Promiscuous mating in the harem-roosting fruit bat, Cynopterus sphinx.
Garg, Kritika M; Chattopadhyay, Balaji; Doss D, Paramanatha Swami; A K, Vinoth Kumar; Kandula, Sripathi; Ramakrishnan, Uma
2012-08-01
Observations on mating behaviours and strategies guide our understanding of mating systems and variance in reproductive success. However, the presence of cryptic strategies often results in situations where social mating system is not reflective of genetic mating system. We present such a study of the genetic mating system of a harem-forming bat Cynopterus sphinx where harems may not be true indicators of male reproductive success. This temporal study using data from six seasons on paternity reveals that social harem assemblages do not play a role in the mating system, and variance in male reproductive success is lower than expected assuming polygynous mating. Further, simulations reveal that the genetic mating system is statistically indistinguishable from promiscuity. Our results are in contrast to an earlier study that demonstrated high variance in male reproductive success. Although an outcome of behavioural mating patterns, standardized variance in male reproductive success (I(m)) affects the opportunity for sexual selection. To gain a better understanding of the evolutionary implications of promiscuity for mammals in general, we compared our estimates of I(m) and total opportunity for sexual selection (I(m) /I(f), where I(f) is standardized variance in female reproductive success) with those of other known promiscuous species. We observed a broad range of I(m) /I(f) values across known promiscuous species, indicating our poor understanding of the evolutionary implications of promiscuous mating. © 2012 Blackwell Publishing Ltd.
Male mate choice influences female promiscuity in Soay sheep
Preston, B.T.; Stevenson, I.R.; Pemberton, J.M.; Coltman, D.W.; Wilson, K.
2005-01-01
In most animal species, males are predicted to compete for reproductive opportunities, while females are expected to choose between potential mates. However, when males’ rate of reproduction is constrained, or females vary widely in ‘quality’, male mate choice is also predicted to occur. Such conditions exist in the promiscuous mating system of feral Soay sheep on St Kilda, Scotland, where a highly synchronized mating season, intense sperm competition and limitations on sperm production constrain males’ potential reproductive rate, and females vary substantially in their ability to produce successful offspring. We show that, consistent with predictions, competitive rams focus their mating activity and siring success towards heavier females with higher inclusive fitness. To our knowledge, this is the first time that male mate choice has been identified and shown to lead to assortative patterns of parentage in a natural mammalian system, and occurs despite fierce male–male competition for mates. An additional consequence of assortative mating in this population is that lighter females experience a series of unstable consorts with less adept rams, and hence are mated by a greater number of males during their oestrus. We have thus also identified a novel male-driven mechanism that generates variation in female promiscuity, which suggests that the high levels of female promiscuity in this system are not part of an adaptive female tactic to intensify post-copulatory competition between males. PMID:15734690
Male mate choice influences female promiscuity in Soay sheep.
Preston, B T; Stevenson, I R; Pemberton, J M; Coltman, D W; Wilson, K
2005-02-22
In most animal species, males are predicted to compete for reproductive opportunities, while females are expected to choose between potential mates. However, when males' rate of reproduction is constrained, or females vary widely in 'quality', male mate choice is also predicted to occur. Such conditions exist in the promiscuous mating system of feral Soay sheep on St Kilda, Scotland, where a highly synchronized mating season, intense sperm competition and limitations on sperm production constrain males' potential reproductive rate, and females vary substantially in their ability to produce successful offspring. We show that, consistent with predictions, competitive rams focus their mating activity and siring success towards heavier females with higher inclusive fitness. To our knowledge, this is the first time that male mate choice has been identified and shown to lead to assortative patterns of parentage in a natural mammalian system, and occurs despite fierce male-male competition for mates. An additional consequence of assortative mating in this population is that lighter females experience a series of unstable consorts with less adept rams, and hence are mated by a greater number of males during their oestrus. We have thus also identified a novel male-driven mechanism that generates variation in female promiscuity, which suggests that the high levels of female promiscuity in this system are not part of an adaptive female tactic to intensify post-copulatory competition between males.
Unexpected Strong Polygyny in the Brown-Throated Three-Toed Sloth
Pauli, Jonathan N.; Peery, M. Zachariah
2012-01-01
Promiscuous mating strategies are much more common than previously appreciated. So much so, that several authors have proposed that promiscuity is the “rule” rather than the exception in vertebrate mating systems. Decreasing species mobility and increasing habitat fragmentation have both been suggested to reduce the “polygyny potential” of the environment and promote other mating strategies like promiscuity in females. We explored the social and genetic mating system for one of the most sedentary extant mammals, the brown-throated three-toed sloth (Bradypus variegatus), within a highly fragmented Neotropical habitat. Surprisingly, we found that three-toed sloths were strongly polygynous, with males excluding male competitors from their core ranges, and exhibiting strong reproductive skew. Indeed, only 25% of all resident adult males sired offspring and one individual sired half of all sampled juveniles. Paradoxically, a sedentary life-history strategy seems to facilitate polygyny in fragmented landscapes because multiple females can persist within small patches of habitat, and be monopolized by a single male. Our work demonstrates that strong polygyny can arise in systems in which the polygyny potential should be extremely low, and other strategies, including promiscuity, would be favoured. Mating systems can be influenced by a multitude of factor and are dynamic, varying among taxa, over time, and across habitats; consequently, mating systems remain difficult to predict based on general ecological principles. PMID:23284687
Promiscuity resolves constraints on social mate choice imposed by population viscosity.
While, Geoffrey M; Uller, Tobias; Bordogna, Genevieve; Wapstra, Erik
2014-02-01
Population viscosity can have major consequences for adaptive evolution, in particular for phenotypes involved in social interactions. For example, population viscosity increases the probability of mating with close kin, resulting in selection for mechanisms that circumvent the potential negative consequences of inbreeding. Female promiscuity is often suggested to be one such mechanism. However, whether avoidance of genetically similar partners is a major selective force shaping patterns of promiscuity remains poorly supported by empirical data. Here, we show (i) that fine-scale genetic structure constrains social mate choice in a pair-bonding lizard, resulting in individuals pairing with genetically similar individuals, (ii) that these constraints are circumvented by multiple mating with less related individuals and (iii) that this results in increased heterozygosity of offspring. Despite this, we did not detect any significant effects of heterozygosity on offspring or adult fitness or a strong relationship between pair relatedness and female multiple mating. We discuss these results within the context of incorporating the genetic context dependence of mating strategies into a holistic understanding of mating system evolution. © 2013 John Wiley & Sons Ltd.
Genetic monogamy despite social promiscuity in the pot-bellied seahorse (Hippocampus abdominalis).
Wilson, A B; Martin-Smith, K M
2007-06-01
Sexual selection theory predicts a positive correlation between relative parental investment and mate choice. In syngnathid fishes (seahorses and pipefish), males brood offspring in specialized brooding structures. While female-female mating competition has been demonstrated in some pipefishes, all seahorses (genus Hippocampus) studied to date have been found to have conventional sex roles with greater male-male competition for access to mates despite possessing the most complex brood structures in the family. Although multiple mating is common in pipefish, seahorses are again exceptional, exhibiting strict genetic monogamy. Both demographic and behavioural explanations have been offered to explain the lack of multiple mating in seahorse species, but these hypotheses have not yet been explicitly addressed. We investigated mating systems and brood parentage of the pot-bellied seahorse, Hippocampus abdominalis, a temperate-water species that is socially promiscuous with conventional sex roles in laboratory populations. We observed promiscuous courtship behaviour and sex-role reversal in high density, female-biased field populations of H. abdominalis. We hypothesize that sex roles are plastic in H. abdominalis, depending on local population density and sex ratio. Despite promiscuous courtship behaviour, all assayed male seahorses were genetically monogamous in both laboratory and wild populations. Physiological limitations associated with embryo incubation may explain the absence of multiple mating in seahorses and may have played an important role in the development of the unique reproductive behaviour typical in these species.
Iyengar, Vikram K; Reeve, Hudson K
2010-05-01
Female preference genes for large males in the highly promiscuous moth Utetheisa ornatrix (Lepidoptera: Arctiidae) have previously been shown to be mostly Z-linked, in accordance with the hypothesis that ZZ-ZW sex chromosome systems should facilitate Fisherian sexual selection. We determined the heritability of both female and male promiscuity in the highly promiscuous moth U. ornatrix (Lepidoptera: Arctiidae) through parent-offspring and grandparent-offspring regression analyses. Our data show that male promiscuity is not sex-limited and either autosomal or sex-linked whereas female promiscuity is primarily determined by sex-limited, Z-linked genes. These data are consistent with the "sexy-sperm hypothesis," which posits that multiple-mating and sperm competitiveness coevolve through a Fisherian-like process in which female promiscuity is a kind of mate choice in which sperm-competitiveness is the trait favored in males. Such a Fisherian process should also be more potent when female preferences are Z-linked and sex-limited than when autosomal or not limited.
Promiscuity in mice is associated with increased vaginal bacterial diversity
NASA Astrophysics Data System (ADS)
Macmanes, Matthew David
2011-11-01
Differences in the number of sexual partners (i.e., mating system) have the potential to exert a strong influence on the bacterial communities present in reproductive structures like the vagina. Because this structure serves as a conduit for gametes, bacteria present there may have a pronounced, direct effect on host reproductive success. As a first step towards the identification of the relationship between sexual behavior and potentially pathogenic bacterial communities inhabiting vital reproductive structures, as well as their potential effects on fitness, I sought to quantify differences in bacterial diversity in a promiscuous and monogamous mammal species. To accomplish this, I used two sympatric species of Peromyscus rodents— Peromyscus californicus and Peromyscus maniculatus that differ with regard to the number of sexual partners per individual to test the hypothesis that bacterial diversity should be greater in the promiscuous P. maniculatus relative to the monogamous P. californicus. As predicted, phylogenetically controlled and operational taxonomic unit-based indices of bacterial diversity indicated that diversity is greater in the promiscuous species. These results provide important new insights into the effects of mating system on bacterial diversity in free-living vertebrates, and may suggest a potential cost of promiscuity.
Individual differences in valuing mates' physical attractiveness.
Mathes, Eugene W; Bielser, Abby; Cassell, Ticcarra; Summers, Sarah; Witowski, Aggie
2006-10-01
To investigate correlates of valuing physical attractiveness in a mate, it was hypothesized that valuing physical attractiveness in a mate would correlate with sex and valuing promiscuous sex, status, personal physical attractiveness, beauty, and order. Men and women college students completed measures of the extent to which they valued physical attractiveness in a mate and other variables. Valuing physical attractiveness in a mate was correlated with sex (men valued physical attractiveness in a mate more than did women) and valuing promiscuous sex and status, and, for women, valuing personal physical attractiveness. The results were explained in terms of evolutionary theory.
Variation in promiscuity and sexual selection drives avian rate of Faster-Z evolution.
Wright, Alison E; Harrison, Peter W; Zimmer, Fabian; Montgomery, Stephen H; Pointer, Marie A; Mank, Judith E
2015-03-01
Higher rates of coding sequence evolution have been observed on the Z chromosome relative to the autosomes across a wide range of species. However, despite a considerable body of theory, we lack empirical evidence explaining variation in the strength of the Faster-Z Effect. To assess the magnitude and drivers of Faster-Z Evolution, we assembled six de novo transcriptomes, spanning 90 million years of avian evolution. Our analysis combines expression, sequence and polymorphism data with measures of sperm competition and promiscuity. In doing so, we present the first empirical evidence demonstrating the positive relationship between Faster-Z Effect and measures of promiscuity, and therefore variance in male mating success. Our results from multiple lines of evidence indicate that selection is less effective on the Z chromosome, particularly in promiscuous species, and that Faster-Z Evolution in birds is due primarily to genetic drift. Our results reveal the power of mating system and sexual selection in shaping broad patterns in genome evolution. © 2015 John Wiley & Sons Ltd.
Does paedomorphosis contribute to prairie vole monogamy?
Bushyhead, Timothy; Curtis, J. Thomas
2015-01-01
We examined skull morphology in prairie voles (Microtus ochrogaster) and meadow voles (M. pennsylvanicus), two closely related species with fundamentally different mating systems, to test the hypothesis that paedomorphosis contributes to the evolution of monogamous mating systems. Using several skull measurements, we found that the overall length:width ratio of meadow vole skulls was greater than that of prairie voles suggesting that meadow vole have longer narrower skulls. We then examined which aspects of skull morphology differed between the species and found that the ratio difference was attributable primarily to longer snout length in meadow voles. Finally, we compared adult morphology in both species to that of pups and found the prairie vole, a monogamous species, displays a more juvenile-like skull morphology than does the meadow vole, a promiscuous species. These results suggest that monogamous vole species retain more juvenile-like morphology than do promiscuous species, and thus possibly retain juvenile-like behaviors that may contribute to a monogamous mating system. PMID:26594100
Does paedomorphosis contribute to prairie vole monogamy?
Bushyhead, Timothy; Curtis, J Thomas
We examined skull morphology in prairie voles ( Microtus ochrogaster ) and meadow voles ( M. pennsylvanicus ), two closely related species with fundamentally different mating systems, to test the hypothesis that paedomorphosis contributes to the evolution of monogamous mating systems. Using several skull measurements, we found that the overall length:width ratio of meadow vole skulls was greater than that of prairie voles suggesting that meadow vole have longer narrower skulls. We then examined which aspects of skull morphology differed between the species and found that the ratio difference was attributable primarily to longer snout length in meadow voles. Finally, we compared adult morphology in both species to that of pups and found the prairie vole, a monogamous species, displays a more juvenile-like skull morphology than does the meadow vole, a promiscuous species. These results suggest that monogamous vole species retain more juvenile-like morphology than do promiscuous species, and thus possibly retain juvenile-like behaviors that may contribute to a monogamous mating system.
The Political Divide Over Same-Sex Marriage: Mating Strategies in Conflict?
Pinsof, David; Haselton, Martie
2016-04-01
Although support for same-sex marriage has grown dramatically over the past decade, public opinion remains markedly divided. Here, we propose that the political divide over same-sex marriage represents a deeper divide between conflicting mating strategies. Specifically, we propose that opposition to same-sex marriage can be explained in terms of (a) individual differences in short-term mating orientation and (b) mental associations between homosexuality and sexual promiscuity. We created a novel Implicit Association Test to measure mental associations between homosexuality and promiscuity. We found that mental associations between homosexuality and promiscuity, at both the implicit and the explicit levels, interacted with short-term mating orientation to predict opposition to same-sex marriage. Our model accounted for 42.3% of the variation in attitudes toward same-sex marriage, and all predictors remained robust when we controlled for potential confounds. Our results reveal the centrality of mating psychology in attitudes toward same-sex marriage. © The Author(s) 2016.
Experimental evolution under hyper-promiscuity in Drosophila melanogaster.
Perry, Jennifer C; Joag, Richa; Hosken, David J; Wedell, Nina; Radwan, Jacek; Wigby, Stuart
2016-06-16
The number of partners that individuals mate with over their lifetime is a defining feature of mating systems, and variation in mate number is thought to be a major driver of sexual evolution. Although previous research has investigated the evolutionary consequences of reductions in the number of mates, we know little about the costs and benefits of increased numbers of mates. Here, we use a genetic manipulation of mating frequency in Drosophila melanogaster to create a novel, highly promiscuous mating system. We generated D. melanogaster populations in which flies were deficient for the sex peptide receptor (SPR) gene - resulting in SPR- females that mated more frequently - and genetically-matched control populations, and allowed them to evolve for 55 generations. At several time-points during this experimental evolution, we assayed behavioural, morphological and transcriptional reproductive phenotypes expected to evolve in response to increased population mating frequencies. We found that males from the high mating frequency SPR- populations evolved decreased ability to inhibit the receptivity of their mates and decreased copulation duration, in line with predictions of decreased per-mating investment with increased sperm competition. Unexpectedly, SPR- population males also evolved weakly increased sex peptide (SP) gene expression. Males from SPR- populations initially (i.e., before experimental evolution) exhibited more frequent courtship and faster time until mating relative to controls, but over evolutionary time these differences diminished or reversed. In response to experimentally increased mating frequency, SPR- males evolved behavioural responses consistent with decreased male post-copulatory investment at each mating and decreased overall pre-copulatory performance. The trend towards increased SP gene expression might plausibly relate to functional differences in the two domains of the SP protein. Our study highlights the utility of genetic manipulations of animal social and sexual environments coupled with experimental evolution.
Beyond promiscuity: mate-choice commitments in social breeding
Boomsma, Jacobus J.
2013-01-01
Obligate eusociality with distinct caste phenotypes has evolved from strictly monogamous sub-social ancestors in ants, some bees, some wasps and some termites. This implies that no lineage reached the most advanced form of social breeding, unless helpers at the nest gained indirect fitness values via siblings that were identical to direct fitness via offspring. The complete lack of re-mating promiscuity equalizes sex-specific variances in reproductive success. Later, evolutionary developments towards multiple queen-mating retained lifetime commitment between sexual partners, but reduced male variance in reproductive success relative to female's, similar to the most advanced vertebrate cooperative breeders. Here, I (i) discuss some of the unique and highly peculiar mating system adaptations of eusocial insects; (ii) address ambiguities that remained after earlier reviews and extend the monogamy logic to the evolution of soldier castes; (iii) evaluate the evidence for indirect fitness benefits driving the dynamics of (in)vertebrate cooperative breeding, while emphasizing the fundamental differences between obligate eusociality and cooperative breeding; (iv) infer that lifetime commitment is a major driver towards higher levels of organization in bodies, colonies and mutualisms. I argue that evolutionary informative definitions of social systems that separate direct and indirect fitness benefits facilitate transparency when testing inclusive fitness theory. PMID:23339241
Olsson, M; Madsen, T
2001-01-01
We review postcopulatory phenomena in the Swedish sand lizard (Lacerta agilis) and adder (Vipera berus), and in particular, links between female promiscuity, determinants of paternity, and offspring viability. In both species, females mate multiply and exhibit a positive relationship between the number of partners and offspring viability. We conclude that this relationship is most likely the result of variable genetic compatibility between mates arising from postcopulatory phenomena, predominantly assortative fertilization with respect to parental genotypes. However, males who were more successful at mate acquisition were also more successful in situations of sperm competition, suggesting a possible link between male (diploid and haploid) genetic quality per se and probability of fertilization. Neither the number of partners nor the number of matings influenced the risk of infertility in sand lizards, suggesting that selection for reduced risk of infertility is not a sufficient explanation for maintaining female promiscuity in this population. Finally, we conclude that the relatively low genetic variability exhibited by our study populations may have facilitated detection of genetic benefits compared to more outbred ones. However, recent work derived from outbred populations in other taxa suggest a greater generality of the principles we discuss than previously may have been appreciated.
Rapid adaptation to mammalian sociality via sexually selected traits
2013-01-01
Background Laboratory studies show that the components of sexual selection (e.g., mate choice and intrasexual competition) can profoundly affect the development and fitness of offspring. Less is known, however, about the total effects of sexual selection on offspring in normal social conditions. Complex social networks, such as dominance hierarchies, regulate the opportunity for mating success, and are often missing from laboratory studies. Social selection is an extended view of sexual selection that incorporates competition during sexual and nonsexual interactions, and predicts complex evolutionary dynamics. Whether social selection improves or constrains offspring fitness is controversial. Results To identify fitness consequences of social selection, wild-derived mice that had bred under laboratory conditions for eight generations were re-introduced to naturalistic competition in enclosures for three consecutive generations (promiscuous line). In parallel, a control lineage bred in cages under random mate assignment (monogamous line). A direct competition experiment using second-generation animals revealed that promiscuous line males had greater reproductive success than monogamous line males (particularly during extra-territorial matings), in spite of higher mortality and equivalent success in social dominance and sperm competition. There were no major female fitness effects (though promiscuous line females had fewer litters than monogamous line females). This result suggested that selection primarily acted upon a sexually attractive male phenotype in the promiscuous line, a hypothesis we confirmed in female odor and mating preference trials. Conclusions We present novel evidence for the strength of sexual selection under normal social conditions, and show rapid male adaptation driven largely by sexual trait expression, with tradeoffs in survivorship and female fecundity. Re-introducing wild-derived mice to competition quickly uncovers sexually selected phenotypes otherwise lost in normal colony breeding. PMID:23577674
Promiscuity and the evolution of sexual transmitted diseases
NASA Astrophysics Data System (ADS)
Gonçalves, Sebastián; Kuperman, Marcelo; Ferreira da Costa Gomes, Marcelo
2003-09-01
We study the relation between different social behaviors and the onset of epidemics in a model for the dynamics of sexual transmitted diseases. The model considers the society as a system of individual sexuated agents that can be organized in couples and interact with each other. The different social behaviors are incorporated assigning what we call a promiscuity value to each individual agent. The individual promiscuity is taken from a distribution and represents the daily probability of going out to look for a sexual partner, abandoning its eventual mate. In terms of this parameter we find a threshold for the epidemic which is much lower than the classical SIR model prediction, i.e., R0 (basic reproductive number)=1. Different forms for the distribution of the population promiscuity are considered showing that the threshold is weakly sensitive to them. We study the homosexual and the heterosexual case as well.
Frequency dependence in matings with water-borne sperm.
Pemberton, A J; Noble, L R; Bishop, J D D
2003-03-01
Negative frequency-dependent mating success--the rare male effect--is a potentially powerful evolutionary force, but disagreement exists as to whether previous work, focusing on copulating species, has robustly demonstrated this phenomenon. Noncopulating sessile organisms that release male gametes into the environment but retain their eggs for fertilization may routinely receive unequal mixtures of sperm. Although promiscuity seems unavoidable it does not follow that the resulting paternity obeys 'fair raffle' expectations. This study investigates frequency dependence in the mating of one such species, the colonial ascidian Diplosoma listerianum. In competition with an alternative sperm source males fathered more progeny if previously mated to a particular female than if no mating history existed. This suggests positive frequency-dependent selection, but may simply result from a mate order effect involving sperm storage. With fewer acclimation matings, separated by longer intervals, this pattern was not found. When, in a different experimental design, virgin females were given simultaneous mixtures of gametes at widely divergent concentrations, sperm at the lower frequency consistently achieved a greater than expected share of paternity--a rare male effect. A convincing argument as to why D. listerianum should favour rare sperm has not been identified, as sperm rarity is expected to correlate very poorly with ecological or genetic male characteristics in this pattern of mating. The existence of nongenetic female preferences at the level of colony modules, analogous in effect to fixed female preferences, is proposed. If visible to selection, indirect benefits from increasing the genetic diversity of a sibship appear the only likely explanation of the rare male effect in this system as the life history presents virtually no costs to multiple mating, and a near absence of direct (resource) benefits, whereas less controversial hypotheses of female promiscuity (e.g. trade up, genetic incompatibility) do not seem appropriate.
Dubuc, Constance; Coyne, Sean P.; Maestripieri, Dario
2013-01-01
The adaptive function of male masturbation is still poorly understood, despite its high prevalence in humans and other animals. In non-human primates, male masturbation is most frequent among anthropoid monkeys and apes living in multimale-multifemale groups with a promiscuous mating system. In these species, male masturbation may be a non-functional by-product of high sexual arousal or be adaptive by providing advantages in terms of sperm competition or by decreasing the risk of sexually transmitted infections. We investigated the possible functional significance of male masturbation using behavioral data collected on 21 free-ranging male rhesus macaques (Macaca mulatta) at the peak of the mating season. We found some evidence that masturbation is linked to low mating opportunities: regardless of rank, males were most likely to be observed masturbating on days in which they were not observed mating, and lower-ranking males mated less and tended to masturbate more frequently than higher-ranking males. These results echo the findings obtained for two other species of macaques, but contrast those obtained in red colobus monkeys (Procolobus badius) and Cape ground squirrels (Xerus inauris). Interestingly, however, male masturbation events ended with ejaculation in only 15% of the observed masturbation time, suggesting that new hypotheses are needed to explain masturbation in this species. More studies are needed to establish whether male masturbation is adaptive and whether it serves similar or different functions in different sexually promiscuous species. PMID:24187414
Dubuc, Constance; Coyne, Sean P; Maestripieri, Dario
2013-11-01
The adaptive function of male masturbation is still poorly understood, despite its high prevalence in humans and other animals. In non-human primates, male masturbation is most frequent among anthropoid monkeys and apes living in multimale-multifemale groups with a promiscuous mating system. In these species, male masturbation may be a non-functional by-product of high sexual arousal or be adaptive by providing advantages in terms of sperm competition or by decreasing the risk of sexually transmitted infections. We investigated the possible functional significance of male masturbation using behavioral data collected on 21 free-ranging male rhesus macaques ( Macaca mulatta ) at the peak of the mating season. We found some evidence that masturbation is linked to low mating opportunities: regardless of rank, males were most likely to be observed masturbating on days in which they were not observed mating, and lower-ranking males mated less and tended to masturbate more frequently than higher-ranking males. These results echo the findings obtained for two other species of macaques, but contrast those obtained in red colobus monkeys ( Procolobus badius ) and Cape ground squirrels ( Xerus inauris ). Interestingly, however, male masturbation events ended with ejaculation in only 15% of the observed masturbation time, suggesting that new hypotheses are needed to explain masturbation in this species. More studies are needed to establish whether male masturbation is adaptive and whether it serves similar or different functions in different sexually promiscuous species.
The evolution of monogamy in response to partner scarcity
Schacht, Ryan; Bell, Adrian V.
2016-01-01
The evolution of monogamy and paternal care in humans is often argued to have resulted from the needs of our expensive offspring. Recent research challenges this claim, however, contending that promiscuous male competitors and the risk of cuckoldry limit the scope for the evolution of male investment. So how did monogamy first evolve? Links between mating strategies and partner availability may offer resolution. While studies of sex roles commonly assume that optimal mating rates for males are higher, fitness payoffs to monogamy and the maintenance of a single partner can be greater when partners are rare. Thus, partner availability is increasingly recognized as a key variable structuring mating behavior. To apply these recent insights to human evolution, we model three male strategies – multiple mating, mate guarding and paternal care – in response to partner availability. Under assumed ancestral human conditions, we find that male mate guarding, rather than paternal care, drives the evolution of monogamy, as it secures a partner and ensures paternity certainty in the face of more promiscuous competitors. Accordingly, we argue that while paternal investment may be common across human societies, current patterns should not be confused with the reason pairing first evolved. PMID:27600189
The evolution of monogamy in response to partner scarcity.
Schacht, Ryan; Bell, Adrian V
2016-09-07
The evolution of monogamy and paternal care in humans is often argued to have resulted from the needs of our expensive offspring. Recent research challenges this claim, however, contending that promiscuous male competitors and the risk of cuckoldry limit the scope for the evolution of male investment. So how did monogamy first evolve? Links between mating strategies and partner availability may offer resolution. While studies of sex roles commonly assume that optimal mating rates for males are higher, fitness payoffs to monogamy and the maintenance of a single partner can be greater when partners are rare. Thus, partner availability is increasingly recognized as a key variable structuring mating behavior. To apply these recent insights to human evolution, we model three male strategies - multiple mating, mate guarding and paternal care - in response to partner availability. Under assumed ancestral human conditions, we find that male mate guarding, rather than paternal care, drives the evolution of monogamy, as it secures a partner and ensures paternity certainty in the face of more promiscuous competitors. Accordingly, we argue that while paternal investment may be common across human societies, current patterns should not be confused with the reason pairing first evolved.
Male dominance rank and reproductive success in chimpanzees, Pan troglodytes schweinfurthii.
Wroblewski, Emily E; Murray, Carson M; Keele, Brandon F; Schumacher-Stankey, Joann C; Hahn, Beatrice H; Pusey, Anne E
2009-01-01
Competition for fertile females determines male reproductive success in many species. The priority of access model predicts that male dominance rank determines access to females, but this model has been difficult to test in wild populations, particularly in promiscuous mating systems. Tests of the model have produced variable results, probably because of the differing socioecological circumstances of individual species and populations. We tested the predictions of the priority of access model in the chimpanzees of Gombe National Park, Tanzania. Chimpanzees are an interesting species in which to test the model because of their fission-fusion grouping patterns, promiscuous mating system and alternative male mating strategies. We determined paternity for 34 offspring over a 22-year period and found that the priority of access model was generally predictive of male reproductive success. However, we found that younger males had higher success per male than older males, and low-ranking males sired more offspring than predicted. Low-ranking males sired offspring with younger, less desirable females and by engaging in consortships more often than high-ranking fathers. Although alpha males never sired offspring with related females, inbreeding avoidance of high-ranking male relatives did not completely explain the success of low-ranking males. While our work confirms that male rank typically predicts male chimpanzee reproductive success, other factors are also important; mate choice and alternative male strategies can give low-ranking males access to females more often than would be predicted by the model. Furthermore, the success of younger males suggests that they are more successful in sperm competition.
Huchard, Elise; Canale, Cindy I; Le Gros, Chloé; Perret, Martine; Henry, Pierre-Yves; Kappeler, Peter M
2012-04-07
Classic sex roles depict females as choosy, but polyandry is widespread. Empirical attempts to understand the evolution of polyandry have often focused on its adaptive value to females, whereas 'convenience polyandry' might simply decrease the costs of sexual harassment. We tested whether constraint-free female strategies favour promiscuity over mating selectivity through an original experimental design. We investigated variation in mating behaviour in response to a reversible alteration of sexual dimorphism in body mass in the grey mouse lemur, a small primate where female brief sexual receptivity allows quantifying polyandry. We manipulated body condition in captive females, predicting that convenience polyandry would increase when females are weaker than males, thus less likely to resist their solicitations. Our results rather support the alternative hypothesis of 'adaptive polyandry': females in better condition are more polyandrous. Furthermore, we reveal that multiple mating incurs significant energetic costs, which are strikingly symmetrical between the sexes. Our study shows that mouse lemur females exert tight control over mating and actively seek multiple mates. The benefits of remating are nevertheless not offset by its costs in low-condition females, suggesting that polyandry is a flexible strategy yielding moderate fitness benefits in this small mammal.
Huchard, Elise; Canale, Cindy I.; Le Gros, Chloé; Perret, Martine; Henry, Pierre-Yves; Kappeler, Peter M.
2012-01-01
Classic sex roles depict females as choosy, but polyandry is widespread. Empirical attempts to understand the evolution of polyandry have often focused on its adaptive value to females, whereas ‘convenience polyandry’ might simply decrease the costs of sexual harassment. We tested whether constraint-free female strategies favour promiscuity over mating selectivity through an original experimental design. We investigated variation in mating behaviour in response to a reversible alteration of sexual dimorphism in body mass in the grey mouse lemur, a small primate where female brief sexual receptivity allows quantifying polyandry. We manipulated body condition in captive females, predicting that convenience polyandry would increase when females are weaker than males, thus less likely to resist their solicitations. Our results rather support the alternative hypothesis of ‘adaptive polyandry’: females in better condition are more polyandrous. Furthermore, we reveal that multiple mating incurs significant energetic costs, which are strikingly symmetrical between the sexes. Our study shows that mouse lemur females exert tight control over mating and actively seek multiple mates. The benefits of remating are nevertheless not offset by its costs in low-condition females, suggesting that polyandry is a flexible strategy yielding moderate fitness benefits in this small mammal. PMID:21976684
Female economic dependence and the morality of promiscuity.
Price, Michael E; Pound, Nicholas; Scott, Isabel M
2014-10-01
In environments in which female economic dependence on a male mate is higher, male parental investment is more essential. In such environments, therefore, both sexes should value paternity certainty more and thus object more to promiscuity (because promiscuity undermines paternity certainty). We tested this theory of anti-promiscuity morality in two studies (N = 656 and N = 4,626) using U.S. samples. In both, we examined whether opposition to promiscuity was higher among people who perceived greater female economic dependence in their social network. In Study 2, we also tested whether economic indicators of female economic dependence (e.g., female income, welfare availability) predicted anti-promiscuity morality at the state level. Results from both studies supported the proposed theory. At the individual level, perceived female economic dependence explained significant variance in anti-promiscuity morality, even after controlling for variance explained by age, sex, religiosity, political conservatism, and the anti-promiscuity views of geographical neighbors. At the state level, median female income was strongly negatively related to anti-promiscuity morality and this relationship was fully mediated by perceived female economic dependence. These results were consistent with the view that anti-promiscuity beliefs may function to promote paternity certainty in circumstances where male parental investment is particularly important.
Comparing pre- and post-copulatory mate competition using social network analysis in wild crickets
Fisher, David N.; Rodríguez-Muñoz, Rolando
2016-01-01
Sexual selection results from variation in success at multiple stages in the mating process, including competition before and after mating. The relationship between these forms of competition, such as whether they trade-off or reinforce one another, influences the role of sexual selection in evolution. However, the relationship between these 2 forms of competition is rarely quantified in the wild. We used video cameras to observe competition among male field crickets and their matings in the wild. We characterized pre- and post-copulatory competition as 2 networks of competing individuals. Social network analysis then allowed us to determine 1) the effectiveness of precopulatory competition for avoiding postcopulatory competition, 2) the potential for divergent mating strategies, and 3) whether increased postcopulatory competition reduces the apparent reproductive benefits of male promiscuity. We found 1) limited effectiveness of precopulatory competition for avoiding postcopulatory competition; 2) males do not specifically engage in only 1 type of competition; and 3) promiscuous individuals tend to mate with each other, which will tend to reduce variance in reproductive success in the population and highlights the trade-off inherent in mate guarding. Our results provide novel insights into the works of sexual competition in the wild. Furthermore, our study demonstrates the utility of using network analyses to study competitive interactions, even in species lacking obvious social structure. PMID:27174599
An Evolutionary Perspective of Friendship Selection
ERIC Educational Resources Information Center
Coutinho, Savia A.
2007-01-01
The research reported in this article investigates whether promiscuity plays a role in same-sex and opposite-sex friend selection. Since same-sex friends share strong similarity and spend time with their friends' mates or potential mates, it becomes important to select same-sex friends who will not be sexual rivals. One way to determine rivalry in…
Promiscuity, sexual selection, and genetic diversity: a reply to Spurgin.
Lifjeld, Jan T; Gohli, Jostein; Johnsen, Arild
2013-10-01
We recently reported a positive association between female promiscuity and genetic diversity across passerine birds, and launched the hypothesis that female promiscuity acts as a balancing selection, pressure maintaining genetic diversity in populations (Gohli et al.2013). Spurgin (2013) questions both our analyses and interpretations. While we agree that the hypothesis needs more comprehensive empirical testing, we find his specific points of criticism unjustified. In a more general perspective, we call for a more explicit recognition of female mating preferences as mechanisms of selection in population genetics theory. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Monogamy in a new species of wild guinea pigs (Galea sp.)
NASA Astrophysics Data System (ADS)
Hohoff, Christa; Solmsdorff, Katrin; Löttker, Petra; Kemme, Kristina; Epplen, Jörg; Cooper, Trevor; Sachser, Norbert
2002-08-01
A new species of wild guinea pigs from Bolivia was recently discovered: Galea sp. So far no data are available concerning its social and mating systems. We therefore investigated behavioural compatibility, sexual dimorphism, paternity in a male-competing situation, testicular and epididymal size, and sperm morphology and motility. The results showed a complete intrasexual and moderate intersexual behavioural incompatibility between unfamiliar animals, a reversed sexual dimorphism with females larger than males, and litters always fathered by single males. Furthermore, both the reproductive organ weights and the percentage of motile sperm and sperm with intact acrosomes were significantly lower compared with the promiscuous congeneric Galea musteloides. In summary, these data strongly suggest a monogamous social and mating system for the recently discovered Galea sp.
The effect of the promiscuity stereotype on opposition to gay rights.
Pinsof, David; Haselton, Martie G
2017-01-01
Opposition to gay rights is prevalent in countries around the world. Recent correlational research suggests that opposition to gay rights may be driven by an interaction between one's own short-term mating orientation (i.e. willingness to engage in casual sex) and representations of gay people as sexually promiscuous. Here, we experimentally manipulated representations of gay men by randomly assigning participants to read one of two versions of a fictitious newspaper article, one of which contained faux scientific evidence confirming the stereotype that gay men are promiscuous, and the other containing faux scientific evidence refuting the stereotype. We found that the manipulation interacted with short-term mating orientation (STMO) to predict opposition to gay rights, such that low-STMO individuals (i.e. more averse to casual sex) exhibited more support for gay rights when assigned to read the stereotype-refuting article compared to the stereotype-confirming article, whereas high-STMO individuals (i.e. less averse to casual sex) were not significantly influenced by the manipulation. We discuss the implications of these findings for the study of antigay attitudes, as well as for recent societal changes in acceptance of homosexuality.
The effect of the promiscuity stereotype on opposition to gay rights
Haselton, Martie G.
2017-01-01
Opposition to gay rights is prevalent in countries around the world. Recent correlational research suggests that opposition to gay rights may be driven by an interaction between one’s own short-term mating orientation (i.e. willingness to engage in casual sex) and representations of gay people as sexually promiscuous. Here, we experimentally manipulated representations of gay men by randomly assigning participants to read one of two versions of a fictitious newspaper article, one of which contained faux scientific evidence confirming the stereotype that gay men are promiscuous, and the other containing faux scientific evidence refuting the stereotype. We found that the manipulation interacted with short-term mating orientation (STMO) to predict opposition to gay rights, such that low-STMO individuals (i.e. more averse to casual sex) exhibited more support for gay rights when assigned to read the stereotype-refuting article compared to the stereotype-confirming article, whereas high-STMO individuals (i.e. less averse to casual sex) were not significantly influenced by the manipulation. We discuss the implications of these findings for the study of antigay attitudes, as well as for recent societal changes in acceptance of homosexuality. PMID:28704375
Monogamy has a fixation advantage based on fitness variance in an ideal promiscuity group.
Garay, József; Móri, Tamás F
2012-11-01
We consider an ideal promiscuity group of females, which implies that all males have the same average mating success. If females have concealed ovulation, then the males' paternity chances are equal. We find that male-based monogamy will be fixed in females' promiscuity group when the stochastic Darwinian selection is described by a Markov chain.We point out that in huge populations the relative advantage (difference between average fitness of different strategies) determines primarily the end of evolution; in the case of neutrality (means are equal) the smallest variance guarantees fixation (absorption) advantage; when the means and variances are the same, then the higher third moment determines which types will be fixed in the Markov chains.
Extrapair mating between relatives in the barn swallow: a role for kin selection?
Kleven, Oddmund; Jacobsen, Frode; Robertson, Raleigh J; Lifjeld, Jan T
2005-12-22
Why do females of many species mate with more than one male? One of the main hypotheses suggests that female promiscuity is an insurance mechanism against the potential detrimental effects of inbreeding. Accordingly, females should preferably mate with less related males in multiple or extrapair mating. Here we analyse paternity, relatedness among mating partners, and relatedness between parents and offspring, in the socially monogamous North American barn swallow (Hirundo rustica erythrogaster). In contrast to the inbreeding avoidance hypothesis, we found that extrapair mating partners were more related than expected by random choice, and tended to be more related than social partners. Furthermore, extrapair mating resulted in genetic parents being more related to their extrapair young than to their withinpair young. We propose a new hypothesis for extrapair mating based on kin selection theory as a possible explanation to these findings.
Kelley, Trish C; Hare, James F
2010-10-20
Partners advertisements provide advertisers with access to a large pool of prospective mates, and have proven useful in documenting sex differences in human mating preferences. We coded data from an Internet site (AshleyMadison.com) catering to advertisers engaged in existing pair-bonded relationships. While we predicted that pair-bonding may liberate advertisers from conforming to sexual stereotypes of male promiscuity and female choosiness, our results are uniformly consistent with those stereotypes. Our findings thus provide further evidence that human mating behavior is highly constrained by fundamental biological differences between males and females.
Bateman's principles and human sex roles.
Brown, Gillian R; Laland, Kevin N; Mulder, Monique Borgerhoff
2009-06-01
In 1948, Angus J. Bateman reported a stronger relationship between mating and reproductive success in male fruit flies compared with females, and concluded that selection should universally favour 'an undiscriminating eagerness in the males and a discriminating passivity in the females' to obtain mates. The conventional view of promiscuous, undiscriminating males and coy, choosy females has also been applied to our own species. Here, we challenge the view that evolutionary theory prescribes stereotyped sex roles in human beings, firstly by reviewing Bateman's principles and recent sexual selection theory and, secondly, by examining data on mating behaviour and reproductive success in current and historic human populations. We argue that human mating strategies are unlikely to conform to a single universal pattern.
Mating System and Sexual Selection in the Scorpionfly Panorpa vulgaris (Mecoptera: Panorpidae)
NASA Astrophysics Data System (ADS)
Sauer, Klaus Peter; Lubjuhn, Thomas; Sindern, Jörn; Kullmann, Harald; Kurtz, Joachim; Epplen, Conny; Epplen, Jörg Thomas
1998-05-01
has become a model insect for testing theories of sexual selection. This contribution summarizes that which has been learned in recent years and presents new data that clearly show that the mating system of P. vulgaris is not simply a resource-defense polygyny, as has previously been thought. In P. vulgaris neither the pattern in food exploitation nor the ratio of variance in the lifetime reproductive success of the two sexes is in accordance with that expected in resource defense polygynous mating systems. Lifetime mating duration is the most important proximate determinant of male fitness. Males employing alternative mating tactics obtain copulations of varying duration in relation to the following sequence: saliva secretion 1 food offering 1 no gift. The number of salivary masses which males provide to females during their lifetime is significantly correlated with the lifetime condition index. The condition index depends on the fighting prowess of males and their ability to find food items. Thus saliva secretion of Panorpa is considered a Zahavian handicap, which can serve as an honest quality indicator used by mating females. Our results confirm four main predictions of the indicator model of the theory of sexual selection: (a) the indicator signals high ecological quality of its bearer, (b) the indicator value increases with phenotypic quality, (c) the indicator value is positively correlated with the genetic quality affecting offspring fitness in a natural selection context, and (d) the quality indicator is more costly for low- than for high-quality individuals. The evolutionary consequences of the mating pattern and the sperm competition mechanism in P. vulgaris are discussed in the context the way in which sexual selection creates and maintains sperm mixing and the evolution of a promiscuous mating system.
Nelson, Adam C.; Cauceglia, Joseph W.; Merkley, Seth D.; Youngson, Neil A.; Oler, Andrew J.; Nelson, Randy J.; Cairns, Bradley R.; Whitelaw, Emma; Potts, Wayne K.
2013-01-01
When brought into captivity, wild animals can adapt to domestication within 10 generations. Such adaptations may decrease fitness in natural conditions. Many selective pressures are disrupted in captivity, including social behavioral networks. Although lack of sociality in captivity appears to mediate domestication, the underlying mechanisms are not well understood. Additionally, determining the contribution of genetic inheritance vs. transgenerational effects during relaxed selection may provide insight into the flexibility of adaptation. When wild-derived mice kept under laboratory conditions for eight generations were reintroduced to sociality and promiscuity (free mate choice), they adapted within two generations. Fitness assessments between this promiscuous lineage and a monogamous laboratory lineage revealed male-specific effects. Promiscuous-line males had deficits in viability, but a striking advantage in attracting mates, and their scent marks were also more attractive to females. Here, we investigate mechanistic details underlying this olfactory signal and identify a role of major urinary protein (MUP) pheromones. Promiscuous-line males inherit higher MUP expression than monogamous-line males through transgenerational inheritance. Sociality-driven maternal and paternal effects reveal intriguing conflicts among parents and offspring over pheromone expression. MUP up-regulation is not driven by hormone-driven transduction pathways, but rather is associated with reduction in DNA methylation of a CpG dinucleotide in the promoter. This reduction in methylation could enhance transcription by promoting the binding of transcription factor USF1 (upstream stimulatory factor 1). Finally, we experimentally demonstrate that increased MUP expression is a female attractant. These results identify molecular mechanisms guiding domestication and adaptive responses to fluctuating sociality. PMID:24248373
Preston, B T; Stevenson, I R; Pemberton, J M; Coltman, D W; Wilson, K
2003-03-22
Male contests for access to receptive females are thought to have selected for the larger male body size and conspicuous weaponry frequently observed in mammalian species. However, when females copulate with multiple males within an oestrus, male reproductive success is a function of both pre- and postcopulatory strategies. The relative importance of these overt and covert forms of sexual competition has rarely been assessed in wild populations. The Soay sheep mating system is characterized by male contests for mating opportunities and high female promiscuity. We find that greater horn length, body size and good condition each independently influence a male's ability to monopolize receptive females. For males with large horns at least, this behavioural success translates into greater siring success. Consistent with sperm-competition theory, we also find that larger testes are independently associated with both higher copulation rates and increased siring success. This advantage of larger testes emerges, and strengthens, as the number of oestrous females increases, as dominant males can no longer control access to them all. Our results thus provide direct quantitative evidence that male reproductive success in wild populations of mammals is dependent upon the relative magnitude of both overt contest competition and covert sperm competition.
A social model for the evolution of sexually transmitted diseases
NASA Astrophysics Data System (ADS)
Gonçalves, Sebastián; Kuperman, Marcelo; Ferreira da Costa Gomes, Marcelo
2004-10-01
We have introduced recently a model for the spread of sexually transmitted diseases, in which the social behavior is incorporated as a key factor for the further propagation of the infection. The system may be regarded as a society of agents where in principle anyone can sexually interact with any other one in the population. The social behavior is taking into account by means of two parameters: the fraction of singles ρs and the promiscuity p. The promiscuity parameter defines the per individual daily probability of going out to look for a sexual partner, abandoning its eventual mate. In this contribution we show that the interaction between this two parameters give rise to a non-trivial epidemic threshold condition, when going from the homogeneous case ( ρs=1) to heterogeneous cases ( ρs<1). These results can have profound implication in the interpretation of real epidemic data.
Sexually transmitted infection and the evolution of serial monogamy
McLeod, David V.; Day, Troy
2014-01-01
The selective forces shaping mating systems have long been of interest to biologists. One particular selective pressure that has received comparatively little attention is sexually transmitted infections (STIs). While it has been hypothesized that STIs could drive the evolutionary emergence of monogamy, there is little theoretical support. Here we use an evolutionary invasion analysis to determine what aspects of pathogen virulence and transmission are necessary for serial monogamy to evolve in a promiscuous population. We derive a biologically intuitive invasion condition in terms of population-specific quantities. From this condition, we obtain two main results. First, when pathogen virulence causes mortality rather than sterility, monogamy is more likely to evolve. Second, we find that at intermediate pathogen transmission rates, monogamy is the most selectively advantageous, whereas at high- and low-transmission rates, monogamy is generally selected against. As a result, it is possible for a pathogen to be highly virulent, yet for promiscuity to persist. PMID:25320174
The Adaptive Function of Masturbation in a Promiscuous African Ground Squirrel
Waterman, Jane M.
2010-01-01
Background Studies of animal mating systems increasingly emphasize female multiple mating and cryptic sexual selection, particularly sperm competition. Males under intense sperm competition may manipulate sperm quantity and quality through masturbation, which could waste sperm and decrease fertility. I examined the factors influencing masturbation by male Cape ground squirrels (Xerus inauris) in light of a number of functional hypotheses. Methodology Observational data on a marked population of squirrels were collected in east-central Namibia using scan and all-occurrences sampling. Findings Masturbation was far more frequent on days of female oestrus and mostly occurred after copulation. Masturbation rates were higher in dominant males, which copulate more, than in subordinates and increased with number of mates a female accepts. Conclusions These results suggest that masturbation in this species was not a response to sperm competition nor a sexual outlet by subordinates that did not copulate. Instead masturbation could function as a form of genital grooming. Female Cape ground squirrels mate with up to 10 males in a 3-hr oestrus, and by masturbating after copulation males could reduce the chance of infection. Sexually transmitted infections (STIs) can profoundly affect fertility, and their consequences for mating strategies need to be examined more fully. PMID:20927404
The adaptive function of masturbation in a promiscuous African ground squirrel.
Waterman, Jane M
2010-09-28
Studies of animal mating systems increasingly emphasize female multiple mating and cryptic sexual selection, particularly sperm competition. Males under intense sperm competition may manipulate sperm quantity and quality through masturbation, which could waste sperm and decrease fertility. I examined the factors influencing masturbation by male Cape ground squirrels (Xerus inauris) in light of a number of functional hypotheses. Observational data on a marked population of squirrels were collected in east-central Namibia using scan and all-occurrences sampling. Masturbation was far more frequent on days of female oestrus and mostly occurred after copulation. Masturbation rates were higher in dominant males, which copulate more, than in subordinates and increased with number of mates a female accepts. These results suggest that masturbation in this species was not a response to sperm competition nor a sexual outlet by subordinates that did not copulate. Instead masturbation could function as a form of genital grooming. Female Cape ground squirrels mate with up to 10 males in a 3-hr oestrus, and by masturbating after copulation males could reduce the chance of infection. Sexually transmitted infections (STIs) can profoundly affect fertility, and their consequences for mating strategies need to be examined more fully.
Effective size of two feral domestic cat populations (Felis catus L): effect of the mating system.
Kaeuffer, R; Pontier, D; Devillard, S; Perrin, N
2004-02-01
A variety of behavioural traits have substantial effects on the gene dynamics and genetic structure of local populations. The mating system is a plastic trait that varies with environmental conditions in the domestic cat (Felis catus) allowing an intraspecific comparison of the impact of this feature on genetic characteristics of the population. To assess the potential effect of the heterogenity of males' contribution to the next generation on variance effective size, we applied the ecological approach of Nunney & Elam (1994) based upon a demographic and behavioural study, and the genetic 'temporal methods' of Waples (1989) and Berthier et al. (2002) using microsatellite markers. The two cat populations studied were nearly closed, similar in size and survival parameters, but differed in their mating system. Immigration appeared extremely restricted in both cases due to environmental and social constraints. As expected, the ratio of effective size to census number (Ne/N) was higher in the promiscuous cat population (harmonic mean = 42%) than in the polygynous one (33%), when Ne was calculated from the ecological method. Only the genetic results based on Waples' estimator were consistent with the ecological results, but failed to evidence an effect of the mating system. Results based on the estimation of Berthier et al. (2002) were extremely variable, with Ne sometimes exceeding census size. Such low reliability in the genetic results should retain attention for conservation purposes.
Shaw, Robyn E; Banks, Sam C; Peakall, Rod
2018-01-01
For decades, studies have focused on how dispersal and mating systems influence genetic structure across populations or social groups. However, we still lack a thorough understanding of how these processes and their interaction shape spatial genetic patterns over a finer scale (tens-hundreds of metres). Using uniparentally inherited markers may help answer these questions, yet their potential has not been fully explored. Here, we use individual-level simulations to investigate the effects of dispersal and mating system on fine-scale genetic structure at autosomal, mitochondrial and Y chromosome markers. Using genetic spatial autocorrelation analysis, we found that dispersal was the major driver of fine-scale genetic structure across maternally, paternally and biparentally inherited markers. However, when dispersal was restricted (mean distance = 100 m), variation in mating behaviour created strong differences in the comparative level of structure detected at maternally and paternally inherited markers. Promiscuity reduced spatial genetic structure at Y chromosome loci (relative to monogamy), whereas structure increased under polygyny. In contrast, mitochondrial and autosomal markers were robust to differences in the specific mating system, although genetic structure increased across all markers when reproductive success was skewed towards fewer individuals. Comparing males and females at Y chromosome vs. mitochondrial markers, respectively, revealed that some mating systems can generate similar patterns to those expected under sex-biased dispersal. This demonstrates the need for caution when inferring ecological and behavioural processes from genetic results. Comparing patterns between the sexes, across a range of marker types, may help us tease apart the processes shaping fine-scale genetic structure. © 2017 John Wiley & Sons Ltd.
Pérez-González, Javier; Costa, Vânia; Santos, Pedro; Slate, Jon; Carranza, Juan; Fernández-Llario, Pedro; Zsolnai, Attila; Monteiro, Nuno M.; Anton, István; Buzgó, József; Varga, Gyula; Beja-Pereira, Albano
2014-01-01
The maintenance of genetic diversity across generations depends on both the number of reproducing males and females. Variance in reproductive success, multiple paternity and litter size can all affect the relative contributions of male and female parents to genetic variation of progeny. The mating system of the wild boar (Sus scrofa) has been described as polygynous, although evidence of multiple paternity in litters has been found. Using 14 microsatellite markers, we evaluated the contribution of males and females to genetic variation in the next generation in independent wild boar populations from the Iberian Peninsula and Hungary. Genetic contributions of males and females were obtained by distinguishing the paternal and maternal genetic component inherited by the progeny. We found that the paternally inherited genetic component of progeny was more diverse than the maternally inherited component. Simulations showed that this finding might be due to a sampling bias. However, after controlling for the bias by fitting both the genetic diversity in the adult population and the number of reproductive individuals in the models, paternally inherited genotypes remained more diverse than those inherited maternally. Our results suggest new insights into how promiscuous mating systems can help maintain genetic variation. PMID:25541986
A shot in the dark: same-sex sexual behaviour in a deep-sea squid.
Hoving, Hendrik J T; Bush, Stephanie L; Robison, Bruce H
2012-04-23
Little is known about the reproductive habits of deep-living squids. Using remotely operated vehicles in the deep waters of the Monterey Submarine Canyon, we have found evidence of mating, i.e. implanted sperm packages, on similar body locations in males and females of the rarely seen mesopelagic squid Octopoteuthis deletron. Equivalent numbers of both sexes were found to have mated, indicating that male squid routinely and indiscriminately mate with both males and females. Most squid species are short-lived, semelparous (i.e. with a single, brief reproductive period) and promiscuous. In the deep, dark habitat where O. deletron lives, potential mates are few and far between. We suggest that same-sex mating behaviour by O. deletron is part of a reproductive strategy that maximizes success by inducing males to indiscriminately and swiftly inseminate every conspecific that they encounter.
Sexually transmitted infection and the evolution of serial monogamy.
McLeod, David V; Day, Troy
2014-12-07
The selective forces shaping mating systems have long been of interest to biologists. One particular selective pressure that has received comparatively little attention is sexually transmitted infections (STIs). While it has been hypothesized that STIs could drive the evolutionary emergence of monogamy, there is little theoretical support. Here we use an evolutionary invasion analysis to determine what aspects of pathogen virulence and transmission are necessary for serial monogamy to evolve in a promiscuous population. We derive a biologically intuitive invasion condition in terms of population-specific quantities. From this condition, we obtain two main results. First, when pathogen virulence causes mortality rather than sterility, monogamy is more likely to evolve. Second, we find that at intermediate pathogen transmission rates, monogamy is the most selectively advantageous, whereas at high- and low-transmission rates, monogamy is generally selected against. As a result, it is possible for a pathogen to be highly virulent, yet for promiscuity to persist. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Effects of polygamy on the activity/rest rhythm of male fruit flies Drosophila melanogaster
NASA Astrophysics Data System (ADS)
Vartak, Vivek Rohidas; Varma, Vishwanath; Sharma, Vijay Kumar
2015-02-01
Although polygamy is common in insects, its extent varies enormously among natural populations. Mating systems influence the evolution of reproductive traits and the difference in extent of polygamy between males and females may be a key factor in determining traits which come under the influence of sexual selection. Fruit flies Drosophila melanogaster are promiscuous as both males and females mate with multiple partners. Mating has severe consequences on the physiology and behaviour of flies, and it affects their activity/rest rhythm in a sex-specific manner. In this study, we attempted to discern the effects of mating with multiple partners as opposed to a single partner, or of remaining unmated, on the activity/rest rhythm of flies under cyclic semi-natural (SN) and constant dark (DD) conditions. The results revealed that while evening activity of mated flies was significantly reduced compared to virgins, polygamous males showed a more severe reduction compared to monogamous males. In contrast, though mated females showed reduction in evening activity compared to virgins, activity levels were not different between polygamous and monogamous females. Although there was no detectable effect of mating on clock period, power of the activity/rest rhythm was significantly reduced in mated females with no difference seen between polygamous and monogamous individuals. These results suggest that courtship motivation, represented by evening activity, is successively reduced in males due to mating with one or more partners, while in females, it does not depend on the number of mating partners. Based on these results we conclude that polygamy affects the activity/rest rhythm of fruit flies D. melanogaster in a sex-dependent manner.
Pemberton, A J; Sommerfeldt, A D; Wood, C A; Flint, H C; Noble, L R; Clarke, K R; Bishop, J D D
2004-05-01
The importance of sexual compatibility between mates has only recently been realized in zoological research into sexual selection, yet its study has been central to botanical research for many decades. The reproductive characteristics of remote mating, an absence of precopulatory mate screening, internal fertilization and embryonic brooding are shared between passively pollinated plants and a phylogenetically diverse group of sessile aquatic invertebrates. Here, we further characterize the sexual compatibility system of one such invertebrate, the colonial ascidian Diplosoma listerianum. All 66 reciprocal pairings of 12 genetic individuals were carried out. Fecundities of crosses varied widely and suggested a continuous scale of sexual compatibility. Of the 11 animals from the same population c. 40% of crosses were completely incompatible with a further c. 20% having obvious partial compatibility (reduced fecundity). We are unaware of other studies documenting such high levels of sexual incompatibility in unrelated individuals. RAPD fingerprinting was used to estimate relatedness among the 12 individuals after a known pedigree was successfully reconstructed to validate the technique. In contrast to previous results, no correlation between genetic similarity and sexual compatibility was detected. The blocking of many genotypes of sperm is expected to severely modify realized paternity away from 'fair raffle' expectations and probably reduce levels of intra-brood genetic diversity in this obligatorily promiscuous mating system. One adaptive benefit may be to reduce the bombardment of the female reproductive system by outcrossed sperm with conflicting evolutionary interests, so as to maintain female control of somatic : gametic investment.
Chimpanzees breed with genetically dissimilar mates
Rudicell, Rebecca S.; Li, Yingying; Hahn, Beatrice H.; Wroblewski, Emily; Pusey, Anne E.
2017-01-01
Inbreeding adversely affects fitness, whereas heterozygosity often augments it. Therefore, mechanisms to avoid inbreeding and increase genetic distance between mates should be advantageous in species where adult relatives reside together. Here we investigate mate choice for genetic dissimilarity in chimpanzees, a species in which many females avoid inbreeding through dispersal, but where promiscuous mating and sexual coercion can limit choice when related adults reside together. We take advantage of incomplete female dispersal in Gombe National Park, Tanzania to compare mate choice for genetic dissimilarity among immigrant and natal females in two communities using pairwise relatedness measures in 135 genotyped chimpanzees. As expected, natal females were more related to adult males in their community than were immigrant females. However, among 62 breeding events, natal females were not more related to the sires of their offspring than immigrant females, despite four instances of close inbreeding. Moreover, females were generally less related to the sires of their offspring than to non-sires. These results demonstrate that chimpanzees may be capable of detecting relatedness and selecting mates on the basis of genetic distance. PMID:28280546
Chimpanzees breed with genetically dissimilar mates.
Walker, Kara K; Rudicell, Rebecca S; Li, Yingying; Hahn, Beatrice H; Wroblewski, Emily; Pusey, Anne E
2017-01-01
Inbreeding adversely affects fitness, whereas heterozygosity often augments it. Therefore, mechanisms to avoid inbreeding and increase genetic distance between mates should be advantageous in species where adult relatives reside together. Here we investigate mate choice for genetic dissimilarity in chimpanzees, a species in which many females avoid inbreeding through dispersal, but where promiscuous mating and sexual coercion can limit choice when related adults reside together. We take advantage of incomplete female dispersal in Gombe National Park, Tanzania to compare mate choice for genetic dissimilarity among immigrant and natal females in two communities using pairwise relatedness measures in 135 genotyped chimpanzees. As expected, natal females were more related to adult males in their community than were immigrant females. However, among 62 breeding events, natal females were not more related to the sires of their offspring than immigrant females, despite four instances of close inbreeding. Moreover, females were generally less related to the sires of their offspring than to non-sires. These results demonstrate that chimpanzees may be capable of detecting relatedness and selecting mates on the basis of genetic distance.
Promiscuous honey bee queens increase colony productivity by suppressing worker selfishness.
Mattila, Heather R; Reeve, H Kern; Smith, Michael L
2012-11-06
Queen monogamy is ancestral among bees, ants, and wasps (Order Hymenoptera), and the close relatedness that it generates within colonies is considered key for the evolution of eusociality in these lineages. Paradoxically, queens of several eusocial species are extremely promiscuous, a derived behavior that decreases relatedness among workers and fitness gained from rearing siblings but benefits queens by enhancing colony productivity and inducing workers to rear queens' sons instead of less related worker-derived males. Selection for promiscuity would be especially strong if productivity in a singly inseminated queen's colony declined because selfish workers invested in personal reproduction at the expense of performing tasks that contribute to colony productivity. We show in honey bees that workers' ovaries are more developed when queens are singly rather than multiply inseminated and that increasing ovary activation is coupled with reductions in task performance by workers and colony-wide rates of foraging and waggle-dance recruitment. Increased investment in reproductive physiology by selfish workers might result from greater incentive for them to favor worker-derived males or because low mating frequency signals a queen's diminished quality or future fecundity. Either possibility fosters selection for queen promiscuity, revealing a novel benefit of it for eusocial insects. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cool Sex? Hibernation and Reproduction Overlap in the Echidna
Morrow, Gemma; Nicol, Stewart C.
2009-01-01
During hibernation there is a slowing of all metabolic processes, and thus it is normally considered to be incompatible with reproduction. In Tasmania the egg-laying mammal, the echidna (Tachyglossus aculeatus) hibernates for several months before mating in mid-winter, and in previous studies we observed males with females that were still hibernating. We monitored the reproductive activity of radio-tracked echidnas by swabbing the reproductive tract for sperm while external temperature loggers provided information on the timing of hibernation. Additional information was provided by camera traps and ultrasound imaging. More than a third of the females found in mating groups were torpid, and the majority of these had mated. Some females re-entered deep torpor for extended periods after mating. Ultrasound examination showed a developing egg in the uterus of a female that had repeatedly re-entered torpor. The presence of fresh sperm in cloacal swabs taken from this female on three occasions after her presumed date of fertilization indicated she mated several times after being fertilized. The mating of males with torpid females is the result of extreme competition between promiscuous males, while re-entry into hibernation by pregnant females could improve the possibility of mating with a better quality male. PMID:19562080
Evidence that pairing with genetically similar mates is maladaptive in a monogamous bird
Mulard, Hervé; Danchin, E.; Talbot, S.L.; Ramey, A.M.; Hatch, Shyla A.; White, J.F.; Helfenstein, F.; Wagner, R.H.
2009-01-01
Background. Evidence of multiple genetic criteria of mate choice is accumulating in numerous taxa. In many species, females have been shown to pair with genetically dissimilar mates or with extra-pair partners that are more genetically compatible than their social mates, thereby increasing their offsprings' heterozygosity which often correlates with offspring fitness. While most studies have focused on genetically promiscuous species, few studies have addressed genetically monogamous species, in which mate choice tends to be mutual. Results. Here, we used microsatellite markers to assess individual global heterozygosity and genetic similarity of pairs in a socially and genetically monogamous seabird, the black-legged kittiwake Rissa tridactyla. We found that pairs were more genetically dissimilar than expected by chance. We also identified fitness costs of breeding with genetically similar partners: (i) genetic similarity of pairs was negatively correlated with the number of chicks hatched, and (ii) offspring heterozygosity was positively correlated with growth rate and survival. Conclusion. These findings provide evidence that breeders in a genetically monogamous species may avoid the fitness costs of reproducing with a genetically similar mate. In such species that lack the opportunity to obtain extra-pair fertilizations, mate choice may therefore be under high selective pressure. ?? 2009 Mulard et al; licensee BioMed Central Ltd.
Monogamy in a Hyper-Symbiotic Shrimp
Baeza, J. Antonio; Simpson, Lunden; Ambrosio, Louis J.; Guéron, Rodrigo; Mora, Nathalia
2016-01-01
Theory predicts that monogamy is adaptive in resource-specialist symbiotic crustaceans inhabiting relatively small and morphologically simple hosts in tropical environments where predation risk away from hosts is high. We tested this prediction in Pontonia manningi, a hyper-symbiotic shrimp that dwells in the mantle cavity of the Atlantic winged oyster Pteria colymbus that, in turn, infects gorgonians from the genus Pseudopterogorgia in the Caribbean Sea. In agreement with theory, P. manningi were found dwelling as heterosexual pairs in oysters more frequently than expected by chance alone. Males and females also inhabited the same host individual independent of the female gravid condition or of the developmental stage of brooded embryos. While the observations above argue in favor of monogamy in P. manningi, there is evidence to suggest that males of the studied species are moderately promiscuous. That females found living solitary in oysters most often brooded embryos, and that males allocated more to weaponry (major claw size) than females at any given size suggest that males might be roaming among host individuals in search of and, fighting for, receptive females. All available information depicts a rather complex mating system in P. manningi: primarily monogamous but with moderately promiscuous males. PMID:26934109
Monogamy in a Hyper-Symbiotic Shrimp.
Baeza, J Antonio; Simpson, Lunden; Ambrosio, Louis J; Guéron, Rodrigo; Mora, Nathalia
2016-01-01
Theory predicts that monogamy is adaptive in resource-specialist symbiotic crustaceans inhabiting relatively small and morphologically simple hosts in tropical environments where predation risk away from hosts is high. We tested this prediction in Pontonia manningi, a hyper-symbiotic shrimp that dwells in the mantle cavity of the Atlantic winged oyster Pteria colymbus that, in turn, infects gorgonians from the genus Pseudopterogorgia in the Caribbean Sea. In agreement with theory, P. manningi were found dwelling as heterosexual pairs in oysters more frequently than expected by chance alone. Males and females also inhabited the same host individual independent of the female gravid condition or of the developmental stage of brooded embryos. While the observations above argue in favor of monogamy in P. manningi, there is evidence to suggest that males of the studied species are moderately promiscuous. That females found living solitary in oysters most often brooded embryos, and that males allocated more to weaponry (major claw size) than females at any given size suggest that males might be roaming among host individuals in search of and, fighting for, receptive females. All available information depicts a rather complex mating system in P. manningi: primarily monogamous but with moderately promiscuous males.
Myoinhibiting Peptides are the Ancestral Ligands of the Promiscuous Drosophila Sex Peptide Receptor
2010-01-01
decreases the willingness to re-mate, induces egg production and egg laying, stimulates food intake, enhances antimicrobial peptide synthesis and reduces...polypropylene tubes, centrifuged to remove cell debris, and the supernatants dried. Each sample was dissolved in 250 ll of assay buffer (0.05 M Tris, 4...variations during the cDNA synthesis step, all RNA samples were reverse transcribed simultaneously. Furthermore, several negative control reactions, i.e
Genetic evidence for monogamy in the dwarf seahorse, Hippocampus zosterae.
Rose, Emily; Small, Clayton M; Saucedo, Hector A; Harper, Cristin; Jones, Adam G
2014-01-01
Syngnathid fishes (pipefishes, seahorses, and seadragons) exhibit a wide array of mating systems ranging from monogamy with long-term pair bonds to more promiscuous mating systems, such as polyandry and polygynandry. Some seahorses, including the dwarf seahorse Hippocampus zosterae, have been found to be socially monogamous. Although several seahorse species have also been shown to be genetically monogamous, parentage analysis has not yet been applied to the dwarf seahorse. We developed 8 novel microsatellites for the dwarf seahorse to conduct genetic parentage analysis to confirm that this species is indeed monogamous. Using 4 selected loci and a total of 16 pregnant male seahorses, with 8 collected in Florida and 8 sampled in Texas, we genotyped all of the offspring within each male's brood to determine the maternal contributions to each brood. We found a maximum of 4 alleles per locus segregating within each pregnant male's brood, a pattern consistent with each brood having exactly 1 mother and 1 father. These results support previous laboratory-based behavioral studies and indicate that the dwarf seahorse, H. zosterae, is genetically monogamous. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Choosy but not chaste: multiple mating in human females.
Scelza, Brooke A
2013-01-01
When Charles Darwin set out to relate his theory of evolution by natural selection to humans he discovered that a complementary explanation was needed to properly understand the great variation seen in human behavior. The resulting work, The Descent of Man and Selection in Relation to Sex, laid out the defining principles and evidence of sexual selection. In brief, this work is best known for illuminating the typically male strategy of intrasexual competition and the typically female response of intersexual choice. While these sexual stereotypes were first laid out by Darwin, they grew in importance when, years later, A. J. Bateman, in a careful study of Drosophila mating strategies, noted that multiple mating appeared to provide great benefit to male reproductive success, but to have no such effect on females. As a result, female choice soon became synonymous with being coy, and only males were thought to gain from promiscuous behavior. However, the last thirty years of research have served to question much of the traditional wisdom about sex differences proposed by Darwin and Bateman, illuminating the many ways that women (and females more generally) can and do engage in multiple mating. Copyright © 2013 Wiley Periodicals, Inc.
Sex-role reversal of a monogamous pipefish without higher potential reproductive rate in females.
Sogabe, Atsushi; Yanagisawa, Yasunobu
2007-12-07
In monogamous animals, males are usually the predominant competitors for mates. However, a strictly monogamous pipefish Corythoichthys haematopterus exceptionally exhibits a reversed sex role. To understand why its sex role is reversed, we measured the adult sex ratio and the potential reproductive rate (PRR), two principal factors influencing the operational sex ratio (OSR), in a natural population of southern Japan. The adult sex ratio was biased towards females throughout the breeding season, but the PRR, which increased with water temperature, did not show sexual difference. We found that an alternative index of the OSR (Sf/Sm: sex ratio of 'time in') calculated from the monthly data was consistently biased towards females. The female-biased OSR associated with sex-role reversal has been reported in some polyandrous or promiscuous pipefish, but factors biasing the OSR differed between these pipefish and C. haematopterus. We concluded that the similar PRR between the sexes in C. haematopterus does not confer reproductive benefit of polygamous mating on either sex, resulting in strict monogamous mating, and its female-biased adult sex ratio promotes female-female competition for a mate, resulting in sex-role reversal.
Genetic basis of male sexual behavior.
Emmons, Scott W; Lipton, Jonathan
2003-01-01
Male sexual behavior is increasingly the focus of genetic study in a variety of animals. Genetic analysis in the soil roundworm Caenorhabditis elegans and the fruit fly Drosophila melanogaster has lead to identification of genes and circuits that govern behaviors ranging from motivation and mate-searching to courtship and copulation. Some worm and fly genes have counterparts with related functions in higher animals and many more such correspondences can be expected. Analysis of mutations in mammals can potentially lead to insights into such issues as monogamous versus promiscuous sexual behavior and sexual orientation. Genetic analysis of sexual behavior has implications for understanding how the nervous system generates and controls a complex behavior. It can also help us to gain an appreciation of how behavior is encoded by genes and their regulatory sequences. Copyright 2003 Wiley Periodicals, Inc.
Kaburu, Stefano S K; Newton-Fisher, Nicholas E
2015-06-01
Across taxa, males employ a variety of mating strategies, including sexual coercion and the provision, or trading, of resources. Biological market theory (BMT) predicts that trading of commodities for mating opportunities should exist only when males cannot monopolize access to females and/or obtain mating by force, in situations where power differentials between males are low; both coercion and trading have been reported for chimpanzees ( Pan troglodytes ). Here, we investigate whether the choice of strategy depends on the variation in male power differentials, using data from two wild communities of East African chimpanzees ( Pan troglodytes schweinfurthii ): the structurally despotic Sonso community (Budongo, Uganda) and the structurally egalitarian M-group (Mahale, Tanzania). We found evidence of sexual coercion by male Sonso chimpanzees, and of trading-of grooming for mating-by M-group males; females traded sex for neither meat nor protection from male aggression. Our results suggest that the despotism-egalitarian axis influences strategy choice: male chimpanzees appear to pursue sexual coercion when power differentials are large and trading when power differentials are small and coercion consequently ineffective. Our findings demonstrate that trading and coercive strategies are not restricted to particular chimpanzee subspecies; instead, their occurrence is consistent with BMT predictions. Our study raises interesting, and as yet unanswered, questions regarding female chimpanzees' willingness to trade sex for grooming, if doing so represents a compromise to their fundamentally promiscuous mating strategy. It highlights the importance of within-species cross-group comparisons and the need for further study of the relationship between mating strategy and dominance steepness.
Schneider, Tilman C; Kappeler, Peter M; Pozzi, Luca
2016-06-01
Information on the genetic structure of animal populations can allow inferences about mechanisms shaping their social organization, dispersal, and mating system. The mongooses (Herpestidae) include some of the best-studied mammalian systems in this respect, but much less is known about their closest relatives, the Malagasy carnivores (Eupleridae), even though some of them exhibit unusual association patterns. We investigated the genetic structure of the Malagasy narrow-striped mongoose ( Mungotictis decemlineata ), a small forest-dwelling gregarious carnivore exhibiting sexual segregation. Based on mtDNA and microsatellite analyses, we determined population-wide haplotype structure and sex-specific and within-group relatedness. Furthermore, we analyzed parentage and sibship relationships and the level of reproductive skew. We found a matrilinear population structure, with several neighboring female units sharing identical haplotypes. Within-group female relatedness was significantly higher than expected by chance in the majority of units. Haplotype diversity of males was significantly higher than in females, indicating male-biased dispersal. Relatedness within the majority of male associations did not differ from random, not proving any kin-directed benefits of male sociality in this case. We found indications for a mildly promiscuous mating system without monopolization of females by males, and low levels of reproductive skew in both sexes based on parentages of emergent young. Low relatedness within breeding pairs confirmed immigration by males and suggested similarities with patterns in social mongooses, providing a starting point for further investigations of mate choice and female control of reproduction and the connected behavioral mechanisms. Our study contributes to the understanding of the determinants of male sociality in carnivores as well as the mechanisms of female competition in species with small social units.
Garg, Kritika M; Chattopadhyay, Balaji; Ramakrishnan, Uma
2018-02-01
Bats are social animals and display a diverse variety of mating and social systems, with most species exhibiting some form of polygyny. Their social organization is fluid and individuals frequently switch partners and roosting sites. While harem-like social organization is observed in multiple tropical species, its importance is contested in many of them. In this study, we investigated the role of harems in the social organization of the old world fruit bat Cynopterus sphinx . Based on regular behavioural observations over a period of 20 months and genetic data from microsatellite markers, we observed that the social organization is flexible, individuals regularly shift between roosts and the social organization resembles a fission-fusion society. Behavioural and genetic analyses suggest that the harems are not strict units of social structure, and the colony does not show signatures of subdivision with harems as behavioural units. We also observed that there was no correlation between individuals with high association index and pairwise relatedness. Our findings indicate that similar to the mating system, the social organization of C. sphinx can also be categorized as a fission-fusion society, and hence the term 'harem' is a misnomer. We conclude that the social system of C. sphinx is flexible, with multi-male multi-female organization, and individuals tend to be loyal to a given area rather than a roost.
Sperm competition games when males invest in paternal care.
Requena, Gustavo S; Alonzo, Suzanne H
2017-08-16
Sperm competition games investigate how males partition limited resources between pre- and post-copulatory competition. Although extensive research has explored how various aspects of mating systems affect this allocation, male allocation between mating, fertilization and parental effort has not previously been considered. Yet, paternal care can be energetically expensive and males are generally predicted to adjust their parental effort in response to expected paternity. Here, we incorporate parental effort into sperm competition games, particularly exploring how the relationship between paternal care and offspring survival affects sperm competition and the relationship between paternity and paternal care. Our results support existing expectations that (i) fertilization effort should increase with female promiscuity and (ii) paternal care should increase with expected paternity. However, our analyses also reveal that the cost of male care can drive the strength of these patterns. When paternal behaviour is energetically costly, increased allocation to parental effort constrains allocation to fertilization effort. As paternal care becomes less costly, the association between paternity and paternal care weakens and may even be absent. By explicitly considering variation in sperm competition and the cost of male care, our model provides an integrative framework for predicting the interaction between paternal care and patterns of paternity. © 2017 The Author(s).
Schmitt, David P
2005-04-01
The Sociosexual Orientation Inventory (SOI; Simpson & Gangestad 1991) is a self-report measure of individual differences in human mating strategies. Low SOI scores signify that a person is sociosexually restricted, or follows a more monogamous mating strategy. High SOI scores indicate that an individual is unrestricted, or has a more promiscuous mating strategy. As part of the International Sexuality Description Project (ISDP), the SOI was translated from English into 25 additional languages and administered to a total sample of 14,059 people across 48 nations. Responses to the SOI were used to address four main issues. First, the psychometric properties of the SOI were examined in cross-cultural perspective. The SOI possessed adequate reliability and validity both within and across a diverse range of modem cultures. Second, theories concerning the systematic distribution of sociosexuality across cultures were evaluated. Both operational sex ratios and reproductively demanding environments related in evolutionary-predicted ways to national levels of sociosexuality. Third, sex differences in sociosexuality were generally large and demonstrated cross-cultural universality across the 48 nations of the ISDP, confirming several evolutionary theories of human mating. Fourth, sex differences in sociosexuality were significantly larger when reproductive environments were demanding but were reduced to more moderate levels in cultures with more political and economic gender equality. Implications for evolutionary and social role theories of human sexuality are discussed.
Extra-Pair Mating and Evolution of Cooperative Neighbourhoods
Eliassen, Sigrunn; Jørgensen, Christian
2014-01-01
A striking but unexplained pattern in biology is the promiscuous mating behaviour in socially monogamous species. Although females commonly solicit extra-pair copulations, the adaptive reason has remained elusive. We use evolutionary modelling of breeding ecology to show that females benefit because extra-pair paternity incentivizes males to shift focus from a single brood towards the entire neighbourhood, as they are likely to have offspring there. Male-male cooperation towards public goods and dear enemy effects of reduced territorial aggression evolve from selfish interests, and lead to safer and more productive neighbourhoods. The mechanism provides adaptive explanations for the common empirical observations that females engage in extra-pair copulations, that neighbours dominate as extra-pair sires, and that extra-pair mating correlates with predation mortality and breeding density. The models predict cooperative behaviours at breeding sites where males cooperate more towards public goods than females. Where maternity certainty makes females care for offspring at home, paternity uncertainty and a potential for offspring in several broods make males invest in communal benefits and public goods. The models further predict that benefits of extra-pair mating affect whole nests or neighbourhoods, and that cuckolding males are often cuckolded themselves. Derived from ecological mechanisms, these new perspectives point towards the evolution of sociality in birds, with relevance also for mammals and primates including humans. PMID:24987839
Queen promiscuity lowers disease within honeybee colonies
Seeley, Thomas D; Tarpy, David R
2006-01-01
Most species of social insects have singly mated queens, but in some species each queen mates with numerous males to create a colony with a genetically diverse worker force. The adaptive significance of polyandry by social insect queens remains an evolutionary puzzle. Using the honeybee (Apis mellifera), we tested the hypothesis that polyandry improves a colony's resistance to disease. We established colonies headed by queens that had been artificially inseminated by either one or 10 drones. Later, we inoculated these colonies with spores of Paenibacillus larvae, the bacterium that causes a highly virulent disease of honeybee larvae (American foulbrood). We found that, on average, colonies headed by multiple-drone inseminated queens had markedly lower disease intensity and higher colony strength at the end of the summer relative to colonies headed by single-drone inseminated queens. These findings support the hypothesis that polyandry by social insect queens is an adaptation to counter disease within their colonies. PMID:17015336
Sexual selection favours male parental care, when females can choose
Alonzo, Suzanne H.
2012-01-01
Explaining the evolution of male care has proved difficult. Recent theory predicts that female promiscuity and sexual selection on males inherently disfavour male care. In sharp contrast to these expectations, male-only care is often found in species with high extra-pair paternity and striking variation in mating success, where current theory predicts female-only care. Using a model that examines the coevolution of male care, female care and female choice; I show that inter-sexual selection can drive the evolution of male care when females are able to bias mating or paternity towards parental males. Surprisingly, female choice for parental males allows male care to evolve despite low relatedness between the male and the offspring in his care. These results imply that predicting how sexual selection affects parental care evolution will require further understanding of why females, in many species, either do not prefer or cannot favour males that provide care. PMID:22171082
Gilroy, James J; Lockwood, Julie L
2012-01-01
Dispersal is a critically important process in ecology, but robust predictive models of animal dispersal remain elusive. We identify a potentially ubiquitous component of variation in animal dispersal that has been largely overlooked until now: the influence of mate encounters on settlement probability. We use an individual-based model to simulate dispersal in sexually-reproducing organisms that follow a simple set of movement rules based on conspecific encounters, within an environment lacking spatial habitat heterogeneity. We show that dispersal distances vary dramatically with fluctuations in population density in such a model, even in the absence of variation in dispersive traits between individuals. In a simple random-walk model with promiscuous mating, dispersal distributions become increasingly 'fat-tailed' at low population densities due to the increasing scarcity of mates. Similar variation arises in models incorporating territoriality. In a model with polygynous mating, we show that patterns of sex-biased dispersal can even be reversed across a gradient of population density, despite underlying dispersal mechanisms remaining unchanged. We show that some widespread dispersal patterns found in nature (e.g. fat tailed distributions) can arise as a result of demographic variability in the absence of heterogeneity in dispersive traits across the population. This implies that models in which individual dispersal distances are considered to be fixed traits might be unrealistic, as dispersal distances vary widely under a single dispersal mechanism when settlement is influenced by mate encounters. Mechanistic models offer a promising means of advancing our understanding of dispersal in sexually-reproducing organisms.
How sexual selection can drive the evolution of costly sperm ornamentation
NASA Astrophysics Data System (ADS)
Lüpold, Stefan; Manier, Mollie K.; Puniamoorthy, Nalini; Schoff, Christopher; Starmer, William T.; Luepold, Shannon H. Buckley; Belote, John M.; Pitnick, Scott
2016-05-01
Post-copulatory sexual selection (PSS), fuelled by female promiscuity, is credited with the rapid evolution of sperm quality traits across diverse taxa. Yet, our understanding of the adaptive significance of sperm ornaments and the cryptic female preferences driving their evolution is extremely limited. Here we review the evolutionary allometry of exaggerated sexual traits (for example, antlers, horns, tail feathers, mandibles and dewlaps), show that the giant sperm of some Drosophila species are possibly the most extreme ornaments in all of nature and demonstrate how their existence challenges theories explaining the intensity of sexual selection, mating-system evolution and the fundamental nature of sex differences. We also combine quantitative genetic analyses of interacting sex-specific traits in D. melanogaster with comparative analyses of the condition dependence of male and female reproductive potential across species with varying ornament size to reveal complex dynamics that may underlie sperm-length evolution. Our results suggest that producing few gigantic sperm evolved by (1) Fisherian runaway selection mediated by genetic correlations between sperm length, the female preference for long sperm and female mating frequency, and (2) longer sperm increasing the indirect benefits to females. Our results also suggest that the developmental integration of sperm quality and quantity renders post-copulatory sexual selection on ejaculates unlikely to treat male-male competition and female choice as discrete processes.
Ringhofer, Monamie; Inoue, Sota; Mendonça, Renata S; Pereira, Carlos; Matsuzawa, Tetsuro; Hirata, Satoshi; Yamamoto, Shinya
2017-10-01
Horses are phylogenetically distant from primates, but considerable behavioral links exist between the two. The sociality of horses, characterized by group stability, is similar to that of primates, but different from that of many other ungulates. Although horses and primates are good models for exploring the evolution of societies in human and non-human animals, fewer studies have been conducted on the social system of horses than primates. Here, we investigated the social system of feral horses, particularly the determinant factors of single-male/multi-male group dichotomy, in light of hypotheses derived from studies of primate societies. Socioecological data from 26 groups comprising 208 feral horses on Serra D'Arga, northern Portugal suggest that these primate-based hypotheses cannot adequately explain the social system of horses. In view of the sympatric existence of multi- and single-male groups, and the frequent intergroup transfers and promiscuous mating of females with males of different groups, male-female relationships of horses appear to differ from those of polygynous primates.
Polyandry produces sexy sons at the cost of daughters in red flour beetles.
Pai, Aditi; Yan, Guiyun
2002-01-01
Female mating with multiple males within a single fertile period is a common phenomenon in the animal kingdom. Female insects are particularly promiscuous. It is not clear why females mate with multiple partners despite several potential costs, such as expenditure of time and energy, reduced lifespan, risk of predation and contracting sexually transmitted diseases. Female red flour beetles (Tribolium castaneum) obtain sufficient sperm from a single insemination to retain fertility for several months. Nonetheless they copulate repeatedly within minutes with different males despite no direct fitness benefits from this behaviour. One hypothesis is that females mate with multiple partners to provide indirect benefits via enhanced offspring fitness. To test this hypothesis, we compared the relative fitness of F(1) offspring from females mated with single males and multiple males (2, 4, 8, or 16 partners), under the condition of relatively high intraspecific competition. We found that a female mating with 16 males enhanced the relative fitness of F(1) males (in two out of three trials) but reduced F(1) females' fitness (in two independent trials) in comparison with singly mated females. We also determined whether several important fitness correlates were affected by polyandry. We found that F(1) males from mothers with 16 partners inseminated more females than F(1) males from mothers with a single partner. The viability of the eggs sired or produced by F(1) males and females from highly polyandrous mothers was also increased under conditions of low intra-specific competition. Thus, the effects of polyandry on F(1) offspring fitness depend on environmental conditions. Our results demonstrated a fitness trade-off between male and female offspring from polyandrous mothers in a competitive environment. The mechanisms and biological significance of this unique phenomenon are discussed. PMID:11886623
Polyandry produces sexy sons at the cost of daughters in red flour beetles.
Pai, Aditi; Yan, Guiyun
2002-02-22
Female mating with multiple males within a single fertile period is a common phenomenon in the animal kingdom. Female insects are particularly promiscuous. It is not clear why females mate with multiple partners despite several potential costs, such as expenditure of time and energy, reduced lifespan, risk of predation and contracting sexually transmitted diseases. Female red flour beetles (Tribolium castaneum) obtain sufficient sperm from a single insemination to retain fertility for several months. Nonetheless they copulate repeatedly within minutes with different males despite no direct fitness benefits from this behaviour. One hypothesis is that females mate with multiple partners to provide indirect benefits via enhanced offspring fitness. To test this hypothesis, we compared the relative fitness of F(1) offspring from females mated with single males and multiple males (2, 4, 8, or 16 partners), under the condition of relatively high intraspecific competition. We found that a female mating with 16 males enhanced the relative fitness of F(1) males (in two out of three trials) but reduced F(1) females' fitness (in two independent trials) in comparison with singly mated females. We also determined whether several important fitness correlates were affected by polyandry. We found that F(1) males from mothers with 16 partners inseminated more females than F(1) males from mothers with a single partner. The viability of the eggs sired or produced by F(1) males and females from highly polyandrous mothers was also increased under conditions of low intra-specific competition. Thus, the effects of polyandry on F(1) offspring fitness depend on environmental conditions. Our results demonstrated a fitness trade-off between male and female offspring from polyandrous mothers in a competitive environment. The mechanisms and biological significance of this unique phenomenon are discussed.
Lemaître, Jean-François; Ramm, Steven A; Hurst, Jane L; Stockley, Paula
2011-04-22
Theory predicts that males should increase overall investment in ejaculate expenditure with increasing levels of sperm competition. Since ejaculate production is costly, we may expect males to tailor their reproductive investment according to anticipated levels of sperm competition. Here, we investigate plasticity in ejaculate investment in response to cues of population average levels of sperm competition in a promiscuous mammal, the bank vole (Myodes glareolus). We manipulated the social experience of experimental subjects during sexual development via differential exposure to the odour of rival males, to simulate conditions associated with relatively high or low average levels of sperm competition. Males exposed to a high level of competition developed larger major accessory reproductive glands (seminal vesicles) than those that experienced a low level of competition, suggesting that an increased investment in the production of copulatory plugs and/or mating rate may be beneficial at relatively high sperm competition levels. However, investment in sperm production, testis size and sperm motility were not altered according to social experience. Our findings emphasize the importance of non-sperm components of the ejaculate in mammalian postcopulatory sexual selection, and add to the growing evidence linking plasticity in reproductive traits to social cues of sperm competition.
Promiscuity in the Enzymatic Catalysis of Phosphate and Sulfate Transfer
2016-01-01
The enzymes that facilitate phosphate and sulfate hydrolysis are among the most proficient natural catalysts known to date. Interestingly, a large number of these enzymes are promiscuous catalysts that exhibit both phosphatase and sulfatase activities in the same active site and, on top of that, have also been demonstrated to efficiently catalyze the hydrolysis of other additional substrates with varying degrees of efficiency. Understanding the factors that underlie such multifunctionality is crucial both for understanding functional evolution in enzyme superfamilies and for the development of artificial enzymes. In this Current Topic, we have primarily focused on the structural and mechanistic basis for catalytic promiscuity among enzymes that facilitate both phosphoryl and sulfuryl transfer in the same active site, while comparing this to how catalytic promiscuity manifests in other promiscuous phosphatases. We have also drawn on the large number of experimental and computational studies of selected model systems in the literature to explore the different features driving the catalytic promiscuity of such enzymes. Finally, on the basis of this comparative analysis, we probe the plausible origins and determinants of catalytic promiscuity in enzymes that catalyze phosphoryl and sulfuryl transfer. PMID:27187273
Sport participation influences perceptions of mate characteristics.
Schulte-Hostedde, Albrecht I; Eys, Mark A; Emond, Michael; Buzdon, Michael
2012-02-22
Sport provides a context in which mate choice can be facilitated by the display of athletic prowess. Previous work has shown that, for females, team sport athletes are more desirable as mates than individual sport athletes and non-participants. In the present study, the perceptions of males and females were examined regarding potential mates based on sport participation. It was predicted that team sport athletes would be more positively perceived than individual sport athletes and non-participants by both males and females. A questionnaire, a photograph, and manipulated descriptions were used to gauge perceptual differences with respect to team sport athletes, individual sport athletes, and extra-curricular club participants for 125 females and 119 males from a Canadian university. Both team and individual sport athletes were perceived as being less lazy, more competitive, and healthier than non-participants by both males and females. Interestingly, females perceived male athletes as more promiscuous than non-athletes, which upholds predictions based on previous research indicating (a) athletes have more sexual partners than non-athletes, and (b) females find athletes more desirable as partners than non-participants. Surprisingly, only males perceived female team sport athletes as more dependable than non-participants, and both team and individual sport athletes as more ambitious. This raises questions regarding the initial hypothesis that male team athletes would be perceived positively by females because of qualities such as the ability to cooperate, likeability, and the acceptance of responsibilities necessary for group functioning. Future studies should examine similar questions with a larger sample size that encompasses multiple contexts, taking into account the role of the social profile of sport in relation to mate choice and perception.
Selfish Pups: Weaning Conflict and Milk Theft in Free-Ranging Dogs
Paul, Manabi
2017-01-01
Parent-offspring conflict theory predicts the emergence of weaning conflict between a mother and her offspring arising from skewed relatedness benefits. Empirical observations of weaning conflict have not been carried out in canids. In a field-based study on free-ranging dogs we observed that nursing/suckling bout durations decrease, proportion of mother-initiated nursing bouts decrease and mother-initiated nursing/suckling terminations increase with pup age. We identified the 7th - 13th week period of pup age as the zone of conflict between the mother and her pups, beyond which suckling solicitations cease, and before which suckling refusals are few. We also report for the first time milk theft by pups who take advantage of the presence of multiple lactating females, due to the promiscuous mating system of the dogs. This behaviour, though apparently disadvantageous for the mothers, is perhaps adaptive for the dogs in the face of high mortality and competition for resources. PMID:28178276
Oberhardt, Matthew A.; Zarecki, Raphy; Reshef, Leah; ...
2016-01-28
Recent insights suggest that non-specific and/or promiscuous enzymes are common and active across life. Understanding the role of such enzymes is an important open question in biology. Here we develop a genome-wide method, PROPER, that uses a permissive PSI-BLAST approach to predict promiscuous activities of metabolic genes. Enzyme promiscuity is typically studied experimentally using multicopy suppression, in which over-expression of a promiscuous ‘replacer’ gene rescues lethality caused by inactivation of a ‘target’ gene. We use PROPER to predict multicopy suppression in Escherichia coli, achieving highly significant overlap with published cases (hypergeometric p = 4.4e-13). We then validate three novel predictedmore » target-replacer gene pairs in new multicopy suppression experiments. We next go beyond PROPER and develop a network-based approach, GEM-PROPER, that integrates PROPER with genome-scale metabolic modeling to predict promiscuous replacements via alternative metabolic pathways. GEM-PROPER predicts a new indirect replacer (thiG) for an essential enzyme (pdxB) in production of pyridoxal 5’-phosphate (the active form of Vitamin B 6), which we validate experimentally via multicopy suppression. Here, we perform a structural analysis of thiG to determine its potential promiscuous active site, which we validate experimentally by inactivating the pertaining residues and showing a loss of replacer activity. Thus, this study is a successful example where a computational investigation leads to a network-based identification of an indirect promiscuous replacement of a key metabolic enzyme, which would have been extremely difficult to identify directly.« less
Blocker, Tomica D.; Ophir, Alexander G.
2016-01-01
Pair bonds are the cornerstone of a monogamous relationship. When individuals of the same species engage in monogamy and promiscuity (i.e. alternative reproductive tactics) it can be difficult to determine which tactic confers greater fitness, as measures of fitness can be difficult to ascertain. However, in these circumstances, whether animals preferentially establish pair bonds can reveal decisions that presumably reflect the animals’ assessment of how to best maximize reproductive success. In nature, the majority of prairie voles, Microtus ochrogaster, establishes pair bonds and engages in social monogamy while a minority of individuals remains single and presumably mates promiscuously. The existence of these two tactics raises the interesting question: do bonded male prairie voles choose to ‘settle’ (for just one partner) or are they preferentially ‘settling down’? To determine which of these two tactics is preferred, we provided single male prairie voles simultaneous access to two sexually receptive females for 24 h and then subsequently tested males in ‘partner preference tests’ with each female independently contrasted with a novel female. We aimed to determine whether males would form a pair bond with one, both or none of the original females. We found that males formed pair bonds with one of the two females. We also investigated male- and female-initiated aggression and found that during the bonding process males were more aggressive with females that they did not ultimately form a bond with. In the partner preference tests, males showed more aggression towards unfamiliar females than towards familiar females. Mismatches in male- and female-initiated aggression suggest that aggressive interactions may be perpetuated more by males than by females. Taken together, our results demonstrate that under conditions that are ideal for forgoing bonding and engaging in multiple matings, males choose to establish a pair bond, suggesting that selective pressures may have facilitated bonding by males. PMID:28579618
An integrative view of sexual selection in Tribolium flour beetles.
Fedina, Tatyana Y; Lewis, Sara M
2008-05-01
Sexual selection is a major force driving the evolution of diverse reproductive traits. This evolutionary process is based on individual reproductive advantages that arise either through intrasexual competition or through intersexual choice and conflict. While classical studies of sexual selection focused mainly on differences in male mating success, more recent work has focused on the differences in paternity share that may arise through sperm competition or cryptic female choice whenever females mate with multiple males. Thus, an integrative view of sexual selection needs to encompass processes that occur not only before copulation (pre-mating), but also during copulation (peri-mating), as well as after copulation (post-mating), all of which can generate differences in reproductive success. By encompassing mechanisms of sexual selection across all of these sequential reproductive stages this review takes an integrative approach to sexual selection in Tribolium flour beetles (Coleoptera: Tenebrionidae), a particularly well-studied and economically important model organism. Tribolium flour beetles colonize patchily distributed grain stores, and juvenile and adult stages share the same food resources. Adults are highly promiscuous and female reproduction is distributed across an adult lifespan lasting approximately 1 year. While Tribolium males produce an aggregation pheromone that attracts both sexes, there appears to be little pre-mating discrimination among potential mates by either sex. However, recent work has revealed several peri-mating and post-mating mechanisms that determine how offspring paternity is apportioned among a female's mates. During mating, Tribolium females reject spermatophore transfer and limit sperm numbers transferred by males with low phenotypic quality. Although there is some conflicting evidence, male copulatory leg-rubbing appears to be associated with overcoming female resistance to insemination and does not influence a male's subsequent paternity share. Evidence suggests that Tribolium beetles have several possible post-mating mechanisms that they may use to bias paternity. Male sperm precedence has been extensively studied in Tribolium spp. and the related Tenebrio molitor, and several factors influencing male paternity share among a female's progeny have been identified. These include oviposition time, inter-mating interval, male strain/genotype, the mating regimen of a male's mother, male starvation, and tapeworm infection. Females exert muscular control over sperm storage, although there is no evidence to date that females use this to differentiate among mates. Females could also influence offspring paternity by re-mating with additional males, and T. castaneum females more readily accept spermatophores when they are re-mating with more attractive males. Additional work is needed to examine the possible roles played by both male and female accessory gland products in determining male paternity share. Sexual selection during pre-mating episodes may be reinforced or counteracted by peri- and post-copulatory selection, and antagonistic coevolution between the sexes may be played out across reproductive stages. In Tribolium, males' olfactory attractiveness is positively correlated with both insemination success and paternity share, suggesting consistent selection across different reproductive stages. Similar studies across sequential reproductive stages are needed in other taxa to provide a more integrative view of sexual selection.
Korkuć, Paula; Walther, Dirk
2015-01-01
To better understand and ultimately predict both the metabolic activities as well as the signaling functions of metabolites, a detailed understanding of the physical interactions of metabolites with proteins is highly desirable. Focusing in particular on protein binding specificity vs. promiscuity, we performed a comprehensive analysis of the physicochemical properties of compound-protein binding events as reported in the Protein Data Bank (PDB). We compared the molecular and structural characteristics obtained for metabolites to those of the well-studied interactions of drug compounds with proteins. Promiscuously binding metabolites and drugs are characterized by low molecular weight and high structural flexibility. Unlike reported for drug compounds, low rather than high hydrophobicity appears associated, albeit weakly, with promiscuous binding for the metabolite set investigated in this study. Across several physicochemical properties, drug compounds exhibit characteristic binding propensities that are distinguishable from those associated with metabolites. Prediction of target diversity and compound promiscuity using physicochemical properties was possible at modest accuracy levels only, but was consistently better for drugs than for metabolites. Compound properties capturing structural flexibility and hydrogen-bond formation descriptors proved most informative in PLS-based prediction models. With regard to diversity of enzymatic activities of the respective metabolite target enzymes, the metabolites benzylsuccinate, hypoxanthine, trimethylamine N-oxide, oleoylglycerol, and resorcinol showed very narrow process involvement, while glycine, imidazole, tryptophan, succinate, and glutathione were identified to possess broad enzymatic reaction scopes. Promiscuous metabolites were found to mainly serve as general energy currency compounds, but were identified to also be involved in signaling processes and to appear in diverse organismal systems (digestive and nervous system) suggesting specific molecular and physiological roles of promiscuous metabolites.
Korkuć, Paula; Walther, Dirk
2015-01-01
To better understand and ultimately predict both the metabolic activities as well as the signaling functions of metabolites, a detailed understanding of the physical interactions of metabolites with proteins is highly desirable. Focusing in particular on protein binding specificity vs. promiscuity, we performed a comprehensive analysis of the physicochemical properties of compound-protein binding events as reported in the Protein Data Bank (PDB). We compared the molecular and structural characteristics obtained for metabolites to those of the well-studied interactions of drug compounds with proteins. Promiscuously binding metabolites and drugs are characterized by low molecular weight and high structural flexibility. Unlike reported for drug compounds, low rather than high hydrophobicity appears associated, albeit weakly, with promiscuous binding for the metabolite set investigated in this study. Across several physicochemical properties, drug compounds exhibit characteristic binding propensities that are distinguishable from those associated with metabolites. Prediction of target diversity and compound promiscuity using physicochemical properties was possible at modest accuracy levels only, but was consistently better for drugs than for metabolites. Compound properties capturing structural flexibility and hydrogen-bond formation descriptors proved most informative in PLS-based prediction models. With regard to diversity of enzymatic activities of the respective metabolite target enzymes, the metabolites benzylsuccinate, hypoxanthine, trimethylamine N-oxide, oleoylglycerol, and resorcinol showed very narrow process involvement, while glycine, imidazole, tryptophan, succinate, and glutathione were identified to possess broad enzymatic reaction scopes. Promiscuous metabolites were found to mainly serve as general energy currency compounds, but were identified to also be involved in signaling processes and to appear in diverse organismal systems (digestive and nervous system) suggesting specific molecular and physiological roles of promiscuous metabolites. PMID:26442281
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adesso, Gerardo; CNR-INFM Coherentia , Naples; Grup d'Informacio Quantica, Universitat Autonoma de Barcelona, E-08193 Bellaterra
2007-08-15
Quantum mechanics imposes 'monogamy' constraints on the sharing of entanglement. We show that, despite these limitations, entanglement can be fully 'promiscuous', i.e., simultaneously present in unlimited two-body and many-body forms in states living in an infinite-dimensional Hilbert space. Monogamy just bounds the divergence rate of the various entanglement contributions. This is demonstrated in simple families of N-mode (N{>=}4) Gaussian states of light fields or atomic ensembles, which therefore enable infinitely more freedom in the distribution of information, as opposed to systems of individual qubits. Such a finding is of importance for the quantification, understanding, and potential exploitation of shared quantummore » correlations in continuous variable systems. We discuss how promiscuity gradually arises when considering simple families of discrete variable states, with increasing Hilbert space dimension towards the continuous variable limit. Such models are somehow analogous to Gaussian states with asymptotically diverging, but finite, squeezing. In this respect, we find that non-Gaussian states (which in general are more entangled than Gaussian states) exhibit also the interesting feature that their entanglement is more shareable: in the non-Gaussian multipartite arena, unlimited promiscuity can be already achieved among three entangled parties, while this is impossible for Gaussian, even infinitely squeezed states.« less
Tracing the Repertoire of Promiscuous Enzymes along the Metabolic Pathways in Archaeal Organisms.
Martínez-Núñez, Mario Alberto; Rodríguez-Escamilla, Zuemy; Rodríguez-Vázquez, Katya; Pérez-Rueda, Ernesto
2017-07-13
The metabolic pathways that carry out the biochemical transformations sustaining life depend on the efficiency of their associated enzymes. In recent years, it has become clear that promiscuous enzymes have played an important role in the function and evolution of metabolism. In this work we analyze the repertoire of promiscuous enzymes in 89 non-redundant genomes of the Archaea cellular domain. Promiscuous enzymes are defined as those proteins with two or more different Enzyme Commission (E.C.) numbers, according the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. From this analysis, it was found that the fraction of promiscuous enzymes is lower in Archaea than in Bacteria. A greater diversity of superfamily domains is associated with promiscuous enzymes compared to specialized enzymes, both in Archaea and Bacteria, and there is an enrichment of substrate promiscuity rather than catalytic promiscuity in the archaeal enzymes. Finally, the presence of promiscuous enzymes in the metabolic pathways was found to be heterogeneously distributed at the domain level and in the phyla that make up the Archaea. These analyses increase our understanding of promiscuous enzymes and provide additional clues to the evolution of metabolism in Archaea.
PubChem promiscuity: a web resource for gathering compound promiscuity data from PubChem.
Canny, Stephanie A; Cruz, Yasel; Southern, Mark R; Griffin, Patrick R
2012-01-01
Promiscuity counts allow for a better understanding of a compound's assay activity profile and drug potential. Although PubChem contains a vast amount of compound and assay data, it currently does not have a convenient or efficient method to obtain in-depth promiscuity counts for compounds. PubChem promiscuity fills this gap. It is a Java servlet that uses NCBI Entrez (eUtils) web services to interact with PubChem and provide promiscuity counts in a variety of categories along with compound descriptors, including PAINS-based functional group detection. http://chemutils.florida.scripps.edu/pcpromiscuity southern@scripps.edu
PubChem promiscuity: a web resource for gathering compound promiscuity data from PubChem
Canny, Stephanie A.; Cruz, Yasel; Southern, Mark R.; Griffin, Patrick R.
2012-01-01
Summary: Promiscuity counts allow for a better understanding of a compound's assay activity profile and drug potential. Although PubChem contains a vast amount of compound and assay data, it currently does not have a convenient or efficient method to obtain in-depth promiscuity counts for compounds. PubChem promiscuity fills this gap. It is a Java servlet that uses NCBI Entrez (eUtils) web services to interact with PubChem and provide promiscuity counts in a variety of categories along with compound descriptors, including PAINS-based functional group detection. Availability: http://chemutils.florida.scripps.edu/pcpromiscuity Contact: southern@scripps.edu PMID:22084255
Chakraborty, Sandeep; Rao, Basuthkar J.
2012-01-01
Promiscuity, the basis for the evolution of new functions through ‘tinkering’ of residues in the vicinity of the catalytic site, is yet to be quantitatively defined. We present a computational method Promiscuity Indices Estimator (PROMISE) - based on signatures derived from the spatial and electrostatic properties of the catalytic residues, to estimate the promiscuity (PromIndex) of proteins with known active site residues and 3D structure. PromIndex reflects the number of different active site signatures that have congruent matches in close proximity of its native catalytic site, the quality of the matches and difference in the enzymatic activity. Promiscuity in proteins is observed to follow a lognormal distribution (μ = 0.28, σ = 1.1 reduced chi-square = 3.0E-5). The PROMISE predicted promiscuous functions in any protein can serve as the starting point for directed evolution experiments. PROMISE ranks carboxypeptidase A and ribonuclease A amongst the more promiscuous proteins. We have also investigated the properties of the residues in the vicinity of the catalytic site that regulates its promiscuity. Linear regression establishes a weak correlation (R2∼0.1) between certain properties of the residues (charge, polar, etc) in the neighborhood of the catalytic residues and PromIndex. A stronger relationship states that most proteins with high promiscuity have high percentages of charged and polar residues within a radius of 3 Å of the catalytic site, which is validated using one-tailed hypothesis tests (P-values∼0.05). Since it is known that these characteristics are key factors in catalysis, their relationship with the promiscuity index cross validates the methodology of PROMISE. PMID:22359655
Gerloff, U; Hartung, B; Fruth, B; Hohmann, G; Tautz, D
1999-01-01
Differences in social relationships among community members are often explained by differences in genetic relationships. The current techniques of DNA analysis allow explicit testing of such a hypothesis. Here, we have analysed the genetic relationships for a community of wild bonobos (Pan paniscus) using nuclear and mitochondrial DNA markers extracted from faecal samples. Bonobos show an opportunistic and promiscuous mating behaviour, even with mates from outside the community. Nonetheless, we find that most infants were sired by resident males and that two dominant males together attained the highest paternity success. Intriguingly, the latter males are the sons of high-ranking females, suggesting an important influence of mothers on the paternity success of their sons. The molecular data support previous inferences on female dispersal and male philopatry. We find a total of five different mitochondrial haplotypes among 15 adult females, suggesting a frequent migration of females. Moreover, for most adult and subadult males in the group we find a matching mother, while this is not the case for most females, indicating that these leave the community during adolescence. Our study demonstrates that faecal samples can be a useful source for the determination of kinship in a whole community. PMID:10406131
Gerloff, U; Hartung, B; Fruth, B; Hohmann, G; Tautz, D
1999-06-07
Differences in social relationships among community members are often explained by differences in genetic relationships. The current techniques of DNA analysis allow explicit testing of such a hypothesis. Here, we have analysed the genetic relationships for a community of wild bonobos (Pan paniscus) using nuclear and mitochondrial DNA markers extracted from faecal samples. Bonobos show an opportunistic and promiscuous mating behaviour, even with mates from outside the community. Nonetheless, we find that most infants were sired by resident males and that two dominant males together attained the highest paternity success. Intriguingly, the latter males are the sons of high-ranking females, suggesting an important influence of mothers on the paternity success of their sons. The molecular data support previous inferences on female dispersal and male philopatry. We find a total of five different mitochondrial haplotypes among 15 adult females, suggesting a frequent migration of females. Moreover, for most adult and subadult males in the group we find a matching mother, while this is not the case for most females, indicating that these leave the community during adolescence. Our study demonstrates that faecal samples can be a useful source for the determination of kinship in a whole community.
Cohen-Gihon, Inbar; Fong, Jessica H.; Sharan, Roded; Nussinov, Ruth
2012-01-01
Most eukaryotic proteins are composed of two or more domains. These assemble in a modular manner to create new proteins usually by the acquisition of one or more domains to an existing protein. Promiscuous domains which are found embedded in a variety of proteins and co-exist with many other domains are of particular interest and were shown to have roles in signaling pathways and mediating network communication. The evolution of domain promiscuity is still an open problem, mostly due to the lack of sequenced ancestral genomes. Here we use inferred domain architectures of ancestral genomes to trace the evolution of domain promiscuity in eukaryotic genomes. We find an increase in average promiscuity along many branches of the eukaryotic tree. Moreover, domain promiscuity can proceed at almost a steady rate over long evolutionary time or exhibit lineage-specific acceleration. We also observe that many signaling and regulatory domains gained domain promiscuity around the Bilateria divergence. In addition we show that those domains that played a role in the creation of two body axes and existed before the divergence of the bilaterians from fungi/metazoan achieve a boost in their promiscuities during the bilaterian evolution. PMID:21127809
2013-01-01
The ability to interact with different partners is one of the most important features in proteins. Proteins that bind a large number of partners (hubs) have been often associated with intrinsic disorder. However, many examples exist of hubs with an ordered structure, and evidence of a general mechanism promoting promiscuity in ordered proteins is still elusive. An intriguing hypothesis is that promiscuous binding sites have specific dynamical properties, distinct from the rest of the interface and pre-existing in the protein isolated state. Here, we present the first comprehensive study of the intrinsic dynamics of promiscuous residues in a large protein data set. Different computational methods, from coarse-grained elastic models to geometry-based sampling methods and to full-atom Molecular Dynamics simulations, were used to generate conformational ensembles for the isolated proteins. The flexibility and dynamic correlations of interface residues with a different degree of binding promiscuity were calculated and compared considering side chain and backbone motions, the latter both on a local and on a global scale. The study revealed that (a) promiscuous residues tend to be more flexible than nonpromiscuous ones, (b) this additional flexibility has a higher degree of organization, and (c) evolutionary conservation and binding promiscuity have opposite effects on intrinsic dynamics. Findings on simulated ensembles were also validated on ensembles of experimental structures extracted from the Protein Data Bank (PDB). Additionally, the low occurrence of single nucleotide polymorphisms observed for promiscuous residues indicated a tendency to preserve binding diversity at these positions. A case study on two ubiquitin-like proteins exemplifies how binding promiscuity in evolutionary related proteins can be modulated by the fine-tuning of the interface dynamics. The interplay between promiscuity and flexibility highlighted here can inspire new directions in protein–protein interaction prediction and design methods. PMID:24250278
Abu Baker, Mohammad A; Reeve, Nigel; Conkey, April A T; Macdonald, David W; Yamaguchi, Nobuyuki
2017-01-01
Degradation and alteration of natural environments because of agriculture and other land uses have major consequences on vertebrate populations, particularly on spatial organization and movement patterns. We used GPS tracking to study the effect of land use and sex on the home range size and movement of a typical model species, the Ethiopian hedgehogs. We used free-ranging hedgehogs from two areas with different land use practices: 24 from an area dominated by irrigated farms (12 ♂♂, 12 ♀♀) and 22 from a natural desert environment within a biosphere reserve (12 ♂♂, 10 ♀♀). Animals were significantly heavier in the resource-rich irrigated farms area (417.71 ±12.77SE g) in comparison to the natural desert area (376.37±12.71SE g). Both habitat and sex significantly influenced the home range size of hedgehogs. Home ranges were larger in the reserve than in the farms area. Total home ranges averaged 103 ha (±17 SE) for males and 42 ha (±11SE) for females in the farms area, but were much larger in the reserve averaging 230 ha (±33 SE) for males and 150 ha (±29 SE) for females. The home ranges of individuals of both sexes overlapped. Although females were heavier than males, body weight had no effect on home range size. The results suggest that resources provided in the farms (e.g. food, water, and shelters) influenced animal density and space use. Females aggregated around high-resource areas (either farms or rawdhats), whereas males roamed over greater distances, likely in search of mating opportunities to maximize reproductive success. Most individual home ranges overlapped with many other individuals of either sex, suggesting a non-territorial, promiscuous mating. Patterns of space use and habitat utilization are key factors in shaping aspects of reproductive biology and mating system. To minimize the impacts of agriculture on local wildlife, we recommend that biodiversity-friendly agro-environmental schemes be introduced in the Middle East where the transformation from dry lands to 'islands of fertility' is often extreme.
Reeve, Nigel; Conkey, April A. T.; Macdonald, David W.
2017-01-01
Degradation and alteration of natural environments because of agriculture and other land uses have major consequences on vertebrate populations, particularly on spatial organization and movement patterns. We used GPS tracking to study the effect of land use and sex on the home range size and movement of a typical model species, the Ethiopian hedgehogs. We used free-ranging hedgehogs from two areas with different land use practices: 24 from an area dominated by irrigated farms (12 ♂♂, 12 ♀♀) and 22 from a natural desert environment within a biosphere reserve (12 ♂♂, 10 ♀♀). Animals were significantly heavier in the resource-rich irrigated farms area (417.71 ±12.77SE g) in comparison to the natural desert area (376.37±12.71SE g). Both habitat and sex significantly influenced the home range size of hedgehogs. Home ranges were larger in the reserve than in the farms area. Total home ranges averaged 103 ha (±17 SE) for males and 42 ha (±11SE) for females in the farms area, but were much larger in the reserve averaging 230 ha (±33 SE) for males and 150 ha (±29 SE) for females. The home ranges of individuals of both sexes overlapped. Although females were heavier than males, body weight had no effect on home range size. The results suggest that resources provided in the farms (e.g. food, water, and shelters) influenced animal density and space use. Females aggregated around high-resource areas (either farms or rawdhats), whereas males roamed over greater distances, likely in search of mating opportunities to maximize reproductive success. Most individual home ranges overlapped with many other individuals of either sex, suggesting a non-territorial, promiscuous mating. Patterns of space use and habitat utilization are key factors in shaping aspects of reproductive biology and mating system. To minimize the impacts of agriculture on local wildlife, we recommend that biodiversity-friendly agro-environmental schemes be introduced in the Middle East where the transformation from dry lands to ‘islands of fertility’ is often extreme. PMID:28746381
Inferring Domain-Domain Interactions from Protein-Protein Interactions with Formal Concept Analysis
Khor, Susan
2014-01-01
Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem for a method where the score of a domain-pair is the ratio between observed and expected frequencies because the protein-protein interaction network is sparse. As such, many protein-pairs will be non-interacting and domain-pairs with promiscuous domains will be penalized. This domain promiscuity challenge to the problem of inferring reliable domain-domain interactions from protein-protein interactions has been recognized, and a number of work-arounds have been proposed. This paper reports on an application of Formal Concept Analysis to this problem. It is found that the relationship between formal concepts provides a natural way for rare domains to elevate the rank of promiscuous domain-pairs and enrich highly ranked domain-pairs with reliable domain-domain interactions. This piggybacking of promiscuous domain-pairs onto less promiscuous domain-pairs is possible only with concept lattices whose attribute-labels are not reduced and is enhanced by the presence of proteins that comprise both promiscuous and rare domains. PMID:24586450
A binary plasmid system for shuffling combinatorial antibody libraries.
Collet, T A; Roben, P; O'Kennedy, R; Barbas, C F; Burton, D R; Lerner, R A
1992-11-01
We have used a binary system of replicon-compatible plasmids to test the potential for promiscuous recombination of heavy and light chains within sets of human Fab fragments isolated from combinatorial antibody libraries. Antibody molecules showed a surprising amount of promiscuity in that a particular heavy chain could recombine with multiple light chains with retention of binding to a protein antigen. The degree to which a given heavy chain productively paired with any light chain to bind antigen varied from 43% to 100% and depended strongly on the heavy-chain sequence. Such productive crosses resulted in a set of Fab fragments of similar apparent binding constants, which seemed to differ mainly in the amount of active Fab fragment produced in the bacterial cell. The dominance of the heavy chain in the antibody-antigen interaction was further explored in a set of directed crosses, in which heavy and light chains derived from antigen-specific clones were crossed with nonrelated heavy and light chains. In these crosses, an Fab fragment retained antigen binding only if it contained a heavy chain from an antigen-specific clone. In no case did the light chain confer detectable affinity when paired with indifferent heavy chains. The surprising promiscuity of heavy chains has ramifications for the evaluation of the diversity of combinatorial libraries made against protein antigens and should allow the combination of one such promiscuous heavy chain with an engineered light chain to form an Fab fragment carrying synthetic cofactors to assist in antibody catalysis.
A binary plasmid system for shuffling combinatorial antibody libraries.
Collet, T A; Roben, P; O'Kennedy, R; Barbas, C F; Burton, D R; Lerner, R A
1992-01-01
We have used a binary system of replicon-compatible plasmids to test the potential for promiscuous recombination of heavy and light chains within sets of human Fab fragments isolated from combinatorial antibody libraries. Antibody molecules showed a surprising amount of promiscuity in that a particular heavy chain could recombine with multiple light chains with retention of binding to a protein antigen. The degree to which a given heavy chain productively paired with any light chain to bind antigen varied from 43% to 100% and depended strongly on the heavy-chain sequence. Such productive crosses resulted in a set of Fab fragments of similar apparent binding constants, which seemed to differ mainly in the amount of active Fab fragment produced in the bacterial cell. The dominance of the heavy chain in the antibody-antigen interaction was further explored in a set of directed crosses, in which heavy and light chains derived from antigen-specific clones were crossed with nonrelated heavy and light chains. In these crosses, an Fab fragment retained antigen binding only if it contained a heavy chain from an antigen-specific clone. In no case did the light chain confer detectable affinity when paired with indifferent heavy chains. The surprising promiscuity of heavy chains has ramifications for the evaluation of the diversity of combinatorial libraries made against protein antigens and should allow the combination of one such promiscuous heavy chain with an engineered light chain to form an Fab fragment carrying synthetic cofactors to assist in antibody catalysis. Images PMID:1438192
Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key.
Haupt, V Joachim; Daminelli, Simone; Schroeder, Michael
2013-01-01
Drug repositioning applies established drugs to new disease indications with increasing success. A pre-requisite for drug repurposing is drug promiscuity (polypharmacology) - a drug's ability to bind to several targets. There is a long standing debate on the reasons for drug promiscuity. Based on large compound screens, hydrophobicity and molecular weight have been suggested as key reasons. However, the results are sometimes contradictory and leave space for further analysis. Protein structures offer a structural dimension to explain promiscuity: Can a drug bind multiple targets because the drug is flexible or because the targets are structurally similar or even share similar binding sites? We present a systematic study of drug promiscuity based on structural data of PDB target proteins with a set of 164 promiscuous drugs. We show that there is no correlation between the degree of promiscuity and ligand properties such as hydrophobicity or molecular weight but a weak correlation to conformational flexibility. However, we do find a correlation between promiscuity and structural similarity as well as binding site similarity of protein targets. In particular, 71% of the drugs have at least two targets with similar binding sites. In order to overcome issues in detection of remotely similar binding sites, we employed a score for binding site similarity: LigandRMSD measures the similarity of the aligned ligands and uncovers remote local similarities in proteins. It can be applied to arbitrary structural binding site alignments. Three representative examples, namely the anti-cancer drug methotrexate, the natural product quercetin and the anti-diabetic drug acarbose are discussed in detail. Our findings suggest that global structural and binding site similarity play a more important role to explain the observed drug promiscuity in the PDB than physicochemical drug properties like hydrophobicity or molecular weight. Additionally, we find ligand flexibility to have a minor influence.
The lifestyle of prokaryotic organisms influences the repertoire of promiscuous enzymes.
Martínez-Núñez, Mario Alberto; Rodríguez-Vázquez, Katya; Pérez-Rueda, Ernesto
2015-09-01
The metabolism of microbial organisms and its diversity are partly the result of an adaptation process to the characteristics of the environments that they inhabit. In this work, we analyze the influence of lifestyle on the content of promiscuous enzymes in 761 nonredundant bacterial and archaeal genomes. Promiscuous enzymes were defined as those proteins whose catalytic activities are defined by two or more different Enzyme Commission (E.C.) numbers. The genomes analyzed were categorized into four lifestyles for their exhaustive comparisons: free-living, extremophiles, pathogens, and intracellular. From these analyses we found that free-living organisms have larger genomes and an enrichment of promiscuous enzymes. In contrast, intracellular organisms showed smaller genomes and the lesser proportion of promiscuous enzymes. On the basis of our data, we show that the proportion of promiscuous enzymes in an organism is mainly influenced by the lifestyle, where fluctuating environments promote its emergence. Finally, we evidenced that duplication processes occur preferentially in metabolism of free-living and extremophiles species. © 2015 Wiley Periodicals, Inc.
Sexual promiscuity: knowledge of dangers in institutions of higher learning.
Ebong, R D
1994-06-01
Knowledge of dangers of sexual promiscuity was assessed in 2 institutions of higher learning. The objectives were to find out the knowledge of medical and social consequences as well as the factors responsible for sexual promiscuity among Nigerian youths. The study also assessed the discrepancies in societal concept of sex norms for males and females. The result was used as an index to determine the need for sex education for Nigerian youths. A total of 200 students (100 from each school) was assessed by random selection and use of a questionnaire. The result showed that students had a fair knowledge of sexual promiscuity, although in terms of medical consequences the knowledge was low for both groups. On social consequences, the knowledge was fair for both groups. Students agreed that lack of financial support and of supervision from parents and teachers were among the causes of sexual promiscuity. Recommendations were made for Health Education in these areas in institutions of higher learning. Also, recommendations were made for parental education on how to bring up, and care for, their adolescents to reduce the problems of sexual promiscuity. It was also recommended that a compulsory course on sexual promiscuity should be included in the syllabus in institutions of higher learning.
Garcia-Seisdedos, Hector; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M
2012-01-01
Protein promiscuity is of considerable interest due its role in adaptive metabolic plasticity, its fundamental connection with molecular evolution and also because of its biotechnological applications. Current views on the relation between primary and promiscuous protein activities stem largely from laboratory evolution experiments aimed at increasing promiscuous activity levels. Here, on the other hand, we attempt to assess the main features of the simultaneous modulation of the primary and promiscuous functions during the course of natural evolution. The computational/experimental approach we propose for this task involves the following steps: a function-targeted, statistical coupling analysis of evolutionary data is used to determine a set of positions likely linked to the recruitment of a promiscuous activity for a new function; a combinatorial library of mutations on this set of positions is prepared and screened for both, the primary and the promiscuous activities; a partial-least-squares reconstruction of the full combinatorial space is carried out; finally, an approximation to the Pareto set of variants with optimal primary/promiscuous activities is derived. Application of the approach to the emergence of folding catalysis in thioredoxin scaffolds reveals an unanticipated scenario: diverse patterns of primary/promiscuous activity modulation are possible, including a moderate (but likely significant in a biological context) simultaneous enhancement of both activities. We show that this scenario can be most simply explained on the basis of the conformational diversity hypothesis, although alternative interpretations cannot be ruled out. Overall, the results reported may help clarify the mechanisms of the evolution of new functions. From a different viewpoint, the partial-least-squares-reconstruction/Pareto-set-prediction approach we have introduced provides the computational basis for an efficient directed-evolution protocol aimed at the simultaneous enhancement of several protein features and should therefore open new possibilities in the engineering of multi-functional enzymes.
Garcia-Seisdedos, Hector; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.
2012-01-01
Protein promiscuity is of considerable interest due its role in adaptive metabolic plasticity, its fundamental connection with molecular evolution and also because of its biotechnological applications. Current views on the relation between primary and promiscuous protein activities stem largely from laboratory evolution experiments aimed at increasing promiscuous activity levels. Here, on the other hand, we attempt to assess the main features of the simultaneous modulation of the primary and promiscuous functions during the course of natural evolution. The computational/experimental approach we propose for this task involves the following steps: a function-targeted, statistical coupling analysis of evolutionary data is used to determine a set of positions likely linked to the recruitment of a promiscuous activity for a new function; a combinatorial library of mutations on this set of positions is prepared and screened for both, the primary and the promiscuous activities; a partial-least-squares reconstruction of the full combinatorial space is carried out; finally, an approximation to the Pareto set of variants with optimal primary/promiscuous activities is derived. Application of the approach to the emergence of folding catalysis in thioredoxin scaffolds reveals an unanticipated scenario: diverse patterns of primary/promiscuous activity modulation are possible, including a moderate (but likely significant in a biological context) simultaneous enhancement of both activities. We show that this scenario can be most simply explained on the basis of the conformational diversity hypothesis, although alternative interpretations cannot be ruled out. Overall, the results reported may help clarify the mechanisms of the evolution of new functions. From a different viewpoint, the partial-least-squares-reconstruction/Pareto-set-prediction approach we have introduced provides the computational basis for an efficient directed-evolution protocol aimed at the simultaneous enhancement of several protein features and should therefore open new possibilities in the engineering of multi-functional enzymes. PMID:22719242
Low-Impact Mating System for Docking Spacecraft
NASA Technical Reports Server (NTRS)
Lewis, James L.; Robertson, Brandan; Carroll, Monty B.; Le, Thang; Morales, Ray
2008-01-01
A document describes a low-impact mating system suitable for both docking (mating of two free-flying spacecraft) and berthing (in which a robot arm in one spacecraft positions an object for mating with either spacecraft). The low-impact mating system is fully androgynous: it mates with a copy of itself, i.e., all spacecraft and other objects to be mated are to be equipped with identical copies of the system. This aspect of the design helps to minimize the number of unique parts and to standardize and facilitate mating operations. The system includes a closed-loop feedback control subsystem that actively accommodates misalignments between mating spacecraft, thereby attenuating spacecraft dynamics and mitigating the need for precise advance positioning of the spacecraft. The operational characteristics of the mating system can be easily configured in software, during operation, to enable mating of spacecraft having various masses, center-of-gravity offsets, and closing velocities. The system design provides multi-fault tolerance for critical operations: for example, to ensure unmating at a critical time, a redundant unlatching mechanism and two independent pyrotechnic release subsystems are included.
The social behavior and the evolution of sexually transmitted diseases
NASA Astrophysics Data System (ADS)
Gonçalves, Sebastián; Kuperman, Marcelo
2003-10-01
We introduce a model for the evolution of sexually transmitted diseases, in which the social behavior is incorporated as a determinant factor for the further propagation of the infection. The system may be regarded as a society of agents where in principle, anyone can sexually interact with any other one in the population, indeed, in this contribution only the homosexual case is analyzed. Different social behaviors are reflected in a distribution of sexual attitudes ranging from the more conservative to the more promiscuous. This is measured by what we call the promiscuity parameter. In terms of this parameter, we find a critical behavior for the evolution of the disease. There is a threshold below which the epidemic does not occur. We relate this critical value of promiscuity to what epidemiologists call the basic reproductive number, connecting it with the other parameters of the model, namely the infectivity and the infective period in a quantitative way. We consider the possibility of subjects to be grouped in couples.
NASA Technical Reports Server (NTRS)
Lewis, James L. (Inventor); Carroll, Monty B. (Inventor); Le, Thang D. (Inventor); Morales, Ray H. (Inventor); Robertson, Brandan R. (Inventor)
2009-01-01
An androgynous mating system for mating two exoatmospheric space modules comprising a first mating assembly capable of mating with a second mating assembly; a second mating assembly structurally identical to said first mating assembly, said first mating assembly comprising; a load ring; a plurality of load cell subassemblies; a plurality of actuators; a base ring; a tunnel; a closed loop control system; one or more electromagnets; and one or more striker plates, wherein said one or more electomagnets on said second mating assembly are capable of mating with said one or more striker plates on said first mating assembly, and wherein said one or more striker plates is comprised of a plate of predetermined shape and a 5-DOF mechanism capable of maintaining predetermined contact requirements during said mating of said one or more electromagnets and said one or more striker plates.
Cerisier, Natacha; Regad, Leslie; Triki, Dhoha; Petitjean, Michel; Flatters, Delphine; Camproux, Anne-Claude
2017-10-01
While recent literature focuses on drug promiscuity, the characterization of promiscuous binding sites (ability to bind several ligands) remains to be explored. Here, we present a proteochemometric modeling approach to analyze diverse ligands and corresponding multiple binding sub-pockets associated with one promiscuous binding site to characterize protein-ligand recognition. We analyze both geometrical and physicochemical profile correspondences. This approach was applied to examine the well-studied druggable urokinase catalytic domain inhibitor binding site, which results in a large number of complex structures bound to various ligands. This approach emphasizes the importance of jointly characterizing pocket and ligand spaces to explore the impact of ligand diversity on sub-pocket properties and to establish their main profile correspondences. This work supports an interest in mining available 3D holo structures associated with a promiscuous binding site to explore its main protein-ligand recognition tendency. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Meskó, Norbert; Láng, András; Bernáth, László
2012-01-01
Until now prostitution has only been explained from two evolutionary points of view. According to the short-term mate choice strategy approach motives for seeking prostitutes are to be found in the nature of male sexuality. Another theory - the evolutionary interpretation of female promiscuity's motivational base - indirectly completes the understanding of prostitution. This theory emphasizes the adaptive benefits of female promiscuity under certain circumstances. The aim of our study was to test a third idea (Adaptive Support Theory), according to which women in long-term relationships support their partners' (husbands') sexual relations with prostitutes. University female students (n=208, age mean±SD=23.55±7.13, min=18, max=50) completed our questionnaire. Female participants are presumed to recognize the advantages and threats of their partners' sexual relations with prostitutes compared to other possible forms of betrayal. Hence it is hypothesized that women overtly support the possibility of their partners' relations with prostitutes. Our results show that women are able to assess the favorable and unfavorable effects of their partners' relations with prostitutes. At the same time they do not directly support this form of betrayal over other possibilities. However, female participants were more approving of their partners' relations with prostitutes (in a thought- experiment), than they guessed their partner would demand such services. According to our model women living in long-term relationship are adaptively interested in their partner's cheating on them with a prostitute (rather than engaging in other kinds of sexual relations), because this finance based external sexual liaison is the least threatening for the stability of the long-term relationship.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oberhardt, Matthew A.; Zarecki, Raphy; Reshef, Leah
Recent insights suggest that non-specific and/or promiscuous enzymes are common and active across life. Understanding the role of such enzymes is an important open question in biology. Here we develop a genome-wide method, PROPER, that uses a permissive PSI-BLAST approach to predict promiscuous activities of metabolic genes. Enzyme promiscuity is typically studied experimentally using multicopy suppression, in which over-expression of a promiscuous ‘replacer’ gene rescues lethality caused by inactivation of a ‘target’ gene. We use PROPER to predict multicopy suppression in Escherichia coli, achieving highly significant overlap with published cases (hypergeometric p = 4.4e-13). We then validate three novel predictedmore » target-replacer gene pairs in new multicopy suppression experiments. We next go beyond PROPER and develop a network-based approach, GEM-PROPER, that integrates PROPER with genome-scale metabolic modeling to predict promiscuous replacements via alternative metabolic pathways. GEM-PROPER predicts a new indirect replacer (thiG) for an essential enzyme (pdxB) in production of pyridoxal 5’-phosphate (the active form of Vitamin B 6), which we validate experimentally via multicopy suppression. Here, we perform a structural analysis of thiG to determine its potential promiscuous active site, which we validate experimentally by inactivating the pertaining residues and showing a loss of replacer activity. Thus, this study is a successful example where a computational investigation leads to a network-based identification of an indirect promiscuous replacement of a key metabolic enzyme, which would have been extremely difficult to identify directly.« less
Evolution of monogamy, paternal investment, and female life history in Peromyscus.
Jašarević, Eldin; Bailey, Drew H; Crossland, Janet P; Dawson, Wallace D; Szalai, Gabor; Ellersieck, Mark R; Rosenfeld, Cheryl S; Geary, David C
2013-02-01
The timing of reproductive development and associated trade-offs in quantity versus quality of offspring produced across the life span are well documented in a wide range of species. The relation of these aspects of maternal life history to monogamy and paternal investment in offspring is not well studied in mammals, due in part to the rarity of the latter. By using five large, captive-bred populations of Peromyscus species that range from promiscuous mating with little paternal investment (P. maniculatus bairdii) to social and genetic monogamy with substantial paternal investment (P. californicus insignis), we modeled the interaction between monogamy and female life history. Monogamy and high paternal investment were associated with smaller litter size, delayed maternal reproduction that extended over a longer reproductive life span, and larger, higher quality offspring. The results suggest monogamy and paternal investment can alter the evolution of female life-history trajectories in mammals. PsycINFO Database Record (c) 2013 APA, all rights reserved
Blyton, Michaela D J; Banks, Sam C; Peakall, Rod; Lindenmayer, David B
2012-02-01
The formal testing of mating system theories with empirical data is important for evaluating the relative importance of different processes in shaping mating systems in wild populations. Here, we present a generally applicable probability modelling framework to test the role of local mate availability in determining a population's level of genetic monogamy. We provide a significance test for detecting departures in observed mating patterns from model expectations based on mate availability alone, allowing the presence and direction of behavioural effects to be inferred. The assessment of mate availability can be flexible and in this study it was based on population density, sex ratio and spatial arrangement. This approach provides a useful tool for (1) isolating the effect of mate availability in variable mating systems and (2) in combination with genetic parentage analyses, gaining insights into the nature of mating behaviours in elusive species. To illustrate this modelling approach, we have applied it to investigate the variable mating system of the mountain brushtail possum (Trichosurus cunninghami) and compared the model expectations with the outcomes of genetic parentage analysis over an 18-year study. The observed level of monogamy was higher than predicted under the model. Thus, behavioural traits, such as mate guarding or selective mate choice, may increase the population level of monogamy. We show that combining genetic parentage data with probability modelling can facilitate an improved understanding of the complex interactions between behavioural adaptations and demographic dynamics in driving mating system variation. © 2011 Blackwell Publishing Ltd.
Evolution of mating systems in coral reef gobies and constraints on mating system plasticity
NASA Astrophysics Data System (ADS)
Hernaman, V.; Munday, P. L.
2007-09-01
Social and mating systems can be influenced by the distribution, abundance, and economic defendability of breeding partners and essential resources. Polygyny is predicted where males can economically defend multiple females or essential resources used by females. In contrast, monogamy is predicted where neither sex can monopolise multiple partners, either directly or through resource control, but where one mate is economically defendable. The mating system and reproductive behaviour of five species of coral reef goby were investigated and contrasted with population density and individual mobility. The two most abundant species ( Asterropteryx semipunctatus and Istigobius goldmanni) were polygynous. In contrast, the less populous and more widely dispersed epibenthic species ( Amblygobius bynoensis, Amblygobius phalaena and Valenciennea muralis) were pair forming and monogamous. All five species had low mobility, mostly remaining within metres (3 epibenthic species) or centimetres (2 cryptobenthic species) of a permanent shelter site. Interspecific differences in the mating system may have been shaped by differences in population density and the ability of reproductive individuals to economically defend breeding partners/sites. However, in a test of mating system plasticity, males of the three monogamous species did not mate polygynously when given the opportunity to do so in experimental manipulations of density and sex ratio. Mate guarding and complex spawning characteristics, which have likely co-evolved with the monogamous mating system, could contribute to mating system inflexibility by making polygynous mating unprofitable for individuals of the pair forming species, even when presented with current-day ecological conditions that usually favour polygyny.
Promiscuity and selectivity of bitter molecules and their receptors.
Di Pizio, Antonella; Niv, Masha Y
2015-07-15
Bitter taste is essential for survival, as it protects against consuming poisonous compounds, which are often bitter. Bitter taste perception is mediated by bitter taste receptors (TAS2Rs), a subfamily of G-protein coupled receptors (GPCRs). The number of TAS2R subtypes is species-dependent, and varies from 3 in chicken to 50 in frog. TAS2Rs present an intriguing case for studying promiscuity: some of the receptors are still orphan, or have few known agonists, while others can be activated by numerous, structurally dissimilar compounds. The ligands also vary in the repertoire of TAS2Rs that they activate: some bitter compounds are selective toward a single TAS2R, while others activate multiple TAS2Rs. Selectivity/promiscuity profile of bitter taste receptors and their compounds was explored by a chemoinformatic approach. TAS2R-promiscuous and TAS2R-selective bitter molecules were found to differ in chemical features, such as AlogP, E-state, total charge, number of rings, globularity, and heavy atom count. This allowed the prediction of bitter ligand selectivity toward TAS2Rs. Interestingly, while promiscuous TAS2Rs are activated by both TAS2R-promiscuous and TAS2R-selective compounds, almost all selective TAS2Rs in human are activated by promiscuous compounds, which are recognized by other TAS2Rs anyway. Thus, unique ligands, that may have been the evolutionary driving force for development of selective TAS2Rs, still need to be unraveled. Copyright © 2015 Elsevier Ltd. All rights reserved.
Varella, Marco Antonio Correa; Valentova, Jaroslava Varella; Pereira, Kamila Janaina; Bussab, Vera Silvia Raad
2014-11-01
One of the possible explanations for human within-sex variation in promiscuity stems from conditional strategies dependent on the level of body sex-dimorphism. There is some evidence that masculine men and feminine women are more promiscuous than their sex-atypical counterparts, although mixed results persist. Moreover, another line of evidence shows that more promiscuous women are rather sex-atypical. We tested whether diverse sex-dimorphic body measures (2D:4D, WHR/WSR, handgrip strength, and height and weight) influence sociosexual desires, attitudes, promiscuous behavior, and age of first intercourse in a sex-typical or sex-atypical direction. Participants were 185 young adults, 51 men and 54 women from Brazil, and 40 men and 40 women from the Czech Republic. In men stronger handgrip and more feminine 2D:4D predicted higher sociosexual behaviors, desires, and lower age of the first sexual intercourse. While in women, sociosexual desires were predicted by lower handgrip strength and more feminine 2D:4D. It thus seems that it is rather a mixture of masculine and feminine traits in men, and feminine traits in women that increase their sociosexuality. Masculine traits (height) predicting female promiscuous behavior were specific for only one population. In conclusion, a mosaic combination of sex-typical but also sex-atypical independent body traits can lead to higher promiscuity, particularly in men. Limitations, implications, and future directions for research are considered. This article is part of a Special Issue entitled: Neotropical Behaviour. Copyright © 2014 Elsevier B.V. All rights reserved.
Steroid signaling: ligand-binding promiscuity, molecular symmetry, and the need for gating.
Lathe, Richard; Kotelevtsev, Yuri
2014-04-01
Steroid/sterol-binding receptors and enzymes are remarkably promiscuous in the range of ligands they can bind to and, in the case of enzymes, modify - raising the question of how specific receptor activation is achieved in vivo. Estrogen receptors (ER) are modulated by 27-hydroxycholesterol and 5α-androstane-3β,17β-diol (Adiol), in addition to estradiol (E2), and respond to diverse small molecules such as bisphenol A. Steroid-modifying enzymes are also highly promiscuous in ligand binding and metabolism. The specificity problem is compounded by the fact that the steroid core (hydrogenated cyclopentophenanthrene ring system) has several planes of symmetry. Ligand binding can be in symmetrical East-West (rotation) and North-South (inversion) orientations. Hydroxysteroid dehydrogenases (HSDs) can modify symmetrical 7 and 11, also 3 and 17/20, positions, exemplified here by yeast 3α,20β-HSD and mammalian 11β-HSD and 17β-HSD enzymes. Faced with promiscuity and symmetry, other strategies are clearly necessary to promote signaling selectivity in vivo. Gating regulates hormone access via enzymes that preferentially inactivate (or activate) a subclass of ligands, thereby governing which ligands gain receptor access - exemplified by 11β-HSD gating cortisol access to the mineralocorticoid receptor, and P450 CYP7B1 gating Adiol access to ER. Counter-intuitively, the specificity of steroid/sterol action is achieved not by intrinsic binding selectivity but by the combination of local metabolism and binding affinity. Copyright © 2014 Elsevier Inc. All rights reserved.
James, Timothy Y.; Srivilai, Prayook; Kües, Ursula; Vilgalys, Rytas
2006-01-01
Mating incompatibility in mushroom fungi is controlled by the mating-type loci. In tetrapolar species, two unlinked mating-type loci exist (A and B), whereas in bipolar species there is only one locus. The A and B mating-type loci encode homeodomain transcription factors and pheromones and pheromone receptors, respectively. Most mushroom species have a tetrapolar mating system, but numerous transitions to bipolar mating systems have occurred. Here we determined the genes controlling mating type in the bipolar mushroom Coprinellus disseminatus. Through positional cloning and degenerate PCR, we sequenced both the transcription factor and pheromone receptor mating-type gene homologs from C. disseminatus. Only the transcription factor genes segregate with mating type, discounting the hypothesis of genetic linkage between the A and B mating-type loci as the causal origin of bipolar mating behavior. The mating-type locus of C. disseminatus is similar to the A mating-type locus of the model species Coprinopsis cinerea and encodes two tightly linked pairs of homeodomain transcription factor genes. When transformed into C. cinerea, the C. disseminatus A and B homologs elicited sexual reactions like native mating-type genes. Although mating type in C. disseminatus is controlled by only the transcription factor genes, cellular functions appear to be conserved for both groups of genes. PMID:16461425
Sunden, Fanny; AlSadhan, Ishraq; Lyubimov, Artem; ...
2017-10-25
Members of enzyme superfamilies specialize in different reactions but often exhibit catalytic promiscuity for one another's reactions, consistent with catalytic promiscuity as an important driver in the evolution of new enzymes. Wanting to understand how catalytic promiscuity and other factors may influence evolution across a superfamily, we turned to the well-studied alkaline phosphatase (AP) superfamily, comparing three of its members, two evolutionarily distinct phosphatases and a phosphodiesterase. Here, we mutated distinguishing active-site residues to generate enzymes that had a common Zn 2+ bimetallo core but little sequence similarity and different auxiliary domains. We then tested the catalytic capabilities of thesemore » pruned enzymes with a series of substrates. A substantial rate enhancement of ~1011-fold for both phosphate mono- and diester hydrolysis by each enzyme indicated that the Zn 2+ bimetallo core is an effective mono/di-esterase generalist and that the bimetallo cores were not evolutionarily tuned to prefer their cognate reactions. In contrast, our pruned enzymes were ineffective sulfatases, and this limited promiscuity may have provided a driving force for founding the distinct one-metal-ion branch that contains all known AP superfamily sulfatases. Finally, our pruned enzymes exhibited 10 7–10 8-fold phosphotriesterase rate enhancements, despite absence of such enzymes within the AP superfamily. We speculate that the superfamily active-site architecture involved in nucleophile positioning prevents accommodation of the additional triester substituent. Overall, we suggest that catalytic promiscuity, and the ease or difficulty of remodeling and building onto existing protein scaffolds, have greatly influenced the course of enzyme evolution. Uncovering principles and properties of enzyme function, promiscuity, and repurposing provides lessons for engineering new enzymes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunden, Fanny; AlSadhan, Ishraq; Lyubimov, Artem
Members of enzyme superfamilies specialize in different reactions but often exhibit catalytic promiscuity for one another's reactions, consistent with catalytic promiscuity as an important driver in the evolution of new enzymes. Wanting to understand how catalytic promiscuity and other factors may influence evolution across a superfamily, we turned to the well-studied alkaline phosphatase (AP) superfamily, comparing three of its members, two evolutionarily distinct phosphatases and a phosphodiesterase. Here, we mutated distinguishing active-site residues to generate enzymes that had a common Zn 2+ bimetallo core but little sequence similarity and different auxiliary domains. We then tested the catalytic capabilities of thesemore » pruned enzymes with a series of substrates. A substantial rate enhancement of ~1011-fold for both phosphate mono- and diester hydrolysis by each enzyme indicated that the Zn 2+ bimetallo core is an effective mono/di-esterase generalist and that the bimetallo cores were not evolutionarily tuned to prefer their cognate reactions. In contrast, our pruned enzymes were ineffective sulfatases, and this limited promiscuity may have provided a driving force for founding the distinct one-metal-ion branch that contains all known AP superfamily sulfatases. Finally, our pruned enzymes exhibited 10 7–10 8-fold phosphotriesterase rate enhancements, despite absence of such enzymes within the AP superfamily. We speculate that the superfamily active-site architecture involved in nucleophile positioning prevents accommodation of the additional triester substituent. Overall, we suggest that catalytic promiscuity, and the ease or difficulty of remodeling and building onto existing protein scaffolds, have greatly influenced the course of enzyme evolution. Uncovering principles and properties of enzyme function, promiscuity, and repurposing provides lessons for engineering new enzymes.« less
Liu, Xiao Hui; Yue, Ling Fen; Wang, Da Wei; Li, Ning; Cong, Lin
2013-01-01
Inbreeding depression is a major evolutionary and ecological force influencing population dynamics and the evolution of inbreeding-avoidance traits such as mating systems and dispersal. Mating systems and dispersal are fundamental determinants of population genetic structure. Resolving the relationships among genetic structure, seasonal breeding-related mating systems and dispersal will facilitate our understanding of the evolution of inbreeding avoidance. The goals of this study were as follows: (i) to determine whether females actively avoided mating with relatives in a group-living rodent species, Brandt’s voles (Lasiopodomys brandtii), by combined analysis of their mating system, dispersal and genetic structure; and (ii) to analyze the relationships among the variation in fine-genetic structure, inbreeding avoidance, season-dependent mating strategies and individual dispersal. Using both individual- and population-level analyses, we found that the majority of Brandt’s vole groups consisted of close relatives. However, both group-specific FISs, an inbreeding coefficient that expresses the expected percentage rate of homozygosity arising from a given breeding system, and relatedness of mates showed no sign of inbreeding. Using group pedigrees and paternity analysis, we show that the mating system of Brandt’s voles consists of a type of polygyny for males and extra-group polyandry for females, which may decrease inbreeding by increasing the frequency of mating among distantly-related individuals. The consistent variation in within-group relatedness, among-group relatedness and fine-scale genetic structures was mostly due to dispersal, which primarily occurred during the breeding season. Biologically relevant variation in the fine-scale genetic structure suggests that dispersal during the mating season may be a strategy to avoid inbreeding and drive the polygynous and extra-group polyandrous mating system of this species. PMID:23516435
Spotting and designing promiscuous ligands for drug discovery.
Schneider, P; Röthlisberger, M; Reker, D; Schneider, G
2016-01-21
The promiscuous binding behavior of bioactive compounds forms a mechanistic basis for understanding polypharmacological drug action. We present the development and prospective application of a computational tool for identifying potential promiscuous drug-like ligands. In combination with computational target prediction methods, the approach provides a working concept for rationally designing such molecular structures. We could confirm the multi-target binding of a de novo generated compound in a proof-of-concept study relying on the new method.
Functional pleiotropy and mating system evolution in plants: frequency-independent mating.
Jordan, Crispin Y; Otto, Sarah P
2012-04-01
Mutations that alter the morphology of floral displays (e.g., flower size) or plant development can change multiple functions simultaneously, such as pollen export and selfing rate. Given the effect of these various traits on fitness, pleiotropy may alter the evolution of both mating systems and floral displays, two characters with high diversity among angiosperms. The influence of viability selection on mating system evolution has not been studied theoretically. We model plant mating system evolution when a single locus simultaneously affects the selfing rate, pollen export, and viability. We assume frequency-independent mating, so our model characterizes prior selfing. Pleiotropy between increased viability and selfing rate reduces opportunities for the evolution of pure outcrossing, can favor complete selfing despite high inbreeding depression, and notably, can cause the evolution of mixed mating despite very high inbreeding depression. These results highlight the importance of pleiotropy for mating system evolution and suggest that selection by nonpollinating agents may help explain mixed mating, particularly in species with very high inbreeding depression. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Effects of maternal lines and mating systems on lamb carcass merit
USDA-ARS?s Scientific Manuscript database
Objectives: The objective of this study was to analyze the carcass composition of lambs produced from different mating systems. Materials and Methods: Lambs (n = 1,237) were produced by a multi- sire mating of three maternal lines (Katahdin (KN), Polypay (PP), and Easycare (EZ)) in two mating system...
NASA Astrophysics Data System (ADS)
Farmer, R. E.
1982-11-01
The MATE (Modular Automatic Test Equipment) program was developed to combat the proliferation of unique, expensive ATE within the Air Force. MATE incorporates a standard management approach and a standard architecture designed to implement a cradle-to-grave approach to the acquisition of ATE and to significantly reduce the life cycle cost of weapons systems support. These standards are detailed in the MATE Guides. The MATE Guides assist both the Air Force and Industry in implementing the MATE concept, and provide the necessary tools and guidance required for successful acquisition of ATE. The guides also provide the necessary specifications for industry to build MATE-qualifiable equipment. The MATE architecture provides standards for all key interfaces of an ATE system. The MATE approach to the acquisition and management of ATE has been jointly endorsed by the commanders of Air Force Systems Command and Air Force Logistics Command as the way of doing business in the future.
Intergenerational reproductive parasitism in a stingless bee.
Oldroyd, Benjamin P; Beekman, Madeleine
2009-10-01
Insect colonies have been traditionally regarded as closed societies comprised of completely sterile workers ruled over by a single once-mated queen. However, over the past 15 years, microsatellite studies of parentage have revealed that this perception is far from the truth (Beekman & Oldroyd 2008). First, we learned that honey bee queens are far more promiscuous than we had previously imagined (Estoup et al. 1994), with one Apis dorsata queen clocked at over 100 mates (Wattanachaiyingcharoen et al. 2003). Then Oldroyd et al. (1994) reported a honey bee colony from Queensland, where virtually all the males were sons of a single patriline of workers - a clear case of a cheater mutant that promoted intra-colonial reproductive parasitism. Then we learned that both bumble bee colonies (Lopez-Vaamonde et al. 2004) and queenless honey bee colonies (Nanork et al. 2005, 2007) are routinely parasitized by workers from other nests that fly in and lay male-producing eggs that are then reared by the victim colony. There is even evidence that in a thelytokous honey bee population, workers lay female-destined eggs directly into queen cells, thus reincarnating themselves as a queen (Jordan et al. 2008). And let us not forget ants, where microsatellite studies have revealed equally bizarre and totally unexpected phenomena (e.g. Cahan & Keller 2003; Pearcy et al. 2004; Fournier et al. 2005). Now, in this issue, Alves et al. (2009) use microsatellites to provide yet another shocking and completely unexpected revelation about the nefarious goings-on in insect colonies: intergenerational reproductive parasitism by stingless bee workers.
Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong
2015-09-01
Although one of an enzyme's hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. It is known that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. Here we report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta
Although one of an enzyme’s hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. We know that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. We report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Finally, our results demonstrate that this enzyme may use substrate-assisted catalysis involvingmore » the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.« less
Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; ...
2015-08-05
Although one of an enzyme’s hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. We know that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. We report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Finally, our results demonstrate that this enzyme may use substrate-assisted catalysis involvingmore » the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.« less
Kashyap, Manju; Jaiswal, Varun; Farooq, Umar
2017-09-01
Visceral leishmaniasis is a dreadful infectious disease and caused by the intracellular protozoan parasites, Leishmania donovani and Leishmania infantum. Despite extensive efforts for developing effective prophylactic vaccine, still no vaccine is available against leishmaniasis. However, advancement in immunoinformatics methods generated new dimension in peptide based vaccine development. The present study was aimed to identify T-cell epitopes from the vaccine candidate antigens like Lipophosphogylcan-3(LPG-3) and Nucleoside hydrolase (NH) from the L. donovani using in silico methods. Available best tools were used for the identification of promiscuous peptides for MHC class-II alleles. A total of 34 promiscuous peptides from LPG-3, 3 from NH were identified on the basis of their 100% binding affinity towards all six HLA alleles, taken in this study. These peptides were further checked computationally to know their IFN-γ and IL4 inducing potential and nine peptides were identified. Peptide binding interactions with predominant HLA alleles were done by docking. Out of nine docked promiscuous peptides, only two peptides (QESRILRVIKKKLVR, RILRVIKKKLVRKTL), from LPG-3 and one peptide (FDKFWCLVIDALKRI) from NH showed lowest binding energy with all six alleles. These promiscuous T-cell epitopes were predicted on the basis of their antigenicity, hydrophobicity, potential immune response and docking scores. The immunogenicity of predicted promiscuous peptides might be used for subunit vaccine development with immune-modulating adjuvants. Copyright © 2017 Elsevier B.V. All rights reserved.
Yun, Eun Ju; Oh, Eun Joong; Liu, Jing-Jing; Yu, Sora; Kim, Dong Hyun; Kwak, Suryang; Kim, Kyoung Heon; Jin, Yong-Su
2018-01-01
Understanding the global metabolic network, significantly perturbed upon promiscuous activities of foreign enzymes and different carbon sources, is crucial for systematic optimization of metabolic engineering of yeast Saccharomyces cerevisiae . Here, we studied the effects of promiscuous activities of overexpressed enzymes encoded by foreign genes on rerouting of metabolic fluxes of an engineered yeast capable of assimilating sugars from renewable biomass by profiling intracellular and extracellular metabolites. Unbiased metabolite profiling of the engineered S. cerevisiae strain EJ4 revealed promiscuous enzymatic activities of xylose reductase and xylitol dehydrogenase on galactose and galactitol, respectively, resulting in accumulation of galactitol and tagatose during galactose fermentation. Moreover, during glucose fermentation, a trisaccharide consisting of glucose accumulated outside of the cells probably owing to the promiscuous and transglycosylation activity of β-glucosidase expressed for hydrolyzing cellobiose. Meanwhile, higher accumulation of fatty acids and secondary metabolites was observed during xylose and cellobiose fermentations, respectively. The heterologous enzymes functionally expressed in S. cerevisiae showed promiscuous activities that led to unintended metabolic rerouting in strain EJ4. Such metabolic rerouting could result in a low yield and productivity of a final product due to the formation of unexpected metabolites. Furthermore, the global metabolic network can be significantly regulated by carbon sources, thus yielding different patterns of metabolite production. This metabolomic study can provide useful information for yeast strain improvement and systematic optimization of yeast metabolism to manufacture bio-based products.
Järvenpää, Marja; Lindström, Kai
2004-11-22
Eutrophication as a result of human activity has resulted in increased algal blooms and turbidity in aquatic environments. We investigated experimentally the effect of algal turbidity on the mating system and sexual selection in the sand goby, Pomatoschistus minutus (Pallas), a marine fish with a resource-defence mating system and paternal care. Owing to male-male competition and female choice, large males can monopolize multiple mates, while some males do not achieve mating at all. We show that the number of eggs laid was the same in both turbid and clear tanks but that mating success was more evenly distributed among males in turbid than in clear water. The opportunity for sexual selection was lower in turbid conditions. In turbid conditions mating success was less skewed towards large males. Our results suggest that increased turbidity can change mating systems and decrease the opportunity for sexual selection as well as selection intensity.
Subramoniam, T
2013-12-01
Crustaceans are known for their unrivalled diversity of sexual systems, as well as peculiar mating associations to achieve maximum mating success and fertilization accomplishment. Although sexes are separate in most species, various types of hermaphroditism characterize these predominantly aquatic arthropods. A low operational sex ratio between female and male, together with temporally limited receptivity of females towards males, imposes restrictions on the structuring of mating systems in crustaceans. The basic mating systems consist of monogamy, polygamy, mate guarding and pure searching. Understandably, ecological influences may also play a determinative role in the evolution of such sexual and mating systems in crustaceans. An important outcome of the crustacean sexual biology is the development of complex social structures in many aquatic species, in much the same way insects have established them in terrestrial conditions. In addition, groups like isopods and certain families of brachyuran crabs have shown terrestrial adaptation, exhibiting peculiar reproductive modes, sometimes reminiscent of their terrestrial counterparts, insects. Many caridean shrimps, living in symbiotic relationship with other marine invertebrates in the coral reef habitats, have reached pinnacle of complexity in sexuality and peculiar mating behaviours, resulting in communal living and establishing advanced social systems, such as eusociality.
Evolution of male and female choice in polyandrous systems.
Puurtinen, Mikael; Fromhage, Lutz
2017-03-29
We study the evolution of male and female mating strategies and mate choice for female fecundity and male fertilization ability in a system where both sexes can mate with multiple partners, and where there is variation in individual quality (i.e. in the availability of resources individuals can allocate to matings, mate choice and production of gametes). We find that when the cost of mating differs between sexes, the sex with higher cost of mating is reluctant to accept matings and is often also choosy, while the other sex accepts all matings. With equal mating costs, the evolution of mating strategies depends on the strength of female sperm limitation, so that when sperm limitation is strong, males are often reluctant and choosy, whereas females tend to accept available matings. Male reluctance evolves because a male's benefit per mating diminishes rapidly as he mates too often, hence losing out in the process of sperm competition as he spends much of his resources on mating costs rather than ejaculate production. When sperm limitation is weaker, females become more reluctant and males are more eager to mate. The model thus suggests that reversed sex roles are plausible outcomes of polyandry and limited sperm production. Implications for empirical studies of mate choice are discussed. © 2017 The Author(s).
Male resource defense mating system in primates? An experimental test in wild capuchin monkeys.
Tiddi, Barbara; Heistermann, Michael; Fahy, Martin K; Wheeler, Brandon C
2018-01-01
Ecological models of mating systems provide a theoretical framework to predict the effect of the defendability of both breeding resources and mating partners on mating patterns. In resource-based mating systems, male control over breeding resources is tightly linked to female mating preference. To date, few field studies have experimentally investigated the relationship between male resource control and female mating preference in mammals due to difficulties in manipulating ecological factors (e.g., food contestability). We tested the within-group male resource defense hypothesis experimentally in a wild population of black capuchin monkeys (Sapajus nigritus) in Iguazú National Park, Argentina. Sapajus spp. represent an ideal study model as, in contrast to most primates, they have been previously argued to be characterized by female mate choice and a resource-based mating system in which within-group resource monopolization by high-ranking males drives female mating preference for those males. Here, we examined whether females (N = 12) showed a weaker preference for alpha males during mating seasons in which food distribution was experimentally manipulated to be less defendable relative to those in which it was highly defendable. Results did not support the within-group male resource defense hypothesis, as female sexual preferences for alpha males did not vary based on food defendability. We discuss possible reasons for our results, including the possibility of other direct and indirect benefits females receive in exercising mate choice, the potential lack of tolerance over food directed towards females by alpha males, and phylogenetic constraints.
DeWoody, J A; Fletcher, D E; Wilkins, S D; Nelson, W S; Avise, J C
2000-12-07
Breeding, male North American sunfish (Centrarchidae), are often brightly coloured and promiscuous. However, the largemouth bass (Micropterus salmoides) is sexually monomorphic in appearance and socially monogamous. Unlike some other nest-tending centrarchids in the genus Lepomis, largemouth bass have also been reported to provide biparental care to eggs and fry. Here we use microsatellite markers in order to test whether social monogamy predicts genetic monogamy in the largemouth bass. Offspring were collected from 26 nests each usually guarded by a pair of adults, many of which were also captured. Twenty-three of these progeny cohorts (88%) proved to be composed almost exclusively of full-sibs and were thus the product of monogamous matings. Cuckoldry by males was rare. The genetic data also revealed that some nests contain juveniles that were not the progeny of the guardian female, a finding that can be thought of as low-level 'female cuckoldry'. Overall, however, the data provide what may be the first genetic documentation of near-monogamy and biparental care in a vertebrate with external fertilization.
DeWoody, J A; Fletcher, D E; Wilkins, S D; Nelson, W S; Avise, J C
2000-01-01
Breeding, male North American sunfish (Centrarchidae), are often brightly coloured and promiscuous. However, the largemouth bass (Micropterus salmoides) is sexually monomorphic in appearance and socially monogamous. Unlike some other nest-tending centrarchids in the genus Lepomis, largemouth bass have also been reported to provide biparental care to eggs and fry. Here we use microsatellite markers in order to test whether social monogamy predicts genetic monogamy in the largemouth bass. Offspring were collected from 26 nests each usually guarded by a pair of adults, many of which were also captured. Twenty-three of these progeny cohorts (88%) proved to be composed almost exclusively of full-sibs and were thus the product of monogamous matings. Cuckoldry by males was rare. The genetic data also revealed that some nests contain juveniles that were not the progeny of the guardian female, a finding that can be thought of as low-level 'female cuckoldry'. Overall, however, the data provide what may be the first genetic documentation of near-monogamy and biparental care in a vertebrate with external fertilization. PMID:11133034
Clever mothers balance time and effort in parental care: a study on free-ranging dogs
Sau, Shubhra
2017-01-01
Mammalian offspring require parental care, at least in the form of nursing during their early development. While mothers need to invest considerable time and energy in ensuring the survival of their current offspring, they also need to optimize their investment in one batch of offspring in order to ensure future reproduction and hence lifetime reproductive success. Free-ranging dogs live in small social groups, mate promiscuously and lack the cooperative breeding biology of other group-living canids. They face high early-life mortality, which in turn reduces fitness benefits of the mother from a batch of pups. We carried out a field-based study on free-ranging dogs in India to understand the nature of maternal care. Our analysis reveals that mothers reduce investment in energy-intensive active care and increase passive care as the pups grow older, thereby keeping overall levels of care more or less constant over pup age. Using the patterns of mother–pup interactions, we define the different phases of maternal care behaviour. PMID:28280555
The ecology of sex explains patterns of helping in arthropod societies.
Davies, Nicholas G; Ross, Laura; Gardner, Andy
2016-08-01
Across arthropod societies, sib-rearing (e.g. nursing or nest defence) may be provided by females, by males or by both sexes. According to Hamilton's 'haplodiploidy hypothesis', this diversity reflects the relatedness consequences of diploid vs. haplodiploid inheritance. However, an alternative 'preadaptation hypothesis' instead emphasises an interplay of ecology and the co-option of ancestral, sexually dimorphic traits for sib-rearing. The preadaptation hypothesis has recently received empirical support, but remains to be formalised. Here, we mathematically model the coevolution of sex-specific helping and sex allocation, contrasting these hypotheses. We find that ploidy per se has little effect. Rather, the ecology of sex shapes patterns of helping: sex-specific preadaptation strongly influences who helps; a freely adjustable sex ratio magnifies sex biases and promotes helping; and sib-mating, promiscuity, and reproductive autonomy also modulate the sex and abundance of helpers. An empirical survey reveals that patterns of sex-specific helping in arthropod taxa are consistent with the preadaptation hypothesis. © 2016 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Rao, Parimala V.
2013-01-01
The encounter between the pre-colonial education system in India, dominated by poor teachers and students, and the British education system, which defended and perpetuated the "English class system", created a complex and problematic relationship. This article explores this problematic relationship between poverty and education in the…
Social Mating System and Sex-Biased Dispersal in Mammals and Birds: A Phylogenetic Analysis
Mabry, Karen E.; Shelley, Erin L.; Davis, Katie E.; Blumstein, Daniel T.; Van Vuren, Dirk H.
2013-01-01
The hypothesis that patterns of sex-biased dispersal are related to social mating system in mammals and birds has gained widespread acceptance over the past 30 years. However, two major complications have obscured the relationship between these two behaviors: 1) dispersal frequency and dispersal distance, which measure different aspects of the dispersal process, have often been confounded, and 2) the relationship between mating system and sex-biased dispersal in these vertebrate groups has not been examined using modern phylogenetic comparative methods. Here, we present a phylogenetic analysis of the relationship between mating system and sex-biased dispersal in mammals and birds. Results indicate that the evolution of female-biased dispersal in mammals may be more likely on monogamous branches of the phylogeny, and that females may disperse farther than males in socially monogamous mammalian species. However, we found no support for a relationship between social mating system and sex-biased dispersal in birds when the effects of phylogeny are taken into consideration. We caution that although there are larger-scale behavioral differences in mating system and sex-biased dispersal between mammals and birds, mating system and sex-biased dispersal are far from perfectly associated within these taxa. PMID:23483957
Crudgington, Helen S; Beckerman, Andrew P; Brüstle, Lena; Green, Kathleen; Snook, Rhonda R
2005-05-01
Sexual conflict over reproduction can occur between males and females. In several naturally promiscuous insect species, experimental evolution studies that have enforced monogamy found evidence for sexual conflict. Here, we subjected the naturally promiscuous, sperm-heteromorphic fruit fly Drosophila pseudoobscura to enforced monogamy, standard levels of promiscuity, and elevated opportunities for promiscuity in four replicate lines. We examined the effect of male and female selection history and the proximate effect of variation in male density on female fitness parameters. We found that male density rather than male selection history explained a greater degree of female fecundity, egg hatching success, and productivity. Additionally, females selected under elevated promiscuity had greater fecundity and hatching success than did enforced monogamy females. Selection line males do not differ in their capacity to coerce females to remate, suggesting no divergence in precopulatory manipulative ability. However, these males did vary in their ability to suppress female remating, suggesting postcopulatory manipulation. These results indicate that sexual conflict can be manifested through both the proximate effects of male density and the historical levels of sexual selection and that the sexes respond differentially to these factors and further stress the multifarious channels of sexual communication that contribute to fitness.
Variation in mating systems of salamanders: mate guarding or territoriality?
Deitloff, Jennifer; Alcorn, Michael A; Graham, Sean P
2014-07-01
Two of the most common mating tactics in vertebrates are mate guarding and territoriality, yet much of the research on these strategies has focused on mating systems in birds, despite novel insights gained from studying less traditional systems. North American stream salamanders that comprise the Eurycea bislineata complex represent an excellent nontraditional system for comparing mating strategies because these species exhibit a continuum of male morphologies, diverse habitat associations, and various potential mating strategies. We studied two species within this complex that exhibit the extremes of this continuum, Eurycea aquatica (robust morph) and Eurycea cirrigera (slender morph). The larger head in males of E. aquatica is due to larger musculature around the jaw and may be associated with aggressive behavior. Therefore, we hypothesized that the robust morphology exhibited by males of E. aquatica provides benefits during either territorial defense or mate defense and that males of E. cirrigera would not exhibit aggression in either scenario. We found that neither species exhibited aggressive behavior to defend a territory. However, in the presence of a female, males of E. aquatica were significantly more aggressive toward intruding males than were males of E. cirrigera. Therefore, mate-guarding behavior occurs in E. aquatica, and the enlarged head of males likely aids in deterring rivals. This is the first demonstration of mate-guarding behavior in a plethodontid, the most speciose family of salamanders. Copyright © 2014 Elsevier B.V. All rights reserved.
Mating system and the evolution of sex-specific mortality rates in two nymphalid butterflies.
Wiklund, Christer; Gotthard, Karl; Nylin, Sören
2003-09-07
Life-history theory predicts that organisms should invest resources into intrinsic components of lifespan only to the degree that it pays off in terms of reproductive success. The benefit of a long life may differ between the sexes and different mating systems may therefore select for different sex-specific mortality rates. In insects with polyandrous mating systems, females mate throughout their lives and male reproductive success is likely to increase monotonously with lifespan. In monandrous systems, where the mating season is less protracted because receptive females are available only at the beginning of the flight season, male mating success should be less dependent on a long lifespan. Here, we show, in a laboratory experiment without predation, that the duration of the mating season is longer in the polyandrous comma butterfly, Polygonia c-album, than in the monandrous peacock butterfly, Inachis io, and that, in line with predictions, male lifespan is shorter than female lifespan in I. io, whereas male and female lifespans are similar in P. c-album.
A Method to Test the Effect of Environmental Cues on Mating Behavior in Drosophila melanogaster.
Gorter, Jenke A; Billeter, Jean-Christophe
2017-07-17
An individual's sexual drive is influenced by genotype, experience and environmental conditions. How these factors interact to modulate sexual behaviors remains poorly understood. In Drosophila melanogaster, environmental cues, such as food availability, affect mating activity offering a tractable system to investigate the mechanisms modulating sexual behavior. In D. melanogaster, environmental cues are often sensed via the chemosensory gustatory and olfactory systems. Here, we present a method to test the effect of environmental chemical cues on mating behavior. The assay consists of a small mating arena containing food medium and a mating couple. The mating frequency for each couple is continuously monitored for 24 h. Here we present the applicability of this assay to test environmental compounds from an external source through a pressurized air system as well as manipulation of the environmental components directly in the mating arena. The use of a pressurized air system is especially useful to test the effect of very volatile compounds, while manipulating components directly in the mating arena can be of value to ascertain a compound's presence. This assay can be adapted to answer questions about the influence of genetic and environmental cues on mating behavior and fecundity as well as other male and female reproductive behaviors.
[DNA Extraction from Old Bones by AutoMate Express™ System].
Li, B; Lü, Z
2017-08-01
To establish a method for extracting DNA from old bones by AutoMate Express™ system. Bones were grinded into powder by freeze-mill. After extraction by AutoMate Express™, DNA were amplified and genotyped by Identifiler®Plus and MinFiler™ kits. DNA were extracted from 10 old bone samples, which kept in different environments with the postmortem interval from 10 to 20 years, in 3 hours by AutoMate Express™ system. Complete STR typing results were obtained from 8 samples. AutoMate Express™ system can quickly and efficiently extract DNA from old bones, which can be applied in forensic practice. Copyright© by the Editorial Department of Journal of Forensic Medicine
Spatial distribution and male mating success of Anopheles gambiae swarms
2011-01-01
Background Anopheles gambiae mates in flight at particular mating sites over specific landmarks known as swarm markers. The swarms are composed of males; females typically approach a swarm, and leave in copula. This mating aggregation looks like a lek, but appears to lack the component of female choice. To investigate the possible mechanisms promoting the evolution of swarming in this mosquito species, we looked at the variation in mating success between swarms and discussed the factors that structure it in light of the three major lekking models, known as the female preference model, the hotspot model, and the hotshot model. Results We found substantial variation in swarm size and in mating success between swarms. A strong correlation between swarm size and mating success was observed, and consistent with the hotspot model of lek formation, the per capita mating success of individual males did not increase with swarm size. For the spatial distribution of swarms, our results revealed that some display sites were more attractive to both males and females and that females were more attracted to large swarms. While the swarm markers we recognize help us in localizing swarms, they did not account for the variation in swarm size or in the swarm mating success, suggesting that mosquitoes probably are attracted to these markers, but also perceive and respond to other aspects of the swarming site. Conclusions Characterizing the mating system of a species helps understand how this species has evolved and how selective pressures operate on male and female traits. The current study looked at male mating success of An. gambiae and discussed possible factors that account for its variation. We found that swarms of An. gambiae conform to the hotspot model of lek formation. But because swarms may lack the female choice component, we propose that the An. gambiae mating system is a lek-like system that incorporates characteristics pertaining to other mating systems such as scramble mating competition. PMID:21711542
Renan, Sharon; Greenbaum, Gili; Shahar, Naama; Templeton, Alan R; Bouskila, Amos; Bar-David, Shirli
2015-04-01
Small populations are prone to loss of genetic variation and hence to a reduction in their evolutionary potential. Therefore, studying the mating system of small populations and its potential effects on genetic drift and genetic diversity is of high importance for their viability assessments. The traditional method for studying genetic mating systems is paternity analysis. Yet, as small populations are often rare and elusive, the genetic data required for paternity analysis are frequently unavailable. The endangered Asiatic wild ass (Equus hemionus), like all equids, displays a behaviourally polygynous mating system; however, the level of polygyny has never been measured genetically in wild equids. Combining noninvasive genetic data with stochastic modelling of shifts in allele frequencies, we developed an alternative approach to paternity analysis for studying the genetic mating system of the re-introduced Asiatic wild ass in the Negev Desert, Israel. We compared the shifts in allele frequencies (as a measure of genetic drift) that have occurred in the wild ass population since re-introduction onset to simulated scenarios under different proportions of mating males. We revealed a strongly polygynous mating system in which less than 25% of all males participate in the mating process each generation. This strongly polygynous mating system and its potential effect on the re-introduced population's genetic diversity could have significant consequences for the long-term persistence of the population in the Negev. The stochastic modelling approach and the use of allele-frequency shifts can be further applied to systems that are affected by genetic drift and for which genetic data are limited. © 2015 John Wiley & Sons Ltd.
Honey bee queens do not count mates to assess their mating success
USDA-ARS?s Scientific Manuscript database
The mating system of honey bees (genus Apis) is extremely polyandrous, where reproductive females (queens) typically mate with 12 or more males (drones) during their mating flight(s). The evolutionary implications for hyperpolyandry have been subject to considerable debate and empirical testing beca...
Enzymatic Detoxication, Conformational Selection, and the Role of Molten Globule Active Sites*
Honaker, Matthew T.; Acchione, Mauro; Zhang, Wei; Mannervik, Bengt; Atkins, William M.
2013-01-01
The role of conformational ensembles in enzymatic reactions remains unclear. Discussion concerning “induced fit” versus “conformational selection” has, however, ignored detoxication enzymes, which exhibit catalytic promiscuity. These enzymes dominate drug metabolism and determine drug-drug interactions. The detoxication enzyme glutathione transferase A1–1 (GSTA1–1), exploits a molten globule-like active site to achieve remarkable catalytic promiscuity wherein the substrate-free conformational ensemble is broad with barrierless transitions between states. A quantitative index of catalytic promiscuity is used to compare engineered variants of GSTA1–1 and the catalytic promiscuity correlates strongly with characteristics of the thermodynamic partition function, for the substrate-free enzymes. Access to chemically disparate transition states is encoded by the substrate-free conformational ensemble. Pre-steady state catalytic data confirm an extension of the conformational selection model, wherein different substrates select different starting conformations. The kinetic liability of the conformational breadth is minimized by a smooth landscape. We propose that “local” molten globule behavior optimizes detoxication enzymes. PMID:23649628
Karageorge, Kurt W; Wilson, Raymond R
2017-12-01
Characterizing the mating systems of long-lived, economically important Pacific rockfishes comprising the viviparous Sebastes species flock is crucial for their conservation. However, direct assignment of mating success to sires is precluded by open, offshore populations and high female fecundity. We addressed this challenge by integrating paternity-assigned mating success of females with the adult sex ratio (ASR) of the population, male evolutionary responses to receptive females, and reproductive life history traits-in the framework of sexual selection theory-to assess the mating system of Sebastes melanops . Microsatellite parentage analysis of 17 pregnant females, 1,256 of their progeny, and 106 adults from the population yielded one to four sires per brood, a mean of two sires, and a female mate frequency distribution with a truncated normal (random) pattern. The 11 multiple paternity broods all contained higher median allele richness than the six single paternity broods (Wilcoxon test: W = 0, p < .001), despite similar levels of average heterozygosity. By sampling sperm and alleles from different males, polyandrous females gain opportunities to enhance their sperm supply and to lower the cost of mating with genetically incompatible males through reproductive compensation. A mean of two mates per mated female with a variance of one, an ASR = 1.2 females per male, and the expected population mean of 2.4 mates for mated males (and the estimated 35 unavailable sires), fits polygamous male mate frequency distributions that distinguish polygynandry and polyandrogyny mating systems, that is, variations of polygamy, but not polyandry. Inference for polygamy is consistent with weak premating sexual selection on males, expected in mid-water, schooling S. melanops , owing to polyandrous mating, moderately aggregated receptive females, an even ASR, and no territories and nests used for reproduction. Each of these characteristics facilitates more mating males and erodes conspicuous sexual dimorphism. Evaluation of male evolutionary responses of demersal congeners that express reproductively territorial behavior revealed they have more potential mechanisms for producing premating sexual selection, greater variation in reproductive success, and a reduced breeding effective population size of adults and annual effective size of a cohort, compared to S. melanops modeled with two mates per adult. Such divergence in behavior and mating system by territorial species may differentially lower their per capita birth rates, subsequent population growth, and slow their recovery from exploitation.
Making Transporter Models for Drug-Drug Interaction Prediction Mobile.
Ekins, Sean; Clark, Alex M; Wright, Stephen H
2015-10-01
The past decade has seen increased numbers of studies publishing ligand-based computational models for drug transporters. Although they generally use small experimental data sets, these models can provide insights into structure-activity relationships for the transporter. In addition, such models have helped to identify new compounds as substrates or inhibitors of transporters of interest. We recently proposed that many transporters are promiscuous and may require profiling of new chemical entities against multiple substrates for a specific transporter. Furthermore, it should be noted that virtually all of the published ligand-based transporter models are only accessible to those involved in creating them and, consequently, are rarely shared effectively. One way to surmount this is to make models shareable or more accessible. The development of mobile apps that can access such models is highlighted here. These apps can be used to predict ligand interactions with transporters using Bayesian algorithms. We used recently published transporter data sets (MATE1, MATE2K, OCT2, OCTN2, ASBT, and NTCP) to build preliminary models in a commercial tool and in open software that can deliver the model in a mobile app. In addition, several transporter data sets extracted from the ChEMBL database were used to illustrate how such public data and models can be shared. Predicting drug-drug interactions for various transporters using computational models is potentially within reach of anyone with an iPhone or iPad. Such tools could help prioritize which substrates should be used for in vivo drug-drug interaction testing and enable open sharing of models. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Optical panel system including stackable waveguides
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSanto, Leonard; Veligdan, James T.
An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, whereinmore » each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.« less
Optical panel system including stackable waveguides
DeSanto, Leonard; Veligdan, James T.
2007-03-06
An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.
Evolution of sexuality: biology and behavior
2005-01-01
Sexual reproduction in animals and plants is far more prevalent than asexual reproduction, and there is no dearth of hypotheses attempting to explain why. Even bacteria and viruses, which reproduce by cloning, engage in promiscuous horizontal gene exchange (“parasexual reproduction”) on such short time scales that they evolve genotypic diversity even more rapidly than eukaryotes. (We confront this daily in the form of antimicrobial resistance.) The host-parasite and host-pathogen arms race purports to explain the prevalence of sexual reproduction, yet there are over a dozen other hypotheses, including the proposition that sexual reproduction purges the genome of deleterious mutations. An equally daunting challenge is to understand, in terms of evolutionary logic, the jungle of diverse courtship and mating strategies that we find in nature. The phenotypic plasticity of sex determination in animals suggests that the central nervous system and reproductive tract may not reach the same endpoint on the continuum between our stereotypic male and female extremes. Why are there only two kinds of gametes in most eukaryotes? Why are most flowering plants, and few animals, hermaphroditic? Why do male animals compete more for access to females than the other way around in most animals that have been studied?This review presents more questions than answers, but an extraordinary wealth of data has been collected, and new genetic techniques will provide new answers. The possible relevance of these data to human sexuality will be discussed in a future article. PMID:16200180
The spermatogenic process of the common vampire bat Desmodus rotundus under a histomorphometric view
Puga, Luciano Carlos Heringer Porcaro; de Paula, Tarcízio Antônio Rêgo; Freitas, Mariella Bontempo Duca; da Matta, Sérgio Luis Pinto
2017-01-01
Among all bat species, Desmodus rotundus stands out as one of the most intriguing due to its exclusively haematophagous feeding habits. However, little is known about their spermatogenic cycle. This study aimed at describing the spermatogenic process of common vampire bats through testicular histomorphometric characterization of adult specimens, spermatogenic production indexes, description of stages of the seminiferous epithelium cycle and estimative of the spermatogenic process duration. Morphometrical and immunohistochemical analyzes for bromodeoxiuridine were conducted under light microscopy and ultrastructural analyzes were performed under transmission electron microscopy. Vampire bats showed higher investment in gonadal tissue (gonadosomatic index of 0.54%) and in seminiferous tubules (tubulesomatic index of 0.49%) when compared to larger mammals. They also showed a high tubular length per gram of testis (34.70 m). Approximately half of the intertubular compartment was found to be comprised by Leydig cells (51.20%), and an average of 23.77x106 of these cells was found per gram of testis. The germline cells showed 16.93% of mitotic index and 2.51% of meiotic index. The overall yield of spermatogenesis was 60% and the testicular spermatic reserve was 71.44x107 spermatozoa per gram of testis. With a total spermatogenesis duration estimated at 37.02 days, vampire bats showed a daily sperm production of 86.80x106 gametes per gram of testis. These findings demonstrate a high sperm production, which is commonly observed in species with promiscuous mating system. PMID:28301534
Mating system and the evolution of sex-specific mortality rates in two nymphalid butterflies.
Wiklund, Christer; Gotthard, Karl; Nylin, Sören
2003-01-01
Life-history theory predicts that organisms should invest resources into intrinsic components of lifespan only to the degree that it pays off in terms of reproductive success. The benefit of a long life may differ between the sexes and different mating systems may therefore select for different sex-specific mortality rates. In insects with polyandrous mating systems, females mate throughout their lives and male reproductive success is likely to increase monotonously with lifespan. In monandrous systems, where the mating season is less protracted because receptive females are available only at the beginning of the flight season, male mating success should be less dependent on a long lifespan. Here, we show, in a laboratory experiment without predation, that the duration of the mating season is longer in the polyandrous comma butterfly, Polygonia c-album, than in the monandrous peacock butterfly, Inachis io, and that, in line with predictions, male lifespan is shorter than female lifespan in I. io, whereas male and female lifespans are similar in P. c-album. PMID:12964985
SRB-2: a promiscuous rainbow aptamer for live-cell RNA imaging.
Sunbul, Murat; Jäschke, Andres
2018-06-21
The SRB-2 aptamer originally selected against sulforhodamine B is shown here to promiscuously bind to various dyes with different colors. Binding of SRB-2 to these dyes results in either fluorescence increase or decrease, making them attractive for fluorescence microscopy and biological assays. By systematically varying fluorophore structural elements and measuring dissociation constants, the principles of fluorophore recognition by SRB-2 were analyzed. The obtained structure-activity relationships allowed us to rationally design a novel, bright, orange fluorescent turn-on probe (TMR-DN) with low background fluorescence, enabling no-wash live-cell RNA imaging. This new probe improved the signal-to-background ratio of fluorescence images by one order of magnitude over best previously known probe for this aptamer. The utility of TMR-DN is demonstrated by imaging ribosomal and messenger RNAs, allowing the observation of distinct localization patterns in bacteria and mammalian cells. The SRB-2 / TMR-DN system is found to be orthogonal to the Spinach/DFHBI and MG/Malachite green aptamer/dye systems.
Evolution of uni- and bifactorial sexual compatibility systems in fungi
Nieuwenhuis, B P S; Billiard, S; Vuilleumier, S; Petit, E; Hood, M E; Giraud, T
2013-01-01
Mating systems, that is, whether organisms give rise to progeny by selfing, inbreeding or outcrossing, strongly affect important ecological and evolutionary processes. Large variations in mating systems exist in fungi, allowing the study of their origin and consequences. In fungi, sexual incompatibility is determined by molecular recognition mechanisms, controlled by a single mating-type locus in most unifactorial fungi. In Basidiomycete fungi, however, which include rusts, smuts and mushrooms, a system has evolved in which incompatibility is controlled by two unlinked loci. This bifactorial system probably evolved from a unifactorial system. Multiple independent transitions back to a unifactorial system occurred. It is still unclear what force drove evolution and maintenance of these contrasting inheritance patterns that determine mating compatibility. Here, we give an overview of the evolutionary factors that might have driven the evolution of bifactoriality from a unifactorial system and the transitions back to unifactoriality. Bifactoriality most likely evolved for selfing avoidance. Subsequently, multiallelism at mating-type loci evolved through negative frequency-dependent selection by increasing the chance to find a compatible mate. Unifactoriality then evolved back in some species, possibly because either selfing was favoured or for increasing the chance to find a compatible mate in species with few alleles. Owing to the existence of closely related unifactorial and bifactorial species and the increasing knowledge of the genetic systems of the different mechanisms, Basidiomycetes provide an excellent model for studying the different forces that shape breeding systems. PMID:23838688
Ersvaer, Elisabeth; Hatfield, Kimberley J.; Reikvam, Håkon; Bruserud, Øystein
2011-01-01
The human Notch system consists of 5 ligands and 4 membrane receptors with promiscuous ligand binding, and Notch-initiated signalling interacts with a wide range of other intracellular pathways. The receptor signalling seems important for regulation of normal and malignant hematopoiesis, development of the cellular immune system, and regulation of immune responses. Several Notch-targeting agents are now being developed, including natural receptor ligands, agonistic and antagonistic antibodies, and inhibitors of intracellular Notch-initiated signalling. Some of these agents are in clinical trials, and several therapeutic strategies seem possible in stem cell recipients: (i) agonists may be used for stem cell expansion and possibly to enhance posttransplant lymphoid reconstitution; (ii) receptor-specific agonists or antagonists can be used for immunomodulation; (iii) Notch targeting may have direct anticancer effects. Although the effects of therapeutic targeting are difficult to predict due to promiscuous ligand binding, targeting of this system may represent an opportunity to achieve combined effects with earlier posttransplant reconstitution, immunomodulation, or direct anticancer effects. PMID:22046566
Promiscuous Feminisms for Troubling Times
ERIC Educational Resources Information Center
Voithofer, Rick
2013-01-01
Looking across the six articles in this issue, this paper argues that promiscuous uses of feminist methodologies offer a unique constellation of conceptual, pragmatic, material, and ethical strategies with which to understand and engage some of the social and cultural tensions that are occurring within and outside schools. It presents a…
Much More than Power: The Pedagogy of Promiscuous Black Feminism
ERIC Educational Resources Information Center
Huckaby, M. Francyne
2013-01-01
This paper explores promiscuous black feminism by juxtaposing black feminism, Foucualt's poststructuralism, and my grandmother. The tensions created by these juxtapositions illuminate the ways black feminism and poststructuralism are resources and challenges to each other, and how both offer understandings of the relations at play that shape…
Loaded transducer for downhole drilling components
Hall, David R [Provo, UT; Fox, Joe [Spanish Fork, UT; Daly, Jeffery E [Cypress, TX
2009-05-05
A system for transmitting information between downhole components has a first downhole component with a first mating surface and a second downhole component having a second mating surface configured to substantially mate with the first mating surface. The system also has a first transmission element with a first communicating surface and is mounted within a recess in the first mating surface. The first transmission element also has an angled surface. The recess has a side with multiple slopes for interacting with the angled surface, each slope exerting a different spring force on the first transmission element. A second transmission element has a second communicating surface mounted proximate the second mating surface and adapted to communicate with the first communicating surface.
Oxytocin receptor density is associated with male mating tactics and social monogamy
Ophir, Alexander G.; Gessel, Ana; Zheng, Da-Jiang; Phelps, Steven M.
2012-01-01
Despite its well-described role in female affiliation, the influence of oxytocin on male pairbonding is largely unknown. However, recent human studies indicate that this nonapeptide has a potent influence on male behaviors commonly associated with monogamy. Here we investigated the distribution of oxytocin receptors (OTR) throughout the forebrain of the socially monogamous male prairie vole (Microtus ochrogaster). Because males vary in both sexual and spatial fidelity, we explored the extent to which OTR predicted monogamous or non-monogamous patterns of space use, mating success and sexual fidelity in free-living males. We found that monogamous males expressed higher OTR density in the nucleus accumbens than non-monogamous males, a result that mirrors species differences in voles with different mating systems. OTR density in the posterior portion of the insula predicted mating success. Finally, OTR in the hippocampus and septohippocampal nucleus, which are nuclei associated with spatial memory, predicted patterns of space use and reproductive success within mating tactics. Our data highlight the importance of oxytocin receptor in neural structures associated with pairbonding and socio-spatial memory in male mating tactics. The role of memory in mating systems is often neglected, despite the fact that mating tactics impose an inherently spatial challenge for animals. Identifying mechanisms responsible for relating information about the social world with mechanisms mediating pairbonding and mating tactics is crucial to fully appreciate the suite of factors driving mating systems. PMID:22285648
Wood, Annabel; Morris, Helen; Emery, Jon; Hall, Per N; Cotton, Symon; Prevost, A Toby; Walter, Fiona M
2008-01-01
Pigmented skin lesions or 'moles' are a common presenting problem in general practice consultations: while the majority are benign, a minority are malignant melanomas. The MoleMate system is a novel diagnostic tool which incorporates spectrophotometric intracutaneous analysis (SIAscopy) within a non-invasive scanning technique and utilises a diagnostic algorithm specifically developed for use in primary care. The MoleMate training program is a short, computer-based course developed to train primary care practitioners to operate the MoleMate diagnostic tool. This pre-trial study used mixed methods to assess the effectiveness and acceptability of a computer-based training program CD-ROM, developed to teach primary care practitioners to identify the seven features of suspicious pigmented lesions (SPLs) seen with the MoleMate system. Twenty-five practitioners worked through the MoleMate training program: data on feature recognition and time taken to conduct the assessment of each lesion were collected. Acceptability of the training program and the MoleMate system in general was assessed by questionnaire. The MoleMate training program improved users' feature recognition by 10% (pre-test median 73.8%, p<0.001), and reduced the time taken to complete assessment of 30 SPLs (pre-test median 21 minutes 53 seconds, median improvement 3 minutes 17 seconds, p<0.001). All practitioners' feature recognition improved (21/21), with most also improving their time (18/21). Practitioners rated the training program as effective and easy to use. The MoleMate training program is a potentially effective and acceptable informatics tool to teach practitioners to recognise the features of SPLs identified by the MoleMate system. It will be used as part of the intervention in a randomised controlled trial to compare the diagnostic accuracy and appropriate referral rates of practitioners using the MoleMate system with best practice in primary care.
Jones, Adam G
2015-11-01
Bateman's principles continue to play a major role in the characterization of genetic mating systems in natural populations. The modern manifestations of Bateman's ideas include the opportunity for sexual selection (i.e. I(s) - the variance in relative mating success), the opportunity for selection (i.e. I - the variance in relative reproductive success) and the Bateman gradient (i.e. β(ss) - the slope of the least-squares regression of reproductive success on mating success). These variables serve as the foundation for one convenient approach for the quantification of mating systems. However, their estimation presents at least two challenges, which I address here with a new Windows-based computer software package called BATEMANATER. The first challenge is that confidence intervals for these variables are not easy to calculate. BATEMANATER solves this problem using a bootstrapping approach. The second, more serious, problem is that direct estimates of mating system variables from open populations will typically be biased if some potential progeny or adults are missing from the analysed sample. BATEMANATER addresses this problem using a maximum-likelihood approach to estimate mating system variables from incompletely sampled breeding populations. The current version of BATEMANATER addresses the problem for systems in which progeny can be collected in groups of half- or full-siblings, as would occur when eggs are laid in discrete masses or offspring occur in pregnant females. BATEMANATER has a user-friendly graphical interface and thus represents a new, convenient tool for the characterization and comparison of genetic mating systems. © 2015 John Wiley & Sons Ltd.
The Mating System of the Wild-to-Domesticated Complex of Gossypium hirsutum L. Is Mixed
Velázquez-López, Rebeca; Wegier, Ana; Alavez, Valeria; Pérez-López, Javier; Vázquez-Barrios, Valeria; Arroyo-Lambaer, Denise; Ponce-Mendoza, Alejandro; Kunin, William E.
2018-01-01
The domestication syndrome of many plants includes changes in their mating systems. The evolution of the latter is shaped by ecological and genetic factors that are particular to an area. Thus, the reproductive biology of wild relatives must be studied in their natural distribution to understand the mating system of a crop species as a whole. Gossypium hirsutum (upland cotton) includes both domesticated varieties and wild populations of the same species. Most studies on mating systems describe cultivated cotton as self-pollinated, while studies on pollen dispersal report outcrossing; however, the mating system of upland cotton has not been described as mixed and little is known about its wild relatives. In this study we selected two wild metapopulations for comparison with domesticated plants and one metapopulation with evidence of recent gene flow between wild relatives and the crop to evaluate the mating system of cotton’s wild-to-domesticated complex. Using classic reproductive biology methods, our data demonstrate that upland cotton presents a mixed mating system throughout the complex. Given cotton’s capacity for outcrossing, differences caused by the domestication process in cultivated individuals can have consequences for its wild relatives. This characterization of the diversity of the wild relatives in their natural distribution, as well as their interactions with the crop, will be useful to design and implement adequate strategies for conservation and biosecurity. PMID:29868048
Genetic versus census estimators of the opportunity for sexual selection in the wild.
Dunn, Stacey J; Waits, Lisette P; Byers, John A
2012-04-01
Abstract The existence of a direct link between intensity of sexual selection and mating-system type is widely accepted. However, the quantification of sexual selection has proven problematic. Several measures of sexual selection have been proposed, including the operational sex ratio (OSR), the breeding sex ratio (BSR), and the opportunity for sexual selection (I(mates)). For a wild population of pronghorn (Antilocapra americana), we calculated OSR and BSR. We estimated I(mates) from census data on the spatial and temporal distribution of receptive females in rut and from a multigenerational genetic pedigree. OSR and BSR indicated weak sexual selection on males, but census and pedigree I(mates) suggested stronger sexual selection on males than on females. OSR and BSR correlated with census but not pedigree estimates of I(mates), and census I(mates) did not correlate with pedigree estimates. This suggests that the behavioral mating system, as deduced from the spatial and temporal distribution of females, does not predict the genetic mating system of pronghorn. The differences we observed between estimators were primarily due to female mate sampling and choice and to the sex ratio. For most species, behavioral data are not perfectly accurate and therefore will be an insufficient alternative to using multigenerational pedigrees to quantify sexual selection.
Evolution of the hemiascomycete yeasts: on life styles and the importance of inbreeding.
Knop, Michael
2006-07-01
The term 'breeding system' is used to describe the morphological and behavioural aspects of the sexual life cycle of a species. The yeast breeding system provides three alternatives that enable hapoids to return to the diploid state that is necessary for meiosis: mating of unrelated haploids (amphimixis), mating between spores from the same tetrad (intratetrad mating, automixis) and mother daughter mating upon mating type switching (haplo-selfing). The frequency of specific mating events affects the level of heterozygosity present in individuals and the genetic diversity of populations. This review discusses the reproductive strategies of yeasts, in particular S. cerevisiae (Bakers' or budding yeast). Emphasis is put on intratetrad mating, its implication for diversity, and how the particular genome structure could have evolved to ensure the preservation of a high degree of heterozygosity in conjunction with frequent intratetrad matings. I also discuss how the ability of yeast to control the number of spores that are formed accounts for high intratetrad mating rates and for enhanced transmission of genomic variation. I extend the discussion to natural genetic variation and propose that a high level of plasticity is inherent in the yeast breeding system, which may allow variation of the breeding behaviour in accordance with the needs imposed by the environment. (c) 2006 Wiley Periodicals, Inc.
Mate-Selection Systems and Criteria: Variation according to Family Structure.
ERIC Educational Resources Information Center
Lee, Gary R.; Stone, Lorene Hemphill
1980-01-01
Autonomous mate selection based on romantic attraction is more likely to be institutionalized in societies with nuclear family systems. Neolocal residence customs increase the probability that mate selection is autonomous but decrease the probability that it is based on romantic attraction. (Author)
The influence of pleiotropy between viability and pollen fates on mating system evolution.
Jordan, Crispin Y
2015-02-01
Floral displays are functionally and genetically integrated structures, so modifications to display will likely affect multiple fitness components (pleiotropy), including pollen export and self-pollination, and therefore selfing rate. Consequently, the great diversities of floral displays and of mating systems found among angiosperms have likely co-evolved. I extend previous models of mating system evolution to determine how pleiotropy that links viability (e.g., probability of survival to reproduction) and the allocation of pollen for export and selfing affects the evolution of selfing, outcrossing, and in particular, mixed mating. I show that the outcome depends on how pollen shifts from being exported, unused, or used for selfing. Furthermore, pleiotropy that affects viability can explain observations not addressed by previous theory, including the evolution of mixed mating despite high inbreeding depression in the absence of pollen-limitation. Therefore, pleiotropy may play a key role in explaining selfing rates for such species that exhibit otherwise enigmatic mating systems. Copyright © 2014 Elsevier Inc. All rights reserved.
Genetic incompatibility drives mate choice in a parasitic wasp.
Thiel, Andra; Weeda, Anne C; de Boer, Jetske G; Hoffmeister, Thomas S
2013-07-30
Allelic incompatibility between individuals of the same species should select for mate choice based on the genetic make-up of both partners at loci that influence offspring fitness. As a consequence, mate choice may be an important driver of allelic diversity. A complementary sex determination (CSD) system is responsible for intraspecific allelic incompatibility in many species of ants, bees, and wasps. CSD may thus favour disassortative mating and in this, resembles the MHC of the vertebrate immune system, or the self-incompatibility (SI) system of higher plants. Here we show that in the monogamous parasitic wasp Bracon brevicornis (Wesmael), females are able to reject partners with incompatible alleles. Forcing females to accept initially rejected partners resulted in sex ratio distortion and partial infertility of offspring. CSD-disassortative mating occurred independent of kin recognition and inbreeding avoidance in our experiment. The fitness consequences of mate choice are directly observable, not influenced by environmental effects, and more severe than in comparable systems (SI or MHC), on individuals as well as at the population level. Our results thus demonstrate the strong potential of female mate choice for maintaining high offspring fitness in this species.
Martínez-Gómez, A I; Andújar-Sánchez, M; Clemente-Jiménez, J M; Neira, J L; Rodríguez-Vico, F; Martínez-Rodríguez, S; Las Heras-Vázquez, F J
2011-11-01
The availability of enzymes with a high promiscuity/specificity relationship permits the hydrolysis of several substrates with a view to obtaining a certain product or using one enzyme for several productive lines. N-Carbamoyl-β-alanine amidohydrolase from Agrobacterium tumefaciens (Atβcar) has shown high versatility to hydrolyze different N-carbamoyl-, N-acetyl- and N-formyl-amino acids to produce different α, β, γ and δ amino acids. We have calculated the promiscuity index for the enzyme, obtaining a value of 0.54, which indicates that it is a modestly promiscuous enzyme. Atβcar presented the highest probability of hydrolysis for N-carbamoyl-amino acids, being the enzyme more efficient for the production of α-amino acids. We have also demonstrated by mutagenesis, modelling, kinetic and binding experiments that W218 and A359 indirectly influence the plasticity of the enzyme due to interaction with the environment of R291, the key residue for catalytic activity. Copyright © 2011 Elsevier B.V. All rights reserved.
Tissue remodeling: a mating-induced differentiation program for the Drosophila oviduct.
Kapelnikov, Anat; Rivlin, Patricia K; Hoy, Ronald R; Heifetz, Yael
2008-12-08
In both vertebrates and invertebrates, the oviduct is an epithelial tube surrounded by visceral muscles that serves as a conduit for gamete transport between the ovary and uterus. While Drosophila is a model system for tubular organ development, few studies have addressed the development of the fly's oviduct. Recent studies in Drosophila have identified mating-responsive genes and proteins whose levels in the oviduct are altered by mating. Since many of these molecules (e.g. Muscle LIM protein 84B, Coracle, Neuroglian) have known roles in the differentiation of muscle and epithelia of other organs, mating may trigger similar differentiation events in the oviduct. This led us to hypothesize that mating mediates the last stages of oviduct differentiation in which organ-specific specializations arise. Using electron- and confocal-microscopy we identified tissue-wide post-mating changes in the oviduct including differentiation of cellular junctions, remodeling of extracellular matrix, increased myofibril formation, and increased innervation. Analysis of once- and twice-mated females reveals that some mating-responsive proteins respond only to the first mating, while others respond to both matings. We uncovered ultrastructural changes in the mated oviduct that are consistent with the roles that mating-responsive proteins play in muscle and epithelial differentiation elsewhere. This suggests that mating triggers the late differentiation of the oviduct. Furthermore, we suggest that mating-responsive proteins that respond only to the first mating are involved in the final maturation of the oviduct while proteins that remain responsive to later matings are also involved in maintenance and ongoing function of the oviduct. Taken together, our results establish the oviduct as an attractive system to address mechanisms that regulate the late stages of differentiation and maintenance of a tubular organ.
Tissue remodeling: a mating-induced differentiation program for the Drosophila oviduct
Kapelnikov, Anat; Rivlin, Patricia K; Hoy, Ronald R; Heifetz, Yael
2008-01-01
Background In both vertebrates and invertebrates, the oviduct is an epithelial tube surrounded by visceral muscles that serves as a conduit for gamete transport between the ovary and uterus. While Drosophila is a model system for tubular organ development, few studies have addressed the development of the fly's oviduct. Recent studies in Drosophila have identified mating-responsive genes and proteins whose levels in the oviduct are altered by mating. Since many of these molecules (e.g. Muscle LIM protein 84B, Coracle, Neuroglian) have known roles in the differentiation of muscle and epithelia of other organs, mating may trigger similar differentiation events in the oviduct. This led us to hypothesize that mating mediates the last stages of oviduct differentiation in which organ-specific specializations arise. Results Using electron- and confocal-microscopy we identified tissue-wide post-mating changes in the oviduct including differentiation of cellular junctions, remodeling of extracellular matrix, increased myofibril formation, and increased innervation. Analysis of once- and twice-mated females reveals that some mating-responsive proteins respond only to the first mating, while others respond to both matings. Conclusion We uncovered ultrastructural changes in the mated oviduct that are consistent with the roles that mating-responsive proteins play in muscle and epithelial differentiation elsewhere. This suggests that mating triggers the late differentiation of the oviduct. Furthermore, we suggest that mating-responsive proteins that respond only to the first mating are involved in the final maturation of the oviduct while proteins that remain responsive to later matings are also involved in maintenance and ongoing function of the oviduct. Taken together, our results establish the oviduct as an attractive system to address mechanisms that regulate the late stages of differentiation and maintenance of a tubular organ. PMID:19063748
49 CFR 179.14 - Coupler vertical restraint system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... mating coupler (or simulated coupler) having only frictional vertical force resistance at the mating interface; or a mating coupler (or simulated coupler) having the capabilities described in paragraph (a) of this section; (2) The testing apparatus shall simulate the vertical coupler performance at the mating...
USDA-ARS?s Scientific Manuscript database
Pheromone-based mating disruption has proven to be a powerful pest management tool in many cropping systems, helping to reduce reliance on insecticide applications. However, a sustainable mating disruption program has not yet been developed for cranberries. In the cranberry system, two of the major ...
49 CFR 179.14 - Coupler vertical restraint system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... system shall be tested under the following conditions: (1) The test coupler shall be tested with a mating coupler (or simulated coupler) having only frictional vertical force resistance at the mating interface; or a mating coupler (or simulated coupler) having the capabilities described in paragraph (a) of this...
Kaltenbach, Miriam; Emond, Stephane; Hollfelder, Florian; Tokuriki, Nobuhiko
2016-10-01
The extent to which an emerging new function trades off with the original function is a key characteristic of the dynamics of enzyme evolution. Various cases of laboratory evolution have unveiled a characteristic trend; a large increase in a new, promiscuous activity is often accompanied by only a mild reduction of the native, original activity. A model that associates weak trade-offs with "evolvability" was put forward, which proposed that enzymes possess mutational robustness in the native activity and plasticity in promiscuous activities. This would enable the acquisition of a new function without compromising the original one, reducing the benefit of early gene duplication and therefore the selection pressure thereon. Yet, to date, no experimental study has examined this hypothesis directly. Here, we investigate the causes of weak trade-offs by systematically characterizing adaptive mutations that occurred in two cases of evolutionary transitions in enzyme function: (1) from phosphotriesterase to arylesterase, and (2) from atrazine chlorohydrolase to melamine deaminase. Mutational analyses in various genetic backgrounds revealed that, in contrast to the prevailing model, the native activity is less robust to mutations than the promiscuous activity. For example, in phosphotriesterase, the deleterious effect of individual mutations on the native phosphotriesterase activity is much larger than their positive effect on the promiscuous arylesterase activity. Our observations suggest a revision of the established model: weak trade-offs are not caused by an intrinsic robustness of the native activity and plasticity of the promiscuous activity. We propose that upon strong adaptive pressure for the new activity without selection against the original one, selected mutations will lead to the largest possible increases in the new function, but whether and to what extent they decrease the old function is irrelevant, creating a bias towards initially weak trade-offs and the emergence of generalist enzymes.
Oxytocin receptor density is associated with male mating tactics and social monogamy.
Ophir, Alexander G; Gessel, Ana; Zheng, Da-Jiang; Phelps, Steven M
2012-03-01
Despite its well-described role in female affiliation, the influence of oxytocin on male pairbonding is largely unknown. However, recent human studies indicate that this nonapeptide has a potent influence on male behaviors commonly associated with monogamy. Here we investigated the distribution of oxytocin receptors (OTR) throughout the forebrain of the socially monogamous male prairie vole (Microtus ochrogaster). Because males vary in both sexual and spatial fidelity, we explored the extent to which OTR predicted monogamous or non-monogamous patterns of space use, mating success and sexual fidelity in free-living males. We found that monogamous males expressed higher OTR density in the nucleus accumbens than non-monogamous males, a result that mirrors species differences in voles with different mating systems. OTR density in the posterior portion of the insula predicted mating success. Finally, OTR in the hippocampus and septohippocampal nucleus, which are nuclei associated with spatial memory, predicted patterns of space use and reproductive success within mating tactics. Our data highlight the importance of oxytocin receptor in neural structures associated with pairbonding and socio-spatial memory in male mating tactics. The role of memory in mating systems is often neglected, despite the fact that mating tactics impose an inherently spatial challenge for animals. Identifying mechanisms responsible for relating information about the social world with mechanisms mediating pairbonding and mating tactics is crucial to fully appreciate the suite of factors driving mating systems. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior. Published by Elsevier Inc.
An Overview of the Function and Maintenance of Sexual Reproduction in Dikaryotic Fungi
Wallen, R. M.; Perlin, Michael H.
2018-01-01
Sexual reproduction likely evolved as protection from environmental stresses, specifically, to repair DNA damage, often via homologous recombination. In higher eukaryotes, meiosis and the production of gametes with allelic combinations different from parental type provides the side effect of increased genetic variation. In fungi it appears that while the maintenance of meiosis is paramount for success, outcrossing is not a driving force. In the subkingdom Dikarya, fungal members are characterized by existence of a dikaryon for extended stages within the life cycle. Such fungi possess functional or, in some cases, relictual, loci that govern sexual reproduction between members of their own species. All mating systems identified so far in the Dikarya employ a pheromone/receptor system for haploid organisms to recognize a compatible mating partner, although the paradigm in the Ascomycota, e.g., Saccharomyces cerevisiae, is that genes for the pheromone precursor and receptor are not found in the mating-type locus but rather are regulated by its products. Similarly, the mating systems in the Ascomycota are bipolar, with two non-allelic idiomorphs expressed in cells of opposite mating type. In contrast, for the Basidiomycota, both bipolar and tetrapolar mating systems have been well characterized; further, at least one locus directly encodes the pheromone precursor and the receptor for the pheromone of a different mating type, while a separate locus encodes proteins that may regulate the first locus and/or additional genes required for downstream events. Heterozygosity at both of two unlinked loci is required for cells to productively mate in tetrapolar systems, whereas in bipolar systems the two loci are tightly linked. Finally, a trade-off exists in wild fungal populations between sexual reproduction and the associated costs, with adverse conditions leading to mating. For fungal mammal pathogens, the products of sexual reproduction can be targets for the host immune system. The opposite appears true for phytopathogenic fungi, where mating and pathogenicity are inextricably linked. Here, we explore, compare, and contrast different strategies used among the Dikarya, both saprophytic and pathogenic fungi, and highlight differences between pathogens of mammals and pathogens of plants, providing context for selective pressures acting on this interesting group of fungi. PMID:29619017
Krupp, Daniel Brian
2008-02-01
Information is crucial to decision-making, including mate choice decisions. Perceptual systems, such as attention, evolved in part to forage for reproductive information; consequently, these systems can be used to reveal mate preferences. Here, I consider the place of visual information in human mate choice and provide a rationale for pressing into service methods drawn from the attention literature for the study of mate choice decisions. Because visual attention is allocated automatically and selectively, it may be used to complement common methods of mate preference assessment, such as self-report questionnaires and measures of genital arousal, while avoiding some of the pitfalls of these methods. Beyond the utility of increasing confidence in extant research findings by employing relatively unobtrusive methods, visual attention paradigms can also allow researchers to explore a variety of questions that are rarely asked, such as those concerned with signal efficiency and tradeoffs in the assessment of mate value.
Differences according to Sex in Sociosexuality and Infidelity after Traumatic Brain Injury.
Moreno, Jhon Alexander; McKerral, Michelle
2015-01-01
To explore differences according to sex in sociosexuality and infidelity in individuals with TBI and in healthy controls. Forty-two individuals with mild, moderate, and severe TBI having completed a postacute TBI rehabilitation program, at least six months after injury, and 47 healthy controls. Sociosexual Orientation Inventory-Revised (SOI-R) and Attitudes toward Infidelity Scale. Overall, men score significantly higher than women in sociosexuality. However, there was a nonsignificant trend towards a reduction of sociosexuality levels in men with TBI. Infidelity levels were comparable in healthy controls and individuals with TBI. In individuals with TBI, less acceptance of infidelity was significantly associated with an unrestricted sociosexual orientation, but not in healthy controls. As documented in previous cross-cultural studies, men have higher levels of sociosexuality than women. However, men with TBI showed a tendency towards the reduction of sociosexuality. The possibility of a latent explanatory variable is suggested (e.g., post-TBI neuroendocrinological changes). TBI does not seem to have an impact on infidelity, but individuals with TBI who express less acceptance of infidelity also report a more promiscuous mating strategy regarding their behavior, attitudes, and desire. Theoretical implications are discussed in terms of evolutionary theories of human sexuality and neuropsychology.
Roberts, K. E.; Evison, S. E. F.; Baer, B.; Hughes, W. O. H.
2015-01-01
Multiple mating (and insemination) by females with different males, polyandry, is widespread across animals, due to material and/or genetic benefits for females. It reaches particularly high levels in some social insects, in which queens can produce significantly fitter colonies by being polyandrous. It is therefore a paradox that two thirds of eusocial hymenopteran insects appear to be exclusively monandrous, in spite of the fitness benefits that polyandry could provide. One possible cost of polyandry could be sexually transmitted parasites, but evidence for these in social insects is extremely limited. Here we show that two different species of Nosema microsporidian parasites can transmit sexually in the honey bee Apis mellifera. Honey bee males that are infected by the parasite have Nosema spores in their semen, and queens artificially inseminated with either Nosema spores or the semen of Nosema-infected males became infected by the parasite. The emergent and more virulent N. ceranae achieved much higher rates of infection following insemination than did N. apis. The results provide the first quantitative evidence of a sexually transmitted disease (STD) in social insects, indicating that STDs may represent a potential cost of polyandry in social insects. PMID:26123939
Sexual selection and the evolution of secondary sexual traits: sex comb evolution in Drosophila.
Snook, Rhonda R; Gidaszewski, Nelly A; Chapman, Tracey; Simmons, Leigh W
2013-04-01
Sexual selection can drive rapid evolutionary change in reproductive behaviour, morphology and physiology. This often leads to the evolution of sexual dimorphism, and continued exaggerated expression of dimorphic sexual characteristics, although a variety of other alternative selection scenarios exist. Here, we examined the evolutionary significance of a rapidly evolving, sexually dimorphic trait, sex comb tooth number, in two Drosophila species. The presence of the sex comb in both D. melanogaster and D. pseudoobscura is known to be positively related to mating success, although little is yet known about the sexually selected benefits of sex comb structure. In this study, we used experimental evolution to test the idea that enhancing or eliminating sexual selection would lead to variation in sex comb tooth number. However, the results showed no effect of either enforced monogamy or elevated promiscuity on this trait. We discuss several hypotheses to explain the lack of divergence, focussing on sexually antagonistic coevolution, stabilizing selection via species recognition and nonlinear selection. We discuss how these are important, but relatively ignored, alternatives in understanding the evolution of rapidly evolving sexually dimorphic traits. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Evidence for mate guarding behavior in the Taylor's checkerspot butterfly
Victoria J. Bennett; Winston P. Smith; Matthew G. Betts
2011-01-01
Discerning the intricacies of mating systems in butterflies can be difficult, particularly when multiple mating strategies are employed and are cryptic and not exclusive. We observed the behavior and habitat use of 113 male Taylor's checkerspot butterflies (Euphydryas editha taylori). We confirmed that two distinct mating strategies were...
Noel, Joseph
2018-04-26
Joseph Noel from the Salk Institute on "Metabolic Noise, Vestigial Metabolites or the Raw Material of Ecological Adaptation? Enzymes, Catalytic Promiscuity and the Evolution of Chemodiversity in Nature" on March 26, 2010 at the 5th Annual DOE JGI User Meeting.
Predictors of Drug/Alcohol Abuse and Sexual Promiscuity of College Students.
ERIC Educational Resources Information Center
Nam, Jeong Sook; And Others
This study examined the relationship between the individual's purpose in life, existential anxiety, powerlessness and use of alcohol/drugs and the tendency to be sexually promiscuous. The study is rooted in the work of Viktor E. Frankl, which suggested that a lack of meaning and purpose can cause socially deviant behavior and psychological…
Entering the 'big data' era in medicinal chemistry: molecular promiscuity analysis revisited.
Hu, Ye; Bajorath, Jürgen
2017-06-01
The 'big data' concept plays an increasingly important role in many scientific fields. Big data involves more than unprecedentedly large volumes of data that become available. Different criteria characterizing big data must be carefully considered in computational data mining, as we discuss herein focusing on medicinal chemistry. This is a scientific discipline where big data is beginning to emerge and provide new opportunities. For example, the ability of many drugs to specifically interact with multiple targets, termed promiscuity, forms the molecular basis of polypharmacology, a hot topic in drug discovery. Compound promiscuity analysis is an area that is much influenced by big data phenomena. Different results are obtained depending on chosen data selection and confidence criteria, as we also demonstrate.
van Schaik, J; Kerth, G
2017-02-01
For non-mobile parasites living on social hosts, infection dynamics are strongly influenced by host life history and social system. We explore the impact of host social systems on parasite population dynamics by comparing the infection intensity and transmission opportunities of three mite species of the genus Spinturnix across their three European bat hosts (Myotis daubentonii, Myotis myotis, Myotis nattereri) during the bats' autumn mating season. Mites mainly reproduce in host maternity colonies in summer, but as these colonies are closed, opportunities for inter-colony transmission are limited to host interactions during the autumn mating season. The three investigated hosts differ considerably in their social system, most notably in maternity colony size, mating system, and degree of male summer aggregation. We observed marked differences in parasite infection during the autumn mating period between the species, closely mirroring the predictions made based on the social systems of the hosts. Increased host aggregation sizes in summer yielded higher overall parasite prevalence and intensity, both in male and female hosts. Moreover, parasite levels in male hosts differentially increased throughout the autumn mating season in concordance with the degree of contact with female hosts afforded by the different mating systems of the hosts. Critically, the observed host-specific differences have important consequences for parasite population structure and will thus affect the coevolutionary dynamics between the interacting species. Therefore, in order to accurately characterize host-parasite dynamics in hosts with complex social systems, a holistic approach that investigates parasite infection and transmission across all periods is warranted.
Females use self-referent cues to avoid mating with previous mates.
Ivy, Tracie M; Weddle, Carie B; Sakaluk, Scott K
2005-12-07
Females of many species mate repeatedly throughout their lives, often with many different males (polyandry). Females can secure genetic benefits by maximizing their diversity of mating partners, and might be expected, therefore, to forego matings with previous partners in favour of novel males. Indeed, a female preference for novel mating partners has been shown in several taxa, but the mechanism by which females distinguish between novel males and previous mates remains unknown. We show that female crickets (Gryllodes sigillatus) mark males with their own unique chemical signatures during mating, enabling females to recognize prior mates in subsequent encounters and to avoid remating with them. Because self-referent chemosensory cues provide females with a simple, but reliable mechanism of identifying individuals with whom they have mated without requiring any special cognitive ability, they may be a widespread means by which females across a broad range of animal mating systems maximize the genetic benefits of polyandry.
Females use self-referent cues to avoid mating with previous mates
Ivy, Tracie M; Weddle, Carie B; Sakaluk, Scott K
2005-01-01
Females of many species mate repeatedly throughout their lives, often with many different males (polyandry). Females can secure genetic benefits by maximizing their diversity of mating partners, and might be expected, therefore, to forego matings with previous partners in favour of novel males. Indeed, a female preference for novel mating partners has been shown in several taxa, but the mechanism by which females distinguish between novel males and previous mates remains unknown. We show that female crickets (Gryllodes sigillatus) mark males with their own unique chemical signatures during mating, enabling females to recognize prior mates in subsequent encounters and to avoid remating with them. Because self-referent chemosensory cues provide females with a simple, but reliable mechanism of identifying individuals with whom they have mated without requiring any special cognitive ability, they may be a widespread means by which females across a broad range of animal mating systems maximize the genetic benefits of polyandry. PMID:16271971
Hübner, Kerstin; Gonzalez-Wanguemert, Mercedes; Diekmann, Onno E; Serrão, Ester A
2013-01-01
Sexual selection theory predicts that, in organisms with reversed sex roles, more polyandrous species exhibit higher levels of sexual dimorphism. In the family Syngnathidae (pipefish, seahorses, and seadragons), males provide all parental care by carrying developing embryos on their ventral surfaces, and females develop secondary sex characters. Syngnathids exhibit a variety of genetic mating patterns, making them an ideal group to test predictions of sexual selection theory. Here, we describe the mating system of the black-striped pipefish Syngnathus abaster, using 4 highly variable microsatellites to analyze parentage of 102 embryos. Results revealed that 1) both sexes mate multiple times over the course of a pregnancy (polygynandrous mating system), 2) eggs are spatially segregated by maternity within each brood pouch, and 3) larger females have higher mating success (Kolmogorov-Smirnov test; P < 0.05). Together with similar studies of other syngnathid species, our results support the hypothesis that the mating system is related to the intensity of sexual dimorphism.
Advanced Mating System Development for Space Applications
NASA Technical Reports Server (NTRS)
Lewis, James L.
2004-01-01
This slide presentation reviews the development of space flight sealing and the work required for the further development of a dynamic interface seal for the use on space mating systems to support a fully androgynous mating interface. This effort has resulted in the advocacy of developing a standard multipurpose interface for use with all modern modular space architecture. This fully androgynous design means a seal-on-seal (SOS) system.
Investigating a novel pathway by which pheromone-based mating disruption may protect crops
USDA-ARS?s Scientific Manuscript database
Pheromone-based mating disruption has been a successful, relatively new technology that growers use to reduce key insect populations. Mating disruption systems function by sending out false plumes of the insect sex pheromones – this interferes with the insect’s ability to find a mate, preempting egg...
Naveed, Hammad; Hameed, Umar S.; Harrus, Deborah; Bourguet, William; Arold, Stefan T.; Gao, Xin
2015-01-01
Motivation: The inherent promiscuity of small molecules towards protein targets impedes our understanding of healthy versus diseased metabolism. This promiscuity also poses a challenge for the pharmaceutical industry as identifying all protein targets is important to assess (side) effects and repositioning opportunities for a drug. Results: Here, we present a novel integrated structure- and system-based approach of drug-target prediction (iDTP) to enable the large-scale discovery of new targets for small molecules, such as pharmaceutical drugs, co-factors and metabolites (collectively called ‘drugs’). For a given drug, our method uses sequence order–independent structure alignment, hierarchical clustering and probabilistic sequence similarity to construct a probabilistic pocket ensemble (PPE) that captures promiscuous structural features of different binding sites on known targets. A drug’s PPE is combined with an approximation of its delivery profile to reduce false positives. In our cross-validation study, we use iDTP to predict the known targets of 11 drugs, with 63% sensitivity and 81% specificity. We then predicted novel targets for these drugs—two that are of high pharmacological interest, the peroxisome proliferator-activated receptor gamma and the oncogene B-cell lymphoma 2, were successfully validated through in vitro binding experiments. Our method is broadly applicable for the prediction of protein-small molecule interactions with several novel applications to biological research and drug development. Availability and implementation: The program, datasets and results are freely available to academic users at http://sfb.kaust.edu.sa/Pages/Software.aspx. Contact: xin.gao@kaust.edu.sa and stefan.arold@kaust.edu.sa Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26286808
Design and research on the two-joint mating system of underwater vehicle
NASA Astrophysics Data System (ADS)
Zhang, Zhong-lin; Wang, Li-quan
2013-03-01
In the 21st century, people have come to the era of ocean science and ocean economy. With the development of ocean science and technology and the thorough research on the ocean, underwater mating technique has been widely used in such fields as sunk ship salvage, deep ocean workstation, submarine lifesaving aid and military affairs. In this paper, researches are made home and abroad on mating technology. Two-joint mating system of underwater vehicle is designed including plane system, three-dimensional assembly system and control system in order to increase the capacity of adapting platform obliquity and adopting rotational skirt scheme. It is clear that the system fits the working space of underwater vehicle passageway and there is no interference phenomenon in assembly design. The finite element model of the system shell and the pressurization of the joint are established. The results of the finite element computing and the pressing test are accordant, and thus it can testify that the shell material meet the need of intension and joint pressurization is reliable. Modeling of the control system is accomplished, and simulation and analysis are made, which can provide directions for the controller design of mating system of underwater vehicles.
Thermal Equilibrium of a Macroscopic Quantum System in a Pure State.
Goldstein, Sheldon; Huse, David A; Lebowitz, Joel L; Tumulka, Roderich
2015-09-04
We consider the notion of thermal equilibrium for an individual closed macroscopic quantum system in a pure state, i.e., described by a wave function. The macroscopic properties in thermal equilibrium of such a system, determined by its wave function, must be the same as those obtained from thermodynamics, e.g., spatial uniformity of temperature and chemical potential. When this is true we say that the system is in macroscopic thermal equilibrium (MATE). Such a system may, however, not be in microscopic thermal equilibrium (MITE). The latter requires that the reduced density matrices of small subsystems be close to those obtained from the microcanonical, equivalently the canonical, ensemble for the whole system. The distinction between MITE and MATE is particularly relevant for systems with many-body localization for which the energy eigenfuctions fail to be in MITE while necessarily most of them, but not all, are in MATE. We note, however, that for generic macroscopic systems, including those with MBL, most wave functions in an energy shell are in both MATE and MITE. For a classical macroscopic system, MATE holds for most phase points on the energy surface, but MITE fails to hold for any phase point.
Sex roles and mutual mate choice matter during mate sampling.
Myhre, Lise Cats; de Jong, Karen; Forsgren, Elisabet; Amundsen, Trond
2012-06-01
The roles of females and males in mating competition and mate choice have lately proven more variable, between and within species, than previously thought. In nature, mating competition occurs during mate search and is expected to be regulated by the numbers of potential mates and same-sex competitors. Here, we present the first study to test how a temporal change in sex roles affects mating competition and mate choice during mate sampling. Our model system (the marine fish Gobiusculus flavescens) is uniquely suitable because of its change in sex roles, from conventional to reversed, over the breeding season. As predicted from sex role theory, courtship was typically initiated by males and terminated by females early in the breeding season. The opposite pattern was observed late in the season, at which time several females often simultaneously courted the same male. Mate-searching females visited more males early than late in the breeding season. Our study shows that mutual mate choice and mating competition can have profound effects on female and male behavior. Future work needs to consider the dynamic nature of mating competition and mate choice if we aim to fully understand sexual selection in the wild.
Dai, Longhai; Li, Jiao; Yao, Peiyuan; Zhu, Yueming; Men, Yan; Zeng, Yan; Yang, Jiangang; Sun, Yuanxia
2017-04-20
Glycosylation is a prominent biological mechanism for structural and functional diversity of natural products. Uridine diphosphate-dependent glycosyltransferases with aglycon promiscuity are generally recognised as effective biocatalysts for glycodiversification of natural products for practical applications. In this study, the aglycon promiscuity of glycosyltransferase Bs-YjiC from Bacillus subtilis 168 was explored. Bs-YjiC, with uridine diphosphate glucose (UDPG) as sugar donor, exhibited robust capabilities to glycosylate 19 structurally diverse types of drug-like scaffolds with regio- and stereospecificities and form O-, N- and S-linkage glycosides. Twenty-four glycosides of 17 aglycons were purified from scale-up reactions using Bs-YjiC as a biocatalyst, and their structures were confirmed by nuclear magnetic resonance spectra. Furthermore, a one-pot reaction by coupling Bs-YjiC to sucrose synthase from Arabidopsis thaliana was applied to glycosylate pterostilbene. Without adding the costly UDPG as sugar donor, 9mM (3.8g/L) pterostilbene 4'-O-β-glucoside was obtained by periodic feeding of pterostilbene. These results suggest the aglycon promiscuity of Bs-YjiC and demonstrate its significant application prospect in biosynthesis of valuable natural products. Copyright © 2017 Elsevier B.V. All rights reserved.
Myoinhibiting peptides are the ancestral ligands of the promiscuous Drosophila sex peptide receptor
USDA-ARS?s Scientific Manuscript database
Male insects change behaviors of female partners by co-transferring accessory gland proteins (Acps) like sex peptide (SP), with their sperm. The Drosophila sex peptide receptor (SPR) is a G protein-coupled receptor expressed in the female’s nervous system and genital tract. While most Acps show a fa...
No genome barriers to promiscuous DNA
NASA Astrophysics Data System (ADS)
Lewin, R.
1984-06-01
Farrelly and Butow (1983) used the term 'promiscuous DNA' in their report of the apparent natural transfer of yeast mitochondrial DNA sequences into the nuclear genome. Ellis (1982) applied the same term in an editorial comment. It is pointed out since that time the subject of DNA's promiscuity has exploded with a series of reports. According to a report by Stern (1984), movement of DNA sequences between chloroplasts and mitochondria is not just a rare event but is a rampant process. It was recently concluded that 'the widespread presence of ctDNA sequences in plant mtDNA is best regarded as a dramatic demonstration of the dynamo nature of interactions between the chloroplast and the mitochondrion, similar to the ongoing process of interorganellar DNA transfer already documented between mitochondrion and nucleus and between chloroplast and nucleus'.
Entering the ‘big data’ era in medicinal chemistry: molecular promiscuity analysis revisited
Hu, Ye; Bajorath, Jürgen
2017-01-01
The ‘big data’ concept plays an increasingly important role in many scientific fields. Big data involves more than unprecedentedly large volumes of data that become available. Different criteria characterizing big data must be carefully considered in computational data mining, as we discuss herein focusing on medicinal chemistry. This is a scientific discipline where big data is beginning to emerge and provide new opportunities. For example, the ability of many drugs to specifically interact with multiple targets, termed promiscuity, forms the molecular basis of polypharmacology, a hot topic in drug discovery. Compound promiscuity analysis is an area that is much influenced by big data phenomena. Different results are obtained depending on chosen data selection and confidence criteria, as we also demonstrate. PMID:28670471
Bakkeren, G; Kronstad, J W
1994-01-01
Sexual compatibility requires self vs. non-self recognition. Genetically, two compatibility or mating-type systems govern recognition in heterothallic basidiomycete fungi such as the edible and woodrotting mushrooms and the economically important rust and smut phytopathogens. A bipolar system is defined by a single genetic locus (MAT) that can have two or multiple alleles. A tetrapolar system has two loci, each with two or more specificities. We have employed two species from the genus Ustilago (smut fungi) to discover a molecular explanation for the genetic difference in mating systems. Ustilago maydis, a tetrapolar species, has two genetically unlinked loci that encode the distinct mating functions of cell fusion (a locus) and subsequent sexual development and pathogenicity (b locus). We have recently described a b locus in a bipolar species, Ustilago hordei, wherein the existence of an a locus has been suspected, but not demonstrated. We report here the cloning of an allele of the a locus (a1) from U. hordei and the discovery that physical linkage of the a and b loci in this bipolar fungus accounts for the distinct mating system. Linkage establishes a large complex MAT locus in U. hordei; this locus appears to be in a region suppressed for recombination. Images PMID:7913746
Beyond sex allocation: the role of mating systems in sexual selection in parasitoid wasps
Boulton, Rebecca A; Collins, Laura A; Shuker, David M
2015-01-01
Despite the diverse array of mating systems and life histories which characterise the parasitic Hymenoptera, sexual selection and sexual conflict in this taxon have been somewhat overlooked. For instance, parasitoid mating systems have typically been studied in terms of how mating structure affects sex allocation. In the past decade, however, some studies have sought to address sexual selection in the parasitoid wasps more explicitly and found that, despite the lack of obvious secondary sexual traits, sexual selection has the potential to shape a range of aspects of parasitoid reproductive behaviour and ecology. Moreover, various characteristics fundamental to the parasitoid way of life may provide innovative new ways to investigate different processes of sexual selection. The overall aim of this review therefore is to re-examine parasitoid biology with sexual selection in mind, for both parasitoid biologists and also researchers interested in sexual selection and the evolution of mating systems more generally. We will consider aspects of particular relevance that have already been well studied including local mating structure, sex allocation and sperm depletion. We go on to review what we already know about sexual selection in the parasitoid wasps and highlight areas which may prove fruitful for further investigation. In particular, sperm depletion and the costs of inbreeding under chromosomal sex determination provide novel opportunities for testing the role of direct and indirect benefits for the evolution of mate choice. PMID:24981603
Mate replacement entails a fitness cost for a socially monogamous seabird.
Ismar, Stefanie M H; Daniel, Claire; Stephenson, Brent M; Hauber, Mark E
2010-01-01
Studies of the selective advantages of divorce in socially monogamous bird species have unravelled extensive variation among different lineages with diverse ecologies. We quantified the reproductive correlates of mate retention, mate loss and divorce in a highly philopatric, colonially breeding biparental seabird, the Australasian gannet Morus serrator. Estimates of annual divorce rates varied between 40-43% for M. serrator and were high in comparison with both the closely related Morus bassanus and the range of divorce rates reported across monogamous avian breeding systems. Mate retention across seasons was related to consistently higher reproductive success compared with mate replacement, while divorce per se contributed significantly to lower reproductive output only in one of two breeding seasons. Prior reproductive success was not predictive of mate replacement overall or divorce in particular. These patterns are in accordance with the musical chairs hypothesis of adaptive divorce theory, which operates in systems characterised by asynchronous territorial establishment.
Mate replacement entails a fitness cost for a socially monogamous seabird
NASA Astrophysics Data System (ADS)
Ismar, Stefanie M. H.; Daniel, Claire; Stephenson, Brent M.; Hauber, Mark E.
2010-01-01
Studies of the selective advantages of divorce in socially monogamous bird species have unravelled extensive variation among different lineages with diverse ecologies. We quantified the reproductive correlates of mate retention, mate loss and divorce in a highly philopatric, colonially breeding biparental seabird, the Australasian gannet Morus serrator. Estimates of annual divorce rates varied between 40-43% for M. serrator and were high in comparison with both the closely related Morus bassanus and the range of divorce rates reported across monogamous avian breeding systems. Mate retention across seasons was related to consistently higher reproductive success compared with mate replacement, while divorce per se contributed significantly to lower reproductive output only in one of two breeding seasons. Prior reproductive success was not predictive of mate replacement overall or divorce in particular. These patterns are in accordance with the musical chairs hypothesis of adaptive divorce theory, which operates in systems characterised by asynchronous territorial establishment.
One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates.
Yu, Hai; Chen, Xi
2016-03-14
Glycosyltransferase-catalyzed enzymatic and chemoenzymatic syntheses are powerful approaches for the production of oligosaccharides, polysaccharides, glycoconjugates, and their derivatives. Enzymes involved in the biosynthesis of sugar nucleotide donors can be combined with glycosyltransferases in one pot for efficient production of the target glycans from simple monosaccharides and acceptors. The identification of enzymes involved in the salvage pathway of sugar nucleotide generation has greatly facilitated the development of simplified and efficient one-pot multienzyme (OPME) systems for synthesizing major glycan epitopes in mammalian glycomes. The applications of OPME methods are steadily gaining popularity mainly due to the increasing availability of wild-type and engineered enzymes. Substrate promiscuity of these enzymes and their mutants allows OPME synthesis of carbohydrates with naturally occurring post-glycosylational modifications (PGMs) and their non-natural derivatives using modified monosaccharides as precursors. The OPME systems can be applied in sequence for synthesizing complex carbohydrates. The sequence of the sequential OPME processes, the glycosyltransferase used, and the substrate specificities of the glycosyltransferases define the structures of the products. The OPME and sequential OPME strategies can be extended to diverse glycans in other glycomes when suitable enzymes with substrate promiscuity become available. This Perspective summarizes the work of the authors and collaborators on the development of glycosyltransferase-based OPME systems for carbohydrate synthesis. Future directions are also discussed.
One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates
Yu, Hai; Chen, Xi
2016-01-01
Glycosyltransferase-catalyzed enzymatic and chemoenzymatic syntheses are powerful approaches for the production of oligosaccharides, polysaccharides, glycoconjugates, and their derivatives. Enzymes involved in the biosynthesis of sugar nucleotide donors can be combined with the glycosyltransferases in one pot for efficient production of target glycans from simple monosaccharides and accpetors. The identification of enzymes involved in the salvage pathway of sugar nucleotide generation has greatly facilitate the development of simplified and efficient one-pot multienzyme (OPME) systems for synthesizing major glycan epitopes in mammalian glycomes. The applications of OPME methods are steadily gaining popularity mainly due to the increasing availability of wild-type and engineered enzymes. Substrate promiscuity of these enzymes and their mutants allows OPME synthesis of carbohydrates with naturally occurring post-glycosylational modificiation (PGMs) and their non-natural derivatives using modified monosaccharides as precursors. The OPME systems can be applied in sequential for synthesizing complex carbohydrates. The sequence of the sequential OPME processes, the glycosyltransferase used, and the substrate specificities of glycosyltransferasese define the structures of the products. The OPME and sequential OPME strategies can be extended to diverse glycans in other glycomes when suitable enzymes with substrate promiscuity become available. The Perspective summariezes the work of the authors and collaborators on the development of glycosyltransferase-based OPME systems for carbohydrate synthesis. Future directions are also discussed. PMID:26881499
2016-09-01
Chemical Promiscuity, Pharmacokinetics, Colorectal Cancer, N , N ’-disalicylidene-1,2-diaminopropane, Pyraclostrobin, Paclobutrazol, Vitamin D Receptor, Wnt...Environmental Chemicals, TOX-TMFS, CPTM, Cancer Cellular Network Model, Chemical Reactivity, Chemical Promiscuity, Pharmacokinetics, Colorectal Cancer, N , N ...network models were further enriched with oncologic disease OMIM profiles to create cancer-specific networks. The ECs N , N ’-disalicylidene- 1,2
ERIC Educational Resources Information Center
Stringfellow, Erica L.; McAndrew, Francis T.
2010-01-01
A study of 357 students (112 males, 245 females) responding to an online survey at a Midwestern liberal arts college revealed that males and children from divorced families perceived themselves as more promiscuous and drank more than did students from intact families. However, a significant interaction between the gender of the students and the…
Duménil, Claire; Woud, David; Pinto, Francesco; Alkema, Jeroen T; Jansen, Ilse; Van Der Geest, Anne M; Roessingh, Sanne; Billeter, Jean-Christophe
2016-03-01
Individuals can make choices based on information learned from others, a phenomenon called social learning. How observers differentiate between which individual they should or should not learn from is, however, poorly understood. Here, we showed that Drosophila melanogaster females can influence the choice of egg-laying site of other females through pheromonal marking. Mated females mark territories of high quality food by ejecting surplus male sperm containing the aggregation pheromone cis-11-vaccenyl acetate (cVA) and, in addition, deposit several sex- and species-specific cuticular hydrocarbon (CHC) pheromones. These pheromonal cues affect the choices of other females, which respond by preferentially laying eggs on the marked food. This system benefits both senders and responders, as communal egg laying increases offspring survival. Virgin females, however, do not elicit a change in the egg-laying decision of mated females, even when food has been supplemented with ejected sperm from mated females, thus indicating the necessity for additional cues. Genetic ablation of either a female's CHC pheromones or those of their mate results in loss of ability of mated females to attract other females. We conclude that mated females use a pheromonal marking system, comprising cVA acquired from male ejaculate with sex- and species-specific CHCs produced by both mates, to indicate egg-laying sites. This system ensures information reliability because mated, but not virgin, females have both the ability to generate the pheromone blend that attracts other flies to those sites and a direct interest in egg-laying site quality.
Coordinate control of initiative mating device for autonomous underwater vehicle based on TDES
NASA Astrophysics Data System (ADS)
Yan, Zhe-Ping; Hou, Shu-Ping
2005-06-01
A novel initiative mating device, which has four 2-degree manipulators around the mating skirt, is proposed to mate between a skirt of AUV (autonomons underwater vehicle) and a disabled submarine. The primary function of the device is to keep exact mating between skirt and disabled submarine in a badly sub sea environment. According to the characteristic of rescue, an automaton model is brought foward to describe the mating proceed between AUV and manipulators. The coordinated control is implemented by the TDES (time discrete event system). After taking into account the time problem, it is a useful method to control mating by simulation testing. The result shows that it reduces about 70 seconds after using intelligent co-ordinate control based on TDES through the whole mating procedure.
Loris, R; De Greve, H; Dao-Thi, M H; Messens, J; Imberty, A; Wyns, L
2000-08-25
Protein-carbohydrate interactions are the language of choice for inter- cellular communication. The legume lectins form a large family of homologous proteins that exhibit a wide variety of carbohydrate specificities. The legume lectin family is therefore highly suitable as a model system to study the structural principles of protein-carbohydrate recognition. Until now, structural data are only available for two specificity families: Man/Glc and Gal/GalNAc. No structural data are available for any of the fucose or chitobiose specific lectins. The crystal structure of Ulex europaeus (UEA-II) is the first of a legume lectin belonging to the chitobiose specificity group. The complexes with N-acetylglucosamine, galactose and fucosylgalactose show a promiscuous primary binding site capable of accommodating both N-acetylglucos amine or galactose in the primary binding site. The hydrogen bonding network in these complexes can be considered suboptimal, in agreement with the low affinities of these sugars. In the complexes with chitobiose, lactose and fucosyllactose this suboptimal hydrogen bonding network is compensated by extensive hydrophobic interactions in a Glc/GlcNAc binding subsite. UEA-II thus forms the first example of a legume lectin with a promiscuous binding site and illustrates the importance of hydrophobic interactions in protein-carbohydrate complexes. Together with other known legume lectin crystal structures, it shows how different specificities can be grafted upon a conserved structural framework. Copyright 2000 Academic Press.
Unattractive, promiscuous and heavy drinkers: perceptions of women with tattoos.
Swami, Viren; Furnham, Adrian
2007-12-01
This study examined social and physical perceptions of blonde and brunette women with different degrees of tattooing. Eighty-four female and 76 male undergraduates rated a series of 16 female line drawings that varied in 2 levels of hair colour and 8 levels of tattooing. Ratings were made for physical attractiveness and sexual promiscuity, as well as estimates of the number of alcohol units consumed on a typical night out. Results showed that tattooed women were rated as less physically attractive, more sexually promiscuous and heavier drinkers than untattooed women, with more negative ratings with increasing number of tattoos. There were also weak interactions between body art and hair colour, with blonde women in general rated more negatively than brunettes. Results are discussed in terms of stereotypes about women who have tattoos and the effects of such stereotypes on well-being.
F. Thomas Ledig; Basilio Bermejo-Velázquez; Paul D. Hodgskiss; David R. Johnson; Celestino Flores-López; Virginia Jacob-Cervantes
2000-01-01
MartÃnez spruce (Picea martÃnezii T.F. Patterson) is a conifer currently passing through a bottleneck, reduced to a few relict populations totaling less than 800 trees. We used isozyme markers to analyze the mating system and survey the level of genic diversity in two populations. The mating system was characterized by a high frequency of selfing....
Jones, A G; Avise, J C
2001-01-01
In pipefishes and seahorses (family Syngnathidae), the males provide all postzygotic care of offspring by brooding embryos on their ventral surfaces. In some species, this phenomenon of male "pregnancy" results in a reversal of the usual direction of sexual selection, such that females compete more than males for access to mates, and secondary sexual characteristics evolve in females. Thus the syngnathids can provide critical tests of theories related to the evolution of sex differences and sexual selection. Microsatellite-based studies of the genetic mating systems of several species of pipefishes and seahorses have provided insights into important aspects of the natural history and evolution of these fishes. First, males of species with completely enclosed pouches have complete confidence of paternity, as might be predicted from parental investment theory for species in which males invest so heavily in offspring. Second, a wide range of genetic mating systems have been documented in nature, including genetic monogamy in a seahorse, polygynandry in two species of pipefish, and polyandry in a third pipefish species. The genetic mating systems appear to be causally related to the intensity of sexual selection, with secondary sex characters evolving most often in females of the more polyandrous species. Third, genetic studies of captive-breeding pipefish suggest that the sexual selection gradient (or Bateman gradient) may be a substantially better method for characterizing the mating system than previously available techniques. Finally, these genetic studies of syngnathid mating systems have led to some general insights into the occurrence of clustered mutations at microsatellite loci, the utility of linked loci in studies of parentage, and the use of parentage data for direct estimation of adult population size.
ERIC Educational Resources Information Center
Dishion, Thomas J.; Ha, Thao; Veronneau, Marie-Helene
2012-01-01
The authors propose that peer relationships should be included in a life history perspective on adolescent problem behavior. Longitudinal analyses were used to examine deviant peer clustering as the mediating link between attenuated family ties, peer marginalization, and social disadvantage in early adolescence and sexual promiscuity in middle…
Victoria J. Apsit; Rodney J. Dyer; Victoria L. Sork
2002-01-01
Contemporary gene flow is a major mechanism for the maintenance of genetic diversity. One component of gene flow is the mating system, which is a composite measure of selfing, mating with relatives, and outcrossing. Although both gene flow and mating patterns contribute to the ecological sustainability of populations, a focus of many forest management plans, these...
Clark, Rulon W; Schuett, Gordon W; Repp, Roger A; Amarello, Melissa; Smith, Charles F; Herrmann, Hans-Werner
2014-01-01
Long-term studies of individual animals in nature contribute disproportionately to our understanding of the principles of ecology and evolution. Such field studies can benefit greatly from integrating the methods of molecular genetics with traditional approaches. Even though molecular genetic tools are particularly valuable for species that are difficult to observe directly, they have not been widely adopted. Here, we used molecular genetic techniques in a 10-year radio-telemetric investigation of the western diamond-backed rattlesnake (Crotalus atrox) for an analysis of its mating system and to measure sexual selection. Specifically, we used microsatellite markers to genotype 299 individuals, including neonates from litters of focal females to ascertain parentage using full-pedigree likelihood methods. We detected high levels of multiple paternity within litters, yet found little concordance between paternity and observations of courtship and mating behavior. Larger males did not father significantly more offspring, but we found evidence for size-specific male-mating strategies, with larger males guarding females for longer periods in the mating seasons. Moreover, the spatial proximity of males to mothers was significantly associated with reproductive success. Overall, our field observations alone would have been insufficient to quantitatively measure the mating system of this population of C. atrox, and we thus urge more widespread adoption of molecular tools by field researchers studying the mating systems and sexual selection of snakes and other secretive taxa.
Clark, Rulon W.; Schuett, Gordon W.; Repp, Roger A.; Amarello, Melissa; Smith, Charles F.; Herrmann, Hans-Werner
2014-01-01
Long-term studies of individual animals in nature contribute disproportionately to our understanding of the principles of ecology and evolution. Such field studies can benefit greatly from integrating the methods of molecular genetics with traditional approaches. Even though molecular genetic tools are particularly valuable for species that are difficult to observe directly, they have not been widely adopted. Here, we used molecular genetic techniques in a 10-year radio-telemetric investigation of the western diamond-backed rattlesnake (Crotalus atrox) for an analysis of its mating system and to measure sexual selection. Specifically, we used microsatellite markers to genotype 299 individuals, including neonates from litters of focal females to ascertain parentage using full-pedigree likelihood methods. We detected high levels of multiple paternity within litters, yet found little concordance between paternity and observations of courtship and mating behavior. Larger males did not father significantly more offspring, but we found evidence for size-specific male-mating strategies, with larger males guarding females for longer periods in the mating seasons. Moreover, the spatial proximity of males to mothers was significantly associated with reproductive success. Overall, our field observations alone would have been insufficient to quantitatively measure the mating system of this population of C. atrox, and we thus urge more widespread adoption of molecular tools by field researchers studying the mating systems and sexual selection of snakes and other secretive taxa. PMID:24598810
Protein promiscuity: drug resistance and native functions--HIV-1 case.
Fernández, Ariel; Tawfik, Dan S; Berkhout, Ben; Sanders, Rogier; Kloczkowski, Andrzej; Sen, Taner; Jernigan, Bob
2005-06-01
The association of a drug with its target protein has the effect of blocking the protein activity and is termed a promiscuous function to distinguish from the protein's native function (Tawfik and associates, Nat. Genet. 37, 73-6, 2005). Obviously, a protein has not evolved naturally for drug association or drug resistance. Promiscuous protein functions exhibit unique traits of evolutionary adaptability, or evolvability, which is dependent on the induction of novel phenotypic traits by a small number of mutations. These mutations might have small effects on native functions, but large effects on promiscuous function; for example, an evolving protein could become increasingly drug resistant while maintaining its original function. Ariel Fernandez, in his opinion piece, notes that drug-binding "promiscuity" can hardly be dissociated from native functions; a dominant approach to drug discovery is the protein-native-substrate transition-state mimetic strategy. Thus, man-made ligands (e.g. drugs) have been successfully crafted to restrain enzymatic activity by focusing on the very same structural features that determine the native function. Using the successful inhibition of HIV-1 protease as an example, Fernandez illustrates how drug designers have employed naturally evolved features of the protein to suppress its activity. Based on these arguments, he dismisses the notion that drug binding is quintessentially promiscuous, even though in principle, proteins did not evolve to associate with man made ligands. In short, Fernandez argues that there may not be separate protein domains that one could term promiscuous domains. While acknowledging that drugs may bind promiscuously or in a native-like manner a la Fernandez, Tawfik maintains the role of evolutionary adaptation, even when a drug binds native-like. In the case of HIV-1 protease, drugs bind natively, and the initial onset of mutations results in drug resistance in addition to a dramatic decline in enzymatic activity and fitness of the virus. A chain of compensatory mutations follows this, and then the virus becomes fully fit and drug resistant. Ben Berkhout and Rogier Sanders subscribe to the evolution of new protein functions through gene duplication. With two identical protein domains, one domain can be released from a constraint imposed by the original function and it is thus free to move in sequence space toward a new function without loss of the original function. They emphasize that the forced evolution of drug-resistance differs significantly from the spontaneous evolution of an additional protein function. For instance, the latter process could proceed gradually on an evolutionary time scale, whereas the acquisition of drug-resistance is an all or nothing process for a virus, leading to the failure or success of therapy. They find no evidence to the thesis that resistance-mutations appear more rapidly in promiscuous domains than native domains. Berkhout and Sanders illustrate the genetic plasticity of HIV-1 by citing examples in which well-conserved amino acid residues of catalytic domains are forced to mutate under drug-pressure. HIV drug resistance biology is very complex. Instead of a viral protein, a drug can be targeted at a cellular protein. For example, Berkhout and Sanders claim, a drug targeted at the cellular protein CCR5 inhibits the binding of the viral envelope glycoprotein (Env) to CCR5. However, Env mutates so that it binds to the CCR5-drug complex and develops drug resistance. Interestingly, CCR5 has not evolved to bind to Env, but to a series of chemokines. Andrzej Kloczkowski, Taner Sen, and Bob Jernigan point out the importance of protein motions for binding. They believe it is likely that different ligands can bind to the diverse protein conformations sampled in the course of normal protein conformational fluctuations. They have been applying simple elastic network models to extract the motions as normal modes, which yield relatively small numbers of conformations that are useful for developing protein mechanisms; while these are typically small motions, for some proteins they can be quite large in scale. One of the major advantages of the approach is that only relatively small numbers of modes are important contributors to the overall motion -- so the approach provides a way to systematically map out a protein's motions. These models successfully represent the conformational fluctuations manifested in the crystallographic B-factors, and often suggest motions related to protein functional behaviors, such as those observed for reverse transcriptase, where two dominant hinges clearly relate to the processing steps -- one showing anti-correlation between the polymerase and ribonuclease H sites related to the translation and positioning of the nucleic acid chain, and another for opening and closing the polymerase site. Disordered proteins represent a more extreme case where the set of accessible conformations is much larger; thus they could offer up a broader range of possible binding forms. Whether evolution controls the functional motions for proteins remains little studied. Intriguingly, buried in the existing databases of protein-protein interactions may be information that can shed light on the extent of promiscuous binding among proteins themselves. Within these data there are cases where large numbers of diverse proteins have been shown to interact with a single protein; some of these could represent promiscuous protein-protein binding. Uncovering these promiscuous behaviors could be important for comprehending the details of how proteins can bind promiscuously to one another, and can exhibit even greater promiscuity in their binding to small molecules. The evolutionary routes, the dynamics of the target protein, and the many other aspects that need to be addressed while designing a drug that may dodge drug resistance, indicate the complexity and multi-disciplinary nature of the issue of drug resistance.
Mobley, Kenyon B; Jones, Adam G
2013-03-01
The genetic mating system is a key component of the sexual selection process, yet methods for the quantification of mating systems remain controversial. One approach involves metrics derived from Bateman's principles, which are based on variances in mating and reproductive success and the relationship between them. However, these measures are extremely difficult to measure for both sexes in open populations, because missing data can result in biased estimates. Here, we develop a novel approach for the estimation of mating system metrics based on Bateman's principles and apply it to a microsatellite-based parentage analysis of a natural population of the dusky pipefish, Syngnathus floridae. Our results show that both male and female dusky pipefish have significantly positive Bateman gradients. However, females exhibit larger values of the opportunity for sexual selection and the opportunity for selection compared to males. These differences translate into a maximum intensity of sexual selection (S'max) for females three times larger than that for males. Overall, this study identifies a critical source of bias that affects studies of mating systems in open populations, presents a novel method for overcoming this bias, and applies this method for the first time in a sex-role-reversed pipefish. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
[DNA extraction from bones and teeth using AutoMate Express forensic DNA extraction system].
Gao, Lin-Lin; Xu, Nian-Lai; Xie, Wei; Ding, Shao-Cheng; Wang, Dong-Jing; Ma, Li-Qin; Li, You-Ying
2013-04-01
To explore a new method in order to extract DNA from bones and teeth automatically. Samples of 33 bones and 15 teeth were acquired by freeze-mill method and manual method, respectively. DNA materials were extracted and quantified from the triturated samples by AutoMate Express forensic DNA extraction system. DNA extraction from bones and teeth were completed in 3 hours using the AutoMate Express forensic DNA extraction system. There was no statistical difference between the two methods in the DNA concentration of bones. Both bones and teeth got the good STR typing by freeze-mill method, and the DNA concentration of teeth was higher than those by manual method. AutoMate Express forensic DNA extraction system is a new method to extract DNA from bones and teeth, which can be applied in forensic practice.
Banks, S C; Ward, S J; Lindenmayer, D B; Finlayson, G R; Lawson, S J; Taylor, A C
2005-05-01
Habitat fragmentation is one of the major contributors to the loss of biodiversity worldwide. However, relatively little is known about its more immediate impacts on within-patch population processes such as social structure and mating systems, whose alteration may play an important role in extinction risk. We investigated the impacts of habitat fragmentation due to the establishment of an exotic softwood plantation on the social kin structure and breeding system of the Australian marsupial carnivore, Antechinus agilis. Restricted dispersal by males in fragmented habitat resulted in elevated relatedness among potential mates in populations in fragments, potentially increasing the risk of inbreeding. Antechinus agilis nests communally in tree hollows; these nests are important points for social contact between males and females in the mating season. In response to elevated relatedness among potential mates in fragmented habitat, A. agilis significantly avoided sharing nests with opposite-sex relatives in large fragment sites (but not in small ones, possibly due to limited nest locations and small population sizes). Because opposite-sex individuals shared nests randomly with respect to relatedness in unfragmented habitat, we interpreted the phenomenon in fragmented habitat as a precursor to inbreeding avoidance via mate choice. Despite evidence that female A. agilis at high inbreeding risk selected relatively unrelated mates, there was no overall increased avoidance of related mates by females in fragmented habitats compared to unfragmented habitats. Simulations indicated that only dispersal, and not nonrandom mating, contributed to inbreeding avoidance in either habitat context. However, habitat fragmentation did influence the mating system in that the degree of multiple paternity was reduced due to the reduction in population sizes and population connectivity. This, in turn, reduced the number of males available to females in the breeding season. This suggests that in addition to the obvious impacts of reduced recruitment, patch recolonization and increased genetic drift, the isolation of populations in habitat patches may cause changes in breeding behaviour that contribute to the negative impacts of habitat fragmentation.
Kappelgaard, Anne-Marie; Mikkelsen, Søren; Bagger, Claus; Fuchs, Gitte Schøning
2012-01-01
Growth hormone (GH) is used to treat growth failure in children and metabolic impairments in adults with GH deficiency (GHD). Treatment requires daily subcutaneous injections that may affect treatment outcomes, and subsequently efficacy outcomes. To enhance potential adherence, improved GH delivery device systems are being developed. To compare patient acceptability and usability of Norditropin FlexPro/FlexPro PenMate with Norditropin NordiFlex/NordiFlex PenMate for GH administration in children/adolescents with GHD. A multinational, open-label, uncontrolled study. Patients (n = 50; 4-18 years) currently on GH therapy injected test medium into a foam pad. Ease-of-use and patient device preference were recorded by questionnaire. The majority (80%) of patients preferred FlexPro PenMate over NordiFlex PenMate with 96% and 84%, respectively, reporting that they found the FlexPro PenMate system user-friendly and that they were highly confident using it. The FlexPro system was well accepted by patients. This may facilitate greater adherence to treatment and improve patient outcomes.
Methyl farnesoate levels in male spider crabs exhibiting active reproductive behavior.
Sagi, A; Ahl, J S; Danaee, H; Laufer, H
1994-09-01
The concentration of methyl farnesoate (MF) in the hemolymph and its synthesis by the mandibular organs (MOs) were investigated to determine whether this compound is related to the differences in the size of the reproductive system and the mating behavior among male morphotypes of the spider crab, Libinia emarginata. Large-claw abraded males displayed mating behavior under competitive conditions. They have the largest reproductive systems, their MOs synthesize large amounts of MF in vitro, and the concentration of MF in their hemolymph is high. Small-claw abraded males displayed mating behavior with receptive females only when isolated. These smaller crabs have intermediate-sized reproductive systems, their MOs synthesize the most MF, and they have the highest circulating level of MF relative to their body size. The unabraded males did not display mating behavior; their reproductive systems are smaller; their MO activity is low, as is their circulating level of MF. The strong relationship between MF levels and the intensity of reproductive behavior suggests that MF may be one of the driving forces behind mating behavior in Crustacea.
Fuller, Rebecca C
2009-07-01
The sensory bias model for the evolution of mating preferences states that mating preferences evolve as correlated responses to selection on nonmating behaviors sharing a common sensory system. The critical assumption is that pleiotropy creates genetic correlations that affect the response to selection. I simulated selection on populations of neural networks to test this. First, I selected for various combinations of foraging and mating preferences. Sensory bias predicts that populations with preferences for like-colored objects (red food and red mates) should evolve more readily than preferences for differently colored objects (red food and blue mates). Here, I found no evidence for sensory bias. The responses to selection on foraging and mating preferences were independent of one another. Second, I selected on foraging preferences alone and asked whether there were correlated responses for increased mating preferences for like-colored mates. Here, I found modest evidence for sensory bias. Selection for a particular foraging preference resulted in increased mating preference for similarly colored mates. However, the correlated responses were small and inconsistent. Selection on foraging preferences alone may affect initial levels of mating preferences, but these correlations did not constrain the joint evolution of foraging and mating preferences in these simulations.
Lee, Soo Chan; Idnurm, Alexander
2017-03-01
Although at the level of resolution of genes and molecules most information about mating in fungi is from a single lineage, the Dikarya, many fundamental discoveries about mating in fungi have been made in the earlier branches of the fungi. These are nonmonophyletic groups that were once classified into the chytrids and zygomycetes. Few species in these lineages offer the potential of genetic tractability, thereby hampering the ability to identify the genes that underlie those fundamental insights. Research performed during the past decade has now established the genes required for mating type determination and pheromone synthesis in some species in the phylum Mucoromycota, especially in the order Mucorales. These findings provide striking parallels with the evolution of mating systems in the Dikarya fungi. Other discoveries in the Mucorales provide the first examples of sex-cell type identity being driven directly by a gene that confers mating type, a trait considered more of relevance to animal sex determination but difficult to investigate in animals. Despite these discoveries, there remains much to be gleaned about mating systems from these fungi.
Schistosome monogamy: who, how, and why?
Beltran, S; Boissier, J
2008-09-01
Schistosomes represent a unique animal model for comparative analyses of monogamy. Indeed, schistosomes are classified at the lowest taxonomical level of monogamous species and lack complex social interactions, which could alter our understanding of their unusual mating system. Elements discussed here include the fact that monogamy in schistosomes could be an ancestral state between hermaphroditism and polygyny or polygynandry and the occurrence of mate changes. In addition, hypotheses are proposed to explain monogamy in schistosomes (e.g. female dispersion, the need for paternal care, oviposition site limitation or aggressiveness, and mate guarding). We also propose future experimental and analytical approaches to improve our understanding of the schistosomes' mating system.
Looking for sexual selection in the female brain.
Cummings, Molly E
2012-08-19
Female mate choice behaviour has significant evolutionary consequences, yet its mechanistic origins are not fully understood. Recent studies of female sensory systems have made great strides in identifying internal mechanisms governing female preferences. Only recently, however, have we begun to identify the dynamic genomic response associated with mate choice behaviour. Poeciliids provide a powerful comparative system to examine genomic responses governing mate choice and female preference behaviour, given the great range of mating systems: from female mate choice taxa with ornamental courting males to species lacking male ornamentation and exhibiting only male coercion. Furthermore, they exhibit laboratory-tractable preference responses without sexual contact that are decoupled from reproductive state, allowing investigators to isolate mechanisms in the brain without physiological confounds. Early investigations with poeciliid species (Xiphophorus nigrensis and Gambusia affinis) have identified putative candidate genes associated with female preference response and highlight a possible genomic pathway underlying female social interactions with males linked functionally with synaptic plasticity and learning processes. This network is positively correlated with female preference behaviour in the female mate choice species, but appears inhibited in the male coercive species. This behavioural genomics approach provides opportunity to elucidate the fundamental building blocks, and evolutionary dynamics, of sexual selection.
Sex Ratio Bias Leads to the Evolution of Sex Role Reversal in Honey Locust Beetles.
Fritzsche, Karoline; Booksmythe, Isobel; Arnqvist, Göran
2016-09-26
The reversal of conventional sex roles was enigmatic to Darwin, who suggested that it may evolve when sex ratios are female biased [1]. Here we present direct evidence confirming Darwin's hypothesis. We investigated mating system evolution in a sex-role-reversed beetle (Megabruchidius dorsalis) using experimental evolution under manipulated sex ratios and food regimes. In female-biased populations, where reproductive competition among females was intensified, females evolved to be more attractive and the sex roles became more reversed. Interestingly, female-specific mating behavior evolved more rapidly than male-specific mating behavior. We show that sexual selection due to reproductive competition can be strong in females and can target much the same traits as in males of species with conventional mating systems. Our study highlights two central points: the role of ecology in directing sexual selection and the role that females play in mating system evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.
Genetic quality and sexual selection: an integrated framework for good genes and compatible genes.
Neff, Bryan D; Pitcher, Trevor E
2005-01-01
Why are females so choosy when it comes to mating? This question has puzzled and marveled evolutionary and behavioral ecologists for decades. In mating systems in which males provide direct benefits to the female or her offspring, such as food or shelter, the answer seems straightforward--females should prefer to mate with males that are able to provide more resources. The answer is less clear in other mating systems in which males provide no resources (other than sperm) to females. Theoretical models that account for the evolution of mate choice in such nonresource-based mating systems require that females obtain a genetic benefit through increased offspring fitness from their choice. Empirical studies of nonresource-based mating systems that are characterized by strong female choice for males with elaborate sexual traits (like the large tail of peacocks) suggest that additive genetic benefits can explain only a small percentage of the variation in fitness. Other research on genetic benefits has examined nonadditive effects as another source of genetic variation in fitness and a potential benefit to female mate choice. In this paper, we review the sexual selection literature on genetic quality to address five objectives. First, we attempt to provide an integrated framework for discussing genetic quality. We propose that the term 'good gene' be used exclusively to refer to additive genetic variation in fitness, 'compatible gene' be used to refer to nonadditive genetic variation in fitness, and 'genetic quality' be defined as the sum of the two effects. Second, we review empirical approaches used to calculate the effect size of genetic quality and discuss these approaches in the context of measuring benefits from good genes, compatible genes and both types of genes. Third, we discuss biological mechanisms for acquiring and promoting offspring genetic quality and categorize these into three stages during breeding: (i) precopulatory (mate choice); (ii) postcopulatory, prefertilization (sperm utilization); and (iii) postcopulatory, postfertilization (differential investment). Fourth, we present a verbal model of the effect of good genes sexual selection and compatible genes sexual selection on population genetic variation in fitness, and discuss the potential trade-offs that might exist between mate choice for good genes and mate choice for compatible genes. Fifth, we discuss some future directions for research on genetic quality and sexual selection.
Friberg, Urban; Lew, Timothy A; Byrne, Phillip G; Rice, William R
2005-07-01
In promiscuous species, sexual selection generates two opposing male traits: offense (acquiring new mates and supplanting stored sperm) and defense (enforcing fidelity on one's mates and preventing sperm displacement when this fails). Coevolution between these traits requires both additive genetic variation and associated natural selection. Previous work with Drosophila melanogaster found autosomal genetic variation for these traits among inbred lines from a mixture of populations, but only nonheritable genetic variation was found within a single outbred population. These results do not support ongoing antagonistic coevolution between offense and defense, nor between either of these male traits and female reproductive characters. Here we use a new method (hemiclonal analysis) to study genomewide genetic variation in a large outbred laboratory population of D. melanogaster. Hemiclonal analysis estimates the additive genetic variation among random, genomewide haplotypes taken from a large, outbred, locally adapted laboratory population and determines the direction of the selection gradient on this variation. In contrast to earlier studies, we found low but biologically significant heritable variation for defensive and offensive offspring production as well as all their components (P1, fidelity, P2, and remating). Genetic correlations between these traits were substantially different from those reported for inbred lines. A positive genetic correlation was found between defense and offense, demonstrating that some shared genes influence both traits. In addition to this common variation, evidence for unique genetic variation for each trait was also found, supporting an ongoing coevolutionary arms race between defense and offense. Reproductive conflict between males can strongly influence female fitness. Correspondingly, we found genetic variation in both defense and offense that affected female fitness. No evidence was found for intersexual conflict in the context of male defense, but we found substantial intersexual conflict in the context of male offensive sperm competitive ability. These results indicate that conflict between competing males also promotes an associated arms race between the sexes.
Noël, Elsa; Chemtob, Yohann; Janicke, Tim; Sarda, Violette; Pélissié, Benjamin; Jarne, Philippe; David, Patrice
2016-03-01
Basic models of mating-system evolution predict that hermaphroditic organisms should mostly either cross-fertilize, or self-fertilize, due to self-reinforcing coevolution of inbreeding depression and outcrossing rates. However transitions between mating systems occur. A plausible scenario for such transitions assumes that a decrease in pollinator or mate availability temporarily constrains outcrossing populations to self-fertilize as a reproductive assurance strategy. This should trigger a purge of inbreeding depression, which in turn encourages individuals to self-fertilize more often and finally to reduce male allocation. We tested the predictions of this scenario using the freshwater snail Physa acuta, a self-compatible hermaphrodite that preferentially outcrosses and exhibits high inbreeding depression in natural populations. From an outbred population, we built two types of experimental evolution lines, controls (outcrossing every generation) and constrained lines (in which mates were often unavailable, forcing individuals to self-fertilize). After ca. 20 generations, individuals from constrained lines initiated self-fertilization earlier in life and had purged most of their inbreeding depression compared to controls. However, their male allocation remained unchanged. Our study suggests that the mating system can rapidly evolve as a response to reduced mating opportunities, supporting the reproductive assurance scenario of transitions from outcrossing to selfing. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Cunningham, C B; Douthit, M K; Moore, A J
2014-01-01
Flexible behaviour allows organisms to respond appropriately to changing environmental and social conditions. In the subsocial beetle Nicrophorus vespilloides, females tolerate conspecifics when mating, become aggressive when defending resources, and return to social tolerance when transitioning to parenting. Given the association between octopamine and aggression in insects, we hypothesized that genes in the octopaminergic system would be differentially expressed across different social and reproductive contexts. To test this in N. vespilloides, we first obtained the sequences of orthologues of the synthetic enzymes and receptors of the octopaminergic system. We next compared relative gene expression from virgin females, mated females, mated females alone on a resource required for reproduction and mated females on a resource with a male. Expression varied for five receptor genes. The expression of octopamine β receptor 1 and octopamine β receptor 2 was relatively higher in mated females than in other social conditions. Octopamine β receptor 3 was influenced by the presence or absence of a resource and less by social environment. Octopamine α receptor and octopamine/tyramine receptor 1 gene expression was relatively lower in the mated females with a resource and a male. We suggest that in N. vespilloides the octopaminergic system is associated with the expression of resource defence, alternative mating tactics, social tolerance and indirect parental care. PMID:24646461
Electrician's Mate 3 & 2: Rate Training Manual.
ERIC Educational Resources Information Center
Naval Education and Training Command, Pensacola, FL.
The training manual provides information related to the tasks assigned to the Electrician's Mate Third and Second Class who operate and maintain power and lighting systems and associated equipment. Individual chapters deal with: career challenges for the Electrician's Mate, safety precautions, test equipment, electrical installations, A-C power…
Differences according to Sex in Sociosexuality and Infidelity after Traumatic Brain Injury
Moreno, Jhon Alexander; McKerral, Michelle
2015-01-01
Objective. To explore differences according to sex in sociosexuality and infidelity in individuals with TBI and in healthy controls. Participants. Forty-two individuals with mild, moderate, and severe TBI having completed a postacute TBI rehabilitation program, at least six months after injury, and 47 healthy controls. Main Measures. Sociosexual Orientation Inventory-Revised (SOI-R) and Attitudes toward Infidelity Scale. Results. Overall, men score significantly higher than women in sociosexuality. However, there was a nonsignificant trend towards a reduction of sociosexuality levels in men with TBI. Infidelity levels were comparable in healthy controls and individuals with TBI. In individuals with TBI, less acceptance of infidelity was significantly associated with an unrestricted sociosexual orientation, but not in healthy controls. Conclusions. As documented in previous cross-cultural studies, men have higher levels of sociosexuality than women. However, men with TBI showed a tendency towards the reduction of sociosexuality. The possibility of a latent explanatory variable is suggested (e.g., post-TBI neuroendocrinological changes). TBI does not seem to have an impact on infidelity, but individuals with TBI who express less acceptance of infidelity also report a more promiscuous mating strategy regarding their behavior, attitudes, and desire. Theoretical implications are discussed in terms of evolutionary theories of human sexuality and neuropsychology. PMID:26543323
Promiscuity drives sexual selection in a socially monogamous bird.
Webster, Michael S; Tarvin, Keith A; Tuttle, Elaina M; Pruett-Jones, Stephen
2007-09-01
Many socially monogamous species paradoxically show signs of strong sexual selection, suggesting cryptic sources of sexual competition among males. Darwin argued that sexual selection could operate in monogamous systems if breeding sex ratios are biased or if some males attract highly fecund females. Alternatively, sexual selection might result from promiscuous copulations outside the pair bond, although several recent studies have cast doubt on this possibility, in particular by showing that variance in apparent male reproductive success (number of social young) differs little from variance in actual male reproductive success (number of young sired). Our results from a long-term study of the socially monogamous splendid fairy-wren (Malurus splendens) demonstrate that such comparisons are misleading and do not adequately assess the effects of extra-pair paternity (EPP). By partitioning the opportunity for selection and calculating Bateman gradients, we show that EPP has a strong effect on male annual and lifetime fitness, whereas other proposed mechanisms of sexual selection do not. Thus, EPP drives sexual selection in this, and possibly other, socially monogamous species.
Active alignment/contact verification system
Greenbaum, William M.
2000-01-01
A system involving an active (i.e. electrical) technique for the verification of: 1) close tolerance mechanical alignment between two component, and 2) electrical contact between mating through an elastomeric interface. For example, the two components may be an alumina carrier and a printed circuit board, two mating parts that are extremely small, high density parts and require alignment within a fraction of a mil, as well as a specified interface point of engagement between the parts. The system comprises pairs of conductive structures defined in the surfaces layers of the alumina carrier and the printed circuit board, for example. The first pair of conductive structures relate to item (1) above and permit alignment verification between mating parts. The second pair of conductive structures relate to item (2) above and permit verification of electrical contact between mating parts.
de Souza, Elaine Dantas; Moralez-Silva, Emmanuel; Valdes, Talita Alvarenga; Cortiço Corrêa Rodrigues, Vera Lúcia
2017-01-01
Colonial waterbirds such as herons, egrets and spoonbills exhibit ecological characteristics that could have promoted the evolution of conspecific brood parasitism and extra-pair copulation. However, an adequate characterization of the genetic mating systems of this avian group has been hindered by the lack of samples of elusive candidate parents which precluded conducting conventional parentage allocation tests. Here, we investigate the genetic mating system of the invasive cattle egret using hematophagous insects contained in fake eggs to collect blood from incubating adults in a wild breeding colony. We tested a protocol with a previously unused Neotropical Triatominae, Panstrongylus megistus, obtained blood samples from males and females in 31 nests built on trees, drew blood from 89 nestlings at those nests, and genotyped all samples at 14 microsatellite loci, including six new species-specific loci. We comparatively addressed the performance of parentage allocation versus kinship classification of nestlings to infer the genetic mating system of cattle egrets. In line with previous behavioral observations, we found evidence in support of a non-monogamous genetic mating system, including extra-pair paternity (EPP) and conspecific brood parasitism (CBP). Parentage allocation tests detected a higher percentage of nests with alternative reproductive tactics (EPP: 61.7%; CBP: 64.5%) than the kinship classification method (EPP: 50.0%; CBP: 43.3%). Overall, these results indicate that rates of alternative reproductive tactics inferred in the absence of parental genetic information could be underestimated and should be interpreted with caution. This study highlights the importance of incorporating samples from candidate parents to adequately determine the genetic mating system of a species. We expand knowledge on the reproductive tactics of colonial waterbirds, contributing novel data on the genetic mating system of the cattle egret, valuable for the design of management strategies for this invasive bird. PMID:28854191
Miño, Carolina Isabel; de Souza, Elaine Dantas; Moralez-Silva, Emmanuel; Valdes, Talita Alvarenga; Cortiço Corrêa Rodrigues, Vera Lúcia; Del Lama, Sílvia Nassif
2017-01-01
Colonial waterbirds such as herons, egrets and spoonbills exhibit ecological characteristics that could have promoted the evolution of conspecific brood parasitism and extra-pair copulation. However, an adequate characterization of the genetic mating systems of this avian group has been hindered by the lack of samples of elusive candidate parents which precluded conducting conventional parentage allocation tests. Here, we investigate the genetic mating system of the invasive cattle egret using hematophagous insects contained in fake eggs to collect blood from incubating adults in a wild breeding colony. We tested a protocol with a previously unused Neotropical Triatominae, Panstrongylus megistus, obtained blood samples from males and females in 31 nests built on trees, drew blood from 89 nestlings at those nests, and genotyped all samples at 14 microsatellite loci, including six new species-specific loci. We comparatively addressed the performance of parentage allocation versus kinship classification of nestlings to infer the genetic mating system of cattle egrets. In line with previous behavioral observations, we found evidence in support of a non-monogamous genetic mating system, including extra-pair paternity (EPP) and conspecific brood parasitism (CBP). Parentage allocation tests detected a higher percentage of nests with alternative reproductive tactics (EPP: 61.7%; CBP: 64.5%) than the kinship classification method (EPP: 50.0%; CBP: 43.3%). Overall, these results indicate that rates of alternative reproductive tactics inferred in the absence of parental genetic information could be underestimated and should be interpreted with caution. This study highlights the importance of incorporating samples from candidate parents to adequately determine the genetic mating system of a species. We expand knowledge on the reproductive tactics of colonial waterbirds, contributing novel data on the genetic mating system of the cattle egret, valuable for the design of management strategies for this invasive bird.
Cognitive ability is heritable and predicts the success of an alternative mating tactic
Smith, Carl; Philips, André; Reichard, Martin
2015-01-01
The ability to attract mates, acquire resources for reproduction, and successfully outcompete rivals for fertilizations may make demands on cognitive traits—the mechanisms by which an animal acquires, processes, stores and acts upon information from its environment. Consequently, cognitive traits potentially undergo sexual selection in some mating systems. We investigated the role of cognitive traits on the reproductive performance of male rose bitterling (Rhodeus ocellatus), a freshwater fish with a complex mating system and alternative mating tactics. We quantified the learning accuracy of males and females in a spatial learning task and scored them for learning accuracy. Males were subsequently allowed to play the roles of a guarder and a sneaker in competitive mating trials, with reproductive success measured using paternity analysis. We detected a significant interaction between male mating role and learning accuracy on reproductive success, with the best-performing males in maze trials showing greater reproductive success in a sneaker role than as a guarder. Using a cross-classified breeding design, learning accuracy was demonstrated to be heritable, with significant additive maternal and paternal effects. Our results imply that male cognitive traits may undergo intra-sexual selection. PMID:26041347
Cognitive ability is heritable and predicts the success of an alternative mating tactic.
Smith, Carl; Philips, André; Reichard, Martin
2015-06-22
The ability to attract mates, acquire resources for reproduction, and successfully outcompete rivals for fertilizations may make demands on cognitive traits--the mechanisms by which an animal acquires, processes, stores and acts upon information from its environment. Consequently, cognitive traits potentially undergo sexual selection in some mating systems. We investigated the role of cognitive traits on the reproductive performance of male rose bitterling (Rhodeus ocellatus), a freshwater fish with a complex mating system and alternative mating tactics. We quantified the learning accuracy of males and females in a spatial learning task and scored them for learning accuracy. Males were subsequently allowed to play the roles of a guarder and a sneaker in competitive mating trials, with reproductive success measured using paternity analysis. We detected a significant interaction between male mating role and learning accuracy on reproductive success, with the best-performing males in maze trials showing greater reproductive success in a sneaker role than as a guarder. Using a cross-classified breeding design, learning accuracy was demonstrated to be heritable, with significant additive maternal and paternal effects. Our results imply that male cognitive traits may undergo intra-sexual selection. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
The mating behavior of Iguana iguana
Rodda, G.H.
1992-01-01
Over a 19 month period I observed the social behaviors of individually recognized green iguanas, Iguana iguana, at three sites in the llanos of Venezuela. The behavior of iguanas outside the mating season differed from that seen during the mating season in three major ways: (1) during normal waking hours outside the breeding season, adult iguanas spent the majority of time immobile, apparently resting; (2) their interactions involved fewer high intensity displays; and (3) their day to day movements were often nomadic. During the mating season, one site was watched continuously during daylight hours (iguanas sleep throughout the night), allowing a complete count of all copulation attempts (N = 250) and territorial interactions. At all sites, dominant males controlled access to small mating territories. Within the territories there did not appear to be any resources needed by females or their offspring. Thus, females could choose mates directly on the basis of male phenotype. Females aggregated in the mating territories of the largest males and mated preferentially with them. Territorial males copulated only once per day, although on several occasions more than one resident female was receptive on the same day. A few small nonterritorial males exhibited pseudofemale behavior (i.e., they abstained from sexual competition), but most nonterritorial males stayed on the periphery of mating territories and attempted to force copulations on unguarded females (peripheral male behavior). Uncooperative females were mounted by as many as three males simultaneously. Females resisted 95% of the 200 observed mating attempts by peripheral males, but only 56% of the attempts by territorial males (N = 43). The selectivity of the females probably increased the genetic representation of the territorial males in the next generation. During the mating season females maintained a dominance hierarchy among themselves. Low ranked females tended to be excluded from preferred mating territories. In this system, both sexes may be subjected to sexual selection. I hypothesize that the ecological factors responsible for the unusual mating system are related to the lack of defendable resources, the iguana's folivory, and the high density of iguanas present in preferred mating areas.
From Cell to Beak: In-Vitro and In-Vivo Characterization of Chicken Bitter Taste Thresholds.
Cheled-Shoval, Shira; Behrens, Maik; Korb, Ayelet; Di Pizio, Antonella; Meyerhof, Wolfgang; Uni, Zehava; Niv, Masha Y
2017-05-17
Bitter taste elicits an aversive reaction, and is believed to protect against consuming poisons. Bitter molecules are detected by the Tas2r family of G-protein-coupled receptors, with a species-dependent number of subtypes. Chickens demonstrate bitter taste sensitivity despite having only three bitter taste receptors-ggTas2r1, ggTas2r2 and ggTas2r7. This minimalistic bitter taste system in chickens was used to determine relationships between in-vitro (measured in heterologous systems) and in-vivo (behavioral) detection thresholds. ggTas2r-selective ligands, nicotine (ggTas2r1), caffeine (ggTas2r2), erythromycin and (+)-catechin (ggTas2r7), and the Tas2r-promiscuous ligand quinine (all three ggTas2rs) were studied. Ligands of the same receptor had different in-vivo:in-vitro ratios, and the ggTas2r-promiscuous ligand did not exhibit lower in-vivo:in-vitro ratios than ggTas2r-selective ligands. In-vivo thresholds were similar or up to two orders of magnitude higher than the in-vitro ones.
Porcher, E; Lande, R
2005-05-01
We model the evolution of plant mating systems under the joint effects of pollen discounting and pollen limitation, using a dynamic model of inbreeding depression, allowing for partial purging of recessive lethal mutations by selfing. Stable mixed mating systems occur for a wide range of parameter values with pollen discounting alone. However, when typical levels of pollen limitation are combined with pollen discounting, stable selfing rates are always high but less than 1 (0.9
Mating and Parental Care in Lake Tanganyika's Cichlids
Sefc, Kristina M.
2011-01-01
Cichlid fishes of Lake Tanganyika display a variety of mating and parental care behaviors, including polygamous and monogamous mouthbrooding and substrate breeding, cooperative breeding, as well as various alternative reproductive tactics such as sneaking and piracy. Moreover, reproductive behaviors sometimes vary within species both in space and in time. Here, I survey reports on mating and parenting behaviors of Lake Tanganyika cichlid species and address the evolution of mating and parental care patterns and sexual dimorphism. Notes on measures of sexual selection intensity and the difficulties of defining mating systems and estimating selection intensities at species level conclude the essay. PMID:21822482
Evolution of the mating system in colonizing plants.
Pannell, John R
2015-05-01
Colonization is likely to be more successful for species with an ability to self-fertilize and thus to establish new populations as single individuals. As a result, self-compatibility should be common among colonizing species. This idea, labelled 'Baker's law', has been influential in discussions of sexual-system and mating-system evolution. However, its generality has been questioned, because models of the evolution of dispersal and the mating system predict an association between high dispersal rates and outcrossing rather than selfing, and because of many apparent counter examples to the law. The contrasting predictions made by models invoking Baker's law versus those for the evolution of the mating system and dispersal urges a reassessment of how we should view both these traits. Here, I review the literature on the evolution of mating and dispersal in colonizing species, with a focus on conceptual issues. I argue for the importance of distinguishing between the selfing or outcrossing rate and a simple ability to self-fertilize, as well as for the need for a more nuanced consideration of dispersal. Colonizing species will be characterized by different phases in their life pattern: dispersal to new habitat, implying an ecological sieve on dispersal traits; establishment and a phase of growth following colonization, implying a sieve on reproductive traits; and a phase of demographic stasis at high density, during which new trait associations can evolve through local adaptation. This dynamic means that the sorting of mating-system and dispersal traits should change over time, making simple predictions difficult. © 2015 John Wiley & Sons Ltd.
Predicting novel substrates for enzymes with minimal experimental effort with active learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pertusi, Dante A.; Moura, Matthew E.; Jeffryes, James G.
Enzymatic substrate promiscuity is more ubiquitous than previously thought, with significant consequences for understanding metabolism and its application to biocatalysis. This realization has given rise to the need for efficient characterization of enzyme promiscuity. Enzyme promiscuity is currently characterized with a limited number of human-selected compounds that may not be representative of the enzyme's versatility. While testing large numbers of compounds may be impractical, computational approaches can exploit existing data to determine the most informative substrates to test next, thereby more thoroughly exploring an enzyme's versatility. To demonstrate this, we used existing studies and tested compounds for four different enzymes,more » developed support vector machine (SVM) models using these datasets, and selected additional compounds for experiments using an active learning approach. SVMs trained on a chemically diverse set of compounds were discovered to achieve maximum accuracies of similar to 80% using similar to 33% fewer compounds than datasets based on all compounds tested in existing studies. Active learning-selected compounds for testing resolved apparent conflicts in the existing training data, while adding diversity to the dataset. The application of these algorithms to wide arrays of metabolic enzymes would result in a library of SVMs that can predict high-probability promiscuous enzymatic reactions and could prove a valuable resource for the design of novel metabolic pathways.« less
Kohda, Daisuke
2018-04-01
Promiscuous recognition of ligands by proteins is as important as strict recognition in numerous biological processes. In living cells, many short, linear amino acid motifs function as targeting signals in proteins to specify the final destination of the protein transport. In general, the target signal is defined by a consensus sequence containing wild-characters, and hence represented by diverse amino acid sequences. The classical lock-and-key or induced-fit/conformational selection mechanism may not cover all aspects of the promiscuous recognition. On the basis of our crystallographic and NMR studies on the mitochondrial Tom20 protein-presequence interaction, we proposed a new hypothetical mechanism based on "a rapid equilibrium of multiple states with partial recognitions". This dynamic, multiple recognition mode enables the Tom20 receptor to recognize diverse mitochondrial presequences with nearly equal affinities. The plant Tom20 is evolutionally unrelated to the animal Tom20 in our study, but is a functional homolog of the animal/fungal Tom20. NMR studies by another research group revealed that the presequence binding by the plant Tom20 was not fully explained by simple interaction modes, suggesting the presence of a similar dynamic, multiple recognition mode. Circumstantial evidence also suggested that similar dynamic mechanisms may be applicable to other promiscuous recognitions of signal peptides by the SRP54/Ffh and SecA proteins.
Dai, Lu; Tao, Fei; Tang, Hongzhi; Guo, Yali; Shen, Yaling; Xu, Ping
2017-11-01
Primordial enzymes are proposed to possess broad specificities. Through divergence and evolution, enzymes have been refined to exhibit specificity towards one reaction or substrate, and are thus commonly assumed as "specialists". However, some enzymes are "generalists" that catalyze a range of substrates and reactions. This property has been defined as enzyme promiscuity and is of great importance for the evolution of new functions. The promiscuities of two enzymes, namely glycerol dehydratase and diol dehydratase, were herein exploited for catalyzing long-chain polyols, including 1,2-butanediol, 1,2,4-butanetriol, erythritol, 1,2-pentanediol, 1,2,5-pentanetriol, and 1,2,6-hexanetriol. The specific activities required for catalyzing these six long-chain polyols were studied via in vitro enzyme assays, and the catalytic efficiencies were increased through protein engineering. The promiscuous functions were subsequently applied in vivo to establish 1,4-butanediol pathways from lignocellulose derived compounds, including xylose and erythritol. In addition, a pathway for 1-pentanol production from 1,2-pentanediol was also constructed. The results suggest that exploiting enzyme promiscuity is promising for exploring new catalysts, which would expand the repertoire of genetic elements available to synthetic biology and may provide a starting point for designing and engineering novel pathways for valuable chemicals. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Hansen, Uwe; Hussain, Muzaffar; Villone, Daniela; Herrmann, Mathias; Robenek, Horst; Peters, Georg; Sinha, Bhanu; Bruckner, Peter
2006-05-01
Besides a number of cell wall-anchored adhesins, the majority of Staphylococcus aureus strains produce anchorless, cell wall-associated proteins, such as Eap (extracellular adherence protein). Eap contains four to six tandem repeat (EAP)-domains. Eap mediates diverse biological functions, including adherence and immunomodulation, thus contributing to S. aureus pathogenesis. Eap binding to host macromolecules is unusually promiscuous and includes matrix or matricellular proteins as well as plasma proteins. The structural basis of this promiscuity is poorly understood. Here, we show that in spite of the preferential location of the binding epitopes within triple helical regions in some collagens there is a striking specificity of Eap binding to different collagen types. Collagen I, but not collagen II, is a binding substrate in monomolecular form. However, collagen I is virtually unrecognized by Eap when incorporated into banded fibrils. By contrast, microfibrils containing collagen VI as well as basement membrane-associated networks containing collagen IV, or aggregates containing fibronectin bound Eap as effectively as the monomeric proteins. Therefore, Eap-binding to extracellular matrix ligands is promiscuous at the molecular level but not indiscriminate with respect to supramolecular structures containing the same macromolecules. In addition, Eap bound to banded fibrils after their partial disintegration by matrix-degrading proteinases, including matrix metalloproteinase 1. Therefore, adherence to matrix suprastructures by S. aureus can be supported by inflammatory reactions.
Dishion, Thomas J.; Ha, Thao; Véronneau, Marie-Hélène
2012-01-01
This study proposes the inclusion of peer relationships in a life history perspective on adolescent problem behavior. Longitudinal analyses were used to examine deviant peer clustering as the mediating link between attenuated family ties, peer marginalization, and social disadvantage in early adolescence and sexual promiscuity in middle adolescence and childbearing by early adulthood. Specifically, 998 youth and their families were assessed at age 11 years and periodically through age 24 years. Structural equation modeling revealed that the peer-enhanced life history model provided a good fit to the longitudinal data, with deviant peer clustering strongly predicting adolescent sexual promiscuity and other correlated problem behaviors. Sexual promiscuity, as expected, also strongly predicted the number of children by age 22–24 years. Consistent with a life history perspective, family social disadvantage directly predicted deviant peer clustering and number of children in early adulthood, controlling for all other variables in the model. These data suggest that deviant peer clustering is a core dimension of a fast life history strategy, with strong links to sexual activity and childbearing. The implications of these findings are discussed with respect to the need to integrate an evolutionary-based model of self-organized peer groups in developmental and intervention science. PMID:22409765
Dishion, Thomas J; Ha, Thao; Véronneau, Marie-Hélène
2012-05-01
The authors propose that peer relationships should be included in a life history perspective on adolescent problem behavior. Longitudinal analyses were used to examine deviant peer clustering as the mediating link between attenuated family ties, peer marginalization, and social disadvantage in early adolescence and sexual promiscuity in middle adolescence and childbearing by early adulthood. Specifically, 998 youths, along with their families, were assessed at age 11 years and periodically through age 24 years. Structural equation modeling revealed that the peer-enhanced life history model provided a good fit to the longitudinal data, with deviant peer clustering strongly predicting adolescent sexual promiscuity and other correlated problem behaviors. Sexual promiscuity, as expected, also strongly predicted the number of children by ages 22-24 years. Consistent with a life history perspective, family social disadvantage directly predicted deviant peer clustering and number of children in early adulthood, controlling for all other variables in the model. These data suggest that deviant peer clustering is a core dimension of a fast life history strategy, with strong links to sexual activity and childbearing. The implications of these findings are discussed with respect to the need to integrate an evolutionary-based model of self-organized peer groups in developmental and intervention science.
Predicting novel substrates for enzymes with minimal experimental effort with active learning.
Pertusi, Dante A; Moura, Matthew E; Jeffryes, James G; Prabhu, Siddhant; Walters Biggs, Bradley; Tyo, Keith E J
2017-11-01
Enzymatic substrate promiscuity is more ubiquitous than previously thought, with significant consequences for understanding metabolism and its application to biocatalysis. This realization has given rise to the need for efficient characterization of enzyme promiscuity. Enzyme promiscuity is currently characterized with a limited number of human-selected compounds that may not be representative of the enzyme's versatility. While testing large numbers of compounds may be impractical, computational approaches can exploit existing data to determine the most informative substrates to test next, thereby more thoroughly exploring an enzyme's versatility. To demonstrate this, we used existing studies and tested compounds for four different enzymes, developed support vector machine (SVM) models using these datasets, and selected additional compounds for experiments using an active learning approach. SVMs trained on a chemically diverse set of compounds were discovered to achieve maximum accuracies of ~80% using ~33% fewer compounds than datasets based on all compounds tested in existing studies. Active learning-selected compounds for testing resolved apparent conflicts in the existing training data, while adding diversity to the dataset. The application of these algorithms to wide arrays of metabolic enzymes would result in a library of SVMs that can predict high-probability promiscuous enzymatic reactions and could prove a valuable resource for the design of novel metabolic pathways. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Mating-Type Inheritance and Maturity Times in Crosses between Subspecies of TETRAHYMENA PIGMENTOSA
Simon, Ellen M.
1980-01-01
Subspecies 6 and 8 of T. pigmentosa (formerly syngens 6 and 8 of T. pyriformis) share a mating-type system controlled by three alleles with "peck-order" dominance at a single locus. The system is apparently closed and limited to three mating types that are homologous, but not identical, in the subspecies. These relationships are reflected in new mating-type designations.—The viability in some intersyngenic crosses is excellent, and the inheritance of major mating types in first-generation hybrids and their progeny follows the pattern of subspecies 8.—The period of immaturity is shorter than that previously reported for subspecies 8, with 50% of the subclones maturing between 46 and 100 fissions after conjugation. Maturity curves are generally sigmoid, but some are apparently biphasic. The onset of maturity in triplicate sublines from the same synclone is usually highly correlated. PMID:17248998
Hotshots, hotspots, and female preference in the organization of lek mating systems
Beehler, B.M.; Foster, M.S.
1988-01-01
We critically review the female-preference and hotspot models, the two most widely accepted recent explanations of lek organization. On the basis of what we believe are the inadequacies of these models-too great a reliance on the presumed acuity of female discrimination, the assumption that females have full freedom of choice within the lek, and insufficient recognition of the importance of male-male interactions-we develop an alternative set of hypotheses, which we call the hotshot model, to explain the development and maintenance of lek behavior. Our model attributes strong male mating skew to the interaction between (1) simplified and conservative mating rules of females and (2) social dominance among males. We demonstrate the importance of male-male dominance relationships in lek and non-lek court mating systems. We then argue that a strong mating skew among males forces novice males entering a population to adopt a long-term mating strategy that involves delayed breeding (floating) and subordinate lek behavior. The structure of leks is created by a complex of malemale interactions, with conflict between hotshots (who attempt to control lek mating) and subordinates, who may benefit from disrupting lek activities. Explanations for the number of males in an arena and inter-arena distances are based on modifications of the hotspot and female-preference models. We suggest specific field tests to help distinguish which hypothesis best models the behavioral interactions that produce lek mating.
The evolution of genital complexity and mating rates in sexually size dimorphic spiders.
Kuntner, Matjaž; Cheng, Ren-Chung; Kralj-Fišer, Simona; Liao, Chen-Pan; Schneider, Jutta M; Elgar, Mark A
2016-11-09
Genital diversity may arise through sexual conflict over polyandry, where male genital features function to manipulate female mating frequency against her interest. Correlated genital evolution across animal groups is consistent with this view, but a link between genital complexity and mating rates remains to be established. In sexually size dimorphic spiders, golden orbweaving spiders (Nephilidae) males mutilate their genitals to form genital plugs, but these plugs do not always prevent female polyandry. In a comparative framework, we test whether male and female genital complexity coevolve, and how these morphologies, as well as sexual cannibalism, relate to the evolution of mating systems. Using a combination of comparative tests, we show that male genital complexity negatively correlates with female mating rates, and that levels of sexual cannibalism negatively correlate with male mating rates. We also confirm a positive correlation between male and female genital complexity. The macroevolutionary trajectory is consistent with a repeated evolution from polyandry to monandry coinciding with the evolution towards more complex male genitals. These results are consistent with the predictions from sexual conflict theory, although sexual conflict may not be the only mechanism responsible for the evolution of genital complexity and mating systems. Nevertheless, our comparative evidence suggests that in golden orbweavers, male genital complexity limits female mating rates, and sexual cannibalism by females coincides with monogyny.
The orbiter mate/demate device
NASA Technical Reports Server (NTRS)
Miller, A. J.; Binkley, W. H.
1985-01-01
The numerous components and systems of the space shuttle orbiter mate/demate device (MDD) are discussed. Special emphasis is given, mechanisms and mechanical systems to discuss in general their requirements, functions, and design; and, where applicable, to relate any unusual problems encountered during the initial concept studies, final design, and construction are discussed. The MDD and its electrical, machinery, and mechanical systems, including the main hoisting system, power operated access service platform, wind restrain and adjustment mechanism, etc., were successfully designed and constructed. The MDD was used routinely during the initial orbiter-747 approach and landing test and the more recent orbiter flight tests recovery and mate operations.
Reconstructing the flight kinematics of swarming and mating behavior in wild mosquitoes
USDA-ARS?s Scientific Manuscript database
We describe a tracking system for reconstructing three-dimensional tracks of individual mosquitoes in wild swarms and present the results of validating the system by filming swarms and mating events of the malaria mosquito Anopheles gambiae in Mali. The tracking system is designed to address noisy, ...
Adult sex ratio variation: implications for breeding system evolution.
Székely, T; Weissing, F J; Komdeur, J
2014-08-01
Adult sex ratio (ASR) exhibits immense variation in nature, although neither the causes nor the implications of this variation are fully understood. According to theory, the ASR is expected to influence sex roles and breeding systems, as the rarer sex in the population has more potential partners to mate with than the more common sex. Changes in mate choice, mating systems and parental care suggest that the ASR does influence breeding behaviour, although there is a need for more tests, especially experimental ones. In the context of breeding system evolution, the focus is currently on operational sex ratios (OSRs). We argue that the ASR plays a role of similar importance and urge researchers to study the ASR and the OSR side by side. Finally, we plead for a dynamic view of breeding system evolution with feedbacks between mating, parenting, OSR and ASR on both ecological and evolutionary time scales. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Millar, Melissa A; Coates, David J; Byrne, Margaret
2014-10-01
Understanding patterns of pollen dispersal and variation in mating systems provides insights into the evolutionary potential of plant species and how historically rare species with small disjunct populations persist over long time frames. This study aims to quantify the role of pollen dispersal and the mating system in maintaining contemporary levels of connectivity and facilitating persistence of small populations of the historically rare Acacia woodmaniorum. Progeny arrays of A. woodmaniorum were genotyped with nine polymorphic microsatellite markers. A low number of fathers contributed to seed within single pods; therefore, sampling to remove bias of correlated paternity was implemented for further analysis. Pollen immigration and mating system parameters were then assessed in eight populations of varying size and degree of isolation. Pollen immigration into small disjunct populations was extensive (mean minimum estimate 40 % and mean maximum estimate 57 % of progeny) and dispersal occurred over large distances (≤1870m). Pollen immigration resulted in large effective population sizes and was sufficient to ensure adaptive and inbreeding connectivity in small disjunct populations. High outcrossing (mean tm = 0·975) and a lack of apparent inbreeding suggested that a self-incompatibility mechanism is operating. Population parameters, including size and degree of geographic disjunction, were not useful predictors of pollen dispersal or components of the mating system. Extensive long-distance pollen dispersal and a highly outcrossed mating system are likely to play a key role in maintaining genetic diversity and limiting negative genetic effects of inbreeding and drift in small disjunct populations of A. woodmaniorum. It is proposed that maintenance of genetic connectivity through habitat and pollinator conservation will be a key factor in the persistence of this and other historically rare species with similar extensive long-distance pollen dispersal and highly outcrossed mating systems. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company.
Pierson, Jennifer C; Swain, Stephen M; Young, Andrew G
2013-01-01
Plant mating systems represent an evolutionary and ecological trade-off between reproductive assurance through selfing and maximizing progeny fitness through outbreeding. However, many plants with sporophytic self-incompatibility systems exhibit dominance interactions at the S-locus that allow biparental inbreeding, thereby facilitating mating between individuals that share alleles at the S-locus. We investigated this trade-off by estimating mate availability and biparental inbreeding depression in wild radish from five different populations across Australia. We found dominance interactions among S-alleles increased mate availability relative to estimates based on individuals that did not share S-alleles. Twelve of the sixteen fitness variables were significantly reduced by inbreeding. For all the three life-history phases evaluated, self-fertilized offspring suffered a greater than 50% reduction in fitness, while full-sib and half-sib offspring suffered a less than 50% reduction in fitness. Theory indicates that fitness costs greater than 50% can result in an evolutionary trajectory toward a stable state of self-incompatibility (SI). This study suggests that dominance interactions at the S-locus provide a possible third stable state between SI and SC where biparental inbreeding increases mate availability with relatively minor fitness costs. This strategy allows weeds to establish in new environments while maintaining a functional SI system. PMID:24455137
Pierson, Jennifer C; Swain, Stephen M; Young, Andrew G
2013-12-01
Plant mating systems represent an evolutionary and ecological trade-off between reproductive assurance through selfing and maximizing progeny fitness through outbreeding. However, many plants with sporophytic self-incompatibility systems exhibit dominance interactions at the S-locus that allow biparental inbreeding, thereby facilitating mating between individuals that share alleles at the S-locus. We investigated this trade-off by estimating mate availability and biparental inbreeding depression in wild radish from five different populations across Australia. We found dominance interactions among S-alleles increased mate availability relative to estimates based on individuals that did not share S-alleles. Twelve of the sixteen fitness variables were significantly reduced by inbreeding. For all the three life-history phases evaluated, self-fertilized offspring suffered a greater than 50% reduction in fitness, while full-sib and half-sib offspring suffered a less than 50% reduction in fitness. Theory indicates that fitness costs greater than 50% can result in an evolutionary trajectory toward a stable state of self-incompatibility (SI). This study suggests that dominance interactions at the S-locus provide a possible third stable state between SI and SC where biparental inbreeding increases mate availability with relatively minor fitness costs. This strategy allows weeds to establish in new environments while maintaining a functional SI system.
Seal with integrated shroud for androgenous docking and berthing in contaminated environments
NASA Technical Reports Server (NTRS)
Daniels, Christopher C. (Inventor)
2012-01-01
The present invention is directed to a specially configured seal system which provides a barrier to gas leakage flow between a pressurized module and its external environment. The seal includes a shroud covering which protects the sealing interface from its environment when not in use, and retracts to expose the sealing interface when mated. The seal system is constructed and arranged to mate with a seal of identical construction and arrangement or to mate with a flat surface.
Machinist's Mate J 1 and C: Aviation.
ERIC Educational Resources Information Center
Naval Training Publications Center, Memphis, TN.
The rate training manual is one of a series of training manuals prepared for enlisted personnel of the Navy and Naval Reserve studying for advancement from the Aviation Machinist's Mate ADJ2 rating to ADJ1 to ADJC. Aviation Machinist's Mates J maintain aircraft jet engines and their related systems. Chpater 1 discusses the enlisted rating…
The Role of Flexibility and Conformational Selection in the Binding Promiscuity of PDZ Domains
Münz, Márton; Hein, Jotun; Biggin, Philip C.
2012-01-01
In molecular recognition, it is often the case that ligand binding is coupled to conformational change in one or both of the binding partners. Two hypotheses describe the limiting cases involved; the first is the induced fit and the second is the conformational selection model. The conformational selection model requires that the protein adopts conformations that are similar to the ligand-bound conformation in the absence of ligand, whilst the induced-fit model predicts that the ligand-bound conformation of the protein is only accessible when the ligand is actually bound. The flexibility of the apo protein clearly plays a major role in these interpretations. For many proteins involved in signaling pathways there is the added complication that they are often promiscuous in that they are capable of binding to different ligand partners. The relationship between protein flexibility and promiscuity is an area of active research and is perhaps best exemplified by the PDZ domain family of proteins. In this study we use molecular dynamics simulations to examine the relationship between flexibility and promiscuity in five PDZ domains: the human Dvl2 (Dishevelled-2) PDZ domain, the human Erbin PDZ domain, the PDZ1 domain of InaD (inactivation no after-potential D protein) from fruit fly, the PDZ7 domain of GRIP1 (glutamate receptor interacting protein 1) from rat and the PDZ2 domain of PTP-BL (protein tyrosine phosphatase) from mouse. We show that despite their high structural similarity, the PDZ binding sites have significantly different dynamics. Importantly, the degree of binding pocket flexibility was found to be closely related to the various characteristics of peptide binding specificity and promiscuity of the five PDZ domains. Our findings suggest that the intrinsic motions of the apo structures play a key role in distinguishing functional properties of different PDZ domains and allow us to make predictions that can be experimentally tested. PMID:23133356
Ge, Deyong; Xue, Yanfen; Ma, Yanhe
2016-05-11
Bacillus species, possessing the methylerythritol phosphate (MEP) pathway for the synthesis of isoprenoid feedstock, are the highest producers of isoprene among bacteria; however, the enzyme responsible for isoprene synthesis has not been identified. The iron-sulfur protein IspH is the final enzyme of the MEP pathway and catalyses the reductive dehydration of (E)-4-hydroxy-3-methyl-2-butenyl diphosphate (HMBPP) to form isopentenyl diphosphate and dimethylallyl diphosphate (DMAPP). In this study, we demonstrated two unexpected promiscuous activities of IspH from alkaliphilic Bacillus sp. N16-5, which can produce high levels of isoprene. Bacillus sp. N16-5 IspH could catalyse the formation of isoprene from HMBPP and the conversion of DMAPP into a mixture of 2-methyl-2-butene and 3-methyl-1-butene. Both reactions require an electron transfer system, such as that used for HMBPP dehydration. Isoprene and isoamylene synthesis in Bacillus sp. N16-5 was investigated and the reaction system was reconstituted in vitro, including IspH, ferredoxin and ferredoxin-NADP(+)-reductase proteins and NADPH. The roles of specific IspH protein residues were also investigated by site-directed mutagenesis experiments; two variants (H131N and E133Q) were found to have lost the HMBPP reductase activity but could still catalyse the formation of isoprene. Overexpression of IspH H131N in Bacillus sp. N16-5 resulted in a twofold enhancement of isoprene production, and the yield of isoprene from the strain expressing E133Q was increased 300% compared with the wild-type strain. IspH from Bacillus sp. N16-5 is a promiscuous enzyme that can catalyse formation of isoprene and isoamylene. This enzyme, especially the H131N and E133Q variants, could be used for the production of isoprene from HMBPP.
Uhl, Gabriele; Zimmer, Stefanie M; Renner, Dirk; Schneider, Jutta M
2015-11-26
Sexual cannibalism is a particularly extreme example of conflict between the sexes, depriving the male of future reproduction. Theory predicts that sexual conflict should induce counter-adaptations in the victim. Observations of male spiders mating with moulting and hence largely immobile females suggest that this behaviour functions to circumvent female control and cannibalism. However, we lack quantitative estimates of natural frequencies and fitness consequences of these unconventional matings. To understand the importance of mating while moulting in cannibalistic mating systems, we combined mating experiments and paternity assessment in the laboratory with extensive field observations using the sexually cannibalistic orb-web spider Argiope bruennichi. Copulations with moulting females resulted in 97% male survival compared with only 20% in conventional matings. Mating while moulting provided similar paternity benefits compared with conventional matings. Our findings support the hypothesis that mating with moulting females evolved under sexual conflict and safely evades sexual cannibalism. Despite male benefits, natural frequencies were estimated around 44% and directly predicted by a male guarding a subadult female. Since only adult females signal their presence, the difficulty for males to locate subadult females might limit further spreading of mating with moulting females.
Uhl, Gabriele; Zimmer, Stefanie M.; Renner, Dirk; Schneider, Jutta M.
2015-01-01
Sexual cannibalism is a particularly extreme example of conflict between the sexes, depriving the male of future reproduction. Theory predicts that sexual conflict should induce counter-adaptations in the victim. Observations of male spiders mating with moulting and hence largely immobile females suggest that this behaviour functions to circumvent female control and cannibalism. However, we lack quantitative estimates of natural frequencies and fitness consequences of these unconventional matings. To understand the importance of mating while moulting in cannibalistic mating systems, we combined mating experiments and paternity assessment in the laboratory with extensive field observations using the sexually cannibalistic orb-web spider Argiope bruennichi. Copulations with moulting females resulted in 97% male survival compared with only 20% in conventional matings. Mating while moulting provided similar paternity benefits compared with conventional matings. Our findings support the hypothesis that mating with moulting females evolved under sexual conflict and safely evades sexual cannibalism. Despite male benefits, natural frequencies were estimated around 44% and directly predicted by a male guarding a subadult female. Since only adult females signal their presence, the difficulty for males to locate subadult females might limit further spreading of mating with moulting females. PMID:26607497
Host mating system and the prevalence of a disease in a plant population
Koslow, Jennifer M.; DeAngelis, Donald L.
2006-01-01
A modified susceptible–infected–recovered (SIR) host–pathogen model is used to determine the influence of plant mating system on the outcome of a host–pathogen interaction. Unlike previous models describing how interactions between mating system and pathogen infection affect individual fitness, this model considers the potential consequences of varying mating systems on the prevalence of resistance alleles and disease within the population. If a single allele for disease resistance is sufficient to confer complete resistance in an individual and if both homozygote and heterozygote resistant individuals have the same mean birth and death rates, then, for any parameter set, the selfing rate does not affect the proportions of resistant, susceptible or infected individuals at equilibrium. If homozygote and heterozygote individual birth rates differ, however, the mating system can make a difference in these proportions. In that case, depending on other parameters, increased selfing can either increase or decrease the rate of infection in the population. Results from this model also predict higher frequencies of resistance alleles in predominantly selfing compared to predominantly outcrossing populations for most model conditions. In populations that have higher selfing rates, the resistance alleles are concentrated in homozygotes, whereas in more outcrossing populations, there are more resistant heterozygotes.
Correlates of genetic monogamy in socially monogamous mammals: insights from Azara's owl monkeys
Huck, Maren; Fernandez-Duque, Eduardo; Babb, Paul; Schurr, Theodore
2014-01-01
Understanding the evolution of mating systems, a central topic in evolutionary biology for more than 50 years, requires examining the genetic consequences of mating and the relationships between social systems and mating systems. Among pair-living mammals, where genetic monogamy is extremely rare, the extent of extra-group paternity rates has been associated with male participation in infant care, strength of the pair bond and length of the breeding season. This study evaluated the relationship between two of those factors and the genetic mating system of socially monogamous mammals, testing predictions that male care and strength of pair bond would be negatively correlated with rates of extra-pair paternity (EPP). Autosomal microsatellite analyses provide evidence for genetic monogamy in a pair-living primate with bi-parental care, the Azara's owl monkey (Aotus azarae). A phylogenetically corrected generalized least square analysis was used to relate male care and strength of the pair bond to their genetic mating system (i.e. proportions of EPP) in 15 socially monogamous mammalian species. The intensity of male care was correlated with EPP rates in mammals, while strength of pair bond failed to reach statistical significance. Our analyses show that, once social monogamy has evolved, paternal care, and potentially also close bonds, may facilitate the evolution of genetic monogamy. PMID:24648230
Correlates of genetic monogamy in socially monogamous mammals: insights from Azara's owl monkeys.
Huck, Maren; Fernandez-Duque, Eduardo; Babb, Paul; Schurr, Theodore
2014-05-07
Understanding the evolution of mating systems, a central topic in evolutionary biology for more than 50 years, requires examining the genetic consequences of mating and the relationships between social systems and mating systems. Among pair-living mammals, where genetic monogamy is extremely rare, the extent of extra-group paternity rates has been associated with male participation in infant care, strength of the pair bond and length of the breeding season. This study evaluated the relationship between two of those factors and the genetic mating system of socially monogamous mammals, testing predictions that male care and strength of pair bond would be negatively correlated with rates of extra-pair paternity (EPP). Autosomal microsatellite analyses provide evidence for genetic monogamy in a pair-living primate with bi-parental care, the Azara's owl monkey (Aotus azarae). A phylogenetically corrected generalized least square analysis was used to relate male care and strength of the pair bond to their genetic mating system (i.e. proportions of EPP) in 15 socially monogamous mammalian species. The intensity of male care was correlated with EPP rates in mammals, while strength of pair bond failed to reach statistical significance. Our analyses show that, once social monogamy has evolved, paternal care, and potentially also close bonds, may facilitate the evolution of genetic monogamy.
Owens, I. P. F.; Bennett, P. M.
1997-01-01
Since most bird species are socially monogamous, variation among species in social mating systems is determined largely by variation in the frequency of mate desertion. Mate desertion is expected to occur when the benefits, in terms of additional reproductive opportunities, outweigh the costs, in terms of reduced reproductive success from the present brood. However, despite much research, the relative importance of costs and benefits in explaining mating system variation is not well understood. Here, we investigate this problem using a comparative method. We analyse changes in the frequency of mate desertion at different phylogenetic levels. Differences between orders and families in the frequency of desertion are negatively associated with changes in the potential costs of desertion, but are not associated with changes in the potential benefits of desertion. Conversely, differences among genera and species in the frequency of desertion are positively associated with increases in the potential benefits of desertion, but not with changes in the potential costs of desertion. Hence, we suggest that mate desertion in birds originates through a combination of evolutionary predisposition and ecological facilitation. In particular, ancient changes in life-history strategy determine the costs of desertion and predispose certain lineages to polygamy, while contemporary changes in the distribution of resources determine the benefits of desertion and thereby the likelihood that polygamy will be viable within these lineages. Thus, monogamy can arise via two very different evolutionary pathways. Groups such as albatrosses (Procellariidae) are constrained to social monogamy by the high cost to desertion, irrespective of the potential benefits. However, in groups such as the accentors (Prunellidae), which are predisposed to desertion, monogamy occurs only when the benefits of desertion are very limited. These conclusions emphasise the additional power which a hierarchical approach contributes to the modern comparative method.
True polyandry and pseudopolyandry: why does a monandrous fly remate?
Fisher, David N; Doff, Rowan J; Price, Tom A R
2013-07-25
The rate of female remating can have important impacts on a species, from affecting conflict and cooperation within families, to population viability and gene flow. However, determining the level of polyandry in a species can be difficult, with information on the mating system of many species being based on a single experiment, or completely absent. Here we investigate the mating system of the fruit fly Drosophila subobscura. Reports from England, Spain and Canada suggest D. subobscura is entirely monandrous, with no females remating. However, work in Greece suggests that 23% of females remate. We examine the willingness of female D. subobscura to remate in the laboratory in a range of conditions, using flies from both Greece and England. We make a distinction between pseudopolyandry, where a female remates after an ineffective first mating that is incapable of fertilising her eggs, and true polyandry, where a female remates even though she has received suitable sperm from a previous mating. We find a low rate of true polyandry by females (4%), with no difference between populations. The rate of true polyandry is affected by temperature, but not starvation. Pseudopolyandry is three times as common as true polyandry, and most females showing pseudopolyandry mated at their first opportunity after their first failed mating. However, despite the lack of differences in polyandry between the populations, we do find differences in the way males respond to exposure to other males prior to mating. In line with previous work, English flies responded to one or more rivals by increasing their copulation duration, a response previously thought to be driven by sperm competition. Greek males only show increased copulation duration when exposed to four or more rival males. This suggests that the response to rivals in D. subobscura is not related to sperm competition, because sperm competition is rare, and there is no correlation of response to rivals and mating system across the populations. These results illustrate the difficulties in determining the mating system of a species, even one that is well known and an excellent laboratory species, with results being highly dependent on the conditions used to assay the behaviour, and the population used.
Mate choice theory and the mode of selection in sexual populations.
Carson, Hampton L
2003-05-27
Indirect new data imply that mate and/or gamete choice are major selective forces driving genetic change in sexual populations. The system dictates nonrandom mating, an evolutionary process requiring both revised genetic theory and new data on heritability of characters underlying Darwinian fitness. Successfully reproducing individuals represent rare selections from among vigorous, competing survivors of preadult natural selection. Nonrandom mating has correlated demographic effects: reduced effective population size, inbreeding, low gene flow, and emphasis on deme structure. Characters involved in choice behavior at reproduction appear based on quantitative trait loci. This variability serves selection for fitness within the population, having only an incidental relationship to the origin of genetically based reproductive isolation between populations. The claim that extensive hybridization experiments with Drosophila indicate that selection favors a gradual progression of "isolating mechanisms" is flawed, because intra-group random mating is assumed. Over deep time, local sexual populations are strong, independent genetic systems that use rich fields of variable polygenic components of fitness. The sexual reproduction system thus particularizes, in small subspecific populations, the genetic basis of the grand adaptive sweep of selective evolutionary change, much as Darwin proposed.
Blackmailing: the keystone in the human mating system
2011-01-01
Background The human mating system is characterized by bi-parental care and faithful monogamy is highly valued in most cultures. Marriage has evolved as a social institution and punishment for extra pair mating (EPM) or adultery is common. However, similar to other species with bi-parental care, both males and females frequently indulge in EPM in secrecy since it confers certain gender specific genetic benefits. Stability of faithful monogamy is therefore a conundrum. We model human mating system using game theory framework to study the effects of factors that can stabilize or destabilize faithful committed monogamy. Results Although mate guarding can partly protect the genetic interests, we show that it does not ensure monogamy. Social policing enabled by gossiping is another line of defense against adultery unique to humans. However, social policing has a small but positive cost to an individual and therefore is prone to free riding. We suggest that since exposure of adultery can invite severe punishment, the policing individuals can blackmail opportunistically whenever the circumstances permit. If the maximum probabilistic benefit of blackmailing is greater than the cost of policing, policing becomes a non-altruistic act and stabilizes in the society. We show that this dynamics leads to the coexistence of different strategies in oscillations, with obligate monogamy maintained at a high level. Deletion of blackmailing benefit from the model leads to the complete disappearance of obligate monogamy. Conclusions Obligate monogamy can be maintained in the population in spite of the advantages of EPM. Blackmailing, which makes policing a non-altruistic act, is crucial for the maintenance of faithful monogamy. Although biparental care, EPM, mate guarding and punishment are shared by many species, gossiping and blackmailing make the human mating system unique. PMID:22122975
Spiegel, Carolina N; Bretas, Jorge A C; Peixoto, Alexandre A; Vigoder, Felipe M; Bruno, Rafaela V; Soares, Maurilio J
2013-01-01
The male reproductive system of insects can have several tissues responsible for the secretion of seminal fluid proteins (SFPs), such as testes, accessory glands, seminal vesicles, ejaculatory duct and ejaculatory bulb. The SFPs are transferred during mating and can induce several physiological and behavioral changes in females, such as increase in oviposition and decrease in sexual receptivity after copulation. The phlebotomine Lutzomyia longipalpis is the main vector of visceral leishmaniasis. Despite its medical importance, little is known about its reproductive biology. Here we present morphological aspects of the male L. longipalpis reproductive system by light, scanning and transmission electron microscopy, and compare the mating frequency of both virgin and previously mated females. The male L. longipalpis reproductive system is comprised by a pair of oval-shaped testes linked to a seminal vesicle by vasa deferentia. It follows an ejaculatory duct with an ejaculatory pump (a large bulb enveloped by muscles and associated to tracheas). The terminal endings of the vasa deferentia are inserted into the seminal vesicle by invaginations of the seminal vesicle wall, which is composed by a single layer of gland cells, with well-developed endoplasmic reticulum profiles and secretion granules. Our data suggest that the seminal vesicle acts both as a spermatozoa reservoir and as an accessory gland. Mating experiments support this hypothesis, revealing a decrease in mating frequency after copulation that indicates the effect of putative SFPs. Ultrastructural features of the L. longipalpis male seminal vesicle indicated its possible role as an accessory gland. Behavioral observations revealed a reduction in mating frequency of copulated females. Together with transcriptome analyses from male sandfly reproductive organs identifying ESTs encoding orthologs of SFPs, these data indicate the presence of putative L. longipalpis SFPs reducing sexual mating frequency of copulated females.
2010-06-15
Partitioning Application to a Cicada Mating Call Albert H. Nuttall Adaptive Methods Inc. Derke R. Hughes NUWC Division Newport IVAVSEA WARFARE...Frequency Partitioning: Application to a Cicada Mating Call 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Albert H... cicada mating call with a distinctly non-white and non-Gaussian excitation gives good results for the estimated first- and second-order kernels and
Deaton, Raelynn
2009-01-01
I examined the effects of the parasitic larval nematode, Eustrongylides ignotus, on male mate choice in the western mosquitofish, Gambusia affinis. I hypothesized that parasite presence influences male mate choice either directly (via reduction in male mating behavior due to presence of parasite in females) or indirectly (via reduction in male mating behavior due to reduced condition of infected females). Specifically, I tested the predictions that (1) males would mate preferentially with uninfected over infected females (scoring both mating attempts and association time with females); (2) parasitized females would be in poorer condition than non-parasitized females (measured as soluble fat stores); and (3) parasitized females would have reduced fecundity (measured as number of developing embryos). Males preferred to mate with non-parasitized over parasitized females, but showed no differences in association time between females. The nematode did not decrease female body condition, but did decrease female mass, and appeared to decrease female fecundity via reduction in broods (# embryos). Results support that parasites affect male mate choice in mosquitofish; however, the mechanisms used by males to differentiate between parasitized and non-parasitized females remain untested. This study provides the first empirical evidence of parasite affects on male mate choice in livebearing fishes, and suggest a potentially important role for parasite-mediated sexual selection in organisms that use coercive mating as the primary mechanism of obtaining mates.
Roumet, M; Ostrowski, M-F; David, J; Tollon, C; Muller, M-H
2012-01-01
Cultivated plants have been molded by human-induced selection, including manipulations of the mating system in the twentieth century. How these manipulations have affected realized parameters of the mating system in freely evolving cultivated populations is of interest for optimizing the management of breeding populations, predicting the fate of escaped populations and providing material for experimental evolution studies. To produce modern varieties of sunflower (Helianthus annuus L.), self-incompatibility has been broken, recurrent generations of selfing have been performed and male sterility has been introduced. Populations deriving from hybrid-F1 varieties are gynodioecious because of the segregation of a nuclear restorer of male fertility. Using both phenotypic and genotypic data at 11 microsatellite loci, we analyzed the consanguinity status of plants of the first three generations of such a population and estimated parameters related to the mating system. We showed that the resource reallocation to seed in male-sterile individuals was not significant, that inbreeding depression on seed production averaged 15–20% and that cultivated sunflower had acquired a mixed-mating system, with ∼50% of selfing among the hermaphrodites. According to theoretical models, the female advantage and the inbreeding depression at the seed production stage were too low to allow the persistence of male sterility. We discuss our methods of parameter estimation and the potential of such study system in evolutionary biology. PMID:21915147
Manfredini, Fabio; Brown, Mark J F; Vergoz, Vanina; Oldroyd, Benjamin P
2015-07-31
Mating is a complex process, which is frequently associated with behavioural and physiological changes. However, understanding of the genetic underpinnings of these changes is limited. Honey bees are both a model system in behavioural genomics, and the dominant managed pollinator of human crops; consequently understanding the mating process has both pure and applied value. We used next-generation transcriptomics to probe changes in gene expression in the brains of honey bee queens, as they transition from virgin to mated reproductive status. In addition, we used CO2-narcosis, which induces oviposition without mating, to isolate the process of reproductive maturation. The mating process produced significant changes in the expression of vision, chemo-reception, metabolic, and immune-related genes. Differential expression of these genes maps clearly onto known behavioural and physiological changes that occur during the transition from being a virgin queen to a newly-mated queen. A subset of these changes in gene expression were also detected in CO2-treated queens, as predicted from previous physiological studies. In addition, we compared our results to previous studies that used microarray techniques across a range of experimental time-points. Changes in expression of immune- and vision-related genes were common to all studies, supporting an involvement of these groups of genes in the mating process. Our study is an important step in understanding the molecular mechanisms regulating post-mating behavioural transitions in a natural system. The weak overlap in patterns of gene expression with previous studies demonstrates the high sensitivity of genome-wide approaches. Thus, while we build on previous microarray studies that explored post-mating changes in honey bees, the broader experimental design, use of RNA-sequencing, and focus on Australian honey bees, which remain free from the devastating parasite Varroa destructor, in the current study, provide unique insights into the biology of the mating process in honey bees.
Genetic compatibility, mate choice and patterns of parentage: invited review.
Tregenza, T; Wedell, N
2000-08-01
There is growing interest in the possibility that genetic compatibility may drive mate choice, including gamete choice, particularly from the perspective of understanding why females frequently mate with more than one male. Mate choice for compatibility differs from other forms of choice for genetic benefits (such as 'good genes') because individuals are expected to differ in their mate preferences, changing the evolutionary dynamics of sexual selection. Recent experiments designed to investigate genetic benefits of polyandry suggest that mate choice on the basis of genetic compatibility may be widespread. However, in most systems the mechanisms responsible for variation in compatibility are unknown. We review potential sources of variation in genetic compatibility and whether there is any evidence for mate choice driven by these factors. Selfish genetic elements appear to have the potential to drive mate compatibility mate choice, though as yet there is only one convincing example. There is abundant evidence for assortative mating between populations in hybrid zones, but very few examples where this is clearly a result of selection against mating with genetically less compatible individuals. There are also numerous cases of inbreeding avoidance, but little evidence that mate choice or differential fertilization success driven by genetic compatibility occurs between unrelated individuals. The exceptions to this are a handful of situations where both the alleles causing incompatibility and the alleles involved in mate choice are located in a chromosome region where recombination is suppressed. As yet there are only a few potential sources of genetic compatibility which have clearly been shown to drive mate choice. This may reflect limitations in the potential for the evolution of mate choice for genetic compatibility within populations, although the most promising sources of such incompatibilities have received relatively little research.
Genetics and Epigenetics of Mating Type Determination in Paramecium and Tetrahymena.
Orias, Eduardo; Singh, Deepankar Pratap; Meyer, Eric
2017-09-08
While sex is an ancient and highly conserved eukaryotic invention, self-incompatibility systems such as mating types or sexes appear to be derived limitations that show considerable evolutionary plasticity. Within a single class of ciliates, Paramecium and Tetrahymena species have long been known to present a wide variety of mating type numbers and modes of inheritance, but only recently have the genes involved been identified. Although similar transmembrane proteins mediate self/nonself recognition in both ciliates, the mechanisms of mating type determination differ widely, ranging from Mendelian systems to developmental nuclear differentiation, either stochastic or maternally inherited. The non-Mendelian systems rely on programmed editing of the germline genome that occurs during differentiation of the somatic nucleus, and they have co-opted different DNA recombination mechanisms-some previously unknown. Here we review the recent molecular advances and some remaining unsolved questions and discuss the possible implications of these diverse mechanisms for inbreeding/outbreeding balance regulation.
Currie at RMS controls on the aft flight deck
1998-12-05
S88-E-5010 (12-05-98) --- Operating at a control panel on Endeavour's aft flight deck, astronaut Nancy J. Currie works with the robot arm prior to mating the 12.8-ton Unity connecting module to Endeavour's docking system. The mating took place on late afternoon of Dec. 5. A nearby monitor provides a view of the remote manipulator system's (RMS) movements in the cargo bay. The feat marked an important step in assembling the new International Space Station. Manipulating the shuttle's 50-foot-long robot arm, Currie placed Unity just inches above the extended outer ring on Endeavour's docking mechanism, enabling Robert D. Cabana, mission commander to fire downward maneuvering jets, locking the shuttle's docking system to one of two Pressurized Mating Adapters (PMA) attached to Unity. The mating occurred at 5:45 p.m. Central time, as Endeavour sailed over eastern China.
Promiscuous 2-aminothiazoles (PrATs): a frequent hitting scaffold.
Devine, Shane M; Mulcair, Mark D; Debono, Cael O; Leung, Eleanor W W; Nissink, J Willem M; Lim, San Sui; Chandrashekaran, Indu R; Vazirani, Mansha; Mohanty, Biswaranjan; Simpson, Jamie S; Baell, Jonathan B; Scammells, Peter J; Norton, Raymond S; Scanlon, Martin J
2015-02-12
We have identified a class of molecules, known as 2-aminothiazoles (2-ATs), as frequent-hitting fragments in biophysical binding assays. This was exemplified by 4-phenylthiazol-2-amine being identified as a hit in 14/14 screens against a diverse range of protein targets, suggesting that this scaffold is a poor starting point for fragment-based drug discovery. This prompted us to analyze this scaffold in the context of an academic fragment library used for fragment-based drug discovery (FBDD) and two larger compound libraries used for high-throughput screening (HTS). This analysis revealed that such "promiscuous 2-aminothiazoles" (PrATs) behaved as frequent hitters under both FBDD and HTS settings, although the problem was more pronounced in the fragment-based studies. As 2-ATs are present in known drugs, they cannot necessarily be deemed undesirable, but the combination of their promiscuity and difficulties associated with optimizing them into a lead compound makes them, in our opinion, poor scaffolds for fragment libraries.
Structures of Human Pumilio with Noncognate RNAs Reveal Molecular Mechanisms for Binding Promiscuity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta,Y.; Nair, D.; Wharton, R.
2008-01-01
Pumilio is a founder member of the evolutionarily conserved Puf family of RNA-binding proteins that control a number of physiological processes in eukaryotes. A structure of human Pumilio (hPum) Puf domain bound to a Drosophila regulatory sequence showed that each Puf repeat recognizes a single nucleotide. Puf domains in general bind promiscuously to a large set of degenerate sequences, but the structural basis for this promiscuity has been unclear. Here, we describe the structures of hPum Puf domain complexed to two noncognate RNAs, CycBreverse and Puf5. In each complex, one of the nucleotides is ejected from the binding surface, inmore » effect, acting as a 'spacer.' The complexes also reveal the plasticity of several Puf repeats, which recognize noncanonical nucleotides. Together, these complexes provide a molecular basis for recognition of degenerate binding sites, which significantly increases the number of mRNAs targeted for regulation by Puf proteins in vivo.« less
2015-01-01
Significant resources in early drug discovery are spent unknowingly pursuing artifacts and promiscuous bioactive compounds, while understanding the chemical basis for these adverse behaviors often goes unexplored in pursuit of lead compounds. Nearly all the hits from our recent sulfhydryl-scavenging high-throughput screen (HTS) targeting the histone acetyltransferase Rtt109 were such compounds. Herein, we characterize the chemical basis for assay interference and promiscuous enzymatic inhibition for several prominent chemotypes identified by this HTS, including some pan-assay interference compounds (PAINS). Protein mass spectrometry and ALARM NMR confirmed these compounds react covalently with cysteines on multiple proteins. Unfortunately, compounds containing these chemotypes have been published as screening actives in reputable journals and even touted as chemical probes or preclinical candidates. Our detailed characterization and identification of such thiol-reactive chemotypes should accelerate triage of nuisance compounds, guide screening library design, and prevent follow-up on undesirable chemical matter. PMID:25634295
Effect of Additives on the Selectivity and Reactivity of Enzymes.
Liang, Yi-Ru; Wu, Qi; Lin, Xian-Fu
2017-01-01
Enzymes have been widely used as efficient, eco-friendly, and biodegradable catalysts in organic chemistry due to their mild reaction conditions and high selectivity and efficiency. In recent years, the catalytic promiscuity of many enzymes in unnatural reactions has been revealed and studied by chemists and biochemists, which has expanded the application potential of enzymes. To enhance the selectivity and activity of enzymes in their natural or promiscuous reactions, many methods have been recommended, such as protein engineering, process engineering, and media engineering. Among them, the additive approach is very attractive because of its simplicity to use and high efficiency. In this paper, we will review the recent developments about the applications of additives to improve the catalytic performances of enzymes in their natural and promiscuous reactions. These additives include water, organic bases, water mimics, cosolvents, crown ethers, salts, surfactants, and some particular molecular additives. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Santana, Mábio J; de Oliveira, Aline L; Queiroz Júnior, Luiz H K; Mandal, Santi M; Matos, Carolina O; Dias, Renata de O; Franco, Octavio L; Lião, Luciano M
2015-02-27
Multifunctional and promiscuous antimicrobial peptides (AMPs) can be used as an efficient strategy to control pathogens. However, little is known about the structural properties of plant promiscuous AMPs without disulfide bonds. CD and NMR were used to elucidate the structure of the promiscuous peptide Cn-AMP1, a disulfide-free peptide isolated from green coconut water. Data here reported shows that peptide structure is transitory and could be different according to the micro-environment. In this regard, Cn-AMP1 showed a random coil in a water environment and an α-helical structure in the presence of SDS-d25 micelles. Moreover, deuterium exchange experiments showed that Gly4, Arg5 and Met9 residues are less accessible to solvent, suggesting that flexibility and cationic charges seem to be essential for Cn-AMP1 multiple activities. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Thorsell, Ann-Gerd; Ekblad, Torun; Karlberg, Tobias; Löw, Mirjam; Pinto, Ana Filipa; Trésaugues, Lionel; Moche, Martin; Cohen, Michael S; Schüler, Herwig
2017-02-23
Selective inhibitors could help unveil the mechanisms by which inhibition of poly(ADP-ribose) polymerases (PARPs) elicits clinical benefits in cancer therapy. We profiled 10 clinical PARP inhibitors and commonly used research tools for their inhibition of multiple PARP enzymes. We also determined crystal structures of these compounds bound to PARP1 or PARP2. Veliparib and niraparib are selective inhibitors of PARP1 and PARP2; olaparib, rucaparib, and talazoparib are more potent inhibitors of PARP1 but are less selective. PJ34 and UPF1069 are broad PARP inhibitors; PJ34 inserts a flexible moiety into hydrophobic subpockets in various ADP-ribosyltransferases. XAV939 is a promiscuous tankyrase inhibitor and a potent inhibitor of PARP1 in vitro and in cells, whereas IWR1 and AZ-6102 are tankyrase selective. Our biochemical and structural analysis of PARP inhibitor potencies establishes a molecular basis for either selectivity or promiscuity and provides a benchmark for experimental design in assessment of PARP inhibitor effects.
Mei, Xianyi; Yan, Xiaoli; Zhang, Hui; Yu, Mingjia; Shen, Guangqing; Zhou, Linjun; Deng, Zixin; Lei, Chun; Qu, Xudong
2018-01-19
Anthrabenzoxocinones (ABXs) including (-)-ABXs and (+)-ABXs are a group of bacterial FabF-specific inhibitors with potent antimicrobial activity of resistant strains. Optimization of their chemical structures is a promising method to develop potent antibiotics. Through biosynthetic investigation, we herein identified and characterized two highly promiscuous enzymes involved in the (-)-ABX structural modification. The promiscuous halogenase and methyltransferase can respectively introduce halogen-modifications into various positions of the ABX scaffolds and methylation to highly diverse substrates. Manipulation of their activity in both of the (-)-ABXs and (+)-ABXs biosyntheses led to the generation of 14 novel ABX analogues of both enantiomers. Bioactivity assessment revealed that a few of the analogues showed significantly improved antimicrobial activity, with the C3-hydroxyl and chlorine substitutions critical for their activity. This study enormously expands the bioactive chemical space of the ABX family and FabF-specific inhibitors. The disclosed broad-selective biosynthetic machineries and structure-activity relationship provide a solid basis for further generation of potent antimicrobial agents.
Probing protein flexibility reveals a mechanism for selective promiscuity
Pabon, Nicolas A; Camacho, Carlos J
2017-01-01
Many eukaryotic regulatory proteins adopt distinct bound and unbound conformations, and use this structural flexibility to bind specifically to multiple partners. However, we lack an understanding of how an interface can select some ligands, but not others. Here, we present a molecular dynamics approach to identify and quantitatively evaluate the interactions responsible for this selective promiscuity. We apply this approach to the anticancer target PD-1 and its ligands PD-L1 and PD-L2. We discover that while unbound PD-1 exhibits a hard-to-drug hydrophilic interface, conserved specific triggers encoded in the cognate ligands activate a promiscuous binding pathway that reveals a flexible hydrophobic binding cavity. Specificity is then established by additional contacts that stabilize the PD-1 cavity into distinct bound-like modes. Collectively, our studies provide insight into the structural basis and evolution of multiple binding partners, and also suggest a biophysical approach to exploit innate binding pathways to drug seemingly undruggable targets. DOI: http://dx.doi.org/10.7554/eLife.22889.001 PMID:28432789
Estimation of mating system parameters in plant populations using marker loci with null alleles.
Ross, H A
1986-06-01
An Expectation-Maximization (EM)-algorithm procedure is presented that extends Cheliak et al. (1983) method of maximum-likelihood estimation of mating system parameters of mixed mating system models. The extension permits the estimation of the rate of self-fertilization (s) and allele frequencies (Pi) at loci in outcrossing pollen, at marker loci having recessive null alleles. The algorithm makes use of maternal and filial genotypic arrays obtained by the electrophoretic analysis of cohorts of progeny. The genotypes of maternal plants must be known. Explicit equations are given for cases when the genotype of the maternal gamete inherited by a seed can (gymnosperms) or cannot (angiosperms) be determined. The procedure can accommodate any number of codominant alleles, but only one recessive null allele at each locus. An example, using actual data from Pinus banksiana, is presented to illustrate the application of this EM algorithm to the estimation of mating system parameters using marker loci having both codominant and recessive alleles.
Lin, J. Z.; Ritland, K.
1997-01-01
Theoretical predictions about the evolution of selfing depend on the genetic architecture of loci controlling selfing (monogenic vs. polygenic determination, large vs. small effect of alleles, dominance vs. recessiveness), and studies of such architecture are lacking. We inferred the genetic basis of mating system differences between the outbreeding Mimulus guttatus and the inbreeding M. platycalyx by quantitative trait locus (QTL) mapping using random amplified polymorphic DNA and isozyme markers. One to three QTL were detected for each of five mating system characters, and each QTL explained 7.6-28.6% of the phenotypic variance. Taken together, QTL accounted for up to 38% of the variation in mating system characters, and a large proportion of variation was unaccounted for. Inferred QTL often affected more than one trait, contributing to the genetic correlation between those traits. These results are consistent with the hypothesis that quantitative variation in plant mating system characters is primarily controlled by loci with small effect. PMID:9215912
Global biogeography of mating system variation in seed plants.
Moeller, David A; Briscoe Runquist, Ryan D; Moe, Annika M; Geber, Monica A; Goodwillie, Carol; Cheptou, Pierre-Olivier; Eckert, Christopher G; Elle, Elizabeth; Johnston, Mark O; Kalisz, Susan; Ree, Richard H; Sargent, Risa D; Vallejo-Marin, Mario; Winn, Alice A
2017-03-01
Latitudinal gradients in biotic interactions have been suggested as causes of global patterns of biodiversity and phenotypic variation. Plant biologists have long speculated that outcrossing mating systems are more common at low than high latitudes owing to a greater predictability of plant-pollinator interactions in the tropics; however, these ideas have not previously been tested. Here, we present the first global biogeographic analysis of plant mating systems based on 624 published studies from 492 taxa. We found a weak decline in outcrossing rate towards higher latitudes and among some biomes, but no biogeographic patterns in the frequency of self-incompatibility. Incorporating life history and growth form into biogeographic analyses reduced or eliminated the importance of latitude and biome in predicting outcrossing or self-incompatibility. Our results suggest that biogeographic patterns in mating system are more likely a reflection of the frequency of life forms across latitudes rather than the strength of plant-pollinator interactions. © 2017 John Wiley & Sons Ltd/CNRS.
Janes, J K; Roe, A D; Rice, A V; Gorrell, J C; Coltman, D W; Langor, D W; Sperling, F A H
2016-01-01
An understanding of mating systems and fine-scale spatial genetic structure is required to effectively manage forest pest species such as Dendroctonus ponderosae (mountain pine beetle). Here we used genome-wide single-nucleotide polymorphisms to assess the fine-scale genetic structure and mating system of D. ponderosae collected from a single stand in Alberta, Canada. Fine-scale spatial genetic structure was absent within the stand and the majority of genetic variation was best explained at the individual level. Relatedness estimates support previous reports of pre-emergence mating. Parentage assignment tests indicate that a polygamous mating system better explains the relationships among individuals within a gallery than the previously reported female monogamous/male polygynous system. Furthermore, there is some evidence to suggest that females may exploit the galleries of other females, at least under epidemic conditions. Our results suggest that current management models are likely to be effective across large geographic areas based on the absence of fine-scale genetic structure. PMID:26286666
Penley, McKenna J; Ha, Giang T; Morran, Levi T
2017-01-01
Parasites can impose strong selection on hosts. In response, some host populations have adapted via the evolution of defenses that prevent or impede infection by parasites. However, host populations have also evolved life history shifts that maximize host fitness despite infection. Outcrossing and self-fertilization can have contrasting effects on evolutionary trajectories of host populations. While selfing and outcrossing are known to affect the rate at which host populations adapt in response to parasites, these mating systems may also influence the specific traits that underlie adaptation to parasites. Here, we determined the role of evolved host defense versus altered life history,in mixed mating (selfing and outcrossing) and obligately outcrossing C. elegans host populations after experimental evolution with the bacterial parasite, S. marcescens. Similar to previous studies, we found that both mixed mating and obligately outcrossing host populations adapted to S. marcescens exposure, and that the obligately outcrossing populations exhibited the greatest rates of adaptation. Regardless of the host population mating system, exposure to parasites did not significantly alter reproductive timing or total fecundity over the course of experimental evolution. However, both mixed mating and obligately outcrossing host populations exhibited significantly reduced mortality rates in the presence of the parasite after experimental evolution. Therefore, adaptation in both the mixed mating and obligately outcrossing populations was driven, at least in part, by the evolution of increased host defense and not changes in host life history. Thus, the host mating system altered the rate of adaptation, but not the nature of adaptive change in the host populations.
Penley, McKenna J.; Ha, Giang T.; Morran, Levi T.
2017-01-01
Parasites can impose strong selection on hosts. In response, some host populations have adapted via the evolution of defenses that prevent or impede infection by parasites. However, host populations have also evolved life history shifts that maximize host fitness despite infection. Outcrossing and self-fertilization can have contrasting effects on evolutionary trajectories of host populations. While selfing and outcrossing are known to affect the rate at which host populations adapt in response to parasites, these mating systems may also influence the specific traits that underlie adaptation to parasites. Here, we determined the role of evolved host defense versus altered life history,in mixed mating (selfing and outcrossing) and obligately outcrossing C. elegans host populations after experimental evolution with the bacterial parasite, S. marcescens. Similar to previous studies, we found that both mixed mating and obligately outcrossing host populations adapted to S. marcescens exposure, and that the obligately outcrossing populations exhibited the greatest rates of adaptation. Regardless of the host population mating system, exposure to parasites did not significantly alter reproductive timing or total fecundity over the course of experimental evolution. However, both mixed mating and obligately outcrossing host populations exhibited significantly reduced mortality rates in the presence of the parasite after experimental evolution. Therefore, adaptation in both the mixed mating and obligately outcrossing populations was driven, at least in part, by the evolution of increased host defense and not changes in host life history. Thus, the host mating system altered the rate of adaptation, but not the nature of adaptive change in the host populations. PMID:28792961
Ophir, Alexander G
2017-01-01
The role of memory in mating systems is often neglected despite the fact that most mating systems are defined in part by how animals use space. Monogamy, for example, is usually characterized by affiliative (e.g., pairbonding) and defensive (e.g., mate guarding) behaviors, but a high degree of spatial overlap in home range use is the easiest defining feature of monogamous animals in the wild. The nonapeptides vasopressin and oxytocin have been the focus of much attention for their importance in modulating social behavior, however this work has largely overshadowed their roles in learning and memory. To date, the understanding of memory systems and mechanisms governing social behavior have progressed relatively independently. Bridging these two areas will provide a deeper appreciation for understanding behavior, and in particular the mechanisms that mediate reproductive decision-making. Here, I argue that the ability to mate effectively as monogamous individuals is linked to the ability to track conspecifics in space. I discuss the connectivity across some well-known social and spatial memory nuclei, and propose that the nonapeptide receptors within these structures form a putative "socio-spatial memory neural circuit." This purported circuit may function to integrate social and spatial information to shape mating decisions in a context-dependent fashion. The lateral septum and/or the nucleus accumbens, and neuromodulation therein, may act as an intermediary to relate socio-spatial information with social behavior. Identifying mechanisms responsible for relating information about the social world with mechanisms mediating mating tactics is crucial to fully appreciate the suite of factors driving reproductive decisions and social decision-making.
2011-01-01
Background Monogynous mating systems with extremely low male mating rates have several independent evolutionary origins and are associated with drastic adaptations involving self-sacrifice, one-shot genitalia, genital damage, and termination of spermatogenesis immediately after maturation. The combination of such extreme traits likely restricts evolutionary potential perhaps up to the point of making low male mating rates irreversible and hence may constitute an evolutionary dead end. Here, we explore the case of a reversion to multiple mating from monogynous ancestry in golden orb-web spiders, Nephila senegalensis. Results Male multiple mating is regained by the loss of genital damage and sexual cannibalism but spermatogenesis is terminated with maturation, restricting males to a single loading of their secondary mating organs and a fixed supply of sperm. However, males re-use their mating organs and by experimentally mating males to many females, we show that the sperm supply is divided between copulations without reloading the pedipalps. Conclusion By portioning their precious sperm supply, males achieve an average mating rate of four females which effectively doubles the maximal mating rate of their ancestors. A heritage of one-shot genitalia does not completely restrict the potential to increase mating rates in Nephila although an upper limit is defined by the available sperm load. Future studies should now investigate how males use this potential in the field and identify selection pressures responsible for a reversal from monogynous to polygynous mating strategies. PMID:21740561
Schneider, Jutta M; Michalik, Peter
2011-07-08
Monogynous mating systems with extremely low male mating rates have several independent evolutionary origins and are associated with drastic adaptations involving self-sacrifice, one-shot genitalia, genital damage, and termination of spermatogenesis immediately after maturation. The combination of such extreme traits likely restricts evolutionary potential perhaps up to the point of making low male mating rates irreversible and hence may constitute an evolutionary dead end. Here, we explore the case of a reversion to multiple mating from monogynous ancestry in golden orb-web spiders, Nephila senegalensis. Male multiple mating is regained by the loss of genital damage and sexual cannibalism but spermatogenesis is terminated with maturation, restricting males to a single loading of their secondary mating organs and a fixed supply of sperm. However, males re-use their mating organs and by experimentally mating males to many females, we show that the sperm supply is divided between copulations without reloading the pedipalps. By portioning their precious sperm supply, males achieve an average mating rate of four females which effectively doubles the maximal mating rate of their ancestors. A heritage of one-shot genitalia does not completely restrict the potential to increase mating rates in Nephila although an upper limit is defined by the available sperm load. Future studies should now investigate how males use this potential in the field and identify selection pressures responsible for a reversal from monogynous to polygynous mating strategies.
NASA Technical Reports Server (NTRS)
Williams, David E.
2008-01-01
The International Space Station (ISS) Pressurized Mating Adapters (PMAs) Environmental Control and Life Support (ECLS) System is comprised of three subsystems: Atmosphere Control and Supply (ACS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). PMAs 1 and 2 flew to ISS on Flight 2A and Pressurized Mating Adapter (PMA) 3 flew to ISS on Flight 3A. This paper provides a summary of the PMAs ECLS design and a detailed discussion of the ISS ECLS Acceptance Testing methodologies utilized for the PMAs.
Girard-Buttoz, Cédric; Heistermann, Michael; Rahmi, Erdiansyah; Agil, Muhammad; Fauzan, Panji Ahmad; Engelhardt, Antje
2014-09-01
Mate-guarding is an important determinant of male reproductive success in a number of species. However, it is known to potentially incur costs. The aim of the present study was to assess the effect of mate-guarding on male physiological stress and aggression in long-tailed macaques, a species in which males mate-guard females to a lesser extent than predicted by the Priority of Access model (PoA). The study was carried out during two mating periods on three groups of wild long-tailed macaques in Indonesia by combining behavioral observations with non-invasive measurements of fecal glucocorticoid (fGC) levels. Mate-guarding was associated with a general rise in male stress hormone levels but, from a certain threshold of mate-guarding onwards, increased vigilance time was associated with a decrease in stress hormone output. Mate-guarding also increased male-male aggression rate and male vigilance time. Overall, alpha males were more physiologically stressed than other males independently of mating competition. Increased glucocorticoid levels during mate-guarding are most likely adaptive since it may help males to mobilize extra-energy required for mate-guarding and ultimately maintain a balanced energetic status. However, repeated exposure to high levels of stress over an extended period is potentially deleterious to the immune system and thus may carry costs. This potential physiological cost together with the cost of increased aggression mate-guarding male face may limit the male's ability to mate-guard females, explaining the deviance from the PoA model observed in long-tailed macaques. Comparing our results to previous findings we discuss how ecological factors, reproductive seasonality and rank achievement may modulate the extent to which costs of mate-guarding limit male monopolization abilities. Copyright © 2014. Published by Elsevier Inc.
Social structure affects mating competition in a damselfish
NASA Astrophysics Data System (ADS)
Wacker, Sebastian; Ness, Miriam Horstad; Östlund-Nilsson, Sara; Amundsen, Trond
2017-12-01
The strength of mating competition and sexual selection varies over space and time in many animals. Such variation is typically driven by ecological and demographic factors, including adult sex ratio and consequent availability of mates. The spatial scale at which demographic factors affect mating competition and sexual selection may vary but is not often investigated. Here, we analyse variation in size and sex ratio of social groups, and how group structure affects mating competition, in the site-attached damselfish Chrysiptera cyanea. Site-attached reef fishes are known to show extensive intraspecific variation in social structure. Previous work has focused on species for which the size and dynamics of social groups are constrained by habitat, whereas species with group structure unconstrained by habitat have received little attention. Chrysiptera cyanea is such a species, with individuals occurring in spatial clusters that varied widely in size and sex ratio. Typically, only one male defended a nest in multi-male groups. Nest-holding males were frequently visited by mate-searching females, with more visits in groups with more females, suggesting that courtship and mating mostly occur within groups and that male mating success depends on the number of females in the group. Male-male aggression was frequent in multi-male groups but absent in single-male groups. These findings demonstrate that groups are distinct social units. In consequence, the dynamics of mating and reproduction are mainly a result of group structure, largely unaffected short term by overall population demography which would be important in open social systems. Future studies of the C. cyanea model system should analyse longer-term dynamics, including how groups are formed, how they vary in relation to density and time of season and how social structure affects sexual selection.
da Veiga, D T A; Bringhenti, R; Copes, R; Tatsch, E; Moresco, R N; Comim, F V; Premaor, M O
2018-01-01
The prevalence of cardiovascular and metabolic diseases is increased in postmenopausal women, which contributes to the burden of illnesses in this period of life. Yerba mate (Ilex paraguariensis) is a native bush from Southern South America. Its leaves are rich in phenolic components, which may have antioxidant, vasodilating, hypocholesterolemic, and hypoglycemic proprieties. This post hoc analysis of the case-control study nested in the Obesity and Bone Fracture Cohort evaluated the consumption of yerba mate and the prevalence of hypertension, dyslipidemia, and coronary diseases in postmenopausal women. Ninety-five postmenopausal women were included in this analysis. A questionnaire was applied to evaluate the risk factors and diagnosis of cardiovascular diseases and consumption of yerba mate infusion. Student's t-test and chi-square test were used to assess significant differences between groups. The group that consumed more than 1 L/day of mate infusion had significantly fewer diagnoses of coronary disease, dyslipidemia, and hypertension (P<0.049, P<0.048, and P<0.016, respectively). Furthermore, the serum levels of glucose were lower in the group with a higher consumption of yerba mate infusion (P<0.013). The serum levels of total cholesterol, LDL-cholesterol, HDL-cholesterol, and triglycerides were similar between the groups. This pragmatic study points out the benefits of yerba mate consumption for the cardiovascular and metabolic systems. The ingestion of more than 1 L/day of mate infusion was associated with fewer self-reported cardiovascular diseases and lower serum levels of glucose. Longitudinal studies are needed to evaluate the association between yerba mate infusion and reduction of cardiovascular diseases in postmenopausal women.
da Veiga, D.T.A.; Bringhenti, R.; Copes, R.; Tatsch, E.; Moresco, R.N.; Comim, F.V.; Premaor, M.O.
2018-01-01
The prevalence of cardiovascular and metabolic diseases is increased in postmenopausal women, which contributes to the burden of illnesses in this period of life. Yerba mate (Ilex paraguariensis) is a native bush from Southern South America. Its leaves are rich in phenolic components, which may have antioxidant, vasodilating, hypocholesterolemic, and hypoglycemic proprieties. This post hoc analysis of the case-control study nested in the Obesity and Bone Fracture Cohort evaluated the consumption of yerba mate and the prevalence of hypertension, dyslipidemia, and coronary diseases in postmenopausal women. Ninety-five postmenopausal women were included in this analysis. A questionnaire was applied to evaluate the risk factors and diagnosis of cardiovascular diseases and consumption of yerba mate infusion. Student's t-test and chi-square test were used to assess significant differences between groups. The group that consumed more than 1 L/day of mate infusion had significantly fewer diagnoses of coronary disease, dyslipidemia, and hypertension (P<0.049, P<0.048, and P<0.016, respectively). Furthermore, the serum levels of glucose were lower in the group with a higher consumption of yerba mate infusion (P<0.013). The serum levels of total cholesterol, LDL-cholesterol, HDL-cholesterol, and triglycerides were similar between the groups. This pragmatic study points out the benefits of yerba mate consumption for the cardiovascular and metabolic systems. The ingestion of more than 1 L/day of mate infusion was associated with fewer self-reported cardiovascular diseases and lower serum levels of glucose. Longitudinal studies are needed to evaluate the association between yerba mate infusion and reduction of cardiovascular diseases in postmenopausal women. PMID:29694507
Heart rate patterns during courtship and mating in rams and in estrous and nonestrous ewes ().
Orihuela, A; Omaña, J C; Ungerfeld, R
2016-02-01
The aim of this study was to compare the heart rate (HR) patterns in rams mated with estrous or nonestrous ewes and in mated estrous and nonestrous ewes () during courtship and mating. For this purpose, HR and behavior were recorded using a radio telemetry recording system and a closed-circuit television system with video recording, respectively. Rams were joined with either an estrous ( = 10) or a nonestrous ( = 10) ewe that was restrained in a stanchion by the neck. Data were continuously recorded until each ram performed 3 ejaculations. Eight days later, the HR of the 10 estrous and 10 nonestrous ewes was recorded during mating. Although the time between entrance into the yard and the first ejaculation was similar across rams, rams that mounted estrous ewes were faster at attaining their second (3min5s ± 17 s vs. 5min28s ± 18 s) and third (7min58s ± 45 s vs. 12 min ± 1min14s) ejaculations (all < 0.05). By contrast, no differences in HR were observed between rams that interacted with estrous versus nonestrous ewes. In all cases, HR reached maximum values immediately after each ejaculation and the HR pattern was similar across ejaculations (first, second, and third). Although HR was similar between estrous and nonestrous ewes before mating, nonestrous ewes had higher HR ( < 0.05) during mating. In summary, 1) rams that mated estrous ewes displayed shorter interejaculation periods but HR did not differ between groups of rams during any ejaculation (first, second, or third), 2) HR for both groups of rams peaked shortly after each ejaculation, and 3) HR increased more in nonestrous than in estrous ewes while mating.
Senior, Alistair McNair; Nakagawa, Shinichi; Grimm, Volker
2014-01-01
Females may select a mate based on signalling traits that are believed to accurately correlate with heritable aspects of male quality. Anthropogenic actions, in particular chemicals released into the environment, are now disrupting the accuracy of mating signals to convey information about male quality. The long-term prediction for disrupted mating signals is most commonly loss of female preference. Yet, this prediction has rarely been tested using quantitative models. We use agent-based models to explore the effects of rapid disruption of mating signals. In our model, a gene determines survival. Males signal their level of genetic quality via a signal trait, which females use to select a mate. We allowed this system of sexual selection to become established, before introducing a disruption between the male signal trait and quality, which was similar in nature to that induced by exogenous chemicals. Finally, we assessed the capacity of the system to recover from this disruption. We found that within a relatively short time frame, disruption of mating signals led to a lasting loss of female preference. Decreases in mean viability at the population-level were also observed, because sexual-selection acting against newly arising deleterious mutations was relaxed. The ability of the population to recover from disrupted mating signals was strongly influenced by the mechanisms that promoted or maintained genetic diversity in traits under sexual selection. Our simple model demonstrates that environmental perturbations to the accuracy of male mating signals can result in a long-term loss of female preference for those signals within a few generations. What is more, the loss of this preference can have knock-on consequences for mean population fitness. PMID:25047080
The messenger matters: Pollinator functional group influences mating system dynamics.
Weber, Jennifer J
2017-08-01
The incredible diversity of plant mating systems has fuelled research in evolutionary biology for over a century. Currently, there is broad concern about the impact of rapidly changing pollinator communities on plant populations. Very few studies, however, examine patterns and mechanisms associated with multiple paternity from cross-pollen loads. Often, foraging pollinators collect a mixed pollen load that may result in the deposition of pollen from different sires to receptive stigmas. Coincident deposition of self- and cross-pollen leads to interesting mating system dynamics and has been investigated in numerous species. But, mixed pollen loads often consist of a diversity of cross-pollen and result in multiple sires of seeds within a fruit. In this issue of Molecular Ecology, Rhodes, Fant, and Skogen () examine how pollinator identity and spatial isolation influence multiple paternity within fruits of a self-incompatible evening primrose. The authors demonstrate that pollen pool diversity varies between two pollinator types, hawkmoths and diurnal solitary bees. Further, progeny from more isolated plants were less likely to have multiple sires regardless of the pollinator type. Moving forward, studies of mating system dynamics should consider the implications of multiple paternity and move beyond the self- and cross-pollination paradigm. Rhodes et al. () demonstrate the importance of understanding the roles that functionally diverse pollinators play in mating system dynamics. © 2017 John Wiley & Sons Ltd.
NASA Docking System (NDS) Interface Definitions Document (IDD). Revision F, Dec. 15, 2011
NASA Technical Reports Server (NTRS)
Lewis, James
2011-01-01
The NASA Docking System (NDS) mating system supports low approach velocity docking and provides a modular and reconfigurable standard interface, supporting crewed and autonomous vehicles during mating and assembly operations. The NDS is NASA s implementation for the International Docking System Standard (IDSS) using low impact docking technology. All NDS configurations can mate with the configuration specified in the IDSS Interface Definition Document (IDD), Revision A, released May 13, 2011. The NDS evolved from the Low Impact Docking System (LIDS). The term (and its associated acronym), international Low Impact Docking System (iLIDS) is also used to describe this system. NDS and iLIDS may be used interchangeability. Some of the heritage documentation and implementations (e.g., software command names) used on the NDS will continue to use the LIDS acronym.
Roberts, Thomas; Roiser, Jonathan P
2010-11-01
The human leukocyte antigen (HLA) is the most polymorphic region of the genome, coding for proteins that mediate human immune response. This polymorphism may be maintained by balancing selection and certain populations show deviations from expected gene frequencies. Supporting this hypothesis, studies into olfactory preferences have suggested that females prefer the scent of males with dissimilar HLA to their own. However, it has also been proposed that androstenones play a role in female mate choice, and as these molecules inhibit the immune system, this has implications for the theory of HLA-driven mate preference. This review will critically analyze the findings of studies investigating olfactory preference in humans, and their implications for these two contrasting theories of mate choice.
Toward a theory of topopatric speciation: The role of genetic assortative mating
NASA Astrophysics Data System (ADS)
Schneider, David M.; do Carmo, Eduardo; Martins, Ayana B.; de Aguiar, Marcus A. M.
2014-09-01
We discuss a minimalist model of assortative mating for sexually reproducing haploid individuals with two biallelic loci. Assortativeness is introduced in the model by preventing mating between individuals whose alleles differ at both loci. Using methods of dynamical systems and population genetics we provide a full description of the evolution of the system for the case of very large populations. We derive the equations governing the evolution of haplotype frequencies and study the equilibrium solutions, stability, and speed of convergence to equilibrium. We find a constant of motion which allows us to introduce a geometrical construction that makes it straightforward to predict the fate of initial conditions. Finally, we discuss the consequences of this class of assortative mating models, including their possible extensions and implications for sympatric and topopatric speciation.
Eudes, Aymerick; Pereira, Jose H.; Yogiswara, Sasha; ...
2016-02-08
Lignin poses a major challenge in the processing of plant biomass for agro-industrial applications. For bioengineering purposes, there is a pressing interest in identifying and characterizing the enzymes responsible for the biosynthesis of lignin. Hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase (HCT; EC 2.3.1.133) is a key metabolic entry point for the synthesis of the most important lignin monomers: coniferyl and sinapyl alcohols. In this study, we investigated the substrate promiscuity of HCT from a bryophyte (Physcomitrella) and from five representatives of vascular plants (Arabidopsis, poplar, switchgrass, pine and Selaginella) using a yeast expression system. We demonstrate for these HCTs a conserved capacity tomore » acylate with p-coumaroyl-CoA several phenolic compounds in addition to the canonical acceptor shikimate normally used during lignin biosynthesis. Using either recombinant HCT from switchgrass (PvHCT2a) or an Arabidopsis stem protein extract, we show evidence of the inhibitory effect of these phenolics on the synthesis of p-coumaroyl shikimate in vitro, which presumably occurs via a mechanism of competitive inhibition. A structural study of PvHCT2a confirmed the binding of a non-canonical acceptor in a similar manner to shikimate in the active site of the enzyme. Finally, we exploited in Arabidopsis the substrate flexibility of HCT to reduce lignin content and improve biomass saccharification by engineering transgenic lines that overproduce one of the HCT non-canonical acceptors. Our results demonstrate conservation of HCT substrate promiscuity and provide support for a new strategy for lignin reduction in the effort to improve the quality of plant biomass for forage and cellulosic biofuels.« less
Luo, J; Sanetra, M; Schartl, M; Meyer, A
2005-01-01
Male swordtails in the genus Xiphophorus display a conspicuous ventral elongation of the caudal fin, the sword, which arose through sexual selection due to female preference. Females mate regularly and are able to store sperm for at least 6 months. If multiple mating is frequent, this would raise the intriguing question about the role of female choice and male-male competition in shaping the mating system of these fishes. Size-dependent alternate mating strategies occur in Xiphophorus; one such strategy is courtship with a sigmoid display by large dominant males, while the other is gonopodial thrusting, in which small subordinate males sneak copulations. Using microsatellite markers, we observed a frequency of multiple paternity in wild-caught Xiphophorus multilineatus in 28% of families analyzed, but the actual frequency of multiple mating suggested by the correction factor PrDM was 33%. The number of fathers contributing genetically to the brood ranged from one to three. Compared to other species in the family Poeciliidae, both frequency and degree of multiple paternity were low. Paternity was found to be highly skewed, with one male on average contributing more than 70% to the offspring. Hence in this Xiphophorus mating system, typically one male dominates and sneaker males do not appear to be particularly effective. Postcopulatory mechanisms, however, such as sperm competition, are also indicated by our data, using sex-linked phenotypes among the offspring.
Vieira, Manoela A; Maraschin, Marcelo; Pagliosa, Cristiane M; Podestá, Rossana; de Simas, Karina N; Rockenbach, Ismael Ivan; Amboni, Renata D de M C; Amante, Edna R
2010-04-01
Ilex paraguariensis is known to contain compounds with antioxidant properties, such as phenolic acids, and its stimulant properties are attributed to methylxanthines, such as caffeine. The aims of this study were to evaluate the phenolic, methylxanthinic, and tannin composition of a mate residue (mate powder), to compare the quali-quantitative phenolic composition and the antioxidant potential of extracts obtained from distinct solvent systems. Among the extracts prepared with different solvents, the 80% methanol extract showed the highest total polyphenol content (11.51 g/100 g) and antioxidant activity. HPLC analysis showed that 4,5 dicaffeoylquinic acid is the major component of the phenolic fraction of mate powder. The caffeine, theobromine, and tannin contents in mate powder were 1.01, 0.10, and 0.29 g/100 g, respectively. Consumption of mate powder would significantly contribute to antioxidant and stimulant intake, providing high amounts of phenolic acids, tannins, and methylxanthines with biological effects potentially beneficial for human health. This article contributes to the minimization of residues in yerba-mate processing.
Interaction between mating-type proteins from the homothallic fungus Sordaria macrospora.
Jacobsen, Sabine; Wittig, Michael; Pöggeler, Stefanie
2002-06-01
Mating-type genes control sexual development in ascomycetes. Little is known about their function in homothallic species, which are self-fertile and do not require a mating partner for sexual reproduction. The function of mating-type genes in the homothallic fungus Sordaria macrospora was assayed using a yeast system in order to find properties typical of eukaryotic transcription factors. We were able to demonstrate that the mating-type proteins SMTA-1 and SMTa-1 have domains capable of activating transcription of yeast reporter genes. Two-hybrid analysis for heterodimerization and homodimerization revealed the ability of SMTA-1 to interact with SMTa-1 and vice versa. These two proteins are encoded by different mating types in the related heterothallic species Neurospora crassa. The interaction between SMTA-1 and SMTa-1 was defined by experiments with truncated versions of SMTA-1 and in vitro by means of protein cross-linking. Moreover, we gained evidence for homodimerization of SMTA-1. Possible functions of mating-type proteins in the homothallic ascomycete S. macrospora are discussed.
Multienzyme kinetics and sequential metabolism.
Wienkers, Larry C; Rock, Brooke
2014-01-01
Enzymes are the catalysts of biological systems and are extremely efficient. A typical enzyme accelerates the rate of a reaction by factors of at least a million compared to the rate of the same reaction in the absence of the enzyme. In contrast to traditional catalytic enzymes, the family of cytochrome P450 (CYP) enzymes are catalytically promiscuous, and thus they possess remarkable versatility in substrates. The great diversity of reactions catalyzed by CYP enzymes appears to be based on two unique properties of these heme proteins, the ability of their iron to exist under multiple oxidation states with different reactivities and a flexible active site that can accommodate a wide variety of substrates. Herein is a discussion of two distinct types of kinetics observed with CYP enzymes. The first example is of CYP complex kinetic profiles when multiple CYP enzymes form the sample product. The second is sequential metabolism, in other words, the formation of multiple products from one CYP enzyme. Given the degree of CYP enzyme promiscuity, it is hardly surprising that there is also a high degree of complex kinetic profiles generated during the catalytic cycle.
Employing the promiscuity of lantibiotic biosynthetic machineries to produce novel antimicrobials.
Montalbán-López, Manuel; van Heel, Auke J; Kuipers, Oscar P
2017-01-01
As the number of new antibiotics that reach the market is decreasing and the demand for them is rising, alternative sources of novel antimicrobials are needed. Lantibiotics are potent peptide antimicrobials that are ribosomally synthesized and stabilized by post-translationally introduced lanthionine rings. Their ribosomal synthesis and enzymatic modifications provide excellent opportunities to design and engineer a large variety of novel antimicrobial compounds. The research conducted in this area demonstrates that the modularity present in both the peptidic rings as well as in the combination of promiscuous modification enzymes can be exploited to further increase the diversity of lantibiotics. Various approaches, where the modifying enzymes and corresponding leader peptides are decoupled from their natural core peptide and integrated in designed plug-and-play production systems, enable the production of modified peptides that are either derived from vast genomic data or designed using functional parts from a wide diversity of core peptides. These approaches constitute a powerful discovery platform to develop novel antimicrobials with high therapeutic potential. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Wilson, Robbie S; Condon, Catriona H L; Johnston, Ian A
2007-11-29
The mating system of eastern mosquito fish (Gambusia holbrooki) is dominated by male sexual coercion, where all matings are forced and females never appear to cooperate and actively avoid all attempts. Previous research has shown that male G. holbrooki offer a model system for examining the benefits of reversible thermal acclimation for reproductive success, but examining the benefits to female avoidance behaviour has been difficult. In this study, we examined the ability of non-male-deprived female G. holbrooki to avoid forced-coercive matings following acclimation to either 18 or 30 degrees C for six weeks (12h light:12h dark photoperiod). Thermal acclimation of burst and sustained swimming performance was also assessed, as these traits are likely to underlie their ability to avoid forced matings. There was no influence of thermal acclimation on the burst swimming performance of female G. holbrooki over the range 18-30 degrees C; however, sustained swimming performance was significantly lower in the warm- than the cool-acclimation group. For mating behaviour, we tested the hypothesis that acclimation would enhance the ability of female G. holbrooki to avoid forced matings at their host acclimation temperature relative to females acclimated to another environment. However, our hypothesis was not supported. The rate of copulations was almost three times greater for females acclimated to 30 degrees C than 18 degrees C when tested at 30 degrees C, indicating that they possess the ability to alter their avoidance behaviour to 'allow' more copulations in some environments. Coupled with previous studies, female G. holbrooki appear to have greater control on the outcome of coercive mating attempts than previously considered and can alter their propensity to receive forced matings following thermal acclimation. The significance of this change in female mating-avoidance behaviours with thermal acclimation remains to be explored.
Yokoi, Saori; Okuyama, Teruhiro; Kamei, Yasuhiro; Naruse, Kiyoshi; Taniguchi, Yoshihito; Ansai, Satoshi; Kinoshita, Masato; Young, Larry J.; Takemori, Nobuaki; Kubo, Takeo; Takeuchi, Hideaki
2015-01-01
To increase individual male fitness, males of various species remain near a (potential) mating partner and repel their rivals (mate-guarding). Mate-guarding is assumed to be mediated by two different types of motivation: sexual motivation toward the opposite sex and competitive motivation toward the same sex. The genetic/molecular mechanisms underlying how mate presence affects male competitive motivation in a triadic relationship has remained largely unknown. Here we showed that male medaka fish prominently exhibit mate-guarding behavior. The presence of a female robustly triggers male-male competition for the female in a triadic relationship (2 males and 1 female). The male-male competition resulted in one male occupying a dominant position near the female while interfering with the other male's approach of the female. Paternity testing revealed that the dominant male had a significantly higher mating success rate than the other male in a triadic relationship. We next generated medaka mutants of arginine-vasotocin (avt) and its receptors (V1a1, V1a2) and revealed that two genes, avt and V1a2, are required for normal mate-guarding behavior. In addition, behavioral analysis of courtship behaviors in a dyadic relationship and aggressive behaviors within a male group revealed that avt mutant males displayed decreased sexual motivation but showed normal aggression. In contrast, heterozygote V1a2 mutant males displayed decreased aggression, but normal mate-guarding and courtship behavior. Thus, impaired mate-guarding in avt and V1a2 homozygote mutants may be due to the loss of sexual motivation toward the opposite sex, and not to the loss of competitive motivation toward rival males. The different behavioral phenotypes between avt, V1a2 heterozygote, and V1a2 homozygote mutants suggest that there are redundant systems to activate V1a2 and that endogenous ligands activating the receptor may differ according to the social context. PMID:25719383
The use of multisensor data for robotic applications
NASA Technical Reports Server (NTRS)
Abidi, M. A.; Gonzalez, R. C.
1990-01-01
The feasibility of realistic autonomous space manipulation tasks using multisensory information is shown through two experiments involving a fluid interchange system and a module interchange system. In both cases, autonomous location of the mating element, autonomous location of the guiding light target, mating, and demating of the system were performed. Specifically, vision-driven techniques were implemented to determine the arbitrary two-dimensional position and orientation of the mating elements as well as the arbitrary three-dimensional position and orientation of the light targets. The robotic system was also equipped with a force/torque sensor that continuously monitored the six components of force and torque exerted on the end effector. Using vision, force, torque, proximity, and touch sensors, the two experiments were completed successfully and autonomously.
Sexual conflict arising from extrapair matings in birds.
Chaine, Alexis S; Montgomerie, Robert; Lyon, Bruce E
2015-01-20
The discovery that extrapair copulation (EPC) and extrapair paternity (EPP) are common in birds led to a paradigm shift in our understanding of the evolution of mating systems. The prevalence of extrapair matings in pair-bonded species sets the stage for sexual conflict, and a recent focus has been to consider how this conflict can shape variation in extrapair mating rates. Here, we invert the causal arrow and consider the consequences of extrapair matings for sexual conflict. Extrapair matings shift sexual conflict from a simple two-player (male vs. female) game to a game with three or more players, the nature of which we illustrate with simple diagrams that highlight the net costs and benefits of extrapair matings to each player. This approach helps identify the sorts of traits that might be under selection because of sexual conflict. Whether EPP is driven primarily by the extrapair male or the within-pair female profoundly influences which players are in conflict, but the overall pattern of conflict varies little among different mating systems. Different aspects of conflict are manifest at different stages of the breeding cycle and can be profitably considered as distinct episodes of selection caused by conflict. This perspective is illuminating both because conflict between specific players can change across episodes and because the traits that evolve to mediate conflict likely differ between episodes. Although EPP clearly leads to sexual conflict, we suggest that the link between sexual conflict and multiple paternity might be usefully understood by examining how deviations from lifetime sexual monogamy influence sexual conflict. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.
Sexual Conflict Arising from Extrapair Matings in Birds
Chaine, Alexis S.; Montgomerie, Robert; Lyon, Bruce E.
2015-01-01
The discovery that extrapair copulation (EPC) and extrapair paternity (EPP) are common in birds led to a paradigm shift in our understanding of the evolution of mating systems. The prevalence of extrapair matings in pair-bonded species sets the stage for sexual conflict, and a recent focus has been to consider how this conflict can shape variation in extrapair mating rates. Here, we invert the causal arrow and consider the consequences of extrapair matings for sexual conflict. Extrapair matings shift sexual conflict from a simple two-player (male vs. female) game to a game with three or more players, the nature of which we illustrate with simple diagrams that highlight the net costs and benefits of extrapair matings to each player. This approach helps identify the sorts of traits that might be under selection because of sexual conflict. Whether EPP is driven primarily by the extrapair male or the within-pair female profoundly influences which players are in conflict, but the overall pattern of conflict varies little among different mating systems. Different aspects of conflict are manifest at different stages of the breeding cycle and can be profitably considered as distinct episodes of selection caused by conflict. This perspective is illuminating both because conflict between specific players can change across episodes and because the traits that evolve to mediate conflict likely differ between episodes. Although EPP clearly leads to sexual conflict, we suggest that the link between sexual conflict and multiple paternity might be usefully understood by examining how deviations from lifetime sexual monogamy influence sexual conflict. PMID:25605708
Bezemer, N; Krauss, S L; Phillips, R D; Roberts, D G; Hopper, S D
2016-12-01
Optimal foraging behaviour by nectavores is expected to result in a leptokurtic pollen dispersal distribution and predominantly near-neighbour mating. However, complex social interactions among nectarivorous birds may result in different mating patterns to those typically observed in insect-pollinated plants. Mating system, realised pollen dispersal and spatial genetic structure were examined in the bird-pollinated Eucalyptus caesia, a species characterised by small, geographically disjunct populations. Nine microsatellite markers were used to genotype an entire adult stand and 181 seeds from 28 capsules collected from 6 trees. Mating system analysis using MLTR revealed moderate to high outcrossing (t m =0.479-0.806) and low estimates of correlated paternity (r p =0.136±s.e. 0.048). Paternity analysis revealed high outcrossing rates (mean=0.72) and high multiple paternity, with 64 different sires identified for 181 seeds. There was a significant negative relationship between the frequency of outcross mating and distance between mating pairs. Realised mating events were more frequent than expected with random mating for plants <40 m apart. The overall distribution of pollen dispersal distances was platykurtic. Despite extensive pollen dispersal within the stand, three genetic clusters were detected by STRUCTURE analysis. These genetic clusters were strongly differentiated yet geographically interspersed, hypothesised to be a consequence of rare recruitment events coupled with extreme longevity. We suggest that extensive polyandry and pollen dispersal is a consequence of pollination by highly mobile honeyeaters and may buffer E. caesia against the loss of genetic diversity predicted for small and genetically isolated populations.
Bezemer, N; Krauss, S L; Phillips, R D; Roberts, D G; Hopper, S D
2016-01-01
Optimal foraging behaviour by nectavores is expected to result in a leptokurtic pollen dispersal distribution and predominantly near-neighbour mating. However, complex social interactions among nectarivorous birds may result in different mating patterns to those typically observed in insect-pollinated plants. Mating system, realised pollen dispersal and spatial genetic structure were examined in the bird-pollinated Eucalyptus caesia, a species characterised by small, geographically disjunct populations. Nine microsatellite markers were used to genotype an entire adult stand and 181 seeds from 28 capsules collected from 6 trees. Mating system analysis using MLTR revealed moderate to high outcrossing (tm=0.479–0.806) and low estimates of correlated paternity (rp=0.136±s.e. 0.048). Paternity analysis revealed high outcrossing rates (mean=0.72) and high multiple paternity, with 64 different sires identified for 181 seeds. There was a significant negative relationship between the frequency of outcross mating and distance between mating pairs. Realised mating events were more frequent than expected with random mating for plants <40 m apart. The overall distribution of pollen dispersal distances was platykurtic. Despite extensive pollen dispersal within the stand, three genetic clusters were detected by STRUCTURE analysis. These genetic clusters were strongly differentiated yet geographically interspersed, hypothesised to be a consequence of rare recruitment events coupled with extreme longevity. We suggest that extensive polyandry and pollen dispersal is a consequence of pollination by highly mobile honeyeaters and may buffer E. caesia against the loss of genetic diversity predicted for small and genetically isolated populations. PMID:27530908
Genetic structure and breeding system in a social wasp and its social parasite
2008-01-01
Background Social insects dominate ecological communities because of their sophisticated group behaviors. However, the intricate behaviors of social insects may be exploited by social parasites, which manipulate insect societies for their own benefit. Interactions between social parasites and their hosts lead to unusual coevolutionary dynamics that ultimately affect the breeding systems and population structures of both species. This study represents one of the first attempts to understand the population and colony genetic structure of a parasite and its host in a social wasp system. Results We used DNA microsatellite markers to investigate gene flow, genetic variation, and mating behavior of the facultative social parasite Vespula squamosa and its primary host, V. maculifrons. Our analyses of genetic variability uncovered that both species possessed similar amounts of genetic variation and failed to show genetic structure over the sampling area. Our analysis of mating system of V. maculifrons and V. squamosa revealed high levels of polyandry and no evidence for inbreeding in the two species. Moreover, we found no significant differences between estimates of worker relatedness in this study and a previous investigation conducted over two decades ago, suggesting that the selective pressures operating on queen mate number have remained constant. Finally, the distribution of queen mate number in both species deviated from simple expectations suggesting that mate number may be under stabilizing selection. Conclusion The general biology of V. squamosa has not changed substantially from that of a typical, nonparasitic Vespula wasp. For example, population sizes of the host and its parasite appear to be similar, in contrast to other social parasites, which often display lower population sizes than their hosts. In addition, parasitism has not caused the mating behavior of V. squamosa queens to deviate from the high levels of multiple mating that typify Vespula wasps. This stands in contrast to some socially parasitic ants, which revert to mating with few males. Overall, the general similarity of the genetic structure of V. maculifrons and V. squamosa presumably reflects the fact that V. squamosa is still capable of independent colony founding and thus reflects an intermediate stage in the evolution of social parasitism. PMID:18715511
2012-01-01
Sexual selection is a major force driving evolution and is intertwined with ecological factors. Differential allocation of limited resources has a central role in the cost of reproduction. In this paper, I review the costs and benefits of mating in tettigoniids, focussing on nuptial gifts, their trade-off with male calling songs, protandry and how mate density influences mate choice. Tettigoniids have been widely used as model systems for studies of mating costs and benefits; they can provide useful general insights. The production and exchange of large nuptial gifts by males for mating is an important reproductive strategy in tettigoniids. As predicted by sexual selection theory spermatophylax size is condition dependent and is constrained by the need to invest in calling to attract mates also. Under some circumstances, females benefit directly from the nuptial gifts by an increase in reproductive output. However, compounds in the nuptial gift can also benefit the male by prolonging the period before the female remates. There is also a trade-off between adult male maturation and mating success. Where males mature before females (protandry) the level of protandry varies in the direction predicted by sperm competition theory; namely, early male maturation is correlated with a high level of first inseminations being reproductively successful. Lastly, mate density in bushcrickets is an important environmental factor influencing the behavioural decisions of individuals. Where mates are abundant, individuals are more choosey of mates; when they are scarce, individuals are less choosey. This review reinforces the view that tettigoniids provide excellent models to test and understand the economics of matings in both sexes. PMID:22894685
Edwards, Mark A; Derocher, Andrew E
2015-02-01
In comparison to core populations, peripheral populations have low density and recruitment, and are subject to different selective pressures, such as environmental conditions, food type and availability, predation, disease, etc., which may result in behavioural modifications to mating. We test the roam-to-mate hypothesis for a peripheral population of grizzly bears (Ursus arctos) at the northern extent of their North American range, in Canada's Arctic. If bears are roaming-to-mate, we predicted greater range size and daily displacement, and more linear movements for receptive animals during the mating period compared to post-mating. In contrast to our predictions, we found that in general range size and displacement increased from mating to post-mating regardless of reproductive status. When considered across both periods, females with cubs-of-the-year had smaller range use metrics than other reproductive groups, which we attribute to a counter-strategy against sexually selected infanticide and the reduced mobility of cubs. Linearity of movements remained near zero during both periods across all groups, suggesting tortuous movements more characteristic of foraging than of mate-searching. We suggest that for this population, finding quality habitat takes precedence over mate-searching in this marginal Arctic landscape. Alternatively, a more monogamous mating system and sequestering behaviour may have obscured movement differences between the two periods. The behavioural differences in mating that we observed from what is typical of core populations may reflect local adaptation to marginal conditions and could benefit the species in the face of ongoing environmental change. Copyright © 2014 Elsevier B.V. All rights reserved.
Patkar, Vivek; Acosta, Dionisio; Davidson, Tim; Jones, Alison; Fox, John
2012-01-01
Objectives The cancer multidisciplinary team (MDT) meeting (MDM) is regarded as the best platform to reduce unwarranted variation in cancer care through evidence-compliant management. However, MDMs are often overburdened with many different agendas and hence struggle to achieve their full potential. The authors developed an interactive clinical decision support system called MATE (Multidisciplinary meeting Assistant and Treatment sElector) to facilitate explicit evidence-based decision making in the breast MDMs. Design Audit study and a questionnaire survey. Setting Breast multidisciplinary unit in a large secondary care teaching hospital. Participants All members of the breast MDT at the Royal Free Hospital, London, were consulted during the process of MATE development and implementation. The emphasis was on acknowledging the clinical needs and practical constraints of the MDT and fitting the system around the team's workflow rather than the other way around. Delegates, who attended MATE workshop at the England Cancer Networks' Development Programme conference in March 2010, participated in the questionnaire survey. Outcome measures The measures included evidence-compliant care, measured by adherence to clinical practice guidelines, and promoting research, measured by the patient identification rate for ongoing clinical trials. Results MATE identified 61% more patients who were potentially eligible for recruitment into clinical trials than the MDT, and MATE recommendations demonstrated better concordance with clinical practice guideline than MDT recommendations (97% of MATE vs 93.2% of MDT; N=984). MATE is in routine use in breast MDMs at the Royal Free Hospital, London, and wider evaluations are being considered. Conclusions Sophisticated decision support systems can enhance the conduct of MDMs in a way that is acceptable to and valued by the clinical team. Further rigorous evaluations are required to examine cost-effectiveness and measure the impact on patient outcomes. The decision support technology used in MATE is generic and if found useful can be applied across medicine. PMID:22734113
Mating compatibility in the parasitic protist Trypanosoma brucei.
Peacock, Lori; Ferris, Vanessa; Bailey, Mick; Gibson, Wendy
2014-02-21
Genetic exchange has been described in several kinetoplastid parasites, but the most well-studied mating system is that of Trypanosoma brucei, the causative organism of African sleeping sickness. Sexual reproduction takes place in the salivary glands (SG) of the tsetse vector and involves meiosis and production of haploid gametes. Few genetic crosses have been carried out to date and consequently there is little information about the mating compatibility of different trypanosomes. In other single-celled eukaryotes, mating compatibility is typically determined by a system of two or more mating types (MT). Here we investigated the MT system in T. brucei. We analysed a large series of F1, F2 and back crosses by pairwise co-transmission of red and green fluorescent cloned cell lines through experimental tsetse flies. To analyse each cross, trypanosomes were cloned from fly SG containing a mixture of both parents, and genotyped by microsatellites and molecular karyotype. To investigate mating compatibility at the level of individual cells, we directly observed the behaviour of SG-derived gametes in intra- or interclonal mixtures of red and green fluorescent trypanosomes ex vivo. Hybrid progeny were found in all F1 and F2 crosses and most of the back crosses. The success of individual crosses was highly variable as judged by the number of hybrid clones produced, suggesting a range of mating compatibilities among F1 progeny. As well as hybrids, large numbers of recombinant genotypes resulting from intraclonal mating (selfers) were found in some crosses. In ex vivo mixtures, red and green fluorescent trypanosome gametes were observed to pair up and interact via their flagella in both inter- and intraclonal combinations. While yellow hybrid trypanosomes were frequently observed in interclonal mixtures, such evidence of cytoplasmic exchange was rare in the intraclonal mixtures. The outcomes of individual crosses, particularly back crosses, were variable in numbers of both hybrid and selfer clones produced, and do not readily fit a simple two MT model. From comparison of the behaviour of trypanosome gametes in inter- and intraclonal mixtures, we infer that mating compatibility is controlled at the level of gamete fusion.
Mating compatibility in the parasitic protist Trypanosoma brucei
2014-01-01
Background Genetic exchange has been described in several kinetoplastid parasites, but the most well-studied mating system is that of Trypanosoma brucei, the causative organism of African sleeping sickness. Sexual reproduction takes place in the salivary glands (SG) of the tsetse vector and involves meiosis and production of haploid gametes. Few genetic crosses have been carried out to date and consequently there is little information about the mating compatibility of different trypanosomes. In other single-celled eukaryotes, mating compatibility is typically determined by a system of two or more mating types (MT). Here we investigated the MT system in T. brucei. Methods We analysed a large series of F1, F2 and back crosses by pairwise co-transmission of red and green fluorescent cloned cell lines through experimental tsetse flies. To analyse each cross, trypanosomes were cloned from fly SG containing a mixture of both parents, and genotyped by microsatellites and molecular karyotype. To investigate mating compatibility at the level of individual cells, we directly observed the behaviour of SG-derived gametes in intra- or interclonal mixtures of red and green fluorescent trypanosomes ex vivo. Results Hybrid progeny were found in all F1 and F2 crosses and most of the back crosses. The success of individual crosses was highly variable as judged by the number of hybrid clones produced, suggesting a range of mating compatibilities among F1 progeny. As well as hybrids, large numbers of recombinant genotypes resulting from intraclonal mating (selfers) were found in some crosses. In ex vivo mixtures, red and green fluorescent trypanosome gametes were observed to pair up and interact via their flagella in both inter- and intraclonal combinations. While yellow hybrid trypanosomes were frequently observed in interclonal mixtures, such evidence of cytoplasmic exchange was rare in the intraclonal mixtures. Conclusions The outcomes of individual crosses, particularly back crosses, were variable in numbers of both hybrid and selfer clones produced, and do not readily fit a simple two MT model. From comparison of the behaviour of trypanosome gametes in inter- and intraclonal mixtures, we infer that mating compatibility is controlled at the level of gamete fusion. PMID:24559099
Olvido, Alexander E.; Fernandes, Pearl R.; Mousseau, Timothy A.
2010-01-01
Finding a mate is a fundamental aspect of sexual reproduction. To this end, specific-mate recognition systems (SMRS) have evolved that facilitate copulation between producers of the mating signal and their opposite-sex responders. Environmental variation, however, may compromise the efficiency with which SMRS operate. In this study, the degree to which seasonal climate experienced during juvenile and adult life-cycle stages affects the SMRS of a cricket, Allonemobius socius (Scudder) (Orthoptera: Gryllidae) was assessed. Results from two-choice behavioral trials suggest that adult ambient temperature, along with population and family origins, mediate variation in male mating call, and to a lesser extent directional response of females for those calls. Restricted maximum-likelihood estimates of heritability for male mating call components and for female response to mating call appeared statistically nonsignificant. However, appreciable “maternal genetic effects” suggest that maternal egg provisioning and other indirect maternal determinants of the embryonic environment significantly contributed to variation in male mating call and female response to mating calls. Thus, environmental factors can generate substantial variation in A. socius mating call, and, more importantly, their marginal effect on female responses to either fast-chirp or long-chirp mating calls suggest negative fitness consequences to males producing alternative types of calls. Future studies of sexual selection and SMRS evolution, particularly those focused on hybrid zone dynamics, should take explicit account of the loose concordance between signal producers and responders suggested by the current findings. PMID:20673114
Ophir, Alexander G.
2017-01-01
The role of memory in mating systems is often neglected despite the fact that most mating systems are defined in part by how animals use space. Monogamy, for example, is usually characterized by affiliative (e.g., pairbonding) and defensive (e.g., mate guarding) behaviors, but a high degree of spatial overlap in home range use is the easiest defining feature of monogamous animals in the wild. The nonapeptides vasopressin and oxytocin have been the focus of much attention for their importance in modulating social behavior, however this work has largely overshadowed their roles in learning and memory. To date, the understanding of memory systems and mechanisms governing social behavior have progressed relatively independently. Bridging these two areas will provide a deeper appreciation for understanding behavior, and in particular the mechanisms that mediate reproductive decision-making. Here, I argue that the ability to mate effectively as monogamous individuals is linked to the ability to track conspecifics in space. I discuss the connectivity across some well-known social and spatial memory nuclei, and propose that the nonapeptide receptors within these structures form a putative “socio-spatial memory neural circuit.” This purported circuit may function to integrate social and spatial information to shape mating decisions in a context-dependent fashion. The lateral septum and/or the nucleus accumbens, and neuromodulation therein, may act as an intermediary to relate socio-spatial information with social behavior. Identifying mechanisms responsible for relating information about the social world with mechanisms mediating mating tactics is crucial to fully appreciate the suite of factors driving reproductive decisions and social decision-making. PMID:28744194
OCT2 and MATE1 Provide Bi-directional Agmatine Transport
Winter, Tate N.; Elmquist, William F.; Fairbanks, Carolyn A.
2015-01-01
Agmatine is a biogenic amine (l-arginine metabolite) of potential relevance to several central nervous system (CNS) conditions. The identities of transporters underlying agmatine and polyamine disposition in mammalian systems are not well defined. The SLC-family organic cation transporters (OCT) OCT1 and OCT2 and multidrug and toxin extrusion transporter-1 (MATE1) are transport systems that may be of importance for the cellular disposition of agmatine and putrescine. We investigated the transport of [3H]-agmatine and [3H]-putrescine in human embryonic kidney (HEK293) cells stably-transfected with hOCT1-, hOCT2-, and hMATE1. Agmatine transport by hOCT1 and hOCT2 was concentration-dependent, whereas only hOCT2 demonstrated pH-dependent transport. hOCT2 exhibited a greater affinity for agmatine (Km = 1.84 ± 0.38 mM) than did hOCT1 (Km = 18.73 ± 4.86 mM). Putrescine accumulation was pH- and concentration-dependent in hOCT2-HEK cells (Km = 11.29 ± 4.26 mM) but not hOCT1-HEK cells. Agmatine accumulation, in contrast to putrescine, was significantly enhanced by hMATE1 over-expression, and was saturable (Km = 240 ± 31 μM; Vmax = 192 ± 10 pmol/min/mg protein). Intracellular agmatine was also trans-stimulated (effluxed) from hMATE1-HEK cells in the presence of an inward proton-gradient. The hMATE1-mediated transport of agmatine was inhibited by polyamines, the prototypical substrates MPP+ and paraquat, as well as guanidine and arcaine, but not l-arginine. These results suggest that agmatine disposition may be influenced by hOCT2 and hMATE1, two transporters critical in the renal elimination of xenobiotic compounds. PMID:21128598
Peixoto, Alexandre A.; Vigoder, Felipe M.; Bruno, Rafaela V.; Soares, Maurilio J.
2013-01-01
Background The male reproductive system of insects can have several tissues responsible for the secretion of seminal fluid proteins (SFPs), such as testes, accessory glands, seminal vesicles, ejaculatory duct and ejaculatory bulb. The SFPs are transferred during mating and can induce several physiological and behavioral changes in females, such as increase in oviposition and decrease in sexual receptivity after copulation. The phlebotomine Lutzomyia longipalpis is the main vector of visceral leishmaniasis. Despite its medical importance, little is known about its reproductive biology. Here we present morphological aspects of the male L. longipalpis reproductive system by light, scanning and transmission electron microscopy, and compare the mating frequency of both virgin and previously mated females. Results The male L. longipalpis reproductive system is comprised by a pair of oval-shaped testes linked to a seminal vesicle by vasa deferentia. It follows an ejaculatory duct with an ejaculatory pump (a large bulb enveloped by muscles and associated to tracheas). The terminal endings of the vasa deferentia are inserted into the seminal vesicle by invaginations of the seminal vesicle wall, which is composed by a single layer of gland cells, with well-developed endoplasmic reticulum profiles and secretion granules. Our data suggest that the seminal vesicle acts both as a spermatozoa reservoir and as an accessory gland. Mating experiments support this hypothesis, revealing a decrease in mating frequency after copulation that indicates the effect of putative SFPs. Conclusion Ultrastructural features of the L. longipalpis male seminal vesicle indicated its possible role as an accessory gland. Behavioral observations revealed a reduction in mating frequency of copulated females. Together with transcriptome analyses from male sandfly reproductive organs identifying ESTs encoding orthologs of SFPs, these data indicate the presence of putative L. longipalpis SFPs reducing sexual mating frequency of copulated females. PMID:24058637
Warlick, Benjamin P E; Imker, Heidi J; Sriram, Jaya; Tabita, F Robert; Gerlt, John A
2012-11-27
d-Ribulose 1,5-bisphosphate carboxylase/oxygenases (RuBisCOs) are promiscuous, catalyzing not only carboxylation and oxygenation of d-ribulose 1,5-bisphosphate but also other promiscuous, presumably nonphysiological, reactions initiated by abstraction of the 3-proton of d-ribulose 1,5-bisphosphate. Also, RuBisCO has homologues that do not catalyze carboxylation; these are designated RuBisCO-like proteins or RLPs. Members of the two families of RLPs catalyze reactions in the recycling of 5'-methylthioadenosine (MTA) generated by polyamine synthesis: (1) the 2,3-diketo-5-methylthiopentane 1-phosphate (DK-MTP 1-P) "enolase" reaction in the well-known "methionine salvage" pathway in Bacillus sp. and (2) the 5-methylthio-d-ribulose 1-phosphate (MTRu 1-P) 1,3-isomerase reaction in the recently discovered "MTA-isoprenoid shunt" that generates 1-deoxy-d-xylulose 5-phosphate for nonmevalonate isoprene synthesis in Rhodospirillum rubrum. We first studied the structure and reactivity of DK-MTP 1-P that was reported to decompose rapidly [Ashida, H., Saito, Y., Kojima, C., and Yokota, A. (2008) Biosci., Biotechnol., Biochem. 72, 959-967]. The 2-carbonyl group of DK-MTP 1-P is rapidly hydrated and can undergo enolization both nonenzymatically and enzymatically via the small amount of unhydrated material that is present. We then examined the ability of RuBisCO from R. rubrum to catalyze both of the RLP-catalyzed reactions. Contrary to a previous report [Ashida, H., Saito, Y., Kojima, C., Kobayashi, K., Ogasawara, N., and Yokota, A. (2003) Science 302, 286-290], we were unable to confirm that this RuBisCO catalyzes the DK-MTP 1-P "enolase" reaction either in vitro or in vivo. We also determined that this RuBisCO does not catalyze the MTRu 1-P 1,3-isomerase reaction in vitro. Thus, although RuBisCOs can be functionally promiscuous, RuBisCO from R. rubrum is not promiscuous for either of the known RLP-catalyzed reactions.
Lyke, M M; Dubach, J; Briggs, M B
2013-05-01
The recent incorporation of molecular methods into analyses of social and mating systems has provided evidence that mating patterns often differ from those predicted by group social organization. Based on field studies and paternity analyses at a limited number of sites, African lions are predicted to exhibit a strict within-pride mating system. Extra-group paternity has not been previously reported in African lions; however, observations of extra-group associations among lions inhabiting Etosha National Park in Namibia suggest deviation from the predicted within-pride mating pattern. We analysed variation in 14 microsatellite loci in a population of 164 African lions in Etosha National Park. Genetic analysis was coupled with demographic and observational data to examine pride structure, relatedness and extra-group paternity (EGP). EGP was found to occur in 57% of prides where paternity was analysed (n = 7), and the overall rate of EGP in this population was 41% (n = 34). Group sex ratio had a significant effect on the occurrence of EGP (P < 0.05), indicating that variation in pride-level social structure may explain intergroup variation in EGP. Prides with a lower male-to-female ratio were significantly more likely to experience EGP in this population. The results of this study challenge the current models of African lion mating systems and provide evidence that social structure may not reflect breeding structure in some social mammals. © 2013 Blackwell Publishing Ltd.
Apparatus for pumping liquids at or below the boiling point
Bingham, Dennis N.
2002-01-01
A pump comprises a housing having an inlet and an outlet. An impeller assembly mounted for rotation within the housing includes a first impeller piece having a first mating surface thereon and a second impeller piece having a second mating surface therein. The second mating surface of the second impeller piece includes at least one groove therein so that at least one flow channel is defined between the groove and the first mating surface of the first impeller piece. A drive system operatively associated with the impeller assembly rotates the impeller assembly within the housing.
Mating system and ploidy influence levels of inbreeding depression in Clarkia (Onagraceae).
Barringer, Brian C; Geber, Monica A
2008-05-01
Inbreeding depression is the reduction in offspring fitness associated with inbreeding and is thought to be one of the primary forces selecting against the evolution of self-fertilization. Studies suggest that most inbreeding depression is caused by the expression of recessive deleterious alleles in homozygotes whose frequency increases as a result of self-fertilization or mating among relatives. This process leads to the selective elimination of deleterious alleles such that highly selfing species may show remarkably little inbreeding depression. Genome duplication (polyploidy) has also been hypothesized to influence levels of inbreeding depression, with polyploids expected to exhibit less inbreeding depression than diploids. We studied levels of inbreeding depression in allotetraploid and diploid species of Clarkia (Onagraceae) that vary in mating system (each cytotype was represented by an outcrossing and a selfing species). The outcrossing species exhibited more inbreeding depression than the selfing species for most fitness components and for two different measures of cumulative fitness. In contrast, though inbreeding depression was generally lower for the polyploid species than for the diploid species, the difference was statistically significant only for flower number and one of the two measures of cumulative fitness. Further, we detected no significant interaction between mating system and ploidy in determining inbreeding depression. In sum, our results suggest that a taxon's current mating system is more important than ploidy in influencing levels of inbreeding depression in natural populations of these annual plants.
Santos, Eduardo S A; Santos, Luana L S; Lagisz, Malgorzata; Nakagawa, Shinichi
2015-11-01
Conflict and cooperation within and between the sexes are among the driving forces that lead to the evolution of mating systems. Among mating strategies, female genetic polyandry and male reproductive cooperation pose challenging evolutionary questions regarding the maintenance of systems where one sex suffers from reduced fitness. Here, we investigate the consequences of social and genetic polyandry for reproductive success of females and males in a population of the dunnock, Prunella modularis. We show that female multiple mating ameliorates the negative effects of inbreeding. We, however, found little evidence that females engage in extra-group (pair) mating with less related or more heterozygous males. Breeding in socially polyandrous groups reduced the amount of paternity lost to extra-group males, such that, on average, cobreeding and monogamous males fledged a similar number of young. Importantly, c. 30% of cobreeding male dyads were related, suggesting they could gain indirect fitness benefits. Taken together, cobreeding males achieve equivalent reproductive success to monogamous counterparts under most circumstances. Our study has revealed unexpected complexities in the variable mating system of dunnocks in New Zealand. Our results differ from the well-known Cambridge dunnock study and can help our understanding of the evolution and maintenance of various breeding systems in the animal kingdom. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Effective size of density-dependent two-sex populations: the effect of mating systems.
Myhre, A M; Engen, S; SAEther, B-E
2017-08-01
Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare N e in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual N e /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the N e /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Mutual Mate Choice: When it Pays Both Sexes to Avoid Inbreeding
Lihoreau, Mathieu; Zimmer, Cédric; Rivault, Colette
2008-01-01
Theoretical models of sexual selection predict that both males and females of many species should benefit by selecting their mating partners. However, empirical evidence testing and validating this prediction is scarce. In particular, whereas inbreeding avoidance is expected to induce sexual conflicts, in some cases both partners could benefit by acting in concert and exerting mutual mate choice for non-assortative pairings. We tested this prediction with the gregarious cockroach Blattella germanica (L.). We demonstrated that males and females base their mate choice on different criteria and that choice occurs at different steps during the mating sequence. Males assess their relatedness to females through antennal contacts before deciding to court preferentially non-siblings. Conversely, females biased their choice towards the most vigorously courting males that happened to be non-siblings. This study is the first to demonstrate mutual mate choice leading to close inbreeding avoidance. The fact that outbred pairs were more fertile than inbred pairs strongly supports the adaptive value of this mating system, which includes no “best phenotype” as the quality of two mating partners is primarily linked to their relatedness. We discuss the implications of our results in the light of inbreeding conflict models. PMID:18843373
Mutual mate choice: when it pays both sexes to avoid inbreeding.
Lihoreau, Mathieu; Zimmer, Cédric; Rivault, Colette
2008-01-01
Theoretical models of sexual selection predict that both males and females of many species should benefit by selecting their mating partners. However, empirical evidence testing and validating this prediction is scarce. In particular, whereas inbreeding avoidance is expected to induce sexual conflicts, in some cases both partners could benefit by acting in concert and exerting mutual mate choice for non-assortative pairings. We tested this prediction with the gregarious cockroach Blattella germanica (L.). We demonstrated that males and females base their mate choice on different criteria and that choice occurs at different steps during the mating sequence. Males assess their relatedness to females through antennal contacts before deciding to court preferentially non-siblings. Conversely, females biased their choice towards the most vigorously courting males that happened to be non-siblings. This study is the first to demonstrate mutual mate choice leading to close inbreeding avoidance. The fact that outbred pairs were more fertile than inbred pairs strongly supports the adaptive value of this mating system, which includes no "best phenotype" as the quality of two mating partners is primarily linked to their relatedness. We discuss the implications of our results in the light of inbreeding conflict models.
Steinauer, Michelle L
2009-08-01
The mating systems of internal parasites are inherently difficult to investigate although they have important implications for the evolutionary biology of the species, disease epidemiology, and are important considerations for control measures. Using parentage analyses, three topics concerning the mating biology of Schistosoma mansoni were investigated: the number of mates per adult male and female, variance in reproductive success among individuals, and the potential role for sexual selection on male body size and also mate choice for genetically dissimilar individuals. Results indicated that schistosomes were mostly monogamous, and evidence of only one mate change occurred over a period of 5-6 weeks. One male was polygynous and contained two females in its gynecophoral canal although offspring were only detected for one of the females. Even though they were primarily monogamous and the sex ratio near even, reproductive success was highly variable, indicating a potential role for sexual selection. Male body size was positively related to reproductive success, consistent with sexual selection via male-male competition and female choice for large males. However, relatedness of pairs was not associated with their reproductive success. Finally, genetically identical individuals differed significantly in their reproductive output and identical males in their body size, indicating important partner and environmental effects on these traits.
Testing whether Metazoan Tyrosine Loss Was Driven by Selection against Promiscuous Phosphorylation
Pandya, Siddharth; Struck, Travis J.; Mannakee, Brian K.; Paniscus, Mary; Gutenkunst, Ryan N.
2015-01-01
Protein tyrosine phosphorylation is a key regulatory modification in metazoans, and the corresponding kinase enzymes have diversified dramatically. This diversification is correlated with a genome-wide reduction in protein tyrosine content, and it was recently suggested that this reduction was driven by selection to avoid promiscuous phosphorylation that might be deleterious. We tested three predictions of this intriguing hypothesis. 1) Selection should be stronger on residues that are more likely to be phosphorylated due to local solvent accessibility or structural disorder. 2) Selection should be stronger on proteins that are more likely to be promiscuously phosphorylated because they are abundant. We tested these predictions by comparing distributions of tyrosine within and among human and yeast orthologous proteins. 3) Selection should be stronger against mutations that create tyrosine versus remove tyrosine. We tested this prediction using human population genomic variation data. We found that all three predicted effects are modest for tyrosine when compared with the other amino acids, suggesting that selection against deleterious phosphorylation was not dominant in driving metazoan tyrosine loss. PMID:25312910
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pluta, Radoslaw; Boer, D. Roeland; Lorenzo-Diaz, Fabian
Relaxases are metal-dependent nucleases that break and join DNA for the initiation and completion of conjugative bacterial gene transfer. Conjugation is the main process through which antibiotic resistance spreads among bacteria, with multidrug-resistant staphylococci and streptococci infections posing major threats to human health. The MOB V family of relaxases accounts for approximately 85% of all relaxases found in Staphylococcus aureus isolates. Here, we present six structures of the MOB V relaxase MobM from the promiscuous plasmid pMV158 in complex with several origin of transfer DNA fragments. A combined structural, biochemical, and computational approach reveals that MobM follows a previously uncharacterizedmore » histidine/metal-dependent DNA processing mechanism, which involves the formation of a covalent phosphoramidate histidine-DNA adduct for cell-to-cell transfer. In conclusion, we discuss how the chemical features of the high-energy phosphorus-nitrogen bond shape the dominant position of MOB V histidine relaxases among small promiscuous plasmids and their preference toward Gram-positive bacteria.« less
Pluta, Radoslaw; Boer, D. Roeland; Lorenzo-Diaz, Fabian; ...
2017-07-24
Relaxases are metal-dependent nucleases that break and join DNA for the initiation and completion of conjugative bacterial gene transfer. Conjugation is the main process through which antibiotic resistance spreads among bacteria, with multidrug-resistant staphylococci and streptococci infections posing major threats to human health. The MOB V family of relaxases accounts for approximately 85% of all relaxases found in Staphylococcus aureus isolates. Here, we present six structures of the MOB V relaxase MobM from the promiscuous plasmid pMV158 in complex with several origin of transfer DNA fragments. A combined structural, biochemical, and computational approach reveals that MobM follows a previously uncharacterizedmore » histidine/metal-dependent DNA processing mechanism, which involves the formation of a covalent phosphoramidate histidine-DNA adduct for cell-to-cell transfer. In conclusion, we discuss how the chemical features of the high-energy phosphorus-nitrogen bond shape the dominant position of MOB V histidine relaxases among small promiscuous plasmids and their preference toward Gram-positive bacteria.« less
Tailoring Agility: Promiscuous Pair Story Authoring and Value Calculation
NASA Astrophysics Data System (ADS)
Tendon, Steve
This chapter describes how a multi-national software organization created a business plan involving business units from eight countries that followed an agile way, after two previously failed attempts with traditional approaches. The case is told by the consultant who initiated implementation of agility into requirements gathering, estimation and planning processes in an international setting. The agile approach was inspired by XP, but then tailored to meet the peculiar requirements. Two innovations were critical. The first innovation was promiscuous pair story authoring, where user stories were written by two people (similarly to pair programming), and the pairing changed very often (as frequently as every 15-20 minutes) to achieve promiscuity and cater for diverse point of views. The second innovation was an economic value evaluation (and not the cost) which was attributed to stories. Continuous recalculation of the financial value of the stories allowed to assess the projects financial return. In this case implementation of agility in the international context allowed the involved team members to reach consensus and unanimity of decisions, vision and purpose.
Salcedo, A; Kalisz, S; Wright, S I
2014-07-01
Highly selfing species often show reduced effective population sizes and reduced selection efficacy. Whether mixed mating species, which produce both self and outcross progeny, show similar patterns of diversity and selection remains less clear. Examination of patterns of molecular evolution and levels of diversity in species with mixed mating systems can be particularly useful for investigating the relative importance of linked selection and demographic effects on diversity and the efficacy of selection, as the effects of linked selection should be minimal in mixed mating populations, although severe bottlenecks tied to founder events could still be frequent. To begin to address this gap, we assembled and analysed the transcriptomes of individuals from a recently diverged mixed mating sister species pair in the self-compatible genus, Collinsia. The de novo assembly of 52 and 37 Mbp C. concolor and C. parryi transcriptomes resulted in ~40 000 and ~55 000 contigs, respectively, both with an average contig size ~945. We observed a high ratio of shared polymorphisms to fixed differences in the species pair and minimal differences between species in the ratio of synonymous to replacement substitutions or codon usage bias implying comparable effective population sizes throughout species divergence. Our results suggest that differences in effective population size and selection efficacy in mixed mating taxa shortly after their divergence may be minimal and are likely influenced by fluctuating mating systems and population sizes. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Lei, Gui Jie; Yokosho, Kengo; Yamaji, Naoki; Ma, Jian Feng
2017-12-01
Buckwheat (Fagopyrum esculentum) shows high tolerance to aluminum (Al) toxicity, but the molecular mechanisms responsible for this high Al tolerance are still poorly understood. Here, we investigated the involvement of two MATE (multi-drug and toxic compound extrusion) genes in Al tolerance. Both FeMATE1 and FeMATE2 showed efflux transport activity for citrate, but not for oxalate when expressed in Xenopus oocytes. A transient assay with buckwheat leaf protoplasts using green fluorescent protein (GFP) fusion showed that FeMATE1 was mainly localized to the plasma membrane, whereas FeMATE2 was localized to the trans-Golgi and Golgi. The expression of FeMATE1 was induced by Al only in the roots, but that of FeMATE2 was up-regulated in both the roots and leaves. Furthermore, the expression of both genes only responded to Al toxicity, but not to other stresses including low pH, cadmium (Cd) and lanthanum (La). Heterologous expression of FeMATE1 or FeMATE2 in the Arabidopsis mutant atmate partially rescued its Al tolerance. Expression of FeMATE1 also partially recovered the Al-induced secretion of citrate in the transgenic lines, whereas expression of FeMATE2 did not complement the citrate secretion. Further physiological analysis showed that buckwheat roots also secreted citrate in addition to oxalate in response to Al in a dose-responsive manner. Taken together, our results indicate that FeMATE1 is involved in the Al-activated citrate secretion in the roots, while FeMATE2 is probably responsible for transporting citrate into the Golgi system for the internal detoxification of Al in the roots and leaves of buckwheat. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Sauzay, C; White-Koning, M; Hennebelle, I; Deluche, T; Delmas, C; Imbs, D C; Chatelut, E; Thomas, F
2016-08-01
We hypothesized that pazopanib is an inhibitor of cisplatin renal transporters OCT2, MATE1 and MATE2-K based on previous studies demonstrating an interaction between tyrosine kinase inhibitors and these transporters. Because several combinations of targeted therapies and cytotoxics are currently in development for cancer treatment, such an interaction is worth investigating. Experiments on HEK293 cells stably transfected to express OCT2, MATE1, MATE2-K or an empty vector (EV) were conducted. The inhibitory effect of pazopanib on these transporters was measured using the uptake of fluorescent substrate ASP+ and cisplatin in the different cell lines. The effect of pazopanib on cisplatin-induced cytotoxicity was also evaluated. A decrease of ASP+ uptake was observed in OCT2-HEK, MATE1-HEK and MATE2K-HEK cell lines after addition of pazopanib at increasing concentrations. Pazopanib inhibited cisplatin specific uptake in OCT2-HEK, MATE1-HEK and MATE2K-HEK lines. Cytotoxicity experiments showed that co-incubation of cisplatin with pazopanib multiplied up to 2.7, 2.4 and 1.6 times the EC50 values of cisplatin in OCT2-HEK, MATE1-HEK and MATE2K-HEK cell lines respectively, reaching about the same values as in EV-HEK cells. To conclude, pazopanib inhibits OCT2, MATE1 and MATE2-K, which are involved in cisplatin secretion into urine. The combination of these two drugs may lead to an interaction and increase the cisplatin-induced systemic toxicity. Given the wide variability of plasma pazopanib concentrations observed in vivo, the interaction may occur in a clinical setting, particularly in overexposed patients. The existence of a drug-drug interaction should be investigated when pazopanib is associated with a substrate of these transporters. Copyright © 2016 Elsevier Ltd. All rights reserved.
MHC class II-assortative mate choice in European badgers (Meles meles).
Sin, Yung Wa; Annavi, Geetha; Newman, Chris; Buesching, Christina; Burke, Terry; Macdonald, David W; Dugdale, Hannah L
2015-06-01
The major histocompatibility complex (MHC) plays a crucial role in the immune system, and in some species, it is a target by which individuals choose mates to optimize the fitness of their offspring, potentially mediated by olfactory cues. Under the genetic compatibility hypothesis, individuals are predicted to choose mates with compatible MHC alleles, to increase the fitness of their offspring. Studies of MHC-based mate choice in wild mammals are under-represented currently, and few investigate more than one class of MHC genes. We investigated mate choice based on the compatibility of MHC class I and II genes in a wild population of European badgers (Meles meles). We also investigated mate choice based on microsatellite-derived pairwise relatedness, to attempt to distinguish MHC-specific effects from genomewide effects. We found MHC-assortative mating, based on MHC class II, but not class I genes. Parent pairs had smaller MHC class II DRB amino acid distances and smaller functional distances than expected from random pairings. When we separated the analyses into within-group and neighbouring-group parent pairs, only neighbouring-group pairs showed MHC-assortative mating, due to similarity at MHC class II loci. Our randomizations showed no evidence of genomewide-based inbreeding, based on 35 microsatellite loci; MHC class II similarity was therefore the apparent target of mate choice. We propose that MHC-assortative mate choice may be a local adaptation to endemic pathogens, and this assortative mate choice may have contributed to the low MHC genetic diversity in this population. © 2015 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.
Reproductive strategies in snakes.
Shine, Richard
2003-01-01
Snakes of both sexes display remarkable flexibility and diversity in their reproductive tactics. Many features of reproduction in female snakes (such as reproductive mode and frequency, seasonality and multiple mating) allow flexible maternal control. For example, females can manipulate not only the genotypes of their offspring (through mate choice or enhanced sperm competition) but also the phenotypes of their offspring (through allocation 'decisions', behavioural and physiological thermoregulation, and nest-site selection). Reliance on stored energy ('capital') to fuel breeding results in low frequencies of female reproduction and, in extreme cases, semelparity. A sophisticated vomeronasal system not only allows male snakes to locate reproductive females by following scent trails, but also facilitates pheromonally mediated mate choice by males. Male-male rivalry takes diverse forms, including female mimicry and mate guarding; combat bouts impose strong selection for large body size in males of some species. Intraspecific (geographical) variation and phenotypic plasticity in a wide array of reproductive traits (offspring size and number; reproductive frequency; incidence of multiple mating; male tactics such as mate guarding and combat; mate choice criteria) provide exceptional opportunities for future studies. PMID:12803888
Reproductive strategies in snakes.
Shine, Richard
2003-05-22
Snakes of both sexes display remarkable flexibility and diversity in their reproductive tactics. Many features of reproduction in female snakes (such as reproductive mode and frequency, seasonality and multiple mating) allow flexible maternal control. For example, females can manipulate not only the genotypes of their offspring (through mate choice or enhanced sperm competition) but also the phenotypes of their offspring (through allocation 'decisions', behavioural and physiological thermoregulation, and nest-site selection). Reliance on stored energy ('capital') to fuel breeding results in low frequencies of female reproduction and, in extreme cases, semelparity. A sophisticated vomeronasal system not only allows male snakes to locate reproductive females by following scent trails, but also facilitates pheromonally mediated mate choice by males. Male-male rivalry takes diverse forms, including female mimicry and mate guarding; combat bouts impose strong selection for large body size in males of some species. Intraspecific (geographical) variation and phenotypic plasticity in a wide array of reproductive traits (offspring size and number; reproductive frequency; incidence of multiple mating; male tactics such as mate guarding and combat; mate choice criteria) provide exceptional opportunities for future studies.
Chen, Bo-Jian; Liu, Kai; Zhou, Lin-Jun; Gomes-Silva, Guilherme; Sommer-Trembo, Carolin; Plath, Martin
2018-01-01
Consistent individual differences in behavioral tendencies (animal personality) can affect individual mate choice decisions. We asked whether personality traits affect male and female mate choice decisions similarly and whether potential personality effects are consistent across different mate choice situations. Using western mosquitofish (Gambusia affinis) as our study organism, we characterized focal individuals (males and females) twice for boldness, activity, and sociability/shoaling and found high and significant behavioral repeatability. Additionally, each focal individual was tested in two different dichotomous mate choice tests in which it could choose between computer-animated stimulus fish of the opposite sex that differed in body size and activity levels, respectively. Personality had different effects on female and male mate choice: females that were larger than average showed stronger preferences for large-bodied males with increasing levels of boldness/activity (i.e., towards more proactive personality types). Males that were larger than average and had higher shoaling tendencies showed stronger preferences for actively swimming females. Size-dependent effects of personality on the strength of preferences for distinct phenotypes of potential mating partners may reflect effects of age/experience (especially in females) and social dominance (especially in males). Previous studies found evidence for assortative mate choice based on personality types or hypothesized the existence of behavioral syndromes of individuals' choosiness across mate choice criteria, possibly including other personality traits. Our present study exemplifies that far more complex patterns of personality-dependent mate choice can emerge in natural systems.
Stopher, K V; Nussey, D H; Clutton-Brock, T H; Guinness, F; Morris, A; Pemberton, J M
2012-01-01
The interaction between philopatry and nonrandom mating has important consequences for the genetic structure of populations, influencing co-ancestry within social groups but also inbreeding. Here, using genetic paternity data, we describe mating patterns in a wild population of red deer (Cervus elaphus) which are associated with marked consequences for co-ancestry and inbreeding in the population. Around a fifth of females mate with a male with whom they have mated previously, and further, females frequently mate with a male with whom a female relative has also mated (intralineage polygyny). Both of these phenomena occur more than expected under random mating. Using simulations, we demonstrate that temporal and spatial factors, as well as skew in male breeding success, are important in promoting both re-mating behaviours and intralineage polygyny. However, the information modelled was not sufficient to explain the extent to which these behaviours occurred. We show that re-mating and intralineage polygyny are associated with increased pairwise relatedness in the population and a rise in average inbreeding coefficients. In particular, the latter resulted from a correlation between male relatedness and rutting location, with related males being more likely to rut in proximity to one another. These patterns, alongside their consequences for the genetic structure of the population, have rarely been documented in wild polygynous mammals, yet they have important implications for our understanding of genetic structure, inbreeding avoidance and dispersal in such systems. PMID:23039875
Smith, Daniel Jordan
2013-01-01
The transition from premarital sexual relationships and courtship to marriage and parenthood in southeastern Nigeria involves particularly dramatic adjustments for young women who have absorbed changing ideas about sexuality, marriage, and gender equality, and who have had active premarital sexual lives. In the eyes of society, these women must transform from being promiscuous girls to good wives. This paper examines these adjustments and, specifically, how young married women’s lives are affected by the reality of male infidelity and a persistent gendered double standard regarding the acceptability of extramarital sex. PMID:24259752
Nosology, ontology and promiscuous realism.
Binney, Nicholas
2015-06-01
Medics may consider worrying about their metaphysics and ontology to be a waste of time. I will argue here that this is not the case. Promiscuous realism is a metaphysical position which holds that multiple, equally valid, classification schemes should be applied to objects (such as patients) to capture different aspects of their complex and heterogeneous nature. As medics at the bedside may need to capture different aspects of their patients' problems, they may need to use multiple classification schemes (multiple nosologies), and thus consider adopting a different metaphysics to the one commonly in use. © 2014 John Wiley & Sons, Ltd.
Smith, Daniel Jordan
2010-01-01
The transition from premarital sexual relationships and courtship to marriage and parenthood in southeastern Nigeria involves particularly dramatic adjustments for young women who have absorbed changing ideas about sexuality, marriage, and gender equality, and who have had active premarital sexual lives. In the eyes of society, these women must transform from being promiscuous girls to good wives. This paper examines these adjustments and, specifically, how young married women's lives are affected by the reality of male infidelity and a persistent gendered double standard regarding the acceptability of extramarital sex.
Interspecific Sex in Grass Smuts and the Genetic Diversity of Their Pheromone-Receptor System
Kellner, Ronny; Vollmeister, Evelyn; Feldbrügge, Michael; Begerow, Dominik
2011-01-01
The grass smuts comprise a speciose group of biotrophic plant parasites, so-called Ustilaginaceae, which are specifically adapted to hosts of sweet grasses, the Poaceae family. Mating takes a central role in their life cycle, as it initiates parasitism by a morphological and physiological transition from saprobic yeast cells to pathogenic filaments. As in other fungi, sexual identity is determined by specific genomic regions encoding allelic variants of a pheromone-receptor (PR) system and heterodimerising transcription factors. Both operate in a biphasic mating process that starts with PR–triggered recognition, directed growth of conjugation hyphae, and plasmogamy of compatible mating partners. So far, studies on the PR system of grass smuts revealed diverse interspecific compatibility and mating type determination. However, many questions concerning the specificity and evolutionary origin of the PR system remain unanswered. Combining comparative genetics and biological approaches, we report on the specificity of the PR system and its genetic diversity in 10 species spanning about 100 million years of mating type evolution. We show that three highly syntenic PR alleles are prevalent among members of the Ustilaginaceae, favouring a triallelic determination as the plesiomorphic characteristic of this group. Furthermore, the analysis of PR loci revealed increased genetic diversity of single PR locus genes compared to genes of flanking regions. Performing interspecies sex tests, we detected a high potential for hybridisation that is directly linked to pheromone signalling as known from intraspecies sex. Although the PR system seems to be optimised for intraspecific compatibility, the observed functional plasticity of the PR system increases the potential for interspecific sex, which might allow the hybrid-based genesis of newly combined host specificities. PMID:22242007
Isolation and in vitro binding of mating type plus fertilization tubules from Chlamydomonas.
Wilson, Nedra F
2008-01-01
During fertilization in Chlamydomonas, adhesion and fusion of gametes occur at the tip of specialized regions of the plasma membrane, known as mating structures. The mating type minus (mt[-]) structure is a slightly raised dome-shaped region located at the apical end of the cell body. In contrast, the activated mating type plus (mt[+]) structure is an actin-filled, microvillouslike organelle. Interestingly, a similar type of "fusion organelle" is conserved across diverse groups. Chlamydomonas provides an ideal model system for studying the process of gametic cell fusion in that it is amenable to genetic manipulations as well as cell and molecular biological approaches. Moreover, the ease of culturing Chlamydomonas combined with the ability to isolate the mt(+) fertilization tubule and the development of in vitro assays for adhesion makes it an ideal system for biochemical studies focused on dissecting the molecular mechanisms that underlie the complex process of gametic cell fusion.
Storz, J F; Bhat, H R; Kunz, T H
2001-06-01
Variance in reproductive success is a primary determinant of genetically effective population size (Ne), and thus has important implications for the role of genetic drift in the evolutionary dynamics of animal taxa characterized by polygynous mating systems. Here we report the results of a study designed to test the hypothesis that polygynous mating results in significantly reduced Ne in an age-structured population. This hypothesis was tested in a natural population of a harem-forming fruit bat, Cynopterus sphinx (Chiroptera: Pteropodidae), in western India. The influence of the mating system on the ratio of variance Ne to adult census number (N) was assessed using a mathematical model designed for age-structured populations that incorporated demographic and genetic data. Male mating success was assessed by means of direct and indirect paternity analysis using 10-locus microsatellite genotypes of adults and progeny from two consecutive breeding periods (n = 431 individually marked bats). Combined results from both analyses were used to infer the effective number of male parents in each breeding period. The relative proportion of successfully reproducing males and the size distribution of paternal sibships comprising each offspring cohort revealed an extremely high within-season variance in male mating success (up to 9.2 times higher than Poisson expectation). The resultant estimate of Ne/N for the C. sphinx study population was 0.42. As a result of polygynous mating, the predicted rate of drift (1/2Ne per generation) was 17.6% higher than expected from a Poisson distribution of male mating success. However, the estimated Ne/N was well within the 0.25-0.75 range expected for age-structured populations under normal demographic conditions. The life-history schedule of C. sphinx is characterized by a disproportionately short sexual maturation period scaled to adult life span. Consequently, the influence of polygynous mating on Ne/N is mitigated by the extensive overlap of generations. In C. sphinx, turnover of breeding males between seasons ensures a broader sampling of the adult male gamete pool than expected from the variance in mating success within a single breeding period.
Density-dependent selection on mate search and evolution of Allee effects.
Berec, Luděk; Kramer, Andrew M; Bernhauerová, Veronika; Drake, John M
2018-01-01
Sexually reproducing organisms require males and females to find each other. Increased difficulty of females finding mates as male density declines is the most frequently reported mechanism of Allee effects in animals. Evolving more effective mate search may alleviate Allee effects, but may depend on density regimes a population experiences. In particular, high-density populations may evolve mechanisms that induce Allee effects which become detrimental when populations are reduced and maintained at a low density. We develop an individual-based, eco-genetic model to study how mating systems and fitness trade-offs interact with changes in population density to drive evolution of the rate at which males or females search for mates. Finite mate search rate triggers Allee effects in our model and we explore how these Allee effects respond to such evolution. We allow a population to adapt to several population density regimes and examine whether high-density populations are likely to reverse adaptations attained at low densities. We find density-dependent selection in most of scenarios, leading to search rates that result in lower Allee thresholds in populations kept at lower densities. This mainly occurs when fecundity costs are imposed on mate search, and provides an explanation for why Allee effects are often observed in anthropogenically rare species. Optimizing selection, where the attained trait value minimizes the Allee threshold independent of population density, depended on the trade-off between search and survival, combined with monogamy when females were searching. Other scenarios led to runaway selection on the mate search rate, including evolutionary suicide. Trade-offs involved in mate search may thus be crucial to determining how density influences the evolution of Allee effects. Previous studies did not examine evolution of a trait related to the strength of Allee effects under density variation. We emphasize the crucial role that mating systems, fitness trade-offs and the evolving sex have in determining the density threshold for population persistence, in particular since evolution need not always take the Allee threshold to its minimum value. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Multisensor robotic system for autonomous space maintenance and repair
NASA Technical Reports Server (NTRS)
Abidi, M. A.; Green, W. L.; Chandra, T.; Spears, J.
1988-01-01
The feasibility of realistic autonomous space manipulation tasks using multisensory information is demonstrated. The system is capable of acquiring, integrating, and interpreting multisensory data to locate, mate, and demate a Fluid Interchange System (FIS) and a Module Interchange System (MIS). In both cases, autonomous location of a guiding light target, mating, and demating of the system are performed. Implemented visio-driven techniques are used to determine the arbitrary two-dimensional position and orientation of the mating elements as well as the arbitrary three-dimensional position and orientation of the light targets. A force/torque sensor continuously monitors the six components of force and torque exerted on the end-effector. Both FIS and MIS experiments were successfully accomplished on mock-ups built for this purpose. The method is immune to variations in the ambient light, in particular because of the 90-minute day-night shift in space.
Barman, C; Singh, V K; Das, S; Tandon, R
2018-05-01
Reproductive success of a plant species is largely influenced by the outcome of mating pattern in a population. It is believed that a significantly larger proportion of animal-pollinated plants have evolved a mixed-mating strategy, the extent of which may vary among species. It is thus pertinent to investigate the key contributors to mating success, especially to identify the reproductive constraints in depauperate populations of threatened plant species. We examined the contribution of floral architecture, pollination mechanism and breeding system on the extent of outcrossing rate in a near-threatened tree species, Wrightia tomentosa. The breeding system was ascertained from controlled pollination experiments. In order to determine outcrossing rate, 60 open-pollinated progeny were analysed using an AFLP markers. Although the trees are self-compatible, herkogamy and compartmentalisation of pollen and nectar in different chambers of the floral tube effectively prevent spontaneous autogamy. Pollination is achieved through specialised interaction with moths. Differential foraging behaviour of settling moths and hawkmoths leads to different proportions of geitonogamous and xenogamous pollen on the stigma. However, most open-pollinated progeny were the result of xenogamy (outcrossing rate, tm = 0.68). The study shows that floral contrivances and pollination system have a strong influence on mating pattern. The differential foraging behaviour of the pollinators causes deposition of a mixture of self- and cross-pollen to produce a mixed brood. Inbreeding depression and geitonogamy appear to play a significant role in sustaining mixed mating in this species. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Daspute, Abhijit Arun; Kobayashi, Yuriko; Panda, Sanjib Kumar; Fakrudin, Bashasab; Kobayashi, Yasufumi; Tokizawa, Mutsutomo; Iuchi, Satoshi; Choudhary, Arbind Kumar; Yamamoto, Yoshiharu Y; Koyama, Hiroyuki
2018-01-01
Al-responsive citrate-transporting CcMATE1 function and its regulation by CcSTOP1 were analyzed using NtSTOP1 -KD tobacco- and pigeonpea hairy roots, respectively, CcSTOP1 binding sequence of CcMATE1 showed similarity with AtALMT1 promoter. The molecular mechanisms of Aluminum (Al) tolerance in pigeonpea (Cajanus cajan) were characterized to provide information for molecular breeding. Al-inducible citrate excretion was associated with the expression of MULTIDRUGS AND TOXIC COMPOUNDS EXCLUSION (CcMATE1), which encodes a citrate transporter. Ectopic expression of CcMATE1-conferred Al tolerance to hairy roots of transgenic tobacco with the STOP1 regulation system knocked down. This gain-of-function approach clearly showed CcMATE1 was involved in Al detoxification. The expression of CcMATE1 and another Al-tolerance gene, ALUMINUM SENSITIVE 3 (CcALS3), was regulated by SENSITIVE TO PROTON RHIZOTOXICITY1 (CcSTOP1) according to loss-of-function analysis of pigeonpea hairy roots in which CcSTOP1 was suppressed. An in vitro binding assay showed that the Al-responsive CcMATE1 promoter contained the GGNVS consensus bound by CcSTOP1. Mutation of GGNVS inactivated the Al-inducible expression of CcMATE1 in pigeonpea hairy roots. This indicated that CcSTOP1 binding to the promoter is critical for CcMATE1 expression. The STOP1 binding sites of both the CcMATE1 and AtALMT1 promoters contained GGNVS and a flanking 3' sequence. The GGNVS region was identical in both CcMATE1 and AtALMT1. By contrast, the 3' flanking sequence with binding affinity to STOP1 did not show similarity. Putative STOP1 binding sites with similar structures were also found in Al-inducible MATE and ALMT1 promoters in other plant species. The characterized Al-responsive CcSTOP1 and CcMATE1 genes will help in pigeonpea breeding in acid soil tolerance.
Clark, Robert G.; Fleskes, Joseph P.; Guyn, Karla L.; Haukos, David A.; Austin, Jane E.; Miller, Michael R.
2014-01-01
This medium-sized dabbling duck of slender, elegant lines and conservative plumage coloration is circumpolar in distribution and abundant in North America, with core nesting habitat in Alaska and the Prairie Pothole Region of southern Canada and the northern Great Plains. Breeders favor shallow wetlands interspersed throughout prairie grasslands or arctic tundra. An early fall migrant, the species arrives on wintering areas beginning in August, after wing molt, often forming large roosting and feeding flocks on open, shallow wetlands and flooded agricultural fields. The birds consume grains, marsh plant seeds, and aquatic invertebrates throughout fall and winter.Northern Pintails are among the earliest nesting ducks in North America, beginning shortly after ice-out in many northern areas. Individuals form new pair bonds each winter but are highly promiscuous during the nesting season, with mated and unmated males often involved in vigorous, acrobatic Pursuit Flights. Annual nest success and productivity vary with water conditions, predation, and weather. Females build nests on the ground, often far from water. Only the female incubates; her mate leaves shortly after incubation begins. Ducklings hatch together in one day, follow the female to water after a day in the nest, and fledge by July or August. Adults and ducklings consume mainly aquatic invertebrates during the breeding season.Predators and farming operations destroy many thousands of Northern Pintail nests annually; farming has also greatly reduced the amount of quality nesting cover available. Winter habitats are threatened by water shortages, agricultural development, contamination, and urbanization. Periods of extended drought in prairie nesting regions have caused dramatic population declines, usually followed by periods of recovery. Over the long term, however, the continental population of Northern Pintails has declined significantly from 6 million birds in the early 1970s to less than 3 million in the late 1980s and early 1990s. Since then, the population appears to have stabilized; in 2013, the estimate was 3.3 million birds, a large number but below conservation goals despite favorable wetland conditions in much of the prairie breeding region. Ongoing conservation measures, however, such as habitat restoration and enhancement of agricultural lands, as well as prudent harvest management, suggest that Northern Pintails should have a secure future in North America.
Romantic love: a mammalian brain system for mate choice
Fisher, Helen E; Aron, Arthur; Brown, Lucy L
2006-01-01
Mammals and birds regularly express mate preferences and make mate choices. Data on mate choice among mammals suggest that this behavioural ‘attraction system’ is associated with dopaminergic reward pathways in the brain. It has been proposed that intense romantic love, a human cross-cultural universal, is a developed form of this attraction system. To begin to determine the neural mechanisms associated with romantic attraction in humans, we used functional magnetic resonance imaging (fMRI) to study 17 people who were intensely ‘in love’. Activation specific to the beloved occurred in the brainstem right ventral tegmental area and right postero-dorsal body of the caudate nucleus. These and other results suggest that dopaminergic reward and motivation pathways contribute to aspects of romantic love. We also used fMRI to study 15 men and women who had just been rejected in love. Preliminary analysis showed activity specific to the beloved in related regions of the reward system associated with monetary gambling for uncertain large gains and losses, and in regions of the lateral orbitofrontal cortex associated with theory of mind, obsessive/compulsive behaviours and controlling anger. These data contribute to our view that romantic love is one of the three primary brain systems that evolved in avian and mammalian species to direct reproduction. The sex drive evolved to motivate individuals to seek a range of mating partners; attraction evolved to motivate individuals to prefer and pursue specific partners; and attachment evolved to motivate individuals to remain together long enough to complete species-specific parenting duties. These three behavioural repertoires appear to be based on brain systems that are largely distinct yet interrelated, and they interact in specific ways to orchestrate reproduction, using both hormones and monoamines. Romantic attraction in humans and its antecedent in other mammalian species play a primary role: this neural mechanism motivates individuals to focus their courtship energy on specific others, thereby conserving valuable time and metabolic energy, and facilitating mate choice. PMID:17118931
Douglas, T E; Strassmann, J E; Queller, D C
2016-07-01
Theory indicates that numbers of mating types should tend towards infinity or remain at two. The social amoeba, Dictyostelium discoideum, however, has three mating types. It is therefore a mystery how this species has broken the threshold of two mating types, but has not increased towards a much higher number. Frequency-dependent selection on rare types in combination with isogamy, a form of reproduction involving gametes similar in size, could explain the evolution of multiple mating types in this system. Other factors, such as drift, may be preventing the evolution of more than three. We first looked for evidence of isogamy by measuring gamete size associated with each type. We found no evidence of size dissimilarities between gametes. We then looked for evidence of balancing selection, by examining mating type distributions in natural populations and comparing genetic differentiation at the mating type locus to that at more neutral loci. We found that mating type frequency varied among the three populations we examined, with only one of the three showing an even sex ratio, which does not support balancing selection. However, we found more population structure at neutral loci than the mating type locus, suggesting that the three mating types are indeed maintained at intermediate frequencies by balancing selection. Overall, the data are consistent with balancing selection acting on D. discoideum mating types, but with a sufficiently weak rare sex advantage to allow for drift, a potential explanation for why these amoebae have only three mating types. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
X-MATE: a flexible system for mapping short read data
Pearson, John V.; Cloonan, Nicole; Grimmond, Sean M.
2011-01-01
Summary: Accurate and complete mapping of short-read sequencing to a reference genome greatly enhances the discovery of biological results and improves statistical predictions. We recently presented RNA-MATE, a pipeline for the recursive mapping of RNA-Seq datasets. With the rapid increase in genome re-sequencing projects, progression of available mapping software and the evolution of file formats, we now present X-MATE, an updated version of RNA-MATE, capable of mapping both RNA-Seq and DNA datasets and with improved performance, output file formats, configuration files, and flexibility in core mapping software. Availability: Executables, source code, junction libraries, test data and results and the user manual are available from http://grimmond.imb.uq.edu.au/X-MATE/. Contact: n.cloonan@uq.edu.au; s.grimmond@uq.edu.au Supplementary information: Supplementary data are available at Bioinformatics Online. PMID:21216778
Daphnia HR96 is a Promiscuous Xenobiotic and Endobiotic Nuclear Receptor
Karimullina, Elina; Li, Yangchun; Ginjupalli, Gautam; Baldwin, William S.
2012-01-01
Daphnia pulex is the first crustacean to have its genome sequenced. The genome project provides new insight and data into how an aquatic crustacean may respond to environmental stressors, including toxicants. We cloned Daphnia pulex HR96 (DappuHR96), a nuclear receptor orthologous to the CAR/PXR/VDR group of nuclear receptors. In Drosophila melanogaster, (hormone receptor 96) HR96 responds to phenobarbital exposure and has been hypothesized as a toxicant receptor. Therefore, we set up a transactivation assay to test whether DappuHR96 is a promiscuous receptor activated by xenobiotics and endobiotics similar to the constitutive androstane receptor (CAR) and the pregnane X-receptor (PXR). Transactivation assays performed with a GAL4-HR96 chimera demonstrate that HR96 is a promiscuous toxicant receptor activated by a diverse set of chemicals such as pesticides, hormones, and fatty acids. Several environmental toxicants activate HR96 including estradiol, pyriproxyfen, chlorpyrifos, atrazine, and methane arsonate. We also observed repression of HR96 activity by chemicals such as triclosan, androstanol, and fluoxetine. Nearly 50% of the chemicals tested activated or inhibited HR96. Interestingly, unsaturated fatty acids were common activators or inhibitors of HR96 activity, indicating a link between diet and toxicant response. The omega-6 and omega-9 unsaturated fatty acids linoleic and oleic acid activated HR96, but the omega-3 unsaturated fatty acids alpha-linolenic acid and docosahexaenoic acid inhibited HR96, suggesting that these two distinct sets of lipids perform opposing roles in Daphnia physiology. This also provides a putative mechanism by which the ratio of dietary unsaturated fats may affect the ability of an organism to respond to a toxic insult. In summary, HR96 is a promiscuous nuclear receptor activated by numerous endo- and xenobiotics. PMID:22466357
Nürnberg, Daniela; Grüters, Annette; Führer-Sakel, Dagmar; Krude, Heiko; Köhrle, Josef; Schöneberg, Torsten; Biebermann, Heike
2011-01-01
Trace amine-associated receptors (TAAR) are rhodopsin-like G-protein-coupled receptors (GPCR). TAAR are involved in modulation of neuronal, cardiac and vascular functions and they are potentially linked with neurological disorders like schizophrenia and Parkinson's disease. Subtype TAAR1, the best characterized TAAR so far, is promiscuous for a wide set of ligands and is activated by trace amines tyramine (TYR), phenylethylamine (PEA), octopamine (OA), but also by thyronamines, dopamine, and psycho-active drugs. Unfortunately, effects of trace amines on signaling of the two homologous β-adrenergic receptors 1 (ADRB1) and 2 (ADRB2) have not been clarified yet in detail. We, therefore, tested TAAR1 agonists TYR, PEA and OA regarding their effects on ADRB1/2 signaling by co-stimulation studies. Surprisingly, trace amines TYR and PEA are partial allosteric antagonists at ADRB1/2, whereas OA is a partial orthosteric ADRB2-antagonist and ADRB1-agonist. To specify molecular reasons for TAAR1 ligand promiscuity and for observed differences in signaling effects on particular aminergic receptors we compared TAAR, tyramine (TAR) octopamine (OAR), ADRB1/2 and dopamine receptors at the structural level. We found especially for TAAR1 that the remarkable ligand promiscuity is likely based on high amino acid similarity in the ligand-binding region compared with further aminergic receptors. On the other hand few TAAR specific properties in the ligand-binding site might determine differences in ligand-induced effects compared to ADRB1/2. Taken together, this study points to molecular details of TAAR1-ligand promiscuity and identified specific trace amines as allosteric or orthosteric ligands of particular β-adrenergic receptor subtypes. PMID:22073124
Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients.
Wellendorph, Petrine; Johansen, Lars Dan; Bräuner-Osborne, Hans
2009-09-01
A number of highly promiscuous seven transmembrane (7TM) receptors have been cloned and characterized within the last few years. It is noteworthy that many of these receptors are activated broadly by amino acids, proteolytic degradation products, carbohydrates, or free fatty acids and are expressed in taste tissue, the gastrointestinal tract, endocrine glands, adipose tissue, and/or kidney. These receptors thus hold the potential to act as sensors of food intake, regulating, for example, release of incretin hormones from the gut, insulin/glucagon from the pancreas, and leptin from adipose tissue. The promiscuous tendency in ligand recognition of these receptors is in contrast to the typical specific interaction with one physiological agonist seen for most receptors, which challenges the classic "lock-and-key" concept. We here review the molecular mechanisms of nutrient sensing of the calcium-sensing receptor, the G protein-coupled receptor family C, group 6, subtype A (GPRC6A), and the taste1 receptor T1R1/T1R3, which are sensing L-alpha-amino acids, the carbohydrate-sensing T1R2/T1R3 receptor, the proteolytic degradation product sensor GPR93 (also termed GPR92), and the free fatty acid (FFA) sensing receptors FFA1, FFA2, FFA3, GPR84, and GPR120. The involvement of the individual receptors in sensing of food intake has been validated to different degrees because of limited availability of specific pharmacological tools and/or receptor knockout mice. However, as a group, the receptors represent potential drug targets, to treat, for example, type II diabetes by mimicking food intake by potent agonists or positive allosteric modulators. The ligand-receptor interactions of the promiscuous receptors of organic nutrients thus remain an interesting subject of emerging functional importance.
Pule-Meulenberg, Flora; Gyogluu, Cynthia; Naab, Jesse; Dakora, Felix D
2011-04-15
Six promiscuous soybean genotypes were assessed for their ability to nodulate with indigenous root-nodule bacteria in Ghana, with Bradyrhizobium japonicum WB74 serving as positive control. Although the results revealed free nodulation of all six genotypes in both inoculated and uninoculated plots, there was a marked effect of inoculation on photosynthetic rates and whole-plant C. Inoculation also increased stomatal conductance in TGx1485-1D, TGx1448-2E, TGx1740-2F and TGx1445-3E, leading to significantly elevated transpiration rates in the last two genotypes, and a decrease in TGx1485-1D, TGx1440-1E and Salintuya-1, resulting in reduced leaf transpiration and decreased C accumulation. Nodulation, total plant biomass, plant N concentration and content also increased and ∂(15)N of the six genotypes, except for TGx1448-2E decreased. Significantly higher %Ndfa resulted in all the soybean genotypes tested (except for TGx1485-1D), and the symbiotic N yield in TGx1740-2F and TGx1448-2E doubled. PCR-RFLP revealed 18 distinct IGS types present in root nodules of the six promiscuous soybean genotypes, with IGS type II being isolated from all six genotypes, followed by IGS types X and XI from five out of the six genotypes. Marked differences in strain IGS type symbiotic efficiency were revealed. For example, as sole nodule occupant, IGS type XI produced high symbiotic N in TGx1445-3E, but low amounts in TGx1448-2E. Inoculated Salintuya-1, which trapped nine strain IGS types in its root nodules, was the most promiscuous genotype, but produced less symbiotic N compared to genotypes with fewer strains in their root nodules. Copyright © 2010 Elsevier GmbH. All rights reserved.
Constraints imposed by pollinator behaviour on the ecology and evolution of plant mating systems.
Devaux, C; Lepers, C; Porcher, E
2014-07-01
Most flowering plants rely on pollinators for their reproduction. Plant-pollinator interactions, although mutualistic, involve an inherent conflict of interest between both partners and may constrain plant mating systems at multiple levels: the immediate ecological plant selfing rates, their distribution in and contribution to pollination networks, and their evolution. Here, we review experimental evidence that pollinator behaviour influences plant selfing rates in pairs of interacting species, and that plants can modify pollinator behaviour through plastic and evolutionary changes in floral traits. We also examine how theoretical studies include pollinators, implicitly or explicitly, to investigate the role of their foraging behaviour in plant mating system evolution. In doing so, we call for more evolutionary models combining ecological and genetic factors, and additional experimental data, particularly to describe pollinator foraging behaviour. Finally, we show that recent developments in ecological network theory help clarify the impact of community-level interactions on plant selfing rates and their evolution and suggest new research avenues to expand the study of mating systems of animal-pollinated plant species to the level of the plant-pollinator networks. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Terminal Investment Strategies and Male Mate choice: Extreme Tests of Bateman.
Andrade, Maydianne C B; Kasumovic, Michael M
2005-11-01
Bateman's principle predicts the intensity of sexual selection depends on rates of increase of fecundity with mating success for each sex (Bateman slopes). The sex with the steeper increase (usually males) is under more intense sexual selection and is expected to compete for access to the sex under less intense sexual selection (usually females). Under Bateman and modern refinements of his ideas, differences in parental investment are key to defining Bateman slopes and thus sex roles. Other theories predict sex differences in mating investment, or any expenditures that reduce male potential reproductive rate, can also control sex roles. We focus on sexual behaviour in systems where males have low paternal investment but frequently mate only once in their lifetimes, after which they are often killed by the female. Mating effort (=terminal investment) is high for these males, and many forms of investment theory might predict sex role reversal. We find no qualitative evidence for sex role reversal in a sample of spiders that show this extreme male investment pattern. We also present new data for terminally-investing redback spiders (Latrodectus hasselti). Bateman slopes are relatively steep for male redbacks, and, as predicted by Bateman, there is little evidence for role reversal. Instead, males are competitive and show limited choosiness despite wide variation in female reproductive value. This study supports the proposal that high male mating investment coupled with low parental investment may predispose males to choosiness but will not lead to role reversal. We support the utility of using Bateman slopes to predict sex roles, even in systems with extreme male mating investment.
Li, Hao-Xi; Gottilla, Thomas M; Brewer, Marin Talbot
2017-10-01
Population divergence and speciation of closely related lineages can result from reproductive differences leading to genetic isolation. An increasing number of fungal diseases of plants and animals have been determined to be caused by morphologically indistinguishable species that are genetically distinct, thereby representing cryptic species. We were interested in identifying if mating systems among three Stagonosporopsis species (S. citrulli, S. cucurbitacearum, and S. caricae) causing gummy stem blight (GSB) of cucurbits or leaf spot and dry rot of papaya differed, possibly underlying species divergence. Additionally, we were interested in identifying evolutionary pressures acting on the genes controlling mating in these fungi. The mating-type loci (MAT1) of three isolates from each of the three species were identified in draft genome sequences. For the three species, MAT1 was structurally identical and contained both mating-type genes necessary for sexual reproduction, which suggests that all three species are homothallic. However, both MAT1-1-1 and MAT1-2-1 were divergent among species showing rapid evolution with a much greater number of amino acid-changing substitutions detected for the reproductive genes compared with genes flanking MAT1. Positive selection was detected in MAT1-2-1, especially in the highly conserved high mobility group (MATA_HMG-box) domain. Thus, the mating-type genes are rapidly evolving in GSB fungi, but a difference in mating systems among the three species does not underlie their divergence. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Crozier's paradox revisited: maintenance of genetic recognition systems by disassortative mating.
Holman, Luke; van Zweden, Jelle S; Linksvayer, Timothy A; d'Ettorre, Patrizia
2013-09-27
Organisms are predicted to behave more favourably towards relatives, and kin-biased cooperation has been found in all domains of life from bacteria to vertebrates. Cooperation based on genetic recognition cues is paradoxical because it disproportionately benefits individuals with common phenotypes, which should erode the required cue polymorphism. Theoretical models suggest that many recognition loci likely have some secondary function that is subject to diversifying selection, keeping them variable. Here, we use individual-based simulations to investigate the hypothesis that the dual use of recognition cues to facilitate social behaviour and disassortative mating (e.g. for inbreeding avoidance) can maintain cue diversity over evolutionary time. Our model shows that when organisms mate disassortatively with respect to their recognition cues, cooperation and recognition locus diversity can persist at high values, especially when outcrossed matings produce more surviving offspring. Mating system affects cue diversity via at least four distinct mechanisms, and its effects interact with other parameters such as population structure. Also, the attrition of cue diversity is less rapid when cooperation does not require an exact cue match. Using a literature review, we show that there is abundant empirical evidence that heritable recognition cues are simultaneously used in social and sexual behaviour. Our models show that mate choice is one possible resolution of the paradox of genetic kin recognition, and the literature review suggests that genetic recognition cues simultaneously inform assortative cooperation and disassortative mating in a large range of taxa. However, direct evidence is scant and there is substantial scope for future work.
Delmonte Corrado, M U; Politi, H; Ognibene, M; Angelini, C; Trielli, F; Ballarini, P; Falugi, C
2001-06-01
We recently discovered, in mating-competent Paramecium primaurelia, the presence of functionally related molecules of the cholinergic system: the neurotransmitter acetylcholine (ACh), both its nicotinic and muscarinic receptors and its lytic enzyme acetylcholinesterase (AChE). Our results on the inhibition of mating-cell pairing in vivo in mating-competent cells treated with cholinomimetic drugs support the hypothesis that the cholinergic system plays a role in cell-to-cell adhesion. To investigate the possible function of the signal molecule ACh in conjugation in P. primaurelia, we attempted to detect the intracellular sites of ACh synthesis by localizing the ACh biosynthetic enzyme choline acetyltransferase (ChAT). Using immunocytochemical and histochemical methods, we have demonstrated the presence and activity of ChAT principally on the surface membrane of mating-competent cells and of mature but non-mating-competent cells. No evidence for ChAT activity was found in immature cells. Immunoblot analysis revealed the presence of immunoreactive bands, ranging in molecular mass from 42 to 133 kDa, as reported for ChAT isolated from higher organisms. In vivo experiments showed that inhibition of ChAT activity by Congo Red, known to be a potent competitive inhibitor of acetyl coenzyme A, did not affect mating-cell pairing. Conversely, inhibition of AChE with BW 284c51 or eserine, which block enzyme activity by reacting with a specific serine within the catalytic centre, significantly inhibited mating-cell pairing. Our results suggest that ACh has a negative modulating effect on conjugation in P. primaurelia.
Importance of single molecular determinants in the fidelity of expanded genetic codes.
Antonczak, Alicja K; Simova, Zuzana; Yonemoto, Isaac T; Bochtler, Matthias; Piasecka, Anna; Czapinska, Honorata; Brancale, Andrea; Tippmann, Eric M
2011-01-25
The site-selective encoding of noncanonical amino acids (NAAs) is a powerful technique for the installation of novel chemical functional groups in proteins. This is often achieved by recoding a stop codon and requires two additional components: an evolved aminoacyl tRNA synthetase (AARS) and a cognate tRNA. Analysis of the most successful AARSs reveals common characteristics. The highest fidelity NAA systems derived from the Methanocaldococcus jannaschii tyrosyl AARS feature specific mutations to two residues reported to interact with the hydroxyl group of the substrate tyrosine. We demonstrate that the restoration of just one of these determinants for amino acid specificity results in the loss of fidelity as the evolved AARSs become noticeably promiscuous. These results offer a partial explanation of a recently retracted strategy for the synthesis of glycoproteins. Similarly, we reinvestigated a tryptophanyl AARS reported to allow the site-selective incorporation of 5-hydroxy tryptophan within mammalian cells. In multiple experiments, the enzyme displayed elements of promiscuity despite its previous characterization as a high fidelity enzyme. Given the many similarities of the TyrRSs and TrpRSs reevaluated here, our findings can be largely combined, and in doing so they reinforce the long-established central dogma regarding the molecular basis by which these enzymes contribute to the fidelity of translation. Thus, our view is that the central claims of fidelity reported in several NAA systems remain unproven and unprecedented.
Importance of single molecular determinants in the fidelity of expanded genetic codes
Antonczak, Alicja K.; Simova, Zuzana; Yonemoto, Isaac T.; Bochtler, Matthias; Piasecka, Anna; Czapińska, Honorata; Brancale, Andrea; Tippmann, Eric M.
2011-01-01
The site-selective encoding of noncanonical amino acids (NAAs) is a powerful technique for the installation of novel chemical functional groups in proteins. This is often achieved by recoding a stop codon and requires two additional components: an evolved aminoacyl tRNA synthetase (AARS) and a cognate tRNA. Analysis of the most successful AARSs reveals common characteristics. The highest fidelity NAA systems derived from the Methanocaldococcus jannaschii tyrosyl AARS feature specific mutations to two residues reported to interact with the hydroxyl group of the substrate tyrosine. We demonstrate that the restoration of just one of these determinants for amino acid specificity results in the loss of fidelity as the evolved AARSs become noticeably promiscuous. These results offer a partial explanation of a recently retracted strategy for the synthesis of glycoproteins. Similarly, we reinvestigated a tryptophanyl AARS reported to allow the site-selective incorporation of 5-hydroxy tryptophan within mammalian cells. In multiple experiments, the enzyme displayed elements of promiscuity despite its previous characterization as a high fidelity enzyme. Given the many similarities of the TyrRSs and TrpRSs reevaluated here, our findings can be largely combined, and in doing so they reinforce the long-established central dogma regarding the molecular basis by which these enzymes contribute to the fidelity of translation. Thus, our view is that the central claims of fidelity reported in several NAA systems remain unproven and unprecedented. PMID:21224416
Dangerous mating systems: signal complexity, signal content and neural capacity in spiders.
Herberstein, M E; Wignall, A E; Hebets, E A; Schneider, J M
2014-10-01
Spiders are highly efficient predators in possession of exquisite sensory capacities for ambushing prey, combined with machinery for launching rapid and determined attacks. As a consequence, any sexually motivated approach carries a risk of ending up as prey rather than as a mate. Sexual selection has shaped courtship to effectively communicate the presence, identity, motivation and/or quality of potential mates, which help ameliorate these risks. Spiders communicate this information via several sensory channels, including mechanical (e.g. vibrational), visual and/or chemical, with examples of multimodal signalling beginning to emerge in the literature. The diverse environments that spiders inhabit have further shaped courtship content and form. While our understanding of spider neurobiology remains in its infancy, recent studies are highlighting the unique and considerable capacities of spiders to process and respond to complex sexual signals. As a result, the dangerous mating systems of spiders are providing important insights into how ecology shapes the evolution of communication systems, with future work offering the potential to link this complex communication with its neural processes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Male antenna morphology and its effect on scramble competition in false garden mantids
NASA Astrophysics Data System (ADS)
Jayaweera, Anuradhi; Barry, Katherine L.
2017-10-01
Well-developed antennae are crucial for many insects, but especially for scramble competitors, who race to find their mates using female sex cues. In these systems, the ability of males to locate females quickly is thought to be under strong selection. A rarely tested assumption is that males with more sensory structures are able to locate females faster. In the present study, we used the false garden mantid Pseudomantis albofimbriata to investigate male antennal morphology and its effect on male efficiency in finding a mate. We used scanning electron microscopy to describe the major sensilla types and their arrangement along the length of male antennae. We also conducted field enclosure trials relating male antennal morphology to scramble competition in this system. We identified six different types of antennal sensilla (cheatic, trichoid, basiconic, grooved peg, ceolocapitular and campaniform) on male P. albofimbriata antennae. As expected, males who had more trichoid sensilla located females quicker than did males with fewer sensilla. Results of the current study suggest that antenna morphology plays a significant role in mate location and hence scramble competition in the P. albofimbriata mating system.
Ramos, Flavio Nunes; Zucchi, Maria Imaculada; Solferini, Vera Nisaka; Santos, Flavio A M
2008-02-01
The aim of this study was to determine and compare the mating systems among Psychotria tenuinervis populations at anthropogenic edges, natural edges, and the forest interior using allozyme electrophoresis of naturally pollinated progeny arrays. P. tenuinervis showed low outcrossing rates, varying from 37% to 50% of the mating attributable to outcrossing and 50% to 63% attributable to self-fertilization, in the three habitats. The forest interior had the highest outcrossing rate (t(m) = 0.50 and t(s) = 0.43) among the three habitats. However, there were no differences in either multilocus or single-locus rates among the three habitats, indicating that the contribution of biparental inbreeding to the apparent selfing rate in these populations was very low. The multilocus (t(m)) and single-locus (t(s)) outcrossing rates for the P. tenuinervis in the sample plots within each habitat showed great heterogeneity. In conclusion, edge creation seems not to influence its mating systems. Additionally, although P. tenuinervis is a distylous species, the population's inbreeding can be attributed almost entirely to self-fertilization.
Male antenna morphology and its effect on scramble competition in false garden mantids.
Jayaweera, Anuradhi; Barry, Katherine L
2017-08-23
Well-developed antennae are crucial for many insects, but especially for scramble competitors, who race to find their mates using female sex cues. In these systems, the ability of males to locate females quickly is thought to be under strong selection. A rarely tested assumption is that males with more sensory structures are able to locate females faster. In the present study, we used the false garden mantid Pseudomantis albofimbriata to investigate male antennal morphology and its effect on male efficiency in finding a mate. We used scanning electron microscopy to describe the major sensilla types and their arrangement along the length of male antennae. We also conducted field enclosure trials relating male antennal morphology to scramble competition in this system. We identified six different types of antennal sensilla (cheatic, trichoid, basiconic, grooved peg, ceolocapitular and campaniform) on male P. albofimbriata antennae. As expected, males who had more trichoid sensilla located females quicker than did males with fewer sensilla. Results of the current study suggest that antenna morphology plays a significant role in mate location and hence scramble competition in the P. albofimbriata mating system.
Banded mongooses avoid inbreeding when mating with members of the same natal group.
Sanderson, Jennifer L; Wang, Jinliang; Vitikainen, Emma I K; Cant, Michael A; Nichols, Hazel J
2015-07-01
Inbreeding and inbreeding avoidance are key factors in the evolution of animal societies, influencing dispersal and reproductive strategies which can affect relatedness structure and helping behaviours. In cooperative breeding systems, individuals typically avoid inbreeding through reproductive restraint and/or dispersing to breed outside their natal group. However, where groups contain multiple potential mates of varying relatedness, strategies of kin recognition and mate choice may be favoured. Here, we investigate male mate choice and female control of paternity in the banded mongoose (Mungos mungo), a cooperatively breeding mammal where both sexes are often philopatric and mating between relatives is known to occur. We find evidence suggestive of inbreeding depression in banded mongooses, indicating a benefit to avoiding breeding with relatives. Successfully breeding pairs were less related than expected under random mating, which appeared to be driven by both male choice and female control of paternity. Male banded mongooses actively guard females to gain access to mating opportunities, and this guarding behaviour is preferentially directed towards less closely related females. Guard-female relatedness did not affect the guard's probability of gaining reproductive success. However, where mate-guards are unsuccessful, they lose paternity to males that are less related to the females than themselves. Together, our results suggest that both sexes of banded mongoose use kin discrimination to avoid inbreeding. Although this strategy appears to be rare among cooperative breeders, it may be more prominent in species where relatedness to potential mates is variable, and/or where opportunities for dispersal and mating outside of the group are limited. © 2015 John Wiley & Sons Ltd.
Modelling the mating system of polar bears: a mechanistic approach to the Allee effect.
Molnár, Péter K; Derocher, Andrew E; Lewis, Mark A; Taylor, Mitchell K
2008-01-22
Allee effects may render exploited animal populations extinction prone, but empirical data are often lacking to describe the circumstances leading to an Allee effect. Arbitrary assumptions regarding Allee effects could lead to erroneous management decisions so that predictive modelling approaches are needed that identify the circumstances leading to an Allee effect before such a scenario occurs. We present a predictive approach of Allee effects for polar bears where low population densities, an unpredictable habitat and harvest-depleted male populations result in infrequent mating encounters. We develop a mechanistic model for the polar bear mating system that predicts the proportion of fertilized females at the end of the mating season given population density and operational sex ratio. The model is parametrized using pairing data from Lancaster Sound, Canada, and describes the observed pairing dynamics well. Female mating success is shown to be a nonlinear function of the operational sex ratio, so that a sudden and rapid reproductive collapse could occur if males are severely depleted. The operational sex ratio where an Allee effect is expected is dependent on population density. We focus on the prediction of Allee effects in polar bears but our approach is also applicable to other species.
Haq, Ihsan Ul; Cáceres, Carlos; Meza, José S; Hendrichs, Jorge; Vreysen, Marc J B
2018-04-16
Males of Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) are strongly attracted to methyl eugenol (ME) (1,2-dimethoxy-4-(2-propenyl)benzene), a phenylpropanoid compound occurring in many plant species. Feeding on ME is known to enhance male B. dorsalis mating competitiveness, which can increase the effectiveness of the sterile insect technique (SIT) manifold. However, currently used systems for holding the mass-reared males in fly emergence and release facilities before release, do not allow for application of ME through feeding. Therefore, the current study was designed to evaluate different delivery systems of ME that would be applicable for large-scale application to sterile males held in such facilities. Males of a genetic sexing strain (GSS) of B. dorsalis treated by ME-aromatherapy or ME-airblown-aromatherapy that were competing with ME-fed males achieved a similar level of mating success in walk-in field cages, but the mating success was significantly higher when compared to untreated males. The results confirm the feasibility of developing ME-airblown-aromatherapy as a practical way of large scale ME delivery to enhance the mating competitiveness of sterile B. dorsalis males.
Lockhart, Shawn R.; Wu, Wei; Radke, Joshua B.; Zhao, Rui; Soll, David R.
2005-01-01
The majority of Candida albicans strains in nature are a/α and must undergo homozygosis to a/a or α/α to mate. Here we have used a mouse model for systemic infection to test the hypothesis that a/α strains predominate in nature because they have a competitive advantage over a/a and α/α offspring in colonizing hosts. Single-strain injection experiments revealed that a/α strains were far more virulent than either their a/a or α/α offspring. When equal numbers of parent a/α and offspring a/a or α/α cells were co-injected, a/α always exhibited a competitive advantage at the time of extreme host morbidity or death. When equal numbers of an engineered a/a/α2 strain and its isogenic a/a parent strain were co-injected, the a/a/α2 strain exhibited a competitive advantage at the time of host morbidity or death, suggesting that the genotype of the mating-type (MTL) locus, not associated genes on chromosome 5, provides a competitive advantage. We therefore propose that heterozygosity at the MTL locus not only represses white-opaque switching and genes involved in the mating process, but also affects virulence, providing a competitive advantage to the a/α genotype that conserves the mating system of C. albicans in nature. PMID:15695357
Lockhart, Shawn R; Wu, Wei; Radke, Joshua B; Zhao, Rui; Soll, David R
2005-04-01
The majority of Candida albicans strains in nature are a/alpha and must undergo homozygosis to a/a or alpha/alpha to mate. Here we have used a mouse model for systemic infection to test the hypothesis that a/alpha strains predominate in nature because they have a competitive advantage over a/a and alpha/alpha offspring in colonizing hosts. Single-strain injection experiments revealed that a/alpha strains were far more virulent than either their a/a or alpha/alpha offspring. When equal numbers of parent a/alpha and offspring a/a or alpha/alpha cells were co-injected, a/alpha always exhibited a competitive advantage at the time of extreme host morbidity or death. When equal numbers of an engineered a/a/alpha2 strain and its isogenic a/a parent strain were co-injected, the a/a/alpha2 strain exhibited a competitive advantage at the time of host morbidity or death, suggesting that the genotype of the mating-type (MTL) locus, not associated genes on chromosome 5, provides a competitive advantage. We therefore propose that heterozygosity at the MTL locus not only represses white-opaque switching and genes involved in the mating process, but also affects virulence, providing a competitive advantage to the a/alpha genotype that conserves the mating system of C. albicans in nature.
2018-01-01
Abstract Research on sexual selection and hybridization has focused on female mate choice and male–male competition. While the evolutionary outcomes of interspecific female preference have been well explored, we are now gaining a better understanding of the processes by which male–male competition between species in secondary contact promotes reproductive isolation versus hybridization. What is relatively unexplored is the interaction between female choice and male competition, as they can oppose one another or align with similar outcomes for reproductive isolation. The role of female–female competition in hybridization is also not well understood, but could operate similarly to male–male competition in polyandrous and other systems where costs to heterospecific mating are low for females. Reproductive competition between either sex of sympatric species can cause the divergence and/or convergence of sexual signals and recognition, which in turn influences the likelihood for interspecific mating. Future work on species interactions in secondary contact should test the relative influences of both mate choice and competition for mates on hybridization outcomes, and should not ignore the possibilities that females can compete over mating resources, and males can exercise mate choice. PMID:29492041
Jones, Adam G; Arguello, J Roman; Arnold, Stevan J
2002-01-01
Few studies have influenced thought on the nature of sexual selection to the extent of the classic paper of A. J. Bateman on mating patterns in Drosophila. However, interpretation of his study remains controversial, and a lack of modern empirical evidence prevents a consensus with respect to the perceived utility of Bateman's principles in the study of sexual selection. Here, we use a genetic study of natural mating patterns in the rough-skinned newt, Taricha granulosa, to investigate the concordance between Bateman's principles and the intensity of sexual selection. We found that males experienced strong sexual selection on tail height and body size, while sexual selection was undetectable in females. This direct quantification of sexual selection agreed perfectly with inferences that are based on Bateman's principles. Specifically, males (in comparison with females) exhibited greater standardized variances in reproductive and mating success, as well as a stronger relationship between mating success and reproductive success. Overall, our results illustrate that Bateman's principles provide the only quantitative measures of the mating system with explicit connections to formal selection theory and should be the central focus of studies of mating patterns in natural populations. PMID:12573067
Bouchebti, Sofia; Durier, Virginie; Pasquaretta, Cristian; Rivault, Colette; Lihoreau, Mathieu
Many animals have evolved strategies to reduce risks of inbreeding and its deleterious effects on the progeny. In social arthropods, such as the eusocial ants and bees, inbreeding avoidance is typically achieved by the dispersal of breeders from their native colony. However studies in presocial insects suggest that kin discrimination during mate choice may be a more common mechanism in socially simpler species with no reproductive division of labour. Here we examined this possibility in the subsocial cockroach Nauphoeta cinerea, a model species for research in sexual selection, where males establish dominance hierarchies to access females and control breeding territories. When given a binary choice between a sibling male and a non-sibling male that had the opportunity to establish a hierarchy prior to the tests, females mated preferentially with the dominant male, irrespective of kinship or body size. Despite the lack of kin discrimination during mate choice, inbred-mated females incurred significant fitness costs, producing 20% less offspring than outbred-mated females. We discuss how the social mating system of this territorial cockroach may naturally limit the probability of siblings to encounter and reproduce, without the need for evolving active inbreeding avoidance mechanisms, such as kin recognition.
Bouchebti, Sofia; Durier, Virginie; Pasquaretta, Cristian; Rivault, Colette; Lihoreau, Mathieu
2016-01-01
Many animals have evolved strategies to reduce risks of inbreeding and its deleterious effects on the progeny. In social arthropods, such as the eusocial ants and bees, inbreeding avoidance is typically achieved by the dispersal of breeders from their native colony. However studies in presocial insects suggest that kin discrimination during mate choice may be a more common mechanism in socially simpler species with no reproductive division of labour. Here we examined this possibility in the subsocial cockroach Nauphoeta cinerea, a model species for research in sexual selection, where males establish dominance hierarchies to access females and control breeding territories. When given a binary choice between a sibling male and a non-sibling male that had the opportunity to establish a hierarchy prior to the tests, females mated preferentially with the dominant male, irrespective of kinship or body size. Despite the lack of kin discrimination during mate choice, inbred-mated females incurred significant fitness costs, producing 20% less offspring than outbred-mated females. We discuss how the social mating system of this territorial cockroach may naturally limit the probability of siblings to encounter and reproduce, without the need for evolving active inbreeding avoidance mechanisms, such as kin recognition. PMID:27655156
Cellular network entropy as the energy potential in Waddington's differentiation landscape
Banerji, Christopher R. S.; Miranda-Saavedra, Diego; Severini, Simone; Widschwendter, Martin; Enver, Tariq; Zhou, Joseph X.; Teschendorff, Andrew E.
2013-01-01
Differentiation is a key cellular process in normal tissue development that is significantly altered in cancer. Although molecular signatures characterising pluripotency and multipotency exist, there is, as yet, no single quantitative mark of a cellular sample's position in the global differentiation hierarchy. Here we adopt a systems view and consider the sample's network entropy, a measure of signaling pathway promiscuity, computable from a sample's genome-wide expression profile. We demonstrate that network entropy provides a quantitative, in-silico, readout of the average undifferentiated state of the profiled cells, recapitulating the known hierarchy of pluripotent, multipotent and differentiated cell types. Network entropy further exhibits dynamic changes in time course differentiation data, and in line with a sample's differentiation stage. In disease, network entropy predicts a higher level of cellular plasticity in cancer stem cell populations compared to ordinary cancer cells. Importantly, network entropy also allows identification of key differentiation pathways. Our results are consistent with the view that pluripotency is a statistical property defined at the cellular population level, correlating with intra-sample heterogeneity, and driven by the degree of signaling promiscuity in cells. In summary, network entropy provides a quantitative measure of a cell's undifferentiated state, defining its elevation in Waddington's landscape. PMID:24154593
Liu, Jun; Zou, Yang; Guan, Wanyi; Zhai, Yafei; Xue, Mengyang; Jin, Lan; Zhao, Xueer; Dong, Junkai; Wang, Wenjun; Shen, Jie; Wang, Peng George; Chen, Min
2013-07-01
Nucleotide sugars are activated forms of monosaccharides and key intermediates of carbohydrate metabolism in all organisms. The availability of structurally diverse nucleotide sugars is particularly important for the characterization of glycosyltransferases. Given that limited methods are available for preparation of nucleotide sugars, especially their useful non-natural derivatives, we introduced herein an efficient one-step three-enzyme catalytic system for the synthesis of nucleotide sugars from monosaccharides. In this study, a promiscuous UDP-sugar pyrophosphorylase (USP) from Arabidopsis thaliana (AtUSP) was used with a galactokinase from Streptococcus pneumoniae TIGR4 (SpGalK) and an inorganic pyrophosphatase (PPase) to effectively synthesize four UDP-sugars. AtUSP has better tolerance for C4-derivatives of Gal-1-P compared to UDP-glucose pyrophosphorylase from S. pneumoniae TIGR4 (SpGalU). Besides, the nucleotide substrate specificity and kinetic parameters of AtUSP were systematically studied. AtUSP exhibited considerable activity toward UTP, dUTP and dTTP, the yield of which was 87%, 85% and 84%, respectively. These results provide abundant information for better understanding of the relationship between substrate specificity and structural features of AtUSP. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wu, Lin; van Peer, Arend; Song, Wenhua; Wang, Hong; Chen, Mingjie; Tan, Qi; Song, Chunyan; Zhang, Meiyan; Bao, Dapeng
2013-12-01
During the life cycle of heterothallic tetrapolar Agaricomycetes such as Lentinula edodes (Berk.) Pegler, the mating type system, composed of unlinked A and B loci, plays a vital role in controlling sexual development and resulting formation of the fruit body. L. edodes is produced worldwide for consumption and medicinal purposes, and understanding its sexual development is therefore of great importance. A considerable amount of mating type factors has been indicated over the past decades but few genes have actually been identified, and no complete genetic structures of L. edodes B mating-type loci are available. In this study, we cloned the matB regions from two mating compatible L. edodes strains, 939P26 and 939P42. Four pheromone receptors were identified on each new matB region, together with three and four pheromone precursor genes in the respective strains. Gene polymorphism, phylogenetic analysis and distribution of pheromone receptors and pheromone precursors clearly indicate a bipartite matB locus, each sublocus containing a pheromone receptor and one or two pheromone precursors. Detailed sequence comparisons of genetic structures between the matB regions of strains 939P42, 939P26 and a previously reported strain SUP2 further supported this model and allowed identification of the B mating type subloci borders. Mating studies confirmed the control of B mating by the identified pheromone receptors and pheromones in L. edodes. © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marti, O.G.; Carpenter, J.E.
The reproductive system of adult male Cactoblastis cactorum, the cactus moth, was examined to determine whether the mating status of males could be ascertained. In unmated males, the posterior portion of the primary ductus ejaculatorius simplex is opaque yellow in color and contains many small football-shaped hyaline granules 3-5 x 5-10 {mu}m in size. In mated males, the posterior simplex is clear and contains no granules. The presence or absence of these characters was found to be highly reliable and should be of value in determining mating status in marked-recaptured males of this species in a sterile insect release programmore » directed against Cactoblastis. (author)« less
Assortative mating and mutation diffusion in spatial evolutionary systems
NASA Astrophysics Data System (ADS)
Paley, C. J.; Taraskin, S. N.; Elliott, S. R.
2010-04-01
The influence of spatial structure on the equilibrium properties of a sexual population model defined on networks is studied numerically. Using a small-world-like topology of the networks as an investigative tool, the contributions to the fitness of assortative mating and of global mutant spread properties are considered. Simple measures of nearest-neighbor correlations and speed of spread of mutants through the system have been used to confirm that both of these dynamics are important contributory factors to the fitness. It is found that assortative mating increases the fitness of populations. Quick global spread of favorable mutations is shown to be a key factor increasing the equilibrium fitness of populations.
Watts, David P
2015-04-01
Male mating tactics vary extensively in many primates. Some variation occurs because adolescent males often are sexually active but cannot invest heavily in mating effort because of their limited ability to compete directly with adults and because they are still investing in growth; consequently, most of their mating attempts may be surreptitious and/or with females whose fecundity is low. Chimpanzees (Pan troglodytes) have a complex mating system: most copulations occur between estrous females with full sexual swelling and multiple males in group settings where the potential for sperm competition is high, but males sometimes mate-guard females, and sometimes male-female pairs mate exclusively with each other while avoiding other males during "consortships." Among other factors, dominance ranks, coalition formation, and variation in male-female association influence male mating and reproductive success. Mating effort increases from adolescence into prime adulthood. At Gombe and Mahale, adolescent males copulated more with nulliparous than with parous females, and mostly when females were unlikely to be ovulating, partly because of low adult male interest in nulliparous females and partly because of aggression from or avoidance of adult males. Adolescents thus had low probabilities of siring infants. However, adolescents are known to have gained some paternity at Gombe and in other populations, and their mating behavior deserves more study. I present data on mating by adolescent males in an unusually large chimpanzee community at Ngogo, Kibale National Park, Uganda. Adolescents at Ngogo also copulated more with nulliparous than parous females and mostly copulated outside of periovulatory periods. Also, they directed less aggression at estrous females than did adult males. However, they gained lower shares of copulations than reported for Gombe and Mahale, regardless of female parity, and received more aggression from adult males. These differences might partly reflect the influence of variation in the number of males per community on male mating tactics.
Chemokine receptor antagonists: part 2.
Pease, James E; Horuk, Richard
2009-02-01
The first part of this two-part review discussed approaches to generating antagonists for some of the CC chemokine receptors, including CCR1, CCR2, CCR3, and CCR4. This second part of the series concludes the review by describing antagonists for CCR5, CCR8, CCR9, CXCR3, CXCR4, and promiscuous antagonists. Chemokine receptor antagonists have found mixed success as therapeutics. Although one antagonist--maraviroc, a CCR5 inhibitor to treat AIDS--has been registered as an approved drug, this is the only success so far. There have been many failures in the clinic and we discuss the idea of promiscuous receptor antagonists as an alternative approach.
Blakeley, Matthew P.; Ruiz, Federico; Cachau, Raul; Hazemann, Isabelle; Meilleur, Flora; Mitschler, Andre; Ginell, Stephan; Afonine, Pavel; Ventura, Oscar N.; Cousido-Siah, Alexandra; Haertlein, Michael; Joachimiak, Andrzej; Myles, Dean; Podjarny, Alberto
2008-01-01
We present results of combined studies of the enzyme human aldose reductase (h-AR, 36 kDa) using single-crystal x-ray data (0.66 Å, 100K; 0.80 Å, 15K; 1.75 Å, 293K), neutron Laue data (2.2 Å, 293K), and quantum mechanical modeling. These complementary techniques unveil the internal organization and mobility of the hydrogen bond network that defines the properties of the catalytic engine, explaining how this promiscuous enzyme overcomes the simultaneous requirements of efficiency and promiscuity offering a general mechanistic view for this class of enzymes. PMID:18250329
Blakeley, Matthew P; Ruiz, Federico; Cachau, Raul; Hazemann, Isabelle; Meilleur, Flora; Mitschler, Andre; Ginell, Stephan; Afonine, Pavel; Ventura, Oscar N; Cousido-Siah, Alexandra; Haertlein, Michael; Joachimiak, Andrzej; Myles, Dean; Podjarny, Alberto
2008-02-12
We present results of combined studies of the enzyme human aldose reductase (h-AR, 36 kDa) using single-crystal x-ray data (0.66 A, 100K; 0.80 A, 15K; 1.75 A, 293K), neutron Laue data (2.2 A, 293K), and quantum mechanical modeling. These complementary techniques unveil the internal organization and mobility of the hydrogen bond network that defines the properties of the catalytic engine, explaining how this promiscuous enzyme overcomes the simultaneous requirements of efficiency and promiscuity offering a general mechanistic view for this class of enzymes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blakeley, M. P.; Ruiz, Fredrico; Cachau, Raul
2008-01-01
We present results of combined studies of the enzyme human aldose reductase (h-AR, 36 kDa) using single-crystal x-ray data (0.66 Angstroms, 100K; 0.80 Angstroms, 15K; 1.75 Angstroms, 293K), neutron Laue data (2.2 Angstroms, 293K), and quantum mechanical modeling. These complementary techniques unveil the internal organization and mobility of the hydrogen bond network that defines the properties of the catalytic engine, explaining how this promiscuous enzyme overcomes the simultaneous requirements of efficiency and promiscuity offering a general mechanistic view for this class of enzymes.
Steroid promiscuity: Diversity of enzyme action. Preface.
Lathe, Richard; Kotelevtsev, Yuri; Mason, J Ian
2015-07-01
This Special Issue on the topic of Steroid and Sterol Signaling: Promiscuity and Diversity, dwells on the growing realization that the 'one ligand, one binding site' and 'one enzyme, one reaction' concepts are out of date. Focusing on cytochromes P450 (CYP), hydroxysteroid dehydrogenases (HSDs), and related enzymes, the Special Issue highlights that a single enzyme can bind to diverse substrates, and in different conformations, and can catalyze multiple different conversions (and in different directions), thereby, generating an unexpectedly wide spectrum of ligands that can have subtly different biological actions. This article is part of a Special Issue entitled 'Steroid/Sterol Signaling' . Copyright © 2015 Elsevier Ltd. All rights reserved.
Evolutionary transitions to new DNA methyltransferases through target site expansion and shrinkage.
Rockah-Shmuel, Liat; Tawfik, Dan S
2012-12-01
DNA-binding and modifying proteins show high specificity but also exhibit a certain level of promiscuity. Such latent promiscuous activities comprise the starting points for new protein functions, but this hypothesis presents a paradox: a new activity can only evolve if it already exists. How then, do novel activities evolve? DNA methyltransferases, for example, are highly divergent in their target sites, but how transitions toward novel sites occur remains unknown. We performed laboratory evolution of the DNA methyltransferase M.HaeIII. We found that new target sites emerged primarily through expansion of the original site, GGCC, and the subsequent shrinkage of evolved expanded sites. Variants evolved for sites that are promiscuously methylated by M.HaeIII [GG((A)/(T))CC and GGCGCC] carried mutations in 'gate-keeper' residues. They could thereby methylate novel target sites such as GCGC and GGATCC that were neither selected for nor present in M.HaeIII. These 'generalist' intermediates were further evolved to obtain variants with novel target specificities. Our results demonstrate the ease by which new DNA-binding and modifying specificities evolve and the mechanism by which they occur at both the protein and DNA levels.
Beaulieu, Pierre L; Bolger, Gordon; Deon, Dan; Duplessis, Martin; Fazal, Gulrez; Gagnon, Alexandre; Garneau, Michel; LaPlante, Steven; Stammers, Timothy; Kukolj, George; Duan, Jianmin
2015-03-01
We describe our efforts to identify analogs of thumb pocket 1 HCV NS5B inhibitor 1 (aza-analog of BI 207524) with improved plasma to liver partitioning and a predicted human half-life consistent with achieving a strong antiviral effect at a reasonable dose in HCV-infected patients. Compounds 3 and 7 were identified that met these criteria but exhibited off-target promiscuity in an in vitro pharmacology screen and in vivo toxicity in rats. High lipophilicity in this class was found to correlate with increased probability for promiscuous behavior and toxicity. The synthesis of an 8×11 matrix of analogs allowed the identification of C3, an inhibitor that displayed comparable potency to 1, improved partitioning to the liver and reduced lipophilicity. Although C3 displayed reduced propensity for in vitro off-target inhibition and the toxicity profile in rats was improved, the predicted human half-life of this compound was short, resulting in unacceptable dosing requirements to maintain a strong antiviral effect in patients. Copyright © 2015 Elsevier Ltd. All rights reserved.
Apparatus, Systems, and Methods for Reconfigurable Robotic Manipulator and Coupling
NASA Technical Reports Server (NTRS)
Chu, Mars Wei (Inventor); Wolfe, Bryn Tyler (Inventor); Burridge, Robert Raven (Inventor)
2016-01-01
A robotic manipulator arm is disclosed. The arm includes joints that are attachable and detachable in a tool-free manner via a universal mating adapter. The universal mating adapter includes a built-in electrical interface for an operative electrical connection upon mechanical coupling of the adapter portions. The universal mating adapter includes mechanisms and the ability to store and communicate parameter configurations such that the joints can be rearranged for immediate operation of the arm without further reprogramming, recompiling, or other software intervention.
Maristerra R. Lemes; Dario Grattapaglia; James Grogan; John Proctor; Rog& eacute Gribel; rio
2007-01-01
Microsatellites were used to evaluate the mating system of the remaining trees in a logged population of Swietenia macrophylla, a highly valuable and threatened hardwood species, in the Brazilian Amazon. A total of 25 open pollinated progeny arrays of 16 individuals, with their mother trees, were genotyped using eight highly polymorphic...
Closeup view of an Aft Skirt being prepared for mating ...
Close-up view of an Aft Skirt being prepared for mating with sub assemblies in the Solid Rocket Booster Assembly and Refurbishment Facility at Kennedy Space Center. The most prominent feature in this view are the six Thrust Vector Control System access ports, three per hydraulic actuator. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Anthony C. Fiumera; Brady A. Porter; Gary D. Grossman; John C. Avise
2002-01-01
Most genetic surveys of parentage in nature sample only a small fraction of the breeding population. Here we apply micro satellite markers to deduce the genetic mating system and assess the reproductive success of females and males in an extensively collected, semiclosed stream population of the mottled sculpin fish, Cottus bairdi. In this species,...
Silva, C R S; Albuquerque, P S B; Ervedosa, F R; Mota, J W S; Figueira, A; Sebbenn, A M
2011-06-01
Understanding the mating patterns of populations of tree species is a key component of ex situ genetic conservation. In this study, we analysed the genetic diversity, spatial genetic structure (SGS) and mating system at the hierarchical levels of fruits and individuals as well as pollen dispersal patterns in a continuous population of Theobroma cacao in Pará State, Brazil. A total of 156 individuals in a 0.56 ha plot were mapped and genotyped for nine microsatellite loci. For the mating system analyses, 50 seeds were collected from nine seed trees by sampling five fruits per tree (10 seeds per fruit). Among the 156 individuals, 127 had unique multilocus genotypes, and the remaining were clones. The population was spatially aggregated; it demonstrated a significant SGS up to 15 m that could be attributed primarily to the presence of clones. However, the short seed dispersal distance also contributed to this pattern. Population matings occurred mainly via outcrossing, but selfing was observed in some seed trees, which indicated the presence of individual variation for self-incompatibility. The matings were also correlated, especially within (Ρ(p(m))=0.607) rather than among the fruits (Ρ(p(m))=0.099), which suggested that a small number of pollen donors fertilised each fruit. The paternity analysis suggested a high proportion of pollen migration (61.3%), although within the plot, most of the pollen dispersal encompassed short distances (28 m). The determination of these novel parameters provides the fundamental information required to establish long-term ex situ conservation strategies for this important tropical species.
Weak Polygyny in California Sea Lions and the Potential for Alternative Mating Tactics
Flatz, Ramona; González-Suárez, Manuela; Young, Julie K.; Hernández-Camacho, Claudia J.; Immel, Aaron J.; Gerber, Leah R.
2012-01-01
Female aggregation and male territoriality are considered to be hallmarks of polygynous mating systems. The development of genetic parentage assignment has called into question the accuracy of behavioral traits in predicting true mating systems. In this study we use 14 microsatellite markers to explore the mating system of one of the most behaviorally polygynous species, the California sea lion (Zalophus californianus). We sampled a total of 158 female-pup pairs and 99 territorial males across two breeding rookeries (San Jorge and Los Islotes) in the Gulf of California, Mexico. Fathers could be identified for 30% of pups sampled at San Jorge across three breeding seasons and 15% of sampled pups at Los Islotes across two breeding seasons. Analysis of paternal relatedness between the pups for which no fathers were identified (sampled over four breeding seasons at San Jorge and two at Los Islotes) revealed that few pups were likely to share a father. Thirty-one percent of the sampled males on San Jorge and 15% of the sampled males on Los Islotes were assigned at least one paternity. With one exception, no male was identified as the father of more than two pups. Furthermore, at Los Islotes rookery there were significantly fewer pups assigned paternity than expected given the pool of sampled males (p<0.0001). Overall, we found considerably lower variation in male reproductive success than expected in a species that exhibits behavior associated with strongly polygynous mating. Low variation in male reproductive success may result from heightened mobility among receptive females in the Gulf of California, which reduces the ability of males to monopolize groups of females. Our results raise important questions regarding the adaptive role of territoriality and the potential for alternative mating tactics in this species. PMID:22432039
Silva, C R S; Albuquerque, P S B; Ervedosa, F R; Mota, J W S; Figueira, A; Sebbenn, A M
2011-01-01
Understanding the mating patterns of populations of tree species is a key component of ex situ genetic conservation. In this study, we analysed the genetic diversity, spatial genetic structure (SGS) and mating system at the hierarchical levels of fruits and individuals as well as pollen dispersal patterns in a continuous population of Theobroma cacao in Pará State, Brazil. A total of 156 individuals in a 0.56 ha plot were mapped and genotyped for nine microsatellite loci. For the mating system analyses, 50 seeds were collected from nine seed trees by sampling five fruits per tree (10 seeds per fruit). Among the 156 individuals, 127 had unique multilocus genotypes, and the remaining were clones. The population was spatially aggregated; it demonstrated a significant SGS up to 15 m that could be attributed primarily to the presence of clones. However, the short seed dispersal distance also contributed to this pattern. Population matings occurred mainly via outcrossing, but selfing was observed in some seed trees, which indicated the presence of individual variation for self-incompatibility. The matings were also correlated, especially within (r̂p(m)=0.607) rather than among the fruits (r̂p(m)=0.099), which suggested that a small number of pollen donors fertilised each fruit. The paternity analysis suggested a high proportion of pollen migration (61.3%), although within the plot, most of the pollen dispersal encompassed short distances (28 m). The determination of these novel parameters provides the fundamental information required to establish long-term ex situ conservation strategies for this important tropical species. PMID:21139632
PDF-1 neuropeptide signaling modulates a neural circuit for mate-searching behavior in C. elegans.
Barrios, Arantza; Ghosh, Rajarshi; Fang, Chunhui; Emmons, Scott W; Barr, Maureen M
2012-12-01
Appetitive behaviors require complex decision making that involves the integration of environmental stimuli and physiological needs. C. elegans mate searching is a male-specific exploratory behavior regulated by two competing needs: food and reproductive appetite. We found that the pigment dispersing factor receptor (PDFR-1) modulates the circuit that encodes the male reproductive drive that promotes male exploration following mate deprivation. PDFR-1 and its ligand, PDF-1, stimulated mate searching in the male, but not in the hermaphrodite. pdf-1 was required in the gender-shared interneuron AIM, and the receptor acted in internal and external environment-sensing neurons of the shared nervous system (URY, PQR and PHA) to produce mate-searching behavior. Thus, the pdf-1 and pdfr-1 pathway functions in non-sex-specific neurons to produce a male-specific, goal-oriented exploratory behavior. Our results indicate that secretin neuropeptidergic signaling is involved in regulating motivational internal states.
Assortative mating without assortative preference
Xie, Yu; Cheng, Siwei; Zhou, Xiang
2015-01-01
Assortative mating—marriage of a man and a woman with similar social characteristics—is a commonly observed phenomenon. In the existing literature in both sociology and economics, this phenomenon has mainly been attributed to individuals’ conscious preferences for assortative mating. In this paper, we show that patterns of assortative mating may arise from another structural source even if individuals do not have assortative preferences or possess complementary attributes: dynamic processes of marriages in a closed system. For a given cohort of youth in a finite population, as the percentage of married persons increases, unmarried persons who newly enter marriage are systematically different from those who married earlier, giving rise to the phenomenon of assortative mating. We use microsimulation methods to illustrate this dynamic process, using first the conventional deterministic Gale–Shapley model, then a probabilistic Gale–Shapley model, and then two versions of the encounter mating model. PMID:25918366
Mate choice and genetic monogamy in a biparental, colonial fish.
Schaedelin, Franziska C; van Dongen, Wouter F D; Wagner, Richard H
2015-01-01
In socially monogamous species, in which both sexes provide essential parental care, males as well as females are expected to be choosy. Whereas hundreds of studies have examined monogamy in biparental birds, only several such studies exist in fish. We examined mate choice in the biparental, colonial cichlid fish Neolamprologus caudopunctatus in Lake Tanganyika, Zambia. We genotyped more than 350 individuals at 11 microsatellite loci to investigate their mating system. We found no extrapair paternity, identifying this biparental fish as genetically monogamous. Breeders paired randomly according to their genetic similarity, suggesting a lack of selection against inbreeding avoidance. We further found that breeders paired assortatively by body size, a criterion of quality in fish, suggesting mutual mate choice. In a subsequent mate preference test in an aquarium setup, females showed a strong preference for male size by laying eggs near the larger of 2 males in 13 of 14 trials.
Mate choice and genetic monogamy in a biparental, colonial fish
van Dongen, Wouter F.D.; Wagner, Richard H.
2015-01-01
In socially monogamous species, in which both sexes provide essential parental care, males as well as females are expected to be choosy. Whereas hundreds of studies have examined monogamy in biparental birds, only several such studies exist in fish. We examined mate choice in the biparental, colonial cichlid fish Neolamprologus caudopunctatus in Lake Tanganyika, Zambia. We genotyped more than 350 individuals at 11 microsatellite loci to investigate their mating system. We found no extrapair paternity, identifying this biparental fish as genetically monogamous. Breeders paired randomly according to their genetic similarity, suggesting a lack of selection against inbreeding avoidance. We further found that breeders paired assortatively by body size, a criterion of quality in fish, suggesting mutual mate choice. In a subsequent mate preference test in an aquarium setup, females showed a strong preference for male size by laying eggs near the larger of 2 males in 13 of 14 trials. PMID:26023276
Low Impact Docking System (LIDS)
NASA Technical Reports Server (NTRS)
LaBauve, Tobie E.
2009-01-01
Since 1996, NASA has been developing a docking system that will simplify operations and reduce risks associated with mating spacecraft. This effort has focused on developing and testing an original, reconfigurable, active, closed-loop, force-feedback controlled docking system using modern technologies. The primary objective of this effort has been to design a docking interface that is tunable to the unique performance requirements for all types of mating operations (i.e. docking and berthing, autonomous and piloted rendezvous, and in-space assembly of vehicles, modules and structures). The docking system must also support the transfer of crew, cargo, power, fluid, and data. As a result of the past 10 years of docking system advancement, the Low Impact Docking System or LIDS was developed. The current LIDS design incorporates the lessons learned and development experiences from both previous and existing docking systems. LIDS feasibility was established through multiple iterations of prototype hardware development and testing. Benefits of LIDS include safe, low impact mating operations, more effective and flexible mission implementation with an anytime/anywhere mating capability, system level redundancy, and a more affordable and sustainable mission architecture with reduced mission and life cycle costs. In 1996 the LIDS project, then known as the Advanced Docking Berthing System (ADBS) project, launched a four year developmental period. At the end of the four years, the team had built a prototype of the soft-capture hardware and verified the control system that will be used to control the soft-capture system. In 2001, the LIDS team was tasked to work with the X- 38 Crew Return Vehicle (CRV) project and build its first Engineering Development Unit (EDU).
Bauer, Raymond T; Okuno, Junji; Thiel, Martin
2014-01-01
Sexual dimorphism in body size and weaponry was examined in two Cinetorhynchus shrimp species in order to formulate hypotheses on their sexual and mating systems. Collections of Cinetorhynchus sp. A and Cinetorhynchus sp. B were made in March, 2011 on Coconut Island, Hawaii, by hand dipnetting and minnow traps in coral rubble bottom in shallow water. Although there is overlap in male and female size, some males are much larger than females. The major (pereopod 1) chelipeds of males are significantly larger and longer than those of females. In these two Cinetorhynchus species, males and females have third maxillipeds of similar relative size, i.e., those of males are not hypertrophied and probably not used as spear-like weapons as in some other rhynchocinetid (Rhynchocinetes) species. Major chelae of males vary with size, changing from typical female-like chelae tipped with black corneous stout setae to subchelate or prehensile appendages in larger males. Puncture wounds or regenerating major chelipeds were observed in 26.1 % of males examined (N = 38 including both species). We interpret this evidence on sexual dimorphism as an indication of a temporary male mate guarding or "neighborhoods of dominance" mating system, in which larger dominant robustus males defend females and have greater mating success than smaller males. Fecundity of females increased with female size, as in most caridean species (500-800 in Cinetorhynchus sp. A; 300-3800 in Cinetorhynchus sp. B). Based on the sample examined, we conclude that these two species have a gonochoric sexual system (separate sexes) like most but not all other rhynchocinetid species in which the sexual system has been investigated.
Hsueh, Yen-Ping; Fraser, James A.; Heitman, Joseph
2008-01-01
Sex is orchestrated by the mating-type locus (MAT) in fungi and by sex chromosomes in plants and animals. In fungi, two patterns of sexuality occur: bipolar with a single, typically biallelic sex determinant that promotes inbreeding, and tetrapolar with two unlinked, often multiallelic sex determinants that restrict inbreeding. Multiallelism in either bipolar or tetrapolar mating systems promotes outcrossing. Cryptococcus neoformans is a pathogenic bipolar yeast with two unusually large MAT alleles (a/α) spanning >100 kb, ∼100-fold larger than many other fungal MAT loci. Based on comparative genomic analysis, this unusual MAT locus is hypothesized to have evolved from an ancestral tetrapolar system. In this model, the unlinked homeodomain (HD) transcription factor and pheromone/receptor tetrapolar loci acquired additional sex-related genes and then fused via chromosomal translocation, forming an intermediate transitional mating system (which we term tripolar), which then underwent recombination and gene conversion to fashion the extant bipolar MAT alleles. To experimentally validate this model, C. neoformans was engineered to have a tetrapolar mating system by relocating the MAT SXI1α and SXI2a HD genes to an unlinked genomic locale. Genetic and molecular analyses revealed that this modified organism could complete a tetrapolar sexual cycle. Analysis of progeny generated from bipolar, tripolar, and tetrapolar crosses provides direct experimental evidence that the tripolar state confers decreased fertility and therefore may represent an unstable evolutionary intermediate. These findings illustrate how transitions between outcrossing and inbreeding preference occur by involving sex determinant linkage and collapse from multiallelic to biallelic sex determination, providing insights into both fungal sex evolution and early steps in sex chromosome evolution. PMID:18723606
Discrete two-sex models of population dynamics: On modelling the mating function
NASA Astrophysics Data System (ADS)
Bessa-Gomes, Carmen; Legendre, Stéphane; Clobert, Jean
2010-09-01
Although sexual reproduction has long been a central subject of theoretical ecology, until recently its consequences for population dynamics were largely overlooked. This is now changing, and many studies have addressed this issue, showing that when the mating system is taken into account, the population dynamics depends on the relative abundance of males and females, and is non-linear. Moreover, sexual reproduction increases the extinction risk, namely due to the Allee effect. Nevertheless, different studies have identified diverse potential consequences, depending on the choice of mating function. In this study, we investigate the consequences of three alternative mating functions that are frequently used in discrete population models: the minimum; the harmonic mean; and the modified harmonic mean. We consider their consequences at three levels: on the probability that females will breed; on the presence and intensity of the Allee effect; and on the extinction risk. When we consider the harmonic mean, the number of times the individuals of the least abundant sex mate exceeds their mating potential, which implies that with variable sex-ratios the potential reproductive rate is no longer under the modeller's control. Consequently, the female breeding probability exceeds 1 whenever the sex-ratio is male-biased, which constitutes an obvious problem. The use of the harmonic mean is thus only justified if we think that this parameter should be re-defined in order to represent the females' breeding rate and the fact that females may reproduce more than once per breeding season. This phenomenon buffers the Allee effect, and reduces the extinction risk. However, when we consider birth-pulse populations, such a phenomenon is implausible because the number of times females can reproduce per birth season is limited. In general, the minimum or modified harmonic mean mating functions seem to be more suitable for assessing the impact of mating systems on population dynamics.
Inter-genomic sexual conflict drives antagonistic coevolution in harvester ants
Herrmann, Michael; Cahan, Sara Helms
2014-01-01
The reproductive interests of males and females are not always aligned, leading to sexual conflict over parental investment, rate of reproduction and mate choice. Traits that increase the genetic interests of one sex often occur at the expense of the other, selecting for counter-adaptations leading to antagonistic coevolution. Reproductive conflict is not limited to intraspecific interactions; interspecific hybridization can produce pronounced sexual conflict between males and females of different species, but it is unclear whether such conflict can drive sexually antagonistic coevolution between reproductively isolated genomes. We tested for hybridization-driven sexually antagonistic adaptations in queens and males of the socially hybridogenetic ‘J’ lineages of Pogonomyrmex harvester ants, whose mating system promotes hybridization in queens but selects against it in males. We conducted no-choice mating assays to compare patterns of mating behaviour and sperm transfer between inter- and intra-lineage pairings. There was no evidence for mate discrimination on the basis of pair type, and the total quantity of sperm transferred did not differ between intra- and inter-lineage pairs; however, further dissection of the sperm transfer process into distinct mechanistic components revealed significant, and opposing, cryptic manipulation of copulatory investment by both sexes. Males of both lineages increased their rate of sperm transfer to high-fitness intra-lineage mates, with a stronger response in the rarer lineage for whom mating mistakes are the most likely. By contrast, the total duration of copulation for intra-lineage mating pairs was significantly shorter than for inter-lineage crosses, suggesting that queens respond to prevent excessive sperm loading by prematurely terminating copulation. These findings demonstrate that sexual conflict can lead to antagonistic coevolution in both intra-genomic and inter-genomic contexts. Indeed, the resolution of sexual conflict may be a key determinant of the long-term evolutionary potential of host-dependent reproductive strategies, counteracting the inherent instabilities arising from such systems. PMID:25355474
Sardell, Rebecca J; Kempenaers, Bart; Duval, Emily H
2014-02-01
Indirect benefits of mate choice result from increased offspring genetic quality and may be important drivers of female behaviour. 'Good-genes-for-viability' models predict that females prefer mates of high additive genetic value, such that offspring survival should correlate with male attractiveness. Mate choice may also vary with genetic diversity (e.g. heterozygosity) or compatibility (e.g. relatedness), where the female's genotype influences choice. The relative importance of these nonexclusive hypotheses remains unclear. Leks offer an excellent opportunity to test their predictions, because lekking males provide no material benefits and choice is relatively unconstrained by social limitations. Using 12 years of data on lekking lance-tailed manakins, Chiroxiphia lanceolata, we tested whether offspring survival correlated with patterns of mate choice. Offspring recruitment weakly increased with father attractiveness (measured as reproductive success, RS), suggesting attractive males provide, if anything, only minor benefits via offspring viability. Both male RS and offspring survival until fledging increased with male heterozygosity. However, despite parent-offspring correlation in heterozygosity, offspring survival was unrelated to its own or maternal heterozygosity or to parental relatedness, suggesting survival was not enhanced by heterozygosity per se. Instead, offspring survival benefits may reflect inheritance of specific alleles or nongenetic effects. Although inbreeding depression in male RS should select for inbreeding avoidance, mates were not less related than expected under random mating. Although mate heterozygosity and relatedness were correlated, selection on mate choice for heterozygosity appeared stronger than that for relatedness and may be the primary mechanism maintaining genetic variation in this system despite directional sexual selection. © 2014 John Wiley & Sons Ltd.
Hybrid female mate choice as a species isolating mechanism: environment matters.
Schmidt, E M; Pfennig, K S
2016-04-01
A fundamental goal of biology is to understand how new species arise and are maintained. Female mate choice is potentially critical to the speciation process: mate choice can prevent hybridization and thereby generate reproductive isolation between potentially interbreeding groups. Yet, in systems where hybridization occurs, mate choice by hybrid females might also play a key role in reproductive isolation by affecting hybrid fitness and contributing to patterns of gene flow between species. We evaluated whether hybrid mate choice behaviour could serve as such an isolating mechanism using spadefoot toad hybrids of Spea multiplicata and Spea bombifrons. We assessed the mate preferences of female hybrid spadefoot toads for sterile hybrid males vs. pure-species males in two alternative habitat types in which spadefoots breed: deep or shallow water. We found that, in deep water, hybrid females preferred the calls of sterile hybrid males to those of S. multiplicata males. Thus, maladaptive hybrid mate preferences could serve as an isolating mechanism. However, in shallow water, the preference for hybrid male calls was not expressed. Moreover, hybrid females did not prefer hybrid calls to those of S. bombifrons in either environment. Because hybrid female mate choice was context-dependent, its efficacy as a reproductive isolating mechanism will depend on both the environment in which females choose their mates as well as the relative frequencies of males in a given population. Thus, reproductive isolation between species, as well as habitat specific patterns of gene flow between species, might depend critically on the nature of hybrid mate preferences and the way in which they vary across environments. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Summers, Holly E; Hartwick, Sally M; Raguso, Robert A
2015-05-01
Isometric and allometric scaling of a conserved floral plan could provide a parsimonious mechanism for rapid and reversible transitions between breeding systems. This scaling may occur during transitions between predominant autogamy and xenogamy, contributing to the maintenance of a stable mixed mating system. We compared nine disjunct populations of the polytypic, mixed mating species Oenothera flava (Onagraceae) to two parapatric relatives, the obligately xenogamous species O. acutissima and the mixed mating species O. triloba. We compared floral morphology of all taxa using principal component analysis (PCA) and developmental trajectories of floral organs using ANCOVA homogeneity of slopes. The PCA revealed both isometric and allometric scaling of a conserved floral plan. Three principal components (PCs) explained 92.5% of the variation in the three species. PC1 predominantly loaded on measures of floral size and accounts for 36% of the variation. PC2 accounted for 35% of the variation, predominantly in traits that influence pollinator handling. PC3 accounted for 22% of the variation, primarily in anther-stigma distance (herkogamy). During O. flava subsp. taraxacoides development, style elongation was accelerated relative to anthers, resulting in positive herkogamy. During O. flava subsp. flava development, style elongation was decelerated, resulting in zero or negative herkogamy. Of the two populations with intermediate morphology, style elongation was accelerated in one population and decelerated in the other. Isometric and allometric scaling of floral organs in North American Oenothera section Lavauxia drive variation in breeding system. Multiple developmental paths to intermediate phenotypes support the likelihood of multiple mating system transitions. © 2015 Botanical Society of America, Inc.
Cruzan, Mitchell B; Barrett, Spencer C H
2016-03-01
Variation in the mating system of hermaphroditic plant populations is determined by interactions between genetic and environmental factors operating via both pre- and postmating processes. Models predicting the maintenance of intermediate outcrossing rates in animal-pollinated plants often assume that the mating system is primarily controlled by floral morphology and pollinator availability, but rarely has the influence of postpollination processes on variation in outcrossing been examined. We investigated the influence of stylar discrimination between illegitimate and legitimate pollen-tube growth and the pollen-load capacity of stigmas on mating-system variation in the annual, tristylous species Eichhornia paniculata using controlled crosses and genetic markers. This species exhibits an exceptionally broad range of outcrossing rates in natural populations. There was significant variation among populations in the pollen-load capacity of stigmas and the ability of styles to discriminate between illegitimate vs. legitimate pollen. There was strong correspondence between stylar-discrimination ability and variation in outcrossing rate among populations and style morphs. The combination of stigmatic pollen-load capacity and stylar discrimination explained more than 80% of the variation in outcrossing rates among populations. The finding that stigmatic pollen-load capacity and stylar-discrimination ability contributed significantly to explaining the wide range of outcrossing rates in E. paniculata suggests that postpollination mechanisms play an important role in governing mating patterns in this species. The difference in levels of stylar discrimination between outcrossing and selfing populations may reflect a trade-off between selection for increased outcrossing and greater reproductive assurance. © 2016 Botanical Society of America.
Cheptou, P.-O.
2012-01-01
Background Baker's Law states that colonization by self-compatible organisms is more likely to be successful than colonization by self-incompatible organisms because of the ability for self-compatible organisms to produce offspring without pollination agents. This simple model has proved very successful in plant ecology and has been applied to various contexts, including colonizing or ruderal species, islands colonizers, invasive species or mating system variation across distribution ranges. Moreover, it is one of the only models in population biology linking two traits of major importance in ecology, namely dispersal and mating system. Although Baker's Law has stimulated a large number of empirical studies reporting the association of self-fertilization and colonizing ability in various contexts, the data have not established a general pattern for the association of traits. Scope In this paper, a critical position is adopted to discuss and clarify Baker's Law. From the literature referring to Baker's Law, an analysis made regarding how mating success is considered in such studies and discrepancies with population genetics theory of mating systems are highlighted. The data reporting the association of self-fertilization and colonizing ability are also briefly reviewed and the potential bias in interpretation is discussed. Lastly, a recent theoretical model analysing the link between colonizing ability and self-fertilization is considered. Conclusions Evolutionary predictions are actually more complex than Baker's intuitive arguments. It appears that Baker's Law encompasses a variety of ecological scenarios, which cannot be considered a priori as equivalent. Questioning what has been considered as self-evident for more than 50 years seems a reasonable objective to analyse in-depth dispersal and mating system traits. PMID:21685434
Bontrager, Megan; Angert, Amy L
2016-01-01
Plant mating systems and geographic range limits are conceptually linked by shared underlying drivers, including landscape-level heterogeneity in climate and in species' abundance. Studies of how geography and climate interact to affect plant traits that influence mating system and population dynamics can lend insight to ecological and evolutionary processes shaping ranges. Here, we examined how spatiotemporal variation in climate affects reproductive output of a mixed-mating annual, Clarkia pulchella. We also tested the effects of population isolation and climate on mating-system-related floral traits across the range. We measured reproductive output and floral traits on herbarium specimens collected across the range of C. pulchella. We extracted climate data associated with specimens and derived a population isolation metric from a species distribution model. We then examined how predictors of reproductive output and floral traits vary among populations of increasing distance from the range center. Finally, we tested whether reproductive output and floral traits vary with increasing distance from the center of the range. Reproductive output decreased as summer precipitation decreased, and low precipitation may contribute to limiting the southern and western range edges of C. pulchella. High spring and summer temperatures are correlated with low herkogamy, but these climatic factors show contrasting spatial patterns in different quadrants of the range. Limiting factors differ among different parts of the range. Due to the partial decoupling of geography and environment, examining relationships between climate, reproductive output, and mating-system-related floral traits reveals spatial patterns that might be missed when focusing solely on geographic position. © 2016 Botanical Society of America.
Population genetics of self-incompatibility in a clade of relict cliff-dwelling plant species
Silva, Jose L.; Brennan, Adrian C.; Mejías, José A.
2016-01-01
The mating systems of species in small or fragmented populations impact upon their persistence. Small self-incompatible (SI) populations risk losing S allele diversity, responsible for the SI response, by drift thereby limiting mate availability and leading to population decline or SI system breakdown. But populations of relict and/or endemic species have resisted these demographic conditions over long periods suggesting their mating systems have adapted. To address a lack of empirical data on this topic, we studied the SI systems of three relict cliff-dwelling species of Sonchus section Pustulati (Asteraceae): S. masguindalii, S. fragilis and S. pustulatus in the western Mediterranean region. We performed controlled pollinations within and between individuals to measure index of SI (ISI) expression and identify S alleles in multiple population samples. Sonchus masguindalii and S. pustulatus showed strong SI (ISI = 0.6–1.0) compared to S. fragilis (ISI = 0.1–0.7). Just five S alleles were estimated for Spanish S. pustulatus and a moderate 11-15 S alleles for Moroccan S. pustulatus and S. fragilis, respectively. The fact that autonomous fruit set was generally improved by active self-pollination in self-compatible S. fragilis suggests that individuals with weak SI can show a wide range of outcrossing levels dependent on the degree of self or outcross pollen that pollinators bear. We conclude that frequent S allele dominance interactions that mask the incompatibility interactions of recessive S alleles leading to higher mate availability and partial breakdown of SI leading to mixed mating, both contribute to reproductive resilience in this group. PMID:27154621
Jantzen, Troy M; Havenhand, Jon N
2003-06-01
Squid behavior is synonymous with distinctive body patterns, postures, and movements that constitute a complex visual communication system. These communications are particularly obvious during reproduction. They are important for sexual selection and have been identified as a potential means of species differentiation. Here we present a detailed account of copulation, mating, and egg deposition behaviors from in situ observations of the squid Sepioteuthis australis from South Australia. We identified four mating types from 85 separate mating attempts: "Male-upturned mating" (64% of mating attempts); "Sneaker mating" (33%); "Male-parallel" (2%); and "Head-to-head" (1%). Intervals between successive egg deposition behaviors were clearly bimodal, with modes at 2.5 s and 70.0 s. Ninety-three percent of egg capsules contained 3 or 4 eggs (mean = 3.54), and each egg cluster contained between 218 and 1922 egg capsules (mean = 893.9). The reproductive behavior of S. australis from South Australia was different from that described for other cephalopod species. More importantly, comparison between these results and those for other populations of S. australis suggests that behavior may differ from one population to another.
Lankinen, Åsa; Smith, Henrik G; Andersson, Stefan; Madjidian, Josefin A
2016-03-01
Although much attention has focused on the diversity of plant mating systems, only a few studies have considered the joint effects of mating system and sexual conflict in plant evolution. In mixed-mating Collinsia heterophylla, a sexual conflict over timing of stigma receptivity is proposed: pollen with a capacity to induce early onset of stigma receptivity secures paternity for early-arriving pollen (at the expense of reduced maternal seed set), whereas late onset of stigma receptivity mitigates the negative effects of early-arriving pollen. Here we investigated whether selection on pollen and pistil traits involved in sexual conflict is affected by the presence of both outcross- and self-pollen (mixed mating) during pollen competition. We conducted two-donor crosses at different floral developmental stages to explore male fitness (siring ability) and female fitness (seed set) in relation to male and female identity, pollen and pistil traits, and type of competitor pollen (outcross vs. self). Late-fertilizing pollen rather than rapidly growing pollen tubes was most successful in terms of siring success, especially in competition with self-pollen after pollination at early floral stages. Late stigma receptivity increased seed set after early-stage pollinations, in agreement with selection against antagonistic pollen. Selection on pollen and pistil traits in C. heterophylla is affected by both sexual conflict and mixed mating, suggesting the importance of jointly considering these factors in plant evolution. © 2016 Botanical Society of America.
Autonomous docking system for space structures and satellites
NASA Astrophysics Data System (ADS)
Prasad, Guru; Tajudeen, Eddie; Spenser, James
2005-05-01
Aximetric proposes Distributed Command and Control (C2) architecture for autonomous on-orbit assembly in space with our unique vision and sensor driven docking mechanism. Aximetric is currently working on ip based distributed control strategies, docking/mating plate, alignment and latching mechanism, umbilical structure/cord designs, and hardware/software in a closed loop architecture for smart autonomous demonstration utilizing proven developments in sensor and docking technology. These technologies can be effectively applied to many transferring/conveying and on-orbit servicing applications to include the capturing and coupling of space bound vehicles and components. The autonomous system will be a "smart" system that will incorporate a vision system used for identifying, tracking, locating and mating the transferring device to the receiving device. A robustly designed coupler for the transfer of the fuel will be integrated. Advanced sealing technology will be utilized for isolation and purging of resulting cavities from the mating process and/or from the incorporation of other electrical and data acquisition devices used as part of the overall smart system.
Behavioural divergence, interfertility and speciation: a review.
Pillay, Neville; Rymer, Tasmin L
2012-11-01
Behavioural compatibility between mates is fundamental for maintaining species boundaries and is achieved through appropriate communication between males and females. A breakdown in communication will lead to behavioural divergence and reduced interfertility. In this review, we summarise the current knowledge on male signals and female perception of these signals, integrating the literature from several taxa. We advocate that signaller-perceiver coevolution, which is usually under strong stabilising selection to enable mating, forms the basis of species-specific mate recognition systems. The mechanisms (phylogeny, geography, ecology, biology) shaping signaller-perceiver systems are briefly discussed to demonstrate the factors underpinning the evolution of signaller-perceiver couplings. Since divergence and diversification of communication systems is driven by changes in the mechanical properties of sensory pathways and morphology of sensory organs, we highlight signal modalities (auditory, olfactory, visual, tactile) and their importance in communication, particularly in mate selection. Next, using available examples and generating a stylised model, we suggest how disruption (biological, ecological, stochastic) of signaller-perceiver systems drives behavioural divergence and consequently results in reduced interfertility and speciation. Future studies should adopt an integrative approach, combining multiple parameters (phylogeny, adaptive utility of communication systems, genetics and biomechanical/biochemical properties of signals and perception) to explore how disruption of signaller-perceiver systems results in behavioural divergence and reduced interfertility. Finally, we question the impact that rapid environmental change will have on disruption of communication systems, potentially interfering with signaller-perceiver couplings. Copyright © 2012 Elsevier B.V. All rights reserved.
Assembly of Customized TAL Effectors Through Advanced ULtiMATE System.
Yang, Junjiao; Guo, Shengjie; Yuan, Pengfei; Wei, Wensheng
2016-01-01
Transcription activator-like effectors (TALEs) have been widely applied in gene targeting. Here we describe an advanced ULtiMATE (USER-based Ligation-Mediated Assembly of TAL Effector) system that utilizes USER fusion technique and archive of 512 tetramer templates to achieve highly efficient construction of TALEs, which takes only half a day to accomplish the assembly of any given TALE construct. This system is also suitable for large-scale assembly of TALENs and any other TALE-based constructions.
Do extra-group fertilizations increase the potential for sexual selection in male mammals?
Isvaran, Kavita; Sankaran, Sumithra
2017-10-01
Fertilizations by males outside the social breeding group (extra-group paternity, EGP) are widespread in birds and mammals. EGP is generally proposed to increase male reproductive skew and thereby increase the potential for sexual selection, but the generality of this relationship is unclear. We extracted data from 27 mammals in seven orders and used phylogenetic comparative methods to investigate the influence of EGP and social mating system on measures of inequality in male fertilization success, which are indices of the potential for sexual selection. We find that EGP and social mating system can predict the potential for sexual selection in mammalian populations, but only when considered jointly and not individually. EGP appears to increase the potential for sexual selection but only when the degree of social polygyny is relatively low. When social polygyny is high, EGP appears to result in a more uniform distribution of reproduction and a decrease in the potential for sexual selection. A possible explanation to be investigated is that the phenotype of extra-group fathers differs systematically across social mating systems. Our findings have implications for the use of EGP and social mating system as indices of sexual selection in comparative analyses of trait evolution under sexual selection. © 2017 The Author(s).
Arnaud, Jean-François; Fénart, Stéphane; Cordellier, Mathilde; Cuguen, Joël
2010-01-01
Reproductive traits are key parameters for the evolution of invasiveness in weedy crop–wild hybrids. In Beta vulgaris, cultivated beets hybridize with their wild relatives in the seed production areas, giving rise to crop–wild hybrid weed beets. We investigated the genetic structure, the variation in first-year flowering and the variation in mating system among weed beet populations occurring within sugar beet production fields. No spatial genetic structure was found for first-year populations composed of F1 crop–wild hybrid beets. In contrast, populations composed of backcrossed weed beets emerging from the seed bank showed a strong isolation-by-distance pattern. Whereas gametophytic self-incompatibility prevents selfing in wild beet populations, all studied weed beet populations had a mixed-mating system, plausibly because of the introgression of the crop-derived Sf gene that disrupts self-incompatibility. No significant relationship between outcrossing rate and local weed beet density was found, suggesting no trends for a shift in the mating system because of environmental effects. We further reveal that increased invasiveness of weed beets may stem from positive selection on first-year flowering induction depending on the B gene inherited from the wild. Finally, we discuss the practical and applied consequences of our findings for crop-weed management. PMID:25567926
De Fine Licht, Henrik H; Andersen, Anders; Aanen, Duur K
2005-03-01
Fungi of the genus Termitomyces live in an obligate symbiosis with termites of the subfamily Macrotermitinae. Many species of Termitomyces frequently form fruit bodies, which develop from the fungus comb within the nest. In this study, we determined the mating system of a species of Termitomyces associated with the South African termite Macrotermes natalensis. Termite nests were excavated and a Termitomyces sp. was isolated into pure culture from the asexual fruit bodies (nodules) growing in the fungus gardens. For one strain, single basidiospore cultures were obtained from basidiomes growing from the fungus comb after incubation without termites. Using nuclear staining, we show that both comb cultures and single spore cultures have multinucleate cells and that the majority of spores has a single nucleus. However, DNA sequencing of the ITS region in the nuclear RNA gene revealed that the comb mycelium had two different ITS types that segregated in the single spore cultures, which consequently had only a single ITS type. These results unambiguously prove that the strain of Termitomyces studied here has a heterothallic mating system, with the fungus garden of the termite mound being in the heterokaryotic phase. This is the first time the mating system of a Termitomnyces species has been studied.
On the widespread capacity for, and functional significance of, extreme inbreeding in ferns.
Sessa, Emily B; Testo, Weston L; Watkins, James E
2016-08-01
Homosporous vascular plants utilize three different mating systems, one of which, gametophytic selfing, is an extreme form of inbreeding only possible in homosporous groups. This mating system results in complete homozygosity in all progeny and has important evolutionary and ecological implications. Ferns are the largest group of homosporous land plants, and the significance of extreme inbreeding for fern evolution has been a subject of debate for decades. We cultured gametophytes in the laboratory and quantified the relative frequencies of sporophyte production from isolated and paired gametophytes, and examined associations between breeding systems and several ecological and evolutionary traits. The majority of fern species studied show a capacity for gametophytic selfing, producing sporophytes from both isolated and paired gametophytes. While we did not follow sporophytes to maturity to investigate potential detrimental effects of homozygosity at later developmental stages, our results suggest that gametophytic selfing may have greater significance for fern evolution and diversification than has previously been realized. We present evidence from the largest study of mating behavior in ferns to date that the capacity for extreme inbreeding is prevalent in this lineage, and we discuss its implications and relevance and make recommendations for future studies of fern mating systems. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
General view of the Orbiter Discovery mated to the External ...
General view of the Orbiter Discovery mated to the External Tank and Solid Rocket Booster assembly in the Vehicle Assembly Building at Kennedy Space Center - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
NASA Astrophysics Data System (ADS)
Schlechter-Helas, Jerry; Schmitt, Thomas; Peschke, Klaus
2011-10-01
By reducing the attractiveness of their mating partner via an anti-aphrodisiac pheromone, males can prevent a remating of the female and thus reduce the risk of sperm competition. For females, the main benefit from allowing the chemical manipulation of their attractiveness is probably the avoidance of sexual harassments from rival males. While mating plugs generally constitute a physical barrier which hinders male mating attempts, chemical manipulations must trustfully inform the responding male of the female's reluctance to mate; otherwise, it would be beneficial to ignore the repellent information. In our experiments, males of the polyandrous rove beetle Aleochara curtula chemically manipulated the attractiveness of their mating partner. Coincident with the deposition of a spermatophore into the female genital chamber, an anti-aphrodisiac pheromone was transferred and readily spread onto the female surface, where it was subsequently perceived by rival males via parameres, the claspers of the male genitalia. Males aborted contact with the mated female to avoid further time- and energy-consuming elements of the mating sequence. The chemical mode of action was demonstrated inter alia by spicing virgin females with spermatophore extracts. The action of the anti-aphrodisiac correlated with the persistence of the spermatophore in the female genital chamber and corresponded to the length of stay of the mated female at a carcass, where the density of rival males is highest. The ensuing benefits for all three parties involved in this communication system, which render this post-copulatory mate guarding strategy evolutionary stable, are discussed.
Genetic determinants of mate recognition in Brachionus manjavacas (Rotifera)
Snell, Terry W; Shearer, Tonya L; Smith, Hilary A; Kubanek, Julia; Gribble, Kristin E; Welch, David B Mark
2009-01-01
Background Mate choice is of central importance to most animals, influencing population structure, speciation, and ultimately the survival of a species. Mating behavior of male brachionid rotifers is triggered by the product of a chemosensory gene, a glycoprotein on the body surface of females called the mate recognition pheromone. The mate recognition pheromone has been biochemically characterized, but little was known about the gene(s). We describe the isolation and characterization of the mate recognition pheromone gene through protein purification, N-terminal amino acid sequence determination, identification of the mate recognition pheromone gene from a cDNA library, sequencing, and RNAi knockdown to confirm the functional role of the mate recognition pheromone gene in rotifer mating. Results A 29 kD protein capable of eliciting rotifer male circling was isolated by high-performance liquid chromatography. Two transcript types containing the N-terminal sequence were identified in a cDNA library; further characterization by screening a genomic library and by polymerase chain reaction revealed two genes belonging to each type. Each gene begins with a signal peptide region followed by nearly perfect repeats of an 87 to 92 codon motif with no codons between repeats and the final motif prematurely terminated by the stop codon. The two Type A genes contain four and seven repeats and the two Type B genes contain three and five repeats, respectively. Only the Type B gene with three repeats encodes a peptide with a molecular weight of 29 kD. Each repeat of the Type B gene products contains three asparagines as potential sites for N-glycosylation; there are no asparagines in the Type A genes. RNAi with Type A double-stranded RNA did not result in less circling than in the phosphate-buffered saline control, but transfection with Type B double-stranded RNA significantly reduced male circling by 17%. The very low divergence between repeat units, even at synonymous positions, suggests that the repeats are kept nearly identical through a process of concerted evolution. Information-rich molecules like surface glycoproteins are well adapted for chemical communication and aquatic animals may have evolved signaling systems based on these compounds, whereas insects use cuticular hydrocarbons. Conclusion Owing to its critical role in mating, the mate recognition pheromone gene will be a useful molecular marker for exploring the mechanisms and rates of selection and the evolution of reproductive isolation and speciation using rotifers as a model system. The phylogenetic variation in the mate recognition pheromone gene can now be studied in conjunction with the large amount of ecological and population genetic data being gathered for the Brachionus plicatilis species complex to understand better the evolutionary drivers of cryptic speciation. PMID:19740420
Genetic determinants of mate recognition in Brachionus manjavacas (Rotifera).
Snell, Terry W; Shearer, Tonya L; Smith, Hilary A; Kubanek, Julia; Gribble, Kristin E; Welch, David B Mark
2009-09-09
Mate choice is of central importance to most animals, influencing population structure, speciation, and ultimately the survival of a species. Mating behavior of male brachionid rotifers is triggered by the product of a chemosensory gene, a glycoprotein on the body surface of females called the mate recognition pheromone. The mate recognition pheromone has been biochemically characterized, but little was known about the gene(s). We describe the isolation and characterization of the mate recognition pheromone gene through protein purification, N-terminal amino acid sequence determination, identification of the mate recognition pheromone gene from a cDNA library, sequencing, and RNAi knockdown to confirm the functional role of the mate recognition pheromone gene in rotifer mating. A 29 kD protein capable of eliciting rotifer male circling was isolated by high-performance liquid chromatography. Two transcript types containing the N-terminal sequence were identified in a cDNA library; further characterization by screening a genomic library and by polymerase chain reaction revealed two genes belonging to each type. Each gene begins with a signal peptide region followed by nearly perfect repeats of an 87 to 92 codon motif with no codons between repeats and the final motif prematurely terminated by the stop codon. The two Type A genes contain four and seven repeats and the two Type B genes contain three and five repeats, respectively. Only the Type B gene with three repeats encodes a peptide with a molecular weight of 29 kD. Each repeat of the Type B gene products contains three asparagines as potential sites for N-glycosylation; there are no asparagines in the Type A genes. RNAi with Type A double-stranded RNA did not result in less circling than in the phosphate-buffered saline control, but transfection with Type B double-stranded RNA significantly reduced male circling by 17%. The very low divergence between repeat units, even at synonymous positions, suggests that the repeats are kept nearly identical through a process of concerted evolution. Information-rich molecules like surface glycoproteins are well adapted for chemical communication and aquatic animals may have evolved signaling systems based on these compounds, whereas insects use cuticular hydrocarbons. Owing to its critical role in mating, the mate recognition pheromone gene will be a useful molecular marker for exploring the mechanisms and rates of selection and the evolution of reproductive isolation and speciation using rotifers as a model system. The phylogenetic variation in the mate recognition pheromone gene can now be studied in conjunction with the large amount of ecological and population genetic data being gathered for the Brachionus plicatilis species complex to understand better the evolutionary drivers of cryptic speciation.
Sexual Cannibalism as a Manifestation of Sexual Conflict
Schneider, Jutta M.
2014-01-01
Sexual cannibalism is a well-known example for sexual conflict and has many facets that determine the costs and benefits for the cannibal and the victim. Here, I focus on species in which sexual cannibalism is a general component of a mating system in which males invest maximally in mating with a single (monogyny) or two (bigyny) females. Sexual cannibalism can be a male strategy to maximize paternity and a female strategy to prevent paternity monopolization by any or a particular male. Considerable variation exists between species (1) in the potential of males to monopolize females, and (2) in the success of females in preventing monopolization by males. This opens up exciting future possibilities to investigate sexually antagonistic coevolution in a largely unstudied mating system. PMID:25213095
Bailey, Richard I; Innocenti, Paolo; Morrow, Edward H; Friberg, Urban; Qvarnström, Anna
2011-02-28
The evolution of female choice mechanisms favouring males of their own kind is considered a crucial step during the early stages of speciation. However, although the genomics of mate choice may influence both the likelihood and speed of speciation, the identity and location of genes underlying assortative mating remain largely unknown. We used mate choice experiments and gene expression analysis of female Drosophila melanogaster to examine three key components influencing speciation. We show that the 1,498 genes in Zimbabwean female D. melanogaster whose expression levels differ when mating with more (Zimbabwean) versus less (Cosmopolitan strain) preferred males include many with high expression in the central nervous system and ovaries, are disproportionately X-linked and form a number of clusters with low recombination distance. Significant involvement of the brain and ovaries is consistent with the action of a combination of pre- and postcopulatory female choice mechanisms, while sex linkage and clustering of genes lead to high potential evolutionary rate and sheltering against the homogenizing effects of gene exchange between populations. Taken together our results imply favourable genomic conditions for the evolution of reproductive isolation through mate choice in Zimbabwean D. melanogaster and suggest that mate choice may, in general, act as an even more important engine of speciation than previously realized.
Wright, David J; Brouwer, Lyanne; Mannarelli, Maria-Elena; Burke, Terry; Komdeur, Jan; Richardson, David S
2016-01-01
The prevalence and significance of precopulatory mate choice remains keenly debated. The major histocompatibility complex (MHC) plays a key role in vertebrate adaptive immunity, and variation at the MHC influences individual survival. Although MHC-dependent mate choice has been documented in certain species, many other studies find no such pattern. This may be, at least in part, because in natural systems constraints may reduce the choices available to individuals and prevent full expression of underlying preferences. We used translocations to previously unoccupied islands to experimentally reduce constraints on female social mate choice in the Seychelles warbler ( Acrocephalus sechellensis ), a species in which patterns of MHC-dependent extrapair paternity (EPP), but not social mate choice, have been observed. We find no evidence of MHC-dependent social mate choice in the new populations. Instead, we find that older males and males with more microsatellite heterozygosity are more likely to have successfully paired. Our data cannot resolve whether these patterns in pairing were due to male-male competition or female choice. However, our research does suggest that female Seychelles warblers do not choose social mates using MHC class I to increase fitness. It may also indicate that the MHC-dependent EPP observed in the source population is probably due to mechanisms other than female precopulatory mate choice based on MHC cues.
2018-01-01
The use of medicinal plants mixed with yerba mate (Ilex paraguariensis) has been poorly studied in the ethnopharmacological literature so far. The Paraguayan Mestizo people have the longest tradition of using the yerba mate beverage, apart from the indigenous Guarani people. This study analyses the role of yerba mate and medicinal plants in the treatment of illnesses within Paraguayan folk medicine. The research was conducted among 100 Paraguayan migrants living in Misiones, Argentina, in 2014 and 2015. Yerba mate is not considered to be a medicinal plant by its own virtues but is culturally a very important type of medicinal plant intake. Ninety-seven species are employed in hot and cold versions of the yerba mate beverage. The most important species are as follows: Allophylus edulis (highest number of citations), Aristolochia triangularis (highest relative importance value), and Achyrocline flaccida and Achyrocline tomentosa (highest score by Index of Agreement on Species). The plants are used in the treatment of 18 medicinal categories, which include illnesses traditionally treated with plants: digestive system, humoral medicine, and relatively new health conditions such as diabetes, hypertension, and high levels of cholesterol. Newly incorporated medicinal plants, such as Moringa oleifera, are ingested predominantly or exclusively with the mate beverage. PMID:29725356
The Perfect Mate for Safe Fueling
NASA Technical Reports Server (NTRS)
2004-01-01
Referred to as the "lifeline for any space launch vehicle" by NASA Space Launch Initiative Program Manager Warren Wiley, an umbilical is a large device that transports power, communications, instrument readings, and fluids such as propellants, pressurization gases, and coolants from one source to another. Numerous launch vehicles, planetary systems, and rovers require umbilical "mating". This process is a driving factor for dependable and affordable space access. With future-generation space vehicles in mind, NASA recently designed a smart, automated method for quickly and reliably mating and demating electrical and fluid umbilical connectors. The new umbilical concept is expected to replace NASA s traditional umbilical systems that release at vehicle lift-off (T-0). The idea is to increase safety by automatically performing hazardous tasks, thus reducing potential failure modes and the time and labor hours necessary to prepare for launch. The new system will also be used as a test bed for quick disconnect development and for advance control and leak detection. It incorporates concepts such as a secondary mate plate, robotic machine vision, and compliant motor motion control, and is destined to advance usage of automated umbilicals in a variety of aerospace and commercial applications.
Sabattini, E; Bisgaard, K; Ascani, S; Poggi, S; Piccioli, M; Ceccarelli, C; Pieri, F; Fraternali-Orcioni, G; Pileri, S A
1998-07-01
To assess a newly developed immunohistochemical detection system, the EnVision++. A large series of differently processed normal and pathological samples and 53 relevant monoclonal antibodies were chosen. A chessboard titration assay was used to compare the results provided by the EnVision++ system with those of the APAAP, CSA, LSAB, SABC, and ChemMate methods, when applied either manually or in a TechMate 500 immunostainer. With the vast majority of the antibodies, EnVision++ allowed two- to fivefold higher dilutions than the APAAP, LSAB, SABC, and ChemMate techniques, the staining intensity and percentage of expected positive cells being the same. With some critical antibodies (such as the anti-CD5), it turned out to be superior in that it achieved consistently reproducible results with differently fixed or overfixed samples. Only the CSA method, which includes tyramide based enhancement, allowed the same dilutions as the EnVision++ system, and in one instance (with the anti-cyclin D1 antibody) represented the gold standard. The EnVision++ is an easy to use system, which avoids the possibility of disturbing endogenous biotin and lowers the cost per test by increasing the dilutions of the primary antibodies. Being a two step procedure, it reduces both the assay time and the workload.
Sabattini, E; Bisgaard, K; Ascani, S; Poggi, S; Piccioli, M; Ceccarelli, C; Pieri, F; Fraternali-Orcioni, G; Pileri, S A
1998-01-01
AIM: To assess a newly developed immunohistochemical detection system, the EnVision++. METHODS: A large series of differently processed normal and pathological samples and 53 relevant monoclonal antibodies were chosen. A chessboard titration assay was used to compare the results provided by the EnVision++ system with those of the APAAP, CSA, LSAB, SABC, and ChemMate methods, when applied either manually or in a TechMate 500 immunostainer. RESULTS: With the vast majority of the antibodies, EnVision++ allowed two- to fivefold higher dilutions than the APAAP, LSAB, SABC, and ChemMate techniques, the staining intensity and percentage of expected positive cells being the same. With some critical antibodies (such as the anti-CD5), it turned out to be superior in that it achieved consistently reproducible results with differently fixed or overfixed samples. Only the CSA method, which includes tyramide based enhancement, allowed the same dilutions as the EnVision++ system, and in one instance (with the anti-cyclin D1 antibody) represented the gold standard. CONCLUSIONS: The EnVision++ is an easy to use system, which avoids the possibility of disturbing endogenous biotin and lowers the cost per test by increasing the dilutions of the primary antibodies. Being a two step procedure, it reduces both the assay time and the workload. Images PMID:9797726
Orteiza, N; Linder, J E; Rice, W R
2005-09-01
The empirical foundation for sexual conflict theory is the data from many different taxa demonstrating that females are harmed while interacting with males. However, the interpretation of this keystone evidence has been challenged because females may more than counterbalance the direct costs of interacting with males by the indirect benefits of obtaining higher quality genes for their offspring. A quantification of this trade-off is critical to resolve the controversy and is presented here. A multi-generation fitness assay in the Drosophila melanogaster laboratory model system was used to quantify both the direct costs to females due to interactions with males and indirect benefits via sexy sons. We specifically focus on the interactions that occur between males and nonvirgin females. In the laboratory environment of our base population, females mate soon after eclosion and store sufficient sperm for their entire lifetime, yet males persistently court these nonvirgin females and frequently succeed in re-mating them. Females may benefit from these interactions despite direct costs to their lifetime fecundity if re-mating allows them to trade-up to mates of higher genetic quality and thereby secure indirect benefits for their offspring. We found that direct costs of interactions between males and nonvirgin females substantially exceeded indirect benefits through sexy sons. These data, in combination with past studies of the good genes route of indirect benefits, demonstrate that inter-sexual interactions drive sexually antagonistic co-evolution in this model system.
Holtmann, B; Grosser, S; Lagisz, M; Johnson, S L; Santos, E S A; Lara, C E; Robertson, B C; Nakagawa, S
2016-02-01
Quantifying the variation in behaviour-related genes within and between populations provides insight into how evolutionary processes shape consistent behavioural traits (i.e. personality). Deliberate introductions of non-native species offer opportunities to investigate how such genes differ between native and introduced populations and how polymorphisms in the genes are related to variation in behaviour. Here, we compared the genetic variation of the two 'personality' genes, DRD4 and SERT, between a native (United Kingdom, UK) and an introduced (New Zealand, NZ) population of dunnocks, Prunella modularis. The NZ population showed a significantly lower number of single nucleotide polymorphisms (SNPs) compared to the UK population. Standardized F'st estimates of the personality genes and neutral microsatellites indicate that selection (anthropogenic and natural) probably occurred during and post the introduction event. Notably, the largest genetic differentiation was found in the intronic regions of the genes. In the NZ population, we also examined the association between polymorphisms in DRD4 and SERT and two highly repeatable behavioural traits: flight-initiation distance and mating status (promiscuous females and cobreeding males). We found 38 significant associations (for different allele effect models) between the two behavioural traits and the studied genes. Further, 22 of the tested associations showed antagonistic allele effects for males and females. Our findings illustrate how introduction events and accompanying ecological changes could influence the genetic diversity of behaviour-related genes. © 2015 John Wiley & Sons Ltd.
Funayama, Risa; Sugiura, Motoaki; Sassa, Yuko; Jeong, Hyeonjeong; Wakusawa, Keisuke; Horie, Kaoru; Sato, Shigeru; Kawashima, Ryuta
2012-01-01
Mate choice is an example of sophisticated daily decision making supported by multiple componential processes. In mate-choice literature, different characteristics of the value dimensions, including the sex difference in the value dimensions, and the involvement of self-assessment due to the mutual nature of the choice, have been suggested. We examined whether the brain-activation pattern during virtual mate choice would be congruent with these characteristics in terms of stimulus selectivity and activated brain regions. In measuring brain activity, young men and women were shown two pictures of either faces or behaviors, and they indicated which person they would choose either as a spouse or as a friend. Activation selective to spouse choice was observed face-selectively in men's amygdala and behavior-selectively in women's motor system. During both partner-choice conditions, behavior-selective activation was observed in the temporoparietal regions. Taking the available knowledge of these regions into account, these results are congruent with the suggested characteristics of value dimensions for physical attractiveness, parenting resources, and beneficial personality traits for a long-lasting relationship, respectively. The medial prefrontal and posterior cingulate cortices were nonselectively activated during the partner choices, suggesting the involvement of a self-assessment process. The results thus provide neuroscientific support for the multi-component mate-choice mechanism.
Gruenthal, Kristen M; Drawbridge, Mark A
2012-06-01
The evolutionary effects captive-bred individuals that can have on wild conspecifics are necessary considerations for stock enhancement programs, but breeding protocols are often developed without the knowledge of realized reproductive behavior. To help fill that gap, parentage was assigned to offspring produced by a freely mating group of 50 white seabass (Atractoscion nobilis), a representative broadcast spawning marine finfish cultured for conservation. Similar to the well-known and closely related red drum (Sciaenops ocellatus), A. nobilis exhibited large variation in reproductive success. More males contributed and contributed more equally than females within and among spawns in a mating system best described as lottery polygyny. Two females produced 27% of the seasonal offspring pool and female breeding effective size averaged 1.85 per spawn and 12.38 seasonally, whereas male breeding effective size was higher (6.42 and 20.87, respectively), with every male contributing 1-7% of offspring. Further, females batch spawned every 1-5 weeks, while males displayed continuous reproductive readiness. Sex-specific mating strategies resulted in multiple successful mate pairings and a breeding effective to census size ratio of ≥0.62. Understanding a depleted species' mating system allowed management to more effectively utilize parental genetic variability for culture, but the fitness consequences of long-term stocking can be difficult to address.
Ellis, William; FitzGibbon, Sean; Pye, Geoff; Whipple, Bill; Barth, Ben; Johnston, Stephen; Seddon, Jenny; Melzer, Alistair; Higgins, Damien; Bercovitch, Fred
2015-01-01
Despite being a charismatic and well-known species, the social system of the koala (Phascolarctos cinereus--the only extant member of the family Phascolarctidae) is poorly known and much of the koala's sociality and mating behaviors remain un-quantified. We evaluated these using proximity logging-GPS enabled tracking collars on wild koalas and discuss their implications for the mating system of this species. The frequency and duration of male-female encounters increased during the breeding season, with male-male encounters quite uncommon, suggesting little direct mating competition. By comparison, female-female interactions were very common across both seasons. Body mass of males was not correlated with their interactions with females during the breeding season, although male size is associated with a variety of acoustic parameters indicating individuality. We hypothesise that vocal advertising reduces the likelihood of male-male encounters in the breeding season while increasing the rate of male-female encounters. We suggest that male mating-season bellows function to reduce physical confrontations with other males allowing them to space themselves apart, while, at the same time, attracting females. We conclude that indirect male-male competition, female mate choice, and possibly female competition, mediate sexual selection in koalas.
Food, audience and sex effects on pinyon jay (Gymnorhinus cyanocephalus) communication.
Dahlin, C R; Balda, R P; Slobodchikoff, C
2005-01-31
Pinyon jays (Gymnorhinus cyanocephalus) have a complex social system that may require a complex communication system. They need to interact with multiple flock members, and they form life-long pair-bonds. We researched whether pinyon jays would selectively vocalize depending on the presence or absence of food and certain flock members. We recorded the vocalizations of nine pinyon jays (four pair-bonds and one single male) in response to different audience types. The calls of the test bird were recorded after it was given either an empty food cup or one containing 50 pinyon pine (Pinus edulis) seeds, and the bird was in the presence of one of the following audience types: (1) two males and two females including subject's mate; (2) two males and two females excluding subject's mate; (3) four males excluding mate; (4) three females excluding mate; and (5) no audience. Birds gave fewer calls when there was food. When alone, birds called in a manner that may maximize long-distance transmission. Trends indicate that birds call differently to their mate. A sex effect was also found in that males and females called in a distinct manner, possibly reflecting differences in dominance status. Overall, birds responded to the presence or absence of an audience.
General view of the interior of the Vehicle Assembly Building ...
General view of the interior of the Vehicle Assembly Building showing the External Tank mated to the Solid Rocket Boosters awaiting the arrival and mating of the Orbiter Discovery. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Garrabou, Xavier; Beck, Tobias; Hilvert, Donald
2015-05-04
Recent advances in computational design have enabled the development of primitive enzymes for a range of mechanistically distinct reactions. Here we show that the rudimentary active sites of these catalysts can give rise to useful chemical promiscuity. Specifically, RA95.5-8, designed and evolved as a retro-aldolase, also promotes asymmetric Michael additions of carbanions to unsaturated ketones with high rates and selectivities. The reactions proceed by amine catalysis, as indicated by mutagenesis and X-ray data. The inherent flexibility and tunability of this catalyst should make it a versatile platform for further optimization and/or mechanistic diversification by directed evolution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Casellas, Rafael; Basu, Uttiya; Yewdell, William T.; Chaudhuri, Jayanta; Robbiani, Davide F.; Di Noia, Javier M.
2016-01-01
As B cells engage in the immune response they express the deaminase AID to initiate the hypermutation and recombination of immunoglobulin genes, which are crucial processes for the efficient recognition and disposal of pathogens, However, AID must be tightly controlled in B cells to minimize off-targeting mutations, which can drive chromosomal translocations and the development of B cell malignancies, such as lymphomas. Recent genomic and biochemical analyses have begun to unravel the crucial question of how AID-mediated deamination is targeted outside immunoglobulin genes. Here, we discuss the transcriptional and topological features that are emerging as key drivers of AID promiscuous activity. PMID:26898111
Avise, John C.; Liu, Jin-Xian
2010-01-01
We construct a verbal and graphical theory (the “fecundity-limitation hypothesis”) about how constraints on the brooding space for embryos probably truncate individual fecundity in male-pregnant and female-pregnant species in ways that should differentially influence selection pressures for multiple mating by males or by females. We then review the empirical literature on genetically deduced rates of multiple mating by the embryo-brooding parent in various fish species with three alternative categories of pregnancy: internal gestation by males, internal gestation by females, and external gestation (in nests) by males. Multiple mating by the brooding gender was common in all three forms of pregnancy. However, rates of multiple mating as well as mate numbers for the pregnant parent averaged higher in species with external as compared with internal male pregnancy, and also for dams in female-pregnant species versus sires in male-pregnant species. These outcomes are all consistent with the theory that different types of pregnancy have predictable consequences for a parent's brood space, its effective fecundity, its opportunities and rewards for producing half-sib clutches, and thereby its exposure to selection pressures for seeking multiple mates. Overall, we try to fit these fecundity-limitation phenomena into a broader conceptual framework for mating-system evolution that also includes anisogamy, sexual-selection gradients, parental investment, and other selective factors that can influence the relative proclivities of males versus females to seek multiple sexual partners. PMID:20956296
Polyandry and sex-specific gene expression
Mank, Judith E.; Wedell, Nina; Hosken, David J.
2013-01-01
Polyandry is widespread in nature, and has important evolutionary consequences for the evolution of sexual dimorphism and sexual conflict. Although many of the phenotypic consequences of polyandry have been elucidated, our understanding of the impacts of polyandry and mating systems on the genome is in its infancy. Polyandry can intensify selection on sexual characters and generate more intense sexual conflict. This has consequences for sequence evolution, but also for sex-biased gene expression, which acts as a link between mating systems, sex-specific selection and the evolution of sexual dimorphism. We discuss this and the remarkable confluence of sexual-conflict theory and patterns of gene expression, while also making predictions about transcription patterns, mating systems and sexual conflict. Gene expression is a key link in the genotype–phenotype chain, and although in its early stages, understanding the sexual selection–transcription relationship will provide significant insights into this critical association. PMID:23339238
Host mating system and the spread of a disease-resistant allele in a population
DeAngelis, D.L.; Koslow, Jennifer M.; Jiang, J.; Ruan, S.
2008-01-01
The model presented here modifies a susceptible-infected (SI) host-pathogen model to determine the influence of mating system on the outcome of a host-pathogen interaction. Both deterministic and stochastic (individual-based) versions of the model were used. This model considers the potential consequences of varying mating systems on the rate of spread of both the pathogen and resistance alleles within the population. We assumed that a single allele for disease resistance was sufficient to confer complete resistance in an individual, and that both homozygote and heterozygote resistant individuals had the same mean birth and death rates. When disease invaded a population with only an initial small fraction of resistant genes, inbreeding (selfing) tended to increase the probability that the disease would soon be eliminated from a small population rather than become endemic, while outcrossing greatly increased the probability that the population would become extinct due to the disease.
Link!: Potential Field Guidance Algorithm for In-Flight Linking of Multi-Rotor Aircraft
NASA Technical Reports Server (NTRS)
Cooper, John R.; Rothhaar, Paul M.
2017-01-01
Link! is a multi-center NASA e ort to study the feasibility of multi-aircraft aerial docking systems. In these systems, a group of vehicles physically link to each other during flight to form a larger ensemble vehicle with increased aerodynamic performance and mission utility. This paper presents a potential field guidance algorithm for a group of multi-rotor vehicles to link to each other during flight. The linking is done in pairs. Each vehicle first selects a mate. Then the potential field is constructed with three rules: move towards the mate, avoid collisions with non-mates, and stay close to the rest of the group. Once a pair links, they are then considered to be a single vehicle. After each pair is linked, the process repeats until there is only one vehicle left. The paper contains simulation results for a system of 16 vehicles.
Steffan, Shawn A; Chasen, Elissa M; Deutsch, Annie E; Mafra-Neto, Agenor
2017-01-01
Pheromone-based mating disruption has proven to be a powerful pest management tactic in many cropping systems. However, in the cranberry system, a viable mating disruption program does not yet exist. There are commercially available pheromones for several of the major pests of cranberries, including the cranberry fruitworm, Acrobasis vaccinii Riley (Lepidoptera: Pyralidae) and blackheaded fireworm, Rhopobota naevana (Hübner) (Lepidoptera: Tortricidae). Previous studies have shown that mating disruption represents a promising approach for R. naevana management although carrier and delivery technologies have remained unresolved. The present study examined the suitability of Specialized Pheromone & Lure Application Technology (SPLAT; ISCA Technologies, Inc., Riverside, CA), a proprietary wax and oil blend, to serve as a pheromone carrier in the cranberry system. In 2013 and 2014, we tested a blend of pheromones targeting A. vaccinii and R. naevana in field-scale, replicated trials. Pheromones were loaded into SPLAT and the resulting "SPLAT BFW CFW" formulation was deployed in commercial cranberry marshes. We compared moth trap-catch counts within SPLAT-treated blocks to those of conventionally managed blocks. In 2013, applications of SPLAT BFW CFW resulted in highly successful disruption of R. naevana and promising, though inconsistent, disruption of A. vaccinii. To improve disruption of A. vaccinii, the pheromone load was increased in 2014, providing 92% and 74% reductions in trap-catch for R. naevana and A. vaccinii, respectively. Importantly, larval infestation rates in SPLAT-treated blocks were lower than those of conventionally managed blocks. These results suggest that a multispecies mating disruption system (SPLAT BFW CFW) may represent an effective pesticide-alternative for serious pests of cranberries. Published by Oxford University Press on behalf of the Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chrencik, Jill E.; Orans, Jillian; Moore, Linda B.
The human nuclear xenobiotic receptor, pregnane X receptor (PXR), detects a variety of structurally distinct endogenous and xenobiotic compounds and controls expression of genes central to drug and cholesterol metabolism. The macrolide antibiotic rifampicin, a front-line treatment for tuberculosis, is an established PXR agonist and, at 823 Da, is one of the largest known ligands for the receptor. We present the 2.8 {angstrom} crystal structure of the ligand-binding domain of human PXR in complex with rifampicin. We also use structural and mutagenesis data to examine the origins of the directed promiscuity exhibited by the PXRs across species. Three structurally flexiblemore » loops adjacent to the ligand-binding pocket of PXR are disordered in this crystal structure, including the 200-210 region that is part of a sequence insert novel to the promiscuous PXRs relative to other members of the nuclear receptor superfamily. The 4-methyl-1-piperazinyl ring of rifampicin, which would lie adjacent to the disordered protein regions, is also disordered and not observed in the structure. Taken together, our results indicate that one wall of the PXR ligand-binding cavity can remain flexible even when the receptor is in complex with an activating ligand. These observations highlight the key role that structural flexibility plays in PXR's promiscuous response to xenobiotics.« less
A parasitic selfish gene that affects host promiscuity.
Giraldo-Perez, Paulina; Goddard, Matthew R
2013-11-07
Selfish genes demonstrate transmission bias and invade sexual populations despite conferring no benefit to their hosts. While the molecular genetics and evolutionary dynamics of selfish genes are reasonably well characterized, their effects on hosts are not. Homing endonuclease genes (HEGs) are one well-studied family of selfish genes that are assumed to be benign. However, we show that carrying HEGs is costly for Saccharomyces cerevisiae, demonstrating that these genetic elements are not necessarily benign but maybe parasitic. We estimate a selective load of approximately 1-2% in 'natural' niches. The second aspect we examine is the ability of HEGs to affect hosts' sexual behaviour. As all selfish genes critically rely on sex for spread, then any selfish gene correlated with increased host sexuality will enjoy a transmission advantage. While classic parasites are known to manipulate host behaviour, we are not aware of any evidence showing a selfish gene is capable of affecting host promiscuity. The data presented here show a selfish element may increase the propensity of its eukaryote host to undergo sex and along with increased rates of non-Mendelian inheritance, this may counterbalance mitotic selective load and promote spread. Demonstration that selfish genes are correlated with increased promiscuity in eukaryotes connects with ideas suggesting that selfish genes promoted the evolution of sex initially.
Model-driven discovery of underground metabolic functions in Escherichia coli.
Guzmán, Gabriela I; Utrilla, José; Nurk, Sergey; Brunk, Elizabeth; Monk, Jonathan M; Ebrahim, Ali; Palsson, Bernhard O; Feist, Adam M
2015-01-20
Enzyme promiscuity toward substrates has been discussed in evolutionary terms as providing the flexibility to adapt to novel environments. In the present work, we describe an approach toward exploring such enzyme promiscuity in the space of a metabolic network. This approach leverages genome-scale models, which have been widely used for predicting growth phenotypes in various environments or following a genetic perturbation; however, these predictions occasionally fail. Failed predictions of gene essentiality offer an opportunity for targeting biological discovery, suggesting the presence of unknown underground pathways stemming from enzymatic cross-reactivity. We demonstrate a workflow that couples constraint-based modeling and bioinformatic tools with KO strain analysis and adaptive laboratory evolution for the purpose of predicting promiscuity at the genome scale. Three cases of genes that are incorrectly predicted as essential in Escherichia coli--aspC, argD, and gltA--are examined, and isozyme functions are uncovered for each to a different extent. Seven isozyme functions based on genetic and transcriptional evidence are suggested between the genes aspC and tyrB, argD and astC, gabT and puuE, and gltA and prpC. This study demonstrates how a targeted model-driven approach to discovery can systematically fill knowledge gaps, characterize underground metabolism, and elucidate regulatory mechanisms of adaptation in response to gene KO perturbations.
A parasitic selfish gene that affects host promiscuity
Giraldo-Perez, Paulina; Goddard, Matthew R.
2013-01-01
Selfish genes demonstrate transmission bias and invade sexual populations despite conferring no benefit to their hosts. While the molecular genetics and evolutionary dynamics of selfish genes are reasonably well characterized, their effects on hosts are not. Homing endonuclease genes (HEGs) are one well-studied family of selfish genes that are assumed to be benign. However, we show that carrying HEGs is costly for Saccharomyces cerevisiae, demonstrating that these genetic elements are not necessarily benign but maybe parasitic. We estimate a selective load of approximately 1–2% in ‘natural’ niches. The second aspect we examine is the ability of HEGs to affect hosts' sexual behaviour. As all selfish genes critically rely on sex for spread, then any selfish gene correlated with increased host sexuality will enjoy a transmission advantage. While classic parasites are known to manipulate host behaviour, we are not aware of any evidence showing a selfish gene is capable of affecting host promiscuity. The data presented here show a selfish element may increase the propensity of its eukaryote host to undergo sex and along with increased rates of non-Mendelian inheritance, this may counterbalance mitotic selective load and promote spread. Demonstration that selfish genes are correlated with increased promiscuity in eukaryotes connects with ideas suggesting that selfish genes promoted the evolution of sex initially. PMID:24048156
Nonspecific Symbiosis Between Sophora flavescens and Different Rhizobia.
Liu, Yuan Hui; Jiao, Yin Shan; Liu, Li Xue; Wang, Dan; Tian, Chang Fu; Wang, En Tao; Wang, Lei; Chen, Wen Xin; Wu, Shang Ying; Guo, Bao Lin; Guan, Zha Gen; Poinsot, Véréna; Chen, Wen Feng
2018-02-01
We explored the genetic basis of the promiscuous symbiosis of Sophora flavescens with diverse rhizobia. To determine the impact of Nod factors (NFs) on the symbiosis of S. flavescens, nodulation-related gene mutants of representative rhizobial strains were generated. Strains with mutations in common nodulation genes (nodC, nodM, and nodE) failed to nodulate S. flavescens, indicating that the promiscuous nodulation of this plant is strictly dependent on the basic NF structure. Mutations of the NF decoration genes nodH, nodS, nodZ, and noeI did not affect the nodulation of S. flavescens, but these mutations affected the nitrogen-fixation efficiency of nodules. Wild-type Bradyrhizobium diazoefficiens USDA110 cannot nodulate S. flavescens, but we obtained 14 Tn5 mutants of B. diazoefficiens that nodulated S. flavescens. This suggested that the mutations had disrupted a negative regulator that prevents nodulation of S. flavescens, leading to nonspecific nodulation. For Ensifer fredii CCBAU 45436 mutants, the minimal NF structure was sufficient for nodulation of soybean and S. flavescens. In summary, the mechanism of promiscuous symbiosis of S. flavescens with rhizobia might be related to its nonspecific recognition of NF structures, and the host specificity of rhizobia may also be controlled by currently unknown nodulation-related genes.
Krakow, Melinda M; Jensen, Jakob D; Carcioppolo, Nick; Weaver, Jeremy; Liu, Miao; Guntzviller, Lisa M
2015-01-01
To determine whether five psychosocial variables, namely, religiosity, morality, perceived promiscuity, cancer worry frequency, and cancer worry severity, predict young women's intentions to receive the human papillomavirus (HPV) vaccination. Female undergraduate students (n=408) completed an online survey. Questions pertaining to hypothesized predictors were analyzed through bivariate correlations and hierarchical regression equations. Regressions examined whether the five psychosocial variables of interest predicted intentions to vaccinate above and beyond controls. Proposed interactions among predictor variables were also tested. Study findings supported cancer worry as a direct predictor of HPV vaccination intention, and religiosity and sexual experience as moderators of the relationship between concerns of promiscuity reputation and intentions to vaccinate. One dimension of cancer worry (severity) emerged as a particularly robust predictor for this population. This study provides support for several important, yet understudied, factors contributing to HPV vaccination intentions among college-aged women: cancer worry severity and religiosity. Future research should continue to assess the predictive contributions of these variables and evaluate how messages and campaigns to increase HPV vaccination uptake can utilize religious involvement and worry about cancer to promote more effectively HPV vaccination as a cancer prevention strategy. Copyright © 2015 Jacobs Institute of Women's Health. Published by Elsevier Inc. All rights reserved.
Adaptive evolution of sexual systems in pedunculate barnacles
Yusa, Yoichi; Yoshikawa, Mai; Kitaura, Jun; Kawane, Masako; Ozaki, Yuki; Yamato, Shigeyuki; Høeg, Jens T.
2012-01-01
How and why diverse sexual systems evolve are fascinating evolutionary questions, but few empirical studies have dealt with these questions in animals. Pedunculate (gooseneck) barnacles show such diversity, including simultaneous hermaphroditism, coexistence of dwarf males and hermaphrodites (androdioecy), and coexistence of dwarf males and females (dioecy). Here, we report the first phylogenetically controlled test of the hypothesis that the ultimate cause of the diverse sexual systems and presence of dwarf males in this group is limited mating opportunities for non-dwarf individuals, owing to mating in small groups. Within the pedunculate barnacle phylogeny, dwarf males and females have evolved repeatedly. Females are more likely to evolve in androdioecious than hermaphroditic populations, suggesting that evolution of dwarf males has preceded that of females in pedunculates. Both dwarf males and females are associated with a higher proportion of solitary individuals in the population, corroborating the hypothesis that limited mating opportunities have favoured evolution of these diverse sexual systems, which have puzzled biologists since Darwin. PMID:21881138
Social biases determine spatiotemporal sparseness of ciliate mating heuristics.
Clark, Kevin B
2012-01-01
Ciliates become highly social, even displaying animal-like qualities, in the joint presence of aroused conspecifics and nonself mating pheromones. Pheromone detection putatively helps trigger instinctual and learned courtship and dominance displays from which social judgments are made about the availability, compatibility, and fitness representativeness or likelihood of prospective mates and rivals. In earlier studies, I demonstrated the heterotrich Spirostomum ambiguum improves mating competence by effecting preconjugal strategies and inferences in mock social trials via behavioral heuristics built from Hebbian-like associative learning. Heuristics embody serial patterns of socially relevant action that evolve into ordered, topologically invariant computational networks supporting intra- and intermate selection. S. ambiguum employs heuristics to acquire, store, plan, compare, modify, select, and execute sets of mating propaganda. One major adaptive constraint over formation and use of heuristics involves a ciliate's initial subjective bias, responsiveness, or preparedness, as defined by Stevens' Law of subjective stimulus intensity, for perceiving the meaningfulness of mechanical pressures accompanying cell-cell contacts and additional perimating events. This bias controls durations and valences of nonassociative learning, search rates for appropriate mating strategies, potential net reproductive payoffs, levels of social honesty and deception, successful error diagnosis and correction of mating signals, use of insight or analysis to solve mating dilemmas, bioenergetics expenditures, and governance of mating decisions by classical or quantum statistical mechanics. I now report this same social bias also differentially affects the spatiotemporal sparseness, as measured with metric entropy, of ciliate heuristics. Sparseness plays an important role in neural systems through optimizing the specificity, efficiency, and capacity of memory representations. The present findings indicate sparseness performs a similar function in single aneural cells by tuning the size and density of encoded computational architectures useful for decision making in social contexts.
Social biases determine spatiotemporal sparseness of ciliate mating heuristics
2012-01-01
Ciliates become highly social, even displaying animal-like qualities, in the joint presence of aroused conspecifics and nonself mating pheromones. Pheromone detection putatively helps trigger instinctual and learned courtship and dominance displays from which social judgments are made about the availability, compatibility, and fitness representativeness or likelihood of prospective mates and rivals. In earlier studies, I demonstrated the heterotrich Spirostomum ambiguum improves mating competence by effecting preconjugal strategies and inferences in mock social trials via behavioral heuristics built from Hebbian-like associative learning. Heuristics embody serial patterns of socially relevant action that evolve into ordered, topologically invariant computational networks supporting intra- and intermate selection. S. ambiguum employs heuristics to acquire, store, plan, compare, modify, select, and execute sets of mating propaganda. One major adaptive constraint over formation and use of heuristics involves a ciliate’s initial subjective bias, responsiveness, or preparedness, as defined by Stevens’ Law of subjective stimulus intensity, for perceiving the meaningfulness of mechanical pressures accompanying cell-cell contacts and additional perimating events. This bias controls durations and valences of nonassociative learning, search rates for appropriate mating strategies, potential net reproductive payoffs, levels of social honesty and deception, successful error diagnosis and correction of mating signals, use of insight or analysis to solve mating dilemmas, bioenergetics expenditures, and governance of mating decisions by classical or quantum statistical mechanics. I now report this same social bias also differentially affects the spatiotemporal sparseness, as measured with metric entropy, of ciliate heuristics. Sparseness plays an important role in neural systems through optimizing the specificity, efficiency, and capacity of memory representations. The present findings indicate sparseness performs a similar function in single aneural cells by tuning the size and density of encoded computational architectures useful for decision making in social contexts. PMID:22482001
Smelling fit: scent marking exposes parasitic infection status in the banded mongoose.
Mitchell, Jessica; Cant, Michael A; Vitikainen, Emma I K; Nichols, Hazel J
2017-06-01
Preference for uninfected mates is presumed beneficial as it minimizes one's risk of contracting an infection and infecting one's offspring. In avian systems, visual ornaments are often used to indicate parasite burdens and facilitate mate choice. However, in mammals, olfactory cues have been proposed to act as a mechanism allowing potential mates to be discriminated by infection status. The effect of infection upon mammalian mate choice is mainly studied in captive rodents where experimental trials support preference for the odors of uninfected mates and some data suggest scent marking is reduced in individuals with high infection burdens. Nevertheless, whether such effects occur in nonmodel and wild systems remains poorly understood. Here, we investigate the interplay between parasite load (estimated using fecal egg counts) and scent marking behavior in a wild population of banded mongooses Mungos mungo . Focusing on a costly protozoan parasite of the genus Isospora and the nematode worm Toxocara , we first show that banded mongooses that engage in frequent, intensive scent marking have lower Isospora loads, suggesting marking behavior may be an indicator trait regarding infection status. We then use odor presentations to demonstrate that banded mongooses mark less in response to odors of opposite sexed individuals with high Isospora and Toxocara loads. As both of these parasites are known to have detrimental effects upon the health of preweaned young in other species, they would appear key targets to avoid during mate choice. Results provide support for scent as an important ornament and mechanism for advertising parasitic infection within wild mammals.
Temporal Genetic Dynamics of an Experimental, Biparental Field Population of Phytophthora capsici
Carlson, Maryn O.; Gazave, Elodie; Gore, Michael A.; Smart, Christine D.
2017-01-01
Defining the contributions of dispersal, reproductive mode, and mating system to the population structure of a pathogenic organism is essential to estimating its evolutionary potential. After introduction of the devastating plant pathogen, Phytophthora capsici, into a grower’s field, a lack of aerial spore dispersal restricts migration. Once established, coexistence of both mating types results in formation of overwintering recombinant oospores, engendering persistent pathogen populations. To mimic these conditions, in 2008, we inoculated a field with two P. capsici isolates of opposite mating type. We analyzed pathogenic isolates collected in 2009–2013 from this experimental population, using genome-wide single-nucleotide polymorphism markers. By tracking heterozygosity across years, we show that the population underwent a generational shift; transitioning from exclusively F1 in 2009–2010, to multi-generational in 2011, and ultimately all inbred in 2012–2013. Survival of F1 oospores, characterized by heterozygosity excess, coupled with a low rate of selfing, delayed declines in heterozygosity due to inbreeding and attainment of equilibrium genotypic frequencies. Large allele and haplotype frequency changes in specific genomic regions accompanied the generational shift, representing putative signatures of selection. Finally, we identified an approximately 1.6 Mb region associated with mating type determination, constituting the first detailed genomic analysis of a mating type region (MTR) in Phytophthora. Segregation patterns in the MTR exhibited tropes of sex-linkage, where maintenance of allele frequency differences between isolates of opposite mating type was associated with elevated heterozygosity despite inbreeding. Characterizing the trajectory of this experimental system provides key insights into the processes driving persistent, sexual pathogen populations. PMID:28348576
Palmer, Jonathan M; Kubatova, Alena; Novakova, Alena; Minnis, Andrew M; Kolarik, Miroslav; Lindner, Daniel L
2014-07-21
White-nose syndrome (WNS) of bats has devastated bat populations in eastern North America since its discovery in 2006. WNS, caused by the fungus Pseudogymnoascus destructans, has spread quickly in North America and has become one of the most severe wildlife epidemics of our time. While P. destructans is spreading rapidly in North America, nothing is known about the sexual capacity of this fungus. To gain insight into the genes involved in sexual reproduction, we characterized the mating-type locus (MAT) of two Pseudogymnoascus spp. that are closely related to P. destructans and homothallic (self-fertile). As with other homothallic Ascomycota, the MAT locus of these two species encodes a conserved α-box protein (MAT1-1-1) as well as two high-mobility group (HMG) box proteins (MAT1-1-3 and MAT1-2-1). Comparisons with the MAT locus of the North American isolate of P. destructans (the ex-type isolate) revealed that this isolate of P. destructans was missing a clear homolog of the conserved HMG box protein (MAT1-2-1). These data prompted the discovery and molecular characterization of a heterothallic mating system in isolates of P. destructans from the Czech Republic. Both mating types of P. destructans were found to coexist within hibernacula, suggesting the presence of mating populations in Europe. Although populations of P. destructans in North America are thought to be clonal and of one mating type, the potential for sexual recombination indicates that continued vigilance is needed regarding introductions of additional isolates of this pathogen. Copyright © 2014 Palmer et al.
Palmer, Jonathan M.; Kubatova, Alena; Novakova, Alena; Minnis, Andrew M.; Kolarik, Miroslav; Lindner, Daniel L.
2014-01-01
White-nose syndrome (WNS) of bats has devastated bat populations in eastern North America since its discovery in 2006. WNS, caused by the fungus Pseudogymnoascus destructans, has spread quickly in North America and has become one of the most severe wildlife epidemics of our time. While P. destructans is spreading rapidly in North America, nothing is known about the sexual capacity of this fungus. To gain insight into the genes involved in sexual reproduction, we characterized the mating-type locus (MAT) of two Pseudogymnoascus spp. that are closely related to P. destructans and homothallic (self-fertile). As with other homothallic Ascomycota, the MAT locus of these two species encodes a conserved α-box protein (MAT1-1-1) as well as two high-mobility group (HMG) box proteins (MAT1-1-3 and MAT1-2-1). Comparisons with the MAT locus of the North American isolate of P. destructans (the ex-type isolate) revealed that this isolate of P. destructans was missing a clear homolog of the conserved HMG box protein (MAT1-2-1). These data prompted the discovery and molecular characterization of a heterothallic mating system in isolates of P. destructans from the Czech Republic. Both mating types of P. destructans were found to coexist within hibernacula, suggesting the presence of mating populations in Europe. Although populations of P. destructans in North America are thought to be clonal and of one mating type, the potential for sexual recombination indicates that continued vigilance is needed regarding introductions of additional isolates of this pathogen. PMID:25053709
Effective Size of Nonrandom Mating Populations
Caballero, A.; Hill, W. G.
1992-01-01
Nonrandom mating whereby parents are related is expected to cause a reduction in effective population size because their gene frequencies are correlated and this will increase the genetic drift. The published equation for the variance effective size, N(e), which includes the possibility of nonrandom mating, does not take into account such a correlation, however. Further, previous equations to predict effective sizes in populations with partial sib mating are shown to be different, but also incorrect. In this paper, a corrected form of these equations is derived and checked by stochastic simulation. For the case of stable census number, N, and equal progeny distributions for each sex, the equation is & where S(k)(2) is the variance of family size and α is the departure from Hardy-Weinberg proportions. For a Poisson distribution of family size (S(k)(2) = 2), it reduces to N(e) = N/(1 + α), as when inbreeding is due to selfing. When nonrandom mating occurs because there is a specified system of partial inbreeding every generation, α can be substituted by Wright's F(IS) statistic, to give the effective size as a function of the proportion of inbred mates. PMID:1582565
Integration of Spectral Reflectance across the Plumage: Implications for Mating Patterns
Laczi, Miklós; Török, János; Rosivall, Balázs; Hegyi, Gergely
2011-01-01
Background In complex sexual signaling systems such as plumage color, developmental or genetic links may occur among seemingly distinct traits. However, the interrelations of such traits and the functional significance of their integration rarely have been examined. Methodology/Principal Findings We investigated the parallel variation of two reflectance descriptors (brightness and UV chroma) across depigmented and melanized plumage areas of collared flycatchers (Ficedula albicollis), and the possible role of integrated color signals in mate acquisition. We found moderate integration in brightness and UV chroma across the plumage, with similar correlation structures in the two sexes despite the strong sexual dichromatism. Patterns of parallel color change across the plumage were largely unrelated to ornamental white patch sizes, but they all showed strong assortative mating between the sexes. Comparing different types of assortative mating patterns for individual spectral variables suggested a distinct role for plumage-level color axes in mate acquisition. Conclusions/Significance Our results indicate that the plumage-level, parallel variation of coloration might play a role in mate acquisition. This study underlines the importance of considering potential developmental and functional integration among apparently different ornaments in studies of sexual selection. PMID:21853088
Intraspecific Variation in Female Sex Pheromone of the Codling Moth Cydia pomonella
Duménil, Claire; Judd, Gary J. R.; Bosch, Dolors; Baldessari, Mario; Gemeno, César; Groot, Astrid T.
2014-01-01
The codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), is a major pest of apple, pear and walnut orchards worldwide. This pest is often controlled using the biologically friendly control method known as pheromone-based mating disruption. Mating disruption likely exerts selection on the sexual communication system of codling moth, as male and female moths will persist in their attempt to meet and mate. Surprisingly little is known on the intraspecific variation of sexual communication in this species. We started an investigation to determine the level of individual variation in the female sex pheromone composition of this moth and whether variation among different populations might be correlated with use of mating disruption against those populations. By extracting pheromone glands of individual females from a laboratory population in Canada and from populations from apple orchards in Spain and Italy, we found significant between- and within-population variation. Comparing females that had been exposed to mating disruption, or not, revealed a significant difference in sex pheromone composition for two of the minor components. Overall, the intraspecific variation observed shows the potential for a shift in female sexual signal when selection pressure is high, as is the case with continuous use of mating disruption. PMID:26462935
Intraspecific Variation in Female Sex Pheromone of the Codling Moth Cydia pomonella.
Duménil, Claire; Judd, Gary J R; Bosch, Dolors; Baldessari, Mario; Gemeno, César; Groot, Astrid T
2014-09-26
The codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), is a major pest of apple, pear and walnut orchards worldwide. This pest is often controlled using the biologically friendly control method known as pheromone-based mating disruption. Mating disruption likely exerts selection on the sexual communication system of codling moth, as male and female moths will persist in their attempt to meet and mate. Surprisingly little is known on the intraspecific variation of sexual communication in this species. We started an investigation to determine the level of individual variation in the female sex pheromone composition of this moth and whether variation among different populations might be correlated with use of mating disruption against those populations. By extracting pheromone glands of individual females from a laboratory population in Canada and from populations from apple orchards in Spain and Italy, we found significant between- and within-population variation. Comparing females that had been exposed to mating disruption, or not, revealed a significant difference in sex pheromone composition for two of the minor components. Overall, the intraspecific variation observed shows the potential for a shift in female sexual signal when selection pressure is high, as is the case with continuous use of mating disruption.
Valtonen, Terhi M; Viitaniemi, Heidi; Rantala, Markus J
2010-05-01
Ecological immunology is based upon the notion that activation and use of the immune system is costly and should thus be traded off against other energy-demanding aspects of life history. Most of the studies on insects that have examined the possibility that mating results in trade-offs with immunity have shown that mating has immunosuppressive effects. The connection between mating and immunity has traditionally been investigated using indirect measures of immunity. However, studies that have assessed the effects of mating on the resistance against real pathogens have had conflicting results. A previous study on Tenebrio molitor showed that copulation decreases phenoloxidase activity in the haemolymph, and concluded that copulation corrupts immunity in this species. In the present study we tested whether mating also affects the ability of T. molitor to resist the entomopathogenic fungus, Beauveria bassiana. Interestingly, we found that mating enhanced resistance against the fungal infection and that the effect was stronger on males than females. Furthermore, we found that male beetles were overall more susceptible to the fungal infection than were females, indicating an immunological sex difference in immunity. Our study highlights the importance of the use of real pathogens and parasites in immuno-ecological studies.
Al-Attiyah, R; Mustafa, A S
2004-01-01
The secreted 24 kDa lipoprotein (LppX) is an antigen that is specific for Mycobacterium tuberculosis complex and M. leprae. The present study was carried out to identify the promiscuous T helper 1 (Th1)-cell epitopes of the M. tuberculosis LppX (MT24, Rv2945c) antigen by using 15 overlapping synthetic peptides (25 mers overlapping by 10 residues) covering the sequence of the complete protein. The analysis of Rv2945c sequence for binding to 51 alleles of nine serologically defined HLA-DR molecules, by using a virtual matrix-based prediction program (propred), showed that eight of the 15 peptides of Rv2945c were predicted to bind promiscuously to >/=10 alleles from more than or equal to three serologically defined HLA-DR molecules. The Th1-cell reactivity of all the peptides was assessed in antigen-induced proliferation and interferon-gamma (IFN-gamma)-secretion assays with peripheral blood mononuclear cells (PBMCs) from 37 bacille Calmette-Guérin (BCG)-vaccinated healthy subjects. The results showed that 17 of the 37 donors, which represented an HLA-DR-heterogeneous group, responded to one or more peptides of Rv2945c in the Th1-cell assays. Although each peptide stimulated PBMCs from one or more donors in the above assays, the best positive responses (12/17 (71%) responders) were observed with the peptide p14 (aa 196-220). This suggested a highly promiscuous presentation of p14 to Th1 cells. In addition, the sequence of p14 is completely identical among the LppX of M. tuberculosis, M. bovis and M. leprae, which further supports the usefulness of Rv2945c and p14 in the subunit vaccine design against both tuberculosis and leprosy.
Wiersma-Koch, Helen; Sunden, Fanny; Herschlag, Daniel
2013-12-23
Catalytic promiscuity, an evolutionary concept, also provides a powerful tool for gaining mechanistic insights into enzymatic reactions. Members of the alkaline phosphatase (AP) superfamily are highly amenable to such investigation, with several members having been shown to exhibit promiscuous activity for the cognate reactions of other superfamily members. Previous work has shown that nucleotide pyrophosphatase/phosphodiesterase (NPP) exhibits a >10⁶-fold preference for the hydrolysis of phosphate diesters over phosphate monoesters, and that the reaction specificity is reduced 10³-fold when the size of the substituent on the transferred phosphoryl group of phosphate diester substrates is reduced to a methyl group. Here we show additional specificity contributions from the binding pocket for this substituent (herein termed the R' substituent) that account for an additional ~250-fold differential specificity with the minimal methyl substituent. Removal of four hydrophobic side chains suggested on the basis of structural inspection to interact favorably with R' substituents decreases phosphate diester reactivity 10⁴-fold with an optimal diester substrate (R' = 5'-deoxythymidine) and 50-fold with a minimal diester substrate (R' = CH₃). These mutations also enhance the enzyme's promiscuous phosphate monoesterase activity by nearly an order of magnitude, an effect that is traced by mutation to the reduction of unfavorable interactions with the two residues closest to the nonbridging phosphoryl oxygen atoms. The quadruple R' pocket mutant exhibits the same activity toward phosphate diester and phosphate monoester substrates that have identical leaving groups, with substantial rate enhancements of ~10¹¹-fold. This observation suggests that the Zn²⁺ bimetallo core of AP superfamily enzymes, which is equipotent in phosphate monoester and diester catalysis, has the potential to become specialized for the hydrolysis of each class of phosphate esters via addition of side chains that interact with the substrate atoms and substituents that project away from the Zn²⁺ bimetallo core.
Hanson, Sara J; Byrne, Kevin P; Wolfe, Kenneth H
2014-11-11
Saccharomyces cerevisiae has a complex system for switching the mating type of haploid cells, requiring the genome to have three mating-type (MAT)-like loci and a mechanism for silencing two of them. How this system originated is unknown, because the three-locus system is present throughout the family Saccharomycetaceae, whereas species in the sister Candida clade have only one locus and do not switch. Here we show that yeasts in a third clade, the methylotrophs, have a simpler two-locus switching system based on reversible inversion of a section of chromosome with MATa genes at one end and MATalpha genes at the other end. In Hansenula polymorpha the 19-kb invertible region lies beside a centromere so that, depending on the orientation, either MATa or MATalpha is silenced by centromeric chromatin. In Pichia pastoris, the orientation of a 138-kb invertible region puts either MATa or MATalpha beside a telomere and represses transcription of MATa2 or MATalpha2. Both species are homothallic, and inversion of their MAT regions can be induced by crossing two strains of the same mating type. The three-locus system of S. cerevisiae, which uses a nonconservative mechanism to replace DNA at MAT, likely evolved from a conservative two-locus system that swapped genes between expression and nonexpression sites by inversion. The increasing complexity of the switching apparatus, with three loci, donor bias, and cell lineage tracking, can be explained by continuous selection to increase sporulation ability in young colonies. Our results provide an evolutionary context for the diversity of switching and silencing mechanisms.
Ligand cluster-based protein network and ePlatton, a multi-target ligand finder.
Du, Yu; Shi, Tieliu
2016-01-01
Small molecules are information carriers that make cells aware of external changes and couple internal metabolic and signalling pathway systems with each other. In some specific physiological status, natural or artificial molecules are used to interact with selective biological targets to activate or inhibit their functions to achieve expected biological and physiological output. Millions of years of evolution have optimized biological processes and pathways and now the endocrine and immune system cannot work properly without some key small molecules. In the past thousands of years, the human race has managed to find many medicines against diseases by trail-and-error experience. In the recent decades, with the deepening understanding of life and the progress of molecular biology, researchers spare no effort to design molecules targeting one or two key enzymes and receptors related to corresponding diseases. But recent studies in pharmacogenomics have shown that polypharmacology may be necessary for the effects of drugs, which challenge the paradigm, 'one drug, one target, one disease'. Nowadays, cheminformatics and structural biology can help us reasonably take advantage of the polypharmacology to design next-generation promiscuous drugs and drug combination therapies. 234,591 protein-ligand interactions were extracted from ChEMBL. By the 2D structure similarity, 13,769 ligand emerged from 156,151 distinct ligands which were recognized by 1477 proteins. Ligand cluster- and sequence-based protein networks (LCBN, SBN) were constructed, compared and analysed. For assisting compound designing, exploring polypharmacology and finding possible drug combination, we integrated the pathway, disease, drug adverse reaction and the relationship of targets and ligand clusters into the web platform, ePlatton, which is available at http://www.megabionet.org/eplatton. Although there were some disagreements between the LCBN and SBN, communities in both networks were largely the same with normalized mutual information at 0.9. The study of target and ligand cluster promiscuity underlying the LCBN showed that light ligand clusters were more promiscuous than the heavy one and that highly connected nodes tended to be protein kinases and involved in phosphorylation. ePlatton considerably reduced the redundancy of the ligand set of targets and made it easy to deduce the possible relationship between compounds and targets, pathways and side effects. ePlatton behaved reliably in validation experiments and also fast in virtual screening and information retrieval.Graphical abstractCluster exemplars and ePlatton's mechanism.
High density printed electrical circuit board card connection system
Baumbaugh, Alan E.
1997-01-01
A zero insertion/extraction force printed circuit board card connection system comprises a cam-operated locking mechanism disposed along an edge portion of the printed circuit board. The extrusions along the circuit board mate with an extrusion fixed to the card cage having a plurality of electrical connectors. The card connection system allows the connectors to be held away from the circuit board during insertion/extraction and provides a constant mating force once the circuit board is positioned. The card connection system provides a simple solution to the need for a greater number of electrical signal connections.
High density electrical card connector system
Haggard, J. Eric; Trotter, Garrett R.
2000-01-01
An electrical circuit board card connection system is disclosed which comprises a wedge-operated locking mechanism disposed along an edge portion of the printed circuit board. An extrusion along the edge of the circuit board mates with an extrusion fixed to the card cage having a plurality of electrical connectors. The connection system allows the connectors to be held away from the circuit board during insertion/extraction and provides a constant mating force once the circuit board is positioned and the wedge inserted. The disclosed connection system is a simple solution to the need for a greater number of electrical signal connections.
A Comparison of the Two Leading Electronic Braille Notetakers.
ERIC Educational Resources Information Center
Leventhal, J. D.; Uslan, M. M.
1992-01-01
Comparison of two electronic braille notetakers found that the Braille 'n Speak was less expensive, easier to learn, and easier for both experienced users and beginners to operate than the BrailleMate, though the BrailleMate offers a unique alternative by including a braille display and a Random Access Memory card storage system. (JDD)
Electrician's Mate 3 & 2. Rate Training Manual and Nonresident Career Course.
ERIC Educational Resources Information Center
Gallant, Thomas E.; Hawley, John F.
This Rate Training Manual (Textbook) and Nonresident Career Course form a correspondence, self-study package to provide information related to tasks assigned to the Electrician's Mate Third and Second Class. Focus is on operating and maintaining power and lighting systems and associated equipment. The 16 chapters in the text are (1) The…
Matthew A. Paschen; Nathan M. Schiff; Matthew D. Ginzel
2012-01-01
Little is known of the role semiochemicals play in the mating systems of longhorned beetles (Coleoptera: Cerambycidae) in the primitive subfamily Prioninae. Mallodon dasystomus (Say), the hardwood stump borer, is a widely distributed prionine native to the southern US. Preferred hosts of M. dasystomus include oak, sweetgum,...
Study-MATE: Using Text Messaging to Support Student Transition to University Study
ERIC Educational Resources Information Center
Cahir, Jayde; Huber, Elaine; Handal, Boris; Dutch, Justin; Nixon, Mark
2012-01-01
Students are most likely to drop out of university when first attending. This article analyses the use of technology in supporting the transition process of "first time" university students enrolled in a second-year accounting course. Study-MATE, a study skills program utilising the university's learning management system (LMS)--Blackboard, Google…
3D Tracking of Mating Events in Wild Swarms of the Malaria Mosquito Anopheles gambiae
Butail, Sachit; Manoukis, Nicholas; Diallo, Moussa; Yaro, Alpha S.; Dao, Adama; Traoré, Sekou F.; Ribeiro, José M.; Lehmann, Tovi; Paley, Derek A.
2013-01-01
We describe an automated tracking system that allows us to reconstruct the 3D kinematics of individual mosquitoes in swarms of Anopheles gambiae. The inputs to the tracking system are video streams recorded from a stereo camera system. The tracker uses a two-pass procedure to automatically localize and track mosquitoes within the swarm. A human-in-the-loop step verifies the estimates and connects broken tracks. The tracker performance is illustrated using footage of mating events filmed in Mali in August 2010. PMID:22254411
Stress Analysis of Bolted, Segmented Cylindrical Shells Exhibiting Flange Mating-Surface Waviness
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.
2009-01-01
Bolted, segmented cylindrical shells are a common structural component in many engineering systems especially for aerospace launch vehicles. Segmented shells are often needed due to limitations of manufacturing capabilities or transportation issues related to very long, large-diameter cylindrical shells. These cylindrical shells typically have a flange or ring welded to opposite ends so that shell segments can be mated together and bolted to form a larger structural system. As the diameter of these shells increases, maintaining strict fabrication tolerances for the flanges to be flat and parallel on a welded structure is an extreme challenge. Local fit-up stresses develop in the structure due to flange mating-surface mismatch (flange waviness). These local stresses need to be considered when predicting a critical initial flaw size. Flange waviness is one contributor to the fit-up stress state. The present paper describes the modeling and analysis effort to simulate fit-up stresses due to flange waviness in a typical bolted, segmented cylindrical shell. Results from parametric studies are presented for various flange mating-surface waviness distributions and amplitudes.
Lüscher, A; Milinski, M
2003-09-01
Theory predicts (1) that mixed-mating systems (i.e. reproduction through both selfing and outcrossing) should usually not evolve and (2) that reproducing simultaneous hermaphrodites should be in a conflict over the preferred sexual role (The Hermaphrodite's Dilemma). In an in vitro system with the endoparasitic cestode Schistocephalus solidus, a simultaneous hermaphrodite, we tested predictions of both the mixed-mating and the Hermaphrodite's Dilemma theory. Using microsatellite markers, we measured the proportion of selfed offspring and the total reproductive output of each worm within pairs varying in mean weight and weight difference. Worms produced more outbred offspring not only with increasing total weight of the pair, but also with decreasing weight difference between the two paired worms. These results suggest: (1) that this parasite species reproduces by mixed-mating, which may be maintained by stochastic density fluctuations in the definitive host and hence unpredictability of self reproduction and (2) reproductive conflict may prevent worm pairs from achieving an optimal intermediate selfing rate.
Zhang, Dong; Terschak, John A; Harley, Maggy A; Lin, Junda; Hardege, Jörg D
2011-04-20
Successful mating is essentially a consequence of making the right choices at the correct time. Animals use specific strategies to gain information about a potential mate, which is then applied to decision-making processes. Amongst the many informative signals, odor cues such as sex pheromones play important ecological roles in coordinating mating behavior, enabling mate and kin recognition, qualifying mate choice, and preventing gene exchange among individuals from different populations and species. Despite overwhelming behavioral evidence, the chemical identity of most cues used in aquatic organisms remains unknown and their impact and omnipresence have not been fully recognized. In many crustaceans, including lobsters and shrimps, reproduction happens through a cascade of events ranging from initial attraction to formation of a mating pair eventually leading to mating. We examined the hypothesis that contact pheromones on the female body surface of the hermaphroditic shrimp Lysmata boggessi are of lipophilic nature, and resemble insect cuticular hydrocarbon contact cues. Via chemical analyses and behavioural assays, we show that newly molted euhermaphrodite-phase shrimp contain a bouquet of odor compounds. Of these, (Z)-9-octadecenamide is the key odor with hexadecanamide and methyl linoleate enhancing the bioactivity of the pheromone blend. Our results show that in aquatic systems lipophilic, cuticular hydrocarbon contact sex pheromones exist; this raises questions on how hydrocarbon contact signals evolved and how widespread these are in the marine environment.
Partitioning the effects of mating and nuptial feeding on the microbiome in gift-giving insects.
Smith, Chad C; Srygley, Robert B; Dietrich, Emma I; Mueller, Ulrich G
2017-04-01
Mating is a ubiquitous social interaction with the potential to influence the microbiome by facilitating transmission, modifying host physiology, and in species where males donate nuptial gifts to females, altering diet. We manipulated mating and nuptial gift consumption in two insects that differ in nuptial gift size, the Mormon cricket Anabrus simplex and the decorated cricket Gryllodes sigillatus, with the expectation that larger gifts are more likely to affect the gut microbiome. Surprisingly, mating, but not nuptial gift consumption, affected the structure of bacterial communities in the gut, and only in Mormon crickets. The change in structure was due to a precipitous drop in the abundance of lactic-acid bacteria in unmated females, a taxon known for their beneficial effects on nutrition and immunity. Mating did not affect phenoloxidase or lysozyme-like antibacterial activity in either species, suggesting that any physiological response to mating on host-microbe interactions is decoupled from systemic immunity. Protein supplementation also did not affect the gut microbiome in decorated crickets, suggesting that insensitivity of gut microbes to dietary protein could contribute to the lack of an effect of nuptial gift consumption. Our study provides experimental evidence that sexual interactions can affect the microbiome and suggests mating can promote beneficial gut bacteria. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Wright, David J.; Brouwer, Lyanne; Mannarelli, Maria-Elena; Burke, Terry; Komdeur, Jan
2016-01-01
The prevalence and significance of precopulatory mate choice remains keenly debated. The major histocompatibility complex (MHC) plays a key role in vertebrate adaptive immunity, and variation at the MHC influences individual survival. Although MHC-dependent mate choice has been documented in certain species, many other studies find no such pattern. This may be, at least in part, because in natural systems constraints may reduce the choices available to individuals and prevent full expression of underlying preferences. We used translocations to previously unoccupied islands to experimentally reduce constraints on female social mate choice in the Seychelles warbler (Acrocephalus sechellensis), a species in which patterns of MHC-dependent extrapair paternity (EPP), but not social mate choice, have been observed. We find no evidence of MHC-dependent social mate choice in the new populations. Instead, we find that older males and males with more microsatellite heterozygosity are more likely to have successfully paired. Our data cannot resolve whether these patterns in pairing were due to male–male competition or female choice. However, our research does suggest that female Seychelles warblers do not choose social mates using MHC class I to increase fitness. It may also indicate that the MHC-dependent EPP observed in the source population is probably due to mechanisms other than female precopulatory mate choice based on MHC cues. PMID:26792973
2013-01-01
Background Female mate preferences may be under strong selection in zones of contact between closely related species because of greater variation in available mates and the potential costs of hybridization. We studied female mate preferences experimentally in a zone of secondary contact between Desert and Bryant’s Woodrat (Neotoma lepida and N. bryanti) in the southern foothills of the Sierra Nevada of California. We tested female preference for conspecific versus heterospecific males in paired choice trials in which females could interact freely with males, but males could not interact directly with each other. We compared preferences of females from both allopatric and sympatric sites. Results We did not find evidence of the process of reinforcement as assortative preferences were not stronger in sympatry than in allopatry. Mate preferences, however, were asymmetric, with N. lepida females mating preferentially with conspecifics and N. bryanti females showing no preference by species. Sympatric females were less likely to mate than allopatric females, due in part to an increase in aggressive interactions. However, even in the absence of aggression, courtship led to mating less often in sympatric females, suggesting they were choosier or had lower sexual motivation than allopatric females. Conclusions Patterns of mate choice in this woodrat system appear to be strongly impacted by body size and aggressive behavior. In particular, females of the smaller-bodied species rarely interact with the relatively large heterospecific males. In contrast females of the larger-bodied species accept the relatively small heterospecific males. For sympatric animals, rates of aggression were markedly higher than for allopatric animals and reduced affiliative and reproductive behavior in our trials. Sympatric animals are larger and more aggressive, traits that are likely under strong ecological selection across the sharp resource gradient that characterizes the contact zone. However, our results suggest that these traits that are likely favored in competitive interactions between the species also impact reproductive interactions. Combined with our previous findings of post-zygotic isolation in this system, this study suggests that multiple isolating mechanisms contribute to the rate of genetic exchange between these species when they come into contact, and that these mechanisms are the result of selection on traits that are important in a range of ecological and reproductive interactions. PMID:24093823