Science.gov

Sample records for promiscuous sulfatase reaction

  1. Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship.

    PubMed

    Sardiello, M; Annunziata, I; Roma, G; Ballabio, A

    2005-11-01

    Sulfatases catalyze the hydrolysis of sulfate ester bonds from a wide variety of substrates. Several human inherited diseases are caused by the deficiency of individual sulfatases, while in patients with multiple sulfatase deficiency mutations in the Sulfatase Modifying Factor 1 (SUMF1) gene cause a defect in the post-translational modification of a cysteine residue into C(alpha)-formylglycine (FGly) at the active site of all sulfatases. This unique modification mechanism, which is required for catalytic activity, has been highly conserved during evolution. Here, we used a genomic approach to investigate the relationship between sulfatases and their modifying factors in humans and several model systems. First, we determined the complete catalog of human sulfatases, which comprises 17 members (versus 14 in rodents) including four novel ones (ARSH, ARSI, ARSJ and ARSK). Secondly, we showed that the active site, which is the target of the post-translational modification, is the most evolutionarily constrained region of sulfatases and shows intraspecies sequence convergence. Exhaustive sequence analyses of available proteomes indicate that sulfatases are the only likely targets of their modifying factors. Thirdly, we showed that sulfatases and ectonucleotide pyrophosphatases share significant homology at their active sites, suggesting a common evolutionary origin as well as similar catalytic mechanisms. Most importantly, gene association studies performed on prokaryotes suggested the presence of at least two additional mechanisms of cysteine-to-FGly conversion, which do not require SUMF1. These results may have important implications in the study of diseases caused by sulfatase deficiencies and in the development of therapeutic strategies.

  2. Probing the origin of the compromised catalysis of E. coli alkaline phosphatase in its promiscuous sulfatase reaction.

    PubMed

    Catrina, Irina; O'Brien, Patrick J; Purcell, Jamie; Nikolic-Hughes, Ivana; Zalatan, Jesse G; Hengge, Alvan C; Herschlag, Daniel

    2007-05-02

    The catalytic promiscuity of E. coli alkaline phosphatase (AP) and many other enzymes provides a unique opportunity to dissect the origin of enzymatic rate enhancements via a comparative approach. Here, we use kinetic isotope effects (KIEs) to explore the origin of the 109-fold greater catalytic proficiency by AP for phosphate monoester hydrolysis relative to sulfate monoester hydrolysis. The primary 18O KIEs for the leaving group oxygen atoms in the AP-catalyzed hydrolysis of p-nitrophenyl phosphate (pNPP) and p-nitrophenylsulfate (pNPS) decrease relative to the values observed for nonenzymatic hydrolysis reactions. Prior linear free energy relationship results suggest that the transition states for AP-catalyzed reactions of phosphate and sulfate esters are "loose" and indistinguishable from that in solution, suggesting that the decreased primary KIEs do not reflect a change in the nature of the transition state but rather a strong interaction of the leaving group oxygen atom with an active site Zn2+ ion. Furthermore, the primary KIEs for the two reactions are identical within error, suggesting that the differential catalysis of these reactions cannot be attributed to differential stabilization of the leaving group. In contrast, AP perturbs the KIE for the nonbridging oxygen atoms in the reaction of pNPP but not pNPS, suggesting a differential interaction with the transferred group in the transition state. These and prior results are consistent with a strong electrostatic interaction between the active site bimetallo Zn2+ cluster and one of the nonbridging oxygen atoms on the transferred group. We suggest that the lower charge density of this oxygen atom on a transferred sulfuryl group accounts for a large fraction of the decreased stabilization of the transition state for its reaction relative to phosphoryl transfer.

  3. Promiscuous sulfatase activity and thio-effects in a phosphodiesterase of the alkaline phosphatase superfamily.

    PubMed

    Lassila, Jonathan K; Herschlag, Daniel

    2008-12-02

    The nucleotide phosphodiesterase/pyrophosphatase from Xanthomonas axonopodis (NPP) is a structural and evolutionary relative of alkaline phosphatase that preferentially hydrolyzes phosphate diesters. With the goal of understanding how these two enzymes with nearly identical Zn(2+) bimetallo sites achieve high selectivity for hydrolysis of either phosphate monoesters or diesters, we have measured a promiscuous sulfatase activity in NPP. Sulfate esters are nearly isosteric with phosphate esters but carry less charge, offering a probe of electrostatic contributions to selectivity. NPP exhibits sulfatase activity with k(cat)/K(M) value of 2 x 10(-5) M(-1) s(-1), similar to the R166S mutant of alkaline phosphatase. We further report the effects of thio-substitution on phosphate monoester and diester reactions. Reactivities with these noncognate substrates illustrate a reduced dependence of NPP reactivity on the charge of the nonbridging oxygen situated between the Zn(2+) ions relative to that in alkaline phosphatase. This reduced charge dependence can explain about 10(2) of the 10(7)-fold differential catalytic proficiency for the most similar monoester and diester substrates in the two enzymes. The results further suggest that active site contacts to substrate oxygen atoms that do not contact the Zn(2+) ions may play an important role in defining the selectivity of the enzymes.

  4. Sulfatases and human disease.

    PubMed

    Diez-Roux, Graciana; Ballabio, Andrea

    2005-01-01

    Sulfatases are a highly conserved family of proteins that cleave sulfate esters from a wide range of substrates. The importance of sulfatases in human metabolism is underscored by the presence of at least eight human monogenic diseases caused by the deficiency of individual sulfatases. Sulfatase activity requires a unique posttranslational modification, which is impaired in patients with multiple sulfatase deficiency (MSD) due to a mutation of the sulfatase modifying factor 1 (SUMF1). Here we review current knowledge and future perspectives on the evolution of the sulfatase gene family, on the role of these enzymes in human metabolism, and on new developments in the therapy of sulfatase deficiencies.

  5. The sulfatase gene family.

    PubMed

    Parenti, G; Meroni, G; Ballabio, A

    1997-06-01

    During the past few years, molecular analyses have provided important insights into the biochemistry and genetics of the sulfatase family of enzymes, identifying the molecular bases of inherited diseases caused by sulfatase deficiencies. New members of the sulfatase gene family have been identified in man and other species using a genomic approach. These include the gene encoding arylsulfatase E, which is involved in X-linked recessive chondrodysplasia punctata, a disorder of cartilage and bone development. Another important breakthrough has been the discovery of the biochemical basis of multiple sulfatase deficiency, an autosomal recessive disorder characterized by a severe of all sulfatase activities. These discoveries, together with the resolution of the crystallographic structure of sulfatases, have improved our understanding of the function and evolution of this fascinating family of enzymes.

  6. Multiple sulfatase deficiency.

    PubMed

    Soong, B W; Casamassima, A C; Fink, J K; Constantopoulos, G; Horwitz, A L

    1988-08-01

    Multiple sulfatase deficiency is an inherited disorder characterized by a deficiency of several sulfatases and the accumulation of sulfatides, glycosaminoglycans, sphingolipids, and steroid sulfates in tissues and body fluids. The clinical manifestations represent the summation of two diseases: late infantile metachromatic leukodystrophy and mucopolysaccharidosis. We present a 9-year-old girl with a phenotype similar to a mucopolysaccharidosis: short stature, microcephaly, and mild facial dysmorphism, along with dysphagia, retinal degeneration, developmental arrest, and ataxia. We discuss the importance of measuring the sulfatase activities in the leukocytes, and the instability of sulfatases in the cultured skin fibroblasts.

  7. Multiple sulfatase deficiency: catalytically inactive sulfatases are expressed from retrovirally introduced sulfatase cDNAs.

    PubMed Central

    Rommerskirch, W; von Figura, K

    1992-01-01

    Multiple sulfatase deficiency (MSD) is an inherited lysosomal storage disease characterized by the deficiency of at least seven sulfatases. The basic defect in MSD is thought to be in a post-translational modification common to all sulfatases. In accordance with this concept, RNAs of normal size and amount were detected in MSD fibroblasts for three sulfatases tested. cDNAs encoding arylsulfatase A, arylsulfatase B, or steroid sulfatase were introduced into MSD fibroblasts and fibroblasts with a single sulfatase deficiency by retroviral gene transfer. Infected fibroblasts overexpressed the respective sulfatase polypeptides. While in single-sulfatase-deficiency fibroblasts a concomitant increase of sulfatase activities was observed, MSD fibroblasts expressed sulfatase polypeptides with a severely diminished catalytic activity. From these results we conclude that the mutation in MSD severely decreases the capacity of a co- or post-translational process that renders sulfatases enzymatically active or prevents their premature inactivation. Images PMID:1348358

  8. Multiple sulfatase deficiency: catalytically inactive sulfatases are expressed from retrovirally introduced sulfatase cDNAs.

    PubMed

    Rommerskirch, W; von Figura, K

    1992-04-01

    Multiple sulfatase deficiency (MSD) is an inherited lysosomal storage disease characterized by the deficiency of at least seven sulfatases. The basic defect in MSD is thought to be in a post-translational modification common to all sulfatases. In accordance with this concept, RNAs of normal size and amount were detected in MSD fibroblasts for three sulfatases tested. cDNAs encoding arylsulfatase A, arylsulfatase B, or steroid sulfatase were introduced into MSD fibroblasts and fibroblasts with a single sulfatase deficiency by retroviral gene transfer. Infected fibroblasts overexpressed the respective sulfatase polypeptides. While in single-sulfatase-deficiency fibroblasts a concomitant increase of sulfatase activities was observed, MSD fibroblasts expressed sulfatase polypeptides with a severely diminished catalytic activity. From these results we conclude that the mutation in MSD severely decreases the capacity of a co- or post-translational process that renders sulfatases enzymatically active or prevents their premature inactivation.

  9. Catalytic mechanism of the arylsulfatase promiscuous enzyme from Pseudomonas aeruginosa.

    PubMed

    Marino, Tiziana; Russo, Nino; Toscano, Marirosa

    2013-02-04

    To elucidate the working mechanism of the "broad substrate specificity" by the Pseudomonas aeruginosa aryl sulfatase (PAS) enzyme, we present here a full quantum chemical study performed at the density functional level. This enzyme is able to catalyze the hydrolysis of the original p-nitrophenyl-sulfate (PNPS) substrate and the promiscuous p-nitrophenyl-phosphate (PNPP) one with comparable reaction kinetics. Based on the obtained results, a multistep mechanism including activation of the nucleophile, the nucleophilic attack, and the cleavage of the S-O (P-O) bond is proposed. Regarding the phosphate monoester, the results indicate that only some steps of the promiscuous reaction are identical to those in the native process. Differences concern mainly the last step in which the His115 residue acts as a general base to accept the proton by the O atom of the FGly51 in the PNPS, whereas in PNPP, the Asp317 protonated residue works as a general acid to deliver a proton by a water molecule to the oxygen atom of the C-O bond. The shapes of the relative potential-energy surface (PES) are similar in the two examined cases but the rate-determining step is different (nucleophile attack vs. nucleophile activation). The influence of the dispersion contributions on the investigated reactions was also taken into account.

  10. Triesterase and promiscuous diesterase activities of a di-Co(II)-containing organophosphate degrading enzyme reaction mechanisms.

    PubMed

    Alberto, Marta E; Pinto, Gaspar; Russo, Nino; Toscano, Marirosa

    2015-02-23

    The reaction mechanism for the hydrolysis of trimethyl phosphate and of the obtained phosphodiester by the di-Co(II) derivative of organophosphate degrading enzyme from Agrobacterium radiobacter P230(OpdA), have been investigated at density functional level of theory in the framework of the cluster model approach. Both mechanisms proceed by a multistep sequence and each catalytic cycle begins with the nucleophilic attack by a metal-bound hydroxide on the phosphorus atom of the substrate, leading to the cleavage of the phosphate-ester bond. Four exchange-correlation functionals were used to derive the potential energy profiles in protein environments. Although the enzyme is confirmed to work better as triesterase, as revealed by the barrier heights in the rate-limiting steps of the catalytic processes, its promiscuous ability to hydrolyze also the product of the reaction has been confirmed. The important role played by water molecules and some residues in the outer coordination sphere has been elucidated, while the binuclear Co(II) center accomplishes both structural and catalytic functions. To correctly describe the electronic configuration of the d shell of the metal ions, high- and low-spin arrangement jointly with the occurrence of antiferromagnetic coupling, have been herein considered.

  11. Multiple deficiency of mucopolysaccharide sulfatases in mucosulfatidosis.

    PubMed

    Basner, R; von Figura, K; Glössl, J; Klein, U; Kresse, H; Mlekusch, W

    1979-12-01

    Fibroblasts of four patients affected with mucosulfatidosis (multiple sulfatase deficiency, Austin variant of metachromatic leukodystrophy) were assayed for activities of the five sulfatases known to degrade mucopolysaccharides. These were iduronide 2-sulfate sulfatase, sulfamidase, N-acetyl-galactosamine 6-sulfate sulfatase, arylsulfatase B (N-acetylgalactosamine 4-sulfate sulfatase), and N-acetylglucosamine 6-sulfate sulfatase. The activities of these five sulfatases were severely depressed, thus confirming the known deficiency of arylsulfatase B and the absence of the Hunter and Sanfilippo III A corrective factors that have iduronide 2-sulfate sulfatase and sulfamidase activity, respectively. Together with earlier reports of the deficiencies of arylsulfatases A and C, cholesteryl sulfatase, and dehydroepiandrosterone sulfatae, mucosulfatidosis is now characterized by the deficiency of nine different sulfatases.

  12. Promiscuity in the Enzymatic Catalysis of Phosphate and Sulfate Transfer

    PubMed Central

    2016-01-01

    The enzymes that facilitate phosphate and sulfate hydrolysis are among the most proficient natural catalysts known to date. Interestingly, a large number of these enzymes are promiscuous catalysts that exhibit both phosphatase and sulfatase activities in the same active site and, on top of that, have also been demonstrated to efficiently catalyze the hydrolysis of other additional substrates with varying degrees of efficiency. Understanding the factors that underlie such multifunctionality is crucial both for understanding functional evolution in enzyme superfamilies and for the development of artificial enzymes. In this Current Topic, we have primarily focused on the structural and mechanistic basis for catalytic promiscuity among enzymes that facilitate both phosphoryl and sulfuryl transfer in the same active site, while comparing this to how catalytic promiscuity manifests in other promiscuous phosphatases. We have also drawn on the large number of experimental and computational studies of selected model systems in the literature to explore the different features driving the catalytic promiscuity of such enzymes. Finally, on the basis of this comparative analysis, we probe the plausible origins and determinants of catalytic promiscuity in enzymes that catalyze phosphoryl and sulfuryl transfer. PMID:27187273

  13. Synthesis and stability of steroid sulfatase in fibroblasts from multiple sulfatase deficiency.

    PubMed

    Conary, J T; Hasilik, A; von Figura, K

    1988-04-01

    Multiple sulfatase deficiency is a lysosomal storage disorder, which can be divided into group I with severe and group II with moderate deficiencies in sulfatases. Antibodies raised against steroid sulfatase purified from human placenta were used to follow the biosynthesis and stability of this enzyme in multiple sulfatase-deficiency fibroblasts. Fibroblasts from both groups synthesized steroid sulfatase of apparently normal size and stability, while the apparent rate of enzyme synthesis and catalytic properties of steroid sulfatase were affected to a variable extent. Cell lines were observed, that synthesized normal amounts of steroid-sulfatase polypeptides, which were catalytically inactive, as well as cell lines that synthesized diminished amounts of catalytically active steroid sulfatase.

  14. A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency.

    PubMed

    Schmidt, B; Selmer, T; Ingendoh, A; von Figura, K

    1995-07-28

    Multiple sulfatase deficiency (MSD) is a lysosomal storage disorder characterized by a decreased activity of all known sulfatases. The deficiency of sulfatases was proposed to result from the lack of a co- or posttranslational modification that is common to all sulfatases and required for their catalytic activity. Structural analysis of two catalytically active sulfatases revealed that a cysteine residue that is predicted from the cDNA sequence and conserved among all known sulfatases is replaced by a 2-amino-3-oxopropionic acid residue, while in sulfatases derived from MSD cells, this cysteine residue is retained. It is proposed that the co- or posttranslational conversion of a cysteine to 2-amino-3-oxopropionic acid is required for generating catalytically active sulfatases and that deficiency of this protein modification is the cause of MSD.

  15. Evidence for the formation of an enamine species during aldol and Michael-type addition reactions promiscuously catalyzed by 4-oxalocrotonate tautomerase.

    PubMed

    Poddar, Harshwardhan; Rahimi, Mehran; Geertsema, Edzard M; Thunnissen, Andy-Mark W H; Poelarends, Gerrit J

    2015-03-23

    The enzyme 4-oxalocrotonate tautomerase (4-OT), which has a catalytic N-terminal proline residue (Pro1), can promiscuously catalyze various carbon-carbon bond-forming reactions, including aldol condensation of acetaldehyde with benzaldehyde to yield cinnamaldehyde, and Michael-type addition of acetaldehyde to a wide variety of nitroalkenes to yield valuable γ-nitroaldehydes. To gain insight into how 4-OT catalyzes these unnatural reactions, we carried out exchange studies in D2 O, and X-ray crystallography studies. The former established that H-D exchange within acetaldehyde is catalyzed by 4-OT and that the Pro1 residue is crucial for this activity. The latter showed that Pro1 of 4-OT had reacted with acetaldehyde to give an enamine species. These results provide evidence of the mechanism of the 4-OT-catalyzed aldol and Michael-type addition reactions in which acetaldehyde is activated for nucleophilic addition by Pro1-dependent formation of an enamine intermediate.

  16. Human sulfatases: a structural perspective to catalysis.

    PubMed

    Ghosh, D

    2007-08-01

    The sulfatase family of enzymes catalyzes hydrolysis of sulfate ester bonds of a wide variety of substrates. Seventeen genes have been identified in this class of sulfatases, many of which are associated with genetic disorders leading to reduction or loss of function of the corresponding enzymes. Amino acid sequence homology suggests that the enzymes have similar overall folds, mechanisms of action, and bivalent metal ion-binding sites. A catalytic cysteine residue, strictly conserved in prokaryotic and eukaryotic sulfatases, is post-translationally modified into a formylglycine. Hydroxylation of the formylglycine residue by a water molecule forming the activated hydroxylformylglycine (a formylglycine hydrate or a gem-diol) is a necessary step for the enzyme's sulfatase activity. Crystal structures of three human sulfatases, arylsulfatases A and B(ARSA and ARSB), and estrone/dehydroepiandrosterone sulfatase or steroid sulfatase (STS), also known as arylsulfatase C, have been determined. While ARSA and ARSB are water-soluble enzymes, STS has a hydrophobic domain and is an integral membrane protein of the endoplasmic reticulum. In this article, we compare and contrast sulfatase structures and revisit the proposed catalytic mechanism in light of available structural and functional data. Examination of the STS active site reveals substrate-specific interactions previously identified as the estrogen-recognition motif. Because of the proximity of the catalytic cleft of STS to the membrane surface, the lipid bilayer has a critical role in the constitution of the active site, unlike other sulfatases.

  17. The Important Roles of Steroid Sulfatase and Sulfotransferases in Gynecological Diseases

    PubMed Central

    Rižner, Tea Lanišnik

    2016-01-01

    Gynecological diseases such as endometriosis, adenomyosis and uterine fibroids, and gynecological cancers including endometrial cancer and ovarian cancer, affect a large proportion of women. These diseases are estrogen dependent, and their progression often depends on local estrogen formation. In peripheral tissues, estrogens can be formed from the inactive precursors dehydroepiandrosterone sulfate and estrone sulfate. Sulfatase and sulfotransferases have pivotal roles in these processes, where sulfatase hydrolyzes estrone sulfate to estrone, and dehydroepiandrosterone sulfate to dehydroepiandrosterone, and sulfotransferases catalyze the reverse reactions. Further activation of estrone to the most potent estrogen, estradiol, is catalyzed by 17-ketosteroid reductases, while estradiol can also be formed from dehydroepiandrosterone by the sequential actions of 3β-hydroxysteroid dehydrogenase-Δ4-isomerase, aromatase, and 17-ketosteroid reductase. This review introduces the sulfatase and sulfotransferase enzymes, in terms of their structures and reaction mechanisms, and the regulation and different transcripts of their genes, together with the importance of their currently known single nucleotide polymorphisms. Data on expression of sulfatase and sulfotransferases in gynecological diseases are also reviewed. There are often unchanged mRNA and protein levels in diseased tissue, with higher sulfatase activities in cancerous endometrium, ovarian cancer cell lines, and adenomyosis. This can be indicative of a disturbed balance between the sulfatase and sulfotransferases enzymes, defining the potential for sulfatase as a drug target for treatment of gynecological diseases. Finally, clinical trials with sulfatase inhibitors are discussed, where two inhibitors have already concluded phase II trials, although so far with no convincing clinical outcomes for patients with endometrial cancer and endometriosis. PMID:26924986

  18. Properties of sulfatases in cultured skin fibroblasts of multiple sulfatase deficient patients.

    PubMed

    Yutaka, T; Okada, S; Kato, T; Inui, K; Yabuuchi, H

    1981-10-01

    Various sulfatase activities were assayed in cultured skin fibroblasts from patients with multiple sulfatase deficiency (MSD). MSD cell lines displayed deficiencies of arylsulfatase A and iduronate sulfatase, but activities of arylsulfatase B, N-acetylgalactosamine 6-sulfate sulfatase and N-acetylglucosamine 6-sulfate sulfatase were within normal ranges, but not consistently. Arylsulfatase A, minor anionic arylsulfatase and N-acetylgalactosamine 6-sulfate sulfatase in MSD cell lines had similar Km, pH optima, inhibitory or activator sensitivity to that of normal skin fibroblasts. Arylsulfatase B in MSD cell lines also had properties similar to that of normal skin fibroblasts, except an abnormal heat stability. From our results, we conclude that properties of arylsulfatase A, minor anionic arylsulfatase and N-acetylgalactosamine 6-sulfate sulfatase in MSD fibroblasts were intact. On the other hand, arylsulfatase B in MSD might be a functionally abnormal enzyme.

  19. SUMF1 enhances sulfatase activities in vivo in five sulfatase deficiencies.

    PubMed

    Fraldi, Alessandro; Biffi, Alessandra; Lombardi, Alessia; Visigalli, Ilaria; Pepe, Stefano; Settembre, Carmine; Nusco, Edoardo; Auricchio, Alberto; Naldini, Luigi; Ballabio, Andrea; Cosma, Maria Pia

    2007-04-15

    Sulfatases are enzymes that hydrolyse a diverse range of sulfate esters. Deficiency of lysosomal sulfatases leads to human diseases characterized by the accumulation of either GAGs (glycosaminoglycans) or sulfolipids. The catalytic activity of sulfatases resides in a unique formylglycine residue in their active site generated by the post-translational modification of a highly conserved cysteine residue. This modification is performed by SUMF1 (sulfatase-modifying factor 1), which is an essential factor for sulfatase activities. Mutations in the SUMF1 gene cause MSD (multiple sulfatase deficiency), an autosomal recessive disease in which the activities of all sulfatases are profoundly reduced. In previous studies, we have shown that SUMF1 has an enhancing effect on sulfatase activity when co-expressed with sulfatase genes in COS-7 cells. In the present study, we demonstrate that SUMF1 displays an enhancing effect on sulfatases activity when co-delivered with a sulfatase cDNA via AAV (adeno-associated virus) and LV (lentivirus) vectors in cells from individuals affected by five different diseases owing to sulfatase deficiencies or from murine models of the same diseases [i.e. MLD (metachromatic leukodystrophy), CDPX (X-linked dominant chondrodysplasia punctata) and MPS (mucopolysaccharidosis) II, IIIA and VI]. The SUMF1-enhancing effect on sulfatase activity resulted in an improved clearance of the intracellular GAG or sulfolipid accumulation. Moreover, we demonstrate that the SUMF1-enhancing effect is also present in vivo after AAV-mediated delivery of the sulfamidase gene to the muscle of MPSIIIA mice, resulting in a more efficient rescue of the phenotype. These results indicate that co-delivery of SUMF1 may enhance the efficacy of gene therapy in several sulfatase deficiencies.

  20. Genetic complementation studies of multiple sulfatase deficiency.

    PubMed

    Horwitz, A L

    1979-12-01

    Cultured fibroblasts from two individuals with multiple sulfatase deficiency (MSD) were found to have decreased activities of arylsulfatases (aryl-sulfate sulfohydrolase, EC 3.1.6.1) A, B, and C as well as iduronate-sulfate sulfatase, sulfamidase, and N-acetylglucosamine-6-sulfate sulfatase. The activity of N-acetylgalactosamine-6-sulfate sulfatase was decreased in one line but not in the other. Mixtures of MSD cell extracts with extracts from normal cells did not result in inhibition of normal sulfatase activities. Mixtures of MSD cell extracts with extracts of fibroblasts from patients with Hunter or Sanfilippo A syndrome did not activate iduronate-sulfate sulfatase or sulfamidase activity. Heterokaryons formed by fusion of MSD cells with Sanfilippo A fibroblasts demonstrated a partial correction of the enzyme deficiency. In similar manner, MSD-Hunter heterokaryons showed a significant increase in iduronate-sulfate-sulfatase activity. Genetic complementation in heterokaryons of MSD fibroblasts and cells of either Sanfilippo A or Hunter syndrome implies a genetic defect in MSD different from that causing specific sulfatase deficiencies.

  1. Rapid degradation of steroid sulfatase in multiple sulfatase deficiency.

    PubMed

    Horwitz, A L; Warshawsky, L; King, J; Burns, G

    1986-03-13

    Pulse labeling followed by SDS-PAGE electrophoresis of immunoprecipitated [35S]methionine-labeled steroid sulfatase (STS) gave a single band of molecular weight 65,000 daltons. After a chase period of 18 hours the material appeared as molecular weight approximately 64,000. No labeled STS could be detected in fibroblasts from individuals with STS deficient X-linked ichthyosis. Pulse-chase labeling of normal and multiple sulfatase deficiency (MSD) fibroblasts showed a normal rate of synthesis of STS in MSD during a 3 hour pulse but during the chase the STS of MSD cells disappeared with a half-life of 4 to 6 hours until approximately 25% of the material remained after 24 hr. STS of normal cells had a half-life of 6 days. The material produced in MSD cells had the same molecular size as normal and had the same amount of endoglycosidase sensitive carbohydrate as normal. The defect in MSD thus seems to result in degradation after the addition of N-linked oligosaccharides.

  2. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes

    SciTech Connect

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-08-05

    Although one of an enzyme’s hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. We know that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. We report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Finally, our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.

  3. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes

    DOE PAGES

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; ...

    2015-08-05

    Although one of an enzyme’s hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. We know that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. We report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Finally, our results demonstrate that this enzyme may use substrate-assisted catalysis involvingmore » the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.« less

  4. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes.

    PubMed

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-09-01

    Although one of an enzyme's hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. It is known that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. Here we report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.

  5. Monitoring drug promiscuity over time

    PubMed Central

    Hu, Ye; Bajorath, Jürgen

    2014-01-01

    Drug promiscuity and polypharmacology are much discussed topics in pharmaceutical research. Experimentally, promiscuity can be studied by profiling of compounds on arrays of targets. Computationally, promiscuity rates can be estimated by mining of compound activity data. In this study, we have assessed drug promiscuity over time by systematically collecting activity records for approved drugs. For 518 diverse drugs, promiscuity rates were determined over different time intervals. Significant differences between the number of reported drug targets and the promiscuity rates derived from activity records were frequently observed. On the basis of high-confidence activity data, an increase in average promiscuity rates from 1.5 to 3.2 targets per drug was detected between 2000 and 2014. These promiscuity rates are lower than often assumed. When the stringency of data selection criteria was reduced in subsequent steps, non-realistic increases in promiscuity rates from ~6 targets per drug in 2000 to more than 28 targets were obtained. Hence, estimates of drug promiscuity significantly differ depending on the stringency with which target annotations and activity data are considered. PMID:25352982

  6. Ichthyosis: the skin manifestation of multiple sulfatase deficiency.

    PubMed

    Castaño Suárez, E; Segurado Rodríguez, A; Guerra Tapia, A; Simón de las Heras, R; López-Ríos, F; Coll Rosell, M J

    1997-01-01

    Juvenile sulfatidosis (Austin type) or multiple sulfatase deficiency is an extremely rare autosomal recessive disorder affecting the activity of many sulfatases: arylsulfatase A, several mucopolysaccharide sulfatases, and steroid sulfatase. Certain aspects of the clinical phenotype can be attributed mainly to a deficiency of one specific sulfatase. Most patients develop metachromatic leukodystrophy caused by arylsulfatase A deficiency, dysostosis multiplex by mucopolysaccharide sulfatase deficiency, and ichthyotic skin by steroid sulfatase deficiency. We describe a 7-year-old boy with developmental delay from 7 months of age, progressive spastic quadriparesis, and coarse facial features. By 27 months of age, an ichthyotic rash had developed on the limbs, trunk, and scalp. A skin biopsy specimen revealed hyperkeratosis with a normal granular layer. The diagnosis of multiple sulfatase deficiency was demonstrated by measuring sulfatase activities in fresh leukocytes: there were large deficiencies of arylsulfatase A and B plus reduced arylsulfatase C. The ichthyosis associated with multiple sulfatase deficiency has an autosomal recessive inheritance, is caused by steroid sulfatase deficiency, and the scaling is sometimes milder than in X-linked recessive ichthyosis. This could reflect the residual activity of steroid sulfatase in some cases.

  7. Steroid sulfatase deficiency with bilateral periventricular nodular heterotopia.

    PubMed

    Ozawa, Hiroshi; Osawa, Maki; Nagai, Toshiro; Sakura, Nobuo

    2006-03-01

    This report presents a case of steroid sulfatase deficiency with bilateral periventricular nodular heterotopia. A 13-year-old male was diagnosed as having steroid sulfatase deficiency because steroid sulfatase activity was not detected in his leukocytes. In deoxyribonucleic acid studies, steroid sulfatase locus and adjacent loci were found to be deleted in his deoxyribonucleic acid. Cranial magnetic resonance imaging revealed periventricular nodular heterotopia, disclosing an irregular contour of the lateral walls of the lateral ventricles due to small nodular masses that were isointense as to the gray matter. In steroid sulfatase deficiency patients, bilateral periventricular nodular heterotopia must be considered.

  8. Efficient, crosswise catalytic promiscuity among enzymes that catalyze phosphoryl transfer.

    PubMed

    Mohamed, Mark F; Hollfelder, Florian

    2013-01-01

    The observation that one enzyme can accelerate several chemically distinct reactions was at one time surprising because the enormous efficiency of catalysis was often seen as inextricably linked to specialization for one reaction. Originally underreported, and considered a quirk rather than a fundamental property, enzyme promiscuity is now understood to be important as a springboard for adaptive evolution. Owing to the large number of promiscuous enzymes that have been identified over the last decade, and the increased appreciation for promiscuity's evolutionary importance, the focus of research has shifted to developing a better understanding of the mechanistic basis for promiscuity and the origins of tolerant or restrictive specificity. We review the evidence for widespread crosswise promiscuity amongst enzymes that catalyze phosphoryl transfer, including several members of the alkaline phosphatase superfamily, where large rate accelerations between 10(6) and 10(17) are observed for both native and multiple promiscuous reactions. This article is part of a Special Issue entitled: Chemistry and mechanism of phosphatases, diesterases and triesterases.

  9. The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases.

    PubMed

    Cosma, Maria Pia; Pepe, Stefano; Annunziata, Ida; Newbold, Robert F; Grompe, Markus; Parenti, Giancarlo; Ballabio, Andrea

    2003-05-16

    In multiple sulfatase deficiency (MSD), a human inherited disorder, the activities of all sulfatases are impaired due to a defect in posttranslational modification. Here we report the identification, by functional complementation using microcell-mediated chromosome transfer, of a gene that is mutated in MSD and is able to rescue the enzymatic deficiency in patients' cell lines. Functional conservation of this gene was observed among distantly related species, suggesting a critical biological role. Coexpression of SUMF1 with sulfatases results in a strikingly synergistic increase of enzymatic activity, indicating that SUMF1 is both an essential and a limiting factor for sulfatases. These data have profound implications on the feasibility of enzyme replacement therapy for eight distinct inborn errors of metabolism.

  10. Various sulfatase activities in leukocytes and cultured skin fibroblasts from heterozygotes for the multiple sulfatase deficiency (mukosulfatidosis).

    PubMed

    Eto, Y; Tahara, T; Tokoro, T; Maekawa, K

    1983-02-01

    In heterozygotes for multiple sulfatase deficiency (MSD), several sulfatase activities including arylsulfatases A, B1, B2, and C, and cholesterol sulfatase were 40-50% of normals in cultured skin fibroblasts and 70-80% of normals in leukocytes. In MSD patients, these enzyme activities were deficient or reduced. DEAE-Sepharose column chromatographic patterns of 4-methylumbelliferyl sulfatases A, B1, and B2 in leukocytes and cultured skin fibroblasts from MSD patients and heterozygotes were also consistent with the above data. These data indicate that several sulfatase activities in heterozygotes of MSD exhibited intermediate activities as observed in the heterozygote state of other autosomal recessive inherited diseases.

  11. Complementation of multiple sulfatase deficiency in somatic cell hybrids.

    PubMed

    Fedde, K; Horwitz, A L

    1984-05-01

    Multiple sulfatase deficiency (MSD) is an inherited disorder characterized by deficient activity of seven different sulfatases. Genetic complementation for steroid sulfatase (STS), arylsulfatase A, and N-acetylgalactosamine 6-SO4 sulfatase was demonstrated in somatic cell hybrids between MSD fibroblasts and mouse cells ( LA9 ) or Chinese hamster cells ( CHW ). In an electrophoretic system that separates human and rodent STS isozymes, enzyme from hybrids migrated as human enzyme. We concluded that the rodent cell complemented the MSD deficiency and allowed normal expression of the STS structural gene. Some MSD- LA9 hybrids showed significant levels of human arylsulfatase A activity, as shown by the immunoprecipitation of active enzyme by human-specific antiserum. Complementation was also suggested for N-acetylgalactosamine 6- sulfatate sulfatase (GalNAc-6S sulfatase) in several MSD- LA9 hybrids by the demonstration of a significant increase in activity (10-fold) over that of the GalNAc-6S sulfatase-deficient parental mouse and MSD cells. Thus, it was possible to demonstrate complementation for more than one sulfatase in a single MSD-rodent hybrid. Normal levels of sulfatase activity in hybrids indicate that the sulfatase structural genes are intact in MSD cells.

  12. Chondroitin sulfate/dermatan sulfate sulfatases from mammals and bacteria.

    PubMed

    Wang, Shumin; Sugahara, Kazuyuki; Li, Fuchuan

    2016-12-01

    Sulfatases that specifically catalyze the hydrolysis of the sulfate groups on chondroitin sulfate (CS)/dermatan sulfate (DS) poly- and oligosaccharides belong to the formylglycine-dependent family of sulfatases and have been widely found in various mammalian and bacterial organisms. However, only a few types of CS/DS sulfatase have been identified so far. Recently, several novel CS/DS sulfatases have been cloned and characterized. Advanced studies have provided significant insight into the biological function and mechanism of action of CS/DS sulfatases. Moreover, further studies will provide powerful tools for structural and functional studies of CS/DS as well as related applications. This article reviews the recent progress in CS/DS sulfatase research and is expected to initiate further research in this field.

  13. Multiple sulfatase deficiency with neonatal manifestation.

    PubMed

    Garavelli, Livia; Santoro, Lucia; Iori, Alexandra; Gargano, Giancarlo; Braibanti, Silvia; Pedori, Simona; Melli, Nives; Frattini, Daniele; Zampini, Lucia; Galeazzi, Tiziana; Padella, Lucia; Pepe, Stefano; Wischmeijer, Anita; Rosato, Simonetta; Ivanovski, Ivan; Iughetti, Lorenzo; Gelmini, Chiara; Bernasconi, Sergio; Superti-Furga, Andrea; Ballabio, Andrea; Gabrielli, Orazio

    2014-12-17

    Multiple Sulfatase Deficiency (MSD; OMIM 272200) is a rare autosomal recessive inborn error of metabolism caused by mutations in the sulfatase modifying factor 1 gene, encoding the formylglycine-generating enzyme (FGE), and resulting in tissue accumulation of sulfatides, sulphated glycosaminoglycans, sphingolipids and steroid sulfates. Less than 50 cases have been published so far. We report a new case of MSD presenting in the newborn period with hypotonia, apnoea, cyanosis and rolling eyes, hepato-splenomegaly and deafness. This patient was compound heterozygous for two so far undescribed SUMF1 mutations (c.191C > A; p.S64X and c.818A > G; p.D273G).

  14. Activities of sulfatases for the degradation of acidic glycosaminoglycans in cultured skin fibroblasts from two siblings with multiple sulfatase deficiency.

    PubMed

    Minami, R; Fujibayashi, S; Tachi, N; Wagatsuma, K; Nakao, T; Ikeno, T; Tsugawa, S; Sukegawa, K; Orii, T

    1983-04-01

    Cultured skin fibroblasts from two siblings with multiple sulfatase deficiency (MSD) were assayed for the activities of sulfatases known to degrade acidic glycosaminoglycans (AGAG). There were iduronate sulfatase, arylsulfatase B, heparan sulfate (HS) sulfatase, N-acetylgalactosamine-6-sulfate sulfatase, HS-derived N-acetylglucosamine-6-sulfate sulfatase, and two keratan sulfate (KS)-derived N-acetylglucosamine-6-sulfate sulfatases. The activities of sulfatases required for the degradation of HS were reduced to a greater extent than those for the degradation of dermatan sulfate (DS), and those of sulfatases associated with basic defect of Morquio disease type A were moderately decreased or normal. On the other hand, urinary excretion of AGAG in both patients was increased about 10-fold compared to controls, and especially, the excretion of HS and DS was increased about 150-fold and 50-fold, respectively. Keratan sulfate was not detected. The results suggest that in patients with MSD the degradation of HS might be affected to a greater extent than that of DS.

  15. Enhanced breakdown of arylsulfatase A in multiple sulfatase deficiency.

    PubMed

    Waheed, A; Hasilik, A; von Figura, K

    1982-04-01

    Multiple sulfatase deficiency (mucosulfatidosis) is a lysosomal storage disorder characterized by the decrease in activities of all known sulfatases. To measure the apparent rate of synthesis and the half-life of arylsulfatase A in multiple sulfatase deficiency, fibroblasts from patients with the disease and from controls were subjected to pulse-chase labelling with radioactive amino acids. Arylsulfatase A and cathepsin D, a lysosomal enzyme that is not affected in multiple sulfatase deficiency, were isolated from cells and media by immunoprecipitation. The labelled polypeptides were separated by polyacrylamide gel electrophoresis, visualized by fluorography and quantified by liquid scintillation counting. Using single and double isotope techniques it was found that, as compared to cathepsin D, the apparent rate of synthesis of arylsulfatase A was 2--5 times lower and the half-life 4--9-times shorter in multiple sulfatase deficiency than in control fibroblasts. In multiple sulfatase deficiency fibroblasts the rates of endocytosis and the stabilities of endocytosed arylsulfatases A isolated from human urine and bovine tests were equal to those in metachromatic leucodystrophy fibroblasts. We postulate that in normal cells a gene product exists that affects the stability of sulfatases and that multiple sulfatase deficiency is due to a mutation in this gene.

  16. Multiple sulfatase deficiency with a novel biochemical presentation.

    PubMed

    Constantopoulos, G

    1988-08-01

    Deficient activities of cerebroside-sulfatase, N-Acetylgalactosamine-4-sulfatase and iduronide 2-sulfatase in the lymphocytes of a patient suspected of metachromatic leukodystrophy, established the diagnosis of multiple sulfatase deficiency (MSD). Cultured skin fibroblasts (of early passage) from the patient had normal levels of activity for the three sulfatases. One week after the first examination, the activities of the three sulfatases in the fibroblasts of the patient declined and within a month were 4%-29% of normal. Total urinary glycosaminoglycans were within normal range. However, further examination showed an increase in the concentration of heparan sulfate, which comprised more than 50% of the total, compared with less than 20% in normal controls. Urinary sulfatides, cholesterol esters, cholesterol, and triglycerides were increased. The results from the study of this unique case of MSD suggest that time-dependent changes affect the activities of sulfatases in MSD. These results also demonstrate the necessity of assaying the sulfatases in both lymphocytes and fibroblasts from suspected cases of MSD.

  17. Why Polyphenols have Promiscuous Actions? An Investigation by Chemical Bioinformatics.

    PubMed

    Tang, Guang-Yan

    2016-05-01

    Despite their diverse pharmacological effects, polyphenols are poor for use as drugs, which have been traditionally ascribed to their low bioavailability. However, Baell and co-workers recently proposed that the redox potential of polyphenols also plays an important role in this, because redox reactions bring promiscuous actions on various protein targets and thus produce non-specific pharmacological effects. To investigate whether the redox reactivity behaves as a critical factor in polyphenol promiscuity, we performed a chemical bioinformatics analysis on the structure-activity relationships of twenty polyphenols. It was found that the gene expression profiles of human cell lines induced by polyphenols were not correlated with the presence or not of redox moieties in the polyphenols, but significantly correlated with their molecular structures. Therefore, it is concluded that the promiscuous actions of polyphenols are likely to result from their inherent structural features rather than their redox potential.

  18. Amine promiscuity and toxicology analysis.

    PubMed

    Lee, Esther C Y; Steeno, Gregory; Wassermann, Anne Mai; Zhang, Liying; Shah, Falgun; Price, David A

    2017-02-01

    Drug discovery programs often face challenges to obtain sufficient duration of action of the drug (i.e. seek longer half-lives). If the pharmacodynamic response is driven by free plasma concentration of the drug then extending the plasma drug concentration is a valid approach. Half-life is dependent on the volume of distribution, which in turn can be dependent upon the ionization state of the molecule. Basic compounds tend to have a higher volume of distribution leading to longer half-lives. However, it has been shown that bases may also have higher promiscuity. In this work, we describe an analysis of in vitro pharmacological profiling and toxicology data investigating the role of primary, secondary, and tertiary amines in imparting promiscuity and thus off-target toxicity. Primary amines are found to be less promiscuous in in vitro assays and have improved profiles in in vivo toxicology studies compared to secondary and tertiary amines.

  19. Pitfalls in the diagnosis of multiple sulfatase deficiency.

    PubMed

    Mancini, G M; van Diggelen, O P; Huijmans, J G; Stroink, H; de Coo, R F

    2001-02-01

    Multiple sulfatase deficiency (MSD, OMIM 272200) is an autosomal recessive leukodystrophy associated with the deficiency of several, in total seven, sulfatases. The disorder is clinically and biochemically variable. The clinical picture combines features of mucopolysaccharidosis and metachromatic leukodystrophy (MLD, OMIM 250100) in a variable spectrum. Here we report a 3-year old Iranian girl with an MLD-like presentation of MSD. Arylsulfatase A deficiency and sulfatide excretion were found. Differently from what was previously reported in the literature, this girl never showed abnormal mucopolysaccharide excretion in the urine. There were no additional visceral or skeletal signs. She was originally diagnosed as having MLD. Only when she developed ichthyosis were seven additional sulfatases measured. In leukocytes, arylsulfatase A, steroid sulfatase and N-acetylglucosamine-6 sulfatase were profoundly deficient, while iduronate-2 sulfatase and arylsulfatase B were moderately reduced. In fibroblasts, N-acetylglucosamine-6 sulfatase was deficient, while arylsulfatase A was moderately reduced. This case illustrates the possible pitfalls in the clinical and laboratory diagnosis of MSD.

  20. Multiple sulfatase deficiency: A case series of four children.

    PubMed

    Incecik, Faruk; Ozbek, Mehmet N; Gungor, Serdal; Pepe, Stefano; Herguner, Ozlem M; Mungan, Neslihan Onenli; Gungor, Sabiha; Altunbasak, Sakir

    2013-10-01

    Multiple sulfatase deficiency is biochemically characterized by the accumulation of sulfated lipids and acid mucopolysaccharides. The gene sulfatase-modifying factor 1 (SUMF1), recently identified, encodes the enzyme responsible for post-translational modification of a cysteine residue, which is essential for the activity of sulfatases. We describe clinical findings and mutation analysis of four patients. The patients presented with hypotonia, developmental delay, coarse face, ichthyosis, and hepatosplenomegaly. The diagnosis was made through clinical findings, enzymatic assays, and mutation analysis. We were detected to be homozygous for a novel missense mutation c. 739G > C causing a p.G247R amino acid substitution in the SUMF1 protein.

  1. Molecular Basis of Symbiotic Promiscuity

    PubMed Central

    Perret, Xavier; Staehelin, Christian; Broughton, William J.

    2000-01-01

    Eukaryotes often form symbioses with microorganisms. Among these, associations between plants and nitrogen-fixing bacteria are responsible for the nitrogen input into various ecological niches. Plants of many different families have evolved the capacity to develop root or stem nodules with diverse genera of soil bacteria. Of these, symbioses between legumes and rhizobia (Azorhizobium, Bradyrhizobium, Mesorhizobium, and Rhizobium) are the most important from an agricultural perspective. Nitrogen-fixing nodules arise when symbiotic rhizobia penetrate their hosts in a strictly controlled and coordinated manner. Molecular codes are exchanged between the symbionts in the rhizosphere to select compatible rhizobia from pathogens. Entry into the plant is restricted to bacteria that have the “keys” to a succession of legume “doors”. Some symbionts intimately associate with many different partners (and are thus promiscuous), while others are more selective and have a narrow host range. For historical reasons, narrow host range has been more intensively investigated than promiscuity. In our view, this has given a false impression of specificity in legume-Rhizobium associations. Rather, we suggest that restricted host ranges are limited to specific niches and represent specialization of widespread and more ancestral promiscuous symbioses. Here we analyze the molecular mechanisms governing symbiotic promiscuity in rhizobia and show that it is controlled by a number of molecular keys. PMID:10704479

  2. Phylogeny of Algal Sequences Encoding Carbohydrate Sulfotransferases, Formylglycine-Dependent Sulfatases, and Putative Sulfatase Modifying Factors

    PubMed Central

    Ho, Chai-Ling

    2015-01-01

    Many algae are rich sources of sulfated polysaccharides with biological activities. The physicochemical/rheological properties and biological activities of sulfated polysaccharides are affected by the pattern and number of sulfate moieties. Sulfation of carbohydrates is catalyzed by carbohydrate sulfotransferases (CHSTs) while modification of sulfate moieties on sulfated polysaccharides was presumably catalyzed by sulfatases including formylglycine-dependent sulfatases (FGly-SULFs). Post-translationally modification of Cys to FGly in FGly-SULFs by sulfatase modifiying factors (SUMFs) is necessary for the activity of this enzyme. The aims of this study are to mine for sequences encoding algal CHSTs, FGly-SULFs and putative SUMFs from the fully sequenced algal genomes and to infer their phylogenetic relationships to their well characterized counterparts from other organisms. Algal sequences encoding CHSTs, FGly-SULFs, SUMFs, and SUMF-like proteins were successfully identified from green and brown algae. However, red algal FGly-SULFs and SUMFs were not identified. In addition, a group of SUMF-like sequences with different gene structure and possibly different functions were identified for green, brown and red algae. The phylogeny of these putative genes contributes to the corpus of knowledge of an unexplored area. The analyses of these putative genes contribute toward future production of existing and new sulfated carbohydrate polymers through enzymatic synthesis and metabolic engineering. PMID:26635861

  3. Early manifestations of multiple sulfatase deficiency.

    PubMed

    Burk, R D; Valle, D; Thomas, G H; Miller, C; Moser, A; Moser, H; Rosenbaum, K N

    1984-04-01

    We describe two boys, presenting by 1 year of age, with developmental delay from birth, mildly coarse facial features, and hepatomegaly. These clinical features were most suggestive of a mucopolysaccharidosis, particularly MPS II. Biochemical studies, including sulfate incorporation in fibroblasts and lysosomal enzyme analyses in fibroblasts, leukocytes, and serum, showed abnormalities in both sulfatide and mucopolysaccharide metabolism and led to the diagnosis of multiple sulfatase deficiency. With time, both patients developed an ichthyotic rash and profound intellectual deterioration. We conclude that findings in the first year of life in some patients with MSD may closely resemble those in patients with a MPS disorder rather than the late infantile form of metachromatic leukodystrophy, as is classically described. Thus, MSD should be considered in the young patient suspected of having a MPS disorder.

  4. Distinct Metal Isoforms Underlie Promiscuous Activity Profiles of Metalloenzymes.

    PubMed

    Baier, Florian; Chen, John; Solomonson, Matthew; Strynadka, Natalie C J; Tokuriki, Nobuhiko

    2015-07-17

    Within a superfamily, functionally diverged metalloenzymes often favor different metals as cofactors for catalysis. One hypothesis is that incorporation of alternative metals expands the catalytic repertoire of metalloenzymes and provides evolutionary springboards toward new catalytic functions. However, there is little experimental evidence that incorporation of alternative metals changes the activity profile of metalloenzymes. Here, we systematically investigate how metals alter the activity profiles of five functionally diverged enzymes of the metallo-β-lactamase (MBL) superfamily. Each enzyme was reconstituted in vitro with six different metals, Cd(2+), Co(2+), Fe(2+), Mn(2+), Ni(2+), and Zn(2+), and assayed against eight catalytically distinct hydrolytic reactions (representing native functions of MBL enzymes). We reveal that each enzyme metal isoform has a significantly different activity level for native and promiscuous reactions. Moreover, metal preferences for native versus promiscuous activities are not correlated and, in some cases, are mutually exclusive; only particular metal isoforms disclose cryptic promiscuous activities but often at the expense of the native activity. For example, the L1 B3 β-lactamase displays a 1000-fold catalytic preference for Zn(2+) over Ni(2+) for its native activity but exhibits promiscuous thioester, phosphodiester, phosphotriester, and lactonase activity only with Ni(2+). Furthermore, we find that the five MBL enzymes exist as an ensemble of various metal isoforms in vivo, and this heterogeneity results in an expanded activity profile compared to a single metal isoform. Our study suggests that promiscuous activities of metalloenzymes can stem from an ensemble of metal isoforms in the cell, which could facilitate the functional divergence of metalloenzymes.

  5. Multiple sulfatase deficiency: clinical, neuropathological, ultrastructural and biochemical studies.

    PubMed

    Guerra, W F; Verity, M A; Fluharty, A L; Nguyen, H T; Philippart, M

    1990-07-01

    We describe the clinical, pathological, ultrastructural and biochemical features in the case of a 15-year-old boy with multiple sulfatase deficiency. Clinical abnormalities included hypotonia, retarded psychomotor development, hepatosplenomegaly, pigmentary degeneration of the retina, myoclonic seizures, aortic insufficiency and quadriplegia. Urinalysis revealed increased heparan sulfate. At necropsy, aortic and mitral valves revealed nodular thickening and periodic acid-Schiff (PAS)-positive, metachromatic granules in renal proximal tubules. The brain weighed 400 g and demonstrated cerebral and cerebellar atrophy with a retrocerebellar meningeal cyst. Cortical neurons contained periodic acid-Schiff-positive and cresyl violet-reactive granules. White matter demonstrated brown metachromasia and intense fibrillary gliosis. Conjunctival fibroblasts contained amorphous vacuoles with dense osmiophilic nucleoid cores. Pleomorphic extracellular, intraneural and intraglial inclusions were noted in the brain. Activities of arylsulfatase A, B and C were diminished markedly in autopsied tissue from brain, liver, and kidney (0, 0 and less than 10% of control activities, respectively). Partial deficiencies of iduronate sulfatase and heparan sulfatase were noted in different tissues. Variable decreased enzyme activities were expressed in leukocytes: arylsulfatase A, less than 33%; B, 40%; and C, 90%; heparan sulfatase, 2%; and iduronate sulfatase was not detectable. Near normal activities were found in cultured fibroblasts.

  6. Nosology, ontology and promiscuous realism.

    PubMed

    Binney, Nicholas

    2015-06-01

    Medics may consider worrying about their metaphysics and ontology to be a waste of time. I will argue here that this is not the case. Promiscuous realism is a metaphysical position which holds that multiple, equally valid, classification schemes should be applied to objects (such as patients) to capture different aspects of their complex and heterogeneous nature. As medics at the bedside may need to capture different aspects of their patients' problems, they may need to use multiple classification schemes (multiple nosologies), and thus consider adopting a different metaphysics to the one commonly in use.

  7. Enzyme promiscuity in earthworm serine protease: substrate versatility and therapeutic potential.

    PubMed

    Verma, Mahendra Kumar; Pulicherla, K K

    2016-04-01

    Enzymes are the most versatile molecules in the biological world. These amazing molecules play an integral role in the regulation of various metabolic pathways and physiology subsequently. Promiscuity of an enzyme is the capacity to catalyze additional biochemical reactions besides their native one. Catalytic promiscuity has shown great impact in enzyme engineering for commercial enzyme and therapeutics with natural or engineered catalytic promiscuity. The earthworm serine protease (ESP) is a classic example of enzyme promiscuity and studied for its therapeutic potential over the last few decades. The ESP was reported for several therapeutic properties and fibrinolytic activity has been much explored. ESP, a complex enzyme exists as several isoforms of molecular weight ranging from 14 to 33 kDa. The fibrinolytic capacity of the enzyme has been studied in different species of earthworm and molecular mechanism is quite different from conventional thrombolytics. Cytotoxic and anti-tumor activities of ESP were evaluated using several cancer cell lines. Enzyme had shown tremendous scope in fighting against plant viruses and microbes. ESP is also reported for anti-inflammatory activity and anti-oxidant property. Apart from these, recently, ESP is reported for DNase activity. The daunting challenge for researchers is to understand the molecular mechanism for such diverse properties and possibility of enzyme promiscuity. This review emphasizes molecular mechanism of ESP governing various biochemical reactions. Further, the concept of enzyme promiscuity in ESP towards development of novel enzyme based drugs has been reviewed in this study.

  8. Ocular features of multiple sulfatase deficiency and a new variant of metachromatic leukodystrophy.

    PubMed

    Bateman, J B; Philippart, M; Isenberg, S J

    1984-01-01

    Multiple sulfatase deficiency, a newly recognized autosomal recessive disorder caused by a deficiency of several sulfatase enzymes, is characterized by psychomotor retardation, ichthyosis, and mild organomegaly. Patients with metachromatic leukodystrophy, also an autosomal recessive disorder, have a deficiency of a single sulfatase enzyme, arysulfatase A. The ocular features of a patient with multiple sulfatase deficiency and a patient with a new biochemical variant of metachromatic leukodystrophy are described. The patient with multiple sulfatase deficiency had a unique, peripheral lens opacity and a panretinal degeneration. The patient with a new variant of metachromatic leukodystrophy exhibited a cherry-red spot.

  9. Steroid Sulfatase Deficiency and Androgen Activation Before and After Puberty

    PubMed Central

    Idkowiak, Jan; Taylor, Angela E.; Subtil, Sandra; O'Neil, Donna M.; Vijzelaar, Raymon; Dias, Renuka P.; Amin, Rakesh; Barrett, Timothy G.; Shackleton, Cedric H. L.; Kirk, Jeremy M. W.; Moss, Celia

    2016-01-01

    Context: Steroid sulfatase (STS) cleaves the sulfate moiety off steroid sulfates, including dehydroepiandrosterone (DHEA) sulfate (DHEAS), the inactive sulfate ester of the adrenal androgen precursor DHEA. Deficient DHEA sulfation, the opposite enzymatic reaction to that catalyzed by STS, results in androgen excess by increased conversion of DHEA to active androgens. STS deficiency (STSD) due to deletions or inactivating mutations in the X-linked STS gene manifests with ichthyosis, but androgen synthesis and metabolism in STSD have not been studied in detail yet. Patients and Methods: We carried out a cross-sectional study in 30 males with STSD (age 6–27 y; 13 prepubertal, 5 peripubertal, and 12 postpubertal) and 38 age-, sex-, and Tanner stage-matched healthy controls. Serum and 24-hour urine steroid metabolome analysis was performed by mass spectrometry and genetic analysis of the STS gene by multiplex ligation-dependent probe amplification and Sanger sequencing. Results: Genetic analysis showed STS mutations in all patients, comprising 27 complete gene deletions, 1 intragenic deletion and 2 missense mutations. STSD patients had apparently normal pubertal development. Serum and 24-hour urinary DHEAS were increased in STSD, whereas serum DHEA and testosterone were decreased. However, total 24-hour urinary androgen excretion was similar to controls, with evidence of increased 5α-reductase activity in STSD. Prepubertal healthy controls showed a marked increase in the serum DHEA to DHEAS ratio that was absent in postpubertal controls and in STSD patients of any pubertal stage. Conclusions: In STSD patients, an increased 5α-reductase activity appears to compensate for a reduced rate of androgen generation by enhancing peripheral androgen activation in affected patients. In healthy controls, we discovered a prepubertal surge in the serum DHEA to DHEAS ratio that was absent in STSD, indicative of physiologically up-regulated STS activity before puberty. This may

  10. Modeling catalytic promiscuity in the alkaline phosphatase superfamily

    PubMed Central

    Duarte, Fernanda; Amrein, Beat Anton

    2013-01-01

    In recent years, it has become increasingly clear that promiscuity plays a key role in the evolution of new enzyme function. This finding has helped to elucidate fundamental aspects of molecular evolution. While there has been extensive experimental work on enzyme promiscuity, computational modeling of the chemical details of such promiscuity has traditionally fallen behind the advances in experimental studies, not least due to the nearly prohibitive computational cost involved in examining multiple substrates with multiple potential mechanisms and binding modes in atomic detail with a reasonable degree of accuracy. However, recent advances in both computational methodologies and power have allowed us to reach a stage in the field where we can start to overcome this problem, and molecular simulations can now provide accurate and efficient descriptions of complex biological systems with substantially less computational cost. This has led to significant advances in our understanding of enzyme function and evolution in a broader sense. Here, we will discuss currently available computational approaches that can allow us to probe the underlying molecular basis for enzyme specificity and selectivity, discussing the inherent strengths and weaknesses of each approach. As a case study, we will discuss recent computational work on different members of the alkaline phosphatase superfamily (AP) using a range of different approaches, showing the complementary insights they have provided. We have selected this particular superfamily, as it poses a number of significant challenges for theory, ranging from the complexity of the actual reaction mechanisms involved to the reliable modeling of the catalytic metal centers, as well as the very large system sizes. We will demonstrate that, through current advances in methodologies, computational tools can provide significant insight into the molecular basis for catalytic promiscuity, and, therefore, in turn, the mechanisms of protein

  11. Mating behaviour: promiscuous mothers have healthier young.

    PubMed

    Edvardsson, Martin; Champion de Crespigny, Fleur E; Tregenza, Tom

    2007-01-23

    A small marsupial has thrown new light on the question of why females typically mate with several males: promiscuous female antechinuses have many more surviving offspring because males that are successful in sperm competition also sire healthy offspring.

  12. Evolution of a new chlorophyll metabolic pathway driven by the dynamic changes in enzyme promiscuous activity.

    PubMed

    Ito, Hisashi; Tanaka, Ayumi

    2014-03-01

    Organisms generate an enormous number of metabolites; however, the mechanisms by which a new metabolic pathway is acquired are unknown. To elucidate the importance of promiscuous enzyme activity for pathway evolution, the catalytic and substrate specificities of Chl biosynthetic enzymes were examined. In green plants, Chl a and Chl b are interconverted by the Chl cycle: Chl a is hydroxylated to 7-hydroxymethyl chlorophyll a followed by the conversion to Chl b, and both reactions are catalyzed by chlorophyllide a oxygenase. Chl b is reduced to 7-hydroxymethyl chlorophyll a by Chl b reductase and then converted to Chl a by 7-hydroxymethyl chlorophyll a reductase (HCAR). A phylogenetic analysis indicated that HCAR evolved from cyanobacterial 3,8-divinyl chlorophyllide reductase (DVR), which is responsible for the reduction of an 8-vinyl group in the Chl biosynthetic pathway. In addition to vinyl reductase activity, cyanobacterial DVR also has Chl b reductase and HCAR activities; consequently, three of the four reactions of the Chl cycle already existed in cyanobacteria, the progenitor of the chloroplast. During the evolution of cyanobacterial DVR to HCAR, the HCAR activity, a promiscuous reaction of cyanobacterial DVR, became the primary reaction. Moreover, the primary reaction (vinyl reductase activity) and some disadvantageous reactions were lost, but the neutral promiscuous reaction (NADH dehydrogenase) was retained in both DVR and HCAR. We also show that a portion of the Chl c biosynthetic pathway already existed in cyanobacteria. We discuss the importance of dynamic changes in promiscuous activity and of the latent pathways for metabolic evolution.

  13. Galactokinase promiscuity: a question of flexibility?

    PubMed

    McAuley, Megan; Kristiansson, Helena; Huang, Meilan; Pey, Angel L; Timson, David J

    2016-02-01

    Galactokinase catalyses the first committed step of the Leloir pathway, i.e. the ATP-dependent phosphorylation of α-D-galactose at C1-OH. Reduced galactokinase activity results in the inherited metabolic disease type II galactosaemia. However, inhibition of galactokinase is considered a viable approach to treating more severe forms of galactosaemia (types I and III). Considerable progress has been made in the identification of high affinity, selective inhibitors. Although the structure of galactokinase from a variety of species is known, its catalytic mechanism remains uncertain. Although the bulk of evidence suggests that the reaction proceeds via an active site base mechanism, some experimental and theoretical studies contradict this. The enzyme has potential as a biocatalyst in the production of sugar 1-phosphates. This potential is limited by its high specificity. A variety of approaches have been taken to identify galactokinase variants which are more promiscuous. These have broadened galactokinase's specificity to include a wide range of D- and L-sugars. Initial studies suggest that some of these alterations result in increased flexibility at the active site. It is suggested that modulation of protein flexibility is at least as important as structural modifications in determining the success or failure of enzyme engineering.

  14. Promiscuity in alkaline phosphatase superfamily. Unraveling evolution through molecular simulations.

    PubMed

    López-Canut, Violeta; Roca, Maite; Bertrán, Juan; Moliner, Vicent; Tuñón, Iñaki

    2011-08-10

    We here present a theoretical study of the alkaline hydrolysis of a phosphodiester (methyl p-nitrophenyl phosphate or MpNPP) in the active site of Escherichia coli alkaline phosphatase (AP), a monoesterase that also presents promiscuous activity as a diesterase. The analysis of our simulations, carried out by means of molecular dynamics (MD) simulations with hybrid quantum mechanics/molecular mechanics (QM/MM) potentials, shows that the reaction takes place through a D(N)A(N) or dissociative mechanism, the same mechanism employed by AP in the hydrolysis of monoesters. The promiscuous activity observed in this superfamily can be then explained on the basis of a conserved reaction mechanism. According to our simulations the specialization in the hydrolysis of phosphomonoesters or phosphodiesters, developed in different members of the superfamily, is a consequence of the interactions established between the protein and the oxygen atoms of the phosphate group and, in particular, with the oxygen atom that bears the additional alkyl group when the substrate is a diester. A water molecule, belonging to the coordination shell of the Mg(2+) ion, and residue Lys328 seem to play decisive roles stabilizing a phosphomonoester substrate, but the latter contributes to increase the energy barrier for the hydrolysis of phosphodiesters. Then, mutations affecting the nature or positioning of Lys328 lead to an increased diesterase activity in AP. Finally, the capacity of this enzymatic family to catalyze the reaction of phosphoesters having different leaving groups, or substrate promiscuity, is explained by the ability of the enzyme to stabilize different charge distributions in the leaving group using different interactions involving either one of the zinc centers or residues placed on the outer side of the catalytic site.

  15. Multiple sulfatase deficiency is due to hypomorphic mutations of the SUMF1 gene.

    PubMed

    Annunziata, Ida; Bouchè, Valentina; Lombardi, Alessia; Settembre, Carmine; Ballabio, Andrea

    2007-09-01

    Sulfatases catalyze the hydrolysis of sulfate ester bonds from a wide variety of substrates and are implicated in several human inherited diseases. Multiple sulfatase deficiency (MSD) is a rare autosomal recessive disorder characterized by the simultaneous deficiency of all known sulfatases. MSD is caused by mutations in the Sulfatase Modifying Factor 1 (SUMF1) gene encoding the alpha-formylglycine generating enzyme (FGE), which is responsible for the post-translational modification of sulfatases. In all MSD patients, residual sulfatase activities are detectable, at variable levels. To correlate the nature of the residual sulfatase activities detected in MSD patients with residual FGE activity, four FGE mutants (i.e. p.S155P, p.R224W, p.R345C, p.R349W) found in homozygosis in MSD patients were analyzed. Using viral-mediated gene delivery, these mutants were over-expressed in mouse embryonic fibroblasts (MEFs) from a recently developed Sumf1 KO mouse line which is completely devoid of all sulfatase activities. The results obtained indicate that mutant SUMF1 cDNAs encode stable SUMF1 proteins which are of the appropriate molecular weight and are properly localized in the endoplasmic reticulum. Expression of these cDNAs in Sumf1-/- MEFs results in partial rescue of sulfatase activities. These data indicate that MSD is due to hypomorphic SUMF1 mutations and suggest that complete loss of SUMF1 function is likely to be lethal in humans.

  16. Placental sulfatase deficiency: clinical and biochemical study of 16 cases.

    PubMed

    Bedin, M; Alsat, E; Tanguy, G; Cedard, L

    1980-01-01

    Clinical and biochemical data of 16 typical cases of placental sulfatase deficiency have been observed. In vivo loading tests with DHA-S allowed us to make a prenatal diagnosis. In vitro experiments gave confirmation, showing zero or virtually zero placental sulfatase activity towards delta 5P or DHA sulfates Aromatase activities, when tested, were normal or more often less than standard values, the latter showing themselves rather large individual variations. All pregnancies were associated with the delivery of male neonates in good health but 3. The 15 living babies have been developing normally since then. These results, together with those reported in the literature, suggest that placental sulfatase deficiency is under control of an X-linked recessive character, this being supported by the recent observation of such a disorder in two sisters simultaneously pregnant. As to the high frequency problem of cesarian section, pointed out by several authors, we cannot conclude, from our own observations, that the defect has an obvious influence on the good outcome of labor, as 10 out of the 16 women delivered vaginally near term.

  17. Difficulty in recognizing multiple sulfatase deficiency in an infant.

    PubMed

    Santos, Roberto P; Hoo, Joe J

    2006-03-01

    We describe the difficulty in recognizing multiple sulfatase deficiency (MSD; Online Mendelian Inheritance in Man [OMIM] database No. 272200) in an infant. MSD is a rare autosomal recessive disorder that affects the posttranslational activation of various sulfatase enzymes. It is both biochemically and clinically variable. Currently, there are 12 known sulfatases in humans, and the clinical presentation of MSD is a unique composite of those individual enzyme defects. Here we report a black girl who presented with bilateral broad thumbs and great toes, both with angulation deformities at birth. Rubinstein-Taybi syndrome (OMIM No. 180849) was considered initially. The detection of inclusion bodies in her white blood cells at 37 months of age led to the appropriate diagnostic workups for lysosomal storage diseases. Elevation of urine mucopolysaccharides provided additional clues, and the fibroblast enzyme assays finally established the diagnosis. Broad thumbs and great toes are rare features of MSD, and to the best of our knowledge such a bilateral congenital anomaly with angulation deformities has never been reported before to be associated with MSD.

  18. Ligand promiscuity through the eyes of the aminoglycoside N3 acetyltransferase IIa

    PubMed Central

    Norris, Adrianne L; Serpersu, Engin H

    2013-01-01

    Aminoglycoside-modifying enzymes (AGMEs) are expressed in many pathogenic bacteria and cause resistance to aminoglycoside (AG) antibiotics. Remarkably, the substrate promiscuity of AGMEs is quite variable. The molecular basis for such ligand promiscuity is largely unknown as there is not an obvious link between amino acid sequence or structure and the antibiotic profiles of AGMEs. To address this issue, this article presents the first kinetic and thermodynamic characterization of one of the least promiscuous AGMEs, the AG N3 acetyltransferase-IIa (AAC-IIa) and its comparison to two highly promiscuous AGMEs, the AG N3-acetyltransferase-IIIb (AAC-IIIb) and the AG phosphotransferase(3′)-IIIa (APH). Despite having similar antibiotic selectivities, AAC-IIIb and APH catalyze different reactions and share no homology to one another. AAC-IIa and AAC-IIIb catalyze the same reaction and are very similar in both amino acid sequence and structure. However, they demonstrate strong differences in their substrate profiles and kinetic and thermodynamic properties. AAC-IIa and APH are also polar opposites in terms of ligand promiscuity but share no sequence or apparent structural homology. However, they both are highly dynamic and may even contain disordered segments and both adopt well-defined conformations when AGs are bound. Contrary to this AAC-IIIb maintains a well-defined structure even in apo form. Data presented herein suggest that the antibiotic promiscuity of AGMEs may be determined neither by the flexibility of the protein nor the size of the active site cavity alone but strongly modulated or controlled by the effects of the cosubstrate on the dynamic and thermodynamic properties of the enzyme. PMID:23640799

  19. Systemic inflammation and neurodegeneration in a mouse model of multiple sulfatase deficiency.

    PubMed

    Settembre, Carmine; Annunziata, Ida; Spampanato, Carmine; Zarcone, Daniela; Cobellis, Gilda; Nusco, Edoardo; Zito, Ester; Tacchetti, Carlo; Cosma, Maria Pia; Ballabio, Andrea

    2007-03-13

    Sulfatases are involved in several biological functions such as degradation of macromolecules in the lysosomes. In patients with multiple sulfatase deficiency, mutations in the SUMF1 gene cause a reduction of sulfatase activities because of a posttranslational modification defect. We have generated a mouse line carrying a null mutation in the Sumf1 gene. Sulfatase activities are completely absent in Sumf1(-/-) mice, indicating that Sumf1 is indispensable for sulfatase activation and that mammals, differently from bacteria, have a single sulfatase modification system. Similarly to multiple sulfatase deficiency patients, Sumf1(-/-) mice display frequent early mortality, congenital growth retardation, skeletal abnormalities, and neurological defects. All examined tissues showed progressive cell vacuolization and significant lysosomal storage of glycosaminoglycans. Sumf1(-/-) mice showed a generalized inflammatory process characterized by a massive presence of highly vacuolated macrophages, which are the main site of lysosomal storage. Activated microglia were detected in the cerebellum and brain cortex associated with remarkable astroglyosis and neuronal cell loss. Between 4 and 6 months of age, we detected a strong increase in the expression levels of inflammatory cytokines and of apoptotic markers in both the CNS and liver, demonstrating that inflammation and apoptosis occur at the late stage of disease and suggesting that they play an important role in both the systemic and CNS phenotypes observed in lysosomal disorders. This mouse model, in which the function of an entire protein family has been silenced, offers a unique opportunity to study sulfatase function and the mechanisms underlying lysosomal storage diseases.

  20. Neonatal multiple sulfatase deficiency with a novel mutation and review of the literature.

    PubMed

    Nur, Banu Güzel; Mıhçı, Ercan; Pepe, Stefano; Biberoğlu, Gürsel; Ezgü, Fatih Süheyl; Ballabio, Andrea; Öztekin, Osman; Dursun, Oğuz

    2014-01-01

    Multiple sulfatase deficiency is a rare autosomal recessive disorder in which affected individuals present a complex phenotype due to the impaired activity of all sulfatases. There are different types of multiple sulfatase deficiency; among them, the neonatal form is the most severe, with a broad range of mucopolysaccharidosis-like symptoms and death within the first year of life. The disorder is caused by homozygous or compound heterozygous mutations in the sulfatase-modifying factor-1 (SUMF1) gene. In this article, we describe a non-ichthyotic neonatal multiple sulfatase deficiency patient with a novel mutation in the SUMF1 gene. The missense mutation c.777C>G, for which the patient was homozygous, had been caused by a p.N259K amino acid substitution. We evaluated the patient using clinical findings, neuroimaging studies and molecular analysis via the literature; we also wanted to note the difficulties in the diagnosis of this rare disease.

  1. A novel protein modification generating an aldehyde group in sulfatases: its role in catalysis and disease.

    PubMed

    von Figura, K; Schmidt, B; Selmer, T; Dierks, T

    1998-06-01

    In multiple sulfatase deficiency, a rare human lysosomal storage disorder, all known sulfatases are synthesized as catalytically poorly active polypeptides. Analysis of the latter has shown that they lack a protein modification that was detected in all members of the sulfatase family. This novel protein modification generates a 2-amino-3-oxopropanoic acid (C alpha-formylglycine) residue by oxidation of the thiol group of a cysteine that is conserved among all eukaryotic sulfatases. The oxidation occurs in the endoplasmic reticulum at a stage when the nascent polypeptide is not yet folded. The aldehyde is part of the catalytic site and is likely to act as an aldehyde hydrate. One of the geminal hydroxyl groups accepts the sulfate during sulfate ester cleavage leading to the formation of a covalently sulfated enzyme intermediate. The other hydroxyl is required for the subsequent elimination of the sulfate and regeneration of the aldehyde group. In some prokaryotic members of the sulfatase gene family, the DNA sequence predicts a serine residue, and not a cysteine. Analysis of one of these prokaryotic sulfatases, however, revealed the presence of the C alpha-formylglycine indicating that the aldehyde group is essential for all members of the sulfatase family and that it can be generated from either cysteine or serine.

  2. Synthesis and stability of arylsulfatase A and B in fibroblasts from multiple sulfatase deficiency.

    PubMed

    Steckel, F; Hasilik, A; von Figura, K

    1985-08-15

    Fibroblasts from patients with multiple sulfatase deficiency were analyzed for activities of arylsulfatase A and B, iduronate 2-sulfatase and sulfamatase. A group of patients (group I) severely deficient in all sulfatases (residual activities less than or equal to 10% of control) were differentiated from patients (group II) with residual sulfatase activities of up to 90% of control. The synthesis and stability of arylsulfatase A and B were determined in pulse-chase labelling experiments. The apparent rate of synthesis of arylsulfatase A and B varied from 30% to normal in both fibroblasts from group I and II multiple sulfatase deficiency. In group I the molecular activity of the arylsulfatase A and B was more than 10-fold lower than in control fibroblasts. In group II the molecular activity of the arylsulfatase A was twofold to threefold lower and that of arylsulfatase B half of normal. In fibroblasts of both groups the stability of arylsulfatase A polypeptides was significantly diminished. For arylsulfatase B the instability was restricted to the mature 47000-Mr polypeptide and was variable within both groups. These results demonstrate that multiple sulfatase deficiency is a heterogeneous disorder, in which the primary defects can impair both the catalytic properties and the stability of sulfatases.

  3. [Uterine estrogen sulfotransferase and estrogen sulfatase in embryo implantation].

    PubMed

    Loza Arredondo, M C; González Juarez, N A

    1994-11-01

    The relation conjugated/unconjugated estrogens associated with reproductive processes has brought about the interest to study the biological role and regulation of the estrogen sulfotransferase and estrogen sulfatase which participate in the formation and hydrolysis of estrogen 3-sulfates, respectively. In this paper, both activities were measured through the reciprocal conversion of 3H-estrone sulfate and 3H-unconjugated estrogen during in vitro incubation with implantation sites (SI) and non-implanted sites (SNI) from the rat uterus, during the process of embryo implantation. Contrasting enzyme activities were found in these tissues. While sulfotransferase activity was higher in SI than in SNI (0.205 vs 0.144 pmol of E1S formed/mg protein/h, the inverse was found for the sulfatase (1.470 vs 1.977 pmol of E1 formed/mg protein/h). These results indicate the presence of both enzymes in the rat uterus and suggest the existence of a mechanism in SI that locally regulate the concentration of free and sulfoconjugated estrogens in which these enzymes participate.

  4. Molecular and functional analysis of SUMF1 mutations in multiple sulfatase deficiency.

    PubMed

    Cosma, Maria Pia; Pepe, Stefano; Parenti, Giancarlo; Settembre, Carmine; Annunziata, Ida; Wade-Martins, Richard; Di Domenico, Carmela; Di Natale, Paola; Mankad, Anuj; Cox, Barbara; Uziel, Graziella; Mancini, Grazia M S; Zammarchi, Enrico; Donati, Maria Alice; Kleijer, Wim J; Filocamo, Mirella; Carrozzo, Romeo; Carella, Massimo; Ballabio, Andrea

    2004-06-01

    Multiple sulfatase deficiency (MSD) is a rare disorder characterized by impaired activity of all known sulfatases. The gene mutated in this disease is SUMF1, which encodes a protein involved in a post-translational modification at the catalytic site of all sulfatases that is necessary for their function. SUMF1 strongly enhances the activity of sulfatases when coexpressed with sulfatase in Cos-7 cells. We performed a mutational analysis of SUMF1 in 20 MSD patients of different ethnic origin. The clinical presentation of these patients was variable, ranging from severe neonatal forms to mild phenotypes showing mild neurological involvement. A total of 22 SUMF1 mutations were identified, including missense, nonsense, microdeletion, and splicing mutations. We expressed all missense mutations in culture to study their ability to enhance the activity of sulfatases. Of the predicted amino acid changes, 11 (p.R349W, p.R224W, p.L20F, p.A348P, p.S155P, p.C218Y, p.N259I, p.A279V, p.R349Q, p.C336R, p.A177P) resulted in severely impaired sulfatase-enhancing activity. Two (p.R345C and p.P266L) showed a high residual activity on some, but not all, of the nine sulfatases tested, suggesting that some SUMF1 mutations may have variable effects on the activity of each sulfatase. This study compares, for the first time, clinical, biochemical, and molecular data in MSD patients. Our results show lack of a direct correlation between the type of molecular defect and the severity of phenotype.

  5. No genome barriers to promiscuous DNA

    NASA Astrophysics Data System (ADS)

    Lewin, R.

    1984-06-01

    Farrelly and Butow (1983) used the term 'promiscuous DNA' in their report of the apparent natural transfer of yeast mitochondrial DNA sequences into the nuclear genome. Ellis (1982) applied the same term in an editorial comment. It is pointed out since that time the subject of DNA's promiscuity has exploded with a series of reports. According to a report by Stern (1984), movement of DNA sequences between chloroplasts and mitochondria is not just a rare event but is a rampant process. It was recently concluded that 'the widespread presence of ctDNA sequences in plant mtDNA is best regarded as a dramatic demonstration of the dynamo nature of interactions between the chloroplast and the mitochondrion, similar to the ongoing process of interorganellar DNA transfer already documented between mitochondrion and nucleus and between chloroplast and nucleus'.

  6. Multiple sulfatase deficiency in a Turkish family resulting from a novel mutation.

    PubMed

    Yiş, Uluç; Pepe, Stefano; Kurul, Semra Hiz; Ballabio, Andrea; Cosma, Maria Pia; Dirik, Eray

    2008-05-01

    Multiple sulfatase deficiency (MSD) is an inherited lysosomal storage disease that affects post-translational activation of all of the sulfatases. Since biochemical and clinical findings are variable, the diagnosis is difficult in most of the cases. Missense, nonsense, microdeletion and splicing mutations in SUMF1 gene were found in all of the MSD patients analyzed. Here, we present clinical findings of two consanguineous patients with multiple sulfatase deficiency. They were found to be homozygous for a novel missense mutation c.739G > C causing a p.G247R amino acid substitution in the SUMF1 protein.

  7. Cerebroside Sulfatase Activity in Cultivated Human Skin Fibroblasts and Amniotic Fluid Cells

    ERIC Educational Resources Information Center

    Booth, Carol W.; And Others

    1975-01-01

    Prenatal monitoring for metachromatic leukodystrophy (a fatal inherited metabolic disorder) suggested that the determination of levels of cerebroside sulfatase in the amniotic fluid helped in the prenatal detection of this disorder. (DB)

  8. Sulfatase-activated fluorophores for rapid discrimination of mycobacterial species and strains

    PubMed Central

    Beatty, Kimberly E.; Williams, Monique; Carlson, Brian L.; Swarts, Benjamin M.; Warren, Robin M.; van Helden, Paul D.; Bertozzi, Carolyn R.

    2013-01-01

    Most current diagnostic tests for tuberculosis do not reveal the species or strain of pathogen causing pulmonary infection, which can lead to inappropriate treatment regimens and the spread of disease. Here, we report an assay for mycobacterial strain assignment based on genetically conserved mycobacterial sulfatases. We developed a sulfatase-activated probe, 7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one)–sulfate, that detects enzyme activity in native protein gels, allowing the rapid detection of sulfatases in mycobacterial lysates. This assay revealed that mycobacterial strains have distinct sulfatase fingerprints that can be used to judge both the species and lineage. Our results demonstrate the potential of enzyme-activated probes for rapid pathogen discrimination for infectious diseases. PMID:23878250

  9. Multiple sulfatase deficiency (mucosulfatidosis): impaired degradation of labeled sulfated compounds in cultured skin fibroblasts in vivo.

    PubMed

    Eto, Y; Numaguchi, S; Tahara, T; Rennert, O M

    1980-10-01

    Skin fibroblasts from a Japanese patient with multiple sulfatase deficiency (MSD) (Mucosulfatidosis) were studied with regard to metabolism of various sulfated compounds in vivo. Several sulfatase activities (arylsulfatases A, B and C, cholesterol sulfatase, heparin N-sulfatase) were deficient in skin fibroblasts grown in F-10 CO2 medium. The accumulation and degradation of 35S-sulfatide, 35S-mucopolysaccharides, 14C-cholesterol sulfate by MSD cells were also studied, comparing them to control, Hunter and metachromatic leukodystrophy cells. MSD fibroblasts accumulated and failed to degrade these compounds in vivo. Cholesterol sulfate was also incorporated into the control and pathological cells, and MSD cells were unable to hydrolyze cholesterol sulfate, though cholesterol sulfate is known to be hydrolyzed in the non-lysosomal subfraction. From these data it is clear that multiple enzyme deficiencies in MSD fibroblasts can be demonstrated in vivo.

  10. Unusual clinical presentation in two cases of multiple sulfatase deficiency.

    PubMed

    Blanco-Aguirre, M E; Kofman-Alfaro, S H; Rivera-Vega, M R; Medina, C; Valdes-Flores, M; Rizzo, W B; Cuevas-Covarrubias, S A

    2001-01-01

    Multiple sulfatase deficiency (MSD) is an inborn error of metabolism that combines the clinical features of late infantile metachromatic leukodystrophy and mucopolysaccharidosis. The characteristic biochemical abnormality is a reduction in the activities of several sulfatases, with consequent tissue accumulation of sulfatides, sulfated glycosaminoglycans, sphingolipids, and steroid sulfates. In this study we present two unusual cases of MSD with variable enzymatic deficiency of arylsulfatases A, B, and C. Both patients had ichthyosis, broad thumbs and index fingers, an unusually slow progression of the neurologic symptoms, and lacked the hepatosplenomegaly that is typical of MSD. Olivopontocerebellar atrophy was present and one patient had a large retrocerebellar cyst. Mucopolysaccharides were not detected in the urine from either subject. Leukocyte arylsulfatase A activity in patient 1 was 0.46 nmol/mg protein/hr and in patient 2 was 0.0 nmol/mg protein/hr (normal 0.7-5.0 nmol/mg protein/hr). Leukocyte arylsulfatase B activity in patient 1 was 24 nmol/mg protein/hr and in patient 2 was 22 nmol/mg protein/hr (normal 115-226 nmol/mg protein/hr). Leukocyte arylsulfatase C in patient 1 was 0.30 pmol/mg protein/hr and in patient 2 was 0.28 pmol/mg protein/hr (normal 0.84 pmol/mg protein/hr). In conclusion, these two patients with MSD had mild clinical presentations not previously reported and variable enzymatic deficiency of arylsulfatases A, B, and C.

  11. In vitro effect of synthetic progestogens on estrone sulfatase activity in human breast carcinoma.

    PubMed

    Prost-Avallet, O; Oursin, J; Adessi, G L

    1991-12-01

    The effect of progesterone and nine synthetic progestogens on the activity rate of microsome estrone sulfatase obtained from human breast carcinoma tissues was studied. The progestogens were classified into three groups: group I with a strict inhibitor effect: demegestone and chlormadinone acetate; group II with a strict activator effect: medroxyprogesterone acetate, quingestanol acetate, lynestrenol and progesterone and group III with a nonsignificant effect: dydrogesterone, promegestone, norgestrel and danazol. Demegestone was the most potent inhibitor and medroxyprogesterone acetate and quingestanol acetate had the highest activator effect. The effect of Triton X-100, a nonionic detergent, was also tested. This detergent consistently increased the microsome estrone sulfatase activity. A comparison was made between the effects of demegestone, medroxyprogesterone acetate and danazol on estrone sulfatase activity measured with or without Triton X-100 in the incubation medium. The presence of the detergent modified the progestogen action. Our results suggest that synthetic progestogens can influence the estrone sulfatase activity measured in human breast carcinoma tissues. However, the effect of progestogens was dependent on experimental conditions. Progestogens such as demegestone and chlormadinone acetate which inhibited estrone sulfatase activity in intact preparations, can reduce the intracellular production of biological active estrogen via the sulfatase pathway.

  12. Multiple sulfatase deficiency: degradation of arylsulfatase A and B after endocytosis in fibroblasts.

    PubMed

    Steckel, F; Hasilik, A; von Figura, K

    1985-08-15

    Multiple sulfatase deficiency can be classified into group I with severe and group II with moderate deficiencies in sulfatases. In fibroblasts in both groups the stability of arylsulfatase A and of the 47000-Mr form of arylsulfatase B is decreased [F. Steckel, A. Hasilik & K. von Figura (1985) Eur. J. Biochem. 151, 141-145]. After endocytosis in control fibroblasts or those from multiple sulfatase deficiency, arylsulfatase A and B derived from the latter were subjected to enhanced degradation in both types of recipient cells. The degradation was closely linked in time to endocytosis. Whereas instability of arylsulfatase A derived from different cell lines from multiple sulfatase deficiency was comparable, a marked heterogeneity was observed for the instability of the 47000-Mr polypeptide of arylsulfatase B. Each of the cell lines from multiple sulfatase deficiency synthesized arylsulfatase A and B polypeptides with normal and with decreased stability. Treatment with benzyloxycarbonyl-Phe-Ala-CHN2, an inhibitor of cysteine proteinases, stabilized arylsulfatase A polypeptides and partially restored arylsulfatase A activity in group II fibroblasts. The inhibitor had no protective effect on the 47000-Mr polypeptide or the activity of arylsulfatase B. The bearing of these findings on the yet unknown primary defect in multiple sulfatase deficiency is discussed.

  13. Characterization of Glycosaminoglycan (GAG) Sulfatases from the Human Gut Symbiont Bacteroides thetaiotaomicron Reveals the First GAG-specific Bacterial Endosulfatase*

    PubMed Central

    Ulmer, Jonathan E.; Vilén, Eric Morssing; Namburi, Ramesh Babu; Benjdia, Alhosna; Beneteau, Julie; Malleron, Annie; Bonnaffé, David; Driguez, Pierre-Alexandre; Descroix, Karine; Lassalle, Gilbert; Le Narvor, Christine; Sandström, Corine; Spillmann, Dorothe; Berteau, Olivier

    2014-01-01

    Despite the importance of the microbiota in human physiology, the molecular bases that govern the interactions between these commensal bacteria and their host remain poorly understood. We recently reported that sulfatases play a key role in the adaptation of a major human commensal bacterium, Bacteroides thetaiotaomicron, to its host (Benjdia, A., Martens, E. C., Gordon, J. I., and Berteau, O. (2011) J. Biol. Chem. 286, 25973–25982). We hypothesized that sulfatases are instrumental for this bacterium, and related Bacteroides species, to metabolize highly sulfated glycans (i.e. mucins and glycosaminoglycans (GAGs)) and to colonize the intestinal mucosal layer. Based on our previous study, we investigated 10 sulfatase genes induced in the presence of host glycans. Biochemical characterization of these potential sulfatases allowed the identification of GAG-specific sulfatases selective for the type of saccharide residue and the attachment position of the sulfate group. Although some GAG-specific bacterial sulfatase activities have been described in the literature, we report here for the first time the identity and the biochemical characterization of four GAG-specific sulfatases. Furthermore, contrary to the current paradigm, we discovered that B. thetaiotaomicron possesses an authentic GAG endosulfatase that is active at the polymer level. This type of sulfatase is the first one to be identified in a bacterium. Our study thus demonstrates that bacteria have evolved more sophisticated and diverse GAG sulfatases than anticipated and establishes how B. thetaiotaomicron, and other major human commensal bacteria, can metabolize and potentially tailor complex host glycans. PMID:25002587

  14. Estimation of Maximum Recommended Therapeutic Dose Using Predicted Promiscuity and Potency

    PubMed Central

    Liu, T; Oprea, T; Ursu, O; Hasselgren, C

    2016-01-01

    We report a simple model that predicts the maximum recommended therapeutic dose (MRTD) of small molecule drugs based on an assessment of likely protein–drug interactions. Previously, we reported methods for computational estimation of drug promiscuity and potency. We used these concepts to build a linear model derived from 238 small molecular drugs to predict MRTD. We applied this model successfully to predict MRTDs for 16 nonsteroidal antiinflammatory drugs (NSAIDs) and 14 antiretroviral drugs. Of note, based on the estimated promiscuity of low‐dose drugs (and active chemicals), we identified 83 proteins as “high‐risk off‐targets” (HROTs) that are often associated with low doses; the evaluation of interactions with HROTs may be useful during early phases of drug discovery. Our model helps explain the MRTD for drugs with severe adverse reactions caused by interactions with HROTs. PMID:27736015

  15. A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme.

    PubMed

    Roeser, Dirk; Preusser-Kunze, Andrea; Schmidt, Bernhard; Gasow, Kathrin; Wittmann, Julia G; Dierks, Thomas; von Figura, Kurt; Rudolph, Markus Georg

    2006-01-03

    The formylglycine (FGly)-generating enzyme (FGE) uses molecular oxygen to oxidize a conserved cysteine residue in all eukaryotic sulfatases to the catalytically active FGly. Sulfatases degrade and remodel sulfate esters, and inactivity of FGE results in multiple sulfatase deficiency, a fatal disease. The previously determined FGE crystal structure revealed two crucial cysteine residues in the active site, one of which was thought to be implicated in substrate binding. The other cysteine residue partakes in a novel oxygenase mechanism that does not rely on any cofactors. Here, we present crystal structures of the individual FGE cysteine mutants and employ chemical probing of wild-type FGE, which defined the cysteines to differ strongly in their reactivity. This striking difference in reactivity is explained by the distinct roles of these cysteine residues in the catalytic mechanism. Hitherto, an enzyme-substrate complex as an essential cornerstone for the structural evaluation of the FGly formation mechanism has remained elusive. We also present two FGE-substrate complexes with pentamer and heptamer peptides that mimic sulfatases. The peptides isolate a small cavity that is a likely binding site for molecular oxygen and could host reactive oxygen intermediates during cysteine oxidation. Importantly, these FGE-peptide complexes directly unveil the molecular bases of FGE substrate binding and specificity. Because of the conserved nature of FGE sequences in other organisms, this binding mechanism is of general validity. Furthermore, several disease-causing mutations in both FGE and sulfatases are explained by this binding mechanism.

  16. Pathologic findings of multiple sulfatase deficiency reflect the pattern of enzyme deficiencies.

    PubMed

    Macaulay, R J; Lowry, N J; Casey, R E

    1998-11-01

    Multiple sulfatase deficiency is a rare metabolic storage disorder that manifests in childhood. It is probably an autosomal-recessive inherited condition, the gene for which has not yet been identified. Clinical features include mental deficiency and a dysmorphic appearance reminiscent of a mucopolysaccharidosis. Unlike most storage disorders, there are multiple deficient enzymes; all are sulfatases, hence the name of the disorder. Biochemical testing reveals accumulation of glycosaminoglycans, sulfatides, and gangliosides in the brain and other tissues of affected patients. In previous accounts of postmortem examinations, white matter histologic and biochemical pathologic findings similar to metachromatic leukodystrophy have been reported. Ganglioside accumulation, secondary to interference with degradative enzyme activity by the accumulating glycosaminoglycans also has been demonstrated. The authors report a case of multiple sulfatase deficiency with only mild deficiencies of the arylsulfatases but with severe deficiencies of iduronate sulfatase and heparan sulfamidase. Pathologic changes were more in keeping with a mucopolysaccharidosis, with minimal white matter changes and deposition of metachromatic material. The authors postulate that the mild leukodystrophic changes but striking features similar to a mucopolysaccharidosis are reflections of the pattern of enzyme deficiency. The pathology of multiple sulfatase deficiency therefore represents an overlap between a leukodystrophy and a mucopolysaccharidosis, with the relative contribution of each pattern apparently depending on the pattern of enzyme deficiency encountered in each patient.

  17. Complementation of arylsulfatase A in somatic hybrids of metachromatic leukodystrophy and multiple sulfatase deficiency disorder fibroblasts.

    PubMed

    Chang, P L; Davidson, R G

    1980-10-01

    Metachromatic leukodystrophy and multiple sulfatase deficiency disorder are severe neurodegenerative diseases inherited as separate autosomal recessive traits. Arylsulfatase A (aryl-sulfate sulfohydrolase, EC 3.1.6.1) activity is deficient in both diseases but in multiple sulfatase deficiency disorder, activities of arylsulfatases B and C and other sulfatases are also reported to be reduced. Somatic hybrid cell clones produced by fusing cultured fibroblasts from patients with these diseases were isolated by a nonselective technique based on unit-gravity sedimentation. Arylsulfatase A activity was restored in these hybrids. The complemented enzyme resembled the normal arylsulfatase A in heat stability, pH optimum, Km, electrophoretic mobility, and immunologic reactivity. Because a structurally normal enzyme can be restored in a hybrid only though intergenic complementation, these results indicate that the mutations responsible for the deficiency of arylsulfatase A activity in metachromatic leukodystrophy and multiple sulfatase deficiency disorder are nonallelic and that at least two genetic loci control the expression of arylsulfatase A activity in the human genome. Furthermore, arylsulfatase C activity was also restored to normal in the hybrids, indicating that a common sulfatase inhibitor is not the cause of the multiple sulfatse deficiency.

  18. Bioinformatic Analysis of the Human Recombinant Iduronate 2-Sulfate Sulfatase

    PubMed Central

    Morales-Álvarez, Edwin D.; Rivera-Hoyos, Claudia M.; Landázuri, Patricia; Poutou-Piñales, Raúl A.; Pedroza-Rodríguez, Aura M.

    2016-01-01

    Mucopolysaccharidosis type II is a human recessive disease linked to the X chromosome caused by deficiency of lysosomal enzyme Iduronate 2-Sulfate Sulfatase (IDS), which leads to accumulation of glycosaminoglycans in tissues and organs. The human enzyme has been expressed in Escherichia coli and Pichia pastoris in attempt to develop more successful expression systems that allow the production of recombinant IDS for Enzyme Replacement Therapy (ERT). However, the preservation of native signal peptide in the sequence has caused conflicts in processing and recognition in the past, which led to problems in expression and enzyme activity. With the main object being the improvement of the expression system, we eliminate the native signal peptide of human recombinant IDS. The resulting sequence showed two modified codons, thus, our study aimed to analyze computationally the nucleotide sequence of the IDSnh without signal peptide in order to determine the 3D structure and other biochemical properties to compare them with the native human IDS (IDSnh). Results showed that there are no significant differences between both molecules in spite of the two-codon modifications detected in the recombinant DNA sequence. PMID:27335624

  19. Peptide promiscuity: an evolutionary concept for plant defense.

    PubMed

    Franco, Octavio Luiz

    2011-04-06

    The phenomenon of protein promiscuity, in which multiple functions are associated with a single peptide structure, has gained attention in several research fields, including the plant defense field. With this in mind, this report intends to link various plant defense peptides with common scaffolds (defensins, cyclotides and 2S albumins), and multiple activities with the processes of promiscuity generation and protein evolvability. This link seems to create an efficient system of plant defense against insect pests and pathogens, and is thus essential to plant survival and evolution. This review also identifies future possibilities for the use of peptide promiscuity in designing novel drugs and synthetic biotechnological products.

  20. Matching the Diversity of Sulfated Biomolecules: Creation of a Classification Database for Sulfatases Reflecting Their Substrate Specificity.

    PubMed

    Barbeyron, Tristan; Brillet-Guéguen, Loraine; Carré, Wilfrid; Carrière, Cathelène; Caron, Christophe; Czjzek, Mirjam; Hoebeke, Mark; Michel, Gurvan

    2016-01-01

    Sulfatases cleave sulfate groups from various molecules and constitute a biologically and industrially important group of enzymes. However, the number of sulfatases whose substrate has been characterized is limited in comparison to the huge diversity of sulfated compounds, yielding functional annotations of sulfatases particularly prone to flaws and misinterpretations. In the context of the explosion of genomic data, a classification system allowing a better prediction of substrate specificity and for setting the limit of functional annotations is urgently needed for sulfatases. Here, after an overview on the diversity of sulfated compounds and on the known sulfatases, we propose a classification database, SulfAtlas (http://abims.sb-roscoff.fr/sulfatlas/), based on sequence homology and composed of four families of sulfatases. The formylglycine-dependent sulfatases, which constitute the largest family, are also divided by phylogenetic approach into 73 subfamilies, each subfamily corresponding to either a known specificity or to an uncharacterized substrate. SulfAtlas summarizes information about the different families of sulfatases. Within a family a web page displays the list of its subfamilies (when they exist) and the list of EC numbers. The family or subfamily page shows some descriptors and a table with all the UniProt accession numbers linked to the databases UniProt, ExplorEnz, and PDB.

  1. Matching the Diversity of Sulfated Biomolecules: Creation of a Classification Database for Sulfatases Reflecting Their Substrate Specificity

    PubMed Central

    Barbeyron, Tristan; Brillet-Guéguen, Loraine; Carré, Wilfrid; Carrière, Cathelène; Caron, Christophe; Czjzek, Mirjam; Hoebeke, Mark; Michel, Gurvan

    2016-01-01

    Sulfatases cleave sulfate groups from various molecules and constitute a biologically and industrially important group of enzymes. However, the number of sulfatases whose substrate has been characterized is limited in comparison to the huge diversity of sulfated compounds, yielding functional annotations of sulfatases particularly prone to flaws and misinterpretations. In the context of the explosion of genomic data, a classification system allowing a better prediction of substrate specificity and for setting the limit of functional annotations is urgently needed for sulfatases. Here, after an overview on the diversity of sulfated compounds and on the known sulfatases, we propose a classification database, SulfAtlas (http://abims.sb-roscoff.fr/sulfatlas/), based on sequence homology and composed of four families of sulfatases. The formylglycine-dependent sulfatases, which constitute the largest family, are also divided by phylogenetic approach into 73 subfamilies, each subfamily corresponding to either a known specificity or to an uncharacterized substrate. SulfAtlas summarizes information about the different families of sulfatases. Within a family a web page displays the list of its subfamilies (when they exist) and the list of EC numbers. The family or subfamily page shows some descriptors and a table with all the UniProt accession numbers linked to the databases UniProt, ExplorEnz, and PDB. PMID:27749924

  2. Multisite Promiscuity in the Processing of Endogenous Substrates By Human Carboxylesterase 1

    SciTech Connect

    Bencharit, S.; Edwards, C.C.; Morton, C.L.; Howard-Williams, E.L.; Kuhn, P.; Potter, P.M.; Redinbo, M.R.; /North Carolina U. /St. Jude Children's Hosp., Memphis /SLAC, SSRL

    2007-01-16

    Human carboxylesterase 1 (hCE1) is a drug and endobiotic-processing serine hydrolase that exhibits relatively broad substrate specificity. It has been implicated in a variety of endogenous cholesterol metabolism pathways including the following apparently disparate reactions: cholesterol ester hydrolysis (CEH), fatty acyl Coenzyme A hydrolysis (FACoAH), acyl-Coenzyme A:cholesterol acyltransfer (ACAT), and fatty acyl ethyl ester synthesis (FAEES). The structural basis for the ability of hCE1 to perform these catalytic actions involving large substrates and products has remained unclear. Here we present four crystal structures of the hCE1 glycoprotein in complexes with the following endogenous substrates or substrate analogues: Coenzyme A, the fatty acid palmitate, and the bile acids cholate and taurocholate. While the active site of hCE1 was known to be promiscuous and capable of interacting with a variety of chemically distinct ligands, these structures reveal that the enzyme contains two additional ligand-binding sites and that each site also exhibits relatively non-specific ligand-binding properties. Using this multisite promiscuity, hCE1 appears structurally capable of assembling several catalytic events depending, apparently, on the physiological state of the cellular environment. These results expand our understanding of enzyme promiscuity and indicate that, in the case of hCE1, multiple non-specific sites are employed to perform distinct catalytic actions.

  3. Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key

    PubMed Central

    Schroeder, Michael

    2013-01-01

    Drug repositioning applies established drugs to new disease indications with increasing success. A pre-requisite for drug repurposing is drug promiscuity (polypharmacology) – a drug’s ability to bind to several targets. There is a long standing debate on the reasons for drug promiscuity. Based on large compound screens, hydrophobicity and molecular weight have been suggested as key reasons. However, the results are sometimes contradictory and leave space for further analysis. Protein structures offer a structural dimension to explain promiscuity: Can a drug bind multiple targets because the drug is flexible or because the targets are structurally similar or even share similar binding sites? We present a systematic study of drug promiscuity based on structural data of PDB target proteins with a set of 164 promiscuous drugs. We show that there is no correlation between the degree of promiscuity and ligand properties such as hydrophobicity or molecular weight but a weak correlation to conformational flexibility. However, we do find a correlation between promiscuity and structural similarity as well as binding site similarity of protein targets. In particular, 71% of the drugs have at least two targets with similar binding sites. In order to overcome issues in detection of remotely similar binding sites, we employed a score for binding site similarity: LigandRMSD measures the similarity of the aligned ligands and uncovers remote local similarities in proteins. It can be applied to arbitrary structural binding site alignments. Three representative examples, namely the anti-cancer drug methotrexate, the natural product quercetin and the anti-diabetic drug acarbose are discussed in detail. Our findings suggest that global structural and binding site similarity play a more important role to explain the observed drug promiscuity in the PDB than physicochemical drug properties like hydrophobicity or molecular weight. Additionally, we find ligand flexibility to have a

  4. Aromatase, estrone sulfatase, and 17β-hydroxysteroid dehydrogenase: structure-function studies and inhibitor development.

    PubMed

    Hong, Yanyan; Chen, Shiuan

    2011-07-04

    Aromatase, estrone sulfatase, and 17β-hydroxysteroid dehydrogenase type 1 are involved in the key steps of 17β-estradiol biosynthesis. Structure-function studies of aromatase, estrone sulfatase and 17β-hydroxysteroid dehydrogenase type 1 are important to evaluate the molecular basis of the interaction between these enzymes and their inhibitors. Selective and potent inhibitors of the three enzymes have been developed as antiproliferative agents in hormone-dependent breast carcinoma. New treatment strategies for hormone-dependent breast cancer are discussed.

  5. Sexual promiscuity: knowledge of dangers in institutions of higher learning.

    PubMed

    Ebong, R D

    1994-06-01

    Knowledge of dangers of sexual promiscuity was assessed in 2 institutions of higher learning. The objectives were to find out the knowledge of medical and social consequences as well as the factors responsible for sexual promiscuity among Nigerian youths. The study also assessed the discrepancies in societal concept of sex norms for males and females. The result was used as an index to determine the need for sex education for Nigerian youths. A total of 200 students (100 from each school) was assessed by random selection and use of a questionnaire. The result showed that students had a fair knowledge of sexual promiscuity, although in terms of medical consequences the knowledge was low for both groups. On social consequences, the knowledge was fair for both groups. Students agreed that lack of financial support and of supervision from parents and teachers were among the causes of sexual promiscuity. Recommendations were made for Health Education in these areas in institutions of higher learning. Also, recommendations were made for parental education on how to bring up, and care for, their adolescents to reduce the problems of sexual promiscuity. It was also recommended that a compulsory course on sexual promiscuity should be included in the syllabus in institutions of higher learning.

  6. SUMF1 mutations affecting stability and activity of formylglycine generating enzyme predict clinical outcome in multiple sulfatase deficiency.

    PubMed

    Schlotawa, Lars; Ennemann, Eva Charlotte; Radhakrishnan, Karthikeyan; Schmidt, Bernhard; Chakrapani, Anupam; Christen, Hans-Jürgen; Moser, Hugo; Steinmann, Beat; Dierks, Thomas; Gärtner, Jutta

    2011-03-01

    Multiple Sulfatase Deficiency (MSD) is caused by mutations in the sulfatase-modifying factor 1 gene encoding the formylglycine-generating enzyme (FGE). FGE post translationally activates all newly synthesized sulfatases by generating the catalytic residue formylglycine. Impaired FGE function leads to reduced sulfatase activities. Patients display combined clinical symptoms of single sulfatase deficiencies. For ten MSD patients, we determined the clinical phenotype, FGE expression, localization and stability, as well as residual FGE and sulfatase activities. A neonatal, very severe clinical phenotype resulted from a combination of two nonsense mutations leading to almost fully abrogated FGE activity, highly unstable FGE protein and nearly undetectable sulfatase activities. A late infantile mild phenotype resulted from FGE G263V leading to unstable protein but high residual FGE activity. Other missense mutations resulted in a late infantile severe phenotype because of unstable protein with low residual FGE activity. Patients with identical mutations displayed comparable clinical phenotypes. These data confirm the hypothesis that the phenotypic outcome in MSD depends on both residual FGE activity as well as protein stability. Predicting the clinical course in case of molecularly characterized mutations seems feasible, which will be helpful for genetic counseling and developing therapeutic strategies aiming at enhancement of FGE.

  7. Exploring the catalytic promiscuity of a new glycosyltransferase from Carthamus tinctorius.

    PubMed

    Xie, Kebo; Chen, Ridao; Li, Jianhua; Wang, Ruishan; Chen, Dawei; Dou, Xiaoxiang; Dai, Jungui

    2014-09-19

    The catalytic promiscuity of a new glycosyltransferase (UGT73AE1) from Carthamus tinctorius was explored. UGT73AE1 showed the capability to glucosylate a total of 19 structurally diverse types of acceptors and to generate O-, S-, and N-glycosides, making it the first reported trifunctional plant glycosyltransferase. The catalytic reversibility and regioselectivity were observed and modeled in a one-pot reaction transferring a glucose moiety from icariin to emodin. These findings demonstrate the potential versatility of UGT73AE1 in the glycosylation of bioactive natural products.

  8. Location of Aryl Sulfatase in Conidia and Young Mycelia of Neurospora crassa

    PubMed Central

    Scott, Walter A.; Metzenberg, Robert L.

    1970-01-01

    Aryl sulfatase (arylsulfate sulfohydrolase, EC 3.1.6.1) was found to have multiple locations in Neurospora conidia. Some enzyme activity remained in the supernatant when a spore suspension was centrifuged or filtered. Part of the cell-bound activity could be detected by adding the assay ingredients to a suspension of intact spores (patent enzyme), and additional activity was only detectable when the spores were first treated to destroy their permeability barriers (cryptic enzyme). Such treatments include: disruption with an X-press, brief rinsing with chloroform or acetone, incubation at 60 C for 5 min, and incubation with phenethyl alcohol, nystatin, or ascosin. Part of the patent aryl sulfatase was inactivated by briefly acid treating the intact spores (no loss of conidial viability). This enzyme was considered to have a cell surface location. Some enzyme was acid-resistant in intact spores, but all of the enzyme was acid-sensitive in spores whose permeability barriers had been disrupted. The pH dependence, kinetic properties, and p-nitrophenyl sulfate uptake were investigated in acid-treated conidia. No aryl sulfatase was detected in ascospores. Young mycelia contained more aryl sulfatase than did conidia, but little, if any, was secreted into the growth medium. Cryptic activity was demonstrated in young mycelia by brief chloroform treatment or by rinsing the cells with 0.1 m acetate buffer. Enzyme activity in young mycelia was completely labile to acid treatment, as was cell viability. PMID:16559101

  9. Multiple sulfatase deficiency: clinical report and description of two novel mutations in a Brazilian patient.

    PubMed

    Artigalás, Osvaldo Alfonso; da Silva, Luiz Roberto; Burin, Maira; Pastores, Gregory M; Zeng, Bai; Macedo, Nívea; Schwartz, Ida Vanessa Doederlein

    2009-09-01

    Multiple Sulfatase Deficiency (MSD) is a rare autosomal recessive disease in which the activities of all sulfatases are reduced; its estimated prevalence is 1:1.4 million births. The disease is caused by mutations in SUMF1, which encodes an enzyme involved in the post-translational modification of sulfatases. The MSD phenotype is a combination of the clinical features found in diseases resulting from a deficiency of the individual sulfatases; i.e., mucopolysaccharidosis II, IIIA, IIID, IVA and VI, metachromatic leukodystrophy, X-linked ichthyosis, and the X-linked recessive form of chondrodysplasia punctata. We describe herein the first case of a Brazilian patient with MSD. The case was initially diagnosed as having mucopolysaccharidosis (MPS), due to skeletal alterations, coarse facial features, and urinary excretion of dermatan sulfate and heparan sulfate. Later, after a detailed biochemical investigation, the diagnosis of MSD was established. The analysis of the SUMF1 showed the patient was a compound heterozygote for two novel mutations (p.R349G and p.F244S). This case illustrates the challenges in the diagnosis of a disease considered rare, such as MSD. We point out that the availability of therapy for certain MPS disorders necessitates correct disease assignment, and the need to exclude the likelihood of MSD.

  10. Sulfatase modifying factor 1 trafficking through the cells: from endoplasmic reticulum to the endoplasmic reticulum.

    PubMed

    Zito, Ester; Buono, Mario; Pepe, Stefano; Settembre, Carmine; Annunziata, Ida; Surace, Enrico Maria; Dierks, Thomas; Monti, Maria; Cozzolino, Marianna; Pucci, Piero; Ballabio, Andrea; Cosma, Maria Pia

    2007-05-16

    Sulfatase modifying factor 1 (SUMF1) is the gene mutated in multiple sulfatase deficiency (MSD) that encodes the formylglycine-generating enzyme, an essential activator of all the sulfatases. SUMF1 is a glycosylated enzyme that is resident in the endoplasmic reticulum (ER), although it is also secreted. Here, we demonstrate that upon secretion, SUMF1 can be taken up from the medium by several cell lines. Furthermore, the in vivo engineering of mice liver to produce SUMF1 shows its secretion into the blood serum and its uptake into different tissues. Additionally, we show that non-glycosylated forms of SUMF1 can still be secreted, while only the glycosylated SUMF1 enters cells, via a receptor-mediated mechanism. Surprisingly, following its uptake, SUMF1 shuttles from the plasma membrane to the ER, a route that has to date only been well characterized for some of the toxins. Remarkably, once taken up and relocalized into the ER, SUMF1 is still active, enhancing the sulfatase activities in both cultured cells and mice tissues.

  11. Discovery of a novel iota carrageenan sulfatase isolated from the marine bacterium Pseudoalteromonas carrageenovora

    PubMed Central

    Genicot, Sabine M.; Groisillier, Agnès; Rogniaux, Hélène; Meslet-Cladière, Laurence; Barbeyron, Tristan; Helbert, William

    2014-01-01

    Carrageenans are sulfated polysaccharides extracted from the cell wall of some marine red algae. These polysaccharides are widely used as gelling, stabilizing, and viscosifying agents in the food and pharmaceutical industries. Since the rheological properties of these polysaccharides depend on their sulfate content, we screened several isolated marine bacteria for carrageenan specific sulfatase activity, in the aim of developing enzymatic bioconversion of carrageenans. As a result of the screening, an iota-carrageenan sulfatase was detected in the cell-free lysate of the marine bacterium Pseudoalteromonas carrageenovora strain PscT. It was purified through Phenyl Sepharose and Diethylaminoethyl Sepharose chromatography. The pure enzyme, Psc ι-CgsA, was characterized. It had a molecular weight of 115.9 kDaltons and exhibited an optimal activity/stability at pH ~8.3 and at 40 ± 5°C. It was inactivated by phenylmethylsulfonyl fluoride but not by ethylene diamine tetraacetic acid. Psc ι-CgsA specifically catalyzes the hydrolysis of the 4-S sulfate of iota-carrageenan. The purified enzyme could transform iota-carrageenan into hybrid iota-/alpha- or pure alpha-carrageenan under controlled conditions. The gene encoding Psc ι-CgsA, a protein of 1038 amino acids, was cloned into Escherichia coli, and the sequence analysis revealed that Psc ι-CgsA has more than 90% sequence identity with a putative uncharacterized protein Q3IKL4 from the marine strain Pseudoalteromonas haloplanktis TAC 125, but besides this did not share any homology to characterized sulfatases. Phylogenetic studies show that P. carrageenovora sulfatase thus represents the first characterized member of a new sulfatase family, with a C-terminal domain having strong similarity with the superfamily of amidohydrolases, highlighting the still unexplored diversity of marine polysaccharide modifying enzymes. PMID:25207269

  12. Discovery of a novel iota carrageenan sulfatase isolated from the marine bacterium Pseudoalteromonas carrageenovora

    NASA Astrophysics Data System (ADS)

    Genicot, Sabine; Groisillier, Agnès; Rogniaux, Hélène; Meslet-Cladière, Laurence; Barbeyron, Tristan; Helbert, William

    2014-08-01

    Carrageenans are sulfated polysaccharides extracted from the cell wall of some marine red algae. These polysaccharides are widely used as gelling, stabilizing, and viscosifying agents in the food and pharmaceutical industries. Since the rheological properties of these polysaccharides depend on their sulfate content, we screened several isolated marine bacteria for carrageenan specific sulfatase activity, in the aim of developing enzymatic bioconversion of carrageenans. As a result of the screening, an iota-carrageenan sulfatase was detected in the cell-free lysate of the marine bacterium Pseudoalteromonas carrageenovora strain PscT. It was purified through Phenyl Sepharose and Diethylaminoethyl Sepharose chromatography. The pure enzyme, Psc ?-CgsA, was characterized. It had a molecular weight of 115.9 kDaltons and exhibited an optimal activity/stability at pH ~8.3 and at 40°C ± 5°C. It was inactivated by phenylmethylsulfonyl fluoride but not by ethylene diamine tetraacetic acid. Psc ?-CgsA specifically catalyzes the hydrolysis of the 4-S sulfate of iota-carrageenan. The purified enzyme could transform iota-carrageenan into hybrid iota-/alpha- or pure alpha-carrageenan under controlled conditions. The gene encoding Psc ?-CgsA, a protein of 1038 amino acids, was cloned into Escherichia coli, and the sequence analysis revealed that Psc ?-CgsA has more than 90% sequence identity with a putative uncharacterized protein Q3IKL4 from the marine strain Pseudoalteromonas haloplanktis TAC 125, but besides this did not share any homology to characterized sulfatases. Phylogenetic studies show that P. carrageenovora sulfatase thus represents the first characterized member of a new sulfatase family, with a C-terminal domain having strong similarity with the superfamily of amidohydrolases, highlighting the still unexplored diversity of marine polysaccharide modifying enzymes.

  13. Extensive HLA class I allele promiscuity among viral CTL epitopes

    PubMed Central

    Frahm, Nicole; Yusim, Karina; Suscovich, Todd J.; Adams, Sharon; Sidney, John; Hraber, Peter; Hewitt, Hannah S.; Linde, Caitlyn H.; Kavanagh, Daniel G.; Woodberry, Tonia; Henry, Leah M.; Faircloth, Kellie; Listgarten, Jennifer; Kadie, Carl; Jojic, Nebojsa; Sango, Kaori; Brown, Nancy V.; Pae, Eunice; Zaman, M. Tauheed; Bihl, Florian; Khatri, Ashok; John, Mina; Mallal, Simon; Marincola, Francesco M.; Walker, Bruce D.; Sette, Alessandro; Heckerman, David; Korber, Bette T.; Brander, Christian

    2008-01-01

    Summary Promiscuous binding of T helper epitopes to MHC class II molecules has been well established, but few examples of promiscuous class I restricted epitopes exist. To address the extent of promiscuity of HLA class I peptides, responses to 242 well-defined viral epitopes were tested in 100 subjects regardless of the individuals’ HLA type. Surprisingly, half of all detected responses were seen in the absence of the originally reported restricting HLA class I allele, and only 3% of epitopes were recognized exclusively in the presence of their original allele. Functional assays confirmed the frequent recognition of HLA class I-restricted T cell epitopes on several alternative alleles across HLA class I supertypes and encoded on different class I loci. These data have significant implications for the understanding of MHC class I restricted antigen presentation and vaccine development. PMID:17705138

  14. Promiscuity, sexual selection, and genetic diversity: a reply to Spurgin.

    PubMed

    Lifjeld, Jan T; Gohli, Jostein; Johnsen, Arild

    2013-10-01

    We recently reported a positive association between female promiscuity and genetic diversity across passerine birds, and launched the hypothesis that female promiscuity acts as a balancing selection, pressure maintaining genetic diversity in populations (Gohli et al.2013). Spurgin (2013) questions both our analyses and interpretations. While we agree that the hypothesis needs more comprehensive empirical testing, we find his specific points of criticism unjustified. In a more general perspective, we call for a more explicit recognition of female mating preferences as mechanisms of selection in population genetics theory.

  15. Harnessing natural product assembly lines: structure, promiscuity, and engineering

    PubMed Central

    Ladner, Christopher C; Williams, Gavin J

    2015-01-01

    Many therapeutically relevant natural products are biosynthesized by the action of giant mega-enzyme assembly lines. By leveraging the specificity, promiscuity, and modularity of assembly lines, a variety of strategies have been developed that enable the biosynthesis of modified natural products. This review briefly summarizes recent structural advances related to natural product assembly lines, discusses chemical approaches to probing assembly line structures in the absence of traditional biophysical data, and surveys efforts that harness the inherent or engineered promiscuity of assembly lines for the synthesis of non-natural polyketides and nonribosomal peptide analogues. PMID:26527577

  16. Substrate promiscuity in DNA methyltransferase M.PvuII. A mechanistic insight.

    PubMed

    Aranda, Juan; Roca, Maite; Tuñón, Iñaki

    2012-07-28

    M.PvuII is a DNA methyltransferase from the bacterium Proteus vulgaris that catalyzes methylation of cytosine at the N4 position. This enzyme also displays promiscuous activity catalyzing methylation of adenine at the N6 position. In this work we use QM/MM methods to investigate the reaction mechanism of this promiscuous activity. We found that N6 methylation in M.PvuII takes place by means of a stepwise mechanism in which deprotonation of the exocyclic amino group is followed by the methyl transfer. Deprotonation involves two residues of the active site, Ser53 and Asp96, while methylation takes place directly from the AdoMet cofactor to the target nitrogen atom. The same reaction mechanism was described for cytosine methylation in the same enzyme, while the reversal timing, that is methylation followed by deprotonation, has been described in M.TaqI, an enzyme that catalyzes the N6-adenine DNA methylation from Thermus aquaticus. These mechanistic findings can be useful to understand the evolutionary paths followed by N-methyltransferases.

  17. [Aryl sulfatase of unusual specificity from the liver of marine mollusk Littorina kurila].

    PubMed

    Kusaĭkin, M I; Pesentseva, M S; Sil'chenko, A S; Avilov, S A; Sova, V V; Zviagintseva, T N; Stonik, V A

    2006-01-01

    An aryl sulfatase of unusual specificity has been isolated from the liver of marine mollusk Littorina kurila. It hydrolyzes p-nitrophenyl sulfate, does not affect the natural fucoidan, and catalyzes splitting off of the sulfate group in position C4 of xylose residues within the carbohydrate chains of holostane triterpene glycosides from sea cucumbers. The properties of the enzyme were studied at pH 5.4. The protein is homogeneous according to electrophoresis and has M 45 +/- 1 kDa. The semiinactivation time of the enzyme at 60 degrees C is 20 min, and its Km value for the hydrolysis of p-nitrophenyl sulfate is 8.7 +/- 1 mM. It was shown that natural sulfated polyhydroxysteroids inhibit activity of the sulfatase; their I50 values depend on their structures and are within the range from 10(-3) to 10(-5) M.

  18. Presence of arylsulfatase A (ARS A) in multiple sulfatase deficiency disorder fibroblasts.

    PubMed

    Fluharty, A L; Stevens, R L; Davis, L L; Shapiro, L J; Kihara, H

    1978-05-01

    Multiple deficiency disorder fibroblasts cultured in MEM-CO2 showed deficiencies of arylsulfatase A(ARS A) comparable to the deficiency in metachromatic leukodystrophy fibroblasts. However, the MSDD fibroblasts cultured in MEM-HEPES contained near normal levels of ARS A. Moreover, the enzyme from the latter fibroblasts was indistinguishable from ARS A of control fibroblasts on DEAE-cellulose chromatography, ratio of activity with several substrates, thermal inactivation, sensitivity to inhibitors, and precipitation by antiserum to human ARS A. These data support the conclusion that the ARS A genome is intact in MSDD fibroblasts and, by extension, in MSDD patients. Other sulfatases were present at levels ranging from mildly deficient to near normal but never as low as seen in the corresponding specific sulfatase deficient disorders.

  19. Promiscuity in Mice is Associated with Increased Vaginal Bacterial Diversity

    PubMed Central

    MacManes, Matthew D.

    2011-01-01

    Differences in the number of sexual partners (i.e., mating system) have the potential to exert a strong influence on the bacterial communities present in reproductive structures like the vagina. Because this structure serves as a conduit for gametes, bacteria present there may have a pronounced, direct effect on host reproductive success. As a first step towards the identification of the relationship between sexual behavior and potentially pathogenic bacterial communities inhabiting vital reproductive structures—as well as their potential effects on fitness, I sought to quantify differences in bacterial diversity in a promiscuous and monogamous mammal species. To accomplish this, I used 2 sympatric species of Peromyscus rodents—P. californicus and P. maniculatus that differ with regard to numbers of sexual partners per individual to test the hypothesis that bacterial diversity should be greater in the promiscuous P. maniculatus relative to the monogamous P. californicus. As predicted, phylogenetically controlled and operational taxonomic unit-based indices of bacterial diversity indicated that diversity is greater in the promiscuous species. These results provide important new insights into the effects of mating system on bacterial diversity in free-living vertebrates, and may suggest a potential cost of promiscuity. PMID:21964973

  20. Promiscuity in mice is associated with increased vaginal bacterial diversity

    NASA Astrophysics Data System (ADS)

    Macmanes, Matthew David

    2011-11-01

    Differences in the number of sexual partners (i.e., mating system) have the potential to exert a strong influence on the bacterial communities present in reproductive structures like the vagina. Because this structure serves as a conduit for gametes, bacteria present there may have a pronounced, direct effect on host reproductive success. As a first step towards the identification of the relationship between sexual behavior and potentially pathogenic bacterial communities inhabiting vital reproductive structures, as well as their potential effects on fitness, I sought to quantify differences in bacterial diversity in a promiscuous and monogamous mammal species. To accomplish this, I used two sympatric species of Peromyscus rodents— Peromyscus californicus and Peromyscus maniculatus that differ with regard to the number of sexual partners per individual to test the hypothesis that bacterial diversity should be greater in the promiscuous P. maniculatus relative to the monogamous P. californicus. As predicted, phylogenetically controlled and operational taxonomic unit-based indices of bacterial diversity indicated that diversity is greater in the promiscuous species. These results provide important new insights into the effects of mating system on bacterial diversity in free-living vertebrates, and may suggest a potential cost of promiscuity.

  1. Much More than Power: The Pedagogy of Promiscuous Black Feminism

    ERIC Educational Resources Information Center

    Huckaby, M. Francyne

    2013-01-01

    This paper explores promiscuous black feminism by juxtaposing black feminism, Foucualt's poststructuralism, and my grandmother. The tensions created by these juxtapositions illuminate the ways black feminism and poststructuralism are resources and challenges to each other, and how both offer understandings of the relations at play that shape…

  2. Estrone 3-sulfate mimics, inhibitors of estrone sulfatase activity: homology model construction and docking studies.

    PubMed

    Howarth, Nicola M; Purohit, Atul; Robinson, James J; Vicker, Nigel; Reed, Michael J; Potter, Barry V L

    2002-12-17

    Steroid sulfatase (STS) is a new target for the endocrine therapy of breast cancer. To ascertain some of the requirements for inhibition of estrone sulfatase activity, a number of novel analogues of estrone 3-O-sulfate possessing sulfate surrogates were synthesized and evaluated as inhibitors of estrone sulfatase (STS) in comparison to a lead inhibitor, estrone-3-O-methylthiophosphonate (E1-3-MTP). Using a selective enzyme digestion, one of the diastereoisomers of this compound, (R(p))-E1-3-MTP, could be prepared and evaluated. From structure-activity studies, we show that chirality at the phosphorus atom, hydrophobicity, basicity, size, and charge all influence the ability of a compound to inhibit estrone sulfatase activity. Of these, hydrophobicity seems to be the most important since simple, active nonsteroidal inhibitors, based on 5,6,7,8-tetrahydronaphth-2-ol (THN), can be prepared, provided that they are lipophilic enough to partition into a nonpolar environment. Also, a negatively charged group is favorable for optimal binding, although it appears that the presence of a potentially cleavable group can compensate for lack of charge in certain cases. A homology model of STS has been constructed from the STS sequence, and molecular docking studies of inhibitors have been performed to broaden the understanding of enzyme/inhibitor interactions. This model clearly shows the positions of the key amino acid residues His136, His290, Lys134, and Lys368 in the putative catalytic region of the formylglycine at position 75, with residues Asp35, Asp36, Asp342, and Gln343 as ligands in the coordination sphere of the magnesium ion. Docking studies using the substrate and estrone-3-sulfate mimics that are active inhibitors indicate they are positioned in the area of proposed catalysis, confirming the predictive power of the model.

  3. Sulfatase modifying factor 1-mediated fibroblast growth factor signaling primes hematopoietic multilineage development.

    PubMed

    Buono, Mario; Visigalli, Ilaria; Bergamasco, Roberta; Biffi, Alessandra; Cosma, Maria Pia

    2010-08-02

    Self-renewal and differentiation of hematopoietic stem cells (HSCs) are balanced by the concerted activities of the fibroblast growth factor (FGF), Wnt, and Notch pathways, which are tuned by enzyme-mediated remodeling of heparan sulfate proteoglycans (HSPGs). Sulfatase modifying factor 1 (SUMF1) activates the Sulf1 and Sulf2 sulfatases that remodel the HSPGs, and is mutated in patients with multiple sulfatase deficiency. Here, we show that the FGF signaling pathway is constitutively activated in Sumf1(-/-) HSCs and hematopoietic stem progenitor cells (HSPCs). These cells show increased p-extracellular signal-regulated kinase levels, which in turn promote beta-catenin accumulation. Constitutive activation of FGF signaling results in a block in erythroid differentiation at the chromatophilic erythroblast stage, and of B lymphocyte differentiation at the pro-B cell stage. A reduction in mature myeloid cells and an aberrant development of T lymphocytes are also seen. These defects are rescued in vivo by blocking the FGF pathway in Sumf1(-/-) mice. Transplantation of Sumf1(-/-) HSPCs into wild-type mice reconstituted the phenotype of the donors, suggesting a cell autonomous defect. These data indicate that Sumf1 controls HSPC differentiation and hematopoietic lineage development through FGF and Wnt signaling.

  4. Identification and regulation of the catalytic promiscuity of (-)-γ-lactamase from Microbacterium hydrocarbonoxydans.

    PubMed

    Sun, Yu; Zhao, Hongtao; Wang, Jianjun; Zhu, Junge; Wu, Sheng

    2015-09-01

    Mhg, a previously reported (-)-γ-lactamase from Microbacterium hydrocarbonoxydans, was identified to have perhydrolase activity by combining structure similarity search with activity assays. Kinetic studies illustrated that perhydrolysis was the native activity owing to lower K m and higher k cat/K m values. Experimental evidence showed that both hydrolysis and perhydrolysis reactions took place at the same active center. Engineering of the putative substrate-binding pocket revealed that Leu233 site played a vital role in the aspects of selective catalysis, soluble protein expression level and optimum temperature shift, etc. The mutants L233A, L233P, and L233T retained (-)-γ-lactamase activity but lost perhydrolase activity, while L233M only kept perhydrolase activity. Substitutions of Leu233 could dramatically influence the state of expressed protein. Computational analysis explicitly explained the relationships between mutations and γ-lactamase activity changes. Our investigations demonstrated that it was an efficient method to identify the enzyme catalytic promiscuity by combining 3D structure alignment with activity validations, and engineering of substrate-binding pocket could serve as a promising way to regulate activities of promiscuous enzymes.

  5. NDM-1, the ultimate promiscuous enzyme: substrate recognition and catalytic mechanism

    PubMed Central

    Kim, Youngchang; Cunningham, Mark A.; Mire, Joseph; Tesar, Christine; Sacchettini, James; Joachimiak, Andrzej

    2013-01-01

    The specter of a return to an era in which infectious disease looms as a significant threat to human health is not just hyperbole; there are serious concerns about the widespread overuse and misuse of antibiotics contributing to increased antibiotic resistance in pathogens. The recent discovery of a new enzyme, first identified in Klebsiella pneumoniae from a patient from New Delhi and denoted as NDM-1, represents an example of extreme promiscuity: It hydrolyzes and inactivates nearly all known β-lactam-based antibiotics with startling efficiency. NDM-1 can utilize different metal cofactors and seems to exploit an alternative mechanism based on the reaction conditions. Here we report the results of a combined experimental and theoretical study that examines the substrate, metal binding, and catalytic mechanism of the enzyme. We utilize structures obtained through X-ray crystallography, biochemical assays, and numerical simulation to construct a model of the enzyme catalytic pathway. The NDM-1 enzyme interacts with the substrate solely through zinc, or other metals, bound in the active site, explaining the observed lack of specificity against a broad range of β-lactam antibiotic agents. The zinc ions also serve to activate a water molecule that hydrolyzes the β-lactam ring through a proton shuttle.—Kim, Y., Cunningham, M. A.; Mire, J., Tesar, C., Sacchettini, J., Joachimiak, A. NDM-1, the ultimate promiscuous enzyme: substrate recognition and catalytic mechanism. PMID:23363572

  6. Sanfilippo D syndrome: Estimation of N-acetylglucosamine-6-sulfatase activity with a radiolabeled monosulfated disaccharide substrate

    SciTech Connect

    Freeman, C.; Hopwood, J.J.

    1989-02-01

    N-Acetylglucosamine-6-sulfatase activity was assayed by incubation of the radiolabeled disaccharide O-(a-N-acetylglucosamine-6-sulfate)-(1----3)-L-(6-/sup 3/H)-idonic acid (GlcNAc6S-IdOA), with homogenates of leucocytes, cultured fibroblasts, and urine from normal individuals, patients affected with N-acetylglucosamine-6-sulfatase-deficiency (Sanfilippo D syndrome, mucopolysaccharidosis type IIID), and patients affected with other mucopolysaccharidoses and lysosomal storage disorders. The assay clearly distinguished affected homozygotes from their obligate heterozygotes and normal controls and other lysosomal storage disorders. Sulfatase activity in fibroblasts, leucocytes, and urine toward GlcNAc6S-IdOA exhibited a pH optimum at 4.2, 4.5, and 5.1, respectively. Sulfatase activity in fibroblasts had an apparent Km of 7.2 microM and was significantly inhibited by both sulfate and phosphate ions. The action of fibroblast or leucocyte N-acetylglucosamine-6-sulfatase activity toward GlcNAc6S-IdOA is recommended for the routine enzymatic detection and classification of mucopolysaccharidosis type IIID patients.

  7. Designing of promiscuous inhibitors against pancreatic cancer cell lines

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Chaudhary, Kumardeep; Singla, Deepak; Gautam, Ankur; Raghava, Gajendra P. S.

    2014-04-01

    Pancreatic cancer remains the most devastating disease with worst prognosis. There is a pressing need to accelerate the drug discovery process to identify new effective drug candidates against pancreatic cancer. We have developed QSAR models for predicting promiscuous inhibitors using the pharmacological data. Our models achieved maximum Pearson correlation coefficient of 0.86, when evaluated on 10-fold cross-validation. Our models have also successfully validated the drug-to-oncogene relationship and further we used these models to screen FDA approved drugs and tested them in vitro. We have integrated these models in a webserver named as DiPCell, which will be useful for screening and designing novel promiscuous drug molecules. We have also identified the most and least effective drugs for pancreatic cancer cell lines. On the other side, we have identified resistant pancreatic cancer cell lines, which need investigative scanner on them to put light on resistant mechanism in pancreatic cancer.

  8. Promiscuous primates engage in same-sex genital interactions.

    PubMed

    MacFarlane, Geoff R; Vasey, Paul L

    2016-05-01

    Same-sex genital interactions (SSGIs) occur across the order primates, yet explaining their maintenance in evolutionary terms appears problematic; as such interactions seem to counteract reproductive goals. We hypothesised that in more promiscuous species, where sexual motivation, mating effort, and non-conceptive heterosexual behaviour are greater, SSGIs may also occur at greater frequencies without necessarily impeding reproduction. We found that the expression of both male and female SSGIs were greater in multimale systems than in unimale ones. Both male and female SSGIs were positively correlated with the degree of promiscuity (relative testes mass). As mating system confers biases in the sex ratio that may influence the expression of SSGIs, we controlled for availability of members of the same-sex. When employing this control, results were largely congruent. For males, SSGIs were expressed more frequently in multimale systems. For both sexes, SSGIs were expressed more frequently with greater relative testes mass. We suggest SSGIs in primates may be a neutral by-product of selection for increases in promiscuous sexual activity, and that in certain instances these interactions may be co-opted to facilitate adaptive social functions.

  9. Female promiscuity and maternally dependent offspring growth rates in mammals.

    PubMed

    Garratt, Michael; Brooks, Robert C; Lemaître, Jean-François; Gaillard, Jean-Michel

    2014-04-01

    Conflicts between family members are expected to influence the duration and intensity of parental care. In mammals, the majority of this care occurs as resource transfer from mothers to offspring during gestation and lactation. Mating systems can have a strong influence on the severity of familial conflict--where female promiscuity is prevalent, conflict is expected to be higher between family members, causing offspring to demand more resources. If offspring are capable of manipulating their mothers and receive resources in proportion to their demands, resource transfer should increase with elevated promiscuity. We tested this prediction, unexplored across mammals, using a comparative approach. The total durations of gestation and lactation were not related to testes mass, a reliable proxy of female promiscuity across taxa. Offspring growth during gestation, however, and weaning mass, were positively correlated with testes mass, suggesting that offspring gain resources from their mothers at faster rates when familial conflict is greater. During gestation, the relationship between offspring growth and testes mass was also related to placenta morphology, with a stronger relationship between testes mass and growth observed in species with a less invasive placenta. Familial conflict could have a pervasive influence on patterns of parental care in mammals.

  10. Biological messiness vs. biological genius: Mechanistic aspects and roles of protein promiscuity.

    PubMed

    Atkins, William M

    2015-07-01

    In contrast to the traditional biological paradigms focused on 'specificity', recent research and theoretical efforts have focused on functional 'promiscuity' exhibited by proteins and enzymes in many biological settings, including enzymatic detoxication, steroid biochemistry, signal transduction and immune responses. In addition, divergent evolutionary processes are apparently facilitated by random mutations that yield promiscuous enzyme intermediates. The intermediates, in turn, provide opportunities for further evolution to optimize new functions from existing protein scaffolds. In some cases, promiscuity may simply represent the inherent plasticity of proteins resulting from their polymeric nature with distributed conformational ensembles. Enzymes or proteins that bind or metabolize noncognate substrates create 'messiness' or noise in the systems they contribute to. With our increasing awareness of the frequency of these promiscuous behaviors it becomes interesting and important to understand the molecular bases for promiscuous behavior and to distinguish between evolutionarily selected promiscuity and evolutionarily tolerated messiness. This review provides an overview of current understanding of these aspects of protein biochemistry and enzymology.

  11. Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme.

    PubMed

    Dierks, Thomas; Dickmanns, Achim; Preusser-Kunze, Andrea; Schmidt, Bernhard; Mariappan, Malaiyalam; von Figura, Kurt; Ficner, Ralf; Rudolph, Markus Georg

    2005-05-20

    Sulfatases are enzymes essential for degradation and remodeling of sulfate esters. Formylglycine (FGly), the key catalytic residue in the active site, is unique to sulfatases. In higher eukaryotes, FGly is generated from a cysteine precursor by the FGly-generating enzyme (FGE). Inactivity of FGE results in multiple sulfatase deficiency (MSD), a fatal autosomal recessive syndrome. Based on the crystal structure, we report that FGE is a single-domain monomer with a surprising paucity of secondary structure and adopts a unique fold. The effect of all 18 missense mutations found in MSD patients is explained by the FGE structure, providing a molecular basis of MSD. The catalytic mechanism of FGly generation was elucidated by six high-resolution structures of FGE in different redox environments. The structures allow formulation of a novel oxygenase mechanism whereby FGE utilizes molecular oxygen to generate FGly via a cysteine sulfenic acid intermediate.

  12. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme.

    PubMed

    Dierks, Thomas; Schmidt, Bernhard; Borissenko, Ljudmila V; Peng, Jianhe; Preusser, Andrea; Mariappan, Malaiyalam; von Figura, Kurt

    2003-05-16

    C(alpha)-formylglycine (FGly) is the catalytic residue in the active site of eukaryotic sulfatases. It is posttranslationally generated from a cysteine in the endoplasmic reticulum. The genetic defect of FGly formation causes multiple sulfatase deficiency (MSD), a lysosomal storage disorder. We purified the FGly generating enzyme (FGE) and identified its gene and nine mutations in seven MSD patients. In patient fibroblasts, the activity of sulfatases is partially restored by transduction of FGE encoding cDNA, but not by cDNA carrying an MSD mutation. The gene encoding FGE is highly conserved among pro- and eukaryotes and has a paralog of unknown function in vertebrates. FGE is localized in the endoplasmic reticulum and is predicted to have a tripartite domain structure.

  13. In situ imaging and proteome profiling indicate andrographolide is a highly promiscuous compound

    PubMed Central

    Li, Lin; Wijaya, Hadhi; Samanta, Sanjay; Lam, Yulin; Yao, Shao Q.

    2015-01-01

    Natural products represent an enormous source of pharmacologically useful compounds, and are often used as the starting point in modern drug discovery. Many biologically interesting natural products are however not being pursued as potential drug candidates, partly due to a lack of well-defined mechanism-of-action. Traditional in vitro methods for target identification of natural products based on affinity protein enrichment from crude cellular lysates cannot faithfully recapitulate protein-drug interactions in living cells. Reported herein are dual-purpose probes inspired by the natural product andrographolide, capable of both reaction-based, real-time bioimaging and in situ proteome profiling/target identification in live mammalian cells. Our results confirm that andrographolide is a highly promiscuous compound and engaged in covalent interactions with numerous previously unknown cellular targets in cell type-specific manner. We caution its potential therapeutic effects should be further investigated in detail. PMID:26105662

  14. Site-directed mutagenesis maps interactions that enhance cognate and limit promiscuous catalysis by an alkaline phosphatase superfamily phosphodiesterase.

    PubMed

    Wiersma-Koch, Helen; Sunden, Fanny; Herschlag, Daniel

    2013-12-23

    Catalytic promiscuity, an evolutionary concept, also provides a powerful tool for gaining mechanistic insights into enzymatic reactions. Members of the alkaline phosphatase (AP) superfamily are highly amenable to such investigation, with several members having been shown to exhibit promiscuous activity for the cognate reactions of other superfamily members. Previous work has shown that nucleotide pyrophosphatase/phosphodiesterase (NPP) exhibits a >10⁶-fold preference for the hydrolysis of phosphate diesters over phosphate monoesters, and that the reaction specificity is reduced 10³-fold when the size of the substituent on the transferred phosphoryl group of phosphate diester substrates is reduced to a methyl group. Here we show additional specificity contributions from the binding pocket for this substituent (herein termed the R' substituent) that account for an additional ~250-fold differential specificity with the minimal methyl substituent. Removal of four hydrophobic side chains suggested on the basis of structural inspection to interact favorably with R' substituents decreases phosphate diester reactivity 10⁴-fold with an optimal diester substrate (R' = 5'-deoxythymidine) and 50-fold with a minimal diester substrate (R' = CH₃). These mutations also enhance the enzyme's promiscuous phosphate monoesterase activity by nearly an order of magnitude, an effect that is traced by mutation to the reduction of unfavorable interactions with the two residues closest to the nonbridging phosphoryl oxygen atoms. The quadruple R' pocket mutant exhibits the same activity toward phosphate diester and phosphate monoester substrates that have identical leaving groups, with substantial rate enhancements of ~10¹¹-fold. This observation suggests that the Zn²⁺ bimetallo core of AP superfamily enzymes, which is equipotent in phosphate monoester and diester catalysis, has the potential to become specialized for the hydrolysis of each class of phosphate esters via addition

  15. New enzymes for biotransformations: microbial alkyl sulfatases displaying stereo- and enantioselectivity.

    PubMed

    Gadler, Petra; Faber, Kurt

    2007-02-01

    The majority of hydrolytic enzymes used in white biotechnology for the production of non-natural compounds--such as carboxyl ester hydrolases, lipases and proteases--show a certain preference for a given enantiomer. However, they are unable to alter the stereochemistry of the substrate during catalysis with respect to inversion or retention of configuration. The latter can be achieved by (alkyl) sulfatases, which can be employed for the enantio-convergent transformation of racemic sulfate esters into a single stereoisomeric secondary alcohol, with a theoretical yield of 100%. This is a major improvement over traditional kinetic resolution processes, which yield both enantiomers, each at 50%.

  16. Sulfatases and radical SAM enzymes: emerging themes in glycosaminoglycan metabolism and the human microbiota.

    PubMed

    Benjdia, Alhosna; Berteau, Olivier

    2016-02-01

    Humans live in a permanent association with bacterial populations collectively called the microbiota. In the last 10 years, major advances in our knowledge of the microbiota have shed light on its critical roles in human physiology. The microbiota has also been shown to be a major factor in numerous pathologies including obesity or inflammatory disorders. Despite tremendous progresses, our understanding of the key functions of the human microbiota and the molecular basis of its interactions with the host remain still poorly understood. Among the factors involved in host colonization, two enzymes families, sulfatases and radical S-adenosyl-L-methionine enzymes, have recently emerged as key enzymes.

  17. Promiscuous drugs compared to selective drugs (promiscuity can be a virtue)

    PubMed Central

    Mencher, Simon K; Wang, Long G

    2005-01-01

    is based not on the inhibition of a single target, but rather on the rebalancing of the several proteins or events, that contribute to the etiology, pathogeneses, and progression of diseases, i.e., in effect a promiscuous drug. Ideally, if this could be done at minimum drug concentration, side effects could be minimized. Corollaries to this argument are that the growing fervor for researching truly selective drugs may be imprudent when considering the totality of responses; and that the expensive screening techniques used to discover these, may be both medically and financially inefficient. PMID:15854222

  18. Highly potent first examples of dual aromatase-steroid sulfatase inhibitors based on a biphenyl template.

    PubMed

    Woo, L W Lawrence; Jackson, Toby; Putey, Aurélien; Cozier, Gyles; Leonard, Philip; Acharya, K Ravi; Chander, Surinder K; Purohit, Atul; Reed, Michael J; Potter, Barry V L

    2010-03-11

    Single agents against multiple drug targets are of increasing interest. Hormone-dependent breast cancer (HDBC) may be more effectively treated by dual inhibition of aromatase and steroid sulfatase (STS). The aromatase inhibitory pharmacophore was thus introduced into a known biphenyl STS inhibitor to give a series of novel dual aromatase-sulfatase inhibitors (DASIs). Several compounds are good aromatase or STS inhibitors and DASI 20 (IC(50): aromatase, 2.0 nM; STS, 35 nM) and its chlorinated congener 23 (IC(50): aromatase, 0.5 nM; STS, 5.5 nM) are examples that show exceptional dual potency in JEG-3 cells. Both biphenyls share a para-sulfamate-containing ring B and a ring A, which contains a triazol-1-ylmethyl meta to the biphenyl bridge and para to a nitrile. At 1 mg/kg po, 20 and 23 reduced plasma estradiol levels strongly and inhibited liver STS activity potently in vivo. 23 is nonestrogenic and potently inhibits carbonic anhydrase II (IC(50) 86 nM). A complex was crystallized and its structure was solved by X-ray crystallography. This class of DASI should encourage further development toward multitargeted therapeutic intervention in HDBC.

  19. Very low arylsulfatase A and cerebroside sulfatase activities in leukocytes of healthy members of metachromatic leukodystrophy family.

    PubMed Central

    Dubois, G; Harzer, K; Baumann, N

    1977-01-01

    Very low levels of arylsulfatase A (ASA) have been found in the leukocytes of healthy members of a metachromatic leukodystrophy (MLD) family. The cerebroside sulfate sulfatase (CSS) activities in the same individuals are about 10% of the control level. Arguments favoring a dominant mutation different from that of classical MLD are presented. This report reinforces the relationship between the two enzymatic activities. PMID:15452

  20. Tailoring Agility: Promiscuous Pair Story Authoring and Value Calculation

    NASA Astrophysics Data System (ADS)

    Tendon, Steve

    This chapter describes how a multi-national software organization created a business plan involving business units from eight countries that followed an agile way, after two previously failed attempts with traditional approaches. The case is told by the consultant who initiated implementation of agility into requirements gathering, estimation and planning processes in an international setting. The agile approach was inspired by XP, but then tailored to meet the peculiar requirements. Two innovations were critical. The first innovation was promiscuous pair story authoring, where user stories were written by two people (similarly to pair programming), and the pairing changed very often (as frequently as every 15-20 minutes) to achieve promiscuity and cater for diverse point of views. The second innovation was an economic value evaluation (and not the cost) which was attributed to stories. Continuous recalculation of the financial value of the stories allowed to assess the projects financial return. In this case implementation of agility in the international context allowed the involved team members to reach consensus and unanimity of decisions, vision and purpose.

  1. Micropyle number is associated with elevated female promiscuity in Lepidoptera.

    PubMed

    Iossa, Graziella; Gage, Matthew J G; Eady, Paul E

    2016-12-01

    In the majority of insects, sperm fertilize the egg via a narrow canal through the outer chorion called the micropyle. Despite having this one primary function, there is considerable unexplained variation in the location, arrangement and number of micropyles within and between species. Here, we examined the relationship between micropyle number and female mating pattern through a comparative analysis across Lepidoptera. Three functional hypotheses could explain profound micropylar variation: (i) increasing micropyle number reduces the risk of infertility through sperm limitation in species that mate infrequently; (ii) decreasing micropyle number reduces the risk of pathological polyspermy in species that mate more frequently; and (iii) increasing micropyle number allows females to exert greater control over fertilization within the context of post-copulatory sexual selection, which will be more intense in promiscuous species. Micropyle number was positively related to the degree of female promiscuity as measured by spermatophore count, regardless of phylogenetic signal, supporting the hypothesis that micropyle number is shaped by post-copulatory sexual selection. We discuss this finding in the context of cryptic female choice, sperm limitation and physiological polyspermy.

  2. Comparing Measures of Promiscuity and Exploring Their Relationship to Toxicity.

    PubMed

    Wang, Xiangyun; Greene, Nigel

    2012-02-01

    Recent research has focused on algorithms to derive numerical measures of selectivity based on panels of in vitro pharmacology assays so that one molecule's activity profile may be compared easily with that of another. However, the questions concerning which method or algorithm is best to use, the optimal number of assays required to give an accurate measure of selectivity and the correlation of these measures to in vivo toxicity have remained largely unexplored. In this manuscript we describe a systematic approach to compare and contrast different calculation methods for promiscuity and determine the optimal number and constitution of a panel of assays to measure the selectivity/promiscuity of compounds across all targets. We then go on to examine their relationship to toxicity using a Pfizer proprietary compound set that has both selectivity profiles and exploratory toxicology study results. From this study we conclude that all five methods studied are useful in estimating compound selectivity; that a small panel of between 15 to 30 binding assays can be used as a surrogate for a broader panel enabling higher throughput with lower costs and this panel will most likely have the highest prediction power when correlating this measure to in vivo effects.

  3. A parasitic selfish gene that affects host promiscuity.

    PubMed

    Giraldo-Perez, Paulina; Goddard, Matthew R

    2013-11-07

    Selfish genes demonstrate transmission bias and invade sexual populations despite conferring no benefit to their hosts. While the molecular genetics and evolutionary dynamics of selfish genes are reasonably well characterized, their effects on hosts are not. Homing endonuclease genes (HEGs) are one well-studied family of selfish genes that are assumed to be benign. However, we show that carrying HEGs is costly for Saccharomyces cerevisiae, demonstrating that these genetic elements are not necessarily benign but maybe parasitic. We estimate a selective load of approximately 1-2% in 'natural' niches. The second aspect we examine is the ability of HEGs to affect hosts' sexual behaviour. As all selfish genes critically rely on sex for spread, then any selfish gene correlated with increased host sexuality will enjoy a transmission advantage. While classic parasites are known to manipulate host behaviour, we are not aware of any evidence showing a selfish gene is capable of affecting host promiscuity. The data presented here show a selfish element may increase the propensity of its eukaryote host to undergo sex and along with increased rates of non-Mendelian inheritance, this may counterbalance mitotic selective load and promote spread. Demonstration that selfish genes are correlated with increased promiscuity in eukaryotes connects with ideas suggesting that selfish genes promoted the evolution of sex initially.

  4. Synthesis and evaluation of general mechanism-based inhibitors of sulfatases based on (difluoro)methyl phenol sulfate and cyclic phenyl sulfamate motifs

    PubMed Central

    Hanson, Sarah R.; Whalen, Lisa J.; Wong, Chi-Huey

    2009-01-01

    Several model mechanism-based inhibitors (MbIs) were designed and evaluated for their ability to inhibit sulfatases. The MbI motifs were based on simple aromatic sulfates, which are known to be commonly accepted substrates across this highly conserved enzyme class, so that they might be generally useful for sulfatase labeling studies. (Difluoro)methyl phenol sulfate analogs, constructed to release a reactive quinone methide trap, were not capable of irreversibly inactivating the sulfatase active site. On the other hand, the cyclic sulfamates (CySAs) demonstrated inhibition profiles consistent with an active-site directed mode of action. These molecules represent a novel scaffold for labeling sulfatases and for probing their catalytic mechanism. PMID:17045481

  5. Mucopolysaccharidosis type IVA: Common double deletion in the N-Acetylgalactosamine-6-sulfatase gene (GALNS)

    SciTech Connect

    Hori, Toshinori; Tomatsu, Shunji; Fukuda, Seiji

    1995-04-10

    Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disorder caused by a deficiency in N-acetylgalactosamine-6-sulfatase (GALNS). We found two separate deletions of nearly 8.0 and 6.0 kb in the GALNS gene, including some exons. There are Alu repetitive elements near the breakpoints of the 8.0-kb deletion, and this deletion resulted from an Alu-Alu recombination. The other 6.0-kb deletion involved illegitimate recombinational events between incomplete short direct repeats of 8 bp at deletion breakpoints. The same rearrangement has been observed in a heteroallelic state in four unrelated patients. This is the first documentation of a common double deletion a gene that is not a member of a gene cluster. 39 refs., 5 figs.

  6. Arysulfatase A modulation with pH in multiple sulfatase deficiency disorder fibroblasts.

    PubMed

    Fluharty, A L; Stevens, R L; de la Flor, S D; Shapiro, L J; Kihara, H

    1979-09-01

    It has been observed that multiple sulfatase deficiency disorder (MSDD) fibroblasts contained from profoundly deficient to near normal amounts of arylsulfatase (ARS) A depending on the medium in which they were cultured. Our present findings show that the major factor determining the enzyme level is the pH of the medium during growth. In media which became acidic or was maintained at low pH (less than 7), the cells expressed the enzymopathy, while in high pH media (7.4), the cells produced enzyme. The high and low enzyme states were reversible. The ARS A deficiency in MSDD must, therefore, be a secondary manifestation of a mutation in another system.

  7. The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro- to eukaryotes.

    PubMed

    Landgrebe, Jobst; Dierks, Thomas; Schmidt, Bernhard; von Figura, Kurt

    2003-10-16

    Recently, the human C(alpha)-formylglycine (FGly)-generating enzyme (FGE), whose deficiency causes the autosomal-recessively transmitted lysosomal storage disease multiple sulfatase deficiency (MSD), has been identified. In sulfatases, FGE posttranslationally converts a cysteine residue to FGly, which is part of the catalytic site and is essential for sulfatase activity. FGE is encoded by the sulfatase modifying factor 1 (SUMF1) gene, which defines a new gene family comprising orthologs from prokaryotes to higher eukaryotes. The genomes of E. coli, S. cerevisiae and C. elegans lack SUMF1, indicating a phylogenetic gap and the existence of an alternative FGly-generating system. The genomes of vertebrates including mouse, man and pufferfish contain a sulfatase modifying factor 2 (SUMF2) gene encoding an FGE paralog of unknown function. SUMF2 evolved from a single exon SUMF1 gene as found in diptera prior to divergent intron acquisition. In several prokaryotic genomes, the SUMF1 gene is cotranscribed with genes encoding sulfatases which require FGly modification. The FGE protein contains a single domain that is made up of three highly conserved subdomains spaced by nonconserved sequences of variable lengths. The similarity among the eukaryotic FGE orthologs varies between 72% and 100% for the three subdomains and is highest for the C-terminal subdomain, which is a hotspot for mutations in MSD patients.

  8. Using mutability landscapes of a promiscuous tautomerase to guide the engineering of enantioselective Michaelases

    PubMed Central

    van der Meer, Jan-Ytzen; Poddar, Harshwardhan; Baas, Bert-Jan; Miao, Yufeng; Rahimi, Mehran; Kunzendorf, Andreas; van Merkerk, Ronald; Tepper, Pieter G.; Geertsema, Edzard M.; Thunnissen, Andy-Mark W. H.; Quax, Wim J.; Poelarends, Gerrit J.

    2016-01-01

    The Michael-type addition reaction is widely used in organic synthesis for carbon–carbon bond formation. However, biocatalytic methodologies for this type of reaction are scarce, which is related to the fact that enzymes naturally catalysing carbon–carbon bond-forming Michael-type additions are rare. A promising template to develop new biocatalysts for carbon–carbon bond formation is the enzyme 4-oxalocrotonate tautomerase, which exhibits promiscuous Michael-type addition activity. Here we present mutability landscapes for the expression, tautomerase and Michael-type addition activities, and enantioselectivity of 4-oxalocrotonate tautomerase. These maps of neutral, beneficial and detrimental amino acids for each residue position and enzyme property provide detailed insight into sequence–function relationships. This offers exciting opportunities for enzyme engineering, which is illustrated by the redesign of 4-oxalocrotonate tautomerase into two enantiocomplementary ‘Michaelases'. These ‘Michaelases' catalyse the asymmetric addition of acetaldehyde to various nitroolefins, providing access to both enantiomers of γ-nitroaldehydes, which are important precursors for pharmaceutically active γ-aminobutyric acid derivatives. PMID:26952338

  9. Catalytic Promiscuity of the Radical S-adenosyl-L-methionine Enzyme NosL

    PubMed Central

    Ding, Wei; Ji, Xinjian; Li, Yongzhen; Zhang, Qi

    2016-01-01

    Catalytic promiscuity plays a key role in enzyme evolution and the acquisition of novel biological functions. Because of the high reactivity of radical species, in our view enzymes involving radical-mediated mechanisms could intrinsically be more prone to catalytic promiscuity. This mini-review summarizes the recent advances in the study of NosL, a radical S-adenosyl-L-methionine (SAM)-dependent L-tryptophan (L-Trp) lyase. We demonstrate here the interesting chemistry and remarkable catalytic promiscuity of NosL, and attempt to highlight the high evolvability of radical SAM enzymes and the potential to engineer these enzymes for novel and improved activities. PMID:27446906

  10. Promiscuous RNA binding by Polycomb Repressive Complex 2

    PubMed Central

    Davidovich, Chen; Zheng, Leon; Goodrich, Karen J.; Cech, Thomas R.

    2013-01-01

    Polycomb repressive complex-2 (PRC2) is a histone methyltransferase required for epigenetic silencing during development and cancer. Long non-coding RNAs (lncRNAs) recruit PRC2 to chromatin, but the general role of RNA in maintaining repressed chromatin is unknown. Here we measure the binding constant of human PRC2 to various RNAs and find comparable affinity for human lncRNAs targeted by PRC2 and irrelevant transcripts from ciliates and bacteria. PRC2 binding is size-dependent, with lower affinity for shorter RNAs. In vivo, PRC2 predominantly occupies repressed genes; PRC2 is also associated with active genes, but most of these are not regulated by PRC2. These findings support a model in which promiscuous binding of PRC2 to RNA transcripts allows it to scan for target genes that have escaped repression, leading to maintenance of the repressed state. Such RNAs may also provide a decoy for PRC2. PMID:24077223

  11. Alcohol and adult hippocampal neurogenesis: promiscuous drug, wanton effects.

    PubMed

    Geil, Chelsea R; Hayes, Dayna M; McClain, Justin A; Liput, Daniel J; Marshall, S Alex; Chen, Kevin Y; Nixon, Kimberly

    2014-10-03

    Adult neurogenesis is now widely accepted as an important contributor to hippocampal integrity and function but also dysfunction when adult neurogenesis is affected in neuropsychiatric diseases such as alcohol use disorders. Excessive alcohol consumption, the defining characteristic of alcohol use disorders, results in a variety of cognitive and behavioral impairments related wholly or in part to hippocampal structure and function. Recent preclinical work has shown that adult neurogenesis may be one route by which alcohol produces hippocampal neuropathology. Alcohol is a pharmacologically promiscuous drug capable of interfering with adult neurogenesis through multiple mechanisms. This review will discuss the primary mechanisms underlying alcohol-induced changes in adult hippocampal neurogenesis including alcohol's effects on neurotransmitters, CREB and its downstream effectors, and the neurogenic niche.

  12. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species

    PubMed Central

    Dasmahapatra, Kanchon K; Walters, James R.; Briscoe, Adriana D.; Davey, John W.; Whibley, Annabel; Nadeau, Nicola J.; Zimin, Aleksey V.; Hughes, Daniel S. T.; Ferguson, Laura C.; Martin, Simon H.; Salazar, Camilo; Lewis, James J.; Adler, Sebastian; Ahn, Seung-Joon; Baker, Dean A.; Baxter, Simon W.; Chamberlain, Nicola L.; Chauhan, Ritika; Counterman, Brian A.; Dalmay, Tamas; Gilbert, Lawrence E.; Gordon, Karl; Heckel, David G.; Hines, Heather M.; Hoff, Katharina J.; Holland, Peter W.H.; Jacquin-Joly, Emmanuelle; Jiggins, Francis M.; Jones, Robert T.; Kapan, Durrell D.; Kersey, Paul; Lamas, Gerardo; Lawson, Daniel; Mapleson, Daniel; Maroja, Luana S.; Martin, Arnaud; Moxon, Simon; Palmer, William J.; Papa, Riccardo; Papanicolaou, Alexie; Pauchet, Yannick; Ray, David A.; Rosser, Neil; Salzberg, Steven L.; Supple, Megan A.; Surridge, Alison; Tenger-Trolander, Ayse; Vogel, Heiko; Wilkinson, Paul A.; Wilson, Derek; Yorke, James A.; Yuan, Furong; Balmuth, Alexi L.; Eland, Cathlene; Gharbi, Karim; Thomson, Marian; Gibbs, Richard A.; Han, Yi; Jayaseelan, Joy C.; Kovar, Christie; Mathew, Tittu; Muzny, Donna M.; Ongeri, Fiona; Pu, Ling-Ling; Qu, Jiaxin; Thornton, Rebecca L.; Worley, Kim C.; Wu, Yuan-Qing; Linares, Mauricio; Blaxter, Mark L.; Constant, Richard H. ffrench; Joron, Mathieu; Kronforst, Marcus R.; Mullen, Sean P.; Reed, Robert D.; Scherer, Steven E.; Richards, Stephen; Mallet, James; McMillan, W. Owen; Jiggins, Chris D.

    2012-01-01

    The evolutionary importance of hybridization and introgression has long been debated1. We used genomic tools to investigate introgression in Heliconius, a rapidly radiating genus of neotropical butterflies widely used in studies of ecology, behaviour, mimicry and speciation2-5 . We sequenced the genome of Heliconius melpomene and compared it with other taxa to investigate chromosomal evolution in Lepidoptera and gene flow among multiple Heliconius species and races. Among 12,657 predicted genes for Heliconius, biologically important expansions of families of chemosensory and Hox genes are particularly noteworthy. Chromosomal organisation has remained broadly conserved since the Cretaceous, when butterflies split from the silkmoth lineage. Using genomic resequencing, we show hybrid exchange of genes between three co-mimics, H. melpomene, H. timareta, and H. elevatus, especially at two genomic regions that control mimicry pattern. Closely related Heliconius species clearly exchange protective colour pattern genes promiscuously, implying a major role for hybridization in adaptive radiation. PMID:22722851

  13. Inter and intra plant variability of enzyme profiles including various phosphoesterases and sulfatase of six wastewater treatment plants.

    PubMed

    Fischer, Klaus; Wolff, Bert; Emmerling, Christoph

    2013-06-01

    Biodegradation of organic wastewater constituents by activated sludge microorganisms is based on enzymatic processes. It is supposed that wastewater treatment plants (WWTP) differ in their enzymatic fingerprints. To determine such fingerprints, activated sludges from nine aerated tanks of six WWTPs were repeatedly sampled and analyzed for the activities of l-alanine aminopeptidase, esterase, α- and β-glucosidase, alkaline phosphatase, phosphodiesterase, phosphotriesterase, and sulfatase. In one WWTP the enzymatic activities and their variations within 1 week were assayed in various process stages. Mostly the enzymatic profiles were dominated by l-alanine aminopeptidase, followed by alkaline phosphatase. They differed in variable contributions of esterase, phosphodiesterase, α- and β-glucosidase. The sulfatase activity was generally low. For the first time phosphotriesterase activity was detected in various samples, but with limited analytical validity. Particle mass-related activities of individual enzymes varied between plants by factors 2-4 and up to 11, when related to suspension volumes.

  14. Rapid degradation of an active formylglycine generating enzyme variant leads to a late infantile severe form of multiple sulfatase deficiency.

    PubMed

    Schlotawa, Lars; Radhakrishnan, Karthikeyan; Baumgartner, Matthias; Schmid, Regula; Schmidt, Bernhard; Dierks, Thomas; Gärtner, Jutta

    2013-09-01

    Multiple sulfatase deficiency (MSD) is a rare inborn error of metabolism affecting posttranslational activation of sulfatases by the formylglycine generating enzyme (FGE). Due to mutations in the encoding SUMF1 gene, FGE's catalytic capacity is impaired resulting in reduced cellular sulfatase activities. Both, FGE protein stability and residual activity determine disease severity and have previously been correlated with the clinical MSD phenotype. Here, we report a patient with a late infantile severe course of disease. The patient is compound heterozygous for two so far undescribed SUMF1 mutations, c.156delC (p.C52fsX57) and c.390A>T (p.E130D). In patient fibroblasts, mRNA of the frameshift allele is undetectable. In contrast, the allele encoding FGE-E130D is expressed. FGE-E130D correctly localizes to the endoplasmic reticulum and has a very high residual molecular activity in vitro (55% of wildtype FGE); however, it is rapidly degraded. Thus, despite substantial residual enzyme activity, protein instability determines disease severity, which highlights that potential MSD treatment approaches should target protein folding and stabilization mechanisms.

  15. Clinical and mutational characterization of three patients with multiple sulfatase deficiency: report of a new splicing mutation.

    PubMed

    Díaz-Font, Anna; Santamaría, Raül; Cozar, Mònica; Blanco, Mariana; Chamoles, Néstor; Coll, Maria Josep; Chabás, Amparo; Vilageliu, Lluïsa; Grinberg, Daniel

    2005-01-01

    Multiple sulfatase deficiency (MSD) is a rare autosomal recessive lysosomal storage disease characterized by impaired activity of all known sulfatases. The gene SUMF1, recently identified, encodes the enzyme responsible for post-translational modification of a cysteine residue, which is essential for the activity of sulfatases. Fewer than 30 MSD patients have been reported to date and 23 different mutations in the SUMF1 gene have been identified. Here, we present the characterization of the mutant alleles of two Spanish and one Argentinean MSD patients. While the two Spanish patients were homozygous for the previously described mutations, c.463T>C (p.S155P) and c.1033C>T (p.R345C), the Argentinean patient was homozygous for the new mutation IVS7+5 G>T. A minigene approach was used to analyze the effect of the splice site mutation identified, due to the lack of sample from the patient. This experiment showed that this change altered the normal splicing of the RNA, which strongly suggests that this is the molecular cause of the disease in this patient.

  16. Understanding the different activities of highly promiscuous MbtI by computational methods.

    PubMed

    Ferrer, Silvia; Martí, Sergio; Moliner, Vicent; Tuñón, Iñaki; Bertrán, Juan

    2012-03-14

    Salicylate synthase from Mycobacterium tuberculosis, MbtI, is a highly promiscuous Mg(2+) dependent enzyme with up to four distinct activities detected in vitro: isochorismate synthase (IS), isochorismate pyruvate lyase (IPL), salicylate synthase (SS) and chorismate mutase (CM). In this paper, Molecular Dynamic (MD) simulations employing hybrid quantum mechanics/molecular mechanics (QM/MM) potentials have been carried out to get a detailed knowledge of the IS and the IPL activities at the molecular level. According to our simulations, the architecture of the MbtI active site allows catalyzing the two reactions: the isochorismate formation, by means of a stepwise mechanism, and the salicylate production from isochorismate, that appears to be pericyclic in nature. Findings also explain the role of the magnesium cation and the pH dependence activity experimentally observed in MbtI. Mg(2+) would be polarizing and pre-organizing the substrate and active site, as well as shifting the pK(a) values of key active site residues.

  17. Multistep, sequential control of the trafficking and function of the multiple sulfatase deficiency gene product, SUMF1 by PDI, ERGIC-53 and ERp44.

    PubMed

    Fraldi, Alessandro; Zito, Ester; Annunziata, Fabio; Lombardi, Alessia; Cozzolino, Marianna; Monti, Maria; Spampanato, Carmine; Ballabio, Andrea; Pucci, Piero; Sitia, Roberto; Cosma, Maria Pia

    2008-09-01

    Sulfatase modifying factor 1 (SUMF1) encodes for the formylglicine generating enzyme, which activates sulfatases by modifying a key cysteine residue within their catalytic domains. SUMF1 is mutated in patients affected by multiple sulfatase deficiency, a rare recessive disorder in which all sulfatase activities are impaired. Despite the absence of canonical retention/retrieval signals, SUMF1 is largely retained in the endoplasmic reticulum (ER), where it exerts its enzymatic activity on nascent sulfatases. Part of SUMF1 is secreted and paracrinally taken up by distant cells. Here we show that SUMF1 interacts with protein disulfide isomerase (PDI) and ERp44, two thioredoxin family members residing in the early secretory pathway, and with ERGIC-53, a lectin that shuttles between the ER and the Golgi. Functional assays reveal that these interactions are crucial for controlling SUMF1 traffic and function. PDI couples SUMF1 retention and activation in the ER. ERGIC-53 and ERp44 act downstream, favoring SUMF1 export from and retrieval to the ER, respectively. Silencing ERGIC-53 causes proteasomal degradation of SUMF1, while down-regulating ERp44 promotes its secretion. When over-expressed, each of three interactors favors intracellular accumulation. Our results reveal a multistep control of SUMF1 trafficking, with sequential interactions dynamically determining ER localization, activity and secretion.

  18. Low maternal serum unconjugated estriol during prenatal screening as an indication of placental steroid sulfatase deficiency and X-linked ichthyosis.

    PubMed

    Keren, D F; Canick, J A; Johnson, M Z; Schaldenbrand, J D; Haning, R V; Hackett, R

    1995-04-01

    Placental sulfatase deficiency is an X-linked metabolic defect that occurs in about 1 in 2,000 to 5,000 males. It is associated with congenital ichthyosis. In this report, the authors document a case of placental sulfatase deficiency detected during routine prenatal screening of maternal serum by the triple test: serum alpha-fetoprotein (AFP), unconjugated estriol (uE3), and human chorionic gonadotropin (hCG). At 16-weeks gestation, her AFP was 20.9 IU/mL (multiple of the median [MOM] 0.83), hCG was 14.4 mIU/L (MOM 0.42) and her uE3 was 0.01 nmol/L (MOM 0.01). The extremely low uE3 indicated a possible placental sulfatase deficiency, congenital adrenal hypoplasia, or other unknown abnormality. On receiving this information, the obstetrician obtained a family history that was consistent with ichthyosis in the maternal grandfather and his siblings. Biochemical analysis of placenta documented the lack of sulfatase activity. This case illustrates that an extremely low level of maternal uE3 should prompt investigation of the family for evidence of X-linked ichthyosis associated with placental sulfatase deficiency.

  19. Inactivation and reactivation of sex-linked steroid sulfatase gene in murine cell culture.

    PubMed

    Schorderet, D F; Keitges, E A; Dubois, P M; Gartler, S M

    1988-03-01

    The murine X-linked steroid sulfatase gene (Sts) normally escapes X inactivation. However, we have observed that most long-term murine cell cultures are deficient in STS activity even though only the L cells are known to be derived from an STS- mouse strain. To investigate this phenomenon, we developed a selective system whereby STS+ cells could be selected from STS- populations. The system is based on making cells dependent on cholesterol-sulfate as the sole source of cholesterol, allowing only STS+ cells to grow. Two STS- cell lines, after treatment with either 5-azacytidine (5AC) or ethyl methane sulfonate (EMS), yielded STS+ revertants, suggesting that their STS- phenotype was due to hypermethylation. To study the evolution of STS- cell lines, we established XO and XX primary lines from STS+ strains; the XX cell line remained STS+ after more than 200 cell doublings whereas the XO became STS- after about 100 doublings. Treatment of this STS- XO cell line with 5AC produced clones with restored STS activity. All the revertants showed a growth disadvantage compared to their STS- counterparts. It would appear that aberrant methylation is the basis for much of the STS deficiency observed in established murine lines and that its propagation is due to the growth advantage of STS- over STS+ cells.

  20. Mutations and polymorphisms in N-acetylgalactosamine-6-sulfate sulfatase gene in Turkish Morquio A patients.

    PubMed

    Khedhiri, S; Chkioua, L; Elcioglu, N; Laradi, S; Miled, A

    2014-02-01

    Mucopolysaccharidosis type IVA (MPS IVA) is an autosomal recessive inherited metabolic disease resulting from deficiency of N-acetylgalactosamine-6-sulfatase (GALNS). This lysosomal storage disorder leads to a wide range of clinical variability ranging from severe, through intermediate to mild forms. The classical phenotype of Morquio A disease is characterized by severe bone dysplasia without intellectual impairment. Two severe MPS IVA patients from two unrelated Turkish families have been investigated. The 14 exons and intron-exon junctions of the GALNS gene were sequenced after amplification from genomic DNA. Direct sequencing revealed two homozygous mutations previously described: p.L390X in exon 11 and p.W141R in exon 4. The p L390X mutation was associated with four novel polymorphisms in intron 2, intron 5 and intron 6 and one polymorphism previously described in exon 7. We have analysed the haplotypes associated with the two identified mutations. These molecular findings will permit accurate carrier detection, prenatal diagnosis and counseling for Morquio A syndrome in Turkey.

  1. Structural Basis of Mucopolysaccharidosis Type II and Construction of a Database of Mutant Iduronate 2-Sulfatases

    PubMed Central

    Saito, Seiji; Ohno, Kazuki; Okuyama, Torayuki; Sakuraba, Hitoshi

    2016-01-01

    Mucopolysaccharidosis type II (MPS II, Hunter syndrome) is an X-linked genetic disorder caused by a deficiency of iduronate 2-sulfatase (IDS), and missense mutations comprising about 30% of the mutations responsible for MPS II result in heterogeneous phenotypes ranging from the severe to the attenuated form. To elucidate the basis of MPS II from the structural viewpoint, we built structural models of the wild type and mutant IDS proteins resulting from 131 missense mutations (phenotypes: 67 severe and 64 attenuated), and analyzed the influence of each amino acid substitution on the IDS structure by calculating the accessible surface area, the number of atoms affected and the root-mean-square distance. The results revealed that the amino acid substitutions causing MPS II were widely spread over the enzyme molecule and that the structural changes of the enzyme protein were generally larger in the severe group than in the attenuated one. Coloring of the atoms influenced by different amino acid substitutions at the same residue showed that the structural changes influenced the disease progression. Based on these data, we constructed a database of IDS mutations as to the structures of mutant IDS proteins. PMID:27695081

  2. Recombinant human N-acetylgalactosamine-6-sulfate sulfatase (GALNS) produced in the methylotrophic yeast Pichia pastoris

    PubMed Central

    Rodríguez-López, Alexander; Alméciga-Díaz, Carlos J.; Sánchez, Jhonnathan; Moreno, Jefferson; Beltran, Laura; Díaz, Dennis; Pardo, Andrea; Ramírez, Aura María; Espejo-Mojica, Angela J.; Pimentel, Luisa; Barrera, Luis A.

    2016-01-01

    Mucopolysaccharidosis IV A (MPS IV A, Morquio A disease) is a lysosomal storage disease (LSD) produced by mutations on N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Recently an enzyme replacement therapy (ERT) for this disease was approved using a recombinant enzyme produced in CHO cells. Previously, we reported the production of an active GALNS enzyme in Escherichia coli that showed similar stability properties to that of a recombinant mammalian enzyme though it was not taken-up by culture cells. In this study, we showed the production of the human recombinant GALNS in the methylotrophic yeast Pichia pastoris GS115 (prGALNS). We observed that removal of native signal peptide and co-expression with human formylglycine-generating enzyme (SUMF1) allowed an improvement of 4.5-fold in the specific GALNS activity. prGALNS enzyme showed a high stability at 4 °C, while the activity was markedly reduced at 37 and 45 °C. It was noteworthy that prGALNS was taken-up by HEK293 cells and human skin fibroblasts in a dose-dependent manner through a process potentially mediated by an endocytic pathway, without any additional protein or host modification. The results show the potential of P. pastoris in the production of a human recombinant GALNS for the development of an ERT for Morquio A. PMID:27378276

  3. Beyond promiscuity: mate-choice commitments in social breeding

    PubMed Central

    Boomsma, Jacobus J.

    2013-01-01

    Obligate eusociality with distinct caste phenotypes has evolved from strictly monogamous sub-social ancestors in ants, some bees, some wasps and some termites. This implies that no lineage reached the most advanced form of social breeding, unless helpers at the nest gained indirect fitness values via siblings that were identical to direct fitness via offspring. The complete lack of re-mating promiscuity equalizes sex-specific variances in reproductive success. Later, evolutionary developments towards multiple queen-mating retained lifetime commitment between sexual partners, but reduced male variance in reproductive success relative to female's, similar to the most advanced vertebrate cooperative breeders. Here, I (i) discuss some of the unique and highly peculiar mating system adaptations of eusocial insects; (ii) address ambiguities that remained after earlier reviews and extend the monogamy logic to the evolution of soldier castes; (iii) evaluate the evidence for indirect fitness benefits driving the dynamics of (in)vertebrate cooperative breeding, while emphasizing the fundamental differences between obligate eusociality and cooperative breeding; (iv) infer that lifetime commitment is a major driver towards higher levels of organization in bodies, colonies and mutualisms. I argue that evolutionary informative definitions of social systems that separate direct and indirect fitness benefits facilitate transparency when testing inclusive fitness theory. PMID:23339241

  4. Legume-rhizobia signal exchange: promiscuity and environmental effects

    PubMed Central

    Lira, Mario A.; Nascimento, Luciana R. S.; Fracetto, Giselle G. M.

    2015-01-01

    Although signal exchange between legumes and their rhizobia is among the best-known examples of this biological process, most of the more characterized data comes from just a few legume species and environmental stresses. Although a relative wealth of information is available for some model legumes and some of the major pulses such as soybean, little is known about tropical legumes. This relative disparity in current knowledge is also apparent in the research on the effects of environmental stress on signal exchange; cool-climate stresses, such as low-soil temperature, comprise a relatively large body of research, whereas high-temperature stresses and drought are not nearly as well understood. Both tropical legumes and their environmental stress-induced effects are increasingly important due to global population growth (the demand for protein), climate change (increasing temperatures and more extreme climate behavior), and urbanization (and thus heavy metals). This knowledge gap for both legumes and their environmental stresses is compounded because whereas most temperate legume-rhizobia symbioses are relatively specific and cultivated under relatively stable environments, the converse is true for tropical legumes, which tend to be promiscuous, and grow in highly variable conditions. This review will clarify some of this missing information and highlight fields in which further research would benefit our current knowledge. PMID:26441880

  5. Phytochemicals Perturb Membranes and Promiscuously Alter Protein Function

    PubMed Central

    2015-01-01

    A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding. PMID:24901212

  6. MTH1 Substrate Recognition—An Example of Specific Promiscuity

    PubMed Central

    Nissink, J. Willem M.; Bista, Michal; Breed, Jason; Carter, Nikki; Embrey, Kevin; Read, Jonathan; Winter-Holt, Jon J.

    2016-01-01

    MTH1 (NUDT1) is an oncologic target involved in the prevention of DNA damage. We investigate the way MTH1 recognises its substrates and present substrate-bound structures of MTH1 for 8-oxo-dGTP and 8-oxo-rATP as examples of novel strong and weak binding substrate motifs. Investigation of a small set of purine-like fragments using 2D NMR resulted in identification of a fragment with weak potency. The protein-ligand X-Ray structure of this fragment provides insight into the role of water molecules in substrate selectivity. Wider fragment screening by NMR resulted in three new protein structures exhibiting alternative binding configurations to the key Asp-Asp recognition element of the protein. These inhibitor binding modes demonstrate that MTH1 employs an intricate yet promiscuous mechanism of substrate anchoring through its Asp-Asp pharmacophore. The structures suggest that water-mediated interactions convey selectivity towards oxidized substrates over their non-oxidised counterparts, in particular by stabilization of a water molecule in a hydrophobic environment through hydrogen bonding. These findings may be useful in the design of inhibitors of MTH1. PMID:26999531

  7. Legume-rhizobia signal exchange: promiscuity and environmental effects.

    PubMed

    Lira, Mario A; Nascimento, Luciana R S; Fracetto, Giselle G M

    2015-01-01

    Although signal exchange between legumes and their rhizobia is among the best-known examples of this biological process, most of the more characterized data comes from just a few legume species and environmental stresses. Although a relative wealth of information is available for some model legumes and some of the major pulses such as soybean, little is known about tropical legumes. This relative disparity in current knowledge is also apparent in the research on the effects of environmental stress on signal exchange; cool-climate stresses, such as low-soil temperature, comprise a relatively large body of research, whereas high-temperature stresses and drought are not nearly as well understood. Both tropical legumes and their environmental stress-induced effects are increasingly important due to global population growth (the demand for protein), climate change (increasing temperatures and more extreme climate behavior), and urbanization (and thus heavy metals). This knowledge gap for both legumes and their environmental stresses is compounded because whereas most temperate legume-rhizobia symbioses are relatively specific and cultivated under relatively stable environments, the converse is true for tropical legumes, which tend to be promiscuous, and grow in highly variable conditions. This review will clarify some of this missing information and highlight fields in which further research would benefit our current knowledge.

  8. The energetic cost of mating in a promiscuous cephalopod.

    PubMed

    Franklin, Amanda Michelle; Squires, Zoe Elizabeth; Stuart-Fox, Devi

    2012-10-23

    Costs that individuals incur through mating can play an important role in understanding the evolution of life histories and senescence, particularly in promiscuous species. Copulation costs, ranging from energy expenditure to reduced longevity, are widely studied in insects but have received substantially less attention in other taxa. One cost of mating, the energetic cost, is poorly studied across all taxa despite its potential importance for the many species where copulation is physically demanding and/or frequent. Here, we investigated the energetic cost of mating in both male and female dumpling squid (Euprymna tasmanica). In this species, copulation can last up to 3 h and requires that the male physically restrains the female. We report that the act of copulation halves the swimming endurance of both sexes, and that they take up to 30 min to recover. Such a reduction in post-copulatory performance may have important implications for predator avoidance, foraging ability and energy allocation. Therefore, quantifying this cost is essential to understand the evolution of reproductive strategies and behaviours such as female receptivity and male and female mating frequency.

  9. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species.

    PubMed

    2012-07-05

    The evolutionary importance of hybridization and introgression has long been debated. Hybrids are usually rare and unfit, but even infrequent hybridization can aid adaptation by transferring beneficial traits between species. Here we use genomic tools to investigate introgression in Heliconius, a rapidly radiating genus of neotropical butterflies widely used in studies of ecology, behaviour, mimicry and speciation. We sequenced the genome of Heliconius melpomene and compared it with other taxa to investigate chromosomal evolution in Lepidoptera and gene flow among multiple Heliconius species and races. Among 12,669 predicted genes, biologically important expansions of families of chemosensory and Hox genes are particularly noteworthy. Chromosomal organization has remained broadly conserved since the Cretaceous period, when butterflies split from the Bombyx (silkmoth) lineage. Using genomic resequencing, we show hybrid exchange of genes between three co-mimics, Heliconius melpomene, Heliconius timareta and Heliconius elevatus, especially at two genomic regions that control mimicry pattern. We infer that closely related Heliconius species exchange protective colour-pattern genes promiscuously, implying that hybridization has an important role in adaptive radiation.

  10. MTH1 Substrate Recognition--An Example of Specific Promiscuity.

    PubMed

    Nissink, J Willem M; Bista, Michal; Breed, Jason; Carter, Nikki; Embrey, Kevin; Read, Jonathan; Winter-Holt, Jon J

    2016-01-01

    MTH1 (NUDT1) is an oncologic target involved in the prevention of DNA damage. We investigate the way MTH1 recognises its substrates and present substrate-bound structures of MTH1 for 8-oxo-dGTP and 8-oxo-rATP as examples of novel strong and weak binding substrate motifs. Investigation of a small set of purine-like fragments using 2D NMR resulted in identification of a fragment with weak potency. The protein-ligand X-Ray structure of this fragment provides insight into the role of water molecules in substrate selectivity. Wider fragment screening by NMR resulted in three new protein structures exhibiting alternative binding configurations to the key Asp-Asp recognition element of the protein. These inhibitor binding modes demonstrate that MTH1 employs an intricate yet promiscuous mechanism of substrate anchoring through its Asp-Asp pharmacophore. The structures suggest that water-mediated interactions convey selectivity towards oxidized substrates over their non-oxidised counterparts, in particular by stabilization of a water molecule in a hydrophobic environment through hydrogen bonding. These findings may be useful in the design of inhibitors of MTH1.

  11. The lifestyle of prokaryotic organisms influences the repertoire of promiscuous enzymes.

    PubMed

    Martínez-Núñez, Mario Alberto; Rodríguez-Vázquez, Katya; Pérez-Rueda, Ernesto

    2015-09-01

    The metabolism of microbial organisms and its diversity are partly the result of an adaptation process to the characteristics of the environments that they inhabit. In this work, we analyze the influence of lifestyle on the content of promiscuous enzymes in 761 nonredundant bacterial and archaeal genomes. Promiscuous enzymes were defined as those proteins whose catalytic activities are defined by two or more different Enzyme Commission (E.C.) numbers. The genomes analyzed were categorized into four lifestyles for their exhaustive comparisons: free-living, extremophiles, pathogens, and intracellular. From these analyses we found that free-living organisms have larger genomes and an enrichment of promiscuous enzymes. In contrast, intracellular organisms showed smaller genomes and the lesser proportion of promiscuous enzymes. On the basis of our data, we show that the proportion of promiscuous enzymes in an organism is mainly influenced by the lifestyle, where fluctuating environments promote its emergence. Finally, we evidenced that duplication processes occur preferentially in metabolism of free-living and extremophiles species.

  12. Development of a sandwich enzyme linked immunosorbent assay (ELISA) for the quantification of iduronate-2-sulfate sulfatase.

    PubMed

    Sosa, Angela Catalina; Espejo, Angela Johana; Rodriguez, Edwin Alexander; Lizaraso, Lina Maria; Rojas, Andrea; Guevara, Johana; Echeverri, Olga Yaneth; Barrera, Luis Alejandro

    2011-05-31

    Iduronate-2-sulfate sulfatase (IDS; EC 3.1.6.13) is an enzyme that belongs to human sulfatases. IDS deficiency causes the Hunter syndrome or mucopolysaccharidosis type II (MPS II; OMIM 309900). We have been developing an expression system for human recombinant IDS (hrIDS) in Pichia pastoris, therefore a method was required for its detection during production and purification processes, which could be used also to measure the enzyme in human fluids. In this study, an immunoquantification assay for human and recombinant IDS was developed with the combination of two antibodies. Rabbit IgG and chicken IgY were used as IDS capture and detection antibodies, respectively. Chicken IgY antibodies were developed against specific amino acid sequences present in IDS but absent in other human sulfatases. hrIDS produced in P. pastoris, commercial hrIDS, and normal human plasma samples were used as antigens and immunoquantification results were compared to enzyme activity. The technique was linear over the range 8 to 500 ng mL(-1) using commercial hrIDS. The concentration range detected for IDS in normal human plasma was 14.43 to 287.88 ng mL(-1). The hrIDS was detected in P. pastoris cultures even when the enzyme was inactive, which is convenient for monitoring the production of recombinant proteins. These results show that chicken site-specific antibodies provide a good alternative, as a substitute of monoclonal antibodies, for the detection of human proteins. This is the first report on the development of an ELISA system to detect and quantify IDS with IgY antibodies.

  13. The Role of Steroid Sulfatase as a Prognostic Factor in Patients with Endometrial Cancer

    PubMed Central

    Lee, Won Moo; Jang, Ki-Seok; Koh, A Ra

    2016-01-01

    Purpose The aim of the study was to determine steroid sulfatase (STS) expression in endometrial cancer patients and its correlation with disease prognosis. Materials and Methods We conducted a retrospective study in 59 patients who underwent surgery with histologically confirmed endometrial cancer from January 2000 to December 2011 at Hanyang University Hospital. Immuno-histochemical staining of STS was performed using rabbit polyclonal anti-STS antibody. Results Sixteen of the 59 patients (27.1%) were positive for STS expression. Disease free survival (DFS) was 129.83±8.67 [95% confidence interval (CI): 112.84–146.82] months in the STS positive group (group A) and 111.06±7.17 (95% CI: 97.01–125.10) months in the STS negative group (group B) (p=0.92). Overall survival (OS) was 129.01±9.38 (95% CI: 110.63–147.38) months and 111.16±7.10 (95% CI: 97.24–125.07) months for the groups A and B, respectively (p=0.45). Univariate analysis revealed that FIGO stage and adjuvant therapy are significantly associated with DFS and OS. However, in multivariate analysis, FIGO stage and adjuvant therapy did not show any statistical significance with DFS and OS. STS was also not significantly associated with DFS and OS in univariate and multivariate analysis. Conclusion STS expression was not significantly associated with DFS and OS, despite positive STS expression in 27% of endometrial cancer patients. Therefore, the role of STS as a prognostic factor in patients with endometrial cancer remains unclear and requires further research. PMID:26996578

  14. Circadian transcriptome analysis in human fibroblasts from Hunter syndrome and impact of iduronate-2-sulfatase treatment

    PubMed Central

    2013-01-01

    Background Hunter syndrome (HS) is a lysosomal storage disease caused by iduronate-2-sulfatase (IDS) deficiency and loss of ability to break down and recycle the glycosaminoglycans, heparan and dermatan sulfate, leading to impairment of cellular processes and cell death. Cell activities and functioning of intracellular organelles are controlled by the clock genes (CGs), driving the rhythmic expression of clock controlled genes (CCGs). We aimed to evaluate the expression of CGs and downstream CCGs in HS, before and after enzyme replacement treatment with IDS. Methods The expression levels of CGs and CCGs were evaluated by a whole transcriptome analysis through Next Generation Sequencing in normal primary human fibroblasts and fibroblasts of patients affected by HS before and 24 h/144 h after IDS treatment. The time related expression of CGs after synchronization by serum shock was also evaluated by qRT-PCR before and after 24 hours of IDS treatment. Results In HS fibroblasts we found altered expression of several CGs and CCGs, with dynamic changes 24 h and 144 h after IDS treatment. A semantic hypergraph-based analysis highlighted five gene clusters significantly associated to important biological processes or pathways, and five genes, AHR, HIF1A, CRY1, ITGA5 and EIF2B3, proven to be central players in these pathways. After synchronization by serum shock and 24 h treatment with IDS the expression of ARNTL2 at 10 h (p = 0.036), PER1 at 4 h (p = 0.019), PER2 at 10 h (p = 0.041) and 16 h (p = 0.043) changed in HS fibroblasts. Conclusion CG and CCG expression is altered in HS fibroblasts and IDS treatment determines dynamic modifications, suggesting a direct involvement of the CG machinery in the physiopathology of cellular derangements that characterize HS. PMID:24083598

  15. Estrone Sulfate Transport and Steroid Sulfatase Activity in Colorectal Cancer: Implications for Hormone Replacement Therapy

    PubMed Central

    Gilligan, Lorna C.; Gondal, Ali; Tang, Vivien; Hussain, Maryam T.; Arvaniti, Anastasia; Hewitt, Anne-Marie; Foster, Paul A.

    2017-01-01

    Hormone replacement therapy (HRT) affects the incidence and potential progression of colorectal cancer (CRC). As HRT primarily consists of estrone sulfate (E1S), understanding whether this conjugated estrogen is transported and metabolized in CRC will define its potential effect in this malignancy. Here, we show that a panel of CRC cell lines (Colo205, Caco2, HCT116, HT-29) have steroid sulfatase (STS) activity, and thus can hydrolyze E1S. STS activity is significantly higher in CRC cell lysate, suggesting the importance of E1S transport in intracellular STS substrate availability. As E1S transport is regulated by the expression pattern of certain solute carrier organic anion transporter polypeptides, we show that in CRC OATP4A1 is the most abundantly expressed transporter. All four CRC cell lines rapidly transported E1S into cells, with this effect significantly inhibited by the competitive OATP inhibitor BSP. Transient knockdown of OATP4A1 significantly disrupted E1S uptake. Examination of estrogen receptor status showed ERα was present in Colo205 and Caco2 cells. None of the cells expressed ERβ. Intriguingly, HCT116 and HT29 cells strongly expressed the G protein coupled estrogen receptor (GPER), and that stimulation of this receptor with estradiol (E2) and G1, a GPER agonist, significantly (p < 0.01) increased STS activity. Furthermore, tamoxifen and fulvestrant, known GPER agonist, also increased CRC STS activity, with this effect inhibited by the GPER antagonist G15. These results suggest that CRC can take up and hydrolyze E1S, and that subsequent GPER stimulation increases STS activity in a potentially novel positive feedback loop. As elevated STS expression is associated with poor prognosis in CRC, these results suggest HRT, tamoxifen and fulvestrant may negatively impact CRC patient outcomes. PMID:28326039

  16. Characterization and pharmacokinetic study of recombinant human N-acetylgalactosamine-6-sulfate sulfatase.

    PubMed

    Tomatsu, Shunji; Montaño, Adriana M; Gutierrez, Monica; Grubb, Jeffrey H; Oikawa, Hirotaka; Dung, Vu Chi; Ohashi, Amiko; Nishioka, Tatsuo; Yamada, Masamichi; Yamada, Mana; Tosaka, Yasuhiro; Trandafirescu, Georgeta G; Orii, Tadao

    2007-05-01

    Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disorder caused by a deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS). The aims of this study were to establish Chinese hamster ovary (CHO) cells overexpressing recombinant human GALNS (rhGALNS) and to assess pharmacokinetics and tissue distribution of purified enzymes by using MPS IVA knock-out mouse (Galns(-/-)). The CHO-cell derived rhGALNS was purified from the media by a two-step affinity chromatography procedure. The rhGALNS was administered intravenously to 3-month-old Galns(-/-) mice at a single dose of 250U/g of body weight. The treated mice were examined by assaying the GALNS activity at baseline and up to 240min to assess clearance of the enzyme from blood circulation. The mice were sacrificed 4h after infusion of the enzyme to study the enzyme distribution in tissues. The rhGALNS was purified 1317-fold with 71% yield. The enzyme was taken up by Galns(-/-) chondrocytes (150U/mg/15h). The uptake was inhibited by mannose-6-phosphate. The enzyme activity disappeared from circulation with a half-life of 2.9min. After enzyme infusion, the enzyme was taken up and detected in multiple tissues (40.7% of total infused enzymes in liver). Twenty-four hours after a single infusion of the fluorescence-labeled enzymes into MPS IVA mice, biodistribution pattern showed the amount of tagged enzyme retained in bone, bone marrow, liver, spleen, kidney, and heart. In conclusion, we have shown that the phosphorylated rhGALNS is delivered to multiple tissues, including bone, and that it functions bioactively in Galns(-/-) chondrocytes implying a potential enzyme replacement treatment.

  17. Filtering promiscuous compounds in early drug discovery: is it a good idea?

    PubMed

    Senger, Mario R; Fraga, Carlos A M; Dantas, Rafael F; Silva, Floriano P

    2016-06-01

    The use of computational filters for excluding supposedly nonspecific and promiscuous compounds from chemical libraries is a controversial issue, because many drugs used in clinics today would never reach the market if these filters were applied. In part, this conflict could be caused by the paradigm: one-drug-one-target, even though it is widely agreed that drug action is a result of a complex network of biomolecular interactions. Therefore, the so-called pan assay interference compounds (PAINS) or promiscuous compounds could be in fact assay artifacts, false positives or, simply, bright chemical matter (BCM) composed of privileged scaffolds, as we propose here. Despite apparent promiscuity, BCM can be tailored into new and safe drugs after overcoming selectivity criteria.

  18. Revised molecular basis of the promiscuous carboxylic acid perhydrolase activity in serine hydrolases.

    PubMed

    Yin, DeLu Tyler; Kazlauskas, Romas J

    2012-06-25

    Several serine hydrolases catalyze a promiscuous reaction: perhydrolysis of carboxylic acids to form peroxycarboxylic acids. The working hypothesis is that perhydrolases are more selective than esterases for hydrogen peroxide over water. In this study, we tested this hypothesis, and focused on L29P-PFE (Pseudomonas fluorescens esterase), which catalyzes perhydrolysis of acetic acid 43-fold faster than wild-type PFE. This hypothesis predicts that L29P-PFE should be approximately 43-fold more selective for hydrogen peroxide than wild-type PFE, but experiments show that L29P-PFE is less selective. The ratio of hydrolysis to perhydrolysis of methyl acetate at different concentrations of hydrogen peroxide fit a kinetic model for nucleophile selectivity. L29P-PFE (β(0)=170  M(-1)) is approximately half as selective for hydrogen peroxide over water than wild-type PFE (β(0)=330  M(-1)), which contradicts the working hypothesis. An alternative hypothesis is that carboxylic acid perhydrolases increase perhydrolysis by forming the acyl-enzyme intermediate faster. Consistent with this hypothesis, the rate of acetyl-enzyme formation, measured by (18)O-water exchange into acetic acid, was 25-fold faster with L29P-PFE than with wild-type PFE, which is similar to the 43-fold faster perhydrolysis with L29P-PFE. Molecular modeling of the first tetrahedral intermediate (T(d)1) suggests that a closer carbonyl group found in perhydrolases accepts a hydrogen bond from the leaving group water. This revised understanding can help design more efficient enzymes for perhydrolysis and shows how subtle changes can create new, unnatural functions in enzymes.

  19. The promiscuous phosphomonoestearase activity of Archaeoglobus fulgidus CopA, a thermophilic Cu+ transport ATPase.

    PubMed

    Bredeston, Luis M; González Flecha, F Luis

    2016-07-01

    Membrane transport P-type ATPases display two characteristic enzymatic activities: a principal ATPase activity provides the driving force for ion transport across biological membranes, whereas a promiscuous secondary activity catalyzes the hydrolysis of phosphate monoesters. This last activity is usually denoted as the phosphatase activity of P-ATPases. In the present study, we characterize the phosphatase activity of the Cu(+)-transport ATPase from Archaeglobus fulgidus (Af-CopA) and compare it with the principal ATPase activity. Our results show that the phosphatase turnover number was 20 times higher than that corresponding to the ATPase activity, but it is compensated by a high value of Km, producing a less efficient catalysis for pNPP. This secondary activity is enhanced by Mg(2+) (essential activator) and phospholipids (non-essential activator), and inhibited by salts and Cu(+). Transition state analysis of the catalyzed and noncatalyzed hydrolysis of pNPP indicates that Af-CopA enhances the reaction rates by a factor of 10(5) (ΔΔG(‡)=38 kJ/mol) mainly by reducing the enthalpy of activation (ΔΔH(‡)=30 kJ/mol), whereas the entropy of activation is less negative on the enzyme than in solution. For the ATPase activity, the decrease in the enthalpic component of the barrier is higher (ΔΔH(‡)=39 kJ/mol) and the entropic component is small on both the enzyme and in solution. These results suggest that different mechanisms are involved in the transference of the phosphoryl group of p-nitrophenyl phosphate and ATP.

  20. Mucopolysaccharidosis type VI (Maroteaux-Lamy syndrome): a Y210C mutation causes either altered protein handling or altered protein function of N-acetylgalactosamine 4-sulfatase at multiple points in the vacuolar network.

    PubMed

    Bradford, Tessa M; Litjens, Tom; Parkinson, Emma J; Hopwood, John J; Brooks, Doug A

    2002-04-16

    The lysosomal hydrolase N-acetylgalactosamine 4-sulfatase (4-sulfatase) is required for the degradation of the glycosaminoglycan substrates dermatan and chondroitin sulfate. A 4-sulfatase deficiency results in the accumulation of undegraded substrate and causes the severe lysosomal storage disorder mucopolysaccharidosis type VI (MPS VI) or Maroteaux-Lamy syndrome. A wide variation in clinical severity is observed between MPS VI patients and reflects the number of different 4-sulfatase mutations that can cause the disorder. The most common 4-sulfatase mutation, Y210C, was detected in approximately 10% of MPS VI patients and has been associated with an attenuated clinical phenotype when compared to the archetypical form of MPS VI. To define the molecular defect caused by this mutation, Y210C 4-sulfatase was expressed in Chinese hamster ovary (CHO-K1) cells for protein and cell biological analysis. Biosynthetic studies revealed that Y210C 4-sulfatase was synthesized at a comparable molecular size and amount to wild-type 4-sulfatase, but there was evidence of delayed processing, traffic, and stability of the mutant protein. Thirty-three percent of the intracellular Y210C 4-sulfatase remained as a precursor form, for at least 8 h post labeling and was not processed to the mature lysosomal form. However, unlike other 4-sulfatase mutations causing MPS VI, a significant amount of Y210C 4-sulfatase escaped the endoplasmic reticulum and was either secreted from the expression cells or underwent delayed intracellular traffic. Sixty-seven percent of the intracellular Y210C 4-sulfatase was processed to the mature form (43, 8, and 7 kDa molecular mass forms) by a proteolytic processing step known to occur in endosomes-lysosomes. Treatment of Y210C CHO-K1 cells with the protein stabilizer glycerol resulted in increased amounts of Y210C 4-sulfatase in endosomes, which was eventually trafficked to the lysosome after a long, 24 h chase time. This demonstrated delayed traffic of Y210

  1. A canine Arylsulfatase G (ARSG) mutation leading to a sulfatase deficiency is associated with neuronal ceroid lipofuscinosis.

    PubMed

    Abitbol, Marie; Thibaud, Jean-Laurent; Olby, Natasha J; Hitte, Christophe; Puech, Jean-Philippe; Maurer, Marie; Pilot-Storck, Fanny; Hédan, Benoit; Dréano, Stéphane; Brahimi, Sandra; Delattre, Delphine; André, Catherine; Gray, Françoise; Delisle, Françoise; Caillaud, Catherine; Bernex, Florence; Panthier, Jean-Jacques; Aubin-Houzelstein, Geneviève; Blot, Stéphane; Tiret, Laurent

    2010-08-17

    Neuronal ceroid lipofuscinoses (NCLs) represent the most common group of inherited progressive encephalopathies in children. They are characterized by progressive loss of vision, mental and motor deterioration, epileptic seizures, and premature death. Rare adult forms of NCL with late onset are known as Kufs' disease. Loci underlying these adult forms remain unknown due to the small number of patients and genetic heterogeneity. Here we confirm that a late-onset form of NCL recessively segregates in US and French pedigrees of American Staffordshire Terrier (AST) dogs. Through combined association, linkage, and haplotype analyses, we mapped the disease locus to a single region of canine chromosome 9. We eventually identified a worldwide breed-specific variant in exon 2 of the Arylsulfatase G (ARSG) gene, which causes a p.R99H substitution in the vicinity of the catalytic domain of the enzyme. In transfected cells or leukocytes from affected dogs, the missense change leads to a 75% decrease in sulfatase activity, providing a functional confirmation that the variant might be the NCL-causing mutation. Our results uncover a protein involved in neuronal homeostasis, identify a family of candidate genes to be screened in patients with Kufs' disease, and suggest that a deficiency in sulfatase is part of the NCL pathogenesis.

  2. Syntheses of 2-keto-3-deoxy-D-xylonate and 2-keto-3-deoxy-L-arabinonate as stereochemical probes for demonstrating the metabolic promiscuity of Sulfolobus solfataricus towards D-xylose and L-arabinose.

    PubMed

    Archer, Robert M; Royer, Sylvain F; Mahy, William; Winn, Caroline L; Danson, Michael J; Bull, Steven D

    2013-02-18

    Practical syntheses of 2-keto-3-deoxy-D-xylonate (D-KDX) and 2-keto-3-deoxy-L-arabinonate (L-KDA) that rely on reaction of the anion of ethyl 2-[(tert-butyldimethylsilyl)oxy]-2-(dimethoxy phosphoryl) acetate with enantiopure glyceraldehyde acetonide, followed by global deprotection of the resultant O-silyl-enol esters, have been developed. This has enabled us to confirm that a 2-keto-3-deoxy-D-gluconate aldolase from the archaeon Sulfolobus solfataricus demonstrates good activity for catalysis of the retro-aldol cleavage of both these enantiomers to afford pyruvate and glycolaldehyde. The stereochemical promiscuity of this aldolase towards these enantiomeric aldol substrates confirms that this organism employs a metabolically promiscuous pathway to catabolise the C5-sugars D-xylose and L-arabinose.

  3. Determination of the molecular defect of caprine N-acetylglucosamine 6-sulfatase deficiency

    SciTech Connect

    Leipprandt, J.R.; Jones, M.Z.; Cavanagh, K.T.

    1994-09-01

    Caprine N-acetylglucosamine 6-sulfatase (G6S) deficiency is the only animal analog of Sanfilippo syndrome (type D). The goat with this mucopolysaccharidousis disorder (MPS III D) demonstrated delayed motor development and growth retardation but reached sexual maturity before dying suddenly at 19 mo. Histochemical and biochemical analysis of the liver showed glycosaminoglycan storage and there was GM{sub 3} ganglioside accumulation in the brain. Towards further development of this animal model for treatment strategies, we have cloned the caprine G6S gene, determined the nature of the gene defect in caprine MPS III D and compared the goat sequence to the human sequence. The human and caprine sequences show an overall sequence similarity of about 90% in the coding region. The 5{prime}-coding region is very GC-rich in both the human and caprine G6S. One striking difference between the human and caprine genes is the presence of a GCC repeat in the goat resulting in insertion of 6 prolines and a leucine in the signal peptide. This proline-rich stretch was confirmed by amplifying and sequencing the same cDNA segment from other goats. Additionally, this region was examined in bovine cDNA and found to contain 4 prolines and 2 leucines. The mRNA for G6S consists of two species of approximately 4.0 and 4.2 kb with a coding region of 1.6 kb. For mutation analysis a series of primers was designed to cover the entire G6S coding region. Amplicons from RT-PCR on normal and affected goat total RNA were produced and sequenced. A single base substitution, T for C, was found in the 5{prime} region of the coding sequence of the affected animals that creates a stop codon. This mutation introduces an Alu I restriction site. PCR primers designed to amplify a short segment of genomic DNA encompassing the mutation have been used to identify putative carriers and develop a caprine Sanfilippo III D carrier colony.

  4. Monogamous and promiscuous rodent species exhibit discrete variation in the size of the medial prefrontal cortex.

    PubMed

    Kingsbury, Marcy A; Gleason, Erin D; Ophir, Alexander G; Phelps, Steven M; Young, Larry J; Marler, Catherine A

    2012-01-01

    Limbic-associated cortical areas, such as the medial prefrontal and retrosplenial cortex (mPFC and RS, respectively), are involved in the processing of emotion, motivation, and various aspects of working memory and have been implicated in mating behavior. To determine whether the independent evolution of mating systems is associated with a convergence in cortical mechanisms, we compared the size of mPFC and RS between the monogamous prairie vole (Microtus ochrogaster) and the promiscuous meadow vole (Microtus pennsylvanicus), and between the monogamous California mouse (Peromyscus californicus) and the promiscuous white-footed mouse (Peromyscus leucopus). For both promiscuous mice and voles, the mPFC occupied a significantly larger percentage of total cortex than in the monogamous species. No significant differences were observed for the RS or overall cortex size with respect to mating system, supporting the convergent evolution of mPFC size, specifically. Individual differences in the mating behavior of male prairie voles (wandering versus pair-bonding), presumably facultative tactics, were not reflected in the relative size of the mPFC, which is likely a heritable trait. Given the importance of the mPFC for complex working memory, particularly object-place and temporal order memory, we hypothesize that the relatively greater size of the mPFC in promiscuous species reflects a greater need to remember multiple individuals and the times and locations in which they have been encountered in the home range.

  5. Structure-Promiscuity Relationship Puzzles-Extensively Assayed Analogs with Large Differences in Target Annotations.

    PubMed

    Hu, Ye; Jasial, Swarit; Gilberg, Erik; Bajorath, Jürgen

    2017-03-06

    Publicly available screening data were systematically searched for extensively assayed structural analogs with large differences in the number of targets they were active against. Screening compounds with potential chemical liabilities that may give rise to assay artifacts were identified and excluded from the analysis. "Promiscuity cliffs" were frequently identified, defined here as pairs of structural analogs with a difference of at least 20 target annotations across all assays they were tested in. New assay indices were introduced to prioritize cliffs formed by screening compounds that were extensively tested in comparably large numbers of assays including many shared assays. In these cases, large differences in promiscuity degrees were not attributable to differences in assay frequency and/or lack of assay overlap. Such analog pairs have high priority for further exploring molecular origins of multi-target activities. Therefore, these promiscuity cliffs and associated target annotations are made freely available. The corresponding analogs often represent equally puzzling and interesting examples of structure-promiscuity relationships.

  6. In vitro and in vivo models for the evaluation of new inhibitors of human steroid sulfatase, devoid of residual estrogenic activity.

    PubMed

    Shields-Botella, J; Bonnet, P; Duc, I; Duranti, E; Meschi, S; Cardinali, S; Prouheze, P; Chaigneau, A M; Duranti, V; Gribaudo, S; Rivière, A; Mengual, L; Carniato, D; Cecchet, L; Lafay, J; Rondot, B; Sandri, J; Pascal, J C; Delansorne, R

    2003-02-01

    The goal of our research project is to develop a new class of orally active drugs, estrone sulfatase inhibitors, for the treatment of estrogen-dependent (receptor positive) breast cancer. Several compounds were synthesized and their pharmacological potencies explored. Based on encouraging preliminary results, three of them, TX 1299, TX 1492 and TX 1506 were further studied in vitro as well as in vivo. They proved to be strong inhibitors of estrone sulfatase when measured on the whole human JEG-3 choriocarcinoma and MCF-7 breast cancer cells and their IC(50)s found to be in the range of known standard inhibitors. Their residual estrogenic activity was checked as negative in the test of induction of alkaline phosphatase (APase) activity in whole human endometrial adenocarcinoma Ishikawa cells. In addition, their effect on aromatase activity in JEG-3 cells was also examined, since the goal of inhibiting both sulfatase and aromatase activities appears very attractive. However, it has been unsuccessful so far. Then, in vivo potencies of TX 1299, the lead compound in our chemical series, were evaluated in comparison with 6,6,7-COUMATE, a non-steroidal standard, in two different rat models and by oral route. First, the absence of any residual estrogenic activity for these compounds was checked in the uterotrophic model in prepubescent female rats. Second, antiuterotrophic activity in adult ovariectomized rat supplemented with estrone sulfate (E(1)S), showed that both compounds were potent inhibitors, the power of TX 1299 relative to 6,6,7-COUMATE being around 80%. This assay was combined with uterine sulfatase level determination and confirmed the complete inhibition of this enzyme within the target organ. Preliminary studies indicated that other non-steroid compounds in the Théramex series were potent in vitro and in vivo inhibitors of estrone sulfatase in rats and further studies are in progress.

  7. Low-scale expression and purification of an active putative iduronate 2-sulfate sulfatase-Like enzyme from Escherichia coli K12.

    PubMed

    Morales-Álvarez, Edwin David; Rivera-Hoyos, Claudia Marcela; Baena-Moncada, Angélica María; Landázuri, Patricia; Poutou-Piñales, Raúl A; Sáenz-Suárez, Homero; Barrera, Luis A; Echeverri-Peña, Olga Y

    2013-04-01

    The sulfatase family involves a group of enzymes with a large degree of similarity. Until now, sixteen human sulfatases have been identified, most of them found in lysosomes. Human deficiency of sulfatases generates various genetic disorders characterized by abnormal accumulation of sulfated intermediate compounds. Mucopolysaccharidosis type II is characterized by the deficiency of iduronate 2-sulfate sulfatase (IDS), causing the lysosomal accumulation of heparan and dermatan sulfates. Currently, there are several cases of genetic diseases treated with enzyme replacement therapy, which have generated a great interest in the development of systems for recombinant protein expression. In this work we expressed the human recombinant IDS-Like enzyme (hrIDS-Like) in Escherichia coli DH5α. The enzyme concentration revealed by ELISA varied from 78.13 to 94.35 ng/ml and the specific activity varied from 34.20 to 25.97 nmol/h/mg. Western blotting done after affinity chromatography purification showed a single band of approximately 40 kDa, which was recognized by an IgY polyclonal antibody that was developed against the specific peptide of the native protein. Our 100 ml-shake-flask assays allowed us to improve the enzyme activity seven fold, compared to the E. coli JM109/pUC13-hrIDS-Like system. Additionally, the results obtained in the present study were equal to those obtained with the Pichia pastoris GS1115/pPIC-9-hrIDS-Like system (3 L bioreactor scale). The system used in this work (E. coli DH5α/pGEX-3X-hrIDS-Like) emerges as a strategy for improving protein expression and purification, aimed at recombinant protein chemical characterization, future laboratory assays for enzyme replacement therapy, and as new evidence of active putative sulfatase production in E. coli.

  8. Molecular analysis of SUMF1 mutations: stability and residual activity of mutant formylglycine-generating enzyme determine disease severity in multiple sulfatase deficiency.

    PubMed

    Schlotawa, Lars; Steinfeld, Robert; von Figura, Kurt; Dierks, Thomas; Gärtner, Jutta

    2008-01-01

    Multiple Sulfatase Deficiency (MSD) is a rare inborn autosomal-recessive disorder, which mainly combines clinical features of metachromatic leukodystrophy, mucopolysaccharidosis and X-linked ichthyosis. The clinical course ranges from neonatal severe to mild juvenile cases. MSD is caused by mutations in the SUMF1 gene encoding the formylglycine-generating enzyme (FGE). FGE posttranslationally activates sulfatases by generating formylglycine in their catalytic sites. We analyzed the functional consequences of missense mutations p.A177P, p.W179S, p.A279V and p.R349W with regard to FGE's subcellular localization, enzymatic activity, protein stability, intracellular retention and resulting sulfatase activities. All four mutations did not affect localization of FGE in the endoplasmic reticulum of MSD fibroblasts. However, they decreased its specific enzymatic activity to less than 1% (p.A177P and p.R349W), 3% (p.W179S) or 23% (p.A279V). Protein stability was severely decreased for p.A279V and p.R349W, and almost comparable to wild type for p.A177P and p.W179S. The patient with the mildest clinical phenotype carries the mutation p.A279V leading to decreased FGE protein stability, but high residual enzymatic activity and only slightly reduced sulfatase activities. In contrast, the most severely affected patient carries the mutation p.R349W leading to drastically decreased protein stability, very low residual enzymatic activity and considerably reduced sulfatase activities. Our functional studies provide novel insight into the molecular defect underlying MSD and reveal that both residual enzyme activity and protein stability of FGE contribute to the clinical phenotype. The application of improved functional assays to determine these two molecular parameters of FGE mutants may enable the prediction of the clinical outcome in the future.

  9. Molecular basis of multiple sulfatase deficiency, mucolipidosis II/III and Niemann-Pick C1 disease - Lysosomal storage disorders caused by defects of non-lysosomal proteins.

    PubMed

    Dierks, Thomas; Schlotawa, Lars; Frese, Marc-André; Radhakrishnan, Karthikeyan; von Figura, Kurt; Schmidt, Bernhard

    2009-04-01

    Multiple sulfatase deficiency (MSD), mucolipidosis (ML) II/III and Niemann-Pick type C1 (NPC1) disease are rare but fatal lysosomal storage disorders caused by the genetic defect of non-lysosomal proteins. The NPC1 protein mainly localizes to late endosomes and is essential for cholesterol redistribution from endocytosed LDL to cellular membranes. NPC1 deficiency leads to lysosomal accumulation of a broad range of lipids. The precise functional mechanism of this membrane protein, however, remains puzzling. ML II, also termed I cell disease, and the less severe ML III result from deficiencies of the Golgi enzyme N-acetylglucosamine 1-phosphotransferase leading to a global defect of lysosome biogenesis. In patient cells, newly synthesized lysosomal proteins are not equipped with the critical lysosomal trafficking marker mannose 6-phosphate, thus escaping from lysosomal sorting at the trans Golgi network. MSD affects the entire sulfatase family, at least seven members of which are lysosomal enzymes that are specifically involved in the degradation of sulfated glycosaminoglycans, sulfolipids or other sulfated molecules. The combined deficiencies of all sulfatases result from a defective post-translational modification by the ER-localized formylglycine-generating enzyme (FGE), which oxidizes a specific cysteine residue to formylglycine, the catalytic residue enabling a unique mechanism of sulfate ester hydrolysis. This review gives an update on the molecular bases of these enigmatic diseases, which have been challenging researchers since many decades and so far led to a number of surprising findings that give deeper insight into both the cell biology and the pathobiochemistry underlying these complex disorders. In case of MSD, considerable progress has been made in recent years towards an understanding of disease-causing FGE mutations. First approaches to link molecular parameters with clinical manifestation have been described and even therapeutical options have been

  10. Exploring the transferase activity of Ffase from Schwanniomyces occidentalis, a β-fructofuranosidase showing high fructosyl-acceptor promiscuity.

    PubMed

    Piedrabuena, David; Míguez, Noa; Poveda, Ana; Plou, Francisco J; Fernández-Lobato, María

    2016-10-01

    The β-fructofuranosidase from the yeast Schwanniomyces occidentalis (Ffase) produces the prebiotic sugars 6-kestose and 1-kestose by transfructosylation of sucrose, which makes it of biotechnological interest. In this study, the hydrolase and transferase activity of this enzyme was kinetically characterized and its potential to synthesize new fructosylated products explored. A total of 40 hydroxylated compounds were used as potential fructosyl-acceptor alternatives to sucrose. Only 17 of them, including some monosaccharides, disaccharides, and oligosaccharides as well as alditols and glycosides were fructosylated. The best alternative acceptors were the alditols. The major transfer product of the reaction including mannitol was purified and characterized as 1-O-β-D-fructofuranosyl-D-mannitol, whose maximum concentration reached 44 g/L, representing about 7.3 % of total compounds in the mixture and 89 % of all products generated by transfructosylation. The reactions including erythritol produced 35 g/L of an isomer mixture comprising 1- and 4-O-β-D-fructofuranosyl-D-erythritol. In addition, Ffase produced 24 g/L of the disaccharide blastose by direct fructosylation of glucose, which makes it the first enzyme characterized from yeast showing this ability. Thus, novel fructosylated compounds with potential applications in food and pharmaceutical industries can be obtained due to the Ffase fructosyl-acceptor promiscuity.

  11. Thermal and chemical unfolding pathways of PaSdsA1 sulfatase, a homo-dimer with topologically interlinked chains.

    PubMed

    Aguirre, César; Goto, Yuji; Costas, Miguel

    2016-01-01

    Understanding the mechanisms as to how interlinked proteins entangle and fold is a challenge. PaSdsA1 sulfatase is a homo-dimer containing two zinc atoms per monomer. The monomer chains are interlinked in a dimerization domain. To study the unfolding pathways denaturation experiments were performed. In the native protein three forms coexist in chemical equilibrium, each with a different number of zinc atoms. In the chemical unfolding of the holo-dimers the entanglement of the chains is preserved and acts as a 'folding seed', allowing the unfolding process to be reversible. Thermal irreversible unfolding of the holo-dimers favours dissociation, producing monomers that are SDS-stabilized. The thermal unfolding of these monomers is reversible. However, it is not possible to form dimers from unfolded monomers.

  12. Cervical cord compression and severe hydrocephalus in a child with Saudi variant of multiple sulfatase deficiency. Report of case.

    PubMed

    al-Moutaery, K R; Choudhury, A R; Hassanen, M O

    1994-01-01

    We report a 2.5-year-old boy with Saudi variant of multiple sulfatase deficiency (MSD or Austin's disease). He presented with the features of cervical cord compression and a severe form of hydrocephalus. The former was due to a thickened posterior arch of the atlas and the latter from a narrow foramen magnum and meningeal thickening. Decompression of the cord was achieved by removal of the posterior margin of the foramen magnum and posterior arch of the atlas, and followed by a duroplasty. At a later date, ventricular decompression was achieved by insertion of a ventricular-peritoneal shunt. NMR did not demonstrate white matter changes in the brain. In this regard the reported case differs from the earlier description of the Saudi Variant of MSD.

  13. Promiscuous and adaptable enzymes fill "holes" in the tetrahydrofolate pathway in Chlamydia species.

    PubMed

    Adams, Nancy E; Thiaville, Jennifer J; Proestos, James; Juárez-Vázquez, Ana L; McCoy, Andrea J; Barona-Gómez, Francisco; Iwata-Reuyl, Dirk; de Crécy-Lagard, Valérie; Maurelli, Anthony T

    2014-07-08

    Folates are tripartite molecules comprising pterin, para-aminobenzoate (PABA), and glutamate moieties, which are essential cofactors involved in DNA and amino acid synthesis. The obligately intracellular Chlamydia species have lost several biosynthetic pathways for essential nutrients which they can obtain from their host but have retained the capacity to synthesize folate. In most bacteria, synthesis of the pterin moiety of folate requires the FolEQBK enzymes, while synthesis of the PABA moiety is carried out by the PabABC enzymes. Bioinformatic analyses reveal that while members of Chlamydia are missing the genes for FolE (GTP cyclohydrolase) and FolQ, which catalyze the initial steps in de novo synthesis of the pterin moiety, they have genes for the rest of the pterin pathway. We screened a chlamydial genomic library in deletion mutants of Escherichia coli to identify the "missing genes" and identified a novel enzyme, TrpFCtL2, which has broad substrate specificity. TrpFCtL2, in combination with GTP cyclohydrolase II (RibA), the first enzyme of riboflavin synthesis, provides a bypass of the first two canonical steps in folate synthesis catalyzed by FolE and FolQ. Notably, TrpFCtL2 retains the phosphoribosyl anthranilate isomerase activity of the original annotation. Additionally, we independently confirmed the recent discovery of a novel enzyme, CT610, which uses an unknown precursor to synthesize PABA and complements E. coli mutants with deletions of pabA, pabB, or pabC. Thus, Chlamydia species have evolved a variant folate synthesis pathway that employs a patchwork of promiscuous and adaptable enzymes recruited from other biosynthetic pathways. Importance: Collectively, the involvement of TrpFCtL2 and CT610 in the tetrahydrofolate pathway completes our understanding of folate biosynthesis in Chlamydia. Moreover, the novel roles for TrpFCtL2 and CT610 in the tetrahydrofolate pathway are sophisticated examples of how enzyme evolution plays a vital role in the

  14. Protein promiscuity: drug resistance and native functions--HIV-1 case.

    PubMed

    Fernández, Ariel; Tawfik, Dan S; Berkhout, Ben; Sanders, Rogier; Kloczkowski, Andrzej; Sen, Taner; Jernigan, Bob

    2005-06-01

    The association of a drug with its target protein has the effect of blocking the protein activity and is termed a promiscuous function to distinguish from the protein's native function (Tawfik and associates, Nat. Genet. 37, 73-6, 2005). Obviously, a protein has not evolved naturally for drug association or drug resistance. Promiscuous protein functions exhibit unique traits of evolutionary adaptability, or evolvability, which is dependent on the induction of novel phenotypic traits by a small number of mutations. These mutations might have small effects on native functions, but large effects on promiscuous function; for example, an evolving protein could become increasingly drug resistant while maintaining its original function. Ariel Fernandez, in his opinion piece, notes that drug-binding "promiscuity" can hardly be dissociated from native functions; a dominant approach to drug discovery is the protein-native-substrate transition-state mimetic strategy. Thus, man-made ligands (e.g. drugs) have been successfully crafted to restrain enzymatic activity by focusing on the very same structural features that determine the native function. Using the successful inhibition of HIV-1 protease as an example, Fernandez illustrates how drug designers have employed naturally evolved features of the protein to suppress its activity. Based on these arguments, he dismisses the notion that drug binding is quintessentially promiscuous, even though in principle, proteins did not evolve to associate with man made ligands. In short, Fernandez argues that there may not be separate protein domains that one could term promiscuous domains. While acknowledging that drugs may bind promiscuously or in a native-like manner a la Fernandez, Tawfik maintains the role of evolutionary adaptation, even when a drug binds native-like. In the case of HIV-1 protease, drugs bind natively, and the initial onset of mutations results in drug resistance in addition to a dramatic decline in enzymatic

  15. Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics.

    PubMed

    Colin, Pierre-Yves; Kintses, Balint; Gielen, Fabrice; Miton, Charlotte M; Fischer, Gerhard; Mohamed, Mark F; Hyvönen, Marko; Morgavi, Diego P; Janssen, Dick B; Hollfelder, Florian

    2015-12-07

    Unculturable bacterial communities provide a rich source of biocatalysts, but their experimental discovery by functional metagenomics is difficult, because the odds are stacked against the experimentor. Here we demonstrate functional screening of a million-membered metagenomic library in microfluidic picolitre droplet compartments. Using bait substrates, new hydrolases for sulfate monoesters and phosphotriesters were identified, mostly based on promiscuous activities presumed not to be under selection pressure. Spanning three protein superfamilies, these break new ground in sequence space: promiscuity now connects enzymes with only distantly related sequences. Most hits could not have been predicted by sequence analysis, because the desired activities have never been ascribed to similar sequences, showing how this approach complements bioinformatic harvesting of metagenomic sequencing data. Functional screening of a library of unprecedented size with excellent assay sensitivity has been instrumental in identifying rare genes constituting catalytically versatile hubs in sequence space as potential starting points for the acquisition of new functions.

  16. Structures of Human Pumilio with Noncognate RNAs Reveal Molecular Mechanisms for Binding Promiscuity

    SciTech Connect

    Gupta,Y.; Nair, D.; Wharton, R.; Aggarwal, A.

    2008-01-01

    Pumilio is a founder member of the evolutionarily conserved Puf family of RNA-binding proteins that control a number of physiological processes in eukaryotes. A structure of human Pumilio (hPum) Puf domain bound to a Drosophila regulatory sequence showed that each Puf repeat recognizes a single nucleotide. Puf domains in general bind promiscuously to a large set of degenerate sequences, but the structural basis for this promiscuity has been unclear. Here, we describe the structures of hPum Puf domain complexed to two noncognate RNAs, CycBreverse and Puf5. In each complex, one of the nucleotides is ejected from the binding surface, in effect, acting as a 'spacer.' The complexes also reveal the plasticity of several Puf repeats, which recognize noncanonical nucleotides. Together, these complexes provide a molecular basis for recognition of degenerate binding sites, which significantly increases the number of mRNAs targeted for regulation by Puf proteins in vivo.

  17. Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics

    PubMed Central

    Colin, Pierre-Yves; Kintses, Balint; Gielen, Fabrice; Miton, Charlotte M.; Fischer, Gerhard; Mohamed, Mark F.; Hyvönen, Marko; Morgavi, Diego P.; Janssen, Dick B; Hollfelder, Florian

    2015-01-01

    Unculturable bacterial communities provide a rich source of biocatalysts, but their experimental discovery by functional metagenomics is difficult, because the odds are stacked against the experimentor. Here we demonstrate functional screening of a million-membered metagenomic library in microfluidic picolitre droplet compartments. Using bait substrates, new hydrolases for sulfate monoesters and phosphotriesters were identified, mostly based on promiscuous activities presumed not to be under selection pressure. Spanning three protein superfamilies, these break new ground in sequence space: promiscuity now connects enzymes with only distantly related sequences. Most hits could not have been predicted by sequence analysis, because the desired activities have never been ascribed to similar sequences, showing how this approach complements bioinformatic harvesting of metagenomic sequencing data. Functional screening of a library of unprecedented size with excellent assay sensitivity has been instrumental in identifying rare genes constituting catalytically versatile hubs in sequence space as potential starting points for the acquisition of new functions. PMID:26639611

  18. Substrate promiscuity: AglB, the archaeal oligosaccharyltransferase, can process a variety of lipid-linked glycans.

    PubMed

    Cohen-Rosenzweig, Chen; Guan, Ziqiang; Shaanan, Boaz; Eichler, Jerry

    2014-01-01

    Across evolution, N-glycosylation involves oligosaccharyltransferases that transfer lipid-linked glycans to selected Asn residues of target proteins. While these enzymes catalyze similar reactions in each domain, differences exist in terms of the chemical composition, length and degree of phosphorylation of the lipid glycan carrier, the sugar linking the glycan to the lipid carrier, and the composition and structure of the transferred glycan. To gain insight into how oligosaccharyltransferases cope with such substrate diversity, the present study analyzed the archaeal oligosaccharyltransferase AglB from four haloarchaeal species. Accordingly, it was shown that despite processing distinct lipid-linked glycans in their native hosts, AglB from Haloarcula marismortui, Halobacterium salinarum, and Haloferax mediterranei could readily replace their counterpart from Haloferax volcanii when introduced into Hfx. volcanii cells deleted of aglB. As the four enzymes show significant sequence and apparently structural homology, it appears that the functional similarity of the four AglB proteins reflects the relaxed substrate specificity of these enzymes. Such demonstration of AglB substrate promiscuity is important not only for better understanding of N-glycosylation in Archaea and elsewhere but also for efforts aimed at transforming Hfx. volcanii into a glycoengineering platform.

  19. Differential plant invasiveness is not always driven by host promiscuity with bacterial symbionts

    PubMed Central

    Klock, Metha M.; Barrett, Luke G.; Thrall, Peter H.; Harms, Kyle E.

    2016-01-01

    Identification of mechanisms that allow some species to outcompete others is a fundamental goal in ecology and invasive species management. One useful approach is to examine congeners varying in invasiveness in a comparative framework across native and invaded ranges. Acacia species have been widely introduced outside their native range of Australia, and a subset of these species have become invasive in multiple parts of the world. Within specific regions, the invasive status of these species varies. Our study examined whether a key mechanism in the life history of Acacia species, the legume-rhizobia symbiosis, influences acacia invasiveness on a regional scale. To assess the extent to which species varying in invasiveness correspondingly differ with regard to the diversity of rhizobia they associate with, we grew seven Acacia species ranging in invasiveness in California in multiple soils from both their native (Australia) and introduced (California) ranges. In particular, the aim was to determine whether more invasive species formed symbioses with a wider diversity of rhizobial strains (i.e. are more promiscuous hosts). We measured and compared plant performance, including aboveground biomass, survival, and nodulation response, as well as rhizobial community composition and richness. Host promiscuity did not differ among invasiveness categories. Acacia species that varied in invasiveness differed in aboveground biomass for only one soil and did not differ in survival or nodulation within individual soils. In addition, acacias did not differ in rhizobial richness among invasiveness categories. However, nodulation differed between regions and was generally higher in the native than introduced range. Our results suggest that all Acacia species introduced to California are promiscuous hosts and that host promiscuity per se does not explain the observed differences in invasiveness within this region. Our study also highlights the utility of assessing potential

  20. Active Site Loop Conformation Regulates Promiscuous Activity in a Lactonase from Geobacillus kaustophilus HTA426

    PubMed Central

    Zhang, Yu; An, Jiao; Yang, Guang-Yu; Bai, Aixi; Zheng, Baisong; Lou, Zhiyong; Wu, Geng; Ye, Wei; Chen, Hai-Feng; Feng, Yan; Manco, Giuseppe

    2015-01-01

    Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a “hot spot” in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity. PMID:25706379

  1. Soay rams target reproductive activity towards promiscuous females' optimal insemination period.

    PubMed

    Preston, B T; Stevenson, I R; Wilson, K

    2003-10-07

    Female promiscuity is thought to have resulted in the evolution of male behaviours that confer advantages in the sperm competition that ensues. In mammalian species, males can gain a post-copulatory advantage in this sperm 'raffle' by inseminating females at the optimal time relative to ovulation, leading to the prediction that males should preferentially associate and copulate with females at these times. To the best of our knowledge, we provide the first high-resolution test of this prediction using feral Soay sheep, which have a mating system characterized by male competition for access to highly promiscuous females. We find that competitive males time their mate guarding (and hence copulations) to occur close to the optimal insemination period (OIP), when females are also increasingly likely to 'cooperate' with copulation attempts. Subordinate males practice an alternative mating tactic, where they break the integrity of the consort pair and force copulations on females. The timing of these forced copulations is also targeted towards the OIP. We thus provide quantitative evidence that female promiscuity has resulted in the evolution of reproductive strategies in which males 'load' the sperm raffle by targeting their mating activity towards female OIPs, when the probability of sperm-competition success is at its greatest.

  2. VS-APPLE: A Virtual Screening Algorithm Using Promiscuous Protein-Ligand Complexes.

    PubMed

    Okuno, Tatsuya; Kato, Koya; Terada, Tomoki P; Sasai, Masaki; Chikenji, George

    2015-06-22

    As the number of structurally resolved protein-ligand complexes increases, the ligand-binding pockets of many proteins have been found to accommodate multiple different compounds. Effective use of these structural data is important for developing virtual screening (VS) methods that identify bioactive compounds. Here, we introduce a VS method, VS-APPLE (Virtual Screening Algorithm using Promiscuous Protein-Ligand complExes), based on promiscuous protein-ligand binding structures. In VS-APPLE, multiple ligands bound to a pocket are combined into a query template for screening. Both the structural match between a test compound and the multiple-ligand template and the possible collisions between the test compound and the target protein are evaluated by an efficient geometric hashing method. The performance of VS-APPLE was examined on a filtered, clustered version of the Directory of Useful Decoys data set. In Area Under the Curve analyses of this data set, VS-APPLE outperformed several popular screening programs. Judging from the performance of VS-APPLE, the structural data of promiscuous protein-ligand bindings could be further analyzed and exploited for developing VS methods.

  3. Variation in promiscuity and sexual selection drives avian rate of Faster-Z evolution.

    PubMed

    Wright, Alison E; Harrison, Peter W; Zimmer, Fabian; Montgomery, Stephen H; Pointer, Marie A; Mank, Judith E

    2015-03-01

    Higher rates of coding sequence evolution have been observed on the Z chromosome relative to the autosomes across a wide range of species. However, despite a considerable body of theory, we lack empirical evidence explaining variation in the strength of the Faster-Z Effect. To assess the magnitude and drivers of Faster-Z Evolution, we assembled six de novo transcriptomes, spanning 90 million years of avian evolution. Our analysis combines expression, sequence and polymorphism data with measures of sperm competition and promiscuity. In doing so, we present the first empirical evidence demonstrating the positive relationship between Faster-Z Effect and measures of promiscuity, and therefore variance in male mating success. Our results from multiple lines of evidence indicate that selection is less effective on the Z chromosome, particularly in promiscuous species, and that Faster-Z Evolution in birds is due primarily to genetic drift. Our results reveal the power of mating system and sexual selection in shaping broad patterns in genome evolution.

  4. Hyperstability and substrate promiscuity in laboratory resurrections of Precambrian β-lactamases.

    PubMed

    Risso, Valeria A; Gavira, Jose A; Mejia-Carmona, Diego F; Gaucher, Eric A; Sanchez-Ruiz, Jose M

    2013-02-27

    We report a sequence reconstruction analysis targeting several Precambrian nodes in the evolution of class-A β-lactamases and the preparation and experimental characterization of their encoded proteins. Despite extensive sequence differences with the modern enzymes (~100 amino acid differences), the proteins resurrected in the laboratory properly fold into the canonical lactamase structure. The encoded proteins from 2-3 billion years (Gyr)-old β-lactamase sequences undergo cooperative two-state thermal denaturation and display very large denaturation temperature enhancements (~35 °C) relative to modern β-lactamases. They degrade different antibiotics in vitro with catalytic efficiencies comparable to that of an average modern enzyme. This enhanced substrate promiscuity is not accompanied by significant changes in the active-site region as seen in static X-ray structures, suggesting a plausible role for dynamics in the evolution of function in these proteins. Laboratory resurrections of 2-3 Gyr-old β-lactamases also endowed modern microorganisms with significant levels of resistance toward a variety of antibiotics, opening up the possibility of performing laboratory replays of the molecular tape of lactamase evolution. Overall, these results support the notions that Precambrian life was thermophilic and that proteins can evolve from substrate-promiscuous generalists into specialists during the course of natural evolution. They also highlight the biotechnological potential of laboratory resurrection of Precambrian proteins, as both high stability and enhanced promiscuity (likely contributors to high evolvability) are advantageous features in protein scaffolds for molecular design and laboratory evolution.

  5. Heparin/heparan sulfate 6-O-sulfatase from Flavobacterium heparinum: integrated structural and biochemical investigation of enzyme active site and substrate specificity.

    PubMed

    Myette, James R; Soundararajan, Venkataramanan; Shriver, Zachary; Raman, Rahul; Sasisekharan, Ram

    2009-12-11

    Heparin and heparan sulfate glycosaminoglycans (HSGAGs) comprise a chemically heterogeneous class of sulfated polysaccharides. The development of structure-activity relationships for this class of polysaccharides requires the identification and characterization of degrading enzymes with defined substrate specificity and enzymatic activity. Toward this end, we report here the molecular cloning and extensive structure-function analysis of a 6-O-sulfatase from the Gram-negative bacterium Flavobacterium heparinum. In addition, we report the recombinant expression of this enzyme in Escherichia coli in a soluble, active form and identify it as a specific HSGAG sulfatase. We further define the mechanism of action of the enzyme through biochemical and structural studies. Through the use of defined substrates, we investigate the kinetic properties of the enzyme. This analysis was complemented by homology-based molecular modeling studies that sought to rationalize the substrate specificity of the enzyme and mode of action through an analysis of the active-site topology of the enzyme including identifying key enzyme-substrate interactions and assigning key amino acids within the active site of the enzyme. Taken together, our structural and biochemical studies indicate that 6-O-sulfatase is a predominantly exolytic enzyme that specifically acts on N-sulfated or N-acetylated 6-O-sulfated glucosamines present at the non-reducing end of HSGAG oligosaccharide substrates. This requirement for the N-acetyl or N-sulfo groups on the glucosamine substrate can be explained through eliciting favorable interactions with key residues within the active site of the enzyme. These findings provide a framework that enables the use of 6-O-sulfatase as a tool for HSGAG structure-activity studies as well as expand our biochemical and structural understanding of this important class of enzymes.

  6. Promiscuous activity of (S,S)-butanediol dehydrogenase is responsible for glycerol production from 1,3-dihydroxyacetone in Corynebacterium glutamicum under oxygen-deprived conditions.

    PubMed

    Jojima, Toru; Igari, Takafumi; Moteki, Yasuhiro; Suda, Masako; Yukawa, Hideaki; Inui, Masayuki

    2015-02-01

    Corynebacterium glutamicum can consume glucose to excrete glycerol under oxygen deprivation. Although glycerol synthesis from 1,3-dihydroxyacetone (DHA) has been speculated, no direct evidence has yet been provided in C. glutamicum. Enzymatic and genetic investigations here indicate that the glycerol is largely produced from DHA and, unexpectedly, the reaction is catalyzed by (S,S)-butanediol dehydrogenase (ButA) that inherently catalyzes the interconversion between S-acetoin and (S,S)-2,3-butanediol. Consequently, the following pathway for glycerol biosynthesis in the bacterium emerges: dihydroxyacetone phosphate is dephosphorylated by HdpA to DHA, which is subsequently reduced to glycerol by ButA. This study emphasizes the importance of promiscuous activity of the enzyme in vivo.

  7. Effect of culture conditions and signal peptide on production of human recombinant N-acetylgalactosamine-6-sulfate sulfatase in Escherichia coli BL21.

    PubMed

    Hernández, Alejandra; Velásquez, Olga; Leonardi, Felice; Soto, Carlos; Rodríguez, Alexander; Lizaraso, Lina; Mosquera, Ángela; Bohórquez, Jorge; Coronado, Alejandra; Espejo, Ángela; Sierra, Rocio; Sánchez, Oscar F; Alméciga-Díaz, Carlos J; Barrera, Luis A

    2013-05-01

    The production and characterization of an active recombinant N-acetylgalactosamine-6-sulfate sulfatase (GALNS) in Escherichia coli BL21(DE3) has been previously reported. In this study, the effect of the signal peptide (SP), inducer concentration, process scale, and operational mode (batch and semi-continuous) on GALNS production were evaluated. When native SP was presented, higher enzyme activity levels were observed in both soluble and inclusion bodies fractions, and its removal had a significant impact on enzyme activation. At shake scale, the optimal IPTG concentrations were 0.5 and 1.5 mM for the strains with and without SP, respectively, whereas at bench scale, the highest enzyme activities were observed with 1.5 mM IPTG for both strains. Noteworthy, enzyme activity in the culture media was only detected when SP was presented and the culture was carried out under semi-continuous mode. We showed for the first time that the mechanism that in prokaryotes recognizes the SP to mediate sulfatase activation can also recognize a eukaryotic SP, favoring the activation of the enzyme, and could also favor the secretion of the recombinant protein. These results offer significant information for scaling-up the production of human sulfatases in E. coli.

  8. Theoretical Proposal for the Whole Phosphate Diester Hydrolysis Mechanism Promoted by a Catalytic Promiscuous Dinuclear Copper(II) Complex.

    PubMed

    Esteves, Lucas F; Rey, Nicolás A; Dos Santos, Hélio F; Costa, Luiz Antônio S

    2016-03-21

    The catalytic mechanism that involves the cleavage of the phosphate diester model BDNPP (bis(2,4-dinitrophenyl) phosphate) catalyzed through a dinuclear copper complex is investigated in the current study. The metal complex was originally designed to catalyze catechol oxidation, and it showed an interesting catalytic promiscuity case in biomimetic systems. The current study investigates two different reaction mechanisms through quantum mechanics calculations in the gas phase, and it also includes the solvent effect through PCM (polarizable continuum model) single-point calculations using water as solvent. Two mechanisms are presented in order to fully describe the phosphate diester hydrolysis. Mechanism 1 is of the S(N)2 type, which involves the direct attack of the μ-OH bridge between the two copper(II) ions toward the phosphorus center, whereas mechanism 2 is the process in which hydrolysis takes place through proton transfer between the oxygen atom in the bridging hydroxo ligand and the other oxygen atom in the phosphate model. Actually, the present theoretical study shows two possible reaction paths in mechanism 1. Its first reaction path (p1) involves a proton transfer that occurs immediately after the hydrolytic cleavage, so that the proton transfer is the rate-determining step, which is followed by the entry of two water molecules. Its second reaction path (p2) consists of the entry of two water molecules right after the hydrolytic cleavage, but with no proton transfer; thus, hydrolytic cleavage is the rate-limiting step. The most likely catalytic path occurs in mechanism 1, following the second reaction path (p2), since it involves the lowest free energy activation barrier (ΔG(⧧) = 23.7 kcal mol(-1), in aqueous solution). A kinetic analysis showed that the experimental k(obs) value of 1.7 × 10(-5) s(-1) agrees with the calculated value k1 = 2.6 × 10(-5) s(-1); the concerted mechanism is kinetically favorable. The KIE (kinetic isotope effect) analysis

  9. Sesquiterpene synthases Cop4 and Cop6 from Coprinus cinereus: Catalytic promiscuity and cyclization of farnesyl pyrophosphate geometrical isomers

    PubMed Central

    Lopez-Gallego, Fernando; Agger, Sean A.; Pella, Daniel A.; Distefano, Mark D.; Schmidt-Dannert, Claudia

    2010-01-01

    Sesquiterpene synthases catalyze with different catalytic fidelity the cyclization of farnesyl pyrophosphate (FPP) into hundreds of known compounds with diverse structures and stereochemistries. Two sesquiterpene synthases, Cop4 and Cop6, were previously isolated from Coprinus cinereus as part of a fungal genome survey. This study investigates the reaction mechanism and catalytic fidelity of the two enzymes. Cyclization of all-trans-FPP ((E,E)-FPP) was compared to the cyclization of the cis-trans isomer of FPP ((Z,E)-FPP) as a surrogate for the secondary cisoid neryl cation intermediate generated by sesquiterpene synthases capable of isomerizing the C2-C3 π bond of all-trans-FPP. Cop6 is a “high-fidelity” α-cuprenene synthase that retains its fidelity under various conditions tested. Cop4 is a catalytically promiscuous enzyme that cyclizes (E,E)-FPP into multiple products, including (−)-germacrene D and cubebol. Changing the pH of the reaction drastically alters the fidelity of Cop4 and makes it a highly selective enzyme. Cyclization of (Z,E)-FPP by Cop4 and Cop6 yields products that are very different from those obtained with (E,E)-FPP. Conversion of (E,E)-FPP proceeds via a (6R)-β-bisabolyl carbocation in the case of Cop6 and an (E,E)-germacradienyl carbocation in the case of Cop4. However, (Z,E)-FPP is cyclized via a (6S)-β-bisabolene carbocation by both enzymes. Structural modeling suggests that differences in the active site and the loop that covers the active site of the two enzymes may explain their different catalytic fidelities. PMID:20419721

  10. Exploiting polymerase promiscuity: A simple colorimetric RNA polymerase assay.

    PubMed

    Vassiliou, W; Epp, J B; Wang, B B; Del Vecchio, A M; Widlanski, T; Kao, C C

    2000-09-01

    We developed a convenient colorimetric assay for monitoring RNA synthesis from DNA-dependent RNA polymerases (DdRp) and viral RNA-dependent RNA polymerases (RdRp). ATP and GTP with a p-nitrophenyl moiety attached to the gamma-phosphate were synthesized (PNP-NTPs). These PNP-NTPs can be used for RNA synthesis by several RNA polymerases, including the RdRps from brome mosaic virus and bovine viral diarrhea virus and the DdRps from bacteriophage T7 and SP6. When the polymerase reactions were performed in the presence of alkaline phosphatase, which digests the p-nitrophenylpyrophosphate side-product of phosphoryl transfer to the chromogenic p-nitrophenylate, an increase in absorbence at 405 nm was observed. These nucleotide analogues were used in continuous colorimetric monitoring of polymerase activity. Furthermore, the PNP-NTPs were found to be stable and utilized by RNA polymerases in the presence of human plasma. This simple colorimetric polymerase assay can be performed in a standard laboratory spectrophotometer and will be useful in screens for inhibitors of viral RNA synthesis.

  11. Design, synthesis, and biological evaluation of new arylamide derivatives possessing sulfonate or sulfamate moieties as steroid sulfatase enzyme inhibitors.

    PubMed

    El-Gamal, Mohammed I; Semreen, Mohammad H; Foster, Paul A; Potter, Barry V L

    2016-06-15

    A series of new arylamide derivatives possessing terminal sulfonate or sulfamate moieties was designed and synthesized. The target compounds were tested for in vitro inhibitory effects against the steroid sulfatase (STS) enzyme in a cell-free assay system. The free sulfamate derivative 1j was the most active. It inhibited the enzymatic activity by 72.0% and 55.7% at 20μM and 10μM, respectively. Compound 1j was further tested for STS inhibition in JEG-3 placental carcinoma cells with high STS enzyme activity. It inhibited 93.9% of the enzyme activity in JEG-3 placental carcinoma cells at 20μM with an efficacy near to that of the well-established drug STX64 as reference. At 10μM, 1j inhibited 86.1% of the STS activity of JEG-3. Its IC50 value against the STS enzyme in JEG-3 cells was 0.421μM. Thus, 1j represents an attractive new non-steroidal lead for further optimization.

  12. Transcriptional Induction of Periostin by a Sulfatase 2-TGFβ1-SMAD Signaling Axis Mediates Tumor Angiogenesis in Hepatocellular Carcinoma.

    PubMed

    Chen, Gang; Nakamura, Ikuo; Dhanasekaran, Renumathy; Iguchi, Eriko; Tolosa, Ezequiel J; Romecin, Paola A; Vera, Renzo E; Almada, Luciana L; Miamen, Alexander G; Chaiteerakij, Roongruedee; Zhou, Mengtao; Asiedu, Michael K; Moser, Catherine D; Han, Shaoshan; Hu, Chunling; Banini, Bubu A; Oseini, Abdul M; Chen, Yichun; Fang, Yong; Yang, Dongye; Shaleh, Hassan M; Wang, Shaoqing; Wu, Dehai; Song, Tao; Lee, Ju-Seog; Thorgeirsson, Snorri S; Chevet, Eric; Shah, Vijay H; Fernandez-Zapico, Martin E; Roberts, Lewis R

    2017-02-01

    Existing antiangiogenic approaches to treat metastatic hepatocellular carcinoma (HCC) are weakly effectual, prompting further study of tumor angiogenesis in this disease setting. Here, we report a novel role for sulfatase 2 (SULF2) in driving HCC angiogenesis. Sulf2-deficient mice (Sulf2 KO) exhibited resistance to diethylnitrosamine-induced HCC and did not develop metastases like wild-type mice (Sulf2 WT). The smaller and less numerous tumors formed in Sulf2 KO mice exhibited a markedly lower microvascular density. In human HCC cells, SULF2 overexpression increased endothelial proliferation, adhesion, chemotaxis, and tube formation in a paracrine fashion. Mechanistic analyses identified the extracellular matrix protein periostin (POSTN), a ligand of αvβ3/5 integrins, as an effector protein in SULF2-induced angiogenesis. POSTN silencing in HCC cells attenuated SULF2-induced angiogenesis and tumor growth in vivo The TGFβ1/SMAD pathway was identified as a critical signaling axis between SULF2 and upregulation of POSTN transcription. In clinical HCC specimens, elevated levels of SULF2 correlated with increased microvascular density, POSTN levels, and relatively poorer patient survival. Together, our findings define an important axis controlling angiogenesis in HCC and a mechanistic foundation for rational drug development. Cancer Res; 77(3); 632-45. ©2016 AACR.

  13. Evidence for sulfatase and 17beta-hydroxysteroid dehydrogenase type 1 activities in equine epididymis and uterus.

    PubMed

    Lemazurier, Emmanuel; Séralini, Gilles-Eric

    2002-07-01

    Our previous work showed that stallion testis produces high amounts of estrogens which are subsequently found in the ejaculate. These estrogens are mainly synthesized by testicular aromatase, and the major estrogen produced is estrone sulfate (E1S). The objective of this study was to investigate the potential role of E1S as a source of estrogens in the male and female horse reproductive tracts by determining whether both estrone sulfatase (Sulf) and 17beta-hydroxysteroid dehydrogenase type I (17beta-HSD1) activities were present in equine testes, epididymis and uterus. We assessed E1S bioconversion into estrone (E1) and estradiol (E2) in these tissues. Both Sulf and 17beta-HSD1 activities were well detected in the cauda epididymis and uterus. Additionally, Sulf activity was present in the distal corpus of the epididymis, and 17beta-HSDI in the proximal corpus. In contrast, aromatase gene expression, measured as an internal control of endogenous estrogen production, had high activity only in the testis. We found that seminal E1S of testicular origin can be metabolized to E2, especially in the cauda epididymis and uterus. Because E2 appears to play a major role in male and female reproduction, we propose that the bioconversion of seminal E1S could affect male and female fertility.

  14. Biophysical Basis of the Promiscuous Binding of Bcl2 Apoptotic Repressor to BH3 Ligands

    PubMed Central

    Bhat, Vikas; Olenick, Max B.; Schuchardt, Brett J.; Mikles, David C.; McDonald, Caleb B.; Farooq, Amjad

    2013-01-01

    Bcl2 apoptotic repressor carries out its function by virtue of its ability to bind to BH3 domains of various pro-apoptotic regulators in a highly promiscuous manner. Herein, we investigate the biophysical basis of such promiscuity of Bcl2 toward its cognate BH3 ligands. Our data show that while the BH3 ligands harboring the LXXXAD motif bind to Bcl2 with submicromolar affinity, those with the LXXX[G/S]D motif afford weak interactions. This implies that the replacement of alanine at the fourth position (A+4)—relative to the N-terminal leucine (L0) within the LXXXAD motif—to glycine/serine results in the loss of free energy of binding. Consistent with this notion, the A+4 residue within the BH3 ligands harboring the LXXXAD motif engages in key intermolecular van der Waals contacts with A149 lining the ligand binding groove within Bcl2, while A+4G/S substitution results in the disruption of such favorable binding interactions. Of particular interest is the observation that while increasing ionic strength has little or negligible effect on the binding of high-affinity BH3 ligands harboring the LXXXAD motif, the binding of those with the LXXX[G/S]D motif in general experiences a varying degree of enhancement. This salient observation is indicative of the fact that hydrophobic forces not only play a dominant but also a universal role in driving the Bcl2-BH3 interactions. Taken together, our study sheds light on the molecular basis of the factors governing the promiscuous binding of Bcl2 to pro-apoptotic regulators and thus bears important consequences on the development of rational therapeutic approaches. PMID:23996493

  15. Achieving Peptide Binding Specificity and Promiscuity by Loops: Case of the Forkhead-Associated Domain

    PubMed Central

    Huang, Yu-ming M.; Chang, Chia-en A.

    2014-01-01

    The regulation of a series of cellular events requires specific protein–protein interactions, which are usually mediated by modular domains to precisely select a particular sequence from diverse partners. However, most signaling domains can bind to more than one peptide sequence. How do proteins create promiscuity from precision? Moreover, these complex interactions typically occur at the interface of a well-defined secondary structure, α helix and β sheet. However, the molecular recognition primarily controlled by loop architecture is not fully understood. To gain a deep understanding of binding selectivity and promiscuity by the conformation of loops, we chose the forkhead-associated (FHA) domain as our model system. The domain can bind to diverse peptides via various loops but only interact with sequences containing phosphothreonine (pThr). We applied molecular dynamics (MD) simulations for multiple free and bound FHA domains to study the changes in conformations and dynamics. Generally, FHA domains share a similar folding structure whereby the backbone holds the overall geometry and the variety of sidechain atoms of multiple loops creates a binding surface to target a specific partner. FHA domains determine the specificity of pThr by well-organized binding loops, which are rigid to define a phospho recognition site. The broad range of peptide recognition can be attributed to different arrangements of the loop interaction network. The moderate flexibility of the loop conformation can help access or exclude binding partners. Our work provides insights into molecular recognition in terms of binding specificity and promiscuity and helpful clues for further peptide design. PMID:24870410

  16. Mechanistic and Evolutionary Insights from the Reciprocal Promiscuity of Two Pyridoxal Phosphate-dependent Enzymes*

    PubMed Central

    Soo, Valerie W. C.; Yosaatmadja, Yuliana; Squire, Christopher J.

    2016-01-01

    Enzymes that utilize the cofactor pyridoxal 5′-phosphate play essential roles in amino acid metabolism in all organisms. The cofactor is used by proteins that adopt at least five different folds, which raises questions about the evolutionary processes that might explain the observed distribution of functions among folds. In this study, we show that a representative of fold type III, the Escherichia coli alanine racemase (ALR), is a promiscuous cystathionine β-lyase (CBL). Furthermore, E. coli CBL (fold type I) is a promiscuous alanine racemase. A single round of error-prone PCR and selection yielded variant ALR(Y274F), which catalyzes cystathionine β-elimination with a near-native Michaelis constant (Km = 3.3 mm) but a poor turnover number (kcat ≈10 h−1). In contrast, directed evolution also yielded CBL(P113S), which catalyzes l-alanine racemization with a poor Km (58 mm) but a high kcat (22 s−1). The structures of both variants were solved in the presence and absence of the l-alanine analogue, (R)-1-aminoethylphosphonic acid. As expected, the ALR active site was enlarged by the Y274F substitution, allowing better access for cystathionine. More surprisingly, the favorable kinetic parameters of CBL(P113S) appear to result from optimizing the pKa of Tyr-111, which acts as the catalytic acid during l-alanine racemization. Our data emphasize the short mutational routes between the functions of pyridoxal 5′-phosphate-dependent enzymes, regardless of whether or not they share the same fold. Thus, they confound the prevailing model of enzyme evolution, which predicts that overlapping patterns of promiscuity result from sharing a common multifunctional ancestor. PMID:27474741

  17. Reporting sodium channel activity using calcium flux: pharmacological promiscuity of cardiac Nav1.5.

    PubMed

    Zhang, Hongkang; Zou, Beiyan; Du, Fang; Xu, Kaiping; Li, Min

    2015-02-01

    Voltage-gated sodium (Nav) channels are essential for membrane excitability and represent therapeutic targets for treating human diseases. Recent reports suggest that these channels, e.g., Nav1.3 and Nav1.5, are inhibited by multiple structurally distinctive small molecule drugs. These studies give reason to wonder whether these drugs collectively target a single site or multiple sites in manifesting such pharmacological promiscuity. We thus investigate the pharmacological profile of Nav1.5 through systemic analysis of its sensitivity to diverse compound collections. Here, we report a dual-color fluorescent method that exploits a customized Nav1.5 [calcium permeable Nav channel, subtype 5 (SoCal5)] with engineered-enhanced calcium permeability. SoCal5 retains wild-type (WT) Nav1.5 pharmacological profiles. WT SoCal5 and SoCal5 with the local anesthetics binding site mutated (F1760A) could be expressed in separate cells, each with a different-colored genetically encoded calcium sensor, which allows a simultaneous report of compound activity and site dependence. The pharmacological profile of SoCal5 reveals a hit rate (>50% inhibition) of around 13% at 10 μM, comparable to that of hERG. The channel activity is susceptible to blockage by known drugs and structurally diverse compounds. The broad inhibition profile is highly dependent on the F1760 residue in the inner cavity, which is a residue conserved among all nine subtypes of Nav channels. Both promiscuity and dependence on F1760 seen in Nav1.5 were replicated in Nav1.4. Our evidence of a broad inhibition profile of Nav channels suggests a need to consider off-target effects on Nav channels. The site-dependent promiscuity forms a foundation to better understand Nav channels and compound interactions.

  18. Mesaconase/Fumarase FumD in Escherichia coli O157:H7 and Promiscuity of Escherichia coli Class I Fumarases FumA and FumB

    PubMed Central

    Kronen, Miriam; Berg, Ivan A.

    2015-01-01

    Mesaconase catalyzes the hydration of mesaconate (methylfumarate) to (S)-citramalate. The enzyme participates in the methylaspartate pathway of glutamate fermentation as well as in the metabolism of various C5-dicarboxylic acids such as mesaconate or L-threo-β-methylmalate. We have recently shown that Burkholderia xenovorans uses a promiscuous class I fumarase to catalyze this reaction in the course of mesaconate utilization. Here we show that classical Escherichia coli class I fumarases A and B (FumA and FumB) are capable of hydrating mesaconate with 4% (FumA) and 19% (FumB) of the catalytic efficiency kcat/Km, compared to the physiological substrate fumarate. Furthermore, the genomes of 14.8% of sequenced Enterobacteriaceae (26.5% of E. coli, 90.6% of E. coli O157:H7 strains) possess an additional class I fumarase homologue which we designated as fumarase D (FumD). All these organisms are (opportunistic) pathogens. fumD is clustered with the key genes for two enzymes of the methylaspartate pathway of glutamate fermentation, glutamate mutase and methylaspartate ammonia lyase, converting glutamate to mesaconate. Heterologously produced FumD was a promiscuous mesaconase/fumarase with a 2- to 3-fold preference for mesaconate over fumarate. Therefore, these bacteria have the genetic potential to convert glutamate to (S)-citramalate, but the further fate of citramalate is still unclear. Our bioinformatic analysis identified several other putative mesaconase genes and revealed that mesaconases probably evolved several times from various class I fumarases independently. Most, if not all iron-dependent fumarases, are capable to catalyze mesaconate hydration. PMID:26658641

  19. Promiscuity comes at a price: catalytic versatility vs efficiency in different metal ion derivatives of the potential bioremediator GpdQ.

    PubMed

    Daumann, Lena J; McCarthy, Bianca Y; Hadler, Kieran S; Murray, Tracy P; Gahan, Lawrence R; Larrabee, James A; Ollis, David L; Schenk, Gerhard

    2013-01-01

    The glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) is a highly promiscuous dinuclear metallohydrolase with respect to both substrate specificity and metal ion composition. While this promiscuity may adversely affect the enzyme's catalytic efficiency its ability to hydrolyse some organophosphates (OPs) and by-products of OP degradation have turned GpdQ into a promising candidate for bioremedial applications. Here, we investigated both metal ion binding and the effect of the metal ion composition on catalysis. The prevalent in vivo metal ion composition for GpdQ is proposed to be of the type Fe(II)Zn(II), a reflection of natural abundance rather than catalytic optimisation. The Fe(II) appears to have lower binding affinity than other divalent metal ions, and the catalytic efficiency of this mixed metal center is considerably smaller than that of Mn(II), Co(II) or Cd(II)-containing derivatives of GpdQ. Interestingly, metal ion replacements do not only affect catalytic efficiency but also the optimal pH range for the reaction, suggesting that different metal ion combinations may employ different mechanistic strategies. These metal ion-triggered modulations are likely to be mediated via an extensive hydrogen bond network that links the two metal ion binding sites via residues in the substrate binding pocket. The observed functional diversity may be the cause for the modest catalytic efficiency of wild-type GpdQ but may also be essential to enable the enzyme to evolve rapidly to alter substrate specificity and enhance k(cat) values, as has recently been demonstrated in a directed evolution experiment. This article is part of a Special Issue entitled: Chemistry and mechanism of phosphatases, diesterases and triesterases.

  20. Mutations, kataegis, and translocations in B lymphocytes: towards a mechanistic understanding of AID promiscuous activity

    PubMed Central

    Casellas, Rafael; Basu, Uttiya; Yewdell, William T.; Chaudhuri, Jayanta; Robbiani, Davide F.; Di Noia, Javier M.

    2016-01-01

    As B cells engage in the immune response they express the deaminase AID to initiate the hypermutation and recombination of immunoglobulin genes, which are crucial processes for the efficient recognition and disposal of pathogens, However, AID must be tightly controlled in B cells to minimize off-targeting mutations, which can drive chromosomal translocations and the development of B cell malignancies, such as lymphomas. Recent genomic and biochemical analyses have begun to unravel the crucial question of how AID-mediated deamination is targeted outside immunoglobulin genes. Here, we discuss the transcriptional and topological features that are emerging as key drivers of AID promiscuous activity. PMID:26898111

  1. Watching one's P's and Q's: promiscuity, plasticity, and quasiequivalence in a T = 1 virus.

    PubMed Central

    Chapman, M S

    1998-01-01

    Although quasiequivalence is not needed to explain the assembly of the T = 1 canine parvovirus capsid, the interactions of the 60-fold symmetrical capsid protein with less symmetrical viral components illustrate the elements of plasticity and promiscuity of interactions that are embodied in quasiequivalence. The current analysis is based on interactions of fivefold related proteins with a single peptide running along the fivefold axis, and on interactions of the capsid protein with various fragments of the genomic DNA, each having a different sequence and exposing the protein to interactions with different types of nucleotide base. PMID:9449365

  2. Characterizing the Promiscuity of LigAB, a Lignin Catabolite Degrading Extradiol Dioxygenase from Sphingomonas paucimobilis SYK-6

    PubMed Central

    Barry, Kevin P.; Taylor, Erika A.

    2014-01-01

    LigAB from Sphingomonas paucimobilis SYK-6 is the only structurally characterized dioxygenase of the largely uncharacterized superfamily of Type II extradiol dioxygenases (EDO). This enzyme catalyzes the oxidative ring-opening of protocatechuate (3,4-dihydroxybenzoic acid or PCA) in a pathway allowing the degradation of lignin derived aromatic compounds (LDACs). LigAB has also been shown to utilize two other LDACs from the same metabolic pathway as substrates, gallate, and 3-O-methyl gallate; however, kcat/KM had not been reported for any of these compounds. In order to assess the catalytic efficiency and get insights into the observed promiscuity of this enzyme, steady-state kinetic analyses were performed for LigAB with these and a library of related compounds. The dioxygenation of PCA by LigAB was highly efficient, with a kcat of 51 s−1 and a kcat/KM of 4.26 × 106 M−1s−1. LigAB demonstrated the ability to use a variety of catecholic molecules as substrates beyond the previously identified gallate and 3-O-methyl gallate, including 3,4-dihydroxybenzamide, homoprotocatechuate, catechol, and 3,4-dihydroxybenzonitrile. Interestingly, 3,4-dihydroxybenzamide (DHBAm) behaves in a manner similar to that of the preferred benzoic acid substrates, with a kcat/Km value only ~4-fold lower than that for gallate and ~10-fold higher than that for 3-O-methyl gallate. All of these most active substrates demonstrate mechanistic inactivation of LigAB. Additionally, DHBAm exhibits potent product inhibition that leads to an inactive enzyme, being more highly deactivating at lower substrate concentration, a phenomena that, to our knowledge, has not been reported for another dioxygenase substrate/product pair. These results provide valuable catalytic insight into the reactions catalyzed by LigAB and make it the first Type II EDO that is fully characterized both structurally and kinetically. PMID:23977959

  3. Highly enantioselective sec-alkyl sulfatase activity of Sulfolobus acidocaldarius DSM 639.

    PubMed

    Wallner, Sabine R; Nestl, Bettina M; Faber, Kurt

    2004-12-23

    [reaction: see text] rac-sec-Alkyl sulfate esters 1a-4a were resolved in high enantioselectivities with E-values up to >200 using whole cells of aerobically grown Sulfolobus acidocaldarius DSM 639. The stereochemical course of this biohydrolysis was shown to proceed with strict inversion of configuration; thus, the preferred (R)-enantiomers were converted into the corresponding (S)-sec-alcohols to furnish a homochiral product mixture.

  4. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations

    PubMed Central

    Steinkellner, Georg; Gruber, Christian C.; Pavkov-Keller, Tea; Binter, Alexandra; Steiner, Kerstin; Winkler, Christoph; Łyskowski, Andrzej; Schwamberger, Orsolya; Oberer, Monika; Schwab, Helmut; Faber, Kurt; Macheroux, Peter; Gruber, Karl

    2014-01-01

    The exploitation of catalytic promiscuity and the application of de novo design have recently opened the access to novel, non-natural enzymatic activities. Here we describe a structural bioinformatic method for predicting catalytic activities of enzymes based on three-dimensional constellations of functional groups in active sites (‘catalophores’). As a proof-of-concept we identify two enzymes with predicted promiscuous ene-reductase activity (reduction of activated C–C double bonds) and compare them with known ene-reductases, that is, members of the Old Yellow Enzyme family. Despite completely different amino acid sequences, overall structures and protein folds, high-resolution crystal structures reveal equivalent binding modes of typical Old Yellow Enzyme substrates and ligands. Biochemical and biocatalytic data show that the two enzymes indeed possess ene-reductase activity and reveal an inverted stereopreference compared with Old Yellow Enzymes for some substrates. This method could thus be a tool for the identification of viable starting points for the development and engineering of novel biocatalysts. PMID:24954722

  5. The promiscuous larvae: flexibility in the establishment of symbiosis in corals

    NASA Astrophysics Data System (ADS)

    Cumbo, V. R.; Baird, A. H.; van Oppen, M. J. H.

    2013-03-01

    Coral reefs thrive in part because of the symbiotic partnership between corals and Symbiodinium. While this partnership is one of the keys to the success of coral reef ecosystems, surprisingly little is known about many aspects of coral symbiosis, in particular the establishment and development of symbiosis in host species that acquire symbionts anew in each generation. More specifically, the point at which symbiosis is established (i.e., larva vs. juvenile) remains uncertain, as does the source of free-living Symbiodinium in the environment. In addition, the capacity of host and symbiont to form novel combinations is unknown. To explore patterns of initial association between host and symbiont, larvae of two species of Acropora were exposed to sediment collected from three locations on the Great Barrier Reef. A high proportion of larvae established symbiosis shortly after contact with sediments, and Acropora larvae were promiscuous, taking up multiple types of Symbiodinium. The Symbiodinium types acquired from the sediments reflected the symbiont assemblage within a wide range of cnidarian hosts at each of the three sites, suggesting potential regional differences in the free-living Symbiodinium assemblage. Coral larvae clearly have the capacity to take up Symbiodinium prior to settlement, and sediment is a likely source. Promiscuous larvae allow species to associate with Symbiodinium appropriate for potentially novel environments that may be experienced following dispersal.

  6. Promiscuous activity of ER glucosidase II discovered through donor specificity analysis of UGGT

    SciTech Connect

    Miyagawa, Atsushi; Totani, Kiichiro; Matsuo, Ichiro; Ito, Yukishige

    2010-12-17

    Research highlights: {yields} UGGT has a narrow donor specificity. {yields} UGGT gave several non-natural high-mannose-type glycans. {yields} G-II has a promiscuous activity as broad specificity hexosidase. -- Abstract: In glycoprotein quality control system in the endoplasmic reticulum (ER), UGGT (UDP-glucose:glycoprotein glucosyltransferase) and glucosidase II (G-II) play key roles. UGGT serves as a glycoprotein folding sensor by virtue of its unique specificity to glucosylate glycoproteins at incompletely folded stage. By using various UDP-Glc analogues, we first analyzed donor specificity of UGGT, which was proven to be rather narrow. However, marginal activity was observed with UDP-galactose and UDP-glucuronic acid as well as with 3-, 4- and 6-deoxy glucose analogues to give corresponding transfer products. Intriguingly, G-II smoothly converted all of them back to Man{sub 9}GlcNAc{sub 2}, providing an indication that G-II has a promiscuous activity as a broad specificity hexosidase.

  7. Testing whether metazoan tyrosine loss was driven by selection against promiscuous phosphorylation.

    PubMed

    Pandya, Siddharth; Struck, Travis J; Mannakee, Brian K; Paniscus, Mary; Gutenkunst, Ryan N

    2015-01-01

    Protein tyrosine phosphorylation is a key regulatory modification in metazoans, and the corresponding kinase enzymes have diversified dramatically. This diversification is correlated with a genome-wide reduction in protein tyrosine content, and it was recently suggested that this reduction was driven by selection to avoid promiscuous phosphorylation that might be deleterious. We tested three predictions of this intriguing hypothesis. 1) Selection should be stronger on residues that are more likely to be phosphorylated due to local solvent accessibility or structural disorder. 2) Selection should be stronger on proteins that are more likely to be promiscuously phosphorylated because they are abundant. We tested these predictions by comparing distributions of tyrosine within and among human and yeast orthologous proteins. 3) Selection should be stronger against mutations that create tyrosine versus remove tyrosine. We tested this prediction using human population genomic variation data. We found that all three predicted effects are modest for tyrosine when compared with the other amino acids, suggesting that selection against deleterious phosphorylation was not dominant in driving metazoan tyrosine loss.

  8. Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles

    PubMed Central

    1993-01-01

    Naturally processed peptides were acid extracted from immunoaffinity- purified HLA-DR2, DR3, DR4, DR7, and DR8. Using the complementary techniques of mass spectrometry and Edman microsequencing, > 200 unique peptide masses were identified from each allele, ranging from 1,200 to 4,000 daltons (10-34 residues in length), and a total of 201 peptide sequences were obtained. These peptides were derived from 66 different source proteins and represented sets nested at both the amino- and carboxy-terminal ends with an average length of 15-18 amino acids. Strikingly, most of the peptides (> 85%) were derived from endogenous proteins that intersect the endocytic/class II pathway, even though class II molecules are thought to function mainly in the presentation of exogenous foreign peptide antigens. The predominant endogenous peptides were derived from major histocompatibility complex-related molecules. A few peptides derived from exogenous bovine serum proteins were also bound to every allele. Four prominent promiscuous self- peptide sets (capable of binding to multiple HLA-DR alleles) as well as 84 allele-specific peptide sets were identified. Binding experiments confirmed that the promiscuous peptides have high affinity for the binding groove of all HLA-DR alleles examined. A potential physiologic role for these endogenous self-peptides as immunomodulators of the cellular immune response is discussed. PMID:8315383

  9. Structural and Thermodynamic Basis for Enhanced DNA Binding by a Promiscuous Mutant EcoRI Endonuclease

    PubMed Central

    Sapienza, Paul J.; Rosenberg, John M.; Jen-Jacobson, Linda

    2008-01-01

    SUMMARY Promiscuous mutant EcoRI endonucleases bind to the canonical site GAATTC more tightly than does the wild-type endonuclease, yet cleave variant (EcoRI*) sites more rapidly than does wild-type. The crystal structure of the A138T promiscuous mutant homodimer in complex with a GAATTC site is nearly identical to that of the wild-type complex, except that the Thr138 side chains make novel packing interactions with bases in the 5′-flanking regions outside the recognition hexanucleotide, while excluding two bound water molecules seen in the wild-type complex. Molecular dynamics simulations confirm exclusion of these waters. The structure and simulations suggest multiple possible reasons why binding of A138T protein to the GAATTC site has ΔS° more favorable and ΔH° less favorable than for wild-type endonuclease binding. The novel interactions of Thr138 with flanking bases may permit A138T, unlike wild-type enzyme, to form complexes with EcoRI* sites that structurally resemble the specific wild-type complex with GAATTC. PMID:17997963

  10. Ligand Promiscuity of Aryl Hydrocarbon Receptor Agonists and Antagonists Revealed by Site-Directed Mutagenesis

    PubMed Central

    Soshilov, Anatoly A.

    2014-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can be activated by structurally diverse chemicals. To examine the mechanisms responsible for the promiscuity in AhR ligand binding, we determined the effects of mutations within the AhR ligand-binding domain (LBD) on the activity of diverse AhR ligands. Site-directed mutagenesis identified Ile319 of the mouse AhR and, to a lesser extent, Phe318 as residues involved in ligand-selective modulation of AhR transformation using a panel of 12 AhR ligands. These ligands could be categorized into four distinct structurally related groups based on their ability to activate AhR mutants at position 319 in vitro. The mutation I319K was selectively activated by FICZ and not by other examined ligands in vitro and in cell culture. F318L and F318A mutations resulted in the conversion of AhR agonists β-naphthoflavone and 3-methylcholanthrene, respectively, into partial agonists/antagonists. Hsp90 binding to the AhR was decreased with several mutations and was inversely correlated with AhR ligand-binding promiscuity. Together, these data define overlapping amino acid residues within the AhR LBD involved in the selectivity of ligand binding, the agonist or antagonist mode of ligand binding, and hsp90 binding and provide insights into the ligand diversity of AhR activators. PMID:24591650

  11. Childhood victimization and subsequent risk for promiscuity, prostitution, and teenage pregnancy: a prospective study.

    PubMed Central

    Widom, C S; Kuhns, J B

    1996-01-01

    OBJECTIVES: This study examined the extent to which being abused and/or neglected in childhood increases a person's risk for promiscuity, prostitution, and teenage pregnancy. METHODS: A prospective cohorts design was used to match, on the basis of age, race, sex, and social class, cases of abused and/or neglected children from 1967 to 1971 with nonabused and nonneglected children; subjects were followed into young adulthood. From 1989 to 1995 1196 subjects (676 abused and/or neglected and 520 control subjects were located and interviewed. RESULTS: Early childhood abuse and/or neglect was a significant predictor of prostitution for females (odds ratio [OR] = 2.96). For females, sexual abuse (OR = 2.54) and neglect (OR = 2.58) were associated with prostitution, whereas physical abuse was only marginally associated. Childhood abuse and neglect were not associated with increased risk for promiscuity or teenage pregnancy. CONCLUSIONS: These findings strongly support a relationship between childhood victimization and subsequent prostitution. The presumed causal sequence between childhood victimization and teenage pregnancy may need to be reevaluated. PMID:8916528

  12. QM/MM analysis suggests that Alkaline Phosphatase (AP) and Nucleotide pyrophosphatase/phosphodiesterase slightly tighten the transition state for phosphate diester hydrolysis relative to solution: implication for catalytic promiscuity in the AP superfamily

    PubMed Central

    Hou, Guanhua

    2011-01-01

    Several members of the Alkaline Phosphatase (AP) superfamily exhibit a high level of catalytic proficiency and promiscuity in structurally similar active sites. A thorough characterization of the nature of transition state for different substrates in these enzymes is crucial for understanding the molecular mechanisms that govern those remarkable catalytic properties. In this work, we study the hydrolysis of a phosphate diester, MpNPP−, in solution, two experimentally well-characterized variants of AP (R166S AP, R166S/E322Y AP) and wild type Nucleotide pyrophosphatase/phosphodiesterase (NPP) by QM/MM calculations in which the QM method is an approximate density functional theory previously parameterized for phosphate hydrolysis (SCC-DFTBPR). The general agreements found between these calculations and available experimental data for both solution and enzymes support the use of SCC-DFTBPR/MM for a semi-quantitative analysis of the catalytic mechanism and nature of transition state in AP and NPP. Although phosphate diesters are cognate substrates for NPP but promiscuous substrates for AP, the calculations suggest that their hydrolysis reactions catalyzed by AP and NPP feature similar synchronous transition states that are slightly tighter in nature compared to that in solution, due in part to the geometry of the bimetallic zinc motif. Therefore, this study provides the first direct computational support to the hypothesis that enzymes in the AP superfamily catalyze cognate and promiscuous substrates via similar transition states to those in solution. Our calculations do not support the finding of recent QM/MM studies by López-Canut and coworkers, who suggested that the same diester substrate goes through a much looser transition state in NPP/AP than in solution, a result likely biased by the large structural distortion of the bimetallic zinc site in their simulations. Finally, our calculations for different phosphate diester orientations and phosphorothioate diesters

  13. QM/MM analysis suggests that Alkaline Phosphatase (AP) and nucleotide pyrophosphatase/phosphodiesterase slightly tighten the transition state for phosphate diester hydrolysis relative to solution: implication for catalytic promiscuity in the AP superfamily.

    PubMed

    Hou, Guanhua; Cui, Qiang

    2012-01-11

    Several members of the Alkaline Phosphatase (AP) superfamily exhibit a high level of catalytic proffciency and promiscuity in structurally similar active sites. A thorough characterization of the nature of transition state for different substrates in these enzymes is crucial for understanding the molecular mechanisms that govern those remarkable catalytic properties. In this work, we study the hydrolysis of a phosphate diester, MpNPP(-), in solution, two experimentally well-characterized variants of AP (R166S AP, R166S/E322Y AP) and wild type Nucleotide pyrophosphatase/phosphodiesterase (NPP) by QM/MM calculations in which the QM method is an approximate density functional theory previously parametrized for phosphate hydrolysis (SCC-DFTBPR). The general agreements found between these calculations and available experimental data for both solution and enzymes support the use of SCC-DFTBPR/MM for a semiquantitative analysis of the catalytic mechanism and nature of transition state in AP and NPP. Although phosphate diesters are cognate substrates for NPP but promiscuous substrates for AP, the calculations suggest that their hydrolysis reactions catalyzed by AP and NPP feature similar synchronous transition states that are slightly tighter in nature compared to that in solution, due in part to the geometry of the bimetallic zinc motif. Therefore, this study provides the first direct computational support to the hypothesis that enzymes in the AP superfamily catalyze cognate and promiscuous substrates via similar transition states to those in solution. Our calculations do not support the finding of recent QM/MM studies by López-Canut and co-workers, who suggested that the same diester substrate goes through a much looser transition state in NPP/AP than in solution, a result likely biased by the large structural distortion of the bimetallic zinc site in their simulations. Finally, our calculations for different phosphate diester orientations and phosphorothioate diesters

  14. Effects of steroid hormone on estrogen sulfotransferase and on steroid sulfatase expression in endometriosis tissue and stromal cells.

    PubMed

    Piccinato, Carla A; Neme, Rosa M; Torres, Natália; Sanches, Lívia Renta; Derogis, Priscilla Bento Mattos Cruz; Brudniewski, Heloísa F; Rosa e Silva, Júlio C; Ferriani, Rui A

    2016-04-01

    Endometriosis is an estrogen-dependent disease that afflicts about 10% of women in their reproductive age, causing severe pain and infertility. The potential roles of female steroid hormones in modulating key estrogen-metabolizing enzymes, steroid sulfatase (STS) and estrogen sulfotransferase (SULT1E1), were investigated. The expression of STS and SULT1E1 mRNA in biopsy samples (n=78) of superficial and deep endometriotic lesions, eutopic endometrium of women with endometriosis and endometrium from control patients were compared according to the menstrual cycle phase. Increased STS gene expression was detected in superficial and deep-infiltrating lesions and a reduced SULT1E1 expression was also observed in the eutopic endometrium relative to the superficial lesions. Additionally, a significantly positive correlation was detected between STS and SULT1E1 mRNA expression levels in biopsy specimens collected from the endometriosis patients, and not in control individuals. The actions of female steroid hormones on SULT1E1 and STS expression were evidenced in endometriosis, revealed by increased expression levels in the luteal phase of the cycle. There was an increased STS expression in primary eutopic and ectopic endometrial stromal cells treated with estradiol and progesterone (representative of the luteal phase, n=3). Although an increased STS mRNA expression was observed in hormone-induced endometrial stromal cells in vitro, no difference could be detected between the hormone treatment groups in estradiol formation from estradiol sulfate measured by LC-MS-MS. Interestingly, a greater expression of STS was observed in stromal cells from eutopic endometrium with an agreement in estradiol formation originated from estradiol sulfate. The differential regulation of STS and SULT1E1 could provide insights for novel studies of the therapeutic use of STS inhibitors.

  15. Heteroallelic missense mutations of the galactosamine-6-sulfate sulfatase (GALNS) gene in a mild form of Morquio disease (MPS IVA)

    SciTech Connect

    Cole, D.E.C.; Gordon, B.A.; Rupar, C.A.

    1996-06-28

    Morquio disease (MPS IVA) is an autosomal recessive disorder caused by a deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS) activity. Patients commonly present in early infancy with growth failure, spondyloepiphyseal dysplasia, corneal opacification, and keratan sulfaturia, but milder forms have been described. We report on a patient who grew normally until age 5 years. Her keratan sulfaturia was not detected until adolescence, and she now has changes restricted largely to the axial skeleton. She has experienced only mildly impaired vision. At age 22, thin-layer chromatography of purified glycosaminoglycans showed some keratan sulfaturia. GALNS activity in fibroblast homogenate supernatants was 20 {plus_minus} 5% of controls (as compared to 5 {plus_minus} 3% of controls in severe MPS IVA, P <.003). Kinetic analysis of residual fibroblast GALNS activity in patient and parents revealed decreased K{sub m} and increased V{sub max} in the mother and daughter, but not in the father, compatible with compound heterozygosity. GALNS exons were amplified from patient genomic DNA and screened by SSCP. Two missense mutations, a C to T transition at position 335 (predicting R94C) and a T to G transversion at position 344 (predicting F97V), were found on sequencing an abnormally migrating exon 3 amplicon. Digestion of the amplicon with FokI and AccI restriction enzymes (specific for the R94C and F97V mutations, respectively) confirmed heterozygosity. In fibroblast transfection experiments, heterozygous R94C and F97V mutants independently expressed as severe and mile GALNS deficiency, respectively. We interpret these findings to indicate that our patient bears heteroallelic GALNS missense mutations, leading to GALNS deficiency and mild MPS IVA. Our findings expand the clinical and biochemical phenotype of MPS IVA, but full delineation of the genotype-phenotype relationship requires further study of native and transfected mutant cell lines. 30 refs., 4 figs., 3 tabs.

  16. Mutation {open_quotes}hot spots{close_quotes} in the iduronate-sulfatase gene, and evidence for a pseudogene

    SciTech Connect

    Rathmann, M.; Bunge, S.; Gal, A.

    1994-09-01

    Mucopolysaccharidosis type II (Hunter syndrome), iduronate-sulfatase (IDS) deficiency, is an X-linked disorder. Analysis of genomic DNA and cDNA from a total of 60 patients was performed in our laboratory during the last two years. In each case the gene defect was identified, resulting in 41 different mutations, including nonsense, missense, and splice site-point mutations, deletions of various sizes, and a 14 bp duplication. While in only 20% of the patients the whole IDS gene is deleted or largely altered, in about 80% of the cases small deletions (up to 17 bp) and point mutations were found. Of the 9 IDS gene exons, exons III, VIII, and IX harbor 78% of all point mutations, whereas 35% of these latter were found in exon III. Obviously, codon 374 in exon VIII is another mutation {open_quotes}hot spot{close_quotes} as the same point mutation has been found in 7 unrelated patients. Two further {open_quotes}hot spots{close_quotes} are at codons 443 and 468 in exon IX with five different mutations each. Remarkably, all mutations in exon III were found to be heterozygous in the genomic DNA but not in the IDS cDNA of the patients. Of the more than 200 unaffected male controls studied by us, two are heterozygotes for two different point mutations in exon III. Contamination of the samples can be excluded and we hypothesize the existence of a pseudogene that consists of at least exon III. As three patients with submicroscopic deletion and Hunter syndrome show no IDS hybridization signal in Southern analysis, we speculate that the putative pseudogene is in the neighborhood of the functional gene.

  17. General implications for CpG hot spot mutations: methylation patterns of the human iduronate-2-sulfatase gene locus.

    PubMed

    Tomatsu, Shunji; Orii, Koji O; Bi, Y; Gutierrez, Monica A; Nishioka, Tatsuo; Yamaguchi, Seiji; Kondo, Naomi; Orii, Tadao; Noguchi, Akihiko; Sly, William S

    2004-06-01

    The methylation pattern at CpG sites of a housekeeping gene correlates with the likelihood of mutation. Mucopolysaccharidosis (MPS) type II, an X-linked disorder, results from the deficiency of iduronate-2-sulfatase (IDS). In these patients, over 35% of independent point mutations at the IDS gene locus were found at CpG sites as transitional events. To gain insight into the relationship between methylation status and CpG hot spot mutations, we investigated patterns of cytosine methylation in the entire IDS gene, except for introns 4-8. Bisulfite genomic sequencing was performed on the normal leukocyte DNA. Our data show that: 1) cytosine methylation at the CpG sites was extensive, except for those present from the promoter region to a portion of intron 3; 2) a sharp boundary of methylated-nonmethylated regions was observed at the 5'-flanking region, whereas a gradual change in methylation was observed in the 2.0-kb segment in the 3'-flanking region; 3) the boundary of the 5'-flanking region contained multiple Sp1 sites and the TATA box; 4) the CpG sites in exons 1 and 2 were hypomethylated and were associated only with rare transitional mutations, while the CpG sites in exon 3 were also hypomethylated, yet were associated with a high rate of transitional mutations; 5) there was no striking sex difference in the methylation patterns in active alleles; and, 6) the methylation in both strands was symmetrical, except at the boundary of methylated-unmethylated regions.

  18. Molecular annotation of ketol-acid reductoisomerases from Streptomyces reveals a novel amino acid biosynthesis interlock mediated by enzyme promiscuity

    PubMed Central

    Verdel-Aranda, Karina; López-Cortina, Susana T; Hodgson, David A; Barona-Gómez, Francisco

    2015-01-01

    The 6-phosphogluconate dehydrogenase superfamily oxidize and reduce a wide range of substrates, making their functional annotation challenging. Ketol-acid reductoisomerase (KARI), encoded by the ilvC gene in branched-chain amino acids biosynthesis, is a promiscuous reductase enzyme within this superfamily. Here, we obtain steady-state enzyme kinetic parameters for 10 IlvC homologues from the genera Streptomyces and Corynebacterium, upon eight selected chemically diverse substrates, including some not normally recognized by enzymes of this superfamily. This biochemical data suggested a Streptomyces biosynthetic interlock between proline and the branched-chain amino acids, mediated by enzyme substrate promiscuity, which was confirmed via mutagenesis and complementation analyses of the proC, ilvC1 and ilvC2 genes in Streptomyces coelicolor. Moreover, both ilvC orthologues and paralogues were analysed, such that the relationship between gene duplication and functional diversification could be explored. The KARI paralogues present in S. coelicolor and Streptomyces lividans, despite their conserved high sequence identity (97%), were shown to be more promiscuous, suggesting a recent functional diversification. In contrast, the KARI paralogue from Streptomyces viridifaciens showed selectivity towards the synthesis of valine precursors, explaining its recruitment within the biosynthetic gene cluster of valanimycin. These results allowed us to assess substrate promiscuity indices as a tool to annotate new molecular functions with metabolic implications. PMID:25296650

  19. Polypharmacology directed compound data mining: identification of promiscuous chemotypes with different activity profiles and comparison to approved drugs.

    PubMed

    Hu, Ye; Bajorath, Jürgen

    2010-12-27

    Increasing evidence that many pharmaceutically relevant compounds elicit their effects through binding to multiple targets, so-called polypharmacology, is beginning to change conventional drug discovery and design strategies. In light of this paradigm shift, we have mined publicly available compound and bioactivity data for promiscuous chemotypes. For this purpose, a hierarchy of active compounds, atomic property based scaffolds, and unique molecular topologies were generated, and activity annotations were analyzed using this framework. Starting from ∼35 000 compounds active against human targets with at least 1 μM potency, 33 chemotypes with distinct topology were identified that represented molecules active against at least 3 different target families. Network representations were utilized to study scaffold-target family relationships and activity profiles of scaffolds corresponding to promiscuous chemotypes. A subset of promiscuous chemotypes displayed a significant enrichment in drugs over bioactive compounds. A total of 190 drugs were identified that had on average only 2 known target annotations but belonged to the 7 most promiscuous chemotypes that were active against 8-15 target families. These drugs should be attractive candidates for polypharmacological profiling.

  20. Proteomic Analyses Reveal Common Promiscuous Patterns of Cell Surface Proteins on Human Embryonic Stem Cells and Sperms

    PubMed Central

    Gu, Bin; Zhang, Jiarong; Wu, Ying; Zhang, Xinzong; Tan, Zhou; Lin, Yuanji; Huang, Xiao; Chen, Liangbiao; Yao, Kangshou; Zhang, Ming

    2011-01-01

    Background It has long been proposed that early embryos and reproductive organs exhibit similar gene expression profiles. However, whether this similarity is propagated to the protein level remains largely unknown. We have previously characterised the promiscuous expression pattern of cell surface proteins on mouse embryonic stem (mES) cells. As cell surface proteins also play critical functions in human embryonic stem (hES) cells and germ cells, it is important to reveal whether a promiscuous pattern of cell surface proteins also exists for these cells. Methods and Principal Findings Surface proteins of hES cells and human mature sperms (hSperms) were purified by biotin labelling and subjected to proteomic analyses. More than 1000 transmembrane or secreted cell surface proteins were identified on the two cell types, respectively. Proteins from both cell types covered a large variety of functional categories including signal transduction, adhesion and transporting. Moreover, both cell types promiscuously expressed a wide variety of tissue specific surface proteins, and some surface proteins were heterogeneously expressed. Conclusions/Significance Our findings indicate that the promiscuous expression of functional and tissue specific cell surface proteins may be a common pattern in embryonic stem cells and germ cells. The conservation of gene expression patterns between early embryonic cells and reproductive cells is propagated to the protein level. These results have deep implications for the cell surface signature characterisation of pluripotent stem cells and germ cells and may lead the way to a new area of study, i.e., the functional significance of promiscuous gene expression in pluripotent and germ cells. PMID:21559292

  1. Functional Trade-Offs in Promiscuous Enzymes Cannot Be Explained by Intrinsic Mutational Robustness of the Native Activity

    PubMed Central

    Kaltenbach, Miriam; Emond, Stephane; Tokuriki, Nobuhiko

    2016-01-01

    The extent to which an emerging new function trades off with the original function is a key characteristic of the dynamics of enzyme evolution. Various cases of laboratory evolution have unveiled a characteristic trend; a large increase in a new, promiscuous activity is often accompanied by only a mild reduction of the native, original activity. A model that associates weak trade-offs with “evolvability” was put forward, which proposed that enzymes possess mutational robustness in the native activity and plasticity in promiscuous activities. This would enable the acquisition of a new function without compromising the original one, reducing the benefit of early gene duplication and therefore the selection pressure thereon. Yet, to date, no experimental study has examined this hypothesis directly. Here, we investigate the causes of weak trade-offs by systematically characterizing adaptive mutations that occurred in two cases of evolutionary transitions in enzyme function: (1) from phosphotriesterase to arylesterase, and (2) from atrazine chlorohydrolase to melamine deaminase. Mutational analyses in various genetic backgrounds revealed that, in contrast to the prevailing model, the native activity is less robust to mutations than the promiscuous activity. For example, in phosphotriesterase, the deleterious effect of individual mutations on the native phosphotriesterase activity is much larger than their positive effect on the promiscuous arylesterase activity. Our observations suggest a revision of the established model: weak trade-offs are not caused by an intrinsic robustness of the native activity and plasticity of the promiscuous activity. We propose that upon strong adaptive pressure for the new activity without selection against the original one, selected mutations will lead to the largest possible increases in the new function, but whether and to what extent they decrease the old function is irrelevant, creating a bias towards initially weak trade-offs and

  2. Effect of elongation factor 1alpha promoter and SUMF1 over in vitro expression of N-acetylgalactosamine-6-sulfate sulfatase.

    PubMed

    Alméciga-Díaz, Carlos J; Rueda-Paramo, Maria A; Espejo, Angela J; Echeverri, Olga Y; Montaño, Adriana; Tomatsu, Shunji; Barrera, Luis A

    2009-09-01

    Morquio A is an autosomal recessive disease caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS), leading to the lysosomal accumulation of keratan-sulfate and chondroitin-6-sulfate. We evaluated in HEK293 cells the effect of the cytomegalovirus immediate early enhancer/promoter (CMV) or the elongation factor 1alpha (EF1alpha) promoters, and the coexpression with the sulfatase modifying factor 1 (SUMF1) on GALNS activity. Four days postransfection GALNS activity in transfected cells with CMV-pIRES-GALNS reached a plateau, whereas in cells transfected with EF1alpha-pIRES-GALNS continued to increase until day 8. Co-transfection with pCXN-SUMF1 showed an increment up to 2.6-fold in GALNS activity. Finally, computational analysis of transcription factor binding-sites and CpG islands showed that EF1alpha promoter has long CpG islands and high-density binding-sites for Sp1 compared to CMV. These results show the advantage of the SUMF1 coexpression on GALNS activity and indicate a considerable effect on the expression stability using EF1alpha promoter compared to CMV.

  3. The Role of Heparanase and Sulfatases in the Modification of Heparan Sulfate Proteoglycans within the Tumor Microenvironment and Opportunities for Novel Cancer Therapeutics

    PubMed Central

    Hammond, Edward; Khurana, Ashwani; Shridhar, Viji; Dredge, Keith

    2014-01-01

    Heparan sulfate proteoglycans (HSPGs) are an integral and dynamic part of normal tissue architecture at the cell surface and within the extracellular matrix. The modification of HSPGs in the tumor microenvironment is known to result not just in structural but also functional consequences, which significantly impact cancer progression. As substrates for the key enzymes sulfatases and heparanase, the modification of HSPGs is typically characterized by the degradation of heparan sulfate (HS) chains/sulfation patterns via the endo-6-O-sulfatases (Sulf1 and Sulf2) or by heparanase, an endo-glycosidase that cleaves the HS polymers releasing smaller fragments from HSPG complexes. Numerous studies have demonstrated how these enzymes actively influence cancer cell proliferation, signaling, invasion, and metastasis. The activity or expression of these enzymes has been reported to be modified in a variety of cancers. Such observations are consistent with the degradation of normal architecture and basement membranes, which are typically compromised in metastatic disease. Moreover, recent studies elucidating the requirements for these proteins in tumor initiation and progression exemplify their importance in the development and progression of cancer. Thus, as the influence of the tumor microenvironment in cancer progression becomes more apparent, the focus on targeting enzymes that degrade HSPGs highlights one approach to maintain normal tissue architecture, inhibit tumor progression, and block metastasis. This review discusses the role of these enzymes in the context of the tumor microenvironment and their promise as therapeutic targets for the treatment of cancer. PMID:25105093

  4. Computational analysis of human N-acetylgalactosamine-6-sulfate sulfatase enzyme: an update in genotype-phenotype correlation for Morquio A.

    PubMed

    Olarte-Avellaneda, Sergio; Rodríguez-López, Alexander; Alméciga-Díaz, Carlos Javier; Barrera, Luis Alejandro

    2014-11-01

    Mucopolysaccharidosis IV A (MPS IV A) is a lysosomal storage disease produced by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS) enzyme. Although genotype-phenotype correlations have been reported, these approaches have not enabled to establish a complete genotype-phenotype correlation, and they have not considered a ligand-enzyme interaction. In this study, we expanded the in silico evaluation of GALNS mutations by using several bioinformatics tools. Tertiary GALNS structure was modeled and used for molecular docking against galactose-6-sulfate, N-acetylgalactosamine-6-sulfate, keratan sulfate, chondroitin-6-sulfate, and the artificial substrate 4-methylumbelliferyl-β-D-galactopyranoside-6-sulfate. Furthermore, we considered the evolutionary residue conservation, change conservativeness, position within GALNS structure, and the impact of amino acid substitution on the structure and function of GALNS. Molecular docking showed that amino acids involved in ligand interaction correlated with those observed in other human sulfatases, and mutations within the active cavity reduced affinity of all evaluated ligands. Combination of several bioinformatics approaches allowed to explaine 90% of the missense mutations affecting GALNS, and the prediction of the phenotype for another 21 missense mutations. In summary, we have shown for the first time a docking evaluation of natural and artificial ligands for human GALNS, and proposed an update in genotype-phenotype correlation for Morquio A, based on the use of multiple parameters to predict the disease severity.

  5. Male coercion and the costs of promiscuous mating for female chimpanzees

    PubMed Central

    Muller, Martin N; Kahlenberg, Sonya M; Emery Thompson, Melissa; Wrangham, Richard W

    2007-01-01

    For reasons that are not yet clear, male aggression against females occurs frequently among primates with promiscuous mating systems. Here, we test the sexual coercion hypothesis that male aggression functions to constrain female mate choice. We use 10 years of behavioural and endocrine data from a community of wild chimpanzees (Pan troglodytes schweinfurthii) to show that sexual coercion is the probable primary function of male aggression against females. Specifically, we show that male aggression is targeted towards the most fecund females, is associated with high male mating success and is costly for the victims. Such aggression can be viewed as a counter-strategy to female attempts at paternity confusion, and a cost of multi-male mating. PMID:17264062

  6. Salmonella Infection Drives Promiscuous B Cell Activation Followed by Extrafollicular Affinity Maturation.

    PubMed

    Di Niro, Roberto; Lee, Seung-Joo; Vander Heiden, Jason A; Elsner, Rebecca A; Trivedi, Nikita; Bannock, Jason M; Gupta, Namita T; Kleinstein, Steven H; Vigneault, Francois; Gilbert, Tamara J; Meffre, Eric; McSorley, Stephen J; Shlomchik, Mark J

    2015-07-21

    The B cell response to Salmonella typhimurium (STm) occurs massively at extrafollicular sites, without notable germinal centers (GCs). Little is known in terms of its specificity. To expand the knowledge of antigen targets, we screened plasmablast (PB)-derived monoclonal antibodies (mAbs) for Salmonella specificity, using ELISA, flow cytometry, and antigen microarray. Only a small fraction (0.5%-2%) of the response appeared to be Salmonella-specific. Yet, infection of mice with limited B cell receptor (BCR) repertoires impaired the response, suggesting that BCR specificity was important. We showed, using laser microdissection, that somatic hypermutation (SHM) occurred efficiently at extrafollicular sites leading to affinity maturation that in turn led to detectable STm Ag-binding. These results suggest a revised vision of how clonal selection and affinity maturation operate in response to Salmonella. Clonal selection initially is promiscuous, activating cells with virtually undetectable affinity, yet SHM and selection occur during the extrafollicular response yielding higher affinity, detectable antibodies.

  7. Implications of promiscuous Pim-1 kinase fragment inhibitor hydrophobic interactions for fragment-based drug design.

    PubMed

    Good, Andrew C; Liu, Jinyu; Hirth, Bradford; Asmussen, Gary; Xiang, Yibin; Biemann, Hans-Peter; Bishop, Kimberly A; Fremgen, Trisha; Fitzgerald, Maria; Gladysheva, Tatiana; Jain, Annuradha; Jancsics, Katherine; Metz, Markus; Papoulis, Andrew; Skerlj, Renato; Stepp, J David; Wei, Ronnie R

    2012-03-22

    We have studied the subtleties of fragment docking and binding using data generated in a Pim-1 kinase inhibitor program. Crystallographic and docking data analyses have been undertaken using inhibitor complexes derived from an in-house surface plasmon resonance (SPR) fragment screen, a virtual needle screen, and a de novo designed fragment inhibitor hybrid. These investigations highlight that fragments that do not fill their binding pocket can exhibit promiscuous hydrophobic interactions due to the lack of steric constraints imposed on them by the boundaries of said pocket. As a result, docking modes that disagree with an observed crystal structure but maintain key crystallographically observed hydrogen bonds still have potential value in ligand design and optimization. This observation runs counter to the lore in fragment-based drug design that all fragment elaboration must be based on the parent crystal structure alone.

  8. Structural Plasticity Underpins Promiscuous Binding of the Prosurvival Protein A1

    SciTech Connect

    Smits,C.; Czabotar, P.; Hinds, M.; Day, C.

    2008-01-01

    Apoptotic pathways are regulated by protein-protein interactions. Interaction of the BH3 domains of proapoptotic Bcl-2 family proteins with the hydrophobic groove of prosurvival proteins is critical. Whereas some BH3 domains bind in a promiscuous manner, others exhibit considerable selectivity and the sequence characteristics that distinguish these activities are unclear. In this study, crystal structures of complexes between the prosurvival protein A1 and the BH3 domains from Puma, Bmf, Bak, and Bid have been solved. The structure of A1 is similar to that of other prosurvival proteins, although features, such as an acidic patch in the binding groove, may allow specific therapeutic modulation of apoptosis. Significant conformational plasticity was observed in the intermolecular interactions and these differences explain some of the variation in affinity. This study, in combination with published data, suggests that interactions between conserved residues demarcate optimal binding.

  9. Probing the Catalytic Promiscuity of a Regio- and Stereospecific C-Glycosyltransferase from Mangifera indica.

    PubMed

    Chen, Dawei; Chen, Ridao; Wang, Ruishan; Li, Jianhua; Xie, Kebo; Bian, Chuancai; Sun, Lili; Zhang, Xiaolin; Liu, Jimei; Yang, Lin; Ye, Fei; Yu, Xiaoming; Dai, Jungui

    2015-10-19

    The catalytic promiscuity of the novel benzophenone C-glycosyltransferase, MiCGT, which is involved in the biosynthesis of mangiferin from Mangifera indica, was explored. MiCGT exhibited a robust capability to regio- and stereospecific C-glycosylation of 35 structurally diverse druglike scaffolds and simple phenolics with UDP-glucose, and also formed O- and N-glycosides. Moreover, MiCGT was able to generate C-xylosides with UDP-xylose. The OGT-reversibility of MiCGT was also exploited to generate C-glucosides with simple sugar donor. Three aryl-C-glycosides exhibited potent SGLT2 inhibitory activities with IC50  values of 2.6×, 7.6×, and 7.6×10(-7)  M, respectively. These findings demonstrate for the first time the significant potential of an enzymatic approach to diversification through C-glycosidation of bioactive natural and unnatural products in drug discovery.

  10. Fidelity and Promiscuity in an Ant-Plant Mutualism: A Case Study of Triplaris and Pseudomyrmex

    PubMed Central

    Sanchez, Adriana

    2015-01-01

    The association between the myrmecophyte Triplaris and ants of the genus Pseudomyrmex is an often-reported example of mutualism but no molecular studies have examined this association to date. In this study, the interspecific relationships of Triplaris were reconstructed using five molecular markers (two chloroplast and three nuclear), and the relationships of the associated Pseudomyrmex using two molecular regions (one mitochondrial and one nuclear). A data set including all known collections of plant hosts and resident ants was also compiled. The pattern of distribution of both organisms reveals that there are varying degrees of host specificity; most ants show broader host usage (promiscuous) but one species (P. dendroicus) is faithful to a single species of Triplaris. In most ant-plant interactions, host usage is not specific at the species level and preferences may result from geographical or ecological sorting. The specificity of P. dendroicus could be based on chemical recognition of the host they were raised on. PMID:26630384

  11. Promiscuous Mutations Activate the Non-Canonical NF-kB Pathway in Multiple Myeloma

    PubMed Central

    Keats, Jonathan J.; Fonseca, Rafael; Chesi, Marta; Schop, Roelandt; Baker, Angela; Chng, Wee-Joo; Van Wier, Scott; Tiedemann, Rodger; Shi, Chang-Xin; Sebag, Michael; Braggio, Esteban; Henry, Travis; Zhu, Yuan-Xiao; Fogle, Homer; Price-Troska, Tammy; Ahmann, Gregory; Mancini, Catherine; Brents, Leslie A.; Kumar, Shaji; Greipp, Philip; Dispenzieri, Angela; Bryant, Barb; Mulligan, George; Bruhn, Laurakay; Barrett, Michael; Valdez, Riccardo; Trent, Jeff; Stewart, A. Keith; Carpten, John; Bergsagel, P. Leif

    2007-01-01

    Summary Activation of NF-kB has been noted in many tumor types, however only rarely has this been linked to an underlying genetic mutation. An integrated analysis of high-density oligonucleotide array CGH and gene expression profiling data from 155 multiple myeloma samples identified a promiscuous array of abnormalities contributing to the dysregulation of NF-kB in approximately 20% of patients. We report mutations in ten genes causing the inactivation of TRAF2, TRAF3, CYLD, cIAP1/cIAP2, and activation of NFKB1, NFKB2, CD40, LTBR, TACI, and NIK that result primarily in constitutive activation of the non-canonical NF-kB pathway, with the single most common abnormality being inactivation of TRAF3. These results highlight the critical importance of the NF-kB pathway in the pathogenesis of multiple myeloma. PMID:17692805

  12. Fidelity and Promiscuity in an Ant-Plant Mutualism: A Case Study of Triplaris and Pseudomyrmex.

    PubMed

    Sanchez, Adriana

    2015-01-01

    The association between the myrmecophyte Triplaris and ants of the genus Pseudomyrmex is an often-reported example of mutualism but no molecular studies have examined this association to date. In this study, the interspecific relationships of Triplaris were reconstructed using five molecular markers (two chloroplast and three nuclear), and the relationships of the associated Pseudomyrmex using two molecular regions (one mitochondrial and one nuclear). A data set including all known collections of plant hosts and resident ants was also compiled. The pattern of distribution of both organisms reveals that there are varying degrees of host specificity; most ants show broader host usage (promiscuous) but one species (P. dendroicus) is faithful to a single species of Triplaris. In most ant-plant interactions, host usage is not specific at the species level and preferences may result from geographical or ecological sorting. The specificity of P. dendroicus could be based on chemical recognition of the host they were raised on.

  13. Catalytic Promiscuity of Transaminases: Preparation of Enantioenriched β-Fluoroamines by Formal Tandem Hydrodefluorination/Deamination.

    PubMed

    Cuetos, Aníbal; García-Ramos, Marina; Fischereder, Eva-Maria; Díaz-Rodríguez, Alba; Grogan, Gideon; Gotor, Vicente; Kroutil, Wolfgang; Lavandera, Iván

    2016-02-24

    Transaminases are valuable enzymes for industrial biocatalysis and enable the preparation of optically pure amines. For these transformations they require either an amine donor (amination of ketones) or an amine acceptor (deamination of racemic amines). Herein transaminases are shown to react with aromatic β-fluoroamines, thus leading to simultaneous enantioselective dehalogenation and deamination to form the corresponding acetophenone derivatives in the absence of an amine acceptor. A series of racemic β-fluoroamines was resolved in a kinetic resolution by tandem hydrodefluorination/deamination, thus giving the corresponding amines with up to greater than 99 % ee. This protocol is the first example of exploiting the catalytic promiscuity of transaminases as a tool for novel transformations.

  14. HUMAN PARAOXONASE-1 (PON1): GENE STRUCTURE AND EXPRESSION, PROMISCUOUS ACTIVITIES AND MULTIPLE PHYSIOLOGICAL ROLES

    PubMed Central

    Mackness, Mike; Mackness, Bharti

    2015-01-01

    Human PON1 is a HDL-associated lipolactonase capable of preventing LDL and cell membrane oxidation and is therefore considered to be atheroprotective. PON1 contributes to the antioxidative function of HDL and reductions in HDL-PON1 activity, prevalent in a wide variety of diseases with an inflammatory component, is believed to lead to dysfunctional HDL which can promote inflammation and atherosclerosis. However, PON1 is multifunctional and may contribute to other HDL functions such as in innate immunity, preventing infection by quorum sensing gram negative bacteria by destroying acyl lactone mediators of quorum sensing, and putative new roles in cancer development and the promotion of healthy ageing. In this review we explore the physiological roles of PON1 in disease development, as well as PON1 gene and protein structure, promiscuous activities and the roles of SNPs and ethnicity in determining PON1 activity. PMID:25965560

  15. Male-killing bacteria trigger a cycle of increasing male fatigue and female promiscuity.

    PubMed

    Charlat, Sylvain; Reuter, Max; Dyson, Emily A; Hornett, Emily A; Duplouy, Anne; Davies, Neil; Roderick, George K; Wedell, Nina; Hurst, Gregory D D

    2007-02-06

    Sex-ratio distorters are found in numerous species and can reach high frequencies within populations. Here, we address the compelling, but poorly tested, hypothesis that the sex ratio bias caused by such elements profoundly alters their host's mating system. We compare aspects of female and male reproductive biology between island populations of the butterfly Hypolimnas bolina that show varying degrees of female bias, because of a male-killing Wolbachia infection. Contrary to expectation, female bias leads to an increase in female mating frequency, up to a point where male mating capacity becomes limiting. We show that increased female mating frequency can be explained as a facultative response to the depleted male mating resources in female biased populations. In other words, this system is one where male-killing bacteria trigger a vicious circle of increasing male fatigue and female promiscuity.

  16. Structural basis of heroin and cocaine metabolism by a promiscuous human drug-processing enzyme.

    PubMed

    Bencharit, Sompop; Morton, Christopher L; Xue, Yu; Potter, Philip M; Redinbo, Matthew R

    2003-05-01

    We present the first crystal structures of a human protein bound to analogs of cocaine and heroin. Human carboxylesterase 1 (hCE1) is a broad-spectrum bioscavenger that catalyzes the hydrolysis of heroin and cocaine, and the detoxification of organophosphate chemical weapons, such as sarin, soman and tabun. Crystal structures of the hCE1 glycoprotein in complex with the cocaine analog homatropine and the heroin analog naloxone provide explicit details about narcotic metabolism in humans. The hCE1 active site contains both specific and promiscuous compartments, which enable the enzyme to act on structurally distinct chemicals. A selective surface ligand-binding site regulates the trimer-hexamer equilibrium of hCE1 and allows each hCE1 monomer to bind two narcotic molecules simultaneously. The bioscavenger properties of hCE1 can likely be used to treat both narcotic overdose and chemical weapon exposure.

  17. Promiscuous Substrate Recognition in Folding and Assembly Activities of the Trigger Factor Chaperone

    SciTech Connect

    Martinez-Hackert, E.; Hendrickson, W

    2009-01-01

    Trigger factor (TF) is a molecular chaperone that binds to bacterial ribosomes where it contacts emerging nascent chains, but TF is also abundant free in the cytosol where its activity is less well characterized. In vitro studies show that TF promotes protein refolding. We find here that ribosome-free TF stably associates with and rescues from misfolding a large repertoire of full-length proteins. We identify over 170 members of this cytosolic Escherichia coli TF substrate proteome, including ribosomal protein S7. We analyzed the biochemical properties of a TF:S7 complex from Thermotoga maritima and determined its crystal structure. Thereby, we obtained an atomic-level picture of a promiscuous chaperone in complex with a physiological substrate protein. The structure of the complex reveals the molecular basis of substrate recognition by TF, indicates how TF could accelerate protein folding, and suggests a role for TF in the biogenesis of protein complexes.

  18. A β-Alanine Catabolism Pathway Containing a Highly Promiscuous ω-Transaminase in the 12-Aminododecanate-Degrading Pseudomonas sp. Strain AAC

    PubMed Central

    Wilding, Matthew; Peat, Thomas S.; Newman, Janet

    2016-01-01

    ABSTRACT We previously isolated the transaminase KES23458 from Pseudomonas sp. strain AAC as a promising biocatalyst for the production of 12-aminododecanoic acid, a constituent building block of nylon-12. Here, we report the subsequent characterization of this transaminase. It exhibits activity with a broad substrate range which includes α-, β-, and ω-amino acids, as well as α,ω-diamines and a number of other industrially relevant compounds. It is therefore a prospective candidate for the biosynthesis of a range of polyamide monomers. The crystal structure of KES23458 revealed that the protein forms a dimer containing a large active site pocket and unusual phosphorylated histidine residues. To infer the physiological role of the transaminase, we expressed, purified, and characterized a dehydrogenase from the same operon, KES23460. Unlike the transaminase, the dehydrogenase was shown to be quite selective, catalyzing the oxidation of malonic acid semialdehyde, formed from β-alanine transamination via KES23458. In keeping with previous reports, the dehydrogenase was shown to catalyze both a coenzyme A (CoA)-dependent reaction to form acetyl-CoA and a significantly slower CoA-independent reaction to form acetate. These findings support the original functional assignment of KES23458 as a β-alanine transaminase. However, a seemingly well-adapted active site and promiscuity toward unnatural compounds, such as 12-aminododecanoic acid, suggest that this enzyme could perform multiple functions for Pseudomonas sp. strain AAC. IMPORTANCE We describe the characterization of an industrially relevant transaminase able to metabolize 12-aminododecanoic acid, a constituent building block of the widely used polymer nylon-12, and we report the biochemical and structural characterization of the transaminase protein. A physiological role for this highly promiscuous enzyme is proposed based on the characterization of a related gene from the host organism. Molecular dynamics

  19. Males and Females Gain Differentially from Sociality in a Promiscuous Fruit Bat Cynopterus sphinx

    PubMed Central

    Garg, Kritika M.; Chattopadhyay, Balaji; Swami Doss, D. P.; Kumar, A. K. Vinoth; Kandula, Sripathi; Ramakrishnan, Uma

    2015-01-01

    Sociality emerges when the benefits of group living outweigh its costs. While both males and females are capable of strong social ties, the evolutionary drivers for sociality and the benefits accrued maybe different for each sex. In this study, we investigate the differential reproductive success benefits of group membership that males and females might obtain in the promiscuous fruit bat Cynopterus sphinx. Individuals of this species live in flexible social groups called colonies. These colonies are labile and there is high turnover of individuals. However, colony males sire more offspring within the colony suggesting that being part of a colony may result in reproductive benefits for males. This also raises the possibility that long-term loyalty towards the colony may confer additional advantage in terms of higher reproductive success. We used ten seasons of genetic parentage data to estimate reproductive success and relatedness of individuals in the colony. We used recapture data to identify long and short-term residents in the colony as well as to obtain rates of recapture for males and females. Our results reveal that males have a significantly higher chance of becoming long-term residents (than females), and these long-term resident males gain twice the reproductive success compared to short-term resident males. We also observed that long-term resident females are related to each other and also achieve higher reproductive success than short-term resident females. In contrast, long-term resident males do not differ from short-term resident males in their levels of relatedness. Our results re-iterate the benefits of sociality even in species that are promiscuous and socially labile and possible benefits of maintaining a colony. PMID:25794185

  20. The food colorant erythrosine is a promiscuous protein-protein interaction inhibitor.

    PubMed

    Ganesan, Lakshmi; Margolles-Clark, Emilio; Song, Yun; Buchwald, Peter

    2011-03-15

    Following our observation that erythrosine B (FD&C Red No. 3) is a relatively potent inhibitor of the TNF-R-TNFα and CD40-CD154 protein-protein interactions, we investigated whether this inhibitory activity extends to any other protein-protein interactions (PPI) as well as whether any other approved food colors possess such inhibitory activity. We found erythrosine, a poly-iodinated xanthene dye, to be a non-specific promiscuous inhibitor of a number of PPIs within the tumor necrosis factor superfamily (TNF-R-TNFα, CD40-CD154, BAFF-R-BAFF, RANK-RANKL, OX40-OX40L, 4-1BB-4-1BBL) as well as outside of it (EGF-R-EGF) with a remarkably consistent median inhibitory concentration (IC(50)) in the 2-20 μM (approximately 2-20mg/L) range. In agreement with this, erythrosine also showed cellular effects including clear cytotoxic effects around this concentration range (IC₅₀≈50 μM). Among the seven FDA-approved food colorants, only erythrosine showed consistent PPI inhibitory activity in the sub-100 μM range, which might also explain (at least partially) why it also has the lowest approved acceptable daily intake (ADI) (0.1 mg/kg body weight/day). Among a number of xanthene structural analogs of erythrosine tested for activity, rose Bengal, a food colorant approved in Japan, showed similar, maybe even more pronounced, promiscuous inhibitory activity, whereas fluorescein was inactive and gallein, phloxine, and eosin were somewhat active in some of the assays.

  1. Exploiting the Substrate Promiscuity of Hydroxycinnamoyl-CoA:Shikimate Hydroxycinnamoyl Transferase to Reduce Lignin

    PubMed Central

    Eudes, Aymerick; Pereira, Jose H.; Yogiswara, Sasha; Wang, George; Teixeira Benites, Veronica; Baidoo, Edward E.K.; Lee, Taek Soon; Adams, Paul D.; Keasling, Jay D.; Loqué, Dominique

    2016-01-01

    Lignin poses a major challenge in the processing of plant biomass for agro-industrial applications. For bioengineering purposes, there is a pressing interest in identifying and characterizing the enzymes responsible for the biosynthesis of lignin. Hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase (HCT; EC 2.3.1.133) is a key metabolic entry point for the synthesis of the most important lignin monomers: coniferyl and sinapyl alcohols. In this study, we investigated the substrate promiscuity of HCT from a bryophyte (Physcomitrella) and from five representatives of vascular plants (Arabidopsis, poplar, switchgrass, pine and Selaginella) using a yeast expression system. We demonstrate for these HCTs a conserved capacity to acylate with p-coumaroyl-CoA several phenolic compounds in addition to the canonical acceptor shikimate normally used during lignin biosynthesis. Using either recombinant HCT from switchgrass (PvHCT2a) or an Arabidopsis stem protein extract, we show evidence of the inhibitory effect of these phenolics on the synthesis of p-coumaroyl shikimate in vitro, which presumably occurs via a mechanism of competitive inhibition. A structural study of PvHCT2a confirmed the binding of a non-canonical acceptor in a similar manner to shikimate in the active site of the enzyme. Finally, we exploited in Arabidopsis the substrate flexibility of HCT to reduce lignin content and improve biomass saccharification by engineering transgenic lines that overproduce one of the HCT non-canonical acceptors. Our results demonstrate conservation of HCT substrate promiscuity and provide support for a new strategy for lignin reduction in the effort to improve the quality of plant biomass for forage and cellulosic biofuels. PMID:26858288

  2. Target Promiscuity and Heterogeneous Effects of Tarantula Venom Peptides Affecting Na+ and K+ Ion Channels*

    PubMed Central

    Redaelli, Elisa; Cassulini, Rita Restano; Silva, Deyanira Fuentes; Clement, Herlinda; Schiavon, Emanuele; Zamudio, Fernando Z.; Odell, George; Arcangeli, Annarosa; Clare, Jeffrey J.; Alagón, Alejandro; de la Vega, Ricardo C. Rodríguez; Possani, Lourival D.; Wanke, Enzo

    2010-01-01

    Venom-derived peptide modulators of ion channel gating are regarded as essential tools for understanding the molecular motions that occur during the opening and closing of ion channels. In this study, we present the characterization of five spider toxins on 12 human voltage-gated ion channels, following observations about the target promiscuity of some spider toxins and the ongoing revision of their “canonical” gating-modifying mode of action. The peptides were purified de novo from the venom of Grammostola rosea tarantulas, and their sequences were confirmed by Edman degradation and mass spectrometry analysis. Their effects on seven tetrodotoxin-sensitive Na+ channels, the three human ether-à-go-go (hERG)-related K+ channels, and two human Shaker-related K+ channels were extensively characterized by electrophysiological techniques. All the peptides inhibited ion conduction through all the Na+ channels tested, although with distinctive patterns. The peptides also affected the three pharmaceutically relevant hERG isoforms differently. At higher concentrations, all peptides also modified the gating of the Na+ channels by shifting the activation to more positive potentials, whereas more complex effects were recorded on hERG channels. No effects were evident on the two Shaker-related K+ channels at concentrations well above the IC50 value for the affected channels. Given the sequence diversity of the tested peptides, we propose that tarantula toxins should be considered both as multimode and target-promiscuous ion channel modulators; both features should not be ignored when extracting mechanistic interpretations about ion channel gating. Our observations could also aid in future structure-function studies and might help the development of novel ion channel-specific drugs. PMID:19955179

  3. Exploiting the Substrate Promiscuity of Hydroxycinnamoyl-CoA:Shikimate Hydroxycinnamoyl Transferase to Reduce Lignin.

    PubMed

    Eudes, Aymerick; Pereira, Jose H; Yogiswara, Sasha; Wang, George; Teixeira Benites, Veronica; Baidoo, Edward E K; Lee, Taek Soon; Adams, Paul D; Keasling, Jay D; Loqué, Dominique

    2016-03-01

    Lignin poses a major challenge in the processing of plant biomass for agro-industrial applications. For bioengineering purposes, there is a pressing interest in identifying and characterizing the enzymes responsible for the biosynthesis of lignin. Hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase (HCT; EC 2.3.1.133) is a key metabolic entry point for the synthesis of the most important lignin monomers: coniferyl and sinapyl alcohols. In this study, we investigated the substrate promiscuity of HCT from a bryophyte (Physcomitrella) and from five representatives of vascular plants (Arabidopsis, poplar, switchgrass, pine and Selaginella) using a yeast expression system. We demonstrate for these HCTs a conserved capacity to acylate with p-coumaroyl-CoA several phenolic compounds in addition to the canonical acceptor shikimate normally used during lignin biosynthesis. Using either recombinant HCT from switchgrass (PvHCT2a) or an Arabidopsis stem protein extract, we show evidence of the inhibitory effect of these phenolics on the synthesis of p-coumaroyl shikimate in vitro, which presumably occurs via a mechanism of competitive inhibition. A structural study of PvHCT2a confirmed the binding of a non-canonical acceptor in a similar manner to shikimate in the active site of the enzyme. Finally, we exploited in Arabidopsis the substrate flexibility of HCT to reduce lignin content and improve biomass saccharification by engineering transgenic lines that overproduce one of the HCT non-canonical acceptors. Our results demonstrate conservation of HCT substrate promiscuity and provide support for a new strategy for lignin reduction in the effort to improve the quality of plant biomass for forage and cellulosic biofuels.

  4. Testing the promiscuity of commercial kinase inhibitors against the AGC kinase group using a split-luciferase screen.

    PubMed

    Jester, Benjamin W; Gaj, Alicia; Shomin, Carolyn D; Cox, Kurt J; Ghosh, Indraneel

    2012-02-23

    Using a newly developed competitive binding assay dependent upon the reassembly of a split reporter protein, we have tested the promiscuity of a panel of reported kinase inhibitors against the AGC group. Many non-AGC targeted kinase inhibitors target multiple members of the AGC group. In general, structurally similar inhibitors consistently exhibited activity toward the same target as well as toward closely related kinases. The inhibition data was analyzed to test the predictive value of either using identity scores derived from residues within 6 Å of the active site or identity scores derived from the entire kinase domain. The results suggest that the active site identity in certain cases may be a stronger predictor of inhibitor promiscuity. The overall results provide general guidelines for establishing inhibitor selectivity as well as for the future design of inhibitors that either target or avoid AGC kinases.

  5. PAINS in the Assay: Chemical Mechanisms of Assay Interference and Promiscuous Enzymatic Inhibition Observed during a Sulfhydryl-Scavenging HTS

    PubMed Central

    2015-01-01

    Significant resources in early drug discovery are spent unknowingly pursuing artifacts and promiscuous bioactive compounds, while understanding the chemical basis for these adverse behaviors often goes unexplored in pursuit of lead compounds. Nearly all the hits from our recent sulfhydryl-scavenging high-throughput screen (HTS) targeting the histone acetyltransferase Rtt109 were such compounds. Herein, we characterize the chemical basis for assay interference and promiscuous enzymatic inhibition for several prominent chemotypes identified by this HTS, including some pan-assay interference compounds (PAINS). Protein mass spectrometry and ALARM NMR confirmed these compounds react covalently with cysteines on multiple proteins. Unfortunately, compounds containing these chemotypes have been published as screening actives in reputable journals and even touted as chemical probes or preclinical candidates. Our detailed characterization and identification of such thiol-reactive chemotypes should accelerate triage of nuisance compounds, guide screening library design, and prevent follow-up on undesirable chemical matter. PMID:25634295

  6. Enzymological and structural studies of the mechanism of promiscuous substrate recognition by the oxidative DNA repair enzyme AlkB

    PubMed Central

    Yu, Bomina; Hunt, John F.

    2009-01-01

    Promiscuous substrate recognition, the ability to catalyze transformations of chemically diverse compounds, is an evolutionarily advantageous, but poorly understood phenomenon. The promiscuity of DNA repair enzymes is particularly important, because it enables diverse kinds of damage to different nucleotide bases to be repaired in a metabolically parsimonious manner. We present enzymological and crystallographic studies of the mechanisms underlying promiscuous substrate recognition by Escherichia coli AlkB, a DNA repair enzyme that removes methyl adducts and some larger alkylation lesions from endocyclic positions on purine and pyrimidine bases. In vitro Michaelis–Menten analyses on a series of alkylated bases show high activity in repairing N1-methyladenine (m1A) and N3-methylcytosine (m3C), comparatively low activity in repairing 1,N6-ethenoadenine, and no detectable activity in repairing N1-methylguanine or N3-methylthymine. AlkB has a substantially higher kcat and Km for m3C compared with m1A. Therefore, the enzyme maintains similar net activity on the chemically distinct substrates by increasing the turnover rate of the substrate with nominally lower affinity. Cocrystal structures provide insight into the structural basis of this “kcat/Km compensation,” which makes a significant contribution to promiscuous substrate recognition by AlkB. In analyzing a large ensemble of crystal structures solved in the course of these studies, we observed 2 discrete global conformations of AlkB differing in the accessibility of a tunnel hypothesized to control diffusion of the O2 substrate into the active site. Steric interactions between a series of protein loops control this conformational transition and present a plausible mechanism for preventing O2 binding before nucleotide substrate binding. PMID:19706517

  7. Enzymological and Structural Studies of the Mechanism of Promiscuous Substrate Recognition by the Oxidative DNA Repair Enzyme AlkB

    SciTech Connect

    Yu, B.; Hunt, J

    2009-01-01

    Promiscuous substrate recognition, the ability to catalyze transformations of chemically diverse compounds, is an evolutionarily advantageous, but poorly understood phenomenon. The promiscuity of DNA repair enzymes is particularly important, because it enables diverse kinds of damage to different nucleotide bases to be repaired in a metabolically parsimonious manner. We present enzymological and crystallographic studies of the mechanisms underlying promiscuous substrate recognition by Escherichia coli AlkB, a DNA repair enzyme that removes methyl adducts and some larger alkylation lesions from endocyclic positions on purine and pyrimidine bases. In vitro Michaelis-Menten analyses on a series of alkylated bases show high activity in repairing N1-methyladenine (m1A) and N3-methylcytosine (m3C), comparatively low activity in repairing 1,N6-ethenoadenine, and no detectable activity in repairing N1-methylguanine or N3-methylthymine. AlkB has a substantially higher kcat and Km for m3C compared with m1A. Therefore, the enzyme maintains similar net activity on the chemically distinct substrates by increasing the turnover rate of the substrate with nominally lower affinity. Cocrystal structures provide insight into the structural basis of this 'kcat/Km compensation,' which makes a significant contribution to promiscuous substrate recognition by AlkB. In analyzing a large ensemble of crystal structures solved in the course of these studies, we observed 2 discrete global conformations of AlkB differing in the accessibility of a tunnel hypothesized to control diffusion of the O2 substrate into the active site. Steric interactions between a series of protein loops control this conformational transition and present a plausible mechanism for preventing O2 binding before nucleotide substrate binding.

  8. Integrated computational prediction and experimental validation identifies promiscuous T cell epitopes in the proteome of Mycobacterium bovis

    PubMed Central

    Farrell, Damien; Jones, Gareth; Pirson, Christopher; Malone, Kerri; Rue-Albrecht, Kevin; Chubb, Anthony J.; Vordermeier, Martin

    2016-01-01

    The discovery of novel antigens is an essential requirement in devising new diagnostics or vaccines for use in control programmes against human tuberculosis (TB) and bovine tuberculosis (bTB). Identification of potential epitopes recognised by CD4+ T cells requires prediction of peptide binding to MHC class-II, an obligatory prerequisite for T cell recognition. To comprehensively prioritise potential MHC-II-binding epitopes from Mycobacterium bovis, the agent of bTB and zoonotic TB in humans, we integrated three binding prediction methods with the M. bovisproteome using a subset of human HLA alleles to approximate the binding of epitope-containing peptides to the bovine MHC class II molecule BoLA-DRB3. Two parallel strategies were then applied to filter the resulting set of binders: identification of the top-scoring binders or clusters of binders. Our approach was tested experimentally by assessing the capacity of predicted promiscuous peptides to drive interferon-γ secretion from T cells of M. bovis infected cattle. Thus, 376 20-mer peptides, were synthesised (270 predicted epitopes, 94 random peptides with low predictive scores and 12 positive controls of known epitopes). The results of this validation demonstrated significant enrichment (>24 %) of promiscuously recognised peptides predicted in our selection strategies, compared with randomly selected peptides with low prediction scores. Our strategy offers a general approach to the identification of promiscuous epitopes tailored to target populations where there is limited knowledge of MHC allelic diversity. PMID:28348866

  9. Coexistence of unlimited bipartite and genuine multipartite entanglement: Promiscuous quantum correlations arising from discrete to continuous-variable systems

    SciTech Connect

    Adesso, Gerardo; Ericsson, Marie; Illuminati, Fabrizio

    2007-08-15

    Quantum mechanics imposes 'monogamy' constraints on the sharing of entanglement. We show that, despite these limitations, entanglement can be fully 'promiscuous', i.e., simultaneously present in unlimited two-body and many-body forms in states living in an infinite-dimensional Hilbert space. Monogamy just bounds the divergence rate of the various entanglement contributions. This is demonstrated in simple families of N-mode (N{>=}4) Gaussian states of light fields or atomic ensembles, which therefore enable infinitely more freedom in the distribution of information, as opposed to systems of individual qubits. Such a finding is of importance for the quantification, understanding, and potential exploitation of shared quantum correlations in continuous variable systems. We discuss how promiscuity gradually arises when considering simple families of discrete variable states, with increasing Hilbert space dimension towards the continuous variable limit. Such models are somehow analogous to Gaussian states with asymptotically diverging, but finite, squeezing. In this respect, we find that non-Gaussian states (which in general are more entangled than Gaussian states) exhibit also the interesting feature that their entanglement is more shareable: in the non-Gaussian multipartite arena, unlimited promiscuity can be already achieved among three entangled parties, while this is impossible for Gaussian, even infinitely squeezed states.

  10. Activation of the Transcription Factor GLI1 by WNT Signaling Underlies the Role of SULFATASE 2 as a Regulator of Tissue Regeneration*

    PubMed Central

    Nakamura, Ikuo; Fernandez-Barrena, Maite G.; Ortiz-Ruiz, Maria C.; Almada, Luciana L.; Hu, Chunling; Elsawa, Sherine F.; Mills, Lisa D.; Romecin, Paola A.; Gulaid, Kadra H.; Moser, Catherine D.; Han, Jing-Jing; Vrabel, Anne; Hanse, Eric A.; Akogyeram, Nicholas A.; Albrecht, Jeffrey H.; Monga, Satdarshan P. S.; Sanderson, Schuyler O.; Prieto, Jesus; Roberts, Lewis R.; Fernandez-Zapico, Martin E.

    2013-01-01

    Tissue regeneration requires the activation of a set of specific growth signaling pathways. The identity of these cascades and their biological roles are known; however, the molecular mechanisms regulating the interplay between these pathways remain poorly understood. Here, we define a new role for SULFATASE 2 (SULF2) in regulating tissue regeneration and define the WNT-GLI1 axis as a novel downstream effector for this sulfatase in a liver model of tissue regeneration. SULF2 is a heparan sulfate 6-O-endosulfatase, which releases growth factors from extracellular storage sites turning active multiple signaling pathways. We demonstrate that SULF2-KO mice display delayed regeneration after partial hepatectomy (PH). Mechanistic analysis of the SULF2-KO phenotype showed a decrease in WNT signaling pathway activity in vivo. In isolated hepatocytes, SULF2 deficiency blocked WNT-induced β-CATENIN nuclear translocation, TCF activation, and proliferation. Furthermore, we identified the transcription factor GLI1 as a novel target of the SULF2-WNT cascade. WNT induces GLI1 expression in a SULF2- and β-CATENIN-dependent manner. GLI1-KO mice phenocopied the SULF2-KO, showing delayed regeneration and decreased hepatocyte proliferation. Moreover, we identified CYCLIN D1, a key mediator of cell growth during tissue regeneration, as a GLI1 transcriptional target. GLI1 binds to the cyclin d1 promoter and regulates its activity and expression. Finally, restoring GLI1 expression in the liver of SULF2-KO mice after PH rescues CYCLIN D1 expression and hepatocyte proliferation to wild-type levels. Thus, together these findings define a novel pathway in which SULF2 regulates tissue regeneration in part via the activation of a novel WNT-GLI1-CYCLIN D1 pathway. PMID:23740243

  11. Activation of the transcription factor GLI1 by WNT signaling underlies the role of SULFATASE 2 as a regulator of tissue regeneration.

    PubMed

    Nakamura, Ikuo; Fernandez-Barrena, Maite G; Ortiz-Ruiz, Maria C; Almada, Luciana L; Hu, Chunling; Elsawa, Sherine F; Mills, Lisa D; Romecin, Paola A; Gulaid, Kadra H; Moser, Catherine D; Han, Jing-Jing; Vrabel, Anne; Hanse, Eric A; Akogyeram, Nicholas A; Albrecht, Jeffrey H; Monga, Satdarshan P S; Sanderson, Schuyler O; Prieto, Jesus; Roberts, Lewis R; Fernandez-Zapico, Martin E

    2013-07-19

    Tissue regeneration requires the activation of a set of specific growth signaling pathways. The identity of these cascades and their biological roles are known; however, the molecular mechanisms regulating the interplay between these pathways remain poorly understood. Here, we define a new role for SULFATASE 2 (SULF2) in regulating tissue regeneration and define the WNT-GLI1 axis as a novel downstream effector for this sulfatase in a liver model of tissue regeneration. SULF2 is a heparan sulfate 6-O-endosulfatase, which releases growth factors from extracellular storage sites turning active multiple signaling pathways. We demonstrate that SULF2-KO mice display delayed regeneration after partial hepatectomy (PH). Mechanistic analysis of the SULF2-KO phenotype showed a decrease in WNT signaling pathway activity in vivo. In isolated hepatocytes, SULF2 deficiency blocked WNT-induced β-CATENIN nuclear translocation, TCF activation, and proliferation. Furthermore, we identified the transcription factor GLI1 as a novel target of the SULF2-WNT cascade. WNT induces GLI1 expression in a SULF2- and β-CATENIN-dependent manner. GLI1-KO mice phenocopied the SULF2-KO, showing delayed regeneration and decreased hepatocyte proliferation. Moreover, we identified CYCLIN D1, a key mediator of cell growth during tissue regeneration, as a GLI1 transcriptional target. GLI1 binds to the cyclin d1 promoter and regulates its activity and expression. Finally, restoring GLI1 expression in the liver of SULF2-KO mice after PH rescues CYCLIN D1 expression and hepatocyte proliferation to wild-type levels. Thus, together these findings define a novel pathway in which SULF2 regulates tissue regeneration in part via the activation of a novel WNT-GLI1-CYCLIN D1 pathway.

  12. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells

    PubMed Central

    Kim, Dae In; Raida, Manfred; Burke, Brian

    2012-01-01

    We have developed a new technique for proximity-dependent labeling of proteins in eukaryotic cells. Named BioID for proximity-dependent biotin identification, this approach is based on fusion of a promiscuous Escherichia coli biotin protein ligase to a targeting protein. BioID features proximity-dependent biotinylation of proteins that are near-neighbors of the fusion protein. Biotinylated proteins may be isolated by affinity capture and identified by mass spectrometry. We apply BioID to lamin-A (LaA), a well-characterized intermediate filament protein that is a constituent of the nuclear lamina, an important structural element of the nuclear envelope (NE). We identify multiple proteins that associate with and/or are proximate to LaA in vivo. The most abundant of these include known interactors of LaA that are localized to the NE, as well as a new NE-associated protein named SLAP75. Our results suggest BioID is a useful and generally applicable method to screen for both interacting and neighboring proteins in their native cellular environment. PMID:22412018

  13. Convenience polyandry or convenience polygyny? Costly sex under female control in a promiscuous primate.

    PubMed

    Huchard, Elise; Canale, Cindy I; Le Gros, Chloé; Perret, Martine; Henry, Pierre-Yves; Kappeler, Peter M

    2012-04-07

    Classic sex roles depict females as choosy, but polyandry is widespread. Empirical attempts to understand the evolution of polyandry have often focused on its adaptive value to females, whereas 'convenience polyandry' might simply decrease the costs of sexual harassment. We tested whether constraint-free female strategies favour promiscuity over mating selectivity through an original experimental design. We investigated variation in mating behaviour in response to a reversible alteration of sexual dimorphism in body mass in the grey mouse lemur, a small primate where female brief sexual receptivity allows quantifying polyandry. We manipulated body condition in captive females, predicting that convenience polyandry would increase when females are weaker than males, thus less likely to resist their solicitations. Our results rather support the alternative hypothesis of 'adaptive polyandry': females in better condition are more polyandrous. Furthermore, we reveal that multiple mating incurs significant energetic costs, which are strikingly symmetrical between the sexes. Our study shows that mouse lemur females exert tight control over mating and actively seek multiple mates. The benefits of remating are nevertheless not offset by its costs in low-condition females, suggesting that polyandry is a flexible strategy yielding moderate fitness benefits in this small mammal.

  14. A promiscuous liaison between IL-15 receptor and Axl receptor tyrosine kinase in cell death control

    PubMed Central

    Budagian, Vadim; Bulanova, Elena; Orinska, Zane; Thon, Lutz; Mamat, Uwe; Bellosta, Paola; Basilico, Claudio; Adam, Dieter; Paus, Ralf; Bulfone-Paus, Silvia

    2005-01-01

    Discrimination between cytokine receptor and receptor tyrosine kinase (RTK) signaling pathways is a central paradigm in signal transduction research. Here, we report a ‘promiscuous liaison' between both receptors that enables interleukin (IL)-15 to transactivate the signaling pathway of a tyrosine kinase. IL-15 protects murine L929 fibroblasts from tumor necrosis factor α (TNFα)-induced cell death, but fails to rescue them upon targeted depletion of the RTK, Axl; however, Axl-overexpressing fibroblasts are TNFα-resistant. IL-15Rα and Axl colocalize on the cell membrane and co-immunoprecipitate even in the absence of IL-15, whereby the extracellular part of Axl proved to be essential for Axl/IL-15Rα interaction. Most strikingly, IL-15 treatment mimics stimulation by the Axl ligand, Gas6, resulting in a rapid tyrosine phosphorylation of both Axl and IL-15Rα, and activation of the phosphatidylinositol 3-kinase/Akt pathway. This is also seen in mouse embryonic fibroblasts from wild-type but not Axl−/− or IL-15Rα−/− mice. Thus, IL-15-induced protection from TNFα-mediated cell death involves a hitherto unknown IL-15 receptor complex, consisting of IL-15Rα and Axl RTK, and requires their reciprocal activation initiated by ligand-induced IL-15Rα. PMID:16308569

  15. A promiscuous liaison between IL-15 receptor and Axl receptor tyrosine kinase in cell death control.

    PubMed

    Budagian, Vadim; Bulanova, Elena; Orinska, Zane; Thon, Lutz; Mamat, Uwe; Bellosta, Paola; Basilico, Claudio; Adam, Dieter; Paus, Ralf; Bulfone-Paus, Silvia

    2005-12-21

    Discrimination between cytokine receptor and receptor tyrosine kinase (RTK) signaling pathways is a central paradigm in signal transduction research. Here, we report a 'promiscuous liaison' between both receptors that enables interleukin (IL)-15 to transactivate the signaling pathway of a tyrosine kinase. IL-15 protects murine L929 fibroblasts from tumor necrosis factor alpha (TNFalpha)-induced cell death, but fails to rescue them upon targeted depletion of the RTK, Axl; however, Axl-overexpressing fibroblasts are TNFalpha-resistant. IL-15Ralpha and Axl colocalize on the cell membrane and co-immunoprecipitate even in the absence of IL-15, whereby the extracellular part of Axl proved to be essential for Axl/IL-15Ralpha interaction. Most strikingly, IL-15 treatment mimics stimulation by the Axl ligand, Gas6, resulting in a rapid tyrosine phosphorylation of both Axl and IL-15Ralpha, and activation of the phosphatidylinositol 3-kinase/Akt pathway. This is also seen in mouse embryonic fibroblasts from wild-type but not Axl-/- or IL-15Ralpha-/- mice. Thus, IL-15-induced protection from TNFalpha-mediated cell death involves a hitherto unknown IL-15 receptor complex, consisting of IL-15Ralpha and Axl RTK, and requires their reciprocal activation initiated by ligand-induced IL-15Ralpha.

  16. A Disease-Causing Variant in PCNA Disrupts a Promiscuous Protein Binding Site.

    PubMed

    Duffy, Caroline M; Hilbert, Brendan J; Kelch, Brian A

    2016-03-27

    The eukaryotic DNA polymerase sliding clamp, proliferating cell nuclear antigen or PCNA, is a ring-shaped protein complex that surrounds DNA to act as a sliding platform for increasing processivity of cellular replicases and for coordinating various cellular pathways with DNA replication. A single point mutation, Ser228Ile, in the human PCNA gene was recently identified to cause a disease whose symptoms resemble those of DNA damage and repair disorders. The mutation lies near the binding site for most PCNA-interacting proteins. However, the structural consequences of the S228I mutation are unknown. Here, we describe the structure of the disease-causing variant, which reveals a large conformational change that dramatically transforms the binding pocket for PCNA client proteins. We show that the mutation markedly alters the binding energetics for some client proteins, while another, p21(CIP1), is only mildly affected. Structures of the disease variant bound to peptides derived from two PCNA partner proteins reveal that the binding pocket can adjust conformation to accommodate some ligands, indicating that the binding site is dynamic and pliable. Our work has implications for the plasticity of the binding site in PCNA and reveals how a disease mutation selectively alters interactions to a promiscuous binding site that is critical for DNA metabolism.

  17. Promiscuous Gene Expression in the Thymus: The Root of Central Tolerance

    PubMed Central

    Magalhães, Danielle A. R.; Silveira, Eduardo L. V.; Junta, Cristina M.; Sandrin-Garcia, Paula; Fachin, Ana Lucia; Donadi, Eduardo A.; Sakamoto-Hojo, Elza T.; Passos, Geraldo A. S.

    2006-01-01

    The thymus is a complex organ with an epithelium formed by two main cell types, the cortical thymic epithelial (cTECs) and medullary thymic epithelial cells (mTECs), referred to as stroma. Immature thymocytes arising from the bone marrow, macrophages and dendritic cells also populate the thymus. Thymocytes evolve to mature T cells featuring cell differentiation antigens (CDs), which characterize the phenotypically distinct stages, defined as double-negative (DN), double positive (DP) and single positive (SP), based on expression of the coreceptors CD4 and CD8. The thymus is therefore implicated in T cell differentiation and during development into T cells thymocytes are in close association with the stroma. Recent evidence showed that mTECs express a diverse set of genes coding for parenchymal organ specific proteins. This phenomenon has been termed promiscuous gene expression (PGE) and has led to the reconsideration of the role of the thymus in central T cell tolerance to self-antigens, which prevents autoimmunity. The evidence of PGE is causing a reanalysis in the scope of central tolerance understanding. We summarize the evidence of PGE in the thymus, focusing particularly the use of cDNA microarray technology for the broad characterization of gene expression and demarcation of PGE emergence during thymus ontogeny. PMID:17162352

  18. Compatibility counts: MHC-associated mate choice in a wild promiscuous primate.

    PubMed

    Schwensow, Nina; Eberle, Manfred; Sommer, Simone

    2008-03-07

    The mechanisms and temporal aspects of mate choice according to genetic constitution are still puzzling. Recent studies indicate that fitness is positively related to diversity in immune genes (MHC). Both sexes should therefore choose mates of high genetic quality and/or compatibility. However, studies addressing the role of MHC diversity in pre- and post-copulatory mate choice decisions in wild-living animals are few. We investigated the impact of MHC constitution and of neutral microsatellite variability on pre- and post-copulatory mate choice in both sexes in a wild population of a promiscuous primate, the grey mouse lemur (Microcebus murinus). There was no support for pre-copulatory male or female mate choice, but our data indicate post-copulatory mate choice that is associated with genetic constitution. Fathers had a higher number of MHC supertypes different from those of the mother than randomly assigned males. Fathers also had a higher amino acid distance to the females' MHC as well as a higher total number of MHC supertypes and a higher degree of microsatellite heterozygosity than randomly assigned males. Female cryptic choice may be the underlying mechanism that operates towards an optimization of the genetic constitution of offspring. This is the first study that provides support for the importance of the MHC constitution in post-copulatory mate choice in non-human primates.

  19. Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules

    PubMed Central

    Kroschwald, Sonja; Maharana, Shovamayee; Mateju, Daniel; Malinovska, Liliana; Nüske, Elisabeth; Poser, Ina; Richter, Doris; Alberti, Simon

    2015-01-01

    RNA-protein (RNP) granules have been proposed to assemble by forming solid RNA/protein aggregates or through phase separation into a liquid RNA/protein phase. Which model describes RNP granules in living cells is still unclear. In this study, we analyze P bodies in budding yeast and find that they have liquid-like properties. Surprisingly, yeast stress granules adopt a different material state, which is reminiscent of solid protein aggregates and controlled by protein disaggregases. By using an assay to ectopically nucleate RNP granules, we further establish that RNP granule formation does not depend on amyloid-like aggregation but rather involves many promiscuous interactions. Finally, we show that stress granules have different properties in mammalian cells, where they show liquid-like behavior. Thus, we propose that the material state of RNP granules is flexible and that the solid state of yeast stress granules is an adaptation to extreme environments, made possible by the presence of a powerful disaggregation machine. DOI: http://dx.doi.org/10.7554/eLife.06807.001 PMID:26238190

  20. Compatibility counts: MHC-associated mate choice in a wild promiscuous primate

    PubMed Central

    Schwensow, Nina; Eberle, Manfred; Sommer, Simone

    2007-01-01

    The mechanisms and temporal aspects of mate choice according to genetic constitution are still puzzling. Recent studies indicate that fitness is positively related to diversity in immune genes (MHC). Both sexes should therefore choose mates of high genetic quality and/or compatibility. However, studies addressing the role of MHC diversity in pre- and post-copulatory mate choice decisions in wild-living animals are few. We investigated the impact of MHC constitution and of neutral microsatellite variability on pre- and post-copulatory mate choice in both sexes in a wild population of a promiscuous primate, the grey mouse lemur (Microcebus murinus). There was no support for pre-copulatory male or female mate choice, but our data indicate post-copulatory mate choice that is associated with genetic constitution. Fathers had a higher number of MHC supertypes different from those of the mother than randomly assigned males. Fathers also had a higher amino acid distance to the females' MHC as well as a higher total number of MHC supertypes and a higher degree of microsatellite heterozygosity than randomly assigned males. Female cryptic choice may be the underlying mechanism that operates towards an optimization of the genetic constitution of offspring. This is the first study that provides support for the importance of the MHC constitution in post-copulatory mate choice in non-human primates. PMID:18089539

  1. Force Dependent Biotinylation of Myosin IIA by α-Catenin Tagged with a Promiscuous Biotin Ligase

    PubMed Central

    Ueda, Shuji; Blee, Alexandra M.; Macway, Katherine G.; Renner, Derrick J.; Yamada, Soichiro

    2015-01-01

    Tissues and organs undergo constant physical perturbations and individual cells must respond to mechanical forces to maintain tissue integrity. However, molecular interactions underlying mechano-transduction are not fully defined at cell-cell junctions. This is in part due to weak and transient interactions that are likely prevalent in force-induced protein complexes. Using in situ proximal biotinylation by the promiscuous biotin ligase BirA tagged to α-catenin and a substrate stretch cell chamber, we sought to identify force-dependent molecular interactions surrounding α-catenin, an actin regulator at the sites of cadherin mediated cell-cell adhesion. While E-cadherin, β-catenin, vinculin and actin localize with α-catenin at cell-cell contacts in immuno-fluorescent staining, only β-catenin and plakoglobin were biotinylated, suggesting that this proximal biotinylation is limited to the molecules that are in the immediate vicinity of α-catenin. In mechanically stretched samples, increased biotinylation of non-muscle myosin IIA, but not myosin IIB, suggests close spatial proximity between α-catenin and myosin IIA during substrate stretching. This force-induced biotinylation diminished as myosin II activity was inhibited by blebbistatin. Taken together, this promising technique enables us to identify force sensitive complexes that may be essential for mechano-responses in force bearing cell adhesion. PMID:25806963

  2. Towards a Consensus on the Binding Specificity and Promiscuity of PRC2 for RNA

    PubMed Central

    Davidovich, Chen; Wang, Xueyin; Cifuentes-Rojas, Catherine; Goodrich, Karen J.; Gooding, Anne R.; Lee, Jeannie T.; Cech, Thomas R.

    2015-01-01

    Summary Polycomb repressive complex-2 (PRC2) is a histone methyltransferase required for epigenetic silencing during development and cancer. Early works suggested binding specificity of PRC2 to certain long non-coding RNAs for recruitment to chromatin. More recent studies provided evidence both in favor and against this idea. Here, we bridge the two existing models of PRC2-RNA interaction. RepA RNA is a good binding partner for PRC2, while multiple non-relevant RNAs, including bacterial mRNAs, also bind PRC2; with Kd's depend to some extent on the experimental conditions. Human and mouse PRC2 have broadly similar RNA-binding properties in vitro. Examination of evidence supporting an existing model for site-specific recruitment of PRC2 by a well-defined RNA motif in cells reveals that results are PRC2-independent. We conclude that promiscuous and specific RNA-binding activities of PRC2 in vitro are not mutually exclusive, and that binding specificity in vivo remains to be demonstrated. PMID:25601759

  3. The Under-Appreciated Promiscuity of the Epidermal Growth Factor Receptor Family

    PubMed Central

    Kennedy, Sean P.; Hastings, Jordan F.; Han, Jeremy Z. R.; Croucher, David R.

    2016-01-01

    Each member of the epidermal growth factor receptor (EGFR) family plays a key role in normal development, homeostasis, and a variety of pathophysiological conditions, most notably in cancer. According to the prevailing dogma, these four receptor tyrosine kinases (RTKs; EGFR, ERBB2, ERBB3, and ERBB4) function exclusively through the formation of homodimers and heterodimers within the EGFR family. These combinatorial receptor interactions are known to generate increased interactome diversity and therefore influence signaling output, subcellular localization and function of the heterodimer. This molecular plasticity is also thought to play a role in the development of resistance toward targeted cancer therapies aimed at these known oncogenes. Interestingly, many studies now challenge this dogma and suggest that the potential for EGFR family receptors to interact with more distantly related RTKs is much greater than currently appreciated. Here we discuss how the promiscuity of these oncogenic receptors may lead to the formation of many unexpected receptor pairings and the significant implications for the efficiency of many targeted cancer therapies. PMID:27597943

  4. The first murine zygotic transcription is promiscuous and uncoupled from splicing and 3′ processing

    PubMed Central

    Abe, Ken-ichiro; Yamamoto, Ryoma; Franke, Vedran; Cao, Minjun; Suzuki, Yutaka; Suzuki, Masataka G; Vlahovicek, Kristian; Svoboda, Petr; Schultz, Richard M; Aoki, Fugaku

    2015-01-01

    Initiation of zygotic transcription in mammals is poorly understood. In mice, zygotic transcription is first detected shortly after pronucleus formation in 1-cell embryos, but the identity of the transcribed loci and mechanisms regulating their expression are not known. Using total RNA-Seq, we have found that transcription in 1-cell embryos is highly promiscuous, such that intergenic regions are extensively expressed and thousands of genes are transcribed at comparably low levels. Striking is that transcription can occur in the absence of defined core-promoter elements. Furthermore, accumulation of translatable zygotic mRNAs is minimal in 1-cell embryos because of inefficient splicing and 3′ processing of nascent transcripts. These findings provide novel insights into regulation of gene expression in 1-cell mouse embryos that may confer a protective mechanism against precocious gene expression that is the product of a relaxed chromatin structure present in 1-cell embryos. The results also suggest that the first zygotic transcription itself is an active component of chromatin remodeling in 1-cell embryos. PMID:25896510

  5. Catechol-rhodanine derivatives: Specific and promiscuous inhibitors of Escherichia coli deoxyxylulose phosphate reductoisomerase (DXR).

    PubMed

    Zinglé, Catherine; Tritsch, Denis; Grosdemange-Billiard, Catherine; Rohmer, Michel

    2014-07-15

    To develop more effective inhibitors than fosmidomycin, a natural compound which inhibits the deoxyxylulose 5-phosphate reductoisomerase (DXR), the second enzyme of the MEP pathway, we designed molecules possessing on the one hand a catechol that is able to chelate the magnesium dication and on the other hand a group able to occupy the NADPH recognition site. Catechol-rhodanine derivatives (1-6) were synthesized and their potential inhibition was tested on the DXR of Escherichia coli. For the inhibitors 1 and 2, the presence of detergent in the enzymatic assays led to a dramatic decrease of the inhibition suggesting, that these compounds are rather promiscuous inhibitors. The compounds 4 and 5 kept their inhibition capacity in the presence of Triton X100 and could be considered as specific inhibitors of DXR. Compound 4 showed antimicrobial activity against Escherichia coli. The only partial protection of NADPH against the inhibition suggested that the catechol-rhodanine derivatives did not settle in the coenzyme binding site. This paper points out the necessity to include a detergent in the DXR enzymatic assays to avoid false positive when putative hydrophobic inhibitors are tested and especially when the IC50, are in the micromolar range.

  6. Promiscuous activity of the LXR antagonist GSK2033 in a mouse model of fatty liver disease

    PubMed Central

    Griffett, Kristine; Burris, Thomas P.

    2016-01-01

    The liver X receptor (LXR) functions as a receptor for oxysterols and plays a critical role in the regulation of glucose and lipid metabolism. We recently described a synthetic LXR inverse agonist that displayed efficacy in treatment of hepatic steatosis in a mouse model of non-alcoholic fatty liver disease (NAFLD). This compound, SR9238, was designed to display liver specificity so as to avoid potential detrimental effects on reverse cholesterol transport in peripheral tissues. Here, we examined the effects of a LXR antagonist/inverse agonist, GSK2033, which displays systemic exposure. Although GSK2033 performed as expected in cell-based models as a LXR inverse agonist, it displayed unexpected activity in the mouse NAFLD model. The expression of lipogenic enzyme genes such as fatty acid synthase and sterol regulatory binding protein 1c were induced rather than suppressed and no effect on hepatic steatosis was found. Further characterization of the specificity of GSK2033 revealed that it displayed a significant degree of promiscuity, targeting a number of other nuclear receptors that could clearly alter hepatic gene expression. PMID:27680310

  7. The protein kinase promiscuities in the cancer-preventive mechanisms of NSAIDs

    PubMed Central

    Norvaisas, Povilas; Chan, Diana; Yokoi, Kenji; Dave, Bhuvanesh

    2016-01-01

    NSAIDs have been observed to have cancer-preventive properties, but the actual mechanism is elusive. We hypothesize that NSAIDs might have an effect through common pathways and targets of anticancer drugs by exploiting promiscuities of anticancer drug targets. Here, we have explored NSAIDs by their structural and pharmacophoric similarities with small anticancer molecules. In-silico analyses have shown a strong similarity between NSAIDs and protein kinase (PK) inhibitors. The calculated affinities of NSAIDs were found to be lower than the affinities of anticancer drugs, but higher than the affinities of compounds that are not specific to PKs. The competitive inhibition model suggests that PK might be inhibited by around 10%, which was confirmed by biochemical screening of some NSAIDs against PKs. NSAIDs did not affect all PKs universally, but had specificities for certain sets of PKs, which differed according to the NSAID. The study revealed potentially new features and mechanisms of NSAIDs that are useful in explaining their role in cancer prevention, which might lead to clinically significant breakthroughs in the future. PMID:25714784

  8. Structural basis for promiscuity and specificity during Candida glabrata invasion of host epithelia

    PubMed Central

    Maestre-Reyna, Manuel; Diderrich, Rike; Veelders, Maik Stefan; Eulenburg, Georg; Kalugin, Vitali; Brückner, Stefan; Keller, Petra; Rupp, Steffen; Mösch, Hans-Ulrich; Essen, Lars-Oliver

    2012-01-01

    The human pathogenic yeast Candida glabrata harbors more than 20 surface-exposed, epithelial adhesins (Epas) for host cell adhesion. The Epa family recognizes host glycans and discriminates between target tissues by their adhesin (A) domains, but a detailed structural basis for ligand-binding specificity of Epa proteins has been lacking so far. In this study, we provide high-resolution crystal structures of the Epa1A domain in complex with different carbohydrate ligands that reveal how host cell mucin-type O-glycans are recognized and allow a structure-guided classification of the Epa family into specific subtypes. Further detailed structural and functional characterization of subtype-switched Epa1 variants shows that specificity is governed by two inner loops, CBL1 and CBL2, involved in calcium binding as well as by three outer loops, L1, L2, and L3. In summary, our study provides the structural basis for promiscuity and specificity of Epa adhesins, which might further contribute to developing anti-adhesive antimycotics and combating Candida colonization. PMID:23035251

  9. Probing the promiscuity of ent-kaurene oxidases via combinatorial biosynthesis

    PubMed Central

    Mafu, Sibongile; Jia, Meirong; Zi, Jiachen; Morrone, Dana; Wu, Yisheng; Xu, Meimei; Hillwig, Matthew L.

    2016-01-01

    The substrate specificity of enzymes from natural products’ metabolism is a topic of considerable interest, with potential biotechnological use implicit in the discovery of promiscuous enzymes. However, such studies are often limited by the availability of substrates and authentic standards for identification of the resulting products. Here, a modular metabolic engineering system is used in a combinatorial biosynthetic approach toward alleviating this restriction. In particular, for studies of the multiply reactive cytochrome P450, ent-kaurene oxidase (KO), which is involved in production of the diterpenoid plant hormone gibberellin. Many, but not all, plants make a variety of related diterpenes, whose structural similarity to ent-kaurene makes them potential substrates for KO. Use of combinatorial biosynthesis enabled analysis of more than 20 such potential substrates, as well as structural characterization of 12 resulting unknown products, providing some insight into the underlying structure–function relationships. These results highlight the utility of this approach for investigating the substrate specificity of enzymes from complex natural products’ biosynthesis. PMID:26884192

  10. Probing the promiscuity of ent-kaurene oxidases via combinatorial biosynthesis.

    PubMed

    Mafu, Sibongile; Jia, Meirong; Zi, Jiachen; Morrone, Dana; Wu, Yisheng; Xu, Meimei; Hillwig, Matthew L; Peters, Reuben J

    2016-03-01

    The substrate specificity of enzymes from natural products' metabolism is a topic of considerable interest, with potential biotechnological use implicit in the discovery of promiscuous enzymes. However, such studies are often limited by the availability of substrates and authentic standards for identification of the resulting products. Here, a modular metabolic engineering system is used in a combinatorial biosynthetic approach toward alleviating this restriction. In particular, for studies of the multiply reactive cytochrome P450, ent-kaurene oxidase (KO), which is involved in production of the diterpenoid plant hormone gibberellin. Many, but not all, plants make a variety of related diterpenes, whose structural similarity to ent-kaurene makes them potential substrates for KO. Use of combinatorial biosynthesis enabled analysis of more than 20 such potential substrates, as well as structural characterization of 12 resulting unknown products, providing some insight into the underlying structure-function relationships. These results highlight the utility of this approach for investigating the substrate specificity of enzymes from complex natural products' biosynthesis.

  11. Protein interaction evolution from promiscuity to specificity with reduced flexibility in an increasingly complex network

    PubMed Central

    Alhindi, T.; Zhang, Z.; Ruelens, P.; Coenen, H.; Degroote, H.; Iraci, N.; Geuten, K.

    2017-01-01

    A key question regarding protein evolution is how proteins adapt to the dynamic environment in which they function and how in turn their evolution shapes the protein interaction network. We used extant and resurrected ancestral plant MADS-domain transcription factors to understand how SEPALLATA3, a protein with hub and glue properties, evolved and takes part in network organization. Although the density of dimeric interactions was saturated in the network, many new interactions became mediated by SEPALLATA3 after a whole genome triplication event. By swapping SEPALLATA3 and its ancestors between dimeric networks of different ages, we found that the protein lost the capacity of promiscuous interaction and acquired specificity in evolution. This was accompanied with constraints on conformations through proline residue accumulation, which made the protein less flexible. SHORT VEGETATIVE PHASE on the other hand (non-hub) was able to gain protein-protein interactions due to a C-terminal domain insertion, allowing for a larger interaction interface. These findings illustrate that protein interaction evolution occurs at the level of conformational dynamics, when the binding mechanism concerns an induced fit or conformational selection. Proteins can evolve towards increased specificity with reduced flexibility when the complexity of the protein interaction network requires specificity. PMID:28337996

  12. Systems-Wide Prediction of Enzyme Promiscuity Reveals a New Underground Alternative Route for Pyridoxal 5’-Phosphate Production in E. coli

    DOE PAGES

    Oberhardt, Matthew A.; Zarecki, Raphy; Reshef, Leah; ...

    2016-01-28

    Recent insights suggest that non-specific and/or promiscuous enzymes are common and active across life. Understanding the role of such enzymes is an important open question in biology. Here we develop a genome-wide method, PROPER, that uses a permissive PSI-BLAST approach to predict promiscuous activities of metabolic genes. Enzyme promiscuity is typically studied experimentally using multicopy suppression, in which over-expression of a promiscuous ‘replacer’ gene rescues lethality caused by inactivation of a ‘target’ gene. We use PROPER to predict multicopy suppression in Escherichia coli, achieving highly significant overlap with published cases (hypergeometric p = 4.4e-13). We then validate three novel predictedmore » target-replacer gene pairs in new multicopy suppression experiments. We next go beyond PROPER and develop a network-based approach, GEM-PROPER, that integrates PROPER with genome-scale metabolic modeling to predict promiscuous replacements via alternative metabolic pathways. GEM-PROPER predicts a new indirect replacer (thiG) for an essential enzyme (pdxB) in production of pyridoxal 5’-phosphate (the active form of Vitamin B6), which we validate experimentally via multicopy suppression. Here, we perform a structural analysis of thiG to determine its potential promiscuous active site, which we validate experimentally by inactivating the pertaining residues and showing a loss of replacer activity. Thus, this study is a successful example where a computational investigation leads to a network-based identification of an indirect promiscuous replacement of a key metabolic enzyme, which would have been extremely difficult to identify directly.« less

  13. Systems-Wide Prediction of Enzyme Promiscuity Reveals a New Underground Alternative Route for Pyridoxal 5’-Phosphate Production in E. coli

    PubMed Central

    Reshef, Leah; Xia, Fangfang; Duran-Frigola, Miquel; Schreiber, Rachel; Henry, Christopher S.; Ben-Tal, Nir; Dwyer, Daniel J.; Gophna, Uri; Ruppin, Eytan

    2016-01-01

    Recent insights suggest that non-specific and/or promiscuous enzymes are common and active across life. Understanding the role of such enzymes is an important open question in biology. Here we develop a genome-wide method, PROPER, that uses a permissive PSI-BLAST approach to predict promiscuous activities of metabolic genes. Enzyme promiscuity is typically studied experimentally using multicopy suppression, in which over-expression of a promiscuous ‘replacer’ gene rescues lethality caused by inactivation of a ‘target’ gene. We use PROPER to predict multicopy suppression in Escherichia coli, achieving highly significant overlap with published cases (hypergeometric p = 4.4e-13). We then validate three novel predicted target-replacer gene pairs in new multicopy suppression experiments. We next go beyond PROPER and develop a network-based approach, GEM-PROPER, that integrates PROPER with genome-scale metabolic modeling to predict promiscuous replacements via alternative metabolic pathways. GEM-PROPER predicts a new indirect replacer (thiG) for an essential enzyme (pdxB) in production of pyridoxal 5’-phosphate (the active form of Vitamin B6), which we validate experimentally via multicopy suppression. We perform a structural analysis of thiG to determine its potential promiscuous active site, which we validate experimentally by inactivating the pertaining residues and showing a loss of replacer activity. Thus, this study is a successful example where a computational investigation leads to a network-based identification of an indirect promiscuous replacement of a key metabolic enzyme, which would have been extremely difficult to identify directly. PMID:26821166

  14. Systems-Wide Prediction of Enzyme Promiscuity Reveals a New Underground Alternative Route for Pyridoxal 5’-Phosphate Production in E. coli

    SciTech Connect

    Oberhardt, Matthew A.; Zarecki, Raphy; Reshef, Leah; Xia, Fangfang; Duran-Frigola, Miquel; Schreiber, Rachel; Henry, Christopher S.; Ben-Tal, Nir; Dwyer, Daniel J.; Gophna, Uri; Ruppin, Eytan

    2016-01-28

    Recent insights suggest that non-specific and/or promiscuous enzymes are common and active across life. Understanding the role of such enzymes is an important open question in biology. Here we develop a genome-wide method, PROPER, that uses a permissive PSI-BLAST approach to predict promiscuous activities of metabolic genes. Enzyme promiscuity is typically studied experimentally using multicopy suppression, in which over-expression of a promiscuous ‘replacer’ gene rescues lethality caused by inactivation of a ‘target’ gene. We use PROPER to predict multicopy suppression in Escherichia coli, achieving highly significant overlap with published cases (hypergeometric p = 4.4e-13). We then validate three novel predicted target-replacer gene pairs in new multicopy suppression experiments. We next go beyond PROPER and develop a network-based approach, GEM-PROPER, that integrates PROPER with genome-scale metabolic modeling to predict promiscuous replacements via alternative metabolic pathways. GEM-PROPER predicts a new indirect replacer (thiG) for an essential enzyme (pdxB) in production of pyridoxal 5’-phosphate (the active form of Vitamin B6), which we validate experimentally via multicopy suppression. Here, we perform a structural analysis of thiG to determine its potential promiscuous active site, which we validate experimentally by inactivating the pertaining residues and showing a loss of replacer activity. Thus, this study is a successful example where a computational investigation leads to a network-based identification of an indirect promiscuous replacement of a key metabolic enzyme, which would have been extremely difficult to identify directly.

  15. The Impact of Non-Enzymatic Reactions and Enzyme Promiscuity on Cellular Metabolism during (Oxidative) Stress Conditions

    PubMed Central

    Piedrafita, Gabriel; Keller, Markus A; Ralser, Markus

    2015-01-01

    Cellular metabolism assembles in a structurally highly conserved, but functionally dynamic system, known as the metabolic network. This network involves highly active, enzyme-catalyzed metabolic pathways that provide the building blocks for cell growth. In parallel, however, chemical reactivity of metabolites and unspecific enzyme function give rise to a number of side products that are not part of canonical metabolic pathways. It is increasingly acknowledged that these molecules are important for the evolution of metabolism, affect metabolic efficiency, and that they play a potential role in human disease—age-related disorders and cancer in particular. In this review we discuss the impact of oxidative and other cellular stressors on the formation of metabolic side products, which originate as a consequence of: (i) chemical reactivity or modification of regular metabolites; (ii) through modifications in substrate specificity of damaged enzymes; and (iii) through altered metabolic flux that protects cells in stress conditions. In particular, oxidative and heat stress conditions are causative of metabolite and enzymatic damage and thus promote the non-canonical metabolic activity of the cells through an increased repertoire of side products. On the basis of selected examples, we discuss the consequences of non-canonical metabolic reactivity on evolution, function and repair of the metabolic network. PMID:26378592

  16. The Impact of Non-Enzymatic Reactions and Enzyme Promiscuity on Cellular Metabolism during (Oxidative) Stress Conditions.

    PubMed

    Piedrafita, Gabriel; Keller, Markus A; Ralser, Markus

    2015-09-10

    Cellular metabolism assembles in a structurally highly conserved, but functionally dynamic system, known as the metabolic network. This network involves highly active, enzyme-catalyzed metabolic pathways that provide the building blocks for cell growth. In parallel, however, chemical reactivity of metabolites and unspecific enzyme function give rise to a number of side products that are not part of canonical metabolic pathways. It is increasingly acknowledged that these molecules are important for the evolution of metabolism, affect metabolic efficiency, and that they play a potential role in human disease-age-related disorders and cancer in particular. In this review we discuss the impact of oxidative and other cellular stressors on the formation of metabolic side products, which originate as a consequence of: (i) chemical reactivity or modification of regular metabolites; (ii) through modifications in substrate specificity of damaged enzymes; and (iii) through altered metabolic flux that protects cells in stress conditions. In particular, oxidative and heat stress conditions are causative of metabolite and enzymatic damage and thus promote the non-canonical metabolic activity of the cells through an increased repertoire of side products. On the basis of selected examples, we discuss the consequences of non-canonical metabolic reactivity on evolution, function and repair of the metabolic network.

  17. Short communication: association of HLA-A*1101 with resistance and B*4006 with susceptibility to HIV and HIV-TB: an in silico analysis of promiscuous T cell epitopes.

    PubMed

    Raghavan, S; Selvaraj, P; Swaminathan, S; Narendran, G

    2009-10-01

    We have shown the association of HLA-A*11 with resistance and HLA-B*40 and -DR2 with susceptibility to HIV and HIV-TB. In the present study, we performed high-resolution subtyping of HLA-A*11 and -B*40 to identify the subtype level association, using the polymerase chain reaction-based sequence-specific oligonucleotide probe method. Underrepresentation of HLA-A*1101 was observed in overall HIV [p(c) = 0.012, OR 0.42 (95% confidence interval (CI) 0.24-0.72)] and HIV(+)TB(+) [p(c) = 0.001, OR 0.18 (95% CI 0.06-0.46)] compared to healthy controls. Significantly higher frequencies of HLA-B*4006 were observed in overall HIV [p = 0.0001, p(c) = 0.004, OR 2.71 (95% CI 1.58-4.75)], HIV(+)TB(-) [p = 0.0003, p(c) = 0.008, OR 2.82 (95% CI 1.56-5.17)], and HIV(+)TB(+) [p = 0.003, p(c) = 0.086, OR 2.56 (95% CI 1.33-4.95)] compared to healthy controls. An in silico analysis of potential T cell epitopes of consensus Gag and Pol sequences of HIV-1 subtype C Indian strains revealed relatively higher number of promiscuous HLA-B40, HLA-DRB1*1501, and -DRB1*1502 (HLA-DR2)-restricted epitopes in contrast to limited numbers of promiscuous binders restricted by HLA-A*1101. The results suggest that HLA-A*1101 may be associated with protection against HIV and the development of TB in HIV patients while HLA-B*4006 may be associated with susceptibility to HIV and TB development in HIV patients. The present study also suggests that the extent of promiscuity of T cell epitopes of HIV-1 subtype C restricted by HLA alleles exerting opposing effects might differ.

  18. Artificial gene amplification reveals an abundance of promiscuous resistance determinants in Escherichia coli

    PubMed Central

    Soo, Valerie W. C.; Hanson-Manful, Paulina; Patrick, Wayne M.

    2011-01-01

    Duplicated genes provide an important raw material for adaptive evolution. However, the relationship between gene duplication and the emergence of new biochemical functions is complicated, and it has been difficult to quantify the likelihood of evolving novelty in any systematic manner. Here, we describe a comprehensive search for artificially amplified genes that are able to impart new phenotypes on Escherichia coli, provided their expression is up-regulated. We used a high-throughput, library-on-library strategy to screen for resistance to antibiotics and toxins. Cells containing a complete E. coli ORF library were exposed to 237 toxin-containing environments. From 86 of these environments, we identified a total of 115 cases where overexpressed ORFs imparted improved growth. Of the overexpressed ORFs that we tested, most conferred small but reproducible increases in minimum inhibitory concentration (≤16-fold) for their corresponding antibiotics. In many cases, proteins were acting promiscuously to impart resistance. In the absence of toxins, most strains bore no fitness cost associated with ORF overexpression. Our results show that even the genome of a nonpathogenic bacterium harbors a substantial reservoir of resistance genes, which can be readily accessed through overexpression mutations. During the growth of a population under selection, these mutations are most likely to be gene amplifications. Therefore, our work provides validation and biochemical insight into the innovation, amplification, and divergence model of gene evolution under continuous selection [Bergthorsson U, Andersson DI, Roth JR (2007) Proc Natl Acad Sci USA 104:17004–17009], and also illustrates the high frequency at which novel traits can evolve in bacterial populations. PMID:21173244

  19. Ig-like domains on bacteriophages: a tale of promiscuity and deceit.

    PubMed

    Fraser, James S; Yu, Zhou; Maxwell, Karen L; Davidson, Alan R

    2006-06-02

    The immunoglobulin (Ig) fold is one of the most important structures in biology, playing essential roles in the vertebrate immune response, cell adhesion, and many other processes. Through bioinformatic analysis, we have discovered that Ig-like domains are often found in the constituent proteins of tailed double-stranded (ds) DNA bacteriophage particles, and are likely displayed on the surface of these viruses. These phage Ig-like domains fall into three distinct sequence families, which are similar to the classic immunoglobulin domain (I-Set), the fibronectin type 3 repeat (FN3), and the bacterial Ig-like domain (Big2). The phage Ig-like domains are very promiscuous. They are attached to more than ten different functional classes of proteins, and found in all three morphogenetic classes of tailed dsDNA phages. In addition, they reside in phages that infect a diverse set of gram negative and gram positive bacteria. These domains are deceptive because many are added to larger proteins through programmed ribosomal frameshifting, so that they are not always detected by standard protein sequence searching procedures. In addition, the presence of unrecognized Ig-like domains in a variety of phage proteins with different functions has led to gene misannotation. Our results demonstrate that horizontal gene transfer involving Ig-like domain encoding DNA has occurred commonly between diverse classes of both lytic and temperate phages, which otherwise display very limited sequence similarities to one another. We suggest that phage may have been an important vector in the spread of Ig-like domains through diverse species of bacteria. While the function of the phage Ig-like domains is unknown, several lines of evidence suggest that they may play an accessory role in phage infection by weakly interacting with carbohydrates on the bacterial cell surface.

  20. Molecular mechanisms of action of the soy isoflavones includes activation of promiscuous nuclear receptors. A review.

    PubMed

    Ricketts, Marie-Louise; Moore, David D; Banz, William J; Mezei, Orsolya; Shay, Neil F

    2005-06-01

    advances in the discovery and evaluation of the promiscuous nuclear receptors that bind many different chemical ligands should prove to help explain some of the biological effects of soy isoflavones and other phytochemicals.

  1. Promiscuous stimulation of ParF protein polymerization by heterogeneous centromere binding factors.

    PubMed

    Machón, Cristina; Fothergill, Timothy J G; Barillà, Daniela; Hayes, Finbarr

    2007-11-16

    The segrosome is the nucleoprotein complex that mediates accurate segregation of bacterial plasmids. The segrosome of plasmid TP228 comprises ParF and ParG proteins that assemble on the parH centromere. ParF, which exemplifies one clade of the ubiquitous ParA superfamily of segregation proteins, polymerizes extensively in response to ATP binding. Polymerization is modulated by the ParG centromere binding factor (CBF). The segrosomes of plasmids pTAR, pVT745 and pB171 include ParA homologues of the ParF subgroup, as well as diverse homodimeric CBFs with no primary sequence similarity to ParG, or each other. Centromere binding by these analogues is largely specific. Here, we establish that the ParF homologues of pTAR and pB171 filament modestly with ATP, and that nucleotide hydrolysis is not required for this polymerization, which is more prodigious when the cognate CBF is also present. By contrast, the ParF homologue of plasmid pVT745 did not respond appreciably to ATP alone, but polymerized extensively in the presence of both its cognate CBF and ATP. The co-factors also stimulated nucleotide-independent polymerization of cognate ParF proteins. Moreover, apart from the CBF of pTAR, the disparate ParG analogues promoted polymerization of non-cognate ParF proteins suggesting that filamentation of the ParF proteins is enhanced by a common mechanism. Like ParG, the co-factors may be modular, possessing a centromere-specific interaction domain linked to a flexible region containing determinants that promiscuously stimulate ParF polymerization. The CBFs appear to function as bacterial analogues of formins, microtubule-associated proteins or related ancillary factors that regulate eucaryotic cytoskeletal dynamics.

  2. Shifting to structures in physics and biology: a prophylactic for promiscuous realism.

    PubMed

    French, Steven

    2011-06-01

    Within the philosophy of science, the realism debate has been revitalised by the development of forms of structural realism. These urge a shift in focus from the object oriented ontologies that come and go through the history of science to the structures that remain through theory change. Such views have typically been elaborated in the context of theories of physics and are motivated by, first of all, the presence within such theories of mathematical equations that allow straightforward representation of the relevant structures; and secondly, the implications of such theories for the individuality and identity of putative objects. My aim in this paper is to explore the possibility of extending such views to biological theories. An obvious concern is that within the context of the latter it is typically insisted that we cannot find the kinds of highly mathematised structures that structural realism can point to in physics. I shall indicate how the model-theoretic approach to theories might help allay such concerns. Furthermore, issues of identity and individuality also arise within biology. Thus Dupré has recently noted that there exists a 'General Problem of Biological Individuality' which relates to the issue of how one divides 'massively integrated and interconnected' systems into discrete components. In response Dupré advocates a form of 'Promiscuous Realism' that holds, for example, that there is no unique way of dividing the phylogenetic tree into kinds. Instead I shall urge serious consideration of those aspects of the work of Dupré and others that lean towards a structuralist interpretation. By doing so I hope to suggest possible ways in which a structuralist stance might be extended to biology.

  3. Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli.

    PubMed

    Hayes, Robert P; Xiao, Yibei; Ding, Fran; van Erp, Paul B G; Rajashankar, Kanagalaghatta; Bailey, Scott; Wiedenheft, Blake; Ke, Ailong

    2016-02-25

    Clustered regularly interspaced short palindromic repeats (CRISPRs) and the cas (CRISPR-associated) operon form an RNA-based adaptive immune system against foreign genetic elements in prokaryotes. Type I accounts for 95% of CRISPR systems, and has been used to control gene expression and cell fate. During CRISPR RNA (crRNA)-guided interference, Cascade (CRISPR-associated complex for antiviral defence) facilitates the crRNA-guided invasion of double-stranded DNA for complementary base-pairing with the target DNA strand while displacing the non-target strand, forming an R-loop. Cas3, which has nuclease and helicase activities, is subsequently recruited to degrade two DNA strands. A protospacer adjacent motif (PAM) sequence flanking target DNA is crucial for self versus foreign discrimination. Here we present the 2.45 Å crystal structure of Escherichia coli Cascade bound to a foreign double-stranded DNA target. The 5'-ATG PAM is recognized in duplex form, from the minor groove side, by three structural features in the Cascade Cse1 subunit. The promiscuity inherent to minor groove DNA recognition rationalizes the observation that a single Cascade complex can respond to several distinct PAM sequences. Optimal PAM recognition coincides with wedge insertion, initiating directional target DNA strand unwinding to allow segmented base-pairing with crRNA. The non-target strand is guided along a parallel path 25 Å apart, and the R-loop structure is further stabilized by locking this strand behind the Cse2 dimer. These observations provide the structural basis for understanding the PAM-dependent directional R-loop formation process.

  4. Novel Immunity Proteins Associated with Colicin M-like Bacteriocins Exhibit Promiscuous Protection in Pseudomonas

    PubMed Central

    Ghequire, Maarten G. K.; Kemland, Lieselore; De Mot, René

    2017-01-01

    Bacteriocins related to colicin M, acting via cleavage of the cell wall precursor lipid II, have been characterized in γ- and β-proteobacteria. Depending on the species, immunity is provided by either an inner membrane-anchored periplasmic protein or by an integral membrane protein. In Pseudomonas however, the immunity partner of colicin M-like bacteriocins remains unknown. Based on an in silico analysis in pseudomonad genomes, we here identify a gene encoding a putative immunity partner that represents a novel type of integral membrane protein (PmiA, Pseudomonas colicin M-like immunity type A). By heterologous expression of pmiA genes in susceptible strains, we show that immunity to colicin M-like bacteriocins is indeed provided by the cognate PmiA. Sequence homology among PmiA proteins is essentially absent, except for a short motif with a conserved periplasm-exposed aspartate residue. However, PmiA's protective function is not abolished by changing this acidic residue to the uncharged alanine. Immunity by PmiAs appears promiscuous to the extent that PmiA homologs from a clade sharing <40% pairwise amino acid identity, equally provide protection against the bacteriocin linked to the original PmiA. This study shows that multiple immunity factors have evolved independently to silence lipid II-targeting enzymatic bacteriocins. Their relaxed bacteriocin immunization capacity contrasts to the strict specificity of immunity proteins shielding the enzymatic domain of nuclease bacteriocins. The nature of associated immune functions needs consideration when using such natural protein antibiotics or designing novel variants. PMID:28194143

  5. Promiscuous and Adaptable Enzymes Fill “Holes” in the Tetrahydrofolate Pathway in Chlamydia Species

    PubMed Central

    Adams, Nancy E.; Thiaville, Jennifer J.; Proestos, James; Juárez-Vázquez, Ana L.; McCoy, Andrea J.; Barona-Gómez, Francisco; Iwata-Reuyl, Dirk

    2014-01-01

    ABSTRACT Folates are tripartite molecules comprising pterin, para-aminobenzoate (PABA), and glutamate moieties, which are essential cofactors involved in DNA and amino acid synthesis. The obligately intracellular Chlamydia species have lost several biosynthetic pathways for essential nutrients which they can obtain from their host but have retained the capacity to synthesize folate. In most bacteria, synthesis of the pterin moiety of folate requires the FolEQBK enzymes, while synthesis of the PABA moiety is carried out by the PabABC enzymes. Bioinformatic analyses reveal that while members of Chlamydia are missing the genes for FolE (GTP cyclohydrolase) and FolQ, which catalyze the initial steps in de novo synthesis of the pterin moiety, they have genes for the rest of the pterin pathway. We screened a chlamydial genomic library in deletion mutants of Escherichia coli to identify the “missing genes” and identified a novel enzyme, TrpFCtL2, which has broad substrate specificity. TrpFCtL2, in combination with GTP cyclohydrolase II (RibA), the first enzyme of riboflavin synthesis, provides a bypass of the first two canonical steps in folate synthesis catalyzed by FolE and FolQ. Notably, TrpFCtL2 retains the phosphoribosyl anthranilate isomerase activity of the original annotation. Additionally, we independently confirmed the recent discovery of a novel enzyme, CT610, which uses an unknown precursor to synthesize PABA and complements E. coli mutants with deletions of pabA, pabB, or pabC. Thus, Chlamydia species have evolved a variant folate synthesis pathway that employs a patchwork of promiscuous and adaptable enzymes recruited from other biosynthetic pathways. PMID:25006229

  6. Eukaryotic formylglycine-generating enzyme catalyses a monooxygenase type of reaction.

    PubMed

    Peng, Jianhe; Alam, Sarfaraz; Radhakrishnan, Karthikeyan; Mariappan, Malaiyalam; Rudolph, Markus Georg; May, Caroline; Dierks, Thomas; von Figura, Kurt; Schmidt, Bernhard

    2015-09-01

    C α-formylglycine (FGly) is the catalytic residue of sulfatases in eukaryotes. It is generated by a unique post-translational modification catalysed by the FGly-generating enzyme (FGE) in the endoplasmic reticulum. FGE oxidizes a cysteine residue within the conserved CxPxR sequence motif of nascent sulfatase polypeptides to FGly. Here we show that this oxidation is strictly dependent on molecular oxygen (O2) and consumes 1 mol O2 per mol FGly formed. For maximal activity FGE requires an O2 concentration of 9% (105 μM). Sustained FGE activity further requires the presence of a thiol-based reductant such as DTT. FGly is also formed in the absence of DTT, but its formation ceases rapidly. Thus inactivated FGE accumulates in which the cysteine pair Cys336/Cys341 in the catalytic site is oxidized to form disulfide bridges between either Cys336 and Cys341 or Cys341 and the CxPxR cysteine of the sulfatase. These results strongly suggest that the Cys336/Cys341 pair is directly involved in the O2 -dependent conversion of the CxPxR cysteine to FGly. The available data characterize eukaryotic FGE as a monooxygenase, in which Cys336/Cys341 disulfide bridge formation donates the electrons required to reduce one oxygen atom of O2 to water while the other oxygen atom oxidizes the CxPxR cysteine to FGly. Regeneration of a reduced Cys336/Cys341 pair is accomplished in vivo by a yet unknown reductant of the endoplasmic reticulum or in vitro by DTT. Remarkably, this monooxygenase reaction utilizes O2 without involvement of any activating cofactor.

  7. In Silico Prediction of Inhibition of Promiscuous Breast Cancer Resistance Protein (BCRP/ABCG2)

    PubMed Central

    Ding, Yi-Lung; Shih, Yu-Hsuan; Tsai, Fu-Yuan; Leong, Max K.

    2014-01-01

    Background Breast cancer resistant protein has an essential role in active transport of endogenous substances and xenobiotics across extracellular and intracellular membranes along with P-glycoprotein. It also plays a major role in multiple drug resistance and permeation of blood-brain barrier. Therefore, it is of great importance to derive theoretical models to predict the inhibition of both transporters in the process of drug discovery and development. Hitherto, very limited BCRP inhibition predictive models have been proposed as compared with its P-gp counterpart. Methodology/Principal Findings An in silico BCRP inhibition model was developed in this study using the pharmacophore ensemble/support vector machine scheme to take into account the promiscuous nature of BCRP. The predictions by the PhE/SVM model were found to be in good agreement with the observed values for those molecules in the training set (n = 22, r2 = 0.82,  = 0.73, RMSE  =  0.40, s = 0.24), test set (n = 97, q2 = 0.75–0.89, RMSE  = 0.31, s = 0.21), and outlier set (n = 16, q2 = 0.72–0.91, RMSE  =  0.29, s = 0.17). When subjected to a variety of statistical validations, the developed PhE/SVM model consistently met the most stringent criteria. A mock test by HIV protease inhibitors also asserted its predictivity. Conclusions/Significance It was found that this accurate, fast, and robust PhE/SVM model can be employed to predict the BCRP inhibition of structurally diverse molecules that otherwise cannot be carried out by any other methods in a high-throughput fashion to design therapeutic agents with insignificant drug toxicity and unfavorable drug–drug interactions mediated by BCRP to enhance clinical efficacy and/or circumvent drug resistance. PMID:24614353

  8. Extracellular Ca(2+)-sensing receptor is a promiscuous divalent cation sensor that responds to lead.

    PubMed

    Handlogten, M E; Shiraishi, N; Awata, H; Huang, C; Miller, R T

    2000-12-01

    The extracellular Ca(2+)-sensing receptor (CaR) responds to polycations, including Ca(2+) and neomycin. This receptor is a physiological regulator of systemic Ca(2+) metabolism and may also mediate the toxic effects of hypercalcemia. A number of divalent cations, including Pb(2+), Co(2+), Cd(2+), and Fe(2+), are toxic to the kidney, brain, and other tissues where the CaR is expressed. To determine which divalent cations can activate the CaR, we expressed the human CaR in HEK-293 cells and measured activation of phospholipase A(2) (PLA(2)) and the mitogen-activated protein kinase p42ERK in response to potential agonists for the receptor. HEK-293 cells expressing the nonfunctional mutant CaR R796W served as controls. Extracellular Ca(2+), Ba(2+), Cd(2+), Co(2+), Fe(2+), Gd(3+), Ni(2+), Pb(2+), and neomycin activated the CaR, but Hg(2+) and Fe(3+) did not. We analyzed the kinetics of activation of p42ERK and PLA(2) by the CaR in response to Ca(2+), Co(2+), and Pb(2+). The EC(50) values ranged from approximately 0.1 mM for Pb(2+) to approximately 4.0 mM for Ca(2+). The Hill coefficients were >3, indicating multiple cooperative ligand binding sites or subunits. Submaximal concentrations of Ca(2+) and Pb(2+) were additive for activation of the CaR. The EC(50) for Ca(2+) or Pb(2+) was reduced four- to fivefold by the presence of the other ion. These divalent cations also activated PLA(2) via the CaR in Madin-Darby canine kidney cells that stably express the CaR. We conclude that many divalent cations activate the CaR and that their effects are additive. The facts that the CaR is a promiscuous polycation sensor and that the effects of these ions are additive to activate it suggest that the CaR may contribute to the toxicity of some heavy metals such as Pb(2+), Cd(2+), Co(2+), and Fe(2+) for the kidney and other tissues where it is expressed.

  9. Versatility or promiscuity: the estrogen receptors, control of ligand selectivity and an update on subtype selective ligands.

    PubMed

    Ng, Hui Wen; Perkins, Roger; Tong, Weida; Hong, Huixiao

    2014-08-26

    The estrogen receptors (ERs) are a group of versatile receptors. They regulate an enormity of processes starting in early life and continuing through sexual reproduction, development, and end of life. This review provides a background and structural perspective for the ERs as part of the nuclear receptor superfamily and discusses the ER versatility and promiscuity. The wide repertoire of ER actions is mediated mostly through ligand-activated transcription factors and many DNA response elements in most tissues and organs. Their versatility, however, comes with the drawback of promiscuous interactions with structurally diverse exogenous chemicals with potential for a wide range of adverse health outcomes. Even when interacting with endogenous hormones, ER actions can have adverse effects in disease progression. Finally, how nature controls ER specificity and how the subtle differences in receptor subtypes are exploited in pharmaceutical design to achieve binding specificity and subtype selectivity for desired biological response are discussed. The intent of this review is to complement the large body of literature with emphasis on most recent developments in selective ER ligands.

  10. Dual modulation of inward rectifier potassium currents in olfactory neuronal cells by promiscuous G protein coupling of the oxytocin receptor.

    PubMed

    Gravati, Marta; Busnelli, Marta; Bulgheroni, Elisabetta; Reversi, Alessandra; Spaiardi, Paolo; Parenti, Marco; Toselli, Mauro; Chini, Bice

    2010-09-01

    Oxytocin receptor is a seven transmembrane receptor widely expressed in the CNS that triggers G(i) or G(q) protein-mediated signaling cascades leading to the regulation of a variety of neuroendocrine and cognitive functions. We decided to investigate whether and how the promiscuous receptor/G protein coupling affects neuronal excitability. As an experimental model, we used the immortalized gonadotropin-releasing hormone-positive GN11 cell line displaying the features of immature, migrating olfactory neurons. Using RT-PCR analysis, we detected the presence of oxytocin receptors whose stimulation by oxytocin led to the accumulation of inositol phosphates and to the inhibition of cell proliferation, and the expression of several inward rectifier (IR) K+ channel subtypes. Moreover, electrophysiological and pharmacological inspections using whole-cell patch-clamp recordings evidenced that in GN11 cells, IR channel subtypes are responsive to oxytocin. In particular, we found that: (i) peptide activation of receptor either inhibited or stimulated IR conductances, and (ii) IR current inhibition was mediated by a pertussis toxin-resistant G protein presumably of the G(q/11) subtype, and by phospholipase C, whereas IR current activation was achieved via receptor coupling to a pertussis toxin-sensitive G(i/o) protein. The findings suggest that neuronal excitability might be tuned by a single peptide receptor that mediates opposing effects on distinct K+ channels through the promiscuous coupling to different G proteins.

  11. Melatonin affects the dynamic steady-state equilibrium of estrogen sulfates in human umbilical vein endothelial cells by regulating the balance between estrogen sulfatase and sulfotransferase.

    PubMed

    González, Alicia; Martínez-Campa, Carlos; Alonso-González, Carolina; Cos, Samuel

    2015-12-01

    Melatonin is known to reduce the growth of endocrine-responsive breast cancers by interacting with estrogen signaling pathways. Estrogens play an important role in breast cancer, but also in various types of tissues, including vascular tissue. Estrogen sulfatase (STS) converts inactive estrogen sulfates into active estrogens, whereas estrogen sulfotransferase (EST) sulfonates estrogens to estrogen sulfates. Therefore, STS and EST are considered to be involved in the regulation of local estrogen levels in hormone‑dependent tumors and in non-pathologic tissues, such as those of the vascular system. Estrogens have a major impact on the vasculature, influencing vascular function, the expression of adhesion proteins, angiogenesis and the inflammatory state. In this study, we investigated the status of STS and EST in human umbilical vein endothelial cells (HUVECs) and the modulatory effects of melatonin. Both STS and EST were highly expressed in the HUVECs. The enzymatic activity correlated with the expression levels in these cells. Our findings also demonstrated that melatonin, at physiological concentrations, modulated the synthesis and transformation of biologically active estrogens in HUVECs through the inhibition of STS activity and expression, and the stimulation of EST activity and expression. Since melatonin decreased the STS levels and increased the EST levels, it modified the dynamic steady‑state equilibrium of estrogen sulfates by increasing the inactive estrogen levels and decreasing the active estrogen levels. Therefore, melatonin may modulate the known different biological actions of estrogens in endothelial cells, as well as in estrogen-dependent tumors and non-pathologic tissues.

  12. Enzyme replacement therapy for Morquio A: an active recombinant N-acetylgalactosamine-6-sulfate sulfatase produced in Escherichia coli BL21.

    PubMed

    Rodríguez, Alexander; Espejo, Angela J; Hernández, Alejandra; Velásquez, Olga L; Lizaraso, Lina M; Cordoba, Henry A; Sánchez, Oscar F; Alméciga-Díaz, Carlos J; Barrera, Luis A

    2010-11-01

    Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disorder caused by N-acetylgalactosamine-6-sulfate sulfatase (GALNS) deficiency. Currently no effective therapies exist for MPS IVA. In this work, production of a recombinant GALNS enzyme (rGALNS) in Escherichia coli BL21 strain was studied. At shake scale, the effect of glucose concentration on microorganism growth, and microorganism culture and induction times on rGALNS production were evaluated. At bench scale, the effect of aeration and agitation on microorganism growth, and culture and induction times were evaluated. The highest enzyme activity levels at shake scale were observed in 12 h culture after 2-4 h induction. At bench scale the highest enzyme activity levels were observed after 2 h induction. rGALNS amounts in inclusion bodies fraction were up to 17-fold higher than those observed in the soluble fraction. However, the highest levels of active enzyme were found in the soluble fraction. Western blot analysis showed the presence of a 50-kDa band, in both soluble and inclusion bodies fractions. These results show for the first time the feasibility and potential of production of active rGALNS in a prokaryotic system for development of enzyme replacement therapy for MPS IVA disease.

  13. Overexpression of sulfatase-1 in murine hepatocarcinoma Hca-F cell line downregulates mesothelin and leads to reduction in lymphatic metastasis, both in vitro and in vivo

    PubMed Central

    Mahmoud, Salma; Ibrahim, Mohammed; Hago, Ahmed; Huang, Yuhong; Wei, Yuanyi; Zhang, Jun; Zhang, Qingqing; Xiao, Yu; Wang, Jingwen; Adam, Munkaila; Guo, Yu; Wang, Li; Zhou, Shuting; Xin, Boyi; Xuan, Wei; Tang, Jianwu

    2016-01-01

    Lymphatic vessels function as transport channels for tumor cells to metastasize from the primary site into the lymph nodes. In this experiment we evaluated the effect of Sulfatase-1 (Sulf-1) on metastasis by upregulating it in murine hepatocarcinoma cell line Hca-F with high lymph node metastatic rate of >75%. The study in vitro showed that upregulation of Sulf-1 in Hca-F cells significantly reduced cell proliferation, migration and invasion (p<0.05). Also, the forced expression of Sulf-1 downregulated Mesothelin (Msln) at both the protein and mRNA levels. The experiment in vivo further showed that up-regulation of Sulf-1 with the attendant downregulation of mesothelin delayed tumor growth and decreased lymph node metastasis. In conclusion, our findings show that Sulf-1 is an important tumor suppressor gene in hepatocellular carcinoma (HCC), and its overexpression downregulates Msln and results in a decrease in HCC cell proliferation, migration, invasion, and lymphatic metastasis. This functional relationship between Sulf-1 and Msln could be exploited for the development of a novel liver cancer therapy. PMID:27626699

  14. Enzymatic Ugi Reaction with Amines and Cyclic Imines.

    PubMed

    Żądło-Dobrowolska, Anna; Kłossowski, Szymon; Koszelewski, Dominik; Paprocki, Daniel; Ostaszewski, Ryszard

    2016-11-07

    The application of the Ugi reaction to the construction of new peptide scaffolds is an important goal of organic chemistry. To date, there are no examples of the Ugi reaction being performed with a cyclic imine and amine simultaneously. The application of 2-substituted cyclic imines in an enzymatic three-component Ugi-type reaction provides an elegant and attractive synthesis of substituted pyrrolidine and piperidine derivatives in up to 60 % yield. Results on studies of the selection of an enzyme, amount of water, and solvent used in a novel three-component Ugi reaction and the limitations thereof are reported herein. The presented methodology exploiting enzyme promiscuity in the multicomponent reaction fulfills the requirements associated with green chemistry. Several methods, such as isotope labeling and enzyme inhibition, were used to probe the possible mechanism of this complex synthesis. This research is the first example of an enzyme-catalyzed Ugi-type reaction with an imine, amine, and isocyanide.

  15. Metabolic Noise, Vestigial Metabolites or the Raw Material of Ecological Adaptation? Opportunitistic Enzymes, Catalytic Promiscuity and the Evolution of chemodiversity in Nature (2010 JGI User Meeting)

    ScienceCinema

    Noel, Joseph

    2016-07-12

    Joseph Noel from the Salk Institute on "Metabolic Noise, Vestigial Metabolites or the Raw Material of Ecological Adaptation? Enzymes, Catalytic Promiscuity and the Evolution of Chemodiversity in Nature" on March 26, 2010 at the 5th Annual DOE JGI User Meeting

  16. Parents' Divorce Is More Strongly Related to the Self-Perceived Promiscuity and Drinking Behavior of Male than of Female College Students

    ERIC Educational Resources Information Center

    Stringfellow, Erica L.; McAndrew, Francis T.

    2010-01-01

    A study of 357 students (112 males, 245 females) responding to an online survey at a Midwestern liberal arts college revealed that males and children from divorced families perceived themselves as more promiscuous and drank more than did students from intact families. However, a significant interaction between the gender of the students and the…

  17. Metabolic Noise, Vestigial Metabolites or the Raw Material of Ecological Adaptation? Opportunitistic Enzymes, Catalytic Promiscuity and the Evolution of chemodiversity in Nature (2010 JGI User Meeting)

    SciTech Connect

    Noel, Joseph

    2010-03-26

    Joseph Noel from the Salk Institute on "Metabolic Noise, Vestigial Metabolites or the Raw Material of Ecological Adaptation? Enzymes, Catalytic Promiscuity and the Evolution of Chemodiversity in Nature" on March 26, 2010 at the 5th Annual DOE JGI User Meeting

  18. The Search for Elusive Structure: A Promiscuous Realist Case for Researching Specific Psychotic Experiences Such as Hallucinations

    PubMed Central

    Bentall, Richard P.

    2014-01-01

    Problems in psychiatric classification have impeded research into psychopathology for more than a century. Here, I briefly review several new approaches to solving this problem, including the internalizing-externalizing-psychosis spectra, the 5-factor model of psychotic symptoms, and the more recent network approach. Researchers and clinicians should probably adopt an attitude of promiscuous realism and assume that a single classification system is unlikely to be effective for all purposes, and that different systems will need to be chosen for research into etiology, public mental health research, and clinical activities. Progress in understanding the risk factors and mechanisms that lead to psychopathology is most likely to be achieved by focusing on specific types of experience or symptoms such as hallucinations. PMID:24936080

  19. A Novel Semi-biosynthetic Route for Artemisinin Production Using Engineered Substrate-Promiscuous P450BM3

    SciTech Connect

    Dietrich, Jeffrey; Yoshikuni, Yasuo; Fisher, Karl; Woolard, Frank; Ockey, Denise; McPhee, Derek; Renninger, Neil; Chang, Michelle; Baker, David; Keasling, Jay

    2009-11-30

    Production of fine heterologus pathways in microbial hosts is frequently hindered by insufficient knowledge of the native metabolic pathway and its cognate enzymes; often the pathway is unresolved and enzymes lack detailed characterization. An alternative paradigm to using native pathways is de novo pathway design using well-characterized, substrate-promiscuous enzymes. We demonstrate this concept using P450BM3 from Bacillus megaterium. Using a computer model, we illustrate how key P450BM3 activ site mutations enable binding of non-native substrate amorphadiene, incorporating these mutations into P450BM3 enabled the selective oxidation of amorphadiene arteminsinic-11s,12-epoxide, at titers of 250 mg L"1 in E. coli. We also demonstrate high-yeilding, selective transformations to dihydroartemisinic acid, the immediate precursor to the high value anti-malarial drug artemisinin.

  20. Genetic analysis of 17 children with Hunter syndrome: identification and functional characterization of four novel mutations in the iduronate-2-sulfatase gene.

    PubMed

    Chistiakov, Dimitry A; Kuzenkova, Lyudmila M; Savost'anov, Kirill V; Gevorkyan, Anait K; Pushkov, Alexander A; Nikitin, Alexey G; Vashakmadze, Nato D; Zhurkova, Natalia V; Podkletnova, Tatiana V; Namazova-Baranova, Leila S; Baranov, Alexander A

    2014-04-20

    Mucopolysaccharidosis type II (MPS II) is a rare X-linked disorder caused by alterations in the iduronate-2-sulfatase (IDS) gene. In this study, IDS activity in peripheral mononuclear blood monocytes (PMBCs) was measured with a fluorimetric enzyme assay. Urinary glycosaminoglycans (GAGs) were quantified using a colorimetric assay. All IDS exons and intronic flanks were bidirectionally sequenced. A total of 15 mutations (all exonic region) were found in 17 MPS II patients. In this cohort of MPS II patients, all alterations in the IDS gene were caused by point nucleotide substitutions or small deletions. Mutations p.Arg88His and p.Arg172* occurred twice. All mutations were inherited except for p.Gly489Alafs*7, a germline mutation. We found four new mutations (p.Ser142Phe, p.Arg233Gly, p.Glu430*, and p.Ile360Tyrfs*31). In Epstein-Barr virus (EBV)-immortalized PMBCs derived from the MPS II patients, no IDS protein was detected in case of the p.Ser142Phe and p.Ile360Tyrfs*31 mutants. For p.Arg233Gly and p.Glu430*, we observed a residual expression of IDS. The p.Arg233Gly and p.Glu430* mutants had a residuary enzymatic activity that was lowered by 14.3 and 76-fold, respectively, compared with healthy controls. This observation may help explain the mild disease phenotype in MPS II patients who had these two mutations whereas the p.Ser142Phe and p.Ile360Tyrfs*31 mutations caused the severe disease manifestation.

  1. Inhibition of Phosphatase Activity Follows Decline in Sulfatase Activity and Leads to Transcriptional Effects through Sustained Phosphorylation of Transcription Factor MITF

    PubMed Central

    Bhattacharyya, Sumit; Feferman, Leo; Tobacman, Joanne K.

    2016-01-01

    Arylsulfatase B (B-acetylgalactosamine 4-sulfatase; ARSB) is the enzyme that removes 4-sulfate groups from the non-reducing end of the glycosaminoglycans chondroitin 4-sulfate and dermatan sulfate. Decline in ARSB has been shown in malignant prostate, colonic, and mammary cells and tissues, and decline in ARSB leads to transcriptional events mediated by galectin-3 with AP-1 and Sp1. Increased mRNA expression of GPNMB (transmembrane glycoprotein NMB) in HepG2 cells and in hepatic tissue from ARSB-deficient mice followed decline in expression of ARSB and was mediated by the microphthalmia-associated transcription factor (MITF), but was unaffected by silencing galectin-3. Since GPNMB is increased in multiple malignancies, studies were performed to determine how decline in ARSB increased GPNMB expression. The mechanism by which decline in ARSB increased nuclear phospho-MITF was due to reduced activity of SHP2, a protein tyrosine phosphatase with Src homology (SH2) domains that regulates multiple cellular processes. SHP2 activity declined due to increased binding with chondroitin 4-sulfate when ARSB was reduced. When SHP2 activity was inhibited, phosphorylations of p38 mitogen-associated phosphokinase (MAPK) and of MITF increased, leading to GPNMB promoter activation. A dominant negative SHP2 construct, the SHP2 inhibitor PHSP1, and silencing of ARSB increased phospho-p38, nuclear MITF, and GPNMB. In contrast, constitutively active SHP2 and overexpression of ARSB inhibited GPNMB expression. The interaction between chondroitin 4-sulfate and SHP2 is a novel intersection between sulfation and phosphorylation, by which decline in ARSB and increased chondroitin 4-sulfation can inhibit SHP2, thereby regulating downstream tyrosine phosphorylations by sustained phosphorylations with associated activation of signaling and transcriptional events. PMID:27078017

  2. Mouse model of N-acetylgalactosamine-6-sulfate sulfatase deficiency (Galns-/-) produced by targeted disruption of the gene defective in Morquio A disease.

    PubMed

    Tomatsu, Shunji; Orii, Koji O; Vogler, Carole; Nakayama, Jun; Levy, Beth; Grubb, Jeffrey H; Gutierrez, Monica A; Shim, Soomin; Yamaguchi, Seiji; Nishioka, Tatsuo; Montano, Adriana Maria; Noguchi, Akihiko; Orii, Tadao; Kondo, Naomi; Sly, William S

    2003-12-15

    Mucopolysaccharidosis IVA is an autosomal recessive disorder caused by a deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS), a lysosomal enzyme required for the stepwise degradation of keratan sulfate (KS) and chondroitin-6-sulfate (C6S). To generate a model for studies of the pathophysiology and of potential therapies, we disrupted exon 2 of Galns, the homologous murine gene. Homozygous Galns-/- mice have no detectable GALNS enzyme activity and show increased urinary glycosaminoglycan (GAGs) levels. These mice accumulate GAGs in multiple tissues including liver, kidney, spleen, heart, brain and bone marrow. At 2 months old, lysosomal storage is present primarily within reticuloendothelial cells such as Kupffer cells and cells of the sinusoidal lining of the spleen. Additionally, by 12 months old, vacuolar change is observed in the visceral epithelial cells of glomeruli and cells at the base of heart valves but it is not present in parenchymal cells such as hepatocytes and renal tubular epithelial cells. In the brain, hippocampal and neocortical neurons and meningeal cells had lysosomal storage. KS and C6S were more abundant in the cytoplasm of corneal epithelial cells of Galns-/- mice compared with wild-type mice by immunohistochemistry. Radiographs revealed no change in the skeletal bones of mice up to 12 months old. Thus, targeted disruption of the murine Galns gene has produced a murine model, which shows visceral storage of GAGs but lacks the skeletal features. The complete absence of GALNS in mutant mice makes them useful for studies of pharmacokinetics and tissue targeting of recombinant GALNS designed for enzyme replacement.

  3. Development of MPS IVA mouse (Galnstm(hC79S.mC76S)slu) tolerant to human N-acetylgalactosamine-6-sulfate sulfatase.

    PubMed

    Tomatsu, Shunji; Gutierrez, Monica; Nishioka, Tatsuo; Yamada, Masamichi; Yamada, Mana; Tosaka, Yasuhiro; Grubb, Jeffrey H; Montaño, Adriana M; Vieira, Matheus B; Trandafirescu, Georgeta G; Peña, Olga M; Yamaguchi, Seiji; Orii, Koji O; Orii, Tadao; Noguchi, Akihiko; Laybauer, Leticia

    2005-11-15

    Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disease caused by N-acetylgalactosamine-6-sulfate sulfatase (GALNS) deficiency. In recent studies of enzyme replacement therapy for animal models with lysosomal storage diseases, cellular and humoral immune responses to the injected enzymes have been recognized as major impediments to effective treatment. To study the long-term effectiveness and side effects of therapies in the absence of immune responses, we have developed an MPS IVA mouse model, which has many similarities to human MPS IVA and is tolerant to human GALNS protein. We used a construct containing both a transgene (cDNA) expressing inactive human GALNS in intron 1 and an active site mutation (C76S) in adjacent exon 2 and thereby introduced both the inactive cDNA and the C76S mutation into the murine Galns by targeted mutagenesis. Affected homozygous mice have no detectable GALNS enzyme activity and accumulate glycosaminoglycans in multiple tissues including visceral organs, brain, cornea, bone, ligament and bone marrow. At 3 months, lysosomal storage is marked within hepatocytes, reticuloendothelial Kupffer cells, and cells of the sinusoidal lining of the spleen, neurons and meningeal cells. The bone storage is also obvious, with lysosomal distention in osteoblasts and osteocytes lining the cortical bone, in chondrocytes and in the sinus lining cells in bone marrow. Ubiquitous expression of the inactive human GALNS was also confirmed by western blot using the anti-GALNS monoclonal antibodies newly produced, which resulted in tolerance to immune challenge with human enzyme. The newly generated MPS IVA mouse model should provide a good model to evaluate long-term administration of enzyme replacement.

  4. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins

    PubMed Central

    Dutta, Mouparna; Ghosh, Anindya S.; Oda, Masataka; Venkatramani, Ravindra; Rao, Basuthkar J.; Dandekar, Abhaya M.; Goñi, Félix M.

    2015-01-01

    The long term side effects of any newly introduced drug is a subject of intense research, and often raging controversies. One such example is the dipeptidyl peptidase-IV (DPP4) inhibitor used for treating type 2 diabetes, which is inconclusively implicated in increased susceptibility to acute pancreatitis. Previously, based on a computational analysis of the spatial and electrostatic properties of active site residues, we have demonstrated that phosphoinositide-specific phospholipase C (PI-PLC) from Bacillus cereus is a prolyl peptidase using in vivo experiments. In the current work, we first report the inhibition of the native activity of PI-PLC by two DPP4 inhibitors - vildagliptin (LAF-237) and K-579. While vildagliptin inhibited PI-PLC at micromolar concentrations, K-579 was a potent inhibitor even at nanomolar concentrations. Subsequently, we queried a comprehensive, non-redundant set of 5000 human proteins (50% similarity cutoff) with known structures using serine protease (SPASE) motifs derived from trypsin and DPP4. A pancreatic lipase and a gastric lipase are among the proteins that are identified as proteins having promiscuous SPASE scaffolds that could interact with DPP4 inhibitors. The presence of such scaffolds in human lipases is expected since they share the same catalytic mechanism with PI-PLC. However our methodology also detects other proteins, often with a completely different enzymatic mechanism, that have significantly congruent domains with the SPASE motifs. The reported elevated levels of serum lipase, although contested, could be rationalized by inhibition of lipases reported here. In an effort to further our understanding of the spatial and electrostatic basis of DPP4 inhibitors, we have also done a comprehensive analysis of all 76 known DPP4 structures liganded to inhibitors till date. Also, the methodology presented here can be easily adopted for other drugs, and provide the first line of filtering in the identification of pathways that

  5. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins.

    PubMed

    Chakraborty, Sandeep; Rendón-Ramírez, Adela; Ásgeirsson, Bjarni; Dutta, Mouparna; Ghosh, Anindya S; Oda, Masataka; Venkatramani, Ravindra; Rao, Basuthkar J; Dandekar, Abhaya M; Goñi, Félix M

    2013-01-01

    The long term side effects of any newly introduced drug is a subject of intense research, and often raging controversies. One such example is the dipeptidyl peptidase-IV (DPP4) inhibitor used for treating type 2 diabetes, which is inconclusively implicated in increased susceptibility to acute pancreatitis. Previously, based on a computational analysis of the spatial and electrostatic properties of active site residues, we have demonstrated that phosphoinositide-specific phospholipase C (PI-PLC) from Bacillus cereus is a prolyl peptidase using in vivo experiments. In the current work, we first report the inhibition of the native activity of PI-PLC by two DPP4 inhibitors - vildagliptin (LAF-237) and K-579. While vildagliptin inhibited PI-PLC at micromolar concentrations, K-579 was a potent inhibitor even at nanomolar concentrations. Subsequently, we queried a comprehensive, non-redundant set of 5000 human proteins (50% similarity cutoff) with known structures using serine protease (SPASE) motifs derived from trypsin and DPP4. A pancreatic lipase and a gastric lipase are among the proteins that are identified as proteins having promiscuous SPASE scaffolds that could interact with DPP4 inhibitors. The presence of such scaffolds in human lipases is expected since they share the same catalytic mechanism with PI-PLC. However our methodology also detects other proteins, often with a completely different enzymatic mechanism, that have significantly congruent domains with the SPASE motifs. The reported elevated levels of serum lipase, although contested, could be rationalized by inhibition of lipases reported here. In an effort to further our understanding of the spatial and electrostatic basis of DPP4 inhibitors, we have also done a comprehensive analysis of all 76 known DPP4 structures liganded to inhibitors till date. Also, the methodology presented here can be easily adopted for other drugs, and provide the first line of filtering in the identification of pathways that

  6. Mechanistic study of protein phosphatase-1 (PP1), a catalytically promiscuous enzyme.

    PubMed

    McWhirter, Claire; Lund, Elizabeth A; Tanifum, Eric A; Feng, Guoqiang; Sheikh, Qaiser I; Hengge, Alvan C; Williams, Nicholas H

    2008-10-15

    The reaction catalyzed by the protein phosphatase-1 (PP1) has been examined by linear free energy relationships and kinetic isotope effects. With the substrate 4-nitrophenyl phosphate (4NPP), the reaction exhibits a bell-shaped pH-rate profile for kcat/KM indicative of catalysis by both acidic and basic residues, with kinetic pKa values of 6.0 and 7.2. The enzymatic hydrolysis of a series of aryl monoester substrates yields a Brønsted beta(lg) of -0.32, considerably less negative than that of the uncatalyzed hydrolysis of monoester dianions (-1.23). Kinetic isotope effects in the leaving group with the substrate 4NPP are (18)(V/K) bridge = 1.0170 and (15)(V/K) = 1.0010, which, compared against other enzymatic KIEs with and without general acid catalysis, are consistent with a loose transition state with partial neutralization of the leaving group. PP1 also efficiently catalyzes the hydrolysis of 4-nitrophenyl methylphosphonate (4NPMP). The enzymatic hydrolysis of a series of aryl methylphosphonate substrates yields a Brønsted beta(lg) of -0.30, smaller than the alkaline hydrolysis (-0.69) and similar to the beta(lg) measured for monoester substrates, indicative of similar transition states. The KIEs and the beta(lg) data point to a transition state for the alkaline hydrolysis of 4NPMP that is similar to that of diesters with the same leaving group. For the enzymatic reaction of 4NPMP, the KIEs are indicative of a transition state that is somewhat looser than the alkaline hydrolysis reaction and similar to the PP1-catalyzed monoester reaction. The data cumulatively point to enzymatic transition states for aryl phosphate monoester and aryl methylphosphonate hydrolysis reactions that are much more similar to one another than the nonenzymatic hydrolysis reactions of the two substrates.

  7. Synthesis of aromatase inhibitors and dual aromatase steroid sulfatase inhibitors by linking an arylsulfamate motif to 4-(4H-1,2,4-triazol-4-ylamino)benzonitrile: SAR, crystal structures, in vitro and in vivo activities.

    PubMed

    Bubert, Christian; Woo, L W Lawrence; Sutcliffe, Oliver B; Mahon, Mary F; Chander, Surinder K; Purohit, Atul; Reed, Michael J; Potter, Barry V L

    2008-11-01

    4-(((4-Cyanophenyl)(4H-1,2,4-triazol-4-yl)amino)methyl)phenyl sulfamate (6 a) was the first dual aromatase-sulfatase inhibitor (DASI) reported. Several series of its derivatives with various linker systems between the steroid sulfatase (STS) and the aromatase inhibitory pharmacophores were synthesised and evaluated in JEG-3 cells. The X-ray crystal structures of the aromatase inhibitors, DASI precursors 42 d and 60, and DASI 43 h were determined. Nearly all derivatives show improved in vitro aromatase inhibition over 6 a but decreased STS inhibition. The best aromatase inhibitor is 42 e (IC(50)=0.26 nM) and the best DASI is 43 e (IC(50 aromatase)=0.45 nM, IC(50 STS)=1200 nM). SAR for aromatase inhibition shows that compounds containing an alkylene- and thioether-based linker system are more potent than those that are ether-, sulfone-, or sulfonamide-based, and that the length of the linker has a limited effect on aromatase inhibition beyond two methylene units. Compounds 43 d-f were studied in vivo (10 mg kg(-1), single, p.o.). The most potent DASI is 43 e, which inhibited PMSG-induced plasma estradiol levels by 92 % and liver STS activity by 98 % 3 h after dosing. These results further strengthen the concept of designing and developing DASIs for potential treatment of hormone-related cancers.

  8. Further characterization of Cys-type and Ser-type anaerobic sulfatase maturating enzymes suggests a commonality in the mechanism of catalysis.

    PubMed

    Grove, Tyler L; Ahlum, Jessica H; Qin, Rosie M; Lanz, Nicholas D; Radle, Matthew I; Krebs, Carsten; Booker, Squire J

    2013-04-30

    The anaerobic sulfatase-maturating enzyme from Clostridium perfringens (anSMEcpe) catalyzes the two-electron oxidation of a cysteinyl residue on a cognate protein to a formylglycyl residue (FGly) using a mechanism that involves organic radicals. The FGly residue plays a unique role as a cofactor in a class of enzymes termed arylsulfatases, which catalyze the hydrolysis of various organosulfate monoesters. anSMEcpe has been shown to be a member of the radical S-adenosylmethionine (SAM) family of enzymes, [4Fe-4S] cluster-requiring proteins that use a 5'-deoxyadenosyl 5'-radical (5'-dA(•)) generated from a reductive cleavage of SAM to initiate radical-based catalysis. Herein, we show that anSMEcpe contains in addition to the [4Fe-4S] cluster harbored by all radical SAM (RS) enzymes, two additional [4Fe-4S] clusters, similar to the radical SAM protein AtsB, which catalyzes the two-electron oxidation of a seryl residue to a FGly residue. We show by size-exclusion chromatography that both AtsB and anSMEcpe are monomeric proteins, and site-directed mutagenesis studies of AtsB reveal that individual Cys → Ala substitutions at seven conserved positions result in an insoluble protein, consistent with those residues acting as ligands to the two additional [4Fe-4S] clusters. Ala substitutions at an additional conserved Cys residue (C291 in AtsB and C276 in anSMEcpe) afford proteins that display intermediate behavior. These proteins exhibit reduced solubility and drastically reduced activity, behavior that is conspicuously similar to that of a critical Cys residue in BtrN, another radical SAM dehydrogenase [Grove, T. L., et al. (2010) Biochemistry 49, 3783-3785]. We also show that wild-type anSMEcpe acts on peptides containing other oxidizable amino acids at the target position. Moreover, we show that the enzyme will convert threonyl peptides to the corresponding ketone product, and also allo-threonyl peptides, but with a significantly reduced efficiency, suggesting that

  9. Role of post-translational modifications at the β-subunit ectodomain in complex association with a promiscuous plant P4-ATPase

    PubMed Central

    Costa, Sara R.; Marek, Magdalena; Axelsen, Kristian B.; Theorin, Lisa; Pomorski, Thomas G.; López-Marqués, Rosa L.

    2016-01-01

    P-type ATPases of subfamily IV (P4-ATPases) constitute a major group of phospholipid flippases that form heteromeric complexes with members of the Cdc50 (cell division control 50) protein family. Some P4-ATPases interact specifically with only one β-subunit isoform, whereas others are promiscuous and can interact with several isoforms. In the present study, we used a site-directed mutagenesis approach to assess the role of post-translational modifications at the plant ALIS5 β-subunit ectodomain in the functionality of the promiscuous plant P4-ATPase ALA2. We identified two N-glycosylated residues, Asn181 and Asn231. Whereas mutation of Asn231 seems to have a small effect on P4-ATPase complex formation, mutation of evolutionarily conserved Asn181 disrupts interaction between the two subunits. Of the four cysteine residues located in the ALIS5 ectodomain, mutation of Cys86 and Cys107 compromises complex association, but the mutant β-subunits still promote complex trafficking and activity to some extent. In contrast, disruption of a conserved disulfide bond between Cys158 and Cys172 has no effect on the P4-ATPase complex. Our results demonstrate that post-translational modifications in the β-subunit have different functional roles in different organisms, which may be related to the promiscuity of the P4-ATPase. PMID:27048590

  10. Dydrogesterone (Duphaston) and its 20-dihydro-derivative as selective estrogen enzyme modulators in human breast cancer cell lines. Effect on sulfatase and on 17beta-hydroxysteroid dehydrogenase (17beta-HSD) activity.

    PubMed

    Chetrite, Gérard Samuel; Thole, Hubert H; Philippe, Jean-Claude; Pasqualini, Jorge Raul

    2004-01-01

    Estradiol (E2) is one of the main factors which control the growth and evolution of breast cancer. Consequently, to block the formation of E2 inside cancer cells has been an important target in recent years. Breast cancer cells possess all the enzymatic systems (e.g. sulfatase, aromatase, 17beta-hydroxysteroid dehydrogenase [17beta-HSD]) involved in the conversion of estrogen precursors into E2. Sulfotransferase, which converts estrogen to its sulfate, is also present in this tumoral tissue. Duphaston is a synthetic progestogen with properties similar to the natural progesterone. In the present study we examined the effect of Duphaston and its 20-dihydro-metabolite on the sulfatase and 17beta-HSD activities in MCF-7 and T-47D breast cancer cells. The cells were incubated with estrone sulfate (E1S) (5x10(-9)M) in the absence or presence of Duphaston or its 20-dihydro-metabolite (5x10(-5) to 5x10(-9)M) for 24h at 37 degrees C. In another series of experiments, estrone (E1) (5x10(-9)M) was incubated with T-47D cells in the absence or presence of the two progestogens (5x10(-5) to 5x10(-9)M) for 24h at 37 degrees C. E1S, E1 and E2 were characterized by thin layer chromatography and quantified using the corresponding standard. Duphaston and its 20-dihydro-metabolite, at concentrations of 5x10(-7) and 5x10(-5)M, inhibited the conversion of E1S to E2 by 14% and 63%, 65% and 74%, respectively, in MCF-7 cells; the values were 15% and 48% and 31% and 51%, respectively, in T-47D cells. In another series of experiments it was observed that, after 24-h incubation, E1 (5x10(-9)M) was converted in a great proportion to E2 in the T-47D cells and that this transformation was significantly inhibited by Duphaston and its 20-dihydro-metabolite. The IC50 value, corresponding to 50% of the inhibition in the conversion of 1 to E2, was 9x10(-6)M for 20-dihydro-metabolite in this cell line. It was concluded that the progestogen Duphaston and its 20-dihydro-metabolite are potent inhibitory

  11. Anaerobic metabolism of catechol by the denitrifying bacterium Thauera aromatica--a result of promiscuous enzymes and regulators?

    PubMed

    Ding, Bin; Schmeling, Sirko; Fuchs, Georg

    2008-03-01

    The anaerobic metabolism of catechol (1,2-dihydroxybenzene) was studied in the betaproteobacterium Thauera aromatica that was grown with CO2 as a cosubstrate and nitrate as an electron acceptor. Based on different lines of evidence and on our knowledge of enzymes and genes involved in the anaerobic metabolism of other aromatic substrates, the following pathway is proposed. Catechol is converted to catechylphosphate by phenylphosphate synthase, which is followed by carboxylation by phenylphosphate carboxylase at the para position to the phosphorylated phenolic hydroxyl group. The product, protocatechuate (3,4-dihydroxybenzoate), is converted to its coenzyme A (CoA) thioester by 3-hydroxybenzoate-CoA ligase. Protocatechuyl-CoA is reductively dehydroxylated to 3-hydroxybenzoyl-CoA, possibly by 4-hydroxybenzoyl-CoA reductase. 3-Hydroxybenzoyl-CoA is further metabolized by reduction of the aromatic ring catalyzed by an ATP-driven benzoyl-CoA reductase. Hence, the promiscuity of several enzymes and regulatory proteins may be sufficient to create the catechol pathway that is made up of elements of phenol, 3-hydroxybenzoate, 4-hydroxybenzoate, and benzoate metabolism.

  12. Conformational plasticity of RepB, the replication initiator protein of promiscuous streptococcal plasmid pMV158

    NASA Astrophysics Data System (ADS)

    Boer, D. Roeland; Ruiz-Masó, José Angel; Rueda, Manuel; Petoukhov, Maxim V.; Machón, Cristina; Svergun, Dmitri I.; Orozco, Modesto; Del Solar, Gloria; Coll, Miquel

    2016-02-01

    DNA replication initiation is a vital and tightly regulated step in all replicons and requires an initiator factor that specifically recognizes the DNA replication origin and starts replication. RepB from the promiscuous streptococcal plasmid pMV158 is a hexameric ring protein evolutionary related to viral initiators. Here we explore the conformational plasticity of the RepB hexamer by i) SAXS, ii) sedimentation experiments, iii) molecular simulations and iv) X-ray crystallography. Combining these techniques, we derive an estimate of the conformational ensemble in solution showing that the C-terminal oligomerisation domains of the protein form a rigid cylindrical scaffold to which the N-terminal DNA-binding/catalytic domains are attached as highly flexible appendages, featuring multiple orientations. In addition, we show that the hinge region connecting both domains plays a pivotal role in the observed plasticity. Sequence comparisons and a literature survey show that this hinge region could exists in other initiators, suggesting that it is a common, crucial structural element for DNA binding and manipulation.

  13. Carotenoid β-Ring Hydroxylase and Ketolase from Marine Bacteria—Promiscuous Enzymes for Synthesizing Functional Xanthophylls

    PubMed Central

    Misawa, Norihiko

    2011-01-01

    Marine bacteria belonging to genera Paracoccus and Brevundimonas of the α-Proteobacteria class can produce C40-type dicyclic carotenoids containing two β-end groups (β rings) that are modified with keto and hydroxyl groups. These bacteria produce astaxanthin, adonixanthin, and their derivatives, which are ketolated by carotenoid β-ring 4(4′)-ketolase (4(4′)-oxygenase; CrtW) and hydroxylated by carotenoid β-ring 3(3′)-hydroxylase (CrtZ). In addition, the genus Brevundimonas possesses a gene for carotenoid β-ring 2(2′)-hydroxylase (CrtG). This review focuses on these carotenoid β-ring-modifying enzymes that are promiscuous for carotenoid substrates, and pathway engineering for the production of xanthophylls (oxygen-containing carotenoids) in Escherichia coli, using these enzyme genes. Such pathway engineering researches are performed towards efficient production not only of commercially important xanthophylls such as astaxanthin, but also of xanthophylls minor in nature (e.g., β-ring(s)-2(2′)-hydroxylated carotenoids). PMID:21673887

  14. Promiscuous targeting of bromodomains by bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia

    PubMed Central

    Picaud, Sarah; Leonards, Katharina; Lambert, Jean-Philippe; Dovey, Oliver; Wells, Christopher; Fedorov, Oleg; Monteiro, Octovia; Fujisawa, Takao; Wang, Chen-Yi; Lingard, Hannah; Tallant, Cynthia; Nikbin, Nikzad; Guetzoyan, Lucie; Ingham, Richard; Ley, Steven V.; Brennan, Paul; Muller, Susanne; Samsonova, Anastasia; Gingras, Anne-Claude; Schwaller, Juerg; Vassiliou, George; Knapp, Stefan; Filippakopoulos, Panagis

    2016-01-01

    Bromodomains (BRDs) have emerged as compelling targets for cancer therapy. The development of selective and potent BET (bromo and extra-terminal) inhibitors and their significant activity in diverse tumor models have rapidly translated into clinical studies and have motivated drug development efforts targeting non-BET BRDs. However, the complex multidomain/subunit architecture of BRD protein complexes complicates predictions of the consequences of their pharmacological targeting. To address this issue, we developed a promiscuous BRD inhibitor [bromosporine (BSP)] that broadly targets BRDs (including BETs) with nanomolar affinity, creating a tool for the identification of cellular processes and diseases where BRDs have a regulatory function. As a proof of principle, we studied the effects of BSP on leukemic cell lines known to be sensitive to BET inhibition and found, as expected, strong antiproliferative activity. Comparison of the modulation of transcriptional profiles by BSP after a short exposure to the inhibitor resulted in a BET inhibitor signature but no significant additional changes in transcription that could account for inhibition of other BRDs. Thus, nonselective targeting of BRDs identified BETs, but not other BRDs, as master regulators of context-dependent primary transcription response. PMID:27757418

  15. Ligand-binding specificity and promiscuity of the main lignocellulolytic enzyme families as revealed by active-site architecture analysis

    PubMed Central

    Tian, Li; Liu, Shijia; Wang, Shuai; Wang, Lushan

    2016-01-01

    Biomass can be converted into sugars by a series of lignocellulolytic enzymes, which belong to the glycoside hydrolase (GH) families summarized in CAZy databases. Here, using a structural bioinformatics method, we analyzed the active site architecture of the main lignocellulolytic enzyme families. The aromatic amino acids Trp/Tyr and polar amino acids Glu/Asp/Asn/Gln/Arg occurred at higher frequencies in the active site architecture than in the whole enzyme structure. And the number of potential subsites was significantly different among different families. In the cellulase and xylanase families, the conserved amino acids in the active site architecture were mostly found at the −2 to +1 subsites, while in β-glucosidase they were mainly concentrated at the −1 subsite. Families with more conserved binding amino acid residues displayed strong selectivity for their ligands, while those with fewer conserved binding amino acid residues often exhibited promiscuity when recognizing ligands. Enzymes with different activities also tended to bind different hydroxyl oxygen atoms on the ligand. These results may help us to better understand the common and unique structural bases of enzyme-ligand recognition from different families and provide a theoretical basis for the functional evolution and rational design of major lignocellulolytic enzymes. PMID:27009476

  16. Conformational plasticity of RepB, the replication initiator protein of promiscuous streptococcal plasmid pMV158

    PubMed Central

    Boer, D. Roeland; Ruiz-Masó, José Angel; Rueda, Manuel; Petoukhov, Maxim V.; Machón, Cristina; Svergun, Dmitri I.; Orozco, Modesto; del Solar, Gloria; Coll, Miquel

    2016-01-01

    DNA replication initiation is a vital and tightly regulated step in all replicons and requires an initiator factor that specifically recognizes the DNA replication origin and starts replication. RepB from the promiscuous streptococcal plasmid pMV158 is a hexameric ring protein evolutionary related to viral initiators. Here we explore the conformational plasticity of the RepB hexamer by i) SAXS, ii) sedimentation experiments, iii) molecular simulations and iv) X-ray crystallography. Combining these techniques, we derive an estimate of the conformational ensemble in solution showing that the C-terminal oligomerisation domains of the protein form a rigid cylindrical scaffold to which the N-terminal DNA-binding/catalytic domains are attached as highly flexible appendages, featuring multiple orientations. In addition, we show that the hinge region connecting both domains plays a pivotal role in the observed plasticity. Sequence comparisons and a literature survey show that this hinge region could exists in other initiators, suggesting that it is a common, crucial structural element for DNA binding and manipulation. PMID:26875695

  17. Promiscuous CTL recognition of viral epitopes on multiple human leukocyte antigens: biological validation of the proposed HLA A24 supertype.

    PubMed

    Burrows, Scott R; Elkington, Rebecca A; Miles, John J; Green, Katherine J; Walker, Susan; Haryana, Sofia M; Moss, Denis J; Dunckley, Heather; Burrows, Jacqueline M; Khanna, Rajiv

    2003-08-01

    Multiple HLA class I alleles can bind peptides with common sequence motifs due to structural similarities in the peptide binding cleft, and these groups of alleles have been classified into supertypes. Nine major HLA supertypes have been proposed, including an A24 supertype that includes A*2301, A*2402, and A*3001. Evidence for this A24 supertype is limited to HLA sequence homology and/or similarity in peptide binding motifs for the alleles. To investigate the immunological relevance of this proposed supertype, we have examined two viral epitopes (from EBV and CMV) initially defined as HLA-A*2301-binding peptides. The data clearly demonstrate that each peptide could be recognized by CTL clones in the context of A*2301 or A*2402; thus validating the inclusion of these three alleles within an A24 supertype. Furthermore, CTL responses to the EBV epitope were detectable in both A*2301(+) and A*2402(+) individuals who had been previously exposed to this virus. These data substantiate the biological relevance of the A24 supertype, and the identification of viral epitopes with the capacity to bind promiscuously across this supertype could aid efforts to develop CTL-based vaccines or immunotherapy. The degeneracy in HLA restriction displayed by some T cells in this study also suggests that the dogma of self-MHC restriction needs some refinement to accommodate foreign peptide recognition in the context of multiple supertype alleles.

  18. Promiscuous speciation with gene flow in silverside fish genus Odontesthes (Atheriniformes, Atherinopsidae) from south western Atlantic Ocean basins.

    PubMed

    García, Graciela; Ríos, Néstor; Gutiérrez, Verónica; Varela, Jorge Guerra; Bouza Fernández, Carmen; Pardo, Belén Gómez; Portela, Paulino Martínez

    2014-01-01

    The present paper integrates phylogenetic and population genetics analyses based on mitochondrial and nuclear molecular markers in silversides, genus Odontesthes, from a non-sampled area in the SW Atlantic Ocean to address species discrimination and to define Managements Units for sustainable conservation. All phylogenetic analyses based on the COI mitochondrial gene were consistent to support the monophyly of the genus Odontesthes and to include O. argentinensis, O. perugiae-humensis and some O. bonariensis haplotypes in a basal polytomy conforming a major derivative clade. Microsatellites data revealed somewhat higher genetic variability values in the O. argentinensis-perugia populations than in O. bonariensis and O. perugia-humensis taxa. Contrasting population genetics structuring emerged from mitochondrial and microsatellites analyses in these taxa. Whereas mitochondrial data supported two major groups (O. argentinensis-perugia-humensis vs. O. bonariensis-perugiae-humensis populations), microsatellite data detected three major genetic entities represented by O. bonariensis, O. perugiae-humensis and an admixture of populations belonging to O. argentinensis-perugiae respectively. Therefore, the star COI polytomy in the tree topology involving these taxa could be interpreted by several hypothetic scenarios such as the existence of shared ancestral polymorphisms, incomplete lineage sorting in a radiating speciation process and/or reticulation events. Present findings support that promiscuous and recent contact between incipient species sharing asymmetric gene flow exchanges, blurs taxa boundaries yielding complicated taxonomy and Management Units delimitation in silverside genus Odontesthes from SW Atlantic Ocean basins.

  19. The Promiscuity of [beta]-Strand Pairing Allows for Rational Design of [beta]-Sheet Face Inversion

    SciTech Connect

    Makabe, Koki; Koide, Shohei

    2009-06-17

    Recent studies suggest the dominant role of main-chain H-bond formation in specifying {beta}-sheet topology. Its essentially sequence-independent nature implies a large degree of freedom in designing {beta}-sheet-based nanomaterials. Here we show rational design of {beta}-sheet face inversions by incremental deletions of {beta}-strands from the single-layer {beta}-sheet of Borrelia outer surface protein A. We show that a {beta}-sheet structure can be maintained when a large number of native contacts are removed and that one can design large-scale conformational transitions of a {beta}-sheet such as face inversion by exploiting the promiscuity of strand-strand interactions. High-resolution X-ray crystal structures confirmed the success of the design and supported the importance of main-chain H-bonds in determining {beta}-sheet topology. This work suggests a simple but effective strategy for designing and controlling nanomaterials based on {beta}-rich peptide self-assemblies.

  20. Promiscuous Speciation with Gene Flow in Silverside Fish Genus Odontesthes (Atheriniformes, Atherinopsidae) from South Western Atlantic Ocean Basins

    PubMed Central

    García, Graciela; Ríos, Néstor; Gutiérrez, Verónica; Varela, Jorge Guerra; Bouza Fernández, Carmen; Pardo, Belén Gómez; Portela, Paulino Martínez

    2014-01-01

    The present paper integrates phylogenetic and population genetics analyses based on mitochondrial and nuclear molecular markers in silversides, genus Odontesthes, from a non-sampled area in the SW Atlantic Ocean to address species discrimination and to define Managements Units for sustainable conservation. All phylogenetic analyses based on the COI mitochondrial gene were consistent to support the monophyly of the genus Odontesthes and to include O. argentinensis, O. perugiae-humensis and some O. bonariensis haplotypes in a basal polytomy conforming a major derivative clade. Microsatellites data revealed somewhat higher genetic variability values in the O. argentinensis-perugia populations than in O. bonariensis and O. perugia-humensis taxa. Contrasting population genetics structuring emerged from mitochondrial and microsatellites analyses in these taxa. Whereas mitochondrial data supported two major groups (O. argentinensis-perugia-humensis vs. O. bonariensis-perugiae-humensis populations), microsatellite data detected three major genetic entities represented by O. bonariensis, O. perugiae-humensis and an admixture of populations belonging to O. argentinensis-perugiae respectively. Therefore, the star COI polytomy in the tree topology involving these taxa could be interpreted by several hypothetic scenarios such as the existence of shared ancestral polymorphisms, incomplete lineage sorting in a radiating speciation process and/or reticulation events. Present findings support that promiscuous and recent contact between incipient species sharing asymmetric gene flow exchanges, blurs taxa boundaries yielding complicated taxonomy and Management Units delimitation in silverside genus Odontesthes from SW Atlantic Ocean basins. PMID:25126842

  1. Evaluating the promiscuous nature of tyrosine kinase inhibitors assessed in A431 epidermoid carcinoma cells by both chemical- and phosphoproteomics.

    PubMed

    Giansanti, Piero; Preisinger, Christian; Huber, Kilian V M; Gridling, Manuela; Superti-Furga, Giulio; Bennett, Keiryn L; Heck, Albert J R

    2014-07-18

    Deregulation of protein tyrosine kinase signaling has been linked to many diseases, most notably cancer. As a consequence, small molecule inhibitors of protein tyrosine kinases may provide powerful strategies for treatment. Following the successful introduction of imatinib in the treatment of chronic myelogenous leukemia, such drugs are also now evaluated for other types of cancer. However, many developed kinase inhibitors are not very target-specific and therefore may induce side effects. The importance of such side effects is certainly cell-proteome dependent. Understanding the all-inclusive action of a tyrosine kinase inhibitor on each individual cell-type entails the identification of potential targets, combined with monitoring the downstream effects revealing the signaling networks involved. Here, we explored a multilevel quantitative mass spectrometry-based proteomic strategy to identify the direct targets and downstream signaling effect of four tyrosine kinase inhibitors (imatinib, dasatinib, bosutinib, and nilotinib) in epidermoid carcinoma cells, as a model system for skin-cancer. More than 25 tyrosine kinases showed affinity to the drugs, with imatinib and nilotinib displaying a high specificity, especially when compared to dasatinib and bosutinib. Consequently, the latter two drugs showed a larger effect on downstream phosphotyrosine signaling. Many of the proteins affected are key regulators in cell adhesion and invasion. Our data represents a multiplexed view on the promiscuous action of certain tyrosine kinase inhibitors that needs to be taking into consideration prior to the application of these drugs in the treatment of different forms of cancer.

  2. MINEs: Open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics

    SciTech Connect

    Jeffryes, James G.; Colastani, Ricardo L.; Elbadawi-Sidhu, Mona; Kind, Tobias; Niehaus, Thomas D.; Broadbelt, Linda J.; Hanson, Andrew D.; Fiehn, Oliver; Tyo, Keith E. J.; Henry, Christopher S.

    2015-08-28

    Metabolomics have proven difficult to execute in an untargeted and generalizable manner. Liquid chromatography–mass spectrometry (LC–MS) has made it possible to gather data on thousands of cellular metabolites. However, matching metabolites to their spectral features continues to be a bottleneck, meaning that much of the collected information remains uninterpreted and that new metabolites are seldom discovered in untargeted studies. These challenges require new approaches that consider compounds beyond those available in curated biochemistry databases. Here we present Metabolic In silico Network Expansions (MINEs), an extension of known metabolite databases to include molecules that have not been observed, but are likely to occur based on known metabolites and common biochemical reactions. We utilize an algorithm called the Biochemical Network Integrated Computational Explorer (BNICE) and expert-curated reaction rules based on the Enzyme Commission classification system to propose the novel chemical structures and reactions that comprise MINE databases. Starting from the Kyoto Encyclopedia of Genes and Genomes (KEGG) COMPOUND database, the MINE contains over 571,000 compounds, of which 93% are not present in the PubChem database. However, these MINE compounds have on average higher structural similarity to natural products than compounds from KEGG or PubChem. MINE databases were able to propose annotations for 98.6% of a set of 667 MassBank spectra, 14% more than KEGG alone and equivalent to PubChem while returning far fewer candidates per spectra than PubChem (46 vs. 1715 median candidates). Application of MINEs to LC–MS accurate mass data enabled the identity of an unknown peak to be confidently predicted. MINE databases are freely accessible for non-commercial use via user-friendly web-tools at http://minedatabase.mcs.anl.gov and developer-friendly APIs. MINEs improve metabolomics peak identification as compared to general chemical databases whose results

  3. MINEs: Open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics

    DOE PAGES

    Jeffryes, James G.; Colastani, Ricardo L.; Elbadawi-Sidhu, Mona; ...

    2015-08-28

    Metabolomics have proven difficult to execute in an untargeted and generalizable manner. Liquid chromatography–mass spectrometry (LC–MS) has made it possible to gather data on thousands of cellular metabolites. However, matching metabolites to their spectral features continues to be a bottleneck, meaning that much of the collected information remains uninterpreted and that new metabolites are seldom discovered in untargeted studies. These challenges require new approaches that consider compounds beyond those available in curated biochemistry databases. Here we present Metabolic In silico Network Expansions (MINEs), an extension of known metabolite databases to include molecules that have not been observed, but are likelymore » to occur based on known metabolites and common biochemical reactions. We utilize an algorithm called the Biochemical Network Integrated Computational Explorer (BNICE) and expert-curated reaction rules based on the Enzyme Commission classification system to propose the novel chemical structures and reactions that comprise MINE databases. Starting from the Kyoto Encyclopedia of Genes and Genomes (KEGG) COMPOUND database, the MINE contains over 571,000 compounds, of which 93% are not present in the PubChem database. However, these MINE compounds have on average higher structural similarity to natural products than compounds from KEGG or PubChem. MINE databases were able to propose annotations for 98.6% of a set of 667 MassBank spectra, 14% more than KEGG alone and equivalent to PubChem while returning far fewer candidates per spectra than PubChem (46 vs. 1715 median candidates). Application of MINEs to LC–MS accurate mass data enabled the identity of an unknown peak to be confidently predicted. MINE databases are freely accessible for non-commercial use via user-friendly web-tools at http://minedatabase.mcs.anl.gov and developer-friendly APIs. MINEs improve metabolomics peak identification as compared to general chemical databases whose

  4. RNF17 blocks promiscuous activity of PIWI proteins in mouse testes

    PubMed Central

    Wasik, Kaja A.; Tam, Oliver H.; Knott, Simon R.; Falciatori, Ilaria; Hammell, Molly; Vagin, Vasily V.; Hannon, Gregory J.

    2015-01-01

    PIWI proteins and their associated piRNAs protect germ cells from the activity of mobile genetic elements. Two classes of piRNAs—primary and secondary—are defined by their mechanisms of biogenesis. Primary piRNAs are processed directly from transcripts of piRNA cluster loci, whereas secondary piRNAs are generated in an adaptive amplification loop, termed the ping-pong cycle. In mammals, piRNA populations are dynamic, shifting as male germ cells develop. Embryonic piRNAs consist of both primary and secondary species and are mainly directed toward transposons. In meiotic cells, the piRNA population is transposon-poor and largely restricted to primary piRNAs derived from pachytene piRNA clusters. The transition from the embryonic to the adult piRNA pathway is not well understood. Here we show that RNF17 shapes adult meiotic piRNA content by suppressing the production of secondary piRNAs. In the absence of RNF17, ping-pong occurs inappropriately in meiotic cells. Ping-pong initiates piRNA responses against not only transposons but also protein-coding genes and long noncoding RNAs, including genes essential for germ cell development. Thus, the sterility of Rnf17 mutants may be a manifestation of a small RNA-based autoimmune reaction. PMID:26115953

  5. Probing the mechanisms for the selectivity and promiscuity of methyl parathion hydrolase

    PubMed Central

    Purg, Miha; Pabis, Anna; Baier, Florian; Tokuriki, Nobuhiko; Jackson, Colin

    2016-01-01

    Diverse organophosphate hydrolases have convergently evolved the ability to hydrolyse man-made organophosphates. Thus, these enzymes are attractive model systems for studying the factors shaping enzyme functional evolution. Methyl parathion hydrolase (MPH) is an enzyme from the metallo-β-lactamase superfamily, which hydrolyses a wide range of organophosphate, aryl ester and lactone substrates. In addition, MPH demonstrates metal-ion-dependent selectivity patterns. The origins of this remain unclear, but are linked to open questions about the more general role of metal ions in functional evolution and divergence within enzyme superfamilies. Here, we present detailed mechanistic studies of the paraoxonase and arylesterase activities of MPH complexed with five different transition metal ions, and demonstrate that the hydrolysis reactions proceed via similar pathways and transition states. However, while it is possible to discern a clear structural origin for the selectivity between different substrates, the selectivity between different metal ions appears to lie instead in the distinct electrostatic properties of the metal ions themselves, which causes subtle changes in transition state geometries and metal–metal distances at the transition state rather than significant structural changes in the active site. While subtle, these differences can be significant for shaping the metal-ion-dependent activity patterns observed for this enzyme. This article is part of the themed issue ‘Multiscale modelling at the physics–chemistry–biology interface’. PMID:27698033

  6. Probing the mechanisms for the selectivity and promiscuity of methyl parathion hydrolase.

    PubMed

    Purg, Miha; Pabis, Anna; Baier, Florian; Tokuriki, Nobuhiko; Jackson, Colin; Kamerlin, Shina Caroline Lynn

    2016-11-13

    Diverse organophosphate hydrolases have convergently evolved the ability to hydrolyse man-made organophosphates. Thus, these enzymes are attractive model systems for studying the factors shaping enzyme functional evolution. Methyl parathion hydrolase (MPH) is an enzyme from the metallo-β-lactamase superfamily, which hydrolyses a wide range of organophosphate, aryl ester and lactone substrates. In addition, MPH demonstrates metal-ion-dependent selectivity patterns. The origins of this remain unclear, but are linked to open questions about the more general role of metal ions in functional evolution and divergence within enzyme superfamilies. Here, we present detailed mechanistic studies of the paraoxonase and arylesterase activities of MPH complexed with five different transition metal ions, and demonstrate that the hydrolysis reactions proceed via similar pathways and transition states. However, while it is possible to discern a clear structural origin for the selectivity between different substrates, the selectivity between different metal ions appears to lie instead in the distinct electrostatic properties of the metal ions themselves, which causes subtle changes in transition state geometries and metal-metal distances at the transition state rather than significant structural changes in the active site. While subtle, these differences can be significant for shaping the metal-ion-dependent activity patterns observed for this enzyme.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  7. Molecular promiscuity of plant polyphenols in the management of age-related diseases: far beyond their antioxidant properties.

    PubMed

    Barrajón-Catalán, Enrique; Herranz-López, María; Joven, Jorge; Segura-Carretero, Antonio; Alonso-Villaverde, Carlos; Menéndez, Javier A; Micol, Vicente

    2014-01-01

    The use of plant-derived polyphenols for the management of diseases has been under debate in the last decades. Most studies have focused on the specific effects of polyphenols on particular targets, while ignoring their pleiotropic character. The multitargeted character of polyphenols, a plausible consequence of their molecular promiscuity, may suppose an opportunity to fight multifactorial diseases. Therefore, a wider perspective is urgently needed to elucidate whether their rational use as bioactive food components may be valid for the management of diseases. In this chapter, we discuss the most likely targets of polyphenols that may account for their salutary effects from a global perspective. Among these targets, the modulation of signalling and energy-sensitive pathways, oxidative stress and inflammation-related processes, mitochondrial functionality, epigenetic machinery, histone acetylation and membrane-dependent processes play central roles in polyphenols' mechanisms of action.Sufficient evidence on polyphenols has accumulated for them to be considered a serious option for the management of non-communicable diseases, such as cancer and obesity, as well as infectious diseases. The remaining unresolved issues that must be seriously addressed are their bioavailability, metabolite detection, specific molecular targets, interactions and toxicity. The Xenohormesis hypothesis, which postulates that polyphenols are the product of plant evolutive adaptation to stress and conferee their resistance to mammals, offers a reasonable explanation to justify the beneficial and non-toxic effects of plant mixtures, but do not fully meet expectations. Hence, future research must be supported by the use of complex polypharmacology approaches and synergic studies focused on the understanding of the pleiotropic effects of polyphenols. Revisiting polyphenol mechanisms of action with the help of these techniques may allow for the improvement of human health and wellness by using

  8. Atypical cohesin-dockerin complex responsible for cell surface attachment of cellulosomal components: binding fidelity, promiscuity, and structural buttresses.

    PubMed

    Salama-Alber, Orly; Jobby, Maroor K; Chitayat, Seth; Smith, Steven P; White, Bryan A; Shimon, Linda J W; Lamed, Raphael; Frolow, Felix; Bayer, Edward A

    2013-06-07

    The rumen bacterium Ruminococcus flavefaciens produces a highly organized multienzyme cellulosome complex that plays a key role in the degradation of plant cell wall polysaccharides, notably cellulose. The R. flavefaciens cellulosomal system is anchored to the bacterial cell wall through a relatively small ScaE scaffoldin subunit, which bears a single type IIIe cohesin responsible for the attachment of two major dockerin-containing scaffoldin proteins, ScaB and the cellulose-binding protein CttA. Although ScaB recruits the catalytic machinery onto the complex, CttA mediates attachment of the bacterial substrate via its two putative carbohydrate-binding modules. In an effort to understand the structural basis for assembly and cell surface attachment of the cellulosome in R. flavefaciens, we determined the crystal structure of the high affinity complex (Kd = 20.83 nM) between the cohesin module of ScaE (CohE) and its cognate X-dockerin (XDoc) modular dyad from CttA at 1.97-Å resolution. The structure reveals an atypical calcium-binding loop containing a 13-residue insert. The results further pinpoint two charged specificity-related residues on the surface of the cohesin module that are responsible for specific versus promiscuous cross-strain binding of the dockerin module. In addition, a combined functional role for the three enigmatic dockerin inserts was established whereby these extraneous segments serve as structural buttresses that reinforce the stalklike conformation of the X-module, thus segregating its tethered complement of cellulosomal components from the cell surface. The novel structure of the RfCohE-XDoc complex sheds light on divergent dockerin structure and function and provides insight into the specificity features of the type IIIe cohesin-dockerin interaction.

  9. Promiscuous glycan site recognition by antibodies to the high-mannose patch of gp120 broadens neutralization of HIV

    PubMed Central

    Sok, Devin; Doores, Katie J.; Briney, Bryan; Le, Khoa M.; Saye-Francisco, Karen F.; Ramos, Alejandra; Kulp, Daniel W.; Julien, Jean-Philippe; Menis, Sergey; Wickramasinghe, Lalinda; Seaman, Michael S.; Schief, William R.; Wilson, Ian A.; Poignard, Pascal; Burton, Dennis R.

    2014-01-01

    Broadly neutralizing monoclonal antibodies (bnMAbs) that target the high-mannose patch centered around the glycan at position 332 on HIV Env are promising vaccine leads and therapeutic candidates as they effectively protect against mucosal SHIV challenge and strongly suppress SHIV viraemia in established infection in macaque models. However, these antibodies demonstrate varying degrees of dependency on the N332 glycan site and the origins of their neutralization breadth are not always obvious. By measuring neutralization on an extended range of glycan site viral variants, we found that some bnMAbs can utilize alternate N-linked glycans in the absence of the N332 glycan site and therefore neutralize a substantial number of viruses lacking the site. Furthermore, many of the antibodies can neutralize viruses in which the N332 glycan site is shifted to the 334 position. Finally, we found that a combination of three antibody families that target the high-mannose patch can lead to 99% neutralization coverage of a large panel of viruses containing the N332/334 glycan site and up to 66% coverage for viruses that lack the N332/334 glycan site. The results indicate that a diverse response against the high-mannose patch may provide near equivalent coverage as a combination of bnMAbs targeting multiple epitopes. Additionally, the ability of some bnMAbs to utilize other N-linked glycan sites can help counter neutralization escape mediated by shifting of glycosylation sites. Overall, this work highlights the importance of promiscuous glycan binding properties in bnMAbs to the high-mannose patch for optimal anti-viral activity either in protective or therapeutic modalities. PMID:24828077

  10. New tricks for "old" domains: how novel architectures and promiscuous hubs contributed to the organization and evolution of the ECM.

    PubMed

    Cromar, Graham; Wong, Ka-Chun; Loughran, Noeleen; On, Tuan; Song, Hongyan; Xiong, Xuejian; Zhang, Zhaolei; Parkinson, John

    2014-10-15

    The extracellular matrix (ECM) is a defining characteristic of metazoans and consists of a meshwork of self-assembling, fibrous proteins, and their functionally related neighbours. Previous studies, focusing on a limited number of gene families, suggest that vertebrate complexity predominantly arose through the duplication and subsequent modification of retained, preexisting ECM genes. These genes provided the structural underpinnings to support a variety of specialized tissues, as well as a platform for the organization of spatio-temporal signaling and cell migration. However, the relative contributions of ancient versus novel domains to ECM evolution have not been quantified across the full range of ECM proteins. Here, utilizing a high quality list comprising 324 ECM genes, we reveal general and clade-specific domain combinations, identifying domains of eukaryotic and metazoan origin recruited into new roles in approximately two-third of the ECM proteins in humans representing novel vertebrate proteins. We show that, rather than acquiring new domains, sampling of new domain combinations has been key to the innovation of paralogous ECM genes during vertebrate evolution. Applying a novel framework for identifying potentially important, noncontiguous, conserved arrangements of domains, we find that the distinct biological characteristics of the ECM have arisen through unique evolutionary processes. These include the preferential recruitment of novel domains to existing architectures and the utilization of high promiscuity domains in organizing the ECM network around a connected array of structural hubs. Our focus on ECM proteins reveals that distinct types of proteins and/or the biological systems in which they operate have influenced the types of evolutionary forces that drive protein innovation. This emphasizes the need for rigorously defined systems to address questions of evolution that focus on specific systems of interacting proteins.

  11. Investigating substrate promiscuity in cyclooxygenase-2: the role of Arg-120 and residues lining the hydrophobic groove.

    PubMed

    Vecchio, Alex J; Orlando, Benjamin J; Nandagiri, Ritwik; Malkowski, Michael G

    2012-07-13

    The cyclooxygenases (COX-1 and COX-2) generate prostaglandin H(2) from arachidonic acid (AA). In its catalytically productive conformation, AA binds within the cyclooxygenase channel with its carboxylate near Arg-120 and Tyr-355 and ω-end located within a hydrophobic groove above Ser-530. Although AA is the preferred substrate for both isoforms, COX-2 can oxygenate a broad spectrum of substrates. Mutational analyses have established that an interaction of the carboxylate of AA with Arg-120 is required for high affinity binding by COX-1 but not COX-2, suggesting that hydrophobic interactions between the ω-end of substrates and cyclooxygenase channel residues play a significant role in COX-2-mediated oxygenation. We used structure-function analyses to investigate the role that Arg-120 and residues lining the hydrophobic groove play in the binding and oxygenation of substrates by murine (mu) COX-2. Mutations to individual amino acids within the hydrophobic groove exhibited decreased rates of oxygenation toward AA with little effect on binding. R120A muCOX-2 oxygenated 18-carbon ω-6 and ω-3 substrates albeit at reduced rates, indicating that an interaction with Arg-120 is not required for catalysis. Structural determinations of Co(3+)-protoporphyrin IX-reconstituted muCOX-2 with α-linolenic acid and G533V muCOX-2 with AA indicate that proper bisallylic carbon alignment is the major determinant for efficient substrate oxygenation by COX-2. Overall, these findings implicate Arg-120 and hydrophobic groove residues as determinants that govern proper alignment of the bisallylic carbon below Tyr-385 for catalysis in COX-2 and confirm nuances between COX isoforms that explain substrate promiscuity.

  12. Interaction of structure-specific and promiscuous G-protein-coupled receptors mediates small-molecule signaling in Caenorhabditis elegans.

    PubMed

    Park, Donha; O'Doherty, Inish; Somvanshi, Rishi K; Bethke, Axel; Schroeder, Frank C; Kumar, Ujendra; Riddle, Donald L

    2012-06-19

    A chemically diverse family of small-molecule signals, the ascarosides, control developmental diapause (dauer), olfactory learning, and social behaviors of the nematode model organism, Caenorhabditis elegans. The ascarosides act upstream of conserved signaling pathways, including the insulin, TGF-β, serotonin, and guanylyl cyclase pathways; however, the sensory processes underlying ascaroside function are poorly understood. Because ascarosides often are multifunctional and show strongly synergistic effects, characterization of their receptors will be essential for understanding ascaroside biology and may provide insight into molecular mechanisms that produce synergistic outcomes in small-molecule sensing. Based on DAF-8 immunoprecipitation, we here identify two G-protein-coupled receptors, DAF-37 and DAF-38, which cooperatively mediate ascaroside perception. daf-37 mutants are defective in all responses to ascr#2, one of the most potent dauer-inducing ascarosides, although this mutant responds normally to other ascarosides. In contrast, daf-38 mutants are partially defective in responses to several different ascarosides. Through cell-specific overexpression, we show that DAF-37 regulates dauer when expressed in ASI neurons and adult behavior when expressed in ASK neurons. Using a photoaffinity-labeled ascr#2 probe and amplified luminescence assays (AlphaScreen), we demonstrate that ascr#2 binds to DAF-37. Photobleaching fluorescent energy transfer assays revealed that DAF-37 and DAF-38 form heterodimers, and we show that heterodimerization strongly increases cAMP inhibition in response to ascr#2. These results suggest that that the ascarosides' intricate signaling properties result in part from the interaction of highly structure-specific G-protein-coupled receptors such as DAF-37 with more promiscuous G-protein-coupled receptors such as DAF-38.

  13. Interaction of structure-specific and promiscuous G-protein–coupled receptors mediates small-molecule signaling in Caenorhabditis elegans

    PubMed Central

    Park, Donha; O'Doherty, Inish; Somvanshi, Rishi K.; Bethke, Axel; Schroeder, Frank C.; Kumar, Ujendra; Riddle, Donald L.

    2012-01-01

    A chemically diverse family of small-molecule signals, the ascarosides, control developmental diapause (dauer), olfactory learning, and social behaviors of the nematode model organism, Caenorhabditis elegans. The ascarosides act upstream of conserved signaling pathways, including the insulin, TGF-β, serotonin, and guanylyl cyclase pathways; however, the sensory processes underlying ascaroside function are poorly understood. Because ascarosides often are multifunctional and show strongly synergistic effects, characterization of their receptors will be essential for understanding ascaroside biology and may provide insight into molecular mechanisms that produce synergistic outcomes in small-molecule sensing. Based on DAF-8 immunoprecipitation, we here identify two G-protein–coupled receptors, DAF-37 and DAF-38, which cooperatively mediate ascaroside perception. daf-37 mutants are defective in all responses to ascr#2, one of the most potent dauer-inducing ascarosides, although this mutant responds normally to other ascarosides. In contrast, daf-38 mutants are partially defective in responses to several different ascarosides. Through cell-specific overexpression, we show that DAF-37 regulates dauer when expressed in ASI neurons and adult behavior when expressed in ASK neurons. Using a photoaffinity-labeled ascr#2 probe and amplified luminescence assays (AlphaScreen), we demonstrate that ascr#2 binds to DAF-37. Photobleaching fluorescent energy transfer assays revealed that DAF-37 and DAF-38 form heterodimers, and we show that heterodimerization strongly increases cAMP inhibition in response to ascr#2. These results suggest that that the ascarosides' intricate signaling properties result in part from the interaction of highly structure-specific G-protein–coupled receptors such as DAF-37 with more promiscuous G-protein–coupled receptors such as DAF-38. PMID:22665789

  14. Hybrid promiscuous (Hypr) GGDEF enzymes produce cyclic AMP-GMP (3′, 3′-cGAMP)

    PubMed Central

    Hallberg, Zachary F.; Wang, Xin C.; Wright, Todd A.; Nan, Beiyan; Ad, Omer; Yeo, Jongchan; Hammond, Ming C.

    2016-01-01

    Over 30 years ago, GGDEF domain-containing enzymes were shown to be diguanylate cyclases that produce cyclic di-GMP (cdiG), a second messenger that modulates the key bacterial lifestyle transition from a motile to sessile biofilm-forming state. Since then, the ubiquity of genes encoding GGDEF proteins in bacterial genomes has established the dominance of cdiG signaling in bacteria. However, the observation that proteobacteria encode a large number of GGDEF proteins, nearing 1% of coding sequences in some cases, raises the question of why bacteria need so many GGDEF enzymes. In this study, we reveal that a subfamily of GGDEF enzymes synthesizes the asymmetric signaling molecule cyclic AMP-GMP (cAG or 3′, 3′-cGAMP). This discovery is unexpected because GGDEF enzymes function as symmetric homodimers, with each monomer binding to one substrate NTP. Detailed analysis of the enzyme from Geobacter sulfurreducens showed it is a dinucleotide cyclase capable of switching the major cyclic dinucleotide (CDN) produced based on ATP-to-GTP ratios. We then establish through bioinformatics and activity assays that hybrid CDN-producing and promiscuous substrate-binding (Hypr) GGDEF enzymes are found in other deltaproteobacteria. Finally, we validated the predictive power of our analysis by showing that cAG is present in surface-grown Myxococcus xanthus. This study reveals that GGDEF enzymes make alternative cyclic dinucleotides to cdiG and expands the role of this widely distributed enzyme family to include regulation of cAG signaling. PMID:26839412

  15. Plasticity in Interactions of Fibroblast Growth Factor 1 (FGF1) N Terminus with FGF Receptors Underlies Promiscuity of FGF1*

    PubMed Central

    Beenken, Andrew; Eliseenkova, Anna V.; Ibrahimi, Omar A.; Olsen, Shaun K.; Mohammadi, Moosa

    2012-01-01

    Tissue-specific alternative splicing in the second half of Ig-like domain 3 (D3) of fibroblast growth factor receptors 1–3 (FGFR1 to -3) generates epithelial FGFR1b-FGFR3b and mesenchymal FGFR1c-FGFR3c splice isoforms. This splicing event establishes a selectivity filter to restrict the ligand binding specificity of FGFRb and FGFRc isoforms to mesenchymally and epithelially derived fibroblast growth factors (FGFs), respectively. FGF1 is termed the “universal FGFR ligand” because it overrides this specificity barrier. To elucidate the molecular basis for FGF1 cross-reactivity with the “b” and “c” splice isoforms of FGFRs, we determined the first crystal structure of FGF1 in complex with an FGFRb isoform, FGFR2b, at 2.1 Å resolution. Comparison of the FGF1-FGFR2b structure with the three previously published FGF1-FGFRc structures reveals that plasticity in the interactions of the N-terminal region of FGF1 with FGFR D3 is the main determinant of FGF1 cross-reactivity with both isoforms of FGFRs. In support of our structural data, we demonstrate that substitution of three N-terminal residues (Gly-19, His-25, and Phe-26) of FGF2 (a ligand that does not bind FGFR2b) for the corresponding residues of FGF1 (Phe-16, Asn-22, and Tyr-23) enables the FGF2 triple mutant to bind and activate FGFR2b. These findings taken together with our previous structural data on receptor binding specificity of FGF2, FGF8, and FGF10 conclusively show that sequence divergence at the N termini of FGFs is the primary regulator of the receptor binding specificity and promiscuity of FGFs. PMID:22057274

  16. The Streptomyces-produced antibiotic fosfomycin is a promiscuous substrate for Archaeal isopentenyl phosphate kinase

    PubMed Central

    Mabanglo, Mark F.; Serohijos, Adrian W. R.; Poulter, C. Dale

    2011-01-01

    Isopentenyl phosphate kinase (IPK) catalyzes the phosphorylation of isopentenyl phosphate to form the isoprenoid precursor isopentenyl diphosphate (IPP) in the archaeal mevalonate pathway. This enzyme is highly homologous to fosfomycin kinase (FomA), an antibiotic resistance enzyme found in a few strains of Streptomyces and Pseudomonas whose mode of action is inactivation by phosphorylation. Superposition of Thermoplasma acidophilum (THA) IPK and FomA structures aligns their respective substrates and catalytic residues, including H50 and K14 in THA IPK, and H58 and K18 in S. wedmorensis FomA. These residues are conserved only in the IPK and FomA members of the phosphate subdivision of the amino acid kinase superfamily. We measured the fosfomycin kinase activity of THA IPK, Km = 15.1 ± 1.0 mM and kcat = (4.0 ± 0.1) × 10−2 s−1, resulting in a catalytic efficiency, kcat/Km = 2.6 M−1s−1, that is five orders of magnitude less than the native reaction. Fosfomycin is a competitive inhibitor of IPK, Ki = 3.6 ± 0.2 mM. Molecular dynamics simulation of the IPK•fosfomycin•MgATP complex identified two binding poses for fosfomycin in the IP binding site, one of which results in a complex analogous to the native IPK•IP•ATP complex that it engages H50 and the lysine triangle formed by K5, K14, and K205. The other binding pose leads to a dead-end complex that engages K204 near the IP binding site to bind fosfomycin. Our findings suggest a mechanism for acquisition of FomA-based antibiotic resistance in fosfomycin producing organisms. PMID:22148590

  17. Mating promiscuity and reproductive tactics in female black and gold howler monkeys (Alouatta caraya) inhabiting an island on the Parana river, Argentina.

    PubMed

    Kowalewski, Martin M; Garber, Paul A

    2010-08-01

    In several primate species, females mate promiscuously and several adult males peacefully co-reside in the same social group. We investigated female mating behavior in two neighboring multimale-multifemale groups of Alouatta caraya in northern Argentina (27 degrees 20'S-58 degrees 40'W). All adult individuals in each group were marked with identification anklets and ear tags, and followed for five consecutive full days per month during 20 consecutive months. We recorded 219 copulations for eight resident females in these two groups. Thirty-two percent of matings involved extra-group copulations and 68% were with resident males. During periods when females were likely to conceive and during periods when females were nonfertile (pregnancy and lactation), there were no significant differences in the average number of resident and nonresident males with which they copulated (G-test: G(adj)=0.1, df=3, P>0.05). In both of our study groups, adult males were tolerant of the mating activities between resident males and resident females, but acted aggressively and collectively (howling, border vigilance, and fighting) when extragroup males attempted to enter the group and mate with resident females. Given the frequency of extragroup matings, we examined the distance females traveled to engage in these copulations, time engaged in pre- and postcopulatory behavior, and the risk of injury during extragroup copulations. These costs were found to be relatively small. We suggest that female promiscuity is the prime driver or constraint on male reproductive opportunities in this species. Female promiscuity in A. caraya appears to represent a mixed mating strategy that may serve to increase opportunities for genetic diversity between a female's successive offspring as well as minimize the risk of infanticide by spreading paternity estimates across a larger number of adult males.

  18. Promiscuous gating modifiers target the voltage sensor of K(v)7.2, TRPV1, and H(v)1 cation channels.

    PubMed

    Kornilov, Polina; Peretz, Asher; Lee, Yoonji; Son, Karam; Lee, Jin Hee; Refaeli, Bosmat; Roz, Netta; Rehavi, Moshe; Choi, Sun; Attali, Bernard

    2014-06-01

    Some of the fascinating features of voltage-sensing domains (VSDs) in voltage-gated cation channels (VGCCs) are their modular nature and adaptability. Here we examined the VSD sensitivity of different VGCCs to 2 structurally related nontoxin gating modifiers, NH17 and NH29, which stabilize K(v)7.2 potassium channels in the closed and open states, respectively. The effects of NH17 and NH29 were examined in Chinese hamster ovary cells transfected with transient receptor potential vanilloid 1 (TRPV1) or K(v)7.2 channels, as well as in dorsal root ganglia neurons, using the whole-cell patch-clamp technique. NH17 and NH29 exert opposite effects on TRPV1 channels, operating, respectively, as an activator and a blocker of TRPV1 currents (EC50 and IC50 values ranging from 4 to 40 μM). Combined mutagenesis, electrophysiology, structural homology modeling, molecular docking, and molecular dynamics simulation indicate that both compounds target the VSDs of TRPV1 channels, which, like vanilloids, are involved in π-π stacking, H-bonding, and hydrophobic interactions. Reflecting their promiscuity, the drugs also affect the lone VSD proton channel mVSOP. Thus, the same gating modifier can promiscuously interact with different VGCCs, and subtle differences at the VSD-ligand interface will dictate whether the gating modifier stabilizes channels in either the closed or the open state.

  19. One-pot lipase-catalyzed aldol reaction combination of in situ formed acetaldehyde.

    PubMed

    Wang, Na; Zhang, Wei; Zhou, Long-Hua; Deng, Qing-Feng; Xie, Zong-Bo; Yu, Xiao-Qi

    2013-12-01

    A facile tandem route to α,β-unsaturated aldehydes was developed by combining the two catalytic activities of the same enzyme in a one-pot strategy for the aldol reaction and in situ generation of acetaldehyde. Lipase from Mucor miehei was found to have conventional and promiscuous catalytic activities for the hydrolysis of vinyl acetate and aldol condensation with in situ formed acetaldehyde. The first reaction continuously provided material for the second reaction, which effectively reduced the volatilization loss, oxidation, and polymerization of acetaldehyde, as well as avoided a negative effect on the enzyme of excessive amounts of acetaldehyde. After optimizing the process, several substrates participated in the reaction and provided the target products in moderate to high yields using this single lipase-catalyzed one-pot biotransformation.

  20. An Ecological Analysis of the Effects of Deviant Peer Clustering on Sexual Promiscuity, Problem Behavior, and Childbearing from Early Adolescence to Adulthood: An Enhancement of the Life History Framework

    ERIC Educational Resources Information Center

    Dishion, Thomas J.; Ha, Thao; Veronneau, Marie-Helene

    2012-01-01

    The authors propose that peer relationships should be included in a life history perspective on adolescent problem behavior. Longitudinal analyses were used to examine deviant peer clustering as the mediating link between attenuated family ties, peer marginalization, and social disadvantage in early adolescence and sexual promiscuity in middle…

  1. Theoretical QM/MM studies of enzymatic pericyclic reactions.

    PubMed

    Martí, S; Andrés, J; Moliner, V; Silla, E; Tuñón, I; Bertrán, J

    2010-03-01

    The chorismate to prephenate enzyme catalyzed reaction has been used in this review as the conduit to show different theoretical approaches that have been used over the years in our laboratory to explain its molecular mechanism. This pericyclic reaction has the advantage that other protein scaffolds such as catalytic antibodies or some promiscuous enzymes present certain chorismate mutase activity. The obtained results on all these protein environments, by comparison with the uncatalyzed reaction in solution, have been used to propose, as a general conclusion, that the origin of enzyme catalysis is in the relative electrostatic stabilization of the transition state with respect to the Michaelis complex. This feature implies that reactants of catalyzed reaction were closer to the transition state than those of the non-catalyzed reaction. From this hypothesis, and considering the features of the wild type chorismate mutases as the optimal catalyst for the reaction, some mutations on both kinds of alternative proteins have been proposed which would presumably enhance the rate constant of the chemical step.The studies presented in this paper demonstrate that the improvements and developments of the methods and techniques of theoretical and computational chemistry are now mature enough to model physic-chemical properties of biological systems with good accuracy. The combination of a potent computational protocol with molecular engineering techniques can be a promising methodology to develop novel enzymes with new or more efficient catalytic functions.

  2. Trypsin-catalyzed multicomponent reaction: A novel and efficient one-pot synthesis of thiazole-2-imine derivatives.

    PubMed

    Zhou, Junbin; Huang, Xingtian; Zhang, Zhuan; Song, Ping; Li, Yiqun

    2017-01-10

    The first Trypsin from porcine pancreas catalyzed a novel one-pot three-component reaction of α-bromoketone, primary alkylamines, and phenylisothiocyanate for the synthesis of thiazole-imine derivatives with high yields (up to 98%) in a short time under mild conditions. The results revealed that Trypsin exhibited excellent catalytic activity and great tolerance for broad substrates. This Trypsin-catalyzed three component convergent method provides a novel strategy for the synthesis of thiazole-2-imine derivatives and expands the promiscuous functions of enzymes in organic synthesis.

  3. Electrophoretic method for assessment of substrate promiscuity of a heterogeneous biocatalyst using an area imaging ultraviolet detector.

    PubMed

    Urban, Pawel L; Bergström, Edmund T; Goodall, David M; Narayanaswamy, Sreedevi; Bruce, Neil C

    2007-10-01

    We report a new electrophoretic set-up and method for rapid specificity screening of an immobilised enzyme against a range of substrates present in a mixture. The penicillinase-catalysed reaction is carried out on-the-fly, following separation of putative substrates and preceding separation of the reaction products. The new active pixel sensor detector gives an option of using multiple detection windows on a single flow line and enables efficient on-line monitoring of this heterogeneous biocatalytic process with multiple putative substrates injected simultaneously.

  4. Drug Reactions

    MedlinePlus

    Most of the time, medicines make our lives better. They reduce aches and pains, fight infections, and control problems such as high blood pressure or diabetes. But medicines can also cause unwanted reactions. One problem is ...

  5. Structural characterization of an MJ1267 ATP-binding cassette crystal with a complex pattern of twinning caused by promiscuous fiber packing.

    PubMed

    Yuan, Yu-Ren; Martsinkevich, Oskana; Hunt, John F

    2003-02-01

    ATP-binding cassettes represent the motor domains in ABC transporters, a superfamily of integral membrane-protein pumps that couple the hydrolysis of ATP to transmembrane solute translocation. A crystal of a Mg-ADP complex of the MJ1267 ATP-binding cassette was obtained that produced a diffraction pattern characterized by pathological streaking of the spots in the a* x b* plane. While the Laue symmetry of the diffraction pattern was P3;1m, the crystal was determined to be twinned based on intensity statistics, molecular-replacement analysis and difference Fourier analysis of an engineered single-site methylmercury derivative. The unit cell contains three similar 3(1) fibers, with two of them related by primarily translational non-crystallographic symmetry (NCS) and the third related to the first two by approximate twofold screw operations whose rotational components are very similar to the twinning operator. The promiscuous packing of these 3(1) fibers, which make both parallel and antiparallel interactions in the primary crystal lattice, can explain the twinning tendency based on the ability of the twin-related lattices to interact with one another while making only one slightly sub-optimal intermolecular contact per unit cell in the boundary region. The promiscuous fiber packing can also explain the streaking in the diffraction pattern based on the ability to form a variety of different lattices with similar inter-fiber packing interactions. The crystal structure was refined as a twin in space group P3(1) using the program CNS, yielding a free R factor of 28.9% at 2.6 A and a refined twin fraction of 0.50. The structure shows a rigid-body rotation of the ABC-transporter-specific alpha-helical subdomain (ABCalpha subdomain) in MJ1267 compared with the conformation observed for the same protein in a C2 crystal lattice; this observation suggests that the ABCalpha subdomain is flexibly attached to the F1-type ATP-binding core of the ATP-binding cassette when Mg

  6. Human immunoglobulin repertoires against tetanus toxoid contain a large and diverse fraction of high-affinity promiscuous V(H) genes.

    PubMed

    de Kruif, John; Kramer, Arjen; Visser, Therèse; Clements, Carina; Nijhuis, Roy; Cox, Freek; van der Zande, Vanessa; Smit, Renate; Pinto, Daniel; Throsby, Mark; Logtenberg, Ton

    2009-04-03

    To study the contribution of antibody light (L) chains to the diversity and binding properties of immune repertoires, a phage display repertoire was constructed from a single human antibody L chain and a large collection of antibody heavy (H) chains harvested from the blood of two human donors immunized with tetanus toxoid (TT) vaccine. After selection for binding to TT, 129 unique antibodies representing 53 variable immunoglobulin H chain (V(H)) gene rearrangements were isolated. This panel of anti-TT antibodies restricted to a single variable immunoglobulin L chain (V(L)) could be organized into 17 groups binding non-competing epitopes on the TT molecule. Comparison of the V(H) regions in this V(L)-restricted panel with a previously published repertoire of anti-TT V(H) regions with cognate V(H)-V(L) pairing showed a very similar distribution of V(H), D(H) and J(H) gene segment utilization and length of the complementarity-determining region 3 of the H chain. Surface plasmon resonance analysis of the single-V(L) anti-TT repertoire unveiled a range of affinities, with a median monovalent affinity of 2 nM. When the single-V(L) anti-TT V(H) repertoire was combined with a collection of naïve V(L) regions and again selected for binding to TT, many of the V(H) genes were recovered in combination with a diversity of V(L) regions. The affinities of a panel of antibodies consisting of a single promiscuous anti-TT V(H) combined with 15 diverse V(L) chains were determined and found to be identical to each other and to the original isolate restricted to a single-V(L) chain. Based on previous estimates of the clonal size of the human anti-TT repertoire, we conclude that up to 25% of human anti-TT-encoding V(H) regions from an immunized repertoire have promiscuous features. These V(H) regions readily combine with a single antibody L chain to result in a large panel of anti-TT antibodies that conserve the expected epitope diversity, V(H) region diversity and affinity of a

  7. An ecological analysis of the effects of deviant peer clustering on sexual promiscuity, problem behavior, and childbearing from early adolescence to adulthood: an enhancement of the life history framework.

    PubMed

    Dishion, Thomas J; Ha, Thao; Véronneau, Marie-Hélène

    2012-05-01

    The authors propose that peer relationships should be included in a life history perspective on adolescent problem behavior. Longitudinal analyses were used to examine deviant peer clustering as the mediating link between attenuated family ties, peer marginalization, and social disadvantage in early adolescence and sexual promiscuity in middle adolescence and childbearing by early adulthood. Specifically, 998 youths, along with their families, were assessed at age 11 years and periodically through age 24 years. Structural equation modeling revealed that the peer-enhanced life history model provided a good fit to the longitudinal data, with deviant peer clustering strongly predicting adolescent sexual promiscuity and other correlated problem behaviors. Sexual promiscuity, as expected, also strongly predicted the number of children by ages 22-24 years. Consistent with a life history perspective, family social disadvantage directly predicted deviant peer clustering and number of children in early adulthood, controlling for all other variables in the model. These data suggest that deviant peer clustering is a core dimension of a fast life history strategy, with strong links to sexual activity and childbearing. The implications of these findings are discussed with respect to the need to integrate an evolutionary-based model of self-organized peer groups in developmental and intervention science.

  8. Binuclear metallohydrolases: complex mechanistic strategies for a simple chemical reaction.

    PubMed

    Schenk, Gerhard; Mitić, Nataša; Gahan, Lawrence R; Ollis, David L; McGeary, Ross P; Guddat, Luke W

    2012-09-18

    Binuclear metallohydrolases are a large family of enzymes that require two closely spaced transition metal ions to carry out a plethora of hydrolytic reactions. Representatives include purple acid phosphatases (PAPs), enzymes that play a role in bone metabolism and are the only member of this family with a heterovalent binuclear center in the active form (Fe(3+)-M(2+), M = Fe, Zn, Mn). Other members of this family are urease, which contains a di-Ni(2+) center and catalyzes the breakdown of urea, arginase, which contains a di-Mn(2+) center and catalyzes the final step in the urea cycle, and the metallo-β-lactamases, which contain a di-Zn(2+) center and are virulence factors contributing to the spread of antibiotic-resistant pathogens. Binuclear metallohydrolases catalyze numerous vital reactions and are potential targets of drugs against a wide variety of human disorders including osteoporosis, various cancers, antibiotic resistance, and erectile dysfunctions. These enzymes also tend to catalyze more than one reaction. An example is an organophosphate (OP)-degrading enzyme from Enterobacter aerogenes (GpdQ). Although GpdQ is part of a pathway that is used by bacteria to degrade glycerolphosphoesters, it hydrolyzes a variety of other phosphodiesters and displays low levels of activity against phosphomono- and triesters. Such a promiscuous nature may have assisted the apparent recent evolution of some binuclear metallohydrolases to deal with situations created by human intervention such as OP pesticides in the environment. OP pesticides were first used approximately 70 years ago, and therefore the enzymes that bacteria use to degrade them must have evolved very quickly on the evolutionary time scale. The promiscuous nature of enzymes such as GpdQ makes them ideal candidates for the application of directed evolution to produce new enzymes that can be used in bioremediation and against chemical warfare. In this Account, we review the mechanisms employed by binuclear

  9. A comparison of scent marking between a monogamous and promiscuous species of peromyscus: pair bonded males do not advertise to novel females.

    PubMed

    Becker, Elizabeth A; Petruno, Sarah; Marler, Catherine A

    2012-01-01

    Scent marking can provide behavioral and physiological information including territory ownership and mate advertisement. It is unknown how mating status and pair cohabitation influence marking by males from different social systems. We compared the highly territorial and monogamous California mouse (Peromyscus californicus) to the less territorial and promiscuous white-footed mouse (P. leucopus). Single and mated males of both species were assigned to one of the following arenas lined with filter paper: control (unscented arena), male scented (previously scent-marked by a male conspecific), or females present (containing females in small cages). As expected, the territorial P. californicus scent marked and overmarked an unfamiliar male conspecific's scent marks more frequently than P. leucopus. Species differences in responses to novel females were also found based on mating status. The presence of unfamiliar females failed to induce changes in scent marking in pair bonded P. californicus even though virgin males increased marking behavior. Pair bonding appears to reduce male advertisement for novel females. This is in contrast to P. leucopus males that continue to advertise regardless of mating status. Our data suggest that communication through scent-marking can diverge significantly between species based on mating system and that there are physiological mechanisms that can inhibit responsiveness of males to female cues.

  10. A PTS EII mutant library in Group A Streptococcus identifies a promiscuous man-family PTS transporter influencing SLS-mediated hemolysis.

    PubMed

    Sundar, Ganesh S; Islam, Emrul; Gera, Kanika; Le Breton, Yoann; McIver, Kevin S

    2017-02-01

    The Group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram-positive human pathogen that must adapt to unique host environments in order to survive. Links between sugar metabolism and virulence have been demonstrated in GAS, where mutants in the phosphoenolpyruvate-dependent phosphotransferase system (PTS) exhibited Streptolysin S (SLS)-mediated hemolysis during exponential growth. This early onset hemolysis correlated with an increased lesion size and severity in a murine soft tissue infection model when compared with parental M1T1 MGAS5005. To identify the PTS components responsible for this phenotype, we insertionally inactivated the 14 annotated PTS EIIC-encoding genes in the GAS MGAS5005 genome and subjected this library to metabolic and hemolysis assays to functionally characterize each EIIC. It was found that a few EIIs had a very limited influence on PTS sugar metabolism, whereas others were fairly promiscuous. The mannose-specific EII locus, encoded by manLMN, was expressed as a mannose-inducible operon that exhibited the most influence on PTS sugar metabolism, including mannose. Importantly, components of the mannose-specific EII also acted to prevent the early onset of SLS-mediated hemolysis. Interestingly, these roles were not identical in two different M1T1 GAS strains, highlighting the possible versatility of the PTS to adapt to strain-specific needs.

  11. Mechanistic basis for functional promiscuity in the TNF and TNF receptor superfamilies: structure of the LIGHT:DcR3 assembly.

    PubMed

    Liu, Weifeng; Zhan, Chenyang; Cheng, Huiyong; Kumar, P Rajesh; Bonanno, Jeffrey B; Nathenson, Stanley G; Almo, Steven C

    2014-09-02

    LIGHT initiates intracellular signaling via engagement of the two TNF receptors, HVEM and LTβR. In humans, LIGHT is neutralized by DcR3, a unique soluble member of the TNFR superfamily, which tightly binds LIGHT and inhibits its interactions with HVEM and LTβR. DcR3 also neutralizes two other TNF ligands, FasL and TL1A. Due to its ability to neutralize three distinct different ligands, DcR3 contributes to a wide range of biological and pathological processes, including cancer and autoimmune diseases. However, the mechanisms that support the broad specificity of DcR3 remain to be fully defined. We report the structures of LIGHT and the LIGHT:DcR3 complex, which reveal the structural basis for the DcR3-mediated neutralization of LIGHT and afford insights into DcR3 function and binding promiscuity. Based on these structures, we designed LIGHT mutants with altered affinities for DcR3 and HVEM, which may represent mechanistically informative probe reagents.

  12. U2AF65 adapts to diverse pre-mRNA splice sites through conformational selection of specific and promiscuous RNA recognition motifs

    PubMed Central

    Jenkins, Jermaine L.; Agrawal, Anant A.; Gupta, Ankit; Green, Michael R.; Kielkopf, Clara L.

    2013-01-01

    Degenerate splice site sequences mark the intron boundaries of pre-mRNA transcripts in multicellular eukaryotes. The essential pre-mRNA splicing factor U2AF65 is faced with the paradoxical tasks of accurately targeting polypyrimidine (Py) tracts preceding 3′ splice sites while adapting to both cytidine and uridine nucleotides with nearly equivalent frequencies. To understand how U2AF65 recognizes degenerate Py tracts, we determined six crystal structures of human U2AF65 bound to cytidine-containing Py tracts. As deoxy-ribose backbones were required for co-crystallization with these Py tracts, we also determined two baseline structures of U2AF65 bound to the deoxy-uridine counterparts and compared the original, RNA-bound structure. Local structural changes suggest that the N-terminal RNA recognition motif 1 (RRM1) is more promiscuous for cytosine-containing Py tracts than the C-terminal RRM2. These structural differences between the RRMs were reinforced by the specificities of wild-type and site-directed mutant U2AF65 for region-dependent cytosine- and uracil-containing RNA sites. Small-angle X-ray scattering analyses further demonstrated that Py tract variations select distinct inter-RRM spacings from a pre-existing ensemble of U2AF65 conformations. Our results highlight both local and global conformational selection as a means for universal 3′ splice site recognition by U2AF65. PMID:23376934

  13. Mechanistic Insights into the Hydrolysis of Organophosphorus Compounds by Paraoxonase-1: Exploring the Limits of Substrate Tolerance in a Promiscuous Enzyme.

    PubMed

    Muthukrishnan, Sivaramakrishnan; Shete, Vivekanand S; Sanan, Toby T; Vyas, Shubham; Oottikkal, Shameema; Porter, Lauren M; Magliery, Thomas J; Hadad, Christopher M

    2012-12-01

    We designed, synthesized and screened a library of analogs of the organophosphate pesticide metabolite paraoxon against a recombinant variant of human serum paraoxonase-1. Alterations of both the aryloxy leaving group and the retained alkyl chains of paraoxon analogs resulted in substantial changes to binding and hydrolysis, as measured directly by spectrophotometric methods or in competition experiments with paraoxon. Increases or decreases in the steric bulk of the retained groups generally reduced the rate of hydrolysis, while modifications of the leaving group modulated both binding and turnover. Studies on the hydrolysis of phosphoryl azide analogs as well as amino-modified paraoxon analogs, the former being developed as photo-affinity labels, found enhanced tolerance of structural modifications, when compared with O-alkyl substituted molecules. Results from computational modeling predict a predominant active site binding mode for these molecules which is consistent with several proposed catalytic mechanisms in the literature, and from which a molecular-level explanation of the experimental trends is attempted. Overall, the results of this study suggest that while paraoxonase-1 is a promiscuous enzyme, there are substantial constraints in the active site pocket, which may relate to both the leaving group and the retained portion of paraoxon analogs.

  14. In with the Old, in with the New: The Promiscuity of the Duplication Process Engenders Diverse Pathways for Novel Gene Creation

    PubMed Central

    Katju, Vaishali

    2012-01-01

    The gene duplication process has exhibited far greater promiscuity in the creation of paralogs with novel exon-intron structures than anticipated even by Ohno. In this paper I explore the history of the field, from the neo-Darwinian synthesis through Ohno's formulation of the canonical model for the evolution of gene duplicates and culminating in the present genomic era. I delineate the major tenets of Ohno's model and discuss its failure to encapsulate the full complexity of the duplication process as revealed in the era of genomics. I discuss the diverse classes of paralogs originating from both DNA- and RNA-mediated duplication events and their evolutionary potential for assuming radically altered functions, as well as the degree to which they can function unconstrained from the pressure of gene conversion. Lastly, I explore theoretical population-genetic considerations of how the effective population size (Ne) of a species may influence the probability of emergence of genes with radically altered functions. PMID:23008799

  15. MHC allele-specific binding of a malaria peptide makes it become promiscuous on fitting a glycine residue into pocket 6.

    PubMed

    Vargas, Luis Eduardo; Parra, Carlos Alberto; Salazar, Luz Mary; Guzmán, Fanny; Pinto, Martha; Patarroyo, Manuel E

    2003-07-18

    Peptide 1585 (EVLYLKPLAGVYRSLKKQLE) has a highly conserved amino-acid sequence located in the Plasmodium falciparum main merozoite surface protein (MSP-1) C-terminal region, required for merozoite entry into human erythrocytes and therefore represents a vaccine candidate for P. falciparum malaria. Original sequence-specific binding to five HLA DRB1* alleles (0101, 0102, 0401, 0701, and 1101) revealed this peptide's specific HLA DRB1*0102 allele binding. This peptide's allele-specific binding to HLA DRB1*0102 took on broader specificity for the DRB1*0101, -0401, and -1101 alleles when lysine was replaced by glycine in position 17 (peptide 5198: EVLYLKPLAGVYRSLKG(17)QLE). Binding of the identified G(10)VYRSLKGQLE(20) C-terminal register to these alleles suggests that peptide promiscuous binding relied on fitting Y(12), L(15), and G(17) into P-1, P-4, and P-6, respectively. The implications of the findings and the future of this synthetic vaccine candidate are discussed.

  16. Computational Identification and Characterization of a Promiscuous T-Cell Epitope on the Extracellular Protein 85B of Mycobacterium spp. for Peptide-Based Subunit Vaccine Design

    PubMed Central

    Hossain, Md. Saddam; Chowdhury, Parveen Afroz; Wakayama, Mamoru

    2017-01-01

    Tuberculosis (TB) is a reemerging disease that remains as a leading cause of morbidity and mortality in humans. To identify and characterize a T-cell epitope suitable for vaccine design, we have utilized the Vaxign server to assess all antigenic proteins of Mycobacterium spp. recorded to date in the Protegen database. We found that the extracellular protein 85B displayed the most robust antigenicity among the proteins identified. Computational tools for identifying T-cell epitopes predicted an epitope, 181-QQFIYAGSLSALLDP-195, that could bind to at least 13 major histocompatibility complexes, revealing the promiscuous nature of the epitope. Molecular docking simulation demonstrated that the epitope could bind to the binding groove of MHC II and MHC I molecules by several hydrogen bonds. Molecular docking analysis further revealed that the epitope had a distinctive binding pattern to all DRB1 and A and B series of MHC molecules and presented almost no polymorphism in its binding site. Moreover, using “Allele Frequency Database,” we checked the frequency of HLA alleles in the worldwide population and found a higher frequency of both class I and II HLA alleles in individuals living in TB-endemic regions. Our results indicate that the identified peptide might be a universal candidate to produce an efficient epitope-based vaccine for TB.

  17. A novel therapeutic strategy of lipidated promiscuous peptide against Mycobacterium tuberculosis by eliciting Th1 and Th17 immunity of host

    PubMed Central

    Rai, Pradeep K; Chodisetti, Sathi Babu; Nadeem, Sajid; Maurya, Sudeep K; Gowthaman, Uthaman; Zeng, Weiguang; Janmeja, Ashok K; Jackson, David C; Agrewala, Javed N

    2016-01-01

    Regardless of the fact that potent drug-regimen is currently available, tuberculosis continues to kill 1.5 million people annually. Tuberculosis patients are not only inflicted by the trauma of disease but they also suffer from the harmful side-effects, immune suppression and drug resistance instigated by prolonged therapy. It is an exigency to introduce radical changes in the existing drug-regime and discover safer and better therapeutic measures. Hence, we designed a novel therapeutic strategy by reinforcing the efficacy of drugs to kill Mtb by concurrently boosting host immunity by L91. L91 is chimera of promiscuous epitope of Acr1 antigen of Mtb and TLR-2 agonist Pam2Cys. The adjunct therapy using drugs and L91 (D-L91) significantly declined the bacterial load in Mtb infected animals. The mechanism involved was through enhancement of IFN-γ+TNF-α+ polyfunctional Th1 cells and IL-17A+IFN-γ+ Th17 cells, enduring memory CD4 T cells and downregulation of PD-1. The down-regulation of PD-1 prevents CD4 T cells from undergoing exhaustion and improves their function against Mtb. Importantly, the immune response observed in animals could be replicated using T cells of tuberculosis patients on drug therapy. In future, D-L91 therapy can invigorate drugs potency to treat tuberculosis patients and reduce the dose and duration of drug-regime. PMID:27052185

  18. Production of tag-free recombinant fusion protein encompassing promiscuous T cell epitope of tetanus toxoid and dog zona pellucida glycoprotein-3 for contraceptive vaccine development.

    PubMed

    Gupta, Neha; Shrestha, Abhinav; Panda, Amulya Kumar; Gupta, Satish Kumar

    2013-07-01

    Affinity tags can interfere in various physicochemical properties and immunogenicity of the recombinant proteins. In the present study, tag-free recombinant fusion protein encompassing promiscuous T cell epitope of tetanus toxoid [TT; amino acid (aa) residues 830-844] followed by dilysine linker and dog zona pellucida glycoprotein-3 (ZP3; aa residues 23-348) (TT-KK-ZP3) was expressed in Escherichia coli. The recombinant protein, expressed as inclusion bodies (IBs), was purified by isolation of IBs, processed to remove host cell proteins, followed by solubilization and refolding. A specific 39 kDa protein including ZP3 was identified by SDS-PAGE. CD spectra showed the presence of α-helices and β-sheets, and fluorescent spectroscopy revealed emission maxima of 265 A.U. at 339 nm for refolded protein and showed red shift in the presence of 6 M guanidine hydrochloride. Immunization of inbred FvB/J female mice with purified recombinant TT-KK-ZP3 (25 μg/animal) led to generation of high antibody titers against the recombinant protein. The antibodies reacted specifically with ZP matrix surrounding mouse oocytes. Immunized mice showed significant reduction in fertility as compared to the control group. The studies described herein provide a simple method to produce and purify tag-free recombinant protein for the development of a contraceptive vaccine.

  19. A novel therapeutic strategy of lipidated promiscuous peptide against Mycobacterium tuberculosis by eliciting Th1 and Th17 immunity of host.

    PubMed

    Rai, Pradeep K; Chodisetti, Sathi Babu; Nadeem, Sajid; Maurya, Sudeep K; Gowthaman, Uthaman; Zeng, Weiguang; Janmeja, Ashok K; Jackson, David C; Agrewala, Javed N

    2016-04-07

    Regardless of the fact that potent drug-regimen is currently available, tuberculosis continues to kill 1.5 million people annually. Tuberculosis patients are not only inflicted by the trauma of disease but they also suffer from the harmful side-effects, immune suppression and drug resistance instigated by prolonged therapy. It is an exigency to introduce radical changes in the existing drug-regime and discover safer and better therapeutic measures. Hence, we designed a novel therapeutic strategy by reinforcing the efficacy of drugs to kill Mtb by concurrently boosting host immunity by L91. L91 is chimera of promiscuous epitope of Acr1 antigen of Mtb and TLR-2 agonist Pam2Cys. The adjunct therapy using drugs and L91 (D-L91) significantly declined the bacterial load in Mtb infected animals. The mechanism involved was through enhancement of IFN-γ(+)TNF-α(+) polyfunctional Th1 cells and IL-17A(+)IFN-γ(+) Th17 cells, enduring memory CD4 T cells and downregulation of PD-1. The down-regulation of PD-1 prevents CD4 T cells from undergoing exhaustion and improves their function against Mtb. Importantly, the immune response observed in animals could be replicated using T cells of tuberculosis patients on drug therapy. In future, D-L91 therapy can invigorate drugs potency to treat tuberculosis patients and reduce the dose and duration of drug-regime.

  20. Allergic Reactions

    MedlinePlus

    ... that is right for you. In many instances, allergy immunotherapy in the form of shots or tablets is an effective, cost-efficient long term treatment approach. While there is not yet ... Healthy Tips • Allergy symptoms are the result of a chain reaction ...

  1. New Tricks for “Old” Domains: How Novel Architectures and Promiscuous Hubs Contributed to the Organization and Evolution of the ECM

    PubMed Central

    Cromar, Graham; Wong, Ka-Chun; Loughran, Noeleen; On, Tuan; Song, Hongyan; Xiong, Xuejian; Zhang, Zhaolei; Parkinson, John

    2014-01-01

    The extracellular matrix (ECM) is a defining characteristic of metazoans and consists of a meshwork of self-assembling, fibrous proteins, and their functionally related neighbours. Previous studies, focusing on a limited number of gene families, suggest that vertebrate complexity predominantly arose through the duplication and subsequent modification of retained, preexisting ECM genes. These genes provided the structural underpinnings to support a variety of specialized tissues, as well as a platform for the organization of spatio-temporal signaling and cell migration. However, the relative contributions of ancient versus novel domains to ECM evolution have not been quantified across the full range of ECM proteins. Here, utilizing a high quality list comprising 324 ECM genes, we reveal general and clade-specific domain combinations, identifying domains of eukaryotic and metazoan origin recruited into new roles in approximately two-third of the ECM proteins in humans representing novel vertebrate proteins. We show that, rather than acquiring new domains, sampling of new domain combinations has been key to the innovation of paralogous ECM genes during vertebrate evolution. Applying a novel framework for identifying potentially important, noncontiguous, conserved arrangements of domains, we find that the distinct biological characteristics of the ECM have arisen through unique evolutionary processes. These include the preferential recruitment of novel domains to existing architectures and the utilization of high promiscuity domains in organizing the ECM network around a connected array of structural hubs. Our focus on ECM proteins reveals that distinct types of proteins and/or the biological systems in which they operate have influenced the types of evolutionary forces that drive protein innovation. This emphasizes the need for rigorously defined systems to address questions of evolution that focus on specific systems of interacting proteins. PMID:25323955

  2. Nuclear Magnetic Resonance Structural Mapping Reveals Promiscuous Interactions between Clathrin-Box Motif Sequences and the N-Terminal Domain of the Clathrin Heavy Chain

    PubMed Central

    2016-01-01

    The recruitment and organization of clathrin at endocytic sites first to form coated pits and then clathrin-coated vesicles depend on interactions between the clathrin N-terminal domain (TD) and multiple clathrin binding sequences on the cargo adaptor and accessory proteins that are concentrated at such sites. Up to four distinct protein binding sites have been proposed to be present on the clathrin TD, with each site proposed to interact with a distinct clathrin binding motif. However, an understanding of how such interactions contribute to clathrin coat assembly must take into account observations that any three of these four sites on clathrin TD can be mutationally ablated without causing loss of clathrin-mediated endocytosis. To take an unbiased approach to mapping binding sites for clathrin-box motifs on clathrin TD, we used isothermal titration calorimetry (ITC) and nuclear magnetic resonance spectroscopy. Our ITC experiments revealed that a canonical clathrin-box motif peptide from the AP-2 adaptor binds to clathrin TD with a stoichiometry of 3:1. Assignment of 90% of the total visible amide resonances in the TROSY-HSQC spectrum of 13C-, 2H-, and 15N-labeled TD40 allowed us to map these three binding sites by analyzing the chemical shift changes as clathrin-box motif peptides were titrated into clathrin TD. We found that three different clathrin-box motif peptides can each simultaneously bind not only to the previously characterized clathrin-box site but also to the W-box site and the β-arrestin splice loop site on a single TD. The promiscuity of these binding sites can help explain why their mutation does not lead to larger effects on clathrin function and suggests a mechanism by which clathrin may be transferred between different proteins during the course of an endocytic event. PMID:25844500

  3. Characterization of Promiscuous Binding of Phosphor Ligands to Breast-Cancer-Gene 1 (BRCA1) C-Terminal (BRCT): Molecular Dynamics, Free Energy, Entropy and Inhibitor Design

    PubMed Central

    Huang, Yu-ming M.; Kizhake, Smitha; Natarajan, Amarnath; Chang, Chia-en A.

    2016-01-01

    Inhibition of the protein-protein interaction (PPI) mediated by breast-cancer-gene 1 C-terminal (BRCT) is an attractive strategy to sensitize breast and ovarian cancers to chemotherapeutic agents that induce DNA damage. Such inhibitors could also be used for studies to understand the role of this PPI in DNA damage response. However, design of BRCT inhibitors is challenging because of the inherent flexibility associated with this domain. Several studies identified short phosphopeptides as tight BRCT binders. Here we investigated the thermodynamic properties of 18 phosphopeptides or peptide with phosphate mimic and three compounds with phosphate groups binding to BRCT to understand promiscuous molecular recognition and guide inhibitor design. We performed molecular dynamics (MD) simulations to investigate the interactions between inhibitors and BRCT and their dynamic behavior in the free and bound states. MD simulations revealed the key role of loops in altering the shape and size of the binding site to fit various ligands. The mining minima (M2) method was used for calculating binding free energy to explore the driving forces and the fine balance between configuration entropy loss and enthalpy gain. We designed a rigidified ligand, which showed unfavorable experimental binding affinity due to weakened enthalpy. This was because it lacked the ability to rearrange itself upon binding. Investigation of another phosphate group containing compound, C1, suggested that the entropy loss can be reduced by preventing significant narrowing of the energy well and introducing multiple new compound conformations in the bound states. From our computations, we designed an analog of C1 that introduced new intermolecular interactions to strengthen attractions while maintaining small entropic penalty. This study shows that flexible compounds do not always encounter larger entropy penalty, compared with other more rigid binders, and highlights a new strategy for inhibitor design. PMID

  4. Redox cycling compounds generate H2O2 in HTS buffers containing strong reducing reagents--real hits or promiscuous artifacts?

    PubMed

    Johnston, Paul A

    2011-02-01

    Redox cycling compounds (RCCs) generate μM concentrations of hydrogen peroxide (H(2)O(2)) in the presence of strong reducing agents, common buffer components used to maintain the catalytic activity and/or folding of target proteins for high throughput screening (HTS) assays. H(2)O(2) generated by RCCs can indirectly inhibit the catalytic activity of proteins by oxidizing accessible cysteine, tryptophan, methionine, histidine, or selenocysteine residues, and indeed several important classes of protein targets are susceptible to H(2)O(2)-mediated inactivation; protein tyrosine phosphatases, cysteine proteases, and metalloenzymes. The main sources of H(2)O(2) in cells are the Nox enzyme/SOD systems, peroxisome metabolism, and the autoxidation of reactive chemicals by enzyme mediated redox cycling at both the microsomal and mitochondrial sites of electron transport. Given the role of H(2)O(2) as a second messenger involved in the regulation of many signaling pathways it is hardly surprising that compounds that can generate intracellular H(2)O(2) by enzyme mediated redox cycling would have pleiotropic effects. RCCs can therefore have serious negative consequences for the probe and/or lead generation process: primary HTS assay hit rates may be inflated by RCC false positives; crucial resources will be diverted to develop and implement follow up assays to distinguish RCCs from real hits; and screening databases will become annotated with the promiscuous activity of RCCs. In an attempt to mitigate the serious impact of RCCs on probe and lead generation, two groups have independently developed assays to indentify RCCs.

  5. Novel and promiscuous CTL epitopes in conserved regions of Gag targeted by individuals with early subtype C HIV type 1 infection from southern Africa.

    PubMed

    Masemola, Agatha M; Mashishi, Tumelo N; Khoury, Greg; Bredell, Helba; Paximadis, Maria; Mathebula, Tiyani; Barkhan, Debra; Puren, Adrian; Vardas, Efthyia; Colvin, Mark; Zijenah, Lynn; Katzenstein, David; Musonda, Rosemary; Allen, Susan; Kumwenda, Newton; Taha, Taha; Gray, Glenda; McIntyre, James; Karim, Salim Abdool; Sheppard, Haynes W; Gray, Clive M

    2004-10-01

    Characterization of optimal CTL epitopes in Gag can provide crucial information for evaluation of candidate vaccines in populations at the epicenter of the HIV-1 epidemic. We screened 38 individuals with recent subtype C HIV-1 infection using overlapping consensus C Gag peptides and hypothesized that unique HLA-restricting alleles in the southern African population would determine novel epitope identity. Seventy-four percent of individuals recognized at least one Gag peptide pool. Ten epitopic regions were identified across p17, p24, and p2p7p1p6, and greater than two-thirds of targeted regions were directed at: TGTEELRSLYNTVATLY (p17, 35%); GPKEPFRDYVDRFFKTLRAEQATQDV (p24, 19%); and RGGKLDKWEKIRLRPGGKKHYMLKHL (p17, 15%). After alignment of these epitopic regions with consensus M and a consensus subtype C sequence from the cohort, it was evident that the regions targeted were highly conserved. Fine epitope mapping revealed that five of nine identified optimal Gag epitopes were novel: HLVWASREL, LVWASRELERF, LYNTVATLY, PFRDYVDRFF, and TLRAEQATQD, and were restricted by unique HLA-Cw*08, HLA-A*30/B*57, HLA-A*29/B*44, and HLA-Cw*03 alleles, respectively. Notably, three of the mapped epitopes were restricted by more than one HLA allele. Although these epitopes were novel and restricted by unique HLA, they overlapped or were embedded within previously described CTL epitopes from subtype B HIV-1 infection. These data emphasize the promiscuous nature of epitope binding and support our hypothesis that HLA diversity between populations can shape fine epitope identity, but may not represent a constraint for universal recognition of Gag in highly conserved domains.

  6. Redox cycling compounds generate H2O2 in HTS buffers containing strong reducing reagents – real hits or promiscuous artifacts?

    PubMed Central

    Johnston, Paul A.

    2010-01-01

    Redox cycling compounds (RCCs) generate µM concentrations of hydrogen peroxide (H2O2) in the presence of strong reducing agents, common buffer components used to maintain the catalytic activity and/or folding of target proteins for high throughput screening (HTS) assays. H2O2 generated by RCCs can indirectly inhibit the catalytic activity of proteins by oxidizing accessible cysteine, tryptophan, methionine, histidine or selenocysteine residues, and indeed several important classes of protein targets are susceptible to H2O2-mediated inactivation; protein tyrosine phosphatases, cysteine proteases, and metalloenzymes. The main sources of H2O2 in cells are the Nox enzyme/SOD systems, peroxisome metabolism, and the autoxidation of reactive chemicals by enzyme mediated redox cycling at both the microsomal and mitochondrial sites of electron transport. Given the role of H2O2 as a second messenger involved in the regulation of many signaling pathways it is hardly surprising that compounds which can generate intracellular H2O2 by enzyme mediated redox cycling would have pleiotropic effects. RCCs can therefore have serious negative consequences for the probe and/or lead generation process: primary HTS assay hit rates may be inflated by RCC false positives; critical resources will be diverted to develop and implement follow up assays to distinguish RCCs from real hits; and screening databases will become annotated with the promiscuous activity of RCCs. In an attempt to mitigate the serious impact of RCCs on probe and lead generation, two groups have independently developed assays to indentify RCCs. PMID:21075044

  7. Genetics Home Reference: multiple sulfatase deficiency

    MedlinePlus

    ... progressive loss of mental abilities and movement (psychomotor regression) due to leukodystrophy or other brain abnormalities. Individuals ... normal early cognitive development but then experience psychomotor regression; however, the regression in the juvenile type usually ...

  8. Faculty Consulting: Responsibility or Promiscuity?

    ERIC Educational Resources Information Center

    Boyer, Carol M; Lewis, Darrell R.

    1984-01-01

    The potential benefits--to the individual, the institution, and society--and the potential costs of faculty consulting are examined. A review of the relevant literature and data precedes a presentation of new findings and a taxonomy for developing institutional guidelines. (Author/MLW)

  9. AGXT2: a promiscuous aminotransferase

    PubMed Central

    Rodionov, Roman N.; Jarzebska, Natalia; Weiss, Norbert; Lentz, Steven R.

    2014-01-01

    Alanine-glyoxylate aminotransferase 2 (AGXT2) is a multifunctional mitochondrial aminotransferase that was first identified in 1978. The physiological importance of AGXT2 was largely overlooked for three decades because AGXT2 is less active in glyoxylate metabolism than AGXT1, the enzyme that is deficient in primary hyperoxaluria type I. Recently, several novel functions of AGXT2 have been “rediscovered” in the setting of modern genomic and metabolomic studies. It is now apparent that AGXT2 has multiple substrates and products and that altered AGXT2 activity may contribute to the pathogenesis of cardiovascular, renal, neurological and hematological diseases. This article reviews the biochemical properties and physiological functions of AGXT2, its unique role at the intersection of key mitochondrial pathways, and its potential as a drug target. PMID:25294000

  10. Phenolic promiscuity in the cell nucleus--epigallocatechingallate (EGCG) and theaflavin-3,3'-digallate from green and black tea bind to model cell nuclear structures including histone proteins, double stranded DNA and telomeric quadruplex DNA.

    PubMed

    Mikutis, Gediminas; Karaköse, Hande; Jaiswal, Rakesh; LeGresley, Adam; Islam, Tuhidul; Fernandez-Lahore, Marcelo; Kuhnert, Nikolai

    2013-02-01

    Flavanols from tea have been reported to accumulate in the cell nucleus in considerable concentrations. The nature of this phenomenon, which could provide novel approaches in understanding the well-known beneficial health effects of tea phenols, is investigated in this contribution. The interaction between epigallocatechin gallate (EGCG) from green tea and a selection of theaflavins from black tea with selected cell nuclear structures such as model histone proteins, double stranded DNA and quadruplex DNA was investigated using mass spectrometry, Circular Dichroism spectroscopy and fluorescent assays. The selected polyphenols were shown to display affinity to all of the selected cell nuclear structures, thereby demonstrating a degree of unexpected molecular promiscuity. Most interestingly theaflavin-digallate was shown to display the highest affinity to quadruplex DNA reported for any naturally occurring molecule reported so far. This finding has immediate implications in rationalising the chemopreventive effect of the tea beverage against cancer and possibly the role of tea phenolics as "life span essentials".

  11. First analysis of a bacterial collagen-binding protein with collagen Toolkits: promiscuous binding of YadA to collagens may explain how YadA interferes with host processes.

    PubMed

    Leo, Jack C; Elovaara, Heli; Bihan, Dominique; Pugh, Nicholas; Kilpinen, Sami K; Raynal, Nicolas; Skurnik, Mikael; Farndale, Richard W; Goldman, Adrian

    2010-07-01

    The Yersinia adhesin YadA mediates the adhesion of the human enteropathogen Yersinia enterocolitica to collagens and other components of the extracellular matrix. Though YadA has been proposed to bind to a specific site in collagens, the exact binding determinants for YadA in native collagen have not previously been elucidated. We investigated the binding of YadA to collagen Toolkits, which are libraries of triple-helical peptides spanning the sequences of type II and III human collagens. YadA bound to many of them, in particular to peptides rich in hydroxyproline but with few charged residues. We were able to block the binding of YadA to collagen type IV with the triple-helical peptide (Pro-Hyp-Gly)(10), suggesting that the same site in YadA binds to triple-helical regions in network-forming collagens as well. We showed that a single Gly-Pro-Hyp triplet in a triple-helical peptide was sufficient to support YadA binding, but more than six triplets were required to form a tight YadA binding site. This is significantly longer than the case for eukaryotic collagen-binding proteins. YadA-expressing bacteria bound promiscuously to Toolkit peptides. Promiscuous binding could be advantageous for pathogenicity in Y. enterocolitica and, indeed, for other pathogenic bacteria. Many of the tightly binding peptides are also targets for eukaryotic collagen-binding proteins, and YadA was able to inhibit the interaction between selected Toolkit peptides and platelets. This leads to the intriguing possibility that YadA may interfere in vivo with host processes mediated by endogenous collagen-binding proteins.

  12. Catalysis of Photochemical Reactions.

    ERIC Educational Resources Information Center

    Albini, A.

    1986-01-01

    Offers a classification system of catalytic effects in photochemical reactions, contrasting characteristic properties of photochemical and thermal reactions. Discusses catalysis and sensitization, examples of catalyzed reactions of excepted states, complexing ground state substrates, and catalysis of primary photoproducts. (JM)

  13. Anaphylaxis-Like Reactions

    MedlinePlus

    ... Home Conditions Anaphylaxis Anaphylaxis-Like Reactions Anaphylaxis-Like Reactions Make an Appointment Refer a Patient Ask a ... exposed to a foreign substance, some people suffer reactions identical to anaphylaxis, but no allergy (IgE antibody) ...

  14. Skin reactions to sunscreens.

    PubMed

    Nixon, R L; Frowen, K E; Lewis, A E

    1997-06-01

    Sunscreen reactions are said not to be uncommon. A population referred to a patch testing clinic was evaluated for reactions to sunscreen by questionnaire initially and then, if relevant, by patch testing to sunscreen products and their components. Irritant reactions were more common than allergic contact dermatitis. Allergic reactions to sunscreens were less common than to non-sunscreen chemicals present in sunscreen products.

  15. The Glyoxal Clock Reaction

    ERIC Educational Resources Information Center

    Ealy, Julie B.; Negron, Alexandra Rodriguez; Stephens, Jessica; Stauffer, Rebecca; Furrow, Stanley D.

    2007-01-01

    Research on the glyoxal clock reaction has led to adaptation of the clock reaction to a general chemistry experiment. This particular reaction is just one of many that used formaldehyde in the past. The kinetics of the glyoxal clock makes the reaction suitable as a general chemistry lab using a Calculator Based Laboratory (CBL) or a LabPro. The…

  16. Microscale Thermite Reactions.

    ERIC Educational Resources Information Center

    Arnaiz, Francisco J.; Aguado, Rafael; Arnaiz, Susana

    1998-01-01

    Describes the adaptation of thermite (aluminum with metal oxides) reactions from whole-class demonstrations to student-run micro-reactions. Lists detailed directions and possible variations of the experiment. (WRM)

  17. Microfluidic chemical reaction circuits

    SciTech Connect

    Lee, Chung-cheng; Sui, Guodong; Elizarov, Arkadij; Kolb, Hartmuth C; Huang, Jiang; Heath, James R; Phelps, Michael E; Quake, Stephen R; Tseng, Hsian-rong; Wyatt, Paul; Daridon, Antoine

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  18. Allergic reactions (image)

    MedlinePlus

    Allergic reaction is a sensitivity to a specific substance, called an allergen, that is contacted through the skin, inhaled into the lungs, swallowed or injected. The body's reaction to an allergen can be mild, such as ...

  19. Allergic reactions (image)

    MedlinePlus

    Allergic reaction can be provoked by skin contact with poison plants, chemicals and animal scratches, as well as by ... dust, nuts and shellfish, may also cause allergic reaction. Medications such as penicillin and other antibiotics are ...

  20. μ-Theraphotoxin-An1a: primary structure determination and assessment of the pharmacological activity of a promiscuous anti-insect toxin from the venom of the tarantula Acanthoscurria natalensis (Mygalomorphae, Theraphosidae).

    PubMed

    Rates, Breno; Prates, Maura V; Verano-Braga, Thiago; da Rocha, Angela P; Roepstorff, Peter; Borges, Carlos L; Lapied, Bruno; Murillo, Laurence; Pimenta, Adriano M C; Biondi, Ilka; De Lima, Maria Elena

    2013-08-01

    Tarantulas are included in the mygalomorph spider family Theraphosidae. Although the pharmacological diversity of theraphosid toxins (theraphotoxins) is broad, studies dedicated to the characterization of biologically active molecules from the theraphosid genus Acanthoscurria have been restricted to the investigation of antimicrobial peptides and polyamines produced by the hemocytes of Acanthoscurria gomesiana. The present study reports the purification, primary structure determination and electrophysiological effects of an anti-insect toxin, named μ-theraphotoxin-An1a (μ-TRTX-An1a), from the venom of Acanthoscurria natalensis - a tarantula species occurring in the Brazilian biomes caatinga and cerrado. The analysis of the primary structure of μ-TRTX-An1a revealed the similarity of this toxin to theraphosid toxins bearing a huwentoxin-II-like fold. Electrophysiological experiments showed that μ-TRTX-An1a (100 nM) induces membrane depolarization, increases the spontaneous firing frequency and reduces spike amplitude of cockroach dorsal unpaired median (DUM) neurons. In addition, under voltage-clamp conditions, μ-TRTX-An1a (100 nM) only partially blocks voltage-dependent sodium current amplitudes in DUM neurons without any effect on their voltage dependence. This effect correlates well with the reduction of the spontaneous action potential amplitudes. Altogether, these last results suggest that μ-TRTX-An1a affects insect neuronal voltage-dependent sodium channels, which are among possible channels targeted by this promiscuous toxin.

  1. Oxidation reactions performed by soluble methane monooxygenase hydroxylase intermediates H(peroxo) and Q proceed by distinct mechanisms.

    PubMed

    Tinberg, Christine E; Lippard, Stephen J

    2010-09-14

    Soluble methane monooxygenase is a bacterial enzyme that converts methane to methanol at a carboxylate-bridged diiron center with exquisite control. Because the oxidizing power required for this transformation is demanding, it is not surprising that the enzyme is also capable of hydroxylating and epoxidizing a broad range of hydrocarbon substrates in addition to methane. In this work we took advantage of this promiscuity of the enzyme to gain insight into the mechanisms of action of H(peroxo) and Q, two oxidants that are generated sequentially during the reaction of reduced protein with O(2). Using double-mixing stopped-flow spectroscopy, we investigated the reactions of the two intermediate species with a panel of substrates of varying C-H bond strength. Three classes of substrates were identified according to the rate-determining step in the reaction. We show for the first time that an inverse trend exists between the rate constant of reaction with H(peroxo) and the C-H bond strength of the hydrocarbon examined for those substrates in which C-H bond activation is rate-determining. Deuterium kinetic isotope effects revealed that reactions performed by Q, but probably not H(peroxo), involve extensive quantum mechanical tunneling. This difference sheds light on the observation that H(peroxo) is not a sufficiently potent oxidant to hydroxylate methane, whereas Q can perform this reaction in a facile manner. In addition, the reaction of H(peroxo) with acetonitrile appears to proceed by a distinct mechanism in which a cyanomethide anionic intermediate is generated, bolstering the argument that H(peroxo) is an electrophilic oxidant that operates via two-electron transfer chemistry.

  2. Noncanonical reactions of flavoenzymes.

    PubMed

    Sobrado, Pablo

    2012-11-05

    Enzymes containing flavin cofactors are predominantly involved in redox reactions in numerous cellular processes where the protein environment modulates the chemical reactivity of the flavin to either transfer one or two electrons. Some flavoenzymes catalyze reactions with no net redox change. In these reactions, the protein environment modulates the reactivity of the flavin to perform novel chemistries. Recent mechanistic and structural data supporting novel flavin functionalities in reactions catalyzed by chorismate synthase, type II isopentenyl diphosphate isomerase, UDP-galactopyranose mutase, and alkyl-dihydroxyacetonephosphate synthase are presented in this review. In these enzymes, the flavin plays either a direct role in acid/base reactions or as a nucleophile or electrophile. In addition, the flavin cofactor is proposed to function as a "molecular scaffold" in the formation of UDP-galactofuranose and alkyl-dihydroxyacetonephosphate by forming a covalent adduct with reaction intermediates.

  3. Reaction spreading on graphs.

    PubMed

    Burioni, Raffaella; Chibbaro, Sergio; Vergni, Davide; Vulpiani, Angelo

    2012-11-01

    We study reaction-diffusion processes on graphs through an extension of the standard reaction-diffusion equation starting from first principles. We focus on reaction spreading, i.e., on the time evolution of the reaction product M(t). At variance with pure diffusive processes, characterized by the spectral dimension d{s}, the important quantity for reaction spreading is found to be the connectivity dimension d{l}. Numerical data, in agreement with analytical estimates based on the features of n independent random walkers on the graph, show that M(t)∼t{d{l}}. In the case of Erdös-Renyi random graphs, the reaction product is characterized by an exponential growth M(t)e{αt} with α proportional to ln(k), where (k) is the average degree of the graph.

  4. Photoneutron Reactions in Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Utsunomiya, Hiroaki

    Photoneutron reactions are discussed in the context of nucleosynthesis with emphasis on a unified understanding of (γ, n) and (n, γ) reactions for heavy nuclei through the γ-ray strength function and a revisit to explosive nucleosynthesis of 9Be through the reciprocity theorem. The role of photonuclear reactions in nucleosynthesis is supplemented by the photonuclear data project (IAEA-CRP F42032) and will be strengthened in the Extreme Light Infrastructure-Nuclear Physics (ELI-NP) in the future.

  5. Nuclear reaction studies

    SciTech Connect

    Alexander, J.M.; Lacey, R.A.

    1994-11-01

    Research focused on the statistical and dynamical properties of ``hot`` nuclei formed in symmetric heavy-ion reactions. Theses included ``flow`` measurements and the mechanism for multifragment disassembly. Model calculations are being performed for the reactions C+C, Ne+Al, Ar+Sc, Kr+Nb, and Xe+La. It is planned to study {sup 40}Ar reactions from 27 to 115 MeV/nucleon. 2 figs., 41 refs.

  6. Facile and Stabile Linkages through Tyrosine: Bioconjugation Strategies with the Tyrosine-Click Reaction

    PubMed Central

    Ban, Hitoshi; Nagano, Masanobu; Gavrilyuk, Julia; Hakamata, Wataru; Inokuma, Tsubasa; Barbas, Carlos F.

    2013-01-01

    The scope, chemoselectivity, and utility of the click-like tyrosine labeling reaction with 4-phenyl-3H-1,2,4-triazoline-3,5(4H)-diones (PTADs) is reported. To study the utility and chemoselectivity of PTAD derivatives in peptide and protein chemistry, we synthesized PTAD derivatives possessing azide, alkyne, and ketone groups and studied their reactions with amino acid derivatives and peptides of increasing complexity. With proteins we studied the compatibility of the tyrosine click reaction with cysteine and lysine-targeted labeling approaches and demonstrate that chemoselective tri-functionalization of proteins is readily achieved. In particular cases, we noted PTAD decomposition resulted in formation of a putative isocyanate by-product that was promiscuous in labeling. This side reaction product, however, was readily scavenged by the addition of a small amount of 2-amino-2-hydroxymethyl-propane-1,3-diol (Tris) to the reaction medium. To study the potential of the tyrosine click reaction to introduce poly(ethylene) glycol chains onto proteins (PEGylation), we demonstrate that this novel reagent provides for the selective PEGylation of chymotrypsinogen whereas traditional succinimide-based PEGylation targeting lysine residues provided a more diverse range of PEGylated products. Finally, we applied the tyrosine click reaction to create a novel antibody drug conjugate. For this purpose, we synthesized a PTAD derivative linked to the HIV entry inhibitor aplaviroc. Labeling of the antibody trastuzumab with this reagent provided a labeled antibody conjugate that demonstrated potent HIV-1 neutralization activity demonstrating the potential of this reaction in creating protein conjugates with small molecules. The tyrosine click linkage demonstrated stability to extremes of pH, temperature and exposure to human blood plasma indicating that this linkage is significantly more robust than maleimide-type linkages that are commonly employed in bioconjugations. These studies

  7. Facile and stabile linkages through tyrosine: bioconjugation strategies with the tyrosine-click reaction.

    PubMed

    Ban, Hitoshi; Nagano, Masanobu; Gavrilyuk, Julia; Hakamata, Wataru; Inokuma, Tsubasa; Barbas, Carlos F

    2013-04-17

    The scope, chemoselectivity, and utility of the click-like tyrosine labeling reaction with 4-phenyl-3H-1,2,4-triazoline-3,5(4H)-diones (PTADs) is reported. To study the utility and chemoselectivity of PTAD derivatives in peptide and protein chemistry, we synthesized PTAD derivatives possessing azide, alkyne, and ketone groups and studied their reactions with amino acid derivatives and peptides of increasing complexity. With proteins we studied the compatibility of the tyrosine click reaction with cysteine and lysine-targeted labeling approaches and demonstrate that chemoselective trifunctionalization of proteins is readily achieved. In particular cases, we noted that PTAD decomposition resulted in formation of a putative isocyanate byproduct that was promiscuous in labeling. This side reaction product, however, was readily scavenged by the addition of a small amount of 2-amino-2-hydroxymethyl-propane-1,3-diol (Tris) to the reaction medium. To study the potential of the tyrosine click reaction to introduce poly(ethylene glycol) chains onto proteins (PEGylation), we demonstrate that this novel reagent provides for the selective PEGylation of chymotrypsinogen, whereas traditional succinimide-based PEGylation targeting lysine residues provided a more diverse range of PEGylated products. Finally, we applied the tyrosine click reaction to create a novel antibody-drug conjugate. For this purpose, we synthesized a PTAD derivative linked to the HIV entry inhibitor aplaviroc. Labeling of the antibody trastuzumab with this reagent provided a labeled antibody conjugate that demonstrated potent HIV-1 neutralization activity demonstrating the potential of this reaction in creating protein conjugates with small molecules. The tyrosine click linkage demonstrated stability to extremes of pH, temperature, and exposure to human blood plasma indicating that this linkage is significantly more robust than maleimide-type linkages that are commonly employed in bioconjugations. These

  8. Sleeve reaction chamber system

    DOEpatents

    Northrup, M. Allen; Beeman, Barton V.; Benett, William J.; Hadley, Dean R.; Landre, Phoebe; Lehew, Stacy L.; Krulevitch, Peter A.

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  9. Oscillating Reactions: Two Analogies

    ERIC Educational Resources Information Center

    Petruševski, Vladimir M.; Stojanovska, Marina I.; Šoptrajanov, Bojan T.

    2007-01-01

    Oscillating chemical reactions are truly spectacular phenomena, and demonstrations are always appreciated by the class. However, explaining such reactions to high school or first-year university students is problematic, because it may seem that no acceptable explanation is possible unless the students have profound knowledge of both physical…

  10. Degradations and Rearrangement Reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbo

    This section deals with recent reports concerning degradation and rearrangement reactions of free sugars as well as some glycosides. The transformations are classified in chemical and enzymatic ways. In addition, the Maillard reaction will be discussed as an example of degradation and rearrangement transformation and its application in current research in the fields of chemistry and biology.

  11. Photoinduced Multicomponent Reactions.

    PubMed

    Garbarino, Silvia; Ravelli, Davide; Protti, Stefano; Basso, Andrea

    2016-12-12

    The combination of multicomponent approaches with light-driven processes opens up new scenarios in the area of synthetic organic chemistry, where the need for sustainable, atom- and energy-efficient reactions is increasingly urgent. Photoinduced multicomponent reactions are still in their infancy, but significant developments in this area are expected in the near future.

  12. Lithium Cell Reactions.

    DTIC Science & Technology

    1983-12-01

    SUPPLEMENTARY NOTES It. KEY WORDS (Continue on reverse .,ide if necessary and Identify by block number) Batteries Thionyl Chloride Batteries Lithium ...Batteries Lithium Cells Primary Batteries Thionyl Chloride Cells Non Rechargeable Batteries Electrochemical Reactions 20. ABSTRACT (Continue on reverse...INVESTIGATION OF CHEMICAL, ELECTROCHEMICAL AND PARASITIC REACTIONS IN LITHIUM - THIONYL CHLORIDE CELLS .......................................... 1 1.0 IN TRO D UC

  13. Clock Reaction: Outreach Attraction

    ERIC Educational Resources Information Center

    Carpenter, Yuen-ying; Phillips, Heather A.; Jakubinek, Michael B.

    2010-01-01

    Chemistry students are often introduced to the concept of reaction rates through demonstrations or laboratory activities involving the well-known iodine clock reaction. For example, a laboratory experiment involving thiosulfate as an iodine scavenger is part of the first-year general chemistry laboratory curriculum at Dalhousie University. With…

  14. Hydrogen evolution reaction catalyst

    DOEpatents

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  15. REUSABLE REACTION VESSEL

    DOEpatents

    Soine, T.S.

    1963-02-26

    This patent shows a reusable reaction vessel for such high temperature reactions as the reduction of actinide metal chlorides by calcium metal. The vessel consists of an outer metal shell, an inner container of refractory material such as sintered magnesia, and between these, a bed of loose refractory material impregnated with thermally conductive inorganic salts. (AEC)

  16. Reactions to Attitudinal Deviancy.

    ERIC Educational Resources Information Center

    Levine, John M.; Allen, Vernon L.

    This paper presents a critical review of empirical and theoretical treatments of group reaction to attitudinal deviancy. Inspired by Festinger's (1950) ideas on resolution of attitudinal discrepancies in groups, Schachter (1951) conducted an experiment that has greatly influenced subsequent research and theory concerning reaction to attitudinal…

  17. Applications of Reaction Rate

    ERIC Educational Resources Information Center

    Cunningham, Kevin

    2007-01-01

    This article presents an assignment in which students are to research and report on a chemical reaction whose increased or decreased rate is of practical importance. Specifically, students are asked to represent the reaction they have chosen with an acceptable chemical equation, identify a factor that influences its rate and explain how and why it…

  18. Chemical Reaction Problem Solving.

    ERIC Educational Resources Information Center

    Veal, William

    1999-01-01

    Discusses the role of chemical-equation problem solving in helping students predict reaction products. Methods for helping students learn this process must be taught to students and future teachers by using pedagogical skills within the content of chemistry. Emphasizes that solving chemical reactions should involve creative cognition where…

  19. Reactions and their management.

    PubMed

    Ganapati, R; Pai, V V

    2004-12-01

    The uneventful response to chemotherapy in leprosy is marked by clinically disturbing episodes encountered in 20-30% of patients and these phenomena are called "reactions". Generally they are classified as reversal reaction (type-1) and erythema nodosum leprosum (type-2). The cutaneous menifestations are: (1) Type-2 reactions in LL, BL types constituting erythema nodosum leprosum, erythema multiforme, erythema necroticans, subcutaneous nodules, lepromatous exacerbation. (2) Type-1 reactions in borderline and tuberculoid leprosy. The other manifestations include: Acute neuritis, lymphadenitis, arthritis, oedema of the hands and feet, ocular lesions, etc. Sequelae of reactions are: Paralytic deformities, non-paralytic deformities, extensive scarring and renal damage. A simple guideline to identify the risk-prone cases has been narrated. Prednisolone in standard dosage schedule as recommended by WHO is now being widely used in control programmes.

  20. Phase I active immunotherapy with combination of two chimeric, human epidermal growth factor receptor 2, B-cell epitopes fused to a promiscuous T-cell epitope in patients with metastatic and/or recurrent solid tumors.

    PubMed

    Kaumaya, Pravin T P; Foy, Kevin Chu; Garrett, Joan; Rawale, Sharad V; Vicari, Daniele; Thurmond, Jennifer M; Lamb, Tammy; Mani, Aruna; Kane, Yahaira; Balint, Catherine R; Chalupa, Donald; Otterson, Gregory A; Shapiro, Charles L; Fowler, Jeffrey M; Grever, Michael R; Bekaii-Saab, Tanios S; Carson, William E

    2009-11-01

    PURPOSE To evaluate the maximum-tolerated dose (MTD), safety profile, and immunogenicity of two chimeric, B-cell epitopes derived from the human epidermal growth factor receptor (HER2) extracellular domain in a combination vaccine with a promiscuous T-cell epitope (ie, MVF) and nor-muramyl-dipeptide as adjuvant emulsified in SEPPIC ISA 720. PATIENTS AND METHODS Eligible patients with metastatic and/or recurrent solid tumors received three inoculations on days 1, 22, and 43 at doses of total peptide that ranged from 0.5 to 3.0 mg. Immunogenicity was evaluated by enzyme-linked immunosorbent assay, flow cytometry, and HER2 signaling assays. Results Twenty-four patients received three inoculations at the intended dose levels, which elicited antibodies able to recognize native HER2 receptor and inhibited both the proliferation of HER2-expressing cell lines and phosphorylation of the HER2 protein. The MTD was determined to be the highest dose level of 3.0 mg of the combination vaccine. There was a significant increase from dose level 1 (0.5 mg) to dose level 4 (3.0 mg) in HER2-specific antibodies. Four patients (one each with adrenal, colon, ovarian, and squamous cell carcinoma of unknown primary) were judged to have stable disease; two patients (one each with endometrial and ovarian cancer) had partial responses; and 11 patients had progressive disease. Patients with stable disease received 6-month boosts, and one patient received a 20-month boost. CONCLUSION The combination vaccines were safe and effective in eliciting antibody responses in a subset of patients (62.5%) and were associated with no serious adverse events, autoimmune disease, or cardiotoxicity. There was preliminary evidence of clinical activity in several patients.

  1. Enhancing chemical reactions

    DOEpatents

    Morrey, John R.

    1978-01-01

    Methods of enhancing selected chemical reactions. The population of a selected high vibrational energy state of a reactant molecule is increased substantially above its population at thermal equilibrium by directing onto the molecule a beam of radiant energy from a laser having a combination of frequency and intensity selected to pump the selected energy state, and the reaction is carried out with the temperature, pressure, and concentrations of reactants maintained at a combination of values selected to optimize the reaction in preference to thermal degradation by transforming the absorbed energy into translational motion. The reaction temperature is selected to optimize the reaction. Typically a laser and a frequency doubler emit radiant energy at frequencies of .nu. and 2.nu. into an optical dye within an optical cavity capable of being tuned to a wanted frequency .delta. or a parametric oscillator comprising a non-centrosymmetric crystal having two indices of refraction, to emit radiant energy at the frequencies of .nu., 2.nu., and .delta. (and, with a parametric oscillator, also at 2.nu.-.delta.). Each unwanted frequency is filtered out, and each desired frequency is focused to the desired radiation flux within a reaction chamber and is reflected repeatedly through the chamber while reactants are fed into the chamber and reaction products are removed therefrom.

  2. Algorithm for reaction classification.

    PubMed

    Kraut, Hans; Eiblmaier, Josef; Grethe, Guenter; Löw, Peter; Matuszczyk, Heinz; Saller, Heinz

    2013-11-25

    Reaction classification has important applications, and many approaches to classification have been applied. Our own algorithm tests all maximum common substructures (MCS) between all reactant and product molecules in order to find an atom mapping containing the minimum chemical distance (MCD). Recent publications have concluded that new MCS algorithms need to be compared with existing methods in a reproducible environment, preferably on a generalized test set, yet the number of test sets available is small, and they are not truly representative of the range of reactions that occur in real reaction databases. We have designed a challenging test set of reactions and are making it publicly available and usable with InfoChem's software or other classification algorithms. We supply a representative set of example reactions, grouped into different levels of difficulty, from a large number of reaction databases that chemists actually encounter in practice, in order to demonstrate the basic requirements for a mapping algorithm to detect the reaction centers in a consistent way. We invite the scientific community to contribute to the future extension and improvement of this data set, to achieve the goal of a common standard.

  3. Modeling of surface reactions

    SciTech Connect

    Ray, T.R.

    1993-01-01

    Mathematical models are used to elucidate properties of the monomer-monomer and monomer-dimer type chemical reactions on a two-dimensional surface. The authors use mean-field and lattice gas models, detailing similarities and differences due to correlations in the lattice gas model. The monomer-monomer, or AB surface reaction model, with no diffusion, is investigated for various reaction rates k. Study of the exact rate equations reveals that poisoning always occurs if the adsorption rates of the reactants are unequal. If the adsorption rates of the reactants are equal, simulations show slow poisoning, associated with clustering of reactants. This behavior is also shown for the two-dimensional voter model. The authors analyze precisely the slow poisoning kinetics by an analytic treatment for the AB reaction with infinitesimal reaction rate, and by direct comparison with the voter model. They extend the results to incorporate the effects of place-exchange diffusion, and they compare the AB reaction with infinitesimal reaction rate and no diffusion to the voter model with diffusion at rate 1/2. They also consider the relationship of the voter model to the monomer-dimer model, and investigate the latter model for small reaction rates. The monomer-dimer, or AB[sub 2] surface reaction model is also investigated. Specifically, they consider the ZGB-model for CO-oxidation, and in generalizations of this model which include adspecies diffusion. A theory of nucleation to describe properties of non-equilibrium first-order transitions, specifically the evolution between [open quote]reactive[close quote] steady states and trivial adsorbing states, is derived. The behavior of the [open quote]epidemic[close quote] survival probability, P[sub s], for a non-poisoned patch surrounded by a poisoned background is determined below the poisoning transition.

  4. Cycloaddition reactions of ICNO

    NASA Astrophysics Data System (ADS)

    Pasinszki, Tibor; Krebsz, Melinda; Hajgató, Balázs

    2009-05-01

    The mechanism and selectivity of cycloaddition reactions of iodonitrile oxide, ICNO, have been studied with theoretical methods for the first time using MR-AQCC coupled-cluster and B3LYP DFT methods. Calculations have predicted that the favoured ICNO dimerisation process is a multi-step reaction to diiodofuroxan involving dinitrosoethylene-like intermediates. The ICNO cycloaddition with nitriles and ethynyl derivatives is a synchronous process favouring the formation of 1,2,4-oxadiazole and 1,2-oxazole derivatives, respectively. The cycloaddition reactions of ICNO have been studied experimentally by generating ICNO from AgCNO and iodine. Diiodofuroxan is obtained, however, even at the presence of nitriles.

  5. NEUTRONIC REACTION SYSTEM

    DOEpatents

    Wigner, E.P.

    1963-09-01

    A nuclear reactor system is described for breeding fissionable material, including a heat-exchange tank, a high- and a low-pressure chamber therein, heat- exchange tubes connecting these chambers, a solution of U/sup 233/ in heavy water in a reaction container within the tank, a slurry of thorium dioxide in heavy water in a second container surrounding the first container, an inlet conduit including a pump connecting the low pressure chamber to the reaction container, an outlet conduit connecting the high pressure chamber to the reaction container, and means of removing gaseous fission products released in both chambers. (AEC)

  6. Bad Reaction to Cosmetics?

    MedlinePlus

    ... Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products For Consumers Home For Consumers ... Reactions From Cosmetics More in Consumer Updates Animal & Veterinary Children's Health Cosmetics Dietary Supplements Drugs Food Medical ...

  7. Reactor for exothermic reactions

    DOEpatents

    Smith, Jr., Lawrence A.; Hearn, Dennis; Jones, Jr., Edward M.

    1993-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  8. Untoward penicillin reactions

    PubMed Central

    Guthe, T.; Idsöe, O.; Willcox, R. R.

    1958-01-01

    The literature on untoward reactions following the administration of penicillin is reviewed. These reactions, including a certain number of deaths which have been reported, are of particular interest to health administrations and to WHO in view of the large-scale programmes for controlling the treponematoses which are now under way—programmes affecting millions of people in many parts of the world. The most serious problems are anaphylactic sensitivity phenomena and superinfection or cross-infection with penicillin-resistant organisms, and the reactions involved range in intensity from the mildest to the fatal; the incidence of the latter is estimated at 0.1-0.3 per million injections. The authors point out that with increasing use of penicillin, more persons are likely to become sensitized and the number of reactions can therefore be expected to rise. The best prevention against such an increase is the restriction of the unnecessary use of penicillin. PMID:13596877

  9. Translated chemical reaction networks.

    PubMed

    Johnston, Matthew D

    2014-05-01

    Many biochemical and industrial applications involve complicated networks of simultaneously occurring chemical reactions. Under the assumption of mass action kinetics, the dynamics of these chemical reaction networks are governed by systems of polynomial ordinary differential equations. The steady states of these mass action systems have been analyzed via a variety of techniques, including stoichiometric network analysis, deficiency theory, and algebraic techniques (e.g., Gröbner bases). In this paper, we present a novel method for characterizing the steady states of mass action systems. Our method explicitly links a network's capacity to permit a particular class of steady states, called toric steady states, to topological properties of a generalized network called a translated chemical reaction network. These networks share their reaction vectors with their source network but are permitted to have different complex stoichiometries and different network topologies. We apply the results to examples drawn from the biochemical literature.

  10. Common Reactions After Trauma

    MedlinePlus

    ... Loss of intimacy or feeling detached Recovery from stress reactions Turn to your family and friends when ... someone is thinking about killing themselves, call the Suicide Prevention Lifeline 1-800-273-TALK (8255) http:// ...

  11. Reaction wheel assembly

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The fabrication and testing of three reaction wheels with associated drive and system monitoring electronics and brushless dc spin motors are discussed; the wheels are intended for use in a teleoperator simulator. Test results are included as graphs.

  12. Reactor for exothermic reactions

    DOEpatents

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-03-02

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  13. Oral Hypersensitivity Reactions

    MedlinePlus

    ... often flavored with agents like cinnamon, peppermint or menthol, which can trigger hypersensitivity reactions in susceptible individuals. ... potential allergens such as cinnamon, peppermint, eugenol and menthol. Even dental floss and denture cleansers may contain ...

  14. Iodine Clock Reaction.

    ERIC Educational Resources Information Center

    Mitchell, Richard S.

    1996-01-01

    Describes a combination of solutions that can be used in the study of kinetics using the iodine clock reaction. The combination slows down degradation of the prepared solutions and can be used successfully for several weeks. (JRH)

  15. Response reactions: equilibrium coupling.

    PubMed

    Hoffmann, Eufrozina A; Nagypal, Istvan

    2006-06-01

    It is pointed out and illustrated in the present paper that if a homogeneous multiple equilibrium system containing k components and q species is composed of the reactants actually taken and their reactions contain only k + 1 species, then we have a unique representation with (q - k) stoichiometrically independent reactions (SIRs). We define these as coupling reactions. All the other possible combinations with k + 1 species are the coupled reactions that are in equilibrium when the (q - k) SIRs are in equilibrium. The response of the equilibrium state for perturbation is determined by the coupling and coupled equilibria. Depending on the circumstances and the actual thermodynamic data, the effect of coupled equilibria may overtake the effect of the coupling ones, leading to phenomena that are in apparent contradiction with Le Chatelier's principle.

  16. Skin Reactions to Cold

    PubMed Central

    Talpash, Orest

    1976-01-01

    Although skin reactions to cold are seen surprisingly infrequently in Canada, it is important to manage them correctly when they do occur. Frostbite, cold urticarias, Raynaud's disease and phenomenon, and several miscellaneous changes are discussed. PMID:21308019

  17. Chemisorption And Precipitation Reactions

    EPA Science Inventory

    The transport and bioavailability of chemical components within soils is, in part, controlled by partitioning between solids and solution. General terms used to describe these partitioning reactions include chemisorption and precipitation. Chemisorption is inclusive of the suit...

  18. An Illuminating Reaction.

    ERIC Educational Resources Information Center

    Matthews, Catherine E.

    1996-01-01

    Describes the use of carbide lights as an excellent mechanism for introducing or reviewing many basic chemistry concepts including elements and compounds, endothermic and exothermic reactions, physical and chemical changes, and balancing chemical equations. (JRH)

  19. [Occurrence of drug reactions].

    PubMed

    Pastorello, E; Qualizza, R M; Luraghi, M T; Ispano, M; Villa, A M; Ortolani, C; Zanussi, C

    1986-01-01

    The aim of this prospective study was to evaluate the incidence of allergic reactions to drugs compared to other kinds of medical emergencies admitted to the main Hospital in Milan during a 6 months period. At the same time we drew a list of drugs most frequently involved in allergic reactions, and a list of the most frequent symptoms. Using special forms, the medical staff collected patients' data: age, history of atopy, identification of the drug causing the reaction, and any previous reactions. Among 11,407 cases of medical emergencies, we found 163 (1.43%) patients showing drug reactions: the mean age was 27.3; 58.90% were female; atopy was present in 16.56%. The drugs most frequently involved were: pyrazon group (22%); ASA (20.86%); penicillin and derivatives (9.20%); sulfa drugs (6.14%); group B vitamins (4.30%); tetanus toxoid (4.30%); hyposensitizing extracts (3.68%); propionic acid derivatives (2.46%); paracetamol (1.84%); indomethacin (1.23%); rifampicin (1.23%); erythromycin (1.23%); glafenine (1.23%); others (17.80%). Urticaria and/or angioedema were the most frequent symptoms (86.51%), then anaphylactic shock (9.81%) and asthma (3.68%) with regard to anaphylactic shock only 6.20% of the patients had had a previous reaction to the same drug. From these data we can see that the incidence of drug reactions is very low compared to other medical emergencies; penicillin evidenced fewer reactions than expected, while the pyrazon group and ASA confirmed the data from literature.

  20. Anaphylactoid reaction to ethanol.

    PubMed

    Kelso, J M; Keating, M U; Squillace, D L; O'Connell, E J; Yunginger, J W; Sachs, M I

    1990-05-01

    We studied a 14-year-old boy who developed a pruritic rash and facial swelling after ingestion of beer or wine. A blinded challenge with purified ethanol was positive demonstrating ethanol itself to be the offending agent. An IgE-mediated reaction to ethanol or one of its metabolites as a hapten is possible, or the reaction may involve unusual metabolism of ethanol with accumulation of acetaldehyde and/or direct mast cell degranulation.

  1. Oxygen evolution reaction catalysis

    DOEpatents

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  2. [Cutaneous adverse drug reactions].

    PubMed

    Lebrun-Vignes, B; Valeyrie-Allanore, L

    2015-04-01

    Cutaneous adverse drug reactions (CADR) represent a heterogeneous field including various clinical patterns without specific features suggesting drug causality. Exanthematous eruptions, urticaria and vasculitis are the most common forms of CADR. Fixed eruption is uncommon in western countries. Serious reactions (fatal outcome, sequelae) represent 2% of CADR: bullous reactions (Stevens-Johnson syndrome, toxic epidermal necrolysis), DRESS (drug reaction with eosinophilia and systemic symptoms or drug-induced hypersensitivity syndrome) and acute generalized exanthematous pustulosis (AGEP). These forms must be quickly diagnosed to guide their management. The main risk factors are immunosuppression, autoimmunity and some HLA alleles in bullous reactions and DRESS. Most systemic drugs may induce cutaneous adverse reactions, especially antibiotics, anticonvulsivants, antineoplastic drugs, non-steroidal anti-inflammatory drugs, allopurinol and contrast media. Pathogenesis includes immediate or delayed immunologic mechanism, usually not related to dose, and pharmacologic/toxic mechanism, commonly dose-dependent or time-dependent. In case of immunologic mechanism, allergologic exploration is possible to clarify drug causality, with a variable sensitivity according to the drug and to the CADR type. It includes epicutaneous patch testing, prick test and intradermal test. However, no in vivo or in vitro test can confirm the drug causality. To determine the cause of the eruption, a logical approach based on clinical characteristics, chronologic factors and elimination of differential diagnosis is required, completed with a literature search. A reporting to pharmacovigilance network is essential in case of a serious CADR whatever the suspected drug and in any case if the involved drug is a newly marketed one or unusually related to cutaneous reactions.

  3. Reaction/Momentum Wheel

    NASA Technical Reports Server (NTRS)

    1997-01-01

    CTA Space Systems, Inc. has been licensed to sell commercially a reaction/momentum wheel originally developed for NASA's scientific satellites. NASA originally identified a need for the wheel in its Small Explorer program. The Submillimeter Wave Astronomy Satellite required extremely low jitter and a reaction/momentum wheel with a torque greater than any comparably sized commercially available wheel to keep the instrument pointed at celestial objects to a high degree of precision. After development, a market assessment by Research Triangle Institute was completed, showing commercial potential for the flywheel technology. A license was granted to CTA in the fall of 1996. The company currently uses the technology in its complete spacecraft fabrication services and has built over 10 reaction/momentum wheels for commercial, scientific, and military customers.

  4. Promiscuous Recognition of a Trypanosoma cruzi CD8+ T Cell Epitope among HLA-A2, HLA-A24 and HLA-A1 Supertypes in Chagasic Patients

    PubMed Central

    Guzmán, Fanny; Rosas, Fernando; Thomas, M. Carmen; López, Manuel Carlos; González, John Mario; Cuéllar, Adriana; Puerta, Concepción J.

    2016-01-01

    Background TcTLE is a nonamer peptide from Trypanosoma cruzi KMP-11 protein that is conserved among different parasite strains and that is presented by different HLA-A molecules from the A2 supertype. Because peptides presented by several major histocompatibility complex (MHC) supertypes are potential targets for immunotherapy, the aim of this study was to determine whether MHC molecules other than the A2 supertype present the TcTLE peptide. Methodology/Principal Findings From 36 HLA-A2-negative chagasic patients, the HLA-A genotypes of twenty-eight patients with CD8+ T cells that recognized the TcTLE peptide using tetramer (twenty) or functional (eight) assays, were determined. SSP-PCR was used to identify the A locus and the allelic variants. Flow cytometry was used to analyze the frequency of TcTLE-specific CD8+ T cells, and their functional activity (IFN-γ, TNFα, IL-2, perforin, granzyme and CD107a/b production) was induced by exposure to the TcTLE peptide. All patients tested had TcTLE-specific CD8+ T cells with frequencies ranging from 0.07–0.37%. Interestingly, seven of the twenty-eight patients had HLA-A homozygous alleles: A*24 (5 patients), A*23 (1 patient) and A*01 (1 patient), which belong to the A24 and A1 supertypes. In the remaining 21 patients with HLA-A heterozygous alleles, the most prominent alleles were A24 and A68. The most common allele sub-type was A*2402 (sixteen patients), which belongs to the A24 supertype, followed by A*6802 (six patients) from the A2 supertype. Additionally, the A*3002/A*3201 alleles from the A1 supertype were detected in one patient. All patients presented CD8+ T cells producing at least one cytokine after TcTLE peptide stimulation. Conclusion/Significance These results show that TcTLE is a promiscuous peptide that is presented by the A24 and A1 supertypes, in addition to the A2 supertype, suggesting its potential as a target for immunotherapy. PMID:26974162

  5. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  6. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  7. Velocity pump reaction turbine

    SciTech Connect

    House, P.A.

    1984-02-07

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  8. Velocity pump reaction turbine

    SciTech Connect

    House, P.A.

    1982-06-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an interrotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal application

  9. Velocity pump reaction turbine

    DOEpatents

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  10. Reaction product imaging

    SciTech Connect

    Chandler, D.W.

    1993-12-01

    Over the past few years the author has investigated the photochemistry of small molecules using the photofragment imaging technique. Bond energies, spectroscopy of radicals, dissociation dynamics and branching ratios are examples of information obtained by this technique. Along with extending the technique to the study of bimolecular reactions, efforts to make the technique as quantitative as possible have been the focus of the research effort. To this end, the author has measured the bond energy of the C-H bond in acetylene, branching ratios in the dissociation of HI, the energetics of CH{sub 3}Br, CD{sub 3}Br, C{sub 2}H{sub 5}Br and C{sub 2}H{sub 5}OBr dissociation, and the alignment of the CD{sub 3} fragment from CD{sub 3}I photolysis. In an effort to extend the technique to bimolecular reactions the author has studied the reaction of H with HI and the isotopic exchange reaction between H and D{sub 2}.

  11. Introducing the Wittig Reaction.

    ERIC Educational Resources Information Center

    Armstead, D. E. F.

    1979-01-01

    An experiment is described which provides a simple example of the application of the Wittig reaction to the synthesis of unsaturated compounds. The experiment was designed with British HNC chemistry students in mind, but it is also suitable as a project-type exercise for final year GCE A-level students. (Author/BB)

  12. Enantioselective Vinylogous Organocascade Reactions.

    PubMed

    Hepburn, Hamish B; Dell'Amico, Luca; Melchiorre, Paolo

    2016-08-01

    Cascade reactions are powerful tools for rapidly assembling complex molecular architectures from readily available starting materials in a single synthetic operation. Their marriage with asymmetric organocatalysis has led to the development of novel techniques, which are now recognized as reliable strategies for the one-pot enantioselective synthesis of stereochemically dense molecules. In recent years, even more complex synthetic challenges have been addressed by applying the principle of vinylogy to the realm of organocascade catalysis. The key to the success of vinylogous organocascade reactions is the unique ability of the chiral organocatalyst to transfer reactivity to a distal position without losing control on the stereo-determining events. This approach has greatly expanded the synthetic horizons of the field by providing the possibility of forging multiple stereocenters in remote positions from the catalyst's point of action with high selectivity, while simultaneously constructing multiple new bonds. This article critically describes the developments achieved in the field of enantioselective vinylogous organocascade reactions, charting the ideas, the conceptual advances, and the milestone reactions that have been essential for reaching highly practical levels of synthetic efficiency.

  13. Chain Reaction Polymerization.

    ERIC Educational Resources Information Center

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  14. Chemical Reactions at Surfaces

    SciTech Connect

    Michael Henderson and Nancy Ryan Gray

    2010-04-14

    Chemical reactions at surfaces underlie some of the most important processes of today, including catalysis, energy conversion, microelectronics, human health and the environment. Understanding surface chemical reactions at a fundamental level is at the core of the field of surface science. The Gordon Research Conference on Chemical Reactions at Surfaces is one of the premiere meetings in the field. The program this year will cover a broad range of topics, including heterogeneous catalysis and surface chemistry, surfaces in environmental chemistry and energy conversion, reactions at the liquid-solid and liquid-gas interface, electronic materials growth and surface modification, biological interfaces, and electrons and photons at surfaces. An exciting program is planned, with contributions from outstanding speakers and discussion leaders from the international scientific community. The conference provides a dynamic environment with ample time for discussion and interaction. Attendees are encouraged to present posters; the poster sessions are historically well attended and stimulate additional discussions. The conference provides an excellent opportunity for junior researchers (e.g. graduate students or postdocs) to present their work and interact with established leaders in the field.

  15. Reaction Formulation: A Bibliography.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Pedrini, Bonnie C.

    Reaction formation was studied by Sigmund Freud. This defense mechanism may be related to repression, substitution, reversal, and compensation (or over-compensation). Alfred Adler considered compensation a basic process in his individual psychology. Anna Freud discussed some defense mechanisms, and Bibring, Dwyer, Huntington, and Valenstein…

  16. Lithium Cell Reactions.

    DTIC Science & Technology

    1985-02-01

    Page 1. INVESTIGATION OF CHEMICAL, ELECTROCHEMICAL AND PARASITIC REACTIONS IN LITHIUM - THIONYL CHLORIDE CELLS ....... ................. 1 1.1 INTRODUCTION...OF LITHIUM - THIONYL CHLORIDE CELLS. ................ 56 1.4.1 Carbon Limited Overdischarge...............56 1.4.1.1 Background... LITHIUM THIONYL - CHLORIDE CELLS. .. ............ ...... 101 1.5.1 Background. ....... ............ .... 101 1.5.2 Microphotography

  17. Confronting Combat Stress Reactions

    DTIC Science & Technology

    2010-03-22

    of the scalp, skull , or brain. 4 Combat stress reaction is categorized as a range of behaviors resulting from the stress of battle which decreases...3) experiencing rage aimed at discriminate and indiscriminate targets, (4) psychic numbing or emotional shutdown, (5) alienation from themselves and

  18. A Superintendent's Reaction

    ERIC Educational Resources Information Center

    Lytle, James H.

    2004-01-01

    This article presents a superintendent's reaction to Catherine Marshall and Michael Ward's article on research on social justice and training for leadership. The author states that there is a problem with Marshall and Ward's article which begins with the title, particularly with the word "training." The author contends that there is a significant…

  19. Polymerase chain reaction system

    DOEpatents

    Benett, William J.; Richards, James B.; Stratton, Paul L.; Hadley, Dean R.; Milanovich, Fred P.; Belgrader, Phil; Meyer, Peter L.

    2004-03-02

    A portable polymerase chain reaction DNA amplification and detection system includes one or more chamber modules. Each module supports a duplex assay of a biological sample. Each module has two parallel interrogation ports with a linear optical system. The system is capable of being handheld.

  20. Exocharmic Reactions up Close

    ERIC Educational Resources Information Center

    Ramette, R. W.

    2007-01-01

    The exocharmic reactions that can be observed microscopically are discussed. The students can discover the optimal concentration of an acidic lead nitrate solution, so that a crystal of potassium iodide, nudged to the edge of a drop, results in glinting golden hexagons of lead iodide.

  1. Three Reaction Papers.

    ERIC Educational Resources Information Center

    Coop, Richard H.; And Others

    1982-01-01

    In reaction papers, Richard H. Coop, an educational psychologist, discusses six themes evident in papers on gifted education; B. J. Cox argues that systems theory is a valuable addition to education of identified and potentially gifted students; and Gary D. Fenstermacher argues for specification of educational entitlements of any learner before…

  2. The aromatic ene reaction

    PubMed Central

    Niu, Dawen; Hoye, Thomas R.

    2014-01-01

    The ene reaction is a pericyclic process in which an alkene having an allylic hydrogen atom (the ene donor) reacts with a second unsaturated species (the enophile) to form a new product with a transposed π-bond. The aromatic ene reaction, in which the alkene component is embedded in an aromatic ring, has only been reported in a few (four) instances and has proceeded in low yield (≤6%). Here we show efficient aromatic ene reactions in which a thermally generated aryne engages a pendant m-alkylarene substituent to produce a dearomatized isotoluene, itself another versatile but rare reactive intermediate. Our experiments were guided by computational studies that revealed structural features conducive to the aromatic ene process. We proceeded to identify a cascade comprising three reactions: (i) hexadehydro-Diels-Alder (for aryne generation), (ii) intramolecular aromatic ene, and (iii) bimolecular Alder ene. The power of this cascade is evident from the structural complexity of the final products, the considerable scope, and the overall efficiency of these multi-stage, reagent- and byproduct-free, single-pot transformations. PMID:24345944

  3. Inorganic Reaction Mechanisms. Part I

    ERIC Educational Resources Information Center

    Cooke, D. O.

    1976-01-01

    Provides a collection of data on the mechanistic aspects of inorganic chemical reactions. Wherever possible includes procedures for classroom demonstration or student project work. The material covered includes gas phase reactions, reactions in solution, mechanisms of electron transfer, the reaction between iron III and iodine, and hydrolysis. (GS)

  4. What Is a Reaction Rate?

    ERIC Educational Resources Information Center

    Schmitz, Guy

    2005-01-01

    The definition of reaction rate is derived and demonstrations are made for the care to be taken while using the term. Reaction rate can be in terms of a reaction property, the extent of reaction and thus it is possible to give a definition applicable in open and closed systems.

  5. Eye evolution: a question of genetic promiscuity.

    PubMed

    Nilsson, Dan-E

    2004-08-01

    Animal eyes have long served as a classical example of independent origin followed by convergence of structures onto a few different solutions. During the past decade this view has been challenged by the discovery of shared developmental regulatory genes. The Pax6 gene in particular is almost universally employed for eye formation in bilaterian animals, despite widely different embryological origins. The resulting controversy on the multiple or single origins of animal eyes has gradually been sharpened by continuing discoveries of further general similarities in the genetic regulatory circuits of eye development. Recent work on gene expression in specified cell types, together with comparative studies of developmental genes in cnidarians, now show some promise to a solution of the controversy.

  6. Promiscuity in Rab–SNARE Interactions

    PubMed Central

    Grote, Eric; Novick, Peter J.

    1999-01-01

    Fusion of post-Golgi secretory vesicles with the plasma membrane in yeast requires the function of a Rab protein, Sec4p, and a set of v- and t-SNAREs, the Snc, Sso, and Sec9 proteins. We have tested the hypothesis that a selective interaction between Sec4p and the exocytic SNAREs is responsible for ensuring that secretory vesicles fuse with the plasma membrane but not with intracellular organelles. Assembly of Sncp and Ssop into a SNARE complex is defective in a sec4-8 mutant strain. However, Snc2p binds in vivo to many other syntaxin-like t-SNAREs, and binding of Sncp to the endosomal/Golgi t-SNARE Tlg2p is also reduced in sec4-8 cells. In addition, binding of Sncp to Ssop is reduced by mutations in two other Rab genes and four non-Rab genes that block the secretory pathway before the formation of secretory vesicles. In an alternate approach to look for selective Rab–SNARE interactions, we report that the nucleotide-free form of Sec4p coimmunoprecipitates with Ssop. However, Rab–SNARE binding is nonselective, because the nucleotide-free forms of six Rab proteins bind with similar low efficiency to three SNARE proteins, Ssop, Pep12p, and Sncp. We conclude that Rabs and SNAREs do not cooperate to specify the target membrane. PMID:10588649

  7. Was Jane Addams a Promiscuous Pragmatist?

    ERIC Educational Resources Information Center

    Atkinson, Becky

    2013-01-01

    Contemporary pragmatist and feminist scholars have proposed the possibilities for "changing the theoretical analyses and concrete practices" of both feminism and classical American pragmatism offered by its recuperation through feminism. Particularly, scholarship on Jane Addams has reached back to retrieve her activism, ethics, and…

  8. Controlling cytokinesis through promiscuous phosphorylation outside BARs.

    PubMed

    Glotzer, Michael

    2010-07-09

    In this issue of Molecular Cell, Roberts-Galbraith and colleagues report that a key cytokinetic regulator in fission yeast, Cdc15, is phosphorylated on numerous sites that collectively, but not individually, control its oligomerization state and its associations with the plasma membrane and interacting proteins.

  9. Adolescent Formula Literature and Its Promiscuous Progeny.

    ERIC Educational Resources Information Center

    Stanek, Lou Willett

    This paper discusses the history and effect of popular culture generally and of the adolescent formula novel specifically. Seven primary characteristics of art as popular culture are that the work is accessible, easy to understand, conventional in form, not shocking in content, expressive of common and appropriate values, relative to some element…

  10. Magnetically suspended reaction wheels

    NASA Technical Reports Server (NTRS)

    Sabnis, A. V.; Stocking, G. L.; Dendy, J. B.

    1975-01-01

    Magnetic suspensions offer several advantages over conventional bearings, arising because of the contactless nature of the load support. In application to spacecraft reaction wheels, the advantages are low drag torque, wearfree, unlubricated, vacuum-compatible operation, and unlimited life. By the provision of redundancy in the control electronics, single-point failures are eliminated. The rational for selection of a passive radial, active axial, dc magnetic suspension is presented, and the relative merits of 3-loop and single-loop magnetic suspensions are discussed. The design of a .678 N-m-sec (.5 ft-lb-sec) reaction wheel using the single loop magnetic suspension was developed; the design compares favorably with current ball bearing wheels in terms of weight and power.

  11. Reaction chemistry of cerium

    SciTech Connect

    1997-01-01

    It is truly ironic that a synthetic organic chemist likely has far greater knowledge of the reaction chemistry of cerium(IV) than an inorganic colleague. Cerium(IV) reagents have long since been employed as oxidants in effecting a wide variety of organic transformations. Conversely, prior to the late 1980s, the number of well characterized cerium(IV) complexes did not extend past a handful of known species. Though in many other areas, interest in the molecular chemistry of the 4f-elements has undergone an explosive growth over the last twenty years, the chemistry of cerium(IV) has for the most part been overlooked. This report describes reactions of cerium complexes and structure.

  12. Concordant Chemical Reaction Networks

    PubMed Central

    Shinar, Guy; Feinberg, Martin

    2015-01-01

    We describe a large class of chemical reaction networks, those endowed with a subtle structural property called concordance. We show that the class of concordant networks coincides precisely with the class of networks which, when taken with any weakly monotonic kinetics, invariably give rise to kinetic systems that are injective — a quality that, among other things, precludes the possibility of switch-like transitions between distinct positive steady states. We also provide persistence characteristics of concordant networks, instability implications of discordance, and consequences of stronger variants of concordance. Some of our results are in the spirit of recent ones by Banaji and Craciun, but here we do not require that every species suffer a degradation reaction. This is especially important in studying biochemical networks, for which it is rare to have all species degrade. PMID:22659063

  13. Reactions to dietary tartrazine.

    PubMed Central

    David, T J

    1987-01-01

    Double blind challenges with tartrazine and benzoic acid were performed in hospital in 24 children whose parents gave a definite history of a purely behavioural immediate adverse reaction to one of these substances. The patients, whose ages ranged from 1.6 to 12.4 years, were on a diet that avoided these items, and in all there was a clear history that any lapse of the diet caused an obvious adverse behavioural reaction within two hours. In no patient was any change in behaviour noted either by the parents or the nursing staff after the administration of placebo or active substances. Twenty two patients returned to a normal diet without problems, but the parents of two children insisted on continuing the diet. While popular belief has it that additives may have harmful behavioural effects, objective verification is required to prevent overdiagnosis. PMID:3548601

  14. Hypersensitivity reactions to fluoroquinolones.

    PubMed

    Scherer, Kathrin; Bircher, Andreas J

    2005-01-01

    Fluoroquinolone antibiotics cause immediate and delayed hypersensitivity reactions, and may also affect internal organs and circulating blood cells. The underlying pathomechanisms are only partly understood. The extent of cross-reactivity among different quinolones depends on the type of clinical manifestation and its underlying mechanism. Despite recent advances, reliable diagnostic tests are still lacking. Recent studies have shown quinolone-specific IgE in vitro in more than 50% of patients with immediate-type reactions and a considerable cross-reactivity with related compounds. In maculopapular drug exanthems from ciprofloxacin, specific T-cell clones were identified, and cross-reactivity to related compounds was detected in approximately 50% of the clones. From re-exposure studies in patients with exanthems, cross-reactivity appears to be lower. Cellular tests such as lymphocyte transformation tests are currently not very useful. For prick and intradermal skin tests, widely divergent nonirritant test concentrations have been recommended. Desensitization may be possible in selected patients.

  15. Photochemical reaction dynamics

    SciTech Connect

    Moore, B.C.

    1993-12-01

    The purpose of the program is to develop a fundamental understanding of unimolecular and bimolecular reaction dynamics with application in combustion and energy systems. The energy dependence in ketene isomerization, ketene dissociation dynamics, and carbonyl substitution on organometallic rhodium complexes in liquid xenon have been studied. Future studies concerning unimolecular processes in ketene as well as energy transfer and kinetic studies of methylene radicals are discussed.

  16. Adverse drug reactions.

    PubMed

    O'Reilly-Foley, Georgina

    2017-04-05

    What was the nature of the CPD activity, practice-related feedback and/or event and/or experience in your practice? The CPD article defined the different types of adverse drug reactions (ADRs) and explored when they can occur. It emphasised the importance of being knowledgeable about medications, considering patient safety when patients are taking medications, being alert to the possibility of ADRs, and recognising and responding to suspected ADRs.

  17. Chemical Reactions in Clusters

    DTIC Science & Technology

    1992-11-04

    NH 3)n, n _> 4, clusters has been attributed to the (solvated) naphtholate anion.3a A single picosecond decay measurement has been reported which...vibrational energy in the cluster Sl state. The data are summarized in Table I. A model to explain these decay results can be constructed based on a proton...11 TITLE (Include Security Classification) Chemical Reactions in Clusters 12 PERSONAL AUTHOR(S) Elliot R. Bernstein 13a TYPE OF REPORT 13b TIME COVERED

  18. Chemical Reactions in DSMC

    SciTech Connect

    Bird, G. A.

    2011-05-20

    DSMC simulations of chemically reacting gas flows have generally employed procedures that convert the macroscopic chemical rate equations to reaction cross-sections at the microscopic level. They therefore depend on the availability of experimental data that has been fitted to equations of the Arrhenius form. This paper presents a physical model for dissociation and recombination reactions and a phenomenological model for exchange and chain reactions. These are based on the vibrational states of the colliding molecules and do not require any experimentally-based data. The simplicity of the models allows the corresponding rate equations to be written down and, while these are not required for the implementation of the models, they facilitate their validation. The model is applied to a typical hypersonic atmospheric entry problem and the results are compared with the corresponding results from the traditional method. It is also used to investigate both spontaneous and forced ignition as well as the structure of a deflagration wave in an oxygen-hydrogen mixture.

  19. Chemical Reactions in DSMC

    NASA Astrophysics Data System (ADS)

    Bird, G. A.

    2011-05-01

    DSMC simulations of chemically reacting gas flows have generally employed procedures that convert the macroscopic chemical rate equations to reaction cross-sections at the microscopic level. They therefore depend on the availability of experimental data that has been fitted to equations of the Arrhenius form. This paper presents a physical model for dissociation and recombination reactions and a phenomenological model for exchange and chain reactions. These are based on the vibrational states of the colliding molecules and do not require any experimentally-based data. The simplicity of the models allows the corresponding rate equations to be written down and, while these are not required for the implementation of the models, they facilitate their validation. The model is applied to a typical hypersonic atmospheric entry problem and the results are compared with the corresponding results from the traditional method. It is also used to investigate both spontaneous and forced ignition as well as the structure of a deflagration wave in an oxygen-hydrogen mixture.

  20. [Skin reactions to bradykinin].

    PubMed

    Rihoux, J P; Ramboer, I; Fadel, R

    1995-10-01

    A large series of experiments carried out in animals and humans suggest that histamine release is not involved in the leakage phenomenon induced by bradykinin (BK) challenge. These experiments comprise in vitro studies on skin and bronchial human mast cells and in vivo studies on guinea pig airways and human skin using mepyramine, chlorpheniramine and terfenadine as reference H1-anti-histamines. Nevertheless, it has been shown recently that the H1 antagonist cetirizine 10 mg p.o. markedly inhibits skin reactions induced by BK challenge (intradermal injection of 212 micrograms BK in 10 microL saline and prick test with a solution of 21.2 micrograms/microL). In a guinea pig model, this drug also inhibited the bronchospasm induced by increasing concentrations of BK given by iv route (0.25 to 2 micrograms/Kg) and aerosol (3 to 300 micrograms/Kg). This inhibition was similar to the one obtained with the specific BK antagonist HOE 140 (15 pM/Kg). New data in the literature suggest the existence of various pharmacological mediators possibly involved in the BK-induced reaction: neuromediators, nitric oxyde and PAF. They also suggest that this reaction presents itself as a well defined sequence of pharmacological events. Since we could show that there is no binding of cetirizine to a human recombinant B2 receptor in vitro, some hypotheses are raised in order to explain this unexpected inhibiting effect of cetirizine.

  1. Adverse cutaneous drug reaction.

    PubMed

    Nayak, Surajit; Acharjya, Basanti

    2008-01-01

    In everyday clinical practice, almost all physicians come across many instances of suspected adverse cutaneous drug reactions (ACDR) in different forms. Although such cutaneous reactions are common, comprehensive information regarding their incidence, severity and ultimate health effects are often not available as many cases go unreported. It is also a fact that in the present world, almost everyday a new drug enters market; therefore, a chance of a new drug reaction manifesting somewhere in some form in any corner of world is unknown or unreported. Although many a times, presentation is too trivial and benign, the early identification of the condition and identifying the culprit drug and omit it at earliest holds the keystone in management and prevention of a more severe drug rash. Therefore, not only the dermatologists, but all practicing physicians should be familiar with these conditions to diagnose them early and to be prepared to handle them adequately. However, we all know it is most challenging and practically difficult when patient is on multiple medicines because of myriad clinical symptoms, poorly understood multiple mechanisms of drug-host interaction, relative paucity of laboratory testing that is available for any definitive and confirmatory drug-specific testing. Therefore, in practice, the diagnosis of ACDR is purely based on clinical judgment. In this discussion, we will be primarily focusing on pathomechanism and approach to reach a diagnosis, which is the vital pillar to manage any case of ACDR.

  2. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase.

    PubMed

    O'Brien, P J; Herschlag, D

    2001-05-15

    sulfatase activity, further establishing the functional interrelationships among the sulfatases, phosphatases, and phosphodiesterases within the evolutionarily related AP superfamily. The catalytic promiscuity of AP could have facilitated divergent evolution via gene duplication by providing a selective advantage upon which natural selection could have acted.

  3. Well sealing via thermite reactions

    SciTech Connect

    Lowry, William Edward; Dunn, Sandra Dalvit

    2016-11-15

    A platform is formed in a well below a target plug zone by lowering a thermite reaction charge into the well and igniting it, whereby the products of the reaction are allowed to cool and expand to form a platform or support in the well. A main thermite reaction charge is placed above the platform and ignited to form a main sealing plug for the well. In some embodiments an upper plug is formed by igniting an upper thermite reaction charge above the main thermite reaction charge. The upper plug confines the products of ignition of the main thermite reaction charge.

  4. Insect bite reactions.

    PubMed

    Singh, Sanjay; Mann, Baldeep Kaur

    2013-01-01

    Insects are a class of living creatures within the arthropods. Insect bite reactions are commonly seen in clinical practice. The present review touches upon the medically important insects and their places in the classification, the sparse literature on the epidemiology of insect bites in India, and different variables influencing the susceptibility of an individual to insect bites. Clinical features of mosquito bites, hypersensitivity to mosquito bites Epstein-Barr virus NK (HMB-EBV-NK) disease, eruptive pseudoangiomatosis, Skeeter syndrome, papular pruritic eruption of HIV/AIDS, and clinical features produced by bed bugs, Mexican chicken bugs, assassin bugs, kissing bugs, fleas, black flies, Blandford flies, louse flies, tsetse flies, midges, and thrips are discussed. Brief account is presented of the immunogenic components of mosquito and bed bug saliva. Papular urticaria is discussed including its epidemiology, the 5 stages of skin reaction, the SCRATCH principle as an aid in diagnosis, and the recent evidence supporting participation of types I, III, and IV hypersensitivity reactions in its causation is summarized. Recent developments in the treatment of pediculosis capitis including spinosad 0.9% suspension, benzyl alcohol 5% lotion, dimethicone 4% lotion, isopropyl myristate 50% rinse, and other suffocants are discussed within the context of evidence derived from randomized controlled trials and key findings of a recent systematic review. We also touch upon a non-chemical treatment of head lice and the ineffectiveness of egg-loosening products. Knockdown resistance (kdr) as the genetic mechanism making the lice nerves insensitive to permethrin is discussed along with the surprising contrary clinical evidence from Europe about efficacy of permethrin in children with head lice carrying kdr-like gene. The review also presents a brief account of insects as vectors of diseases and ends with discussion of prevention of insect bites and some serious adverse effects

  5. Reaction Extrema: Extent of Reaction in General Chemistry

    ERIC Educational Resources Information Center

    Vandezande, Jonathon E.; Vander Griend, Douglas A.; DeKock, Roger L.

    2013-01-01

    Nearly 100 years ago de Donder introduced the term "extent of reaction", ?. We build on that work by defining the concept of reagent extrema for an arbitrary chemical reaction, aA + bB [reversible reaction] yY + zZ. The central equation is ?^[subscript i] = -n[subscript i,0]/?[subscript i]. The symbol ?^[subscript i] represents the…

  6. Procedures for Decomposing a Redox Reaction into Half-Reaction

    ERIC Educational Resources Information Center

    Fishtik, Ilie; Berka, Ladislav H.

    2005-01-01

    A simple algorithm for a complete enumeration of the possible ways a redox reaction (RR) might be uniquely decomposed into half-reactions (HRs) using the response reactions (RERs) formalism is presented. A complete enumeration of the possible ways a RR may be decomposed into HRs is equivalent to a complete enumeration of stoichiometrically…

  7. Hydrogen forming reaction process

    SciTech Connect

    Marianowski, L.G.; Fleming, D.K.

    1989-03-07

    A hydrogen forming process is described, comprising: conducting in a hydrogen production zone a chemical reaction forming mixed gases comprising molecular hydrogen; contacting one side of a hydrogen ion porous and molecular gas nonporous metallic foil with the mixed gases in the hydrogen production zone; dissociating the molecular hydrogen to ionic hydrogen on the one side of the metallic foil; passing the ionic hydrogen through the metallic foil to its other side; and withdrawing hydrogen from the other side of the metallic foil, thereby removing hydrogen from the hydrogen production zone.

  8. Copper mediated carbometalation reactions.

    PubMed

    Müller, D S; Marek, I

    2016-08-08

    Since the first discovery of carbocupration of alkynes in the 1970s a tremendous amount of research has been carried out in this field. The exceptionally high selectivities obtained attribute to the great synthetic value of carbocupration reactions. This tutorial review will present the most important features of carbocupration of alkynes and highlight the most relevant reviews. Then a comprehensive review of copper mediated carbometalation of cyclopropenes will follow. The latter method has received much attention over the last decade as it allows the highly selective construction of poly-substituted cyclopropanes which can be transformed into acyclic derivatives bearing one or multiple tertiary or quaternary carbon stereocenters.

  9. The polymerase chain reaction.

    PubMed

    Welch, Hazel M

    2012-01-01

    The polymerase chain reaction (PCR) has had a significant impact on all aspects of the molecular biosciences, from cancer research to forensic science. The sensitivity and specificity inherent in the technique allow minute quantities of genetic material to be detected while the unique properties of thermostable DNA polymerase ensure that abundant copies are reliably reproduced to levels that can be visualized and/or used for further applications. This chapter describes applications of PCR and PCR-RT to investigate primary cancer and metastatic disease at both the DNA and mRNA expression levels.

  10. Medications and Drug Allergic Reactions

    MedlinePlus

    ... Library ▸ Medications and drug allergic reactions TTR Share | Medications and Drug Allergic Reactions This article has been ... by Thanai Pongdee, MD, FAAAAI Everyone reacts to medications differently. One person may develop a rash while ...

  11. Hydrazine decomposition and other reactions

    NASA Technical Reports Server (NTRS)

    Armstrong, Warren E. (Inventor); La France, Donald S. (Inventor); Voge, Hervey H. (Inventor)

    1978-01-01

    This invention relates to the catalytic decomposition of hydrazine, catalysts useful for this decomposition and other reactions, and to reactions in hydrogen atmospheres generally using carbon-containing catalysts.

  12. Positive reaction to allergen (image)

    MedlinePlus

    Allergic reaction is a sensitivity to a specific substance, called an allergen, that is contacted through the skin, inhaled into the lungs, swallowed or injected. The body's reaction to an allergen can be mild, such as ...

  13. Demonstration of the Fenton Reaction

    ERIC Educational Resources Information Center

    Luehrs, Dean C.; Roher, Alex E.

    2007-01-01

    The study demonstrates the Fenton reaction, which is carried out using the Fenton reagent that is used for groundwater and soil remediation. The Fenton reaction can be implicated in DNA damage, Alzheimer's disease, cardiovascular disease and ageing in general.

  14. [Abnormal grief reaction].

    PubMed

    Meyer, J E

    1977-01-01

    Pathological grief reactions following the death of a child are reported on the basis of five case studies. In contrast to acute grief reactions these pathological syndromes are of long standing. One parent had not truly accepted the death of the child. The denial of reality is sometimes a defence against aggression towards the deceased, because of his having left one behind. The mourning process comes to no end but remains in its initial phase. At the same time the life of the mourner stands still, as in the house and the family everything is left unchanged. Family interactions alter, particularly between the parents. For the genesis of these grief syndromes the following is of relevance: The death occurs at a time, when another child cannot replace the one who died. Mature independence had not been reached by either parent or child. Death destroyed expectations that this child would succeed in that which the parent had been unable to achieve. The parent had not seen the child after death--a gap in the continuity of experiencing which made acceptance of the irreversibility of the loss even more difficult.

  15. Drug dangers and reactions.

    PubMed

    WEILERSTEIN, R W

    1961-01-01

    The protection of the consumer against dangerous, adulterated, and misbranded drugs provided by the Federal Food, Drug, and Cosmetic Act has failed in some instances. A general program of reporting adverse drug reactions has been initiated on a pilot basis. Arrangements are being made to extend this program into larger hospitals. Better and more complete reporting of adverse drug reactions together with tightening of the Food and Drug law regarding new drugs will improve this situation. Recently the president of the National Academy of Sciences appointed a committee at the request of the Secretary of Health, Education, and Welfare to review the policies and procedures used by the Food and Drug Administration in reaching decisions and to present recommendations. This committee has completed its work and has made specific recommendations that would give the Food and Drug Administration authority to require proof of efficacy as well as safety of all new drugs, and would provide it with sufficient resources to meet the responsibilities assigned to it.

  16. DRUG DANGERS AND REACTIONS

    PubMed Central

    Weilerstein, Ralph W.

    1961-01-01

    The protection of the consumer against dangerous, adulterated, and misbranded drugs provided by the Federal Food, Drug, and Cosmetic Act has failed in some instances. A general program of reporting adverse drug reactions has been initiated on a pilot basis. Arrangements are being made to extend this program into larger hospitals. Better and more complete reporting of adverse drug reactions together with tightening of the Food and Drug law regarding new drugs will improve this situation. Recently the president of the National Academy of Sciences appointed a committee at the request of the Secretary of Health, Education, and Welfare to review the policies and procedures used by the Food and Drug Administration in reaching decisions and to present recommendations. This committee has completed its work and has made specific recommendations that would give the Food and Drug Administration authority to require proof of efficacy as well as safety of all new drugs, and would provide it with sufficient resources to meet the responsibilities assigned to it. PMID:13783849

  17. Lowering energy barriers in surface reactions through concerted reaction mechanisms.

    PubMed

    Sakong, Sung; Mosch, Christian; Lozano, Ariel; Busnengo, H Fabio; Gross, Axel

    2012-10-22

    Any technologically important chemical reaction typically involves a number of different elementary reaction steps consisting of bond-breaking and bond-making processes. Usually, one assumes that such complex chemical reactions occur in a step-wise fashion where one single bond is made or broken at a time. Using first-principles calculations based on density functional theory we show that the barriers of rate-limiting steps for technologically relevant surface reactions are significantly reduced if concerted reaction mechanisms are taken into account.

  18. The Vitamin C Clock Reaction

    NASA Astrophysics Data System (ADS)

    Wright, Stephen W.

    2002-01-01

    An iodine clock reaction that gives a colorless to black result similar to that of the familiar Landolt iodate-bisulfite clock reaction is described. The vitamin C clock reaction uses chemicals that are readily available on the retail market: vitamin C, tincture of iodine, 3% hydrogen peroxide, and laundry starch. Orange juice may be used as the vitamin C source to give an orange to black reaction.

  19. More on Chemical Reaction Balancing.

    ERIC Educational Resources Information Center

    Swinehart, D. F.

    1985-01-01

    A previous article stated that only the matrix method was powerful enough to balance a particular chemical equation. Shows how this equation can be balanced without using the matrix method. The approach taken involves writing partial mathematical reactions and redox half-reactions, and combining them to yield the final balanced reaction. (JN)

  20. Mass Transfer with Chemical Reaction.

    ERIC Educational Resources Information Center

    DeCoursey, W. J.

    1987-01-01

    Describes the organization of a graduate course dealing with mass transfer, particularly as it relates to chemical reactions. Discusses the course outline, including mathematics models of mass transfer, enhancement of mass transfer rates by homogeneous chemical reaction, and gas-liquid systems with chemical reaction. (TW)

  1. The Vitamin C Clock Reaction.

    ERIC Educational Resources Information Center

    Wright, Stephen W.

    2002-01-01

    Describes an iodine clock reaction that produces an effect similar to the Landolt clock reaction. This reaction uses supermarket chemicals and avoids iodate, bisulfite, and mercury compounds. Ascorbic acid and tincture of iodine are the main reactants with alternate procedures provided for vitamin C tablets and orange juice. (DDR)

  2. Corona reaction method and apparatus

    SciTech Connect

    Lowther, F.E.

    1981-08-11

    Corona induced chemical reactions are conducted in a corona discharge zone in which narrow high voltage pulses are applied along with a relatively low voltage bias potential. It is found that for many corona discharge reactions, such as the conversion of oxygen to ozone, the present method increases the electrical efficiency of the reaction.

  3. Enzymatic reactions on immobilised substrates.

    PubMed

    Gray, Christopher J; Weissenborn, Martin J; Eyers, Claire E; Flitsch, Sabine L

    2013-08-07

    This review gives an overview of enzymatic reactions that have been conducted on substrates attached to solid surfaces. Such biochemical reactions have become more important with the drive to miniaturisation and automation in chemistry, biology and medicine. Technical aspects such as choice of solid surface and analytical methods are discussed and examples of enzyme reactions that have been successful on these surfaces are provided.

  4. [Bullous drug reactions].

    PubMed

    Hertl-Yazdi, M S; Hertl, M

    2005-01-01

    Bullous drug exanthems are clinically characteristic, usually severe cutaneous and mucosal drug hypersensitivity reactions. Commonly, they appear 5-14 days after onset of drug treatment. Therapy of choice is to avoid the culprit drug and systemic administration of glucocorticoids. A key element in the immune pathogenesis of bullous drug exanthems is presumably the activation of cytotoxic CD8(+) T lymphocytes which recognize drug metabolites as nominal antigens. These compounds form spontaneously (e.g. penicillins) or are metabolized by cytochrome P450-dependent enzymes (sulfonamides). The diagnosis of bullous drug exanthems is primarily based on skin tests and in vitro-techniques. Among the skin tests, prick as well as patch tests are important. Patch tests can be also applied at the former skin lesion in fixed drug eruption. In vitro techniques include analysis of drug-specific IgE (only available for anti-penicillin, anti-sulfamethoxazole) and cellular tests with the patients' lymphocytes (lymphocyte transformation test-LTT).

  5. Mixtures and Mineral Reactions

    NASA Astrophysics Data System (ADS)

    Rumble, D.

    The monograph Mixtures and Mineral Reactions contains a large amount of information of value to mineralogists, petrologists, and geochemists. The first four chapters are a succinct account of the thermodynamic description of crystalline solutions. In these early chapters a comparison is made between different mathematical treatments of activitycomposition models, there is a discussion of the unmixing by exsolution of a single solution into two phases, and methods of computing phase equilibria in assemblages of different minerals are given. If the reader is perplexed by the discussion of standard states (cf. Figure 1.3), not to worry. That is a normal condition for anyone forced to choose between equivalent reference frames yet knowing, somewhere down the line, that the choice will ultimately make one's computational life more or less difficult.

  6. Adverse reactions to vaccines.

    PubMed

    Martin, Bryan L; Nelson, Michael R; Hershey, Joyce N; Engler, Renata J M

    2003-06-01

    (The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense.) Immunization healthcare is becoming increasingly complex as the number and types of vaccines have continued to expand. Like all prescription drugs, vaccines may be associated with adverse events. The majority of these reactions are self-limited and not associated with prolonged disability. The media, Internet and public advocacy groups have focused on potentially serious vaccine-associated adverse events with questions raised about causal linkages to increasing frequencies of diseases such as autism and asthma. Despite a lack of evidence of a causal relationship to a variety of vaccine safety concerns, including extensive reviews by the Institute of Medicine, questions regarding vaccine safety continue to threaten the success of immunization programs. Risk communication arid individual risk assessment is further challenged by the public health success of vaccine programs creating the perception that certain vaccines are no longer necessary or justified because of the rare reaction risk. There is a need for improved understanding of true vaccine contraindications and precautions as well as host factors and disease threat in order to develop a patient specific balanced risk communication intervention. When they occur, vaccine related adverse events must be treated, documented and reported through the VAERS system. The increasing complexity of vaccination health care has led the Center of Disease Control and Prevention (CDC) to identify Vaccine Safety Assessment and Evaluation as a potential new specialty.

  7. Extent of reaction in open systems with multiple heterogeneous reactions

    USGS Publications Warehouse

    Friedly, John C.

    1991-01-01

    The familiar batch concept of extent of reaction is reexamined for systems of reactions occurring in open systems. Because species concentrations change as a result of transport processes as well as reactions in open systems, the extent of reaction has been less useful in practice in these applications. It is shown that by defining the extent of the equivalent batch reaction and a second contribution to the extent of reaction due to the transport processes, it is possible to treat the description of the dynamics of flow through porous media accompanied by many chemical reactions in a uniform, concise manner. This approach tends to isolate the reaction terms among themselves and away from the model partial differential equations, thereby enabling treatment of large problems involving both equilibrium and kinetically controlled reactions. Implications on the number of coupled partial differential equations necessary to be solved and on numerical algorithms for solving such problems are discussed. Examples provided illustrate the theory applied to solute transport in groundwater flow.

  8. Two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  9. Two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  10. NIF Gamma Reaction History

    NASA Astrophysics Data System (ADS)

    Herrmann, H. W.; Kim, Y.; Young, C. S.; Mack, J. M.; McEvoy, A. M.; Hoffman, N. M.; Wilson, D. C.; Langenbrunner, J. R.; Evans, S.; Batha, S. H.; Stoeffl, W.; Lee, A.; Horsfield, C. J.; Rubery, M.; Miller, E. K.; Malone, R. M.; Kaufman, M. I.

    2010-11-01

    The primary objective of the NIF Gamma Reaction History (GRH) diagnostics is to provide bang time and burn width information based upon measurement of fusion gamma-rays. This is accomplished with energy-thresholded Gas Cherenkov detectors that convert MeV gamma-rays into UV/visible photons for high-bandwidth optical detection. In addition, the GRH detectors can perform γ-ray spectroscopy to explore other nuclear processes from which additional significant implosion parameters may be inferred (e.g., plastic ablator areal density). Implementation is occurring in 2 phases: 1) four PMT-based channels mounted to the outside of the NIF target chamber at ˜6 m from TCC (GRH-6m) for the 3e13-3e16 DT neutron yield range expected during the early ignition-tuning campaigns; and 2) several channels located just inside the target bay shield wall at ˜15 m from TCC (GRH-15m) with optical paths leading through the wall into well-shielded streak cameras and PMTs for the 1e16-1e20 yield range expected during the DT ignition campaign. This suite of diagnostics will allow exploration of interesting γ-ray physics well beyond the ignition campaign. Recent data from OMEGA and NIF will be shown.

  11. Formaldehyde reactions in dark clouds.

    PubMed

    Sen, A D; Anicich, V G; Federman, S R

    1992-05-20

    The low-pressure reactions of formaldehyde (H2CO) with D+, D2+, D3+, and He+ have been studied by the ion cyclotron resonance technique. These reactions are potential loss processes for formaldehyde in cores of dark interstellar clouds. The deuterated reactants, which are easier to study experimentally, represent direct analogs for protons. Rate coefficients and branching ratios of product channels have been measured. Charge transfer is observed to be the dominant reaction of H2CO with D+, D2+, and He+ ions. Only the D3+ reaction exhibits a proton transfer channel. All reactions proceed at rate coefficients near the collision limit. Proton-deuteron exchange reactions were found to be inefficient processes in the formaldehyde system.

  12. Stochastic Modeling Of Biochemical Reactions

    DTIC Science & Technology

    2006-11-01

    chemical reactions. Often for these reactions, the dynamics of the first M-order statistical moments of the species populations do not form a closed...results a stochastic model for gene expression is investigated. We show that in gene expression mechanisms , in which a protein inhibits its own...chemical reactions [7, 8, 4, 9, 10]. Since one is often interested in only the first and second order statistical moments for the number of molecules of

  13. Kinematically complete chemical reaction dynamics

    NASA Astrophysics Data System (ADS)

    Trippel, S.; Stei, M.; Otto, R.; Hlavenka, P.; Mikosch, J.; Eichhorn, C.; Lourderaj, U.; Zhang, J. X.; Hase, W. L.; Weidemüller, M.; Wester, R.

    2009-11-01

    Kinematically complete studies of molecular reactions offer an unprecedented level of insight into the dynamics and the different mechanisms by which chemical reactions occur. We have developed a scheme to study ion-molecule reactions by velocity map imaging at very low collision energies. Results for the elementary nucleophilic substitution (SN2) reaction Cl- + CH3I → ClCH3 + I- are presented and compared to high-level direct dynamics trajectory calculations. Furthermore, an improved design of the crossed-beam imaging spectrometer with full three-dimensional measurement capabilities is discussed and characterization measurements using photoionization of NH3 and photodissociation of CH3I are presented.

  14. Pathophysiology of hemolytic transfusion reactions.

    PubMed

    Davenport, Robertson D

    2005-07-01

    Hemolytic transfusion reactions (HTR) are systemic reactions provoked by immunologic red blood cell (RBC) incompatibility. Clinical and experimental observations of such reactions indicate that they proceed through phases of humoral immune reaction, activation of phagocytes, productions of cytokine mediators, and wide-ranging cellular responses. HTR have many features in common with the systemic inflammatory response syndrome (SIRS). Knowledge of the pathophysiologic mechanisms in HTR suggest that newer biological agents that target complement intermediates or proinflammatory cytokines may be effective agents in the treatment of severe HTRs.

  15. Radiation reaction in fusion plasmas.

    PubMed

    Hazeltine, R D; Mahajan, S M

    2004-10-01

    The effects of a radiation reaction on thermal electrons in a magnetically confined plasma, with parameters typical of planned burning plasma experiments, are studied. A fully relativistic kinetic equation that includes the radiation reaction is derived. The associated rate of phase-space contraction is computed and the relative importance of the radiation reaction in phase space is estimated. A consideration of the moments of the radiation reaction force show that its effects are typically small in reactor-grade confined plasmas, but not necessarily insignificant.

  16. Racemization in Prins Cyclization Reactions

    PubMed Central

    Jasti, Ramesh

    2008-01-01

    Isotopic labeling experiments were performed in order to elucidate a new mechanism for racemization in Prins cyclization reactions. The loss in optical activity for these reactions was shown to occur by 2-oxonia-Cope rearrangements by way of a (Z)-oxocarbenium ion intermediate. Reaction conditions such as solvent, temperature, and the nucleophile employed played a critical role in whether an erosion in enantiomeric excess was observed. Additionally, certain structural features of Prins cyclization precursors were also shown to be important for preserving optical purity in these reactions. PMID:17031979

  17. Speeding chemical reactions by focusing.

    PubMed

    Lacasta, A M; Ramírez-Piscina, L; Sancho, J M; Lindenberg, K

    2013-04-14

    We present numerical results for a chemical reaction of colloidal particles which are transported by a laminar fluid and are focused by periodic obstacles in such a way that the two components are well mixed and consequently the chemical reaction is speeded up. The roles of the various system parameters (diffusion coefficients, reaction rate, and obstacles sizes) are studied. We show that focusing speeds up the reaction from the diffusion limited rate ∼t(-1/2) to very close to the perfect mixing rate, ∼t(-1).

  18. Speeding chemical reactions by focusing

    NASA Astrophysics Data System (ADS)

    Lacasta, A. M.; Ramírez-Piscina, L.; Sancho, J. M.; Lindenberg, K.

    2013-04-01

    We present numerical results for a chemical reaction of colloidal particles which are transported by a laminar fluid and are focused by periodic obstacles in such a way that the two components are well mixed and consequently the chemical reaction is speeded up. The roles of the various system parameters (diffusion coefficients, reaction rate, and obstacles sizes) are studied. We show that focusing speeds up the reaction from the diffusion limited rate ˜t-1/2 to very close to the perfect mixing rate, ˜t-1.

  19. Dynamic Reaction Figures: An Integrative Vehicle for Understanding Chemical Reactions

    ERIC Educational Resources Information Center

    Schultz, Emeric

    2008-01-01

    A highly flexible learning tool, referred to as a dynamic reaction figure, is described. Application of these figures can (i) yield the correct chemical equation by simply following a set of menu driven directions; (ii) present the underlying "mechanism" in chemical reactions; and (iii) help to solve quantitative problems in a number of different…

  20. Free Radical Reactions in Food.

    ERIC Educational Resources Information Center

    Taub, Irwin A.

    1984-01-01

    Discusses reactions of free radicals that determine the chemistry of many fresh, processed, and stored foods. Focuses on reactions involving ascorbic acid, myoglobin, and palmitate radicals as representative radicals derived from a vitamin, metallo-protein, and saturated lipid. Basic concepts related to free radical structure, formation, and…