    2016-04-01

    This study investigated the effects of different doses of UV-C light at 253.7 nm (0-18 kJ/m(2)) on the reduction of Escherichia coli,Staphylococcus aureus and Bacillus cereus in contaminated seasoned dried filefish (Thamnaconus modestus) and sliced squid (Todarodes pacificus) surfaces and sensory quality. The counts of all three bacteria were significantly (P < 0.05) reduced by the increase of UV-C dosage.E. coli,S. aureus and B. cereus on filefish with 18 kJ/m(2)of UV-C maximally reduced by 2.70, 2.55 and 2.57 log CFU/g, respectively; however, on the sliced squid using the same UV dose reduced the same bacteria by 1.35, 0.54 and 1.05 log CFU/g, respectively. However, the results suggest that 6 to 9 kJ/m(2)of UV-C could be used for the inactivation of E. coli and B. cereus in these dried fishery products without any changes in sensory quality. However, S. aureus levels on sliced squid will require a combination of UV-C light and chemical treatment.

  19. UV-C treatment on physiological response of potato (Solanum tuberosum L.) during low temperature storage.

    PubMed

    Lin, Qiong; Xie, Yajing; Liu, Wei; Zhang, Jie; Cheng, Shuzhen; Xie, Xinfang; Guan, Wenqiang; Wang, Zhidong

    2017-01-01

    The storage of potato tuber (Solanum tuberosum L.) at low temperatures minimizes sprouting and disease but can cause cold-induced sweetening (CIS), which leads to the production of the cancerogenic substance acrylamide during the frying processing. The aim of this research was to investigate the effects of UV-C treatment on CIS in cold stored potato tuber. 'Atlantic' potatoes were treated with UV-C for an hour and then stored at 4 °C up to 28 days. The UV-C treatment significantly prevented the increase of malondialdehyde content (an indicator of the prevention of oxidative injury) in potato cells during storage. The accumulation of reducing sugars, particularly fructose and glucose, was significantly reduced by UV-C treatment possibly due to the regulation of the gene cascade, sucrose phosphate synthase, invertase inhibitor 1/3, and invertase 1 in potato tuber, which were observed to be differently expressed between treated and untreated potatoes during low temperature storage. In summary, UV-C treatment prevented the existence of oxidative injury in potato cells, thus, lowered the amount of reducing sugar accumulation during low temperature storage of potato tubers.

  20. Survival of thermophilic and hyperthermophilic microorganisms after exposure to UV-C, ionizing radiation and desiccation.

    PubMed

    Beblo, Kristina; Douki, Thierry; Schmalz, Gottfried; Rachel, Reinhard; Wirth, Reinhard; Huber, Harald; Reitz, Günther; Rettberg, Petra

    2011-11-01

    In this study, we investigated the ability of several (hyper-) thermophilic Archaea and phylogenetically deep-branching thermophilic Bacteria to survive high fluences of monochromatic UV-C (254 nm) and high doses of ionizing radiation, respectively. Nine out of fourteen tested microorganisms showed a surprisingly high tolerance against ionizing radiation, and two species (Aquifex pyrophilus and Ignicoccus hospitalis) were even able to survive 20 kGy. Therefore, these species had a comparable survivability after exposure to ionizing radiation such as Deinococcus radiodurans. In contrast, there was nearly no difference in survival of the tested strains after exposure to UV-C under anoxic conditions. If the cells had been dried in advance of UV-C irradiation, they were more sensitive to UV-C radiation compared with cells irradiated in liquid suspension; this effect could be reversed by the addition of protective material like sulfidic ores before irradiation. By exposure to UV-C, photoproducts were formed in the DNA of irradiated Archaea and Bacteria. The distribution of the main photoproducts was species specific, but the amount of the photoproducts was only partly dependent on the applied fluence. Overall, our results show that tolerance to radiation seems to be a common phenomenon among thermophilic and hyperthermophilic microorganisms.

  1. UV-C induces K sup + efflux from bean but not from oat leaves

    SciTech Connect

    Huerta, A.J.; Gueltig, B.G. )

    1990-05-01

    Previous reports have shown that ultraviolet radiation (UV) induces a specific leakage of K{sup +} from cells in culture as well as from guard cells of bean leaves resulting in stomatal closure. In an effort to determine how general this response may be in photosynthetic leaf cells, we measured the UV-C-induced K{sup +} efflux from irradiated 10-14 day-old bean and oat leaf sections. Our results show that oat leaves do not respond to UV-C irradiation with K{sup +} efflux. However UV-C irradiated bean leaves leaked K{sup +} at a rate of approximately 47 nmoles cm{sup {minus}2} h{sup {minus}1} and the leakage was linear for at least 3.5 hours. The source cells for K{sup +} efflux and the possible mechanisms responsible for this difference in UV-sensitivity will be discussed.

  2. Evidence of physiological phototropin1 (phot1) action in response to UV-C illumination

    PubMed Central

    Magerøy, Melissa Hamner; Kowalik, Erin H; Folta, Kevin M

    2010-01-01

    Stem growth kinetics were measured in cucumber (Cucumis sativus) and Arabidopsis thaliana using highly-sensitive monitoring with 5-minute resolution, in darkness and in response to a short, single pulse of UV-C illumination. The results show that UV-C, like blue light, induces a rapid decrease in seedling growth rate. The fluence-response kinetics and time course were similar to the phototropin1-mediated response observed following a blue pulse. Arabidopsis seedlings were used to assess the genetic mechanism of this response. The phot1 mutant exhibited defects in stem growth rate inhibition, with sustained growth inhibition completely absent following specific treatments. The cryptochrome and phytochrome mutants exhibited responses comparable to wild type, suggesting that these receptor classes do not contribute to this response. The work demonstrates in two species that UV-C has an effect on a rapid plant photomorphogenic response and that the response is partially mediated by the phot1 photoreceptor. PMID:20861684

  3. Ultraviolet (UV-C) inactivation of Enterococcus faecium, Salmonella choleraesuis and Salmonella typhimurium in porcine plasma

    PubMed Central

    Blázquez, Elena; Rodríguez, Carmen; Ródenas, Jesús; Pérez de Rozas, Ana; Segalés, Joaquim; Pujols, Joan

    2017-01-01

    The objective of this study was to assess the effectiveness of an ultraviolet (UV-C, 254 nm) irradiation system on reducing the load of Salmonella typhimurium (S. typhimurium), Salmonella choleraesuis (S. choleraesuis) resistant to streptomycin and Enterococcus faecium (E. faecium) inoculated in sterile porcine plasma and then subjected to different UV-C irradiation doses (750, 1500, 3000, 6000 and 9000 J/L) using a pilot plant UV-C device working under turbulent flow. Results indicated that UV-C treatment induced a viability reduction of 0.38, 1.18, 3.59, 4.72 and 5.06 log10 S. typhimurium when irradiated at 750, 1500, 3000, 6000 and 9000 J/L, respectively. The observed log10 reduction of S. choleraesuis was 1.44, 2.68, 5.55, 7.07 and 7.97 at 750, 1500, 3000, 6000 and 9000 J/L, respectively. The best-fit inactivation for S. choleraesuis was the Weibull distribution curve, while the best-fit curve for S. typhimurium was the Weibull plus tail model, indicating that around 102 cfu/mL resistant S. typhimurium was detected when the liquid plasma was UV-C irradiated at doses up to 9000 J/L. Viability reduction for E. faecium was 0.44, 1.01, 3.70, 5.61 and 6.22 log10 when irradiated at 750, 1500, 3000, 6000 and 9000 J/L, respectively, with no bacterial resistance observed with UV-C doses of 6000 J/L or higher. The biphasic model was the best fit model for the inactivation curve for E. faecium. For the three microorganisms tested, about a 4 log-unit reduction was achieved when the liquid plasma was irradiated at 3000J/L. Overall results demonstrate the usefulness of the UV-C system to inactivate bacteria in liquid plasma before spray-drying. We conclude that the UV-C system can provide an additional biosafety feature that can be incorporated into the manufacturing process for spray-dried animal plasma. PMID:28399166

  4. Changes in membrane fatty acid composition of Pseudomonas aeruginosa in response to UV-C radiations.

    PubMed

    Ghorbal, Salma Kloula Ben; Chatti, Abdelwaheb; Sethom, Mohamed Marwan; Maalej, Lobna; Mihoub, Mouadh; Kefacha, Sana; Feki, Moncef; Landoulsi, Ahmed; Hassen, Abdennaceur

    2013-07-01

    The changes in lipid composition enable the micro-organisms to maintain membrane functions in the face of environmental fluctuations. The relationship between membrane fatty acid composition and UV-C stress was determined for mid-exponential phase and stationary phase Pseudomonas aeruginosa. The total lipids were obtained by dichloromethane/methanol (3:1) and were quantified by GC. The TLC analysis of phospholipids showed the presence of three major fractions phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. Significant modifications, as manifested by an increase of UFA, were obtained. Interestingly, this microorganism showed a remarkable capacity for recovery from the stressful effects of UV-C.

  5. UV-C Inactivation of Francisella tularensis Utah-112 on agar surfaces, stainless steel, and foods

    USDA-ARS?s Scientific Manuscript database

    Francisella tularensis has been identified as a microorganism of concern in the field of food security. There is currently very little information on the ability to inactivate F. tularensis on foods using non-thermal processing technologies. The ability of ultraviolet light (UV-C) to inactivate F....

  6. Experimental set up for the irradiation of biological samples and nuclear track detectors with UV C.

    PubMed

    Portu, Agustina Mariana; Rossini, Andrés Eugenio; Gadan, Mario Alberto; Bernaola, Omar Alberto; Thorp, Silvia Inés; Curotto, Paula; Pozzi, Emiliano César Cayetano; Cabrini, Rómulo Luis; Martin, Gisela Saint

    2016-01-01

    In this work we present a methodology to produce an "imprint" of cells cultivated on a polycarbonate detector by exposure of the detector to UV C radiation. The distribution and concentration of (10)B atoms in tissue samples coming from BNCT (Boron Neutron Capture Therapy) protocols can be determined through the quantification and analysis of the tracks forming its autoradiography image on a nuclear track detector. The location of boron atoms in the cell structure could be known more accurately by the simultaneous observation of the nuclear tracks and the sample image on the detector. A UV C irradiator was constructed. The irradiance was measured along the lamp direction and at different distances. Melanoma cells were cultured on polycarbonate foils, incubated with borophenylalanine, irradiated with thermal neutrons and exposed to UV C radiation. The samples were chemically attacked with a KOH solution. A uniform irradiation field was established to expose the detector foils to UV C light. Cells could be seeded on the polycarbonate surface. Both imprints from cells and nuclear tracks were obtained after chemical etching. It is possible to yield cellular imprints in polycarbonate. The nuclear tracks were mostly present inside the cells, indicating a preferential boron uptake.

  7. Evaluation of UV-C mutagenized Scheffersomyces stipitis strains for ethanol production

    USDA-ARS?s Scientific Manuscript database

    We evaluated fermentation capabilities of five strains of Scheffersomyces stipitis (WT-2-1, WT-1-11, 14-2-6, 22-1-1, and 22-1-12) that had been produced by UV-C mutagenesis and selection for improved xylose fermentation to ethanol using an integrated automated robotic work cell. They were incubated ...

  8. Inactivation kinetics and photoreactivation of vegetable oxidative enzymes after combined UV-C processing

    USDA-ARS?s Scientific Manuscript database

    The inactivation kinetics of lipoxygenase (LOX), peroxidase (POD) and polyphenoloxidase (PPO) in phosphate buffer (pH 4.0 and 7.0) treated by combined thermal (25-65 C) and UV-C (1-10 min) processes were fitted using a traditional first-order kinetics model and the Weibull distribution function. For...

  9. Antioxidant enzymes expression in Pseudomonas aeruginosa exposed to UV-C radiation.

    PubMed

    Salma, Kloula Ben Ghorbal; Lobna, Maalej; Sana, Khefacha; Kalthoum, Chourabi; Imene, Ouzari; Abdelwaheb, Chatti

    2016-07-01

    It was well known that, UV-C irradiation increase considerably the reactive oxygen species (ROS) levels in eukaryotic and prokaryotic organisms. In the enzymatic ROS-scavenging pathways, superoxide dismutase (SOD), Catalase (CAT), and peroxidase (POX) were developed to deal with oxidative stress. In this study, we investigated the effects of UV-C radiations on antioxidant enzymes (catalase, superoxide dismutase, and peroxidases) expression in Pseudomonas aeruginosa. Catalase, superoxide dismutase, and peroxidases activities were determined spectrophotometrically. Isozymes of superoxide dismutase were revealed by native gel activity staining method. Lipid peroxidation was determined by measuring malondialdehyde formation. Our results showed that superoxide dismutase, catalase and peroxidase activities exhibited a gradual increase during the exposure time (30 min). However, the superoxide dismutase activity was maximized at 15 min. Native gel activity staining assays showed the presence of three superoxide dismutase isozymes. The iron-cofactored isoform activity was altered after exposure to UV-C stress. These finding suggest that catalase and peroxidase enzymes have the same importance toward UV-C rays at shorter and longer exposure times and this may confer additional protection to superoxide dismutase from damage caused by lipid peroxidation. Moreover, our data demonstrate the significant role of the antioxidant system in the resistance of this important human pathogen. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Experimental set up for the irradiation of biological samples and nuclear track detectors with UV C

    PubMed Central

    Portu, Agustina Mariana; Rossini, Andrés Eugenio; Gadan, Mario Alberto; Bernaola, Omar Alberto; Thorp, Silvia Inés; Curotto, Paula; Pozzi, Emiliano César Cayetano; Cabrini, Rómulo Luis; Martin, Gisela Saint

    2016-01-01

    Aim In this work we present a methodology to produce an “imprint” of cells cultivated on a polycarbonate detector by exposure of the detector to UV C radiation. Background The distribution and concentration of 10B atoms in tissue samples coming from BNCT (Boron Neutron Capture Therapy) protocols can be determined through the quantification and analysis of the tracks forming its autoradiography image on a nuclear track detector. The location of boron atoms in the cell structure could be known more accurately by the simultaneous observation of the nuclear tracks and the sample image on the detector. Materials and Methods A UV C irradiator was constructed. The irradiance was measured along the lamp direction and at different distances. Melanoma cells were cultured on polycarbonate foils, incubated with borophenylalanine, irradiated with thermal neutrons and exposed to UV C radiation. The samples were chemically attacked with a KOH solution. Results A uniform irradiation field was established to expose the detector foils to UV C light. Cells could be seeded on the polycarbonate surface. Both imprints from cells and nuclear tracks were obtained after chemical etching. Conclusions It is possible to yield cellular imprints in polycarbonate. The nuclear tracks were mostly present inside the cells, indicating a preferential boron uptake. PMID:26933396

  11. Alternative strawberry disease management strategy: combing low UV-C irradiation in dark, disabling pathogen’s UV-C repair mechanism, and preventing pathogen establishment with biocontrol agents

    USDA-ARS?s Scientific Manuscript database

    The limitations of current fungicides necessitate a search for new approaches. Low-dose or sub-lethal UV-C irradiation (12.36 J/m2) alone is not effective in controlling fungal diseases, especially when the plants are exposed to UV-C irradiation during the day. We found, however, that application ...

  12. Cyto-genotoxic and oxidative effects of a continuous UV-C treatment of liquid egg products.

    PubMed

    Mendes de Souza, Poliana; Briviba, Karlis; Müller, Alexandra; Fernández, Avelina; Stahl, Mario

    2013-06-01

    UV-C treatment of food is a promising non-thermal processing technology to improve food safety and preservation. Most of the chemical constituents of food absorb UV-C light that can lead to chemical modifications and quality changes. This work investigated the effects of UV-C treatment of liquid egg products on lipid, protein oxidations and potential cyto- and genotoxic effects on intestinal epithelial cells in vitro. Egg preparations (egg white, yolk, liquid whole egg) were treated with UV-C (254 nm, volumetric doses between 0 and 115,619 J L(-1)) using a commercial UV-C processing unit equipped with a Dean Flow reactor. UV-C treatment at high doses (from 32,181 J L(-1), about 2 times higher than that needed to inactivate 5 log of relevant microorganisms) showed an increased lipid oxidation in egg yolk and slight effects in liquid whole eggs; this was confirmed by slightly but not statistically significant increased peroxide values. UV-C induced also slight protein damage, characterised by the total sulfhydryl group reduction. These UV-C-induced oxidative modifications in egg preparations however did not cause any increase in the cyto- or genotoxic (DNA strand breaks) effects in intestinal Caco-2 cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Random UV-C mutagenesis of Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 to improve anaerobic growth on lignocellulosic sugars

    USDA-ARS?s Scientific Manuscript database

    Yeast strains for anaerobic conversion of lignocellulosic sugars to ethanol were produced from Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 using UV-C mutagenesis. Random UV-C mutagenesis potentially produces large numbers of mutations broadly and uniformly over the whole genome to genera...

  14. UV-C light inactivation kinetics of Penicillium expansum on pear surfaces: Influence on physicochemical and sensory quality during storage

    USDA-ARS?s Scientific Manuscript database

    Postharvest quality and storage life of fresh pear are often limited by fungal growth caused by Penicillium expansum. Ultraviolet-C light (UV-C 254 nm) is a promising alternative disinfestation method to reduce fruit spoilage by fungi. In this study, UV-C inactivation kinetic data of Penicillium exp...

  15. UV-A and UV-C light induced hydrophilization of dental implants.

    PubMed

    Al Qahtani, Mohammed S A; Wu, Yanyun; Spintzyk, Sebastian; Krieg, Peter; Killinger, Andreas; Schweizer, Ernst; Stephan, Ingrid; Scheideler, Lutz; Geis-Gerstorfer, Jürgen; Rupp, Frank

    2015-08-01

    Wettability is increasingly considered to be an important factor determining biological responses to implant materials. In this context, the purpose of this study was to compare the dynamic wettability of dental implants made from different bulk materials and modified by different surface modifications, and to analyze the respective changes of wettability upon irradiating these implants by UV-A or UV-C light. Four original screw-type implants were investigated: One grit-blasted/acid-etched and one anodically oxidized titanium, one zirconia and one polyetheretherketone implant. Additionally, experimental, screwless, machined titanium cylinders were included in the study. Part of that cylinders and of blasted/etched implants were further modified by a magnetron-sputtered photocatalytic anatase thin film. Scanning electron microscopy was used to investigate the surface micro- and nanostructures. Samples were treated by UV-A (382nm, 25mWcm(-2)) and UV-C (260nm, 15mWcm(-2)) for entire 40min, respectively, and their wettability was quantified by dynamic contact angle (CA) analysis from multi-loop Wilhelmy experiments. All implants are characterized by submicron- and nanosized surface features. Unexposed implants were hydrophobic (CA>90°). Upon UV-A, solely the implants with anatase coating became superhydrophilic (CA<5°). Upon UV-C, the blasted/etched implants turned superhydrophilic, the anodized titanium and the zirconia implants were considerably (CA=34° and 27°, respectively) and the PEEK implants slightly (CA=79°) hydrophilized. The wettability of implant surfaces can be improved by UV irradiation. The efficiency of UV-A and UV-C irradiation to lower the CA by photocatalysis or photolysis, however, is strongly dependent on the specific material and surface. Thus, attempts to photofunctionalize these surfaces by irradiation is expected to result in a different pattern of bioresponses. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All

  16. Low responsiveness of grapevine flowers and berries at fruit set to UV-C irradiation.

    PubMed

    Petit, Anne-Noëlle; Baillieul, Fabienne; Vaillant-Gaveau, Nathalie; Jacquens, Lucile; Conreux, Alexandra; Jeandet, Philippe; Clément, Christophe; Fontaine, Florence

    2009-01-01

    In grapevine, stimulation of defence responses was evidenced in response to various types of abiotic stresses in both leaves and berries, as revealed by the increasing expression of genes encoding defence-related proteins or the stimulation of their corresponding activities. However, the capability of inflorescences to respond to abiotic stresses has never been investigated. Therefore, plant defence reactions in response to UV-C irradiation were followed in inflorescences and young clusters focusing on both bunchstems (peduncle and pedicels) and developing flowers/berries from separated floral buds stage [Biologische Bundesanstalt, Bundessortenamt and CHemical industry (BBCH) stage 57] to groat-sized berries stage (BBCH 73). For this purpose, the expression of various genes coding for pathogenesis-related (PR) proteins (class I and III chitinases, Chi1b and CH3; beta-1,3-glucanase, GLUC), an enzyme of the phenylpropanoid pathway (phenylalanine ammonia-lyase, PAL), and stilbene synthase (STS) was analysed in parallel with variations of chitinase activity and the accumulation of the phytoalexin resveratrol. Multiple defence responses were induced in bunchstems of both inflorescences and clusters following UV-C treatment. First, expression of genes encoding PR proteins was stimulated and chitinase activity was enhanced. Secondly, PAL and STS expression increased in association with resveratrol accumulation. Amazingly, none of the tested defence processes was induced in grapevine flowers following UV-C exposure, whatever the stage analysed. Similarly, in berries at fruit set, induction of gene expression was weak and neither an increase in chitinase activity nor resveratrol synthesis was noticed. However, in groat-sized berries, responsiveness to UV-C increased, as revealed by the induction of CH3, PAL, and STS expression, together with resveratrol accumulation. The differential responsiveness between bunchstems, flowers, and berries is discussed.

  17. Effect of modeled microgravity on UV-C-induced interplant communication of Arabidopsis thaliana.

    PubMed

    Wang, Ting; Xu, Wei; Li, Huasheng; Deng, Chenguang; Zhao, Hui; Wu, Yuejin; Liu, Min; Wu, Lijun; Lu, Jinying; Bian, Po

    2017-09-06

    Controlled ecological life support systems (CELSS) will be an important feature of long-duration space missions of which higher plants are one of the indispensable components. Because of its pivotal role in enabling plants to cope with environmental stress, interplant communication might have important implications for the ecological stability of such CELSS. However, the manifestations of interplant communication in microgravity conditions have yet to be fully elucidated. To address this, a well-established Arabidopsis thaliana co-culture experimental system, in which UV-C-induced airborne interplant communication is evaluated by the alleviation of transcriptional gene silencing (TGS) in bystander plants, was placed in microgravity modeled by a two-dimensional rotating clinostat. Compared with plants under normal gravity, TGS alleviation in bystander plants was inhibited in microgravity. Moreover, TGS alleviation was also prevented when plants of the pgm-1 line, which are impaired in gravity sensing, were used in either the UV-C-irradiated or bystander group. In addition to the specific TGS-loci, interplant communication-shaped genome-wide DNA methylation in bystander plants was altered under microgravity conditions. These results indicate that interplant communications might be modified in microgravity. Time course analysis showed that microgravity interfered with both the production of communicative signals in UV-C-irradiated plants and the induction of epigenetic responses in bystander plants. This was further confirmed by the experimental finding that microgravity also prevented the response of bystander plants to exogenous methyl jasmonate (JA) and methyl salicylate (SA), two well-known airborne signaling molecules, and down-regulated JA and SA biosynthesis in UV-C-irradiated plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Extremely high UV-C radiation resistant microorganisms from desert environments with different manganese concentrations.

    PubMed

    Paulino-Lima, Ivan Glaucio; Fujishima, Kosuke; Navarrete, Jesica Urbina; Galante, Douglas; Rodrigues, Fabio; Azua-Bustos, Armando; Rothschild, Lynn Justine

    2016-10-01

    Desiccation resistance and a high intracellular Mn/Fe ratio contribute to ionizing radiation resistance of Deinococcus radiodurans. We hypothesized that this was a general phenomenon and thus developed a strategy to search for highly radiation-resistant organisms based on their natural environment. While desiccation is a typical feature of deserts, the correlation between radiation resistance and the intracellular Mn/Fe ratio of indigenous microorganisms or the Mn/Fe ratio of the environment, has not yet been described. UV-C radiation is highly damaging to biomolecules including DNA. It was used in this study as a selective tool because of its relevance to early life on earth, high altitude aerobiology and the search for life beyond Earth. Surface soil samples were collected from the Sonoran Desert, Arizona (USA), from the Atacama Desert in Chile and from a manganese mine in northern Argentina. Microbial isolates were selected after exposure to UV-C irradiation and growth. The isolates comprised 28 genera grouped within six phyla, which we ranked according to their resistance to UV-C irradiation. Survival curves were performed for the most resistant isolates and correlated with their intracellular Mn/Fe ratio, which was determined by ICP-MS. Five percent of the isolates were highly resistant, including one more resistant than D. radiodurans, a bacterium generally considered the most radiation-resistant organism, thus used as a model for radiation resistance studies. No correlation was observed between the occurrence of resistant microorganisms and the Mn/Fe ratio in the soil samples. However, all resistant isolates showed an intracellular Mn/Fe ratio much higher than the sensitive isolates. Our findings could represent a new front in efforts to harness mechanisms of UV-C radiation resistance from extreme environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. S2O8(2-)/UV-C and H2O2/UV-C treatment of Bisphenol A: assessment of toxicity, estrogenic activity, degradation products and results in real water.

    PubMed

    Olmez-Hanci, Tugba; Dursun, Duygu; Aydin, Egemen; Arslan-Alaton, Idil; Girit, Binhan; Mita, Luigi; Diano, Nadia; Mita, Damiano G; Guida, Marco

    2015-01-01

    The performance of S2O8(2-)/UV-C and H2O2/UV-C treatments was investigated for the degradation and detoxification of Bisphenol A (BPA). The acute toxicity of BPA and its degradation products was examined with the Vibrio fischeri bioassay, whereas changes in estrogenic activity were followed with the Yeast Estrogen Screen (YES) assay. LC and LC-MS/MS analyses were conducted to determine degradation products evolving during photochemical treatment. In addition, BPA-spiked real freshwater samples were also subjected to S2O8(2-)/UV-C and H2O2/UV-C treatment to study the effect of a real water matrix on BPA removal and detoxification rates. BPA removal in pure water was very fast (⩽7 min) and complete via both H2O2/UV-C and S2O8(2-)/UV-C treatment, accompanied with rapid and significant mineralization rates ranging between 70% and 85%. V.fischeri bioassay results indicated that degradation products being more toxic than BPA were formed at the initial stages of H2O2/UV-C whereas a rapid and steady reduction in toxicity was observed during S2O8(2-)/UV-C treatment in pure water. UV-C treatment products exhibited a higher estrogenic activity than the original BPA solution while the estrogenicity of BPA was completely removed during H2O2/UV-C and S2O8(2-)/UV-C treatments parallel to its degradation. 3-methylbenzoic and 4-sulfobenzoic acids, as well as the ring opening products fumaric, succinic and oxalic acids could be identified as degradation products. BPA degradation required extended treatment periods (>20 min) and TOC removals were considerably retarded (by 40%) in the raw freshwater matrix most probably due to its natural organic matter content (TOC=5.1 mg L(-1)). H2O2/UV-C and S2O8(2-)/UV-C treatment in raw freshwater did not result in toxic degradation products.

  20. Enhanced degradation of paracetamol by UV-C supported photo-Fenton process over Fenton oxidation.

    PubMed

    Manu, B; Mahamood, S

    2011-01-01

    For the treatment of paracetamol in water, the UV-C Fenton oxidation process and classic Fenton oxidation have been found to be the most effective. Paracetamol reduction and chemical oxygen demand (COD) removal are measured as the objective functions to be maximized. The experimental conditions of the degradation of paracetamol are optimized by the Fenton process. Influent pH 3, initial H(2)O(2) dosage 60 mg/L, [H(2)O(2)]/[Fe(2+)] ratio 60 : 1 are the optimum conditions observed for 20 mg/L initial paracetamol concentration. At the optimum conditions, for 20 mg/L of initial paracetamol concentration, 82% paracetamol reduction and 68% COD removal by Fenton oxidation, and 91% paracetamol reduction and 82% COD removal by UV-C Fenton process are observed in a 120 min reaction time. By HPLC analysis, 100% removal of paracetamol is observed at the above optimum conditions for the Fenton process in 240 min and for the UV-C photo-Fenton process in 120 min. The methods are effective and they may be used in the paracetamol industry.

  1. 2-D DIGE analysis of UV-C radiation-responsive proteins in globe artichoke leaves.

    PubMed

    Falvo, Sara; Di Carli, Mariasole; Desiderio, Angiola; Benvenuto, Eugenio; Moglia, Andrea; America, Twan; Lanteri, Sergio; Acquadro, Alberto

    2012-02-01

    Plants respond to ultraviolet stress inducing a self-defence through the regulation of specific gene family members. The UV acclimation is the result of biochemical and physiological processes, such as enhancement of the antioxidant enzymatic system and accumulation of UV-absorbing phenolic compounds (e.g. flavonoids). Globe artichoke is an attractive species for studying the protein network involved in UV stress response, being characterized by remarkable levels of inducible antioxidants. Proteomic tools can assist the evaluation of the expression patterns of UV-responsive proteins and we applied the difference in-gel electrophoresis (DIGE) technology for monitoring the globe artichoke proteome variation at four time points following an acute UV-C exposure. A total of 145 UV-C-modulated proteins were observed and 119 were identified by LC-MS/MS using a ∼144,000 customized Compositae protein database, which included about 19,000 globe artichoke unigenes. Proteins were Gene Ontology (GO) categorized, visualized on their pathways and their behaviour was discussed. A predicted protein interaction network was produced and highly connected hub-like proteins were highlighted. Most of the proteins differentially modulated were chloroplast located, involved in photosynthesis, sugar metabolisms, protein folding and abiotic stress. The identification of UV-C-responsive proteins may contribute to shed light on the molecular mechanisms underlying plant responses to UV stress.

  2. Etiology of UV-C-induced browning in var. Superior white table grapes.

    PubMed

    González-Barrio, Rocío; Salmenkallio-Marttila, Marjatta; Tomás-Barberán, Francisco A; Cantos, Emma; Espín, Juan Carlos

    2005-07-27

    White table grapes, var. Superior, were treated with UV-C light after harvest to increase stilbenes concentration, especially trans-resveratrol (RES), because this may be of relevance to the health-promoting properties assigned to these compounds. However, irradiated grapes also developed some browning on the surface on the third day of storage at 22 degrees C, with the subsequent detriment in the sensorial quality of the fruit. Possible causes for browning development during storage were investigated. The phenolic-related oxidative enzymes, polyphenol oxidase (PPO) and peroxidase (POD), were not specifically activated, and no new isoforms appeared upon UV-C treatment. UV-treated grapes had lower content of chlorophyll b than control grapes on the fourth day of storage, concomitant with the increase of pheophytins (chlorophyll degradation derived compounds). Microscopy data showed lower fluorescence emission in chloroplasts from the UV-treated samples, which may explain the decrease of chlorophylls content in the corresponding grape berries extracts. In addition, microscopy images showed cell wall thickening in the skin tissue of UV-treated grapes which could be considered as a general wound response in plant tissues. These results suggest that the development of browning in Superior white grapes after UV-C treatment is not closely related with the evolution of oxidative enzymes during storage and may be mainly due to the decrease of chlorophylls content.

  3. UV-C-irradiated Arabidopsis and tobacco emit volatiles that trigger genomic instability in neighboring plants.

    PubMed

    Yao, Youli; Danna, Cristian H; Zemp, Franz J; Titov, Viktor; Ciftci, Ozan Nazim; Przybylski, Roman; Ausubel, Frederick M; Kovalchuk, Igor

    2011-10-01

    We have previously shown that local exposure of plants to stress results in a systemic increase in genome instability. Here, we show that UV-C-irradiated plants produce a volatile signal that triggers an increase in genome instability in neighboring nonirradiated Arabidopsis thaliana plants. This volatile signal is interspecific, as UV-C-irradiated Arabidopsis plants transmit genome destabilization to naive tobacco (Nicotiana tabacum) plants and vice versa. We report that plants exposed to the volatile hormones methyl salicylate (MeSA) or methyl jasmonate (MeJA) exhibit a similar level of genome destabilization as UV-C-irradiated plants. We also found that irradiated Arabidopsis plants produce MeSA and MeJA. The analysis of mutants impaired in the synthesis and/or response to salicylic acid (SA) and/or jasmonic acid showed that at least one other volatile compound besides MeSA and MeJA can communicate interplant genome instability. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (npr1) mutant, defective in SA signaling, is impaired in both the production and the perception of the volatile signals, demonstrating a key role for NPR1 as a central regulator of genome stability. Finally, various forms of stress resulting in the formation of necrotic lesions also generate a volatile signal that leads to genomic instability.

  4. Understanding the physiological effects of UV-C light and exploiting its agronomic potential before and after harvest.

    PubMed

    Urban, Laurent; Charles, Florence; de Miranda, Maria Raquel Alcântara; Aarrouf, Jawad

    2016-08-01

    There is an abundant literature about the biological and physiological effects of UV-B light and the signaling and metabolic pathways it triggers and influences. Much less is known about UV-C light even though it seems to have a lot of potential for being effective in less time than UV-B light. UV-C light is known since long to exert direct and indirect inhibitory and damaging effects on living cells and is therefore commonly used for disinfection purposes. More recent observations suggest that UV-C light can also be exploited to stimulate the production of health-promoting phytochemicals, to extent shelf life of fruits and vegetables and to stimulate mechanisms of adaptation to biotic and abiotic stresses. Clearly some of these effects may be related to the stimulating effect of UV-C light on the production of reactive oxygen species (ROS) and to the stimulation of antioxidant molecules and mechanisms, although UV-C light could also trigger and regulate signaling pathways independently from its effect on the production of ROS. Our review clearly underlines the high potential of UV-C light in agriculture and therefore advocates for more work to be done to improve its efficiency and also to increase our understanding of the way UV-C light is perceived and influences the physiology of plants.

  5. Resistance of Staphylococcus aureus to UV-C light and combined UV-heat treatments at mild temperatures.

    PubMed

    Gayán, E; García-Gonzalo, D; Alvarez, I; Condón, S

    2014-02-17

    In this investigation, the resistance of enterotoxigenic Staphylococcus aureus to short-wave ultraviolet light (UV-C) and to combined UV C-heat (UV-H) treatments in buffers and in liquid foods with different physicochemical characteristics was studied. Microbial resistance to UV-C varied slightly among the S. aureus strains tested. The UV-C resistance of S. aureus increased in the entry of stationary growth phase, which in part was due to the expression of the alternative sigma factor σ(B). The UV-C resistance of S. aureus was independent of the treatment medium's pH and water activity, but it decreased exponentially as the absorption coefficient increased. UV-C bactericidal efficacy in liquids of high absorption coefficients was improved synergistically when combined with a mild heat treatment at temperatures ranging from 50.0 to 57.5 °C. pH of the treatment medium modified the lethality of UV-H treatments and therefore the temperature of maximum synergy. The advantage of combined UV-H treatments was demonstrated in fruit juices and vegetable and chicken broths, inactivating 5 Log₁₀ cycles of S. aureus by applying UV-C treatments of 27.1 mJ/L for 3.6 min at 52.5 °C or 13.6 mJ/L for 1.8 min at 55.0 °C.

  6. UV-C pre-adaptation of Salmonella: effect on cell morphology and membrane fatty acids composition.

    PubMed

    Maâlej, Lobna; Chatti, Abdelwaheb; Khefacha, Sana; Salma, Kloula; Gottardi, David; Vannini, Lucia; Guerzoni, Maria Elizabetta; Hassen, Abdennaceur

    2014-03-01

    The present study was carried out to evaluate the effects of ultraviolet radiations (UV-C) on the fatty acids composition of three serovars of Salmonella: S. typhimurium, S. hadar and S. zanzibar. Results obtained show that UV-C treatment increases significantly (P ≤ 0.05) the percentage of cyclic fatty acids. The atomic force microscopy was used to study the morphology and cell surface of irradiated strains. Results show that UV-C rays induce morphological changes and alter the bacterial cell surface (presence of grooves and irregularities).

  7. Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy.

    PubMed

    Beck, Sara E; Ryu, Hodon; Boczek, Laura A; Cashdollar, Jennifer L; Jeanis, Kaitlyn M; Rosenblum, James S; Lawal, Oliver R; Linden, Karl G

    2017-02-01

    A dual-wavelength UV-C LED unit, emitting at peaks of 260 nm, 280 nm, and the combination of 260|280 nm together was evaluated for its inactivation efficacy and energy efficiency at disinfecting Escherichia coli, MS2 coliphage, human adenovirus type 2 (HAdV2), and Bacillus pumilus spores, compared to conventional low-pressure and medium-pressure UV mercury vapor lamps. The dual-wavelength unit was also used to measure potential synergistic effects of multiple wavelengths on bacterial and viral inactivation and DNA and RNA damage. All five UV sources demonstrated similar inactivation of E. coli. For MS2, the 260 nm LED was most effective. For HAdV2 and B. pumilus, the MP UV lamp was most effective. When measuring electrical energy per order of reduction, the LP UV lamp was most efficient for inactivating E. coli and MS2; the LP UV and MP UV mercury lamps were equally efficient for HAdV2 and B. pumilus spores. Among the UV-C LEDs, there was no statistical difference in electrical efficiency for inactivating MS2, HAdV2, and B. pumilus spores. The 260 nm and 260|280 nm LEDs had a statistical energy advantage for E. coli inactivation. For UV-C LEDs to match the electrical efficiency per order of log reduction of conventional LP UV sources, they must reach efficiencies of 25-39% or be improved on by smart reactor design. No dual wavelength synergies were detected for bacterial and viral inactivation nor for DNA and RNA damage.

  8. Oxidation of nonylphenol ethoxylates in aqueous solution by UV-C photolysis, H2O2/UV-C, Fenton and photo-Fenton processes: are these processes toxicologically safe?

    PubMed

    Karci, Akin; Arslan-Alaton, Idil; Bekbolet, Miray

    2013-01-01

    UV-C, H2O2/UV-C, Fenton and photo-Fenton treatment of a nonylphenol polyethoxylate (NP-10) were comparatively studied, primarily focusing on the acute toxicity of degradation products. Formic, acetic and oxalic acids were all identified as the degradation products of NP-10; however, the sole common carboxylic acid was found to be formic acid for the studied treatment processes. The percent relative inhibition towards Vibrio fischeri increased from 9% to 33% and 24% after 120 min-UV-C and H2O2/UV-C treatment, respectively. Complete NP-10 and 70% of its total organic carbon (TOC) content was removed by the photo-Fenton process, which ensured the fastest removal rates and lowest inhibitory effect (8% after 120 min treatment). The acute toxicity pattern being observed during H2O2/UV-C and photo-Fenton treatment positively correlated with temporal evolution of the identified carboxylic acids, whereas unidentified oxidation products were the most likely origin of the acute toxicity in UV-C photolysis.

  9. Effect of UV-C radiation and hypergravity on germination, growth and content of chlorophyll of wheat seedlings

    SciTech Connect

    Rupiasih, N. Nyoman; Vidyasagar, Pandit B.

    2016-03-11

    An investigation of the effects of UV-C radiation and hypergravity on germination, growth and content of chlorophyll of wheat seedlings has been done. The UV-C irradiation periods of exposure were 30, 60, 90, 120 and 180 minutes. The hypergravity used were 1000 g, 2000 g and 2500 g. The combination treatment is UV-C irradiation for 180 min followed by each hypergravity. The results showed that irradiation of UV-C on wheat seeds have stimulated the seed germination, but hypergravity and combination treatments on wheat seeds have inhibited the seed germination. Those treatments gave negative effects to growth rate, the content of chlorophyll a, b and total chlorophyll of wheat seedlings.

  10. Effect of UV-C radiation and hypergravity on germination, growth and content of chlorophyll of wheat seedlings

    NASA Astrophysics Data System (ADS)

    Rupiasih, N. Nyoman; Vidyasagar, Pandit B.

    2016-03-01

    An investigation of the effects of UV-C radiation and hypergravity on germination, growth and content of chlorophyll of wheat seedlings has been done. The UV-C irradiation periods of exposure were 30, 60, 90, 120 and 180 minutes. The hypergravity used were 1000 g, 2000 g and 2500 g. The combination treatment is UV-C irradiation for 180 min followed by each hypergravity. The results showed that irradiation of UV-C on wheat seeds have stimulated the seed germination, but hypergravity and combination treatments on wheat seeds have inhibited the seed germination. Those treatments gave negative effects to growth rate, the content of chlorophyll a, b and total chlorophyll of wheat seedlings.

  11. Pre-harvest UV-C irradiation triggers VOCs accumulation with alteration of antioxidant enzymes and phytohormones in strawberry leaves.

    PubMed

    Xu, Yanqun; Luo, Zisheng; Charles, Marie Thérèse; Rolland, Daniel; Roussel, Dominique

    2017-09-08

    Recent studies have highlighted the biological and physiological effects of pre-harvest ultraviolet (UV)-C treatment on growing plants. However, little is known about the involvement of volatile organic compounds (VOCs) and their response to this treatment. In this study, strawberry plants were exposed to three different doses of UV-C radiation for seven weeks (a low dose: 9.6kJm(-2); a medium dose: 15kJm(-2); and a high-dose: 29.4kJm(-2)). Changes in VOC profiles were investigated and an attempt was made to identify factors that may be involved in the regulation of these alterations. Principle compounds analysis revealed that VOC profiles of UV-C treated samples were significantly altered with 26 VOCs being the major contributors to segregation. Among them, 18 fatty acid-derived VOCs accumulated in plants that received high and medium dose of UV-C treatments with higher lipoxygenase and alcohol dehydrogenase activities. In treated samples, the activity of the antioxidant enzymes catalase and peroxidase was inhibited, resulting in a reduced antioxidant capacity and higher lipid peroxidation. Simultaneously, jasmonic acid level was 74% higher in the high-dose group while abscisic acid content was more than 12% lower in both the medium and high-dose UV-C treated samples. These results indicated that pre-harvest UV-C treatment stimulated the biosynthesis of fatty acid-derived VOCs in strawberry leaf tissue by upregulating the activity of enzymes of the LOX biosynthetic pathway and downregulating antioxidant enzyme activities. It is further suggested that the mechanisms underlying fatty acid-derived VOCs biosynthesis in UV-C treated strawberry leaves are associated with UV-C-induced changes in phytohormone profiles. Crown Copyright © 2017. Published by Elsevier GmbH. All rights reserved.

  12. Impact of shortwave ultraviolet (UV-C) radiation on the antioxidant activity of thyme (Thymus vulgaris L.).

    PubMed

    Dogu-Baykut, Esra; Gunes, Gurbuz; Decker, Eric Andrew

    2014-08-15

    Thyme is a good source of antioxidant compounds but it can be contaminated by microorganisms. An experimental fluid bed ultraviolet (UV) reactor was designed for microbial decontamination of thyme samples and the effect of shortwave ultraviolet light (UV-C) radiation on antioxidant properties of thyme was studied. Samples were exposed to UV-C radiation for 16 or 64 min. UV-C treatment led to 1.04 and 1.38 log CFU/g reduction of total aerobic mesophilic bacteria (TAMB) counts. Hunter a(∗) value was the most sensitive colour parameter during UV-C treatment. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of extracts was not significantly affected by UV-C. Addition of thyme extracts at 0.15 and 0.3 μmol GAE/ml emulsion delayed the formation of lipid hydroperoxides and headspace hexanal in the 5.0%(wt) corn oil-in-water emulsion from 4 to 9 and 14 days, respectively. No significant changes in oxidation rates were observed between UV-C treated and untreated samples at same concentrations.

  13. Efficient removal of endosulfan from aqueous solution by UV-C/peroxides: a comparative study.

    PubMed

    Shah, Noor S; He, Xuexiang; Khan, Hasan M; Khan, Javed Ali; O'Shea, Kevin E; Boccelli, Dominic L; Dionysiou, Dionysios D

    2013-12-15

    This study explored the efficiency of UV-C-based advanced oxidation processes (AOPs), i.e., UV/S2O8(2-), UV/HSO5(-), and UV/H2O2 for the degradation of endosulfan, an organochlorine insecticide and an emerging water pollutant. A significant removal, 91%, 86%, and 64%, of endosulfan, at an initial concentration of 2.45 μM and UV fluence of 480 mJ/cm(2), was achieved by UV/S2O8(2-), UV/HSO5(-), and UV/H2O2 processes, respectively, at a [peroxide]0/[endosulfan]0 molar ratio of 20. The efficiency of these processes was, however, inhibited in the presence of radical scavengers, such as alcohols (e.g., tertiary butyl alcohol and isopropyl alcohol) and natural organic matter (NOM). The inhibition was also influenced by common inorganic anions in the order of nitrite > bicarbonate > chloride > nitrate ≈ sulfate. The observed pseudo-first-order rate constant decreased while the degradation rate increased with increasing initial concentration of the target contaminant. The degradation mechanism of endosulfan by the AOPs was evaluated revealing the main by-product as endosulfan ether. Results of this study suggest that UV-C-based AOPs are potential methods for the removal of pesticides, such as endosulfan and its by-products, from contaminated water.

  14. UV-C mediated rapidcarotenoid induction and settling performance of Dunaliellasalina and Haematococcus pluvialis.

    PubMed

    Sharma, Kalpesh K; Ahmed, Faruq; Schenk, Peer M; Li, Yan

    2015-10-01

    Microalgae are primary producers of organic pigments carotenoids in aquatic environments. However, commercial-scale microalgae application for high value carotenoids production is rarely economical due to the cost-effectiveness of carotenoid induction and microalgal harvesting process. Here, we present a novel approach, using a small dose of externally applied UV-C radiation, to rapidly induce unsaturated fatty acids and carotenoid biosynthesis in Dunaliella salina and Haematococcus pluvialis, and also to significantly promote their swimming cells settling for primary dewatering. The amount of total carotenoids and β-carotenoid were doubled in 24 h on D. salina upon 50 mJ/cm(2) of UV-C radiation, whereas the astaxanthin yield of H. pluvialis was increased five times in 48 h at 30 mJ/cm(2) . Meanwhile, 95% of algal cells of D. salina and H. pluvialis settled in 15 h and 2 h, respectively. This novel technique represents a convenient, time-saving and cost-effective method for commercial microalgal carotenoids production.

  15. Rapid induction of omega-3 fatty acids (EPA) in Nannochloropsis sp. by UV-C radiation.

    PubMed

    Sharma, Kalpesh; Schenk, Peer M

    2015-06-01

    Omega-3 fatty acids, such as eicosapentaenoic acid (EPA), provide substantial health benefits. As global fish stocks are declining and in some cases are contaminated with heavy metals, there is a need to find more sustainable land-based sources of these essential fatty acids. The oleaginous microalga Nannochloropsis sp. has been identified as a highly efficient producer of omega-3 fatty acids. In this study, we present a new process to rapidly induce biosynthesis of essential fatty acids, including EPA in Nannochloropsis sp. BR2. Short exposure to UV-C at a dose of 100 or 250 mJ/cm(2) led to a significant increase in total cellular lipid contents when compared to mock-treated controls. A low dosage of 100 mJ/cm(2) also led to a twofold increase in total EPA content within 24 h that constituted 30% of total fatty acids and up to 12% of total dry weight at higher dosages. UV-C radiation may find uses as an easily applicable external inducer for large-scale production of omega-3 production from microalgae.

  16. High reflectivity III-nitride UV-C distributed Bragg reflectors for vertical cavity emitting lasers

    NASA Astrophysics Data System (ADS)

    Franke, A.; Hoffmann, M. P.; Kirste, R.; Bobea, M.; Tweedie, J.; Kaess, F.; Gerhold, M.; Collazo, R.; Sitar, Z.

    2016-10-01

    UV-C distributed Bragg reflectors (DBRs) for vertical cavity surface emitting laser applications and polariton lasers are presented. The structural integrity of up to 25 layer pairs of AlN/Al0.65Ga0.35N DBRs is maintained by balancing the tensile and compressive strain present between the single layers of the multilayer stack grown on top of an Al0.85Ga0.35N template. By comparing the structural and optical properties for DBRs grown on low dislocation density AlN and AlGaN templates, the criteria for plastic relaxation by cracking thick nitride Bragg reflectors are deduced. The critical thickness is found to be limited mainly by the accumulated strain energy during the DBR growth and is only negligibly affected by the dislocations. A reflectance of 97.7% at 273 nm is demonstrated. The demonstrated optical quality and an ability to tune the resonance wavelength of our resonators and microcavity structures open new opportunities for UV-C vertical emitters.

  17. Inactivation of Penicillium digitatum and Penicillium italicum under in vitro and in vivo conditions by using UV-C light.

    PubMed

    Gündüz, Gülten Tıryakı; Pazir, Fikret

    2013-10-01

    In this study, the effects of UV-C on two of the main wound pathogens of citrus fruits, Penicillium digitatum and Penicillium italicum, were investigated with different inoculation methods in vitro and on oranges. P. digitatum and P. italicum spores were inoculated onto the surface of potato dextrose agar or oranges using spread, spot, wound, and piercing inoculation methods. UV-C treatment for 1 min from a working distance of 8 cm reduced the numbers of P. italicum and P. digitatum by about 3.9 and 5.3 log units, respectively, following spread inoculation under in vitro conditions. Significant reductions were obtained after 1-min UV-C treatments of the tested fungi following inoculation using the spread and spot methods. With inoculation by the wound and piercing methods, the tested spores were not inactivated completely even after 10- and 20-min treatment times, respectively. The application of UV-C (7.92 kJ m(-2)) on oranges reduced the percentage of oranges infected at least threefold compared with the rate of infection in the untreated control samples. UV-C irradiation could effectively inactivate spores of P. italicum and P. digitatum inoculated by the spread plate and spot inoculation methods under in vitro and in vivo conditions. On the other hand, because of the low penetration ability of UV-C light, the tested fungi were not completely inactivated following inoculation with the wound and piercing methods. UV-C treatment has potential for use in surface decontamination of citrus fruits.

  18. Potential link between fruit yield, quality parameters and phytohormonal changes in preharvest UV-C treated strawberry.

    PubMed

    Xu, Yanqun; Charles, Marie Thérèse; Luo, Zisheng; Roussel, Dominique; Rolland, Daniel

    2017-07-01

    Preharvest ultraviolet-C (UV-C) treatment of strawberry is a very new approach, and little information is available on the effect of this treatment on plant growth regulators. In this study, the effect of preharvest UV-C irradiations at three different doses on strawberry yield, fruit quality parameters and endogenous phytohormones was investigated simultaneously. The overall marketable yield of strawberry was not affected by the preharvest UV-C treatments, although more aborted and misshapen fruits were found in UV-C treated groups than in the untreated control. The fruits in the high dose group were firmer and had approximately 20% higher sucrose content and 15% higher ascorbic acid content than the control, while fruits from the middle and low dose groups showed no significant changes in these parameters. The lower abscisic acid (ABA) content found in the fruits in the high UV-C group may be associated with those quality changes. The citric acid content decreased only in the low dose group (reduction of 5.8%), with a concomitant 37% reduction in jasmonic acid (JA) content, compared to the control. The antioxidant status of fruits that received preharvest UV-C treatment was considered enhanced based on their oxygen radical absorbance capacity (ORAC) and malondialdehyde (MDA) content. In terms of aroma, three volatile alcohols differed significantly among the various treatments with obvious activation of alcohol acyltransferase (AAT) activity. The observed synchronous influence on physiological indexes and related phytohormones suggests that preharvest UV-C might affect fruit quality via the action of plant hormones. Crown Copyright © 2017. Published by Elsevier Masson SAS. All rights reserved.

  19. UV-C photolysis of endocrine disruptors. The influence of inorganic peroxides.

    PubMed

    Rivas, Javier; Gimeno, Olga; Borralho, Teresa; Carbajo, Maria

    2010-02-15

    Norfloxacin, doxycycline and mefenamic acid have been photolysed with UV-C radiation (254 nm) in the presence and absence of inorganic peroxides (hydrogen peroxide or sodium monopersulfate). Quantum yields in the range (1.1-4.5)x10(-3) mol Einstein(-1) indicate the low photo-reactivity of these pharmaceuticals. Inorganic peroxides considerably enhanced the contaminants conversion, although no appreciable mineralization could be obtained. A simplistic reaction mechanism for the hydrogen peroxide promoted experiments allowed for a rough estimation of the rate constant between hydroxyl radicals and norfloxacin (k>1 x 10(9)M(-1)s(-1)), doxycycline (k>1.5 x 10(9)M(-1)s(-1)) and mefenamic acid (k>11.0 x 10(9)M(-1)s(-1)).

  20. [Corn plant DNA methylation pattern changes upon fractional UV-C irradiation].

    PubMed

    Kravets, A P; Sokolova, D A; Vengzhen, G S; Grodzinskiĭ, D M

    2013-01-01

    Relationship of changes of methylation pattern of functionally different parts of DNA and chromosomal aberration yield was studied at the conditions of the fractionating of UV-C irradiation. Combination of restriction analysis (Hpall, MspI, MboI enzymes) with the subsequent raising of PCR (internal transcribed space ITS1, 1TS4 and inter simple sequence repeat - ISSR, 14b primers) was used. The got results testify to the changes in methylation pattern of satellite and transcription active part of DNA atan irradiation in the mode of fractionating and depending on fraction time ranges. The role of the methylation DNA pattern change in development of radiation damage and induction of organism protective reactions was discussed.

  1. Postharvest physio-pathological disorders in table grapes as affected by UV-C light.

    PubMed

    D'Hallewin, G; Ladu, G; Pani, G; Dore, A; Molinu, M G; Venditti, T

    2012-01-01

    To gain knowledge on the influence of postharvest treatments with ultraviolet-C light upon the keeping quality of table grapes, a trail was performed employing commercially mature 'Corina', 'Dawn Seedless', 'Centennial Seedless' and 'Gran Perlon' grape cultivars (cvs). After grading, bunches were subjected to 0.0, 0.5, 1.5 or 3 kJm(-2) and then stored at 5 degrees C and 90% relative humidity (RH) for 6 weeks followed by a 2 day shelf-life at 25 degrees C and 70% RH. A weekly inspection was performed and a visual evaluation of the appearance, treatment damage, stems browning and berry shrivelling was performed. Weight loss, decay and shatter were quantified at the end of storage and shelf-life. Regardless the cv and UV-C dose, fruit appearance was acceptable until the end of storage and shelf-life. Among the cvs, the highest score was held by 'G. Perlon'. After the fourth week of storage, the berries of 'Centennial S.' turned light brown and darkened over time when treated with 3.0 kJm(-2). Stem browning was not induced by the light treatment, but resulted cv depended and was pronounced for 'Centennial S.' and 'Dawn S.'. Berry shrivelling was insignificant, while shatter was very high in 'Corina' and did not depend upon UV-C treatment. Regarding weight loss, differences could not be attributed to the light treatment and after storage it ranged from 3 up to 5%. Decay was significantly reduced by light treatment and the efficacy increased by raising the dose. Botrytis cinerea was the main cause of decay with 'Corina' being the most jeopardized, followed by 'Dawn S.' and 'Centennial S.', whereas 'G. Perlon' resulted the less affected. In conclusion, hormetic effects of postharvest light treatment on table grapes were observed in almost all cvs with 'G. Perlon' having the best performance.

  2. Hyperspectral Surface Analysis for Ripeness Estimation and Quick UV-C Surface Treatments for Preservation of Bananas

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Yang, Zh.; Chen, Zh.; Liu, J.; Wang, W. Ch.; Zheng, W. Yu.

    2016-05-01

    This study aimed to determine the ripeness of bananas using hyperspectral surface analysis and how a rapid UV-C (ultraviolet-C light) surface treatment could reduce decay. The surface of the banana fruit and its stages of maturity were studied using a hyperspectral imaging technique in the visible and near infrared (370-1000 nm) regions. The vselected color ratios from these spectral images were used for classifying the whole banana into immature, ripe, half-ripe and overripe stages. By using a BP neural network, models based on the wavelengths were developed to predict quality attributes. The mean discrimination rate was 98.17%. The surface of the fresh bananas was treated with UV-C at dosages from 15-55 μW/cm2. The visual qualities with or without UV-C treatment were compared using the image, the chromatic aberration test, the firmness test and the area of black spot on the banana skin. The results showed that high dosages of UV-C damaged the banana skin, while low dosages were more efficient at delaying changes in the relative brightness of the skin. The maximum UV-C treatment dose for satisfactory banana preservation was between 21 and 24 μW/cm2. These results could help to improve the visual quality of bananas and to classify their ripeness more easily.

  3. The Effect of UV-C Pasteurization on Bacteriostatic Properties and Immunological Proteins of Donor Human Milk

    PubMed Central

    Christen, Lukas; Lai, Ching Tat; Hartmann, Ben; Hartmann, Peter E.; Geddes, Donna T.

    2013-01-01

    Background Human milk possesses bacteriostatic properties, largely due to the presence of immunological proteins. Heat treatments such as Holder pasteurization reduce the concentration of immunological proteins in human milk and consequently increase the bacterial growth rate. This study investigated the bacterial growth rate and the immunological protein concentration of ultraviolet (UV-C) irradiated, Holder pasteurized and untreated human milk. Methods Samples (n=10) of untreated, Holder pasteurized and UV-C irradiated human milk were inoculated with E. coli and S. aureus and the growth rate over 2 hours incubation time at 37°C was observed. Additionally, the concentration of sIgA, lactoferrin and lysozyme of untreated and treated human milk was analyzed. Results The bacterial growth rate of untreated and UV-C irradiated human milk was not significantly different. The bacterial growth rate of Holder pasteurized human milk was double compared to untreated human milk (p<0.001). The retention of sIgA, lactoferrin and lysozyme after UV-C irradiation was 89%, 87%, and 75% respectively, which were higher than Holder treated with 49%, 9%, and 41% respectively. Conclusion UV-C irradiation of human milk preserves significantly higher levels of immunological proteins than Holder pasteurization, resulting in bacteriostatic properties similar to those of untreated human milk. PMID:24376898

  4. Abscisic acid induces biosynthesis of bisbibenzyls and tolerance to UV-C in the liverwort Marchantia polymorpha.

    PubMed

    Kageyama, Akito; Ishizaki, Kimitsune; Kohchi, Takayuki; Matsuura, Hideyuki; Takahashi, Kosaku

    2015-09-01

    Environmental stresses are effective triggers for the biosynthesis of various secondary metabolites in plants, and phytohormones such as jasmonic acid and abscisic acid are known to mediate such responses in flowering plants. However, the detailed mechanism underlying the regulation of secondary metabolism in bryophytes remains unclear. In this study, the induction mechanism of secondary metabolites in the model liverwort Marchantia polymorpha was investigated. Abscisic acid (ABA) and ultraviolet irradiation (UV-C) were found to induce the biosynthesis of isoriccardin C, marchantin C, and riccardin F, which are categorized as bisbibenzyls, characteristic metabolites of liverworts. UV-C led to the significant accumulation of ABA. Overexpression of MpABI1, which encodes protein phosphatase 2C (PP2C) as a negative regulator of ABA signaling, suppressed accumulation of bisbibenzyls in response to ABA and UV-C irradiation and conferred susceptibility to UV-C irradiation. These data show that ABA plays a significant role in the induction of bisbibenzyl biosynthesis, which might confer tolerance against UV-C irradiation in M. polymorpha. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Use of UV-C postharvest treatment for extending fresh whole tomato (Solanum lycopersicum, cv. Zinac) shelf-life.

    PubMed

    Pinheiro, Joaquina; Alegria, Carla; Abreu, Marta; Gonçalves, Elsa M; Silva, Cristina L M

    2015-08-01

    The effect of UV-C treatments (0.32, 0.97, 2.56, 4.16 and 4.83 kJ.m(-2) at 254 nm) on the physical-chemical properties [colour, texture, total phenolic content (TPC), weight loss (WL)], and mesophylic counts of whole tomato, was evaluated during 15 days at 10 °C. During storage, the Ctr samples acquired faster red colour than all UV-C samples (higher a* and lower °h values). Comparing texture of Ctr and UV-C samples at 15(th) storage day, an increase of 9 and 8 % on firmness of treated samples at low UV-C intensities (0.32 and 0.97 kJ.m(-2), respectively) was observed. At the end of the storage, Ctr samples showed ca. 4 Log10 of mesophylic load, and the samples treated at 0.97 and 4.83 kJ.m(-2) revealed the lowest microbial load (1.9 and 3.2 Log10, respectively). These results indicate that UV-C radiation, at an appropriate dose, combined with low storage temperature (10 °C) are an effective method to preserve the postharvest life of tomato, without adversely affecting quality parameters.

  6. Combination of UV-C treatment and Metschnikowia pulcherrimas for controlling Alternaria rot in postharvest winter jujube fruit.

    PubMed

    Guo, Dongqi; Zhu, Lixia; Hou, Xujie

    2015-01-01

    The potential of using antagonistic yeast Metschnikowia pulcherrimas alone or in combination with ultraviolet-C (UV-C) treatment for controlling Alternaria rot of winter jujube, and its effects on postharvest quality of fruit was investigated. The results showed that spore germination of Alternaria alternata was significantly inhibited by each of the 3 doses (1, 5, and 10 kJ m(-2) ) in vitro. In vivo, UV-C treatment (5 kJ m(-2) ) or antagonist yeast was capable of reducing the percentage of infected wounds and lesion diameter in artificially inoculated jujube fruits, however, in fruit treated with combination of UV-C treatment and M. pulcherrima, the percentage of infected wounds and lesion diameter was only 16.0% and 0.60 cm, respectively. The decay incidence on winter jujube fruits treated with the combination of UV-C treatment and M. pulcherrima was 23% after storage at 0 ± 1 °C for 45 d followed by 22 °C for 7 d. None of the treatments impaired quality parameters of jujube fruit. Thus, the combination of UV-C radiation and M. pulcherrima could be an alternative to synthetic fungicides for controlling postharvest Alternaria rot of winter jujube.

  7. The reduction of Chlorella vulgaris concentrations through UV-C radiation treatments: A nature-based solution (NBS).

    PubMed

    Chen, Erika S; Bridgeman, Thomas B

    2017-03-25

    Algal blooms have become a pressing issue in inland freshwater systems on local and global scales. A plausible approach to reducing algae without the use of chemical/biological agents is through the use of UV-C radiation from lamps potentially powered by in situ solar panels to eliminate algae. Yet, the quantitative scientific base has not been established. Our objective is to conduct a controlled experiment to quantify the effectiveness of UV-C radiation on the reduction of Chlorella vulgaris, a common algal species in the Great Lakes region. A full factorial design of three intensities of UV-C radiation (0, 15, and 30W) and three sources of C. vulgaris was constructed to test the corresponding hypotheses. Empirical models were constructed to predict the reductions. UV-C radiation effectively reduced the algal concentration with clear differences by radiation level and source of algal water. Algal concentration decreased exponentially over time, with distinct decreasing trends among the radiation intensities and the samples. With 15W UV-C radiation, algal concentration of three samples were reduced to 75.3%, 51.5%, and 70.0% of the initial level within an hour, respectively. We also found a clear density-dependent reduction rate by UV radiation. Using this information, more efficient treatment systems could be constructed and implemented for cleaning algae-contaminated water.

  8. Effects of Vinification Techniques Combined with UV-C Irradiation on Phenolic Contents of Red Wines.

    PubMed

    Tahmaz, Hande; Söylemezoğlu, Gökhan

    2017-06-01

    Red wines are typically high in phenolic and antioxidant capacity and both of which can be increased by vinification techniques. This study employed 3 vinification techniques to assess the increase in phenolic compounds and antioxidant capacity. Wines were obtained from Boğazkere grape cultivar by techniques of classical maceration, cold maceration combined with ultraviolet light (UV) irradiation, and thermovinification combined with UV irradiation and changes in phenolic contents were examined. Total phenolic and anthocyanin contents and trolox equivalent antioxidant capacity of wines were measured spectrophotometrically and phenolic contents (+)-catechin, (-)-epicatechin, rutin, quercetin, trans-resveratrol, and cis-resveratrol were measured by High Pressure Liquid Chromatography with Diode Array Detection (HPLC-DAD). As a result of the study, the highest phenolic content except for quercetin was measured in the wines obtained by thermovinification combined with UV irradiation. We demonstrated that the highest phenolic compounds with health effect, total phenolic compounds, total anthocyanin, and antioxidant activity were obtained from thermovinification with UV-C treatment than classical wine making. © 2017 Institute of Food Technologists®.

  9. Nitrifying-denitrifying filters and UV-C disinfection reactor: a combined system for wastewater treatment.

    PubMed

    Ben Rajeb, Asma; Mehri, Inès; Nasr, Houda; Najjari, Afef; Saidi, Neila; Hassen, Abdennaceur

    2017-03-01

    Biological treatment systems use the natural processes of ubiquitous organisms to remove pollutants and improve the water quality before discharge to the environment. In this paper, the nitrification/denitrification reactor allowed a reduction in organic load, but offered a weak efficiency in nitrate reduction. However, the additions of the activated sludge in the reactor improve this efficiency. A decrease of [Formula: see text] values from 13.3 to 8 mg/l was noted. Nevertheless, sludge inoculation led to a net increase of the number of pathogenic bacteria. For this reason, a UV-C pilot reactor was installed at the exit of the biological nitrification-denitrification device. Thus, a fluence of 50 mJ.cm(-2) was sufficient to achieve values of 20 MPN/100 ml for fecal coliform and 6 MPN/100 ml for fecal streptococci, conforms to Tunisian Standards of Rejection. On the other hand, the DGGE approach has allowed a direct assessment of the bacterial community changes upon the treated wastewater.

  10. UV-C inactivation of Escherichia coli and dose uniformity on apricot fruit in a commercial setting

    USDA-ARS?s Scientific Manuscript database

    The efficacy of a UV-C treatment system (two treatment chambers connected by an inclined belt to rotate apricots between chambers) was tested in a commercial setting. Escherichia coli ATCC 25922, used as a surrogate for E. coli O157:H7 to determine the system’s antimicrobial efficacy, was inoculate...

  11. NER and HR pathways act sequentially to promote UV-C-induced germ cell apoptosis in Caenorhabditis elegans

    PubMed Central

    Stergiou, L; Eberhard, R; Doukoumetzidis, K; Hengartner, M O

    2011-01-01

    Ultraviolet (UV) radiation-induced DNA damage evokes a complex network of molecular responses, which culminate in DNA repair, cell cycle arrest and apoptosis. Here, we provide an in-depth characterization of the molecular pathway that mediates UV-C-induced apoptosis of meiotic germ cells in the nematode Caenorhabditis elegans. We show that UV-C-induced DNA lesions are not directly pro-apoptotic. Rather, they must first be recognized and processed by the nucleotide excision repair (NER) pathway. Our data suggest that NER pathway activity transforms some of these lesions into other types of DNA damage, which in turn are recognized and acted upon by the homologous recombination (HR) pathway. HR pathway activity is in turn required for the recruitment of the C. elegans homolog of the yeast Rad9-Hus1-Rad1 (9-1-1) complex and activation of downstream checkpoint kinases. Blocking either the NER or HR pathway abrogates checkpoint pathway activation and UV-C-induced apoptosis. Our results show that, following UV-C, multiple DNA repair pathways can cooperate to signal to the apoptotic machinery to eliminate potentially hazardous cells. PMID:21151025

  12. Factors driving epilithic algal colonization in show caves and new insights into combating biofilm development with UV-C treatments.

    PubMed

    Borderie, Fabien; Tête, Nicolas; Cailhol, Didier; Alaoui-Sehmer, Laurence; Bousta, Faisl; Rieffel, Dominique; Aleya, Lotfi; Alaoui-Sossé, Badr

    2014-06-15

    The proliferation of epilithic algae that form biofilms in subterranean environments, such as show caves, is a major problem for conservators. In an effort to reduce the use of chemical cleansers when addressing this problem, we proposed investigating the effects of UV-C on combating algal biofilm expansion in a cave located in northeastern France (Moidons Cave). First, the biofilms and cavity were studied in terms of their algal growth-influencing factors to understand the dynamics of colonization in these very harsh environments. Next, colorimetric measurements were used both to diagnose the initial colonization state and monitor the UV-C-treated biofilms for several months after irradiation. The results indicated that passive dispersal vectors of the viable spores and cells were the primary factors involved in the cave's algae repartition. The illumination time during visits appeared to be responsible for greater colonization in some parts of the cave. We also showed that colorimetric measurements could be used for the detection of both thin and thick biofilms, regardless of the type of colonized surface. Finally, our results showed that UV-C treatment led to bleaching of the treated biofilm due to chlorophyll degradation even one year after UV-C treatment. However, a re-colonization phenomenon was colorimetrically and visually detected 16months later, suggesting that the colonization dynamics had not been fully halted.

  13. Kinetics of inactivation and photoreactivation of Escherichia coli using ultrasound-enhanced UV-C light-emitting diodes disinfection.

    PubMed

    Zhou, Xiaoqin; Li, Zifu; Lan, Juanru; Yan, Yichang; Zhu, Nan

    2017-03-01

    Ultraviolet (UV) disinfection is highly recommended owing to its high disinfection efficiency and disinfection by-products free, and UV Light-Emitting Diodes (UV LEDs) is increasingly becoming an alternative of mercury UV lamps for water disinfection owing to its long lifetime, low input power, and absence of problems on disposal. However, renovation of existing UV lamps faces the challenges for UV disinfection associated with disinfection efficiency and photoreactivation, and modified UV disinfection process is required for practical application. In this study, mathematical rule of disinfection and photoreactivation in a US enhanced UV disinfection system was investigated. UV LED with peak emission at 254nm (UV-C LED) was selected as representative for UV lamps, and a low frequency US was used as pretreatment followed by UV disinfection. The disinfection efficiency of Escherichia coli in deionized water (DI), DI water with kaoline suspension (DIK), and secondary effluent (SE) of municipal wastewater treatment plant were analyzed. Moreover, photoreactivation of E. coli in DIK water within 6h after disinfection was conducted. The experimental results showed that the disinfection efficiencies had good fit with Chick-Watson first-order linear model, and US pretreatment increased the inactivation rate constant for E. coli, which increased from 0.1605 to 0.1887 in the DIK water. Therefore, US pretreatment with UV disinfection have potential to shorten the retention time and reduce the reactor volume. Moreover, the number of photoreactivated E. coli in effluent was reduced under UV-C LED disinfection with US pretreatment compared with that under UV-C LED disinfection alone. The order of maximum percentage of photo-reactivated E. coli was as follows: UV-C LED disinfection alone at 30mJ/cm(2)>UV-C LED disinfection at 25mJ/cm(2) with US pretreatment>UV-C LED disinfection at 30mJ/cm(2) with US pretreatment. The survival ratio versus photoreactivation time showed a good fit

  14. Responsiveness of Lycopersicon pimpinellifolium to acute UV-C exposure: histo-cytochemistry of the injury and DNA damage.

    PubMed

    Iriti, M; Guarnieri, S; Faoro, F

    2007-01-01

    The in vivo and in vitro effects of UV-C (254 nm) exposure (0.039 watt . m(-2) . s for 2 h) of currant tomato (Lycopersicon pimpinellifolium), indigenous to Peru and Ecuador, were assayed. H(2)O(2) deposits, dead cells and DNA damage were localized, 12/24 h after irradiation, mainly in periveinal parenchyma of the 1st and 2nd order veins of the leaves, and before the appearance of visible symptoms, which occurred 48 h after irradiation. Cell death index was of 43.5 +/- 12% in exposed leaf tissues, 24 h after treatment. In currant tomato protoplasts, the percentage of viable cells dropped 1 h after UV-C irradiation from 97.42 +/- 2.1% to 43.38 +/- 4.2%. Afterwards, the protoplast viability progressively decreased to 40.16 +/- 7.25% at 2 h, to 38.31 +/- 6.9% at 4 h, and to 36.46 +/- 1.84% at 6 h after the exposure. The genotoxic impact of UV-C radiation on protoplasts was assessed with single cell gel electrophoresis (SCGE, or comet assay). UV-C treatment greatly enhanced DNA migration, with 75.37 +/- 3.7% of DNA in the tail versus 7.88 +/- 5.5% in the case of untreated nuclei. Oxidative stress by H(2)O(2) used as a positive control, induced a similar damage on non-irradiated protoplasts, with 71.59 +/- 5.5% of DNA in the tail, whereas oxidative stress imposed on UV-C irradiated protoplasts slightly increased the DNA damage (85.13 +/- 4.1%). According to these results, SCGE of protoplasts could be an alternative to nuclei extraction directly from leaf tissues.

  15. Dark Period Following UV-C Treatment Enhances Killing of Botrytis cinerea Conidia and Controls Gray Mold of Strawberries.

    PubMed

    Janisiewicz, Wojciech J; Takeda, Fumiomi; Glenn, D Michael; Camp, Mary J; Jurick, Wayne M

    2016-04-01

    Strawberries are available throughout the year either from production in the field or from high and low tunnel culture. Diversity of production conditions results in new challenges in controlling diseases before and after harvest. Fungicides have traditionally been used to control these diseases; however, their limitations necessitate a search for new approaches. We found that UV-C irradiation of Botrytis cinerea, a major pathogen of strawberry, can effectively kill this fungus if a dark period follows the treatment. The inclusion of a 4-h dark period resulted in almost complete kill of B. cinerea conidia on agar media at a dose of 12.36 J/m2. The UV-C dose did not cause a reduction in photosynthesis in strawberry leaves or discoloration of sepals, even after exposing plants repeatedly (twice a week) for 7 weeks. Although irradiation of dry conidia of B. cinerea with this dose resulted in some survival, the conidia were not infective and not able to cause decay even when inoculated onto a highly susceptible mature apple fruit. Irradiation of strawberry pollen at 12.36 J/m2 did not affect pollen germination, tube growth and length in vitro, or germination and tube growth in the style of hand-pollinated emasculated strawberry flowers. No negative effect of the UV-C treatment was observed on fruit yield and quality in high tunnel culture. In the fruit and flower petal inoculation tests, the UV-C treatment was highly effective in reducing fruit decay and petal infection. This UV-C treatment with an exposure time of 60 s may be useful in controlling gray mold in tunnel production of strawberries and may also have the potential for use in intensive field and indoor production of other fruits and vegetables providing that a 4-h dark period follows the irradiation.

  16. Salt stress mitigation by seed priming with UV-C in lettuce plants: growth, antioxidant activity and phenolic compounds.

    PubMed

    Ouhibi, Chayma; Attia, Houneida; Rebah, Fedia; Msilini, Najoua; Chebbi, Mohamed; Aarrouf, Jawad; Urban, Laurent; Lachaal, Mokhtar

    2014-10-01

    Seeds of Lactuca sativa L. 'Romaine' were subjected to priming treatments with UV-C radiation at 0.85 or 3.42 kJ m(-2). Seedlings obtained from both primed (Pr) and non-primed (NPr) seeds were grown in an hydroponic culture system supplemented with 0 (control) or 100 mM NaCl. After 21 days of NaCl treatment, root and leaf biomass, root lengths, leaf numbers, and leaf surface area were measured. Ions (Na(+) and K(+)) accumulation was determined in roots and leaves. Total phenolic compound and flavonoid concentrations, as well as antioxidant and antiradical activities were measured in L. sativa leaves. Salt stress resulted in a lower increase in fresh weight of roots and leaves, which was more pronounced in roots than in leaves, due to reduced root elongation, leaf number and leaf expansion, as well as leaf thickness. The lower increase in fresh weight was accompanied by a restriction in tissue hydration and K(+) ion uptake, as well as an increase in Na(+) ion concentrations in all organs. These effects were mitigated in plants from the UV-C primed seeds. The mitigating effect of UV-C was more pronounced at 0.85 than at 3.42 kJ m(-2). Salt stress also resulted in an increase in total phenolic compounds and flavonoid concentrations and in the total antioxidant capacity in leaves. The highest diphenylpicrylhydrazyl radical (DPPH) scavenging activity was found in the leaves of plants from both Pr seeds. Our results suggest that plants grown from seed primed by exposure to moderate UV-C radiation exhibited a higher tolerance to salinity stress. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Nimotuzumab suppresses epithelial-mesenchymal transition and enhances apoptosis in low-dose UV-C treated salivary adenoid cystic carcinoma cell lines in vitro.

    PubMed

    Jiang, Yang; Ge, Xi-Yuan; Liu, Shu-Ming; Zheng, Lei; Huang, Ming-Wei; Shi, Yan; Fu, Jia; Zhang, Jian-Guo; Li, Sheng-Lin

    2014-10-01

    Salivary adenoid cystic carcinoma (SACC), which is one of the most common malignant tumors of the salivary glands, is associated with a poor long-term outcome. There are currently few therapeutic options for patients with SACC. Recent studies have shown the potential of the application of ultraviolet-C (UV-C) irradiation for the treatment of human cancer. In the present study, we investigated the effects of UV-C in the SACC cell lines SACC-83 and SACC-LM. High-dose UV-C (200 J/m) induced apoptosis and inhibited colony formation significantly. However, low-dose UV-C (10 J/m), which had little effect on apoptosis and colony formation, increased the ability of migration in SACC cells accompanied by a decrease in E-cadherin and an increase in vimentin, suggesting the occurrence of epithelial-mesenchymal transition (EMT). Low-dose UV-C (10 J/m) also resulted in upregulation of the phosphorylated forms of epidermal growth factor receptor (EGFR) and Akt (p-EGFR and p-Akt, respectively). Pretreatment with Nimotuzumab, an anti-EGFR monoclonal antibody, reversed the EMT as well as upregulation of p-EGFR/p-Akt induced by UV-C. Moreover, Nimotuzumab enhanced UV-C induced apoptosis and inhibition of colony formation. Our results indicate that EMT exerts a protective effect against apoptosis induced by low-dose UV-C. Thus, the combined application of Nimotuzumab and low-dose UV-C in vitro has an advantageous antitumor effect in SACC compared with the application of UV-C alone.

  18. Experimental Evolution of UV-C Radiation Tolerance: Emergence of Adaptive and Non-Adaptive Traits in Escherichia coli Under Differing Flux Regimes

    NASA Astrophysics Data System (ADS)

    Moffet, A.; Okansinski, A.; Sloan, C.; Grace, J. M.; Paulino-Lima, I. G.; Gentry, D.; Rothschild, L. J.; Camps, M.

    2014-12-01

    High-energy ultraviolet (UV-C) radiation is a significant challenge to life in environments such as high altitude areas, the early Earth, the Martian surface, and space. As UV-C exposure is both a selection pressure and a mutagen, adaptation dynamics in such environments include a high rate of change in both tolerance-related and non-tolerance-related genes, as well changes in linkages between the resulting traits. Determining the relationship between the intensity and duration of the UV-C exposure, mutation rate, and emergence of UV-C resistance will inform our understanding of both the emergence of radiation-related extremophily in natural environments and the optimal strategies for generating artificial extremophiles. In this study, we iteratively exposed an Escherichia colistrain to UV-C radiation of two different fluxes, 3.3 J/m^2/s for 6 seconds and 0.5 J/m^2/s for 40 seconds, with the same overall fluence of 20 J/m^2. After each iteration, cells from each exposure regime were assayed for increased UV-C tolerance as an adaptive trait. The exposed cells carried a plasmid bearing a TEM beta-lactamase gene, which in the absence of antibiotic treatment is a neutral reporter for mutagenesis. Sequencing of this gene allowed us to determine the baseline mutation frequency for each flux. As an additional readout for adaptation, the presence of extended-spectrum beta-lactamase mutations was tested by plating UV-exposed cultures in cefotaxime plates. We observed an increase of approximately one-million-fold in UV-C tolerance over seven iterations; no significant difference between the two fluxes was found. Future work will focus on identifying the genomic changes responsible for the change in UV-C tolerance; determining the mechanisms of the emerged UV-C tolerance; and performing competition experiments between the iteration strains to quantify fitness tradeoffs resulting from UV-C adaptation.

  19. Antioxidant responses of damiana (Turnera diffusa Willd) to exposure to artificial ultraviolet (UV) radiation in an in vitro model; part I; UV-C radiation.

    PubMed

    Soriano-Melgar, Lluvia de Abril Alexandra; Alcaraz-Meléndez, Lilia; Méndez-Rodríguez, Lía C; Puente, María Esther; Rivera-Cabrera, Fernando; Zenteno-Savín, Tania

    2014-05-01

    Ultraviolet type C (UV-C) radiation has higher energy than the UV-B radiation and has been less studied because it is completely absorbed by the ozone layer. However, artificial UV-C radiation can generate diverse modifications in the plants. Given that exposure to UV-C for short periods of time increases the antioxidant content, improving the appearance and shelf-life of products, its potential application in postharvest treatments to modify the antioxidant content of medicinal plants, such as damiana (Turnera diffusa), is novel and relevant. To determine the effects of UV-C radiation on enzymatic and non-enzymatic antioxidant defenses, as well as oxidative damage levels, in damiana (Turnera diffusa) plants in vitro. UV-C radiation decreased superoxide dismutase (SOD, EC 1.15.1.1) and total peroxidases (POX, EC 1.11.1) activities, the concentration of chlorophylls (a and b), carotenes, vitamin C, and total antioxidant capacity. UV-C radiation increased the phenolic compound levels in damiana. Loss of antioxidant defenses was higher in damiana plants exposed to higher UV-C doses and/or for longer periods. This study suggests that UV-C radiation induces oxidative stress, evidenced as increased protein carbonyls and phenolic compound content, in damiana (T. diffusa). Low dose, short exposure to UV-C stimulates phenolic compound content in damiana. Thus, controlled UV-C treatments could be used as postharvest treatment to increase phenolic compound content in damiana plants. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  20. Application of the UV-C photo-assisted peroxymonosulfate oxidation for the mineralization of dimethyl phthalate in aqueous solutions.

    PubMed

    Olmez-Hanci, Tugba; Imren, Ceren; Kabdaşlı, Işık; Tünay, Olcay; Arslan-Alaton, Idil

    2011-03-02

    In this study, the degradation of dimethyl phthalate (DMP), taken as model compound for phthalate esters, by the photo-assisted peroxymonosulfate (PMS) process was investigated. The high oxidation potential of hydroxyl and sulfate radicals generated by the activation of PMS under UV-C light irradiation was used to completely oxidize aqueous DMP solutions. Experiments were conducted at varying initial pH values (3.0, 6.0, and 9.0) and PMS concentrations (0-60 mM) to evaluate the effect of different reaction conditions on DMP treatment performance with the PMS/UV-C process. It was observed that lowering the initial reaction pH slightly improved the degradation rate of DMP. On the contrary, TOC abatements were slightly enhanced with increasing initial reaction pH. An adequate (optimum) PMS concentration of 40 mM resulted in the fastest and highest DMP degradation rates and efficiencies, respectively. At an initial concentration of 100 mg L(-1), more than 95% DMP removal was obtained after only 20 min under PMS/UV-C treatment conditions. For the proposed adequate PMS concentration (40 mM) the lowest electrical energy per order (EE/O) value was calculated as 2.9 kW h m(-3) order(-1).

  1. The response of aggregated Pseudomonas putida CP1 cells to UV-C and UV-A/B disinfection.

    PubMed

    Maganha de Almeida, Ana C; Quilty, Bríd

    2016-11-01

    UV radiation is a spread method used worldwide for the disinfection of water. However, much of the research on the disinfection of bacterial cells by UV has focused on planktonic cells. Many bacterial cells in nature are present in clumps or aggregates, and these aggregates, which are more resistant to disinfection than their planktonic counterparts, can be problematic in engineered water systems. The current research used Pseudomonas putida (P. putida) CP1, an environmental and non-pathogenic microorganism which autoaggregates when grown under certain conditions, as a model organism to simulate aggregated cells. The study investigated the response of both the planktonic and the aggregated forms of the bacterium to UV-C (λ = 253.7 nm) and UV-A/B (λ > 300 nm) disinfection at laboratory scale in a minimal medium. The planktonic cells of P. putida CP1 were inactivated within 60 s by UV-C and in 60 min by UV-A/B; however, the aggregated cells required 120 min of UV-C treatment and 240 min of UV-A/B radiation to become inactive. The size of the aggregate was reduced following UV treatment. Although all the cells had lost culturability, viability as measured by the LIVE/DEAD(®) stain and epifluorescence microscopy was not completely lost and the cells all demonstrated regrowth after overnight incubation in the dark.

  2. Photolytic degradation of sulfamethoxazole and trimethoprim using UV-A, UV-C and vacuum-UV (VUV).

    PubMed

    Kim, Hyun Young; Kim, Tae-Hun; Yu, Seungho

    2015-01-01

    The photolytic degradation of the non-degradable pharmaceuticals sulfamethoxazole (SMX) and trimethoprim (TMP) in an aqueous solution was investigated using three kinds of low-pressure mercury lamp UV-A (352 nm), UV-C (254 nm), and vacuum-UV (VUV, 185 nm and 254 nm). The degradation rates were highly dependent on the target compounds as well as the UV sources. No degradation of the target compounds was observed using UV-A treatment, because there was no overlap between the UV-A emission spectrum and absorption spectrum of the target compounds. On the other hand, UVC and VUV revealed higher reactivity. The results also indicated that SMX had a greater potential to react photochemically than TMP. Among the UV sources, VUV was the most effective process for the degradation of target compounds. Furthermore, the addition of oxidants such as hydrogen peroxide (H2O2) and sodium persulfate (Na2S2O8) to the reaction system improved the overall degradation rate significantly.The experimental results for the VUV-irradiated samples with the addition of methanol as a hydroxyl radical scavenger revealed that hydroxyl radicals contribute significantly to the elimination of the target compound. Overall, the degradation rate of the target compounds was in the order: VUV = UV-C > UV-A for sulfamethoxazole and VUV/H2O2 > VUV/ Na2S2O8 > VUV >UV-C >UV-A for trimethoprim.

  3. Mutation of Arabidopsis HY1 causes UV-C hypersensitivity by impairing carotenoid and flavonoid biosynthesis and the down-regulation of antioxidant defence

    PubMed Central

    Xie, Yanjie; Xu, Daokun; Cui, Weiti; Shen, Wenbiao

    2012-01-01

    Previous pharmacological results confirmed that haem oxygenase-1 (HO-1) is involved in protection of cells against ultraviolet (UV)-induced oxidative damage in soybean [Glycine max (L.) Merr.] seedlings, but there remains a lack of genetic evidence. In this study, the link between Arabidopsis thaliana HO-1 (HY1) and UV-C tolerance was investigated at the genetic and molecular levels. The maximum inducible expression of HY1 in wild-type Arabidopsis was observed following UV-C irradiation. UV-C sensitivity was not observed in ho2, ho3, and ho4 single and double mutants. However, the HY1 mutant exhibited UV-C hypersensitivity, consistent with the observed decreases in chlorophyll content, and carotenoid and flavonoid metabolism, as well as the down-regulation of antioxidant defences, thereby resulting in severe oxidative damage. The addition of the carbon monoxide donor carbon monoxide-releasing molecule-2 (CORM-2), in particular, and bilirubin (BR), two catalytic by-products of HY1, partially rescued the UV-C hypersensitivity, and other responses appeared in the hy1 mutant. Transcription factors involved in the synthesis of flavonoid or UV responses were induced by UV-C, but reduced in the hy1 mutant. Overall, the findings showed that mutation of HY1 triggered UV-C hypersensitivity, by impairing carotenoid and flavonoid synthesis and antioxidant defences. PMID:22419743

  4. Effectiveness of UV-C light irradiation on disinfection of an eSOS(®) smart toilet evaluated in a temporary settlement in the Philippines.

    PubMed

    Zakaria, Fiona; Harelimana, Bertin; Ćurko, Josip; van de Vossenberg, Jack; Garcia, Hector A; Hooijmans, Christine Maria; Brdjanovic, Damir

    2016-01-01

    Ultraviolet germicidal (short wavelength UV-C) light was studied as surface disinfectant in an Emergency Sanitation Operation System(®) smart toilet to aid to the work of manual cleaning. The UV-C light was installed and regulated as a self-cleaning feature of the toilet, which automatically irradiate after each toilet use. Two experimental phases were conducted i.e. preparatory phase consists of tests under laboratory conditions and field testing phase. The laboratory UV test indicated that irradiation for 10 min with medium-low intensity of 0.15-0.4 W/m(2) could achieve 6.5 log removal of Escherichia coli. Field testing of the toilet under real usage found that UV-C irradiation was capable to inactivate total coliform at toilet surfaces within 167-cm distance from the UV-C lamp (UV-C dose between 1.88 and 2.74 mW). UV-C irradiation is most effective with the support of effective manual cleaning. Application of UV-C for surface disinfection in emergency toilets could potentially reduce public health risks.

  5. Fatty Acids Composition and Biofilm Production of Attenuated Salmonella typhimurium dam and seqA Mutants After Exposure to UV-C.

    PubMed

    Abdelwaheb, Chatti; Lobna, Maalej; Bouchra, BelHadj Abdallah; Selma, Kloula; Ahmed, Landoulsi

    2015-10-01

    The goal of this work was the investigation of correlation between some peculiarities of membrane fatty acids composition, biofilm formation, and motility of dam and/or seqA mutants in Salmonella typhimurium bacterial cells and UV-C radiations. The exposure changed the fatty acids composition of dam and seqA/dam strains. Significant increase of unsaturated fatty acids was observed. Swarming and swimming were enhanced only in dam mutant and biofilm formation increased significantly in all tested strains after UV-C exposure. These results suggest that increased sensitivity toward UV-C rays in dam strains might be due to fatty acid alteration.

  6. A synergistic effect in controlling plum postharvest diseases occurs by applying UV-C light to sodium bicarbonate treated fruit.

    PubMed

    D'Hallewin, G; Cubaiu, L; Ladu, G; Venditti, T

    2013-01-01

    The effectiveness of ultraviolet-C light (UV-C; 254 nm) alone at 0, 3, 6 and 12 kJm(-2), or combined with 0.0 or 0.5% (w7v) sodium bicarbonate (SBC), to control plum (Prunus domestica cv Stanley) postharvest decay caused by Penicillium expansum L. and Botrytis cinerea was investigated. First, fruit was sanitized and in one experiment plums were artificially wound-inoculated 24 h before treatments and afterwards kept at 25 degrees C with 90% RH for 7 days. In the second experiment, treatments were applied before fruit was spray-contaminated with conidia and then stored for 4 weeks at 5 degrees C and 90% RH (storage conditions). In both experiments, the highest degree of decay caused by the two pathogens was monitored when fruit stayed untreated (control), and a negligible reduction was achieved by treating with the sole salt or with a 3 kJm(-2) UV-C light. Compared to control (89 +/- 3% decay), the treatment of wound-inoculated fruit with 6 kJm(-2) provided a 35 and 38% reduction of P. expansum and B. cinerea decay, respectively. Meanwhile, 12 kJm(-2) provided an additional decrease of 25 and 27%, respectively. In both experiments, the best control of decay was attained when treatments with SBC and UV-C light were combined and the efficacy depended upon the sequence of application. Synergistic effects were found by applying the salt before UV-C light. When 6 or 12 kJm(-2) were employed following the 2% SBC treatment, no disease symptoms developed for either pathogens in both experiments. The same combination with 3 kJm(-2) resulted in a nearly 5 fold increase of efficacy compared to the sole light treatment. The combined treatments controlled the two pathogens to valuable levels and, since no quality losses were observed during storage, they could be considered as a suitable approach to contain postharvest losses of this fruit.

  7. UV-C-irradiation sublethal stress does not alter antibiotic susceptibility of the viridans group streptococci to β-lactam, macrolide, and fluoroquinolone antibiotic agents.

    PubMed

    Maeda, Yasunori; Coulter, Wilson A; Goldsmith, Colin E; Cherie Millar, B; Moore, John E

    2012-08-01

    Previous work has indicated that environmental stresses on bacteria might lead to an upregulation of stress response. LED curing lights (315-400 nm) and other UV lights used in tooth whitening cosmetic procedures might act as stresses. We examined the effect of UV-C light, as a high-energy surrogate to the lower-energy UV-A light used in such instruments, to examine its effect on the antibiotic susceptibility of viridans group streptococci. Twelve species of viridans group streptococci were examined in this study: Streptococcus anginosus, Streptococcus australis, Streptococcus cristatus, Streptococcus gordonii, Streptococcus infantis, Streptococcus mitis, Streptococcus mutans, Streptococcus oralis, Streptococcus parasanguinis, Streptococcus pneumoniae, Streptococcus salivarius, and Streptococcus sanguinis. These organisms were exposed to varying degrees of sublethal UV-C radiation, and their minimum inhibitory concentration susceptibility was determined by broth dilution assay against three classes of commonly-used antibiotics: β-lactams (penicillin), macrolides (erythromycin), and fluoroquinolones (ciprofloxacin). There was no significant difference between antibiotic susceptibility before UV-C exposure and following maximum sublethal stress, prior to cell death due to fatal UV-C exposure. Exposure to UV-C light will not result in altered antibiotic susceptibility patterns on viridans group streptococci. Given that UV-C is more toxic and mutagenic than UV-A light, it is unlikely than UV-A light would yield any difference in response to such exposure. © 2011 Blackwell Publishing Asia Pty Ltd.

  8. Enhancing the Total Phenolic Content and Antioxidants of Lemon Pomace Aqueous Extracts by Applying UV-C Irradiation to the Dried Powder

    PubMed Central

    Papoutsis, Konstantinos; Vuong, Quan V.; Pristijono, Penta; Golding, John B.; Bowyer, Michael C.; Scarlett, Christopher J.; Stathopoulos, Costas E.

    2016-01-01

    Several studies have shown that UV-C (ultraviolet C) irradiation promotes the bioactive compounds and antioxidants of fresh fruits and vegetables. The aim of this study was to apply UV irradiation in dried lemon pomace powder for enhancing its phenolic content and antioxidant properties, thus more bioactive compounds should be available for extraction and utilization. Lemon pomace dried powder was placed under a UV lamp and treated with dosages of 4, 19, 80 and 185 kJ·m−2, while untreated powder was used as a control. UV-C irradiation significantly affected the total phenolic content, total flavonoid content, proanthocyanidins, and antioxidant capacity measured by cupric reducing antioxidant capacity (CUPRAC) and ferric reducing antioxidant power (FRAP) of the lemon pomace dried powder, while it did not affect the vitamin C content. UV-C irradiation of 19 kJ·m−2 resulted in 19% higher total phenolic content than the control, while UV-C irradiation of 180 kJ·m−2 resulted in 28% higher total flavonoid content than the control. The antioxidant capacity was reduced when UV-C irradiation more than 4 kJ·m−2 was applied. The results of this study indicate that UV-C treatment has the potential to increase the extraction of bioactive compounds of dried lemon pomace at relatively high dosages. PMID:28231150

  9. Enhancing the Total Phenolic Content and Antioxidants of Lemon Pomace Aqueous Extracts by Applying UV-C Irradiation to the Dried Powder.

    PubMed

    Papoutsis, Konstantinos; Vuong, Quan V; Pristijono, Penta; Golding, John B; Bowyer, Michael C; Scarlett, Christopher J; Stathopoulos, Costas E

    2016-08-23

    Several studies have shown that UV-C (ultraviolet C) irradiation promotes the bioactive compounds and antioxidants of fresh fruits and vegetables. The aim of this study was to apply UV irradiation in dried lemon pomace powder for enhancing its phenolic content and antioxidant properties, thus more bioactive compounds should be available for extraction and utilization. Lemon pomace dried powder was placed under a UV lamp and treated with dosages of 4, 19, 80 and 185 kJ·m(-2), while untreated powder was used as a control. UV-C irradiation significantly affected the total phenolic content, total flavonoid content, proanthocyanidins, and antioxidant capacity measured by cupric reducing antioxidant capacity (CUPRAC) and ferric reducing antioxidant power (FRAP) of the lemon pomace dried powder, while it did not affect the vitamin C content. UV-C irradiation of 19 kJ·m(-2) resulted in 19% higher total phenolic content than the control, while UV-C irradiation of 180 kJ·m(-2) resulted in 28% higher total flavonoid content than the control. The antioxidant capacity was reduced when UV-C irradiation more than 4 kJ·m(-2) was applied. The results of this study indicate that UV-C treatment has the potential to increase the extraction of bioactive compounds of dried lemon pomace at relatively high dosages.

  10. Efficacy of Ultraviolet (UV-C) Light in a Thin-Film Turbulent Flow for the Reduction of Milkborne Pathogens.

    PubMed

    Crook, Jennifer A; Rossitto, Paul V; Parko, Jared; Koutchma, Tatiana; Cullor, James S

    2015-06-01

    Nonthermal technologies are being investigated as viable alternatives to, or supplemental utilization, with thermal pasteurization in the food-processing industry. In this study, the effect of ultraviolet (UV)-C light on the inactivation of seven milkborne pathogens (Listeria monocytogenes, Serratia marcescens, Salmonella Senftenberg, Yersinia enterocolitica, Aeromonas hydrophila, Escherichia coli, and Staphylococcus aureus) was evaluated. The pathogens were suspended in ultra-high-temperature whole milk and treated at UV doses between 0 and 5000 J/L at a flow rate of 4300 L/h in a thin-film turbulent flow-through pilot system. Of the seven milkborne pathogens tested, L. monocytogenes was the most UV resistant, requiring 2000 J/L of UV-C exposure to reach a 5-log reduction. The most sensitive bacterium was S. aureus, requiring only 1450 J/L to reach a 5-log reduction. This study demonstrated that the survival curves were nonlinear. Sigmoidal inactivation curves were observed for all tested bacterial strains. Nonlinear modeling of the inactivation data was a better fit than the traditional log-linear approach. Results obtained from this study indicate that UV illumination has the potential to be used as a nonthermal method to reduce microorganism populations in milk.

  11. Simultaneous Observation of Cells and Nuclear Tracks from the Boron Neutron Capture Reaction by UV-C Sensitization of Polycarbonate.

    PubMed

    Portu, Agustina; Rossini, Andrés Eugenio; Thorp, Silvia Inés; Curotto, Paula; Pozzi, Emiliano César Cayetano; Granell, Pablo; Golmar, Federico; Cabrini, Rómulo Luis; Martin, Gisela Saint

    2015-08-01

    The distribution of boron in tissue samples coming from boron neutron capture therapy protocols can be determined through the analysis of its autoradiography image on a nuclear track detector. A more precise knowledge of boron atom location on the microscopic scale can be attained by the observation of nuclear tracks superimposed on the sample image on the detector. A method to produce an "imprint" of cells cultivated on a polycarbonate detector was developed, based on the photodegradation properties of UV-C radiation on this material. Optimal conditions to generate an appropriate monolayer of Mel-J cells incubated with boronophenylalanine were found. The best images of both cells and nuclear tracks were obtained for a neutron fluence of 1013 cm-2, 6 h UV-C (254 nm) exposure, and 4 min etching time with a KOH solution. The imprint morphology was analyzed by both light and scanning electron microscopy. Similar samples, exposed to UV-A (360 nm) revealed no cellular imprinting. Etch pits were present only inside the cell imprints, indicating a preferential boron uptake (about threefold the incubation concentration). Comparative studies of boron absorption in different cell lines and in vitro evaluation of the effect of diverse boron compounds are feasible with this methodology.

  12. Transgenerational changes in plant physiology and in transposon expression in response to UV-C stress in Arabidopsis thaliana

    PubMed Central

    Migicovsky, Zoe; Kovalchuk, Igor

    2014-01-01

    Stress has a negative impact on crop yield by altering a gain in biomass and affecting seed set. Recent reports suggest that exposure to stress also influences the response of the progeny. In this paper, we analyzed seed size, leaf size, bolting time and transposon expression in 2 consecutive generations of Arabidopsis thaliana plants exposed to moderate UV-C stress. Since previous reports suggested a potential role of Dicer-like (DCL) proteins in the establishment of transgenerational response, we used dcl2, dcl3 and dcl4 mutants in parallel with wild-type plants. These studies revealed that leaf number decreased in the progeny of UV-C stressed plants, and bolting occurred later. Transposons were also re-activated in the progeny of stressed plants. Changes in the dcl mutants were less prominent than in wild-type plants. DCL2 and DCL3 appeared to be more important in the transgenerational stress memory than DCL4 because transgenerational changes were less profound in the dcl2 and dcl3 mutants. PMID:25482751

  13. Preliminary evidence on photoreactivation of Frankia spores with visible light after exposure to UV-C radiation.

    PubMed

    Sayed, W F

    2011-06-01

    Spores of four Frankia strains, the nitrogen-fixing actinomycete, were exposed to short wavelength UV-C radiation of 254 nm at 1 lux cm(2) (0.24 mw cm2 of energy) for 10 min. The used strains were HFP020203, UGL020604, UGL020602q and ORS021001. Exposure to UV was followed by reactivation with visible white light at 327.4 lux cm(2) for the same period of time. Spore germination percentage, spore protein content, and cell growth were damaged by this treatment. The lower and higher percentages of reduction in spore germination were 32 and 63% and, for the same strains, the recovery by white light was 7.2 and 37%. The lower percentages of UV damage and subsequent low recovery were recorded for strain ORS021001 that is considered more resistant to UV than the other strains. The higher percentages were recorded for strain HFP020203 that is more sensitive to UV but having more efficient repairing mechanisms. All the tested strains showed repairing activity induced by white light as indicated from the increase in their spore germination, protein content and almost restoring the normal shape of Frankia hyphae, after being damaged, as revealed by scanning electron microscope. This is the first evidence that photo-repairing systems are present in Frankia strains although there are variations in their response to both UV-C and photoreactivation by white light.

  14. UV-C light inactivation and modeling kinetics of Alicyclobacillus acidoterrestris spores in white grape and apple juices.

    PubMed

    Baysal, Ayse Handan; Molva, Celenk; Unluturk, Sevcan

    2013-09-16

    In the present study, the effect of short wave ultraviolet light (UV-C) on the inactivation of Alicyclobacillus acidoterrestris DSM 3922 spores in commercial pasteurized white grape and apple juices was investigated. The inactivation of A. acidoterrestris spores in juices was examined by evaluating the effects of UV light intensity (1.31, 0.71 and 0.38 mW/cm²) and exposure time (0, 3, 5, 7, 10, 12 and 15 min) at constant depth (0.15 cm). The best reduction (5.5-log) was achieved in grape juice when the UV intensity was 1.31 mW/cm². The maximum inactivation was approximately 2-log CFU/mL in apple juice under the same conditions. The results showed that first-order kinetics were not suitable for the estimation of spore inactivation in grape juice treated with UV-light. Since tailing was observed in the survival curves, the log-linear plus tail and Weibull models were compared. The results showed that the log-linear plus tail model was satisfactorily fitted to estimate the reductions. As a non-thermal technology, UV-C treatment could be an alternative to thermal treatment for grape juices or combined with other preservation methods for the pasteurization of apple juice.

  15. Transgenerational changes in plant physiology and in transposon expression in response to UV-C stress in Arabidopsis thaliana.

    PubMed

    Migicovsky, Zoe; Kovalchuk, Igor

    2014-01-01

    Stress has a negative impact on crop yield by altering a gain in biomass and affecting seed set. Recent reports suggest that exposure to stress also influences the response of the progeny. In this paper, we analyzed seed size, leaf size, bolting time and transposon expression in 2 consecutive generations of Arabidopsis thaliana plants exposed to moderate UV-C stress. Since previous reports suggested a potential role of Dicer-like (DCL) proteins in the establishment of transgenerational response, we used dcl2, dcl3 and dcl4 mutants in parallel with wild-type plants. These studies revealed that leaf number decreased in the progeny of UV-C stressed plants, and bolting occurred later. Transposons were also re-activated in the progeny of stressed plants. Changes in the dcl mutants were less prominent than in wild-type plants. DCL2 and DCL3 appeared to be more important in the transgenerational stress memory than DCL4 because transgenerational changes were less profound in the dcl2 and dcl3 mutants.

  16. Furan formation from fatty acids as a result of storage, gamma irradiation, UV-C and heat treatments.

    PubMed

    Fan, Xuetong

    2015-05-15

    The effects of gamma and UV-C irradiation in comparison with thermal processing and storage at 25°C on formation of furan from different fatty acids were investigated. Results showed that furan was generated from polyunsaturated fatty acids such as linoleic and linolenic acid during thermal (120°C, 25 min) and UV-C (11.5 J/cm(2)) treatments. Gamma irradiation (up to 20 kGy) did not induce formation of significant amounts of furan from any of the fatty acids studied. Storage of unsaturated fatty acid emulsions at 25°C for 3 days led to the formation of furan (7-11 ng/mL) even without prior thermal or non-thermal treatments. pH significantly impacted furan formation with >3.5 times more furan formed at pH 9 than at pHs 3 or 6 during 3 days at 25°C. The addition of Trolox, BHA, and propyl gallate had no significant effect on furan formation from linolenic acid while α-tocopherol and FeSO4 promoted furan formation. Published by Elsevier Ltd.

  17. Use of UV-C treatments to maintain quality and extend the shelf life of green fresh-cut bell pepper (Capsicum annuum L.).

    PubMed

    Rodoni, Luis M; Concellón, Analía; Chaves, Alicia R; Vicente, Ariel R

    2012-06-01

    The objective of this work was to select a Ultraviolet-C (UV-C) treatment for fresh-cut mature green bell pepper, and to evaluate the effect of its combination with refrigeration on quality maintenance. Bell pepper sticks were treated with 0, 3, 10, or 20 kJ/m² UV-C in the outer (O), inner (I), or both sides of the pericarp (I/O) and stored for 8 d at 10 °C. During the first 5 d of storage, all UV-C treatments reduced deterioration as compared to the control. The treatment with 20 kJ/m² I/O was the most effective to reduce deterioration, and was used for further evaluations. In a second group of experiments, mature green bell pepper sticks were treated with 20 kJ/m² I/O, stored at 5 °C for 7 or 12 d and assessed for physical and chemical analysis, and microbiological quality. UV-C-treated fruit showed lower exudates and shriveling than the control. UV exposure also reduced decay, tissue damage, and electrolyte leakage. After 12 d at 5 °C, UV-C irradiated peppers remained firmer and had higher resistance to deformation than the control. The UV-C treatments also reduced weight loss and pectin solubilization. UV-C exposure decreased the counts of mesophile bacteria and molds, and did not affect acidity or sugars. UV-C-treated fruit stored for 0 or 7 d at 5 °C did not show major differences in antioxidants from the control as measured against DPPH(•) or ABTS(•)⁺ radicals. Results suggest that UV-C exposure is useful to maintain quality of refrigerated fresh-cut green pepper. Exposure to UV-C radiation before packing and refrigeration could be a useful nonchemical alternative to maintain quality and reduce postharvest losses in the fresh-cut industry. © 2012 Institute of Food Technologists®

  18. Effects of ultraviolet light (UV-C) and heat treatment on the quality of fresh-cut Chokanan mango and Josephine pineapple.

    PubMed

    George, Dominic Soloman; Razali, Zuliana; Santhirasegaram, Vicknesha; Somasundram, Chandran

    2015-02-01

    The effects of ultraviolet (UV-C) and medium heat (70 °C) treatments on the quality of fresh-cut Chokanan mango and Josephine pineapple were investigated. Quality attributes included physicochemical properties (pH, titratable acidity, and total soluble solids), ascorbic acid content (vitamin C), antioxidant activity, as well as microbial inactivation. Consumers' acceptance was also investigated through sensory evaluation of the attributes (appearance, texture, aroma and taste). Furthermore, shelf-life study of samples stored at 4 ± 1 °C was conducted for 15 d. The fresh-cut fruits were exposed to UV-C for 0, 15, 30, and 60 min while heat treatments were carried out at 70 °C for 0, 5, 10 and 20 min. Both UV-C and medium heat treatments resulted in no significant changes to the physicochemical attributes of both fruits. The ascorbic acid content of UV-C treated fruits was unaffected; however, medium heat treatment resulted in deterioration of ascorbic acids in both fruits. The antioxidants were enhanced with UV-C treatment which could prove invaluable to consumers. Heat treatments on the other hand resulted in decreased antioxidant activities. Microbial count in both fruits was significantly reduced by both treatments. The shelf life of the fresh-cut fruits were also successfully extended to a maximum of 15 d following treatments. As for consumers' acceptance, UV-C treated fruits were the most accepted as compared to their heat-treated counterparts. The results obtained through this study support the use of UV-C treatment for better retention of quality, effective microbial inactivation and enhancement of health promoting compounds for the benefit of consumers.

  19. Hot water, UV-C and superatmospheric oxygen packaging as hurdle techniques for maintaining overall quality of fresh-cut pomegranate arils.

    PubMed

    Maghoumi, Mahshad; Gómez, Perla A; Artés-Hernández, Francisco; Mostofi, Younes; Zamani, Zabihalah; Artés, Francisco

    2013-03-30

    In recent years there has been increasing consumer pressure to avoid the use of agrochemicals such as chlorine on fresh plant products for extending their shelf life. The combined use of eco-sustainable techniques may be an alternative. The effect of hot water (HW), ultraviolet-C (UV-C) light and high oxygen packaging (HO) on the overall quality of fresh-cut pomegranate arils stored under modified atmosphere packaging (MAP) for up to 14 days at 5 °C was studied. Arils extracted manually, washed with chlorine (100 µL L⁻¹ NaClO, pH 6.5, 5 °C water), rinsed and drained were exposed to single or combined (double and triple) hurdle techniques. The HW treatment consisted of a 30 s immersion in water at 55 °C followed by air surface drying. A 4.54 kJ m⁻² dose was used for the UV-C treatment before packaging. Active MAP with initial 90 kPa O₂ was used in the HO treatment. The respiration rate remained relatively constant throughout shelf life, with no differences among treatments. CO₂ accumulation was higher within HO packages. HW induced a slight reduction in total soluble solids, while no changes in titratable acidity were found. HO-treated arils had the highest phenolic content, while the lowest was found in HW-treated arils. The lowest antioxidant activity was found in HW + UV-C + HO and the highest in UV-C + HO and HO treatments. HW alone or in combination with UV-C and HO inhibited mesophile, mould and yeast growth, while UV-C + HO was most effective for controlling yeast and mould growth. UV-C and HO either alone or in combination are promising techniques to preserve the quality of pomegranate arils for up to 14 days at 5 °C. © 2012 Society of Chemical Industry.

  20. Growth phase-dependent UV-C resistance of Bacillus subtilis: data from a short-term evolution experiment.

    PubMed

    Wassmann, Marko; Moeller, Ralf; Reitz, Günther; Rettberg, Petra

    2011-11-01

    After 700 generations of a short-term evolution experiment with Bacillus subtilis 168, two strains were isolated, the UV-adapted strain MW01 and the UV-unexposed control strain DE69, and chosen for UV-C radiation resistance studies with respect to growth phase. The ancestral strain from the evolution experiment was used as reference for comparative purposes. Cells of the UV-adapted strain showed significant differences in their physiology (growth behavior, doubling time, cell density, and sporulation capacity) and were more resistant to UV in all monitored stages. These findings implicate the evolution to an increased UV radioresistance was not limited to a specific growth phase and led to reduced growth dynamics, compared with those obtained from the ancestral and the control strain.

  1. Gamma-irradiation and UV-C light-induced lipid peroxidation: a Fourier transform-infrared absorption spectroscopic study.

    PubMed

    Kinder, R; Ziegler, C; Wessels, J M

    1997-05-01

    Fourier transform-infrared spectroscopy of dry, multibilayer films has been used to study gamma-radiation and UV-C light induced lipid peroxidation in 1,2-dilinoleoyl-sn-glycero-3-phosphocholine liposomes. The observed spectral changes were compared with the results obtained from measurement of hydroperoxides, conjugated dienes and to the formation of thiobarbituric acid reactive substances, such as malondialdehyde (MDA) or MDA-like substances. Upon irradiation a decrease in intensity of the asymmetric C - H stretching vibration (va(CH2)) of the isolated cis C = C - H groups (3010 cm-1) was observed. Directly correlated with the decrease of the va(CH2) absorption was a shift of the asymmetric phosphate ester stretching vibration (va(P = O)) towards smaller wavenumbers (1260-->1244 cm-1), indicating that the lipid peroxidation induced molecular alterations in the fatty acid chains influence the packing of the phospholipids in dry multibilayer films. In addition, the formation of a new absorption band at 1693 cm-1 could be detected, the intensity of which was comparable with the formation of thiobarbituric acid reactive substances and, therefore, attributed to the (C = O) stretching of alpha, beta unsaturated aldehydes. Dose-dependent studies using ionizing radiation showed that the decrease of va(CH2) was directly correlated with an increase in absorption of the conjugated dienes at 234 nm and with the formation of hydroperoxides suggesting that the absorption at 3010 cm-1 is solely due to isolated cis C = C - H groups and hence subject to the early stages of the radical chain reaction. UV-C light induced lipid peroxidation revealed a non-linear decrease of I3010, which was directly correlated with the formation of hydroperoxides. The observed early saturation of the conjugated dienes was attributed to an early photodecomposition of the conjugated double bonds.

  2. Wide band gap Ga2O3 as efficient UV-C photocatalyst for gas-phase degradation applications.

    PubMed

    Jędrzejczyk, Marcin; Zbudniewek, Klaudia; Rynkowski, Jacek; Keller, Valérie; Grams, Jacek; Ruppert, Agnieszka M; Keller, Nicolas

    2017-09-29

    α, β, γ, and δ polymorphs of 4.6-4.8 eV wide band gap Ga2O3 photocatalysts were prepared via a soft chemistry route. Their photocatalytic activity under 254 nm UV-C light in the degradation of gaseous toluene was strongly depending on the polymorph phase. α- and β-Ga2O3 photocatalysts enabled achieving high and stable conversions of toluene with selectivities to CO2 within the 50-90% range, by contrast to conventional TiO2 photocatalysts that fully deactivate very rapidly on stream in similar operating conditions with rather no CO2 production, no matter whether UV-A or UV-C light was used. The highest performances were achieved on the high specific surface area β-Ga2O3 photocatalyst synthesized by adding polyethylene glycol (PEG) as porogen before precipitation, with stable toluene conversion and mineralization rate into CO2 strongly overcoming those obtained on commercial β-Ga2O3. They were attributed to favorable physicochemical properties in terms of high specific surface area, small mean crystallite size, good crystallinity, high pore volume with large size mesopore distribution and appropriate surface acidity, and to the possible existence of a double local internal field within Ga(3+) units. In the degradation of hydrogen sulfide, PEG-derived β-Ga2O3 takes advantage from its high specific surface area for storing sulfate, and thus for increasing its resistance to deactivation and the duration at total sulfur removal when compared to other β-Ga2O3 photocatalysts. So, we illustrated the interest of using high surface area β-Ga2O3 in environmental photocatalysis for gas-phase depollution applications.

  3. The effect of pre-ozonation on the H2O2/UV-C treatment of raw and biologically pre-treated textile industry wastewater.

    PubMed

    Alaton, I Arslan; Balcioğlu, I A

    2002-01-01

    Advanced chemical oxidation of raw and biologically pretreated wastewater by ozonation, H2O2/UV-C treatment and the successive combination of ozonation and H2O2/UV-C oxidation was investigated. For the raw textile wastewater, the application of successive O3 + H2O2/UV-C oxidation enhanced the COD and TOC removal efficiency of the H2O2 (50 mM)/UV-C process by a factor of 13 and 4, respectively. In case of the biotreated textile wastewater, the preliminary ozonation step increased COD removal of the H2O2 (10 mM)/UV-C treatment system from 15% to 62%, and TOC removal from 0% to 34%, but did not appear to be more effective than applying a single ozonation process in terms of TOC abatement rates. Enhancement of the biodegradability was more pronounced for the biologically pre-treated wastewater with a two fold average increase in the BOD5/COD ratio for the studied chemical oxidation systems.

  4. Effects of UV-C treatment and cold storage on ergosterol and vitamin D2 contents in different parts of white and brown mushroom (Agaricus bisporus).

    PubMed

    Guan, Wenqiang; Zhang, Jie; Yan, Ruixiang; Shao, Suqin; Zhou, Ting; Lei, Jing; Wang, Zhidong

    2016-11-01

    Effects of ultraviolet-C (UV-C) treatment (0.5, 1.0 and 2.0kJ/m(2)) and cold storage on ergosterol and vitamin D2 content in different parts of white and brown button mushrooms (Agaricus bisporus) were investigated. UV-C treatment did not significantly affect ergosterol content in the caps and stems of the two mushrooms, but ergosterol content increased significantly during 14days cold storage. Vitamin D2 content in the caps and stems of two mushrooms significantly increased as UV-C dose increased, and 2.0kJ/m(2) UV-C showed the best result. During cold storage, vitamin D2 content in the caps of the two mushrooms decreased from day 1 to day 7, and then kept stable until day 14, but vitamin D2 content in the stems of brown mushrooms kept increasing for the whole 14days period. UV-C could increase vitamin D2 contents in both caps and stems of white and brown mushrooms without significantly affecting ergosterol content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effect of UV-C irradiation and low temperature storage on bioactive compounds, antioxidant enzymes and radical scavenging activity of papaya fruit.

    PubMed

    Rivera-Pastrana, Dulce M; Gardea, Alfonso A; Yahia, Elhadi M; Martínez-Téllez, Miguel A; González-Aguilar, Gustavo A

    2014-12-01

    Mature green 'Maradol' papaya fruits were exposed to ultraviolet (UV)-C irradiation (1.48 kJ·m(-2)) and stored at 5 or 14 °C. Changes in total phenols, total flavonoids, enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), as well as the scavenging activity against 2,2-diphenyl-1picrylhydrazyl (DPPH) and 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radicals were investigated in peel and flesh tissues at 0, 5, 10 and 15 days of storage. UV-C irradiation increased significantly (P < 0.05) the flavonoid content (2.5 and 26 %) and ABTS radical scavenging activity (5.7 and 6 %) in flesh and peel at 14 °C respectively; and CAT activity (16.7 %) in flesh at 5 °C. Flavonoid contents, CAT and SOD activities were positively affected under low storage temperature (5 °C). DPPH and ABTS radical scavenging activities increased in both control and UV-C treated papaya peel during storage at 5 °C. UV-C irradiation effect on radical scavenging of papaya peel could be attributed to increased flavonoid content. Papaya antioxidant system was activated by UV-C and cold storage by increasing phenolic content and antioxidant enzymatic activities as a defense response against oxidative-stress.

  6. Effects of UV-C irradiation on phosphoinositide turnover in plant cells: similarities with those occurring via the formation of reactive oxygen intermediates in animal cells.

    PubMed

    Piacentini, M P; Ricci, D; Fraternale, D; Piatti, E; Manunta, A; Accorsi, A

    1999-03-01

    With the aim of examining the response of plant cells to UV-C irradiation, we investigated the behaviour of the phosphatidylinositol 4,5 bisphosphate (PtdIns 4,5-P2) molecule (the precursor of the phosphoinositide signal transduction cascade) by exposing callus cells from Peucedanum verticillare to UV-C (130 J m-2) and by examining the level and the fatty acid composition of PtdIns 4,5-P2 at different times after irradiation. We show that a pathway for the UV-C response includes transient PtdIns 4,5-P2 breakdown. The effect of ultraviolet rays is mimicked by H2O2 suggesting that in this plant it may be brought about by reactive oxygen intermediates (ROI), as already underlined in experimental animal models.

  7. Differential effects of UV-B and UV-C components of solar radiation on MAP kinase signal transduction pathways in epidermal keratinocytes.

    PubMed

    Dhanwada, K R; Dickens, M; Neades, R; Davis, R; Pelling, J C

    1995-11-16

    Exposure to solar ultraviolet (UV) light is a major cause of skin cancer, the most common human neoplasm. The earth's upper atmosphere absorbs the high energy UV-C wavelengths (100-280 nm), while allowing transmission of UV-B (280-320 nm) and UV-A (320-400 nm). It is therefore UV-B and to some extent UV-A, that contributes to most human skin malignancies. We report that the exposure of cultured keratinocytes or skin to UV-C radiation causes activation of MAP kinases (ERK and JNK). In contrast, the solar radiation associated with skin cancer (UV-B) was an ineffective activator of the ERK and JNK signal transduction pathways. Therefore, while exposure of epidermal cells to UV-C radiation under laboratory conditions causes marked activation of MAP kinase signal transduction pathways, only a low level of MAP kinase signaling is involved in the response of skin to biologically relevant solar radiation.

  8. Inactivation kinetics of foodborne pathogens by UV-C radiation and its subsequent growth in fresh-cut kailan-hybrid broccoli.

    PubMed

    Martínez-Hernández, Ginés Benito; Huertas, Juan-Pablo; Navarro-Rico, Javier; Gómez, Perla A; Artés, Francisco; Palop, Alfredo; Artés-Hernández, Francisco

    2015-04-01

    The inactivation of Escherichia coli, S. Enteritidis and Listeria monocytogenes after UV-C radiation with 0, 2.5, 5, 7.5, 10 and 15 kJ UV-C m(-2) on fresh-cut kailan-hybrid broccoli was explored. Inactivation did not follow linear kinetics. Hence, it was modelled by using the Weibull distribution function, obtaining adjusted R(2) values higher than 94%, indicative of the accuracy of the model to the experimental data. The UV-C doses needed to reduce 1 log cycle the E. coli, S. Enteritidis and L. monocytogenes counts were 1.07, 0.02 and 9.26 kJ m(-2), respectively, being S. Enteritidis the most sensitive microorganism to UV-C radiation while L. monocytogenes was the most resistant. According to experimental data, UV-C doses higher than 2.5 kJ m(-2) did not achieve great microbial reductions. No differences in the growth behaviour of these microorganisms was observed in the treated samples stored under air conditions at 5, 10 and 15 °C, compared to the control. Conclusively, low UV-C doses are effective to reduce E. coli, S. Enteritidis and L. monocytogenes populations in fresh-cut kailan-hybrid broccoli keeping such counts stable during shelf life at 5-10 °C. The current study provides inactivation models for these foodborne pathogens that can be used in microbial risk assessment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Effect of UV-C on algal evolution and differences in growth rate, pigmentation and photosynthesis between prokaryotic and eukaryotic algae.

    PubMed

    Gao, Yang; Cui, Yunluan; Xiong, Wei; Li, Xiaobo; Wu, Qingyu

    2009-01-01

    Insight into the influence of UV-C radiation on the evolutionary relationship between prokaryotic and eukaryotic algae was studied in seven species of algae exposed to different UV-C irradiances. The order of their acclimation (from most tolerant to sensitive) is Synechococcus sp. PCC7942 (Cyanophyta), Synechocystis sp. PCC6803 (Cyanophyta), Chlorella protothecoides (Chlorophyta), Chlamydomonas reinhardtii (Chlorophyta), Phaeodactylum tricornutum (Bacillariophyta), Alexandrium tamarense (Pyrrhophyta) and Dicrateria zhanjiangensis (Chrysophyta). These results are in accordance with the algal evolution process that is generally accepted and proved by fossil record. It shows that UV-C radiation is an important environmental factor that cannot be ignored in the evolutionary process from prokaryotic algae to eukaryotic algae. The threshold of UV-C radiation at which prokaryotic algae can survive but eukaryotic algae cannot was found to be approximately 0.09 W m(-2). This was the first time to determine with precision the irradiance level at which UV-C contributed as a selection pressure of evolution. Furthermore, the effects of UV-C radiation on photosynthetic performance, growth rate and pigment content were investigated in two species of prokaryotic algae: Synechococcus sp. PCC7942 and Synechocystis sp. PCC6803, and two species of eukaryotic algae: C. reinhardtii and C. protothecoides. After 6 days of exposure, the contents of chlorophyll a and carotenoids decreased in all species, moreover reduction in C. reinhardtii and C. protothecoides was more obvious than in Synechococcus sp. PCC7942 and Synechocystis sp. PCC6803. The ability to photosynthesize followed the same trend as the pigments.

  10. Listeria monocytogenes survival of UV-C radiation is enhanced by presence of sodium chloride, organic food material and by bacterial biofilm formation.

    PubMed

    Bernbom, N; Vogel, B F; Gram, L

    2011-05-14

    The bactericidal effect on food processing surfaces of ceiling-mounted UV-C light (wavelength 254 nm) was determined in a fish smoke house after the routine cleaning and disinfection procedure. The total aerobic counts were reduced during UV-C light exposure (48 h) and the number of Listeria monocytogenes positive samples went from 30 (of 68) before exposure to 8 (of 68). We therefore in a laboratory model determined the L. monocytogenes reduction kinetics by UV-C light with the purpose of evaluating the influence of food production environmental variables, such as presence of NaCl, organic material and the time L. monocytogenes was allowed to adhere to steel before exposure. L. monocytogenes grown and attached in tryptone soy broth (TSB) with glucose were rapidly killed (after 2 min) by UV-C light. However, bacteria grown and adhered in TSB with glucose and 5% NaCl were more resistant and numbers declined with 4-5 log units during exposure of 8-10 min. Bacteria grown in juice prepared from cold-smoked salmon were protected and numbers were reduced with 2-3 log when UV-C light was used immediately after attachment whereas numbers did not change at all if bacteria had been allowed to form a biofilm for 7 days before exposure. It is not known if this enhanced survival is due to physiological changes in the attached bacterial cells, a physical protection of the cells in the food matrix or a combination. In conclusion, we demonstrate that UV-C light is a useful extra bacteriocidal step and that it, as all disinfecting procedures, is hampered by the presence of organic material.

  11. Effectiveness of two-sided UV-C treatments in inhibiting natural microflora and extending the shelf-life of minimally processed 'Red Oak Leaf' lettuce.

    PubMed

    Allende, Ana; McEvoy, James L; Luo, Yaguang; Artes, Francisco; Wang, Chien Y

    2006-05-01

    The use of UV-C radiation treatments to inhibit the microbial growth and extend the shelf-life of minimally processed 'Red Oak Leaf' lettuce was investigated. Initially, UV-C resistance of 20 bacterial strains from different genera often associated with fresh produce (Enterobacter, Erwinia, Escherichia, Leuconostoc, Pantoea, Pseudomonas, Rahnela, Salmonella, Serratia and Yersinia) were tested in vitro. Most of the bacterial strains were inhibited with the minimum dose (30 J m(-2)). Erwinia carotovora, Leuconostoc carnosum, Salmonella typhimurium, and Yersinia aldovae were the most resistant strains requiring a UV-C dose of 85 J m(-2) to completely inhibit growth. An in vivo study consisted of treating minimally processed 'Red Oak Leaf' lettuce (Lactuca sativa) with UV-C at three radiation doses (1.18, 2.37 and 7.11 kJ m(-2)) on each side of the leaves and storing the product under passive MAP conditions at 5 degrees C for up to 10 days. The gas composition inside packages varied significantly among the treatments, with CO2 concentrations positively and O2 concentrations negatively correlating with the radiation dose. All the radiation doses were effective in reducing the natural microflora of the product, although the highest doses showed the greatest microbial inhibitions. Taking into account the microbial limit set by Spanish legislation [Boletín Oficial del Estado (BOE), 2001. Normas de higiene para la elaboración, distribución y comercio de comidas preparadas, Madrid, Spain, Real Decreto 3484/2000, pp. 1435-1441], all UV-C treatments extended the shelf-life of the product. However, the 7.11 kJ m(-2) dose induced tissue softening and browning after 7 days of storage at 5 degrees C. Therefore, the use of two sided UV-C radiation, at the proper dose, is effective in reducing the natural microflora and extending the shelf-life of minimally processed 'Red Oak Leaf' lettuce.

  12. Emerging micropollutant oxidation during disinfection processes using UV-C, UV-C/H2O2, UV-A/TiO2 and UV-A/TiO2/H2O2.

    PubMed

    Pablos, Cristina; Marugán, Javier; van Grieken, Rafael; Serrano, Elena

    2013-03-01

    Regeneration of wastewater treatment plant effluents constitutes a solution to increase the availability of water resources in arid regions. Water reuse legislation imposes an exhaustive control of the microbiological quality of water in the operation of disinfection tertiary treatments. Additionally, recent reports have paid increasing attention to emerging micropollutants with potential biological effects even at trace level concentration. This work focuses on the evaluation of several photochemical technologies as disinfection processes with the aim of simultaneously achieving bacterial inactivation and oxidation of pharmaceuticals as examples of emerging micropollutants typically present in water and widely studied in the literature. UV-C-based processes show a high efficiency to inactivate bacteria. However, the bacterial damages are reversible and only when using H(2)O(2), bacterial reproduction is affected. Moreover, a complete elimination of pharmaceutical compounds was not achieved at the end of the inactivation process. In contrast, UV-A/TiO(2) required a longer irradiation time to inactivate bacteria but pharmaceuticals were completely removed along the process. In addition, its oxidation mechanism, based on hydroxyl radicals (OH), leads to irreversible bacterial damages, not requiring of chemicals to avoid bacterial regrowth. For UV-A/TiO(2)/H(2)O(2) process, the addition of H(2)O(2) improved Escherichia coli inactivation since the cell wall weakening, due to OH attacks, allowed H(2)O(2) to diffuse into the bacteria. However, a total elimination of the pharmaceuticals was not achieved during the inactivation process.

  13. Enumeration, isolation, and characterization of ultraviolet (UV-C) resistant bacteria from rock varnish in the Whipple Mountains, California

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. R.; Allenbach, L. B.; Ball, C. L.; Fusco, W. G.; La Duc, M. T.; Kuhlman, G. M.; Anderson, R. C.; Stuecker, T.; Erickson, I. K.; Benardini, J.; Crawford, R. L.

    2005-04-01

    The in situ search for life on Mars requires an understanding of the possible habitats available and the types of microbes that inhabit such environments on Earth. Rock varnish is ubiquitous in terrestrial deserts and has been suggested to exist on Mars. Data reported here show that there are very high numbers of bacteria ( 10-10 g dry wt) associated with rock varnish collected in the hot desert of the Whipple Mountains, south of Death Valley, CA, USA. Some of the bacteria identified in the rock varnish from the Whipple Mountains are resistant to UV-C exposure. This suggests that habitats like rock varnish, if they occur in the martian polar regions where liquid water may be available, may provide niches for radiation-resistant life forms such as the bacteria observed in the Whipple Mountains varnish ecosystem. The UV-resistant microbes isolated represent a diverse group of genera, but all are from the order Actinomycetales (the genera Arthrobacter, Curtobacterium, Geodermatophilus, and Cellulomonas). They are metabolically versatile heterotrophs capable of growing on a variety of simple sugars, amino acids, organic acids and aromatic acids as sole carbon and energy sources.

  14. Effect of UV-C radiation on bioactive compounds of pineapple (Ananas comosus L. Merr.) by-products.

    PubMed

    Freitas, Ana; Moldão-Martins, Margarida; Costa, Helena S; Albuquerque, Tânia G; Valente, Ana; Sanches-Silva, Ana

    2015-01-01

    The industrial processing of pineapple generates a high quantity of by-products. To reduce the environmental impact of these by-products and the inherent cost of their treatment, it is important to characterise and valorise these products, converting them into high added value products. Ultra-violet radiation is one of the main sustainable sanitation techniques for fruits. Since this radiation can induce plant stress which can promote the biosynthesis of bioactive compounds, it is important to evaluate its effect in fruits. The amounts of vitamins (C and E) and carotenoids (α-carotene, β-carotene, β-cryptoxanthin, lutein, lycopene, neoxanthin, violaxanthin and zeaxanthin) in pineapple by-products (core and rind) were analysed before and after treatment with UV radiation. All treated and untreated pineapple by-products contained β-carotene as the main carotenoid (rind, 2537-3225 µg; and core, 960-994 µg 100 g(-1) DW). Pineapple rind also contained lutein (288-297 µg 100 g(-1) DW) and α-carotene (89-126 µg 100 g(-1) DW). The results provide evidence of the potential of pineapple by-products as a source of bioactive compounds with antioxidant activity, which can be used by pharmaceutical, cosmetics and food industries. In addition, UV-C was shown to be a treatment that can add nutritional value to pineapple by-products. © 2014 Society of Chemical Industry.

  15. UV-C as an efficient means to combat biofilm formation in show caves: evidence from the La Glacière Cave (France) and laboratory experiments.

    PubMed

    Pfendler, Stéphane; Einhorn, Olympe; Karimi, Battle; Bousta, Faisl; Cailhol, Didier; Alaoui-Sosse, Laurence; Alaoui-Sosse, Badr; Aleya, Lotfi

    2017-09-14

    Ultra-violet C (UV-C) treatment is commonly used in sterilization processes in industry, laboratories, and hospitals, showing its efficacy against microorganisms such as bacteria, algae, or fungi. In this study, we have eradicated for the first time all proliferating biofilms present in a show cave (the La Glacière Cave, Chaux-lès-Passavant, France). Colorimetric measurements of irradiated biofilms were then monitored for 21 months. To understand the importance of exposition of algae to light just after UV radiation, similar tests were carried out in laboratory conditions. Since UV-C can be deleterious for biofilm support, especially parietal painting, we investigated their effects on prehistoric pigment. Results showed complete eradication of cave biofilms with no algae proliferation observed after 21 months. Moreover, quantum yield results showed a decrease directly after UV-C treatment, indicating inhibition of algae photosynthesis. Furthermore, no changes in pigment color nor in chemical and crystalline properties has been demonstrated. The present findings demonstrate that the UV-C method can be considered environmentally friendly and the best alternative to chemicals. This inexpensive and easily implemented method is advantageous for cave owners and managers.

  16. Photocatalytic removal of doxycycline from aqueous solution using ZnO nano-particles: a comparison between UV-C and visible light.

    PubMed

    Pourmoslemi, Shabnam; Mohammadi, Ali; Kobarfard, Farzad; Amini, Mohsen

    2016-10-01

    Zinc oxide nano-particles were synthesized, characterized and used for photocatalytic degradation of doxycycline using UV-C and visible light. Effects of several operational factors including initial pH of antibiotic solution, initial antibiotic concentration and ZnO nano-particles loading amount were investigated. Comparing photocatalytic degradation and mineralization of doxycycline under UV-C and visible light showed successful application of the method under both light sources. However, reaction rate was higher under UV-C irradiation, which degraded doxycycline almost completely in 5 hours, and 68% mineralization was achieved. Synthesized ZnO nano-particles were successfully applied for photocatalytic degradation of doxycycline in a pharmaceutical wastewater sample. The process was fitted to the pseudo first order kinetic model with rate constants in the range of 6-22(×10(-3)) mg L(-1) min(-1) with respect to initial concentration of doxycycline under UV-C irradiation. The Langmuir-Hinshelwood model was also employed for describing the photocatalytic reaction with surface reaction kinetic constant kc and equilibrium adsorption constant KLH values calculated as 0.12 mg L(-1) min(-1) and 2.2 L mg(-1), respectively. Degradation of doxycycline was followed by UV-visible spectroscopy and a validated stability indicating high-performance liquid chromatography method that was developed using stressed samples of doxycycline and could selectively determine doxycycline in the presence of its degradation products. Mass spectrometry was used for determining final degradation products.

  17. Automated UV-C mutagenesis of Kluyveromyces marxianus NRRL Y-1109 and selection for microaerophilic growth and ethanol production at elevated temperature on biomass sugars

    USDA-ARS?s Scientific Manuscript database

    The yeast Kluyveromyces marxianus is a potential microbial catalyst for producing ethanol from lignocellulosic substrates at elevated temperatures. To improve its growth and ethanol yield under anaerobic conditions, K. marxianus NRRL Y-1109 was irradiated with UV-C, and surviving cells were grown a...

  18. Fate of E. coli O157:H7, Salmonella spp. and potential surrogate bacteria on apricot fruit following UV-C light

    USDA-ARS?s Scientific Manuscript database

    Some soft fruit, such as tree-ripened apricots, cannot be washed with aqueous sanitizers, due to their innate softness and delicate surfaces. In this study, ultraviolet-C (UV-C) light was investigated for its efficacy in inactivating 4-5 individual strains of Escherichia coli O157:H7 and Salmonella...

  19. Use of response surface methodology to study the combined effects of UV-C and thermal process on vegetable oxidative enzymes

    USDA-ARS?s Scientific Manuscript database

    The effects of ultraviolet processing (UV-C) (temperature, exposure time, and wavelength) and an environmental parameter (pH) were studied on three oxidative enzymes, namely, lipoxygenase (LOX), peroxidase (POD) and polyphenoloxidase (PPO) by using a central composite design. An initial screening de...

  20. UV-C mutagenesis of Kluyveromyces marxianus NRRL Y-1109 strain for improved anaerobic growth at elevated temperature on pentose and hexose sugars

    USDA-ARS?s Scientific Manuscript database

    More robust industrial yeast strains from Kluyveromyces marxianus NRRL Y-1109 and have been produced using UV-C irradiation specifically for anaerobic conversion of lignocellulosic sugar streams to fuel ethanol at elevated temperature (45°C). This type of random mutagenesis offers the possibility o...

  1. Vitamin D2, Ergosterol, and Vitamin B2 Content in Commercially Dried Mushrooms Marketed in China and Increased Vitamin D2 Content Following UV-C Irradiation.

    PubMed

    Huang, Guocheng; Cai, Weixi; Xu, Baojun

    2016-11-21

    Mushrooms are a great source of vitamin D and vitamin B2; however, the content of these vitamins in dried mushrooms has not fully been investigated. Thus, the objectives of this study were to determine the contents of vitamin D2, ergosterol, and vitamin B2 in commercially dried edible mushrooms in China and to investigate the effect of UV-C irradiation on fresh mushrooms. Among the 35 species of dried mushrooms considered for this study, the average ergosterol content was 1.98 mg/g, while the average vitamin D2 content was 16.88 µg/g. The average vitamin B2 content in dried mushrooms was 12.68 µg/g. Fresh shaggy ink caps and oyster mushrooms, when exposed to UV-C at 254 nm at a dose of 0.25 J/cm(2) for 10, 30, and 60 min, showed significantly (p < 0.05) increased vitamin D2 content (229.7 and 67.0 µg/g, respectively) as compared to its fresh counterparts. The conversion of ergosterol to vitamin D2 induced by UV-C irradiation at 0.25 J/cm(2) was significant (p < 0.05). In conclusion, dried commercial mushrooms have higher contents of ergosterol and vitamin D2 than fresh mushrooms. UV-C radiation can be used to increase vitamin D2 content in mushrooms.

  2. Effect of Ultraviolet-A (UV-A) and Ultraviolet-C (UV-C) Light on Mechanical Properties of Oyster Mushrooms during Growth

    PubMed Central

    Edward, Tindibale L.; Kirui, M. S. K.; Omolo, Josiah O.; Ngumbu, Richard G.; Odhiambo, Peter M.

    2014-01-01

    This study investigated the effects of ultraviolet-A (UV-A) and ultraviolet-C (UV-C) light on the mechanical properties in oyster mushrooms during the growth. Experiments were carried out with irradiation of the mushrooms with UV-A (365 nm) and UV-C (254 nm) light during growth. The exposure time ranged from 10 minutes to 60 minutes at intervals of 10 minutes and irradiation was done for three days. The samples for experimental studies were cut into cylindrical shapes of diameter 12.50 mm and thickness 3.00 mm. The storage modulus, loss modulus, and loss factor of the irradiated samples and control samples were determined for both UV bands and there was a significant difference between the storage modulus, loss modulus, and loss factor of the irradiated samples by both UV bands with reference to the control sample, P < 0.05. UV-C light irradiated samples had higher loss modulus and loss factor but low storage modulus as temperature increased from 35 to 100°C with respect to the control sample while UV-A light irradiated samples had lower loss modulus, low loss factor, and higher storage modulus than UV-C irradiated samples. PMID:25580117

  3. Effect of UV-C treatment on inactivation of Escherichia coli O157:H7, microbial loads, and quality of button mushrooms

    USDA-ARS?s Scientific Manuscript database

    This study investigated the effects of ultraviolet-C (UV-C) light applied to both sides of mushrooms on microbial loads and product quality during storage for 21 days at 4 C. Microflora populations, color, antioxidant activity, total phenolics, and ascorbic acid were measured at 1, 7, 14 and 21 days...

  4. Fate of E. coli O157:H7, Salmonella spp. and potential surrogate bacteria on apricot fruit, following exposure to UV-C light.

    PubMed

    Yun, Juan; Yan, Ruixiang; Fan, Xuetong; Gurtler, Joshua; Phillips, John

    2013-09-16

    Some soft fruit, such as tree-ripened apricots, cannot be washed with aqueous sanitizers, due to their innate softness and delicate surfaces. In this study, ultraviolet-C (UV-C) light was investigated for its efficacy in inactivating 4-5 individual strains of Escherichia coli O157:H7 and Salmonella spp. on apricots, in addition to a four-strain composite of Shiga toxin-negative E. coli O157:H7 and a cocktail of three attenuated strains of Salmonella Typhimurium and Salmonella Typhimurium LT2. Also, the survival of E. coli O157:H7 and Salmonella spp. after exposure to 74 and 442 mJ/cm² of UV-C was evaluated during post-UV storage at 2 and 20 °C. The fruit was spot inoculated and the areas (ca. 1.5 cm²) of fruit surface with the inoculated bacteria were exposed to UV-C at 7.4 mW/cm². E. coli O157:H7 and Salmonella spp. populations decreased rapidly (1-2 logs) (P<0.05) with increasing UV-C doses of 0 to 74 mJ/cm². Further increases in UV-C dosage achieved only limited additional reductions in bacterial populations. Shiga toxin-negative bacteria and attenuated S. Typhimurium strains, along with S. Typhimurium LT2, responded similarly to corresponding pathogenic E. coli O157:H7 and Salmonella spp. During storage at 2 or 20 °C, populations of pathogenic E. coli O157:H7 and Salmonella spp. on untreated fruit decreased slowly; however, populations on fruit treated with 442 mJ/cm² decreased rapidly at both temperatures. After 8 days at 20 °C or 21 days at 2 °C, E. coli O157:H7 and Salmonella spp. populations on UV-C treated fruit were at least 2 log CFU/g lower than on non-treated controls. Our results suggest that surface-inoculated bacteria survived poorly following UV-C treatment of apricots.

  5. Induction of secondary metabolite production by UV-C radiation in Vitis vinifera L. Öküzgözü callus cultures.

    PubMed

    Cetin, Emine Sema

    2014-09-04

    The aim of the present work was to examine the role of UV-C irradiation on the production of secondary metabolites (total phenolic, total flavanols, total flavonols, catechin, ferulic acid and trans-resveratrol in phenolic compounds and α-, β-, γ- δ-tocopherols) in callus cultures. Studies on the effects of UV-C treatment on callus culture are seldom and generally focused on UV-B. However UV-C radiation play an important role in accumule secondary metabolites. In this study, callus cultures from Öküzgözü grape cultivar were initiated from leaf petiole explants. Calli formed after 6 weeks on the medium supplemented with 0.5 mg L-1 benzylaminopurine (BA), 0.5 mg L-1 indole acetic acid (IAA) on B5 media. Callus tissues were exposed to UV-C irradiation at 10, 20 and 30 cm distances from the UV source for 5 and 10 minutes and samples were collected at hours 0, 24 and 48. The greatest total phenolic content (155.14 mg 100 g-1) was detected in calli exposed to UV-C for 5 min from 30 cm distance and sampled after 24 h. 24 h and 48 h incubation times, 30 cm and 5 min were the most appropriate combination of UV-C application in total flavanol content. Maximum total flavonol content (7.12 mg 100 g-1) was obtained on 0 h, 5 min and 20 cm combination. The highest (+)- catechin accumulation (8.89 mg g-1) was found in calli with 10 min UV-C application from 30 cm distance and sampled after 48 h. Ferulic acid content increased 6 fold in Öküzgözü callus cultures (31.37 μg g-1) compared to the control group. The greatest trans-resveratrol content (8.43 μg g-1) was detected in calli exposed to UV-C for 5 min from 30 cm distance and sampled after 24 h. The highest α-tocopherol concentration was found in calli exposed to UV-C for 10 min from 30 cm distance and sampled after 24 h. As a conclusion, it was showed that UV-C radiation had remarkable promoting effects on the accumulation of secondary metabolites in the calli of

  6. Disinfection of water and wastewater by UV-A and UV-C irradiation: application of real-time PCR method.

    PubMed

    Chatzisymeon, Efthalia; Droumpali, Ariadni; Mantzavinos, Dionissios; Venieri, Danae

    2011-03-02

    The disinfection efficiency of synthetic and real wastewater by means of UV-A and UV-C irradiation in the presence or absence of TiO(2) was investigated. A reference strain of Escherichia coli suspended in sterile 0.8% (w/v) NaCl aqueous solution was used as a synthetic wastewater, while real wastewater samples were collected from the outlet of the secondary treatment of a municipal wastewater treatment plant. E. coli inactivation was monitored both by the conventional culture technique and by the real-time PCR method. Culture method showed that UV-C irradiation (11 W lamp) achieved total E. coli inactivation of 100% within 3 min of photolytic treatment. On the other hand, UV-A (9 W lamp)/TiO(2); [TiO(2)]=200 mg L(-1) (i.e. best operating conditions) required 60 min to achieve total disinfection of the synthetic wastewater. Real time PCR revealed compatible results, regarding the better efficiency of UV-C. However, it showed different times of bacterial inactivation, probably due to the phenomenon of "viable but not culturable bacteria". Disinfection durability tests in the dark and under natural sunlight irradiation showed that there is cell repair when UV-C irradiation is used for synthetic wastewater disinfection. Regarding real wastewater it was observed that only UV-C irradiation was capable of totally inactivating E. coli population in short time. Comparing results obtained from both methods, real time PCR proved to be more reliable and accurate, concerning the bacterial detection and enumeration in aquatic samples after the application of UV irradiation.

  7. Comparing TiO2 photocatalysis and UV-C radiation for inactivation and mutant formation of Salmonella typhimurium TA102.

    PubMed

    Fiorentino, Antonino; Rizzo, Luigi; Guilloteau, Hélène; Bellanger, Xavier; Merlin, Christophe

    2017-01-01

    Salmonellosis is one of the most common causes of foodborne bacterial human disease worldwide, and the emergence of multidrug-resistant (MDR) strains of Salmonella enterica serovar Typhimurium (S. typhimurium) was associated to the incidence of invasive salmonellosis. The objective of the present work was to investigate the effects of the TiO2 photocatalysis process in terms of both bacteria inactivation and the emergence of mutants, on S. typhimurium TA102 water suspensions. The TiO2 photocatalysis was compared with a conventional disinfection process such as UV-C radiation. In spite of the faster bacterial inactivation obtained in UV-C disinfection experiments (45, 15, and 10 min for total inactivation for initial cell density 10(9), 10(8), and 10(7) CFU mL(-1), respectively), photocatalytic disinfection (60, 30, and 15 min) was more energy efficient because of a lower energy requirement (2-20 mWs cm(-2)) compared to the UV-C disinfection process (5-30 mWs cm(-2)). During the photocatalytic experiments, the mutation frequency increased up to 1648-fold compared to background level for a 10(8) CFU mL(-1) initial bacterial density, and mutants were inactivated after 1-10-min treatment, depending on initial bacterial cell density. In UV-C disinfection experiments, the mutation frequency increased up to 2181-fold for a 10(8) CFU mL(-1) initial bacterial cell density, and UV-C doses in the range of 0.5-4.8 mWs cm(-2) were necessary to decrease mutation frequency. In conclusion, both disinfection processes were effective in the inactivation of S. typhimurium cells, and mutants released into the environment can be avoided if cells are effectively inactivated.

  8. UV-B and UV-C pre-treatments induce physiological changes and artemisinin biosynthesis in Artemisia annua L. - an antimalarial plant.

    PubMed

    Rai, Rashmi; Meena, Ram Prasad; Smita, Shachi Shuchi; Shukla, Aparna; Rai, Sanjay Kumar; Pandey-Rai, Shashi

    2011-12-02

    Present study was undertaken to investigate if short-term UV-B (4.2 kJ m(-2) day(-1)) and UV-C (5.7 kJ m(-2) day(-1)), pre-treatments can induce artemisinin biosynthesis in Artemisia annua. Twenty-one day old Artemisia seedlings were subjected to short-term (14 days) UV pre-treatment in an environmentally controlled growth chamber and then transplanted to the field under natural conditions. Treatment of A. annua with artificial UV-B and UV-C radiation not only altered the growth responses, biomass, pigment content and antioxidant enzyme activity but enhanced the secondary metabolites (artemisinin and flavonoid) content at all developmental stages as compared to non-irradiated plants. The extent of oxidative damage was measured in terms of the activities of enzymes such as catalase, superoxide dismutase and ascorbate peroxidase. Reinforcement in the antioxidative defense system seems to be a positive response of plants in ameliorating the negative effects of UV-B and UV-C radiations. While the carotenoid content was elevated, the chlorophyll content decreased under UV-B and UV-C pre-treatments. The reverse transcription PCR analysis of the genes associated in artemisinin/isoprenoid biosynthesis like 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), cytochrome P450 oxidoreductase (CPR) and amorpha-4,11-diene synthase (ADS) genes at different growth stages revealed UV induced significant over-expression of the above protein genes. UV-B and UV-C pre-treatments, led to an increase in the concentrations of artemisinin at full bloom stage by 10.5% and 15.7% than that of the control respectively. Thus, the result of our study suggests that short term UV-B pre-treatment of seedlings in greenhouse prior to transplantation into the field enhances artemisinin production with lesser yield related damages as compared to UV-C radiation in A. annua. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Increased ethanol production with UV-C mutagenized Kluyveromyces marxianus capable of anaerobic growth at elevated temperature on pentose and hexose sugars using fermentation strategies with corn pericarp hydrolysates

    USDA-ARS?s Scientific Manuscript database

    Several novel Kluyveromyces marxianus strains were obtained by irradiation with UV-C (UV-C 234nm) to achieve an 80% mortality rate. The surviving cells were subsequently grown anaerobically for 5 months at 46C and resulted in two mutagenized strains that were able to grow anaerobically at elevated ...

  10. Effect of postharvest UV-C treatment on the bacterial diversity of Ataulfo mangoes by PCR-DGGE, survival of E. coli and antimicrobial activity

    PubMed Central

    Fernández-Suárez, Rocío; Ramírez-Villatoro, Guadalupe; Díaz-Ruiz, Gloria; Eslava, Carlos; Calderón, Montserrat; Navarro-Ocaña, Arturo; Trejo-Márquez, Andrea; Wacher, Carmen

    2013-01-01

    Since Mexico is the second largest exporter of mangoes, its safety assurance is essential. Research in microbial ecology and knowledge of complex interactions among microbes must be better understood to achieve maximal control of pathogens. Therefore, we investigated the effect of UV-C treatments on bacterial diversity of the Ataulfo mangoes surface using PCR-DGGE analysis of variable region V3 of 16S rRNA genes, and the survival of E. coli, by plate counting. The UV-C irradiation reduced the microbial load on the surface of mangoes immediately after treatment and the structure of bacterial communities was modified during storage. We identified the key members of the bacterial communities on the surface of fruits, predominating Enterobacter genus. Genera as Lactococcus and Pantoea were only detected on the surface of non-treated (control) mangoes. This could indicate that these genera were affected by the UV-C treatment. On the other hand, the treatment did not have a significant effect on survival of E. coli. However, genera that have been recognized as antagonists against foodborne pathogens were identified in the bands patterns. Also, phenolic compounds were determined by HPLC and antimicrobial activity was assayed according to the agar diffusion method. The main phenolic compounds were chlorogenic, gallic, and caffeic acids. Mango peel methanol extracts (UV-C treated and control mangoes) showed antimicrobial activity against strains previously isolated from mango, detecting significant differences (P < 0.05) among treated and control mangoes after 4 and 12 days of storage. Ps. fluorescens and Ps. stutszeri were the most sensitive. PMID:23761788

  11. Survival and growth of Cronobacter sakazakii on fresh-cut fruit and the effect of UV-C illumination and electrolyzed water in the reduction of its population.

    PubMed

    Santo, David; Graça, Ana; Nunes, Carla; Quintas, Célia

    2016-08-16

    Cronobacter sakazakii, found in foods such as powdered infant formula and plant origin ready-to-eat food, is an opportunistic pathogen to infants, neonates and vulnerable adults. The objective of this study was to monitor the growth of C. sakazakii in fresh-cut 'Royal gala' apple, 'Rocha' pear, and 'Piel de sapo' melon, and the effect of UV-C illumination, acidic electrolyzed water (AEW) and neutral electrolyzed water (NEW) in the reduction of its population. Fresh-cut fruits were inoculated and incubated at different temperatures during 10days while monitoring C. sakazakii. The inhibitory activity of different doses of UV-C (0-10kJ.m(2)), electrolyzed water and sodium hypochlorite (SH) (100ppm chlorine) was evaluated on the fruits inoculated with C. sakazakii. The bacterium showed a significant growth in the fruits at 12 and 20°C, but did not grow at 4°C, despite having survived for 10days. At 8°C, adaptation phases of 0.6-3.9days were estimated in the fruits before exponential growth. The UV-C 7.5 and 10kJ/m(2) produced greater C. sakazakii population decreases (2-2.4logcfu/g) than AEW (1.3-1.8logcfu/g), NEW (1-1.2logcfu/g) and SH (0.8-1.4logcfu/g). The UV-C decontamination system and refrigeration at 4°C, may contribute to the product's safety and quality. The results help better understand the behavior of C. sakazakii on fresh-cut fruit alerting producers of the necessity to respect the high hygienic practices, adequate refrigerating temperature maintenance and caution with the tendency to prolong the validity of this kind of ready-to-eat food.

  12. Effect of germicidal UV-C light(254 nm) on eggs and adult of house dustmites, Dermatophagoides pteronyssinus and Dermatophagoides farinae (Astigmata: Pyroglyhidae)

    PubMed Central

    Lah, Ernieenor Faraliana Che; Musa, Raja Noor Azreen Raja; Ming, Ho Tze

    2012-01-01

    Objective To examined the immediate and 24 hours post- irradiation germicidal effects of UV-C lamp on eggs and adults of house dust mites Dermatophagoides pteronyssinus (D. pteronyssinus) and Dermatophagoides farinae (D. farinae). Methods This study investigated the immediate and 24 hours post irradiation mortalities of adult mites exposed to UV-C at different exposure times (5 mins, 10 mins, 15 mins, 20 mins, 30 mins and 60 mins) and distances (10 cm, 25 cm, 35 cm, 45 cm and 55 cm). Fresh eggs of the 2 dust mites were also irradiated at 10, 35 and 55 cm for 0.5, 1, 2, 3, and 5 minutes, and observed daily post- irradiation for up to 7 days. Results Highest immediate mortality of 100% occurred with direct irradiation at 10 cm distance from UV-C lamp and for 60 mins, for both species of mites. The post 24 hours mean mortality rates were (58.4±17.4)% for D. pteronyssinus and (27.7±9.7)% for D. farinae when irradiated for 1 hour at 55 cm distance under UV-C lamp. When mites were irradiated in the presence of culture media, the highest mortality rates were lower compared to the direct irradiation; at 10 cm distance and 60 mins exposure, the mean mortality was (74.0±6.8)% for D. pteronyssinus and (70.3±6.7)% for D. farinae. Egg hatchability for both species of mites was also notably reduced by greater than 50% following irradiation. Conclusions Ultraviolet C irradiation is lethal to an array of organisms by damaging their nucleic acids (DNA and RNA). This study demonstrates the increasing mite mortalities with increasing exposure times and decreasing distances. PMID:23569994

  13. Effect of postharvest UV-C treatment on the bacterial diversity of Ataulfo mangoes by PCR-DGGE, survival of E. coli and antimicrobial activity.

    PubMed

    Fernández-Suárez, Rocío; Ramírez-Villatoro, Guadalupe; Díaz-Ruiz, Gloria; Eslava, Carlos; Calderón, Montserrat; Navarro-Ocaña, Arturo; Trejo-Márquez, Andrea; Wacher, Carmen

    2013-01-01

    Since Mexico is the second largest exporter of mangoes, its safety assurance is essential. Research in microbial ecology and knowledge of complex interactions among microbes must be better understood to achieve maximal control of pathogens. Therefore, we investigated the effect of UV-C treatments on bacterial diversity of the Ataulfo mangoes surface using PCR-DGGE analysis of variable region V3 of 16S rRNA genes, and the survival of E. coli, by plate counting. The UV-C irradiation reduced the microbial load on the surface of mangoes immediately after treatment and the structure of bacterial communities was modified during storage. We identified the key members of the bacterial communities on the surface of fruits, predominating Enterobacter genus. Genera as Lactococcus and Pantoea were only detected on the surface of non-treated (control) mangoes. This could indicate that these genera were affected by the UV-C treatment. On the other hand, the treatment did not have a significant effect on survival of E. coli. However, genera that have been recognized as antagonists against foodborne pathogens were identified in the bands patterns. Also, phenolic compounds were determined by HPLC and antimicrobial activity was assayed according to the agar diffusion method. The main phenolic compounds were chlorogenic, gallic, and caffeic acids. Mango peel methanol extracts (UV-C treated and control mangoes) showed antimicrobial activity against strains previously isolated from mango, detecting significant differences (P < 0.05) among treated and control mangoes after 4 and 12 days of storage. Ps. fluorescens and Ps. stutszeri were the most sensitive.

  14. Microcystin-LR degradation by solar photo-Fenton, UV-A/photo-Fenton and UV-C/H2O2: a comparative study.

    PubMed

    de Freitas, Adriane M; Sirtori, Carla; Lenz, Cesar A; Peralta Zamora, Patricio G

    2013-04-01

    This work assessed the effectiveness of several methods on degradation of microcystin-LR (MC-LR) by different Advanced Oxidation Processes, like solar photo-Fenton, UV-A/photo-Fenton and UV-C/H2O2. UV-C/H2O2 and UV-A/photo-Fenton processes were carried out in a bench scale photochemical apparatus and the solar photo-Fenton treatment was performed in a CPC photoreactor. MC-LR degradation was monitored by LC-ESI-MS/MS and kinetic parameters were calculated for all systems evaluated. The results demonstrated that UV-C/H2O2 was the most efficient method, showing a reduction of over 90% of initial MC-LR after 5 min of reaction. Solar and photo-Fenton/UVA had a rate decrease of 88 and 76% after the same time, respectively. The kinetic study indicated that the solar photo-Fenton and artificial radiation (UV-A) processes were very similar in their efficiency. The use of sunlight instead of artificial UV radiation significantly reduced the cost of photocatalytic treatment systems; it is also an environmentally friendly method, since it utilizes renewable energy.

  15. Welding of silver nanowire networks via flash white light and UV-C irradiation for highly conductive and reliable transparent electrodes

    PubMed Central

    Chung, Wan-Ho; Kim, Sang-Ho; Kim, Hak-Sung

    2016-01-01

    In this work, silver nanowire inks with hydroxypropyl methylcellulose (HPMC) binders were coated on polyethylene terephthalate (PET) substrates and welded via flash white light and ultraviolet C (UV-C) irradiation to produce highly conductive transparent electrodes. The coated silver nanowire films were firmly welded and embedded into PET substrate successfully at room temperature and under ambient conditions using an in-house flash white light welding system and UV-C irradiation. The effects of light irradiation conditions (light energy, irradiation time, pulse duration, and pulse number) on the silver nanowire networks were studied and optimized. Bending fatigue tests were also conducted to characterize the reliability of the welded transparent conductive silver nanowire films. The surfaces of the welded silver nanowire films were analyzed via scanning electron microscopy (SEM), while the transmittance of the structures was measured using a spectrophotometer. From the results, a highly conductive and transparent silver nanowire film with excellent reliability could be achieved at room temperature under ambient conditions via the combined flash white light and UV-C irradiation welding process. PMID:27553755

  16. Postharvest stilbenes and flavonoids enrichment of table grape cv Redglobe (Vitis vinifera L.) as affected by interactive UV-C exposure and storage conditions.

    PubMed

    Crupi, Pasquale; Pichierri, Arianna; Basile, Teodora; Antonacci, Donato

    2013-11-15

    Flavonoids and stilbenes are secondary metabolites produced in plants that can play an important health-promoting role. The biosynthesis of these compounds generally increases as a response to biotic or abiotic stress; therefore, in order to achieve as high phenolic accumulation as possible, the interactive effects of storage conditions (temperature and time) and UV-C radiation on polyphenols content in postharvest Redglobe table grape variety were investigated. During a storage time longer than 48h, both cold storage (4°C) and UV-C exposure of almost 3min (2.4kJm(-2)) positively enhanced the content of cis- and trans-piceid (34 and 90μgg(-1) of skin, respectively) together with quercetin-3-O-galactoside and quercetin-3-O-glucoside (15 and 140μgg(-1) of skin, respectively) up to three fold respect to control grape samples. Conversely, catechin was not significantly affected by irradiation and storage treatments. With regard anthocyanins, the highest concentrations of cyanidin-3-O-glucoside and peonidin-3-Oglucoside were observed in Redglobe, stored at both room temperature and 4°C, after 5min (4.1kJm(-2)) of UV-C treatment and 24h of storage. Gathered findings showed that combined postharvest treatments can lead to possible "functional" grapes, within normal conditions of market commercialization, responding to the rising consumers demand to have foods that support and promote health.

  17. p53 mutant human glioma cells are sensitive to UV-C-induced apoptosis due to impaired cyclobutane pyrimidine dimer removal.

    PubMed

    Batista, Luis F Z; Roos, Wynand P; Kaina, Bernd; Menck, Carlos F M

    2009-02-01

    The p53 protein is a key regulator of cell responses to DNA damage, and it has been shown that it sensitizes glioma cells to the alkylating agent temozolomide by up-regulating the extrinsic apoptotic pathway, whereas it increases the resistance to chloroethylating agents, such as ACNU and BCNU, probably by enhancing the efficiency of DNA repair. However, because these agents induce a wide variety of distinct DNA lesions, the direct importance of DNA repair is hard to access. Here, it is shown that the induction of photoproducts by UV light (UV-C) significantly induces apoptosis in a p53-mutated glioma background. This is caused by a reduced level of photoproduct repair, resulting in the persistence of DNA lesions in p53-mutated glioma cells. UV-C-induced apoptosis in p53 mutant glioma cells is preceded by strong transcription and replication inhibition due to blockage by unrepaired photolesions. Moreover, the results indicate that UV-C-induced apoptosis of p53 mutant glioma cells is executed through the intrinsic apoptotic pathway, with Bcl-2 degradation and sustained Bax and Bak up-regulation. Collectively, the data indicate that unrepaired DNA lesions induce apoptosis in p53 mutant gliomas despite the resistance of these gliomas to temozolomide, suggesting that efficiency of treatment of p53 mutant gliomas might be higher with agents that induce the formation of DNA lesions whose global genomic repair is dependent on p53.

  18. Welding of silver nanowire networks via flash white light and UV-C irradiation for highly conductive and reliable transparent electrodes

    NASA Astrophysics Data System (ADS)

    Chung, Wan-Ho; Kim, Sang-Ho; Kim, Hak-Sung

    2016-08-01

    In this work, silver nanowire inks with hydroxypropyl methylcellulose (HPMC) binders were coated on polyethylene terephthalate (PET) substrates and welded via flash white light and ultraviolet C (UV-C) irradiation to produce highly conductive transparent electrodes. The coated silver nanowire films were firmly welded and embedded into PET substrate successfully at room temperature and under ambient conditions using an in-house flash white light welding system and UV-C irradiation. The effects of light irradiation conditions (light energy, irradiation time, pulse duration, and pulse number) on the silver nanowire networks were studied and optimized. Bending fatigue tests were also conducted to characterize the reliability of the welded transparent conductive silver nanowire films. The surfaces of the welded silver nanowire films were analyzed via scanning electron microscopy (SEM), while the transmittance of the structures was measured using a spectrophotometer. From the results, a highly conductive and transparent silver nanowire film with excellent reliability could be achieved at room temperature under ambient conditions via the combined flash white light and UV-C irradiation welding process.

  19. H2O2/UV-C treatment of textile preparation wastewater: kinetic investigation on alternative combinations of commercial textile preparation auxiliaries.

    PubMed

    Arslan-Alaton, Idil; Olmez-Hanci, Tugba; Shayin, Sarina

    2012-01-01

    Four different textile preparation effluents were simulated to examine the applicability of the hydrogen peroxide/ultraviolet-C (H2O2/UV-C) advanced oxidation process for the treatment of real textile preparation (desizing, scouring and bleaching) wastewater bearing the non-ionic surfactant nonyl phenol decaethoxylate (NP-10). In the absence of any textile preparation chemical, NP-10 degradation was complete in 15 min (rate coefficient: 0.22 min(-1)) accompanied by 78% chemical oxygen demand (COD) (rate coefficient: 0.026 min(-1)) and 57% total organic carbon (TOC) (rate coefficient: 0.014 min(-1)) removals achieved after 60 min photochemical treatment. H2O2 consumption rates were not significantly affected by the introduction of carbonate and chloride ions (average rate coefficient: 0.032 min(-1)) at pH values <11.5, above which H2O2 dissociation to its conjugate base HO2(-) became pronounced. The organic, phosphonate-based sequestering agents competed with NP-10 for UV-C light absorption and HO* radicals. H2O2/UV-C oxidation of the simulated textile preparation effluent containing 3.0 g L(-1) Cl(-), 1.5 g L(-1) NaOH and 1.0 g L(-1) diethylenetriamine pentamethylene phosphonic acid (DTPMP) resulted in the worst treatment performance due to its high pH and organic carbon content. For this textile preparation effluent, NP-10 abatement was complete in 100min (rate coefficient: 0.018 min(-1)), while COD and TOC removals dropped down to only 16% and 8%, respectively, achieved after 60 min treatment. The highest H2O2/UV-C oxidation efficiency resulting in 34% COD and 28% TOC removals was obtained for the simulated textile preparation effluent comprising of 3.0 g L(-1) Cl(-), 1.5 g L(-1) NaOH and 1.0 g L(-1) 1-hydroxy ethylidene-1,1-diphosphonic acid (HEDP). For this textile preparation effluent, NP-10 degradation was complete after 50 min (rate coefficient: 0.061 min(-1)) exposure to H2O2/UV-C treatment.

  20. A Model For Selecting An Environmentally Responsive Trait: Evaluating Micro-scale Fitness Through UV-C Resistance and Exposure in Escherichia coli.

    NASA Astrophysics Data System (ADS)

    Schenone, D. J.; Igama, S.; Marash-Whitman, D.; Sloan, C.; Okansinski, A.; Moffet, A.; Grace, J. M.; Gentry, D.

    2015-12-01

    Experimental evolution of microorganisms in controlled microenvironments serves as a powerful tool for understanding the relationship between micro-scale microbial interactions as well as local-to global-scale environmental factors. In response to iterative and targeted environmental pressures, mutagenesis drives the emergence of novel phenotypes. Current methods to induce expression of these phenotypes require repetitive and time intensive procedures and do not allow for the continuous monitoring of conditions such as optical density, pH and temperature. To address this shortcoming, an Automated Dynamic Directed Evolution Chamber is being developed. It will initially produce Escherichia coli cells with an elevated UV-C resistance phenotype that will ultimately be adapted for different organisms as well as studying environmental effects. A useful phenotype and environmental factor for examining this relationship is UV-C resistance and exposure. In order to build a baseline for the device's operational parameters, a UV-C assay was performed on six E. coli replicates with three exposure fluxes across seven iterations. The fluxes included a 0 second exposure (control), 6 seconds at 3.3 J/m2/s and 40 seconds at 0.5 J/m2/s. After each iteration the cells were regrown and tested for UV-C resistance. We sought to quantify the increase and variability of UV-C resistance among different fluxes, and observe changes in each replicate at each iteration in terms of variance. Under different fluxes, we observed that the 0s control showed no significant increase in resistance, while the 6s/40s fluxes showed increased resistance as the number of iterations increased. A one-million fold increase in survivability was observed after seven iterations. Through statistical analysis using Spearman's rank correlation, the 40s exposure showed signs of more consistently increased resistance, but seven iterations was insufficient to demonstrate statistical significance; to test this further

  1. Erythromycin oxidation and ERY-resistant Escherichia coli inactivation in urban wastewater by sulfate radical-based oxidation process under UV-C irradiation.

    PubMed

    Michael-Kordatou, I; Iacovou, M; Frontistis, Z; Hapeshi, E; Dionysiou, D D; Fatta-Kassinos, D

    2015-11-15

    This study evaluates the feasibility of UV-C-driven advanced oxidation process induced by sulfate radicals SO4(.)- in degrading erythromycin (ERY) in secondary treated wastewater. The results revealed that 10 mg L(-1) of sodium persulfate (SPS) can result in rapid and complete antibiotic degradation within 90 min of irradiation, while ERY decay exhibited a pseudo-first-order kinetics pattern under the different experimental conditions applied. ERY degradation rate was strongly affected by the chemical composition of the aqueous matrix and it decreased in the order of: ultrapure water (kapp = 0.55 min(-1)) > bottled water (kapp = 0.26 min(-1)) > humic acid solution (kapp = 0.05 min(-1)) > wastewater effluents (kapp = 0.03 min(-1)). Inherent pH conditions (i.e. pH 8) yielded an increased ERY degradation rate, compared to that observed at pH 3 and 5. The contribution of hydroxyl and sulfate radicals (HO. and SO4(.)-) on ERY degradation was found to be ca. 37% and 63%, respectively. Seven transformation products (TPs) were tentatively elucidated during ERY oxidation, with the 14-membered lactone ring of the ERY molecule being intact in all cases. The observed phytotoxicity against the tested plant species can potentially be attributed to the dissolved effluent organic matter (dEfOM) present in wastewater effluents and its associated-oxidation products and not to the TPs generated from the oxidation of ERY. This study evidences the potential use of the UV-C/SPS process in producing a final treated effluent with lower phytotoxicity (<10%) compared to the untreated wastewater. Finally, under the optimum experimental conditions, the UV-C/SPS process resulted in total inactivation of ERY-resistant Escherichia coli within 90 min.

  2. Effect of UV-C radiation and vapor released from a water hyacinth root absorbent containing bergamot oil to control mold on storage of brown rice.

    PubMed

    Songsamoe, Sumethee; Matan, Narumol; Matan, Nirundorn

    2016-03-01

    The aims of this study were to develop absorbent material from a water hyacinth root containing bergamot oil and to improve its antifungal activity by using ultraviolet C (UV-C) against the growth of A. flavus on the brown rice. Process optimization was studied by the immersion of a water hyacinth root into a water and bergamot oil (300, 500 and 700 μl ml(-1)). The root (absorbent material) was dried at 50, 70, and 90 °C for 10 min. Then, ultraviolet C (UV-C) was used for enhancing the antifungal activity of bergamot oil for 10, 15, and 20 min. The shelf-life of the brown rice with the absorbent after incubation at 25 ° C with 100 % RH for 12 weeks was also investigated. A microscope and a Fourier transform infrared spectroscopy (FTIR) were used to find out possible mode of action. Results indicated that the absorbent material produced from the water hyacinth root containing bergamot oil at 500 μl ml(-1) in the water solution, dried at 70 ° C and UV for 15 min showed the highest antifungal activity in a vapor phase against A. flavus on the brown rice. A microscopy investigation confirmed that the water hyacinth root could absorb bergamot oil from an outside water solution into root cells. Limonene in vapor phase was shown to be a stronger inhibitor than essential oil after UV-C radiation and should be the key factor in boosting bergamot oil antifungal activity. A vapor phase of bergamot oil could be released and inhibit natural mold on the surface of the brown rice for up to 12 weeks; without the absorbent, mold covered the brown rice in only 4 weeks.

  3. Use of UV-C radiation to disinfect non-critical patient care items: a laboratory assessment of the Nanoclave Cabinet

    PubMed Central

    2012-01-01

    Background The near-patient environment is often heavily contaminated, yet the decontamination of near-patient surfaces and equipment is often poor. The Nanoclave Cabinet produces large amounts of ultraviolet-C (UV-C) radiation (53 W/m2) and is designed to rapidly disinfect individual items of clinical equipment. Controlled laboratory studies were conducted to assess its ability to eradicate a range of potential pathogens including Clostridium difficile spores and Adenovirus from different types of surface. Methods Each test surface was inoculated with known levels of vegetative bacteria (106 cfu/cm2), C. difficile spores (102-106 cfu/cm2) or Adenovirus (109 viral genomes), placed in the Nanoclave Cabinet and exposed for up to 6 minutes to the UV-C light source. Survival of bacterial contaminants was determined via conventional cultivation techniques. Degradation of viral DNA was determined via PCR. Results were compared to the number of colonies or level of DNA recovered from non-exposed control surfaces. Experiments were repeated to incorporate organic soils and to compare the efficacy of the Nanoclave Cabinet to that of antimicrobial wipes. Results After exposing 8 common non-critical patient care items to two 30-second UV-C irradiation cycles, bacterial numbers on 40 of 51 target sites were consistently reduced to below detectable levels (≥ 4.7 log10 reduction). Bacterial load was reduced but still persisted on other sites. Objects that proved difficult to disinfect using the Nanoclave Cabinet (e.g. blood pressure cuff) were also difficult to disinfect using antimicrobial wipes. The efficacy of the Nanoclave Cabinet was not affected by the presence of organic soils. Clostridium difficile spores were more resistant to UV-C irradiation than vegetative bacteria. However, two 60-second irradiation cycles were sufficient to reduce the number of surface-associated spores from 103 cfu/cm2 to below detectable levels. A 3 log10 reduction in detectable Adenovirus DNA

  4. Multivariate analysis of anionic, cationic and nonionic textile surfactant degradation with the H(2)O(2)/UV-C process by using the capabilities of response surface methodology.

    PubMed

    Olmez-Hanci, Tugba; Arslan-Alaton, Idil; Basar, Gulcan

    2011-01-15

    Anionic, cationic and nonionic surfactants being frequently employed in the textile preparation process were subjected to H(2)O(2)/UV-C treatment. As a consequence of the considerable number of parameters affecting the H(2)O(2)/UV-C process, an experimental design methodology was used to mathematically describe and optimize the single and combined influences of the critical process variables treatment time, initial H(2)O(2)concentration and chemical oxygen demand (COD) on parent pollutant (surfactant) as well as organic carbon (COD and total organic carbon (TOC)) removal efficiencies. Multivariate analysis was based on two different photochemical treatment targets; (i) full oxidation/complete treatment of the surfactants or, alternatively, (ii) partial oxidation/pretreatment of the surfactants to comply with the legislative discharge requirements. According to the established polynomial regression models, the process independent variables "treatment time" (exerting a positive effect) and "initial COD content" (exerting a negative effect) played more significant roles in surfactant photodegradation than the process variable "initial H(2)O(2) concentration" under the studied experimental conditions.

  5. Role of ozone in UV-C disinfection, demonstrated by comparison between wild-type and mutant conidia of Aspergillus niger.

    PubMed

    Liu, Jing; Zhou, Lin; Chen, Ji-Hong; Mao, Wang; Li, Wen-Jian; Hu, Wei; Wang, Shu-Yang; Wang, Chun-Ming

    2014-01-01

    This study aimed to investigate the tolerance of a melanized wild-type strain of Aspergillus niger (CON1) and its light-colored mutant (MUT1) to UV-C light and the concomitantly generated ozone. Treatments were segregated into four groups based on whether UV irradiation was used and the presence or absence of ozone: (-UV, -O3), (-UV, +O3), (+UV, -O3) and (+UV, +O3). The survival of CON1 and MUT1 conidia under +UV decreased as the exposure time increased, with CON1 showing greater resistance to UV irradiation than MUT1. Ozone induced CON1 conidium inactivation only under conditions of UV radiation exposure. While, the inactivation effect of ozone on MUT1 was always detectable regardless of the presence of UV irradiation. Furthermore, the CON1 conidial suspension showed lower UV light transmission than MUT1 when examined at the same concentration. Compared with the pigment in MUT1, the melanin in CON1 exhibited more potent radical-scavenging activity and stronger UV absorbance. These results suggested that melanin protected A. niger against UV disinfection via UV screening and free radical scavenging. The process by which UV-C disinfection induces a continual decrease in conidial survival suggests that UV irradiation and ozone exert a synergistic fungicidal effect on A. niger prior to reaching a plateau.

  6. Heritage materials and biofouling mitigation through UV-C irradiation in show caves: state-of-the-art practices and future challenges.

    PubMed

    Borderie, Fabien; Alaoui-Sossé, Badr; Aleya, Lotfi

    2015-03-01

    Biofouling, i.e., colonization of a given substrate by living organisms, has frequently been reported for heritage materials and particularly on stone surfaces such as building facades, historical monuments, and artworks. This also concerns subterranean environments such as show caves, in which the installation of artificial light for tourism has led to the proliferation of phototrophic microorganisms. In Europe nowadays, the use of chemicals in these very sensitive environments is scrutinized and regulated by the European Union. New and environmentally friendly processes must be developed as alternative methods for cave conservation. For several years, the UV irradiation currently used in medical facilities and for the treatment of drinking water has been studied as a new innovative method for the conservation of heritage materials. This paper first presents a review of the biofouling phenomena on stone materials such as building facades and historical monuments. The biological disturbances induced by tourist activity in show caves are then examined, with special attention given to the methods and means to combat them. Thirdly, a general overview is given of the effects of UV-C on living organisms, and especially on photosynthetic microorganisms, through different contexts and studies. Finally, the authors' own experiments and findings are presented concerning the study and use of UV-C irradiation to combat algal proliferation in show caves. Both laboratory and in situ results are summarized and synthesized from their previously published works. The application of UV in caves is discussed and further experiments are proposed to enhance research in this domain.

  7. Effect of UV-C Radiation, Ultra-Sonication Electromagnetic Field and Microwaves on Changes in Polyphenolic Compounds in Chokeberry (Aronia melanocarpa).

    PubMed

    Cebulak, Tomasz; Oszmiański, Jan; Kapusta, Ireneusz; Lachowicz, Sabina

    2017-07-12

    Chokeberry fruits are highly valued for their high content of polyphenolic compounds. The use of such abiotic stress factors as UV-C radiation, an electromagnetic field, microwave radiation, and ultrasound, at different operation times, caused differentiation in the contents of anthocyanins, phenolic acids, flavonols, and flavan-3-ols. Samples were analyzed for contents of polyphenolics with ultra-performance liquid chromatography and photodiode detector-quadrupole/time-of-flight mass spectrometry (UPLC-PDA-MS/MS). The analysis showed that after exposure to abiotic stress factors, the concentration of anthocyanins ranged from 3587 to 6316 mg/100 g dry matter (dm) that constituted, on average, 67.6% of all identified polyphenolic compounds. The second investigated group included phenolic acids with the contents ranging between 1480 and 2444 mg/100 g dm (26.5%); then flavonols within the range of 133 to 243 mg/100 g dm (3.7%), and finally flavan-3-ols fluctuated between 191 and 369 mg/100 g dm (2.2%). The use of abiotic stress factors such as UV-C radiation, microwaves and ultrasound field, in most cases contributed to an increase in the content of the particular polyphenolic compounds in black chokeberry. Under the influence of these factors, increases were observed: in anthocyanin content, of 22%; in phenolic acids, of 20%; in flavonols, of 43%; and in flavan-3-ols, of 30%. Only the use of the electromagnetic field caused a decrease in the content of the examined polyphenolic compounds.

  8. Comparison of autoclave, microwave, IR and UV-C stabilization of whole wheat flour branny fractions upon the nutritional properties of whole wheat bread.

    PubMed

    Demir, Mustafa Kürşat; Elgün, Adem

    2014-01-01

    In this study, whole wheat bread (WWB) prepared by whole wheat flour (WWF) which its branny fraction (35 ± 1% w/w whole flour) previously was stabilized with different processes. Branny fractions obtained by milling of two different Bezostaja-1 wheat samples (medium and high strong) at 65 ± 1% wheat flour extraction ratio. These fractions were stabilized using autoclave (AU), microwave (MW), infrared (IR) and ultraviolet-C (UV-C) methods. Then, WWF obtained by remixing of stabilized branny fraction (35 ± 1% w/w) and wheat flour (65 ± 1% w/w) of same wheat samples. Following this process, WWB was made from WWF. WWB were analyzed to determine their nutritional properties as crude protein, in vitro protein digestibility (IVPD), phytic acid content, total and HCl-extractable mineral concentrations, total phenolic content (TPC), antioxidant activity and total dietary fiber (TDF). While IVPD, TPC and antioxidant activity of WWB increased together with all stabilization methods, a significant (P < 0.05) loss was observed on phytic acid content of the WWB. Especially, UV-C and IR treatments had positive effects on TPC and antioxidant activity. AU and MW stabilization methods increased total mineral and HCl-extractable minerals of WWB. As a result of this study, all stabilization processes had an improving effect on nutritional characteristic of WWB.

  9. Efficacy of UV-C irradiation for inactivation of food-borne pathogens on sliced cheese packaged with different types and thicknesses of plastic films.

    PubMed

    Ha, Jae-Won; Back, Kyeong-Hwan; Kim, Yoon-Hee; Kang, Dong-Hyun

    2016-08-01

    In this study, the efficacy of using UV-C light to inactivate sliced cheese inoculated with Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes and, packaged with 0.07 mm films of polyethylene terephthalate (PET), polyvinylchloride (PVC), polypropylene (PP), and polyethylene (PE) was investigated. The results show that compared with PET and PVC, PP and PE films showed significantly reduced levels of the three pathogens compared to inoculated but non-treated controls. Therefore, PP and PE films of different thicknesses (0.07 mm, 0.10 mm, and 0.13 mm) were then evaluated for pathogen reduction of inoculated sliced cheese samples. Compared with 0.10 and 0.13 mm, 0.07 mm thick PP and PE films did not show statistically significant reductions compared to non-packaged treated samples. Moreover, there were no statistically significant differences between the efficacy of PP and PE films. These results suggest that adjusted PP or PE film packaging in conjunction with UV-C radiation can be applied to control foodborne pathogens in the dairy industry.

  10. Expression and In Situ Localization of Two Major PR Proteins of Grapevine Berries during Development and after UV-C Exposition

    PubMed Central

    Colas, Steven; Afoufa-Bastien, Damien; Jacquens, Lucile; Clément, Christophe; Baillieul, Fabienne

    2012-01-01

    In grapevine Vitis vinifera L. cv Pinot noir, the Pathogenesis-Related (PR) proteins CHI4D and TL3 are among the most abundant extractable PR proteins of ripe berries and accumulate during berry ripening from véraison until full maturation. Evidence was supplied in favor of the involvement of these two protein families in plant defense mechanisms and plant development. In order to better understand CHI4D and TL3 function in grapevine, we analyzed their temporal and spatial pattern of expression during maturation and after an abiotic stress (UV-C) by in situ hybridization (ISH) and immunohistolocalization. In ripening berries, CHI4D and TL3 genes were mainly expressed in the exocarp and around vascular bundles of the mesocarp. In UV-C exposed berries, CHI4D and TL3 gene expression was strongly induced before véraison. Corresponding proteins localized in the exocarp and, to a lesser extent, around vascular bundles of the mesocarp. The spatial and temporal accumulation of the two PR proteins during berry maturation and after an abiotic stress is discussed in relation to their putative roles in plant defense. PMID:22937077

  11. Distribution of resveratrol and stilbene synthase in young grape plants (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation.

    PubMed

    Wang, Wei; Tang, Ke; Yang, Hao-Ru; Wen, Peng-Fei; Zhang, Ping; Wang, Hui-Ling; Huang, Wei-Dong

    2010-01-01

    Current research indicated that the resveratrol was mainly accumulated in the skin of grape berry, however, little is yet known about the distribution of resveratrol, as well as the regulation mechanism at protein level and the localization of stilbene synthase (malonyl-CoA:4-coumaroyl-CoA malonyltransferase; EC 2.3.1.95; STS), a key enzyme of resveratrol biosynthesis, in young grape plants (Vitis vinifera L. cv. Cabernet Sauvignon). Resveratrol, whose constitutive level ranged from 0.2 mg kg(-1) FW to 16.5 mg kg(-1) FW, could be detected in stem, axillary bud, shoot tip, petiole, root and leaf of grape plants. Among them, stem phloems presented the most abundant of resveratrol, and the leaves presented the lowest. Interestingly, the level of STS mRNA and protein were highest in grape leaves. And the analysis of immunohistochemical showed the tissue-specific distribution of STS in different organs, presenting the similar results compared with the amount of protein. And the subcellular localization revealed that the cell wall in different tissues processed the most golden particles representing STS. Subjecting to UV-C irradiation, resveratrol and STS were both intensely stimulated in grape leaves, with the similar response pattern. Results above indicated that distribution of resveratrol and STS in grape was organ-specific and tissue-specific. And the accumulation of resveratrol induced by UV-C was regulated by transcriptional and translational level of STS. Copyright 2009 Elsevier Masson SAS. All rights reserved.

  12. Photoreactivation and dark repair of environmental E. coli strains following 24 kHz continuous ultrasound and UV-C irradiation.

    PubMed

    Kaur, Jasjeet; Karthikeyan, Raghupathy; Pillai, Suresh D

    2016-07-02

    In this study, effects of 24 kHz continuous ultrasound and UV-C on inactivation and potential repair of environmental E. coli strains were studied through a culture based method and a metabolic activity assay. Three environmental E. coli strains isolated from fecal samples of feral hog and deer and treated wastewater effluent were studied and compared with a laboratory E. coli strain (ATCC® 10798). Metabolic activity of E. coli cells during the inactivation and repair period was assessed using the AlamarBlue® assay. Transmission electron microscopy assays were also performed to evaluate morphological damage of bacterial cell wall. After 24 h of photoreactivation period, laboratory E. coli strain (ATCC® 10798) reactivated by 30% and 42% in contrast to E. coli isolate from treated wastewater effluent, which reactivated by 53% and 82% after ultrasound and UV-C treatment, respectively. Possible shearing and reduction in cell size of E. coli strains exposed to ultrasound was revealed by transmission electron micrographs. Metabolic activity of E. coli strains was greatly reduced due to morphological damage to cell membrane caused by 24 kHz continuous ultrasound. Based upon experimental data and TEM micrographs, it could be concluded that ultrasound irradiation has potential in advanced water treatment and water reuse applications.

  13. Chloroplast-targeted bacterial RecA proteins confer tolerance to chloroplast DNA damage by methyl viologen or UV-C radiation in tobacco (Nicotiana tabacum) plants.

    PubMed

    Jeon, Hyesung; Jin, Yong-Mei; Choi, Mi Hwa; Lee, Hyeyun; Kim, Minkyun

    2013-02-01

    The nature and importance of the DNA repair system in the chloroplasts of higher plants under oxidative stress or UV radiation-induced genotoxicity was investigated via gain-of-functional approaches exploiting bacterial RecAs. For this purpose, transgenic tobacco (Nicotiana tabacum) plants and cell suspensions overexpressing Escherichia coli or Pseudomonas aeruginosa RecA fused to a chloroplast-targeting transit peptide were first produced. The transgenic tobacco plants maintained higher amounts of chloroplast DNA compared with wild-type (WT) upon treatments with methyl viologen (MV), a herbicide that generates reactive oxygen species (ROS) in chloroplasts. Consistent with these results, the transgenic tobacco leaves showed less bleaching than WT following MV exposure. Similarly, the MV-treated transgenic Arabidopsis plants overexpressing the chloroplast RecA homologue RECA1 showed weak bleaching, while the recA1 mutant showed opposite results upon MV treatment. In addition, when exposed to UV-C radiation, the dark-grown E. coli RecA-overexpressing transgenic tobacco cell suspensions, but not their WT counterparts, resumed growth and greening after the recovery period under light conditions. Measurements of UV radiation-induced chloroplast DNA damage using DraI assays (Harlow et al. 1994) with the chloroplast rbcL DNA probe and quantitative PCR analyses showed that the transgenic cell suspensions better repaired their UV-C radiation-induced chloroplast DNA lesions compared with WT. Taken all together, it was concluded that RecA-overexpressing transgenic plants are endowed with an increased chloroplast DNA maintenance capacity and enhanced repair activities, and consequently have a higher survival tolerance to genotoxic stresses. These observations are made possible by the functional compatibility of the bacterial RecAs in chloroplasts. Copyright © Physiologia Plantarum 2012.

  14. Cytotoxicity of ZnO NPs towards fresh water algae Scenedesmus obliquus at low exposure concentrations in UV-C, visible and dark conditions.

    PubMed

    Bhuvaneshwari, M; Iswarya, V; Archanaa, S; Madhu, G M; Kumar, G K Suraish; Nagarajan, R; Chandrasekaran, N; Mukherjee, Amitava

    2015-05-01

    Continuous increase in the usage of ZnO nanoparticles in commercial products has exacerbated the risk of release of these particles into the aquatic environment with possible harmful effects on the biota. In the current study, cytotoxic effects of two types of ZnO nanoparticles, having different initial effective diameters in filtered and sterilized lake water medium [487.5±2.55 nm for ZnO-1 NPs and 616.2±38.5 nm for ZnO-2 NPs] were evaluated towards a dominant freshwater algal isolate Scenedesmus obliquus in UV-C, visible and dark conditions at three exposure concentrations: 0.25, 0.5 and 1 mg/L. The toxic effects were found to be strongly dependent on the initial hydrodynamic particle size in the medium, the exposure concentrations and the irradiation conditions. The loss in viability, LDH release and ROS generation were significantly enhanced in the case of the smaller sized ZnO-1 NPs than in the case of ZnO-2 NPs under comparable test conditions. The toxicity of both types of ZnO NPs was considerably elevated under UV-C irradiation in comparison to that in dark and visible light conditions, the effects being more enhanced in case of ZnO-1 NPs. The size dependent dissolution of the ZnO NPs in the test medium and possible toxicity due to the released Zn(2+) ions was also noted. The surface adsorption of the nanoparticles was substantiated by scanning electron microscopy. The internalization/uptake of the NPs by the algal cells was confirmed by fluorescence microscopy, transmission electron microscopy, and elemental analyses.

  15. Irradiation with UV-C inhibits TNF-α-dependent activation of the NF-κB pathway in a mechanism potentially mediated by reactive oxygen species.

    PubMed

    Szoltysek, Katarzyna; Walaszczyk, Anna; Janus, Patryk; Kimmel, Marek; Widlak, Piotr

    2017-01-01

    Pathways depending on the NF-κB transcription factor are essential components of cellular response to stress. Plethora of stimuli modulating NF-κB includes inflammatory signals, ultraviolet radiation (UV) and reactive oxygen species (ROS), yet interference between different factors affecting NF-κB remains relatively understudied. Here, we aim to characterize the influence of UV radiation on TNF-α-induced activity of the NF-κB pathway. We document inhibition of TNF-α-induced activation of NF-κB and subsequent suppression of NF-κB-regulated genes in cells exposed to UV-C several hours before TNF-α stimulation. Accumulation of ROS and subsequent activation of NRF2, p53, AP-1 and NF-κB-dependent pathways, with downstream activation of antioxidant mechanisms (e.g., SOD2 and HMOX1 expression), is observed in the UV-treated cells. Moreover, NF-κB inhibition is not observed if generation of UV-induced ROS is suppressed by chemical antioxidants. It is noteworthy that stimulation with TNF-α also generates a wave of ROS, which is suppressed in cells pre-treated by UV. We postulate that irradiation with UV-C activates antioxidant mechanisms, which in turn affect ROS-mediated activation of NF-κB by TNF-α. Considering a potential cross talk between p53 and NF-κB, we additionally compare observed effects in p53-proficient and p53-deficient cells and find the UV-mediated suppression of TNF-α-activated NF-κB in both types of cells.

  16. Resistance of the genome of Escherichia coli and Listeria monocytogenes to irradiation evaluated by the induction of cyclobutane pyrimidine dimers and 6-4 photoproducts using gamma and UV-C radiations

    NASA Astrophysics Data System (ADS)

    Beauchamp, S.; Lacroix, M.

    2012-08-01

    The effect of gamma and UV-C irradiation on the production of cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4 PPs) in DNA was investigated to compare the natural resistance of the genome of a Gram-positive bacterium and a Gram-negative bacterium against irradiation. Solution of pure DNA and bacterial strains Listeria monocytogenes and Escherichia coli were irradiated using gamma and UV-C rays. Extracted DNA from bacteria and pure DNA samples were then analysed by ELISA using anti-CPDs and anti-6-4 PPs monoclonal antibodies. The results show that gamma rays, as well as UV-C rays, induce the formation of CPDs and 6-4 PPs in DNA. During UV-C irradiation, the three samples showed a difference in their sensitivity against formation of CPDs (P≤0.05). Pure DNA was the most sensitive while the genome of L. monocytogenes was the most resistant. Also during UV-C irradiation, the genome of L. monocytogenes was the only one to show a significant resistance against formation of 6-4 PPs (P≤0.05). During gamma irradiation, for both types of lesion, pure DNA and the genome of E. coli did not show significant difference in their sensitivity (P>0.05) while the genome of L. monocytogenes showed a resistance against formation of CPDs and 6-4 PPs.

  17. UV-C-Induced alleviation of transcriptional gene silencing through plant-plant communication: Key roles of jasmonic acid and salicylic acid pathways.

    PubMed

    Xu, Wei; Wang, Ting; Xu, Shaoxin; Li, Fanghua; Deng, Chenguang; Wu, Lijun; Wu, Yuejin; Bian, Po

    2016-08-01

    Plant stress responses at the epigenetic level are expected to allow more permanent changes of gene expression and potentially long-term adaptation. While it has been reported that plants subjected to adverse environments initiate various stress responses in their neighboring plants, little is known regarding epigenetic responses to external stresses mediated by plant-plant communication. In this study, we show that DNA repetitive elements of Arabidopsis thaliana, whose expression is inhibited epigenetically by transcriptional gene silencing (TGS) mechanism, are activated by UV-C irradiation through airborne plant-plant and plant-plant-plant communications, accompanied by DNA demethylation at CHH sites. Moreover, the TGS is alleviated by direct treatments with exogenous methyl jasmonate (MeJA) and methyl salicylate (MeSA). Further, the plant-plant and plant-plant-plant communications are blocked by mutations in the biosynthesis or signaling of jasmonic acid (JA) or salicylic acid (SA), indicating that JA and SA pathways are involved in the interplant communication for epigenetic responses. For the plant-plant-plant communication, stress cues are relayed to the last set of receiver plants by promoting the production of JA and SA signals in relaying plants, which exhibit upregulated expression of genes for JA and SA biosynthesis and enhanced emanation of MeJA and MeSA. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Pulsed UV-C disinfection of Escherichia coli with light-emitting diodes, emitted at various repetition rates and duty cycles.

    PubMed

    Wengraitis, Stephen; McCubbin, Patrick; Wade, Mary Margaret; Biggs, Tracey D; Hall, Shane; Williams, Leslie I; Zulich, Alan W

    2013-01-01

    A 2010 study exposed Staphylococcus aureus to ultraviolet (UV) radiation and thermal heating from pulsed xenon flash lamps. The results suggested that disinfection could be caused not only by photochemical changes from UV radiation, but also by photophysical stress damage caused by the disturbance from incoming pulses. The study called for more research in this area. The recent advances in light-emitting diode (LED) technology include the development of LEDs that emit in narrow bands in the ultraviolet-C (UV-C) range (100-280 nm), which is highly effective for UV disinfection of organisms. Further, LEDs would use less power, and allow more flexibility than other sources of UV energy in that the user may select various pulse repetition frequencies (PRFs), pulse irradiances, pulse widths, duty cycles and types of waveform output (e.g. square waves, sine waves, triangular waves, etc.). Our study exposed Escherichia coli samples to square pulses of 272 nm radiation at various PRFs and duty cycles. A statistically significant correlation was found between E. coli's disinfection sensitivity and these parameters. Although our sample size was small, these results show promise and are worthy of further investigation. Comparisons are also made with pulsed disinfection by LEDs emitting at 365 nm, and pulsed disinfection by xenon flash lamps.

  19. Evaluation of UV-C induced changes in Escherichia coli DNA using repetitive extragenic palindromic-polymerase chain reaction (REP-PCR).

    PubMed

    Trombert, Alejandro; Irazoqui, Horacio; Martín, Carlos; Zalazar, Fabián

    2007-11-12

    Ultraviolet radiation is an efficient inactivation method for a broad range of bacteria, viruses and parasites. Inactivation of microorganisms by UV-B and UV-C radiation is driven through modifications in their genomic DNA, being the most stable DNA-lesions different kinds of pyrimidine dimers (PDs) (e.g., cyclobutane pyrimidine dimers (CPDs) and other photoproducts). Taking into account that these modifications inhibit the DNA polymerization in vivo as well as in vitro, in the present work the usefulness of the REP-PCR assay to detect UV-induced changes in the Escherichia coli DNA was evaluated. In vitro amplification of DNA extracted at different times after UV treatment showed a disappearance of amplicons of higher size as time of treatment increases. When the bacteria were let to progress through their dark repair process, modifications in the electrophoretic patterns by REP-PCR were observed again. Amplified bacterial DNA tended to recover the profile showed at the beginning of treatment. In addition, the reappearance of bands of higher molecular size was associated to an increase in their signal intensity probably due to a higher amplification rate. Results of REP-PCR were correlated to the colony-forming ability of E. coli. It was concluded that REP-PCR appears as a rapid, robust, useful complementary methodology to monitor the impact of UV irradiation--at a molecular level--on the inactivation and the mechanisms of repair, applicable on a broad spectrum of microorganisms.

  20. Effects of UV-C treatment on inactivation of Salmonella and Escherichia coli O157:H7 on tomato surface and steam scars, native microbial loads, and quality of grape tomatoes

    USDA-ARS?s Scientific Manuscript database

    This study investigated the effectiveness of ultraviolet-C (UV-C) light inactivation as affected by the location of pathogens on the smooth surface and at stem scars of Grape tomatoes. A bacterial cocktail containing three strains of E. coli O157:H7 (C9490, E02128 and F00475) and a three serotypes o...

  1. UV-C tolerance of symbiotic Trebouxia sp. in the space-tested lichen species Rhizocarpon geographicum and Circinaria gyrosa: role of the hydration state and cortex/screening substances

    NASA Astrophysics Data System (ADS)

    Sánchez, Francisco Javier; Meeßen, Joachim; del Carmen Ruiz, M.; Sancho, Leopoldo G.; Ott, Sieglinde; Vílchez, Carlos; Horneck, Gerda; Sadowsky, Andres; de la Torre, Rosa

    2014-01-01

    Many experiments were carried out in order to evaluate the survival capacity of extremotolerant lichens when facing harsh conditions, including those of outer space or of simulated Martian environment. For further progress, a deeper study on the physiological mechanisms is needed that confer the unexpected levels of resistance detected on these symbiotic organisms. In this work, the response of the lichenized green algae Trebouxia sp. (a predominant lichen photobiont) to increasing doses of UV-C radiation is studied. UV-C (one of the most lethal factors to be found in space together with vacuum and cosmic-ionizing radiation with high atomic number and energy (HZE) particles) has been applied in the present experiments up to a maximum dose analogue to 67 days in Low Earth Orbit (LEO). For that purpose we selected two extremotolerant and space-tested lichen species in which Trebouxia sp. is the photosynthetic partner: the crustose lichen Rhizocarpon geographicum and the fruticose lichen Circinaria gyrosa. In order to evaluate the effect of the physiological state of the lichen thallus (active when wet and dormant when dry) and of protective structures (cortex and photoprotective pigments) on the resistance of the photobiont to UV-C, four different experimental conditions were tested: (1) dry intact samples, (2) wet intact samples, (3) dry samples without cortex/acetone-rinsed and (4) wet samples without cortex/acetone-rinsed. After irradiation and a 72 hours period of recovery, the influence of UV-C on the two lichen's photobiont under each experimental approach was assessed by two complimentary methods: (1) By determining the photosystem II (PSII) activity in three successive 24 hours intervals (Mini-PAM fluorometer) to investigate the overall state of the photosynthetic process and the resilience of Trebouxia sp. (2) By performing high performance liquid chromatography (HPLC)-quantification of four essential photosynthetic pigments (chlorophyll a, chlorophyll b,

  2. Role of the Spore Coat Layers in Bacillus subtilis Spore Resistance to Hydrogen Peroxide, Artificial UV-C, UV-B, and Solar UV Radiation

    PubMed Central

    Riesenman, Paul J.; Nicholson, Wayne L.

    2000-01-01

    Spores of Bacillus subtilis possess a thick protein coat that consists of an electron-dense outer coat layer and a lamellalike inner coat layer. The spore coat has been shown to confer resistance to lysozyme and other sporicidal substances. In this study, spore coat-defective mutants of B. subtilis (containing the gerE36 and/or cotE::cat mutation) were used to study the relative contributions of spore coat layers to spore resistance to hydrogen peroxide (H2O2) and various artificial and solar UV treatments. Spores of strains carrying mutations in gerE and/or cotE were very sensitive to lysozyme and to 5% H2O2, as were chemically decoated spores of the wild-type parental strain. Spores of all coat-defective strains were as resistant to 254-nm UV-C radiation as wild-type spores were. Spores possessing the gerE36 mutation were significantly more sensitive to artificial UV-B and solar UV radiation than wild-type spores were. In contrast, spores of strains possessing the cotE::cat mutation were significantly more resistant to all of the UV treatments used than wild-type spores were. Spores of strains carrying both the gerE36 and cotE::cat mutations behaved like gerE36 mutant spores. Our results indicate that the spore coat, particularly the inner coat layer, plays a role in spore resistance to environmentally relevant UV wavelengths. PMID:10653726

  3. Comparative photobiology of growth responses to two UV-B wavebands and UV-C in dim-red-light- and white-light-grown cucumber (Cucumis sativus) seedlings: physiological evidence for photoreactivation.

    PubMed

    Shinkle, James R; Derickson, Darcy L; Barnes, Paul W

    2005-01-01

    We examined the influence of short-term exposures of different UV wavebands on the elongation and phototropic curvature of hypocotyls of cucumbers (Cucumis sativus L.) grown in white light (WL) and dim red light (DRL). We evaluated (1) whether different wavebands within the ultraviolet B (UV-B) region elicit different responses; (2) the hypocotyl elongation response elicited by ultraviolet C (UV-C); (3) whether irradiation with blue light-enriched white light (B/WL) given simultaneous with UV-B treatments reversed the effect of UV in a manner indicative of photoreactivation; and (4) whether responses in WL-grown plants were similar to those grown in DRL. Responses to brief (1-100 min) irradiations with three different UV wavebands all induced inhibition of elongation measured after 24 h. When WL-grown seedlings were irradiated with light containing proportionally greater short wavelength UV-B (37% of UV-B between 280 and 300 nm), inhibition of hypocotyl elongation was induced at a threshold of 0.5 kJ m(-2), whereas exposure to UV-B including only wavelengths longer than 290 nm (and only 8% of UV-B between 290 and 300 nm) induced inhibition of hypocotyl elongation at a threshold of 1.6 kJ m(-2). The UV-C treatment induced reduction in elongation at a threshold of <0.01 kJ m(-2) for DRL-grown plants and <0.03 kJ m(-2) for WL-grown plants. B/WL caused 50% reversal of the short-wavelength UV-B-induced inhibition of elongation in DRL-grown seedlings but did not reverse the effect of long-wavelength UV-B. B/WL caused 30% reversal of the UV-C-induced inhibition of elongation in WL-grown seedlings but did not affect the response to short-wavelength UV-B. Short-wavelength UV-B also induced positive phototropic curvature in both types of seedlings, and this was reversed 60% or completely in DRL-grown and WL-grown seedlings, respectively. The similarity of responses between the etiolated (DRL-grown) and de-etiolated (WL-grown) seedlings indicates that the short

  4. Intelligent, Energy Saving Power Supply and Control System of Hoisting Mine Machine with Compact and Hybrid Drive System / Inteligentne, Energooszczędne Układy Zasilania I Sterowania Górniczych Maszyn Wyciągowych Z Napędem Zintegrowanym Lub Hybrydowym

    NASA Astrophysics Data System (ADS)

    Szymański, Zygmunt

    2015-03-01

    lub tyrystorowego) zasilacza przekształtnikowego, oraz inteligentnego obwodu sterowania zbudowanego na wielopoziomowych sterownikach mikroprocesorowych. Przedstawiono analizę możliwości zastosowania wybranych metod sztucznej inteligencji w układach sterowania, automatyki oraz diagnostyki maszyn wyciągowych. W referacie ograniczono się do analizy metod sterowania rozmytego, metod algorytmów genetycznych oraz nowoczesnych sieci neuronowych II oraz III generacji. Metody te zapewniają realizację złożonych algorytmów sterowania maszyną wyciągową z zapewnieniem energooszczędnych warunków eksploatacyjnych, monitoringu parametrów eksploatacyjnych oraz predykcyjną diagnostykę stanu technicznego maszyny wyciągowej, minimalizującą liczbę stanów awaryjnych. Przedstawiono koncepcję układu sterowania i diagnostyki maszyny bazującej na metodzie: fuzzy-logic neuro set control system (sterowanie rozmyte w sieciach neuronowych). Przedstawiono wybrane algorytmy sterowania oraz wyniki analiz komputerowych wybranych modeli matematycznych maszyny wyciągowej. Wyniki rozważań teoretycznych zostały częściowo sprawdzone w warunkach laboratoryjnych oraz przemysłowych.

  5. Comparison of HepG2 feeder cells generated by exposure to gamma-rays, X-rays, UV-C light or mitomycin C for ability to activate 7,12-dimethylbenz[a]anthracene in a cell-mediated Chinese hamster V79/HGPRT mutation assay.

    PubMed

    Schrader, T J

    1999-01-25

    The cell-mediated Chinese hamster V79/HGPRT mutagenicity assay is an established in vitro testing method. Although gamma-irradiated human HepG2 hepatoma cells have been used recently for chemical activation, an alternative is now needed due to scheduled retirement of the available gamma-source. X-irradiation, 254 nm UV-C light and mitomycin C were examined as possible HepG2 mitotic inhibitors, and treated cells compared for activation of 7, 12-dimethylbenz[a]anthracene (DMBA). In colony-forming assays, V79 and HepG2 cells differed in sensitivity to DMBA, with V79 survival declining sharply between 1-2.5 microM (LD50=1.75 microM) while HepG2 survival decreased gradually, beginning at 0.01 microM DMBA (LD50=0.045 microM). When HepG2 feeder cells generated by each method were included in V79/HGPRT mutation assays, activation of 1 microM DMBA was found to vary according to the mitotic inhibitor used, with mutation frequencies decreasing in the order 4000 rads gamma-rays>25 microg/ml mitomycin C>4000 rads X-rays>25 J/m2 UV-C light. Only assays containing gamma-irradiated HepG2 cells generated an increase (2-3-fold) in mutation frequency when DMBA exposure was extended from 24 to 48 h. The effect of HepG2 preincubation with either Aroclor 1254 or DMBA on feeder cell activation of DMBA was also assessed using concentrations of Aroclor 1254 (10 microg/ml) or DMBA (1.0 microM) which were found to produce optimum induction of ethoxyresorufin-O-deethylase (EROD) activity (3.1-fold and 2-fold increases, respectively). Compared to results obtained with uninduced HepG2 cells, assays incorporating HepG2 cells activated by either Aroclor 1254 or DMBA produced slightly increased V79/HGPRT mutation frequencies after 24 h of exposure to mutagen; however, a 48 h incubation with mutagen in the presence of HepG2 preincubated with either Aroclor 1254 or DMBA resulted in higher mutation frequencies regardless of the mitotic inhibitor treatment. EROD activity was also induced 1.4-fold

  6. Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater.

    PubMed

    Mahdi-Ahmed, Moussa; Chiron, Serge

    2014-01-30

    This work aimed at demonstrating the advantages to use sulfate radical anion for eliminating ciprofloxacin residues from treated domestic wastewater by comparing three UV-254nm based advanced oxidation processes: UV/persulfate (PDS), UV/peroxymonosulfate (PMS) and UV/H2O2. In distilled water, the order of efficiency was UV/PDS>UV/PMS>UV/H2O2 while in wastewater, the most efficient process was UV/PMS followed by UV/PDS and UV/H2O2 mainly because PMS decomposition into sulfate radical anion was activated by bicarbonate ions. CIP was fully degraded in wastewater at pH 7 in 60min for a [PMS]/[CIP] molar ratio of 20. Nine transformation products were identified by liquid chromatography-high resolution-mass spectrometry allowing for the establishment of degradation pathways in the UV/PMS system. Sulfate radical anion attacks prompted transformations at the piperazinyl ring through a one electron oxidation mechanism as a major pathway while hydroxyl radical attacks were mainly responsible for quinolone moiety transformations as a minor pathway. Sulfate radical anion generation has made UV/PMS a kinetically effective process in removing ciprofloxacin from wastewater with the elimination of ciprofloxacin antibacterial activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Evaluating UV-C LED disinfection performance and ...

    EPA Pesticide Factsheets

    This study evaluated ultraviolet (UV) light emitting diodes (LEDs) emitting at 260 nm, 280 nm, and the combination of 260|280 nm together for their efficacy at inactivating Escherichia. coli, MS2 coliphage, human adenovirus type 2 (HAdV2), and Bacillus pumilus spores; research included an evaluation of genomic damage. Inactivation by the LEDs was compared with the efficacy of conventional UV sources, the low-pressure (LP) and medium-pressure (MP) mercury vapor lamps. The work also calculated the electrical energy per order of reduction of the microorganisms by the five UV sources.For E. coli, all five UV sources yielded similar inactivation rates. For MS2 coliphage, the 260 nm LED was most effective. For HAdV2 and B. pumilus, the MP UV lamp was significantly more effective than the LP UV and UVC LED sources. When considering electrical energy per order of reduction, the LP UV lamp was the most efficient for E. coli and MS2, and the MPUV and LPUV were equally efficient for HAdV2 and B. pumilus spores. Among the UVC LEDs, the 280 nm LED unit required the least energy per log reduction of E. coli and HAdV2. The 280 nm and 260|280 nm LED units were equally efficient per log reduction of B. pumilus spores, and the 260 nm LED unit required the lowest energy per order of reduction of MS2 coliphage. The combination of the 260 nm and 280 nm UV LED wavelengths was also evaluated for potential synergistic effects. No dual-wavelength synergy was detected for inactivation of

  8. Materials Data on LuB2Ru (SG:62) by Materials Project

    SciTech Connect

    Kristin Persson

    2016-02-10

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on LuB6 (SG:221) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. Decontamination Efficiency of a DBD Lamp Containing an UV-C Emitting Phosphor.

    PubMed

    Caillier, Bruno; Caiut, José Maurício Almeida; Muja, Cristina; Demoucron, Julien; Mauricot, Robert; Dexpert-Ghys, Jeanette; Guillot, Philippe

    2015-01-01

    Among different physical and chemical agents, the UV radiation appears to be an important route for inactivation of resistant microorganisms. The present study introduces a new mercury-free Dielectric Barrier Discharge (DBD) flat lamp, where the biocide action comes from the UV emission produced by rare-earth phosphor obtained by spray pyrolysis, following plasma excitation. In this study, the emission intensity of the prototype lamp is tuned by controlling gas pressure and electrical power, 500 mbar and 15 W, corresponding to optimal conditions. In order to characterize the prototype lamp, the energetic output, temperature increase following lamp ignition and ozone production of the source were measured. The bactericidal experiments carried out showed excellent results for several gram-positive and gram-negative bacterial strains, thus demonstrating the high decontamination efficiency of the DBD flat lamp. Finally, the study of the external morphology of the microorganisms after the exposure to the UV emission suggested that other mechanisms than the bacterial DNA damage could be involved in the inactivation process. © 2015 The American Society of Photobiology.

  11. Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy

    EPA Science Inventory

    This study evaluated ultraviolet (UV) light emitting diodes (LEDs) emitting at 260 nm, 280 nm, and the combination of 260|280 nm together for their efficacy at inactivating Escherichia. coli, MS2 coliphage, human adenovirus type 2 (HAdV2), and Bacillus pumilus spores; research in...

  12. Mechanism of the Synergistic Inactivation of Escherichia coli by UV-C Light at Mild Temperatures

    PubMed Central

    Gayán, E.; Mañas, P.; Álvarez, I.

    2013-01-01

    UV light only penetrates liquid food surfaces to a very short depth, thereby limiting its industrial application in food pasteurization. One promising alternative is the combination of UV light with mild heat (UV-H), which has been demonstrated to produce a synergistic bactericidal effect. The aim of this article is to elucidate the mechanism of synergistic cellular inactivation resulting from the simultaneous application of UV light and heat. The lethality of UV-H treatments remained constant below ∼45°C, while lethality increased exponentially as the temperature increased. The percentage of synergism reached a maximum (40.3%) at 55°C. Neither the flow regimen nor changes in the dose delivered by UV lamps contributed to the observed synergism. UV-H inactivation curves of the parental Escherichia coli strain obtained in a caffeic acid selective recovery medium followed a similar profile to those obtained with uvrA mutant cells in a nonselective medium. Thermal fluidification of membranes and synergistic lethal effects started around 40 to 45°C. Chemical membrane fluidification with benzyl alcohol decreased the UV resistance of the parental strain but not that of the uvrA mutant. These results suggest that the synergistic lethal effect of UV-H treatments is due to the inhibition of DNA excision repair resulting from the membrane fluidification caused by simultaneous heating. PMID:23686270

  13. Inactivation of avirulent pgm+ and delta pgm Yersinia pestis by ultraviolet light (UV-C)

    USDA-ARS?s Scientific Manuscript database

    Yersinia pestis is the causative agent of bubonic plague. Though not considered a foodborne pathogen, Y. pestis can survive, and even grow, in some foods, and the foodborne route of transmission is not without precedent. As such, concerns exist over the possible intentional contamination of foods wi...

  14. Inactivation of Salmonella enterica by UV-C Light Alone and in Combination with Mild Temperatures

    PubMed Central

    Gayán, E.; Serrano, M. J.; Raso, J.; Álvarez, I.

    2012-01-01

    The aim of this investigation was to study the efficacy of the combined processes of UV light and mild temperatures for the inactivation of Salmonella enterica subsp. enterica and to explore the mechanism of inactivation. The doses to inactivate the 99.99% (4D) of the initial population ranged from 18.03 (Salmonella enterica serovar Typhimurium STCC 878) to 12.75 J ml−1 (Salmonella enterica serovar Enteritidis ATCC 13076). The pH and water activity of the treatment medium did not change the UV tolerance, but it decreased exponentially by increasing the absorption coefficient. An inactivating synergistic effect was observed by applying simultaneous UV light and heat treatment (UV-H). A less synergistic effect was observed by applying UV light first and heat subsequently. UV did not damage cell envelopes, but the number of injured cells was higher after a UV-H treatment than after heating. The synergistic effect observed by combining simultaneous UV and heat treatment opens the possibility to design combined treatments for pasteurization of liquid food with high UV absorptivity, such as fruit juices. PMID:23001665

  15. Environmental and biological factors influencing the UV-C resistance of Listeria monocytogenes.

    PubMed

    Gayán, E; Serrano, M J; Pagán, R; Álvarez, I; Condón, S

    2015-04-01

    In this investigation, the effect of microbiological factors (strain, growth phase, exposition to sublethal stresses, and photorepair ability), treatment medium characteristics (pH, water activity, and absorption coefficient), and processing parameters (dose and temperature) on the UV resistance of Listeria monocytogenes was studied. The dose to inactivate 99.99% of the initial population of the five strains tested ranged from 21.84 J/mL (STCC 5672) to 14.66 J/mL (STCC 4031). The UV inactivation of the most resistant strain did not change in different growth phases and after exposure to sublethal heat, acid, basic, and oxidative shocks. The pH and water activity of the treatment medium did not affect the UV resistance of L. monocytogenes, whereas the inactivation rate decreased exponentially with the absorption coefficient. The lethal effect of UV radiation increased synergistically with temperature between 50 and 60 °C (UV-H treatment). A UV-H treatment of 27.10 J/mL at 55 °C reached 2.99 and 3.69 Log10 inactivation cycles of L. monocytogenes in orange juice and vegetable broth, and more than 5 Log10 cycles in apple juice and chicken broth. This synergistic effect opens the possibility to design UV combined processes for the pasteurization of liquid foods with high absorptivity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Sterilization effect of 254 nm UV-C irradiation against cynaobacteria Microcystis aeruginosa

    USDA-ARS?s Scientific Manuscript database

    Harmful algal bloom (HAB) produced by several cyanobacterial species is a significant threat to many aquatic ecosystems around the world. Recently frequent occurrence of serious algal bloom in Lake Taihu, Lake Dianchi, and Lake Chaohu has become a serious concern in China. Although various methods a...

  17. Mechanism of the synergistic inactivation of Escherichia coli by UV-C light at mild temperatures.

    PubMed

    Gayán, E; Mañas, P; Álvarez, I; Condón, S

    2013-07-01

    UV light only penetrates liquid food surfaces to a very short depth, thereby limiting its industrial application in food pasteurization. One promising alternative is the combination of UV light with mild heat (UV-H), which has been demonstrated to produce a synergistic bactericidal effect. The aim of this article is to elucidate the mechanism of synergistic cellular inactivation resulting from the simultaneous application of UV light and heat. The lethality of UV-H treatments remained constant below ∼45°C, while lethality increased exponentially as the temperature increased. The percentage of synergism reached a maximum (40.3%) at 55°C. Neither the flow regimen nor changes in the dose delivered by UV lamps contributed to the observed synergism. UV-H inactivation curves of the parental Escherichia coli strain obtained in a caffeic acid selective recovery medium followed a similar profile to those obtained with uvrA mutant cells in a nonselective medium. Thermal fluidification of membranes and synergistic lethal effects started around 40 to 45°C. Chemical membrane fluidification with benzyl alcohol decreased the UV resistance of the parental strain but not that of the uvrA mutant. These results suggest that the synergistic lethal effect of UV-H treatments is due to the inhibition of DNA excision repair resulting from the membrane fluidification caused by simultaneous heating.

  18. Inactivation of Salmonella enterica by UV-C light alone and in combination with mild temperatures.

    PubMed

    Gayán, E; Serrano, M J; Raso, J; Alvarez, I; Condón, S

    2012-12-01

    The aim of this investigation was to study the efficacy of the combined processes of UV light and mild temperatures for the inactivation of Salmonella enterica subsp. enterica and to explore the mechanism of inactivation. The doses to inactivate the 99.99% (4D) of the initial population ranged from 18.03 (Salmonella enterica serovar Typhimurium STCC 878) to 12.75 J ml(-1) (Salmonella enterica serovar Enteritidis ATCC 13076). The pH and water activity of the treatment medium did not change the UV tolerance, but it decreased exponentially by increasing the absorption coefficient. An inactivating synergistic effect was observed by applying simultaneous UV light and heat treatment (UV-H). A less synergistic effect was observed by applying UV light first and heat subsequently. UV did not damage cell envelopes, but the number of injured cells was higher after a UV-H treatment than after heating. The synergistic effect observed by combining simultaneous UV and heat treatment opens the possibility to design combined treatments for pasteurization of liquid food with high UV absorptivity, such as fruit juices.

  19. Hg speciation by differential photochemical vapor generation at UV-B and UV-C wavelengths

    USDA-ARS?s Scientific Manuscript database

    Mercury speciation was accomplished by differential photochemical reduction at two UV wavelengths; the resulting Hg(O) vapor was quantified by atomic fluorescence spectrometry. After microwave digestion and centrifugation, analyte solutions were mixed with 20% (v/v) formic acid in a reactor coil, an...

  20. Photodegradation of micropollutants using V-UV/UV-C processes; Triclosan as a model compound.

    PubMed

    Yuval, Alfiya; Eran, Friedler; Janin, Westphal; Oliver, Olsson; Yael, Dubowski

    2017-12-01

    Non-potable reuse of treated wastewater is becoming widespread as means to address growing water scarcity. Removal of micropollutants (MPs) from such water often requires advanced oxidation processes using OH radicals. OH can be generated in-situ via water photolysis under vacuum-UV (λ<200nm) irradiation. The aim of this study was to investigate the potential of unmasking V-UV radiation from low pressure Hg lamps (emitting at 185 and 254nm), commonly used in decentralized treatment systems, for enhancing MPs removal efficiency. Triclosan, a biocide of limited biodegradability, served as a model compound for MPs that are not very biodegradable. Its degradation kinetics and identification of intermediate products were investigated under 254nm and under combined 254/185nm irradiation both in dry thin films and in aqueous solutions. In the latter, degradation was faster under combined 254/185nm radiation, although the 185nm radiation accounted for only 4% of the total UV light intensity. In contrast, triclosan photodegradation in dry film did not show significant differences between these irradiation wavelengths, suggesting that the enhanced degradation of dissolved triclosan under combined radiation is mainly due to oxidation by OH formed via water photolysis under V-UV. This conclusion was supported by slower TCS degradation in aqueous solution when methanol was added as OH scavenger. Under both irradiation types (254, 254/185nm) three transformation products (TPs) were identified: 2,8-dichlorodibenzo-p-dioxin, 5-chloro-2-(4- or 2-chlorophenoxy)phenol, and 2-hydroxy-8-chlorodibenzodioxin. In-silico QSAR toxicity assessment predicted potential toxicity and moderate-to-low biodegradability of these TPs. Removal of these TPs was faster under 254/185nm irradiation. Considering the low cost, simple operation (i.e. no chemicals addition) and small size of such low-pressure mercury lamps, this is a promising direction. Further investigation of the process in flow-through reactors and real wastewater/greywater effluent is needed for its future implementation in small on-site systems for post-treatment of persistent pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Fabrication and structural properties of AlN submicron periodic lateral polar structures and waveguides for UV-C applications

    SciTech Connect

    Alden, D.; Guo, W.; Kaess, F.; Bryan, I.; Reddy, P.; Hernandez-Balderrama, Luis H.; Franke, A.; Collazo, R.; Sitar, Z.; Kirste, R.; Mita, S.; Troha, T.; Zgonik, M.; Bagal, A.; Chang, C.-H.; Hoffmann, A.

    2016-06-27

    Periodically poled AlN thin films with submicron domain widths were fabricated for nonlinear applications in the UV-VIS region. A procedure utilizing metalorganic chemical vapor deposition growth of AlN in combination with laser interference lithography was developed for making a nanoscale lateral polarity structure (LPS) with domain size down to 600 nm. The Al-polar and N-polar domains were identified by wet etching the periodic LPS in a potassium hydroxide solution and subsequent scanning electron microscopy (SEM) characterization. Fully coalesced and well-defined vertical interfaces between the adjacent domains were established by cross-sectional SEM. AlN LPSs were mechanically polished and surface roughness with a root mean square value of ∼10 nm over a 90 μm × 90 μm area was achieved. 3.8 μm wide and 650 nm thick AlN LPS waveguides were fabricated. The achieved domain sizes, surface roughness, and waveguides are suitable for second harmonic generation in the UVC spectrum.

  2. Effects of integrated treatment of nonthermal UV-C light and different antimicrobial wash on Salmonella enterica on plum tomatoes

    USDA-ARS?s Scientific Manuscript database

    Produce contamination by foodborne pathogens remains a serious threat. This study investigated synergistic effects of ultraviolet-C and various active sanitizers’ washes against Salmonella enterica on plum tomatoes. A bacterial cocktail containing three serotypes of Salmonella enterica (S. Newport H...

  3. Effect of Exposure to UV-C Irradiation and Monochloramine on Adenovirus Serotype 2 Early Protein Expression and DNA Replication▿

    PubMed Central

    Sirikanchana, Kwanrawee; Shisler, Joanna L.; Mariñas, Benito J.

    2008-01-01

    The mechanisms of adenovirus serotype 2 inactivation with either UV light (with a narrow emission spectrum centered at 254 nm) or monochloramine were investigated by assessing the potential inhibition of two key steps of the adenovirus life cycle, namely, E1A protein synthesis and viral genomic replication. E1A early protein synthesis was assayed by using immunoblotting, while the replication of viral DNA was analyzed by using slot blotting. Disinfection experiments were performed in phosphate buffer solutions at pH 8 and room temperature (UV) or 20°C (monochloramine). Experimental results revealed that normalized E1A levels at 12 h postinfection (p.i.) were statistically the same as the corresponding decrease in survival ratio for both UV and monochloramine disinfection. Normalized DNA levels at 24 h p.i. were also found to be statistically the same as the corresponding decrease in survival ratio for monochloramine disinfection. In contrast, for UV disinfection, genomic DNA levels were much lower than E1A or survival ratios, possibly as a result of a delay in DNA replication for UV-treated virions compared to that for controls. Future efforts will determine the pre-E1A synthesis step in the adenovirus life cycle affected by exposure to UV and monochloramine, with the goal of identifying the viral molecular target of these two disinfectants. PMID:18424543

  4. Effect of exposure to UV-C irradiation and monochloramine on adenovirus serotype 2 early protein expression and DNA replication.

    PubMed

    Sirikanchana, Kwanrawee; Shisler, Joanna L; Mariñas, Benito J

    2008-06-01

    The mechanisms of adenovirus serotype 2 inactivation with either UV light (with a narrow emission spectrum centered at 254 nm) or monochloramine were investigated by assessing the potential inhibition of two key steps of the adenovirus life cycle, namely, E1A protein synthesis and viral genomic replication. E1A early protein synthesis was assayed by using immunoblotting, while the replication of viral DNA was analyzed by using slot blotting. Disinfection experiments were performed in phosphate buffer solutions at pH 8 and room temperature (UV) or 20 degrees C (monochloramine). Experimental results revealed that normalized E1A levels at 12 h postinfection (p.i.) were statistically the same as the corresponding decrease in survival ratio for both UV and monochloramine disinfection. Normalized DNA levels at 24 h p.i. were also found to be statistically the same as the corresponding decrease in survival ratio for monochloramine disinfection. In contrast, for UV disinfection, genomic DNA levels were much lower than E1A or survival ratios, possibly as a result of a delay in DNA replication for UV-treated virions compared to that for controls. Future efforts will determine the pre-E1A synthesis step in the adenovirus life cycle affected by exposure to UV and monochloramine, with the goal of identifying the viral molecular target of these two disinfectants.

  5. 157 nm Pellicles (Thin Films) for Photolithography: Mechanistic Investigation of the VUV and UV-C Photolysis of Fluorocarbons

    SciTech Connect

    Lee, Kwangjoo; Jockusch, Steffen; Turro, Nicholas J.; French, Roger H.; Wheland, Robert C.; Lemon, M F.; Braun, Andre M.; Widerschpan, Tatjana; Dixon, David A.; Li, Jun; Ivan, Marius; Zimmerman, Paul

    2005-06-15

    The use of 157 nm as the next lower wavelength for photolithography for the production of semiconductors has created a need for transparent and radiation-durable polymers for use in soft pellicles, the polymer films which protect the chip from particle deposition. The most promising materials for pellicles are fluorinated polymers, but currently available fluorinated polymers undergo photodegradation and/or photodarkening upon long term exposure to 157 nm irradiation. To understand the mechanism of the photodegradation and photodarkening of fluorinated polymers, mechanistic studies on the photolysis of liquid model fluorocarbons, including perfluorobutylethyl ether and perfluoro-2 H-3-oxa-heptane, were performed employing UV, NMR, FTIR, GC, and GC/MS analyses. All hydrogen-containing compounds showed decreased photostability compared to the fully perfluorinated compounds. Irradiation in the presence of atmospheric oxygen showed reduced photostability compared to deoxygenated samples. Photolysis of the samples was performed at 157, 172, 185, and 254 nm and showed only minor wavelength dependence. Mechanisms for photodegradation of the fluorocarbons are proposed, which involve Rydberg excited states. Time-dependent density functional theory has been used to predict the excitation spectra of model compounds.

  6. Fabrication and structural properties of AlN submicron periodic lateral polar structures and waveguides for UV-C applications

    NASA Astrophysics Data System (ADS)

    Alden, D.; Guo, W.; Kirste, R.; Kaess, F.; Bryan, I.; Troha, T.; Bagal, A.; Reddy, P.; Hernandez-Balderrama, Luis H.; Franke, A.; Mita, S.; Chang, C.-H.; Hoffmann, A.; Zgonik, M.; Collazo, R.; Sitar, Z.

    2016-06-01

    Periodically poled AlN thin films with submicron domain widths were fabricated for nonlinear applications in the UV-VIS region. A procedure utilizing metalorganic chemical vapor deposition growth of AlN in combination with laser interference lithography was developed for making a nanoscale lateral polarity structure (LPS) with domain size down to 600 nm. The Al-polar and N-polar domains were identified by wet etching the periodic LPS in a potassium hydroxide solution and subsequent scanning electron microscopy (SEM) characterization. Fully coalesced and well-defined vertical interfaces between the adjacent domains were established by cross-sectional SEM. AlN LPSs were mechanically polished and surface roughness with a root mean square value of ˜10 nm over a 90 μm × 90 μm area was achieved. 3.8 μm wide and 650 nm thick AlN LPS waveguides were fabricated. The achieved domain sizes, surface roughness, and waveguides are suitable for second harmonic generation in the UVC spectrum.

  7. UV-C irradiation of HSV-1 infected fibroblasts (HSV-FS) enhances human natural killer (NK) cell activity against these targets

    SciTech Connect

    Pettera, L.; Fitzgerald-Bocarsly, P. )

    1991-03-11

    Expression of Herpes Simplex Virus Type 1 (HSV-1) immediate early gene products has been bound to be sufficient for NK cell mediated lysis of HSV-1 infected FS. To block the targets at various stages in the infectious cycle, HSV-FS were irradiated with UV light for 1 min at 2, 6, and 20 hr post-infection. NK mediated lysis of 2 hr and 5 hr UV treated HSV-FS was 2-fold higher than non-UV treated HSV-FS despite a {gt}99% inhibition in virus yield. In contrast, 20 hr infected targets were lysed less well than 2 and 6 hr targets despite strong glycoprotein expression and induction of high levels of interferon-alpha (IFN-{alpha}) production by effector PBMC's; this lysis was not enhanced by UV treatment. Since NK lysis of HSV-FS has been found to be dependent on an HLA-DR{sup +} accessory cell (AC), lysis of irradiated HSV-FS by PBMC's depleted of AC was measured. Such depletion eradicated NK lysis of the UV treated HSV-FS indicating that irradiation does not overcome the AC requirement for NK lysis. UV irradiation of another HLA-DR{sup +} dependent target, Vesicular Stomatitis Virus (VSV) infected FS led to a dramatic reduction in both NK lysis and IFN-{alpha} induction. HSV-1 is a DNA virus whose genes are expressed in a cascade fashion whereas VSV is an RNA virus. The authors hypothesize that the enhancement in AC dependent NK activity observed for UV irradiated HSV-FS, but not VSV-FS, targets is due to overproduction of either a cellular or viral gene product which specifically occurs early in the HSV-1 infectious cycle and is downregulated by 20 hr post-infection.

  8. Effects of UV-C and Vacuum-UV TiO2 Advanced Oxidation Processes on the Acute Mortality of Microalgae.

    PubMed

    McGivney, Eric; Carlsson, Magnus; Gustafsson, Jon Petter; Gorokhova, Elena

    2015-01-01

    Advanced oxidation processes/technologies (AOT) that combine a semiconductor, such as titanium dioxide (TiO2 ), with a UV source have been used to eliminate microorganisms in various water treatment applications. To facilitate the applicability of this technique, the gain in efficiency from the semiconductor compared to the UV source alone with respect to different target organisms requires evaluation. The primary objective of this study was to determine the effects of TiO2 and UV wavelength on a freshwater alga, Pseudokirchneriella subcapitata and a marine alga, Tetraselmis suecica. For each species, dose-response experiments were conducted to determine the median lethal dose (LC50 ) of the following treatments: UV light emitted with a peak of 254 nm, UV light emitted with a peak of 254 nm in the presence of TiO2 and UV light emitted with a peak of 254 and 185 nm in the presence of TiO2 . In both species, the presence of TiO2 significantly increased mortality. Across all three treatments, P. subcapitata was more sensitive than T. suecica; moreover, the addition of the 185 nm wavelength significantly increased cell mortality in P. subcapitata but not in T. suecica.

  9. Nijmegen breakage syndrome (NBS)

    PubMed Central

    2012-01-01

    both alleles of the NBN gene are known. No specific therapy is available for NBS, however, hematopoietic stem cell transplantation may be one option for some patients. Prognosis is generally poor due to the extremely high rate of malignancies. Zespół Nijmegen (Nijmegen breakage syndrome; NBS) jest rzadkim schorzeniem z wrodzoną niestabilnością chromosomową dziedziczącym się w sposób autosomalny recesywny, charakteryzującym się przede wszystkim wrodzonym małogłowiem, złożonymi niedoborami odporności i predyspozycją do rozwoju nowotworów. Choroba występuje najczęściej w populacjach słowiańskich, w których uwarunkowana jest mutacją założycielską w genie NBN (c.657_661del5). Do najważniejszych objawów zespołu zalicza się: małogłowie obecne od urodzenia i postępujące z wiekiem, charakterystyczne cechy dysmorfii twarzy, opóźnienie wzrastania, niepełnosprawność intelektualną w stopniu lekkim do umiarkowanego oraz hipogonadyzm hipogonadotropowy u dziewcząt. Na obraz choroby składają się także: niedobór odporności komórkowej i humoralnej, który jest przyczyną nawracających infekcji, znaczna predyspozycja do rozwoju nowotworów złośliwych (zwłaszcza układu chłonnego), a także zwiększona wrażliwość na promieniowanie jonizujące. Wyniki badań laboratoryjnych wykazują: (1) spontaniczną łamliwość chromosomów w limfocytach T krwi obwodowej, z preferencją do rearanżacji chromosomów 7 i 14, (2) nadwrażliwość na promieniowanie jonizujące lub radiomimetyki, co można wykazać metodami in vitro, (3) radiooporność syntezy DNA, (4) hipomorficzne mutacje na obu allelach genu NBN, oraz (5) brak w komórkach pełnej cząsteczki białka, nibryny. Małogłowie i niedobór odporności występują także w zespole niedoboru ligazy IV (LIG4) oraz w zespole niedoboru NHEJ1. Rodzice powinni otrzymać poradę genetyczną ze względu na wysokie ryzyko (25%) powtórzenia się choroby u kolejnego potomstwa. Możliwe jest

  10. Enhanced inactivation of food-borne pathogens in ready-to-eat sliced ham by near-infrared heating combined with UV-C irradiation and mechanism of the synergistic bactericidal action.

    PubMed

    Ha, Jae-Won; Kang, Dong-Hyun

    2015-01-01

    The objective of the study described in this article was, first, to investigate the effect of the simultaneous application of near-infrared (NIR) heating and UV irradiation on inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in ready-to-eat (RTE) sliced ham and as well as its effect on product quality and, second, to elucidate the underlying mechanisms of the synergistic bactericidal action of NIR heating and UV irradiation. With the inoculation amounts used, simultaneous NIR-UV combined treatment for 70 s achieved 3.62, 4.17, and 3.43 log CFU reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. For all three pathogens, the simultaneous application of both technologies resulted in an additional log unit reduction as a result of their synergism compared to the sum of the reductions obtained after the individual treatments. To investigate the mechanisms of NIR-UV synergistic injury for a particular microorganism in a food base, we evaluated the effect of four types of metabolic inhibitors using the overlay method and confirmed that damage to cellular membranes and the inability of cells to repair these structures due to ribosomal damage were the primary factors related to the synergistic lethal effect. Additionally, NIR-UV combined treatment for a maximum of 70 s did not alter the color values or texture parameters of ham slices significantly (P > 0.05). These results suggest that a NIR-UV combined process could be an innovative antimicrobial intervention for RTE meat products.

  11. Lactate-utilizing community is associated with gut microbiota dysbiosis in colicky infants.

    PubMed

    Pham, Van T; Lacroix, Christophe; Braegger, Christian P; Chassard, Christophe

    2017-09-11

    The aetiology of colic, a functional gastrointestinal disorder in infants, is not yet resolved. Different mechanisms have been suggested involving the gut microbiota and intermediate metabolites such as lactate. Lactate can be metabolized by lactate-utilizing bacteria (LUB) to form different end-products. Using a functional approach, we hypothesized that H2 production and accumulation by LUB is associated with the development of colic. The LUB communities in the feces of forty infants, including eight colicky infants, were characterized using a combination of culture- and molecular-based methods, and metabolite concentrations were measured by HPLC. Interactions among LUB strains isolated from feces were investigated with pure and mixed cultures using anaerobic techniques. We emphasized high prevalence of crying, flatulence, colic and positive correlations thereof in the first 3 months of life. Crying infants showed significantly higher ratio of LUB non-sulfate-reducing bacteria (LUB non-SRB) (H2-producer), to LUB SRB (H2-utilizer) at 3 months. Colicky infants had significantly higher number of H2-producing Eubacterium hallii at 2 weeks compared to non-colicky infants. We revealed the function of Desulfovibrio piger and Eubacterium limosum to reduce H2 accumulation in co-cultures with H2-producing Veillonella ratti. Our data suggest that the balance between H2-producing and H2-utilizing LUB might contribute to colic symptoms.

  12. Synergistic Interactions of a Synthetic Lubricin-Mimetic with Fibronectin for Enhanced Wear Protection.

    PubMed

    Andresen Eguiluz, Roberto C; Cook, Sierra G; Tan, Mingchee; Brown, Cory N; Pacifici, Noah J; Samak, Mihir S; Bonassar, Lawrence J; Putnam, David; Gourdon, Delphine

    2017-01-01

    Lubricin (LUB), a major mucinous glycoprotein of mammalian synovial fluids, is believed to provide excellent lubrication to cartilage surfaces. Consequently, when joint disease or replacement leads to increased friction and surface damage in the joint, robust synthetic LUB alternatives that could be used therapeutically to improve lubrication and surface protection are needed. Here, we report the characterization of a lubricating multiblock bottlebrush polymer whose architecture was inspired by LUB, and we investigate the role of fibronectin (FN), a glycoprotein found in the superficial zone of cartilage, in mediating the tribological properties of the polymer upon shear between mica surfaces. Our surface forces apparatus (SFA) normal force measurements indicate that the lubricin-mimetic (mimLUB) could be kept anchored between mica surfaces, even under high contact pressures, when an intermediate layer of FN was present. Additional SFA friction measurements show that FN would also extend the wearless friction regime of the polymer up to pressures of 3.4 MPa while ensuring stable friction coefficients (μ ≈ 0.28). These results demonstrate synergistic interactions between mimLUB and FN in assisting the lubrication and wear protection of ideal (mica) substrates upon shear. Collectively, these findings suggest that our proposed mimLUB might be a promising alternative to LUB, as similar mechanisms could potentially facilitate the interaction between the polymer and cartilage surfaces in articular joints and prosthetic implants in vivo.

  13. Synergistic Interactions of a Synthetic Lubricin-Mimetic with Fibronectin for Enhanced Wear Protection

    PubMed Central

    Andresen Eguiluz, Roberto C.; Cook, Sierra G.; Tan, Mingchee; Brown, Cory N.; Pacifici, Noah J.; Samak, Mihir S.; Bonassar, Lawrence J.; Putnam, David; Gourdon, Delphine

    2017-01-01

    Lubricin (LUB), a major mucinous glycoprotein of mammalian synovial fluids, is believed to provide excellent lubrication to cartilage surfaces. Consequently, when joint disease or replacement leads to increased friction and surface damage in the joint, robust synthetic LUB alternatives that could be used therapeutically to improve lubrication and surface protection are needed. Here, we report the characterization of a lubricating multiblock bottlebrush polymer whose architecture was inspired by LUB, and we investigate the role of fibronectin (FN), a glycoprotein found in the superficial zone of cartilage, in mediating the tribological properties of the polymer upon shear between mica surfaces. Our surface forces apparatus (SFA) normal force measurements indicate that the lubricin-mimetic (mimLUB) could be kept anchored between mica surfaces, even under high contact pressures, when an intermediate layer of FN was present. Additional SFA friction measurements show that FN would also extend the wearless friction regime of the polymer up to pressures of 3.4 MPa while ensuring stable friction coefficients (μ ≈ 0.28). These results demonstrate synergistic interactions between mimLUB and FN in assisting the lubrication and wear protection of ideal (mica) substrates upon shear. Collectively, these findings suggest that our proposed mimLUB might be a promising alternative to LUB, as similar mechanisms could potentially facilitate the interaction between the polymer and cartilage surfaces in articular joints and prosthetic implants in vivo. PMID:28702455

  14. Structure and Property Changes in Self-Assembled Lubricin Layers Induced by Calcium Ion Interactions.

    PubMed

    Greene, George W; Thapa, Rajiv; Holt, Stephen A; Wang, Xiaoen; Garvey, Christopher J; Tabor, Rico F

    2017-03-14

    Lubricin (LUB) is a "mucin-like" glycoprotein found in synovial fluids and coating the cartilage surfaces of articular joints, which is now generally accepted as one of the body's primary boundary lubricants and antiadhesive agents. LUB's superior lubrication and antiadhesion are believed to derive from its unique interfacial properties by which LUB molecules adhere to surfaces (and biomolecules, such as hyaluronic acid and collagen) through discrete interactions localized to its two terminal end domains. These regionally specific interactions lead to self-assembly behavior and the formation of a well-ordered "telechelic" polymer brush structure on most substrates. Despite its importance to biological lubrication, detailed knowledge on the LUB's self-assembled brush structure is insufficient and derived mostly from indirect and circumstantial evidence. Neutron reflectometry (NR) was used to directly probe the self-assembled LUB layers, confirming the polymer brush architecture and resolving the degree of hydration and level of surface coverage. While attempting to improve the LUB contrast in the NR measurements, the LUB layers were exposed to a 20 mM solution of CaCl2, which resulted in a significant change in the polymer brush structural parameters consisting of a partial denaturation of the surface-binding end-domain regions, partial dehydration of the internal mucin-domain "loop", and collapse of the outer mucin-domain surface region. A series of atomic force microscopy measurements investigating the LUB layer surface morphology, mechanical properties, and adhesion forces in phosphate-buffered saline and CaCl2 solutions reveal that the structural changes induced by calcium ion interactions also significantly alter key properties, which may have implications to LUB's efficacy as a boundary lubricant and wear protector in the presence of elevated calcium ion concentrations.

  15. The Effects of Supplemental Intra-Articular Lubricin and Hyaluronic Acid on the Progression of Post-Traumatic Arthritis in the Anterior Cruciate Ligament Deficient Rat Knee

    PubMed Central

    Teeple, Erin; Elsaid, Khaled A.; Jay, Gregory D.; Zhang, Ling; Badger, Gary J.; Akelman, Matthew; Bliss, Thomas F.; Fleming, Braden C.

    2010-01-01

    Background Lubricin and hyaluronic acid lubricate articular cartilage and prevent wear. Because lubricin loss occurs following ACL injury, intra-articular lubricin injections may reduce cartilage damage in the ACL deficient knee. Purpose To determine if lubricin and/or hyaluronic acid supplementation will reduce cartilage damage in the ACL deficient knee. Study Design Controlled laboratory study Methods 36 male rats, 3 months old, underwent unilateral ACL transection. They were randomized to four treatments: 1) saline (PBS), 2) hyaluronic acid (HA), 3) purified human lubricin (LUB), and 4) LUB and HA (LUB+HA). Intra-articular injections were given twice weekly for four weeks starting one week after surgery. Knees were harvested one week following final injection. Radiographs of each limb and synovial fluid lavages were obtained at harvest. Histology was performed to assess cartilage damage using Safranin O/Fast green staining. Radiographs were scored for the severity of joint degeneration using the modified Kellgren-Lawrence scale. Synovial fluid levels of sulfated glycosaminoglycan, collagen II breakdown, IL-1β, TNF-α and lubricin were measured using ELISA. Results Treatment with LUB or LUB+HA significantly decreased radiographic and histologic scores of cartilage damage (p=0.039, p=0.015, respectively) when compared to the PBS and HA conditions. There was no evidence of an effect of HA nor was the LUB effect HA dependent suggesting that the addition of HA did not further reduce damage. The synovial fluid of knees treated with LUB had significantly more lubricin in the synovial fluid at euthanasia, though there were no differences in the other cartilage metabolism biomarkers. Conclusions Supplemental intra-articular LUB reduced cartilage damage in the ACL transected rat knee 6 weeks after injury, while treatment with HA did not. Clinical Relevance Although longer-term studies are needed, intra-articular supplementation (tribosupplementation) with lubricin

  16. Intra-Articular Lubricin Gene Therapy for Post-Traumatic Arthritis

    DTIC Science & Technology

    2015-09-01

    pathology in both treatment groups. However, changes in the LubGFP group tended to be less severe than in the GFP group. Although there was significant...O stained sections showed that there was significant pathology in both treatment groups (Figure 1). However, changes in the LubGFP group tended to...Rabbit Radius Defect BMP/Carrier Screen (SOW 3) C: Rabbit PLF End Organ Pathology (SOW 5) D: Rabbit PLF Model/BMP/Carrier Screen (SOW 2) E: Rabbit

  17. Surface modification counteracts adverse effects associated with immobilization after flexor tendon repair.

    PubMed

    Zhao, Chunfeng; Sun, Yu-Long; Jay, Gregory D; Moran, Steven L; An, Kai-Nan; Amadio, Peter C

    2012-12-01

    Although post-rehabilitation is routinely performed following flexor tendon repair, in some clinical scenarios post-rehabilitation must be delayed. We investigated modification of the tendon surface using carbodiimide derivatized hyaluronic acid and lubricin (cd-HA-Lub) to maintain gliding function following flexor tendon repair with postoperative immobilization in a in vivo canine model. Flexor digitorum profundus tendons from the 2nd and 5th digits of one forepaw of six dogs were transected and repaired. One tendon in each paw was treated with cd-HA-Lub; the other repaired tendon was not treated. Following tendon repair, a forearm cast was applied to fully immobilize the operated forelimb for 10 days, after which the animals were euthanized. Digit normalized work of flexion (nWOF) and tendon gliding resistance were assessed. The nWOF of the FDP tendons treated with cd-HA-Lub was significantly lower than the nWOF of the untreated tendons (p < 0.01). The gliding resistance of cd-HA-Lub treated tendons was also significantly lower than that of the untreated tendons (p < 0.05). Surface treatment with cd-HA-Lub following flexor tendon repair provides an opportunity to improve outcomes for patients in whom the post-operative therapy must be delayed after flexor tendon repair. Copyright © 2012 Orthopaedic Research Society.

  18. Effects of supplemental intra-articular lubricin and hyaluronic acid on the progression of posttraumatic arthritis in the anterior cruciate ligament-deficient rat knee.

    PubMed

    Teeple, Erin; Elsaid, Khaled A; Jay, Gregory D; Zhang, Ling; Badger, Gary J; Akelman, Matthew; Bliss, Thomas F; Fleming, Braden C

    2011-01-01

    Lubricin and hyaluronic acid lubricate articular cartilage and prevent wear. Because lubricin loss occurs after anterior cruciate ligament injury, intra-articular lubricin injections may reduce cartilage damage in the anterior cruciate ligament-deficient knee. This study was conducted to determine if lubricin and/or hyaluronic acid supplementation will reduce cartilage damage in the anterior cruciate ligament-deficient knee. Controlled laboratory study. Thirty-six male rats, 3 months old, underwent unilateral anterior cruciate ligament transection. They were randomized to 4 treatments: (1) saline (phosphate-buffered saline [PBS]), (2) hyaluronic acid (HA), (3) purified human lubricin (LUB), and (4) LUB and HA (LUB+HA). Intra-articular injections were given twice weekly for 4 weeks starting 1 week after surgery. Knees were harvested 1 week after the final injection. Radiographs of each limb and synovial fluid lavages were obtained at harvest. Histologic analysis was performed to assess cartilage damage using safranin O/fast green staining. Radiographs were scored for the severity of joint degeneration using the modified Kellgren-Lawrence scale. Synovial fluid levels of sulfated glycosaminoglycan, collagen II breakdown, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and lubricin were measured using enzyme-linked immunosorbent assay (ELISA). Treatment with LUB or LUB+HA significantly decreased radiographic and histologic scores of cartilage damage (P = .039 and P = .015, respectively) when compared with the PBS and HA conditions. There was no evidence of an effect of HA nor was the LUB effect HA-dependent, suggesting that the addition of HA did not further reduce damage. The synovial fluid of knees treated with LUB had significantly more lubricin in the synovial fluid at euthanasia, although there were no differences in the other cartilage metabolism biomarkers. Supplemental intra-articular LUB reduced cartilage damage in the anterior cruciate ligament

  19. Sensitivity of pathogenic and attenuated E. coli O157:H7 strains to ultraviolet-C light as assessed by conventional plating methods and ethidium monoazide-PCR

    USDA-ARS?s Scientific Manuscript database

    In this study, the UV-C sensitivity of six pathogenic E. coli O157:H7 strains associated with recent outbreaks of foodborne illnesses and four attenuated E. coli O157:H7 strains was investigated. Futhermore, the mechanism of UV-C impact on two pathogenic E. coli strains with different UV-C sensitiv...

  20. Rab2A is a pivotal switch protein that promotes either secretion or ER-associated degradation of (pro)insulin in insulin-secreting cells

    PubMed Central

    Sugawara, Taichi; Kano, Fumi; Murata, Masayuki

    2014-01-01

    Rab2A, a small GTPase localizing to the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC), regulates COPI-dependent vesicular transport from the ERGIC. Rab2A knockdown inhibited glucose-stimulated insulin secretion and concomitantly enlarged the ERGIC in insulin-secreting cells. Large aggregates of polyubiquitinated proinsulin accumulated in the cytoplasmic vicinity of a unique large spheroidal ERGIC, designated the LUb-ERGIC. Well-known components of ER-associated degradation (ERAD) also accumulated at the LUb-ERGIC, creating a suitable site for ERAD-mediated protein quality control. Moreover, chronically high glucose levels, which induced the enlargement of the LUb-ERGIC and ubiquitinated protein aggregates, impaired Rab2A activity by promoting dissociation from its effector, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), in response to poly (ADP-ribosyl)ation of GAPDH. The inactivation of Rab2A relieved glucose-induced ER stress and inhibited ER stress-induced apoptosis. Collectively, these results suggest that Rab2A is a pivotal switch that controls whether insulin should be secreted or degraded at the LUb-ERGIC and Rab2A inactivation ensures alleviation of ER stress and cell survival under chronic glucotoxicity. PMID:25377857

  1. High-Speed Wind-Tunnel Tests of an NACA 16-009 Airfoil Having a 32.9-Percent-Chord Flap with an Overhang 20.7 Percent of the Flap Chord

    DTIC Science & Technology

    1947-08-01

    Stack, John, Lindsey, W, F., and. Iittell, Robert E.: The , Compressibility Burble and the-Effect of Compressibility,on Pressures and Forces Acting on...NACA ACE No. lALOTa, 19hh. 3,’Stack’,. John; Tests of Airfoils Designed to Delay the’Compressi— •^ :;’:bili.ty Burble . NACA TN No. 976, Dec." l$Ub

  2. Two-level systems and negative thermal expansion of lutetium borides

    NASA Astrophysics Data System (ADS)

    Novikov, V. V.; Mitroshenkov, N. V.; Kornev, B. I.; Matovnikov, A. V.

    2017-05-01

    The heat capacity Cv(T) and unit cell volume V(T) temperature dependencies of lutetium borides LuB2 and LuB4 in the region of 2-300 K were analysed in the Debye-Einstein approximation. The characteristic temperatures of the Debye and Einstein components of boride heat capacity and thermal expansion were found. The anomalous contribution to the borides' thermal characteristics was revealed. This contribution was attributed to the influence of two-level systems (TLS), formed in the subsystem of lutetium ions due to asymmetry in the way they are surrounded by the boron atoms in the boride crystal structure. The TLS influence is revealed on heat capacity temperature dependencies by the Schottky-type maxima at Tmax LuB2 =13.8 K, Tmax LuB4 =22.7 K, as well as by the negative contribution to the borides' thermal expansion. The borides' Grüneisen parameters corresponding to the heat capacity and thermal expansion TLS anomalies are negative, and amount to several 10 s of units.

  3. Molecular aspects of boundary lubrication by human lubricin: effect of disulfide bonds and enzymatic digestion.

    PubMed

    Zappone, Bruno; Greene, George W; Oroudjev, Emin; Jay, Gregory D; Israelachvili, Jacob N

    2008-02-19

    Lubricin (LUB) is a glycoprotein of the synovial cavity of human articular joints, where it serves as an antiadhesive, boundary lubricant, and regulating factor for the cartilage surface. It has been proposed that these properties are related to the presence of a long, extended, heavily glycosylated and highly hydrated mucinous domain in the central part of the LUB molecule. In this work, we show that LUB has a contour length of 220 +/- 30 nm and a persistence length of < or =10 nm. LUB molecules aggregate in oligomers where the protein extremities are linked by disulfide bonds. We have studied the effect of proteolytic digestion by chymotrypsin and removal of the disulfide bonds, both of which mainly affect the N- and C- terminals of the protein, on the adsorption, normal forces, friction (lubrication) forces, and wear of LUB layers adsorbed on smooth, negatively charged mica surfaces, where the protein naturally forms lubricating polymer brush-like layers. After in situ digestion, the surface coverage was drastically reduced, the normal forces were altered, and both the coefficient of friction and the wear were dramatically increased (the COF increased to mu = 1.1-1.9), indicating that the mucinous domain was removed from the surface. Removal of disulfide bonds did not change the surface coverage or the overall features of the normal forces; however, we find an increase in the friction coefficient from mu = 0.02-0.04 to mu = 0.13-1.17 in the pressure regime below 6 atm, which we attribute to a higher affinity of the protein terminals for the surface. The necessary condition for LUB to be a good lubricant is that the protein be adsorbed to the surface via its terminals, leaving the central mucin domain free to form a low-friction, surface-protecting layer. Our results suggest that this "end-anchoring" has to be strong enough to impart the layer a sufficient resistance to shear, but without excessively restricting the conformational freedom of the adsorbed proteins.

  4. A Comparison between Ultraviolet Disinfection and Copper Alginate Beads within a Vortex Bioreactor for the Deactivation of Bacteria in Simulated Waste Streams with High Levels of Colour, Humic Acid and Suspended Solids

    PubMed Central

    Thomas, Simon F.; Rooks, Paul; Rudin, Fabian; Atkinson, Sov; Goddard, Paul; Bransgrove, Rachel M.; Mason, Paul T.; Allen, Michael J.

    2014-01-01

    We show in this study that the combination of a swirl flow reactor and an antimicrobial agent (in this case copper alginate beads) is a promising technique for the remediation of contaminated water in waste streams recalcitrant to UV-C treatment. This is demonstrated by comparing the viability of both common and UV-C resistant organisms in operating conditions where UV-C proves ineffective - notably high levels of solids and compounds which deflect UV-C. The swirl flow reactor is easy to construct from commonly available plumbing parts and may prove a versatile and powerful tool in waste water treatment in developing countries. PMID:25541706

  5. A comparison between ultraviolet disinfection and copper alginate beads within a vortex bioreactor for the deactivation of bacteria in simulated waste streams with high levels of colour, humic acid and suspended solids.

    PubMed

    Thomas, Simon F; Rooks, Paul; Rudin, Fabian; Atkinson, Sov; Goddard, Paul; Bransgrove, Rachel M; Mason, Paul T; Allen, Michael J

    2014-01-01

    We show in this study that the combination of a swirl flow reactor and an antimicrobial agent (in this case copper alginate beads) is a promising technique for the remediation of contaminated water in waste streams recalcitrant to UV-C treatment. This is demonstrated by comparing the viability of both common and UV-C resistant organisms in operating conditions where UV-C proves ineffective - notably high levels of solids and compounds which deflect UV-C. The swirl flow reactor is easy to construct from commonly available plumbing parts and may prove a versatile and powerful tool in waste water treatment in developing countries.

  6. On the Sandage period shift effect among field RR Lyrae stars

    NASA Technical Reports Server (NTRS)

    Lee, Young-Wook

    1990-01-01

    The origin of the disagreement between the results of the synthetic horizontal branch (HB) model of Lee et al. (1990) and the Sandage (1990) analysis of Lub's (1977) data on a sample of field RR Lyrae stars is investigated, extending the original synthetic HB calculations of Lee et al. to all HB types over the metallicity range of the Galactic halo. It is shown that the period shifts of the RR Lyrae stars in globular clusters depend strongly on their HB type and metallicity. Results suggest that the disagreement between the slopes, Delta logP(Teff)/Delta Fe/H, obtained by Lee et al. and the ones obtained by Sandage can be explained by the fact that Lub's sample may have contained many highly evolved stars in the metallicity range of Fe/H between -2.0 and -1.6, since Lee's analysis did not include these stars.

  7. On the Sandage period shift effect among field RR Lyrae stars

    SciTech Connect

    Lee, Y. Victoria Univ. )

    1990-11-01

    The origin of the disagreement between the results of the synthetic horizontal branch (HB) model of Lee et al. (1990) and the Sandage (1990) analysis of Lub's (1977) data on a sample of field RR Lyrae stars is investigated, extending the original synthetic HB calculations of Lee et al. to all HB types over the metallicity range of the Galactic halo. It is shown that the period shifts of the RR Lyrae stars in globular clusters depend strongly on their HB type and metallicity. Results suggest that the disagreement between the slopes, Delta logP(Teff)/Delta Fe/H, obtained by Lee et al. and the ones obtained by Sandage can be explained by the fact that Lub's sample may have contained many highly evolved stars in the metallicity range of Fe/H between -2.0 and -1.6, since Lee's analysis did not include these stars. 48 refs.

  8. On Implicit Active Constraints in Linear Semi-Infinite Programs with Unbounded Coefficients

    SciTech Connect

    Goberna, M. A.; Lancho, G. A.; Todorov, M. I.; Vera de Serio, V. N.

    2011-04-15

    The concept of implicit active constraints at a given point provides useful local information about the solution set of linear semi-infinite systems and about the optimal set in linear semi-infinite programming provided the set of gradient vectors of the constraints is bounded, commonly under the additional assumption that there exists some strong Slater point. This paper shows that the mentioned global boundedness condition can be replaced by a weaker local condition (LUB) based on locally active constraints (active in a ball of small radius whose center is some nominal point), providing geometric information about the solution set and Karush-Kuhn-Tucker type conditions for the optimal solution to be strongly unique. The maintaining of the latter property under sufficiently small perturbations of all the data is also analyzed, giving a characterization of its stability with respect to these perturbations in terms of the strong Slater condition, the so-called Extended-Nuernberger condition, and the LUB condition.

  9. Legionella Metaeffector Exploits Host Proteasome to Temporally Regulate Cognate Effector

    PubMed Central

    Kubori, Tomoko; Shinzawa, Naoaki; Kanuka, Hirotaka; Nagai, Hiroki

    2010-01-01

    Pathogen-associated secretion systems translocate numerous effector proteins into eukaryotic host cells to coordinate cellular processes important for infection. Spatiotemporal regulation is therefore important for modulating distinct activities of effectors at different stages of infection. Here we provide the first evidence of “metaeffector,” a designation for an effector protein that regulates the function of another effector within the host cell. Legionella LubX protein functions as an E3 ubiquitin ligase that hijacks the host proteasome to specifically target the bacterial effector protein SidH for degradation. Delayed delivery of LubX to the host cytoplasm leads to the shutdown of SidH within the host cells at later stages of infection. This demonstrates a sophisticated level of coevolution between eukaryotic cells and L. pneumophila involving an effector that functions as a key regulator to temporally coordinate the function of a cognate effector protein. PMID:21151961

  10. Creating Postscript Files on Vax Computers

    DTIC Science & Technology

    1990-07-01

    8 Helvetlca.Bold~blique 9 Courier 10 Courier-oblique 11 Courier-Sold 12 Courl or-Bol dbiquo. 13 AvantGarde -Book 14 AvantGorcle-BookObfique 15...Avontorde-Demi 16 AvantGarde -Demiobinque 17 LubalnGrcaphBook 18 LubUGrph-BookObuie 19 LubczlinGrczph-Demt 20 LubaUnGraph.Dernioblique 21 NewCentuyffibk

  11. Adaptive mechanically controlled lubrication mechanism found in articular joints.

    PubMed

    Greene, George W; Banquy, Xavier; Lee, Dong Woog; Lowrey, Daniel D; Yu, Jing; Israelachvili, Jacob N

    2011-03-29

    Articular cartilage is a highly efficacious water-based tribological system that is optimized to provide low friction and wear protection at both low and high loads (pressures) and sliding velocities that must last over a lifetime. Although many different lubrication mechanisms have been proposed, it is becoming increasingly apparent that the tribological performance of cartilage cannot be attributed to a single mechanism acting alone but on the synergistic action of multiple "modes" of lubrication that are adapted to provide optimum lubrication as the normal loads, shear stresses, and rates change. Hyaluronic acid (HA) is abundant in cartilage and synovial fluid and widely thought to play a principal role in joint lubrication although this role remains unclear. HA is also known to complex readily with the glycoprotein lubricin (LUB) to form a cross-linked network that has also been shown to be critical to the wear prevention mechanism of joints. Friction experiments on porcine cartilage using the surface forces apparatus, and enzymatic digestion, reveal an "adaptive" role for an HA-LUB complex whereby, under compression, nominally free HA diffusing out of the cartilage becomes mechanically, i.e., physically, trapped at the interface by the increasingly constricted collagen pore network. The mechanically trapped HA-LUB complex now acts as an effective (chemically bound) "boundary lubricant"--reducing the friction force slightly but, more importantly, eliminating wear damage to the rubbing/shearing surfaces. This paper focuses on the contribution of HA in cartilage lubrication; however, the system as a whole requires both HA and LUB to function optimally under all conditions.

  12. High-frequency ultrasound in carpal tunnel syndrome: assessment of patient eligibility for surgical treatment.

    PubMed

    Kapuścińska, Katarzyna; Urbanik, Andrzej

    2015-09-01

    Zespół kanału nadgarstka (ZKN) jest najczęstszą neuropatią uciskową i częstą przyczyną zwolnień lekarskich z powodu przeciążenia ręki związanego z pracą. Optymalne postępowanie w tym zespole zależy od wczesnego rozpoznania i podjęcia odpowiedniego leczenia (zachowawczego lub operacyjnego).

  13. New nanotechnology solid lubricants for superior dry lubrication

    NASA Astrophysics Data System (ADS)

    Fleischer, N.; Genut, M.; Rapoport, L.; Tenne, R.

    2003-09-01

    This paper presents a new commercial breakthrough for advanced anti-friction materials based on unique inorganic nanospheres that can be used as dry lubricants, coatings, and for impregnating parts. The new material reduces friction and wear significantly better than other layered solid lubricants and is especially useful in self-lubricating, maintenance-free, and oil-free applications of the types encountered in aerospace markets. The material, NanoLubTM, is the world's first commercial lubricant based on spherical inorganic nanoparticles. NanoLub's particles have a unique structure of hollow nested spheres of about only 0.1 micron in diameter. This paper presents tribological evaluations of tungsten and molybdenum disulphide NanoLubTM. The material reduces friction and wear under conditions that are especially relevant for space such as ultra-high vacuum, UV radiation, and high loads. Suitable applications could include rotors, bearings, robots, planetary rovers, space vehicles and transport devices. Extensive testing by a number of independent groups clearly shows that these special nanoparticles improve considerably the tribological properties of different contact pairs in comparison to other solid lubricants.

  14. Ultraviolet-C and induced stilbenes control ochratoxigenic Aspergillus in grapes.

    PubMed

    Selma, María V; Freitas, Paula M; Almela, Luis; González-Barrio, Rocío; Espín, Juan Carlos; Suslow, Trevor; Tomás-Barberán, Francisco; Gil, María I

    2008-11-12

    This study investigated the efficacy of ultraviolet-C (254 nm) and induced stilbenes to inhibit Aspergillus carbonarius and Aspergillus tubingensis and control ochratoxin A production in grapes. In addition, the stilbene synthesis as a response to UV-C treatment and to infection of ochratoxigenic Aspergillus was compared. The initial microbial inactivation by a previously optimized UV-C illumination protocol for increasing trans-resveratrol content in grapes (50 W/m (2), 40 cm, 60 s) was similar on undamaged and damaged grapes, achieving 1.2 and 1.3 log conidia/100 g reductions, respectively. After 5 days of storage at 22 degrees C, UV-C treatment and the stilbenes induced by UV-C inhibited ochratoxigenic Aspergillus growth in undamaged grapes. UV-C elicited the biosynthesis of trans-resveratrol, while microbial infection and tissue damage triggered the biosynthesis of trans-piceid. trans-Resveratrol was not synthesized as a consequence of ochratoxigenic Aspergillus contamination. However, when trans-resveratrol was synthesized by UV-C, it contributed to inhibiting the development of ochratoxin A producing aspergilli. Furthermore, UV-C treatment also contributed to decrease ochratoxin A production by ochratoxigenic aspergilli. Therefore, UV-C is a promising emerging technology either for reducing the potential ochratoxigenic risk in grapes, which is of particular interest to the wine industry, and also for increasing trans-resveratrol content of grapes, which would provide an added value to the wine.

  15. Ultraviolet-C light inactivation of Penicillium expansum on fruit surfaces

    USDA-ARS?s Scientific Manuscript database

    Understanding the influence of fruit surface morphology on ultraviolet-C (UV-C 254 nm) inactivation of microorganisms is required for designing effective treatment systems. In this study, we analyzed UV-C inactivation of Penicillium expansum that was inoculated onto the surface of organic fruits. Re...

  16. UV-induced fragmentation of Cajal bodies

    PubMed Central

    Cioce, Mario; Boulon, Séverine; Matera, A. Gregory; Lamond, Angus I.

    2006-01-01

    The morphology and composition of subnuclear organelles, such as Cajal bodies (CBs), nucleoli, and other nuclear bodies, is dynamic and can change in response to a variety of cell stimuli, including stress. We show that UV-C irradiation disrupts CBs and alters the distribution of a specific subset of CB components. The effect of UV-C on CBs differs from previously reported effects of transcription inhibitors. We demonstrate that the mechanism underlying the response of CBs to UV-C is mediated, at least in part, by PA28γ (proteasome activator subunit γ). The presence of PA28γ in coilin-containing complexes is increased by UV-C. Overexpression of PA28γ, in the absence of UV-C treatment, provokes a similar redistribution of the same subset of CB components that respond to UV-C. RNA interference–mediated knockdown of PA28γ attenuates the nuclear disruption caused by UV-C. These data demonstrate that CBs are specific nuclear targets of cellular stress-response pathways and identify PA28γ as a novel regulator of CB integrity. PMID:17088425

  17. Impact of ultraviolet radiation treatments on the quality of freshly prepared tomato (Solanum lycopersicum) juice.

    PubMed

    Bhat, Rajeev

    2016-12-15

    Impact of ultraviolet (UV-C) radiation treatments (0, 15, 30 and 60min) on freshly extracted tomato juice quality (physicochemical properties, antioxidant activity and microbial load) was evaluated. On exposure to UV-C, level of water activity, total soluble solids, and titratable acidity exhibited non-significant increase up to 30min of exposure time. Regarding colour analysis, L∗ value significantly increased with subsequent decrease in a∗ and b∗ values post UV-C treatments. Clarity, DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity and total phenolics content significantly increased, whereas ascorbic acid level significantly reduced at 60min of UV-C exposure time. So also, lycopene content exhibited a non-significant decrease after UV-C treatment. Microbial studies showed reduction in total plate count and total mould counts post UV-C treatment. Overall, UV-C treatment being a physical, non-thermal method of food preservation holds the ability to improve or preserve vital quality parameters in freshly prepared tomato juices, and henceforth possesses high scope for commercial exploration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effects of preharvest ultraviolet-C irradiation on fruit phytochemical profiles and antioxidant capacity in three strawberry (Fragaria × ananassa Duch.) cultivars.

    PubMed

    Xie, Zhichun; Charles, Marie Thérèse; Fan, Jinshuan; Charlebois, Denis; Khanizadeh, Shahrokh; Rolland, Daniel; Roussel, Dominique; Deschênes, Martine; Dubé, Claudine

    2015-11-01

    Ultraviolet-C (UV-C) has proven effective in extending shelf-life, reducing disease incidence and increasing the levels of health-promoting compounds in several crops. While most studies were conducted at the postharvest stage, our study examined the effect of preharvest UV-C application in three strawberry cultivars (Fragaria × ananassa Duch. 'Albion', 'Charlotte' and 'Seascape'). UV-C treatment was applied from the onset of flowering until the fruits reached commercial maturity on plants grown for two consecutive seasons under greenhouse conditions. The phytochemical profiles and antioxidant capacity of the fruits were assessed at harvest. The ellagic acid and kaempferol-3-glucuronide contents were significantly increased only in fruits of the cultivar 'Albion' collected from UV-C-treated plants in season 1. UV-C did not consistently affect the other phenolic compounds that were measured. Based on the results of the ferric-reducing antioxidant power, oxygen radical absorbance capacity and total phenolic content assays, the antioxidant capacity of the three strawberry cultivars was not affected by UV-C. Season and cultivar had a decisive impact on these parameters. The effect of preharvest UV-C on the levels of bioactive compounds in strawberry fruits appears to be cultivar- dependent, with season or growing conditions having a significant impact. © 2014 Her Majesty the Queen in Right of Canada. Journal of the Science of Food and Agriculture © 2014 Society of Chemical Industry.

  19. Efficacy of ultraviolet radiation as an alternative technology to inactivate microorganisms in grape juices and wines.

    PubMed

    Fredericks, Ilse N; du Toit, Maret; Krügel, Maricel

    2011-05-01

    Since sulphur dioxide (SO(2)) is associated with health risks, the wine industry endeavours to reduce SO(2) levels in wines with new innovative techniques. The aim of this study was, therefore, to investigate the efficacy of ultraviolet radiation (UV)-C (254 nm) as an alternative technology to inactivate microorganisms in grape juices and wines. A pilot-scale UV-C technology (SurePure, South Africa) consisting of an UV-C germicidal lamp (100 W output; 30 W UV-C output) was used to apply UV-C dosages ranging from 0 to 3672 J l(-1), at a constant flow rate of 4000 l h(-1) (Re > 7500). Yeasts, lactic and acetic acid bacteria were singly and co-inoculated into 20 l batches of Chenin blanc juice, Shiraz juice, Chardonnay wine and Pinotage wine, respectively. A dosage of 3672 J l(-1), resulted in an average log(10) microbial reduction of 4.97 and 4.89 in Chardonnay and Pinotage, respectively. In Chenin blanc and Shiraz juice, an average log(10) reduction of 4.48 and 4.25 was obtained, respectively. UV-C efficacy may be influenced by liquid properties such as colour and turbidity. These results had clearly indicated significant (p < 0.05) germicidal effect against wine-specific microorganisms; hence, UV-C radiation may stabilize grape juice and wine microbiologically in conjunction with reduced SO(2) levels.

  20. UV-induced fragmentation of Cajal bodies.

    PubMed

    Cioce, Mario; Boulon, Séverine; Matera, A Gregory; Lamond, Angus I

    2006-11-06

    The morphology and composition of subnuclear organelles, such as Cajal bodies (CBs), nucleoli, and other nuclear bodies, is dynamic and can change in response to a variety of cell stimuli, including stress. We show that UV-C irradiation disrupts CBs and alters the distribution of a specific subset of CB components. The effect of UV-C on CBs differs from previously reported effects of transcription inhibitors. We demonstrate that the mechanism underlying the response of CBs to UV-C is mediated, at least in part, by PA28gamma (proteasome activator subunit gamma). The presence of PA28gamma in coilin-containing complexes is increased by UV-C. Overexpression of PA28gamma, in the absence of UV-C treatment, provokes a similar redistribution of the same subset of CB components that respond to UV-C. RNA interference-mediated knockdown of PA28gamma attenuates the nuclear disruption caused by UV-C. These data demonstrate that CBs are specific nuclear targets of cellular stress-response pathways and identify PA28gamma as a novel regulator of CB integrity.

  1. Insights into the Mechanisms Underlying Ultraviolet-C Induced Resveratrol Metabolism in Grapevine (V. amurensis Rupr.) cv. “Tonghua-3”

    PubMed Central

    Yin, Xiangjing; Singer, Stacy D.; Qiao, Hengbo; Liu, Yajun; Jiao, Chen; Wang, Hao; Li, Zhi; Fei, Zhangjun; Wang, Yuejin; Fan, Chonghui; Wang, Xiping

    2016-01-01

    Stilbene compounds belong to a family of secondary metabolites that are derived from the phenylpropanoid pathway. Production of the stilbene phytoalexin, resveratrol, in grape (Vitis spp.) berries is known to be induced by ultraviolet-C radiation (UV-C), which has numerous regulatory effects on plant physiology. While previous studies have described changes in gene expression caused by UV-C light in several plant species, such information has yet to be reported for grapevine. We investigated both the resveratrol content and gene expression responses of berries from V. amurensis cv. Tonghua-3 following UV-C treatment, to accelerate research into resveratrol metabolism. Comparative RNA-Seq profiling of UV-C treated and untreated grape berries resulted in the identification of a large number of differentially expressed genes. Gene ontology (GO) term classification and biochemical pathway analyses suggested that UV-C treatment caused changes in various cellular processes, as well as in both hormone and secondary metabolism. The data further indicate that UV-C induced increases in resveratrol may be related to the transcriptional regulation of genes involved in the production of secondary metabolites and signaling, as well as several transcription factors. We also observed that following UV-C treatment, 22 stilbene synthase (STS) genes exhibited increases in their expression levels and a VaSTS promoter drove the expression of the GUS reporter gene when expressed in tobacco. We therefore propose that UV-C induction of VaSTS expression is an important factor in promoting resveratrol accumulation. This transcriptome data set provides new insight into the response of grape berries to UV-C treatment, and suggests candidate genes, or promoter activity of related genes, that could be used in future functional and molecular biological studies of resveratrol metabolism. PMID:27148326

  2. Probiotic With or Without Fiber Controls Body Fat Mass, Associated With Serum Zonulin, in Overweight and Obese Adults-Randomized Controlled Trial.

    PubMed

    Stenman, Lotta K; Lehtinen, Markus J; Meland, Nils; Christensen, Jeffrey E; Yeung, Nicolas; Saarinen, Markku T; Courtney, Michael; Burcelin, Rémy; Lähdeaho, Marja-Leena; Linros, Jüri; Apter, Dan; Scheinin, Mika; Kloster Smerud, Hilde; Rissanen, Aila; Lahtinen, Sampo

    2016-11-01

    The gut microbiota is interlinked with obesity, but direct evidence of effects of its modulation on body fat mass is still scarce. We investigated the possible effects of Bifidobacterium animalisssp. lactis 420 (B420) and the dietary fiber Litesse® Ultra polydextrose (LU) on body fat mass and other obesity-related parameters. 225 healthy volunteers (healthy, BMI 28-34.9) were randomized into four groups (1:1:1:1), using a computer-generated sequence, for 6months of double-blind, parallel treatment: 1) Placebo, microcrystalline cellulose, 12g/d; 2) LU, 12g/d; 3) B420, 10(10)CFU/d in microcrystalline cellulose, 12g/d; 4) LU+B420, 12g+10(10)CFU/d. Body composition was monitored with dual-energy X-ray absorptiometry, and the primary outcome was relative change in body fat mass, comparing treatment groups to Placebo. Other outcomes included anthropometric measurements, food intake and blood and fecal biomarkers. The study was registered in Clinicaltrials.gov (NCT01978691). There were marked differences in the results of the Intention-To-Treat (ITT; n=209) and Per Protocol (PP; n=134) study populations. The PP analysis included only those participants who completed the intervention with >80% product compliance and no antibiotic use. In addition, three participants were excluded from DXA analyses for PP due to a long delay between the end of intervention and the last DXA measurement. There were no significant differences between groups in body fat mass in the ITT population. However, LU+B420 and B420 seemed to improve weight management in the PP population. For relative change in body fat mass, LU+B420 showed a-4.5% (-1.4kg, P=0.02, N=37) difference to the Placebo group, whereas LU (+0.3%, P=1.00, N=35) and B420 (-3.0%, P=0.28, N=24) alone had no effect (overall ANOVA P=0.095, Placebo N=35). A post-hoc factorial analysis was significant for B420 (-4.0%, P=0.002 vs. Placebo). Changes in fat mass were most pronounced in the abdominal region, and were reflected by similar

  3. PHYTOCHEMICAL CONTENT IN BLUEBERRIES IS INFLUENCED BY UV ILLUMINATION

    USDA-ARS?s Scientific Manuscript database

    The levels of phytochemicals in blueberries were found to increase after illumination with UV-C light. Phytochemicals affected included resveratrol, myricetin 3-arabinoside, quercetin 3-galactoside, quercetin 3-arabinoside, quercetin derivative, kaempferol 3-glucoside, delphinidin-3-galactoside, cy...

  4. SUPERFUND TREATABILITY CLEARINGHOUSE: PCB SEDIMENT DECONTAMINATION PROCESS-SELECTION FOR TEST AND EVALUATION

    EPA Science Inventory

    This document is a report describing the assessment of seven alternative treatment processes that show potential for decontaminating polychlorinated biphenyl (PCB)-contaminated sediments. The processes are KPEG, MODAR Supercritical Water Oxidation, Bio-Clean, Ultrasonics/UV, C...

  5. SUPERFUND TREATABILITY CLEARINGHOUSE: PCB SEDIMENT DECONTAMINATION PROCESS-SELECTION FOR TEST AND EVALUATION

    EPA Science Inventory

    This document is a report describing the assessment of seven alternative treatment processes that show potential for decontaminating polychlorinated biphenyl (PCB)-contaminated sediments. The processes are KPEG, MODAR Supercritical Water Oxidation, Bio-Clean, Ultrasonics/UV, C...

  6. ’MODESRCH’, An Improved Computer Program for Obtaining ELF/VLF/LF Mode Constants in an Earth-Ionosphere Waveguide

    DTIC Science & Technology

    1976-10-01

    0 RHO = O*C i TA-LT=iu.0 RAt T 3. Gt"AX = 50 SEP = 091 TVSt-=-1 .0 LUB=-Io0 C NUFLAG = 0 COEFi’U(1L .) b1 C UL FPU ( 21 *5UF C OEf! U ( 3 te= 4E F)’PNU...Lt20 Ili ITI TLE(K)=I BCD ( K) 11. READ 904vJITtENS(1),ENS(1) 904t FC2RMAT IF7,295XtE9.2tEIO.2) IF (H7 .LT, 0.0) GO TO 15 HTS(J) =E 1T ANC, HTS(J

  7. What is Research

    DTIC Science & Technology

    2016-10-27

    form: a. In Section 2. add the funding source for your study (e.g .. 59 MDW CRO Graduate Health Sciences Education (GHSE) (SGS O&M): SGS R&O: Tri...the S9 CRO / Publications and Presentations Section at 292-7141 for assistance. 8 . The S9 CRO /Publicahons and Presentations Section Wiii route the...Fundamentals Course (Gateway C lub). JBSA-Lackland Tx. 󈧟 Oct 16 12. EXPECTED DATE WHEN YOU WILL NEED THE CRO TO SUBMIT YOUR CLEARED PRESENTATION

  8. Approximate knowledge compilation: The first order case

    SciTech Connect

    Val, A. del

    1996-12-31

    Knowledge compilation procedures make a knowledge base more explicit so as make inference with respect to the compiled knowledge base tractable or at least more efficient. Most work to date in this area has been restricted to the propositional case, despite the importance of first order theories for expressing knowledge concisely. Focusing on (LUB) approximate compilation, our contribution is twofold: (1) We present a new ground algorithm for approximate compilation which can produce exponential savings with respect to the previously known algorithm. (2) We show that both ground algorithms can be lifted to the first order case preserving their correctness for approximate compilation.

  9. AFWL HULL Calculations of Air Blast Over a Dam Slope

    DTIC Science & Technology

    1976-10-01

    i.i lil lil lil HI Ul Ul ui ui ui inininminininininin r^.i-».r>-r,*.t-«is«.oooCTj r— r— r— f^i— r— ^j’^’TCM in o...Hit ( AIM ATTN: I)OA ATTN: XPWIK^ AITN: X1HJV ALL AV ATTNi LDE A I IN: BO, Dir. , Civ. EHR. 00 Diamut»! Lub. ATTN: Lil ...Beck *;;,.«• DISTHIBUTION (Continued) Um. Eng. Co. ATTN: V. Kenner, MS-ll ATTN: C. Wayne ATTN: J, Oobkins MeDon. »OUR, 1 cy ATTN

  10. Silage to Ella Translation

    DTIC Science & Technology

    1990-04-01

    of the form (i : lub .. upb ) :: a = b where lwb , upb are integers and a, b expressions. Since Silage is an applicative language it has single...by the following approach for sequences INT lwb = .. , upb = .. , max= TYPE integer = int/( lwb ..upb). VAR sum := [max]( ... ), a := [max]( ... [INT i...2. .rax] CASE it/i LT in OF b’l : sum[i: sum[i-1] - a[i] ESAC; and by the following for non-sequence ELLA INT lwb - .. . upb .. ,max= TYPE integer

  11. Monomer-to-polymer conversion and micro-tensile bond strength to dentine of experimental and commercial adhesives containing diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide or a camphorquinone/amine photo-initiator system.

    PubMed

    Miletic, Vesna; Pongprueksa, Pong; De Munck, Jan; Brooks, Neil R; Van Meerbeek, Bart

    2013-10-01

    To compare the degree of conversion (DC) of adhesives initiated by diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO) or a camphorquinone/tertiary amine system (CQ/Amine) as well as their 'immediate' micro-tensile bond strength (μTBS) to bur-cut dentine. DC of Scotchbond Universal ('SBU'; 3M ESPE), its experimental counterpart containing TPO as photo-initiator system, an experimental G-aenial Bond ('Ga-B'; GC) adhesive formulation, and an experimental LUB-102 adhesive formulation ('LUB', Kuraray Noritake), containing as photo-initiatior system either 2wt% CQ along with 2wt% tertiary amine ('SBU_CQ/Amine'; 'Ga-B_CQ/Amine'; 'LUB_CQ/Amine'), or 2wt% TPO ('SBU_TPO'; 'Ga-B_TPO'; 'LUB_TPO'), was determined using Fourier-transform infrared spectroscopy (FTIR), after being cured with a dual-wavelength light-curing unit (bluephase 20i, Ivoclar Vivadent). The same adhesive formulations were applied to bur-cut mid-coronal dentine of intact human molars, and subjected to a μTBS test after 1-week water storage. Besides being applied following a self-etch (SE) application mode, the adhesive formulations SBU_CQ/Amine and SBU_TPO were also applied following an etch-and-rinse (E&R) mode, this both for DS and μTBS measurement. No significant difference in DC was found for any of the adhesive formulations, except for SBU_CQ/Amine_SE and SBU_TPO_SE. For both SBU formulations, a significantly higher DC was reached for the E&R than the SE approach. Regarding μTBS, no significant differences were recorded, except for the significantly higher μTBS measured for SBU_CQ/Amine_E&R and SBU_TPO_E&R. In self-etch adhesives, the photo-initiator TPO may be used instead of CQ/Amine. The curing and 'immediate' bonding efficiency depended on the application protocol (E&R versus SE), but not on the photo-initiator system. The photo-initiator TPO may be used in self-etch adhesives instead of CQ/Amine with similar curing and 'immediate' bonding efficiency. Copyright © 2013 Elsevier Ltd. All

  12. Simplifying the modal mu-calculus alternation hierarchy

    NASA Astrophysics Data System (ADS)

    Bradfield, J. C.

    In [Bra96], the strictness of the modal mu-calculus alternation hierarchy was shown by transferring a hierarchy from arithmetic; the latter was a corollary of a deep and highly technical analysis of [Lub93]. In this paper, we show that the alternation hierarchy in arithmetic can be established by entirely elementary means; further, simple examples of strict alternation depth n formulae can be constructed, which in turn give very simple examples to separate the modal hierarchy. In addition, the winning strategy formulae of parity games are shown to be such examples.

  13. A New Operating System for Security Tagged Architecture Hardware in Support of Multiple Independent Levels of Security (MILS) Compliant System

    DTIC Science & Technology

    2014-04-01

    can have more than two security classes, as seen in Figure 15, which has ten classes. The arrows in the figure are used to denote the relation of ≤. An... arrow from class RED to BLUE means RED ≤ BLUE. Figure 15: Multilevel lattice model The notation ⨁ denotes the least upper bound (LUB) operation...username and password to be stolen • Control the browser remotely • Spread worms A simple example: The URL on the site http://www.mysite.com/search

  14. Ultraviolet-C Light Sanitization of English Cucumber (Cucumis sativus) Packaged in Polyethylene Film.

    PubMed

    Tarek, Abdussamad R; Rasco, Barbara A; Sablani, Shyam S

    2016-06-01

    Food safety is becoming an increasing concern in the United States. This study investigated the effects of ultraviolet-C (UV-C) light as a postpackaging bactericidal treatment on the quality of English cucumber packaged in polyethylene (PE) film. Escherichia coli k-12 was used as a surrogate microbe. The microbial growth and physical properties of packaged cucumbers were analyzed during a 28-d storage period at 5 °C. Inoculating packaged cucumbers treated at 23 °C for 6 min with UV-C (560 mJ/cm(2) ) resulted in a 1.60 log CFU/g reduction. However, this treatment had no significant effect (P > 0.05) on the water vapor transmission rate or oxygen transmission rate of the PE film. Results show that UV-C light treatment delayed the loss of firmness and yellowing of English cucumber up to 28 d at 5 °C. In addition, UV-C light treatment extended the shelf life of treated cucumber 1 wk longer compared to untreated cucumbers. Electron microscopy images indicate that UV-C light treatment influences the morphology of the E. coli k-12 cells. Findings demonstrate that treating cucumbers with UV-C light following packaging in PE film can reduce bacterial populations significantly and delay quality loss. This technology may also be effective for other similarly packaged fresh fruits and vegetables. © 2016 Institute of Food Technologists®

  15. Effect of postharvest ultraviolet-C treatment on the proteome changes in fresh cut mango (Mangifera indica L. cv. Chokanan).

    PubMed

    George, Dominic Soloman; Razali, Zuliana; Santhirasegaram, Vicknesha; Somasundram, Chandran

    2016-06-01

    Postharvest treatments of fruits using techniques such as ultraviolet-C have been linked with maintenance of the fruit quality as well as shelf-life extension. However, the effects of this treatment on the quality of fruits on a proteomic level remain unclear. This study was conducted in order to understand the response of mango fruit to postharvest UV-C irradiation. Approximately 380 reproducible spots were detected following two-dimensional gel electrophoresis. Through gel analysis, 24 spots were observed to be differentially expressed in UV-C treated fruits and 20 were successfully identified via LCMS/MS. Postharvest UV-C treatment resulted in degradative effects on these identified proteins of which 40% were related to stress response, 45% to energy and metabolism and 15% to ripening and senescence. In addition, quality and shelf-life analysis of control and irradiated mangoes was evaluated. UV-C was found to be successful in retention of quality and extension of shelf-life up to 15 days. Furthermore, UV-C was also successful in increasing antioxidants (total flavonoid, reducing power and ABTS scavenging activity) in mangoes. This study provides an overview of the effects of UV-C treatment on the quality of mango on a proteomic level as well as the potential of this treatment in shelf-life extension of fresh-cut fruits. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  16. Inactivation of avirulent Yersinia pestis on food and food contact surfaces by ultraviolet light and freezing.

    PubMed

    Sommers, Christopher H; Sheen, Shiowshuh

    2015-09-01

    Yersinia pestis, the causative agent of plague, can occasionally be contracted as a naso-pharyngeal or gastrointestinal illness through consumption of contaminated meat. In this study, the use of 254 nm ultraviolet light (UV-C) to inactivate a multi-isolate cocktail of avirulent Y. pestis on food and food contact surfaces was investigated. When a commercial UV-C conveyor was used (5 mW/cm(2)/s) 0.5 J/cm(2) inactivated >7 log of the Y. pestis cocktail on agar plates. At 0.5 J/cm(2), UV-C inactivated ca. 4 log of Y. pestis in beef, chicken, and catfish, exudates inoculated onto high density polypropylene or polyethylene, and stainless steel coupons, and >6 log was eliminated at 1 J/cm(2). Approximately 1 log was inactivated on chicken breast, beef steak, and catfish fillet surfaces at a UV-C dose of 1 J/cm(2). UV-C treatment prior to freezing of the foods did not increase the inactivation of Y. pestis over freezing alone. These results indicate that routine use of UV-C during food processing would provide workers and consumers some protection against Y. pestis. Published by Elsevier Ltd.

  17. Examining the influence of ultraviolet C irradiation on recombinant human γD-crystallin

    PubMed Central

    Wen, Wen-Sing

    2010-01-01

    Purpose Human γD crystallin is a principal protein component of the human eye lens and associated with the development of juvenile and mature-onset cataracts. Exposure to ultraviolet (UV) light is thought to perturb protein structure and eventually lead to aggregation. This work is aimed at exploring the effects of UV-C irradiation on recombinant human γD-crystallin (HGDC). Methods Recombinant HGDC proteins were expressed in E. coli strain BL21(DE3) harboring plasmid pEHisHGDC and purified using chromatographic methods. The proteins were then exposed to UV-C light (λmax=254 nm, 15 W) at the intensity of 420, 800, or 1850 μW/cm2. The UV-C-unexposed, supernatant fraction of UV-C-exposed, and re-dissolved precipitated fraction of UV-C exposed preparations were characterized by SDS–PAGE, turbidity measurement, CD spectroscopy, tryptophan fluorescence spectroscopy, acrylamide fluorescence quenching analysis, and sulfhydryl group measurements. Results The turbidity of the HGDC sample solution was found to be positively correlated with HGDC concentration, UV-C irradiation intensity, and UV-C irradiation duration. When exposed to UV-C, HGDC sample solutions became visibly turbid and a noticeable amount of larger protein particle, perceptible to the naked eye, was observed upon prolonged irradiation. The precipitated fraction of irradiated HGDC sample was found to be re-dissolved by guanidine hydrochloride. Electrophoresis, acrylamide fluorescence quenching, and spectroscopic analyses revealed differences in structures among the non-irradiated HGDC, the supernatant fraction of irradiated HGDC, and the re-dissolved precipitated fraction of irradiated HGDC. Through the use of L-cysteine, the measurements of sulfhydryl contents, and the reducing as well as non-reducing SDS–PAGE, our data further suggested that disulfide bond formation and/or cleavage probably play an important role in aggregation and/or precipitation of HGDC elicited by UV-C irradiation. Conclusions

  18. Ultraviolet-C efficacy against a norovirus surrogate and hepatitis A virus on a stainless steel surface.

    PubMed

    Park, Shin Young; Kim, An-Na; Lee, Ki-Hoon; Ha, Sang-Do

    2015-10-15

    In this study, the effects of 10-300 mWs/cm(2) of ultraviolet radiation (UV-C) at 260 nm were investigated for the inactivation of two foodborne viruses: murine norovirus-1 (MNV-1; a human norovirus [NoV] surrogate) and hepatitis A virus (HAV). We used an experimentally contaminated stainless steel surface, a common food-contact surface, to examine the effects of low doses of UV-C radiation on MNV-1 and HAV titers. The modified Gompertz equation was used to generate non-linear survival curves and calculate dR-values as the UV-C dose of 90% reduction for MNV-1 (R(2)=0.95, RMSE=0.038) and HAV (R(2)=0.97, RMSE=0.016). Total MNV-1 and HAV titers significantly decreased (p<0.05) with higher doses of UV-C. MNV-1 and HAV were reduced to 0.0-4.4 and 0.0-2.6 log10PFU/ml, respectively, on the stainless steel surfaces by low-dose UV-C treatment. The dR-value, 33.3 mWs/cm(2) for MNV-1 was significantly (p<0.05) lower than 55.4 mWs/cm(2) of HAV. Therefore, the present study shows that HAV is more resistant to UV-C radiation than MNV-1. These data suggest that low doses of UV-C light on food contact surfaces could be effective to inactivate human NoV and HAV in restaurant, institutional, and industrial kitchens and facilities.

  19. Ultraviolet Light (UV) Inactivation of Porcine Parvovirus in Liquid Plasma and Effect of UV Irradiated Spray Dried Porcine Plasma on Performance of Weaned Pigs

    PubMed Central

    Polo, Javier; Rodríguez, Carmen; Ródenas, Jesús; Russell, Louis E.; Campbell, Joy M.; Crenshaw, Joe D.; Torrallardona, David; Pujols, Joan

    2015-01-01

    A novel ultraviolet light irradiation (UV-C, 254 nm) process was designed as an additional safety feature for manufacturing of spray dried porcine plasma (SDPP). In Exp. 1, three 10-L batches of bovine plasma were inoculated with 105.2±0.12 tissue culture infectious dose 50 (TCID50) of porcine parvovirus (PPV) per mL of plasma and subjected to UV-C ranging from 0 to 9180 J/L. No viable PPV was detected in bovine plasma by micro-titer assay in SK6 cell culture after UV-C at 2295 J/L. In Exp. 2, porcine plasma was subjected to UV-C (3672 J/L), then spray dried and mixed in complete mash diets. Diets were a control without SDPP (Control), UV-C SDPP either at 3% (UVSDPP3) or 6% (UVSDPP6) and non-UV-C SDPP at 3% (SDPP3) or 6% (SDPP6). Diets were fed ad libitum to 320 weaned pigs (26 d of age; 16 pens/diet; 4 pigs/pen) for 14 d after weaning and a common diet was fed d 15 to 28. During d 0 to 14, pigs fed UVSDPP3, UVSDPP6, or SDPP6 had higher (P < 0.05) weight gain and feed intake than control. During d 0 to 28, pigs fed UVSDPP3 and UVSDPP6 had higher (P < 0.05) weight gain and feed intake than control and SDPP3, and SDPP6 had higher (P < 0.05) feed intake than control. Also, pigs fed UVSDPP had higher (P < 0.05) weight gain than pigs fed SDPP. In conclusion, UV-C inactivated PPV in liquid plasma and UVSDPP used in pig feed had no detrimental effects on pig performance. PMID:26171968

  20. Ultraviolet Light (UV) Inactivation of Porcine Parvovirus in Liquid Plasma and Effect of UV Irradiated Spray Dried Porcine Plasma on Performance of Weaned Pigs.

    PubMed

    Polo, Javier; Rodríguez, Carmen; Ródenas, Jesús; Russell, Louis E; Campbell, Joy M; Crenshaw, Joe D; Torrallardona, David; Pujols, Joan

    2015-01-01

    A novel ultraviolet light irradiation (UV-C, 254 nm) process was designed as an additional safety feature for manufacturing of spray dried porcine plasma (SDPP). In Exp. 1, three 10-L batches of bovine plasma were inoculated with 10(5.2 ± 0.12) tissue culture infectious dose 50 (TCID50) of porcine parvovirus (PPV) per mL of plasma and subjected to UV-C ranging from 0 to 9180 J/L. No viable PPV was detected in bovine plasma by micro-titer assay in SK6 cell culture after UV-C at 2295 J/L. In Exp. 2, porcine plasma was subjected to UV-C (3672 J/L), then spray dried and mixed in complete mash diets. Diets were a control without SDPP (Control), UV-C SDPP either at 3% (UVSDPP3) or 6% (UVSDPP6) and non-UV-C SDPP at 3% (SDPP3) or 6% (SDPP6). Diets were fed ad libitum to 320 weaned pigs (26 d of age; 16 pens/diet; 4 pigs/pen) for 14 d after weaning and a common diet was fed d 15 to 28. During d 0 to 14, pigs fed UVSDPP3, UVSDPP6, or SDPP6 had higher (P < 0.05) weight gain and feed intake than control. During d 0 to 28, pigs fed UVSDPP3 and UVSDPP6 had higher (P < 0.05) weight gain and feed intake than control and SDPP3, and SDPP6 had higher (P < 0.05) feed intake than control. Also, pigs fed UVSDPP had higher (P < 0.05) weight gain than pigs fed SDPP. In conclusion, UV-C inactivated PPV in liquid plasma and UVSDPP used in pig feed had no detrimental effects on pig performance.

  1. Dynamic sorption of ionizable organic compounds (IOCs) and xylene from water using geomaterial-modified montmorillonite.

    PubMed

    Houari, M; Hamdi, B; Brendle, J; Bouras, O; Bollinger, J C; Baudu, M

    2007-08-25

    Adsorption of phenols and xylene onto composite material, Na-montmorillonite, activated carbon, cement and water mixture, 70%, 7%, 7% and 16% (w/w/w/w), respectively, was studied at pH values of 5.15, 4.55, 5.2 and 4.9, respectively, of phenol, 2-CP, 2-NP and xylene. Equilibrium isotherms and fixed-bed column studies were undertaken to evaluate the performance of clay-active coal-coated cement (CACC) in removing phenols from aqueous solution. Investigations revealed CACC to be a very efficient media for the removal of phenols from water. The suitability of the Langmuir adsorption model to the equilibrium data was investigated for all phenols-adsorbent systems. At the maximum sorption capacity of the composite material it was found that the uptake (mg phenols/g) of phenols increased in the order 2-CP>2-NP>phenol approximately m-xylene as do their solubilities. The LUB design approach was used to determine the equivalent length of unused bed. The lower LUB values imply a better utilization of CACC composite. A model, which considered the effect of axial dispersion, was successfully used to describe the fixed-bed operation, the axial dispersion coefficient increased significantly with solubility.

  2. Effects of molecular weight of grafted hyaluronic acid on wear initiation.

    PubMed

    Lee, Dong Woog; Banquy, Xavier; Das, Saurabh; Cadirov, Nicholas; Jay, Gregory; Israelachvili, Jacob

    2014-05-01

    Hyaluronic acid (HA) of different molecular weights (Mw) was grafted onto mica surfaces to study the effects of Mw on the conformation and wear protection properties of a grafted HA (gHA) layer in lubricin (LUB) and bovine synovial fluid (BSF) using a surface forces apparatus. The Mw of gHA had significant effects on the wear pressure (Pw), at which point the wear initiates. Increasing the gHA Mw from 51 to 2590kDa increased Pw from 4 to 8MPa in LUB and from 15 to 31MPa in BSF. The 2590kDa gHA in BSF had the best wear protection (Pw∼31MPa), even though it exhibited the highest friction coefficient (μ∼0.35), indicating that a low μ does not necessarily result in good wear protection, as is often assumed. The normal force profile indicated that BSF confines the gHA structure, making it polymer brush-like, commonly considered as an excellent structure for boundary lubrication.

  3. Geopolymers in Construction / Zastosowanie Geopolimerów W Budownictwie

    NASA Astrophysics Data System (ADS)

    Błaszczyński, Tomasz Z.; Król, Maciej R.

    2015-03-01

    Within the framework of quests of supplementary and "healthier" binders to the production of concrete followed the development of geopolymers in construction. However the practical application of these materials is still very limited. The production of each ton of cement introduces one ton of CO2 into the atmosphere. According to various estimations, the synthesis of geopolymers absorbs 2-3 times less energy than the Portland cement and causes a generation of 4-8 times less of CO2. Geopolymeric concretes possess a high compressive strength, very small shrinkage and small creep, and they possess a high resistance to acid and sulphate corrosion. These concretes are also resistant to carbonate corrosion and possess a very high fire resistance and also a high resistance to UV radiation. W ramach poszukiwania zastępczych i "zdrowszych" spoiw do produkcji betonu nastąpił rozwój geopolimerów w budownictwie. Jednakże praktyczne zastosowanie tych materiałów jest jeszcze nadal bardzo ograniczone. Produkcja każdej tony cementu wprowadza do atmosfery tonę CO2. Według różnych szacunków, synteza geopolimerów pochłania 2-3 razy mniej energii, niż cementu portlandzkiego oraz powoduje wydzielenie 4-8 razy mniejszej ilości CO2. Do tego betony geopolimerowe posiadają wysoką wytrzymałość na ściskanie, bardzo mały skurcz i małe pełzanie oraz dają wysoką odporność na korozję kwasową i siarczanową. Betony te są także odporne na korozję węglanową i posiadają bardzo wysoką odporność ogniową, a także wysoką odporność na promieniowanie UV.

  4. Visible light neutralizes the effect produced by ultraviolet radiation in proteins.

    PubMed

    Espinoza, J Horacio; Mercado-Uribe, Hilda

    2017-02-01

    The damage produced by UV-C radiation (100-280nm) in organisms and cells is a well known fact. The main reactions of proteins to UV-C radiation consist in the alteration of their secondary structures, exposure of hydrophobic residues, unfolding and aggregation. Furthermore, it has been found that electromagnetic radiation of lower energy (visible light, where wavelengths are between 400 and 750nm) also induces different disturbances in biomolecules. For instance, it has been observed that blue visible light from emitting diodes (LEDs) produces severe damage in murine cone photoreceptor-derived cells, and it can be even more harmful for some organisms than UV radiation. Recently, it has been found that the exposure of proteins to green and red light produces conformational changes, considerably increasing their cohesion enthalpies. This is presumably due to the strengthening of the hydrogen bonds and the formation of new ones. Therefore, it seems that visible light acts contrary to what it is observed for UV-C: instead of unfolding the proteins it folds them further, halting the damage produced by UV-C. This can be understood if we consider the modification of the folding energy-landscape; visible light induces the descent of the proteins into deeper states impeding the unfolding produced by UV-C.

  5. Biological and photochemical degradation of cytostatic drugs under laboratory conditions.

    PubMed

    Franquet-Griell, Helena; Medina, Andrés; Sans, Carme; Lacorte, Silvia

    2017-02-05

    Cytostatic drugs, used in chemotherapy, have emerged as new environmental contaminants due to their recurrent presence in surface waters and genotoxic effects. Yet, their degradability and environmental fate is largely unknown. The aim of this study was to determine the degradation kinetics of 16 cytostatic drugs, prioritized according to their usage and occurrence in hospital and wastewater treatment plants (WWTP) effluents, through the following laboratory scale processes: hydrolysis, aerobic biodegradation, UV-C photolysis, UV-C/H2O2 and simulated solar radiation. Some drugs were unstable in milli-Q water (vincristine, vinblastine, daunorubicin, doxorubicin and irinotecan); others were photodegraded under UV-C light (melphalan and etoposide) but some others were found to be recalcitrant to biodegradation and/or UV-C, making necessary the use of advanced oxidation processes (AOPs) such as UV-C/H2O2 for complete elimination (cytarabine, ifosfamide and cyclophosphamide). Finally, radiation in a solar box was used to simulate the fate of cytostatic drugs in surface waters under natural radiation and complete removal was not observed for any drug. The degradation process was monitored using liquid chromatography coupled to high resolution mass spectrometry and pseudo-first order kinetic degradation constants were calculated. This study provides new data on the degradability of cytostatic compounds in water, thus contributing to the existing knowledge on their fate and risk in the environment.

  6. Arsenite Oxidation by Ultrasound Combined with Ultraviolet in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Lee, Seban; Cui, Mingcan; Na, Seungmin; Khim, Jeehyeong

    2012-07-01

    This study aims to investigate the sonophotochemical oxidation of As(III) to As(V) using the synergistic effect of a strong oxidant that is a hydroxyl radical. The rate constant, k, in the ultrasound (US), ultraviolet C (UV-C), and US/UV-C processes was found to be 1.65×10-4, 3.65×10-4, and 8.31×10-4 s-1 respectively. The highest power densities were 21.26, in the case of UV-C, and 26.27 W L-1 for US. Finally, the combined US/UV-C system gave a synergistic effect value of 1.57. This was similar to the synergistic effect value of the production of hydroxyl radicals with potassium iodide (KI) solution using the same combined process. Moreover, the reaction rate of the As(III) oxidation to As(V) in the US/UV-C process increased with a gradual increase in pH. The reaction rates were found to be 1.88×10-3 at pH 11 and 8.31×10-4 s-1 at pH 7. Therefore, the reaction rate at pH 11 was 2.3 times faster than that at pH 7.

  7. Multiomics in Grape Berry Skin Revealed Specific Induction of the Stilbene Synthetic Pathway by Ultraviolet-C Irradiation1

    PubMed Central

    Suzuki, Mami; Nakabayashi, Ryo; Ogata, Yoshiyuki; Sakurai, Nozomu; Tokimatsu, Toshiaki; Goto, Susumu; Suzuki, Makoto; Jasinski, Michal; Martinoia, Enrico; Otagaki, Shungo; Matsumoto, Shogo; Saito, Kazuki; Shiratake, Katsuhiro

    2015-01-01

    Grape (Vitis vinifera) accumulates various polyphenolic compounds, which protect against environmental stresses, including ultraviolet-C (UV-C) light and pathogens. In this study, we looked at the transcriptome and metabolome in grape berry skin after UV-C irradiation, which demonstrated the effectiveness of omics approaches to clarify important traits of grape. We performed transcriptome analysis using a genome-wide microarray, which revealed 238 genes up-regulated more than 5-fold by UV-C light. Enrichment analysis of Gene Ontology terms showed that genes encoding stilbene synthase, a key enzyme for resveratrol synthesis, were enriched in the up-regulated genes. We performed metabolome analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry, and 2,012 metabolite peaks, including unidentified peaks, were detected. Principal component analysis using the peaks showed that only one metabolite peak, identified as resveratrol, was highly induced by UV-C light. We updated the metabolic pathway map of grape in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and in the KaPPA-View 4 KEGG system, then projected the transcriptome and metabolome data on a metabolic pathway map. The map showed specific induction of the resveratrol synthetic pathway by UV-C light. Our results showed that multiomics is a powerful tool to elucidate the accumulation mechanisms of secondary metabolites, and updated systems, such as KEGG and KaPPA-View 4 KEGG for grape, can support such studies. PMID:25761715

  8. Ultraviolet-C-induced apoptosis protected by 635-nm laser irradiation in human gingival fibroblasts.

    PubMed

    Lim, Wonbong; Ko, Mikyung; Lee, Sungga; Kim, Inae; Jung, Mina; Kim, Okjoon; Cho, Seonghoun; Yang, Kyuho; Choi, Namki; Kim, Sunmi; Choi, Hongran

    2008-06-01

    The purpose of this study was to examine the protection afforded by 635-nm irradiation against ultraviolet (UV)-C-induced apoptosis in primary human gingival fibroblasts (hGFs). UV irradiation is known to cause photoaging and cellular apoptosis of skin cells and is considered to be one of the leading causes of skin carcinogenesis. To induce apoptosis, UV-C (100 mJ/cm2) was used to irradiate hGFs. To protect them from apoptosis, pretreatment with 635-nm irradiation was performed for 1 h immediately after cell plating 36 or 48 h before UV-C irradiation. The light source used for irradiation was a continuous-wave 635-nm LED laser emitting at 1 mW/cm2. Experimental samples were selected 24 h after UV-C irradiation. To measure the numbers of apoptotic cells, MTT assay and flow cytometric analyses were performed. For histomorphologic findings, Diff-Quick staining was carried out. Also, the activities and mRNA expression of caspase-3, caspase-8, and caspase-9 were measured. In the present study, the number of apoptotic cells declined in the cells that were pretreated with 635-nm light irradiation in a time-dependent manner. In addition, the activities and mRNA expression of caspase-3, caspase-8, and caspase-9 were significantly recovered by pretreatment with 635-nm irradiation. These results suggest that 635-nm visible light irradiation may be used as a protective tool to prevent UV-C-induced apoptosis.

  9. Large area radiation source for water and wastewater treatment

    NASA Astrophysics Data System (ADS)

    Mueller, Michael T.; Lee, Seungwoo; Kloba, Anthony; Hellmer, Ronald; Kumar, Nalin; Eaton, Mark; Rambo, Charlotte; Pillai, Suresh

    2011-06-01

    There is a strong desire for processes that improve the safety of water supplies and that minimize disinfection byproducts. Stellarray is developing mercury-free next-generation x-ray and UV-C radiation sources in flat-panel and pipe form factors for water and wastewater treatment applications. These new radiation sources are designed to sterilize sludge and effluent, and to enable new treatment approaches to emerging environmental concerns such as the accumulation of estrogenic compounds in water. Our UV-C source, based on cathodoluminescent technology, differs significantly from traditional disinfection approaches using mercury arc lamps or UV LEDs. Our sources accelerate electrons across a vacuum gap, converting their energy into UV-C when striking a phosphor, or x-rays when striking a metallic anode target. Stellarray's large area radiation sources for wastewater treatment allow matching of the radiation source area to the sterilization target area for maximum coverage and improved efficiency.

  10. Analysis of ultraviolet exposure effects on the surface properties of epoxy/graphene nanocomposite films on Mylar substrate

    NASA Astrophysics Data System (ADS)

    Clausi, Marialaura; Santonicola, M. Gabriella; Schirone, Luigi; Laurenzi, Susanna

    2017-05-01

    In this paper, we present a study of the effects generated by exposure to UV-C radiation on nanocomposite films made of graphene nanoplatelets dispersed in an epoxy matrix. The nanocomposite films, at different nanoparticle size and concentration, were fabricated on Mylar substrate using the spin coating process. The effects of UV-C irradiation on the surface hydrophobicity and on the electrical properties of the epoxy/graphene films were investigated using contact angle measurements and electrical impedance spectroscopy, respectively. According to our results, the UV-C irradiation selectively degrades the polymer matrix of the nanocomposite films, giving rise to more conductive and hydrophobic layers due to exposure of the graphene component of the composite material. The results presented here have important implications in the design of spacecraft components and structures destined for long-term space missions.

  11. Effects of ultraviolet light on biogenic amines and other quality indicators of chicken meat during refrigerated storage.

    PubMed

    Lázaro, C A; Conte-Júnior, C A; Monteiro, M L G; Canto, A C V S; Costa-Lima, B R C; Mano, S B; Franco, R M

    2014-09-01

    Radiation from UV-C has been demonstrated as a potential surface decontamination method in addition to several advantages over regular sanitation methods. However, UV-C radiation possibly affects the physicochemical properties of meat products. To determine the optimum exposure time for bacterial reduction, 39 chicken breasts, inoculated with a pool of Salmonella spp., were submitted to 3 levels of UV-C intensities (0.62, 1.13, and 1.95 mW/cm²) for up to 120 s. After the optimum exposure time of 90 s was determined, changes in the biogenic amines, total aerobic mesophilic bacteria, Enterobacteriaceae, lipid oxidation, pH, and instrumental color were evaluated in 84 chicken breasts that were irradiated (0.62, 1.13, and 1.95 mW/cm²) and stored at 4°C for 9 d. The groups treated with UV-C radiation exhibited an increase in tyramine, cadaverine, and putrescine contents (P < 0.05). The highest UV-C intensity (1.95 mW/cm²) promoted a decrease in the initial bacterial load, and extended the lag phase and the shelf life. The groups irradiated with 1.13 and 1.95 mW/cm² exhibited a more stable b* value than the other groups; similar trends for L*, a*, pH, and TBA reactive substance values were observed among all groups. The UV-C light was demonstrated to be an efficient alternative technology to improve the bacteriological quality of chicken meat without negatively affecting the physical and chemical parameters of chicken breast meat. Nonetheless, the increases on the biogenic amines content should be considered as an effect of the UV processing and not as an indicator of bacterial growth. © 2014 Poultry Science Association Inc.

  12. Ultraviolet-C light inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on organic fruit surfaces.

    PubMed

    Adhikari, Achyut; Syamaladevi, Roopesh M; Killinger, Karen; Sablani, Shyam S

    2015-10-01

    This study investigated UV-C light inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on the surface of organic apples, pears, strawberries, red raspberries and cantaloupes. Fruit surfaces spot inoculated with cocktail strains of E. coli O157:H7 and L. monocytogenes were exposed to UV-C doses up to 11.9 kJ/m(2) at 23 °C. Fruit surface roughness, contact angle, and surface energy were determined and correlated with UV-C inactivation kinetics. Results demonstrate that bacterial pathogens on fruit surfaces respond differently to UV-C light exposure. E. coli O157:H7 on apple and pear surfaces was reduced by 2.9 and 2.1 log CFU/g, respectively when treated with UV-C light at 0.92 kJ/m(2) (60s). For berries, the reduction of E. coli O157:H7 was lower with 2.0 (strawberry) and 1.1 log CFU/g (raspberry) achieved after UV-C treatment at 7.2 kJ/m(2) (8 min) and at 10.5 kJ/m(2) (12 min), respectively. Similarly, a higher reduction of L. monocytogenes was observed on apple (1.6 log CFU/g at 3.75 kJ/m(2)) and pear (1.7 log CFU/g at 11.9 kJ/m(2)) surfaces compared to cantaloupe and strawberry surfaces (both achieved 1.0 log CFU/g at 11.9 kJ/m(2)). L. monocytogenes shows more resistance than E. coli O157:H7. Inactivation rates were higher for less hydrophobic fruits with smoother surfaces (apples and pears) as compared to fruits with rougher surfaces (cantaloupe, strawberry and raspberry). Findings indicate that UV-C light can effectively reduce E. coli O157:H7 and L. monocytogenes populations on fruit and berry surfaces. However, surface characteristics influence the efficacy of UV-C light.

  13. Rapid hospital room decontamination using ultraviolet (UV) light with a nanostructured UV-reflective wall coating.

    PubMed

    Rutala, William A; Gergen, Maria F; Tande, Brian M; Weber, David J

    2013-05-01

    We tested the ability of an ultraviolet C (UV-C)-reflective wall coating to reduce the time necessary to decontaminate a room using a UV-C-emitting device (Tru-D SmartUVC). The reflective wall coating provided the following time reductions for decontamination: for methicillin-resistant Staphylococcus aureus, from 25 minutes 13 seconds to 5 minutes 3 seconds ([Formula: see text]), and for Clostridium difficile spores, from 43 minutes 42 seconds to 9 minutes 24 seconds ([Formula: see text]).

  14. Bactericidal efficiency and mode of action: a comparative study of photochemistry and photocatalysis.

    PubMed

    Pigeot-Rémy, S; Simonet, F; Atlan, D; Lazzaroni, J C; Guillard, C

    2012-06-15

    In order to compare the disinfection potential of photocatalysis and photochemistry, the effects of these two processes on bacteria in water were investigated under exposure to UV-A and UV-C. The well-known bacterial model Escherichia coli (E. coli) was used as the experimental organism. Radiation exposure was produced with an HPK 125 W lamp and the standard TiO(2) Degussa P-25 was used as the photocatalyst. Firstly, the impact of photocatalysis and photochemistry on the cultivability of bacterial cells was investigated. UV-A radiation resulted in low deleterious effects on bacterial cultivability but generated colonies of size smaller than average. UV-C photocatalysis demonstrated a greater efficiency than UV-A photocatalysis in altering bacterial cultivability. From a cultivability point of view only, UV-C radiation appeared to be the most deleterious treatment. A rapid epifluorescence staining method using the LIVE/DEAD Bacterial Viability Kit was then used to assess the modifications in bacterial membrane permeability. UV-A radiation did not induce any alterations in bacterial permeability for 420 min of exposure whereas only a few minutes of exposure to UV-C radiation, with the same total radiance intensity, induced total loss of permeability. Moreover, after 20 and 60 min of exposure to UV-C and UV-A photocatalysis respectively, all bacteria lost their membrane integrity, suggesting that the bacterial envelope is the primary target of reactive oxygen species (ROS) generated at the surface of TiO(2) photocatalyst. These results were further confirmed by the formation of malondialdehyde (MDA) during the photocatalytic inactivation of bacterial cells and suggest that destruction of the cell envelope is a key step in the bactericidal action of photocatalysis. The oxidation of bacterial membrane lipids was also correlated with the monitoring of carboxylic acids, which can be considered as representatives of lipid peroxidation by-products. Finally, damages to

  15. Transcriptomic analysis of grape (Vitis vinifera L.) leaves after exposure to ultraviolet C irradiation.

    PubMed

    Xi, Huifen; Ma, Ling; Liu, Guotian; Wang, Nian; Wang, Junfang; Wang, Lina; Dai, Zhanwu; Li, Shaohua; Wang, Lijun

    2014-01-01

    Only a small amount of solar ultraviolet C (UV-C) radiation reaches the Earth's surface. This is because of the filtering effects of the stratospheric ozone layer. Artificial UV-C irradiation is used on leaves and fruits to stimulate different biological processes in plants. Grapes are a major fruit crop and are grown in many parts of the world. Research has shown that UV-C irradiation induces the biosynthesis of phenols in grape leaves. However, few studies have analyzed the overall changes in gene expression in grape leaves exposed to UV-C. In the present study, transcriptional responses were investigated in grape (Vitis vinifera L.) leaves before and after exposure to UV-C irradiation (6 W·m-2 for 10 min) using an Affymetrix Vitis vinifera (Grape) Genome Array (15,700 transcripts). A total of 5274 differentially expressed probe sets were defined, including 3564 (67.58%) probe sets that appeared at both 6 and 12 h after exposure to UV-C irradiation but not before exposure. A total of 468 (8.87%) probe sets and 1242 (23.55%) probe sets were specifically expressed at these times. The probe sets were associated with a large number of important traits and biological pathways, including cell rescue (i.e., antioxidant enzymes), protein fate (i.e., HSPs), primary and secondary metabolism, and transcription factors. Interestingly, some of the genes involved in secondary metabolism, such as stilbene synthase, responded intensely to irradiation. Some of the MYB and WRKY family transcription factors, such as VvMYBPA1, VvMYB14, VvMYB4, WRKY57-like, and WRKY 65, were also strongly up-regulated (about 100 to 200 fold). UV-C irridiation has an important role in some biology processes, especially cell rescue, protein fate, secondary metabolism, and regulation of transcription.These results opened up ways of exploring the molecular mechanisms underlying the effects of UV-C irradiation on grape leaves and have great implications for further studies.

  16. Transcriptomic Analysis of Grape (Vitis vinifera L.) Leaves after Exposure to Ultraviolet C Irradiation

    PubMed Central

    Xi, Huifen; Ma, Ling; Liu, Guotian; Wang, Nian; Wang, Junfang; Wang, Lina; Dai, Zhanwu; Li, Shaohua; Wang, Lijun

    2014-01-01

    Background Only a small amount of solar ultraviolet C (UV-C) radiation reaches the Earth's surface. This is because of the filtering effects of the stratospheric ozone layer. Artificial UV-C irradiation is used on leaves and fruits to stimulate different biological processes in plants. Grapes are a major fruit crop and are grown in many parts of the world. Research has shown that UV-C irradiation induces the biosynthesis of phenols in grape leaves. However, few studies have analyzed the overall changes in gene expression in grape leaves exposed to UV-C. Methodology/Principal Findings In the present study, transcriptional responses were investigated in grape (Vitis vinifera L.) leaves before and after exposure to UV-C irradiation (6 W·m−2 for 10 min) using an Affymetrix Vitis vinifera (Grape) Genome Array (15,700 transcripts). A total of 5274 differentially expressed probe sets were defined, including 3564 (67.58%) probe sets that appeared at both 6 and 12 h after exposure to UV-C irradiation but not before exposure. A total of 468 (8.87%) probe sets and 1242 (23.55%) probe sets were specifically expressed at these times. The probe sets were associated with a large number of important traits and biological pathways, including cell rescue (i.e., antioxidant enzymes), protein fate (i.e., HSPs), primary and secondary metabolism, and transcription factors. Interestingly, some of the genes involved in secondary metabolism, such as stilbene synthase, responded intensely to irradiation. Some of the MYB and WRKY family transcription factors, such as VvMYBPA1, VvMYB14, VvMYB4, WRKY57-like, and WRKY 65, were also strongly up-regulated (about 100 to 200 fold). Conclusions UV-C irridiation has an important role in some biology processes, especially cell rescue, protein fate, secondary metabolism, and regulation of transcription.These results opened up ways of exploring the molecular mechanisms underlying the effects of UV-C irradiation on grape leaves and have great

  17. Magnetic properties of Ho1- x Lu x B12 solid solutions

    NASA Astrophysics Data System (ADS)

    Gabáni, S.; Gaz̆o, E.; Pristás̆, G.; Takác̆ová, I.; Flachbart, K.; Shitsevalova, N.; Siemensmeyer, K.; Sluchanko, N.

    2013-05-01

    Magnetic properties of the geometrically frustrated antiferromagnet HoB12 (with T N = 7.4 K) modified by substitution of magnetic Ho atoms through non-magnetic Lu ones are presented and discussed. In this case, in Ho1- x Lu x B12 solid solutions, both chemical pressure resulting from different Lu3+ and Ho3+ radii and magnetic dilution take place with increasing Lu content ( x) that change properties of the system. The received results show strong indication for the existence of a quantum critical point near x = 0.9, which separates the region of magnetic order (starting with HoB12 for x = 0) and the nonmagnetic region (ending with superconducting LuB12 for x = 1).

  18. Applying Active Thermography in the Non-Destructive Investigation of Historical Objects/ Zastosowanie Termowizji Aktywnej Do Badań Nieniszczących Obiektów Zabytkowych

    NASA Astrophysics Data System (ADS)

    Nowak, Henryk; Noszczyk, Paweł

    2015-06-01

    The paper pertains to the problem of historic building envelope investigation with the use of active thermography. Mainly emphasized is its application in the detection of different material inclusions in historic walls. Examples of active thermography in the reflective mode application and a description of the experimental investigation has been shown on a wall model with the inclusion of materials with significantly different thermal conductivity and heat capacity, i.e. styrofoam, steel and granite. Thermograms received for every kind of envelope are compared and analyzed. Finally, the summary and conclusion is shown along with the prospects of development and practical application of this kind of investigation in historic construction. Artykuł porusza zagadnienie wykorzystania termografii aktywnej w nieniszczących badaniach przegród budowlanych w obiektach zabytkowych. Opisane zostały potencjalne możliwości stosowania badań, takie jak: lokalizacja rodzaju zbrojenia w elementach żelbetowych, detekcja pustek powietrznych i przemurowań w przegrodach, określanie rodzaju struktury materiałowej zabytkowej przegrody lub identyfikacja ukrytych pod wartwą tynku lub farby malowideł ściennych. W pracy opisano przebieg doświadczenia z wykorzystaniem termografii aktywnej w trybie odbiciowym. W badanych modelach przegród, wewnętrzne wtrącenia materiałowe zostały wykonane ze styropianu XPS, stali oraz granitu. Otrzymane wyniki opisano za pomocą kontrastów temperaturowych (absolutny i standardowy) oraz zinterptretowano otrzymane termogramy. W podsumowaniu przedstawiono wnioski z przeprowadzonego doświadczenia. W artykule potwierdzono przydatność nieniszczących badań za pomocą termowizji aktywnej do detekcji przypowierzchniowych wtrąceń materiałowych.

  19. Organizational, Design and Technology Issues in the Process of Protection of Underground Historic Monuments/ Probelmy Organizacyjne, Projektowe I Technologiczne W Procesie Zabezpieczania Zabytkowych Podziemi

    NASA Astrophysics Data System (ADS)

    Bartos, Maciej; Chmura, Janusz; Wieja, Tomasz

    2015-06-01

    Underground historic monuments constitute the immanent part of the cultural and natural heritage. Protecting and opening underground historic objects, as the investment aim, is a process of renewed actions taken in objects that are degraded or out of order, contributing to improvement of quality of life of residents, restoring new functions, reconstruction of social bonds. Underground historic buildings should be subjected to processes of protecting and revitalization. Determining the state of a given building and the adjustability of its spatial structure to introducing a new function or making it available to tourist purposes are the basis for these actions. Zabytkowe podziemia stanowią immanentną część dziedzictwa kulturowego i przyrodniczego. Zabezpieczenie i udostępnienie podziemnych obiektów zabytkowych, jako zamierzenia inwestycyjnego, jest procesem ponownych działań podejmowanych w zdegradowanych lub nieczynnych obiektach, przyczyniając się do poprawy jakości życia mieszkańców, przywrócenia nowych funkcji, odbudowy więzi społecznych. Podziemne obiekty zabytkowe powinny być poddane procesom zabezpieczenia i rewitalizacji. Podstawą tych działań jest określenie stanu zachowania danego obiektu oraz możliwości dostosowania jego struktury przestrzennej do wprowadzenia nowej funkcji lub udostępnienia w celach turystycznych. Zasadniczym problemem jest, na etapie organizacyjnym, brak jednolitego ustawodawstwa prawnego dotyczącego procesu zabezpieczania podziemnych obiektów. W artykule przedstawiamy zasadnicze problemy organizacyjne, projektowe i technologiczne występujące w procesie inwestycyjnym zabezpieczania podziemnych obiektów zabytkowych. Efektem tych prac jest transformacja podziemnego obiektu w strukturę przestrzenną o nowej funkcji użytkowej.

  20. Advanced oxidation of a commercially important nonionic surfactant: investigation of degradation products and toxicity.

    PubMed

    Karci, Akin; Arslan-Alaton, Idil; Bekbolet, Miray

    2013-12-15

    The evolution of degradation products and changes in acute toxicity during advanced oxidation of the nonionic surfactant nonylphenol decaethoxylate (NP-10) with the H2O2/UV-C and photo-Fenton processes were investigated. H2O2/UV-C and photo-Fenton processes ensured complete removal of NP-10, which was accompanied by the generation of polyethylene glycols with 3-8 ethoxy units. Formation of aldehydes and low carbon carboxylic acids was evidenced. According to the acute toxicity tests carried out with Vibrio fischeri, degradation products being more inhibitory than the original NP-10 solution were formed after the H2O2/UV-C process, whereas the photo-Fenton process appeared to be toxicologically safer since acute toxicity did not increase relative to the original NP-10 solution after treatment. Temporal evolution of the acute toxicity was strongly correlated with the identified carboxylic acids being formed during the application of H2O2/UV-C and photo-Fenton processes.

  1. Demonstrating the Influence of UV Rays on Living Things.

    ERIC Educational Resources Information Center

    Morimoto, Kouichi

    2002-01-01

    Describes an experiment that introduces students to the different types of UV rays and their effects on living things by using appropriate teaching materials and equipment. Demonstrates the effects of exposure to UV-B (fluorescent) and UV-C (germicidal) lamps by using bananas, duckweed, and the fruit fly. (Contains 14 references.) (Author/YDS)

  2. Comparison of microbiological loads and physicochemical properties of raw milk treated with single-/multiple-cycle high hydrostatic pressure and ultraviolet-C light

    NASA Astrophysics Data System (ADS)

    Hu, Guanglan; Zheng, Yuanrong; Wang, Danfeng; Zha, Baoping; Liu, Zhenmin; Deng, Yun

    2015-07-01

    The effects of ultraviolet-C radiation (UV-C, 11.8 W/m2), single-cycle and multiple-cycle high hydrostatic pressure (HHP at 200, 400 or 600 MPa) on microbial load and physicochemical quality of raw milk were evaluated. Reductions of aerobic plate count (APC) and coliform count (CC) by HHP were more than 99.9% and 98.7%, respectively. Inactivation efficiency of microorganisms increased with pressure level. At the same pressure level, two-cycle treatments caused lower APC, but did not show CC differences compared with single-cycle treatments. Reductions of APC and CC by UV-C were somewhere between 200 MPa and 400/600 MPa. Both HHP and UV-C significantly decreased lightness and increased pH, but did not change soluble solids content and thiobarbituric acid-reactive substances' values. Two 2.5 min cycles of HHP at 600 MPa caused minimum APC and CC, and maximum conductivity. Compared with HHP, UV-C markedly increased protein oxidation and reduced darkening.

  3. Suppressive action of near-ultraviolet light on ouabain resistance induced by far-ultraviolet light in Chinese hamster cells.

    PubMed

    Suzuki, F; Han, A; Hill, C K; Elkind, M M

    1983-03-01

    The interaction between ultraviolet light (UV-C) from germicidal lamps (254 nm) and near-ultraviolet light (UV-B) from Westinghouse Sun Lamps (290-345 nm) was studied in Chinese hamster V79 cells by measuring the effectiveness of combined exposures to induce the resistance to 6-thioguanine or to ouabain. Exposure of cells to a conditioning dose of UV-B (approximately 70% survival) results in significant inhibition of the induction by UV-C of cells resistant to ouabain. The inhibition is lost, however, if cells are incubated for 12 h at 37 degrees C between exposures. Inhibition is also observed when cells are preirradiated with a dose of UV-B filtered with polystyrene (300-345 nm) which, in itself, has no effect on cell killing. Conditioning exposures of unfiltered or filtered UV-B light do not inhibit the induction of 6-thioguanine-resistant cells by UV-C light, and the effects of UV-B and UV-C light are largely independent.

  4. Inactivation of Staphylococcus saprophyticus in chicken meat and exudate using high pressure processing, gamma radiation, and ultraviolet light

    USDA-ARS?s Scientific Manuscript database

    Stapylococcus saprophyticus is a common contaminant in foods and causes urinary tract infections in humans. Three nonthermal food safety intervention technologies used to improve the safety foods include high pressure processing (HPP), ionizing (gamma) radiation (GR), and ultraviolet light (UV-C). A...

  5. Application of ultraviolet-C light on oranges for the inactivation of postharvest wound pathogens

    USDA-ARS?s Scientific Manuscript database

    Germicidal effects of ultraviolet-C (UV-C) light on the postharvest wound pathogens of citrus fruits namely Penicillium digitatum and Penicillium italicum were investigated. P. digitatum and P. italicum spores were inoculated (4.00 – 4.50 log cfu/ orange) onto Washington navel oranges (Citrus sinens...

  6. Demonstrating the Influence of UV Rays on Living Things.

    ERIC Educational Resources Information Center

    Morimoto, Kouichi

    2002-01-01

    Describes an experiment that introduces students to the different types of UV rays and their effects on living things by using appropriate teaching materials and equipment. Demonstrates the effects of exposure to UV-B (fluorescent) and UV-C (germicidal) lamps by using bananas, duckweed, and the fruit fly. (Contains 14 references.) (Author/YDS)

  7. Multiple transport systems mediate virus-induced acquired resistance to oxidative stress

    USDA-ARS?s Scientific Manuscript database

    In this paper, we report the phenomenon of acquired cross-tolerance to oxidative (UV-C and H2O2) stress in Nicotiana benthamiana plants infected with Potato virus X (PVX) and investigate the functional expression of transport systems in mediating this phenomenon. By combining multiple approaches, we...

  8. Inactivation of avirulent Yersinia pestis on food and food contact surfaces by ultraviolet light and freezing

    USDA-ARS?s Scientific Manuscript database

    Yersinia pestis, the causative agent of plague, can occasionally be contracted as a naso-pharangeal or gastrointestinal illness through consumption of contaminated meat. In this study, the use of 254 nm ultraviolet light (UV-C) to inactivate a multi-isolate cocktail of avirulent Y. pestis on food an...

  9. Studies on PVP hydrogel-supported luminol chemiluminescence: 1. Kinetic and mechanistic aspects using multivariate factorial analysis.

    PubMed

    Bastos, Erick Leite; Ciscato, Luiz Francisco Monteiro Leite; Bartoloni, Fernando Heering; Catalani, Luiz Henrique; Baader, Wilhelm Josef

    2007-01-01

    The chemiluminescent oxidation of luminol by hydrogen peroxide in the presence of hemin is revisited in an UV-C cross-linked PVP hydrogel. Chemiluminescence properties such as initial light intensity (I(0)), area of emission (S) and observed rate constants (k(obs)) are studied, varying the concentration of all reactants using a multivariate factorial approach.

  10. Radiation Effects on Cyclic AMP, Cyclic GMP, and Amino Acid Levels in the CSF of the Primate

    DTIC Science & Technology

    1980-11-07

    rradiation . An analysis of brain areas obtained by biopsy of irradiated animals showed significant decreases in only the cerebellar cyclic AMP and cyclic...GMP. No appreciablk ¢±anges were found in the CSF amino acid composition. Acc. !-,’r ror UV , . c" l. __ ..:j’od I7 .... ’U r~rd0 /or cpy I NCI

  11. Inactivation of Campylobacter jejuni on poultry by ultraviolet light

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a foodborne pathogen which is commonly associated with poultry, and is responsible for many foodborne illness outbreaks. Ultraviolet light (UV-C) is a U.S. Food and Drug Administration approved technology that can be used to treat foods and food contact surfaces. In this stud...

  12. Ultraviolet radiation for the sterilization of contact lenses

    SciTech Connect

    Gritz, D.C.; Lee, T.Y.; McDonnell, P.J.; Shih, K.; Baron, N. )

    1990-10-01

    Two sources of ultraviolet (UV) radiation with peak wavelengths in the UV-C or UV-B ranges were compared for their ability to sterilize contact lenses infected with Pseudomonas aeruginosa, Streptococcus pneumoniae, Acanthamoeba castellani, Candida albicans, and Aspergillus niger. Also examined was the effect of prolonged UV light exposure on soft and rigid gas permeable (RGP) contact lenses. The UV-C lamp (253.7 nm, 250 mW/cm2 at 1 cm) was germicidal for all organisms within 20 minutes but caused destruction of the soft lens polymers within 6 hours of cumulative exposure. UV-C caused damage to RGP lenses in less than 100 hours. The UV-B lamp (290-310 nm, 500 mW/cm2 at 1 cm) was germicidal for all organisms tested (except Aspergillus) with a 180-minute exposure and caused less severe changes in the soft lens polymers than did the UV-C lamp, although cumulative exposure of 300 hours did substantially weaken the soft lens material. RGP materials were minimally affected by exposure to 300 hours of UV-B. Ultraviolet light is an effective germicidal agent but is injurious to soft lens polymers; its possible utility in the sterilization of RGP lenses and lens cases deserves further study.

  13. Alleviation of chilling injury in postharvest tomato fruit by preconditioning with ultraviolet irradiation.

    PubMed

    Liu, Changhong; Jahangir, Muhammad Muzammil; Ying, Tiejin

    2012-12-01

    Tomato fruit is usually stored at low temperatures for delayed ripening and extended shelf life. However, tomato fruit is susceptible to chilling injury when exposed to low temperatures. In this study, the potential effects of preconditioning with UV-C or UV-B irradiation on chilling injury of postharvest tomato fruit were investigated. Mature-green tomato fruit were exposed to 4 kJ m(-2) UV-C or 20 kJ m(-2) UV-B irradiation and stored for 20 days at 2 °C and subsequently 10 days at 20 °C. UV irradiation was effective in reducing chilling injury index and delaying ethylene peak. Furthermore, UV irradiation preserved storage quality as manifested by reduced weight loss, better retention of firmness, and higher contents of total soluble solids, soluble protein and soluble sugar during subsequent storage at 20 °C. UV-C irradiation significantly delayed the development of the red colour after 10 days of storage at 20 °C. On the other hand, UV irradiation decreased total phenolics content and antioxidant capacity, suggesting possibly reduced stress response to low temperature resulted from enhanced physiological adaptation by UV preconditioning. Our results suggest that preconditioning with UV-C or UV-B irradiation in appropriate doses had a positive effect on alleviating chilling injury in postharvest tomato fruit. Copyright © 2012 Society of Chemical Industry.

  14. Inactivation of Cytomegalovirus in Breast Milk Using Ultraviolet-C Irradiation: Opportunities for a New Treatment Option in Breast Milk Banking.

    PubMed

    Lloyd, Megan L; Hod, Nurul; Jayaraman, Jothsna; Marchant, Elizabeth A; Christen, Lukas; Chiang, Peter; Hartmann, Peter; Shellam, Geoffrey R; Simmer, Karen

    2016-01-01

    Pasteurized donor human milk is provided by milk banks to very preterm babies where their maternal supply is insufficient or unavailable. Donor milk is currently processed by Holder pasteurization, producing a microbiologically safe product but significantly reducing immunoprotective components. Ultraviolet-C (UV-C) irradiation at 254 nm is being investigated as an alternative treatment method and has been shown to preserve components such as lactoferrin, lysozyme and secretory IgA considerably better than Holder pasteurization. We describe the inactivation of cytomegalovirus, a virus commonly excreted into breast milk, using UV-C irradiation. Full replication was ablated by various treatment doses. However, evidence of viral immediate early proteins within the cells was never completely eliminated indicating that some viral gene transcription was still occurring. In conclusion, UV-C may be a safe alternative to pasteurisation for the treatment of human donor milk that preserves the bioactivity. However, our data suggests that CMV inactivation will have to be carefully evaluated for each device designed to treat breast milk using UV-C irradiation.

  15. Astroparticle Techniques: Simulating cosmic rays induced background radiation on aircrafts

    NASA Astrophysics Data System (ADS)

    Asorey, H.; Núñez, L. A.; Pérez Arias, C. Y.; Pinilla, S.; Quinonez, F.; Suárez-Durán, M.

    2017-07-01

    Incident cosmic ray fluxes over flying aircrafts are compared with those in Bucaramanga, Colombia and very significant differences are observed for proton and neutron fluxes. We also obtained that major contributions in the deposited energy by Cherenkov photons on blood plasma is in the UV-C band.

  16. Genome-wide analyses of the transcriptomes of salicylic acid-deficient versus wild-type plants uncover Pathogen and Circadian Controlled 1 (PCC1) as a regulator of flowering time in Arabidopsis.

    PubMed

    Segarra, Silvia; Mir, Ricardo; Martínez, Cristina; León, José

    2010-01-01

    Salicylic acid (SA) has been characterized as an activator of pathogen-triggered resistance of plants. SA also regulates developmental processes such as thermogenesis in floral organs and stress-induced flowering. To deepen our knowledge of the mechanism underlying SA regulation of flowering time in Arabidopsis, we compared the transcriptomes of SA-deficient late flowering genotypes with wild-type plants. Down- or up-regulated genes in SA-deficient plants were screened for responsiveness to ultraviolet (UV)-C light, which accelerates flowering in Arabidopsis. Among them, only Pathogen and Circadian Controlled 1 (PCC1) was up-regulated by UV-C light through a SA-dependent process. Moreover, UV-C light-activated expression of PCC1 was also dependent on the flowering activator CONSTANS (CO). PCC1 gene has a circadian-regulated developmental pattern of expression with low transcript levels after germination that increased abruptly by day 10. RNAi plants with very low expression of PCC1 gene were late flowering, defective in UV-C light acceleration of flowering and contained FLOWERING LOCUS T (FT) transcript levels below 5% of that detected in wild-type plants. Although PCC1 seems to function between CO and FT in the photoperiod-dependent flowering pathway, transgenic plants overexpressing a Glucocorticoid Receptor (GR)-fused version of CO strongly activated FT but not PCC1 after dexamethasone treatment.

  17. Draft Genome Sequence of Hymenobacter sp. Strain AT01-02, Isolated from a Surface Soil Sample in the Atacama Desert, Chile

    PubMed Central

    Paulino-Lima, Ivan Glaucio; Fujishima, Kosuke; Rothschild, Lynn Justine; Jensen, Peter Ruhdal

    2016-01-01

    Here, we report the 5.09-Mb draft genome sequence of Hymenobacter sp. strain AT01-02, which was isolated from a surface soil sample in the Atacama Desert, Chile. The isolate is extremely resistant to UV-C radiation and is able to accumulate high intracellular levels of Mn/Fe. PMID:26868392

  18. Inactivation of Cytomegalovirus in Breast Milk Using Ultraviolet-C Irradiation: Opportunities for a New Treatment Option in Breast Milk Banking

    PubMed Central

    Hod, Nurul; Jayaraman, Jothsna; Marchant, Elizabeth A.; Christen, Lukas; Chiang, Peter; Hartmann, Peter; Simmer, Karen

    2016-01-01

    Pasteurized donor human milk is provided by milk banks to very preterm babies where their maternal supply is insufficient or unavailable. Donor milk is currently processed by Holder pasteurization, producing a microbiologically safe product but significantly reducing immunoprotective components. Ultraviolet-C (UV-C) irradiation at 254 nm is being investigated as an alternative treatment method and has been shown to preserve components such as lactoferrin, lysozyme and secretory IgA considerably better than Holder pasteurization. We describe the inactivation of cytomegalovirus, a virus commonly excreted into breast milk, using UV-C irradiation. Full replication was ablated by various treatment doses. However, evidence of viral immediate early proteins within the cells was never completely eliminated indicating that some viral gene transcription was still occurring. In conclusion, UV-C may be a safe alternative to pasteurisation for the treatment of human donor milk that preserves the bioactivity. However, our data suggests that CMV inactivation will have to be carefully evaluated for each device designed to treat breast milk using UV-C irradiation. PMID:27537346

  19. Effects of high hydrostatic pressure, ultraviolet light-C, and far-infrared treatments on the digestibility, antioxidant and antihypertensive activity of α-casein.

    PubMed

    Hu, Guanlan; Zheng, Yuanrong; Liu, Zhenmin; Xiao, Yang; Deng, Yun; Zhao, Yanyun

    2017-04-15

    Alpha-casein is the most important bioactive protein in processing technologies. This study investigated the digestibility, antioxidant and antihypertensive activities of α-casein when treated by high hydrostatic pressure (HPP), ultraviolet light-C (UV-C), and far-infrared radiation (FIR). The in vitro digestibility was modified after treatments, especially after 5min/200MPa HHP treatment. Ultra-performance liquid chromatography-tandem mass spectrometry analysis showed that one 5min/200MPa HHP treatment resulted in the highest yield of peptides. Based on the in vitro gastrointestinal digestion and antioxidant and antihypertensive activity assays, HHP increased the angiotensin converting enzyme inhibitory activity at different levels. The 15min UV-C treatment resulted in the highest antioxidant DPPH radical-scavenging activity, while the 15min UV-C and FIR treatments had higher angiotensin converting enzyme inhibitory and antioxidant activities than those of 5min treatments. This study revealed that HHP, UV-C and FIR treatments increased the antioxidant and antihypertensive activities of α-casein.

  20. UV Treatment Enhances Flavonoid Content in Blueberries

    USDA-ARS?s Scientific Manuscript database

    Treatment of blueberries (Vaccinium corymbosum, cv. Sierra) with UV-C at 2.15 or 4.30 kJ m-2 enhanced blueberry fruit content of flavonoids including resveratrol, myricetin 3-arabinoside, quercetin 3-galactoside, quercetin 3-arabinoside, quercetin derivative, kaempferol 3-glucoside, delphinidin-3-ga...

  1. Investigation of the stabilization and preservation of sweet sorghum juices

    USDA-ARS?s Scientific Manuscript database

    Sweet sorghum juice is extremely vulnerable to microbial spoilage during storage because of its high water activity and rich sugar medium, and this represents a major technical challenge. The effects of clarification (80ºC; limed to pH 6.5;5 ppm polyanionic flocculant) and UV-C irradiation were inve...

  2. Enhanced photocatalytic degradation of sulfamethoxazole by deposition of Au, Ag and Cu metallic nanoparticles on TiO2.

    PubMed

    Zanella, Rodolfo; Avella, Edwin; Ramírez-Zamora, Rosa María; Castillón-Barraza, Felipe; Durán-Álvarez, Juan C

    2017-07-26

    Mono- (Au, Ag and Cu) and bi-metallic (Au-Ag and Au-Cu) nanoparticles were deposited on TiO2 and tested for the photocatalytic degradation of sulfamethoxazole using either UV-C or simulated sunlight. The optimal loading of metallic nanoparticles was determined as 1.5 wt% for Au and Ag, and 1.0 wt% for Cu. In the case of bi-metallic nanoparticles, only the ratio 1:0.5 wt% for both Au-Ag and Au-Cu was tested. In experiments using UV-C light, the highest degradation performance was found for Ag/TiO2, while bi-metallic nanoparticles supported on TiO2 also showed increased photocatalytic activity compared with unmodified TiO2. In simulated sunlight irradiation tests, Au/TiO2 showed to be the most efficient material. Complete mineralization of sulfamethoxazole was achieved when surface-modified materials were tested in both UV-C and simulated sunlight experiments. Photolysis was efficient to fully degrade sulfamethoxazole, although mineralization was lower than 10% for both luminic sources. The main by-products of sulfamethoxazole were determined in photolysis and photocatalysis tests using UV-C light, and degradation paths were proposed. By-products showed non-toxicity and low antibiotic activity. Reuse of the catalysts upon three reaction cycles did not result in the loss of activity.

  3. Effects of combination of ultraviolet light and hydrogen peroxide on inactivation of Escherichia coli O157:H7, native microbial loads, and quality of button mushrooms

    USDA-ARS?s Scientific Manuscript database

    Mushrooms are prone to microbial spoilage and browning during growing and processing. Ultraviolet light (UV-C) has been used as an alternative technology to chemical sanitizers for food products. Hydrogen peroxide is classified as generally recognized as safe for use in foods as a bleaching and ant...

  4. The LIM Protein Zyxin Binds CARP-1 and Promotes Apoptosis

    PubMed Central

    Hervy, Martial; Hoffman, Laura M.; Jensen, Christopher C.; Smith, Mark; Beckerle, Mary C.

    2010-01-01

    Zyxin is a dual-function LIM domain protein that regulates actin dynamics in response to mechanical stress and shuttles between focal adhesions and the cell nucleus. Here we show that zyxin contributes to UV-induced apoptosis. Exposure of wild-type fibroblasts to UV-C irradiation results in apoptotic cell death, whereas cells harboring a homozygous disruption of the zyxin gene display a statistically significant survival advantage. To gain insight into the molecular mechanism by which zyxin promotes apoptotic signaling, we expressed an affinity-tagged zyxin variant in zyxin-null cells and isolated zyxin-associated proteins from cell lysates under physiological conditions. A 130-kDa protein that was co-isolated with zyxin was identified by microsequence analysis as the Cell Cycle and Apoptosis Regulator Protein-1 (CARP-1). CARP-1 associates with the LIM region of zyxin. Zyxin lacking the CARP-1 binding region shows reduced proapoptotic activity in response to UV-C irradiation. We demonstrate that CARP-1 is a nuclear protein. Zyxin is modified by phosphorylation in cells exposed to UV-C irradiation, and nuclear accumulation of zyxin is induced by UV-C exposure. These findings highlight a novel mechanism for modulating the apoptotic response to UV irradiation. PMID:20852740

  5. Photolytic and thin TiO₂ film assisted photocatalytic degradation of sulfamethazine in aqueous solution.

    PubMed

    Babić, Sandra; Zrnčić, Mirta; Ljubas, Davor; Ćurković, Lidija; Škorić, Irena

    2015-08-01

    This paper deals with the photolytic and the photocatalytic degradation of sulfonamide antibiotic sulfamethazine (SMT) dissolved in Milli-Q water and in synthetic wastewater. Besides the direct photolysis, oxidation processes including UV/H2O2, UV/TiO2, and UV/TiO2/H2O2 using UV-A and UV-C radiation were investigated. Pseudo-first-order kinetics was observed for the degradation of SMT in all investigated processes. Additions of an electron acceptor (H2O2) and a catalyst (TiO2 film) accelerated the photolytic degradation of SMT for both the UV-A- and the UV-C-based processes. The most efficient process was UV-C/TiO2/H2O2 with complete degradation of SMT obtained in 10 min. The UV-A-based processes have been less efficient in terms of irradiation time required to totally degrade SMT than the UV-C-based processes. It was also confirmed that different wastewater components can significantly reduce the degradation rate of SMT. An almost ninefold reduction in the rate constant of SMT was observed for the specific synthetic wastewater. Although UV-A radiation experiments need more time and energy (2.7 times more electrical energy was consumed per gram of demineralized SMT) than UV-C experiments, they have a potential for practical use since natural UV-A solar radiation could be used here, which lowers the overall cost of the treatment. Five degradation products were detected during the degradation processes, and their structural formulae are presented. The structural formulae were elucidated based on mass spectra fragmentation pattern obtained using the tandem mass spectrometry (MS/MS) and NMR analysis.

  6. Preharvest ultraviolet-C irradiation: Influence on physicochemical parameters associated with strawberry fruit quality.

    PubMed

    Xie, Zhichun; Fan, Jinshuan; Charles, Marie Thérèse; Charlebois, Denis; Khanizadeh, Shahrokh; Rolland, Daniel; Roussel, Dominique; Zhang, Zhimin

    2016-11-01

    Postharvest ultraviolet-C (UV-C) hormesis has been shown effective for the treatment of the edible part of several horticultural crops such as strawberry fruit; however, there is a lack of information on its potential preharvest impact. In the present study three strawberry cultivars (Fragaria × ananassa Duch. 'Albion', 'Charlotte' and 'Seascape') were exposed to UV-C during two growth seasons for a period of three weeks. Treatment begins when the first flowers were wide open and fruits at commercial maturity were harvested within one week after UV treatment. The physicochemical quality parameters of the fruits harvested from the treated plants were compared to those of the fruits of the untreated control plants. Preharvest UV-C treatment tended to increase fruit firmness in all cultivars with significant differences declared only for 'Albion' and 'Seascape' in season 2. Fruits from treated plants were generally redder but a significant difference was observed only for cultivar 'Charlotte' in the second growing season. Other color attributes were not affected by UV-C, neither were organic acids, simple sugars, soluble solids content (SSC), titratable acidity (TA) and pH, although in most cases slight decreases were noticed. Cultivar and growing season were the factors that mostly influenced on the parameters under study. The present study show that cumulative preharvest UV-C treatment of 3.6 kJ m(-2) did not adversely affected important strawberry quality parameters. Crown Copyright © 2016. Published by Elsevier Masson SAS. All rights reserved.

  7. Photolytic degradation of the β-blocker nebivolol in aqueous solution.

    PubMed

    Salma, Alaa; Lutze, Holger V; Schmidt, Torsten C; Tuerk, Jochen

    2017-03-13

    Nebivolol (NEB) is one of the top-sold prescription drugs belonging to the third generation of beta-blockers. However, so far, occurrence data in the environment are lacking. Within this study NEB has been found for the first time in effluent samples of wastewater treatment plants in Germany with an average concentration of 13 ng L(-1). Its photodegradation behavior in the environment and in technical processes is largely unknown. To fill this gap, three different UV treatment procedures (UV-C at 254 nm, UV-B at 312 nm and UV-A at 365 nm) were investigated in three different matrices: pure water, pure water in presence of the hydroxyl radical (OH) scavenger tert.-butanol and real wastewater. No elimination was observed during UV-A treatment. In contrast, NEB degradation during UV-B and UV-C treatment followed pseudo first order reaction kinetics, with highest removal rate during UV-C treatment in pure water (k = 7.8 × 10(-4) s(-1)). The rate constant for UV-C irradiation decreased to 2.9 × 10(-4) s(-1) in the presence of the OH scavenger and in the presence of the wastewater matrix. The rate constant for the UV-B lamp was 4.4 × 10(-4) s(-1), Three transformation products were identified after UV-B and UV-C photolytic degradation using high resolution mass spectrometry. The main photoreaction is the substitution of the fluorine atoms of NEB by hydroxyl groups. A photolytic cleavage of the CF bond can be excluded as the high bond dissociation energy of aromatic CF bonds (525 kJ mol(-1)), exceeds the energy of electromagnetic radiation applied in the present study (≥254 nm, i.e., max. 471 kJ E(-1)). The quantum yields for NEB degradation for the UV-C lamp achieved in pure water, the OH scavenged system and wastewater matrix were Φdeg = 0.53, 0.19 and 0.22, respectively. For UV-B Φdeg was 0.023 ± 0.003, noticeable differences in quantum yield were not found. The photooxidation involves reactive oxygen species such as superoxide and

  8. Effects of photoperiod regimes and ultraviolet-C radiations on biosynthesis of industrially important lignans and neolignans in cell cultures of Linum usitatissimum L. (Flax).

    PubMed

    Anjum, Sumaira; Abbasi, Bilal Haider; Doussot, Joël; Favre-Réguillon, Alain; Hano, Christophe

    2017-02-01

    Lignans and neolignans are principal bioactive components of Linum usitatissimum L. (Flax), having multiple pharmacological activities. In present study, we are reporting an authoritative abiotic elicitation strategy of photoperiod regimes along with UV-C radiations. Cell cultures were grown in different photoperiod regimes (24h-dark, 24h-light and 16L/8D h photoperiod) either alone or in combination with various doses (1.8-10.8kJ/m(2)) of ultraviolet-C (UV-C) radiations. Secoisolariciresinol diglucoside (SDG), lariciresinol diglucoside (LDG), dehydrodiconiferyl alcohol glucoside (DCG), and guaiacylglycerol-β-coniferyl alcohol ether glucoside (GGCG) were quantified by using reverse phase-high performance liquid chromatography (RP-HPLC). Results showed that the cultures exposed to UV-C radiations, accumulated higher levels of lignans, neolignans and other biochemical markers than cultures grown under different photoperiod regimes. 3.6kJ/m(2) dose of UV-C radiations resulted in 1.86-fold (7.1mg/g DW) increase in accumulation of SDG, 2.25-fold (21.6mg/g DW) in LDG, and 1.33-fold (9.2mg/g DW) in GGCG in cell cultures grown under UV+photoperiod than their respective controls. Furthermore, cell cultures grown under UV+dark showed 1.36-fold (60.0mg/g DW) increase in accumulation of DCG in response to 1.8kJ/m(2) dose of UV-C radiations. Smilar trends were observed in productivity of SDG, LDG and GGCG. Additionally, 3.6kJ/m(2) dose of UV-C radiations also resulted in 2.82-fold (195.65mg/l) increase in total phenolic production, 2.94-fold (98.9mg/l) in total flavonoid production and 1.04-fold (95%) in antioxidant activity of cell cultures grown under UV+photoperiod. These findings open new dimensions for feasible production of biologically active lignans and neolignans by Flax cell cultures.

  9. Automating Microbial Directed Evolution For Bioengineering Applications

    NASA Astrophysics Data System (ADS)

    Lee, A.; Demachkie, I. S.; Sardesh, N.; Arismendi, D.; Ouandji, C.; Wang, J.; Blaich, J.; Gentry, D.

    2016-12-01

    From a micro-biology perspective, directed evolution is a technique that uses controlled environmental pressures to select for a desired phenotype. Directed evolution has the distinct advantage over rational design of not needing extensive knowledge of the genome or pathways associated with a microorganism to induce phenotypes. However, there are currently limitations to the applicability of this technique including being time-consuming, error-prone, and dependent on existing assays that may lack selectivity for the given phenotype. The AADEC (Autonomous Adaptive Directed Evolution Chamber) system is a proof-of-concept instrument to automate and improve the technique such that directed evolution can be used more effectively as a general bioengineering tool. A series of tests using the automated system and comparable by-hand survival assay measurements have been carried out using UV-C radiation and Escherichia coli cultures in order to demonstrate the advantages of the AADEC versus traditional implementations of directed evolution such as random mutagenesis. AADEC uses UV-C exposure as both a source of environmental stress and mutagenesis, so in order to evaluate the UV-C tolerance obtained from the cultures, a manual UV-C exposure survival assay was developed alongside the device to compare the survival fractions at a fixed dosage. This survival assay involves exposing E.coli to UV-C radiation using a custom-designed exposure hood to control the flux and dose. Surviving cells are counted then transferred to the next iteration and so on for several iterations to calculate the survival fractions for each exposure iteration. This survival assay primarily serves as a baseline for the AADEC device, allowing quantification of the differences between the AADEC system over the manual approach. The primary data of comparison is survival fractions; this is obtained by optical density and plate counts in the manual assay and by optical density growth curve fits pre- and post

  10. Expression of Nudix hydrolase genes in barley under UV irradiation

    NASA Astrophysics Data System (ADS)

    Tanaka, Sayuri; Sugimoto, Manabu; Kihara, Makoto

    Seed storage and cultivation should be necessary to self-supply foods when astronauts would stay and investigate during long-term space travel and habitation in the bases on the Moon and Mars. Thought the sunlight is the most importance to plants, both as the ultimate energy source and as an environmental signal regulating growth and development, UV presenting the sunlight can damage many aspects of plant processes at the physiological and DNA level. Especially UV-C, which is eliminated by the stratospheric ozone layer, is suspected to be extremely harmful and give a deadly injury to plants in space. However, the defense mechanism against UV-C irradiation damage in plant cells has not been clear. In this study, we investigated the expression of Nudix hydrolases, which defense plants from biotic / abiotic stress, in barley under UV irradiation. The genes encoding the amino acid sequences, which show homology to those of 28 kinds of Nudix hydrolases in Arabidopsis thaliana, were identified in the barley full-length cDNA library. BLAST analysis showed 14 kinds of barley genes (HvNUDX1-14), which encode the Nudix motif sequence. A phylogenetic tree showed that HvNUDX1, HvNUDX7, HvNUDX9 and HvNUDX11 belonged to the ADP-ribose pyrophosphohydrolase, ADP-sugar pyrophosphohydrolase, NAD(P)H pyrophosphohydrolase and FAD pyrophosphohydrolase subfamilies, respectively, HvNUDX3, HvNUDX6, and HvNUDX8 belonged to the Ap _{n}A pyrophosphohydrolase subfamilies, HvNUDX5 and HvNUDX14 belonged to the coenzyme A pyrophosphohydrolase subfamilies, HvNUDX12 and HvNUDX13 belonged to the Ap _{4}A pyrophosphohydrolase subfamilies. Induction of HvNUDX genes by UV-A (340nm), UV-B (312nm), and UV-C (260nm) were analyzed by quantitative RT-PCR. The results showed that HvNUDX4 was induced by UV-A and UV-B, HvNUDX6 was induced by UV-B and UV-C, and HvNUDX7 and HvNUDX14 were induced by UV-C, significantly. Our results suggest that the response of HvNUDXs to UV irradiation is different by UV

  11. Lithospheric structure of the southwestern United States

    NASA Astrophysics Data System (ADS)

    Al-Douri, Raed

    This dissertation investigates the crustal structure in the southwestern United States using different geophysical techniques. Surface wave analysis of paths in the SBR, CP, RGR, SRM and GP were conducted. The Moho of TUC-EPT path in the SBR is estimated at 30 km with upper mantle velocity of 7.85 km/sec. The Moho for the TUC-ALQ path is estimated between 29-34 km with upper mantle velocity of 4.2 km/sec. This path passes through SBR, CP and RGR. The Moho for the GOL-ALQ path in the SRM and RGR is estimated between 40-45 km with upper mantle velocity of 7.9 km/sec. The Moho for ALQ-EPT path in the RGR is estimated between 32-37 km/sec showing thinning in crust toward the south. Crustal structure between EPT-JCT shows a gradual increase in velocity over the crust with the Moho estimated at 39-44 km depth, reflecting mostly the stable craton of the GP. The path between ALQ-LUB shows higher velocities in the lower crust of 4.0 km/sec with the Moho estimated at 37-42 km depth which is similar to EPT-JCT, showing the more stable craton of the GP. Shear wave velocities for the GOL-DAL-LUB path derived from the inversion are 3.2 km/sec for the upper crust (17 km thick), 3.9 km/sec for the lower crust (25 km thick), and 4.1 km/sec for the uppermost mantle. Crustal structure for the path LUB-GOL-RCD path derived from the inversion shows a gradual increase of velocity with the Moho estimated at a depth of 42-47 km. Receiver function analysis was conducted for the Lajitas seismic station for all three back azimuths, NW, SE and SW. Moho depth is estimated at 34-36 km with shear wave velocities of 4.2 km/sec in the uppermost mantle for all back azimuths. These results suggest that the RGR extends south, but its effect is minimized compared to the El Paso area. Receiver function results from the ANMO seismic station for all three back azimuths SW, SE and NW show the Moho at a depth of 36 km. Analysis of three seismic lines in southern New Mexico show a Moho depth of 30-32 km

  12. An enhancing effect of visible light and UV radiation on phenolic compounds and various antioxidants in broad bean seedlings.

    PubMed

    Younis, Mahmoud El-Baz; Hasaneen, Mohammed Naguib Abdel-Ghany; Abdel-Aziz, Heba Mahmoud Mohammed

    2010-10-01

    Exposure of dark- or ambient visible light-grown broad bean seedlings to low (LL) and high (HL) visible light intensities, UV-A or UV-C, either alone or in combination, induced significant increases in total phenolic compounds as well as in anthocyanins content, throughout the germination period, as compared with the respective levels in control seedlings. In general, as compared with control levels, exposure of both dark- or light-grown broad bean seedlings to LL, HL, UV-A or UV-C, induced significant increases in the contents of non-enzymatic antioxidants (total ascorbate; ASA-DASA and total glutathione; GSSG-GSH) and enzymatic antioxidant activities (superoxide dismutase; SOD, catalase; CAT, ascorbate peroxidase; APO and glutathione reductase; GR). The obtained results are discussed in relation to induced mechanisms of protection and repair from the inevitable exposure to damaging visible light and UV-radiation. © 2010 Landes Bioscience

  13. An Autonomous System for Experimental Evolution of Microbial Cultures: Test Results Using Ultraviolet-C Radiation and Escherichia Coli.

    NASA Technical Reports Server (NTRS)

    Ouandji, Cynthia; Wang, Jonathan; Arismendi, Dillon; Lee, Alonzo; Blaich, Justin; Gentry, Diana

    2017-01-01

    At its core, the field of microbial experimental evolution seeks to elucidate the natural laws governing the history of microbial life by understanding its underlying driving mechanisms. However, observing evolution in nature is complex, as environmental conditions are difficult to control. Laboratory-based experiments for observing population evolution provide more control, but manually culturing and studying multiple generations of microorganisms can be time consuming, labor intensive, and prone to inconsistency. We have constructed a prototype, closed system device that automates the process of directed evolution experiments in microorganisms. It is compatible with any liquid microbial culture, including polycultures and field samples, provides flow control and adjustable agitation, continuously monitors optical density (OD), and can dynamically control environmental pressures such as ultraviolet-C (UV-C) radiation and temperature. Here, the results of the prototype are compared to iterative exposure and survival assays conducted using a traditional hood, UV-C lamp, and shutter system.

  14. Biofilms in bioremediation and wastewater treatment: characterization of bacterial community structure and diversity during seasons in municipal wastewater treatment process.

    PubMed

    Yousra Turki; Mehri, Ines; Lajnef, Rim; Rejab, Asma Ben; Khessairi, Amel; Cherif, Hanene; Ouzari, Hadda; Hassen, Abdennaceur

    2017-02-01

    The bacterial community structure and diversity were assessed at the scale of rotating biodisk procedure (RB) in a semi-industrial pilot plant. As well, the Salmonella community was particularly monitored, and the effects of ultraviolet (UV-C254) on the bacterial community were studied. The identification of dominant bacteria revealed the presence of beneficial and useful species that could play an important role in the process of wastewater purification. Several species as Enterobacter agglomerans, Cronobacter sakazakii, and Pantoea agglomerans known for their bioremediation activities were revealed in the majority of biofilm samples. Common detection of Salmonella community provides evidence that the RB system did not seriously affect Salmonella. Furthermore, the investigation on the (UV)-C254 inactivation of the whole bacterial community, in secondary treated wastewater, showed variable UV resistance results. No Salmonella detection was registered at a dose of around 1440 mW s cm(-2) since a total disappearance of Salmonella was recorded.

  15. An enhancing effect of visible light and UV radiation on phenolic compounds and various antioxidants in broad bean seedlings

    PubMed Central

    Hasaneen, Mohammed Naguib Abdel-Ghany; Abdel-Aziz, Heba Mahmoud Mohammed

    2010-01-01

    Exposure of dark- or ambient visible light-grown broad bean seedlings to low (LL) and high (HL) visible light intensities, UV-A or UV-C, either alone or in combination, induced significant increases in total phenolic compounds as well as in anthocyanins content, throughout the germination period, as compared with the respective levels in control seedlings. In general, as compared with control levels, exposure of both dark- or light-grown broad bean seedlings to LL, HL, UV-A or UV-C, induced significant increases in the contents of non-enzymatic antioxidants (total ascorbate; ASA-DASA and total glutathione; GSSG-GSH) and enzymatic antioxidant activities (superoxide dismutase; SOD, catalase; CAT, ascorbate peroxidase; APO and glutathione reductase; GR). The obtained results are discussed in relation to induced mechanisms of protection and repair from the inevitable exposure to damaging visible light and UV radiation. PMID:20505357

  16. Ultraviolet induction of antifungal activity in plants.

    PubMed

    Schumpp, O; Bruderhofer, N; Monod, M; Wolfender, J-L; Gindro, K

    2012-11-01

    Ultraviolet-C irradiation as a method to induce the production of plant compounds with antifungal properties was investigated in the leaves of 18 plant species. A susceptibility assay to determine the antifungal susceptibility of filamentous fungi was developed based on an agar dilution series in microtiter plates. UV irradiation strongly induced antifungal properties in five species against a clinical Fusarium solani strain that was responsible for an onychomycosis case that was resistant to classic pharmacological treatment. The antifungal properties of three additional plant species were either unaffected or reduced by UV-C irradiation. This study demonstrates that UV-C irradiation is an effective means of modulating the antifungal activity of very diverse plants from a screening perspective.

  17. Effect of photochemical treatment on the biocompatibility of a commercial nonionic surfactant used in the textile industry.

    PubMed

    Arslan-Alaton, Idil; Erdinc, Elif

    2006-10-01

    The degradability of surfactants is a frequent and complex issue arising both at domestic as well as industrial treatment facilities. The present paper describes a laboratory study conducted to elucidate the photochemical and biochemical treatability of a nonionic, alkyl polyethylene ether-based surfactant formulation commonly used in the textile preparation stage. The application of H(2)O(2)/UV-C advanced photochemical oxidation appeared to be a suitable treatment alternative and 90% COD removal (COD(0) approximately 500 mg/L) could be achieved under optimized process conditions. A significant COD removal efficiency (74%) could also be reached after biodegradation (final COD=135 mg/L) of the surfactant; however, necessitated an acclimation period of at least 6 weeks for the achievement of steady-state conditions. H(2)O(2)/UV-C treatment efficiency was seriously retarded upon elevation of the initial COD to around 1000 mg/L, resulting in 46% COD and 38% TOC removal after 120 min photochemical oxidation (H(2)O(2,0)=1020 mg/L; pH(0)=9.1). The BOD(5)/COD ratio increased from 0.23 to 0.31 after the application of H(2)O(2)/UV-C revealing that photochemical pretreatment may have a positive effect on the ultimate biodegradation of the nonionic surfactant. Although the time required for activated sludge treatment to reach steady-state conditions could be reduced to 3 weeks for the photochemically pretreated surfactant formulation biochemical COD removal efficiency dramatically decreased from 74% to 39% for the nonionic surfactant being subjected to H(2)O(2)/UV-C pretreatment (ultimate COD after activated sludge treatment=265 mg/L).

  18. Inactivation of Uropathogenic Escherichia coli in Ground Chicken Meat Using High Pressure Processing and Gamma Radiation, and in Purge and Chicken Meat Surfaces by Ultraviolet Light.

    PubMed

    Sommers, Christopher H; Scullen, O J; Sheen, Shiowshuh

    2016-01-01

    Extraintestinal pathogenic Escherichia coli, including uropathogenic E. coli (UPEC), are common contaminants in poultry meat and may cause urinary tract infections after colonization of the gastrointestinal tract and transfer of contaminated feces to the urethra. Three non-thermal processing technologies used to improve the safety and shelf-life of both human and pet foods include high pressure processing (HPP), ionizing (gamma) radiation (GR), and ultraviolet light (UV-C). Multi-isolate cocktails of UPEC were inoculated into ground chicken which was then treated with HPP (4°C, 0-25 min) at 300, 400, or 500 MPa. HPP D10, the processing conditions needed to inactivate 1 log of UPEC, was 30.6, 8.37, and 4.43 min at 300, 400, and 500 MPa, respectively. When the UPEC was inoculated into ground chicken and gamma irradiated (4 and -20°C) the GR D10 were 0.28 and 0.36 kGy, respectively. The UV-C D10 of UPEC in chicken suspended in exudate and placed on stainless steel and plastic food contact surfaces ranged from 11.4 to 12.9 mJ/cm(2). UV-C inactivated ca. 0.6 log of UPEC on chicken breast meat. These results indicate that existing non-thermal processing technologies such as HPP, GR, and UV-C can significantly reduce UPEC levels in poultry meat or exudate and provide safer poultry products for at-risk consumers.

  19. Tolerance to Ultraviolet Radiation of Psychrotolerant Yeasts and Analysis of Their Carotenoid, Mycosporine, and Ergosterol Content.

    PubMed

    Villarreal, Pablo; Carrasco, Mario; Barahona, Salvador; Alcaíno, Jennifer; Cifuentes, Víctor; Baeza, Marcelo

    2016-01-01

    Yeasts colonizing the Antarctic region are exposed to a high ultraviolet radiation evolving mechanisms to minimize the UV radiation damages, such as the production of UV-absorbing or antioxidant compounds like carotenoid pigments and mycosporines. Ergosterol has also been suggested to play a role in this response. These compounds are also economically attractive for several industries such as pharmaceutical and food, leading to a continuous search for biological sources of them. In this work, the UV-C radiation tolerance of yeast species isolated from the sub-Antarctic region and their production of carotenoids, mycosporines, and ergosterol were evaluated. Dioszegia sp., Leuconeurospora sp. (T27Cd2), Rhodotorula laryngis, Rhodotorula mucilaginosa, and Cryptococcus gastricus showed the highest UV-C radiation tolerance. The yeasts with the highest content of carotenoids were Dioszegia sp. (OHK torulene), Rh. laryngis (torulene and lycopene), Rh. mucilaginosa, (torulene, gamma carotene, and lycopene), and Cr. gastricus (2-gamma carotene). Probable mycosporine molecules and biosynthesis intermediates were found in Rh. laryngis, Dioszegia sp., Mrakia sp., Le. creatinivora, and Leuconeurospora sp. (T27Cd2). Ergosterol was the only sterol detected in all yeasts, and M. robertii and Le. creatinivora showed amounts higher than 4 mg g−1. Although there was not a well-defined relation between UV-C tolerance and the production of these three kinds of compounds, the majority of the yeasts with lower amounts of carotenoids showed lower UV-C tolerance. Dioszegia sp., M. robertii, and Le. creatinivora were the greatest producers of carotenoids, ergosterol, and mycosporines, respectively, representing good candidates for future studies intended to increase their production for large-scale applications.

  20. Inactivation of Uropathogenic Escherichia coli in Ground Chicken Meat Using High Pressure Processing and Gamma Radiation, and in Purge and Chicken Meat Surfaces by Ultraviolet Light

    PubMed Central

    Sommers, Christopher H.; Scullen, O. J.; Sheen, Shiowshuh

    2016-01-01

    Extraintestinal pathogenic Escherichia coli, including uropathogenic E. coli (UPEC), are common contaminants in poultry meat and may cause urinary tract infections after colonization of the gastrointestinal tract and transfer of contaminated feces to the urethra. Three non-thermal processing technologies used to improve the safety and shelf-life of both human and pet foods include high pressure processing (HPP), ionizing (gamma) radiation (GR), and ultraviolet light (UV-C). Multi-isolate cocktails of UPEC were inoculated into ground chicken which was then treated with HPP (4°C, 0–25 min) at 300, 400, or 500 MPa. HPP D10, the processing conditions needed to inactivate 1 log of UPEC, was 30.6, 8.37, and 4.43 min at 300, 400, and 500 MPa, respectively. When the UPEC was inoculated into ground chicken and gamma irradiated (4 and -20°C) the GR D10 were 0.28 and 0.36 kGy, respectively. The UV-C D10 of UPEC in chicken suspended in exudate and placed on stainless steel and plastic food contact surfaces ranged from 11.4 to 12.9 mJ/cm2. UV-C inactivated ca. 0.6 log of UPEC on chicken breast meat. These results indicate that existing non-thermal processing technologies such as HPP, GR, and UV-C can significantly reduce UPEC levels in poultry meat or exudate and provide safer poultry products for at-risk consumers. PMID:27148167

  1. Detrimental Effects of UV-B Radiation in a Xeroderma Pigmentosum-Variant Cell Line

    PubMed Central

    Herman, Kimberly N.; Toffton, Shannon; McCulloch, Scott D.

    2014-01-01

    DNA polymerase η (pol η), of the Y-family, is well known for its in vitro DNA lesion bypass ability. The most well-characterized lesion bypassed by this polymerase is the cyclobutane pyrimidine dimer (CPD) caused by ultraviolet (UV) light. Historically, cellular and whole-animal models for this area of research have been conducted using UV-C (λ = 100–280 nm) owing to its ability to generate large quantities of CPDs and also the more structurally distorting 6-4 photoproduct. Although UV-C is useful as a laboratory tool, exposure to these wavelengths is generally very low owing to being filtered by stratospheric ozone. We are interested in the more environmentally relevant wavelength range of UV-B (λ = 280–315 nm) for its role in causing cytotoxicity and mutagenesis. We evaluated these endpoints in both a normal human fibroblast control line and a Xeroderma pigmentosum variant cell line in which the POLH gene contains a truncating point mutation, leading to a nonfunctional polymerase. We demonstrate that UV-B has similar but less striking effects compared to UV-C in both its cytotoxic and its mutagenic effects. Analysis of the mutation spectra after a single dose of UV-B shows that a majority of mutations can be attributed to mutagenic bypass of dipyrimidine sequences. However, we do note additional types of mutations with UV-B that are not previously reported after UV-C exposure. We speculate that these differences are attributed to a change in the spectra of photoproduct lesions rather than other lesions caused by oxidative stress. PMID:24549972

  2. Abiotic stresses sequentially applied enhance natural resistance and reduce postharvest decay.

    PubMed

    D'Hallewin, G; Molinu, G M; Dore, A; Venditti, T; Rodov, V

    2009-01-01

    The feasibility to restrain citrus green mould (Penicillium digitatum Sacc.) during storage, by means of induced natural resistance, was investigated following combined heat and ultravioLet light C (254 nm, UV-C) treatments. Heat treatment (HT) was performed by keeping Citrus fruits in a humid saturated room at 36 degrees C for 36 h while, the UV-C light treatment (254 nm) was carried out by illuminating the fruits with 3 or 6 kJm(-2). Physical treatments were sequential and reversely applied to un-inoculated or to 24 h-old inoculated lemons or oranges. Then, fruits were stored for 30 days at 8 or 5 degrees C with 95% relative humidity (RH) followed by a 6 day simulated marketing period at 20 degrees C and 75% RH. Constitutive (cuticle and epicuticular wax) and induced resistance (scoparone biosynthesis) were monitored and the variation in natural resistance was correlated to the decay development. HT influenced positively the constitutive factors of resistance by reducing or delaying cuticular cracking and by remodelling the epicuticular wax layer. Following HT the synthesis of scoparone took place only in the albedo of wounds and was greater when fruits were inoculated. Following UV-C illumination, scoparone accumulated rapidly in the outer rind (flavedo) but, particularly with 6 kJm(-2), favoured cuticular fracturing during storage. Sequential treatments resulted significantly more effective in controlling decay on either, inoculated and non inoculated fruit. The best control of green mould during storage of lemons and oranges was obtained when HT preceded 6 kJm(-2) UV-C illumination with 52 and 45% reduction of natural decay in fruit stored at 8 degrees C compared to the control, respectively.

  3. Cumulative effects from repeated exposures to ultraviolet radiation

    SciTech Connect

    Kaidbey, K.H.; Kligman, A.M.

    1981-05-01

    Repeated exposures to subliminal doses of UVR, given at 24-hr intervals, resulted in a lowering of the erythema threshold dose. At erythemogenically equivalent doses, UV-A was the most effective and UV-C the least. A similar and more pronounced effect was observed following repeated exposures to subthreshold doses of UV-A and topically applied 8-methoxypsoralen. These findings provide quantitative evidence for the cumulative nature of acute UVR damage in human skin.

  4. Decontamination of targeted pathogens from patient rooms using an automated ultraviolet-C-emitting device.

    PubMed

    Anderson, Deverick J; Gergen, Maria F; Smathers, Emily; Sexton, Daniel J; Chen, Luke F; Weber, David J; Rutala, William A

    2013-05-01

    OBJECTIVE. To determine the effectiveness of an automated ultraviolet-C (UV-C) emitter against vancomycin-resistant enterococci (VRE), Clostridium difficile, and Acinetobacter spp. in patient rooms. DESIGN. Prospective cohort study. SETTING. Two tertiary care hospitals. PARTICIPANTS. Convenience sample of 39 patient rooms from which a patient infected or colonized with 1 of the 3 targeted pathogens had been discharged. INTERVENTION. Environmental sites were cultured before and after use of an automated UV-C-emitting device in targeted rooms but before standard terminal room disinfection by environmental services. RESULTS. In total, 142 samples were obtained from 27 rooms of patients who were colonized or infected with VRE, 77 samples were obtained from 10 rooms of patients with C. difficile infection, and 10 samples were obtained from 2 rooms of patients with infections due to Acinetobacter. Use of an automated UV-C-emitting device led to a significant decrease in the total number of colony-forming units (CFUs) of any type of organism (1.07 log10 reduction; P < .0001), CFUs of target pathogens (1.35 log10 reduction; P < .0001), VRE CFUs (1.68 log10 reduction; P < .0001), and C. difficile CFUs (1.16 log10 reduction; P < .0001). CFUs of Acinetobacter also decreased (1.71 log10 reduction), but the trend was not statistically significant (P = .25). CFUs were reduced at all 9 of the environmental sites tested. Reductions similarly occurred in direct and indirect line of sight. CONCLUSIONS. Our data confirm that automated UV-C-emitting devices can decrease the bioburden of important pathogens in real-world settings such as hospital rooms.

  5. Light based technologies for microbial inactivation of liquids, bead surfaces and powdered infant formula.

    PubMed

    Arroyo, Cristina; Dorozko, Anna; Gaston, Edurne; O'Sullivan, Michael; Whyte, Paul; Lyng, James G

    2017-10-01

    This study evaluates the potential of continuous wave Ultraviolet C light (UV-C) and broad-spectrum intense pulsed light (in this study referred to as High Intensity Light Pulses, HILP) for the inactivation of pathogens of public concern in powdered infant formula (PIF) producers. To achieve this goal a sequential set of experiments were performed, firstly in clear liquid media, secondly on the surface of spherical beads under agitation and, finally in PIF. L. innocua was the most sensitive microorganism to both technologies under all conditions studied with reductions exceeding 4 log10 cycles in PIF. In the clear liquid medium, the maximum tolerance to light was observed for C. sakazakii against UV-C light and for B. subtilis spores against HILP, with a fluence of approximately 17 mJ/cm(2) required for a 1 log10 cycle inactivation (D value) of each species. In PIF it was possible to inactivate >99% of the vegetative cell populations by HILP with a fluence of 199 mJ/cm(2) and of B. subtilis spores by doubling the fluence. By contrast, for UV-C treatments a fluence of 2853 mJ/cm(2) was needed for 99.9% reduction of C. sakazakii, which was the most light-resistant microorganism to UV-C. Results here obtained clearly show the potential for light-based interventions to improve PIF microbiological safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Inhibition of apoptosis by 2,3,7,8-tetrachlorodibenzo-p-dioxin depends on protein biosynthesis.

    PubMed

    Chopra, Martin; Gährs, Maike; Haben, Melina; Michels, Christine; Schrenk, Dieter

    2010-08-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic persistent organic pollutant. Most of the toxic effects of TCDD are believed to be mediated by high-affinity binding to the aryl hydrocarbon receptor (AhR) and subsequent effects on gene transcription and protein expression. TCDD causes cancer in multiple tissues in different animal species and is classified as a class 1 human carcinogen. In initiation-promotion studies, TCDD was shown to be a potent liver-tumor promotor. Among other theories it has been hypothesized that TCDD promotes tumor growth by preventing initiated cells from correctly executing apoptosis. In this study, we examined the effects of TCDD on apoptosis induced by UV-C light, ochratoxin A (OTA), and cycloheximide (CHX) in primary rat hepatocytes. Both UV-C light and OTA caused caspase activation and nuclear apoptotic effects. CHX did not activate caspases but nevertheless caused DNA fragmentation and chromatin condensation. TCDD inhibited UV-C light-induced apoptosis and this effect seemed to be dependent on AhR-activation as was shown by employing an AhR antagonist. In contrast to UV-C light-induced apoptosis, TCDD failed to protect primary rat hepatocytes from OTA- or CHX-induced apoptosis. Since both of these compounds inhibit protein biosynthesis as was demonstrated by measuring the incorporation of radiolabeled leucin and protein expression of cytochrome P450 1A1, we propose that the inhibition of apoptosis by TCDD depends on protein biosynthesis. Either TCDD induces some anti-apoptotic protein in an AhR-dependent manner or inhibits pro-apoptotic proteins induced by UV irradiation.

  7. The Problem of Form in Objects under Redevelopment (On the Basis of Bytom Market Square Redevelopment Design) / Problem Formy W Obiektach Przebudowywanych (Na Przykładzie Projektu Realizacyjnego Przebudowy Bytomskiego Rynku)

    NASA Astrophysics Data System (ADS)

    Maryńczuk, Paweł

    2015-03-01

    The author believes that if a designer has performed many design or research works entailing solutions to various problems, it is recommendable to consider and become aware of previously used methods whose application might have been unwitting or instinctive. The outcome of such reflection can be worth describing and recording in order to formulate a set of guidelines useful in the future. Such methods, being intuitive in nature, are often tied to the designer's subconsciousness, thus are rarely expressed in a clear manner. By using own methods a designer can prove that space should be composed in a given way in order to address specific needs and defined objectives. All this is aimed at preventing accidental formation of space. An example of reasoning serving the aforementioned purpose can be found in a method referred to as CQC or Composition Quality Control, the application of which facilitates intentional shaping of an architectural piece of work. Autor uważa uważa, że jeśli projektant ma za sobą wiele prac projektowych lub też prac badawczych, które połączone były z rozwiązywaniem różnych problemów, to warto zastanowić się i uświadomić sobie sposoby, które dotychczas - może nieświadomie lub odruchowo - były stosowane. Wynik refleksji warto opisać i zapisać po to, żeby ująć go w układ wskazań na przyszłość. Metody te, mając charakter intuicyjny, często związane są z podświadomością projektanta, w związku z tym rzadko można spotkać je jako wyrażone w sposób wyraźny. Stosując metody własne można dowieść, że przestrzeń winna być komponowana tak, a nie inaczej dla określonych potrzeb i wytyczonych celów tak, aby jej forma nie była przypadkowa. Przykładem takiego rozumowania jest przyjeta metoda KJK, której zastosowanie pomaga w swiadomym kształtowaniu dzieła architektonicznego.

  8. A model for the influences of soluble and insoluble solids, and treated volume on the ultraviolet-C resistance of heat-stressed Salmonella enterica in simulated fruit juices.

    PubMed

    Estilo, Emil Emmanuel C; Gabriel, Alonzo A

    2018-02-01

    This study was conducted to determine the effects of intrinsic juice characteristics namely insoluble solids (IS, 0-3 %w/v), and soluble solids (SS, 0-70 °Brix), and extrinsic process parameter treated volume (250-1000 mL) on the UV-C inactivation rates of heat-stressed Salmonella enterica in simulated fruit juices (SFJs). A Rotatable Central Composite Design of Experiment (CCRD) was used to determine combinations of the test variables, while Response Surface Methodology (RSM) was used to characterize and quantify the influences of the test variables on microbial inactivation. The heat-stressed cells exhibited log-linear UV-C inactivation behavior (R(2) 0.952 to 0.999) in all CCRD combinations with DUV-C values ranging from 10.0 to 80.2 mJ/cm(2). The DUV-C values obtained from the CCRD significantly fitted into a quadratic model (P < 0.0001). RSM results showed that individual linear (IS, SS, volume), individual quadratic (IS(2) and volume(2)), and factor interactions (IS × volume and SS × volume) were found to significantly influence UV-C inactivation. Validation of the model in SFJs with combinations not included in the CCRD showed that the predictions were within acceptable error margins. Copyright © 2017. Published by Elsevier Ltd.

  9. Integrated photochemical and biological treatment of a commercial textile surfactant: process optimization, process kinetics and COD fractionation.

    PubMed

    Arslan-Alaton, Idil; Cokgor, Emine Ubay; Koban, Baris

    2007-07-31

    The biodegradability of surfactants is a frequent and complex issue arising both at domestic as well as industrial treatment facilities. In the present experimental study, the integrated photochemical (H(2)O(2)/UV-C) and biochemical (activated sludge) treatment of a commercial grade nonionic/anionic textile surfactant formulation was investigated. Photochemical baseline experiments have shown that once the initial pH and H(2)O(2) dose were optimized, practically complete COD removal (COD(o)=500+/-30mgL(-1)) could be achieved. Once the COD was elevated to values being typical for the textile fabric preparation stage, treatment efficiency was seriously retarded provided that the photochemical treatment conditions remained constant. Moreover, a definite relationship existed between H(2)O(2) consumption and COD removal for H(2)O(2)/UV-C advanced oxidation of the textile surfactant. In the second part of the study, COD abatement was modeled for the biodegradation of untreated and photochemically pretreated textile surfactant formulation according to their COD fractions. Results have indicated that the readily biodegradable and rapidly hydrolysable COD fractions of the textile surfactant solution could be appreciably increased upon exposure to an optimum H(2)O(2) concentration (60mM; i.e. 2.1g H(2)O(2) (g COD(o))(-1)) and extended UV-C irradiation times (i.e. 90 and 120min).

  10. A comparative study of the bactericidal activity and daily disinfection housekeeping surfaces by a new portable pulsed UV radiation device.

    PubMed

    Umezawa, Kazuo; Asai, Satomi; Inokuchi, Sadaki; Miyachi, Hayato

    2012-06-01

    Daily cleaning and disinfecting of non-critical surfaces in the patient-care areas are known to reduce the occurrence of health care-associated infections. However, the conventional means for decontamination of housekeeping surfaces of sites of frequent hand contact such as manual disinfection using ethanol wipes are laborious and time-consuming in daily practice. This study evaluated a newly developed portable pulsed ultraviolet (UV) radiation device for its bactericidal activity in comparison with continuous UV-C, and investigated its effect on the labor burden when implemented in a hospital ward. Pseudomonas aeruginosa, Multidrug-resistant P. aeruginosa, Escherichia coli, Acinetobacter baumannii, Amikacin and Ciprofloxacin-resistant A. baumannii, Staphylococcus aureus, Methicillin-resistant S. aureus and Bacillus cereus were irradiated with pulsed UV or continuous UV-C. Pulsed UV and continuous UV-C required 5 and 30 s of irradiation, respectively, to attain bactericidal activity with more than 2Log growth inhibition of all the species. The use of pulsed UV in daily disinfection of housekeeping surfaces reduced the working hours by half in comparison to manual disinfection using ethanol wipes. The new portable pulsed UV radiation device was proven to have a bactericidal activity against critical nosocomial bacteria, including antimicrobial-resistant bacteria after short irradiation, and was thus found to be practical as a method for disinfecting housekeeping surfaces and decreasing the labor burden.

  11. UV radiation effects on a DNA repair enzyme: conversion of a [4Fe-4S](2+) cluster into a [2Fe-2S] (2+).

    PubMed

    Folgosa, Filipe; Camacho, Inês; Penas, Daniela; Guilherme, Márcia; Fróis, João; Ribeiro, Paulo A; Tavares, Pedro; Pereira, Alice S

    2015-03-01

    Organisms are often exposed to different types of ionizing radiation that, directly or not, will promote damage to DNA molecules and/or other cellular structures. Because of that, organisms developed a wide range of response mechanisms to deal with these threats. Endonuclease III is one of the enzymes responsible to detect and repair oxidized pyrimidine base lesions. However, the effect of radiation on the structure/function of these enzymes is not clear yet. Here, we demonstrate the effect of UV-C radiation on E. coli endonuclease III through several techniques, namely UV-visible, fluorescence and Mössbauer spectroscopies, as well as SDS-PAGE and electrophoretic mobility shift assay. We demonstrate that irradiation with a UV-C source has dramatic consequences on the absorption, fluorescence, structure and functionality of the protein, affecting its [4Fe-4S] cluster and its DNA-binding ability, which results in its inactivation. An UV-C radiation-induced conversion of the [4Fe-4S](2+) into a [2Fe-2S](2+) was observed for the first time and proven by Mössbauer and UV-visible analysis. This work also shows that the DNA-binding capability of endonuclease III is highly dependent of the nuclearity of the endogenous iron-sulfur cluster. Thus, from our point of view, in a cellular context, these results strengthen the argument that cellular sensitivity to radiation can also be due to loss of radiation-induced damage repair ability.

  12. Artificial neural network modeling of photocatalytic removal of a disperse dye using synthesized of ZnO nanoparticles on montmorillonite.

    PubMed

    Kıranşan, Murat; Khataee, Alireza; Karaca, Semra; Sheydaei, Mohsen

    2015-04-05

    In this study, the photocatalytic ability of ZnO/Montmorilonite (ZnO/MMT) nanocomposite under UV-A, UV-B and UV-C radiation was investigated. ZnO nanoparticles were synthesized on the surface of MMT and used as photocatalyst in decolorization of Disperse Red 54 (DR54) solution. Synthesized nanocomposite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) techniques and nitrogen adsorption/desorption isotherms curves. The average width of synthesized ZnO particles is in the range of 30-45 nm. Effect of UV light regions, initial dye concentration, initial dosage of nanocomposite, and reusability of catalyst was studied on decolorization efficiency. The highest decolorization efficiency was achieved under UV-C radiation. A three-layered feed forward back propagation artificial neural network model was developed to predict the photocatalysis of DR54 under UV-C radiation. According to ANN model the ZnO/MMT dosage with a relative importance of 49.21% is the most influential parameter in the photocatalytic decolorization process.

  13. Ultraviolet-C Irradiation: A Novel Pasteurization Method for Donor Human Milk

    PubMed Central

    Christen, Lukas; Lai, Ching Tat; Hartmann, Ben; Hartmann, Peter E.; Geddes, Donna T.

    2013-01-01

    Background Holder pasteurization (milk held at 62.5°C for 30 minutes) is the standard treatment method for donor human milk. Although this method of pasteurization is able to inactivate most bacteria, it also inactivates important bioactive components. Therefore, the objective of this study was to investigate ultraviolet irradiation as an alternative treatment method for donor human milk. Methods Human milk samples were inoculated with five species of bacteria and then UV-C irradiated. Untreated and treated samples were analysed for bacterial content, bile salt stimulated lipase (BSSL) activity, alkaline phosphatase (ALP) activity, and fatty acid profile. Results All five species of bacteria reacted similarly to UV-C irradiation, with higher dosages being required with increasing concentrations of total solids in the human milk sample. The decimal reduction dosage was 289±17 and 945±164 J/l for total solids of 107 and 146 g/l, respectively. No significant changes in the fatty acid profile, BSSL activity or ALP activity were observed up to the dosage required for a 5-log10 reduction of the five species of bacteria. Conclusion UV-C irradiation is capable of reducing vegetative bacteria in human milk to the requirements of milk bank guidelines with no loss of BSSL and ALP activity and no change of FA. PMID:23840820

  14. Determination of 2-alkylcyclobutanones in ultraviolet light-irradiated fatty acids, triglycerides, corn oil, and pork samples: Identifying a new source of 2-alkylcyclobutanones.

    PubMed

    Meng, Xiangpeng; Chan, Wan

    2017-02-15

    Previous studies have established that 2-alkylcyclobutanones (2-ACBs) are unique radiolytic products in lipid-containing foods that could only be formed through exposure to ionizing radiation, but not by any other means of physical/heat treatment methods. Therefore, 2-ACBs are currently the marker molecules required by the European Committee for Standardization to be used to identify foods irradiated with ionizing irradiation. Using a spectrum of state-of-the-art analytical instruments, we present in this study for the first time that the generation of 2-ACBs was also possible when fatty acids and triglycerides are exposed to a non-ionizing, short-wavelength ultraviolet (UV-C) light source. An irradiation dosage-dependent formation of 2-ACBs was also observed in UV-C irradiated fatty acids, triglycerides, corn oil, and pork samples. With UV-C irradiation becoming an increasingly common food treatment procedure, it is anticipated that the results from this study will alert food scientists and regulatory officials to a potential new source for 2-ACBs.

  15. Photovoltaic powered ultraviolet and visible light-emitting diodes for sustainable point-of-use disinfection of drinking waters.

    PubMed

    Lui, Gough Yumu; Roser, David; Corkish, Richard; Ashbolt, Nicholas; Jagals, Paul; Stuetz, Richard

    2014-09-15

    For many decades, populations in rural and remote developing regions will be unable to access centralised piped potable water supplies, and indeed, decentralised options may be more sustainable. Accordingly, improved household point-of-use (POU) disinfection technologies are urgently needed. Compared to alternatives, ultraviolet (UV) light disinfection is very attractive because of its efficacy against all pathogen groups and minimal operational consumables. Though mercury arc lamp technology is very efficient, it requires frequent lamp replacement, involves a toxic heavy metal, and their quartz envelopes and sleeves are expensive, fragile and require regular cleaning. An emerging alternative is semiconductor-based units where UV light emitting diodes (UV-LEDs) are powered by photovoltaics (PV). Our review charts the development of these two technologies, their current status, and challenges to their integration and POU application. It explores the themes of UV-C-LEDs, non-UV-C LED technology (e.g. UV-A, visible light, Advanced Oxidation), PV power supplies, PV/LED integration and POU suitability. While UV-C LED technology should mature in the next 10 years, research is also needed to address other unresolved barriers to in situ application as well as emerging research opportunities especially UV-A, photocatalyst/photosensitiser use and pulsed emission options. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Ultraviolet light photobiology of the protozoan Tetrahymena pyriformis and chemical reactivation of DNA damage

    SciTech Connect

    Wheeler, J.S.

    1988-01-01

    The tunable dye laser was developed in order to perform UV-B and UV-C (254-320 nm) action spectra studies on several different organisms. Using the laser, action spectra studies have been performed for Escherichia coli, Saccharomyces, Chlamydomonas, Caenorhabditis elegans, Paramecium, and Tetrahymena pyriformis. Studies generally indicate increasing LD{sub 50} values with increasing wavelength. Two notable findings were made: (1) The action spectra does not follow the DNA absorption spectra at 280, 290 and 295 nm; (2) The repair competent/repair defective sensitization factor does not remain constant throughout the wavelength region. In addition it was found that the repair defective strain of E. coli, Bs-1, showed an increase in survival with increasing UV irradiation, at certain dose levels. Further experiments were designed to better characterize the reactivation. Tetrahymena were exposed to UV-C and reactivated with methyl methanesulfonate (MMS) and 4-nitro quinoline oxide (4-NQO). In both cases survival was seen to increase after chemical exposure. Likewise, UV-C was found to reactivate chemical damage (MMS).

  17. The effect of ultraviolet treatment on enzymatic activity and total phenolic content of minimally processed potato slices.

    PubMed

    Teoh, Li Shing; Lasekan, Ola; Adzahan, Noranizan Mohd; Hashim, Norhashila

    2016-07-01

    In this work, potato slices were exposed to different doses of UV-C irradiation (i.e. 2.28, 6.84, 11.41, and 13.68 kJ m(-2)) with or without pretreatment [i.e. ascorbic acid and calcium chloride (AACCl) dip] and stored at 4 ± 1 °C. Changes in enzymatic activities of polyphenol oxidase (PPO), peroxidase (POD) and phenylalanine ammonia lyase (PAL), as well as total phenolic content (TPC) were investigated after 0, 3, 7 and 10 days of storage. Results showed that untreated and UV-C treated potato slices at 13.68 kJ m(-2) dosage level showed significantly higher PPO, POD and PAL activities. Conversely, untreated potato slices showed the lowest TPC during storage period. Potato slices subjected to AACCl dip plus UV-C at 6.84 kJ m(-2) produced lower PPO, POD and PAL activities, as well as maintained a high TPC during storage.

  18. The capacity of antioxidant protection during modulated ageing of bean (Phaseolus vulgaris L.) cotyledons. 1. The antioxidant enzyme activities.

    PubMed

    Procházková, D; Wilhelmová, N

    2007-01-01

    Reactive oxygen species are known to increase in plant senescence. We investigated the participation of antioxidative enzymes in initiation of cotyledon senescence. Senescence of bean (Phaseolus vulgaris L.) cotyledons was modulated by UV C irradiation and by the decapitation of plant apices. Senescence was accompanied by a decrease of protein content and by a decrease of photochemical efficiency. A drop in activity of antioxidative enzymes preceded the onset of senescence in control plants. In cotyledons with prolonged life span, the decrease of antioxidant activities and the markers of senescence onset appeared at a similar age as in controls. Thus we presumed that the period from senescence initiation to cotyledon abscission was extended. On the other hand, in UV C irradiated plants we did not observe actual senescence initiation, and antioxidant enzymes although elevated, did not effectively play their role. The decrease of antioxidant enzymes activity and the markers of senescence appeared at a similar age both in control and in decapitated (D) plants, so we can presume that we prolonged mainly the period from senescence onset to cotyledon abscission in D plants. In UV C irradiated plants the antioxidative enzymes were probably destroyed before the process of senescence could begin.

  19. Alternative Excision Repair of Ultraviolet B- and C-Induced DNA Damage in Dormant and Developing Spores of Bacillus subtilis

    PubMed Central

    Ramírez-Guadiana, Fernando H.; Barraza-Salas, Marcelo; Ramírez-Ramírez, Norma; Ortiz-Cortés, Mayte; Setlow, Peter

    2012-01-01

    The nucleotide excision repair (NER) and spore photoproduct lyase DNA repair pathways are major determinants of Bacillus subtilis spore resistance to UV radiation. We report here that a putative ultraviolet (UV) damage endonuclease encoded by ywjD confers protection to developing and dormant spores of B. subtilis against UV DNA damage. In agreement with its predicted function, a His6-YwjD recombinant protein catalyzed the specific incision of UV-irradiated DNA in vitro. The maximum expression of a reporter gene fusion to the ywjD opening reading frame occurred late in sporulation, and this maximal expression was dependent on the forespore-specific RNA polymerase sigma factor, σG. Although the absence of YwjD and/or UvrA, an essential protein of the NER pathway, sensitized developing spores to UV-C, this effect was lower when these cells were treated with UV-B. In contrast, UV-B but not UV-C radiation dramatically decreased the survival of dormant spores deficient in both YwjD and UvrA. The distinct range of lesions generated by UV-C and UV-B and the different DNA photochemistry in developing and dormant spores may cause these differences. We postulate that in addition to the UvrABC repair system, developing and dormant spores of B. subtilis also rely on an alternative excision repair pathway involving YwjD to deal with the deleterious effects of various UV photoproducts. PMID:22961846

  20. Roles of PprA, IrrE, and RecA in the resistance of Deinococcus radiodurans to germicidal and environmentally relevant UV radiation.

    PubMed

    Bauermeister, Anja; Bentchikou, Esma; Moeller, Ralf; Rettberg, Petra

    2009-12-01

    To study the role of different DNA repair genes in the resistance of Deinococcus radiodurans to mono- and polychromatic UV radiation, wild-type strain and knockout mutants in RecA, PprA, and IrrE of D. radiodurans were irradiated with UV-C (254 nm), UV-(A + B) (280-400 nm) and UV-A (315-400 nm) radiation, and survival was monitored. The strain deficient in recA was highly sensitive to UV-C radiation compared to the wild-type, but showed no loss of resistance against irradiation with UV-(A + B) and UV-A, while pprA and irrE-deficient strains exhibited elevated sensitivity to UV-A and UV-(A + B) radiation. These results suggest that the repair of DNA double-strand breaks is essential after treatment with highly energetic UV-C radiation, whereas protection from oxidative stress may play a greater role in resistance to environmentally relevant UV radiation.

  1. Determination of ultraviolet filter activity on coconut oil cosmetic cream

    NASA Astrophysics Data System (ADS)

    Widiyati, Eni

    2017-08-01

    A research on determination of ultraviolet (UV) filter activity of cosmetic cream with coconut oil as raw material has been done. The cream was made by mixing the oil phase (coconut oil, stearic acid, lanolin and cetyl alcohol) at 70°C and the water phase (glycerin, aquadest and triethanolamine) at 70°C, while stirring until reached a temperature of 35°C. It was made also a cream with inorganic sunscreen TiO2 and organic sunscreen benzophenone-3 as a comparison. To study the UV filter activity, each cream was determined the UV absorption using UV spectrophotometer. The results show that cosmetic cream with coconut oil as raw material absorbs UV rays in the region of UV-C, whereas the cream with TiO2 absorbs the UV rays from UV-C to UV-A and cream with benzophenone-3 absorbs the UV rays from UV-B to UV-A region. This means that, the cosmetic cream with coconut oil as raw material has an activity as UV-C filter. If this cream is expected to have an activity as a sunscreen, it must be added an inorganic or organic sunscreen or a mixture of both as an active materials.

  2. Application of advanced oxidation processes to doxycycline and norfloxacin removal from water.

    PubMed

    Rivas, Javier; Encinas, Angel; Beltrán, Fernando; Graham, Nigel

    2011-01-01

    Doxycycline (Dxy) and Norfloxacin (Nfx) have been oxidized by means of different technologies of increasing complexity. Preliminary experiments showed that activated carbon adsorption (1.0 g L⁻¹) of these antibiotics (C(Antibiotic) = 5 × 10⁻⁵ M) led to a 60 and 85 % of total organic carbon (TOC) removal, however, a significant decrease in adsorption capacity was experienced after several reuses of the adsorbent. UV-C irradiation of Dxy (20 % removal in 2 h) or Nfx (90 % removal in 2 h) did not affect the initial TOC content of the solution while single ozonation (C(O₃) gas inlet concentration = 15.0 ppm) led to the instantaneous disappearance of the parent compounds while TOC conversion values in the proximity of 40 % were obtained. Complex systems based on the combination of ozone, UV-C radiation, titanium dioxide and activated carbon led to similar TOC removals of the order of 70 and 65 % for Dxy and Nfx, respectively. An attempt has been made to calculate the quantum yield and direct ozonation rate constants for doxycycline and norfloxacin. Additionally, the best systems, i.e., the O₃ and O₃/UV-C processes, have been simulated by a pseudoempirical model by considering TOC as a surrogate parameter.

  3. Antibacterial and physical effects of modified chitosan based-coating containing nanoemulsion of mandarin essential oil and three non-thermal treatments against Listeria innocua in green beans.

    PubMed

    Severino, Renato; Vu, Khanh Dang; Donsì, Francesco; Salmieri, Stephane; Ferrari, Giovanna; Lacroix, Monique

    2014-11-17

    The antimicrobial activity against Listeria innocua of three different combined non-thermal treatments, along with the impact on color and texture on green bean samples, was evaluated. In this study a bioactive coating formulation based on modified chitosan containing 0.05% nanoemulsion of mandarin essential oil was tested in combination with γ-irradiation, UV-C and ozonated water treatments, and the results in terms of antimicrobial activity, color and texture changes, were evaluated during 14 days storage. The combined coating and γ-irradiation treatment gave promising results, showing 3.3 log CFU/g initial microbial reduction, and exhibiting a strong synergistic antimicrobial effect. The treatment based on UV-C and coating formulation allowed a 3 log CFU/g reduction of initial L. innocua population on samples, showing a good residual antimicrobial activity and preventing loss of firmness and color changes during storage. The combined treatment of coating and ozonated water did not show any synergistic or additive antimicrobial effect, but they showed an impact on firmness and color. In conclusion UV-C and γ-irradiation treatments, in combination with the bioactive coating, represent an effective approach to control the growth of L. innocua on vegetable foods.

  4. Anti-Adhesion Elastomer Seal Coatings for Ultraviolet and Atomic Oxygen Protection

    NASA Technical Reports Server (NTRS)

    De Groh, Henry C., III; Puleo, Bernadette J.; Waters, Deborah L.; Miller, Sharon K.

    2015-01-01

    Radiation blocking sunscreen coatings have been developed for the protection of elastomer seals used in low-Earth-orbit (LEO). The coatings protect the seals from ultraviolet (UV) radiation and atomic oxygen (AO) damage. The coatings were developed for use on NASA docking seals. Docking seal damage from the UV and AO present in LEO can constrain mission time-line, flight mode options, and increases risk. A low level of adhesion is also required for docking seals so undocking push-off forces can be low. The coatings presented also mitigate this unwanted adhesion. Greases with low collected volatile condensable materials (CVCM) and low total mass loss (TML) were mixed with slippery and/or UV blocking powders to create the protective coatings. Coatings were applied at rates up to 2 milligrams per square centimeter. Coated seals were exposed to AO and UV in the NUV (near-UV) and UV-C wavelength ranges (300 to 400 nanometers and 254 nanometers, respectively). Ground based ashers were used to simulate the AO of space. The Sun's UV energy was mimicked assuming a nose forward flight mode, resulting in an exposure rate of 2.5 megajoules per square meter per day. Exposures between 0 and 147 megajoules per square meter (UV-C) and 245 megajoules per square meter (NUV) were accomplished. The protective coatings were durable, providing protection from UV after a simulated docking and undocking cycle. The level of protection begins to decline at coverage rates less than 0.9 milligrams per square centimeter. The leakage of seals coated with Braycote plus 20 percent Z-cote ZnO sunscreen increased by a factor of 40 after moderate AO exposure; indicating that this coating might not be suitable due to AO intolerance. Seals coated with DC-7-16.4 percent Z-cote ZnO sunscreen were not significantly affected by combined doses of 2 x 10 (sup 21) atoms per square AO with 73 megajoules per square meter UV-C. Unprotected seals were significantly damaged at UV-C exposures of 0.3 megajoules per

  5. Mechanistic study of photo-oxidation of Bisphenol-A (BPA) with hydrogen peroxide (H2O2) and sodium persulfate (SPS).

    PubMed

    Sharma, Jyoti; Mishra, I M; Kumar, Vineet

    2016-01-15

    The removal of Bisphenol-A (BPA) from contaminated water using advanced oxidation methods such as UV-C assisted oxidation by hydrogen peroxide (H2O2) and sodium persulfate (SPS) has been reported by the authors earlier (Sharma et al., 2015a). In the present study, the authors report the removal of BPA from aqueous solution by the above two methods and its degradation mechanism. UV-C light (254 nm wavelength, 40 W power) was applied to BPA contaminated water at natural pH (pHN) under room temperature conditions. Experiments were carried out with the initial BPA concentration in the range of 0.04 mM-0.31 mM and the oxidant/BPA molar ratio in the range of 294:1-38:1 for UV-C/H2O2 and 31.5-4.06:1 for UV-C/SPS systems. The removal of BPA enhanced with decreasing BPA concentration. The total organic carbon also decreased with the UV-C irradiation time under optimum conditions ([H2O2]0 = 11.76 mM; [SPS]0 = 1.26 mM; temperature (29 ± 3 °C). Competition of BPA for reaction with HO or [Formula: see text] radicals at its higher concentrations results in a decrease in the removal of BPA. The intermediates with smaller and higher molecular weights than that of BPA were found in the treated water. Based on GC-MS and FTIR spectra of the reaction mixture, the formation of hydroxylated by-products testified the HO mediated oxidation pathway in the BPA degradation, while the formation of quinones and phenoxy phenols pointed to the [Formula: see text] dominating pathway through the formation of hydroxycyclohexadienyl (HCHD) and BPA phenoxyl radicals. The main route of BPA degradation is the hydroxylation followed by dehydration, coupling and ring opening reactions.

  6. Homeodomain-interacting protein kinase 2 regulates DNA damage response through interacting with heterochromatin protein 1γ.

    PubMed

    Akaike, Y; Kuwano, Y; Nishida, K; Kurokawa, K; Kajita, K; Kano, S; Masuda, K; Rokutan, K

    2015-06-01

    Homeodomain-interacting protein kinase 2 (HIPK2) is a potential tumor suppressor that has a crucial role in the DNA damage response (DDR) by regulating cell-cycle checkpoint activation and apoptosis. However, it is unclear whether HIPK2 exerts distinct roles in DNA damage repair. The aim of this study was to identify novel target molecule(s) of HIPK2, which mediates HIPK2-dependent DNA damage repair. HIPK2-knockdown human colon cancer cells (HCT116) or hipk1/hipk2 double-deficient mouse embryonic fibroblasts could not remove histone H2A.X phosphorylated at Ser139 (γH2A.X) after irradiation with a sublethal dose (10 J/m(2)) of ultraviolet (UV)-C, resulting in apoptosis. Knockdown of HIPK2 in p53-null HCT116 cells similarly promoted the UV-C-induced γH2A.X accumulation and apoptosis. Proteomic analysis of HIPK2-associated proteins using liquid chromatography-tandem mass spectrometry identified heterochromatin protein 1γ (HP1γ) as a novel target for HIPK2. Immunoprecipitation experiments with HCT116 cells expressing FLAG-tagged HIPK2 and one of the HA-tagged HP1 family members demonstrated that HIPK2 specifically associated with HP1γ, but not with HP1α or HP1β, through its chromo-shadow domain. Mutation of the HP1box motif (883-PTVSV-887) within HIPK2 abolished the association. HP1γ knockdown also enhanced accumulation of γH2A.X and apoptosis after sublethal UV-C irradiation. In vitro kinase assay demonstrated an HP1γ-phosphorylating activity of HIPK2. Sublethal UV-C irradiation phosphorylated HP1γ. This phosphorylation was absent in endogenous HIPK2-silenced cells with HIPK2 3'UTR siRNA. Overexpression of FLAG-HIPK2, but not the HP1box-mutated or kinase-dead HIPK2 mutant, in the HIPK2-silenced cells increased HP1γ binding to trimethylated (Lys9) histone H3 (H3K9me3), rescued the UV-C-induced phosphorylation of HP1γ, triggered release of HP1γ from histone H3K9me3 and suppressed γH2A.X accumulation. Our results suggest that HIPK2-dependent

  7. Instrumentation

    for Examining

    Microbial Response

    to Changes In Environmental Pressures

    NASA Astrophysics Data System (ADS)

    Blaich, J.; Storrs, A.; Wang, J.; Ouandji, C.; Arismendi, D.; Hernandez, J.; Sardesh, N.; Ibanez, C. R.; Owyang, S.; Gentry, D.

    2016-12-01

    The Automated Adaptive Directed Evolution Chamber (AADEC) is a device that allows operators to generate a micro-scale analog of real world systems that can be used to model the local-scale effects of climate change on microbial ecosystems. The AADEC uses an artificial environment to expose cultures of micro-organisms to environmental pressures, such as UV-C radiation, chemical toxins, and temperature. The AADEC autonomously exposes micro-organisms to slection pressures. This improves upon standard manual laboratory techniques: the process can take place over a longer period of time, involve more stressors, implement real-time adjustments based on the state of the population, and minimize the risk of contamination. We currently use UV-C radiation as the main selection pressure, UV-C is well studied both for its cell and DNA damaging effects as a type of selection pressure and for its related effectiveness as a mutagen; having these functions united makes it a good choice for a proof of concept. The AADEC roadmap includes expansion to different selection pressures, including heavy metal toxicity, temperature, and other forms of radiation. The AADEC uses closed-loop control to feedback the current state of the culture to the AADEC controller that modifies selection pressure intensity during experimentation, in this case culture density and growth rate. Culture density and growth rate are determined by measuring the optical density of the culture using 600 nm light. An array of 600 nm LEDs illuminate the culture and photodiodes are used to measure the shadow on the opposite side of the chamber. Previous experiments showed that we can produce a million fold increase to UV-C radiation over seven iterations. The most recent implements a microfluidic system that can expose cultures to multiple different selection pressures, perform non-survival based selection, and autonomously perform hundreds of exposure cycles. A scalable pump system gives the ability to pump in various

  8. Metabolicsyndrome in youngpatients.

    PubMed

    Otto-Buczkowska, Ewa; Dryżałowski, Marek

    2015-12-15

    Zespół metaboliczny jest poważnym problemem w populacji dzieci i młodzieży. Predyspozycje genetyczne oraz czynniki środowiskowe, jak np. brak aktywności fizycznej i zwiększona podaż kalorii, są odpowiedzialne za podatność na rozwój zespołu metabolicznego. Badany jest również wpływ immunologicznych mechanizmów otyłości i zespołu metabolicznego, włączając w nie rolę limfocytów T regulatorowych. Zespół metaboliczny określa się jako zbiór czynników (obejmujących otyłość brzuszną, dyslipidemię, insulinooporność, nietolerancję glukozy lub cukrzycę oraz nadciśnienie tętnicze), które zwiększają ryzyko przyspieszonego rozwoju schorzeń układu sercowo-naczyniowego oraz innych konsekwencji zdrowotnych.

  9. Possible undercompensation effect in the Kondo insulator (Yb,Tm)B12

    NASA Astrophysics Data System (ADS)

    Alekseev, P. A.; Nemkovski, K. S.; Mignot, J.-M.; Clementyev, E. S.; Ivanov, A. S.; Rols, S.; Bewley, R. I.; Filipov, V. B.; Shitsevalova, N. Yu.

    2014-03-01

    The effects of Tm substitution on the dynamical magnetic response of Yb1-xTmxB12 (x=0, 0.08, 0.15, and 0.75) and Lu0.92Tm0.08B12 compounds have been studied using time-of-flight inelastic neutron scattering. Major changes were observed in the spectral structure and temperature evolution of the Yb contribution to the inelastic response for a rather low content of magnetic Tm ions. A sizable influence of the RB12 host (YbB12, as compared to LuB12 or pure TmB12) on the crystal-field splitting of the Tm3+ ion is also reported. The results point to a specific effect of impurities carrying a magnetic moment (Tm, as compared to Lu or Zr) in a Kondo insulator, which is thought to reflect the "undercompensation" of Yb magnetic moments, originally Kondo screened in pure YbB12. A parallel is made with the strong effect of Tm substitution on the temperature dependence of the Seebeck coefficient in Yb1-xTmxB12, which was reported previously.

  10. Algorithm and program for precise determination of unit-cell parameters of single crystal taking into account the sample eccentricity

    NASA Astrophysics Data System (ADS)

    Dudka, A. P.; Smirnova, E. S.; Verin, I. A.; Bolotina, N. B.

    2017-07-01

    A technique has been developed to refine the unit-cell parameters of single crystals with minimization of the influence of instrumental errors on the result. The corresponding computational procedure HuberUB is added to the software package of Huber-5042 diffractometer with a point detector and closedcycle helium cryostat Displex DE-202. The parameters of unit cell, its orientation, the goniometer zero angles, the sample eccentricity, the distances in the goniometer, and the radiation wavelength were refined by the nonlinear least-squares method, which allows imposition of constraints on the unit-cell parameters, depending on the crystal symmetry. The technique is approved on a LuB12 single crystal. The unit-cell parameters are determined in a temperature range of 20-295 K, with an absolute error not larger than 0.0004 Å (the relative error is of 5 × 10-5). The estimates of the unit-cell parameters obtained by the proposed method are evidenced to be unbiased. Some specific features of the behavior of parameters in the ranges of 120-140 and 20-50 K are revealed, which correlate with the anomalies of the physical properties of the crystal.

  11. Human erythrocyte antigens. Regulation of expression of a novel erythrocyte surface antigen by the inhibitor Lutheran In(Lu) gene.

    PubMed Central

    Telen, M J; Eisenbarth, G S; Haynes, B F

    1983-01-01

    Our study describes a novel human erythrocyte protein antigen, the expression of which is regulated by the rare Lutheran inhibitor In(Lu) gene. We have produced a monoclonal antibody (A3D8) that bound strongly to erythrocytes from subjects with Lutheran phenotypes Lu(a+b+), Lu(a+b-), and Lu(a-b+) but bound negligibly to erythrocytes from subjects with the dominant form of Lu(a-b-) phenotype, reflecting inheritance of the In(Lu) gene. Importantly, erythrocytes from an individual with the recessive form of Lu(a-b-) phenotype (i.e., absence of the In(Lu) gene and absence of genes encoding for Lutheran antigens) showed reactivity with A3D8 antibody comparable to that seen with Lu(a+) or Lu(b+) erythrocytes. A3D8 antigen activity was also found on all leukocytes and in serum and plasma; this activity also appeared to be regulated by the In(Lu) gene in serum, plasma, and on a subset of leukocytes. Thus, we have identified a human erythrocyte protein whose expression is modified by the In(Lu) gene. This knowledge that such an antigen exists on erythrocytes and in normal plasma should allow further studies into the molecular genetics of the In(Lu) gene and into the functional and structural significance of the A3D8 antigen. PMID:6863545

  12. System and method of self-properties for an autonomous and automatic computer environment

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)

    2010-01-01

    Systems, methods and apparatus are provided through which in some embodiments self health/urgency data and environment health/urgency data may be transmitted externally from an autonomic element. Other embodiments may include transmitting the self health/urgency data and environment health/urgency data together on a regular basis similar to the lub-dub of a heartbeat. Yet other embodiments may include a method for managing a system based on the functioning state and operating status of the system, wherein the method may include processing received signals from the system indicative of the functioning state and the operating status to obtain an analysis of the condition of the system, generating one or more stay alive signals based on the functioning status and the operating state of the system, transmitting the stay-alive signal, transmitting self health/urgency data, and transmitting environment health/urgency data. Still other embodiments may include an autonomic element that includes a self monitor, a self adjuster, an environment monitor, and an autonomic manager.

  13. Genotype-phenotype correlations with personality traits of healthcare professionals: a new use for the Human Genome Project.

    PubMed

    Fitzgerald, Dominic A; Isaacs, David

    2002-04-01

    To describe the genetic basis of various personality traits. Prospective, blinded cohort study comparing questionnaire-reported personality traits with candidate genes for temperament, as revealed by genetic mapping in the Human Genome Project. Non-supervised questionnaires were mailed to MJA subscribers. DNA extracted from newborn screening blood samples of all New South Wales participants was used to perform mutation analysis for candidate personality genes. Tertiary medical care in New South Wales, 1 April 2000 to 1 April 2001. Healthcare professionals who admitted to reading the MJA on at least a semi-regular (monthly) basis. Correlations between occupation, personality and gene mutations were sought using a LOD score in comparison with a classic Poisson d'avril distribution. Mutations were identified that suggested the existence of genes determining several personality traits. Genes coding for belligerence (bel), charisma (lub), cynicism (dub), housekeeping (vac and uum), lack of personality (dul-1), obsessive-compulsive behaviour (pic-e) and gullibility (suk-r) are described. These were found to be selectively represented in certain members of the healthcare profession. The seven most important healthcare personality genes have now been described for posterity.

  14. Seventh international workshop on the fragile X and X-linked mental retardation

    SciTech Connect

    Tranebjaerg, L.; Lubs, H.A.; Borghgraef, M.; Fryns, J.P.

    1996-07-12

    The Seventh International Workshop on the Fragile X and X-linked Mental Retardation was held at the University of Tromso in Norway on August 2-5, 1995. Approximately 120 participants from 20 countries attended the Workshop. By special invitation Dr. Felix de la Cruz, who initiated the first international Workshop on fragile X, attended this Workshop. For the first time, the workshop took place in Scandinavia and was hosted by Lisbeth Tranebjaerg and Herbert Lubs. For most participants this Workshop, held at the northernmost university in the world, presented a unique opportunity to visit this exotic place. Between sessions, the participants had a chance to experience 24 hours of daylight, codfishing, and extreme weather situations with excessive amounts of rain as well as spectacular changes in the light and rainbows. The format of the Workshop was a combination of platform presentations and poster presentations. In contrast to previous meetings, the Workshop opened with syndromal and non-syndromal X-linked mental retardation in order to allow time for discussion. 34 refs., 1 fig.

  15. Recommendation to include a textile dye mix in the European baseline series.

    PubMed

    Isaksson, Marléne; Ryberg, Kristina; Goossens, An; Bruze, Magnus

    2015-07-01

    Disperse dyes are common sensitizers, but are not currently included in the European baseline series. To justify the inclusion of a textile dye mix in the European baseline patch test series. A survey of the reported frequencies of contact allergy to textile dyes and textile dye mixes was performed by searching PubMed (http://www.ncbi.nlm.gov.ludwig.lub.lu.se/pubmed, last accessed 14 December 2014). The results from a multicentre study performed within the European Environmental Contact Dermatitis Research Group (EECDRG) and published in 2014 formed the final basis for the recommendation. The EECDRG study performed in Europe and the United States showed that 2.1-6.9% of consecutively tested dermatitis patients reacted to a 6.6% wt/wt textile dye mix consisting of eight disperse dyes. The clinical relevance was ascertained in >30% of the positive cases. A high frequency of simultaneous sensitivity to Disperse Orange 3 (DO 3) and p-phenylenediamine (PPD) was seen. Active sensitization to the mix was not noted. It is recommended to include a 6.6% textile dye mix consisting of eight disperse dyes in the European baseline series, even though one component, DO 3, may be superfluous, owing to its frequent cross-reactivity with PPD. Removal of DO 3 from the mix would need further study. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Effect of red blood cell preservation by droplet freezing with non-permeable cryoprotective agents in blood group antigen reactivity.

    PubMed

    Chagas, M A B; Chaves, D G; Haddad, S K; Ubiali, E M A; Schmidt, L C; Silva-Malta, M C F

    2017-04-01

    In the last few decades, various red blood cell (RBC) freezing techniques have been developed and improved to enable the preservation of erythrocytes for future use in pre-transfusion tests in reference immunohaematology laboratories. However, not all these techniques have been sufficiently evaluated for the preservation of blood group antigens. In this study, we evaluated the antigenic pattern of RBCs preserved by droplet freezing in liquid nitrogen in a blood bank context. Blood samples were evaluated for the reactivity of blood group antigens after droplet freezing using the non-permeable cryoprotective agent polyvinylpyrrolidone (PVP) and sucrose-dextrose (S + D) solutions. No qualitative changes were observed in RBC reactivity after freezing and thawing for the antigens Fy(b) , Le(b) , C, E, C(w) , Lu(a) , Lu(b) , Kp(a) , Kp(b) and Di(a) . However, cryopreservation using PVP resulted in a significant increase in reactivity of Fy(b) antigen on comparing fresh and frozen samples (P < 0·001). The establishment of detailed protocols for cryopreservation of RBCs, which take into account the maintenance of antigenic characteristics, is necessary to increase security in pre-transfusion testing using frozen RBCs. © 2017 British Blood Transfusion Society.

  17. The distribution of digenean metacercariae within bream (Abramis brama) gill apparatus: preferences, co-occurrence and interactions of parasites.

    PubMed

    Zolovs, M; Kanto, J; Jakubāne, I

    2017-05-24

    Species-specific microenvironmental preferences and interactions between parasite species have been the focus of many ecological studies. Here, we studied the distribution of ectoparasite species within the gill apparatus of bream (Abramis brama) from Lake Lubāns (Latvia) to establish whether digenean metacercariae: (1) prefer specific patches within the gill apparatus; (2) co-occur in the same patches with monogeneans and copepods within a host individual; and (3) interact with monogeneans and copepods. We recorded all parasites on gill arches of the same host species and used null models to analyse co-occurrences of digenean metacercariae, monogeneans and copepods. Zero-inflated mixture models were used to define the preferred patches of parasites. We found that digenean metacercariae (Bucephalus polymorphus) prefer specific patches of the gill apparatus to encyst, and shared these preferences with monogeneans and copepods, but did not interact with them. We concluded that digenean metacercariae have a species-specific microenvironmental preference to encyst in the gill apparatus and their occurrence (even in high numbers) does not reduce the success of attachment of monogeneans and copepods in the same gill patches.

  18. Effects of Ultraviolet Radiation on the Gram-positive marine bacterium Microbacterium maritypicum.

    PubMed

    Williams, Patrick D; Eichstadt, Shaundra L; Kokjohn, Tyler A; Martin, Eugene L

    2007-07-01

    Although extensive information is available on the effect ultraviolet (UV) radiation has on Gram-negative marine bacteria, there is a scarcity of data concerning UV radiation and Gram-positive marine bacteria. The focus of this paper is on Microbacterium maritypicum, with the Gram-negative Vibrio natriegens being used as a standard of comparison. M. maritypicum exhibited growth over a NaCl range of 0-1000 mM: , with optimum growth occurring between 0 and 400 mM: NaCl. In contrast, V. natriegens grew over a NaCl span of 250-1000 mM: , with best growth being observed between 250 and 600 mM: NaCl. UV radiation experiments were done using the medium with 250 mM: NaCl. For solar (UV-A and B) radiation and log-phase cells, M. maritypicum was determined to be three times more resistant than V. natriegens. For germicidal (UV-C) radiation, the pattern of resistance of the log-phase cells to the lethal effects of the radiation was even more pronounced, with the Gram-positive bacterium being more than 12 to 13 times more resistant. Similar data to the solar and germicidal log-phase UV kill curves were obtained for stationary-phase cells of both organisms. Photoreactivation was observed for both types of cells exposed to UV-C but none for cells treated with UV-A and B. When log phase cells of M.maritypicum were grown at 0.0 and 0.6 M: NaCl and exposed to UV-C radiation, no difference in survivorship patterns was noted from that of 0.25 M: NaCl grown cells. Although this study has only focused on two marine bacteria, our results indicate that the Gram-positive M. maritypicum could have a built-in advantage for survival in some marine ecosystems.

  19. The Effect of Photon Source on Heterogeneous Photocatalytic Oxidation of Ethanol by a Silica-Titania Composite

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Levine, Lanfang H.; Richards, Jeffrey T.; Mazyck, David W.

    2011-01-01

    The objective of this study was to distinguish the effect of photon flux (i.e., photons per unit time reaching a surface) from that of photon energy (i.e., wavelength) of a photon source on the silica-titania composite (STC)-catalyzed degradation of ethanol in the gas phase. Experiments were conducted in a bench-scale annular reactor packed with STC pellets and irradiated with either a UV-A fluorescent black light blue lamp ((gamma)max=365 nm) at its maximum light intensity or a UV-C germicidal lamp ((gamma)max=254 nm) at three levels of light intensity. The STC-catalyzed oxidation of ethanol was found to follow zero-order kinetics with respect to CO2 production, regardless of the photon source. Increased photon flux led to increased EtOH removal, mineralization, and oxidation rate accompanied by lower intermediate concentration in the effluent. The oxidation rate was higher in the reactor irradiated by UV-C than by UV-A (38.4 vs. 31.9 nM/s) at the same photon flux, with similar trends for mineralization (53.9 vs. 43.4%) and reaction quantum efficiency (i.e., photonic efficiency, 63.3 vs. 50.1 nmol CO2 (mu)mol/photons). UV-C irradiation also led to decreased intermediate concentration in the effluent . compared to UV-A irradiation. These results demonstrated that STC-catalyzed oxidation is enhanced by both increased photon flux and photon energy.

  20. Changes in homologous recombination frequency in Arabidopsis thaliana plants exposed to stress depend on time of exposure during development and on duration of stress exposure.

    PubMed

    Rahavi, Seyed Mohammad Reza; Kovalchuk, Igor

    2013-10-01

    In the past, we showed that exposure to abiotic and biotic stresses changes the homologous recombination frequency (HRF) in somatic tissue and in the progeny. In current work we planned to answer the following question: do stress intensity/duration and time during exposure influence changes in somatic HRF and transgenerational changes in HRF? Here, we tested the effects of exposure to UV-C, cold and heat on HRF at 7, 14, 21 and 28 days post germination (dpg). We found that exposure at 14 and 21 dpg resulted in a higher increase in HRF as compared to exposure at 7 dpg; longer exposure to UV-C resulted in a higher frequency of HR, whereas prolonged exposure to cold or heat, especially at later developmental stages, had almost no effect on somatic HRF. Exposure at 7 dpg had a positive effect on somatic growth of plants; plants exposed to stress at this age had larger leaves. The analysis of HRF in the progeny showed that the progeny of plants exposed to stress at 7 dpg had an increase in somatic HRF and showed larger sizes of recombination spots on leaves. The progeny of plants exposed to UV-C at 7 dpg and the progeny of plants exposed to cold or heat at 28 dpg had larger leaves as compared to control plants. To summarize, our experiments showed that changes in somatic and transgenerational HRF depend on the type of stress plants are exposed to, time of exposure during development and the duration of exposure.

  1. Ceramide Synthase-dependent Ceramide Generation and Programmed Cell Death

    PubMed Central

    Mullen, Thomas D.; Jenkins, Russell W.; Clarke, Christopher J.; Bielawski, Jacek; Hannun, Yusuf A.; Obeid, Lina M.

    2011-01-01

    The sphingolipid ceramide has been widely implicated in the regulation of programmed cell death or apoptosis. The accumulation of ceramide has been demonstrated in a wide variety of experimental models of apoptosis and in response to a myriad of stimuli and cellular stresses. However, the detailed mechanisms of its generation and regulatory role during apoptosis are poorly understood. We sought to determine the regulation and roles of ceramide production in a model of ultraviolet light-C (UV-C)-induced programmed cell death. We found that UV-C irradiation induces the accumulation of multiple sphingolipid species including ceramide, dihydroceramide, sphingomyelin, and hexosylceramide. Late ceramide generation was also found to be regulated by Bcl-xL, Bak, and caspases. Surprisingly, inhibition of de novo synthesis using myriocin or fumonisin B1 resulted in decreased overall cellular ceramide levels basally and in response to UV-C, but only fumonisin B1 inhibited cell death, suggesting the presence of a ceramide synthase (CerS)-dependent, sphingosine-derived pool of ceramide in regulating programmed cell death. We found that this pool did not regulate the mitochondrial pathway, but it did partially regulate activation of caspase-7 and, more importantly, was necessary for late plasma membrane permeabilization. Attempting to identify the CerS responsible for this effect, we found that combined knockdown of CerS5 and CerS6 was able to decrease long-chain ceramide accumulation and plasma membrane permeabilization. These data identify a novel role for CerS and the sphingosine salvage pathway in regulating membrane permeability in the execution phase of programmed cell death. PMID:21388949

  2. Evaluation of a pulsed xenon ultraviolet disinfection system for reduction of healthcare-associated pathogens in hospital rooms.

    PubMed

    Nerandzic, Michelle M; Thota, Priyaleela; Sankar C, Thriveen; Jencson, Annette; Cadnum, Jennifer L; Ray, Amy J; Salata, Robert A; Watkins, Richard R; Donskey, Curtis J

    2015-02-01

    OBJECTIVE To determine the effectiveness of a pulsed xenon ultraviolet (PX-UV) disinfection device for reduction in recovery of healthcare-associated pathogens. SETTING Two acute-care hospitals. METHODS We examined the effectiveness of PX-UV for killing of Clostridium difficile spores, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus (VRE) on glass carriers and evaluated the impact of pathogen concentration, distance from the device, organic load, and shading from the direct field of radiation on killing efficacy. We compared the effectiveness of PX-UV and ultraviolet-C (UV-C) irradiation, each delivered for 10 minutes at 4 feet. In hospital rooms, the frequency of native pathogen contamination on high-touch surfaces was assessed before and after 10 minutes of PX-UV irradiation. RESULTS On carriers, irradiation delivered for 10 minutes at 4 feet from the PX-UV device reduced recovery of C. difficile spores, MRSA, and VRE by 0.55±0.34, 1.85±0.49, and 0.6±0.25 log10 colony-forming units (CFU)/cm2, respectively. Increasing distance from the PX-UV device dramatically reduced killing efficacy, whereas pathogen concentration, organic load, and shading did not. Continuous UV-C achieved significantly greater log10CFU reductions than PX-UV irradiation on glass carriers. On frequently touched surfaces, PX-UV significantly reduced the frequency of positive C. difficile, VRE, and MRSA culture results. CONCLUSIONS The PX-UV device reduced recovery of MRSA, C. difficile, and VRE on glass carriers and on frequently touched surfaces in hospital rooms with a 10-minute UV exposure time. PX-UV was not more effective than continuous UV-C in reducing pathogen recovery on glass slides, suggesting that both forms of UV have some effectiveness at relatively short exposure times.

  3. Drinking water treatment with ultraviolet light for travelers -- Evaluation of a mobile lightweight system.

    PubMed

    Timmermann, Lisa F; Ritter, Klaus; Hillebrandt, David; Küpper, Thomas

    2015-01-01

    The SteriPEN(®) is a handheld device for disinfecting water with ultraviolet (UV) radiation. The manufacturer claims a reduction of at least 99.9% of bacteria, viruses, and protozoa. The present study intends to verify the general effectiveness of the device. Furthermore, the influence of bottle geometry and water movement is examined and the issue of user safety with regard to UV-C radiation is addressed. The device was applied on water containing a known number of microorganisms (Escherichia coli, Staphylococcus aureus, and the spore of Geobacillusstearothermophilus) and the survival rate was examined. Three different types of bottles commonly used among travelers served as test containers. All tests were conducted with and without agitating the water during irradiation. Furthermore, a spectral analysis was performed on the light of the device. The SteriPEN(®) reached a mean reduction of more than 99.99% of bacteria and 99.57% of the spores when applied correctly. However, the results of the trials without agitating the water only yielded a 94.98% germ reduction. The device's maximal radiation intensity lies at 254 nm which is the wavelength most efficient in inactivating bacteria. The UV-C fraction is filtered out completely by common bottle materials. However, when applied in larger containers a portion of the UV-C rays exits the water surface. If applied according to the instructions the device manages a satisfactory inactivation of bacteria. However, it bears the danger of user errors relevant to health. Therefore, education on the risks of incorrect application should be included in the travel medical consultation. Also there are still aspects that need to be subject to further independent research. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Ceramide synthase-dependent ceramide generation and programmed cell death: involvement of salvage pathway in regulating postmitochondrial events.

    PubMed

    Mullen, Thomas D; Jenkins, Russell W; Clarke, Christopher J; Bielawski, Jacek; Hannun, Yusuf A; Obeid, Lina M

    2011-05-06

    The sphingolipid ceramide has been widely implicated in the regulation of programmed cell death or apoptosis. The accumulation of ceramide has been demonstrated in a wide variety of experimental models of apoptosis and in response to a myriad of stimuli and cellular stresses. However, the detailed mechanisms of its generation and regulatory role during apoptosis are poorly understood. We sought to determine the regulation and roles of ceramide production in a model of ultraviolet light-C (UV-C)-induced programmed cell death. We found that UV-C irradiation induces the accumulation of multiple sphingolipid species including ceramide, dihydroceramide, sphingomyelin, and hexosylceramide. Late ceramide generation was also found to be regulated by Bcl-xL, Bak, and caspases. Surprisingly, inhibition of de novo synthesis using myriocin or fumonisin B1 resulted in decreased overall cellular ceramide levels basally and in response to UV-C, but only fumonisin B1 inhibited cell death, suggesting the presence of a ceramide synthase (CerS)-dependent, sphingosine-derived pool of ceramide in regulating programmed cell death. We found that this pool did not regulate the mitochondrial pathway, but it did partially regulate activation of caspase-7 and, more importantly, was necessary for late plasma membrane permeabilization. Attempting to identify the CerS responsible for this effect, we found that combined knockdown of CerS5 and CerS6 was able to decrease long-chain ceramide accumulation and plasma membrane permeabilization. These data identify a novel role for CerS and the sphingosine salvage pathway in regulating membrane permeability in the execution phase of programmed cell death.

  5. Evaluating the Effect of Expressing a Peanut Resveratrol Synthase Gene in Rice

    PubMed Central

    Li, Zhen; Wang, Qingguo; Yao, Fangyin; Yang, Lianqun; Pan, Jiaowen; Liu, Wei

    2015-01-01

    Resveratrol (Res) is a type of natural plant stilbenes and phytoalexins that only exists in a few plant species. Studies have shown that the Res could be biosynthesized and accumulated within plants, once the complete metabolic pathway and related enzymes, such as the key enzyme resveratrol synthase (RS), existed. In this study, a RS gene named PNRS1 was cloned from the peanut, and the activity was confirmed in E. coli. Using transgenic approach, the PNRS1 transgenic rice was obtained. In T3 generation, the Res production and accumulation were further detected by HPLC. Our data revealed that compared to the wild type rice which trans-resveratrol was undetectable, in transgenic rice, the trans-resveratrol could be synthesized and achieved up to 0.697 μg/g FW in seedlings and 3.053 μg/g DW in seeds. Furthermore, the concentration of trans-resveratrol in transgenic rice seedlings could be induced up to eight or four-fold higher by ultraviolet (UV-C) or dark, respectively. Simultaneously, the endogenous increased of Res also showed the advantages in protecting the host plant from UV-C caused damage or dark-induced senescence. Our data indicated that Res was involved in host-defense responses against environmental stresses in transgenic rice. Here the results describes the processes of a peanut resveratrol synthase gene transformed into rice, and the detection of trans-resveratrol in transgenic rice, and the role of trans-resveratrol as a phytoalexin in transgenic rice when treated by UV-C and dark. These findings present new outcomes of transgenic approaches for functional genes and their corresponding physiological functions, and shed some light on broadening available resources of Res, nutritional improvement of crops, and new variety cultivation by genetic engineering. PMID:26302213

  6. Endogenous fluorescence emission of the ovary

    NASA Astrophysics Data System (ADS)

    Utzinger, Urs; Kirkpatrick, Nathaniel D.; Drezek, Rebekah A.; Brewer, Molly A.

    2005-03-01

    Epithelial ovarian cancer has the highest mortality rate among the gynecologic cancers. Early detection would significantly improve survival and quality of life of women at increased risk to develop ovarian cancer. We have constructed a device to investigate endogenous signals of the ovarian tissue surface in the UV C to visible range and describe our initial investigation of the use of optical spectroscopy to characterize the condition of the ovary. We have acquired data from more than 33 patients. A table top spectroscopy system was used to collect endogenous fluorescence with a fiberoptic probe that is compatible with endoscopic techniques. Samples were broken into five groups: Normal-Low Risk (for developing ovarian cancer) Normal-High Risk, Benign, and Cancer. Rigorous statistical analysis was applied to the data using variance tests for direct intensity versus diagnostic group comparisons and principal component analysis (PCA) to study the variance of the whole data set. We conclude that the diagnostically most useful excitation wavelengths are located in the UV. Furthermore, our results indicate that UV B and C are most useful. A safety analysis indicates that UV-C imaging can be conducted at exposure levels below safety thresholds. We found that fluorescence excited in the UV-C and UV-B range increases from benign to normal to cancerous tissues. This is in contrast to the emission created with UV-A excitation which decreased in the same order. We hypothesize that an increase of protein production and a decrease of fluorescence contributions of the extracellular matrix could explain this behavior. Variance analysis also identified fluctuation of fluorescence at 320/380 which is associated with collagen cross link residues. Small differences were observed between the group at high risk and normal risk for ovarian cancer. High risk samples deviated towards the cancer group and low risk samples towards benign group.

  7. Defect-Resistant Radiative Performance of m-Plane Immiscible Al1-x Inx N Epitaxial Nanostructures for Deep-Ultraviolet and Visible Polarized Light Emitters.

    PubMed

    Chichibu, Shigefusa F; Kojima, Kazunobu; Uedono, Akira; Sato, Yoshitaka

    2017-02-01

    Planar vacuum-fluorescent-display devices emitting polarized UV-C, blue, and green light are demonstrated using immiscible Al1-x Inx N nanostructures grown in nonpolar m-directions. Despite the presence of high concentration of nonradiative recombination centers, the Al1-x Inx N nanostructures emit polarized light with the luminescence lifetimes of 22-32 ps at 300 K. This defect-resistant radiative performance suggests supernormal localized characteristics of electron-hole pairs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Egr1 Target Genes That Regulate Growth/Survival of Prostate Cells

    DTIC Science & Technology

    2005-03-01

    indicating that, in the absence of Egrl, both p300 Apigenin or DRB (inhibitors of CK2) before UV-C, show- and CBP genes are expressed at higher levels...he C K2 i nhibi- UO f W0W we C5P + -4DRS + -OMtors, ORB (50 .tMv), or Apigenin (50 l.LM) for ŖPI-Egri 30 min immediately following exposure to UV...cycloheximide, genestein, tyrphostin-AG1 112, H-7 dihydrochloride, sion of the disease by its constitutive expression. This apigenin and 5,6-dichloro

  9. Complete genome sequence of Geodermatophilus obscurus type strain (G-20).

    PubMed

    Ivanova, Natalia; Sikorski, Johannes; Jando, Marlen; Munk, Christine; Lapidus, Alla; Glavina Del Rio, Tijana; Copeland, Alex; Tice, Hope; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Meincke, Linda; Brettin, Thomas; Detter, John C; Rohde, Manfred; Göker, Markus; Bristow, Jim; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2010-03-30

    Geodermatophilus obscurus Luedemann 1968 is the type species of the genus, which is the type genus of the family Geodermatophilaceae. G. obscurus is of interest as it has frequently been isolated from stressful environments such as rock varnish in deserts, and as it exhibits interesting phenotypes such as lytic capability of yeast cell walls, UV-C resistance, strong production of extracellular functional amyloid (FuBA) and manganese oxidation. This is the first completed genome sequence of the family Geodermatophilaceae. The 5,322,497 bp long genome with its 5,161 protein-coding and 58 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  10. Chemical sporulation and germination: cytoprotective nanocoating of individual mammalian cells with a degradable tannic acid-FeIII complex.

    PubMed

    Lee, Juno; Cho, Hyeoncheol; Choi, Jinsu; Kim, Doyeon; Hong, Daewha; Park, Ji Hun; Yang, Sung Ho; Choi, Insung S

    2015-12-07

    Individual mammalian cells were coated with cytoprotective and degradable films by cytocompatible processes maintaining the cell viability. Three types of mammalian cells (HeLa, NIH 3T3, and Jurkat cells) were coated with a metal-organic complex of tannic acid (TA) and ferric ion, and the TA-Fe(III) nanocoat effectively protected the coated mammalian cells against UV-C irradiation and a toxic compound. More importantly, the cell proliferation was controlled by programmed formation and degradation of the TA-Fe(III) nanocoat, mimicking the sporulation and germination processes found in nature.

  11. Sensitivity of human cells expressing low-fidelity or weak-catalytic-activity variants of DNA polymerase ζ to genotoxic stresses.

    PubMed

    Suzuki, Tetsuya; Grúz, Petr; Honma, Masamitsu; Adachi, Noritaka; Nohmi, Takehiko

    2016-09-01

    Translesion DNA polymerases (TLS pols) play critical roles in defense mechanisms against genotoxic agents. The defects or mutations of TLS pols are predicted to result in hypersensitivity of cells to environmental mutagens. In this study, human cells expressing DNA polymerase ζ (Pol ζ) variants with low fidelity or weak catalytic activity have been established with Nalm-6-MSH+ cells and their sensitivity to mutagenicity and cytotoxicity of benzo[a]pyrene diol epoxide (BPDE) and ultraviolet-C light (UV-C) was examined. The low-fidelity mutants were engineered by knocking-in DNA sequences that direct changes of leucine 2618 to either phenylalanine (L2618F) or methionine (L2618M) of Pol ζ. The weak-catalytic-activity mutants were generated by knocking-in DNA sequences that direct changes of either tyrosine 2779 to phenylalanine (Y2779F) or aspartate 2781 to asparagine (D2781N). In addition, a +1 frameshift mutation, i.e., CCC to CCCC, was introduced in the coding region of the TK1 gene to measure the mutant frequencies. Doubling time and spontaneous TK mutant frequencies of the established cell lines were similar to those of the wild-type cells. The low-fidelity mutants displayed, however, higher sensitivity to the mutagenicity of BPDE and UV-C than the wild-type cells although their cytotoxic sensitivity was not changed. In contrast, the weak-catalytic-activity mutants were more sensitive to the cytotoxicity of BPDE and UV-C than the wild-type cells, and displayed much higher sensitivity to the clastogenicity of BPDE than the wild-type cells in an in vitro micronucleus assay. These results indicate that human Pol ζ is involved in TLS across DNA lesions induced by BPDE and UV-C and also that the TLS plays important roles in induction of mutations, clastogenicity and in cellular survival of the damaged human cells. Similarities and differences in in vivo roles of yeast and human Pol ζ in genome integrity are discussed. Copyright © 2016 Elsevier B.V. All rights

  12. Preliminary Assessment McGhee - Tyson ANGB, McGhee - Tyson Municipal Airport, Knoxville, Tennessee

    DTIC Science & Technology

    1988-06-01

    Air Defense Command (ADC) was changed to theI Tactical Air Command (TAC). Having no previously qualified KC-97 aircrews or maintenance personnel...anticipated to cause death, disease, behavioral abnormalities, cancer , genetic mutation, physiological malfunctions (including malfunctions in reproduction...4 .e4 8 A @2~ ~~~~ 41 4) 104 3 4 - 4 1 4 1 4 41~~~ A0 Uv c 4 ( VI U~~ ~~~ ~~ H-0__ _ _ _ __ _ _ _ _ _ _ 01 ’-4 %0 J fo𔃾I (N 0 v~ -4 (N en OD N 0

  13. Spectral irradiance measurement and actinic radiometer calibration for UV water disinfection

    NASA Astrophysics Data System (ADS)

    Sperfeld, Peter; Barton, Bettina; Pape, Sven; Towara, Anna-Lena; Eggers, Jutta; Hopfenmüller, Gabriel

    2014-12-01

    In a joint project, sglux and PTB investigated and developed methods and equipment to measure the spectral and weighted irradiance of high-efficiency UV-C emitters used in water disinfection plants. A calibration facility was set up to calibrate the microbicidal irradiance responsivity of actinic radiometers with respect to the weighted spectral irradiance of specially selected low-pressure mercury and medium-pressure mercury UV lamps. To verify the calibration method and to perform on-site tests, spectral measurements were carried out directly at water disinfection plants in operation. The weighted microbicidal irradiance of the plants was calculated and compared to the measurements of various actinic radiometers.

  14. Comparative DNA damage and repair in echinoderm coelomocytes exposed to genotoxicants.

    PubMed

    El-Bibany, Ameena H; Bodnar, Andrea G; Reinardy, Helena C

    2014-01-01

    The capacity to withstand and repair DNA damage differs among species and plays a role in determining an organism's resistance to genotoxicity, life history, and susceptibility to disease. Environmental stressors that affect organisms at the genetic level are of particular concern in ecotoxicology due to the potential for chronic effects and trans-generational impacts on populations. Echinoderms are valuable organisms to study the relationship between DNA repair and resistance to genotoxic stress due to their history and use as ecotoxicological models, little evidence of senescence, and few reported cases of neoplasia. Coelomocytes (immune cells) have been proposed to serve as sensitive bioindicators of environmental stress and are often used to assess genotoxicity; however, little is known about how coelomocytes from different echinoderm species respond to genotoxic stress. In this study, DNA damage was assessed (by Fast Micromethod) in coelomocytes of four echinoderm species (sea urchins Lytechinus variegatus, Echinometra lucunter lucunter, and Tripneustes ventricosus, and a sea cucumber Isostichopus badionotus) after acute exposure to H2O2 (0-100 mM) and UV-C (0-9999 J/m2), and DNA repair was analyzed over a 24-hour period of recovery. Results show that coelomocytes from all four echinoderm species have the capacity to repair both UV-C and H2O2-induced DNA damage; however, there were differences in repair capacity between species. At 24 hours following exposure to the highest concentration of H2O2 (100 mM) and highest dose of UV-C (9999 J/m2) cell viability remained high (>94.6 ± 1.2%) but DNA repair ranged from 18.2 ± 9.2% to 70.8 ± 16.0% for H2O2 and 8.4 ± 3.2% to 79.8 ± 9.0% for UV-C exposure. Species-specific differences in genotoxic susceptibility and capacity for DNA repair are important to consider when evaluating ecogenotoxicological model organisms and assessing overall impacts of genotoxicants in the environment.

  15. Comparative DNA Damage and Repair in Echinoderm Coelomocytes Exposed to Genotoxicants

    PubMed Central

    El-Bibany, Ameena H.; Bodnar, Andrea G.; Reinardy, Helena C.

    2014-01-01

    The capacity to withstand and repair DNA damage differs among species and plays a role in determining an organism's resistance to genotoxicity, life history, and susceptibility to disease. Environmental stressors that affect organisms at the genetic level are of particular concern in ecotoxicology due to the potential for chronic effects and trans-generational impacts on populations. Echinoderms are valuable organisms to study the relationship between DNA repair and resistance to genotoxic stress due to their history and use as ecotoxicological models, little evidence of senescence, and few reported cases of neoplasia. Coelomocytes (immune cells) have been proposed to serve as sensitive bioindicators of environmental stress and are often used to assess genotoxicity; however, little is known about how coelomocytes from different echinoderm species respond to genotoxic stress. In this study, DNA damage was assessed (by Fast Micromethod) in coelomocytes of four echinoderm species (sea urchins Lytechinus variegatus, Echinometra lucunter lucunter, and Tripneustes ventricosus, and a sea cucumber Isostichopus badionotus) after acute exposure to H2O2 (0–100 mM) and UV-C (0–9999 J/m2), and DNA repair was analyzed over a 24-hour period of recovery. Results show that coelomocytes from all four echinoderm species have the capacity to repair both UV-C and H2O2-induced DNA damage; however, there were differences in repair capacity between species. At 24 hours following exposure to the highest concentration of H2O2 (100 mM) and highest dose of UV-C (9999 J/m2) cell viability remained high (>94.6±1.2%) but DNA repair ranged from 18.2±9.2% to 70.8±16.0% for H2O2 and 8.4±3.2% to 79.8±9.0% for UV-C exposure. Species-specific differences in genotoxic susceptibility and capacity for DNA repair are important to consider when evaluating ecogenotoxicological model organisms and assessing overall impacts of genotoxicants in the environment. PMID:25229547

  16. Effect of UV and UV/H2O2 in the presence of chloramines on NDMA formation potential of tramadol.

    PubMed

    Radjenovic, Jelena; Farré, Maria José; Gernjak, Wolfgang

    2012-08-07

    This study evaluates the effect of UV-C and UV-C/H(2)O(2) in the presence of chloramines on the N-nitrosodimethylamine formation potential (NDMA FP) of tramadol as a model precursor. The experiments were performed at high initial concentrations of TMDL (i.e., 20 mg/L) in order to elucidate the structures of TMDL byproducts. Twenty-four byproducts were identified in UV-C, UV-C/monochloramine, and UV/H(2)O(2)/monochloramine oxidation of tramadol using MS(3) capabilities of a hybrid quadrupole-linear ion trap mass spectrometer, combined with online hydrogen/deuterium (H/D) exchange experiments. Oxidative cleavage of methoxy and methoxybenzene moiety, O-demethylation, hydroxylation, and cyclohexane ring-opening were identified as major reaction mechanisms of tramadol in UV oxidation. Addition of monochloramine decreased the degradation rates of tramadol and its byproducts and yielded several monochlorinated derivatives. The oxidation rates were significantly enhanced in the presence of H(2)O(2), and byproducts of oxidative benzene ring-opening were detected. The majority of the identified byproducts are likely to have a higher NDMA FP than the parent compound due to a reduced steric hindrance and/or insertion of electron-donating hydroxyl groups in the N,N-dimethylamine side chain. This was confirmed by the results of NDMA FP tests, which showed that the formation of NDMA was enhanced up to four times depending on the process conditions in UV alone and in UV and UV/H(2)O(2) in the presence of monochloramine. Prolonged oxidation by hydroxyl radicals in UV/H(2)O(2)/monochloramine process mineralized some of the byproducts and slightly reduced the NDMA FP at the end of the treatment. The obtained degradation pathway of tramadol allowed the correlation of changes in NDMA FP during oxidation with its major oxidative transformation reactions. This manuscript demonstrates the significance of oxidation byproducts as NDMA precursors and emphasizes the need for their

  17. Dynamics of the MAP IOP 15 severe Mistral event: Observations and high-resolution numerical simulations

    NASA Astrophysics Data System (ADS)

    Guénard, V.; Drobinski, P.; Caccia, J. L.; Tedeschi, G.; Currier, P.

    2006-04-01

    This paper investigates the fundamental processes involved in a severe Mistral event that occurred during the Mesoscale Alpine Program (from 6 to 9 November 1999). The Mistral refers to a violent north/north-westerly wind blowing in south-eastern France from the Rhône valley to the French Riviera. The study is based on measurements from radiosoundings launched from Lyon and Nîmes and from two UHF wind profilers located near Marseille and Toulon allowing a good description of the flow in the complex terrain formed by the south-western Alps. Observational results are compared with RAMS non-hydrostatic numerical simulations performed with 27 km, 9 km and 3 km nested grids. The numerical simulations capture the flow complexity both upstream of the Alps and in the coastal area affected by the Mistral. They correctly reproduce horizontal wind speeds and directions, vertical velocities, virtual potential temperature and relative humidity documented by the observational network. The simulations are used to point out the main dynamical processes generating the Mistral. It is found that flow splitting around the Alps and around the isolated peaks bordering the south-eastern part of the Rhône valley (Mont Ventoux 1909 m, Massif du Lubéron 1425 m) induces the low-level jet observed near Marseille that lasts for 36 hours. The high-resolution simulation indicates that the transient low-level jet lasting for only 9 hours observed at Toulon is due to a gravity wave breaking over local topography (the Sainte Baume 1147 m) where hydraulic jumps are involved. A mountain wake with two opposite-sign potential-vorticity banners is generated. The mesoscale wake explains the westward progression of the large-scale Alpine wake.

  18. Design and Construction of Equipment to Make Adsorption at Pilot Plant Scale of Heavy Metals

    NASA Astrophysics Data System (ADS)

    Moreno-Piraján, Juan C.; Rangel, David; Amaya, Bibiana; Vargas, Edgar M.; Giraldo, Liliana

    2008-08-01

    The purpose of this paper was to illustrate the procedure to obtain activated carbon from lignocellulosic residues through chemical and physical paths. A general surface characterization was made and aqueous solution isotherms were obtained in order to evaluate the behaviour of each carbon atom in solutions contaminated with selective ions. The other purpose was to show a simple way to perform a scale-up process of an absorber from the laboratory level to an industrial level, using the breaking curves in fixed beds developed through the continuous pursuit of the Pb(II) and Cr(VI) ions concentration in the effluent of the bed. Activated carbon was used to study the adsorption of Pb(II) and Cr(VI). Isotherms of aqueous adsorption were determined. This model was developed in order to examine its efficiency and to compare it with an experimental model made in the laboratory, which rendered very similar results. The main characteristic of the feasibility of the application of this design is the fact that neither tedious calculations nor mass transfer coefficients are required in order to construct the above-mentioned curves. The model was developed by applying concepts such as mass transfer zone (MTZ) and length of unused bed (LUB), which are the dynamical basis understanding for the adsorption process in fixed beds. As a complementary item of the experiment, within a pilot plant scale, a filter was developed in order to achieve flexibility when manipulating the most important adsorption parameters and to enable the control of the variables involved in the process that change the operating conditions.

  19. Frequency, patterns, and preferences of lubricant use during anal intercourse within male sexual partnerships in Lima, Peru: implications for a rectal microbicide HIV prevention intervention.

    PubMed

    Clark, Jesse L; Salvatierra, Hector J; Segura, Eddy R; Salazar, Ximena; Konda, Kelika; Galea, Jerome; Klausner, Jeffrey D; Coates, Thomas J; Caceres, Carlos F

    2013-01-01

    Understanding current practices of lubricant use during anal intercourse can help to assess the contexts for the introduction of topical rectal microbicides as an HIV prevention tool for men who have sex with men (MSM). We used quantitative and qualitative methods to assess: current patterns of lubricant use; preferred characteristics of commercial lubricant formulations; and social and behavioral contexts of lubricant use within male sexual partnerships in Lima, Peru. Between 2007 and 2008, we conducted a quantitative behavioral survey with 547 MSM followed by qualitative individual and group interviews with 36 MSM from Lima, Peru. Approximately half of all participants in the quantitative survey (50.3%) reported using commercial lubricant during intercourse occasionally or consistently during the preceding two months, with lack of availability at the time of intercourse the most commonly reported reason for non-use. No clear preferences regarding the color, smell, taste, or viscosity of commercial lubricants were identified, and all participants who reported using a commercial lubricant used the same product ("Love-Lub"). In the qualitative analysis, participants characterized lubricant use as a sexual practice consistently controlled by the receptive partner, who typically obtained and applied lubricant independently, with or without the consent of the insertive partner. Quantitative findings supported this differential pattern of lubricant use, with men who reported sexual identities or roles consistent with receptive anal intercourse, including unprotected receptive intercourse, more likely to report lubricant use than MSM who claimed an exclusively insertive sexual role. Given the social, behavioral, and biological factors contributing to increased vulnerability for HIV and STI acquisition by the receptive partner in anal intercourse, delivery of a topical rectal microbicide as a lubricant formulation could provide an important HIV prevention resource for at

  20. Role of gluten-free diet in pathogenesis of type 1 diabetes - what new?

    PubMed

    Chwalba, Artur; Otto-Buczkowska, Ewa

    2015-01-01

    W ostatnich dekadach związek pomiędzy występowaniem celiakii a innymi autoimmunologicznymi schorzeniami, takimi jak autoimmunologiczne schorzenia tarczycy czy cukrzyca typu 1, został ustalony w wielu badaniach i jest do dziś przedmiotem klinicznych i naukowych obserwacji na całym świecie. Cukrzyca typu 1 (T1DM) i choroba trzewna (CD) mają podobne tło genetyczne związane z genotypem HLA-DQ2 / DQ8. Współzależność pomiędzy spożywaniem glutenu a późniejszym rozwojem cukrzycy typu 1 została wykazana w badaniach u ludzi i u zwierząt doświadczalnych. Badania te dowiodły, że dieta bez zawartości glutenu obniża poziom receptora NKG2D i ekspresje jego ligandów u myszy (GF). Tak więc gluten może rzutować na rozwój cukrzycy poprzez wpływ na modyfikację wzoru stosunku cytokiny/chemokiny, powodującą profil zapalny. Potwierdza to ważną rolę spożycia glutenu w patogenezie cukrzycy typu 1. Uzasadnione jest prowadzenie dalszych badań w celu wyjaśnienia, czy dieta bezglutenowa może zapobiec chorobie u osób predysponowanych lub czy może być zastosowana u pacjentów ze świeżo rozpoznaną cukrzycą w celu zatrzymania jej rozwoju. Te obserwacje mogę być ważne w pierwotnej prewencji cukrzycy.

  1. Irregular antibodies in no hemolytic autoimmune diseases are able to induce erythrophagocytosis.

    PubMed

    López-Díaz, Paola Ester; Ruiz-Olivera, María Del Rocío; Hernández-Osorio, Luis Alberto; Vargas-Arzola, Jaime; Valle-Jiménez, Xareni; Aguilar-Ruiz, Sergio Roberto; Torres-Aguilar, Honorio

    2016-08-25

    Irregular antibodies are produced by alloimmunization because of pregnancies or blood transfusions. They are called "irregular" due to target erythrocyte antigens from "rare blood systems," those different from the ABO system. Irregular antibodies have been widely investigated in immunohematology since their presence in blood donors may lead to difficulties in blood typing and in blood cross-matching, or to induce hemolytic transfusion reactions. Nevertheless, their incidence and participation in the physiopathology of autoimmune diseases have not been thoroughly studied. In this work, we analyzed the presence and pro-hemolytic capabilities of irregular antibodies in patients with different autoimmune diseases lacking signs of hemolytic anemia, in comparison with healthy multiparous women. Five of 141 autoimmune patients (3.5 %) and two of 77 multiparous women (2.6 %) were positive. Although frequency was relatively low and similar in both populations, the targeted antigens were Kell (k, Kp(b), Js(b)) and Luth (Lu(b)) in multiparous women, and the same plus Duffy (Fy(a)), Kidd (Jk(a)) and MNS (M, s) in autoimmune patients. Irregular antibodies from autoimmune patients did not induce complement-mediated hemolysis (intravascular), but they were able to induce macrophages-mediated phagocytosis (extravascular hemolysis) in vitro. It is the first approach exploring the presence of irregular antibodies associated with the loss of immune tolerance and demonstrating their hemolytic potential in autoimmune patients without hemolytic manifestations. The presence of irregular antibodies targeted to Duffy (Fya), Kidd (Jka) and MNS (M, s) antigens only in autoimmune patients suggests a loss of immune tolerance to these erythrocyte antigens.

  2. Structure and Function of the PLAA/Ufd3-p97/Cdc48 Complex

    SciTech Connect

    Qiu, Liyan; Pashkova, Natasha; Walker, John R.; Winistorfer, Stanley; Allali-Hassani, Abdellah; Akutsu, Masato; Piper, Robert; Dhe-Paganon, Sirano

    2010-02-11

    PLAA (ortholog of yeast Doa1/Ufd3, also know as human PLAP or phospholipase A2-activating protein) has been implicated in a variety of disparate biological processes that involve the ubiquitin system. It is linked to the maintenance of ubiquitin levels, but the mechanism by which it accomplishes this is unclear. The C-terminal PUL (PLAP, Ufd3p, and Lub1p) domain of PLAA binds p97, an AAA ATPase, which among other functions helps transfer ubiquitinated proteins to the proteasome for degradation. In yeast, loss of Doa1 is suppressed by altering p97/Cdc48 function indicating that physical interaction between PLAA and p97 is functionally important. Although the overall regions of interaction between these proteins are known, the structural basis has been unavailable. We solved the high resolution crystal structure of the p97-PLAA complex showing that the PUL domain forms a 6-mer Armadillo-containing domain. Its N-terminal extension folds back onto the inner curvature forming a deep ridge that is positively charged with residues that are phylogenetically conserved. The C terminus of p97 binds in this ridge, where the side chain of p97-Tyr805, implicated in phosphorylation-dependent regulation, is buried. Expressed in doa1{Delta} null cells, point mutants of the yeast ortholog Doa1 that disrupt this interaction display slightly reduced ubiquitin levels, but unlike doa1{Delta} null cells, showed only some of the growth phenotypes. These data suggest that the p97-PLAA interaction is important for a subset of PLAA-dependent biological processes and provides a framework to better understand the role of these complex molecules in the ubiquitin system.

  3. Application of a metal ion-imprinted polymer based on salen-Cu complex to flow injection preconcentration and FAAS determination of copper.

    PubMed

    Walas, Stanisław; Tobiasz, Anna; Gawin, Marta; Trzewik, Bartosz; Strojny, Marcin; Mrowiec, Halina

    2008-06-30

    A new Cu(II)-imprinted polymer (Cu-IIP) for preconcentration of copper by liquid-solid extraction via flow injection technique has been proposed. Cu-IIP was obtained by copolymerization of salen-Cu(II) complex with styrene and divinylbenzene using suspension polymerization technique. Granules fraction of 60-80 microm in diameter was used as a microcolumn packing. Cu(II) sorption was proved to be the most effective from solutions of pH 7, whereas similar elution effectiveness was observed when applying as eluents hydrochloric or nitric acid in the concentration range of 0.5-10% (v/v). The system exhibited good long-term stability and acid resistance. Batch sorbent capacity was found to be 0.11 mmol g(-1) of a dry polymer. Enrichment factor (EF) for 30 s loading time was 16. Preconcentration of Cu(II) and potentially interfering metal ions is strongly pH dependent. Examination of Cu(II) sorption in the presence of Pb(II), Cd(II), Zn(II) and Ag(I) showed significant influence of cadmium and zinc ions only and that was for the interferent concentrations above 0.5 mg L(-1) (Cu-IIP mass of ca. 35 mg). The interference effect was reduced with the sorbent mass increase. Fe(III) and Mn(II) ions, present in treated tap water in relatively high concentrations, did not interfere. Effective pH adjusting of the loaded solution in on-line mode, when applying diluted Clark-Lubs buffering solution, allowed accurate copper determination in tap water (compared to graphite furnace atomic absorption spectrometry, GFAAS) using standard addition or combination calibration method.

  4. Wpływ wybranych czynników środowiskowych na maksymalny przepływ nosowy wdechowy - część projektu ECAP (Epidemiologia Chorób Alergicznych w Polsce).

    PubMed

    Krzych-Fałta, Edyta; Furmańczyk, Konrad; Piekarska, Barbara; Sybilski, Adam; Samoliński, Bolesław

    2017-02-28

    Celem niniejszej pracy była próba określenia wpływu wybranych czynników/parametrów na wynik maksymalnego przepływu nosowego wdechowego (PNIF, ang. peak nasal inspiratory flow) w badanej populacji polskiej projektu Epidemiologia Chorób Alergicznych w Polsce (ECAP). Materiał/metody: Badaną populację stanowiła grupa dzieci w wieku 6-7 lat (n=1123), młodzieży w wieku 13-14 lat (n=1136) oraz dorosłych (n=1876) zamieszkałych w siedmiu dużych polskich miastach. W badaniu posłużono się pomiarem maksymalnego przepływu nosowego wdechowego (PNIF). Do oceny wpływu wybranych czynników na wartości PNIF wykorzystano przetłumaczone i walidowane kwestionariusze opracowane na potrzeby światowych badań ECRHS II (European Community Respiratory Health Survey II) i ISAAC (International Study of Asthma and Allergies in Childhood). Wyniki: Określone warunki wewnątrz gospodarstwa domowego, m.in. ogrzewanie węglem, drewnem lub piecem gazowym, istotnie zwiększają przekrwienie błony śluzowej nosa. W grupie biernych palaczy PNIF był niższy niż w grupie czynnych palaczy. Wskaźnik PNIF malał wraz ze wzrostem liczby domowników palących papierosy. Wnioski: Wybrane czynniki środowiska.

  5. From Columbus to Columbia

    NASA Astrophysics Data System (ADS)

    Morain, Stanley A.

    On the eve of Christopher Columbus's historic voyage to the New World, the international community of remote sensing and mapping sciences is poised to lead a new, environmentally conscious world into the 21st century. Developments in remote sensing and GIS technology during the past 25 years have paved the way for a modern round of earth exploration that could well equal in lasting importance the geographic achievement of Columbus, 500 years ago. Human experience has evolved from land-lubbing to sea-faring, air-faring and now space-faring so that in future all four modes will be used to enhacce our understanding of earth systems. Columbus "dead reckoned" his place into history by sailing the southern arm of the Atlantic Gyre westward to the Bahamas. For reasons beyond his knowledge, he was "lost" almost from the moment he departed; and to this day, his landfall is placed at several islands between Grand Turk at latitude 21.5°N and San Salvador at 24°N. His headings, nautical speeds, and drift are all subjects of controversy. Today, with global positioning systems, scientists and entrepreneurs can triangulate with considerable accuracy almost any point on the earth's surface, day or night; and, with a fourth satellite, can determine elevation. The same satellite constellation can monitor the speeds and headings of land, sea, and air transportation carriers for the benefit of all international commerce - a knowledge that would have been the envy of Spain's Admiral of the Ocean Seas throughout his search for spices, souls, and gold. We can only imagine what he and his captains might have given for a nightly satellite weather report, let alone images by which to navigate.

  6. Limit Analysis of Geometrically Hardening Composite Steel-Concrete Systems / Stany Graniczne Geometrycznie Wzmacniających Się Konstrukcji Zespolonych

    NASA Astrophysics Data System (ADS)

    Alawdin, Piotr; Urbańska, Krystyna

    2015-03-01

    The paper considers some results of creating load-carrying composite systems that have uprated strength, rigidity and safety, and therefore are called geometrically (self-) hardening systems. The optimization mathematic models of structures as discrete mechanical systems withstanding dead load, monotonic or low cyclic static and kinematic actions are proposed. To find limit parameters of these actions the extreme energetic principle is suggested what result in the bilevel mathematic programming problem statement. The limit parameters of load actions are found on the first level of optimization. On the second level the power of the constant load with equilibrium preloading is maximized and/or system cost is minimized. The examples of using the proposed methods are presented and geometrically hardening composite steel-concrete system are taken into account. W pracy przedstawiono sposoby projektowania konstrukcji, które ze względu na swoją geometrię oraz topologię posiadają podwyższoną nośność, sztywność i bezpieczeństwo. Systemy takie nazwano geometrycznie (samo-) wzmacniającymi się. Zaproponowano optymalizacyjne modele matematyczne konstrukcji jako dyskretne systemy mechaniczne będące pod obciążeniem stałym, zmiennym monotoniczne lub niskocyklowym, statycznym lub kinematycznym. Dla znalezienia granicznych parametrów obciążeń wprowadzona została ekstremalna zasada energetyczna, przedstawiona jako problem dwupoziomowego programowania matematycznego. Graniczne parametry obciążeń szukane są na pierwszym poziomie optymalizacji. Na drugim poziomie minimalizowany jest koszt systemu i/lub maksymalizowana jest moc stałego równoważącego obciążenia z dociążeniem. Ponadto w pracy przeanalizowano numerycznie i analitycznie zachowanie konstrukcji geometrycznie wzmacniających się na przykładzie konstrukcji zespolonych stalowobetonowych. Pierwszy przykład dotyczy konstrukcji belkowo-prętowej z podciągiem, belkę stanowi stalowy dwuteownik

  7. Phototransformation of selected pharmaceuticals during UV treatment of drinking water.

    PubMed

    Canonica, Silvio; Meunier, Laurence; von Gunten, Urs

    2008-01-01

    The kinetics of Ultraviolet C (UV-C)-induced direct phototransformation of four representative pharmaceuticals, i.e., 17alpha-ethinylestradiol (EE2), diclofenac, sulfamethoxazole, and iopromide, was investigated in dilute solutions of pure water buffered at various pH values using a low-pressure and a medium-pressure mercury arc lamp. Except for iopromide, pH-dependent rate constants were observed, which could be related to acid-base equilibria. Quantum yields for direct phototransformation were found to be largely wavelength-independent, except for EE2. This compound, which also had a rather inefficient direct phototransformation, mainly underwent indirect phototransformation in natural water samples, while the UV-induced depletion of the other pharmaceuticals appeared to be unaffected by the presence of natural water components. At the UV-C (254 nm) drinking-water disinfection fluence (dose) of 400 Jm(-2), the degree of depletion of the select pharmaceuticals at pH=7.0 in pure water was 0.4% for EE2, 27% for diclofenac, 15% for sulfamethoxazole, and 15% for iopromide, indicating that phototransformation should be seriously taken into account when evaluating the possibility of formation of UV transformation products from pharmaceuticals present as micropollutants.

  8. Effects of sonication and ultraviolet-C treatment as a hurdle concept on quality attributes of Chokanan mango (Mangifera indica L.) juice.

    PubMed

    Santhirasegaram, Vicknesha; Razali, Zuliana; Somasundram, Chandran

    2015-04-01

    The growing demand for fresh-like food products has encouraged the development of hurdle technology of non-thermal processing. In this study, freshly squeezed Chokanan mango juice was treated by paired combinations of sonication (for 15 and 30 min at 25 ℃, 40 kHz frequency) and UV-C treatment (for 15 and 30 min at 25 ℃). Selected physicochemical properties, antioxidant activities, microbial inactivation and other quality parameters of combined treated juice were compared to conventional thermal treatment (at 90 ℃ for 60 s). After thermal and combined treatment, no significant changes occurred in physicochemical properties. A significant increase in extractability of carotenoids (15%), polyphenols (37%), flavonoids (35%) and enhancement in antioxidant capacity was observed after combined treatment. Thermal and combined treatment exhibited significant reduction in microbial load. Results obtained support the use of sonication and UV-C in a hurdle technology to improve the quality of Chokanan mango juice along with safety standards.

  9. Influence of dimethyl dicarbonate on the resistance of Escherichia coli to a combined UV-Heat treatment in apple juice

    PubMed Central

    Gouma, Maria; Gayán, Elisa; Raso, Javier; Condón, Santiago; Álvarez, Ignacio

    2015-01-01

    Commercial apple juice inoculated with Escherichia coli was treated with UV-C, heat (55°C) and dimethyl dicarbonate – DMDC (25, 50, and 75 mg/L)-, applied separately and in combination, in order to investigate the possibility of synergistic lethal effects. The inactivation levels resulting from each treatment applied individually for a maximum treatment time of 3.58 min were limited, reaching 1.2, 2.9, and 0.06 log10 reductions for UV, heat, and DMDC (75 mg/L), respectively. However, all the investigated combinations resulted in a synergistic lethal effect, reducing the total treatment time and UV dose, with the synergistic lethal effect being higher when larger concentrations of DMDC were added to the apple juice. The addition of 75 mg/L of DMDC prior to the combined UV-C light treatment at 55°C resulted in 5 log10 reductions after only 1.8 min, reducing the treatment time and UV dose of the combined UV-Heat treatment by 44%. PMID:26042117

  10. Inactivation of Caliciviruses

    PubMed Central

    Nims, Raymond; Plavsic, Mark

    2013-01-01

    The Caliciviridae family of viruses contains clinically important human and animal pathogens, as well as vesivirus 2117, a known contaminant of biopharmaceutical manufacturing processes employing Chinese hamster cells. An extensive literature exists for inactivation of various animal caliciviruses, especially feline calicivirus and murine norovirus. The caliciviruses are susceptible to wet heat inactivation at temperatures in excess of 60 °C with contact times of 30 min or greater, to UV-C inactivation at fluence ≥30 mJ/cm2, to high pressure processing >200 MPa for >5 min at 4 °C, and to certain photodynamic inactivation approaches. The enteric caliciviruses (e.g.; noroviruses) display resistance to inactivation by low pH, while the non-enteric species (e.g.; feline calicivirus) are much more susceptible. The caliciviruses are inactivated by a variety of chemicals, including alcohols, oxidizing agents, aldehydes, and β-propiolactone. As with inactivation of viruses in general, inactivation of caliciviruses by the various approaches may be matrix-, temperature-, and/or contact time-dependent. The susceptibilities of the caliciviruses to the various physical and chemical inactivation approaches are generally similar to those displayed by other small, non-enveloped viruses, with the exception that the parvoviruses and circoviruses may require higher temperatures for inactivation, while these families appear to be more susceptible to UV-C inactivation than are the caliciviruses. PMID:24276023

  11. UV habitability and dM stars: an approach for evaluation of biological survival

    NASA Astrophysics Data System (ADS)

    Abrevaya, Ximena C.; Cortón, Eduardo; Mauas, Pablo J. D.

    2010-02-01

    Dwarf M stars comprise about 75 percent of all stars in the galaxy. For several years planets orbiting M stars have been discarded as suitable places for development of life. This paradigm now has changed and terrestrial-type planets within liquid-water habitable zones (LW-HZ) around M stars are reconsidered as possible hosts for life as we know it. Nevertheless, large amount of UV radiation is emitted during flares by this stars, and it is uncertain how these events could affect biological systems. In particular UV-C λ < 290nm) exhibits the most damaging effects for living organisms. To analyze the hypothesis that UV could set a limit for the development of extraterrestrial life, we studied the effect of UV-C treatment on halophile archaea cultures. Halophile archaea are extremophile organisms, they are exposed to intense solar UV radiation in their natural environment so they are generally regarded as relatively UV tolerant. Halophiles inhabits in hipersaline environments as salt lakes but also have been found in ancient salt deposits as halites and evaporites on Earth. Since evaporites have been detected in Martian meteorites, these organisms are proposed as plausible inhabitants of Mars-like planets. Our preliminary results show that even after UV damage, the surviving cells were able to resume growth with nearly normal kinetics.

  12. Application of a 222-nm krypton-chlorine excilamp to control foodborne pathogens on sliced cheese surfaces and characterization of the bactericidal mechanisms.

    PubMed

    Ha, Jae-Won; Lee, Jae-Ik; Kang, Dong-Hyun

    2017-02-21

    This study was conducted to investigate the basic spectral properties of a 222-nm krypton-chlorine (KrCl) excilamp and its inactivation efficacy against major foodborne pathogens on solid media, as well as on sliced cheese compared to a conventional 254-nm low-pressure mercury (LP Hg) lamp. Selective media and sliced cheese inoculated with Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes were irradiated with a KrCl excilamp and a LP Hg lamp at the same dose. The KrCl excilamp showed full radiant intensity from the outset at a wide range of working temperatures, especially at low temperatures of around 0 to 10°C. Irradiation with 222nm UV-C showed significantly (P<0.05) higher inactivation capacity against all three pathogens than 254-nm radiation on both media and sliced cheese surfaces without generating many sublethally injured cells which potentially could recover. The underlying inactivation mechanisms of 222-nm KrCl excilamp treatment were evaluated by fluorescent staining methods and damage to cellular membranes and intracellular enzyme inactivation were the primary factors contributing to the enhanced bactericidal effect. The results of this study suggest that a 222-nm UV-C surface disinfecting system can be applied as an alternative to conventional LP Hg lamp treatment by the dairy industry.

  13. Improvement of oleuropein extractability by optimising steam blanching process as pre-treatment of olive leaf extraction via response surface methodology.

    PubMed

    Stamatopoulos, Konstantinos; Katsoyannos, Evangelos; Chatzilazarou, Arhontoula; Konteles, Spyros J

    2012-07-15

    Impact of steam, hot water blanching and UV-C irradiation as pre-treatments on extraction of oleuropein and related biophenols from olive leaves (OLs), was investigated. Moreover, particle size effect of olive leaves and steam blanching duration were selected as independent variables to optimise steam blanching process in terms of oleuropein content (OC) and antioxidant activity (AC) of ethanolic extracts, by using response surface methodology. Optimum conditions for OC and AC were 10 min steam blanching of 20-11 and 3-1mm olive leaf fraction, respectively. Depending on the extraction procedure, at optimum conditions of steaming the results indicate that steam blanching of OL prior to extraction can significantly increase oleuropein yield from 25 to 35 times compared to non-steam blanched sample, whereas the antioxidant activity increased from 4 to 13 times. No significant UV-C effect was observed in OC and AC, while hot water blanched samples showed significantly higher oleuropein yields and antioxidant activity compared to untreated samples.

  14. Effect of photochemical pre-treatment on COD fractionation of a non-ionic textile surfactant.

    PubMed

    Cokgor, E U; Arsian-Alaton, I; Erdinc, E; Insel, G; Orhon, D

    2007-01-01

    The work presented in this paper is focused on the effect of photochemical (H2O2/UV-C) pretreatment on COD fractionation and degradation kinetics of a non-ionic textile surfactant. In the first part of the study, the COD of non-ionic surfactant was adjusted to 1000 mg/L in order to simulate real effluent originating from the textile preparation stage featuring desizing, scouring, washing and rinsing operations. The surfactant was subjected to H2O2/UV-C pretreatment for up to 120 min at a dose of 30 mM (980 mg/L) H2O2. The biodegradability studies for untreated and photochemically treated samples were evaluated on the basis of modeling of oxygen uptake rate (OUR) profiles. Modelling of OUR profiles conducted for untreated sample showed that single complex substrate was subjected to enzymatic breakdown and disintegrated into one readily and two types of slowly biodegradable substrates. After modelling the biodegradation of photochemically pretreated sample, the readily biodegradable COD fraction was reduced, on the other hand, more slowly biodegradable organics were generated. A higher disintegration rate was obtained for chemically pretreated samples. However, other kinetic constants of growth and hydrolysis processes were not affected considerably.

  15. UV-based technologies for marine water disinfection and the application to ballast water: Does salinity interfere with disinfection processes?

    PubMed

    Moreno-Andrés, Javier; Romero-Martínez, Leonardo; Acevedo-Merino, Asunción; Nebot, Enrique

    2017-03-01

    Water contained on ships is employed in the majority of activities on a vessel; therefore, it is necessary to correctly manage through marine water treatments. Among the main water streams generated on vessels, ballast water appears to be an emerging global challenge (especially on cargo ships) due to the transport of invasive species and the significant impact that the ballast water discharge could have on ecosystems and human activities. To avoid this problem, ballast water treatment must be implemented prior to water discharge in accordance with the upcoming Ballast Water Management Convention. Different UV-based treatments (photolytic: UV-C and UV/H2O2, photocatalytic: UV/TiO2), have been compared for seawater disinfection. E. faecalis is proposed as a biodosimeter organism for UV-based treatments and demonstrates good properties for being considered as a Standard Test Organism for seawater. Inactivation rates by means of the UV-based treatments were obtained using a flow-through UV-reactor. Based on the two variables responses that were studied (kinetic rate constant and UV-Dose reductions), both advanced oxidation processes (UV/H2O2 and photocatalysis) were more effective than UV-C treatment. Evaluation of salinity on the processes suggests different responses according to the treatments: major interference on photocatalysis treatment and minimal impact on UV/H2O2.

  16. PrimPol-deficient cells exhibit a pronounced G2 checkpoint response following UV damage

    PubMed Central

    Bailey, Laura J.; Bianchi, Julie; Hégarat, Nadia; Hochegger, Helfrid; Doherty, Aidan J.

    2016-01-01

    ABSTRACT PrimPol is a recently identified member of the archaeo-eukaryote primase (AEP) family of primase-polymerases. It has been shown that this mitochondrial and nuclear localized enzyme plays roles in the maintenance of both unperturbed replication fork progression and in the bypass of lesions after DNA damage. Here, we utilized an avian (DT40) knockout cell line to further study the consequences of loss of PrimPol (PrimPol−/−) on the downstream maintenance of cells after UV damage. We report that PrimPol−/− cells are more sensitive to UV-C irradiation in colony survival assays than Pol η-deficient cells. Although this increased UV sensitivity is not evident in cell viability assays, we show that this discrepancy is due to an enhanced checkpoint arrest after UV-C damage in the absence of PrimPol. PrimPol−/− arrested cells become stalled in G2, where they are protected from UV-induced cell death. Despite lacking an enzyme required for the bypass and maintenance of replication fork progression in the presence of UV damage, we show that PrimPol−/− cells actually have an advantage in the presence of a Chk1 inhibitor due to their slow progression through S-phase. PMID:26694751

  17. Environmental stress enhances biosynthesis of flavor precursors, S-3-(hexan-1-ol)-glutathione and S-3-(hexan-1-ol)-L-cysteine, in grapevine through glutathione S-transferase activation

    PubMed Central

    Kobayashi, Hironori; Takase, Hideki; Suzuki, Yumiko; Tanzawa, Fumiko; Takata, Ryoji; Fujita, Keiko; Kohno, Minako; Mochizuki, Mai; Suzuki, Shunji; Konno, Tomonori

    2011-01-01

    The biosynthesis of S-(3-hexan-1-ol)-glutathione (3MH-S-glut) and S-(3-hexan-l-ol)-L-cysteine (3MH-S-cys), which act as flavour precursors in wines, in Vitis vinifera grapes exposed to various environmental stress conditions is reported here. Ultraviolet (UV-C) irradiation, water deficit, and biological stimulation up-regulated 3MH-S-glut and 3MH-S-cys biosynthesis in grape leaves. 3MH-S-glut and 3MH-S-cys contents in grape berries were increased by cold shock, heat shock, UV-C irradiation, and biological stimulation. The results suggest that environmental stress enhances the biosynthesis of both flavour precursors in grapevine. The transcription of VvGST1, VvGST3, VvGST4, and GGT in grapevine exposed to the stress conditions was increased markedly compared with that in control grapevine. Also, UV irradiation increased GST (glutathione S-transferase) and GGT (γ-glutamyl transferase) enzyme activities in grape berries. Recombinant VvGST3 and VvGST4, but not VvGST1, mediated the synthesis of 3MH-S-glut from reduced glutathione and trans-2-hexenal in vitro. The enzymatic mediation of flavour precursor production is a novel function of plant GSTs and may result in the detoxification of damaged grape cells under stress conditions. PMID:21115666

  18. Chemical sporulation and germination: cytoprotective nanocoating of individual mammalian cells with a degradable tannic acid-FeIII complex

    NASA Astrophysics Data System (ADS)

    Lee, Juno; Cho, Hyeoncheol; Choi, Jinsu; Kim, Doyeon; Hong, Daewha; Park, Ji Hun; Yang, Sung Ho; Choi, Insung S.

    2015-11-01

    Individual mammalian cells were coated with cytoprotective and degradable films by cytocompatible processes maintaining the cell viability. Three types of mammalian cells (HeLa, NIH 3T3, and Jurkat cells) were coated with a metal-organic complex of tannic acid (TA) and ferric ion, and the TA-FeIII nanocoat effectively protected the coated mammalian cells against UV-C irradiation and a toxic compound. More importantly, the cell proliferation was controlled by programmed formation and degradation of the TA-FeIII nanocoat, mimicking the sporulation and germination processes found in nature.Individual mammalian cells were coated with cytoprotective and degradable films by cytocompatible processes maintaining the cell viability. Three types of mammalian cells (HeLa, NIH 3T3, and Jurkat cells) were coated with a metal-organic complex of tannic acid (TA) and ferric ion, and the TA-FeIII nanocoat effectively protected the coated mammalian cells against UV-C irradiation and a toxic compound. More importantly, the cell proliferation was controlled by programmed formation and degradation of the TA-FeIII nanocoat, mimicking the sporulation and germination processes found in nature. Electronic supplementary information (ESI) available: Experimental details, LSCM images, and SEM and TEM images. See DOI: 10.1039/c5nr05573c

  19. Evaluating the effectiveness of ultraviolet-C lamps for reducing keyboard contamination in the intensive care unit: A longitudinal analysis.

    PubMed

    Gostine, Andrew; Gostine, David; Donohue, Cristina; Carlstrom, Luke

    2016-10-01

    Ultraviolet (UV) spectrum light for decontamination of patient care areas is an effective way to reduce transmission of infectious pathogens. Our purpose was to investigate the efficacy of an automated UV-C device to eliminate bioburden on hospital computer keyboards. The study took place at an academic hospital in Chicago, Illinois. Baseline cultures were obtained from keyboards in intensive care units. Automated UV-C lamps were installed over keyboards and mice of those computers. The lamps were tested at varying cycle lengths to determine shortest effective cycles. Delay after use and prior to cycle initiation was varied to minimize cycle interruptions. Finally, 218 postinstallation samples were analyzed. Of 203 baseline samples, 193 (95.1%) were positive for bacteria, with a median of 120 colony forming units (CFU) per keyboard. There were numerous bacteria linked to health care-associated infections (HAIs), including Staphylococcus, Streptococcus, Enterococcus, Pseudomonas, Pasteurella, Klebsiella, Acinetobacter, and Enterobacter. Of the 193 keyboards, 25 (12.3%) had gram-negative species. Of 218 postinstallation samples, 205 (94%) were sterile. Of the 13 that showed bacterial growth, 6 produced a single CFU. Comparison of pre- and post-UV decontamination median CFU values (120 and 0, respectively) revealed a >99% reduction in bacteria. The UV lamp effectively decontaminates keyboards with minimal interruption and low UV exposure. Further studies are required to determine reduction of HAI transmission with use of these devices. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  20. The tomato DWD motif-containing protein DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase and plays a pivotal role in abiotic stress responses

    SciTech Connect

    Miao, Min; Zhu, Yunye; Qiao, Maiju; Tang, Xiaofeng; Zhao, Wei; Xiao, Fangming; Liu, Yongsheng

    2014-08-08

    Highlights: • We identify DDI1 as a DAMAGED DNA BINDING PROTEIN1 (DDB1)-interacting protein. • DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase in the nucleus. • DDI1 plays a positive role in regulating abiotic stress response in tomato. - Abstract: CULLIN4(CUL4)–DAMAGED DNA BINDING PROTEIN1 (DDB1)-based ubiquitin ligase plays significant roles in multiple physiological processes via ubiquitination-mediated degradation of relevant target proteins. The DDB1–CUL4-associated factor (DCAF) acts as substrate receptor in the CUL4–DDB1 ubiquitin ligase complex and determines substrate specificity. In this study, we identified a tomato (Solanum lycopersicum) DDB1-interacting (DDI1) protein as a DCAF protein involved in response to abiotic stresses, including UV radiation, high salinity and osmotic stress. Co-immunoprecipitation and bimolecular fluorescence complementation assay indicated that DDI1 associates with CUL4–DDB1 in the nucleus. Quantitative RT-PCR analysis indicated the DDI1 gene is induced by salt, mannitol and UV-C treatment. Moreover, transgenic tomato plants with overexpression or knockdown of the DDI1 gene exhibited enhanced or attenuated tolerance to salt/mannitol/UV-C, respectively. Thus, our data suggest that DDI1 functions as a substrate receptor of the CUL4–DDB1 ubiquitin ligase, positively regulating abiotic stress response in tomato.

  1. A model for choosing an automated ultraviolet-C disinfection system and building a case for the C-suite: Two case reports.

    PubMed

    Spencer, Maureen; Vignari, Michelle; Bryce, Elizabeth; Johnson, Helen Boehm; Fauerbach, Loretta; Graham, Denise

    2017-03-01

    Environmental disinfection has become the new frontier in the ongoing battle to reduce the risk of health care-associated infections. Evidence demonstrating the persistent contamination of environmental surfaces despite traditional cleaning and disinfection methods has led to the widespread acceptance that there is both a need for reassessing traditional cleaning protocols and for using secondary disinfection technologies. Ultraviolet-C (UV-C) disinfection is one type of no-touch technology shown to be a successful adjunct to manual cleaning in reducing environmental bioburden. The dilemma for the infection preventionist, however, is how to choose the system best suited for their facility among the many UV-C surface disinfection delivery systems available and how to build a case for acquisition to present to the hospital administration/C-suite. This article proposes an approach to these dilemmas based in part on the experience of 2 health care networks. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  2. Photodegradation of pharmaceuticals in the aquatic environment by sunlight and UV-A, -B and -C irradiation.

    PubMed

    Kawabata, Kohei; Sugihara, Kazumi; Sanoh, Seigo; Kitamura, Shigeyuki; Ohta, Shigeru

    2013-01-01

    In order to investigate the effect of sunlight on the persistence and ecotoxicity of pharmaceuticals contaminating the aquatic environment, we exposed nine pharmaceuticals (acetaminophen (AA), amiodarone (AM), dapsone (DP), dexamethasone (DX), indomethacin (IM), naproxen (NP), phenytoin (PH), raloxifene (RL), and sulindac (SL)) in aqueous media to sunlight and to ultraviolet (UV) irradiation at 254, 302 or 365 nm (UV-C, UV-B or UV-A, respectively). Degradation of the pharmaceuticals was monitored by means of high-performance liquid chromatography (HPLC). Sunlight completely degraded AM, DP and DX within 6 hr, and partly degraded the other pharmaceuticals, except AA and PH, which were not degraded. Similar results were obtained with UV-B, while UV-A was less effective (both UV-A and -B are components of sunlight). All the pharmaceuticals were photodegraded by UV-C, which is used for sterilization in sewage treatment plants. Thus, the photodegradation rates of pharmaceuticals are dependent on both chemical structure and the wavelength of UV exposure. Toxicity assay using the luminescent bacteria test (ISO11348) indicated that UV irradiation reduced the toxicity of some pharmaceuticals to aquatic organisms by decreasing their amount (photodegradation) and increased the toxicity of others by generating toxic photoproduct(s). These results indicate the importance of investigating not only parent compounds, but also photoproducts in the risk assessment of pharmaceuticals in aquatic environments.

  3. Selective role of intracellular chloride in the regulation of the intrinsic but not extrinsic pathway of apoptosis in Jurkat T-cells.

    PubMed

    Heimlich, Gerd; Cidlowski, John A

    2006-01-27

    Apoptosis is a genetic program for the removal of unwanted cells from an organism, which is distinct from necrosis by its characteristic volume loss or apoptotic volume decrease. This cell shrinkage is the result of ion redistribution that is crucial for both the activation and execution of apoptosis. Here we report that UV-C but not Fas ligand treatment results in a significant decrease in intracellular chloride that can be abolished by modulation of chloride flux using either the chloride channel inhibitor SITS or medium with a reduced chloride concentration. Accordingly, downstream events are diminished during UV-C-induced apoptosis following chloride flux modulation, whereas Fas ligand-induced apoptotic characteristics are not affected. Moreover, the activation of the mitogen-activated protein kinase signal transduction pathway early in the apoptotic signaling cascade was affected by chloride flux in Jurkat T-cells. Thus, an alteration of intracellular chloride plays an important role in the activation of signaling molecules upstream of the mitochondria, specifically impairing the intrinsic but not extrinsic apoptotic pathway.

  4. Ultraviolet light assisted extraction of flavonoids and allantoin from aqueous and alcoholic extracts of Symphytum officinale

    PubMed Central

    Al-Nimer, Marwan S. M.; Wahbee, Zainab

    2017-01-01

    Aim: Symphytum officinale (comfrey) is a medicinal plant commonly used in decoction and to treat ailments. It protects the skin against ultraviolet (UV)-irradiation. UV irradiation may induce variable effects on the constituents of herbal extracts and thereby may limit or improve the advantages of using these extracts as medicinal supplements. This study aimed to assess the effect of UV radiations including UV-A, UV-B, and UV-C on the constituents of S. officinale aqueous and alcoholic extracts. Materials and Methods: Comfrey extracts (1% w/v) were prepared using distilled water, ethanol, and methanol. They were exposed to wavelengths of UV-A, UV-B, and UV-C for 10 min. The principal peak on the UV-spectroscopy scanning, the flavonoids, reducing power, and the allantoin levels were determined before and after irradiation. Results: UV irradiation reduces the magnitude of the principle peak at 355 nm wavelength of the aqueous infusion and methanol extracts. It improves the levels of flavonoids and reducing power of the aqueous extracts and increases the levels of allanotoin in aqueous and methanol extracts. Conclusions: UV-radiation enhances the yields of active ingredient of comfrey extracted with methanol, whereas improves the flavonoids, reducing power, and allantoin levels of comfrey extracted by the aqueous infusion method. UV-radiation reduces the levels of flavonoids, reducing power and allantoin when the comfrey extracted by alcohols. PMID:28894626

  5. Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes

    SciTech Connect

    Mehnke, Frank Kuhn, Christian; Guttmann, Martin; Reich, Christoph; Kolbe, Tim; Rass, Jens; Wernicke, Tim; Kueller, Viola; Knauer, Arne; Lapeyrade, Mickael; Einfeldt, Sven; Weyers, Markus; Kneissl, Michael

    2014-08-04

    The design and Mg-doping profile of AlN/Al{sub 0.7}Ga{sub 0.3}N electron blocking heterostructures (EBH) for AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) emitting below 250 nm was investigated. By inserting an AlN electron blocking layer (EBL) into the EBH, we were able to increase the quantum well emission power and significantly reduce long wavelength parasitic luminescence. Furthermore, electron leakage was suppressed by optimizing the thickness of the AlN EBL while still maintaining sufficient hole injection. Ultraviolet (UV)-C LEDs with very low parasitic luminescence (7% of total emission power) and external quantum efficiencies of 0.19% at 246 nm have been realized. This concept was applied to AlGaN MQW LEDs emitting between 235 nm and 263 nm with external quantum efficiencies ranging from 0.002% to 0.93%. After processing, we were able to demonstrate an UV-C LED emitting at 234 nm with 14.5 μW integrated optical output power and an external quantum efficiency of 0.012% at 18.2 A/cm{sup 2}.

  6. RNA self-cleavage activated by ultraviolet light-induced oxidation

    PubMed Central

    Ariza-Mateos, Ascensión; Prieto-Vega, Samuel; Díaz-Toledano, Rosa; Birk, Alex; Szeto, Hazel; Mena, Ignacio; Berzal-Herranz, Alfredo; Gómez, Jordi

    2012-01-01

    A novel UV-C-light-induced ribozyme activity was discovered within the highly structured 5′-genomic regions of both Hepatitis C Virus (HCV) and the related Classic Swine Fever Virus (CSFV). Cleavage is mediated by exposure to UV-C light but not by exogenous oxygen radicals. It is also very selective, occurring at base positions HCV C79 and CSFV A45 in some molecules and at the immediately adjacent 5′-positions HCV U78 and CSFV U44 in others. Among other reaction products, the majority of biochemically active products detected contained 3′-phosphate and 5′-phosphate-end groups at the newly generated termini, along with a much lower amount of 3′-hydroxyl end group. While preservation of an E-loop RNA structure in the vicinity of the cleavage site was a requisite for HCV RNA self-cleavage, this was not the case for CSFV RNA. The short size of the reactive domains (∼33 nt), which are compatible with primitive RNA motifs, and the lack of sequence homology, indicate that as-yet unidentified UV-activated ribozymes are likely to be found throughout structured RNAs, thereby providing clues to whether early RNA self-cleavage events were mediated by photosensitive RNA structures. PMID:21989404

  7. Polyomavirus inactivation - a review.

    PubMed

    Nims, Raymond W; Plavsic, Mark

    2013-03-01

    Polyomavirus inactivation has been studied since the 1950s when it became apparent that certain polio vaccines were contaminated with SV40. Relatively high temperatures (≥70 °C) are required to effect thermal inactivation of the polyomaviruses. The chemical inactivants that are effective (β-propiolactone, ethanol, sodium hydroxide, and formaldehyde) are those that have displayed efficacy for other small, non-enveloped viruses, such as the circoviruses. Low pH inactivation can be effective, especially at pH at or below 3 and at higher temperatures. Polyomaviruses are more resistant to UV-C irradiation than are other small non-enveloped viruses such as the parvoviruses and caliciviruses. The efficacy of photodynamic inactivation of polyomaviruses is very much dye-dependent, with toluidine blue, acridine orange, and methylene blue dyes being effective photosensitizers. Ionizing radiation can be effective, depending on the conditions employed and the inactivation matrix. Inactivation of the oncogenic properties of the polyomaviruses may require higher doses of inactivant than those required to inactivate infectivity. While the polyomaviruses are considered to be highly resistant to inactivation, the degree of resistance is dependent upon the specific approach under consideration. For certain approaches, such as UV-C and gamma-irradiation, the polyomaviruses appear to be more resistant than other small non-enveloped viruses. Copyright © 2012 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  8. Accidental exposure to UV radiation produced by germicidal lamp: case report and risk assessment.

    PubMed

    Zaffina, Salvatore; Camisa, Vincenzo; Lembo, Marco; Vinci, Maria Rosaria; Tucci, Mario Graziano; Borra, Massimo; Napolitano, Antonio; Cannatà, Vittorio

    2012-01-01

    Ultraviolet radiation is known to cause both benefits and harmful effects on humans. The adverse effects mainly involve two target organs, skin and eye, and can be further divided into short- and long-term effects. The present case report describes an accidental exposure of two health-care workers to ultraviolet radiation produced by a germicidal lamp in a hospital pharmacy. The germicidal lamp presented a spectrum with an intense UV-C component as well as a modest UV-B contribution. Overexposure to UV-C radiation was over 100 times as large as the ICNIRP exposure limits. A few hours after the exposure, the two subjects reported symptoms of acute UV injury and both of them continued having significant clinical signs for over 2 years. In this study, we describe acute and potentially irreversible effects caused by high UV exposure. In addition, we present the results of risk assessment by occupational exposure to germicidal lamps. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  9. Hypersensitivity of skin fibroblasts from basal cell nevus syndrome patients to killing by ultraviolet B but not by ultraviolet C radiation

    SciTech Connect

    Applegate, L.A.; Goldberg, L.H.; Ley, R.D.; Ananthaswamy, H.N. )

    1990-02-01

    Basal cell nevus syndrome (BCNS) is an autosomal dominant genetic disorder in which the afflicted individuals are extremely susceptible to sunlight-induced skin cancers, particularly basal cell carcinomas. However, the cellular and molecular basis for BCNS is unknown. To ascertain whether there is any relationship between genetic predisposition to skin cancer and increased sensitivity of somatic cells from BCNS patients to killing by UV radiation, we exposed skin fibroblasts established from unexposed skin biopsies of several BCNS and age- and sex-matched normal individuals to either UV-B (280-320 nm) or UV-C (254 nm) radiation and determined their survival. The results indicated that skin fibroblasts from BCNS patients were hypersensitive to killing by UV-B but not UV-C radiation as compared to skin fibroblasts from normal individuals. DNA repair studies indicated that the increased sensitivity of BCNS skin fibroblasts to killing by UV-B radiation was not due to a defect in the excision repair of pyrimidine dimers. These results indicate that there is an association between hypersensitivity of somatic cells to killing by UV-B radiation and the genetic predisposition to skin cancer in BCNS patients. In addition, these results suggest that DNA lesions (and repair processes) other than the pyrimidine dimer are also involved in the pathogenesis of sunlight-induced skin cancers in BCNS patients. More important, the UV-B sensitivity assay described here may be used as a diagnostic tool to identify presymptomatic individuals with BCNS.

  10. Selection of process conditions by risk assessment for apple juice pasteurization by UV-heat treatments at moderate temperatures.

    PubMed

    Gayán, E; Torres, J A; Alvarez, I; Condón, S

    2014-02-01

    The effect of bactericidal UV-C treatments (254 nm) on Escherichia coli O157:H7 suspended in apple juice increased synergistically with temperature up to a threshold value. The optimum UV-C treatment temperature was 55 °C, yielding a 58.9% synergistic lethal effect. Under these treatment conditions, the UV-heat (UV-H55 °C) lethal variability achieving 5-log reductions had a logistic distribution (α = 37.92, β = 1.10). Using this distribution, UV-H55 °C doses to achieve the required juice safety goal with 95, 99, and 99.9% confidence were 41.17, 42.97, and 46.00 J/ml, respectively, i.e., doses higher than the 37.58 J/ml estimated by a deterministic procedure. The public health impact of these results is that the larger UV-H55 °C dose required for achieving 5-log reductions with 95, 99, and 99.9% confidence would reduce the probability of hemolytic uremic syndrome in children by 76.3, 88.6, and 96.9%, respectively. This study illustrates the importance of including the effect of data variability when selecting operational parameters for novel and conventional preservation processes to achieve high food safety standards with the desired confidence level.

  11. UV photolysis of diclofenac in water; kinetics, degradation pathway and environmental aspects.

    PubMed

    Kovacic, Marin; Juretic Perisic, Daria; Biosic, Martina; Kusic, Hrvoje; Babic, Sandra; Loncaric Bozic, Ana

    2016-08-01

    In this study, the photolysis behavior of commonly used anti-inflammatory drug diclofenac (DCF) was investigated using UV-C and UV-A irradiation. In that purpose, DCF conversion kinetics, mineralization of organic content, biodegradability, and toxicity were monitored and compared. The results showed different kinetics of DCF conversion regarding the type of UV source applied. However, in both cases, the mineralization extent reached upon complete DCF conversion is rather low (≤10 %), suggesting that the majority of DCF was transformed into by-products. Formation/degradation of main degradation by-products was monitored using high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS), whereas different profiles were obtained by UV-C and UV-A photolysis. The results of bioassays revealed that biodegradability of DCF solutions remained low through the applied treatments. The toxicity of irradiated DCF solutions was evaluated using Vibrio fischeri. A significant reduction of toxicity, especially in the case of UV-A radiation, was observed upon complete degradation of DCF. In addition to toxicity reduction, calculated Log K OW values of DCF degradation by-products indicate their low potential for bioaccumulation (Log K OW ≤ 3) in comparison to the parent substance.

  12. Electrochemical analysis of the UV treated bactericidal Ti6Al4V surfaces.

    PubMed

    Pacha-Olivenza, Miguel A; Gallardo-Moreno, Amparo M; Vadillo-Rodríguez, Virginia; González-Martín, M Luisa; Pérez-Giraldo, Ciro; Galván, Juan C

    2013-04-01

    This research investigates in detail the bactericidal effect exhibited by the surface of the biomaterial Ti6Al4V after being subjected to UV-C light. It has been recently hypothesized that small surface currents, occurring as a consequence of the electron-hole pair recombination taking place after the excitation process, are behind the bactericidal properties displayed by this UV-treated material. To corroborate this hypothesis we have used different electrochemical techniques, such as electrochemical impedance spectroscopy (EIS), potentiodynamic polarization plots and Mott-Schottky plots. EIS and Mott-Schottky plots have shown that UV-C treatment causes an initial increase on the surface electrical conduction of this material. In addition, EIS and polarization plots demonstrated that higher corrosion currents occur at the UV treated than at the non-irradiated samples. Despite this increase in the corrosion currents, EIS has also shown that such currents are not likely to affect the good stability of this material oxide film since the irradiated samples completely recovered the control values after being stored in dark conditions for a period not longer than 24h. These results agree with the already-published in vitro transitory behavior of the bactericidal effect, which was shown to be present at initial times after the biomaterial implantation, a crucial moment to avoid a large number of biomaterial associated infections.

  13. The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana.

    PubMed

    Stefanato, Francesca L; Abou-Mansour, Eliane; Buchala, Antony; Kretschmer, Matthias; Mosbach, Andreas; Hahn, Matthias; Bochet, Christian G; Métraux, Jean-Pierre; Schoonbeek, Henk-jan

    2009-05-01

    Arabidopsis thaliana is known to produce the phytoalexin camalexin in response to abiotic and biotic stress. Here we studied the mechanisms of tolerance to camalexin in the fungus Botrytis cinerea, a necrotrophic pathogen of A. thaliana. Exposure of B. cinerea to camalexin induces expression of BcatrB, an ABC transporter that functions in the efflux of fungitoxic compounds. B. cinerea inoculated on wild-type A. thaliana plants yields smaller lesions than on camalexin-deficient A. thaliana mutants. A B. cinerea strain lacking functional BcatrB is more sensitive to camalexin in vitro and less virulent on wild-type plants, but is still fully virulent on camalexin-deficient mutants. Pre-treatment of A. thaliana with UV-C leads to increased camalexin accumulation and substantial resistance to B. cinerea. UV-C-induced resistance was not seen in the camalexin-deficient mutants cyp79B2/B3, cyp71A13, pad3 or pad2, and was strongly reduced in ups1. Here we demonstrate that an ABC transporter is a virulence factor that increases tolerance of the pathogen towards a phytoalexin, and the complete restoration of virulence on host plants lacking this phytoalexin.

  14. Ouabain-induced perturbations in intracellular ionic homeostasis regulate death receptor-mediated apoptosis.

    PubMed

    Panayiotidis, Mihalis I; Franco, Rodrigo; Bortner, Carl D; Cidlowski, John A

    2010-07-01

    Apoptosis is defined by specific morphological and biochemical characteristics including cell shrinkage (termed apoptotic volume decrease), a process that results from the regulation of ion channels and plasma membrane transporter activity. The Na(+)-K(+)-ATPase is the predominant pump that controls cell volume and plasma membrane potential in cells and alterations in its function have been suggested to be associated with apoptosis. We report here that the Na(+)-K(+)-ATPase inhibitor ouabain, potentiates apoptosis in the human lymphoma Jurkat cells exposed to Fas ligand (FasL) or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not other apoptotic agents such as H(2)O(2), thapsigargin or UV-C implicating a role for the Na(+)-K(+)-ATPase in death receptor-induced apoptosis. Interestingly, ouabain also potentiated perturbations in cell Ca(2+) homeostasis only in conjunction with the apoptotic inducer FasL but not TRAIL. Ouabain did not affect alterations in the intracellular Ca(2+) levels in response to H(2)O(2), thapsigargin or UV-C. FasL-induced alterations in Ca(2+) were not abolished in Ca(2+)-free medium but incubation of cells with BAPTA-AM inhibited both Ca(2+) perturbations and the ouabain-induced potentiation of FasL-induced apoptosis. Our data suggest that the impairment of the Na(+)-K(+)-ATPase activity during apoptosis is linked to perturbations in cell Ca(2+) homeostasis that modulate apoptosis induced by the activation of Fas by FasL.

  15. Influence of processing and storage of integral grape juice (Vitis labrusca L.) on its physical and chemical characteristics, cytotoxicity, and mutagenicity in vitro.

    PubMed

    Düsman, E; Almeida, I V; Pinto, E P; Lucchetta, L; Vicentini, V E P

    2017-05-31

    Integral grape juice is extracted from the grape through processes that allow the retention of their natural composition. However, due to the severity of some processes, fruit juices can undergo changes in their quality. The present study evaluated the cytotoxic and mutagenic effects of integral grape juice by a cytokinesis-blocked micronucleus assay in Rattus norvegicus hepatoma cells (HTC) in vitro. Vitis labrusca L. (variety Concord) were produced organically and by a conventional system, and their juice was extracted by a hot extraction process. The organic grapes were subjected to ultraviolet-type C radiation (UV-C). Experiments were performed after production and after 6 months in storage. Physicochemical analyses revealed that UV-C irradiation of organic grapes, the juice production process, and storage resulted in nutraceutical alterations. However, none of the juice concentrations were cytotoxic to HTC cells by the cytokinesis-blocked proliferation index results or were mutagenic, because the formation of micronucleated cells was not induced. In general, juice induced cell proliferation, possibly due to the presence of vitamins and sugar content (total soluble solid). The data increased the understanding of food technology and confirmed the quality and safety consumption of these juices.

  16. Assessment of the Suitability of Excimer Lasers in Treating Onychomycosis

    NASA Astrophysics Data System (ADS)

    Kymplová, Jaroslava; Jelínek, Miroslav; Urzová, Jana; Mikšovský, Jan; Dušek, Karel; Bauerová, Lenka

    2014-04-01

    Since it is known that UV-C radiation kills fungus, we wanted to verify the hypothesis that the use of excimer laser could be an alternative method for treating onychomycosis - nail fungus. The aim of the first stage of this work was to determine the transmission, reflection and absorption of nails. In the following stage we focused on irradiation of fungi. Our final task is to assess whether it is possible to determine the parameters of radiation (a total dose,a dose per pulse frequency, a repetition rate, a number of pulses) for which the elimination of fungi would be the most effective but without damaging the nail and soft tissue underneath it. The results so far have showed that UV-C radiation does not pass through a fingernail to such an extent that it could damage the soft tissue beneath it. Fungi are destroyed by the application of only small doses of radiation using the excimer laser. Additional measurements will be required to determine the modulation parameters of the excimer laser radiation for the treatment of onychomycosis.

  17. Transcriptional responses to biologically relevant doses of UV-B radiation in the model archaeon, Halobacterium sp. NRC-1

    PubMed Central

    Boubriak, Ivan; Ng, Wooi Loon; DasSarma, Priya; DasSarma, Shiladitya; Crowley, David J; McCready, Shirley J

    2008-01-01

    Background Most studies of the transcriptional response to UV radiation in living cells have used UV doses that are much higher than those encountered in the natural environment, and most focus on short-wave UV (UV-C) at 254 nm, a wavelength that never reaches the Earth's surface. We have studied the transcriptional response of the sunlight-tolerant model archaeon, Halobacterium sp. NRC-1, to low doses of mid-wave UV (UV-B) to assess its response to UV radiation that is likely to be more biologically relevant. Results Halobacterium NRC-1 cells were irradiated with UV-B at doses equivalent to 30 J/m2 and 5 J/m2 of UV-C. Transcriptional profiling showed that only 11 genes were up-regulated 1.5-fold or more by both UV-B doses. The most strongly up-regulated gene was radA1 (vng2473), the archaeal homologue of RAD51/recA recombinase. The others included arj1 (vng779) (recJ-like exonuclease), top6A (vng884) and top6B (vng885) (coding for Topoisomerase VI subunits), and nrdJ (vng1644) (which encodes a subunit of ribonucleotide reductase). We have found that four of the consistently UV-B up-regulated genes, radA1 (vng2473), vng17, top6B (vng885) and vng280, share a common 11-base pair motif in their promoter region, TTTCACTTTCA. Similar sequences were found in radA promoters in other halophilic archaea, as well as in the radA promoter of Methanospirillum hungatei. We analysed the transcriptional response of a repair-deficient ΔuvrA (vng2636) ΔuvrC (vng2381) double-deletion mutant and found common themes between it and the response in repair proficient cells. Conclusion Our results show a core set of genes is consistently up-regulated after exposure to UV-B light at low, biologically relevant doses. Eleven genes were up-regulated, in wild-type cells, after two UV-B doses (comparable to UV-C doses of 30 J/m2 and 5 J/m2), and only four genes were up-regulated by all doses of UV-B and UV-C that we have used in this work and previously. These results suggest that high doses

  18. New Criteria to Assess Seismic and Rock Burst Hazard in Coal Mines / Nowe Kryteria Dla Oceny Zagrożenia Sejsmicznego I Tąpaniami W Kopalniach Węgla Kamiennego

    NASA Astrophysics Data System (ADS)

    Mutke, Grzegorz; Dubiński, Józef; Lurka, Adam

    2015-09-01

    The paper presents new criteria of seismic and rock burst hazard assessment in Polish hard coal mines where longwall mining system is common practice. The presented criteria are based on the results of continuous recording of seismic events and analysis of selected seismological parameters: spatial location of seismic event in relation to mining workings, seismic energy, seismic energy release per unit coal face advance, b-value of Gutenberg-Richter law, seismic energy index EI, seismic moment M0, weighted value of peak particle velocity PPVW. These parameters are determined in a moving daily time windows or time windows with fixed number of seismic tremors. Time changes of these parameters are then compared with mean value estimated in the analyzed area. This is the basis to indicate the zones of high seismic and rock burst hazard in specific moment in time during mining process. Additionally, the zones of high seismic and rock burst hazard are determined by utilization of passive seismic tomography method. All the calculated seismic parameters in moving time windows are used to quantify seismic and rock burst hazard by four level scales. In practice, assessment of seismic and rock burst hazard is used to make daily decision about using rock burst prevention activities and correction of further exploitation of monitored coal panel. Zagrożenie sejsmiczne i związane z nim genetycznie zagrożenie tąpnięciem w dalszym ciągu należą do najgroźniejszych zagrożeń naturalnych występujących w polskich kopalniach węgla kamiennego. W ostatnich latach w kopalniach Górnośląskiego Zagłębia Węglowego (GZW) rocznie rejestrowano 1000÷1500 wstrząsów o energii sejsmicznej Es ≥ 1·105J (magnituda lokalna ML ≥ 1.7), a najsilniejsze z nich osiągały energię Es = 4 ·109J (ML = 4.1). W latach 1991-2010 odnotowano w GZW 101 tąpnięć, z których około 66% miało miejsce w wyrobiskach chodnikowych, powodując ich uszkodzenia lub całkowite zniszczenie, a w

  19. Chicken egg yolk plasma in tris-citric acid extender improves the quality and fertility of cryopreserved water buffalo (Bubalus bubalis) spermatozoa.

    PubMed

    Hussain Shah, S Aftab; Hassan Andrabi, S Murtaza; Ahmed, Hussain; Qureshi, Irfan Zia

    2017-02-01

    This study was primarily designed to evaluate the effect of different concentrations of ultraviolet (UV)-C-irradiated chicken egg yolk plasma (EYP; v:v; 10%, P1; 15%, P2; 20%, P3) or 20% (v:v) of whole chicken egg yolk (WCEY) in tris-citric acid (TCA) extender on water buffalo sperm quality during cryopreservation (postdilution, PD; postequilibration, PE; post-thawing, PT). Also the effect of best evolved concentration of UV-C-irradiated EYP in extender on in vivo fertility of buffalo spermatozoa was evaluated. At PE and PT, computer-assisted sperm analysis progressive motility (PM, %) was significantly higher in P3 compared with P1 and WCEY. Rapid velocity (RV, %) was higher (P < 0.05) in P3 compared with P1 and WCEY during cryopreservation (PD, PE, and PT). Average path velocity (μm/s) and straight line velocity (μm/s) were higher (P < 0.05) in P2 and P3 than WCEY at PE and PT. The decline percentage (%, longevity) in PM and RV was lower (P < 0.05) in P3 compared with WCEY during 2 hours incubation under in vitro condition at PT. Supravital plasma membrane integrity (%) was higher (P < 0.05) in P2 and P3 compared with control at different stages (PE and PT). Mitochondrial transmembrane potential (%) was higher (P < 0.05) in P2 and P3 compared with P1 and WCEY at different stages (PD and PT). Percentage of viable sperm with intact acrosome, and sperm DNA integrity (%) were higher (P < 0.05) in P2 and P3 compared with WCEY at PT. The in vivo fertility rate (%) was significantly higher with P3 compared with WCEY (76.61 vs. 64.49). In conclusion, WCEY (20%) can be replaced with UV-C-irradiated chicken EYP (20%) in TCA extender for cryopreservation of water buffalo spermatozoa. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Trace Contaminant Control: An In-Depth Study of a Silica-Titania Composite for Photocatalytic Remediation of Closed-Environment Habitat Air

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.

    2013-01-01

    This collection of studies focuses on a PCO system for the oxidation of a model compound, ethanol, using an adsorption-enhanced silica-TiO2 composite (STC) as the photocatalyst; studies are aimed at addressing the optimization of various parameters including light source, humidity, temperature, and possible poisoning events for use as part of a system for gaseous trace-contaminant control system in closed-environment habitats. The first goal focused on distinguishing the effect of photon flux (i.e., photons per unit time reaching a surface) from that of photon energy (i.e., wavelength) of a photon source on the PCO of ethanol. Experiments were conducted in a bench-scale annular reactor packed with STC pellets and irradiated with either a UV-A fluorescent black light blue lamp O max=365 nm) at its maximum light intensity or a UV-C germicidal lamp O. max=254 nm) at three levels of light intensity. The STC-catalyzed oxidation of ethanol was found to follow zero-order kinetics with respect to CO2 production, regardless of the photon source. Increased photon flux led to increased EtOH removal, mineralization, and oxidation rate accompanied by lower intermediate concentration in the effluent. The oxidation rate was higher in the reactor irradiated by UV-C than by UV-A (38.4 vs. 31.9 nM s-1 ) at the same photon flux, with similar trends for mineralization (53.9 vs. 43.4%) and reaction quantum efficiency (i.e., photonic efficiency, 63.3 vs. 50.1 nmol C02 mol photons-1 ). UV-C irradiation also led to decreased intermediate concentration in the effluent compared to UV -A irradiation. These results demonstrated that STC-catalyzed oxidation is enhanced by both increased photon flux and photon energy. The effect of temperature and relative humidity on the STC-catalyzed degradation of ethanol was also determined using the UV-A light source at its maximum intensity.

  1. Sub-50 fs excited state dynamics of 6-chloroguanine upon deep ultraviolet excitation.

    PubMed

    Mondal, Sayan; Puranik, Mrinalini

    2016-05-18

    The photophysical properties of natural nucleobases and their respective nucleotides are ascribed to the sub-picosecond lifetime of their first singlet states in the UV-B region (260-350 nm). Electronic transitions of the ππ* type, which are stronger than those in the UV-B region, lie at the red edge of the UV-C range (100-260 nm) in all isolated nucleobases. The lowest energetic excited states in the UV-B region of nucleobases have been investigated using a plethora of experimental and theoretical methods in gas and solution phases. The sub-picosecond lifetime of these molecules is not a general attribute of all nucleobases but specific to the five primary nucleobases and a few xanthine and methylated derivatives. To determine the overall UV photostability, we aim to understand the effect of more energetic photons lying in the UV-C region on nucleobases. To determine the UV-C initiated photophysics of a nucleobase system, we chose a halogen substituted purine, 6-chloroguanine (6-ClG), that we had investigated previously using resonance Raman spectroscopy. We have performed quantitative measurements of the resonance Raman cross-section across the Bb absorption band (210-230 nm) and constructed the Raman excitation profiles. We modeled the excitation profiles using Lee and Heller's time-dependent theory of resonance Raman intensities to extract the initial excited state dynamics of 6-ClG within 30-50 fs after photoexcitation. We found that imidazole and pyrimidine rings of 6-ClG undergo expansion and contraction, respectively, following photoexcitation to the Bb state. The amount of distortions of the excited state structure from that of the ground state structure is reflected by the total internal reorganization energy that is determined at 112 cm(-1). The contribution of the inertial component of the solvent response towards the total reorganization energy was obtained at 1220 cm(-1). In addition, our simulation also yields an instantaneous response of the first

  2. Inactivation of Enterococcus faecalis by TiO2-mediated UV and solar irradiation in water and wastewater: culture techniques never say the whole truth.

    PubMed

    Venieri, Danae; Chatzisymeon, Efthalia; Gonzalo, Maria S; Rosal, Roberto; Mantzavinos, Dionissios

    2011-11-01

    In this work, the disinfection efficiency of water and secondary treated wastewater by means of UV-A, UV-C and solar irradiation in the presence or absence of TiO(2), using a reference strain of Enterococcus faecalis as faecal indicator, was evaluated. Operating parameters such as TiO(2) loading (0-1500 mg L(-1)), initial bacterial concentration (2 × 10(2)-10(8) CFU mL(-1)) and treatment time (up to 120 min) were assessed concerning their impact on disinfection. E. faecalis inactivation was monitored by the conventional culture method and real-time PCR. Regarding photocatalytic treatment, disinfection efficiency was improved by increasing TiO(2) concentration and bacterial inactivation took place in relatively short treatment times. Comparing the three disinfection methods, it was observed that UV-C irradiation yielded a better efficiency during water treatment than UV-A and solar irradiation. Furthermore, UV-A was more efficient than solar irradiation in the presence of the same loading of TiO(2). Regarding real wastewater, it was observed that only UV-C irradiation was capable of totally inactivating E. faecalis population in a short time. Screening the results obtained from both applied techniques (culture method and real-time PCR), there was a discrepancy, regarding the recorded time periods of total bacterial inactivation. Real-time PCR data revealed that longer periods are needed for 100% bacterial reduction during the treatments tested compared to the estimated time by culture method. This is probably attributed to the phenomenon of "viable but not culturable bacteria", caused by stressed conditions induced during disinfection experiments. Taking into account the contrast of results and in order to perform a thorough evaluation of disinfection techniques, conventional culture method should be accompanied by a DNA-based method. According to our findings, real-time PCR proved to be a reliable and accurate molecular tool for the identification and

  3. The effects of space relevant environmental factors on halophilic Archaea

    NASA Astrophysics Data System (ADS)

    Leuko, Stefan; Moeller, Ralf; Rettberg, Petra

    Within the last 50 years, space technology has provided tools for transporting terrestrial (microbial) life beyond Earth's protective shield in order to study its responses to selected conditions of space. Microorganisms are ubiquitous and can be found in almost every environment on Earth. They thrive and survive in a broad spectrum of environments and are true masters in adapting to rapidly changing external conditions. Although microorganisms cannot actively grow under the harsh conditions of outer space or other known planets, some microorganisms might be able to survive for a time in space or other planets as dormant, inactive spores or in similar desiccation-resistant resting states, e.g., enclosed in halite crystals or biofilms. Halite crystals are the realm of halophilic Archaea as they have adapted to life at extreme salt concentrations. They can stay entrapped in such crystals for millions of years without losing viability and therefore the family Halobacteriaceae belongs to the group of microorganisms which may survive space travel or may even be found on other planets. Several members of this family have been utilized in space relevant experiments where they were exposed to detrimental environmental conditions such as UV-C radiation, vacuum, temperature cycles (+60(°) C and -25(°) C) and heavy iron bombardment (150 MeV He, 500 MeV Ar and 500 MeV Fe ions). The viability was evaluated by colony forming unit (cfu) counts as well as with the LIFE/DEAD kit. Results revealed that UV-C radiation (up to 1.000 J/m (2) ) has a considerable effect on the viability, whereas the other tested parameters inflict little damage onto the organisms. Repair of UV-C inflicted damage is efficient and several DNA damage repair genes are up-regulated following exposure. Halophilic archaea display a strong resistance against heavy iron bombardment, with dosages of up to 2.000 Gy 500 MeV Fe ions needed to establish a visible effect on the vitality. Genomic integrity after

  4. Effects of ultraviolet light emitting diodes (LEDs) on microbial and enzyme inactivation of apple juice.

    PubMed

    Akgün, Merve Pelvan; Ünlütürk, Sevcan

    2017-11-02

    In this study, the effects of Ultraviolet light-emitting diodes (UV-LEDs) on the inactivation of E. coli K12 (ATCC 25253), an indicator organism of E. coli O157:H7, and polyphneoloxidase (PPO) in cloudy apple juice (CAJ) were investigated. The clear (AJ) and cloudy apple juice were exposed to UV rays for 40min by using a UV device composed of four UV-LEDs with peak emissions at 254 and 280nm and coupled emissions as follows: 254/365, 254/405, 280/365, 280/405 and 254/280/365/405nm. UV-LEDs at 254nm achieved 1.6±0.1 log10 CFU/mL inactivation of E. coli K12 at UV dose of 707.2mJ/cm(2). The highest inactivation of E. coli K12 (2.0±0.1log10 CFU/mL and 2.0±0.4log10CFU/mL) was achieved when the cloudy apple juice was treated with both 280nm and 280/365nm UV-LEDs. For clear apple juice the highest inactivation 4.4log10CFU/mL obtained for E. coli K12 was achieved using 4 lamps emitting light at 280nm for 40min exposure time. For the same treatment time, the experiments using a combination of lamps emitting light at 280 and 365nm (2lamp/2lamp) were resulted in 3.9±0.2log10CFU/mL reductions. UV-A and UV-C rays in combination showed a better inactivation effect on PPO than UV-C rays used separately. Residual activity of PPO in CAJ was reduced to 32.58% when treated with UV-LED in combination of UV-C (280nm) and UV-A (365nm) rays. Additionally, the total color change (ΔE) of CAJ subjected to combined UV-LED irradiation at 280/365nm was the lowest compared to other studied processing conditions. This study provides key implications for the future application of UV-LEDs to fruit juice pasteurization. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Properties of Waste from Coal Gasification in Entrained Flow Reactors in the Aspect of Their Use in Mining Technology / Właściwości odpadów ze zgazowania węgla w reaktorach dyspersyjnych w aspekcie ich wykorzystania w technologiach górniczych

    NASA Astrophysics Data System (ADS)

    Pomykała, Radosław

    2013-06-01

    Most of the coal gasification plants based of one of the three main types of reactors: fixed bed, fluidized bed or entrained flow. In recent years, the last ones, which works as "slagging" reactors (due to the form of generated waste), are very popular among commercial installations. The article discusses the characteristics of the waste from coal gasification in entrained flow reactors, obtained from three foreign installations. The studies was conducted in terms of the possibilities of use these wastes in mining technologies, characteristic for Polish underground coal mines. The results were compared with the requirements of Polish Standards for the materials used in hydraulic backfill as well as suspension technology: solidification backfill and mixtures for gob caulking. Większość przemysłowych instalacji zgazowania węgla pracuje w oparciu o jeden z trzech głównych typów reaktorów: ze złożem stałym, dyspersyjny lub fluidalny. W zależności od rodzaju reaktora oraz szczegółowych rozwiązań instalacji, powstające uboczne produkty zgazowania mogą mieć różną postać. Zależy ona w dużej mierze od stosunku temperatury pracy reaktora do temperatury topnienia części mineralnych zawartych w paliwie, czyli do temperatury mięknienia i topnienia popiołu. W ostatnich latach bardzo dużą popularność wśród instalacji komercyjnych zdobywają reaktory dyspersyjne "żużlujące". W takich instalacjach żużel jest wychwytywany i studzony po wypłynięciu z reaktora. W niektórych przypadkach oprócz żużla powstaje jeszcze popiół lotny, wychwytywany w systemach odprowadzania spalin. Może być on pozyskiwany oddzielnie lub też zawracany do komory reaktora, gdzie ulega stopieniu. Wszystkie z analizowanych odpadów - trzy żużle oraz popiół pochodzą właśnie z tego typu instalacji. Tylko z jednej z nich pozyskano zarówno żużel jak i popiół, z pozostałych dwóch jedynie żużel. Odpady te powstały, jako uboczny produkt zgazowania w

  6. Photostability of plasma polymerized γ-terpinene thin films for encapsulation of OPV.

    PubMed

    Bazaka, Kateryna; Ahmad, Jakaria; Oelgemöller, Michael; Uddin, Ashraf; Jacob, Mohan V

    2017-03-30

    Optically transparent, smooth, defect-free, chemically inert and with good adhesion to a variety of substrates, plasma polymers from plant-derived secondary metabolites have been identified as promising encapsulating materials for organic electronics and photovoltaics. Here, we demonstrate that an encapsulating layer of plasma polymerized γ-terpinene reduces degradation-related loss in conversion efficiency in PCPDTBT:PC70BM solar cells under ambient operating conditions. The stability of γ-terpinene films was then investigated under extreme UV irradiation conditions as a function of deposition power. When exposed to ambient air, prolonged exposure to UV-A and UV-B light led to notable ageing of the polymer. Photooxidation was identified as the main mechanism of degradation, confirmed by significantly slower ageing when oxygen was restricted through the use of a quartz cover. Under unnatural high-energy UV-C irradiation, significant photochemical degradation and oxidation occurred even in an oxygen-poor environment.

  7. Role of pigmentation in protecting Bacillus sp. endospores against environmental UV radiation.

    PubMed

    Moeller, Ralf; Horneck, Gerda; Facius, Rainer; Stackebrandt, Erko

    2005-01-01

    Bacillus endospores show different kinds of pigmentation. Red-pigmented spores of Bacillus atrophaeus DSM 675, dark-gray spores of B. atrophaeus(T) DSM 7264 and light-gray spores of B. subtilis DSM 5611 were used to study the protective role of the pigments in their resistance to defined ranges of environmental UV radiation. Spores of B. atrophaeus DSM 675 possessing a dark-red pigment were 10 times more resistant to UV-A radiation than those of the other two investigated strains, whereas the responses to the more energetic UV-B and UV-C radiation were identical in all three strains. The methanol fraction of the extracted pigment from the spores absorbs in the associated wavelength area. These results indicate that the carotene-like pigment of spores of B. atrophaeus DSM 675 affects the resistance of spores to environmental UV-A radiation.

  8. Antibacterial and antifouling activities of chitosan/TiO2/Ag NPs nanocomposite films against packaged drinking water bacterial isolates.

    PubMed

    Natarajan, Saravanan; Bhuvaneshwari, M; Lakshmi, D Shanthana; Mrudula, P; Chandrasekaran, N; Mukherjee, Amitava

    2016-10-01

    TiO2 and Ag NPs are widely used as antibacterial agents against many bacterial pathogens. Chitosan (polymer) itself acts as a strong antibacterial agent. Hence, chitosan/TiO2/Ag NPs incorporated nanocomposite film was prepared against packed drinking water bacterial strains. A concentration-dependent increase in the reduction of cell viability was observed in all the isolates under UV-C and dark exposure conditions. The bacteria consortium showed greater resistance against antibacterial effects of chitosan/TiO2/Ag nanocomposite as compared to single isolates. Glycocalyx test and mass assessment conclude the effective antibacterial activity by inhibiting bacterial adhesion on the film surface. The release of LDH and generation of ROS act as the predominant antibacterial mechanism induced by TiO2/Ag NPs. Surface characterization of chitosan/TiO2/Ag nanocomposite was studied by FTIR and XRD analyses and SEM analysis after interaction with the bacteria.

  9. Lycopene control of benzophenone-sensitized lipid peroxidation

    NASA Astrophysics Data System (ADS)

    Cvetković, Dragan; Marković, Dejan

    2012-05-01

    Lycopene antioxidant activity in the presence of two different mixtures of phospholipids in hexane solution, under continuous regime of UV-irradiation from three different ranges (UV-A, UV-B, and UV-C) has been evaluated in this work. Lycopene expected role was to control lipid peroxidation, by scavenging free radicals generated by UV-irradiation, in the presence and in the absence of selected photosensitizer, benzophenone. This work shows that lycopene undergoes to UV-induced destruction (bleaching), highly dependent on the incident photons energy input, more expressed in the presence than in the absence of benzophenone. The further increase ("excess") of its bleaching is undoubtedly related to the further increase of its antioxidant activity in the presence of benzophenone, having the same cause: increase of (phospholipids peroxidation) chain-breaking activities.

  10. A cytoprotective and degradable metal-polyphenol nanoshell for single-cell encapsulation.

    PubMed

    Park, Ji Hun; Kim, Kyunghwan; Lee, Juno; Choi, Ji Yu; Hong, Daewha; Yang, Sung Ho; Caruso, Frank; Lee, Younghoon; Choi, Insung S

    2014-11-10

    Single-cell encapsulation promises the cytoprotection of the encased cells against lethal stressors, reminiscent of the sporulation process in nature. However, the development of a cytocompatible method for chemically mimicking the germination process (i.e., shell degradation on-demand) has been elusive, despite the shell degradation being pivotal for the practical use of functional cells as well as for single cell-based biology. We report that an artificial shell, composed of tannic acid (TA) and Fe(III) , on individual Saccharomyces cerevisiae controllably degrades on-demand, while protecting the yeast from multiple external aggressors, including UV-C irradiation, lytic enzymes, and silver nanoparticles. Cell division is suppressed by the TA-Fe(III) shell, but restored fully upon shell degradation. The formation of a TA-Fe(III) shell would provide a versatile tool for achieving the chemical version of "sporulation and germination".

  11. Printable UV personal dosimeter: sensitivity as a function of DoD parameters and number of layers of a functional photonic ink

    NASA Astrophysics Data System (ADS)

    Sousa, Felipe L. N.; Mojica-Sánchez, Lizeth C.; Gavazza, Sávia; Florencio, Lourdinha; Vaz, Elaine C. R.; Santa-Cruz, Petrus A.

    2016-04-01

    This work presents ‘intelligent papers’ obtained by functional inks printed on cellulose-sheets by DoD inkjet technology and their performance as a photonic device for UV-radiation dosimetry. The dosimeter operation is based on the photodegradation of the active part of a photonic ink, btfa (4,4,4-trifluoro-1-phenyl-1,3-butanedione) ligands in Eu(III) complex, as a function of the UV dose (Jcm-2), and the one-way device is read by the luminescence quenching of (5D0 → 7F2) Eu3+ transition after UV exposure of the printed paper. The printed dosimeter presented an exponential behavior, measured here up to 10 Jcm-2 for UV-A, UV-B and UV-C, and it was shown that the number of jetted layers could fit the dosimeter sensitivity.

  12. Complete genome sequence of Geodermatophilus obscurus type strain (G-20T)

    SciTech Connect

    Ivanova, N; Sikorski, Johannes; Jando, Marlen; Munk, Christine; Lapidus, Alla L.; Glavina Del Rio, Tijana; Copeland, A; Tice, Hope; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Mavromatis, K; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam L; Hauser, Loren John; Chang, Yun-Juan; Jeffries, Cynthia; Meincke, Linda; Detter, J. Chris; Rohde, Manfred; Goker, Markus; Bristow, James; Eisen, Jonathan; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2010-01-01

    Geodermatophilus obscurus Luedemann 1968 is the type species of the genus, which is the type genus of the family Geodermatophilaceae. G. obscurus is of interest as it has frequently been isolated from stressful environments such as rock varnish in deserts, and as it exhibits interesting phenotypes such as lytic capability of yeast cell walls, UV-C resistance, strong production of extracellular functional amyloid (FuBA) and manganese oxidation. This is the first completed genome sequence of the family Geodermatophilaceae. The 5,322,497 bp long genome with its 5,161 protein-coding and 58 RNA genes is part of the Genomic Encyc-lopedia of Bacteria and Archaea project.

  13. Complete genome sequence of Geodermatophilus obscurus type strain (G-20T)

    PubMed Central

    Ivanova, Natalia; Sikorski, Johannes; Jando, Marlen; Munk, Christine; Lapidus, Alla; Glavina Del Rio, Tijana; Copeland, Alex; Tice, Hope; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Meincke, Linda; Brettin, Thomas; Detter, John C.; Rohde, Manfred; Göker, Markus; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter

    2010-01-01

    Geodermatophilus obscurus Luedemann 1968 is the type species of the genus, which is the type genus of the family Geodermatophilaceae. G. obscurus is of interest as it has frequently been isolated from stressful environments such as rock varnish in deserts, and as it exhibits interesting phenotypes such as lytic capability of yeast cell walls, UV-C resistance, strong production of extracellular functional amyloid (FuBA) and manganese oxidation. This is the first completed genome sequence of the family Geodermatophilaceae. The 5,322,497 bp long genome with its 5,161 protein-coding and 58 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304698

  14. Photostability of plasma polymerized γ-terpinene thin films for encapsulation of OPV

    NASA Astrophysics Data System (ADS)

    Bazaka, Kateryna; Ahmad, Jakaria; Oelgemöller, Michael; Uddin, Ashraf; Jacob, Mohan V.

    2017-03-01

    Optically transparent, smooth, defect-free, chemically inert and with good adhesion to a variety of substrates, plasma polymers from plant-derived secondary metabolites have been identified as promising encapsulating materials for organic electronics and photovoltaics. Here, we demonstrate that an encapsulating layer of plasma polymerized γ-terpinene reduces degradation-related loss in conversion efficiency in PCPDTBT:PC70BM solar cells under ambient operating conditions. The stability of γ-terpinene films was then investigated under extreme UV irradiation conditions as a function of deposition power. When exposed to ambient air, prolonged exposure to UV-A and UV-B light led to notable ageing of the polymer. Photooxidation was identified as the main mechanism of degradation, confirmed by significantly slower ageing when oxygen was restricted through the use of a quartz cover. Under unnatural high-energy UV-C irradiation, significant photochemical degradation and oxidation occurred even in an oxygen-poor environment.

  15. Effectiveness of automated ultraviolet-C light for decontamination of textiles inoculated with Enterococcus faecium.

    PubMed

    Smolle, Christian; Huss, Fredrik; Lindblad, Marie; Reischies, Frederike; Tano, Eva

    2017-08-04

    Healthcare textiles are increasingly recognized as potential vehicles for transmission of hospital-acquired infections. We tested the ability of an automated ultraviolet-C (UV-C) room disinfection device (Tru-D(®) Smart UVC) to decontaminate textiles inoculated with Enterococcus faecium in a clinical setting. Contaminated polycotton (50/50 polyester/cotton) swatches were distributed to predefined locations in a ward room and exposed to UVC light. UVC-decontamination reduced E. faecium counts by a mean log10 reduction factor of 1.37 (all p=0.005, Wilcoxon signed rank test). UVC decontamination may be a feasible adjunctive measure to conventional laundering to preserve the cleanliness of healthcare textiles in ward rooms. Copyright © 2017. Published by Elsevier Ltd.

  16. VUV absorption spectroscopy of bacterial spores and DNA components

    NASA Astrophysics Data System (ADS)

    Fiebrandt, Marcel; Lackmann, Jan-Wilm; Raguse, Marina; Moeller, Ralf; Awakowicz, Peter; Stapelmann, Katharina

    2017-01-01

    Low-pressure plasmas can be used to inactivate bacterial spores and sterilize goods for medical and pharmaceutical applications. A crucial factor are damages induced by UV and VUV radiation emitted by the plasma. To analyze inactivation processes and protection strategies of spores, absorption spectra of two B. subtilis strains are measured. The results indicate, that the inner and outer coat of the spore significantly contribute to the absorption of UV-C and also of the VUV, protecting the spore against radiation based damages. As the sample preparation can significantly influence the absorption spectra due to salt residues, the cleaning procedure and sample deposition is tested for its reproducibility by measuring DNA oligomers and pUC18 plasmid DNA. The measurements are compared and discussed with results from the literature, showing a strong decrease of the salt content enabling the detection of absorption structures in the samples.

  17. Photocatalytic degradation of methylene blue over nanosized TiO2 particles prepared using the self-propagating high-temperature synthesis method.

    PubMed

    Park, Chul-Min; Seo, Hyeong-Seok; Cho, Jung-Ho; Choi, Da-Hye; Jeong, Young-Shin; Chung, Min-Chul; Jung, Sang-Chul; Jeong, Woon-Jo; Ban, Jae-Sam; Ahn, Ho-Geun

    2013-08-01

    In order to reutilize the spent metallic titanium chips, TiO2 photocatalysts were prepared using the self-propagating high-temperature synthesis (SHS) method, and were characterized by N2 gas adsorption, X-ray diffraction, and scanning electron microscope, particle size distribution. Also, their photocatalytic activities were evaluated using methylene blue as a model organic compound. It was confirmed that the crystal structure of TiO2 prepared by SHS method was relatively homogeneous powder of rutile type. Optimum conditions for photocatalytic degradation of methylene blue under UV-C irradiation were methylene blue 9.5 ppm in solution and at amount of TiO2 added of 0.02 g/L. In addition, it was found that the photocatalytic activity for methylene blue degradation over the prepared TiO2 particles was positively related with BET specific surface area.

  18. Synthesis of surface bound silver nanoparticles on cellulose fibers using lignin as multi-functional agent.

    PubMed

    Hu, Sixiao; Hsieh, You-Lo

    2015-10-20

    Lignin has proven to be highly effective "green" multi-functional binding, complexing and reducing agents for silver cations as well as capping agents for the synthesis of silver nanoparticles on ultra-fine cellulose fibrous membranes. Silver nanoparticles could be synthesized in 10min to be densely distributed and stably bound on the cellulose fiber surfaces at up to 2.9% in mass. Silver nanoparticle increased in sizes from 5 to 100nm and became more polydispersed in size distribution on larger fibers and with longer synthesis time. These cellulose fiber bound silver nanoparticles did not agglomerate under elevated temperatures and showed improved thermal stability. The presence of alkali lignin conferred moderate UV absorbing ability in both UV-B and UV-C regions whereas the bound silver nanoparticles exhibited excellent antibacterial activities toward Escherichia coli.

  19. Equivalent Standard Deviation to Convert High-reliability Model to Low-reliability Model for Efficiency of Sampling-based RBDO

    DTIC Science & Technology

    2011-08-01

    Mechanics and Engineering, Vol. 198, No. 1, pp. 14-27, 2008. 32. Viana , A.C.F., Haftka, R.T., and Steffen, V ., “Multiple Surrogates: How Cross...i jX i i X j j f c u v f x f x  X x σ (28) where c is called a copula function and defined as 2 , ( , ; )( , ; ) ( , ; )uv...C u vc u v C u v u v      (29) and ( ; ) and ( ; ) i jX i i X j j u F x v F x   are CDFs for Xi and Xj

  20. Experimental investigations of microwave plasma UV lamp for food applications.

    PubMed

    Ortoneda, Montserrat; O'Keeffe, Sinead; Cullen, Jeff D; Al-Shamma'a, Ahmed I; Phipps, David A

    2008-01-01

    The food industry is keen to have new techniques that improve the safety and/or shelf life of food products without the use of preservatives. There is considerable interest in developing UV light and ozone (O3) treatments to enhance shelf life. A microwave radiation device that is a novel source of germicidal UV and O3 suitable for the food industry has been developed, which offers speed, cost and energy benefits over existing sources. With this system comes the need to monitor a number of conditions, primarily UV intensity and ozone gas concentrations. The effectiveness of intense UV exposure for short periods of time was assessed on different microorganisms. Culture plates were exposed to a range of doses of UV-C light, and the reduction in numbers of surviving microorganisms was recorded The results on the biocidal capacity of the microwave generated UV light are presented.

  1. The hydroxyl radical scavenging effect of textile preparation auxiliaries on the photochemical treatment of nonylphenol ethoxylate.

    PubMed

    Arslan-Alaton, Idil; Shayin, Sarina; Olmez-Hanci, Tugba

    2012-01-01

    The present paper deals with the effects of frequently used textile preparation chemicals and common ions on the H2O2/UV-C treatment of a commercially important and slowly biodegradable nonionic surfactant, namely a nonylphenol bearing 10 ethoxylated chains. For this purpose, the effect of soda ash carbonate (0-5.0 g L(-1)), two phosphonic acid-based organic sequestering agents (0-2.5 g L(-1)) and chloride (0-3.0 g L(-1)) at two different pH values (3.5 and 10.5) as hydroxyl radical scavengers was experimentally investigated. Among the studied textile preparation chemicals and hydroxyl radical scavengers, the decreasing order of hydroxyl radical scavenging capacity was established as diethylene triamine pentamethylene phosphonic acid > 1-hydroxy ethylidene-1,1-diphosphonic acid > soda ash carbonate at pH 10.5 > chloride at pH 3.5 > chloride at pH 10.5.

  2. Detection of viable but non cultivable Escherichia coli after UV irradiation using a lytic Qbeta phage.

    PubMed

    Ben Said, Myriam; Masahiro, Otaki; Hassen, Abdennaceur

    2010-03-01

    In order to qualify the germicidal efficacy of ultraviolet (UV) disinfection system, we generally determine the reduction of viable bacteria after UV-C irradiation. However, the simple count of viable and cultivable bacteria in usual media cannot reflect whether or not the UV dose applied to disinfect water is sufficient to inactivate bacteria. Indeed, there is a bacterial mix in the UV-treated water: dead bacteria, viable and cultivable bacteria and viable but noncultivable bacteria (VBNC). The third type of bacteria can constitute a potential risk for public health. In fact, VBNC bacteria can be active and cause diseases. Consequently, the combination of a conventional method used to measure colony-forming ability after UV disinfection and the determination of adsorption constants of a lytic Qbeta phage in relation to irradiated host cells by an increased UV dose (Escherichia coli ATCC 13965) allows the detection of active bacteria, which lose their cultivability in usual growth media, but keep the phage susceptibility.

  3. Study of the Response of a Biofilm Bacterial Community to UV Radiation

    PubMed Central

    Elasri, Mohamed O.; Miller, Robert V.

    1999-01-01

    We have developed a bioluminescent whole-cell biosensor that can be incorporated into biofilm ecosystems. RM4440 is a Pseudomonas aeruginosa FRD1 derivative that carries a plasmid-based recA-luxCDABE fusion. We immobilized RM4440 in an alginate matrix to simulate a biofilm, and we studied its response to UV radiation damage. The biofilm showed a protective property by physical shielding against UV C, UV B, and UV A. Absorption of UV light by the alginate matrix translated into a higher survival rate than observed with planktonic cells at similar input fluences. UV A was shown to be effectively blocked by the biofilm matrix and to have no detectable effects on cells contained in the biofilm. However, in the presence of photosensitizers (i.e., psoralen), UV A was effective in inducing light production and cell death. RM4440 has proved to be a useful tool to study microbial communities in a noninvasive manner. PMID:10223995

  4. Cytoprotective alginate/polydopamine core/shell microcapsules in microbial encapsulation.

    PubMed

    Kim, Beom Jin; Park, Taegyun; Moon, Hee Chul; Park, So-Young; Hong, Daewha; Ko, Eun Hyea; Kim, Ji Yup; Hong, Jong Wook; Han, Sang Woo; Kim, Yang-Gyun; Choi, Insung S

    2014-12-22

    Chemical encapsulation of microbes in threedimensional polymeric microcapsules promises various applications, such as cell therapy and biosensors, and provides a basic platform for studying microbial communications. However, the cytoprotection of microbes in the microcapsules against external aggressors has been a major challenge in the field of microbial microencapsulation, because ionotropic hydrogels widely used for microencapsulation swell uncontrollably, and are physicochemically labile. Herein, we developed a simple polydopamine coating for obtaining cytoprotective capability of the alginate capsule that encapsulated Saccharomyces cerevisiae. The resulting alginate/ polydopamine core/shell capsule was mechanically tough, prevented gel swelling and cell leakage, and increased resistance against enzymatic attack and UV-C irradiation. We believe that this multifunctional core/shell structure will provide a practical tool for manipulating microorganisms inside the microcapsules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Degradation testing of Mg alloys in Dulbecco's modified eagle medium: Influence of medium sterilization.

    PubMed

    Marco, Iñigo; Feyerabend, Frank; Willumeit-Römer, Regine; Van der Biest, Omer

    2016-05-01

    This work studies the in vitro degradation of Mg alloys for bioabsorbable implant applications under near physiological conditions. For this purpose, the degradation behaviour of Mg alloys in Dulbecco's modified eagle medium (DMEM) which is a commonly used cell culture medium is analysed. Unfortunately, DMEM can be contaminated by microorganisms, acidifying the medium and accelerating the Mg degradation process by dissolution of protective degradation layers, such as (Mgx,Cay)(PO4)z. In this paper the influence of sterilization by applying UV-C radiation and antibiotics (penicillin/streptomycin) is analysed with two implant material candidates: Mg-Gd and Mg-Ag alloys; and pure magnesium as well as Mg-4Y-3RE as a reference.

  6. Fluorescence diagnosis in tissue injury

    NASA Astrophysics Data System (ADS)

    Maciel, Vitória H.; Ferreira, Juliana; Bagnato, Vanderlei S.

    2009-06-01

    Background and Objectives: The paper aim was to evaluate the efficacy of the fluorescence spectroscopy in the detection of UV-induced skin change of Wistar rats. Study Design/ Materials and Methods: In a group male Wistar rats, the skin damage was produced by an UV-C lamp, periodically monitored using the laser-induced fluorescence, until complete healing process. After determining a characteristic emission band present in the fluorescence spectra of the induced injuries, the amplitude band monitoring allowed the follow up on the injury and the recovery. Results: We observed the appearance of two new emission bands more evident at the injury spectra when compared to the spectrums from normal non-exposed tissue. Following such spectral bands was possible to observe the establishment and recovery. Conclusions: The fluorescence spectroscopy is a promising technique in distinguishing between normal and UV induced skin change helping the evaluation of changes which are irreversible cancer tissue characteristics.

  7. Role of ultraviolet (UV) disinfection in infection control and environmental cleaning.

    PubMed

    Qureshi, Zubair; Yassin, Mohamed H

    2013-06-01

    Ultraviolet (UV) radiation is capable of disinfecting surfaces, water and air. The UV technology was used for many years. However, safer and more effective delivery systems of UV radiation, make it a very useful option for disinfection. Effective disinfection of environmental surfaces is a key step in the prevention of spread of infectious agents. The traditional manual cleaning is essential in assuring adequate elimination of contamination. However, terminal cleaning is frequently suboptimal or unpredictable in many circumstances. UV-C radiation is an adjunctive disinfectant new technology that could kill a wide array of microorganisms including both vegetative and spore forming pathogens. The technology is getting more affordable and has produced consistent reproducible significant reduction of bacterial contamination.

  8. Ultraviolet-induced oxidation of ascorbic acid in a model juice system: identification of degradation products.

    PubMed

    Tikekar, Rohan V; Anantheswaran, Ramaswamy C; Elias, Ryan J; LaBorde, Luke F

    2011-08-10

    Degradation products of ultraviolet (UV-C, 254 nm) treated ascorbic acid (AA) are reported. Analysis by high-performance liquid chromatography-mass spectroscopy (HPLC-MS) conducted in a 0.5% malic acid model juice system (pH 3.3) demonstrated increased degradation of AA above untreated controls with concomitant increases in dehydroascorbic acid (DHA) and 2,3-diketogulonic acid (DKGA) levels. Electron spin resonance (ESR) spectroscopy studies, conducted in phosphate buffer (pH 7.0) to increase detection sensitivity, demonstrated that ascorbyl radical (AA•) formation occurs simultaneously with AA degradation. Consistent with a previous study in which UV treatments were shown to accelerate dark storage degradation, AA• radicals continued to form for up to 200 min after an initial UV treatment. Results from this study suggest that the mechanism for UV-induced degradation is the same as the general mechanism for metal-catalyzed oxidation of AA in juice.

  9. Synthesis, characterization and photocatalytic behavior of Ag doped TiO2 thin film

    NASA Astrophysics Data System (ADS)

    Bensouici, F.; Souier, T.; Dakhel, A. A.; Iratni, A.; Tala-Ighil, R.; Bououdina, M.

    2015-09-01

    In this study, structure, microstructure, optical properties and photocatalytic degradation of Rhodamine B (RhB) have been investigated in an aqueous heterogeneous media containing pure and Ag doped TiO2 nanostructures thin films which were prepared by a simple sol-gel route. Thermal analysis demonstrated that Ag content decreased the temperature of anatase-to-rutile phase transformation. X-ray diffraction analysis confirmed that the prepared nanostructures crystallize within anatase-type structure and that the dopant Ag ions were not fully incorporated within TiO2 host lattice, meanwhile both the refractive index and optical band gap were affected by Ag concentration. The photodegradation of Rhodamine B under UV-C radiation by using pure and Ag-doped TiO2 nanostructures showed that Ag played an important role in a significant improvement of the photodegradation efficiency and that the optimum content of Ag ions was found to be 0.5% molar ratio.

  10. Quality attributes of starfruit (Averrhoa carambola L.) juice treated with ultraviolet radiation.

    PubMed

    Bhat, Rajeev; Ameran, Suhaida Binti; Voon, Han Ching; Karim, A A; Tze, Liong Min

    2011-07-15

    Starfruit juice were exposed to ultraviolet (UV-C) light for 0, 30 and 60min at room temperature (25±1°C). On exposure, the titratable acidity significantly decreased, while the decrease in °Brix and pH were not significant. With regard to colorimetric parameters, L(∗) value increased significantly with a subsequent decrease in a(∗) and b(∗) values corresponding to UV treatment time. Except for the ascorbic acid, other antioxidants measured (% DPPH inhibition, total phenols, flavonols, flavonoids and antioxidant capacity) showed enhancement on expsoure to UV (significant at 60min). Microbial studies showed reduction in APC, yeasts and mould counts by 2-log cycle on UV treatments. These results supports the application of UV as a measure of non-thermal and physical food preservation technique for starfruit juice that can be explored commercially to benefit both the producers and consumers.

  11. Astrobiological Effects of Stellar Radiation in Circumstellar Environments

    NASA Astrophysics Data System (ADS)

    Cuntz, Manfred; Gurdemir, Levent; Guinan, Edward F.; Kurucz, Robert L.

    2006-10-01

    The centerpiece of all life on Earth is carbon-based biochemistry. Previous scientific research has suggested that biochemistry based on carbon may also play a decisive role in extraterrestrial life forms, i.e., alien life outside of Earth, if existent. In the following, we explore if carbon-based macromolecules (such as DNA) in the environments of stars other than the Sun are able to survive the effects of energetic stellar radiation, such as UV-C in the wavelength band between 200 and 290 nm. We focus on main-sequence stars akin to the Sun, but of hotter (F-type stars) and cooler (K- and M-type stars) surface temperature. Emphasis is placed on investigating the radiative environment in stellar habitable zones (HZs). Stellar habitable zones have an important relevance in astrobiology because they constitute circumstellar regions in which a planet of suitable size can have surface temperatures for water to exist in liquid form.

  12. Role of the Nfo and ExoA apurinic/apyrimidinic endonucleases in radiation resistance and radiation-induced mutagenesis of Bacillus subtilis spores.

    PubMed

    Moeller, Ralf; Setlow, Peter; Pedraza-Reyes, Mario; Okayasu, Ryuichi; Reitz, Günther; Nicholson, Wayne L

    2011-06-01

    The roles of DNA repair by apurinic/apyrimidinic (AP) endonucleases alone, and together with DNA protection by α/β-type small acid-soluble spore proteins (SASP), in Bacillus subtilis spore resistance to different types of radiation have been studied. Spores lacking both AP endonucleases (Nfo and ExoA) and major SASP were significantly more sensitive to 254-nm UV-C, environmental UV (>280 nm), X-ray exposure, and high-energy charged (HZE)-particle bombardment and had elevated mutation frequencies compared to those of wild-type spores and spores lacking only one or both AP endonucleases or major SASP. These findings further implicate AP endonucleases and α/β-type SASP in repair and protection, respectively, of spore DNA against effects of UV and ionizing radiation.

  13. The investigation of the light radiation caused polyethylene based materials deterioration by means of atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Sikora, A.; Grabarek, A.; Moroń, L.; Wałecki, M.; Kryla, P.

    2016-02-01

    The impact of the environmental conditions on the materials used in various devices and constructions, in particular in electrotechnical applications, has an critical impact in terms of their reliability and utilization range in specific climatic conditions. Due to increasing utilitarian requirements, technological processes complexity and introducing new materials (for instance nanomaterials), advanced diagnostic techniques are desired. One of such techniques is atomic force microscopy (AFM), which allows to study the changes of the roughness and mechanical properties of the surface at the submicrometer scale, enabling the investigation of the degradation processes. In this work the deterioration of selected group of polyethylene based materials have been measured by means of AFM, as the samples were exposed to the simulated solar light and UV-C radiation. Such an analysis of the environmental conditions impact on the deterioration process using AFM methods for various versions of specific material was not presented before.

  14. An EPR study on wastewater disinfection by peracetic acid, hydrogen peroxide and UV irradiation.

    PubMed

    Bianchini, Roberto; Calucci, Lucia; Caretti, Cecilia; Lubello, Claudio; Pinzino, Calogero; Piscicelli, Michela

    2002-09-01

    EPR spectroscopy was applied to obtain qualitative and quantitative information on the radicals produced in disinfection processes of wastewater for agricultural reuse. The DEPMPO spin trap was employed to detect hydroxyl and carbon-centered short living radicals in two different peracetic acid solutions and a hydrogen peroxide solution used for water disinfection either in the absence or in the presence of UV-C irradiation. Moreover, three different kinds of water (wastewater, demineralized water, distilled water) were analysed in order to assess the contribution of Fenton reactions to the radical production. The spectroscopic results were discussed in relation to the efficiency of the different oxidizing agents and UV irradiation in wastewater disinfection evaluated as Escherichia Coli, Faecal and Total Coliforms inactivation.

  15. Influence of osmotic stress on desiccation and irradiation tolerance of (hyper)-thermophilic microorganisms.

    PubMed

    Beblo-Vranesevic, Kristina; Galinski, Erwin A; Rachel, Reinhard; Huber, Harald; Rettberg, Petra

    2017-01-01

    This study examined the influence of prior salt adaptation on the survival rate of (hyper)-thermophilic bacteria and archaea after desiccation and UV or ionizing irradiation treatment. Survival rates after desiccation of Hydrogenothermus marinus and Archaeoglobus fulgidus increased considerably when the cells were cultivated at higher salt concentrations before drying. By doubling the concentration of NaCl, a 30 times higher survival rate of H. marinus after desiccation was observed. Under salt stress, the compatible solute diglycerol phosphate in A. fulgidus and glucosylglycerate in H. marinus accumulated in the cytoplasm. Several different compatible solutes were added as protectants to A. fulgidus and H. marinus before desiccation treatment. Some of these had similar effects as intracellularly produced compatible solutes. The survival rates of H. marinus and A. fulgidus after exposure to UV-C (254 nm) or ionizing X-ray/gamma radiation were irrespective of the salt-induced synthesis or the addition of compatible solutes.

  16. Novel and Simple Solution-processed MIS Ultraviolet (UV) Detector Based on Core-Shell Si/SiO2 Nanocrystals

    NASA Astrophysics Data System (ADS)

    SayyedFattahi, S. J.; Rostami, A.; Pouladian, M.; Dolatyari, M.; Rashidi, M.; Rostami, G.

    2014-04-01

    In the present study, we report a simple and solution-processed visible blind metal-insulator-semiconductor (MIS) ultraviolet (UV) detector based on core-shell Si/SiO2 nanocrystals that are fabricated on interdigitated electrodes. The fabricated photo detector shows high photosensitivity in the UV-B and UV-C wavelength ranges. The absorption spectra of the nano-structured materials used in this work is simulated by the density functional theory (DFT) method and analyzed based on the electronic structure. It is then compared with the experimental results. The synthesized nano materials show very low density of structural defects based on the measured photoluminescence spectra, which results in a fast response time for the fabricated photodetector. Compared to the previously reported similar Si/SiO2-based photo-detectors, the fabricated detector shows very good photo responsivity.

  17. Is it possible to increase the aloin content of Aloe vera by the use of ultraviolet light?

    PubMed

    Martínez-Romero, Domingo; Guillén, Fabián; Pérez-Aguilar, Henoc; Castillo, Salvador; Serrano, María; Zapata, Pedro J; Valero, Daniel

    2013-03-06

    In this paper, the effects of ultraviolet (UV) treatments on the aloin content of Aloe vera L. gel have been analyzed. UV-A treatment to A. vera plants for 36 days led to an increase in the aloin concentration in gel, rind tissue, and latex, while a decrease in chlorophylls a and b occurred in the photosynthetic tissue as a consequence of UV treatment. The growth of Penicillium digitatum and Botrytis cinerea (artificially inoculated on the leaf surface) was drastically decreased in UV-A-treated leaves, which could be attributed to the increase in the aloin concentration by the UV-A treatment. In addition, UV-C treatment to detached leaves also led to an increase in the gel aloin concentration, at higher levels than occurred with UV-A treatment, although leaves showed severe lesions after 48 h of treatment.

  18. Development of Load Exerted on the Lining of the Shaft After its Liquidation / Kształtowanie Się Obciążeń Obudowy Szybu Po Jego Likwidacji

    NASA Astrophysics Data System (ADS)

    Konior, Janusz

    2015-03-01

    .jpg" /> przy czym osiągają je już około 20÷40 m pod ustabilizowanym poziomem podsadzki w szybie. W prawidłowo zlikwidowanym szybie podsadzka winna szczelnie wypełniać rurę szybową do poziomu zrębu, a w przypadku wystąpienia procesu jej osiadania - okresowo uzupełniana. W takim przypadku obciążenie wypadkowe obudowy zlikwidowanego szybu można wyrazić wzorami (12), (13). Jednak w zależności od rodzaju zastosowanego materiału podsadzkowego do likwidacji szybu, jak to wynika z prowadzonych badań ich parametry fizyko-mechaniczne mogą ulegać zmianie w czasie w mniejszym lub większym stopniu. W artykule powołano się na badania górniczych materiałów odpadowych pochodzących z robót dołowych i przeróbczych. Zmianę istotnych parametrów, z punktu widzenia obliczanych wartości obciążenia pionowego i poziomego wywieranego przez podsadzkę na obudowę zlikwidowanego szybu przedstawiono na wykresach 3 i 4. Uwzględnienie tych zmian dla przedstawionego przykładu obliczeniowego wykazało wzrost wielkości parcia podsadzki o około 19%. Ponadto w zlikwidowanych szybach, w których występuje dopływ wody zza obudowy koniecznym jest, aby materiał użyty do likwidacji posiadał wymagany współczynnik filtracji, co obrazuje graficzna interpretacja przykładowych wyników obliczeń przedstawiona na Rys. 6. Nawet prawidłowo dobrany materiał zasypowy (z punktu widzenia wymaganej wartości współczynnika filtracji) może ulegać zmianom uziarnienia w wyniku takich czynników jak: swobodny spadek do szybu w czasie likwidacji, długotrwałe narażenie na oddziaływanie wody, wynoszenie drobnych cząstek gruntu wraz z wodą dopływającą zza obudowy (sufozja) itp. Przykład zmiany współczynnika filtracji związany ze zmianą uziarnienia badanego materiału przedstawia Rys. 7. W wyniku zmiany wartości współczynnika filtracji w czasie może dojść do gromadzenia się wody w podsadzce, co powoduje dalszy wzrost obci

  19. UV-Induced Cell Death in Plants

    PubMed Central

    Nawkar, Ganesh M.; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-01

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400–700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280–320 nm) and UV-A (320–390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD). PMID:23344059

  20. Fundamental molecules of life are pigments which arose and co-evolved as a response to the thermodynamic imperative of dissipating the prevailing solar spectrum

    NASA Astrophysics Data System (ADS)

    Michaelian, K.; Simeonov, A.

    2015-08-01

    The driving force behind the origin and evolution of life has been the thermodynamic imperative of increasing the entropy production of the biosphere through increasing the global solar photon dissipation rate. In the upper atmosphere of today, oxygen and ozone derived from life processes are performing the short-wavelength UV-C and UV-B dissipation. On Earth's surface, water and organic pigments in water facilitate the near-UV and visible photon dissipation. The first organic pigments probably formed, absorbed, and dissipated at those photochemically active wavelengths in the UV-C and UV-B that could have reached Earth's surface during the Archean. Proliferation of these pigments can be understood as an autocatalytic photochemical process obeying non-equilibrium thermodynamic directives related to increasing solar photon dissipation rate. Under these directives, organic pigments would have evolved over time to increase the global photon dissipation rate by (1) increasing the ratio of their effective photon cross sections to their physical size, (2) decreasing their electronic excited state lifetimes, (3) quenching radiative de-excitation channels (e.g., fluorescence), (4) covering ever more completely the prevailing solar spectrum, and (5) proliferating and dispersing to cover an ever greater surface area of Earth. From knowledge of the evolution of the spectrum of G-type stars, and considering the most probable history of the transparency of Earth's atmosphere, we construct the most probable Earth surface solar spectrum as a function of time and compare this with the history of molecular absorption maxima obtained from the available data in the literature. This comparison supports the conjecture that many fundamental molecules of life are pigments which arose, proliferated, and co-evolved as a response to dissipating the solar spectrum, supports the thermodynamic dissipation theory for the origin of life, constrains models for Earth's early atmosphere, and sheds

  1. Phenol degradation in water through a heterogeneous photo-Fenton process catalyzed by Fe-treated laponite.

    PubMed

    Iurascu, B; Siminiceanu, I; Vione, D; Vicente, M A; Gil, A

    2009-03-01

    New photo-Fenton catalysts have been prepared from synthetic layered clay laponite (laponite RD). Two series of Fe-laponite catalysts were synthesised, with or without thermal treatment of the mixture Fe polycations-laponite in the intercalation procedure. In each series, the intercalated solids underwent calcination at four temperatures, 250, 350, 450, and 550 degrees C. The catalysts were used for photo-assisted Fenton conversion of phenol, analyzing the influence of five operating factors: the wavelength of the light source (254 nm UV-C and 360 UV-A radiation), the amount of the catalyst (between 0 and 2 g/L), the initial phenol concentration (between 0.5 and 1.5 mmol/L), the initial concentration of hydrogen peroxide (between 20 and 100 mmol/L), and the initial pH of the solution (between 2.5 and 3.5). In all experiments, the temperature was kept constant at 30 degrees C. The results have shown that the almost complete conversion of phenol was possible, after only 5 min, under the following operating conditions: UV-C radiation; a pH of the aqueous solution of 3; a dose of 1 g(catalyst)/L, and a hydrogen peroxide concentration of 50 mmol/L for a solution containing 1 mmol/L of phenol. The catalyst prepared under thermal treatment and calcined at 350 degrees C showed the best catalytic performance. A kinetic model was proposed for the process, testing its validity and estimating the rate constants.

  2. Impact of surface structure and feed gas composition on Bacillus subtilis endospore inactivation during direct plasma treatment

    PubMed Central

    Hertwig, Christian; Steins, Veronika; Reineke, Kai; Rademacher, Antje; Klocke, Michael; Rauh, Cornelia; Schlüter, Oliver

    2015-01-01

    This study investigated the inactivation efficiency of cold atmospheric pressure plasma treatment on Bacillus subtilis endospores dependent on the used feed gas composition and on the surface, the endospores were attached on. Glass petri-dishes, glass beads, and peppercorns were inoculated with the same endospore density and treated with a radio frequency plasma jet. Generated reactive species were detected using optical emission spectroscopy. A quantitative polymerase chain reaction (qPCR) based ratio detection system was established to monitor the DNA damage during the plasma treatment. Argon + 0.135% vol. oxygen + 0.2% vol. nitrogen as feed gas emitted the highest amounts of UV-C photons and considerable amount of reactive oxygen and nitrogen species. Plasma generated with argon + 0.135% vol. oxygen was characterized by the highest emission of reactive oxygen species (ROS), whereas the UV-C emission was negligible. The use of pure argon showed a negligible emission of UV photons and atomic oxygen, however, the emission of vacuum (V)UV photons was assumed. Similar maximum inactivation results were achieved for the three feed gas compositions. The surface structure had a significant impact on the inactivation efficiency of the plasma treatment. The maximum inactivation achieved was between 2.4 and 2.8 log10 on glass petri-dishes and 3.9 to 4.6 log10 on glass beads. The treatment of peppercorns resulted in an inactivation lower than 1.0 log10. qPCR results showed a significant DNA damage for all gas compositions. Pure argon showed the highest results for the DNA damage ratio values, followed by argon + 0.135% vol. oxygen + 0.2% vol. nitrogen. In case of argon + 0.135% vol. oxygen the inactivation seems to be dominated by the action of ROS. These findings indicate the significant role of VUV and UV photons in the inactivation process of B. subtilis endospores. PMID:26300855

  3. Ouabain-induced perturbations in intracellular ionic homeostasis regulate death receptor-mediated apoptosis

    PubMed Central

    Panayiotidis, Mihalis I.; Franco, Rodrigo; Bortner, Carl D.; Cidlowski, John A.

    2012-01-01

    Apoptosis is defined by specific morphological and biochemical characteristics including cell shrinkage (termed apoptotic volume decrease), a process that results from the regulation of ion channels and plasma membrane transporter activity. The Na+-K+-ATPase is the predominant pump that controls cell volume and plasma membrane potential in cells and alterations in its function have been suggested to be associated with apoptosis. We report here that the Na+-K+-ATPase inhibitor ouabain, potentiates apoptosis in the human lymphoma Jurkat cells exposed to Fas ligand (FasL) or Tumor necrosis factor--related apoptosis-inducing ligand (TRAIL) but not other apoptotic agents such as H2O2, thapsigargin or UV-C implicating a role for the Na+-K+-ATPase in death receptor-induced apoptosis. Interestingly, ouabain also potentiated perturbations in cell Ca2+ homeostasis only in conjunction with the apoptotic inducer FasL but not TRAIL. Ouabain did not affect alterations in the intracellular Ca2+ levels in response to H2O2, thapsigargin or UV-C. FasL-induced alterations in Ca2+ were not abolished in Ca2+-free medium but incubation of cells with BAPTA-AM inhibited both Ca2+ perturbations and the ouabain-induced potentiation of FasL-induced apoptosis. Our data suggest that the impairment of the Na+-K+-ATPase activity during apoptosis is linked to perturbations in cell Ca2+ homeostasis that modulate apoptosis induced by the activation of Fas by FasL. PMID:20422450

  4. Point-of-use water disinfection using ultraviolet and visible light-emitting diodes.

    PubMed

    Lui, Gough Yumu; Roser, David; Corkish, Richard; Ashbolt, Nicholas J; Stuetz, Richard

    2016-05-15

    Improvements in point-of-use (POU) drinking water disinfection technologies for remote and regional communities are urgently needed. Conceptually, UV-C light-emitting diodes (LEDs) overcome many drawbacks of low-pressure mercury tube based UV devices, and UV-A or visible light LEDs also show potential. To realistically evaluate the promise of LED disinfection, our study assessed the performance of a model 1.3 L reactor, similar in size to solar disinfection bottles. In all, 12 different commercial or semi-commercial LED arrays (270-740 nm) were compared for their ability to inactivate Escherichia coli K12 ATCC W3110 and Enterococcus faecalis ATCC 19433 over 6h. Five log10 and greater reductions were consistently achieved using the 270, 365, 385 and 405 nm arrays. The output of the 310 nm array was insufficient for useful disinfection while 430 and 455 nm performance was marginal (≈ 4.2 and 2.3-log10s E. coli and E. faecalis over the 6h). No significant disinfection was observed with the 525, 590, 623, 660 and 740 nm arrays. Delays in log-phase inactivation of E. coli were observed, particularly with UV-A wavelengths. The radiation doses required for >3-log10 reduction of E. coli and E. faecalis differed by 10 fold at 270 nm but only 1.5-2.5 fold at 365-455 nm. Action spectra, consistent with the literature, were observed with both indicators. The design process revealed cost and technical constraints pertaining to LED electrical efficiency, availability and lifetime. We concluded that POU LED disinfection using existing LED technology is already technically possible. UV-C LEDs offer speed and energy demand advantages, while UV-A/violet units are safer. Both approaches still require further costing and engineering development. Our study provides data needed for such work. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Fundamental Characteristics of Deep-UV Light-Emitting Diodes and Their Application To Control Foodborne Pathogens

    PubMed Central

    Shin, Joo-Yeon; Kim, Soo-Ji; Kim, Do-Kyun

    2015-01-01

    Low-pressure mercury UV (LP-UV) lamps have long been used for bacterial inactivation, but due to certain disadvantages, such as the possibility of mercury leakage, deep-UV-C light-emitting diodes (DUV-LEDs) for disinfection have recently been of great interest as an alternative. Therefore, in this study, we examined the basic spectral properties of DUV-LEDs and the effects of UV-C irradiation for inactivating foodborne pathogens, including Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes, on solid media, as well as in water. As the temperature increased, DUV-LED light intensity decreased slightly, whereas LP-UV lamps showed increasing intensity until they reached a peak at around 30°C. As the irradiation dosage and temperature increased, E. coli O157:H7 and S. Typhimurium experienced 5- to 6-log-unit reductions. L. monocytogenes was reduced by over 5 log units at a dose of 1.67 mJ/cm2. At 90% relative humidity (RH), only E. coli O157:H7 experienced inactivation significantly greater than at 30 and 60% RH. In a water treatment study involving a continuous system, 6.38-, 5.81-, and 3.47-log-unit reductions were achieved in E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively, at 0.5 liter per minute (LPM) and 200 mW output power. The results of this study suggest that the use of DUV-LEDs may compensate for the drawbacks of using LP-UV lamps to inactivate foodborne pathogens. PMID:26162872

  6. UV-Induced cell death in plants.

    PubMed

    Nawkar, Ganesh M; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-14

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).

  7. Fundamental Characteristics of Deep-UV Light-Emitting Diodes and Their Application To Control Foodborne Pathogens.

    PubMed

    Shin, Joo-Yeon; Kim, Soo-Ji; Kim, Do-Kyun; Kang, Dong-Hyun

    2015-07-10

    Low-pressure mercury UV (LP-UV) lamps have long been used for bacterial inactivation, but due to certain disadvantages, such as the possibility of mercury leakage, deep-UV-C light-emitting diodes (DUV-LEDs) for disinfection have recently been of great interest as an alternative. Therefore, in this study, we examined the basic spectral properties of DUV-LEDs and the effects of UV-C irradiation for inactivating foodborne pathogens, including Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes, on solid media, as well as in water. As the temperature increased, DUV-LED light intensity decreased slightly, whereas LP-UV lamps showed increasing intensity until they reached a peak at around 30°C. As the irradiation dosage and temperature increased, E. coli O157:H7 and S. Typhimurium experienced 5- to 6-log-unit reductions. L. monocytogenes was reduced by over 5 log units at a dose of 1.67 mJ/cm(2). At 90% relative humidity (RH), only E. coli O157:H7 experienced inactivation significantly greater than at 30 and 60% RH. In a water treatment study involving a continuous system, 6.38-, 5.81-, and 3.47-log-unit reductions were achieved in E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively, at 0.5 liter per minute (LPM) and 200 mW output power. The results of this study suggest that the use of DUV-LEDs may compensate for the drawbacks of using LP-UV lamps to inactivate foodborne pathogens.

  8. Prediction of biodegradability of aromatics in water using QSAR modeling.

    PubMed

    Cvetnic, Matija; Juretic Perisic, Daria; Kovacic, Marin; Kusic, Hrvoje; Dermadi, Jasna; Horvat, Sanja; Bolanca, Tomislav; Marin, Vedrana; Karamanis, Panaghiotis; Loncaric Bozic, Ana

    2017-05-01

    The study was aimed at developing models for predicting the biodegradability of aromatic water pollutants. For that purpose, 36 single-benzene ring compounds, with different type, number and position of substituents, were used. The biodegradability was estimated according to the ratio of the biochemical (BOD5) and chemical (COD) oxygen demand values determined for parent compounds ((BOD5/COD)0), as well as for their reaction mixtures in half-life achieved by UV-C/H2O2 process ((BOD5/COD)t1/2). The models correlating biodegradability and molecular structure characteristics of studied pollutants were derived using quantitative structure-activity relationship (QSAR) principles and tools. Upon derivation of the models and calibration on the training and subsequent testing on the test set, 3- and 5-variable models were selected as the most predictive for (BOD5/COD)0 and (BOD5/COD)t1/2, respectively, according to the values of statistical parameters R(2) and Q(2). Hence, 3-variable model predicting (BOD5/COD)0 possessed R(2)=0.863 and Q(2)=0.799 for training set, and R(2)=0.710 for test set, while 5-variable model predicting (BOD5/COD)1/2 possessed R(2)=0.886 and Q(2)=0.788 for training set, and R(2)=0.564 for test set. The selected models are interpretable and transparent, reflecting key structural features that influence targeted biodegradability and can be correlated with the degradation mechanisms of studied compounds by UV-C/H2O2.

  9. Diagnosis of eight groups of xeroderma pigmentosum by genetic complementation using recombinant adenovirus vectors.

    PubMed

    Yamashita, Toshiharu; Okura, Masae; Ishii-Osai, Yasue; Hida, Tokimasa

    2016-10-01

    Because patients with xeroderma pigmentosum (XP) must avoid ultraviolet (UV) light from an early age, an early diagnosis of this disorder is essential. XP is composed of seven genetic complementation groups, XP-A to -G, and a variant type (XP-V). To establish an easy and accurate diagnosis of the eight disease groups, we constructed recombinant adenoviruses that expressed one of the XP cDNA. When fibroblasts derived from patients with XP-A, -B, -C, -D, -F or -G were infected with the adenovirus expressing XPA, XPB, XPC, XPD, XPF or XPG, respectively, and UV-C at 5-20 J/m(2) was irradiated, cell viability was clearly recovered by the corresponding recombinant adenoviruses. In contrast, XP-E and XP-V cells were not significantly sensitive to UV irradiation and were barely complemented by the matched recombinant adenoviruses. However, co-infection of Ad-XPA with Ad-XPE increased survival rate of XP-E cells after UV-C exposure. When XP-V cell strains, including one derived from a Japanese patient, were infected with Ad-XPV, exposed to UV-B and cultured with 1 mmol/L of caffeine, flow cytometry detected a characteristic decrease in the S phase in all the XP-V cell strains. From these results, the eight groups of XP could be differentiated by utilizing a set of recombinant adenoviruses, indicating that our procedure provides a convenient and correct diagnostic method for all the XP groups including XP-E and XP-V. © 2016 Japanese Dermatological Association.

  10. Abatement of Polychoro-1,3-butadienes in Aqueous Solution by Ozone, UV Photolysis, and Advanced Oxidation Processes (O3/H2O2 and UV/H2O2).

    PubMed

    Lee, Minju; Merle, Tony; Rentsch, Daniel; Canonica, Silvio; von Gunten, Urs

    2017-01-03

    The abatement of 9 polychloro-1,3-butadienes (CBDs) in aqueous solution by ozone, UV-C(254 nm) photolysis, and the corresponding advanced oxidation processes (AOPs) (i.e., O3/H2O2 and UV/H2O2) was investigated. The following parameters were determined for 9 CBDs: second-order rate constants for the reactions of CBDs with ozone (kO3) (<0.1-7.9 × 10(3) M(-1) s(-1)) or with hydroxyl radicals (k(•)OH) (0.9 × 10(9) - 6.5 × 10(9) M(-1) s(-1)), photon fluence-based rate constants (k') (210-2730 m(2) einstein(-1)), and quantum yields (Φ) (0.03-0.95 mol einstein(-1)). During ozonation of CBDs in a natural groundwater, appreciable abatements (>50% at specific ozone doses of 0.5 gO3/gDOC to ∼100% at ≥1.0 gO3/gDOC) were achieved for tetra-CBDs followed by (Z)-1,1,2,3,4-penta-CBD and hexa-CBD. This is consistent with the magnitude of the determined kO3 and k(•)OH. The formation of bromate, a potentially carcinogenic ozonation byproduct, could be significantly reduced by addition of H2O2. For a typical UV disinfection dose (400 J/m(2)), various extents of phototransformations (10-90%) could be achieved. However, the efficient formation of photoisomers from CBDs with E/Z configuration must be taken into account because of their potential residual toxicity. Under UV-C(254 nm) photolysis conditions, no significant effect of H2O2 addition on CBDs abatement was observed due to an efficient direct phototransformation of CBDs.

  11. Induction of expression of human immunodeficiency virus in a chronically infected promonocytic cell line by ultraviolet irradiation

    SciTech Connect

    Stanley, S.K.; Folks, T.M.; Fauci, A.S. )

    1989-08-01

    Infection with the human immunodeficiency virus (HIV) is often followed by a prolonged latent state, and mechanisms of maintaining latency or inducing expression from latency are active areas in AIDS research. It has been previously shown using a variety of viruses and cell systems that ultraviolet (UV) irradiation is capable of inducing the expression of latent viruses as well as augmenting the effects of acute viral infection. The ability of UV irradiation to affect HIV latency was investigated using a chronically HIV-infected, virus nonexpressing promonocytic cell line termed U1. After exposure to UV-C in doses ranging from 0.75 to 2.0 mJ/cm{sup 2}, U1 cells were induced to express virus as assessed by detection of elevated reverse transcriptase activity and p24 antigen levels in culture supernatants of treated cells compared with unstimulated controls. In addition, immunofluorescence on cytospin preparations of UV-irradiated cells revealed a time-dependent increase in viral antigen production after UV stimulation. A similar increase in RT levels was seen after exposure of U1 cells to UV-B, although somewhat higher doses of UV-B (mJ) were required compared with UV-C (mJ). Viral induction by UV irradiation was associated with a drop in viability and a static growth curve, suggesting that a certain level of cellular stress was most likely necessary to initiate viral expression. The potential role of UV-induced cell damage with activation of a cellular SOS repair response is a probable explanation of the enhanced viral production observed.

  12. Impact of surface structure and feed gas composition on Bacillus subtilis endospore inactivation during direct plasma treatment.

    PubMed

    Hertwig, Christian; Steins, Veronika; Reineke, Kai; Rademacher, Antje; Klocke, Michael; Rauh, Cornelia; Schlüter, Oliver

    2015-01-01

    This study investigated the inactivation efficiency of cold atmospheric pressure plasma treatment on Bacillus subtilis endospores dependent on the used feed gas composition and on the surface, the endospores were attached on. Glass petri-dishes, glass beads, and peppercorns were inoculated with the same endospore density and treated with a radio frequency plasma jet. Generated reactive species were detected using optical emission spectroscopy. A quantitative polymerase chain reaction (qPCR) based ratio detection system was established to monitor the DNA damage during the plasma treatment. Argon + 0.135% vol. oxygen + 0.2% vol. nitrogen as feed gas emitted the highest amounts of UV-C photons and considerable amount of reactive oxygen and nitrogen species. Plasma generated with argon + 0.135% vol. oxygen was characterized by the highest emission of reactive oxygen species (ROS), whereas the UV-C emission was negligible. The use of pure argon showed a negligible emission of UV photons and atomic oxygen, however, the emission of vacuum (V)UV photons was assumed. Similar maximum inactivation results were achieved for the three feed gas compositions. The surface structure had a significant impact on the inactivation efficiency of the plasma treatment. The maximum inactivation achieved was between 2.4 and 2.8 log10 on glass petri-dishes and 3.9 to 4.6 log10 on glass beads. The treatment of peppercorns resulted in an inactivation lower than 1.0 log10. qPCR results showed a significant DNA damage for all gas compositions. Pure argon showed the highest results for the DNA damage ratio values, followed by argon + 0.135% vol. oxygen + 0.2% vol. nitrogen. In case of argon + 0.135% vol. oxygen the inactivation seems to be dominated by the action of ROS. These findings indicate the significant role of VUV and UV photons in the inactivation process of B. subtilis endospores.

  13. Antioxidant status, peroxidase activity, and PR protein transcript levels in ascorbate-deficient Arabidopsis thaliana vtc mutants.

    PubMed

    Colville, Louise; Smirnoff, Nicholas

    2008-01-01

    Ascorbate is the most abundant small molecule antioxidant in plants and is proposed to function, along with other members of an antioxidant network, in controlling reactive oxygen species. A biochemical and molecular characterization of four ascorbate-deficient (vtc) Arabidopsis thaliana mutants has been carried out to determine if ascorbate deficiency is compensated by changes in the other major antioxidants. Seedlings grown in vitro were used to minimize stress and longer term developmental differences. Comparison was made with the low glutathione cad2 mutant and vtc2-1 treated with D,L-buthionine-[S,R]-sulphoximine to cause combined ascorbate and glutathione deficiency. The pool sizes and oxidation state of ascorbate and glutathione were not altered by deficiency of the other. alpha-Tocopherol and activities of monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, and catalase were little affected. Ascorbate peroxidase activity was higher in vtc1, vtc2-1, and vtc2-2. Ionically bound cell wall peroxidase activity was increased in vtc1, vtc2-1, and vtc4. Supplementation with ascorbate increased cell wall peroxidase activity. 2,6-Dichlorobenzonitrile, an inhibitor of cellulose synthesis, increased cell wall peroxidase activity in the wild type and vtc1. The transcript level of an endochitinase, PR1, and PR2, but not GST6, was increased in vtc1, vtc2-1, and vtc-2-2. Endochitinase transcript levels increased after ascorbate, paraquat, salicylic acid, and UV-C treatment, PR1 after salicylic acid treatment, and PR2 after paraquat and UV-C treatment. Camalexin was higher in vtc1 and the vtc2 alleles. Induction of PR genes, cell wall peroxidase activity, and camalexin in vtc1, vtc2-1, and vtc2-2 suggests that the mutants are affected in pathogen response signalling pathways.

  14. Solar photocatalysis as disinfection technique: Inactivation of Klebsiella pneumoniae in sewage and investigation of changes in antibiotic resistance profile.

    PubMed

    Venieri, Danae; Gounaki, Iosifina; Bikouvaraki, Maria; Binas, Vassilios; Zachopoulos, Apostolos; Kiriakidis, George; Mantzavinos, Dionissios

    2017-06-15

    The presence of pathogenic microorganisms in wastewater and their resistant nature to antibiotics impose effective disinfection treatment for public health and environmental protection. In this work, photocatalysis with metal-doped titania under artificial and natural sunlight, chlorination and UV-C irradiation were evaluated for their potential to inactivate Klebsiella pneumoniae in real wastewater. Their overall effect on antibiotic resistance profile and target antibiotic resistance genes (ARGs) was also investigated. In particular, Mn-, Co- and binary Mn/Co-TiO2 were tested resulting in bacterial decrease from 4 to 6 Logs upon 90 min of exposure to simulated solar irradiation. The response of catalysts under natural solar light was insufficient, as only a 2 Log reduction was recorded even after 60 min of treatment. The relative activity of the applied methods for K. pneumoniae inactivation was decreased in the order: photocatalysis with the binary Co/Mn-TiO2 under artificial light > chlorination with dose of 5 mg/L of free chlorine > UV-C irradiation, at an initial bacterial concentration of 10(7) CFU/mL. The applied methods showed various effects on antibiotic resistance profile in residual cells. Among the tested antibiotics (ampicillin, cefaclor, sulfamethoxazole and tetracycline), considerable changes in MIC values were recorded for cefaclor and tetracycline. Resistance of surviving cells after treatment remained in high levels, reflecting the abundance of the corresponding target ARGs, namely tetA, tetM, sul1, blaTEM and ampC. The notable presence of target ARGs post disinfection raises concerns and makes wastewater effluent a carrier of antibiotic resistance elements into the aquatic environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Magnesium sulfate affords protection against oxidative damage during severe preeclampsia.

    PubMed

    Abad, C; Vargas, F R; Zoltan, T; Proverbio, T; Piñero, S; Proverbio, F; Marín, R

    2015-02-01

    MgSO4 is the drug of choice to prevent seizures in preeclamptic pregnant women, but its mechanism of action at the molecular level remains an enigma. In previous works, we found that treating preeclamptic women with MgSO4 reduces the lipid peroxidation of their red blood cell membranes to normal levels and leads to a significant reduction in the osmotic fragility of the red blood cells that is increased during preeclampsia. In addition, the increase in lipid peroxidation of red cell membranes induced by the Fenton reaction does not occur when MgSO4 is present. The antioxidant protection of MgSO4 was evaluated in UV-C-treated red blood cell ghosts and syncytiotrophoblast plasma membranes by measuring their level of lipid peroxidation. The interaction of MgSO4 with free radicals was assessed for its association with the galvinoxyl radical, the quenching of H2O2-induced chemiluminescence and its effect on sensitized peroxidation of linoleic acid. a) MgSO4 protected red blood cell ghosts and the syncytiotrophoblast plasma membranes of normotensive pregnant women against lipid peroxidation induced by UV-C irradiation. b) MgSO4 does not seem to scavenge the galvinoxyl free radical. c) The quenching of the H2O2-enhanced luminol chemiluminescence is increased by the presence of MgSO4. d) The peroxidation of linoleic acid is significantly blocked by MgSO4. MgSO4 may provide protection against oxidative damage of plasma membranes through interactions with alkyl radicals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals.

    PubMed

    Boyce, John M

    2016-01-01

    Experts agree that careful cleaning and disinfection of environmental surfaces are essential elements of effective infection prevention programs. However, traditional manual cleaning and disinfection practices in hospitals are often suboptimal. This is often due in part to a variety of personnel issues that many Environmental Services departments encounter. Failure to follow manufacturer's recommendations for disinfectant use and lack of antimicrobial activity of some disinfectants against healthcare-associated pathogens may also affect the efficacy of disinfection practices. Improved hydrogen peroxide-based liquid surface disinfectants and a combination product containing peracetic acid and hydrogen peroxide are effective alternatives to disinfectants currently in widespread use, and electrolyzed water (hypochlorous acid) and cold atmospheric pressure plasma show potential for use in hospitals. Creating "self-disinfecting" surfaces by coating medical equipment with metals such as copper or silver, or applying liquid compounds that have persistent antimicrobial activity surfaces are additional strategies that require further investigation. Newer "no-touch" (automated) decontamination technologies include aerosol and vaporized hydrogen peroxide, mobile devices that emit continuous ultraviolet (UV-C) light, a pulsed-xenon UV light system, and use of high-intensity narrow-spectrum (405 nm) light. These "no-touch" technologies have been shown to reduce bacterial contamination of surfaces. A micro-condensation hydrogen peroxide system has been associated in multiple studies with reductions in healthcare-associated colonization or infection, while there is more limited evidence of infection reduction by the pulsed-xenon system. A recently completed prospective, randomized controlled trial of continuous UV-C light should help determine the extent to which this technology can reduce healthcare-associated colonization and infections. In conclusion, continued efforts to

  17. Multiple transformation pathways of p-arsanilic acid to inorganic arsenic species in water during UV disinfection.

    PubMed

    Li, Suqi; Xu, Jing; Chen, Wei; Yu, Yingtan; Liu, Zizheng; Li, Jinjun; Wu, Feng

    2016-09-01

    p-Arsanilic acid (p-ASA) is widely used in China as livestock and poultry feed additive for promoting animal growth. The use of organoarsenics poses a potential threat to the environment because it is mostly excreted by animals in its original form and can be transformed by UV-Vis light excitation. This work examined the initial rate and efficiency of p-ASA phototransformation under UV-C disinfection lamp. Several factors influencing p-ASA phototransformation, namely, pH, initial concentration, temperature, as well as the presence of NaCl, NH4(+), and humic acid, were investigated. Quenching experiments and LC-MS were performed to investigate the mechanism of p-ASA phototransformation. Results show that p-ASA was decomposed to inorganic arsenic (including As(III) and As(V)) and aromatic products by UV-C light through direct photolysis and indirect oxidation. The oxidation efficency of p-ASA by direct photosis was about 32%, and those by HO and (1)O2 were 19% and 49%, respectively. Cleavage of the arsenic-benzene bond through direct photolysis, HO oxidation or (1)O2 oxidation results in simultaneous formation of inorganic As(III), As(IV), and As(V). Inorganic As(III) is oxidized to As(IV) and then to As(V) by (1)O2 or HO. As(IV) can undergo dismutation or simply react with oxygen to produce As(V) as well. Reactions of the organic moieties of p-ASA produce aniline, aminophenol and azobenzene derivatives as main products. The photoconvertible property of p-ASA implies that UV disinfection of wastewaters from poultry and swine farms containing p-ASA poses a potential threat to the ecosystem, especially agricultural environments. Copyright © 2016. Published by Elsevier B.V.

  18. Alkaline unwinding flow cytometry assay to measure nucleotide excision repair.

    PubMed

    Thyagarajan, Bharat; Anderson, Kristin E; Lessard, Christopher J; Veltri, Gregory; Jacobs, David R; Folsom, Aaron R; Gross, Myron D

    2007-03-01

    Nucleotide excision repair (NER), one of the DNA repair pathways, is the primary mechanism for repair of bulky adducts caused by physical and chemical agents, such as UV radiation, cisplatin and 4-nitroquinolones. Variations in DNA repair may be a significant risk factor for several cancers, but its measurement in epidemiological studies has been hindered by the high variability, complexity and laborious nature of currently available assays. An alkaline unwinding flow cytometric assay using UV-C radiation as a DNA-damaging agent was adapted for measurement of NER-mediated breaks. This assay was based on the principle of alkaline unwinding of strand breaks in double-stranded DNA to yield single-stranded DNA with the number of strand breaks being proportional to the amount of DNA damage. This assay measured 50,000 events per sample with several samples being analyzed per specimen, thereby providing very reliable measurements, which can be performed on a large-scale basis. Using area under the curve (AUC) to quantitate amount of NER-mediated breaks, this assay was able to detect increased NER-mediated breaks with increasing doses of UV-C radiation. The assay detected NER-mediated breaks in lymphocytes from normal donors and not in xeroderma pigmentosum lymphoblastoid cell lines indicating specificity for the detection of NER-mediated breaks. The assay measured NER-mediated breaks within G(1), S and G(2)/M phases of the cell cycle; thereby decreasing variability in measurements of NER-mediated breaks due to differences in cell cycle phases. Intraindividual variability for AUC after 120 min of repair was 15% with interindividual variability being approximately 43% for cells in the G(1) phase, indicating substantial between-subject variation and relatively low within-subject variation. Thus, the alkaline unwinding flow cytometry-based assay provides a high-throughput method for the specific measurement of NER-mediated breaks in lymphocytes.

  19. Visible optical radiation generates bactericidal effect applicable for inactivation of health care associated germs demonstrated by inactivation of E. coli and B. subtilis using 405-nm and 460-nm light emitting diodes

    NASA Astrophysics Data System (ADS)

    Hönes, Katharina; Stangl, Felix; Sift, Michael; Hessling, Martin

    2015-07-01

    The Ulm University of Applied Sciences is investigating a technique using visible optical radiation (405 nm and 460 nm) to inactivate health-hazardous bacteria in water. A conceivable application could be point-of-use disinfection implementations in developing countries for safe drinking water supply. Another possible application field could be to provide sterile water in medical institutions like hospitals or dental surgeries where contaminated pipework or long-term disuse often results in higher germ concentrations. Optical radiation for disinfection is presently mostly used in UV wavelength ranges but the possibility of bacterial inactivation with visible light was so far generally disregarded. One of the advantages of visible light is, that instead of mercury arc lamps, light emitting diodes could be used, which are commercially available and therefore cost-efficient concerning the visible light spectrum. Furthermore they inherit a considerable longer life span than UV-C LEDs and are non-hazardous in contrast to mercury arc lamps. Above all there are specific germs, like Bacillus subtilis, which show an inactivation resistance to UV-C wavelengths. Due to the totally different deactivation mechanism even higher disinfection rates are reached, compared to Escherichia coli as a standard laboratory germ. By 460 nm a reduction of three log-levels appeared with Bacillus subtilis and a half log-level with Escherichia coli both at a dose of about 300 J/cm². By the more efficient wavelength of 405 nm four and a half log-levels are reached with Bacillus subtilis and one and a half log-level with Escherichia coli also both at a dose of about 300 J/cm². In addition the employed optical setup, which delivered a homogeneous illumination and skirts the need of a stirring technique to compensate irregularities, was an important improvement compared to previous published setups. Evaluated by optical simulation in ZEMAX® the designed optical element provided proven

  20. Silica-Titania Composite (STC)'s Performance in the Photocatalytic Oxidation of Polar VOCs

    NASA Technical Reports Server (NTRS)

    Levine, Lanfang H.; Coutts, Janelle; Richards, Jeffrey; Mazyck, David; Mazyck, David

    2011-01-01

    The objective of this paper is to determine the performance of a Silica-Titania Composite (STC) in the photocatalytic oxidation (PCO) of polar VOCs for potential applications in trace contaminant control within space habitats such as the ISS and CEV Orion. Tests were carried out in a bench scale STC-packed annular reactor under continuous illumination by either a UV-C germicidal lamp(lambda (sub max) = 254 nm) or UV-A fluorescent BLB (lambda(sub max) = 365 nm) for the removal of ethanol (a predominant polar VOC in the ISS cabin). The STC's performance was evaluated in terms of the ethanol mineralization rate, mineralization efficiency, and the extent of its oxidation intermediate (acetaldehyde) formation in response to the type of light source (photon energy and photon flux) and relative humidity (RH) implemented. Results demonstrated that acetaldehyde was the only quantifiable intermediate in the effluent under UV illumination, but was not found in the dark adsorption experiments. The mineralization rate increased with an increase in photon energy (UV-C greater than UV-A), even though both lamps were adjusted to emit the same incident photon flux, and also increased with increasing photon flux. However, photonic efficiency decreased as the photon flux increased. More importantly, a higher photon flux gave rise to a lower effluent acetaldehyde concentration. The effect of RH on PCO was complex and intriguing because it affected both physical adsorption and photocatalytic oxidation. In general, increasing RH caused a decrease in adsorption capacity for ethanol and reduced the mineralization efficiency with a concomitant higher acetaldehyde evolution rate. The effect of RH was less profound than that of photon flux.

  1. Surgical site infection among patients after colorectal cancer surgery.

    PubMed

    Banaszkiewicz, Zbigniew; Cierzniakowska, Katarzyna; Tojek, Krzysztof; Kozłowska, Elżbieta; Jawień, Arkadiusz

    2017-02-28

    Wstęp: Zakażenie miejsca operowanego występuje u 2,5-22,3% operowanych chorych. Jest ono wykładnikiem jakości leczenia na oddziałach zabiegowych i ma duży wpływ na jego koszt. Materiał i metodyka: Analizie poddano chorych, u których w obserwacji 30-dniowej wystąpiło zakażenie miejsca operowanego. Grupę wyjściową stanowiło 1581 chorych z rozpoznaniem raka jelita grubego poddanych zabiegowi operacyjnemu w jednym ośrodku. Kryteriami wyłączającymi z badania były: brak wiarygodnej dokumentacji leczenia (szpitalnego lub ambulatoryjnego) i zgon chorego przed 30. dniem po operacji bez rozpoznanego zakażenia miejsca operowanego. Analizę statystyczną wykonano przy użyciu programu Statistica 10. Wyniki: Powikłania pooperacyjne wystąpiły u 262 chorych (16,6%). Najczęściej występującym było zakażenie miejsca operowanego (198 pacjentów; 12,52%). Stwierdzono, że wystąpienie tego powikłania zależne było od zaawansowania klinicznego raka, wieku chorych, chorób współtowarzyszących (cukrzyca i choroby kardiologiczne). Ponadto zauważono, że powikłanie to występowało znamiennie częściej u chorych operowanych w trybie pilnym z powodu powikłań oraz u tych, u których wyłoniono stomię jelitową. Nie stwierdzono natomiast zależności wystąpienia tego powikłania od płci chorych i lokalizacji guza nowotworowego. Wniosek: U chorych po operacji raka jelita grubego największe zagrożenie wystąpienia zakażenia miejsca operowanego wystąpiło u chorych po 75. roku życia, obciążonych cukrzycą i chorobami kardiologicznymi, z dużym zaawansowaniem klinicznym raka, operowanych w trybie ostrego dyżuru, u których konieczne było wyłonienie stomii jelitowej (a szczególnie kolostomii).

  2. The geovisualisation window of the temporal and spatial variability for Volunteered Geographic Information activities

    NASA Astrophysics Data System (ADS)

    Medynska-Gulij, Beata; Myszczuk, Miłosz

    2012-11-01

    This study presents an attempt to design geographical visualisation tools that allow to tackle the immensity of spatial data provided by Volunteered Geographic Information (VGI), both in terms of temporal and spatial aspects. In accordance with the assumptions made at the conceptual stage, the final action was the implementation of the window entitled ‘Geovisualisation of the Panoramio.com Activities in District of Poznan 2011’ into the web browser. The concept has been based on a division of the geovisualisation window into three panels, of which the most important - in order to capture spatial variability - have statistical maps at the general level (dot map and choropleth map), while at the detailed level - a dot map on a topographic reference map or tourist map. For two ranges, temporal variability is presented by graphs, while a review of attributes of individual activities of the social website in question is set forward in the table panel. The element that visually interlinks all of the panels is the emphasised individual activity. Problemem podjetym w tych badaniach stało sie wykorzystanie metod z nurtu geograficznej wizualizacji do wskazania cech fenomenu VGI w zakresie zmiennosci czasowo-przestrzennej. Zgodnie z załozeniami poczynionymi w etapie koncepcyjnym finalnym działaniem stało sie zaimplementowanie do przegladarki internetowej okna pod tytułem: ”Geowizualizacja aktywnosci społecznosci Panoramio.com w powiecie poznanskim w 2011 roku”. Koncepcja została oparta na podziale okna geowizualizacji na trzy panele, z których najwazniejsze znaczenie dla uchwycenia zmiennosci przestrzennej na poziomie ogólnym ma kartogram, natomiast na poziomie szczegółowym mapa kropkowa wyswietlana na podkładzie mapy topograficznej lub turystycznej. Zmiennosc czasowa w dwóch zakresach prezentuja wykresy, a przeglad atrybutów poszczególnych aktywnosci prezentowanego portalu społecznosciowego zapewnia tabela. Elementem spajajacym wizualnie wszystkie

  3. Phenotype frequencies of blood group systems (Rh, Kell, Kidd, Duffy, MNS, P, Lewis, and Lutheran) in blood donors of south Gujarat, India.

    PubMed

    Kahar, Manoj A; Patel, Rajnikant D

    2014-01-01

    This is the first study on phenotype frequencies of various blood group systems in blood donors of south Gujarat, India using conventional tube technique. A total of 115 "O" blood group donors from three different blood banks of south Gujarat were typed for D, C, c, E, e, K, Jk(a), Le(a), Le(b), P1, M, and N antigens using monoclonal antisera and k, Kp(a), Kp(b), Fy(a),Fy(b), Jk(b), S,s, Lu(a), and Lu(b) antigens were typed using polyclonal antisera employing Indirect Antiglobulin Test. Antigens and phenotype frequencies were expressed as percentages. From the 115 blood donor samples used for extended antigen typing in the Rh system, e antigen was found in 100% donors, followed by D [84.35%], C [81.74%], c [56.32%], and E [21.74%] with DCe/DCe (R1 R1, 40.87%) as the most common phenotype. k was found to be positive in 100% of donors and no K+k- phenotype was found in Kell system. For Kidd and Duffy blood group system, Jk(a+b+) and Fy(a-b-) were the most common phenotypes with frequency of 52.17% and 48.69%, respectively. In the MNS system, 39.13% donors were typed as M+N+, 37.39% as M+N-, and 23.48% as M-N+. S+s+ was found in 24.35% of donors, S+s- in 8.69%, and S-s+ as the commonest amongst donors with 66.96%. No Lu(a+b+) or Lu(a+b-) phenotypes were detected in 115 donors typed for Lutheran antigens. A rare Lu(a-b-) phenotype was found in 2.61% donors. Data base for antigen frequency of various blood group systems in local donors help provide antigen negative compatible blood units to patients with multiple antibodies in order to formulate in-house red cells for antibody detection and identification and for preparing donor registry for rare blood groups.

  4. Phenotype frequencies of blood group systems (Rh, Kell, Kidd, Duffy, MNS, P, Lewis, and Lutheran) in north Indian blood donors.

    PubMed

    Thakral, Beenu; Saluja, Karan; Sharma, Ratti Ram; Marwaha, Neelam

    2010-08-01

    We here report the first study of antigen and phenotype frequencies of various blood group systems by gel technology in north Indian blood donors. A total of 1240 regular repeat voluntary north Indian blood donors of O blood group were included for red cell antigen typing of Rh (D, C, E, c, e) and Kell (K) blood group systems. Out of these, 317 donors were randomly selected for typing of other blood group antigens: Jk(a), Jk(b), k, Kp(a), Kp(b), Fy(a), Fy(b), M, N, S, s, Le(a), Le(b), P(1), Lu(a), Lu(b) and Xg(a). Calculations of antigen and phenotypes frequencies were expressed as percentages and for allele frequencies under the standard assumption of Hardy-Weinberg equilibrium. Out of 1240 O group blood donors, 93.39% were Rh D and 5.56% were K positive. Amongst Rh antigens, e was the most common (98.3%) followed by D, C (84.76%), c (52.82%) and E (17.9%) with DCe/DCe (R(1)R(1), 43.8%) being the most common phenotype. In Kell blood group system, we found k antigen to be 100% and a rare phenotype Kp (a+b+) was found in 0.95% of the donors. For Kidd and Duffy blood group systems, Jk (a+b+) and Fy (a+b-) were the most common phenotypes (49.21% and 43.85%, respectively). In the MNS blood group system, M+N+S+s+ (19.55%) was the most common whereas M-N+S+s- (1.26%) was least common phenotype found. We found rare Lu (a+b+) and Lu (a-b-) phenotypes in 0.95% and 3.15% of the donors, respectively. Xg(a) antigen was seen in 86.67% and 62.6% of female and male donors, respectively. Knowledge of red cell antigen phenotype frequencies in a population is helpful in terms of their ethnic distribution, in creating a donor data bank for preparation of indigenous cell panels, and providing antigen negative compatible blood to patients with multiple alloantibodies. (c) 2010 Elsevier Ltd. All rights reserved.

  5. Organisational aspects of spatial information infrastructure in Poland

    NASA Astrophysics Data System (ADS)

    Bielecka, Elzbieta; Zwirowicz-Rutkowska, Agnieszka

    2013-06-01

    One of the more important elements of spatial information infrastructure is the organisational structure defining the obligations and dependencies between stakeholders that are responsible for the infrastructure. Many SDI practitioners and theoreticians emphasise that its influence on the success or failure of activities undertaken is significantly greater than that of technical aspects. Being aware of the role of the organisational structure in the creating, operating and maintenance of spatial information infrastructure (SII), Polish legislators placed appropriate regulations in the Spatial Information Infrastructure Act, being the transposition of the INSPIRE Directive into Polish Law. The principal spatial information infrastructure stakeholders are discussed in the article and also the scope of cooperation between them. The tasks and relationships between stakeholders are illustrated in UML, in both the use case and the class diagram. Mentioned also are the main problems and obstructions resulting from imprecise legal regulations. Jednym z istotniejszych komponentów infrastruktury informacji przestrzennej (IIP) jest struktura organizacyjna określająca m.in. zależności pomiędzy organizacjami tworzącymi infrastrukturę. Wielu praktyków i teoretyków SDI podkreśla, że wpływ aspektów organizacyjnych na sukces lub porażkę SDI jest dużo większy niż elementów technicznych. Mając świadomość znaczącej roli struktury organizacyjnej w tworzeniu, funkcjonowaniu i zarządzaniu infrastrukturą przestrzenną w Polsce, legislatorzy umieścili odpowiednie zapisy w ustawie z dnia 4 marca 2010 r. o infrastrukturze informacji przestrzennej, będącej transpozycją dyrektywy INSPIRE do prawa polskiego. W artykule omówiono strukturę organizacyjną IIP w Polsce, podając (m.in. w postaci diagramów UML) obowiązki poszczególnych organów administracji zaangażowanych w jej budowę i rozwój, a także omówiono zależności i zakres współpracy pomi

  6. Organization of the human LU gene and molecular basis of the Lu(a)/Lu(b) blood group polymorphism.

    PubMed

    El Nemer, W; Rahuel, C; Colin, Y; Gane, P; Cartron, J P; Le Van Kim, C

    1997-06-15

    hamster ovary (CHO) cells, Lu cDNAs carrying the A229 or the G229 produced cell surface proteins that reacted with anti-Lu(a) or anti-Lu(b) antibodies, respectively, showing that these nucleotides specify the Lu(a) and Lu(b) alleles of the Lutheran blood group locus. CHO cells expressing recombinant short-tail or long-tail Lu glycoproteins reacted as well with anti-Lu as with anti-B-CAM antibodies, providing the definitive proof that the Lu blood group and B-CAM antigens are carried by the same molecules.

  7. A fixed granular-bed sorber for measurement and control of alkali vapors in PFBC (pressurized fluidized-bed combustion)

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.

    1990-01-01

    Alkali vapors (Na and K) in the hot flue gas from the pressurized fluidized-bed combustion (PFBC) of coal could cause corrosion problems with the gas turbine blades. In a laboratory-scale PFBC test with Beulah lignite, a fixed granular bed of activated bauxite sorbent was used to demonstrate its capability for measuring and controlling alkali vapors in the PFBC flue gas. The Beulah lignite was combusted in a bed of Tymochtee dolomite at bed temperatures ranging from 850 to 875{degrees}C and a system pressure of 9.2 atm absolute. The time-averaged concentration of sodium vapor in the PFBC flue gas was determined from the analysis of two identical beds of activated bauxite and found to be 1.42 and 1.50 ppmW. The potassium vapor concentration was determined to be 0.10 ppmW. The sodium material balance showed that only 0.24% of the total sodium in the lignite was released as vapor species in the PFBC flue gas. This results in an average of 1.56 ppmW alkali vapors in the PFBC flue gas. This average is more than 1.5 orders of magnitude greater than the currently suggested alkali specification limit of 0.024 ppm for an industrial gas turbine. The adsorption data obtained with the activated bauxite beds were also analyzed mathematically by use of a LUB (length of unused bed)/equilibrium section concept. Analytical results showed that the length of the bed, L{sub o} in centimeters, relates to the break through time, {theta}{sub b} in hours, for the alkali vapor to break through the bed as follows: L{sub o} = 33.02 + 1.99 {theta}{sub b}. This formula provides useful information for the engineering design of fixed-bed activated bauxite sorbers for the measurement and control of alkali vapors in PFBC flue gas. 26 refs., 4 figs., 4 tabs.

  8. The Analysis of the Effectiveness of Simultaneous Inversion of Turning and Head Waves First Breaks - Model Study

    NASA Astrophysics Data System (ADS)

    Kasina, Zbigniew

    2012-09-01

    In the presented paper the model data were used to analyse the effectiveness of simultaneous inversion of the turning and head waves first breaks in comparison with the effectiveness of the inversion of only first breaks of turning waves or head waves. The analysis was undertaken for the gradient velocity models of the near surface layer with the low' velocity anomaly and for the CDP aquisition. The effect of the numerical ray tracing on the traveltime calculations and inversion results was estimated taking into account the wave equation modeling of seismic records. The effect of the errors of the starting velocity field m the process of inversion as well as the effect of spatial smothing of resulting velocity fields were considered too. The analysis confirmed some improvement in the imaging of the near surface velocity anomalies when we use simultaneous inversion of the turning and head waves first breaks. W przedstawionej pracy wykorzystano dane modelowe do analizy efektywności jednoczesnej inwersji pierwszych wstąpień fal czołowych i refragowanych w porównaniu do efektywności inwersj i tylko pierwszy ch wstąpień fali refragowanej lub czołowej. Analizę podjęto dla gradientowych modeli strefy przypowierzchniowej z niskoprędkościową anomalią dla akwizycji metody pokryć wielokrotnych. Oszacowano wpływ numerycznego trasowania promieni na wyniki obliczeń czasów przebiegu i inwersji uwzględniając wyniki modelowania rekordów sejsmicznych z równania falowego. Rozważano także wpływ błędów startowego pola prędkości w procesie inwersji, jak również wpływ przestrzennego wygładzania wynikowych pól prędkości. Analiza potwierdziła pewną poprawę w odwzorowaniu anomalii prędkościowych strefy przy- powierzchniowej, gdy wykorzystujemy jednoczesną inwersję pierwszych wstąpień fal czołowych i refragowanych.

  9. Elements of the Chicxulub Impact Structure as revealed in SRTM and surface GPS topographic data

    NASA Astrophysics Data System (ADS)

    Kobrick, M.; Kinsland, G. L.; Sanchez, G.; Cardador, M. H.

    2003-04-01

    Pope et al have utilized elevations from the Petroleos Mexicanos (PEMEX) gravity data files to show that the main component of the surface expression of the Chicxu-lub Impact Structure is a roughly semi-circular, low-relief depression about 90 km in diameter. They also identified other topographic features and the elements of the buried impact which possibly led to the development of these features. Kinsland et al presented a connection between these topographic anomalies, small gravity anomalies and buried structure of the impact. Shaded relief images from recently acquired SRTM elevation data clearly show the circular depression of the crater and the moat/cenote ring. In addition we can readily identify Inner trough 1, Inner trough 2 and Outer trough as defined by Pope et al. The agreement between the topographic maps of Pope et al, Kinsland et al and SRTM data are remarkable considering that the distribution and types of data in the sets are so different. We also have ground topographic data collected with a special "autonomous differ-ential GPS" system during summer 2002. Profiles from these data generally agree with both the gravity data based topographic maps and profiles extracted from the SRTM data. Preliminary analyses of our new data, SRTM and GPS, have uncovered features not previously recognized: 1) as shown by the GPS data the moat/cenote ring consists of two distinct depressions separated by about 10 km...perhaps separate ring faults, 2) in the SRTM data over the southern part of the crater and on southward for perhaps 20 km beyond the moat/ cenote ring there exists a pattern, as yet unexplained, of roughly concentric topographic features whose center lies at about 21deg 40min N and 89deg 25min W, about 50km NNE of the moat/cenote ring center. The corroboration and better definition of the previously recognized topographic features yielded by the two new forms of data strengthens the cases for these fea-tures and for their relevance to the underlying

  10. Koncepcja resilience. Kluczowe pojęcia i wybrane zagadnienia

    PubMed Central

    Borucka, Anna; Ostaszewski, Krzysztof

    2009-01-01

    Streszczenie Celem niniejszej pracy jest przybliżenie kluczowych pojęć związanych koncepcją resilience. Ta koncepcja wyjaśnia fenomen pozytywnej adaptacji dzieci i młodzieży narażonych na duże ryzyko, przeciwności losu i/lub zdarzenia traumatyczne. Koncepcja resilience akcentuje znaczenie czynników i mechanizmów chroniących w wieku rozwojowym. Z tych przyczyn może być bardzo użyteczna dla rozwijania programów profilaktyki i promocji zdrowia psychicznego wśród dzieci i młodzieży. W niniejszym przeglądzie wykorzystano prace znaczących Autorów zajmujących się tą dziedziną m.in. M. Ruttera. N. Garmezy, E. Werner, S. Luthar, A. Sameroffa, K. Kumpfer, A. Masten, M. Zimmermana, D. Cicchetti. W przeglądzie uwzględniono ponad 20 artykułów i rozdziałów książkowych, które ukazały się w ostatnich 25 latach. Zostały one wybrane z elektronicznej bazy publikacji dostępnej na Uniwersytecie Michigan: elektronicznej bazy SAMSHA oraz z elektronicznych baz publikacji naukowych dostępnych w naszym kraju. W artykule przytoczono kilka definicji resilience, które wskazują na jej interaktywny i dynamiczny charakter. Uwzględniają one wzajemny wpływ czynników ryzyka i czynników chroniących (i ich interakcję) na zachowanie człowieka, jego kompetencje i zdrowie psychiczne. W pracy opisano podstawowe pojęcia związane z resilience: ryzyko, czynniki ryzyka, czynniki chroniące, pozytywną adaptację oraz teoretyczne modele i mechanizmy resilience. Przedstawiono różnice między mechanizmami ryzyka a mechanizmami chroniącymi. Zasygnalizowano też trudności związane z wykorzystaniem podstawowych pojęć resilience w badaniach empirycznych m.in. w określeniu wskaźników ryzyka, wyodrębnieniu grup ryzyka, określeniu wskaźników pozytywnej adaptacji. PMID:19301507

  11. The impact of solar UV radiation on the early biosphere

    NASA Astrophysics Data System (ADS)

    Horneck, G.

    2007-08-01

    Stratospheric ozone, photochemically produced from atmospheric oxygen, is a protective filter of the Earth's atmosphere by absorbing most of the biologically harmful UV radiation of our sun in the UV-C (190-280 nm) and short wavelength-region of the UV-B (280-315 nm). Numerous lines of isotopic and geologic evidence suggest that the Archean atmosphere was essentially anoxic. As a result the column abundance of ozone would have been insufficient to affect the surface UV radiation environment. Thus, as well as UV-B radiation, UV-C radiation would have penetrated to the Earth's surface with its associated biological consequences. The history of this ultraviolet stress for the early Earth has been determined from theoretical data and data obtained in Earth orbit on the inactivation of Bacillus subtilis spores under a simulated ozone layer of different thicknesses. Although the UV-C and UV-B regions contribute only 2 % of the entire solar extraterrestrial irradiance, photobiological experiments in space have demonstrated a high mutagenicity and lethality of this UV range to living organisms. The reason for these severe effects of extraterrestrial solar UV radiation - compared to conditions on present-day Earth - lies in the absorption characteristics of the DNA, which is the decisive target for inactivation and mutation induction at this UV range. Being a strong mutagen, UV-radiation is considered as a powerful promoter of biological evolution on the one hand, one the other hand, it may have deleterious consequences to individual cells and organisms, e.g. by causing inactivation, mutations or cancer induction. In response to potential harmful effects of environmental UV radiation, life on Earth has developed several strategies of survival, either avoiding exposure to UV radiation or restoring UV damage. Mechanisms of avoidance of exposure to UV radiation include (i) moving away from the UV radiation into shadowed areas, which requires the development of UV radiation

  12. Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses

    PubMed Central

    2012-01-01

    Background Plant stilbenes are a small group of phenylpropanoids, which have been detected in at least 72 unrelated plant species and accumulate in response to biotic and abiotic stresses such as infection, wounding, UV-C exposure and treatment with chemicals. Stilbenes are formed via the phenylalanine/polymalonate-route, the last step of which is catalyzed by the enzyme stilbene synthase (STS), a type III polyketide synthase (PKS). Stilbene synthases are closely related to chalcone synthases (CHS), the key enzymes of the flavonoid pathway, as illustrated by the fact that both enzymes share the same substrates. To date, STSs have been cloned from peanut, pine, sorghum and grapevine, the only stilbene-producing fruiting-plant for which the entire genome has been sequenced. Apart from sorghum, STS genes appear to exist as a family of closely related genes in these other plant species. Results In this study a complete characterization of the STS multigenic family in grapevine has been performed, commencing with the identification, annotation and phylogenetic analysis of all members and integration of this information with a comprehensive set of gene expression analyses including healthy tissues at differential developmental stages and in leaves exposed to both biotic (downy mildew infection) and abiotic (wounding and UV-C exposure) stresses. At least thirty-three full length sequences encoding VvSTS genes were identified, which, based on predicted amino acid sequences, cluster in 3 principal groups designated A, B and C. The majority of VvSTS genes cluster in groups B and C and are located on chr16 whereas the few gene family members in group A are found on chr10. Microarray and mRNA-seq expression analyses revealed different patterns of transcript accumulation between the different groups of VvSTS family members and between VvSTSs and VvCHSs. Indeed, under certain conditions the transcriptional response of VvSTS and VvCHS genes appears to be diametrically opposed

  13. Protective effect of deoxyribonucleosides on UV-irradiated human peripheral blood T-lymphocytes: possibilities for the selective killing of either cycling or non-cycling cells.

    PubMed

    Green, M H; Waugh, A P; Lowe, J E; Harcourt, S A; Clingen, P H; Cole, J; Arlett, C F

    1996-02-19

    Non-cycling human T-lymphocytes from normal subjects show a 10-fold greater sensitivity than fibroblasts to UV-B (280-315 nm) irradiation from a Westinghouse FS20 lamp, but only a 2.7-fold greater sensitivity to UV-C (254 nm) irradiation. Hypersensitivity is associated with a deficiency in the rejoining of excision breaks. Non-cycling T-lymphocytes have extremely low deoxyribonucleotide pools. Addition to the medium of the four deoxyribonucleosides, each at a concentration of 10(-5) M, substantially increases survival and reduces the persistence of excision-related strand breaks following UV-B or UV-C irradiation (Yew and Johnson (1979) Biochim. Biophys. Acta 562, 240-241; Green et al. (1994) Mutation Res., 315, 25-32). UV-resistance of T-lymphocytes is also increased by stimulating the cells into cycle. The addition of deoxyribonucleosides does not further enhance survival of cycling cells and they do not reach the level of resistance achieved by non-cycling cells in the presence of deoxyribonucleosides. We suggest that two opposing effects are in operation. Cells out of cycle can show increased resistance to DNA damage in the absence of division but they also have reduced deoxyribonucleotide pools, which may limit DNA repair. With UV-B irradiation, the exceptionally low dNTP pools in non-cycling T-lymphocytes cause this second effect to predominate. In contrast, with ionising radiation, which forms highly cytotoxic double-strand breaks, non-cycling human T-lymphocytes are slightly more resistant than fibroblasts. Non-cycling cells such as T-lymphocytes should be especially sensitive to agents which produce a high proportion of read excisable damage, but should show normal resistance to agents which highly toxic lesions. It may be possible by choice of DNA damaging agent and manipulation of cellular deoxyribonucleotide pools, to choose regimes which will selectively kill either cycling or non-cycling cells and to improve the efficacy of standard therapeutic

  14. Degradation of xenobiotics originating from the textile preparation, dyeing, and finishing industry using ozonation and advanced oxidation.

    PubMed

    Arslan-Alaton, Idil; Alaton, Izzet

    2007-09-01

    Effluents from textile preparation, dyeing, and finishing processes contain high concentrations of biologically difficult-to-degrade or even inert auxiliaries. Under these circumstances, it most often becomes inevitable to apply energy-intense and hence "imperative" treatment technologies (so-called advanced oxidation processes, AOPs) to achieve an acceptable reduction in the organic content of the effluent, thereby improving the biocompatibility of the originally refractory wastewater. The present experimental study focused on three problematic dyehouse effluent streams in order to alleviate the problem of toxicity and recalcitrance arising from the use of certain textile chemicals at source. For that purpose, the textile preparation stage was simulated by a nonionic surfactant (NS), the polyamide dyeing stage by a synthetic tannin (syntan; ST), and an aqueous biocidal finishing (BF) solution was employed to mimic typical textile finishing effluent. Synthetic effluent streams bearing NS, ST, or BF were subjected to treatment with different, well-established AOPs (ozonation at varying pH; advanced oxidation with H(2)O(2)/UV-C at varying H(2)O(2) concentrations) in order to degrade the active ingredients of the auxiliary formulations, thereby eliminating their toxicity and recalcitrance. Baseline experiments were conducted in order to optimize AOP conditions that were consecutively applied to observe changes in the originally poor effluent biodegradability and high toxicity. Obtained experimental findings revealed that (i) the COD content of NS could be reduced by at least 50% after H(2)O(2)/UV-C treatment at pH 9.0 accompanied by a nearly twofold improvement in its already fair biodegradability; (ii) the inhibitory effect of the biochemically reluctant ST on heterotrophic biomass was completely eliminated upon ozonation (dose=900 mg h(-1)) at pH 3.5; and (iii) the microbial toxicity exerted by BF totally disappeared after ozonation (dose=600 mg h(-1)) at pH 7

  15. [Birth weight of newborns and health behaviours and haematological parameters of pregnant women - results of preliminary studies].

    PubMed

    Suliga, Edyta; Adamczyk-Gruszka, Olga

    2015-12-15

    U osób urodzonych z małą masą ciała stwierdza się zwiększone ryzyko wystąpienia nadciśnienia tętniczego, dyslipidemii, chorób układu sercowo-naczyniowego, cukrzycy typu 2 w wieku dorosłym. U osób urodzonych z makrosomią również występuje zwiększone ryzyko późniejszego wystąpienia cukrzycy typu 2 i chorób sercowo-naczyniowych w wieku dorosłym. Bardzo ważne są więc badania służące zidentyfikowaniu czynników ryzyka zaburzeń wewnątrzmacicznego wzrastania płodu. Cel pracy. Celem pracy była ocena zależności między zachowaniami zdrowotnymi oraz wskaźnikami hematologicznymi kobiet ciężarnych a masą urodzeniową noworodków. Materiał i metody. Materiał badań stanowiły dane 274 kobiet i ich dzieci. Przy pomocy ankiety zebrano informacje na temat miejsca zamieszkania, wysokości i masy ciała, palenia papierosów oraz sposobu żywienia w czasie ciąży. Informacje dotyczące kolejności ciąży, przebiegu i czasu trwania ciąży oraz parametrów hematologicznych zebrano na podstawie analizy dokumentacji medycznej. Wyniki. Kobiety z niedowagą przed ciążą częściej rodziły dzieci z małą masą w stosunku do wieku płodowego, natomiast dzieci z dużą masą w stosunku do wieku płodowego częściej rodziły kobiety z nadwagą lub otyłością przed ciążą (p=0.0076) oraz te, u których stwierdzono w ciąży przyrost masy większy niż zalecany (p=0.0081). Matki, które urodziły dzieci z dużą masą w stosunku do wieku płodowego, częściej posiadały wyższe wartości wskaźników hematologicznych w pierwszym trymestrze ciąży w porównaniu z matkami dzieci o niższej masie w stosunku do wieku płodowego. Spożycie poszczególnych grup produktów przez matki w czasie ciąży nie różnicowało w istotny sposób masy urodzeniowej noworodków. Wnioski. Czynnikami istotnie różnicującymi wielkość urodzeniowej masy ciała w stosunku do wieku płodowego były BMI matki przed ciążą oraz całkowity przyrost masy w czasie

  16. Renovation of Shaft Mining Building No. 2 in Kłodawa Salt Mine/ Renowacja Budynku Nadszybia Nr 2 Na Terenie Kopalni Soli "Kłodawa" S.A.

    NASA Astrophysics Data System (ADS)

    Błaszczyński, Tomasz; Wielentejczyk, Przemysław

    2015-06-01

    The paper presents the renovation process of the shaft mining building No. 2 situated in the Kłodawa Salt Mine. A technical state of the facility required immediate reinforcement of structural elements, which was confirmed by expertise carried out by the authors. A lack of repairs could be the cause of building damage. The progress of corrosion in some steel profiles of columns or floors was very advanced. The state of the building was rapidly worsening due to the very high salinity of the indoor environment, moisture (building not insulated) and vibrating engines of machinery operating on different floors felt throughout the facility. After carrying out the technical expertise, working plans and specifications, and relevant numerical analysis, the modernization process was realized by the reinforcement or rebuilding of structural elements. Referat przedstawia sposób remontu i naprawy konstrukcji nośnej i obudowy budynku nadszybia nr 2 na terenie Kopalni Soli "Kłodawa". Elementy konstrukcyjne budynku wymagały natychmiastowego wzmocnienia, co potwierdziła ekspertyza wykonana przez autorów. Zaniechanie prac remontowych groziło awarią budowlaną pomimo przeprowadzonej wcześniej w 2002 r. naprawy. Postęp korozji w niektórych profilach stalowych słupów czy stropów był bardzo zaawansowany. Stan obiektu pogarszał się szybko ze względu na bardzo duże zasolenie środowiska, wilgoć (budynek nieocieplony) oraz pracujące na poszczególnych poziomach maszyny wytwarzające duże drgania wyczuwalne w każdym miejscu obiektu. Wykonano ekspertyzę i projekt wykonawczy przed przystąpieniem do prac renowacyjnych. Przeprowadzono stosowną analizę numeryczną budynku uwzględniając w obliczeniach osłabione korozją elementy pomniejszając odpowiednio w modelu ich parametry wytrzymałościowe. Na tej podstawie zaproponowano stosowne wzmocnienia. Zastosowano technologie wzmocnień stosując wymianę profili stalowych, wspawywanie dodatkowych profili lub blach

  17. Determining the Optimum Cut-Off Grades in Sulfide Copper Deposits / Określanie Optymalnej Wartości Odcięcia Zawartości Procentowej Pierwiastka Użytecznego W Złożach Siarczku Miedzi

    NASA Astrophysics Data System (ADS)

    Rahimi, Esmaeil; Oraee, Kazem; Shafahi, Zia Aldin; Ghasemzadeh, Hasan

    2015-03-01

    maksymalizacja wartości bieżącej netto. Wyniki wskazują wpływ procesów ługowania na zawartość procentową pierwiastka użytecznego w rudzie pochodzącej z pierwotnych lub wtórnych złóż siarczku miedzi.

  18. Experimental Testing of Innovative Cold-Formed "GEB" Section / Badania Eksperymentalne Innowacyjnego Kształtownika Giętego Na Zimno Typu "Geb"

    NASA Astrophysics Data System (ADS)

    Łukowicz, Agnieszka; Urbańska-Galewska, Elżbieta; Gordziej-Zagórowska, Małgorzata

    2015-03-01

    One of the major advantages of light gauge steel structures made of cold-formed steel sections is their low weight so the production of typical single-storey steel structures of this kind of profiles is still rising. The well known profiles, e.o. Z-sections, C-sections and the so called hat-sections studied and described in the literature, are used mainly as purlins or truss components. A new profile GEB was patented for the use for primary load-bearing member in fabricated steel frames. According to the code [1] every novel cross section should be tested to assign the deformation shape and bearing capacity. The paper deals with the numerical and experimental research of bearing capacity of cold formed GEB profiles. The deformation shape and limit load was obtained from bending tests. The GEB cross section bearing capacity was also determined according to codes [1, 2]. Jedną z najważniejszych zalet lekkich konstrukcji metalowych, wytwarzanych z kształtowników giętych na zimno, jest ich mała masa, dlatego też, producenci coraz częściej wykorzystują możliwości profili giętych do wytwarzania typowych konstrukcji halowych w budownictwie systemowym. Proces gięcia na zimno, pozwala na formowanie różnego rodzaju przekrojów poprzecznych, które mogą być wykorzystywane jako elementy konstrukcji. Typowe kształty elementów. tzn. Z, C oraz tzw. przekroje kapeluszowe, które zostały przebadane i opisane w literaturze, wykorzystuje się głównie jako płatwie lub części składowe wiązarów kratowych. Nowo opatentowany przekrój typu GEB ma być wykorzystany jako element nośny konstrukcji ramowych. W związku z tym innowacyjny kształt oraz parametry geometryczne przekroju takiego kształtownika, związane z możliwością jego wyprodukowania oraz z warunkami nośności, stateczności oraz sztywności, muszą być optymalne. Według normy PN-EN 1993-1-3, każdy nowo uformowany przekrój powinien być przebadany pod kątem nośności elementu i formy

  19. a New Generation Mining Head with Disc Tool of Complex Trajectory / GŁOWICA URABIAJĄCA Nowej Generacji Z NARZĘDZIAMI Dyskowymi O ZŁOŻONEJ Trajektorii

    NASA Astrophysics Data System (ADS)

    Gospodarczyk, Piotr; Kotwica, Krzysztof; Stopka, Grzegorz

    2013-12-01

    In Polish underground mining plenty of dog headings are drilled with mechanical methods with the use of arm roadheaders equipped with milling units. Cutting tools applied on the units - rotary tangent bits in unfavourable mining and geological conditions or improper work conditions are affected by an accelerated wear process. It influences the speed and costs of drilling such excavations. The article presents a new and innovative solution of a mining head with asymmetric disc tools of complex trajectory elaborated at the Department of Mining, Dressing and Transport Machines, AGH University of Science and Technology, Krakow as an alternative for standard milling units. Advantages of the applied mining method using so called back incision were described as well as principles of construction and work of the suggested solution of the head. In order to work out a construction of the head prototype it was necessary to determine principles and guidelines based on laboratory tests. A construction of a specially prepared laboratory stand for examination of disc tools of complex trajectory, planned research methodology, course of tests and obtained results were presented. An analysis of the results allowed determining the above listed principles and guidelines for a construction of a prototype head. They were the base to work out, with cooperation of the REMAG Ltd Company in Katowice, a technical project of a new head solution, adapted for mounting on the arm of a medium arm roadheader KR 150. A constructed head underwent tests on a research stand on the REMAG testing area and received positive preliminary tests results. W polskim górnictwie podziemnym bardzo duża liczba wyrobisk korytarzowych drążona jest metodami mechanicznymi z wykorzystaniem ramionowych kombajnów chodnikowych, wyposażonych w organy frezujące. Stosowane na tych organach narzędzia skrawające - noże styczno-obrotowe, w niekorzystnych warunkach górniczo-geologicznych lub przy nieprawid

  20. Planes coordinates transformation between PSAD56 to SIRGAS using a Multilayer Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Tierra, Alfonso; Romero, Ricardo

    2014-12-01

    układów współrzędnych. W Ekwadorze wykorzystywany jest system PSAD56 (Provisional South American Datum 1956), ale w ostatnim czasie zaszła konieczność zdefi niowania wewnętrznego(krajowego) systemu SIRGAS (SIstema de Referencia Geocéntrico para las AmericaS). Do transformacji pomiędzy oboma systemami powszechnie wykorzystuje się metodę Helmerta, stosując układ siedmioparametrowy. Transformacja taka pozwala na zachowanie dokładności wystarczającej do opracowania map topografi cznych w skalach 1:25 000 lub mniejszych. W artykule do transformacji zastosowano sieci neuronowe, co umożliwiło podniesienie dokładności do skali 1:5 000

  1. Estimating Volume of Roof Fall in the Face of Longwall Mining by Using Numerical Methods / Estymacja Objętości Zawału Stropu W Rejonie Przodka Ścianowego W Oparciu O Metody Numeryczne

    NASA Astrophysics Data System (ADS)

    Saeedi, Gholamreza; Shahriar, Korosh; Rezai, Bahram

    2013-09-01

    Dilution is one of many challenges confronting professionals in mining and milling, and is perhaps one of the oldest. Longwall mining is one of the mining methods that is often affected by out-of-seam dilution (OSD). In this method, roof falls play a significant role in increasing OSD in the prop-free front of the face area. Thus, estimating the volume of roof fall can be extremely helpful to assess dilution of the run of mine coal without a sampling process. This paper presents the effect of exposed area geometry on potential roof falls using the 2D numerical modelling program FLAC. In this respect, a half-prolate ellipsoid was considered as the low stress level or plasticity zone under yield tension which roof material fall. Since FLAC software does not show roof falls in prop-free front of the face, a series of two-dimensional numerical models are developed using UDEC software. The comparison of the results of two numerical models clearly indicates that volumes of roof fall obtained by means of these methods are in good agreement with each other. Ścienianie warstw jest jednym z najpoważniejszych wyzwań stojących przed inżynierami górnikami i specjalistami z zakresu obróbki - jest to też jeden z najstarszych problemów. Wybieranie ścianowe jest metodą urabiania, w której często mamy do czynienia ze ścienianiem warstwy złoża. W metodzie tej strop odgrywa kluczową rolę w zapewnieniu stabilności w tych rejonach przodka, gdzie nie zastosowano obudów. Dlatego też estymacja objętości zawału stropu może być pomocna przy obliczaniu ścieniania warstwy węgla bez konieczności próbkowania. W artykule tym przeanalizowano wpływ geometrii powierzchni odkrytych na potencjalny zawał stropu przy użyciu metod modelowania numerycznego z wykorzystaniem oprogramowania FLAC. Uzyskano wydłużoną elipsoidę jako model strefy niskich naprężeń lub strefę plastyczności przed zawałem stropu. Ponieważ oprogramowanie FLAC nie pokazuje zawałów stropu w

  2. Analysis of geodetic and legal documentation in the process of expropriation for roads. Krakow case study

    NASA Astrophysics Data System (ADS)

    Trembecka, Anna

    2013-06-01

    Amendment to the Act on special rules of preparation and implementation of investment in public roads resulted in an accelerated mode of acquisition of land for the development of roads. The decision to authorize the execution of road investment issued on its basis has several effects, i.e. determines the location of a road, approves surveying division, approves construction design and also results in acquisition of a real property by virtue of law by the State Treasury or local government unit, among others. The conducted study revealed that over 3 years, in this mode, the city of Krakow has acquired 31 hectares of land intended for the implementation of road investments. Compensation is determined in separate proceedings based on an appraisal study estimating property value, often at a distant time after the loss of land by the owner. One reason for the lengthy compensation proceedings is challenging the proposed amount of compensation, unregulated legal status of the property as well as imprecise legislation. It is important to properly develop geodetic and legal documentation which accompanies the application for issuance of the decision and is also used in compensation proceedings. Zmiana ustawy o szczególnych zasadach przygotowywania i realizacji inwestycji w zakresie dróg publicznych spowodowała przyspieszony tryb pozyskiwania gruntów przeznaczonych pod budowę dróg. Wydawana na jej podstawie decyzja o zezwoleniu na realizację inwestycji drogowej wywołuje szereg skutków, tj. m.in. ustala lokalizację drogi, zatwierdza podziały geodezyjne, zatwierdza projekt budowlany a także powoduje nabycie nieruchomości z mocy prawa, przez Skarb Państwa lub jednostki samorządu terytorialnego. Przeprowadzone badania wykazały iż w powyższym trybie miasto Kraków nabyło w okresie 3 lat ponad 31 ha gruntów przeznaczonych na realizację inwestycji drogowych. Odszkodowanie ustalane jest w drodze odrębnego postępowania w oparciu o operat szacunkowy okre

  3. Direct Photolysis of Fluoroquinolone Antibiotics at 253.7 nm: Specific Reaction Kinetics and Formation of Equally Potent Fluoroquinolone Antibiotics.

    PubMed

    Snowberger, Sebastian; Adejumo, Hollie; He, Ke; Mangalgiri, Kiranmayi P; Hopanna, Mamatha; Soares, Ana Dulce; Blaney, Lee

    2016-09-06

    Three fluoroquinolone-to-fluoroquinolone antibiotic transformations were monitored during UV-C irradiation processes. In particular, the following reactions were observed: enrofloxacin-to-ciprofloxacin, difloxacin-to-sarafloxacin, and pefloxacin-to-norfloxacin. The apparent molar absorptivity and fluence-based pseudo-first-order rate constants for transformation of the six fluoroquinolones by direct photolysis at 253.7 nm were determined for the pH 2-12 range. These parameters were deconvoluted to calculate specific molar absorptivity and fluence-based rate constants for cationic, zwitterionic, and anionic fluoroquinolone species. For a typical disinfection fluence of 40 mJ/cm(2), the apparent transformation efficiencies were inflated by 2-8% when fluoroquinolone products were not considered; moreover, the overall transformation efficiencies at 400 mJ/cm(2) varied by up to 40% depending on pH. The three product antibiotics, namely ciprofloxacin, sarafloxacin, and norfloxacin, were found to be equally or more potent than the parent fluoroquinolones using an Escherichia coli-based assay. UV treatment of a solution containing difloxacin was found to increase antimicrobial activity due to formation of sarafloxacin. These results highlight the importance of considering antibiotic-to-antibiotic transformations in UV-based processes.

  4. Low-Pressure UV Inactivation and DNA Repair Potential of Cryptosporidium parvum Oocysts

    PubMed Central

    Shin, Gwy-Am; Linden, Karl G.; Arrowood, Michael J.; Sobsey, Mark D.

    2001-01-01

    Because Cryptosporidium parvum oocysts are very resistant to conventional water treatment processes, including chemical disinfection, we determined the kinetics and extent of their inactivation by monochromatic, low-pressure (LP), mercury vapor lamp UV radiation and their subsequent potential for DNA repair of UV damage. A UV collimated-beam apparatus was used to expose suspensions of purified C. parvum oocysts in phosphate-buffered saline, pH 7.3, at 25°C to various doses of monochromatic LP UV. C. parvum infectivity reductions were rapid, approximately first order, and at a dose of 3 mJ/cm2 (=30 J/m2), the reduction reached the cell culture assay detection limit of ∼3 log10. At UV doses of 1.2 and 3 mJ/cm2, the log10 reductions of C. parvum oocyst infectivity were not significantly different for control oocysts and those exposed to dark or light repair conditions for UV-induced DNA damage. These results indicate that C. parvum oocysts are very sensitive to inactivation by low doses of monochromatic LP UV radiation and that there is no phenotypic evidence of either light or dark repair of UV-induced DNA damage. PMID:11425717

  5. Photoprotective bioactivity present in a unique marine bacteria collection from Portuguese deep sea hydrothermal vents.

    PubMed

    Martins, Ana; Tenreiro, Tania; Andrade, Gonçalo; Gadanho, Mário; Chaves, Sandra; Abrantes, Marta; Calado, Patrícia; Tenreiro, Rogério; Vieira, Helena

    2013-05-10

    Interesting biological activities have been found for numerous marine compounds. In fact, screening of phylogenetically diverse marine microorganisms from extreme environments revealed to be a rational approach for the discovery of novel molecules with relevant bioactivities for industries such as pharmaceutical and cosmeceutical. Nevertheless, marine sources deliverables are still far from the expectations and new extreme sources of microbes should be explored. In this work, a marine prokaryotic collection from four Mid-Atlantic Ridge (MAR) deep sea hydrothermal vents near the Azores Islands, Portugal, was created, characterized and tested for its photoprotective capacity. Within 246 isolates, a polyphasic approach, using chemotaxonomic and molecular typing methods, identified 23-related clusters of phenetically similar isolates with high indexes of diversity. Interestingly, 16S rRNA gene sequencing suggested the presence of 43% new prokaryotic species. A sub-set of 139 isolates of the prokaryotic collection was selected for biotechnological exploitation with 484 bacterial extracts prepared in a sustainable upscalling manner. 22% of the extracts showed an industrially relevant photoprotective activity, with two extracts, belonging to new strains of the species Shewanella algae and Vibrio fluvialis, uniquely showing UV-A, UV-B and UV-C protective capacity. This clearly demonstrates the high potential of the bacteria MAR vents collection in natural product synthesis with market applications.

  6. Disinfection potential of ozone, ultraviolet-C and their combination in wash water for the fresh-cut vegetable industry.

    PubMed

    Selma, María V; Allende, Ana; López-Gálvez, Francisco; Conesa, María A; Gil, María I

    2008-09-01

    The purpose of this research was to investigate the disinfection efficacy of ozone (O(3)) and UV-C illumination (UV), and their combination (O(3)-UV) for reducing microbial flora of fresh-cut onion, escarole, carrot, and spinach wash waters collected from the industry. Furthermore, the influence of water physicochemical parameters on the decontamination efficacy and the effect of these technologies on physicochemical quality of wash water were analyzed. O(3), UV, and O(3)-UV were effective disinfection treatments on vegetable wash water, with a maximum microbial reduction of 6.6 log CFU mL(-1) after 60 min treatment with O(3)-UV. However, maximum total microbial reductions achieved by UV and O(3) treatments after 60 min were 4.0 and 5.9 log CFU mL(-1), lower than by O(3)-UV treatment. Furthermore, turbidity of wash water was reduced significantly by O(3) and O(3)-UV treatments, while UV treatment did not affect the physicochemical quality of the water. Conclusions derived from this study illustrate that O(3) and O(3)-UV are alternatives to other sanitizers used in the fresh-cut washing processes. The use of these technologies would allow less frequent changing of spent water and the use of much lower sanitizer doses. Nevertheless, in specific applications such as carrot wash water, where levels of undesirable microbial and chemical constituents are lower than other vegetable wash water, UV treatment could be an appropriate treatment considering cost-effectiveness criteria.

  7. Genetics of Lipid-Storage Management in Caenorhabditis elegans Embryos

    PubMed Central

    Schmökel, Verena; Memar, Nadin; Wiekenberg, Anne; Trotzmüller, Martin; Schnabel, Ralf; Döring, Frank

    2016-01-01

    Lipids play a pivotal role in embryogenesis as structural components of cellular membranes, as a source of energy, and as signaling molecules. On the basis of a collection of temperature-sensitive embryonic lethal mutants, a systematic database search, and a subsequent microscopic analysis of >300 interference RNA (RNAi)–treated/mutant worms, we identified a couple of evolutionary conserved genes associated with lipid storage in Caenorhabditis elegans embryos. The genes include cpl-1 (cathepsin L–like cysteine protease), ccz-1 (guanine nucleotide exchange factor subunit), and asm-3 (acid sphingomyelinase), which is closely related to the human Niemann-Pick disease–causing gene SMPD1. The respective mutant embryos accumulate enlarged droplets of neutral lipids (cpl-1) and yolk-containing lipid droplets (ccz-1) or have larger genuine lipid droplets (asm-3). The asm-3 mutant embryos additionally showed an enhanced resistance against C band ultraviolet (UV-C) light. Herein we propose that cpl-1, ccz-1, and asm-3 are genes required for the processing of lipid-containing droplets in C. elegans embryos. Owing to the high levels of conservation, the identified genes are also useful in studies of embryonic lipid storage in other organisms. PMID:26773047

  8. Vortex Stabilized Plasma for Rapid Water Disinfection & Pharmaceutical Degradation

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    2016-10-01

    Good quality drinking water is dwindling for large segments of the world population. Aggravating the problem is proliferation of antibiotics in the water supply, which give rise to drug resistant pathogens. One option for water supply increase is recycling waste and polluted water by inexpensive, environmentally friendly methods. Presently disinfection uses chemicals and UV radiation. Chemicals are limited by residual toxicity, while UV consumes much electricity. Current methods can remove only certain classes of drugs due to their large variety of physical and chemical properties. Plasmas in water are very attractive for degrading all pharmaceuticals and deactivating pathogens: intense arc current can physically break up any molecular bonds. UV radiation, ozone, etc. generation inside the water volume disinfects. Present utilized plasmas: glow, pulsed arcs are not power efficient; vortex stabilized plasmas are power efficient that can advance water treatment state-of-the-art by orders of magnitude. Proposed techniquefeatures novel components facilitating large diameter vortex stabilized in-water arcs with optimized plasma parameters for maximal UV-C emission; and harvests hydrogen centered by the vortex.

  9. [Effect of long-wave ultraviolet light (UV-A) and medium-wave ultraviolet rays (UV-B) on human skin. Critical comparison].

    PubMed

    Raab, W

    1980-04-15

    When discussing the effects of ultraviolet radiation on human skin, one should carefully distinguish between the long wave ultraviolet light (UV-A) and the short wave radiations (UV-B and UV-C). Ultraviolet A induces immediate pigmentation but, if high energies are applied, a permanent pigmentation is elicited. This type of ultraviolet A-induced pigmentation has been called "spontaneous" pigmentation as no erythematous reaction is necessary to induce or accelerate melanine formation. Ultraviolet B provokes erythema and consecutive pigmentation. Upon chronic exposure, ultraviolet B causes the wellknown actinic damage of the skin and even provokes carcinoma. With exposures to the sunlight (global radiation), one should be most careful. The public must be informed extensively about the dangers of excessive sunbaths. The use of artificial "suns" with spectra between 260 and 400 nm is limited as it may cause the same type of damage as the global radiation. An exact schedule for use of artificial lamps is strongly recommended. After one cycle of exposures, an interruption is necessary until the next cycle of irradiations may start. Upon continual use for tanning of the skin, artificial lamps may provoke irreversible damage of the skin. Radiation sources with emission spectra of wavelengths between 315 and 400 nm exclusively are well suited for the induction of skin pigmentation (cosmetic use). Potent radiation such as UVASUN systems provoke a "pleasant" permanent pigmentation after exposures for less than one hour. The use of ultraviolet A (UV-A) does not carry any risk for the human skin.

  10. Exobiological investigations on Russian spacecrafts.

    PubMed

    Kuzicheva, Evgenia A; Gontareva, Natalia B

    2003-01-01

    To investigate the possibility of prebiotic synthesis of organic molecules in open space, conditions involved irradiating nucleosides and inorganic phosphate during five Earth-orbiting Russian space missions that included Salut-7 (13- and 16-month missions), Mir, Bion-11, and Cosmos-2044. Dry films of samples were exposed from 2 weeks up to 16 months to the entire set of factors encountered in open space during Earth-orbiting missions. After each mission, products synthesized during flight and any compounds that remained undegraded were analyzed. The analyses demonstrated that increased flight duration led to the decay of both synthesized nucleotides and initial nucleosides. Corresponding laboratory experiments indicated that infrared radiation caused the greatest amount of decay to products of prebiotic reactions. Experiments revealed that 5'-mononucleotides were the main chemical products of the major derivatives synthesized of certain nucleosides. Exposure to ultraviolet (UV)