Quadriceps Tendon Autograft Medial Patellofemoral Ligament Reconstruction.
Fink, Christian; Steensen, Robert; Gföller, Peter; Lawton, Robert
2018-06-01
Critically evaluate the published literature related to quadriceps tendon (QT) medial patellofemoral ligament (MPFL) reconstruction. Hamstring tendon (HT) MPFL reconstruction techniques have been shown to successfully restore patella stability, but complications including patella fracture are reported. Quadriceps tendon (QT) reconstruction techniques with an intact graft pedicle on the patella side have the advantage that patella bone tunnel drilling and fixation are no longer needed, reducing risk of patella fracture. Several QT MPFL reconstruction techniques, including minimally invasive surgical (MIS) approaches, have been published with promising clinical results and fewer complications than with HT techniques. Parallel laboratory studies have shown macroscopic anatomy and biomechanical properties of QT are more similar to native MPFL than hamstring (HS) HT, suggesting QT may more accurately restore native joint kinematics. Quadriceps tendon MPFL reconstruction, via both open and MIS techniques, have promising clinical results and offer valuable alternatives to HS grafts for primary and revision MPFL reconstruction in both children and adults.
Nyman, Samuel R; Adamczewska, Natalia; Howlett, Neil
2018-02-01
The objective of this study was to systematically review the evidence for the potential promise of behaviour change techniques (BCTs) to increase physical activity among people with dementia (PWD). PsychINFO, MEDLINE, CINAHL, and the Cochrane Central Register of Controlled Trials databases were searched 01/01/2000-01/12/2016. Randomized controlled/quasi-randomized trials were included if they recruited people diagnosed/suspected to have dementia, used at least one BCT in the intervention arm, and had at least one follow-up measure of physical activity/adherence. Studies were appraised using the Cochrane Collaboration Risk of Bias Tool, and BCTs were coded using Michie et al., 2013, Annals of Behavioral Medicine, 46, 81. taxonomy. Intervention findings were narratively synthesized as either 'very promising', 'quite promising', or 'non-promising', and BCTs were judged as having potential promise if they featured in at least twice as many very/quite promising than non-promising interventions (as per Gardner et al., 2016, Health Psychology Review, 10, 89). Nineteen articles from nine trials reported physical activity findings on behavioural outcomes (two very promising, one quite promising, and two non-promising) or intervention adherence (one quite promising and four non-promising). Thirteen BCTs were used across the interventions. While no BCT had potential promise to increase intervention adherence, three BCTs had potential promise for improving physical activity behaviour outcomes: goal setting (behaviour), social support (unspecified), and using a credible source. Three BCTs have potential promise for use in future interventions to increase physical activity among PWD. Statement of contribution What is already known on this subject? While physical activity is a key lifestyle factor to enhance and maintain health and wellbeing amongst the general population, adults rarely participate in sufficient levels to obtain these benefits. Systematic reviews suggest that specific behaviour change techniques can increase physical activity, although one review suggested that self-regulatory techniques may be counterproductive when promoting physical activity among older people. Until now, no systematic review has been conducted to assess which behaviour change techniques may be associated with greater participation in physical activity among people with dementia. What does this study add? Interventions showed mixed promise for increasing physical activity and little effect on participant adherence. Goal setting (behaviour), social support (unspecified), and using a credible source are promising approaches. No technique showed promise for increasing adherence to physical activity interventions among people with dementia. © 2017 The British Psychological Society.
Carroll, Patrick D.; Widness, John A.
2012-01-01
The development of anemia after birth in very premature, critically ill newborn infants is a universal well-described phenomenon. Although preventing anemia in this population, along with efforts to establish optimal red blood cell (RBC) transfusion and pharmacologic therapy continue to be actively investigated, the present review focuses exclusively on nonpharmacological approaches to the prevention and treatment of neonatal anemia. We begin with an overview of topics relevant to nonpharmacological techniques. These topics include neonatal and fetoplacental hemoglobin levels and blood volumes, clinical and laboratory practices applied in critically ill neonates, and current RBC transfusion practice guidelines. This is followed by a discussion of the most effective and promising nonpharmacological blood conservation strategies and techniques. Fortunately, many of these techniques are feasible in most neonatal intensive care units. When applied together, these techniques are more effective than existing pharmacotherapies in significantly decreasing neonatal RBC transfusions. They include increasing hemoglobin endowment and circulating blood volume at birth; removing less blood for laboratory testing; and optimizing nutrition. PMID:22818543
Carroll, Patrick D; Widness, John A
2012-08-01
The development of anemia after birth in very premature, critically ill newborn infants is a universal well-described phenomenon. Although preventing anemia in this population, along with efforts to establish optimal red blood cell (RBC) transfusion and pharmacologic therapy continue to be actively investigated, the present review focuses exclusively on nonpharmacological approaches to the prevention and treatment of neonatal anemia. We begin with an overview of topics relevant to nonpharmacological techniques. These topics include neonatal and fetoplacental hemoglobin levels and blood volumes, clinical and laboratory practices applied in critically ill neonates, and current RBC transfusion practice guidelines. This is followed by a discussion of the most effective and promising nonpharmacological blood conservation strategies and techniques. Fortunately, many of these techniques are feasible in most neonatal intensive care units. When applied together, these techniques are more effective than existing pharmacotherapies in significantly decreasing neonatal RBC transfusions. They include increasing hemoglobin endowment and circulating blood volume at birth; removing less blood for laboratory testing; and optimizing nutrition. Copyright © 2012 Elsevier Inc. All rights reserved.
Near-optimal strategies for sub-decimeter satellite tracking with GPS
NASA Technical Reports Server (NTRS)
Yunck, Thomas P.; Wu, Sien-Chong; Wu, Jiun-Tsong
1986-01-01
Decimeter tracking of low Earth orbiters using differential Global Positioning System (GPS) techniques is discussed. A precisely known global network of GPS ground receivers and a receiver aboard the user satellite are needed, and all techniques simultaneously estimate the user and GPS satellite orbits. Strategies include a purely geometric, a fully dynamic, and a hybrid strategy. The last combines dynamic GPS solutions with a geometric user solution. Two powerful extensions of the hybrid strategy show the most promise. The first uses an optimized synthesis of dynamics and geometry in the user solution, while the second uses a gravity adjustment method to exploit data from repeat ground tracks. These techniques promise to deliver subdecimeter accuracy down to the lowest satellite altitudes.
Reconstructive Surgery of Auricular Defects: An Overview.
Ebrahimi, Ali; Kazemi, Alireza; Rasouli, Hamid Reza; Kazemi, Maryam; Kalantar Motamedi, Mohammad Hosein
2015-11-01
Despite the ongoing advances in surgical procedures and promising progress in bioengineering techniques, auricular reconstruction remains a significant challenge in plastic surgery. There are different causes for acquired auricular defects, including trauma, tumor ablation and burns. The management options for upper, middle and lower third auricular defects are briefly reviewed in the current paper. Original research papers investigating the plastic surgeons, otolaryngologists and maxillofacial surgeons in approaching the complicated issue of auricular reconstruction published from January 1995 to December 2014 were aggregated and used in the current study. Utilizing autologous stem cell populations to treat craniofacial defects is a promising field of ongoing investigations. Studies show that cartilage stem/progenitor cells (CSPCs) are highly chondrogenic and can produce elastic reconstructive material with long-term tissue restoration. Auricular reconstruction surgery is a challenging plastic procedure that requires great expertise and expert knowledge of the various techniques available. Novel techniques in the fields of reconstructive bioengineering and regenerative medicine are promising but further research is required before widespread clinical application.
NASA Technical Reports Server (NTRS)
Huston, R. J. (Compiler)
1982-01-01
The establishment of a realistic plan for NASA and the U.S. helicopter industry to develop a design-for-noise methodology, including plans for the identification and development of promising noise reduction technology was discussed. Topics included: noise reduction techniques, scaling laws, empirical noise prediction, psychoacoustics, and methods of developing and validing noise prediction methods.
[Aerobic methylobacteria as promising objects of modern biotechnology].
Doronina, N V; Toronskava, L; Fedorov, D N; Trotsenko, Yu A
2015-01-01
The experimental data of the past decade concerning the metabolic peculiarities of aerobic meth ylobacteria and the prospects for their use in different fields of modern biotechnology, including genetic engineering techniques, have been summarized.
King, Joseph J; Nystrom, Lukas M; Reimer, Nickolas B; Gibbs, C Parker; Scarborough, Mark T; Wright, Thomas W
2016-01-01
Proximal humerus reconstructions after resection of tumors are challenging. Early success of the reverse shoulder arthroplasty for reconstructions has recently been reported. The reverse allograft-prosthetic composite offers the advantage of improved glenohumeral stability compared with hemiarthroplasty for proximal humeral reconstructions as it uses the deltoid for stability. This article describes the technique for treating proximal humeral tumors, including preoperative planning, biopsy principles, resection pearls, soft tissue tensioning, and specifics about reconstruction using the reverse allograft-prosthetic composite. Two cases are presented along with the functional outcomes with use of this technique. Biomechanical considerations during reconstruction are reviewed, including techniques to improve the deltoid compression force. Reported instability rates are less with reverse shoulder arthroplasty reconstruction as opposed to hemiarthroplasty or total shoulder arthroplasty reconstructions of tumor resections. Reported functional outcomes are promising for the reverse allograft-prosthetic composite reconstructions, although complications are reported. Reverse allograft-prosthetic composites are a promising option for proximal humeral reconstructions, although nonunion of the allograft-host bone junction continues to be a challenge for this technique. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Overview of existing cartilage repair technology.
McNickle, Allison G; Provencher, Matthew T; Cole, Brian J
2008-12-01
Currently, autologous chondrocyte implantation and osteochondral grafting bridge the gap between palliation of cartilage injury and resurfacing via arthroplasty. Emerging technologies seek to advance first generation techniques and accomplish several goals including predictable outcomes, cost-effective technology, single-stage procedures, and creation of durable repair tissue. The biologic pipeline represents a variety of technologies including synthetics, scaffolds, cell therapy, and cell-infused matrices. Synthetic constructs, an alternative to biologic repair, resurface a focal chondral defect rather than the entire joint surface. Scaffolds are cell-free constructs designed as a biologic "net" to augment marrow stimulation techniques. Minced cartilage technology uses stabilized autologous or allogeneic fragments in 1-stage transplantation. Second and third generation cell-based methods include alternative membranes, chondrocyte seeding, and culturing onto scaffolds. Despite the promising early results of these products, significant technical obstacles remain along with unknown long-term durability. The vast array of developing technologies has exceptional promise and the potential to revolutionize the cartilage treatment algorithm within the next decade.
Dunlosky, John; Rawson, Katherine A; Marsh, Elizabeth J; Nathan, Mitchell J; Willingham, Daniel T
2013-01-01
Many students are being left behind by an educational system that some people believe is in crisis. Improving educational outcomes will require efforts on many fronts, but a central premise of this monograph is that one part of a solution involves helping students to better regulate their learning through the use of effective learning techniques. Fortunately, cognitive and educational psychologists have been developing and evaluating easy-to-use learning techniques that could help students achieve their learning goals. In this monograph, we discuss 10 learning techniques in detail and offer recommendations about their relative utility. We selected techniques that were expected to be relatively easy to use and hence could be adopted by many students. Also, some techniques (e.g., highlighting and rereading) were selected because students report relying heavily on them, which makes it especially important to examine how well they work. The techniques include elaborative interrogation, self-explanation, summarization, highlighting (or underlining), the keyword mnemonic, imagery use for text learning, rereading, practice testing, distributed practice, and interleaved practice. To offer recommendations about the relative utility of these techniques, we evaluated whether their benefits generalize across four categories of variables: learning conditions, student characteristics, materials, and criterion tasks. Learning conditions include aspects of the learning environment in which the technique is implemented, such as whether a student studies alone or with a group. Student characteristics include variables such as age, ability, and level of prior knowledge. Materials vary from simple concepts to mathematical problems to complicated science texts. Criterion tasks include different outcome measures that are relevant to student achievement, such as those tapping memory, problem solving, and comprehension. We attempted to provide thorough reviews for each technique, so this monograph is rather lengthy. However, we also wrote the monograph in a modular fashion, so it is easy to use. In particular, each review is divided into the following sections: General description of the technique and why it should work How general are the effects of this technique? 2a. Learning conditions 2b. Student characteristics 2c. Materials 2d. Criterion tasks Effects in representative educational contexts Issues for implementation Overall assessment The review for each technique can be read independently of the others, and particular variables of interest can be easily compared across techniques. To foreshadow our final recommendations, the techniques vary widely with respect to their generalizability and promise for improving student learning. Practice testing and distributed practice received high utility assessments because they benefit learners of different ages and abilities and have been shown to boost students' performance across many criterion tasks and even in educational contexts. Elaborative interrogation, self-explanation, and interleaved practice received moderate utility assessments. The benefits of these techniques do generalize across some variables, yet despite their promise, they fell short of a high utility assessment because the evidence for their efficacy is limited. For instance, elaborative interrogation and self-explanation have not been adequately evaluated in educational contexts, and the benefits of interleaving have just begun to be systematically explored, so the ultimate effectiveness of these techniques is currently unknown. Nevertheless, the techniques that received moderate-utility ratings show enough promise for us to recommend their use in appropriate situations, which we describe in detail within the review of each technique. Five techniques received a low utility assessment: summarization, highlighting, the keyword mnemonic, imagery use for text learning, and rereading. These techniques were rated as low utility for numerous reasons. Summarization and imagery use for text learning have been shown to help some students on some criterion tasks, yet the conditions under which these techniques produce benefits are limited, and much research is still needed to fully explore their overall effectiveness. The keyword mnemonic is difficult to implement in some contexts, and it appears to benefit students for a limited number of materials and for short retention intervals. Most students report rereading and highlighting, yet these techniques do not consistently boost students' performance, so other techniques should be used in their place (e.g., practice testing instead of rereading). Our hope is that this monograph will foster improvements in student learning, not only by showcasing which learning techniques are likely to have the most generalizable effects but also by encouraging researchers to continue investigating the most promising techniques. Accordingly, in our closing remarks, we discuss some issues for how these techniques could be implemented by teachers and students, and we highlight directions for future research. © The Author(s) 2013.
Deep learning aided decision support for pulmonary nodules diagnosing: a review.
Yang, Yixin; Feng, Xiaoyi; Chi, Wenhao; Li, Zhengyang; Duan, Wenzhe; Liu, Haiping; Liang, Wenhua; Wang, Wei; Chen, Ping; He, Jianxing; Liu, Bo
2018-04-01
Deep learning techniques have recently emerged as promising decision supporting approaches to automatically analyze medical images for different clinical diagnosing purposes. Diagnosing of pulmonary nodules by using computer-assisted diagnosing has received considerable theoretical, computational, and empirical research work, and considerable methods have been developed for detection and classification of pulmonary nodules on different formats of images including chest radiographs, computed tomography (CT), and positron emission tomography in the past five decades. The recent remarkable and significant progress in deep learning for pulmonary nodules achieved in both academia and the industry has demonstrated that deep learning techniques seem to be promising alternative decision support schemes to effectively tackle the central issues in pulmonary nodules diagnosing, including feature extraction, nodule detection, false-positive reduction, and benign-malignant classification for the huge volume of chest scan data. The main goal of this investigation is to provide a comprehensive state-of-the-art review of the deep learning aided decision support for pulmonary nodules diagnosing. As far as the authors know, this is the first time that a review is devoted exclusively to deep learning techniques for pulmonary nodules diagnosing.
Rocket nozzle thermal shock tests in an arc heater facility
NASA Technical Reports Server (NTRS)
Painter, James H.; Williamson, Ronald A.
1986-01-01
A rocket motor nozzle thermal structural test technique that utilizes arc heated nitrogen to simulate a motor burn was developed. The technique was used to test four heavily instrumented full-scale Star 48 rocket motor 2D carbon/carbon segments at conditions simulating the predicted thermal-structural environment. All four nozzles survived the tests without catastrophic or other structural failures. The test technique demonstrated promise as a low cost, controllable alternative to rocket motor firing. The technique includes the capability of rapid termination in the event of failure, allowing post-test analysis.
Preliminary orbital parallax catalog
NASA Technical Reports Server (NTRS)
Halliwell, M.
1981-01-01
The study is undertaken to calibrate the more reliable parallaxes derived from a comparison of visual and spectroscopic orbits and to encourage observational studies of other promising binaries. The methodological techniques used in computing orbital parallaxes are analyzed. Tables summarizing orbital data and derived system properties are then given. Also given is a series of detailed discussions of the 71 individual systems included in the tables. Data are listed for 57 other systems which are considered promising candidates for eventual orbital parallax determination.
Llandres, Ana L; Almohamad, Raki; Brévault, Thierry; Renou, Alain; Téréta, Idrissa; Jean, Janine; Goebel, François-Regis
2018-04-17
Enhancing cotton pest management using plant natural defenses has been described as a promising way to improve the management of crop pests. We here reviewed different studies on cotton growing systems to illustrate how an ancient technique called plant training, which includes plant topping and pruning, may contribute to this goal. Based on examples from cotton crops, we show how trained plants could be promoted to a state of enhanced defense that causes faster and more robust activation of their defense responses. We revisit agricultural benefits associated to this technique in cotton crops, with a focus on its potential as a supplementary tool for Integrated Pest Management (IPM). Particularly, we examine its role in mediating plant interactions with conspecific neighboring plants, pests and associated natural enemies. We propose a new IPM tool, plant training for induced defense, which involves inducing plant defense by artificial injuries. Experimental evidence from various studies shows that cotton training is a promising technique, particularly for smallholders, which can be used as part of an IPM program to significantly reduce insecticide use and to improve productivity in cotton farming. This article is protected by copyright. All rights reserved.
New Frontiers for Cartilage Repair and Protection.
Zaslav, Kenneth; McAdams, Timothy; Scopp, Jason; Theosadakis, Jason; Mahajan, Vivek; Gobbi, Alberto
2012-01-01
Articular cartilage injury is common after athletic injury and remains a difficult treatment conundrum both for the surgeon and athlete. Although recent treatments for damage to articular cartilage have been successful in alleviating symptoms, more durable and complete, long-term articular surface restoration remains the unattained goal. In this article, we look at both new ways to prevent damage to articular surfaces as well as new techniques to recreate biomechanically sound and biochemically true articular surfaces once an athlete injures this surface. This goal should include reproducing hyaline cartilage with a well-integrated and flexible subchondral base and the normal zonal variability in the articular matrix. A number of nonoperative interventions have shown early promise in mitigating cartilage symptoms and in preclinical studies have shown evidence of chondroprotection. These include the use of glucosamine, chondroitin, and other neutraceuticals, viscosupplementation with hyaluronic acid, platelet-rich plasma, and pulsed electromagnetic fields. Newer surgical techniques, some already in clinical study, and others on the horizon offer opportunities to improve the surgical restoration of the hyaline matrix often disrupted in athletic injury. These include new scaffolds, single-stage cell techniques, the use of mesenchymal stem cells, and gene therapy. Although many of these treatments are in the preclinical and early clinical study phase, they offer the promise of better options to mitigate the sequelae of athletically induced cartilage.
Overview of Sparse Graph for Multiple Access in Future Mobile Networks
NASA Astrophysics Data System (ADS)
Lei, Jing; Li, Baoguo; Li, Erbao; Gong, Zhenghui
2017-10-01
Multiple access via sparse graph, such as low density signature (LDS) and sparse code multiple access (SCMA), is a promising technique for future wireless communications. This survey presents an overview of the developments in this burgeoning field, including transmitter structures, extrinsic information transform (EXIT) chart analysis and comparisons with existing multiple access techniques. Such technique enables multiple access under overloaded conditions to achieve a satisfactory performance. Message passing algorithm is utilized for multi-user detection in the receiver, and structures of the sparse graph are illustrated in detail. Outlooks and challenges of this technique are also presented.
Society, Environment, Science. Profiles of Promise 21.
ERIC Educational Resources Information Center
Hawke, Sharryl
The brochure describes an eleventh and twelfth grade interdisciplinary course in environmental education taught at Lansdowne Senior High Baltimore, Maryland. The major objective of the course is to create realistic awareness of environmental conditions. Teaching techniques used include individual and group projects, which are determined by…
Deep learning aided decision support for pulmonary nodules diagnosing: a review
Yang, Yixin; Feng, Xiaoyi; Chi, Wenhao; Li, Zhengyang; Duan, Wenzhe; Liu, Haiping; Liang, Wenhua; Wang, Wei; Chen, Ping
2018-01-01
Deep learning techniques have recently emerged as promising decision supporting approaches to automatically analyze medical images for different clinical diagnosing purposes. Diagnosing of pulmonary nodules by using computer-assisted diagnosing has received considerable theoretical, computational, and empirical research work, and considerable methods have been developed for detection and classification of pulmonary nodules on different formats of images including chest radiographs, computed tomography (CT), and positron emission tomography in the past five decades. The recent remarkable and significant progress in deep learning for pulmonary nodules achieved in both academia and the industry has demonstrated that deep learning techniques seem to be promising alternative decision support schemes to effectively tackle the central issues in pulmonary nodules diagnosing, including feature extraction, nodule detection, false-positive reduction, and benign-malignant classification for the huge volume of chest scan data. The main goal of this investigation is to provide a comprehensive state-of-the-art review of the deep learning aided decision support for pulmonary nodules diagnosing. As far as the authors know, this is the first time that a review is devoted exclusively to deep learning techniques for pulmonary nodules diagnosing. PMID:29780633
NASA Technical Reports Server (NTRS)
Petro, Andrew J.
1990-01-01
This paper will summarize a range of techniques which have been proposed for controlling the growth of man-made debris in earth orbit. Several techniques developed in studies at the Johnson Space Center will be described in detail. These techniques include the retrieval of inoperative satellites with an orbital maneuvering vehicle and self-disposal devices for satellites and upper stages. Self-disposal devices include propulsive deorbit motors and passive drag-augmentation devices. Concepts for sweeping small debris from the orbital environment will also be described. An evaluation of the technical feasibility and economic practicality of the various control methods will be summarized. In general, methods which prevent the accumulation of large debris objects were found to provide greater promise for control of the debris problem than methods of removing small debris particles.
Transanal Total Mesorectal Excision: A Novel Approach to Rectal Surgery
Suwanabol, Pasithorn A.; Maykel, Justin A.
2017-01-01
Less invasive approaches continue to be explored and refined for diseases of the colon and rectum. The current gold standard for the surgical treatment of rectal cancer, total mesorectal excision (TME), is a technically precise yet demanding procedure with outcomes measured by both oncologic and functional outcomes (including bowel, urinary, and sexual). To date, the minimally invasive approach to rectal cancer has not yet been perfected, leaving ample opportunity for rectal surgeons to innovate. Transanal TME has recently emerged as a safe and effective technique for both benign and malignant diseases of the rectum. While widespread acceptance of this surgical approach remains tempered at this time due to lack of long-term oncologic outcome data, short-term outcomes are promising and there is great excitement surrounding the promise of this technique. PMID:28381943
Clustering cancer gene expression data by projective clustering ensemble
Yu, Xianxue; Yu, Guoxian
2017-01-01
Gene expression data analysis has paramount implications for gene treatments, cancer diagnosis and other domains. Clustering is an important and promising tool to analyze gene expression data. Gene expression data is often characterized by a large amount of genes but with limited samples, thus various projective clustering techniques and ensemble techniques have been suggested to combat with these challenges. However, it is rather challenging to synergy these two kinds of techniques together to avoid the curse of dimensionality problem and to boost the performance of gene expression data clustering. In this paper, we employ a projective clustering ensemble (PCE) to integrate the advantages of projective clustering and ensemble clustering, and to avoid the dilemma of combining multiple projective clusterings. Our experimental results on publicly available cancer gene expression data show PCE can improve the quality of clustering gene expression data by at least 4.5% (on average) than other related techniques, including dimensionality reduction based single clustering and ensemble approaches. The empirical study demonstrates that, to further boost the performance of clustering cancer gene expression data, it is necessary and promising to synergy projective clustering with ensemble clustering. PCE can serve as an effective alternative technique for clustering gene expression data. PMID:28234920
Localized in situ polymerization on graphene surfaces for stabilized graphene dispersions.
Das, Sriya; Wajid, Ahmed S; Shelburne, John L; Liao, Yen-Chih; Green, Micah J
2011-06-01
We demonstrate a novel in situ polymerization technique to develop localized polymer coatings on the surface of dispersed pristine graphene sheets. Graphene sheets show great promise as strong, conductive fillers in polymer nanocomposites; however, difficulties in dispersion quality and interfacial strength between filler and matrix have been a persistent problem for graphene-based nanocomposites, particularly for pristine graphene. With this in mind, a physisorbed polymer layer is used to stabilize graphene sheets in solution. To create this protective layer, we formed an organic microenvironment around dispersed graphene sheets in surfactant solutions, and created a nylon 6, 10 or nylon 6, 6 coating via interfacial polymerization. Technique lies at the intersection of emulsion and admicellar polymerization; a similar technique was originally developed to protect luminescent properties of carbon nanotubes in solution. These coated graphene dispersions are aggregation-resistant and may be reversibly redispersed in water even after freeze-drying. The coated graphene holds promise for a number of applications, including multifunctional graphene-polymer nanocomposites. © 2011 American Chemical Society
Optical control and diagnostics sensors for gas turbine machinery
NASA Astrophysics Data System (ADS)
Trolinger, James D.; Jenkins, Thomas P.; Heeg, Bauke
2012-10-01
There exists a vast range of optical techniques that have been under development for solving complex measurement problems related to gas-turbine machinery and phenomena. For instance, several optical techniques are ideally suited for studying fundamental combustion phenomena in laboratory environments. Yet other techniques hold significant promise for use as either on-line gas turbine control sensors, or as health monitoring diagnostics sensors. In this paper, we briefly summarize these and discuss, in more detail, some of the latter class of techniques, including phosphor thermometry, hyperspectral imaging and low coherence interferometry, which are particularly suited for control and diagnostics sensing on hot section components with ceramic thermal barrier coatings (TBCs).
Ablative therapy for liver tumours
Dick, E A; Taylor-Robinson, S D; Thomas, H C; Gedroyc, W M W
2002-01-01
Established ablative therapies for the treatment of primary and secondary liver tumours, including percutaneous ethanol injection, cryotherapy, and radiofrequency ablation, are discussed. Newer techniques such as magnetic resonance imaging guided laser interstitial thermal therapy of liver tumours has produced a median survival rate of 40.8 months after treatment. The merits of this newly emerging technique are discussed, together with future developments, such as focused ultrasound therapy, which holds the promise of non-invasive thermoablation treatment on an outpatient basis. PMID:11950826
Beyond Advertising: How to Choose Materials for Review and Purchase.
ERIC Educational Resources Information Center
Singer, Marc G.; Pass, Barbara H.
1982-01-01
The article points out ways in which special education teachers can use advertising techniques to select curriculum materials. Suggested criteria include the product's design and image, testimonials, promise and benefits, newness and novelty, headlines, brand names and companies, and pricing. A checklist of nine questions for material evaluation…
ERIC Educational Resources Information Center
Verschaffel, Lieven; Van Dooren, W.; Star, J.
2017-01-01
This special issue comprises contributions that address the breadth of current lines of recent research from cognitive psychology that appear promising for positively impacting students' learning of mathematics. More specifically, we included contributions (a) that refer to cognitive psychology based principles and techniques, such as explanatory…
Nutritional Informatics: Mining Supermarket Sales Data as a Nutritional Assessment Method
ERIC Educational Resources Information Center
Brinkerhoff, Kristina Michelle
2012-01-01
Many nutritional assessment techniques, including food frequency questionnaires (FFQs) and 24-hour dietary recalls have innate limitations such as expensive protocols, high respondent burden, and self-reporting biases. Supermarket sales data have shown promise as a new, indirect, inexpensive nutritional assessment method in recent studies. The…
The Promise of Open Educational Resources
ERIC Educational Resources Information Center
Smith, Marshall S.; Casserly, Catherine M.
2006-01-01
Open educational resources (OER) include full courses, course materials, modules, textbooks, streaming videos, tests, software, and any other tools, materials, or techniques used to either support access to knowledge, or have an impact on teaching, learning, and research. At the heart of the OER movement is the simple and powerful idea that the…
Advanced MRI in Multiple Sclerosis: Current Status and Future Challenges
Fox, Robert J.; Beall, Erik; Bhattacharyya, Pallab; Chen, Jacqueline; Sakaie, Ken
2011-01-01
Synopsis Magnetic resonance imaging (MRI) has rapidly become a leading research tool in the study of multiple sclerosis (MS). Conventional imaging is useful in diagnosis and management of the inflammatory stages of MS, but has limitations in describing the degree of tissue injury as well as the cause of progressive disability seen in the later stages of disease. Advanced MRI techniques hold promise to fill this void. Magnetization transfer imaging is a widely available technique that can characterize demyelination and may be useful in measuring putative remyelinating therapies. Diffusion tensor imaging describes the three-dimensional diffusion of water and holds promise in characterizing neurodegeneration and putative neuroprotective therapies. Spectroscopy measures the imbalance of cellular metabolites and could help unravel the pathogenesis of neurodegeneration in MS. Functional (f) MRI can be used to understand the functional consequences of MS injury, including the impact on cortical function and compensatory mechanisms. These imaging tools hold great promise to increase our understanding of MS pathogenesis and provide greater insight into the efficacy of new MS therapies. PMID:21439446
Molecular Imprinting Techniques Used for the Preparation of Biosensors
Ertürk, Gizem; Mattiasson, Bo
2017-01-01
Molecular imprinting is the technology of creating artificial recognition sites in polymeric matrices which are complementary to the template in their size, shape and spatial arrangement of the functional groups. Molecularly imprinted polymers (MIPs) and their incorporation with various transducer platforms are among the most promising approaches for detection of several analytes. There are a variety of molecular imprinting techniques used for the preparation of biomimetic sensors including bulk imprinting, surface imprinting (soft lithography, template immobilization, grafting, emulsion polymerization) and epitope imprinting. This chapter presents an overview of all of these techniques with examples from particular publications. PMID:28165419
Technologies for Arsenic Removal from Water: Current Status and Future Perspectives
Nicomel, Nina Ricci; Leus, Karen; Folens, Karel; Van Der Voort, Pascal; Du Laing, Gijs
2015-01-01
This review paper presents an overview of the available technologies used nowadays for the removal of arsenic species from water. Conventionally applied techniques to remove arsenic species include oxidation, coagulation-flocculation, and membrane techniques. Besides, progress has recently been made on the utility of various nanoparticles for the remediation of contaminated water. A critical analysis of the most widely investigated nanoparticles is presented and promising future research on novel porous materials, such as metal organic frameworks, is suggested. PMID:26703687
Technologies for Arsenic Removal from Water: Current Status and Future Perspectives.
Nicomel, Nina Ricci; Leus, Karen; Folens, Karel; Van Der Voort, Pascal; Du Laing, Gijs
2015-12-22
This review paper presents an overview of the available technologies used nowadays for the removal of arsenic species from water. Conventionally applied techniques to remove arsenic species include oxidation, coagulation-flocculation, and membrane techniques. Besides, progress has recently been made on the utility of various nanoparticles for the remediation of contaminated water. A critical analysis of the most widely investigated nanoparticles is presented and promising future research on novel porous materials, such as metal organic frameworks, is suggested.
[Blood culture negative endocarditis: a diagnostic challenge].
Wälli, F; Chuard, C; Regamey, C
2005-10-12
Blood culture negative endocarditis (BCNE) account for about 5% of all cases of endocarditis. Diagnosis and initiation of antimicrobial therapy may be delayed, with a negative impact on clinical outcome. The most common cause of BCNE is antimicrobial drug therapy before blood sampling. Other common causes include slow growing and non cultivable organisms. Identification of the etiologic agent is critical in the management of BCNE and molecular tools such as broad range 16SrRNA PCR technique followed by direct automated sequencing and microorganism-specific PCR are promising. Some authors have proposed to include these techniques among major Duke's criteria for the diagnosis of BCNE.
ERIC Educational Resources Information Center
McDougall, Dennis; Skouge, Jim; Farrell, Anthony; Hoff, Kathy
2006-01-01
This comprehensive review synthesizes findings from 43 studies in which students with disabilities utilized behavioral self-management (BSM) techniques in general education settings. Findings suggest that the long-standing promise of BSM as an inclusive technique has been partially fulfilled. The review identifies strengths and limitations of BSM…
Systematic Molecular Phenotyping: A Path Toward Precision Emergency Medicine?
Limkakeng, Alexander T; Monte, Andrew A; Kabrhel, Christopher; Puskarich, Michael; Heitsch, Laura; Tsalik, Ephraim L; Shapiro, Nathan I
2016-10-01
Precision medicine is an emerging approach to disease treatment and prevention that considers variability in patient genes, environment, and lifestyle. However, little has been written about how such research impacts emergency care. Recent advances in analytical techniques have made it possible to characterize patients in a more comprehensive and sophisticated fashion at the molecular level, promising highly individualized diagnosis and treatment. Among these techniques are various systematic molecular phenotyping analyses (e.g., genomics, transcriptomics, proteomics, and metabolomics). Although a number of emergency physicians use such techniques in their research, widespread discussion of these approaches has been lacking in the emergency care literature and many emergency physicians may be unfamiliar with them. In this article, we briefly review the underpinnings of such studies, note how they already impact acute care, discuss areas in which they might soon be applied, and identify challenges in translation to the emergency department (ED). While such techniques hold much promise, it is unclear whether the obstacles to translating their findings to the ED will be overcome in the near future. Such obstacles include validation, cost, turnaround time, user interface, decision support, standardization, and adoption by end-users. © 2016 by the Society for Academic Emergency Medicine.
Systematic Molecular Phenotyping: A Path Towards Precision Emergency Medicine?
Limkakeng, Alexander T.; Monte, Andrew; Kabrhel, Christopher; Puskarich, Michael; Heitsch, Laura; Tsalik, Ephraim L.; Shapiro, Nathan I.
2016-01-01
Precision medicine is an emerging approach to disease treatment and prevention that considers variability in patient genes, environment, and lifestyle. However, little has been written about how such research impacts emergency care. Recent advances in analytical techniques have made it possible to characterize patients in a more comprehensive and sophisticated fashion at the molecular level, promising highly individualized diagnosis and treatment. Among these techniques are various systematic molecular phenotyping analyses (e.g., genomics, transcriptomics, proteomics, and metabolomics). Although a number of emergency physicians use such techniques in their research, widespread discussion of these approaches has been lacking in the emergency care literature and many emergency physicians may be unfamiliar with them. In this article, we briefly review the underpinnings of such studies, note how they already impact acute care, discuss areas in which they might soon be applied, and identify challenges in translation to the emergency department. While such techniques hold much promise, it is unclear whether the obstacles to translating their findings to the emergency department will be overcome in the near future. Such obstacles include validation, cost, turnaround time, user interface, decision support, standardization, and adoption by end users. PMID:27288269
Induction of lucid dreams: a systematic review of evidence.
Stumbrys, Tadas; Erlacher, Daniel; Schädlich, Melanie; Schredl, Michael
2012-09-01
In lucid dreams the dreamer is aware of dreaming and often able to influence the ongoing dream content. Lucid dreaming is a learnable skill and a variety of techniques is suggested for lucid dreaming induction. This systematic review evaluated the evidence for the effectiveness of induction techniques. A comprehensive literature search was carried out in biomedical databases and specific resources. Thirty-five studies were included in the analysis (11 sleep laboratory and 24 field studies), of which 26 employed cognitive techniques, 11 external stimulation and one drug application. The methodological quality of the included studies was relatively low. None of the induction techniques were verified to induce lucid dreams reliably and consistently, although some of them look promising. On the basis of the reviewed studies, a taxonomy of lucid dream induction methods is presented. Several methodological issues are discussed and further directions for future studies are proposed. Copyright © 2012 Elsevier Inc. All rights reserved.
Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics.
Cui, Zheng; Han, Yiwei; Huang, Qijin; Dong, Jingyan; Zhu, Yong
2018-04-19
A silver nanowire (AgNW) based conductor is a promising component for flexible and stretchable electronics. A wide range of flexible/stretchable devices using AgNW conductors has been demonstrated recently. High-resolution, high-throughput printing of AgNWs remains a critical challenge. Electrohydrodynamic (EHD) printing has been developed as a promising technique to print different materials on a variety of substrates with high resolution. Here, AgNW ink was developed for EHD printing. The printed features can be controlled by several parameters including AgNW concentration, ink viscosity, printing speed, stand-off distance, etc. With this method, AgNW patterns can be printed on a range of substrates, e.g. paper, polyethylene terephthalate (PET), glass, polydimethylsiloxane (PDMS), etc. First, AgNW samples on PDMS were characterized under bending and stretching. Then AgNW heaters and electrocardiogram (ECG) electrodes were fabricated to demonstrate the potential of this printing technique for AgNW-based flexible and stretchable devices.
Niv, Eva; Fireman, Zvi; Vaisman, Nachum
2009-01-01
Postpyloric feeding is an important and promising alternative to parenteral nutrition. The indications for this kind of feeding are increasing and include a variety of clinical conditions, such as gastroparesis, acute pancreatitis, gastric outlet stenosis, hyperemesis (including gravida), recurrent aspiration, tracheoesophageal fistula and stenosis in gastroenterostomy. This review discusses the differences between pre- and postpyloric feeding, indications and contraindications, advantages and disadvantages, and provides an overview of the techniques of placement of various postpyloric devices. PMID:19294757
The Dig: A Study in Archaeology. Profiles of Promise 6.
ERIC Educational Resources Information Center
Risinger, C. Frederick; And Others
The activity described in this profile is based on the simulation Dig. Although designed primarily for use by social studies classes, Dig was expanded by Glen Ellyn teachers to include language arts, mathematics, and science. The objectives of the one-month unit were to: 1) teach techniques and procedures of archaeologists; 2) introduce students…
ERIC Educational Resources Information Center
National Council of Teachers of English, Champaign, IL.
Twenty-five articles describing techniques for teaching English are organized under four headings: language, literature, composition, and miscellany. Included in the language section are discussions of an oral language program for 3- to 5-year-old disadvantaged children, of language development through creative dramatics, of a junior high school…
NASA Technical Reports Server (NTRS)
Cramer, J. M.; Pal, S.; Marshall, W. M.; Santoro, R. J.
2003-01-01
Contents include the folloving: 1. Motivation. Support NASA's 3d generation launch vehicle technology program. RBCC is promising candidate for 3d generation propulsion system. 2. Approach. Focus on ejector mode p3erformance (Mach 0-3). Perform testing on established flowpath geometry. Use conventional propulsion measurement techniques. Use advanced optical diagnostic techniques to measure local combustion gas properties. 3. Objectives. Gain physical understanding of detailing mixing and combustion phenomena. Establish an experimental data set for CFD code development and validation.
Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study
NASA Astrophysics Data System (ADS)
Esenaliev, Rinat O.; Larina, Irina V.; Larin, Kirill V.; Deyo, Donald J.; Motamedi, Massoud; Prough, Donald S.
2002-08-01
Replacement of invasive monitoring of cerebral venous oxygenation with noninvasive techniques offers great promise in the management of life-threatening neurologic illnesses including traumatic brain injury. We developed and built an optoacoustic system to noninvasively monitor cerebral venous oxygenation; the system includes a nanosecond Nd:YAG laser and a specially designed optoacoustic probe. We tested the system in vitro in sheep blood with experimentally varied oxygenation. Our results demonstrated that (1) the amplitude and temporal profile of the optoacoustic waves increase with blood oxygenation in the range from 24% to 92%, (2) optoacoustic signals can be detected despite optical and acoustic attenuation by thick bone, and (3) the system is capable of real-time and continuous measurements. These results suggest that the optoacoustic technique is technically feasible for continuous, noninvasive monitoring of cerebral venous oxygenation.
Advanced crystal growth techniques for thallium bromide semiconductor radiation detectors
NASA Astrophysics Data System (ADS)
Datta, Amlan; Becla, Piotr; Guguschev, Christo; Motakef, Shariar
2018-02-01
Thallium Bromide (TlBr) is a promising room-temperature radiation detector candidate with excellent charge transport properties. Currently, Travelling Molten Zone (TMZ) technique is widely used for growth of semiconductor-grade TlBr crystals. However, there are several challenges associated with this type of crystal growth process including lower yield, high thermal stress, and low crystal uniformity. To overcome these shortcomings of the current technique, several different crystal growth techniques have been implemented in this study. These include: Vertical Bridgman (VB), Physical Vapor Transport (PVT), Edge-defined Film-fed Growth (EFG), and Czochralski Growth (Cz). Techniques based on melt pulling (EFG and Cz) were demonstrated for the first time for semiconductor grade TlBr material. The viability of each process along with the associated challenges for TlBr growth has been discussed. The purity of the TlBr crystals along with its crystalline and electronic properties were analyzed and correlated with the growth techniques. Uncorrected 662 keV energy resolutions around 2% were obtained from 5 mm x 5 mm x 10 mm TlBr devices with virtual Frisch-grid configuration.
Prospects for therapeutic mitochondrial transplantation.
Gollihue, Jenna L; Rabchevsky, Alexander G
2017-07-01
Mitochondrial dysfunction has been implicated in a multitude of diseases and pathological conditions- the organelles that are essential for life can also be major players in contributing to cell death and disease. Because mitochondria are so well established in our existence, being present in all cell types except for red blood cells and having the responsibility of providing most of our energy needs for survival, then dysfunctional mitochondria can elicit devastating cellular pathologies that can be widespread across the entire organism. As such, the field of "mitochondrial medicine" is emerging in which disease states are being targeted therapeutically at the level of the mitochondrion, including specific antioxidants, bioenergetic substrate additions, and membrane uncoupling agents. New and compelling research investigating novel techniques for mitochondrial transplantation to replace damaged or dysfunctional mitochondria with exogenous healthy mitochondria has shown promising results, including tissue sparing accompanied by increased energy production and decreased oxidative damage. Various experimental techniques have been attempted and each has been challenged to accomplish successful transplantation. The purpose of this review is to present the history of mitochondrial transplantation, the different techniques used for both in vitro and in vivo delivery, along with caveats and pitfalls that have been discovered along the way. Results from such pioneering studies are promising and could be the next big wave of "mitochondrial medicine" once technical hurdles are overcome. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Pirsalami, Sedigheh; Zebarjad, Seyed Mojtaba; Daneshmanesh, Habib
2017-08-01
Transparent conductors (TCs) have a wide range of applications in numerous electronic and optoelectronic devices. This review provides an overview of the emergence of metallic nanowire networks (MNNs) as promising building blocks for the next generation transparent conductors. The fundamental aspects, structure-property relations, fabrication techniques and the corresponding challenges are reviewed. Theoretical and experimental researches suggest that nanowires with smaller diameter, longer length and higher aspect ratio have higher performance. Yet, the development of an efficient synthesis technique for the production of MNNs has remained a challenge. The synthesis method is also crucial to the scalability and the commercial potential of these emerging TCs. The most promising techniques for the synthesis together with their advantages, limitations and the recent findings are here discussed. Finally, we will try to show the promising future research trends in MNNs to have an approach to design the next generation TCs.
Phytoremediation of organochlorine pesticides: Concept, method, and recent developments.
Singh, Tanvi; Singh, Dileep K
2017-09-02
Rapid increase in industrialization of world economy in the past century has resulted in significantly high emission of anthropogenic chemicals in the ecosystem. The organochlorine pesticides (OCPs) are a great risk to the global environment and endanger the human health due to their affinity for dispersion, transportation over long distances, and bioaccumulation in the food chain. Phytoremediation is a promising technology that aims to make use of plants and associated bacteria for the treatment of groundwater and soil polluted by these contaminants. Processes known to be involved in phytoremediation of OCPs include phytoaccumulation, rhizoremediation, and phytotransformation. Vegetation has been accounted to considerably amplify OCP elimination from soil, in contrast to non-planted soil, attributable to both, uptake within plant tissues and high microbial degradation of OCP within the root zone. Developing transgenic plants is a promising approach to enhance phytoremediation capabilities. Recent advances in the application of phytoremediation technique for OCPs, including uptake by plants and plant-microbe association in the rhizosphere for the enhanced degradation and mineralization of these pollutants, is presented in this review. Additionally, some attempts to improve this technique using transgenesis and role of certain enzymes are also discussed.
On the Use of Line Depth Ratios to Measure Starspot Properties on Magnetically Active Stars
NASA Astrophysics Data System (ADS)
O'Neal, Douglas
2006-07-01
Photometric and spectroscopic techniques have proven to be effective ways to measure the properties of dark, cool starspots on magnetically active stars. Recently, a technique was introduced using atomic line depth ratios (LDRs) to measure starspot properties. Carefully reproducing this technique using a new set of spectroscopic observations of active stars, we find that the LDR technique encounters difficulties, specifically by overestimating spot temperatures (because the atomic lines blend with titanium oxide absorption in cooler spots) and by not tightly constraining the filling factor of spots. While the use of LDRs for active star studies has great promise, we believe that these concerns need to be addressed before the technique is more widely applied. This paper includes data taken at McDonald Observatory of the University of Texas at Austin.
Advances in the surface modification techniques of bone-related implants for last 10 years
Qiu, Zhi-Ye; Chen, Cen; Wang, Xiu-Mei; Lee, In-Seop
2014-01-01
At the time of implanting bone-related implants into human body, a variety of biological responses to the material surface occur with respect to surface chemistry and physical state. The commonly used biomaterials (e.g. titanium and its alloy, Co–Cr alloy, stainless steel, polyetheretherketone, ultra-high molecular weight polyethylene and various calcium phosphates) have many drawbacks such as lack of biocompatibility and improper mechanical properties. As surface modification is very promising technology to overcome such problems, a variety of surface modification techniques have been being investigated. This review paper covers recent advances in surface modification techniques of bone-related materials including physicochemical coating, radiation grafting, plasma surface engineering, ion beam processing and surface patterning techniques. The contents are organized with different types of techniques to applicable materials, and typical examples are also described. PMID:26816626
New radiotherapeutic techniques in nuclear ophthalmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fairchild, R.G.
Various aspects of radiotherapeutic techniques used in treating ocular tumors are discussed. Previous and current ''standard'' modalities are briefly reviewed, including beta and gamma emitters, /sup 60/Co, /sup 125/I, and charged particles. In particular, emphasis is placed upon techniques under development that use biomolecules to physiologically target radioactive or stable isotopes to ocular melanoma. These procedures include /sup 35/S-thiouracil, /sup 127/I-deoxyuridine in conjunction with irradiation with photons from /sup 145/Sm, neutron capture therapy, and various combinations of the above. Thiouracil shows particular promise because of its incorporation during melanin synthesis in growing melanoma. Radiosensitization and stimulation of Auger cascades viamore » introduction of iodine in DNA followed by irradiation with activating photons of appropriate energy (from /sup 145/Sm) has been shown to be effective in vitro. Various molecules may be used to transport boron to ocular melanoma, including thiouracil, thus allowing selective irradiation of tumor cells via /sup 10/B (n, alpha) /sup 7/Li reaction.« less
TOPICAL REVIEW: Spatial localization in nuclear magnetic resonance spectroscopy
NASA Astrophysics Data System (ADS)
Keevil, Stephen F.
2006-08-01
The ability to select a discrete region within the body for signal acquisition is a fundamental requirement of in vivo NMR spectroscopy. Ideally, it should be possible to tailor the selected volume to coincide exactly with the lesion or tissue of interest, without loss of signal from within this volume or contamination with extraneous signals. Many techniques have been developed over the past 25 years employing a combination of RF coil properties, static magnetic field gradients and pulse sequence design in an attempt to meet these goals. This review presents a comprehensive survey of these techniques, their various advantages and disadvantages, and implications for clinical applications. Particular emphasis is placed on the reliability of the techniques in terms of signal loss, contamination and the effect of nuclear relaxation and J-coupling. The survey includes techniques based on RF coil and pulse design alone, those using static magnetic field gradients, and magnetic resonance spectroscopic imaging. Although there is an emphasis on techniques currently in widespread use (PRESS, STEAM, ISIS and MRSI), the review also includes earlier techniques, in order to provide historical context, and techniques that are promising for future use in clinical and biomedical applications.
Gardner, Benjamin; Smith, Lee; Lorencatto, Fabiana; Hamer, Mark; Biddle, Stuart J H
2016-01-01
Sedentary behaviour - i.e., low energy-expending waking behaviour while seated or lying down - is a health risk factor, even when controlling for physical activity. This review sought to describe the behaviour change strategies used within interventions that have sought to reduce sedentary behaviour in adults. Studies were identified through existing literature reviews, a systematic database search, and hand-searches of eligible papers. Interventions were categorised as 'very promising', 'quite promising', or 'non-promising' according to observed behaviour changes. Intervention functions and behaviour change techniques were compared across promising and non-promising interventions. Twenty-six eligible studies reported thirty-eight interventions, of which twenty (53%) were worksite-based. Fifteen interventions (39%) were very promising, eight quite promising (21%), and fifteen non-promising (39%). Very or quite promising interventions tended to have targeted sedentary behaviour instead of physical activity. Interventions based on environmental restructuring, persuasion, or education were most promising. Self-monitoring, problem solving, and restructuring the social or physical environment were particularly promising behaviour change techniques. Future sedentary reduction interventions might most fruitfully incorporate environmental modification and self-regulatory skills training. The evidence base is, however, weakened by low-quality evaluation methods; more RCTs, employing no-treatment control groups, and collecting objective data are needed.
In Vivo Biomarkers for Targeting Colorectal Neoplasms
Hsiung, Pei-Lin; Wang, Thomas
2011-01-01
Summary Colorectal carcinoma continues to be a leading cause of cancer morbidity and mortality despite widespread adoption of screening methods. Targeted detection and therapy using recent advances in our knowledge of in vivo cancer biomarkers promise to significantly improve methods for early detection, risk stratification, and therapeutic intervention. The behavior of molecular targets in transformed tissues is being comprehensively assessed using new techniques of gene expression profiling and high throughput analyses. The identification of promising targets is stimulating the development of novel molecular probes, including significant progress in the field of activatable and peptide probes. These probes are being evaluated in small animal models of colorectal neoplasia and recently in the clinic. Furthermore, innovations in optical imaging instrumentation are resulting in the scaling down of size for endoscope compatibility. Advances in target identification, probe development, and novel instruments are progressing rapidly, and the integration of these technologies has a promising future in molecular medicine. PMID:19126961
[Advances of Molecular Diagnostic Techniques Application in Clinical Diagnosis.
Ying, Bin-Wu
2016-11-01
Over the past 20 years,clinical molecular diagnostic technology has made rapid development,and became the most promising field in clinical laboratory medicine.In particular,with the development of genomics,clinical molecular diagnostic methods will reveal the nature of clinical diseases in a deeper level,thus guiding the clinical diagnosis and treatments.Many molecular diagnostic projects have been routinely applied in clinical works.This paper reviews the advances on application of clinical diagnostic techniques in infectious disease,tumor and genetic disorders,including nucleic acid amplification,biochip,next-generation sequencing,and automation molecular system,and so on.
ERIC Educational Resources Information Center
Vestjens, Lotte; Kempen, Gertrudis I. J. M.; Crutzen, Rik; Kok, Gerjo; Zijlstra, G. A. Rixt
2015-01-01
Complex behavior change interventions need evidence regarding the effectiveness of individual components to understand how these interventions work. The objective of this study was to identify the least and most promising behavior change techniques (BCTs) within the Dutch intervention "A Matter of Balance" (AMB-NL) aimed at concerns…
Gold nanoparticles: From nanomedicine to nanosensing
Chen, Po C; Mwakwari, Sandra C; Oyelere, Adegboyega K
2008-01-01
Because of their photo-optical distinctiveness and biocompatibility, gold nanoparticles (AuNPs) have proven to be powerful tools in various nanomedicinal and nanomedical applications. In this review article, we discuss recent advances in the application of AuNPs in diagnostic imaging, biosensing and binary cancer therapeutic techniques. We also provide an eclectic collection of AuNPs delivery strategies, including assorted classes of delivery vehicles, which are showing great promise in specific targeting of AuNPs to diseased tissues. However, successful clinical implementations of the promised applications of AuNPs are still hampered by many barriers. In particular, more still needs to be done regarding our understanding of the pharmacokinetics and toxicological profiles of AuNPs and AuNPs-conjugates. PMID:24198460
Advanced control techniques for teleoperation in earth orbit
NASA Technical Reports Server (NTRS)
Bejczy, A. K.; Brooks, T. L.
1980-01-01
Emerging teleoperation tasks in space invite advancements in teleoperator control technology. This paper briefly summarizes the generic issues related to earth orbital applications of teleoperators, and describes teleoperator control technology development work including visual and non-visual sensors and displays, kinesthetic feedback and computer-aided controls. Performance experiments were carried out using sensor and computer aided controls with promising results which are briefly summarized.
ERIC Educational Resources Information Center
Thorne, John C.; Coggins, Truman
2008-01-01
Background: Foetal Alcohol Spectrum Disorders (FASD) include the range of disabilities that occur in children exposed to alcohol during pregnancy, with Foetal Alcohol Syndrome (FAS) on the severe end of the spectrum. Clinical research has documented a range of cognitive, social, and communication deficits in FASD and it indicates the need for…
Clark, Nicholas J; Desai, Vishal S; Dines, Joshua D; Morrey, Mark E; Camp, Christopher L
2018-03-01
This review aims to describe the nonreconstructive options for treating ulnar collateral ligament (UCL) injuries ranging from nonoperative measures, including physical therapy and biologic injections, to ligament repair with and without augmentation. Nonoperative options for UCL injuries include guided physical therapy and biologic augmentation with platelet-rich plasma (PRP). In some patients, repair of the UCL has shown promising return to sport rates by using modern suture and suture anchor techniques. Proximal avulsion injuries have shown the best results after repair. Currently, there is growing interest in augmentation of UCL repair with an internal brace. The treatment of UCL injuries involves complex decision making. UCL reconstruction remains the gold standard for attritional injuries and complete tears, which occur commonly in professional athletes. However, nonreconstructive options have shown promising results for simple avulsion or partial thickness UCL injuries. Future research comparing reconstructive versus nonreconstructive options is necessary.
Crystallization techniques in wastewater treatment: An overview of applications.
Lu, Haijiao; Wang, Jingkang; Wang, Ting; Wang, Na; Bao, Ying; Hao, Hongxun
2017-04-01
As a by-product of industrial or domestic activities, wastewater of different compositions has caused serious environmental problems all over the world. Facing the challenge of wastewater treatment, researchers have begun to make use of crystallization techniques in wastewater treatment. Crystallization techniques have many advantages, such as high efficiency, energy saving, low costs, less space occupation and so on. In recent decades, crystallization is considered as one of promising techniques for wastewater treatment, especially for desalination, water and salt recovery. It has been widely used in engineering applications all over the world. In this paper, various crystallization techniques in wastewater treatment are summarized, mainly including evaporation crystallization, cooling crystallization, reaction crystallization, drowning-out crystallization and membrane distillation crystallization. Overall, they are mainly used for desalination, water and salt recovery. Their applications, advantages and disadvantages were compared and discussed in detail. Copyright © 2017 Elsevier Ltd. All rights reserved.
Deep-learning networks and the functional architecture of executive control.
Cooper, Richard P
2017-01-01
Lake et al. underrate both the promise and the limitations of contemporary deep learning techniques. The promise lies in combining those techniques with broad multisensory training as experienced by infants and children. The limitations lie in the need for such systems to possess functional subsystems that generate, monitor, and switch goals and strategies in the absence of human intervention.
Frequency-domain ultrasound waveform tomography breast attenuation imaging
NASA Astrophysics Data System (ADS)
Sandhu, Gursharan Yash Singh; Li, Cuiping; Roy, Olivier; West, Erik; Montgomery, Katelyn; Boone, Michael; Duric, Neb
2016-04-01
Ultrasound waveform tomography techniques have shown promising results for the visualization and characterization of breast disease. By using frequency-domain waveform tomography techniques and a gradient descent algorithm, we have previously reconstructed the sound speed distributions of breasts of varying densities with different types of breast disease including benign and malignant lesions. By allowing the sound speed to have an imaginary component, we can model the intrinsic attenuation of a medium. We can similarly recover the imaginary component of the velocity and thus the attenuation. In this paper, we will briefly review ultrasound waveform tomography techniques, discuss attenuation and its relations to the imaginary component of the sound speed, and provide both numerical and ex vivo examples of waveform tomography attenuation reconstructions.
Application of thermal analysis techniques in activated carbon production
Donnals, G.L.; DeBarr, J.A.; Rostam-Abadi, M.; Lizzio, A.A.; Brady, T.A.
1996-01-01
Thermal analysis techniques have been used at the ISGS as an aid in the development and characterization of carbon adsorbents. Promising adsorbents from fly ash, tires, and Illinois coals have been produced for various applications. Process conditions determined in the preparation of gram quantities of carbons were used as guides in the preparation of larger samples. TG techniques developed to characterize the carbon adsorbents included the measurement of the kinetics of SO2 adsorption, the performance of rapid proximate analyses, and the determination of equilibrium methane adsorption capacities. Thermal regeneration of carbons was assessed by TG to predict the life cycle of carbon adsorbents in different applications. TPD was used to determine the nature of surface functional groups and their effect on a carbon's adsorption properties.
Study on THz spectra of the active ingredients in the TCM
NASA Astrophysics Data System (ADS)
Ma, ShiHua; Wang, WenFeng; Liu, GuiFeng; Ge, Min; Zhu, ZhiYong
2008-03-01
Terahertz spectroscopy has tremendous potential for applications to evaluate the quality of the drugs including the TCM. In this paper, the Terahertz Time-Domain Spectroscopy investigated two active ingredients: Andrographolide and Dehydroandrographoline, isolated from Andrographis paniculata (Burm. f.) Nees. We also measured the mixtures of two active ingredients at the different ratio and the quantitative analysis is also applied to determine the contents of compound. The Terahertz spectroscopy is a potential and promising technique in identifying the components, evaluating the drugs sanitation and inspecting the quality of medicine including TCM.
Imaging Evaluation of Acute Traumatic Brain Injury
Mutch, Christopher A.; Talbott, Jason F.; Gean, Alisa
2016-01-01
SYNOPSIS Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. Imaging plays an important role in the evaluation, diagnosis, and triage of patients with TBI. Recent studies suggest that it will also help predict patient outcomes. TBI consists of multiple pathoanatomical entities. Here we review the current state of TBI imaging including its indications, benefits and limitations of the modalities, imaging protocols, and imaging findings for each these pathoanatomic entities. We also briefly survey advanced imaging techniques, which include a number of promising areas of TBI research. PMID:27637393
Development of high temperature fasteners using directionally solidified eutectic alloys
NASA Technical Reports Server (NTRS)
George, F. D.
1972-01-01
The suitability of the eutectics for high temperature fasteners was investigated. Material properties were determined as a function of temperature, and included shear parallel and perpendicular to the growth direction and torsion parallel to it. Techniques for fabricating typical fastener shapes included grinding, creep forming, and direct casting. Both lamellar Ni3Al-Ni3Nb and fibrous (Co,Cr,Al)-(Cr,Co)7C3 alloys showed promise as candidate materials for high temperature fastener applications. A brief evaluation of the performance of the best fabricated fastener design was made.
Methods for Generating Hydrogel Particles for Protein Delivery
Liu, Allen L.; García, Andrés J.
2016-01-01
Proteins represent a major class of therapeutic molecules with vast potential for the treatment of acute and chronic diseases and regenerative medicine applications. Hydrogels have long been investigated for their potential in carrying and delivering proteins. As compared to bulk hydrogels, hydrogel microparticles (microgels) hold promise in improving aspects of delivery owing to their less traumatic route of entry into the body and improved versatility. This review discusses common methods of fabricating microgels, including emulsion polymerization, microfluidic techniques, and lithographic techniques. Microgels synthesized from both natural and synthetic polymers are discussed, as are a series of microgels fashioned from environment-responsive materials. PMID:27160672
A method for digital image registration using a mathematical programming technique
NASA Technical Reports Server (NTRS)
Yao, S. S.
1973-01-01
A new algorithm based on a nonlinear programming technique to correct the geometrical distortions of one digital image with respect to another is discussed. This algorithm promises to be superior to existing ones in that it is capable of treating localized differential scaling, translational and rotational errors over the whole image plane. A series of piece-wise 'rubber-sheet' approximations are used, constrained in such a manner that a smooth approximation over the entire image can be obtained. The theoretical derivation is included. The result of using the algorithm to register four channel S065 Apollo IX digitized photography over Imperial Valley, California, is discussed in detail.
Miyazaki, Hidetaka; Ohshiro, Takafumi; Romeo, Umberto; Noguchi, Tadahide; Maruoka, Yutaka; Gaimari, Gianfranco; Tomov, Georgi; Wada, Yoshitaka; Tanaka, Kae; Ohshiro, Toshio; Asamura, Shinichi
2018-06-01
This study aimed to retrospectively evaluate the efficacy and safety of laser treatment of oral vascular lesions using the multiple spot irradiation technique with a single-pulsed wave. In laser therapy for vascular lesions, heat accumulation induced by excessive irradiation can cause adverse events postoperatively, including ulcer formation, resultant scarring, and severe pain. To prevent heat accumulation and side effects, we have applied a multiple pulsed spot irradiation technique, the so-called "leopard technique" (LT) to oral vascular lesions. This approach was originally proposed for laser treatment of nevi. It can avoid thermal concentration at the same spot and spare the epithelium, which promotes smooth healing. The goal of the study was to evaluate this procedure and treatment outcomes. The subjects were 46 patients with 47 oral vascular lesions treated with the LT using a Nd:YAG laser (1064 nm), including 24 thick lesions treated using a combination of the LT and intralesional photocoagulation. All treatment outcomes were satisfactory without serious complications such as deep ulcer formation, scarring, bleeding, or severe swelling. Laser therapy with the LT is a promising less-invasive treatment for oral vascular lesions.
Tasiopoulos, Christos Panagiotis; Widhe, Mona; Hedhammar, My
2018-05-02
In vitro endothelialization of synthetic grafts or engineered vascular constructs is considered a promising alternative to overcome shortcomings in the availability of autologous vessels and in-graft complications with synthetics. A number of cell-seeding techniques have been implemented to render vascular grafts accessible for cells to attach, proliferate, and spread over the surface area. Nonetheless, seeding efficiency and the time needed for cells to adhere varies dramatically. Herein, we investigated a novel cell-seeding approach (denoted co-seeding) that enables cells to bind to a motif from fibronectin included in a recombinant spider silk protein. Entrapment of cells occurs at the same time as the silk assembles into a nanofibrillar coating on various substrates. Cell adhesion analysis showed that the technique can markedly improve cell-seeding efficiency to nonfunctionalized polystyrene surfaces, as well as establish cell attachment and growth of human dermal microvascular endothelial cells on bare polyethylene terephthalate and polytetrafluoroethylene (PTFE) substrates. Scanning electron microscopy images revealed a uniform endothelial cell layer and cell-substratum compliance with the functionalized silk protein to PTFE surfaces. The co-seeding technique holds a great promise as a method to reliably and quickly cellularize engineered vascular constructs as well as to in vitro endothelialize commercially available cardiovascular grafts.
Gardner, Benjamin; Smith, Lee; Lorencatto, Fabiana; Hamer, Mark; Biddle, Stuart JH
2016-01-01
Sedentary behaviour – i.e., low energy-expending waking behaviour while seated or lying down – is a health risk factor, even when controlling for physical activity. This review sought to describe the behaviour change strategies used within interventions that have sought to reduce sedentary behaviour in adults. Studies were identified through existing literature reviews, a systematic database search, and hand-searches of eligible papers. Interventions were categorised as ‘very promising’, ‘quite promising’, or ‘non-promising’ according to observed behaviour changes. Intervention functions and behaviour change techniques were compared across promising and non-promising interventions. Twenty-six eligible studies reported thirty-eight interventions, of which twenty (53%) were worksite-based. Fifteen interventions (39%) were very promising, eight quite promising (21%), and fifteen non-promising (39%). Very or quite promising interventions tended to have targeted sedentary behaviour instead of physical activity. Interventions based on environmental restructuring, persuasion, or education were most promising. Self-monitoring, problem solving, and restructuring the social or physical environment were particularly promising behaviour change techniques. Future sedentary reduction interventions might most fruitfully incorporate environmental modification and self-regulatory skills training. The evidence base is, however, weakened by low-quality evaluation methods; more RCTs, employing no-treatment control groups, and collecting objective data are needed. PMID:26315814
Single-molecule spectroscopic methods.
Haustein, Elke; Schwille, Petra
2004-10-01
Being praised for the mere fact of enabling the detection of individual fluorophores a dozen years ago, single-molecule techniques nowadays represent standard methods for the elucidation of the structural rearrangements of biologically relevant macromolecules. Single-molecule-sensitive techniques, such as fluorescence correlation spectroscopy, allow real-time access to a multitude of molecular parameters (e.g. diffusion coefficients, concentration and molecular interactions). As a result of various recent advances, this technique shows promise even for intracellular applications. Fluorescence imaging can reveal the spatial localization of fluorophores on nanometer length scales, whereas fluorescence resonance energy transfer supports a wide range of different applications, including real-time monitoring of conformational rearrangements (as in protein folding). Still in their infancy, single-molecule spectroscopic methods thus provide unprecedented insights into basic molecular mechanisms. Copyright 2004 Elsevier Ltd.
Zebrafish Models of Human Leukemia: Technological Advances and Mechanistic Insights.
Harrison, Nicholas R; Laroche, Fabrice J F; Gutierrez, Alejandro; Feng, Hui
2016-01-01
Insights concerning leukemic pathophysiology have been acquired in various animal models and further efforts to understand the mechanisms underlying leukemic treatment resistance and disease relapse promise to improve therapeutic strategies. The zebrafish (Danio rerio) is a vertebrate organism with a conserved hematopoietic program and unique experimental strengths suiting it for the investigation of human leukemia. Recent technological advances in zebrafish research including efficient transgenesis, precise genome editing, and straightforward transplantation techniques have led to the generation of a number of leukemia models. The transparency of the zebrafish when coupled with improved lineage-tracing and imaging techniques has revealed exquisite details of leukemic initiation, progression, and regression. With these advantages, the zebrafish represents a unique experimental system for leukemic research and additionally, advances in zebrafish-based high-throughput drug screening promise to hasten the discovery of novel leukemia therapeutics. To date, investigators have accumulated knowledge of the genetic underpinnings critical to leukemic transformation and treatment resistance and without doubt, zebrafish are rapidly expanding our understanding of disease mechanisms and helping to shape therapeutic strategies for improved outcomes in leukemic patients.
Zebrafish Models of Human Leukemia: Technological Advances and Mechanistic Insights
Harrison, Nicholas R.; Laroche, Fabrice J.F.; Gutierrez, Alejandro
2016-01-01
Insights concerning leukemic pathophysiology have been acquired in various animal models and further efforts to understand the mechanisms underlying leukemic treatment resistance and disease relapse promise to improve therapeutic strategies. The zebrafish (Danio rerio) is a vertebrate organism with a conserved hematopoietic program and unique experimental strengths suiting it for the investigation of human leukemia. Recent technological advances in zebrafish research including efficient transgenesis, precise genome editing, and straightforward transplantation techniques have led to the generation of a number of leukemia models. The transparency of the zebrafish when coupled with improved lineage-tracing and imaging techniques has revealed exquisite details of leukemic initiation, progression, and regression. With these advantages, the zebrafish represents a unique experimental system for leukemic research and additionally, advances in zebrafish-based high-throughput drug screening promise to hasten the discovery of novel leukemia therapeutics. To date, investigators have accumulated knowledge of the genetic underpinnings critical to leukemic transformation and treatment resistance and without doubt, zebrafish are rapidly expanding our understanding of disease mechanisms and helping to shape therapeutic strategies for improved outcomes in leukemic patients. PMID:27165361
Recent Developments in Antibody-Based Assays for the Detection of Bacterial Toxins
Zhu, Kui; Dietrich, Richard; Didier, Andrea; Doyscher, Dominik; Märtlbauer, Erwin
2014-01-01
Considering the urgent demand for rapid and accurate determination of bacterial toxins and the recent promising developments in nanotechnology and microfluidics, this review summarizes new achievements of the past five years. Firstly, bacterial toxins will be categorized according to their antibody binding properties into low and high molecular weight compounds. Secondly, the types of antibodies and new techniques for producing antibodies are discussed, including poly- and mono-clonal antibodies, single-chain variable fragments (scFv), as well as heavy-chain and recombinant antibodies. Thirdly, the use of different nanomaterials, such as gold nanoparticles (AuNPs), magnetic nanoparticles (MNPs), quantum dots (QDs) and carbon nanomaterials (graphene and carbon nanotube), for labeling antibodies and toxins or for readout techniques will be summarized. Fourthly, microscale analysis or minimized devices, for example microfluidics or lab-on-a-chip (LOC), which have attracted increasing attention in combination with immunoassays for the robust detection or point-of-care testing (POCT), will be reviewed. Finally, some new materials and analytical strategies, which might be promising for analyzing toxins in the near future, will be shortly introduced. PMID:24732203
McCollough, Cynthia H; Chen, Guang Hong; Kalender, Willi; Leng, Shuai; Samei, Ehsan; Taguchi, Katsuyuki; Wang, Ge; Yu, Lifeng; Pettigrew, Roderic I
2012-08-01
This Special Report presents the consensus of the Summit on Management of Radiation Dose in Computed Tomography (CT) (held in February 2011), which brought together participants from academia, clinical practice, industry, and regulatory and funding agencies to identify the steps required to reduce the effective dose from routine CT examinations to less than 1 mSv. The most promising technologies and methods discussed at the summit include innovations and developments in x-ray sources; detectors; and image reconstruction, noise reduction, and postprocessing algorithms. Access to raw projection data and standard data sets for algorithm validation and optimization is a clear need, as is the need for new, clinically relevant metrics of image quality and diagnostic performance. Current commercially available techniques such as automatic exposure control, optimization of tube potential, beam-shaping filters, and dynamic z-axis collimators are important, and education to successfully implement these methods routinely is critically needed. Other methods that are just becoming widely available, such as iterative reconstruction, noise reduction, and postprocessing algorithms, will also have an important role. Together, these existing techniques can reduce dose by a factor of two to four. Technical advances that show considerable promise for additional dose reduction but are several years or more from commercial availability include compressed sensing, volume of interest and interior tomography techniques, and photon-counting detectors. This report offers a strategic roadmap for the CT user and research and manufacturer communities toward routinely achieving effective doses of less than 1 mSv, which is well below the average annual dose from naturally occurring sources of radiation.
Emerging Transcatheter Options for Tricuspid Regurgitation
Kalra, Ankur; Uberoi, Angad S.; Latib, Azeem; Khera, Sahil; Little, Stephen H.; Bhatt, Deepak L.; Reardon, Michael J.; Kleiman, Neal S.; Barker, Colin M.
2017-01-01
Tricuspid regurgitation (TR) presents as either primary valve pathology or secondary to pulmonary or left-sided heart disease. Severe TR portends a worse prognosis independent of age, right ventricular size and function, severe left ventricular dysfunction, and increased pulmonary arterial pressures. Surgical treatment for TR has mostly been limited to patients undergoing mitral valve repair since those at high surgical risk are not candidates for traditional TR surgery. For these patients, minimally invasive techniques could be of great benefit, yet these techniques have been slow to develop because of the various anatomic and physiological aspects of the tricuspid valve apparatus. Several promising new techniques are currently undergoing clinical investigation, including caval valve implantation, percutaneous tricuspid annuloplasty techniques (Trialign, TriCinch, Cardioband), edge-to-edge repair with the MitraClip system, the FORMA device, and the GATE tricuspid Atrioventricular Valved Stent. Further evaluation of their safety and long-term efficacy is warranted prior to commercial approval and widespread adoption. PMID:29743996
Transcendental meditation, hypertension and heart disease.
King, Michael S; Carr, Tim; D'Cruz, Cathryn
2002-02-01
Accumulating evidence that stress contributes to the pathogenesis and expression of coronary heart disease has led to the increasing use of stress reduction techniques in its prevention and treatment. The most widely used and tested technique is transcendental meditation. To describe transcendental meditation and review research on its use in the treatment and prevention of coronary heart disease. Transcendental meditation shows promise as a preventive and treatment method for coronary heart disease. Transcendental meditation is associated with decreased hypertension and atherosclerosis, improvements in patients with heart disease, decreased hospitalisation rates and improvements in other risk factors including decreased smoking and cholesterol. These findings cannot be generalised to all meditation and stress reduction techniques as each technique differs in its effects. Further research is needed to delineate the mechanisms involved and to verify preliminary findings concerning atherosclerosis and heart disease and the findings of short term hypertension studies.
Food Safety Evaluation Based on Near Infrared Spectroscopy and Imaging: A Review.
Fu, Xiaping; Ying, Yibin
2016-08-17
In recent years, due to the increasing consciousness of food safety and human health, much progress has been made in developing rapid and nondestructive techniques for the evaluation of food hazards, food authentication, and traceability. Near infrared (NIR) spectroscopy and imaging techniques have gained wide acceptance in many fields because of their advantages over other analytical techniques. Following a brief introduction of NIR spectroscopy and imaging basics, this review mainly focuses on recent NIR spectroscopy and imaging applications for food safety evaluation, including (1) chemical hazards detection; (2) microbiological hazards detection; (3) physical hazards detection; (4) new technology-induced food safety concerns; and (5) food traceability. The review shows NIR spectroscopy and imaging to be effective tools that will play indispensable roles for food safety evaluation. In addition, on-line/real-time applications of these techniques promise to be a huge growth field in the near future.
Ulnar Collateral Ligament Reconstruction
Erickson, Brandon J.; Harris, Joshua D.; Chalmers, Peter N.; Bach, Bernard R.; Verma, Nikhil N.; Bush-Joseph, Charles A.; Romeo, Anthony A.
2015-01-01
Context: Ulnar collateral ligament (UCL) injuries lead to pain and loss of performance in the thrower’s elbow. Ulnar collateral ligament reconstruction (UCLR) is a reliable treatment option for the symptomatic, deficient UCL. Injury to the UCL usually occurs because of chronic accumulation of microtrauma, although acute ruptures occur and an acute-on-chronic presentation is also common. Evidence Acquisition: Computerized databases, references from pertinent articles, and research institutions were searched for all studies using the search terms ulnar collateral ligament from 1970 until 2015. Study Design: Clinical review. Level of Evidence: Level 5. Results: All studies reporting outcomes for UCLR are level 4. Most modern fixation methodologies appear to be biomechanically and clinically equivalent. Viable graft choices include ipsilateral palmaris longus tendon autograft, gracilis or semitendinosus autograft, and allograft. Clinical studies report excellent outcomes of UCLR for both recreational and elite level athletes with regard to return to sport and postoperative performance. Complications, although rare, include graft rerupture or attenuation, ulnar nerve symptoms, stiffness, pain, and/or weakness leading to decreased performance. Conclusion: Injuries to the UCL have become commonplace among pitchers. Nonoperative treatment should be attempted, but the limited studies have not shown promising results. Operative treatment can be performed with several techniques, with retrospective studies showing promising results. Complications include ulnar neuropathy as well as failure to return to sport. Detailed preoperative planning, meticulous surgical technique, and a comprehensive rehabilitation program are essential components to achieving a satisfactory result. PMID:26502444
Clinical Application of High-intensity Focused Ultrasound in Cancer Therapy
Hsiao, Yi-Hsuan; Kuo, Shou-Jen; Tsai, Horng-Der; Chou, Ming-Chih; Yeh, Guang-Perng
2016-01-01
The treatment of cancer is an important issue in both developing and developed countries. Clinical use of ultrasound in cancer is not only for the diagnosis but also for the treatment. Focused ultrasound surgery (FUS) is a noninvasive technique. By using the combination of high-intensity focused ultrasound (HIFU) and imaging method, FUS has the potential to ablate tumor lesions precisely. The main mechanisms of HIFU ablation involve mechanical and thermal effects. Recent advances in HIFU have increased its popularity. Some promising results were achieved in managing various malignancies, including pancreas, prostate, liver, kidney, breast and bone. Other applications include brain tumor ablation and disruption of the blood-brain barrier. We aim at briefly outlining the clinical utility of FUS as a noninvasive technique for a variety of types of cancer treatment. PMID:26918034
Park, Chul; Yoo, Yeon-Sik; Hong, Sung-Taek
2010-12-01
Microtia, prominent ear, and cryptotia are the most common types of auricular malformations. This review provides updated information on these types of reconstructions, in addition to recalling previously accepted surgical methods. Autogenous costal cartilage is still considered as an ideal material for framework fabrication in microtia reconstruction. Many surgeons have adopted the Nagata approach, the Brent approach, or variations of the two, in their work. With these employed techniques, auricles reconstructed by experienced surgeons have proven to be aesthetically promising. However, with regards to the harvesting of the costal cartilage, the underdevelopment of the chest wall donor site, alopecia of the scalp, and scarring of the postauricular-mastoid region are still considered problematic aspects of these approaches. Some articles have described attempts to solve these problems, whereas some experiments in cartilage production using tissue engineering techniques have shown promise in their initial stages of development.It is generally accepted that prominent ears should be corrected through a combination of sculpting and suture techniques, according to the individual shape and the quality of the ear prominence.Most of the cryptotia malformations show not only embedded upper auricles, but also associated adhesions of the upper auricular cartilage. Their correction should therefore resolve both deformities. A number of articles highlighting clinical experiences with auricular reconstructions for microtia, prominent ear, and cryptotia have been included in this review. We believe that the information synthesized here will become a basis for further development of auricular reconstruction techniques.
Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions.
Li, Xiaohui; Hu, Duan; Tan, Zhibing; Bai, Jie; Xiao, Zongyuan; Yang, Yang; Shi, Jia; Hong, Wenjing
2017-04-01
The major challenges of molecular electronics are the understanding and manipulation of the electron transport through the single-molecule junction. With the single-molecule break junction techniques, including scanning tunneling microscope break junction technique and mechanically controllable break junction technique, the charge transport through various single-molecule and supramolecular junctions has been studied during the dynamic fabrication and continuous characterization of molecular junctions. This review starts from the charge transport characterization of supramolecular junctions through a variety of noncovalent interactions, such as hydrogen bond, π-π interaction, and electrostatic force. We further review the recent progress in constructing highly conductive molecular junctions via chemical reactions, the response of molecular junctions to external stimuli, as well as the application of break junction techniques in controlling and monitoring chemical reactions in situ. We suggest that beyond the measurement of single molecular conductance, the single-molecule break junction techniques provide a promising access to study molecular assembly and chemical reactions at the single-molecule scale.
Evaluation of methods for rapid determination of freezing point of aviation fuels
NASA Technical Reports Server (NTRS)
Mathiprakasam, B.
1982-01-01
Methods for identification of the more promising concepts for the development of a portable instrument to rapidly determine the freezing point of aviation fuels are described. The evaluation process consisted of: (1) collection of information on techniques previously used for the determination of the freezing point, (2) screening and selection of these techniques for further evaluation of their suitability in a portable unit for rapid measurement, and (3) an extensive experimental evaluation of the selected techniques and a final selection of the most promising technique. Test apparatuses employing differential thermal analysis and the change in optical transparency during phase change were evaluated and tested. A technique similar to differential thermal analysis using no reference fuel was investigated. In this method, the freezing point was obtained by digitizing the data and locating the point of inflection. Results obtained using this technique compare well with those obtained elsewhere using different techniques. A conceptual design of a portable instrument incorporating this technique is presented.
Integrated photonics for infrared spectroscopic sensing
NASA Astrophysics Data System (ADS)
Lin, Hongtao; Kita, Derek; Han, Zhaohong; Su, Peter; Agarwal, Anu; Yadav, Anupama; Richardson, Kathleen; Gu, Tian; Hu, Juejun
2017-05-01
Infrared (IR) spectroscopy is widely recognized as a gold standard technique for chemical analysis. Traditional IR spectroscopy relies on fragile bench-top instruments located in dedicated laboratory settings, and is thus not suitable for emerging field-deployed applications such as in-line industrial process control, environmental monitoring, and point-ofcare diagnosis. Recent strides in photonic integration technologies provide a promising route towards enabling miniaturized, rugged platforms for IR spectroscopic analysis. Chalcogenide glasses, the amorphous compounds containing S, Se or Te, have stand out as a promising material for infrared photonic integration given their broadband infrared transparency and compatibility with silicon photonic integration. In this paper, we discuss our recent work exploring integrated chalcogenide glass based photonic devices for IR spectroscopic chemical analysis, including on-chip cavityenhanced chemical sensing and monolithic integration of mid-IR waveguides with photodetectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faulk, W.P.; Coulam, C.B.; McIntyre, J.A.
The objective of this paper is to consider several catagories of biomarkers of human pregnancy. The design of the report is to discuss useful and promising markers and techniques. Research gaps, needs, and priorities are also defined. Useful markers are mixed lymphocyte culture reactions, measures of lymphocytotoxic antibodies, histocompatibility (HLA) typing, and immunohematological evaluations. Promising markers are measures of major basic protein and early pregnancy factor, as well as determinations of trophoblast-lymphocyte cross-reactive (TLX) antigens. Promising techniques are flourescence-activated cell-sorter analysis of maternal blood for fetal and extraembryonic tissues and immunotherapy with TLX and other antigens to prevent spontaneous abortion.more » It is concluded that immunology has much to offer the development of biomarkers of human pregnancy.« less
Botulinum toxin in the treatment of vocal fold nodules.
Allen, Jacqui E; Belafsky, Peter C
2009-12-01
Promising new techniques in the management of vocal fold nodules have been developed in the past 2 years. Simultaneously, the therapeutic use of botulinum toxin has rapidly expanded. This review explores the use of botulinum toxin in treatment of vocal nodules and summarizes current therapeutic concepts. New microsurgical instruments and techniques, refinements in laser technology, radiosurgical excision and steroid intralesional injections are all promising new techniques in the management of vocal nodules. Botulinum toxin-induced 'voice rest' is a new technique we have employed in patients with recalcitrant nodules. Successful resolution of nodules is possible with this technique, without the risk of vocal fold scarring inherent in dissection/excision techniques. Botulinum toxin usage is exponentially increasing, and large-scale, long-term studies demonstrate its safety profile. Targeted vocal fold temporary paralysis induced by botulinum toxin injection is a new, well tolerated and efficacious treatment in patients with persistent vocal fold nodules.
Lentz, Robert J; Argento, A Christine; Colby, Thomas V; Rickman, Otis B; Maldonado, Fabien
2017-07-01
Transbronchial lung biopsy with a cryoprobe, or cryobiopsy, is a promising new bronchoscopic biopsy technique capable of obtaining larger and better-preserved samples than previously possible using traditional biopsy forceps. Over two dozen case series and several small randomized trials are now available describing experiences with this technique, largely for the diagnosis of diffuse parenchymal lung disease (DPLD), in which the reported diagnostic yield is typically 70% to 80%. Cryobiopsy technique varies widely between centers and this predominantly single center-based retrospective literature heterogeneously defines diagnostic yield and complications, limiting the degree to which this technique can be compared between centers or to surgical lung biopsy (SLB). This review explores the broad range of cryobiopsy techniques currently in use, their rationale, the current state of the literature, and suggestions for the direction of future study into this promising but unproven procedure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
CGCampbell@lbl.gov
Endocrine disrupting compounds (EDCs) are recognizedcontaminants threatening water quality. Despite efforts in sourceidentification, few strategies exist for characterization or treatment ofthis environmental pollution. Given that there are numerous EDCs that cannegatively affect humans and wildlife, general screening techniques likebioassays and biosensors provide an essential rapid and intensiveanalysis capacity. Commonly applied bioassays include the ELISA and YESassays, but promising technologies include ER-CALUXa, ELRA, Endotecta,RIANA, and IR-bioamplification. Two biosensors, Endotecta and RIANA, arefield portable using non-cellular biological detection strategies.Environmental management of EDCs in water requires integration ofbiosensors and bioassays for monitoring and assessment.
New materials and structures for photovoltaics
NASA Astrophysics Data System (ADS)
Zunger, Alex; Wagner, S.; Petroff, P. M.
1993-01-01
Despite the fact that over the years crystal chemists have discovered numerous semiconducting substances, and that modern epitaxial growth techniques are able to produce many novel atomic-scale architectures, current electronic and opto-electronic technologies are based but on a handful of ˜10 traditional semiconductor core materials. This paper surveys a number of yet-unexploited classes of semiconductors, pointing to the much-needed research in screening, growing, and characterizing promising members of these classes. In light of the unmanageably large number of a-priori possibilities, we emphasize the role that structural chemistry and modern computer-aided design must play in screening potentially important candidates. The basic classes of materials discussed here include nontraditional alloys, such as non-isovalent and heterostructural semiconductors, materials at reduced dimensionality, including superlattices, zeolite-caged nanostructures and organic semiconductors, spontaneously ordered alloys, interstitial semiconductors, filled tetrahedral structures, ordered vacancy compounds, and compounds based on d and f electron elements. A collaborative effort among material predictor, material grower, and material characterizer holds the promise for a successful identification of new and exciting systems.
Horesh, Danny; Glick, Ittai; Taub, Renen; Agmon-Levin, Nancy; Shoenfeld, Yehuda
2017-02-01
Psychological effects related to systemic lupus erythematosus (SLE) are tremendous. While a variety of psychological treatments have been applied to assist SLE patients, the effects of mindfulness practice were never documented in SLE. Mindfulness-based psychotherapy includes several techniques, including body-scan, breathing exercises, and full awareness during daily activities. In this case report, we present a first attempt at conducting mindfulness-based group therapy among SLE patients. Six female SLE patients participated in an 8-week program. Improvement was observed in several areas: patients' increased ability to differentiate between themselves and the disease; increased ability to accept, rather than to actively fight the fact that one must live with the disease; and decreased behavioral avoidance. These observations speak to the significant therapeutic potential of mindfulness practice among SLE patients. With its emphasis on acceptance of negative physical and emotional states, mindfulness practice is a promising treatment option, which needs to be further studied. Copyright © 2016. Published by Elsevier Ltd.
Combining single-molecule manipulation and single-molecule detection.
Cordova, Juan Carlos; Das, Dibyendu Kumar; Manning, Harris W; Lang, Matthew J
2014-10-01
Single molecule force manipulation combined with fluorescence techniques offers much promise in revealing mechanistic details of biomolecular machinery. Here, we review force-fluorescence microscopy, which combines the best features of manipulation and detection techniques. Three of the mainstay manipulation methods (optical traps, magnetic traps and atomic force microscopy) are discussed with respect to milestones in combination developments, in addition to highlight recent contributions to the field. An overview of additional strategies is discussed, including fluorescence based force sensors for force measurement in vivo. Armed with recent exciting demonstrations of this technology, the field of combined single-molecule manipulation and single-molecule detection is poised to provide unprecedented views of molecular machinery. Copyright © 2014 Elsevier Ltd. All rights reserved.
Microwave spectroscopy of high-L Rydberg states of nickel
NASA Astrophysics Data System (ADS)
Lindsay, Mark D.; Keele, Julie A.; Woods, Shannon L.; Lundeen, Stephen R.
2010-03-01
High-L non-penetrating Rydberg levels of nickel display a fine structure pattern consisting of six levels for each value of L. This pattern was studied recently with the optical RESIS technique, determining initial values of the quadrupole moment and polarizabilities of the ^2D5/2 ground state of Ni^+ [1]. Measurements are now in progress using the microwave RESIS technique [2], which promises much more precise measurements of the fine structure and of the related core properties, including the permanent hexadecapole moment.[4pt] [1] Julie A. Keele, et. al., to be published, Phys. Rev. A[0pt] [2] M.E. Hanni, et. al., Phys. Rev. A 78, 062510 (2008)
Fixed gain and adaptive techniques for rotorcraft vibration control
NASA Technical Reports Server (NTRS)
Roy, R. H.; Saberi, H. A.; Walker, R. A.
1985-01-01
The results of an analysis effort performed to demonstrate the feasibility of employing approximate dynamical models and frequency shaped cost functional control law desgin techniques for helicopter vibration suppression are presented. Both fixed gain and adaptive control designs based on linear second order dynamical models were implemented in a detailed Rotor Systems Research Aircraft (RSRA) simulation to validate these active vibration suppression control laws. Approximate models of fuselage flexibility were included in the RSRA simulation in order to more accurately characterize the structural dynamics. The results for both the fixed gain and adaptive approaches are promising and provide a foundation for pursuing further validation in more extensive simulation studies and in wind tunnel and/or flight tests.
Introduction to the virtual special issue on super-resolution imaging techniques
NASA Astrophysics Data System (ADS)
Cao, Liangcai; Liu, Zhengjun
2017-12-01
Until quite recently, the resolution of optical imaging instruments, including telescopes, cameras and microscopes, was considered to be limited by the diffraction of light and by image sensors. In the past few years, many exciting super-resolution approaches have emerged that demonstrate intriguing ways to bypass the classical limit in optics and detectors. More and more research groups are engaged in the study of advanced super-resolution schemes, devices, algorithms, systems, and applications [1-6]. Super-resolution techniques involve new methods in science and engineering of optics [7,8], measurements [9,10], chemistry [11,12] and information [13,14]. Promising applications, particularly in biomedical research and semiconductor industry, have been successfully demonstrated.
Applications of airborne remote sensing in atmospheric sciences research
NASA Technical Reports Server (NTRS)
Serafin, R. J.; Szejwach, G.; Phillips, B. B.
1984-01-01
This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry.
NASA Technical Reports Server (NTRS)
Zwick, H.; Ward, V.; Beaudette, L.
1973-01-01
A critical evaluation of existing optical remote sensors for HCl vapor detection in solid propellant rocket plumes is presented. The P branch of the fundamental vibration-rotation band was selected as the most promising spectral feature to sense. A computation of transmittance for HCl vapor, an estimation of interferent spectra, the application of these spectra to computer modelled remote sensors, and a trade-off study for instrument recommendation are also included.
An investigation of the marine boundary layer during cold air outbreak
NASA Technical Reports Server (NTRS)
Stage, S. A.
1986-01-01
Methods for use in the remote estimation of ocean surface sensible and latent heat fluxes were developed and evaluated. Three different techniques were developed for determining these fluxes. These methods are: (1) Obtaining surface sensible and latent heat fluxes from satellite measurements; (2)Obtaining surface sensible and latent heat fluxes from an MABL model; (3) A method using horizontal transfer coefficients. These techniques are not very sensitive to errors in the data and therefore appear to hold promise of producing useful answers. Questions remain about how closely the structure of the real atmosphere agrees with the assumptions made for each of these techniques, and, therefore about how well these techniques can perform in actual use. The value of these techniques is that they promise to provide methods for the determination of fluxes over regions where very few traditional measurement exist.
Chen, Shilin; Guo, Baolin; Zhang, Guijun; Yan, Zhuyun; Luo, Guangming; Sun, Suqin; Wu, Hezhen; Huang, Linfang; Pang, Xiaohui; Chen, Jianbo
2012-04-01
In this review, the authors summarized the new technologies and methods for identifying traditional Chinese medicinal materials, including molecular identification, chemical identification, morphological identification, microscopic identification and identification based on biological effects. The authors introduced the principle, characteristics, application and prospect on each new technology or method and compared their advantages and disadvantages. In general, new methods make the result more objective and accurate. DNA barcoding technique and spectroscopy identification have their owner obvious strongpoint in universality and digitalization. In the near future, the two techniques are promising to be the main trend for identifying traditional Chinese medicinal materials. The identification techniques based on microscopy, liquid chromatography, PCR, biological effects and DNA chip will be indispensable supplements. However, the bionic identification technology is just placed in the developing stage at present.
Traveling Magnetic Field Applications for Materials Processing in Space
NASA Technical Reports Server (NTRS)
Grugel, R. N.; Mazuruk, K.; Curreri, Peter A. (Technical Monitor)
2001-01-01
Including the capability to induce a controlled fluid flow in the melt can significantly enrich research on solidification phenomena in a microgravity environment. The traveling magnetic field (TMF) is a promising technique to achieve this goal and is the aim of our ground-based project. In this presentation we will discuss new theoretical as well as experimental results recently obtained by our group. In particular, we experimentally demonstrated efficient mixing of metal alloys in long tubes subjected to TMF during processing. Application of this technique can provide an elegant solution to ensure melt homogenization prior to solidification in a microgravity environment where natural convection is generally absent. Results of our experimental work of applying the TMF technique to alloy melts will be presented. Possible applications of TMF on board the International Space Station will also be discussed.
Microencapsulation Of Living Cells
NASA Technical Reports Server (NTRS)
Chang, Manchium; Kendall, James M.; Wang, Taylor G.
1989-01-01
In experimental technique, living cells and other biological materials encapsulated within submillimeter-diameter liquid-filled spheres. Sphere material biocompatible, tough, and compliant. Semipermeable, permitting relatively small molecules to move into and out of sphere core but preventing passage of large molecules. New technique promises to make such spherical capsules at high rates and in uniform, controllable sizes. Capsules injected into patient through ordinary hypodermic needle. Promising application for technique in treatment of diabetes. Also used to encapsulate pituitary cells and thyroid hormone adrenocortical cells for treatment of other hormonal disorders, to encapsulate other secreting cells for transplantation, and to package variety of pharmaceutical products and agricultural chemicals for controlled release.
STITCHER: A web resource for high-throughput design of primers for overlapping PCR applications.
O'Halloran, Damien M
2015-06-01
Overlapping PCR is routinely used in a wide number of molecular applications. These include stitching PCR fragments together, generating fluorescent transcriptional and translational fusions, inserting mutations, making deletions, and PCR cloning. Overlapping PCR is also used for genotyping by traditional PCR techniques and in detection experiments using techniques such as loop-mediated isothermal amplification (LAMP). STITCHER is a web tool providing a central resource for researchers conducting all types of overlapping PCR experiments with an intuitive interface for automated primer design that's fast, easy to use, and freely available online (http://ohalloranlab.net/STITCHER.html). STITCHER can handle both single sequence and multi-sequence input, and specific features facilitate numerous other PCR applications, including assembly PCR, adapter PCR, and primer walking. Field PCR, and in particular, LAMP, offers promise as an on site tool for pathogen detection in underdeveloped areas, and STITCHER includes off-target detection features for pathogens commonly targeted using LAMP technology.
Automatic creation of three-dimensional avatars
NASA Astrophysics Data System (ADS)
Villa-Uriol, Maria-Cruz; Sainz, Miguel; Kuester, Falko; Bagherzadeh, Nader
2003-01-01
Highly accurate avatars of humans promise a new level of realism in engineering and entertainment applications, including areas such as computer animated movies, computer game development interactive virtual environments and tele-presence. In order to provide high-quality avatars, new techniques for the automatic acquisition and creation are required. A framework for the capture and construction of arbitrary avatars from image data is presented in this paper. Avatars are automatically reconstructed from multiple static images of a human subject by utilizing image information to reshape a synthetic three-dimensional articulated reference model. A pipeline is presented that combines a set of hardware-accelerated stages into one seamless system. Primary stages in this pipeline include pose estimation, skeleton fitting, body part segmentation, geometry construction and coloring, leading to avatars that can be animated and included into interactive environments. The presented system removes traditional constraints in the initial pose of the captured subject by using silhouette-based modification techniques in combination with a reference model. Results can be obtained in near-real time with very limited user intervention.
Traumatic brain injury: future assessment tools and treatment prospects
Flanagan, Steven R; Cantor, Joshua B; Ashman, Teresa A
2008-01-01
Traumatic brain injury (TBI) is widespread and leads to death and disability in millions of individuals around the world each year. Overall incidence and prevalence of TBI are likely to increase in absolute terms in the future. Tackling the problem of treating TBI successfully will require improvements in the understanding of normal cerebral anatomy, physiology, and function throughout the lifespan, as well as the pathological and recuperative responses that result from trauma. New treatment approaches and combinations will need to be targeted to the heterogeneous needs of TBI populations. This article explores and evaluates the research evidence in areas that will likely lead to a reduction in TBI-related morbidity and improved outcomes. These include emerging assessment instruments and techniques in areas of structural/chemical and functional neuroimaging and neuropsychology, advances in the realms of cell-based therapies and genetics, promising cognitive rehabilitation techniques including cognitive remediation and the use of electronic technologies including assistive devices and virtual reality, and the emerging field of complementary and alternative medicine. PMID:19183780
Approaches for Achieving Broadband Achromatic Phase Shifts for Visible Nulling Coronagraphy
NASA Technical Reports Server (NTRS)
Bolcar, Matthew R.; Lyon, Richard G.
2012-01-01
Visible nulling coronagraphy is one of the few approaches to the direct detection and characterization of Jovian and Terrestrial exoplanets that works with segmented aperture telescopes. Jovian and Terrestrial planets require at least 10(exp -9) and 10(exp -10) image plane contrasts, respectively, within the spectral bandpass and thus require a nearly achromatic pi-phase difference between the arms of the interferometer. An achromatic pi-phase shift can be achieved by several techniques, including sequential angled thick glass plates of varying dispersive materials, distributed thin-film multilayer coatings, and techniques that leverage the polarization-dependent phase shift of total-internal reflections. Herein we describe two such techniques: sequential thick glass plates and Fresnel rhomb prisms. A viable technique must achieve the achromatic phase shift while simultaneously minimizing the intensity difference, chromatic beam spread and polarization variation between each arm. In this paper we describe the above techniques and report on efforts to design, model, fabricate, align the trades associated with each technique that will lead to an implementations of the most promising one in Goddard's Visible Nulling Coronagraph (VNC).
Review of online coupling of sample preparation techniques with liquid chromatography.
Pan, Jialiang; Zhang, Chengjiang; Zhang, Zhuomin; Li, Gongke
2014-03-07
Sample preparation is still considered as the bottleneck of the whole analytical procedure, and efforts has been conducted towards the automation, improvement of sensitivity and accuracy, and low comsuption of organic solvents. Development of online sample preparation techniques (SP) coupled with liquid chromatography (LC) is a promising way to achieve these goals, which has attracted great attention. This article reviews the recent advances on the online SP-LC techniques. Various online SP techniques have been described and summarized, including solid-phase-based extraction, liquid-phase-based extraction assisted with membrane, microwave assisted extraction, ultrasonic assisted extraction, accelerated solvent extraction and supercritical fluids extraction. Specially, the coupling approaches of online SP-LC systems and the corresponding interfaces have been discussed and reviewed in detail, such as online injector, autosampler combined with transport unit, desorption chamber and column switching. Typical applications of the online SP-LC techniques have been summarized. Then the problems and expected trends in this field are attempted to be discussed and proposed in order to encourage the further development of online SP-LC techniques. Copyright © 2014 Elsevier B.V. All rights reserved.
Singh, Mansher; Nuutila, Kristo; Collins, K C; Huang, Anne
2017-09-01
Skin grafting is the current standard care in the treatment of full thickness burns. It was first described around 1500 BC but the vast majority of advancements have been achieved over the past 200 years. An extensive literature review was conducted on Pubmed, Medline and Google Scholar researching the evolution of skin grafting techniques. The authors concentrated on the major landmarks of skin grafting and also provide an overview of ongoing research efforts in this field. The major innovations of skin grafting include Reverdin pinch grafting, Ollier grafting, Thiersch grafting, Wolfe grafting, Padgett dermatome and modifications, Meek-wall microdermatome and Tanner mesh grafting. A brief description of the usage, advantages and limitations of each technique is included in the manuscript. Skin grafting technique have evolved significantly over past 200 years from Reverdin pinch grafting to modern day meshed skin grafts using powered dermatome. Increasing the expansion ratio and improving the cosmetic and functional outcome are the main focus of ongoing skin grafting research and emerging techniques (such as Integra ® , Recell ® , Xpansion ® ) are showing promise. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.
A review of earth abundant ZnO-based materials for thermoelectric and photovoltaic applications
NASA Astrophysics Data System (ADS)
Wang, Yang; Zhou, Chuanle; Elquist, Aline M.; Ghods, Amirhossein; Saravade, Vishal G.; Lu, Na; Ferguson, Ian
2018-02-01
Zinc oxide (ZnO) is an earth abundant wide bandgap semiconductor of great interest in the recent years. ZnO has many unique properties, such as non-toxic, large direct bandgap, high exciton binding energy, high transparency in visible and infrared spectrum, large Seebeck coefficient, high thermal stability, high electron diffusivity, high electron mobility, and availability of various nanostructures, making it a promising material for many applications. The growth techniques of ZnO is reviewed in this work, including sputtering, PLD, MOCVD and MBE techniques, focusing on the crystalline quality, electrical and optical properties. The problem with p-type doping ZnO is also discussed, and the method to improve p-type doping efficiency is reviewed. This paper also summarizes the current state of art of ZnO in thermoelectric and photovoltaic applications, including the key parameters, different device structures, and future development.
Earth Survey Applications Division. [a bibliography
NASA Technical Reports Server (NTRS)
Carpenter, L. (Editor)
1981-01-01
Accomplishments of research and data analysis conducted to study physical parameters and processes inside the Earth and on the Earth's surface, to define techniques and systems for remotely sensing the processes and measuring the parameters of scientific and applications interest, and the transfer of promising operational applications techniques to the user community of Earth resources monitors, managers, and decision makers are described. Research areas covered include: geobotany, magnetic field modeling, crustal studies, crustal dynamics, sea surface topography, land resources, remote sensing of vegetation and soils, and hydrological sciences. Major accomplishments include: production of global maps of magnetic anomalies using Magsat data; computation of the global mean sea surface using GEOS-3 and Seasat altimetry data; delineation of the effects of topography on the interpretation of remotely-sensed data; application of snowmelt runoff models to water resources management; and mapping of snow depth over wheat growing areas using Nimbus microwave data.
Component Composition for Embedded Systems Using Semantic Aspect-Oriented Programming
2004-10-01
real - time systems for the defense community. Our research focused on Real-Time Java implementation and analysis techniques. Real-Time Java is important for the defense community because it holds out the promise of enabling developers to apply COTS Java technology to specialized military embedded systems. It also promises to allow the defense community to utilize a large Java-literate workforce for building defense systems. Our research has delivered several techniques that may make Real-Time Java a better platform for developing embedded
Glue septal ablation: A promising alternative to alcohol septal ablation
Aytemir, Kudret; Oto, Ali
2016-01-01
Hypertrophic cardiomyopathy (HCM) is defined as myocardial hypertrophy in the absence of another cardiac or systemic disease capable of producing the magnitude of present hypertrophy. In about 70% of patients with HCM, there is left ventricular outflow tract (LVOT) obstruction (LVOTO) and this is known as obstructive type of hypertrophic cardiomyopathy (HOCM). Cases refractory to medical treatment have had two options either surgical septal myectomy or alcohol septal ablation (ASA) to alleviate LVOT gradient. ASA may cause some life-threatening complications including conduction disturbances and complete heart block, hemodynamic compromise, ventricular arrhythmias, distant and massive myocardial necrosis. Glue septal ablation (GSA) is a promising technique for the treatment of HOCM. Glue seems to be superior to alcohol due to some intrinsic advantageous properties of glue such as immediate polymerization which prevents the leak into the left anterior descending coronary artery and it is particularly useful in patients with collaterals to the right coronary artery in whom alcohol ablation is contraindicated. In our experience, GSA is effective and also a safe technique without significant complications. GSA decreases LVOT gradient immediately after the procedure and this reduction persists during 12 months of follow-up. It improves New York Heart Association functional capacity and decrease interventricular septal wall thickness. Further studies are needed in order to assess the long-term efficacy and safety of this technique. PMID:27011786
Neural Networks for Modeling and Control of Particle Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, A. L.; Biedron, S. G.; Chase, B. E.
Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less
Neural Networks for Modeling and Control of Particle Accelerators
NASA Astrophysics Data System (ADS)
Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.
2016-04-01
Particle accelerators are host to myriad nonlinear and complex physical phenomena. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. The purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.
Neural Networks for Modeling and Control of Particle Accelerators
Edelen, A. L.; Biedron, S. G.; Chase, B. E.; ...
2016-04-01
Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less
Imaging Neuroinflammation – from Bench to Bedside
Pulli, Benjamin; Chen, John W
2014-01-01
Neuroinflammation plays a central role in a variety of neurological diseases, including stroke, multiple sclerosis, Alzheimer’s disease, and malignant CNS neoplasms, among many other. Different cell types and molecular mediators participate in a cascade of events in the brain that is ultimately aimed at control, regeneration and repair, but leads to damage of brain tissue under pathological conditions. Non-invasive molecular imaging of key players in the inflammation cascade holds promise for identification and quantification of the disease process before it is too late for effective therapeutic intervention. In this review, we focus on molecular imaging techniques that target inflammatory cells and molecules that are of interest in neuroinflammation, especially those with high translational potential. Over the past decade, a plethora of molecular imaging agents have been developed and tested in animal models of (neuro)inflammation, and a few have been translated from bench to bedside. The most promising imaging techniques to visualize neuroinflammation include MRI, positron emission tomography (PET), single photon emission computed tomography (SPECT), and optical imaging methods. These techniques enable us to image adhesion molecules to visualize endothelial cell activation, assess leukocyte functions such as oxidative stress, granule release, and phagocytosis, and label a variety of inflammatory cells for cell tracking experiments. In addition, several cell types and their activation can be specifically targeted in vivo, and consequences of neuroinflammation such as neuronal death and demyelination can be quantified. As we continue to make progress in utilizing molecular imaging technology to study and understand neuroinflammation, increasing efforts and investment should be made to bring more of these novel imaging agents from the “bench to bedside.” PMID:25525560
Sovová, Tereza; Kerins, Gerard; Demnerová, Kateřina; Ovesná, Jaroslava
2017-01-01
After induced mutagenesis and transgenesis, genome editing is the next step in the development of breeding techniques. Genome editing using site-directed nucleases - including meganucleases, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the CRISPR/Cas9 system - is based on the mechanism of double strand breaks. The nuclease is directed to cleave the DNA at a specific place of the genome which is then repaired by natural repair mechanisms. Changes are introduced during the repair that are either accidental or can be targeted if a DNA template with the desirable sequence is provided. These techniques allow making virtually any change to the genome including specific DNA sequence changes, gene insertion, replacements or deletions with unprecedented precision and specificity while being less laborious and more straightforward compared to traditional breeding techniques or transgenesis. Therefore, the research in this field is developing quickly and, apart from model species, multiple studies have focused on economically important species and agronomically important traits that were the key subjects of this review. In plants, studies have been undertaken on disease resistance, herbicide tolerance, nutrient metabolism and nutritional value. In animals, the studies have mainly focused on disease resistance, meat production and allergenicity of milk. However, none of the promising studies has led to commercialization despite several patent applications. The uncertain legal status of genome-editing methods is one of the reasons for poor commercial development, as it is not clear whether the products would fall under the GMO regulation. We believe this issue should be clarified soon in order to allow promising methods to reach their full potential.
Chen, Guang Hong; Kalender, Willi; Leng, Shuai; Samei, Ehsan; Taguchi, Katsuyuki; Wang, Ge; Yu, Lifeng; Pettigrew, Roderic I.
2012-01-01
This Special Report presents the consensus of the Summit on Management of Radiation Dose in Computed Tomography (CT) (held in February 2011), which brought together participants from academia, clinical practice, industry, and regulatory and funding agencies to identify the steps required to reduce the effective dose from routine CT examinations to less than 1 mSv. The most promising technologies and methods discussed at the summit include innovations and developments in x-ray sources; detectors; and image reconstruction, noise reduction, and postprocessing algorithms. Access to raw projection data and standard data sets for algorithm validation and optimization is a clear need, as is the need for new, clinically relevant metrics of image quality and diagnostic performance. Current commercially available techniques such as automatic exposure control, optimization of tube potential, beam-shaping filters, and dynamic z-axis collimators are important, and education to successfully implement these methods routinely is critically needed. Other methods that are just becoming widely available, such as iterative reconstruction, noise reduction, and postprocessing algorithms, will also have an important role. Together, these existing techniques can reduce dose by a factor of two to four. Technical advances that show considerable promise for additional dose reduction but are several years or more from commercial availability include compressed sensing, volume of interest and interior tomography techniques, and photon-counting detectors. This report offers a strategic roadmap for the CT user and research and manufacturer communities toward routinely achieving effective doses of less than 1 mSv, which is well below the average annual dose from naturally occurring sources of radiation. © RSNA, 2012 PMID:22692035
Nazem, Amir; Mansoori, G Ali
2008-03-01
A century of research has passed since the discovery and definition of Alzheimer's disease (AD), the primary common dementing disorder worldwide. However, AD lacks definite diagnostic approaches and effective cure at the present. Moreover, the currently available diagnostic tools are not sufficient for an early screening of AD in order to start preventive approaches. Recently the emerging field of nanotechnology has promised new techniques to solve some of the AD challenges. Nanotechnology refers to the techniques of designing and manufacturing nanosize (1-100 nm) structures through controlled positional and/or self-assembly of atoms and molecules. In this report, we present the promises that nanotechnology brings in research on the AD diagnosis and therapy. They include its potential for the better understanding of the AD root cause molecular mechanisms, AD's early diagnoses, and effective treatment. The advances in AD research offered by the atomic force microscopy, single molecule fluorescence microscopy and NanoSIMS microscopy are examined here. In addition, the recently proposed applications of nanotechnology for the early diagnosis of AD including bio-barcode assay, localized surface plasmon resonance nanosensor, quantum dot and nanomechanical cantilever arrays are analyzed. Applications of nanotechnology in AD therapy including neuroprotections against oxidative stress and anti-amyloid therapeutics, neuroregeneration and drug delivery beyond the blood brain barrier (BBB) are discussed and analyzed. All of these applications could improve the treatment approach of AD and other neurodegenerative diseases. The complete cure of AD may become feasible by a combination of nanotechnology and some other novel approaches, like stem cell technology.
Combs, Stephanie E; Debus, Jürgen; Feick, Günter; Hadaschik, Boris; Hohenfellner, Markus; Schüle, Roland; Zacharias, Jens-Peter; Schwardt, Malte
2014-11-04
A brainstorming and consensus meeting organized by the German Cancer Aid focused on modern treatment of prostate cancer and promising innovative techniques and research areas. Besides optimization of screening algorithms, molecular-based stratification and individually tailored treatment regimens will be the future of multimodal prostate cancer management. Effective interdisciplinary structures, including biobanking and data collection mechanisms are the basis for such developments.
Federal Technology Catalog 1982: Summaries of practical technology
NASA Astrophysics Data System (ADS)
The catalog presents summaries of practical technology selected for commercial potential and/or promising applications to the fields of computer technology, electrotechnology, energy, engineering, life sciences, machinery and tools, manufacturing, materials, physical sciences, and testing and instrumentation. Each summary not only describes a technology, but gives a source for further information. This publication describes some 1,100 new processes, inventions, equipment, software, and techniques developed by and for dozens of Federal agencies during 1982. Included is coverage of NASA Tech Briefs, DOE Energygrams, and Army Manufacturing Notes.
Imaging Stem Cells Implanted in Infarcted Myocardium
Zhou, Rong; Acton, Paul D.; Ferrari, Victor A.
2008-01-01
Stem cell–based cellular cardiomyoplasty represents a promising therapy for myocardial infarction. Noninvasive imaging techniques would allow the evaluation of survival, migration, and differentiation status of implanted stem cells in the same subject over time. This review describes methods for cell visualization using several corresponding noninvasive imaging modalities, including magnetic resonance imaging, positron emission tomography, single-photon emission computed tomography, and bioluminescent imaging. Reporter-based cell visualization is compared with direct cell labeling for short- and long-term cell tracking. PMID:17112999
Simple Preparation of Novel Metal-Containing Mesoporous Starches †
Ojeda, Manuel; Budarin, Vitaliy; Shuttleworth, Peter S.; Clark, James H.; Pineda, Antonio; Balu, Alina M.; Romero, Antonio A.; Luque, Rafael
2013-01-01
Metal-containing mesoporous starches have been synthesized using a simple and efficient microwave-assisted methodology followed by metal impregnation in the porous gel network. Final materials exhibited surface areas >60 m2 g−1, being essentially mesoporous with pore sizes in the 10–15 nm range with some developed inter-particular mesoporosity. These materials characterized by several techniques including XRD, SEM, TG/DTA and DRIFTs may find promising catalytic applications due to the presence of (hydr)oxides in their composition. PMID:28809249
Duplex-imprinted nano well arrays for promising nanoparticle assembly
NASA Astrophysics Data System (ADS)
Li, Xiangping; Manz, Andreas
2018-02-01
A large area nano-duplex-imprint technique is presented in this contribution using natural cicada wings as stamps. The glassy wings of the cicada, which are abundant in nature, exhibit strikingly interesting nanopillar structures over their membrane. This technique, with excellent performance despite the nonplanar surface of the wings, combines both top-down and bottom-up nanofabrication techniques. It transitions micro-nanofabrication from a cleanroom environment to the bench. Two different materials, dicing tape with an acrylic layer and a UV optical adhesive, are used to make replications at the same time, thus achieving duplex imprinting. The promise of a large volume of commercial manufacturing of these nanostructure elements can be envisaged through this contribution to speeding up the fabrication process and achieving a higher throughput. The contact angle of the replicated nanowell arrays before and after oxygen plasma was measured. Gold nanoparticles (50 nm) were used to test how the nanoparticles behaved on the untreated and plasma-treated replica surface. The experiments show that promising nanoparticle self-assembly can be obtained.
High strain rate characterization of soft materials: past, present and possible futures
NASA Astrophysics Data System (ADS)
Siviour, Clive
2015-06-01
The high strain rate properties of low impedance materials have long been of interest to the community: the very first paper by Kolsky on his eponymous bars included data from man-made polymers and natural rubber. However, it has also long been recognized that characterizing soft or low impedance specimens under dynamic loading presents a number of challenges, mainly owing to the low sound speed in, and low stresses supported by, these materials. Over the past 20 years, significant progress has been made in high rate testing techniques, including better experimental design, more sensitive data acquisition and better understanding of specimen behavior. Further, a new generation of techniques, in which materials are characterized using travelling waves, rather than in a state of static equilibrium, promise to turn those properties that were previously a drawback into an advantage. This paper will give an overview of the history of high rate characterization, the current state of the art after an exciting couple of decades and some of the techniques currently being developed that have the potential to offer increased quality data in the future.
Management of ticks and tick-borne diseases
Ginsberg, H.S.; Stafford, K.C.; Goodman, J.L.; Dennis, D.T.; Sonenshine, D .E.
2005-01-01
The mainstays of tick management and protection from tick-borne diseases have traditionally been personal precautions and the application of acaricides. These techniques maintain their value, and current innovations hold considerable promise for future improvement in effective targeting of materials for tick control. Furthermore, an explosion of research in the past few decades has resulted in the development and expansion of several novel and potentially valuable approaches to tick control, including vaccination against tick-borne pathogen transmission and against tick attachment, host management, use of natural enemies (especially entomopathogenic fungi), and pheromone-based techniques. The situations that require tick management are diverse, and occur under varied ecological conditions. Therefore, the likelihood of finding a single ?magic bullet? for tick management is low. In practical terms, the approach to tick management or to management of tick-borne disease must be tailored to the specific conditions at hand. One area that needs increased attention is the decision-making process in applying IPM to tick control. Further development of novel tick control measures, and increased efficiency in their integration and application to achieve desired goals, holds great promise for effective future management of ticks and tick-borne diseases.
Photonic crystals: emerging biosensors and their promise for point-of-care applications.
Inan, Hakan; Poyraz, Muhammet; Inci, Fatih; Lifson, Mark A; Baday, Murat; Cunningham, Brian T; Demirci, Utkan
2017-01-23
Biosensors are extensively employed for diagnosing a broad array of diseases and disorders in clinical settings worldwide. The implementation of biosensors at the point-of-care (POC), such as at primary clinics or the bedside, faces impediments because they may require highly trained personnel, have long assay times, large sizes, and high instrumental cost. Thus, there exists a need to develop inexpensive, reliable, user-friendly, and compact biosensing systems at the POC. Biosensors incorporated with photonic crystal (PC) structures hold promise to address many of the aforementioned challenges facing the development of new POC diagnostics. Currently, PC-based biosensors have been employed for detecting a variety of biotargets, such as cells, pathogens, proteins, antibodies, and nucleic acids, with high efficiency and selectivity. In this review, we provide a broad overview of PCs by explaining their structures, fabrication techniques, and sensing principles. Furthermore, we discuss recent applications of PC-based biosensors incorporated with emerging technologies, including telemedicine, flexible and wearable sensing, smart materials and metamaterials. Finally, we discuss current challenges associated with existing biosensors, and provide an outlook for PC-based biosensors and their promise at the POC.
Mehta, A M; Sonabend, A M; Bruce, J N
2017-04-01
Convection-enhanced delivery (CED) is a promising technique that generates a pressure gradient at the tip of an infusion catheter to deliver therapeutics directly through the interstitial spaces of the central nervous system. It addresses and offers solutions to many limitations of conventional techniques, allowing for delivery past the blood-brain barrier in a targeted and safe manner that can achieve therapeutic drug concentrations. CED is a broadly applicable technique that can be used to deliver a variety of therapeutic compounds for a diversity of diseases, including malignant gliomas, Parkinson's disease, and Alzheimer's disease. While a number of technological advances have been made since its development in the early 1990s, clinical trials with CED have been largely unsuccessful, and have illuminated a number of parameters that still need to be addressed for successful clinical application. This review addresses the physical principles behind CED, limitations in the technique, as well as means to overcome these limitations, clinical trials that have been performed, and future developments.
Hoeffelin, H; Jacquemin, D; Defaweux, V; Nizet, J L
2014-01-01
Breast surgery currently remains very subjective and each intervention depends on the ability and experience of the operator. To date, no objective measurement of this anatomical region can codify surgery. In this light, we wanted to compare and validate a new technique for 3D scanning (LifeViz 3D) and its clinical application. We tested the use of the 3D LifeViz system (Quantificare) to perform volumetric calculations in various settings (in situ in cadaveric dissection, of control prostheses, and in clinical patients) and we compared this system to other techniques (CT scanning and Archimedes' principle) under the same conditions. We were able to identify the benefits (feasibility, safety, portability, and low patient stress) and limitations (underestimation of the in situ volume, subjectivity of contouring, and patient selection) of the LifeViz 3D system, concluding that the results are comparable with other measurement techniques. The prospects of this technology seem promising in numerous applications in clinical practice to limit the subjectivity of breast surgery.
Hoeffelin, H.; Jacquemin, D.; Defaweux, V.; Nizet, J L.
2014-01-01
Breast surgery currently remains very subjective and each intervention depends on the ability and experience of the operator. To date, no objective measurement of this anatomical region can codify surgery. In this light, we wanted to compare and validate a new technique for 3D scanning (LifeViz 3D) and its clinical application. We tested the use of the 3D LifeViz system (Quantificare) to perform volumetric calculations in various settings (in situ in cadaveric dissection, of control prostheses, and in clinical patients) and we compared this system to other techniques (CT scanning and Archimedes' principle) under the same conditions. We were able to identify the benefits (feasibility, safety, portability, and low patient stress) and limitations (underestimation of the in situ volume, subjectivity of contouring, and patient selection) of the LifeViz 3D system, concluding that the results are comparable with other measurement techniques. The prospects of this technology seem promising in numerous applications in clinical practice to limit the subjectivity of breast surgery. PMID:24511536
Survey Of High Speed Test Techniques
NASA Astrophysics Data System (ADS)
Gheewala, Tushar
1988-02-01
The emerging technologies for the characterization and production testing of high-speed devices and integrated circuits are reviewed. The continuing progress in the field of semiconductor technologies will, in the near future, demand test techniques to test 10ps to lOOps gate delays, 10 GHz to 100 GHz analog functions and 10,000 to 100,000 gates on a single chip. Clearly, no single test technique would provide a cost-effective answer to all the above demands. A divide-and-conquer approach based on a judicial selection of parametric, functional and high-speed tests will be required. In addition, design-for-test methods need to be pursued which will include on-chip test electronics as well as circuit techniques that minimize the circuit performance sensitivity to allowable process variations. The electron and laser beam based test technologies look very promising and may provide the much needed solutions to not only the high-speed test problem but also to the need for high levels of fault coverage during functional testing.
Close-packed monolayer self-assembly of silica nanospheres assisted by infrared irradiation
NASA Astrophysics Data System (ADS)
Minh, Nguyen Van; Hue, Nguyen Thi; Lien, Nghiem Thi Ha; Hoang, Chu Manh
2018-01-01
In this paper, we report on a fast and cost-effective drop coating technique for the self-assembly of silica nano-spheres from a mono-dispersed colloidal suspension into close-packed monolayer (CMP) on hydrophilic single-crystal silicon substrate. The technique includes the self-assembly of silica nano-spheres on slanted silicon substrate and infrared irradiation during evaporation process of the coated droplet. The influence of the substrate slant angle and infrared irradiation on the formation of silica nano-sphere monolayer is investigated. This achievement is promising for various applications, such as a mask layer for nano-sphere lithography that is employed for producing fundamental elements in photonics, plasmonics, and solar cell. [Figure not available: see fulltext.
[Parallel virtual reality visualization of extreme large medical datasets].
Tang, Min
2010-04-01
On the basis of a brief description of grid computing, the essence and critical techniques of parallel visualization of extreme large medical datasets are discussed in connection with Intranet and common-configuration computers of hospitals. In this paper are introduced several kernel techniques, including the hardware structure, software framework, load balance and virtual reality visualization. The Maximum Intensity Projection algorithm is realized in parallel using common PC cluster. In virtual reality world, three-dimensional models can be rotated, zoomed, translated and cut interactively and conveniently through the control panel built on virtual reality modeling language (VRML). Experimental results demonstrate that this method provides promising and real-time results for playing the role in of a good assistant in making clinical diagnosis.
MRI-guided focused ultrasound surgery in musculoskeletal diseases: the hot topics
Napoli, Alessandro; Sacconi, Beatrice; Battista, Giuseppe; Guglielmi, Giuseppe; Catalano, Carlo; Albisinni, Ugo
2016-01-01
MRI-guided focused ultrasound surgery (MRgFUS) is a minimally invasive treatment guided by the most sophisticated imaging tool available in today's clinical practice. Both the imaging and therapeutic sides of the equipment are based on non-ionizing energy. This technique is a very promising option as potential treatment for several pathologies, including musculoskeletal (MSK) disorders. Apart from clinical applications, MRgFUS technology is the result of long, heavy and cumulative efforts exploring the effects of ultrasound on biological tissues and function, the generation of focused ultrasound and treatment monitoring by MRI. The aim of this article is to give an updated overview on a “new” interventional technique and on its applications for MSK and allied sciences. PMID:26607640
Oceanographic applications of laser technology
NASA Technical Reports Server (NTRS)
Hoge, F. E.
1988-01-01
Oceanographic activities with the Airborne Oceanographic Lidar (AOL) for the past several years have primarily been focussed on using active (laser induced pigment fluorescence) and concurrent passive ocean color spectra to improve existing ocean color algorithms for estimating primary production in the world's oceans. The most significant results were the development of a technique for selecting optimal passive wavelengths for recovering phytoplankton photopigment concentration and the application of this technique, termed active-passive correlation spectroscopy (APCS), to various forms of passive ocean color algorithms. Included in this activity is use of airborne laser and passive ocean color for development of advanced satellite ocean color sensors. Promising on-wavelength subsurface scattering layer measurements were recently obtained. A partial summary of these results are shown.
Phase contrast imaging of cochlear soft tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, S.; Hwang, M.; Rau, C.
A noninvasive technique to image soft tissue could expedite diagnosis and disease management in the auditory system. We propose inline phase contrast imaging with hard X-rays as a novel method that overcomes the limitations of conventional absorption radiography for imaging soft tissue. In this study, phase contrast imaging of mouse cochleae was performed at the Argonne National Laboratory Advanced Photon Source. The phase contrast tomographic reconstructions show soft tissue structures of the cochlea, including the inner pillar cells, the inner spiral sulcus, the tectorial membrane, the basilar membrane, and the Reissner's membrane. The results suggest that phase contrast X-ray imagingmore » and tomographic techniques hold promise to noninvasively image cochlear structures at an unprecedented cellular level.« less
Recent advances in ultrasound-triggered therapy.
Yang, Chaopin; Li, Yue; Du, Meng; Chen, Zhiyi
2018-04-27
As a non-invasive and real-time diagnostic technique, ultrasound has provided a novel strategy for targeted treatment. With the rapid development of ultrasonic technique and ultrasound contrast agents (UCAs), spatiotemporally controllable application of ultrasound with or without UCAs makes it possible for site-specific delivery of therapeutic agents and targeted modulation with minimal side effects, which indicated a promising therapy in clinical use. This review will describe the main mechanism of targeted therapy induced by ultrasound briefly, then focus on the current application of ultrasound mediated targeted therapy in various fields including tumour, cardiovascular disease, central nervous system, skeletal muscle system diseases and stem cells therapy. In addition, ongoing challenges of ultrasound-mediated targeted therapy for further research and its clinical use are reviewed.
Cardiac Gene Therapy: Optimization of Gene Delivery Techniques In Vivo
Katz, Michael G.; Swain, JaBaris D.; White, Jennifer D.; Low, David; Stedman, Hansell
2010-01-01
Abstract Vector-mediated cardiac gene therapy holds tremendous promise as a translatable platform technology for treating many cardiovascular diseases. The ideal technique is one that is efficient and practical, allowing for global cardiac gene expression, while minimizing collateral expression in other organs. Here we survey the available in vivo vector-mediated cardiac gene delivery methods—including transcutaneous, intravascular, intramuscular, and cardiopulmonary bypass techniques—with consideration of the relative merits and deficiencies of each. Review of available techniques suggests that an optimal method for vector-mediated gene delivery to the large animal myocardium would ideally employ retrograde and/or anterograde transcoronary gene delivery,extended vector residence time in the coronary circulation, an increased myocardial transcapillary gradient using physical methods, increased endothelial permeability with pharmacological agents, minimal collateral gene expression by isolation of the cardiac circulation from the systemic, and have low immunogenicity. PMID:19947886
Review of chart recognition in document images
NASA Astrophysics Data System (ADS)
Liu, Yan; Lu, Xiaoqing; Qin, Yeyang; Tang, Zhi; Xu, Jianbo
2013-01-01
As an effective information transmitting way, chart is widely used to represent scientific statistics datum in books, research papers, newspapers etc. Though textual information is still the major source of data, there has been an increasing trend of introducing graphs, pictures, and figures into the information pool. Text recognition techniques for documents have been accomplished using optical character recognition (OCR) software. Chart recognition techniques as a necessary supplement of OCR for document images are still an unsolved problem due to the great subjectiveness and variety of charts styles. This paper reviews the development process of chart recognition techniques in the past decades and presents the focuses of current researches. The whole process of chart recognition is presented systematically, which mainly includes three parts: chart segmentation, chart classification, and chart Interpretation. In each part, the latest research work is introduced. In the last, the paper concludes with a summary and promising future research direction.
Occurrence of lignin degradation genotypes and phenotypes among prokaryotes.
Tian, Jiang-Hao; Pourcher, Anne-Marie; Bouchez, Théodore; Gelhaye, Eric; Peu, Pascal
2014-12-01
A number of prokaryotes actively contribute to lignin degradation in nature and their activity could be of interest for many applications including the production of biogas/biofuel from lignocellulosic biomass and biopulping. This review compares the reliability and efficiency of the culture-dependent screening methods currently used for the isolation of ligninolytic prokaryotes. Isolated prokaryotes exhibiting lignin-degrading potential are presented according to their phylogenetic groups. With the development of bioinformatics, culture-independent techniques are emerging that allow larger-scale data mining for ligninolytic prokaryotic functions but today, these techniques still have some limits. In this work, two phylogenetic affiliations of isolated prokaryotes exhibiting ligninolytic potential and laccase-encoding prokaryotes were determined on the basis of 16S rDNA sequences, providing a comparative view of results obtained by the two types of screening techniques. The combination of laboratory culture and bioinformatics approaches is a promising way to explore lignin-degrading prokaryotes.
Application of cytology and molecular biology in diagnosing premalignant or malignant oral lesions
Mehrotra, Ravi; Gupta, Anurag; Singh, Mamta; Ibrahim, Rahela
2006-01-01
Early detection of a premalignant or cancerous oral lesion promises to improve the survival and the morbidity of patients suffering from these conditions. Cytological study of oral cells is a non-aggressive technique that is well accepted by the patient, and is therefore an attractive option for the early diagnosis of oral cancer, including epithelial atypia and squamous cell carcinoma. However its usage has been limited so far due to poor sensitivity and specificity in diagnosing oral malignancies. Lately it has re-emerged due to improved methods and it's application in oral precancer and cancer as a diagnostic and predictive method as well as for monitoring patients. Newer diagnostic techniques such as "brush biopsy" and molecular studies have been developed. Recent advances in cytological techniques and novel aspects of applications of scraped or exfoliative cytology for detecting these lesions and predicting their progression or recurrence are reviewed here. PMID:16556320
[Application of microbial fuel cell (MFC) in solid waste composting].
Cui, Jinxin; Wang, Xin; Tang, Jingchun
2012-03-01
Microbial fuel cell (MFC) is a new technology that can recover energy from biomass with simultaneous waste treatment. This technique has been developed fast in recent years in combining with environmental techniques such as wastewater treatment, degradation of toxic pollutants and desalination. With the increase of solid waste, applying MFC in composting is promising due to its property of waste disposal with simultaneous energy generation. In this paper, the microbial community of MFCs during composting was summarized. Four major influencing factors including electrodes, separators, oxygen supplement and configurations on the performance of composting MFCs were discussed. The characteristics of composting MFC as a new technique for reducing solid waste were as follows: high microbial biomass resulted in the high current density; adaptable to different environmental conditions; self-adjustable temperature with high energy efficiency; the transportation of proton from anode to cathode were limited by different solid substrates.
Charged particle concepts for fog dispersion
NASA Technical Reports Server (NTRS)
Frost, W.; Collins, F. G.; Koepf, D.
1981-01-01
Charged particle techniques hold promise for dispersing warm fog in the terminal area of commercial airports. This report focuses on features of the charged particle technique which require further study. The basic physical principles of the technique and the major verification experiments carried out in the past are described. The fundamentals of the nozzle operation are given. The nozzle characteristics and the theory of particle charging in the nozzle are discussed, including information from extensive literature on electrostatic precipitation relative to environmental pollution control and a description of some preliminary reported analyses on the jet characteristics and interaction with neighboring jets. The equation governing the transfer of water substances and of electrical charge is given together with a brief description of several semi-empirical, mathematical expressions necessary for the governing equations. The necessary ingredients of a field experiment to verify the system once a prototype is built are described.
Techniques for measuring ultrahigh-pressure Hugoniot equation of state on a three-stage gas gun
NASA Astrophysics Data System (ADS)
Wang, Xiang; Hu, Jianbo; Dai, Chengda; Wang, Qiangsong; Bo, Jingsong; Tan, Hua; Yu, Yuying
2011-06-01
A three-stage gas gun was developed by mounting an extending launcher tube on a two-stage gas gun, and was successfully applied to perform ultrahigh-pressure Hugoniot measurements for Ta and Pt by using this three-stage gun. Here we introduced the three-stag gas gun launcher and Hugoniot measurement techniques, including shock front shape diagnosis, shock wave velocity and impact velocity measurement as well as numerical simulation. By using this three-stage gun, Ta or Pt impactors were launched up to ~10 km/s, and the Hugoniot data were respectively measured with high accuracy up to 750 GPa for Ta and 1TPa for Pt. It is demonstrated that the three-stage gas gun is a promising technique for studying the ultrahigh-pressure properties of materials, which never before obtained by utilizing two-stage light-gas-gun.
Freely Suspended Two-Dimensional Electron Gases.
NASA Astrophysics Data System (ADS)
Blick, Robert; Monzon, Franklin; Roukes, Michael; Wegscheider, Werner; Stern, Frank
1998-03-01
We present a new technique that has allowed us to build the first freely suspended two-dimensional electron gas devices from AlGaAs/GaAs/AlAs heterostructures. This technique is based upon specially MBE grown structures that include a sacrificial layer. In order to design the MBE layer sequence, the conduction band lineup for these samples was modelled numerically. The overall focus of this work is to provide a new approach for studies of the quantum mechanical properties of nanomachined structures. Our current experiments are directed toward use of these techniques for research on very high frequency nanomechanical resonators. The high mobility 2DEG system provides a unique approach to realizing wideband, extremely sensitive displacement detection, using the piezoelectric properties of GaAs to modulate a suspended nanometer-scale HEMT. This approach offers promise for sensitive displacement detectors with sub-nanometer resolution and bandwidths into the microwave range.
New insights in the treatment of acromioclavicular separation
van Bergen, Christiaan J A; van Bemmel, Annelies F; Alta, Tjarco D W; van Noort, Arthur
2017-01-01
A direct force on the superior aspect of the shoulder may cause acromioclavicular (AC) dislocation or separation. Severe dislocations can lead to chronic impairment, especially in the athlete and high-demand manual laborer. The dislocation is classified according to Rockwood. Types I and II are treated nonoperatively, while types IV, V and VI are generally treated operatively. Controversy exists regarding the optimal treatment of type III dislocations in the high-demand patient. Recent evidence suggests that these should be treated nonoperatively initially. Classic surgical techniques were associated with high complication rates, including recurrent dislocations and hardware breakage. In recent years, many new techniques have been introduced in order to improve the outcomes. Arthroscopic reconstruction or repair techniques have promising short-term results. This article aims to provide a current concepts review on the treatment of AC dislocations with emphasis on recent developments. PMID:29312844
A review of surgical repair methods and patient outcomes for gluteal tendon tears.
Ebert, Jay R; Bucher, Thomas A; Ball, Simon V; Janes, Gregory C
2015-01-01
Advanced hip imaging and surgical findings have demonstrated that a common cause of greater trochanteric pain syndrome (GTPS) is gluteal tendon tears. Conservative measures are initially employed to treat GTPS and manage gluteal tears, though patients frequently undergo multiple courses of non-operative treatment with only temporary pain relief. Therefore, a number of surgical treatment options for recalcitrant GTPS associated with gluteal tears have been reported. These have included open trans-osseous or bone anchored suture techniques, endoscopic methods and the use of tendon augmentation for repair reinforcement. This review describes the anatomy, pathophysiology and clinical presentation of gluteal tendon tears. Surgical techniques and patient reported outcomes are presented. This review demonstrates that surgical repair can result in improved patient outcomes, irrespective of tear aetiology, and suggests that the patient with "trochanteric bursitis" should be carefully assessed as newer surgical techniques show promise for a condition that historically has been managed conservatively.
Nanoporous Anodic Alumina: A Versatile Platform for Optical Biosensors
Santos, Abel; Kumeria, Tushar; Losic, Dusan
2014-01-01
Nanoporous anodic alumina (NAA) has become one of the most promising nanomaterials in optical biosensing as a result of its unique physical and chemical properties. Many studies have demonstrated the outstanding capabilities of NAA for developing optical biosensors in combination with different optical techniques. These results reveal that NAA is a promising alternative to other widely explored nanoporous platforms, such as porous silicon. This review is aimed at reporting on the recent advances and current stage of development of NAA-based optical biosensing devices. The different optical detection techniques, principles and concepts are described in detail along with relevant examples of optical biosensing devices using NAA sensing platforms. Furthermore, we summarise the performance of these devices and provide a future perspective on this promising research field. PMID:28788678
Magnetic resonance imaging of the subthalamic nucleus for deep brain stimulation.
Chandran, Arjun S; Bynevelt, Michael; Lind, Christopher R P
2016-01-01
The subthalamic nucleus (STN) is one of the most important stereotactic targets in neurosurgery, and its accurate imaging is crucial. With improving MRI sequences there is impetus for direct targeting of the STN. High-quality, distortion-free images are paramount. Image reconstruction techniques appear to show the greatest promise in balancing the issue of geometrical distortion and STN edge detection. Existing spin echo- and susceptibility-based MRI sequences are compared with new image reconstruction methods. Quantitative susceptibility mapping is the most promising technique for stereotactic imaging of the STN.
Clinical and biological analysis in graftless maxillary sinus lift.
Parra, Marcelo; Olate, Sergio; Cantín, Mario
2017-08-01
Maxillary sinus lift for dental implant installation is a well-known and versatile technique; new techniques are presented based on the physiology of intrasinus bone repair. The aim of this review was to determine the status of graftless maxillary sinus lift and analyze its foundations and results. A search was conducted of the literature between 1995 and 2015 in the Medline, ScienceDirect, and SciELO databases using the keywords "maxillary sinus lift," "blood clot," "graftless maxillary sinus augmentation," and "dental implant placement." Ten articles were selected for our analysis of this technique and its results. Despite the limited information, cases that were followed for at least six months and up to four years had a 90% success rate. Published techniques included a lateral window, elevation of the sinus membrane, drilling and dental implant installation, descent of the membrane with variations in the installation of the lateral wall access and suturing. The physiology behind this new bone formation response and the results of the present research were also discussed. We concluded that this is a promising and viable technique under certain inclusion criteria.
Trends in the Surgical Correction of Gynecomastia.
Brown, Rodger H; Chang, Daniel K; Siy, Richard; Friedman, Jeffrey
2015-05-01
Gynecomastia refers to the enlargement of the male breast due to a proliferation of ductal, stromal, and/or fatty tissue. Although it is a common condition affecting up to 65% of men, not all cases require surgical intervention. Contemporary surgical techniques in the treatment of gynecomastia have become increasingly less invasive with the advent of liposuction and its variants, including power-assisted and ultrasound-assisted liposuction. These techniques, however, have been largely limited in their inability to address significant skin excess and ptosis. For mild to moderate gynecomastia, newer techniques using arthroscopic morcellation and endoscopic techniques promise to address the fibrous component, while minimizing scar burden by utilizing liposuction incisions. Nevertheless, direct excision through periareolar incisions remains a mainstay in treatment algorithms for its simplicity and avoidance of additional instrumentation. This is particularly true for more severe cases of gynecomastia requiring skin resection. In the most severe cases with significant skin redundancy and ptosis, breast amputation with free nipple grafting remains an effective option. Surgical treatment should be individualized to each patient, combining techniques to provide adequate resection and optimize aesthetic results.
Su, Wen-Hao; He, Hong-Ju; Sun, Da-Wen
2017-03-24
Staple foods, including cereals, legumes, and root/tuber crops, dominate the daily diet of humans by providing valuable proteins, starch, oils, minerals, and vitamins. Quality evaluation of staple foods is primarily carried out on sensory (e.g. external defect, color), adulteration (e.g. species, origin), chemical (e.g. starch, proteins), mycotoxin (e.g. Fusarium toxin, aflatoxin), parasitic infection (e.g. weevil, beetle), and internal physiological (e.g. hollow heart, black heart) aspects. Conventional methods for the quality assessment of staple foods are always laborious, destructive, and time-consuming. Requirements for online monitoring of staple foods have been proposed to encourage the development of rapid, reagentless, and noninvasive techniques. Spectroscopic techniques, such as visible-infrared spectroscopy, Raman spectroscopy, nuclear magnetic resonance spectroscopy, and spectral imaging, have been introduced as promising analytical tools and applied for the quality evaluation of staple foods. This review summarizes the recent applications and progress of such spectroscopic techniques in determining various qualities of staple foods. Besides, challenges and future trends of these spectroscopic techniques are also presented.
Trends in the Surgical Correction of Gynecomastia
Brown, Rodger H.; Chang, Daniel K.; Siy, Richard; Friedman, Jeffrey
2015-01-01
Gynecomastia refers to the enlargement of the male breast due to a proliferation of ductal, stromal, and/or fatty tissue. Although it is a common condition affecting up to 65% of men, not all cases require surgical intervention. Contemporary surgical techniques in the treatment of gynecomastia have become increasingly less invasive with the advent of liposuction and its variants, including power-assisted and ultrasound-assisted liposuction. These techniques, however, have been largely limited in their inability to address significant skin excess and ptosis. For mild to moderate gynecomastia, newer techniques using arthroscopic morcellation and endoscopic techniques promise to address the fibrous component, while minimizing scar burden by utilizing liposuction incisions. Nevertheless, direct excision through periareolar incisions remains a mainstay in treatment algorithms for its simplicity and avoidance of additional instrumentation. This is particularly true for more severe cases of gynecomastia requiring skin resection. In the most severe cases with significant skin redundancy and ptosis, breast amputation with free nipple grafting remains an effective option. Surgical treatment should be individualized to each patient, combining techniques to provide adequate resection and optimize aesthetic results. PMID:26528088
NASA Astrophysics Data System (ADS)
Kluge, Thomas
2015-11-01
Combining ultra-intense short-pulse and high-energy long-pulse lasers, with brilliant coherent hard X-ray FELs, such as the Helmholtz International Beamline for Extreme Fields (HIBEF) under construction at the HED Instrument of European XFEL, or MEC at LCLS, holds the promise to revolutionize our understanding of many High Energy Density Physics phenomena. Examples include the relativistic electron generation, transport, and bulk plasma response, and ionization dynamics and heating in relativistic laser-matter interactions, or the dynamics of laser-driven shocks, quasi-isentropic compression, and the kinetics of phase transitions at high pressure. A particularly promising new technique is the use of coherent X-ray diffraction to characterize electron density correlations, and by resonant scattering to characterize the distribution of specific charge-state ions, either on the ultrafast time scale of the laser interaction, or associated with hydrodynamic motion. As well one can image slight density changes arising from phase transitions inside of shock-compressed high pressure matter. The feasibility of coherent diffraction techniques in laser-driven matter will be discussed. including recent results from demonstration experiments at MEC. Among other things, very sharp density changes from laser-driven compression are observed, having an effective step width of 10 nm or smaller. This compares to a resolution of several hundred nm achievedpreviously with phase contrast imaging. and on behalf of HIBEF User Consortium, for the Helmholtz International Beamline for Extreme Fields at the European XFEL.
Vestjens, Lotte; Kempen, Gertrudis I J M; Crutzen, Rik; Kok, Gerjo; Zijlstra, G A Rixt
2015-04-01
Complex behavior change interventions need evidence regarding the effectiveness of individual components to understand how these interventions work. The objective of this study was to identify the least and most promising behavior change techniques (BCTs) within the Dutch intervention 'A Matter of Balance' (AMB-NL) aimed at concerns about falls in old age as an example. After the identification of 27 BCTs within AMB-NL, an online two-round Delphi survey among 16 international experts was conducted to reach consensus on the least and most promising BCTs. The level of consensus and the level of importance of BCTs were determined. In total, 23 of the 27 (>85%) BCTs identified reached consensus. Most promising BCTs were goal setting (behavior), graded tasks and behavioral practice/rehearsal. Information about health consequences, salience of consequences and information about emotional consequences were considered least promising. These outcomes provide a first but important step in the evidence building process regarding the effectiveness of BCTs in a complex intervention. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Bioactive natural products in cancer prevention and therapy: Progress and promise.
Bishayee, Anupam; Sethi, Gautam
2016-10-01
Natural products represent a rich source for the discovery and development of cancer preventive and anticancer drugs. Nearly, 80% of all drugs approved by the United States Food and Drug Administration during the last three decades for cancer therapy are either natural products per se or are based thereon, or mimicked natural products in one form or another. With the advent and refinement of new technologies, such as genetic techniques for production of secondary plant metabolites, combinatorial synthesis and high-throughput screening, it is expected that novel compounds from natural sources, including medicinal plants, would be identified and developed as safe and effective chemopreventive and anticancer drugs. Numerous bioactive natural compounds have been shown to be useful in prevention and therapy of cancer by targeting various signaling molecules and pathways. Extensive literature underscores the anticancer and chemopreventive activity of a plethora of naturally occurring agents, including phytochemicals. Several of these molecules have been tested in clinical trials and some of them have shown promise in combination therapy when administered along with standard chemotherapeutic agents. Thus, accelerated chemopreventive and chemotherapeutic drug development from natural sources is of great importance. In this special theme issue, contributions from eminent scientists and scholars around the world presented critical analysis of the current progress and promise of natural bioactive constituents in cancer prevention and therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Amusement Park Technique in the Treatment of Dually Diagnosed, Psychiatric Inpatients.
ERIC Educational Resources Information Center
Hrenko, Kathy D.; Willis, Robert
1996-01-01
Identifies common imagery created by psychiatric inpatients through the amusement park technique; demonstrates how the artwork serves to identify the psychodynamic concerns of the mentally ill substance abuser. Connections are examined relating patients choice of image, psychiatric diagnosis, and drug of choice. This technique offers promise for…
Applications for Gradient Metal Alloys Fabricated Using Additive Manufacturing
NASA Technical Reports Server (NTRS)
Hofmann, Douglas C.; Borgonia, John Paul C.; Dillon, Robert P.; Suh, Eric J.; Mulder, jerry L.; Gardner, Paul B.
2013-01-01
Recently, additive manufacturing (AM) techniques have been developed that may shift the paradigm of traditional metal production by allowing complex net-shaped hardware to be built up layer-by-layer, rather than being machined from a billet. The AM process is ubiquitous with polymers due to their low melting temperatures, fast curing, and controllable viscosity, and 3D printers are widely available as commercial or consumer products. 3D printing with metals is inherently more complicated than with polymers due to their higher melting temperatures and reactivity with air, particularly when heated or molten. The process generally requires a high-power laser or other focused heat source, like an electron beam, for precise melting and deposition. Several promising metal AM techniques have been developed, including laser deposition (also called laser engineered net shaping or LENS® and laser deposition technology (LDT)), direct metal laser sintering (DMLS), and electron beam free-form (EBF). These machines typically use powders or wire feedstock that are melted and deposited using a laser or electron beam. Complex net-shape parts have been widely demonstrated using these (and other) AM techniques and the process appears to be a promising alternative to machining in some cases. Rather than simply competing with traditional machining for cost and time savings, the true advantage of AM involves the fabrication of hardware that cannot be produced using other techniques. This could include parts with "blind" features (like foams or trusses), parts that are difficult to machine conventionally, or parts made from materials that do not exist in bulk forms. In this work, the inventors identify that several AM techniques can be used to develop metal parts that change composition from one location in the part to another, allowing for complete control over the mechanical or physical properties. This changes the paradigm for conventional metal fabrication, which relies on an assortment of "post-processing" methods to locally alter properties (such as coating, heat treating, work hardening, shot peening, etching, anodizing, among others). Building the final part in an additive process allows for the development of an entirely new class of metals, so-called "functionally graded metals" or "gradient alloys." By carefully blending feedstock materials with different properties in an AM process, hardware can be developed with properties that cannot be obtained using other techniques but with the added benefit of the net-shaped fabrication that AM allows.
Illicit drug detection using energy dispersive x-ray diffraction
NASA Astrophysics Data System (ADS)
Cook, E. J.; Griffiths, J. A.; Koutalonis, M.; Gent, C.; Pani, S.; Horrocks, J. A.; George, L.; Hardwick, S.; Speller, R.
2009-05-01
Illicit drugs are imported into countries in myriad ways, including via the postal system and courier services. An automated system is required to detect drugs in parcels for which X-ray diffraction is a suitable technique as it is non-destructive, material specific and uses X-rays of sufficiently high energy to penetrate parcels containing a range of attenuating materials. A database has been constructed containing the measured powder diffraction profiles of several thousand materials likely to be found in parcels. These include drugs, cutting agents, packaging and other innocuous materials. A software model has been developed using these data to predict the diffraction profiles which would be obtained by X-ray diffraction systems with a range of suggested detector (high purity germanium, CZT and scintillation), source and collimation options. The aim of the model was to identify the most promising system geometries, which was done with the aid of multivariate analysis (MVA). The most promising systems were constructed and tested. The diffraction profiles of a range of materials have been measured and used to both validate the model and to identify the presence of drugs in sample packages.
Survey of Non-Destructive Tire Inspection Techniques
DOT National Transportation Integrated Search
1971-07-01
The status of several promising methods for non-destructive tire inspection is surveyed with the conclusion that radiographic, infrared, holographic and ultrasonic techniques warrant further evaluation. A program plan is outlined to correlate non-des...
Educating Emotionally Disturbed Children--Promising Practices. Journal within a Journal.
ERIC Educational Resources Information Center
Michael, Robert, Ed.
1987-01-01
Seven articles by educators with a variety of perspectives examine promising educational practices for use with children having emotional disturbances. Lee Bell offers strategies for using group activities in "All Together Now: Group Techniques for Teaching Students with Emotional Disturbances." Lyn Sarda and Rik Flynn discuss benefits…
Medical Rejuvenation in Georgia in the past: the Sukhumi Station.
Musajo-Somma, Laura; Musajo-Somma, Alfredo
2016-12-01
If youth and body appearance enhancement is as old as Homo Sapiens, reliable medical technology for such activities is only about 100 years old. At the dawn of the 20th century, surgical operations performed under the Voronoff's treatment plan (monkey gonads' tissue grafting into humans) or the Steinach's technique (vasoligation) offered a promise of longevity, beauty and therefore youth restoration. The many links with a newly recognized discipline, endocrinology, offer a critical insight on the strong interactions between medicine and surgery in the promise of successful antiaging. On the front-line of scientific research, the Institute of Experimental Endocrinology's primate station in Sukhumi (West Georgia, now Abkhazia, on the Black Sea coast) developed a leadership role in the medical research, including rejuvenation with testis' tissues. Authors focus their attention to the everlasting commitment to experimental and clinical research as developed by Sukhumi scholars and the related moral, practical and ideological implications.
Development of molten carbonate fuel cells for power generation
NASA Astrophysics Data System (ADS)
1980-04-01
The broad and comprehensive program included elements of system definition, cell and system modeling, cell component development, cell testing in pure and contaminated environments, and the first stages of technology scale up. Single cells, with active areas of 45 sq cm and 582 sq cm, were operated at 650 C and improved to state of the art levels through the development of cell design concepts and improved electrolyte and electrode components. Performance was shown to degrade by the presence of fuel contaminants, such as sulfur and chlorine, and due to changes in electrode structure. Using conventional hot press fabrication techniques, electrolyte structures up to 20" x 20" were fabricated. Promising approaches were developed for nonhot pressed electrolyte structure fabrication and a promising electrolyte matrix material was identified. This program formed the basis for a long range effort to realize the benefits of molten carbonate fuel cell power plants.
Discovery of novel drugs for promising targets.
Martell, Robert E; Brooks, David G; Wang, Yan; Wilcoxen, Keith
2013-09-01
Once a promising drug target is identified, the steps to actually discover and optimize a drug are diverse and challenging. The goal of this study was to provide a road map to navigate drug discovery. Review general steps for drug discovery and provide illustrating references. A number of approaches are available to enhance and accelerate target identification and validation. Consideration of a variety of potential mechanisms of action of potential drugs can guide discovery efforts. The hit to lead stage may involve techniques such as high-throughput screening, fragment-based screening, and structure-based design, with informatics playing an ever-increasing role. Biologically relevant screening models are discussed, including cell lines, 3-dimensional culture, and in vivo screening. The process of enabling human studies for an investigational drug is also discussed. Drug discovery is a complex process that has significantly evolved in recent years. © 2013 Elsevier HS Journals, Inc. All rights reserved.
Infrared Spectroscopy of Explosives Residues: Measurement Techniques and Spectral Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Mark C.; Bernacki, Bruce E.
2015-03-11
Infrared laser spectroscopy of explosives is a promising technique for standoff and non-contact detection applications. However, the interpretation of spectra obtained in typical standoff measurement configurations presents numerous challenges. Understanding the variability in observed spectra from explosives residues and particles is crucial for design and implementation of detection algorithms with high detection confidence and low false alarm probability. We discuss a series of infrared spectroscopic techniques applied toward measuring and interpreting the reflectance spectra obtained from explosives particles and residues. These techniques utilize the high spectral radiance, broad tuning range, rapid wavelength tuning, high scan reproducibility, and low noise ofmore » an external cavity quantum cascade laser (ECQCL) system developed at Pacific Northwest National Laboratory. The ECQCL source permits measurements in configurations which would be either impractical or overly time-consuming with broadband, incoherent infrared sources, and enables a combination of rapid measurement speed and high detection sensitivity. The spectroscopic methods employed include standoff hyperspectral reflectance imaging, quantitative measurements of diffuse reflectance spectra, reflection-absorption infrared spectroscopy, microscopic imaging and spectroscopy, and nano-scale imaging and spectroscopy. Measurements of explosives particles and residues reveal important factors affecting observed reflectance spectra, including measurement geometry, substrate on which the explosives are deposited, and morphological effects such as particle shape, size, orientation, and crystal structure.« less
Applied in situ product recovery in ABE fermentation
Lalander, Carl‐Axel; Lee, Jonathan G. M.; Davies, E. Timothy; Harvey, Adam P.
2017-01-01
The production of biobutanol is hindered by the product's toxicity to the bacteria, which limits the productivity of the process. In situ product recovery of butanol can improve the productivity by removing the source of inhibition. This paper reviews in situ product recovery techniques applied to the acetone butanol ethanol fermentation in a stirred tank reactor. Methods of in situ recovery include gas stripping, vacuum fermentation, pervaporation, liquid–liquid extraction, perstraction, and adsorption, all of which have been investigated for the acetone, butanol, and ethanol fermentation. All techniques have shown an improvement in substrate utilization, yield, productivity or both. Different fermentation modes favored different techniques. For batch processing gas stripping and pervaporation were most favorable, but in fed‐batch fermentations gas stripping and adsorption were most promising. During continuous processing perstraction appeared to offer the best improvement. The use of hybrid techniques can increase the final product concentration beyond that of single‐stage techniques. Therefore, the selection of an in situ product recovery technique would require comparable information on the energy demand and economics of the process. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:563–579, 2017 PMID:28188696
Outcomes of endoscopic pilonidal sinus treatment (EPSiT): a systematic review.
Tien, T; Athem, R; Arulampalam, T
2018-05-31
Pilonidal sinus is a common disease of the natal cleft, which can lead to complications including infection and abscess formation. Various operative management options are available, but the ideal technique is still debatable. More recently minimally invasive approaches have been described. Our aim was to review the current literature on endoscopic pilonidal sinus treatment (EPSiT) and its outcomes. A systematic literature review was conducted and reported in accordance to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A search of EMBASE, MEDLINE and Cochrane Library was conducted in November 2017. Full-text studies on the use of endoscopy for the treatment of pilonidal sinus were included in the review. Initial search results returned 52 articles. Eight studies (eight case series and one randomised control trial) were included in the final qualitative synthesis. These studies demonstrated that EPSiT has good complete healing rates and low recurrence rates. There was also a high level of patient satisfaction and little time taken off work. Two studies reported modifications to the original technique. The main limitation was the lack of comparative studies. Initial studies on EPSiT have shown promising results. However, there is a need for a standardised technique and more comparative studies to validate this novel procedure.
Multiplexed Holographic Data Storage in Bacteriorhodopsin
NASA Technical Reports Server (NTRS)
Mehrl, David J.; Krile, Thomas F.
1997-01-01
High density optical data storage, driven by the information revolution, remains at the forefront of current research areas. Much of the current research has focused on photorefractive materials (SBN and LiNbO3) and polymers, despite various problems with expense, durability, response time and retention periods. Photon echo techniques, though promising, are questionable due to the need for cryogenic conditions. Bacteriorhodopsin (BR) films are an attractive alternative recording medium. Great strides have been made in refining BR, and materials with storage lifetimes as long as 100 days have recently become available. The ability to deposit this robust polycrystalline material as high quality optical films suggests the use of BR as a recording medium for commercial optical disks. Our own recent research has demonstrated the suitability of BR films for real time spatial filtering and holography. We propose to fully investigate the feasibility of performing holographic mass data storage in BR. Important aspects of the problem to be investigated include various data multiplexing techniques (e.g. angle- amplitude- and phase-encoded multiplexing, and in particular shift-multiplexing), multilayer recording techniques, SLM selection and data readout using crossed polarizers for noise rejection. Systems evaluations of storage parameters, including access times, memory refresh constraints, erasure, signal-to-noise ratios and bit error rates, will be included in our investigations.
Stabilization techniques for unpaved roads.
DOT National Transportation Integrated Search
2004-01-01
This study presents the basis for evaluating promising soil stabilization products using the relatively new technique of deeply mixing chemical additives into unpaved roadbeds. The work is in response to an amendment to House Bill 1400, Item 490, No....
Recent flight-test results of optical airdata techniques
NASA Technical Reports Server (NTRS)
Bogue, Rodney K.
1993-01-01
Optical techniques for measuring airdata parameters were demonstrated with promising results on high performance fighter aircraft. These systems can measure the airspeed vector, and some are not as dependent on special in-flight calibration processes as current systems. Optical concepts for measuring freestream static temperature and density are feasible for in-flight applications. The best feature of these concepts is that the air data measurements are obtained nonintrusively, and for the most part well into the freestream region of the flow field about the aircraft. Current requirements for measuring air data at high angle of attack, and future need to measure the same information at hypersonic flight conditions place strains on existing techniques. Optical technology advances show outstanding potential for application in future programs and promise to make common use of optical concepts a reality. Results from several flight-test programs are summarized, and the technology advances required to make optical airdata techniques practical are identified.
Remote sensing based approach for monitoring urban growth in Mexico city, Mexico: A case study
NASA Astrophysics Data System (ADS)
Obade, Vincent
The world is experiencing a rapid rate of urban expansion, largely contributed by the population growth. Other factors supporting urban growth include the improved efficiency in the transportation sector and increasing dependence on cars as a means of transport. The problems attributed to the urban growth include: depletion of energy resources, water and air pollution; loss of landscapes and wildlife, loss of agricultural land, inadequate social security and lack of employment or underemployment. Aerial photography is one of the popular techniques for analyzing, planning and minimizing urbanization related problems. However, with the advances in space technology, satellite remote sensing is increasingly being utilized in the analysis and planning of the urban environment. This article outlines the strengths and limitations of potential remote sensing techniques for monitoring urban growth. The selected methods include: Principal component analysis, Maximum likelihood classification and "decision tree". The results indicate that the "classification tree" approach is the most promising for monitoring urban change, given the improved accuracy and smooth transition between the various land cover classes
Imaging outcome measures for progressive multiple sclerosis trials
Moccia, Marcello; de Stefano, Nicola; Barkhof, Frederik
2017-01-01
Imaging markers that are reliable, reproducible and sensitive to neurodegenerative changes in progressive multiple sclerosis (MS) can enhance the development of new medications with a neuroprotective mode-of-action. Accordingly, in recent years, a considerable number of imaging biomarkers have been included in phase 2 and 3 clinical trials in primary and secondary progressive MS. Brain lesion count and volume are markers of inflammation and demyelination and are important outcomes even in progressive MS trials. Brain and, more recently, spinal cord atrophy are gaining relevance, considering their strong association with disability accrual; ongoing improvements in analysis methods will enhance their applicability in clinical trials, especially for cord atrophy. Advanced magnetic resonance imaging (MRI) techniques (e.g. magnetization transfer ratio (MTR), diffusion tensor imaging (DTI), spectroscopy) have been included in few trials so far and hold promise for the future, as they can reflect specific pathological changes targeted by neuroprotective treatments. Position emission tomography (PET) and optical coherence tomography have yet to be included. Applications, limitations and future perspectives of these techniques in clinical trials in progressive MS are discussed, with emphasis on measurement sensitivity, reliability and sample size calculation. PMID:29041865
[Application of three-dimensional printing technique in orthopaedics].
Luo, Qiang; Lau, Tak Wing; Fang, Xinshuo; Leung, Frankie
2014-03-01
To review the current progress of three-dimensional (3-D) printing technique in the clinical practice, its limitations and prospects. The recent publications associated with the clinical application of 3-D printing technique in the field of surgery, especially in orthopaedics were extensively reviewed. Currently, 3-D printing technique has been applied in orthopaedic surgery to aid diagnosis, make operative plans, and produce personalized prosthesis or implants. 3-D printing technique is a promising technique in clinical application.
Simulation of realistic retinoscopic measurement
NASA Astrophysics Data System (ADS)
Tan, Bo; Chen, Ying-Ling; Baker, K.; Lewis, J. W.; Swartz, T.; Jiang, Y.; Wang, M.
2007-03-01
Realistic simulation of ophthalmic measurements on normal and diseased eyes is presented. We use clinical data of ametropic and keratoconus patients to construct anatomically accurate three-dimensional eye models and simulate the measurement of a streak retinoscope with all the optical elements. The results show the clinical observations including the anomalous motion in high myopia and the scissors reflex in keratoconus. The demonstrated technique can be applied to other ophthalmic instruments and to other and more extensively abnormal eye conditions. It provides promising features for medical training and for evaluating and developing ocular instruments.
A Novel Solid State Ultracapacitor
NASA Technical Reports Server (NTRS)
Cortes-Pena, A. Y.; Rolin, T. D.; Hill, C. W.
2017-01-01
Novel dielectric materials were researched to develop an internal barrier layer capacitor that is fully solid state. These materials included reduced nanoparticles of barium titanate that were coated with various atomic layer deposited oxides. The nanoparticle powders were then densified into pellets and characterized using a dielectric test fixture over a frequency range of 20 Hz to 2 MHz. Densification and sintering were evaluated using scanning electron microscopic techniques. Ultimately, the samples showing the most promising electrical characteristics of permittivity, dissipation factor and equivalent series resistance were chosen to manufacture devices for subsequent testing.
Insecticide Resistance: Challenge to Pest Management and Basic Research
NASA Astrophysics Data System (ADS)
Brattsten, L. B.; Holyoke, C. W.; Leeper, J. R.; Raffa, K. F.
1986-03-01
The agricultural use of synthetic insecticides usually protects crops but imposes strong selection pressures that can result in the development of resistance. The most important resistance mechanisms are enhancement of the capacity to metabolically detoxify insecticides and alterations in target sites that prevent insecticides from binding to them. Insect control methods must incorporate strategies to minimize resistance development and preserve the utility of the insecticides. The most promising approach, integrated pest management, includes the use of chemical insecticides in combination with improved cultural and biologically based techniques.
The role of networks and artificial intelligence in nanotechnology design and analysis.
Hudson, D L; Cohen, M E
2004-05-01
Techniques with their origins in artificial intelligence have had a great impact on many areas of biomedicine. Expert-based systems have been used to develop computer-assisted decision aids. Neural networks have been used extensively in disease classification and more recently in many bioinformatics applications including genomics and drug design. Network theory in general has proved useful in modeling all aspects of biomedicine from healthcare organizational structure to biochemical pathways. These methods show promise in applications involving nanotechnology both in the design phase and in interpretation of system functioning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVoto, Douglas J.
2017-10-19
As maximum device temperatures approach 200 °Celsius, continuous operation, sintered silver materials promise to maintain bonds at these high temperatures without excessive degradation rates. A detailed characterization of the thermal performance and reliability of sintered silver materials and processes has been initiated for the next year. Future steps in crack modeling include efforts to simulate crack propagation directly using the extended finite element method (X-FEM), a numerical technique that uses the partition of unity method for modeling discontinuities such as cracks in a system.
Unusual monosaccharides: components of O-antigenic polysaccharides of microorganisms
NASA Astrophysics Data System (ADS)
Kochetkov, Nikolai K.
1996-09-01
The data on new monosaccharides detected in O-antigenic polysaccharides of Gram-negative bacteria have been surveyed. The results of isolation and structure determination of these unusual monosaccharides have been arranged and described systematically. The NMR spectroscopy techniques are shown to be promising for the O-antigenic polysaccharides structure determination. The information about fine structure of monosaccharides which constitute the base of important class of microbial polysaccharides, is of great significance for applied studies, first of all, the design and synthesis of biologically active substances. The bibliography includes 216 references.
Screen-Cage Ion Plating Of Silver On Polycrystalline Alumina
NASA Technical Reports Server (NTRS)
Spalvins, Talivaldis; Sliney, Harold E.; Deadmore, Daniel L.
1995-01-01
Screen-cage ion plating (SCIP) cost-effective technique offering high throwing power for deposition of adherent metal films on ceramic substrates. Applies silver films to complexly shaped substrates of polycrystalline alumina. Silver adheres tenaciously and reduces friction. SCIP holds promise for applying lubricating soft metallic films to high-temperature ceramic components of advanced combustion engines. Other potential uses include coating substrates with metal for protection against corrosion, depositing electrical conductors on dielectric substrates, making optically reflective or electrically or thermally conductive surface layers, and applying decorative metal coats to ceramic trophies or sculptures.
A New Approach to Dissect Nuclear Organization: TALE-Mediated Genome Visualization (TGV).
Miyanari, Yusuke
2016-01-01
Spatiotemporal organization of chromatin within the nucleus has so far remained elusive. Live visualization of nuclear remodeling could be a promising approach to understand its functional relevance in genome functions and mechanisms regulating genome architecture. Recent technological advances in live imaging of chromosomes begun to explore the biological roles of the movement of the chromatin within the nucleus. Here I describe a new technique, called TALE-mediated genome visualization (TGV), which allows us to visualize endogenous repetitive sequence including centromeric, pericentromeric, and telomeric repeats in living cells.
Deep into the Brain: Artificial Intelligence in Stroke Imaging
Lee, Eun-Jae; Kim, Yong-Hwan; Kim, Namkug; Kang, Dong-Wha
2017-01-01
Artificial intelligence (AI), a computer system aiming to mimic human intelligence, is gaining increasing interest and is being incorporated into many fields, including medicine. Stroke medicine is one such area of application of AI, for improving the accuracy of diagnosis and the quality of patient care. For stroke management, adequate analysis of stroke imaging is crucial. Recently, AI techniques have been applied to decipher the data from stroke imaging and have demonstrated some promising results. In the very near future, such AI techniques may play a pivotal role in determining the therapeutic methods and predicting the prognosis for stroke patients in an individualized manner. In this review, we offer a glimpse at the use of AI in stroke imaging, specifically focusing on its technical principles, clinical application, and future perspectives. PMID:29037014
Electrodeposition for Electrochemical Energy Conversion and Storage Devices
NASA Astrophysics Data System (ADS)
Shaigan, Nima
Electrodeposition of metals, alloys, metal oxides, conductive polymers, and their composites plays a pivotal role in fabrication processes of some recently developed electrochemical energy devices, most particularly fuel cells, supercapacitors, and batteries. Unique nanoscale architectures of electrocatalysts for low temperature fuel cells, including proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC), can only be obtained through electrodeposition processes. Promising, cost-effective conductive/protective coatings for stainless steel interconnects used in solid oxide fuel cells (SOFCs) have been achieved employing a variety of electrodeposition techniques. In supercapacitors, anodic deposition of metal oxides, conductive polymers, and their composites is a versatile technique for fabrication of electrodes with distinctive morphology and exceptional specific capacitance. Electrodeposition is also very recently employed for preparation of Sn-based anodes for lithium ion batteries.
Biodegradable Polymers and Stem Cells for Bioprinting.
Lei, Meijuan; Wang, Xiaohong
2016-04-29
It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.
Deep into the Brain: Artificial Intelligence in Stroke Imaging.
Lee, Eun-Jae; Kim, Yong-Hwan; Kim, Namkug; Kang, Dong-Wha
2017-09-01
Artificial intelligence (AI), a computer system aiming to mimic human intelligence, is gaining increasing interest and is being incorporated into many fields, including medicine. Stroke medicine is one such area of application of AI, for improving the accuracy of diagnosis and the quality of patient care. For stroke management, adequate analysis of stroke imaging is crucial. Recently, AI techniques have been applied to decipher the data from stroke imaging and have demonstrated some promising results. In the very near future, such AI techniques may play a pivotal role in determining the therapeutic methods and predicting the prognosis for stroke patients in an individualized manner. In this review, we offer a glimpse at the use of AI in stroke imaging, specifically focusing on its technical principles, clinical application, and future perspectives.
A survey and analysis of experimental hydrogen sensors
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
1992-01-01
In order to ascertain the applicability of hydrogen sensors to aerospace applications, a survey was conducted of promising experimental point-contact hydrogen sensors and their operation was analyzed. The techniques discussed are metal-oxide-semiconductor or MOS based sensors, catalytic resistor sensors, acoustic wave detectors, and pyroelectric detectors. All of these sensors depend on the interaction of hydrogen with Pd or a Pd-alloy. It is concluded that no single technique will meet the needs of aerospace applications but a combination of approaches is necessary. The most promising combination is an MOS based sensor with a catalytic resistor.
Zuckerman, Scott L; Laufer, Ilya; Sahgal, Arjun; Yamada, Yoshiya J; Schmidt, Meic H; Chou, Dean; Shin, John H; Kumar, Naresh; Sciubba, Daniel M
2016-10-15
Systematic review. The aim of this study was to review the techniques, indications, and outcomes of minimally invasive surgery (MIS) and separation surgery with subsequent radiosurgery in the treatment of patients with metastatic spine disease. The utilization of MIS techniques in patients with spine metastases is a growing area within spinal oncology. Separation surgery represents a novel paradigm where radiosurgery provides long-term control after tumor is surgically separated from the neural elements. PubMed, Embase, and CINAHL databases were systematically queried for literature reporting MIS techniques or separation surgery in patients with metastatic spine disease. PRISMA guidelines were followed. Of the initial 983 articles found, 29 met inclusion criteria. Twenty-five articles discussed MIS techniques and were grouped according to the primary objective: percutaneous stabilization (8), tubular retractors (4), mini-open approach (8), and thoracoscopy/endoscopy (5). The remaining 4 studies reported separation surgery. Indications were similar across all studies and included patients with instability, refractory pain, or neurologic compromise. Intraoperative variables, outcomes, and complications were similar in MIS studies compared to traditional approaches, and some MIS studies showed a statistically significant improvement in outcomes. Studies of mini-open techniques had the strongest evidence for superiority. Low-quality evidence currently exists for MIS techniques and separation surgery in the treatment of metastatic spine disease. Given the early promising results, the next iteration of research should include higher-quality studies with sufficient power, and will be able to provide higher-level evidence on the outcomes of MIS approaches and separation surgery. N/A.
Summary appraisals of the Nation's ground-water resources; Pacific Northwest region
Foxworthy, Bruce L.
1979-01-01
Management opportunities in the region include: (1) Development of new supplies and additional uses of ground water; (2) protection and enhancement of water quality; (3) reduction of waterlogging; (4) energy development from some ground-water reservoirs; (5) improving access to the ground water; (6) increased use of underground space for storage and disposal; and (7) greater use of advanced management and conservation techniques. Conjunctive use of surface and ground water to provide greater available supplies probably is the most promising water-management opportunity. However, if the full potential of the ground-water resources is to be realized, important constraints, including present water-right structures and serious deficiencies in information, must be overcome.
Tunable Nanowire Patterning Using Standing Surface Acoustic Waves
Chen, Yuchao; Ding, Xiaoyun; Lin, Sz-Chin Steven; Yang, Shikuan; Huang, Po-Hsun; Nama, Nitesh; Zhao, Yanhui; Nawaz, Ahmad Ahsan; Guo, Feng; Wang, Wei; Gu, Yeyi; Mallouk, Thomas E.; Huang, Tony Jun
2014-01-01
Patterning of nanowires in a controllable, tunable manner is important for the fabrication of functional nanodevices. Here we present a simple approach for tunable nanowire patterning using standing surface acoustic waves (SSAW). This technique allows for the construction of large-scale nanowire arrays with well-controlled patterning geometry and spacing within 5 seconds. In this approach, SSAWs were generated by interdigital transducers (IDTs), which induced a periodic alternating current (AC) electric field on the piezoelectric substrate and consequently patterned metallic nanowires in suspension. The patterns could be deposited onto the substrate after the liquid evaporated. By controlling the distribution of the SSAW field, metallic nanowires were assembled into different patterns including parallel and perpendicular arrays. The spacing of the nanowire arrays could be tuned by controlling the frequency of the surface acoustic waves. Additionally, we observed 3D spark-shape nanowire patterns in the SSAW field. The SSAW-based nanowire-patterning technique presented here possesses several advantages over alternative patterning approaches, including high versatility, tunability, and efficiency, making it promising for device applications. PMID:23540330
Optical Biopsy: A New Frontier in Endoscopic Detection and Diagnosis
WANG, THOMAS D.; VAN DAM, JACQUES
2007-01-01
Endoscopic diagnosis currently relies on the ability of the operator to visualize abnormal patterns in the image created by light reflected from the mucosal surface of the gastrointestinal tract. Advances in fiber optics, light sources, detectors, and molecular biology have led to the development of several novel methods for tissue evaluation in situ. The term “optical biopsy” refers to methods that use the properties of light to enable the operator to make an instant diagnosis at endoscopy, previously possible only by using histological or cytological analysis. Promising imaging techniques include fluorescence endoscopy, optical coherence tomography, confocal microendoscopy, and molecular imaging. Point detection schemes under development include light scattering and Raman spectroscopy. Such advanced diagnostic methods go beyond standard endoscopic techniques by offering improved image resolution, contrast, and tissue penetration and providing biochemical and molecular information about mucosal disease. This review describes the basic biophysics of light-tissue interactions, assesses the strengths and weaknesses of each method, and examines clinical and preclinical evidence for each approach. PMID:15354274
Unmixing AVHRR Imagery to Assess Clearcuts and Forest Regrowth in Oregon
NASA Technical Reports Server (NTRS)
Hlavka, Christine A.; Spanner, Michael A.
1995-01-01
Advanced Very High Resolution Radiometer imagery provides frequent and low-cost coverage of the earth, but its coarse spatial resolution (approx. 1.1 km by 1.1 km) does not lend itself to standard techniques of automated categorization of land cover classes because the pixels are generally mixed; that is, the extent of the pixel includes several land use/cover classes. Unmixing procedures were developed to extract land use/cover class signatures from mixed pixels, using Landsat Thematic Mapper data as a source for the training set, and to estimate fractions of class coverage within pixels. Application of these unmixing procedures to mapping forest clearcuts and regrowth in Oregon indicated that unmixing is a promising approach for mapping major trends in land cover with AVHRR bands 1 and 2. Including thermal bands by unmixing AVHRR bands 1-4 did not lead to significant improvements in accuracy, but experiments with unmixing these four bands did indicate that use of weighted least squares techniques might lead to improvements in other applications of unmixing.
Brain Stimulation in Alzheimer's Disease.
Chang, Chun-Hung; Lane, Hsien-Yuan; Lin, Chieh-Hsin
2018-01-01
Brain stimulation techniques can modulate cognitive functions in many neuropsychiatric diseases. Pilot studies have shown promising effects of brain stimulations on Alzheimer's disease (AD). Brain stimulations can be categorized into non-invasive brain stimulation (NIBS) and invasive brain stimulation (IBS). IBS includes deep brain stimulation (DBS), and invasive vagus nerve stimulation (VNS), whereas NIBS includes transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), electroconvulsive treatment (ECT), magnetic seizure therapy (MST), cranial electrostimulation (CES), and non-invasive VNS. We reviewed the cutting-edge research on these brain stimulation techniques and discussed their therapeutic effects on AD. Both IBS and NIBS may have potential to be developed as novel treatments for AD; however, mixed findings may result from different study designs, patients selection, population, or samples sizes. Therefore, the efficacy of NIBS and IBS in AD remains uncertain, and needs to be further investigated. Moreover, more standardized study designs with larger sample sizes and longitudinal follow-up are warranted for establishing a structural guide for future studies and clinical application.
ERIC Educational Resources Information Center
Lee, Alwyn Vwen Yen; Tan, Seng Chee
2017-01-01
Understanding ideas in a discourse is challenging, especially in textual discourse analysis. We propose using temporal analytics with unsupervised machine learning techniques to investigate promising ideas for the collective advancement of communal knowledge in an online knowledge building discourse. A discourse unit network was constructed and…
What Is New with Sexual Side Effects After Transurethral Male Lower Urinary Tract Symptom Surgery?
Rieken, Malte; Antunes-Lopes, Tiago; Geavlete, Bogdan; Marcelissen, Tom
2018-01-01
Transurethral resection of the prostate as well as laser prostatectomy (by either holmium laser enucleation of the prostate or Greenlight laser vaporization) is associated with risks of sexual dysfunction such as antegrade ejaculation and occasionally erectile dysfunction. While ejaculation-sparing variations of these techniques show promising results, larger multicenter studies are needed to confirm promising data. Prostatic urethral lift maintains erectile and ejaculatory function at 5-yr follow-up. The same is true for the 3-yr data on the Rezum system. Recently, Aquablation has shown promising results; however, these 6-mo data need to be confirmed during longer follow-up. An individualized, shared decision-making process based on clinical parameters and patient preference is warranted to select the ideal treatment option for each patient. Sexual dysfunction such as loss of ejaculation and, less frequently, erectile dysfunction can occur after transurethral prostate surgery. Ejaculation-sparing modifications as well as minimally invasive alternatives show promising results. An individualized approach is warranted to select the ideal technique for each patient. Copyright © 2018 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Research progress of Ge on insulator grown by rapid melting growth
NASA Astrophysics Data System (ADS)
Liu, Zhi; Wen, Juanjuan; Li, Chuanbo; Xue, Chunlai; Cheng, Buwen
2018-06-01
Ge is an attractive material for Si-based microelectronics and photonics due to its high carries mobility, pseudo direct bandgap structure, and the compatibility with complementary metal oxide semiconductor (CMOS) processes. Based on Ge, Ge on insulator (GOI) not only has these advantages, but also provides strong electronic and optical confinement. Recently, a novel technique to fabricate GOI by rapid melting growth (RMG) has been described. Here, we introduce the RMG technique and review recent efforts and progress in RMG. Firstly, we will introduce process steps of RMG. We will then review the researches which focus on characterizations of the GOI including growth dimension, growth mechanism, growth orientation, concentration distribution, and strain status. Finally, GOI based applications including high performance metal–oxide–semiconductor field effect transistors (MOSFETs) and photodetectors will be discussed. These results show that RMG is a promising technique for growth of high quality GOIs with different characterizations. The GOI grown by RMG is a potential material for the next-generation of integrated circuits and optoelectronic circuits. Project supported in part by the National Key Research and Development Program of China (No. 2017YFA0206404) and the National Natural Science Foundation of China (Nos. 61435013, 61534005, 61534004, 61604146).
Thomas, Karluss; Herouet-Guicheney, Corinne; Ladics, Gregory; McClain, Scott; MacIntosh, Susan; Privalle, Laura; Woolhiser, Mike
2008-09-01
The International Life Science Institute's Health and Environmental Sciences Institute's Protein Allergenicity Technical Committee hosted an international workshop October 23-25, 2007, in Nice, France, to review and discuss existing and emerging methods and techniques for improving the current weight-of-evidence approach for evaluating the potential allergenicity of novel proteins. The workshop included over 40 international experts from government, industry, and academia. Their expertise represented a range of disciplines including immunology, chemistry, molecular biology, bioinformatics, and toxicology. Among participants, there was consensus that (1) current bioinformatic approaches are highly conservative; (2) advances in bioinformatics using structural comparisons of proteins may be helpful as the availability of structural data increases; (3) proteomics may prove useful for monitoring the natural variability in a plant's proteome and assessing the impact of biotechnology transformations on endogenous levels of allergens, but only when analytical techniques have been standardized and additional data are available on the natural variation of protein expression in non-transgenic bred plants; (4) basophil response assays are promising techniques, but need additional evaluation around specificity, sensitivity, and reproducibility; (5) additional research is required to develop and validate an animal model for the purpose of predicting protein allergenicity.
Blind source computer device identification from recorded VoIP calls for forensic investigation.
Jahanirad, Mehdi; Anuar, Nor Badrul; Wahab, Ainuddin Wahid Abdul
2017-03-01
The VoIP services provide fertile ground for criminal activity, thus identifying the transmitting computer devices from recorded VoIP call may help the forensic investigator to reveal useful information. It also proves the authenticity of the call recording submitted to the court as evidence. This paper extended the previous study on the use of recorded VoIP call for blind source computer device identification. Although initial results were promising but theoretical reasoning for this is yet to be found. The study suggested computing entropy of mel-frequency cepstrum coefficients (entropy-MFCC) from near-silent segments as an intrinsic feature set that captures the device response function due to the tolerances in the electronic components of individual computer devices. By applying the supervised learning techniques of naïve Bayesian, linear logistic regression, neural networks and support vector machines to the entropy-MFCC features, state-of-the-art identification accuracy of near 99.9% has been achieved on different sets of computer devices for both call recording and microphone recording scenarios. Furthermore, unsupervised learning techniques, including simple k-means, expectation-maximization and density-based spatial clustering of applications with noise (DBSCAN) provided promising results for call recording dataset by assigning the majority of instances to their correct clusters. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Cismesia, Adam P.; Bailey, Laura S.; Bell, Matthew R.; Tesler, Larry F.; Polfer, Nicolas C.
2016-01-01
The detailed chemical information contained in the vibrational spectrum of a cryogenically cooled analyte would, in principle, make infrared (IR) ion spectroscopy a gold standard technique for molecular identification in mass spectrometry. Despite this immense potential, there are considerable challenges in both instrumentation and methodology to overcome before the technique is analytically useful. Here, we discuss the promise of IR ion spectroscopy for small molecule analysis in the context of metabolite identification. Experimental strategies to address sensitivity constraints, poor overall duty cycle, and speed of the experiment are intimately tied to the development of a mass-selective cryogenic trap. Therefore, the most likely avenues for success, in the authors? opinion, are presented here, alongside alternative approaches and some thoughts on data interpretation. PMID:26975370
Al-Kasmi, Basheer; Alsirawan, Mhd Bashir; Bashimam, Mais; El-Zein, Hind
2017-08-28
Drug taste masking is a crucial process for the preparation of pediatric and geriatric formulations as well as fast dissolving tablets. Taste masking techniques aim to prevent drug release in saliva and at the same time to obtain the desired release profile in gastrointestinal tract. Several taste masking methods are reported, however this review has focused on a group of promising methods; complexation, encapsulation, and hot melting. The effects of each method on the physicochemical properties of the drug are described in details. Furthermore, a scoring system was established to evaluate each process using recent published data of selected factors. These include, input, process, and output factors that are related to each taste masking method. Input factors include the attributes of the materials used for taste masking. Process factors include equipment type and process parameters. Finally, output factors, include taste masking quality and yield. As a result, Mechanical microencapsulation obtained the highest score (5/8) along with complexation with cyclodextrin suggesting that these methods are the most preferable for drug taste masking. Copyright © 2017 Elsevier B.V. All rights reserved.
Piezoelectric Versus Conventional Rotary Techniques for Impacted Third Molar Extraction
Jiang, Qian; Qiu, Yating; Yang, Chi; Yang, Jingyun; Chen, Minjie; Zhang, Zhiyuan
2015-01-01
Abstract Impacted third molars are frequently encountered in clinical work. Surgical removal of impacted third molars is often required to prevent clinical symptoms. Traditional rotary cutting instruments are potentially injurious, and piezosurgery, as a new osteotomy technique, has been introduced in oral and maxillofacial surgery. No consistent conclusion has been reached regarding whether this new technique is associated with fewer or less severe postoperative sequelae after third molar extraction. The aim of this study was to compare piezosurgery with rotary osteotomy techniques, with regard to surgery time and the severity of postoperative sequelae, including pain, swelling, and trismus. We conducted a systematic literature search in the Cochrane Library, PubMed, Embase, and Google Scholar. The eligibility criteria of this study included the following: the patients were clearly diagnosed as having impacted mandibular third molars; the patients underwent piezosurgery osteotomy, and in the control group rotary osteotomy techniques, for removing impacted third molars; the outcomes of interest include surgery time, trismus, swelling or pain; the studies are randomized controlled trials. We used random-effects models to calculate the difference in the outcomes, and the corresponding 95% confidence interval. We calculated the weighted mean difference if the trials used the same measurement, and a standardized mean difference if otherwise. A total of seven studies met the eligibility criteria and were included in our analysis. Compared with rotary osteotomy, patients undergoing piezosurgery experienced longer surgery time (mean difference 4.13 minutes, 95% confidence interval 2.75–5.52, P < 0.0001). Patients receiving the piezoelectric technique had less swelling at postoperative days 1, 3, 5, and 7 (all Ps ≤0.023). Additionally, there was a trend of less postoperative pain and trismus in the piezosurgery groups. The number of included randomized controlled trials and the sample size of each trial were relatively small, double blinding was not possible, and cost analysis was unavailable due to a lack of data. Our meta-analysis indicates that although patients undergoing piezosurgery experienced longer surgery time, they had less postoperative swelling, indicating that piezosurgery is a promising alternative technique for extraction of impacted third molars. PMID:26469902
Jiang, Qian; Qiu, Yating; Yang, Chi; Yang, Jingyun; Chen, Minjie; Zhang, Zhiyuan
2015-10-01
Impacted third molars are frequently encountered in clinical work. Surgical removal of impacted third molars is often required to prevent clinical symptoms. Traditional rotary cutting instruments are potentially injurious, and piezosurgery, as a new osteotomy technique, has been introduced in oral and maxillofacial surgery. No consistent conclusion has been reached regarding whether this new technique is associated with fewer or less severe postoperative sequelae after third molar extraction.The aim of this study was to compare piezosurgery with rotary osteotomy techniques, with regard to surgery time and the severity of postoperative sequelae, including pain, swelling, and trismus.We conducted a systematic literature search in the Cochrane Library, PubMed, Embase, and Google Scholar.The eligibility criteria of this study included the following: the patients were clearly diagnosed as having impacted mandibular third molars; the patients underwent piezosurgery osteotomy, and in the control group rotary osteotomy techniques, for removing impacted third molars; the outcomes of interest include surgery time, trismus, swelling or pain; the studies are randomized controlled trials.We used random-effects models to calculate the difference in the outcomes, and the corresponding 95% confidence interval. We calculated the weighted mean difference if the trials used the same measurement, and a standardized mean difference if otherwise.A total of seven studies met the eligibility criteria and were included in our analysis. Compared with rotary osteotomy, patients undergoing piezosurgery experienced longer surgery time (mean difference 4.13 minutes, 95% confidence interval 2.75-5.52, P < 0.0001). Patients receiving the piezoelectric technique had less swelling at postoperative days 1, 3, 5, and 7 (all Ps ≤0.023). Additionally, there was a trend of less postoperative pain and trismus in the piezosurgery groups.The number of included randomized controlled trials and the sample size of each trial were relatively small, double blinding was not possible, and cost analysis was unavailable due to a lack of data.Our meta-analysis indicates that although patients undergoing piezosurgery experienced longer surgery time, they had less postoperative swelling, indicating that piezosurgery is a promising alternative technique for extraction of impacted third molars.
Review of fixation techniques for the four-part fractured proximal humerus in hemiarthroplasty.
Baumgartner, Daniel; Nolan, Betsy M; Mathys, Robert; Lorenzetti, Silvio Rene; Stüssi, Edgar
2011-07-18
The clinical outcome of hemiarthroplasty for proximal humeral fractures is not satisfactory. Secondary fragment dislocation may prevent bone integration; the primary stability by a fixation technique is therefore needed to accomplish tuberosity healing. Present technical comparison of surgical fixation techniques reveals the state-of-the-art approach and highlights promising techniques for enhanced stability. A classification of available fixation techniques for three- and four part fractures was done. The placement of sutures and cables was described on the basis of anatomical landmarks such as the rotator cuff tendon insertions, the bicipital groove and the surgical neck. Groups with similar properties were categorized. Materials used for fragment fixation include heavy braided sutures and/or metallic cables, which are passed through drilling holes in the bone fragments. The classification resulted in four distinct groups: A: both tuberosities and shaft are fixed together by one suture, B: single tuberosities are independently connected to the shaft and among each other, C: metallic cables are used in addition to the sutures and D: the fragments are connected by short stitches, close to the fragment borderlines. A plurality of techniques for the reconstruction of a fractured proximal humerus is found. The categorisation into similar strategies provides a broad overview of present techniques and supports a further development of optimized techniques. Prospective studies are necessary to correlate the technique with the clinical outcome.
Review of fixation techniques for the four-part fractured proximal humerus in hemiarthroplasty
2011-01-01
Introduction The clinical outcome of hemiarthroplasty for proximal humeral fractures is not satisfactory. Secondary fragment dislocation may prevent bone integration; the primary stability by a fixation technique is therefore needed to accomplish tuberosity healing. Present technical comparison of surgical fixation techniques reveals the state-of-the-art approach and highlights promising techniques for enhanced stability. Method A classification of available fixation techniques for three- and four part fractures was done. The placement of sutures and cables was described on the basis of anatomical landmarks such as the rotator cuff tendon insertions, the bicipital groove and the surgical neck. Groups with similar properties were categorized. Results Materials used for fragment fixation include heavy braided sutures and/or metallic cables, which are passed through drilling holes in the bone fragments. The classification resulted in four distinct groups: A: both tuberosities and shaft are fixed together by one suture, B: single tuberosities are independently connected to the shaft and among each other, C: metallic cables are used in addition to the sutures and D: the fragments are connected by short stitches, close to the fragment borderlines. Conclusions A plurality of techniques for the reconstruction of a fractured proximal humerus is found. The categorisation into similar strategies provides a broad overview of present techniques and supports a further development of optimized techniques. Prospective studies are necessary to correlate the technique with the clinical outcome. PMID:21762540
Basic analytical methods for identification of erythropoiesis-stimulating agents in doping control
NASA Astrophysics Data System (ADS)
Postnikov, P. V.; Krotov, G. I.; Efimova, Yu A.; Rodchenkov, G. M.
2016-02-01
The design of new erythropoiesis-stimulating agents for clinical use necessitates constant development of methods for detecting the abuse of these substances, which are prohibited under the World Anti-Doping Code and are included in the World Anti-Doping Agency (WADA) prohibited list. This review integrates and describes systematically the published data on the key methods currently used by WADA-accredited anti-doping laboratories around the world to detect the abuse of erythropoiesis-stimulating agents, including direct methods (various polyacrylamide gel electrophoresis techniques, enzyme-linked immunosorbent assay, membrane enzyme immunoassay and mass spectrometry) and indirect methods (athlete biological passport). Particular attention is given to promising approaches and investigations that can be used to control prohibited erythropoietins in the near future. The bibliography includes 122 references.
Optics for Processes, Products and Metrology
NASA Astrophysics Data System (ADS)
Mather, George
1999-04-01
Optical physics has a variety of applications in industry, including process inspection, coatings development, vision instrumentation, spectroscopy, and many others. Optics has been used extensively in the design of solar energy collection systems and coatings, for example. Also, with the availability of good CCD cameras and fast computers, it has become possible to develop real-time inspection and metrology devices that can accommodate the high throughputs encountered in modern production processes. More recently, developments in moiré interferometry show great promise for applications in the basic metals and electronics industries. The talk will illustrate applications of optics by discussing process inspection techniques for defect detection, part dimensioning, birefringence measurement, and the analysis of optical coatings in the automotive, glass, and optical disc industries. In particular, examples of optical techniques for the quality control of CD-R, MO, and CD-RW discs will be presented. In addition, the application of optical concepts to solar energy collector design and to metrology by moiré techniques will be discussed. Finally, some of the modern techniques and instruments used for qualitative and quantitative material analysis will be presented.
Fecal Molecular Markers for Colorectal Cancer Screening
Kanthan, Rani; Senger, Jenna-Lynn; Kanthan, Selliah Chandra
2012-01-01
Despite multiple screening techniques, including colonoscopy, flexible sigmoidoscopy, radiological imaging, and fecal occult blood testing, colorectal cancer remains a leading cause of death. As these techniques improve, their sensitivity to detect malignant lesions is increasing; however, detection of precursor lesions remains problematic and has generated a lack of general acceptance for their widespread usage. Early detection by an accurate, noninvasive, cost-effective, simple-to-use screening technique is central to decreasing the incidence and mortality of this disease. Recent advances in the development of molecular markers in faecal specimens are encouraging for its use as a screening tool. Genetic mutations and epigenetic alterations that result from the carcinogenetic process can be detected by coprocytobiology in the colonocytes exfoliated from the lesion into the fecal matter. These markers have shown promising sensitivity and specificity in the detection of both malignant and premalignant lesions and are gaining popularity as a noninvasive technique that is representative of the entire colon. In this paper, we summarize the genetic and epigenetic fecal molecular markers that have been identified as potential targets in the screening of colorectal cancer. PMID:22969796
Carboni, Davide; Gluhak, Alex; McCann, Julie A.; Beach, Thomas H.
2016-01-01
Water monitoring in households is important to ensure the sustainability of fresh water reserves on our planet. It provides stakeholders with the statistics required to formulate optimal strategies in residential water management. However, this should not be prohibitive and appliance-level water monitoring cannot practically be achieved by deploying sensors on every faucet or water-consuming device of interest due to the higher hardware costs and complexity, not to mention the risk of accidental leakages that can derive from the extra plumbing needed. Machine learning and data mining techniques are promising techniques to analyse monitored data to obtain non-intrusive water usage disaggregation. This is because they can discern water usage from the aggregated data acquired from a single point of observation. This paper provides an overview of water usage disaggregation systems and related techniques adopted for water event classification. The state-of-the art of algorithms and testbeds used for fixture recognition are reviewed and a discussion on the prominent challenges and future research are also included. PMID:27213397
The Fluorescent-Oil Film Method and Other Techniques for Boundary-Layer Flow Visualization
NASA Technical Reports Server (NTRS)
Loving, Donald L.; Katzoff, S.
1959-01-01
A flow-visualization technique, known as the fluorescent-oil film method, has been developed which appears to be generally simpler and to require less experience and development of technique than previously published methods. The method is especially adapted to use in the large high-powered wind tunnels which require considerable time to reach the desired test conditions. The method consists of smearing a film of fluorescent oil over a surface and observing where the thickness is affected by the shearing action of the boundary layer. These films are detected and identified, and their relative thicknesses are determined by use of ultraviolet light. Examples are given of the use of this technique. Other methods that show promise in the study of boundary-layer conditions are described. These methods include the use of a temperature-sensitive fluorescent paint and the use of a radiometer that is sensitive to the heat radiation from a surface. Some attention is also given to methods that can be used with a spray apparatus in front of the test model.
[Surgical treatment of anal fistula].
Zeng, Xiandong; Zhang, Yong
2014-12-01
Anal fistula is a common disease. It is also quite difficult to be solved without recurrence or damage to the anal sphincter. Several techniques have been described for the management of anal fistula, but there is no final conclusion of their application in the treatment. This article summarizes the history of anal fistula management, the current techniques available, and describes new technologies. Internet online searches were performed from the CNKI and Wanfang databases to identify articles about anal fistula management including seton, fistulotomy, fistulectomy, LIFT operation, biomaterial treatment and new technology application. Every fistula surgery technique has its own place, so it is reasonable to give comprehensive individualized treatment to different patients, which may lead to reduced recurrence and avoidance of damage to the anal sphincter. New technologies provide promising alternatives to traditional methods of management. Surgeons still need to focus on the invention and improvement of the minimally invasive techniques. Besides, a new therapeutic idea is worth to explore that the focus of surgical treatment should be transferred to prevention of the formation of anal fistula after perianal abscess.
Understanding and Optimizing Asynchronous Low-Precision Stochastic Gradient Descent
De Sa, Christopher; Feldman, Matthew; Ré, Christopher; Olukotun, Kunle
2018-01-01
Stochastic gradient descent (SGD) is one of the most popular numerical algorithms used in machine learning and other domains. Since this is likely to continue for the foreseeable future, it is important to study techniques that can make it run fast on parallel hardware. In this paper, we provide the first analysis of a technique called Buckwild! that uses both asynchronous execution and low-precision computation. We introduce the DMGC model, the first conceptualization of the parameter space that exists when implementing low-precision SGD, and show that it provides a way to both classify these algorithms and model their performance. We leverage this insight to propose and analyze techniques to improve the speed of low-precision SGD. First, we propose software optimizations that can increase throughput on existing CPUs by up to 11×. Second, we propose architectural changes, including a new cache technique we call an obstinate cache, that increase throughput beyond the limits of current-generation hardware. We also implement and analyze low-precision SGD on the FPGA, which is a promising alternative to the CPU for future SGD systems. PMID:29391770
Remote sensing techniques in cultural resource management archaeology
NASA Astrophysics Data System (ADS)
Johnson, Jay K.; Haley, Bryan S.
2003-04-01
Cultural resource management archaeology in the United States concerns compliance with legislation set in place to protect archaeological resources from the impact of modern activities. Traditionally, surface collection, shovel testing, test excavation, and mechanical stripping are used in these projects. These methods are expensive, time consuming, and may poorly represent the features within archaeological sites. The use of remote sensing techniques in cultural resource management archaeology may provide an answer to these problems. Near-surface geophysical techniques, including magnetometry, resistivity, electromagnetics, and ground penetrating radar, have proven to be particularly successful at efficiently locating archaeological features. Research has also indicated airborne and satellite remote sensing may hold some promise in the future for large-scale archaeological survey, although this is difficult in many areas of the world where ground cover reflect archaeological features in an indirect manner. A cost simulation of a hypothetical data recovery project on a large complex site in Mississippi is presented to illustrate the potential advantages of remote sensing in a cultural resource management setting. The results indicate these techniques can save a substantial amount of time and money for these projects.
Ultrasound Elastography: Review of Techniques and Clinical Applications
Sigrist, Rosa M.S.; Liau, Joy; Kaffas, Ahmed El; Chammas, Maria Cristina; Willmann, Juergen K.
2017-01-01
Elastography-based imaging techniques have received substantial attention in recent years for non-invasive assessment of tissue mechanical properties. These techniques take advantage of changed soft tissue elasticity in various pathologies to yield qualitative and quantitative information that can be used for diagnostic purposes. Measurements are acquired in specialized imaging modes that can detect tissue stiffness in response to an applied mechanical force (compression or shear wave). Ultrasound-based methods are of particular interest due to its many inherent advantages, such as wide availability including at the bedside and relatively low cost. Several ultrasound elastography techniques using different excitation methods have been developed. In general, these can be classified into strain imaging methods that use internal or external compression stimuli, and shear wave imaging that use ultrasound-generated traveling shear wave stimuli. While ultrasound elastography has shown promising results for non-invasive assessment of liver fibrosis, new applications in breast, thyroid, prostate, kidney and lymph node imaging are emerging. Here, we review the basic principles, foundation physics, and limitations of ultrasound elastography and summarize its current clinical use and ongoing developments in various clinical applications. PMID:28435467
Cancer drug discovery: recent innovative approaches to tumor modeling.
Lovitt, Carrie J; Shelper, Todd B; Avery, Vicky M
2016-09-01
Cell culture models have been at the heart of anti-cancer drug discovery programs for over half a century. Advancements in cell culture techniques have seen the rapid evolution of more complex in vitro cell culture models investigated for use in drug discovery. Three-dimensional (3D) cell culture research has become a strong focal point, as this technique permits the recapitulation of the tumor microenvironment. Biologically relevant 3D cellular models have demonstrated significant promise in advancing cancer drug discovery, and will continue to play an increasing role in the future. In this review, recent advances in 3D cell culture techniques and their application in tumor modeling and anti-cancer drug discovery programs are discussed. The topics include selection of cancer cells, 3D cell culture assays (associated endpoint measurements and analysis), 3D microfluidic systems and 3D bio-printing. Although advanced cancer cell culture models and techniques are becoming commonplace in many research groups, the use of these approaches has yet to be fully embraced in anti-cancer drug applications. Furthermore, limitations associated with analyzing information-rich biological data remain unaddressed.
Time series modeling in traffic safety research.
Lavrenz, Steven M; Vlahogianni, Eleni I; Gkritza, Konstantina; Ke, Yue
2018-08-01
The use of statistical models for analyzing traffic safety (crash) data has been well-established. However, time series techniques have traditionally been underrepresented in the corresponding literature, due to challenges in data collection, along with a limited knowledge of proper methodology. In recent years, new types of high-resolution traffic safety data, especially in measuring driver behavior, have made time series modeling techniques an increasingly salient topic of study. Yet there remains a dearth of information to guide analysts in their use. This paper provides an overview of the state of the art in using time series models in traffic safety research, and discusses some of the fundamental techniques and considerations in classic time series modeling. It also presents ongoing and future opportunities for expanding the use of time series models, and explores newer modeling techniques, including computational intelligence models, which hold promise in effectively handling ever-larger data sets. The information contained herein is meant to guide safety researchers in understanding this broad area of transportation data analysis, and provide a framework for understanding safety trends that can influence policy-making. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nanofibers and their applications in tissue engineering
Vasita, Rajesh; Katti, Dhirendra S
2006-01-01
Developing scaffolds that mimic the architecture of tissue at the nanoscale is one of the major challenges in the field of tissue engineering. The development of nanofibers has greatly enhanced the scope for fabricating scaffolds that can potentially meet this challenge. Currently, there are three techniques available for the synthesis of nanofibers: electrospinning, self-assembly, and phase separation. Of these techniques, electrospinning is the most widely studied technique and has also demonstrated the most promising results in terms of tissue engineering applications. The availability of a wide range of natural and synthetic biomaterials has broadened the scope for development of nanofibrous scaffolds, especially using the electrospinning technique. The three dimensional synthetic biodegradable scaffolds designed using nanofibers serve as an excellent framework for cell adhesion, proliferation, and differentiation. Therefore, nanofibers, irrespective of their method of synthesis, have been used as scaffolds for musculoskeletal tissue engineering (including bone, cartilage, ligament, and skeletal muscle), skin tissue engineering, vascular tissue engineering, neural tissue engineering, and as carriers for the controlled delivery of drugs, proteins, and DNA. This review summarizes the currently available techniques for nanofiber synthesis and discusses the use of nanofibers in tissue engineering and drug delivery applications. PMID:17722259
Clinical and biological analysis in graftless maxillary sinus lift
2017-01-01
Maxillary sinus lift for dental implant installation is a well-known and versatile technique; new techniques are presented based on the physiology of intrasinus bone repair. The aim of this review was to determine the status of graftless maxillary sinus lift and analyze its foundations and results. A search was conducted of the literature between 1995 and 2015 in the Medline, ScienceDirect, and SciELO databases using the keywords “maxillary sinus lift,” “blood clot,” “graftless maxillary sinus augmentation,” and “dental implant placement.” Ten articles were selected for our analysis of this technique and its results. Despite the limited information, cases that were followed for at least six months and up to four years had a 90% success rate. Published techniques included a lateral window, elevation of the sinus membrane, drilling and dental implant installation, descent of the membrane with variations in the installation of the lateral wall access and suturing. The physiology behind this new bone formation response and the results of the present research were also discussed. We concluded that this is a promising and viable technique under certain inclusion criteria. PMID:28875135
Towards automated visual flexible endoscope navigation.
van der Stap, Nanda; van der Heijden, Ferdinand; Broeders, Ivo A M J
2013-10-01
The design of flexible endoscopes has not changed significantly in the past 50 years. A trend is observed towards a wider application of flexible endoscopes with an increasing role in complex intraluminal therapeutic procedures. The nonintuitive and nonergonomical steering mechanism now forms a barrier in the extension of flexible endoscope applications. Automating the navigation of endoscopes could be a solution for this problem. This paper summarizes the current state of the art in image-based navigation algorithms. The objectives are to find the most promising navigation system(s) to date and to indicate fields for further research. A systematic literature search was performed using three general search terms in two medical-technological literature databases. Papers were included according to the inclusion criteria. A total of 135 papers were analyzed. Ultimately, 26 were included. Navigation often is based on visual information, which means steering the endoscope using the images that the endoscope produces. Two main techniques are described: lumen centralization and visual odometry. Although the research results are promising, no successful, commercially available automated flexible endoscopy system exists to date. Automated systems that employ conventional flexible endoscopes show the most promising prospects in terms of cost and applicability. To produce such a system, the research focus should lie on finding low-cost mechatronics and technologically robust steering algorithms. Additional functionality and increased efficiency can be obtained through software development. The first priority is to find real-time, robust steering algorithms. These algorithms need to handle bubbles, motion blur, and other image artifacts without disrupting the steering process.
NASA Technical Reports Server (NTRS)
Besser, P. J.
1976-01-01
Bubble domain materials and devices are discussed. One of the materials development goals was a materials system suitable for operation of 16 micrometer period bubble domain devices at 150 kHz over the temperature range -10 C to +60 C. Several material compositions and hard bubble suppression techniques were characterized and the most promising candidates were evaluated in device structures. The technique of pulsed laser stroboscopic microscopy was used to characterize bubble dynamic properties and device performance at 150 kHz. Techniques for large area LPE film growth were developed as a separate task. Device studies included detector optimization, passive replicator design and test and on-chip bridge evaluation. As a technology demonstration an 8 chip memory cell was designed, tested and delivered. The memory elements used in the cell were 10 kilobit serial registers.
Selection of Optical Glasses Using Buchdahl's Chromatic Coordinate
NASA Technical Reports Server (NTRS)
Griffin, DeVon W.
1999-01-01
This investigation attempted to extend the method of reducing the size of glass catalogs to a global glass selection technique with the hope of guiding glass catalog offerings. Buchdahl's development of optical aberration coefficients included a transformation of the variable in the dispersion equation from wavelength to a chromatic coordinate omega defined as omega = (lambda - lambda(sub 0))/ 1 + 2.5(lambda - lambda(sub 0)) where lambda is the wavelength at which the wavelength is calculated and lambda(sub 0) is a base wavelength about which the expansion is performed. The advantage of this approach is that the dispersion equation may be written in terms of a simple power series and permits direct calculation of dispersion coefficients. While several promising examples were given, a systematic application of the technique to an entire glass catalog and analysis of the subsequent predictions was not performed. The goal of this work was to apply the technique in a systematic fashion to glasses in the Schoft catalog and assess the quality of the predictions.
Hergovich, Andreas; Oberfichtner, Bernhard
2016-01-01
In recent years, a body of research that regards the scientific study of magic performances as a promising method of investigating psychological phenomena in an ecologically valid setting has emerged. Seemingly contradictory findings concerning the ability of social cues to strengthen a magic trick’s effectiveness have been published. In this experiment, an effort was made to disentangle the unique influence of different social and physical triggers of attentional misdirection on observers’ overt and covert attention. The ability of 120 participants to detect the mechanism of a cups-and-balls trick was assessed, and their visual fixations were recorded using an eye-tracker while they were watching the routine. All the investigated techniques of misdirection, including sole usage of social cues, were shown to increase the probability of missing the trick mechanism. Depending on the technique of misdirection used, very different gaze patterns were observed. A combination of social and physical techniques of misdirection influenced participants’ overt attention most effectively. PMID:27303327
Continued Data Acquisition Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwellenbach, David
This task focused on improving techniques for integrating data acquisition of secondary particles correlated in time with detected cosmic-ray muons. Scintillation detectors with Pulse Shape Discrimination (PSD) capability show the most promise as a detector technology based on work in FY13. Typically PSD parameters are determined prior to an experiment and the results are based on these parameters. By saving data in list mode, including the fully digitized waveform, any experiment can effectively be replayed to adjust PSD and other parameters for the best data capture. List mode requires time synchronization of two independent data acquisitions (DAQ) systems: the muonmore » tracker and the particle detector system. Techniques to synchronize these systems were studied. Two basic techniques were identified: real time mode and sequential mode. Real time mode is the preferred system but has proven to be a significant challenge since two FPGA systems with different clocking parameters must be synchronized. Sequential processing is expected to work with virtually any DAQ but requires more post processing to extract the data.« less
Recombinase polymerase amplification as a promising tool in hepatitis C virus diagnosis.
Zaghloul, Hosam; El-Shahat, Mahmoud
2014-12-27
Hepatitis C virus (HCV) infection represents a significant health problem and represents a heavy load on some countries like Egypt in which about 20% of the total population are infected. Initial infection is usually asymptomatic and result in chronic hepatitis that give rise to complications including cirrhosis and hepatocellular carcinoma. The management of HCV infection should not only be focus on therapy, but also to screen carrier individuals in order to prevent transmission. In the present, molecular detection and quantification of HCV genome by real time polymerase chain reaction (PCR) represent the gold standard in HCV diagnosis and plays a crucial role in the management of therapeutic regimens. However, real time PCR is a complicated approach and of limited distribution. On the other hand, isothermal DNA amplification techniques have been developed and offer molecular diagnosis of infectious dieses at point-of-care. In this review we discuss recombinase polymerase amplification technique and illustrate its diagnostic value over both PCR and other isothermal amplification techniques.
Chen, Qi; Zhou, Huanping; Song, Tze-Bin; Luo, Song; Hong, Ziruo; Duan, Hsin-Sheng; Dou, Letian; Liu, Yongsheng; Yang, Yang
2014-07-09
To improve the performance of the polycrystalline thin film devices, it requires a delicate control of its grain structures. As one of the most promising candidates among current thin film photovoltaic techniques, the organic/inorganic hybrid perovskites generally inherit polycrystalline nature and exhibit compositional/structural dependence in regard to their optoelectronic properties. Here, we demonstrate a controllable passivation technique for perovskite films, which enables their compositional change, and allows substantial enhancement in corresponding device performance. By releasing the organic species during annealing, PbI2 phase is presented in perovskite grain boundaries and at the relevant interfaces. The consequent passivation effects and underlying mechanisms are investigated with complementary characterizations, including scanning electron microscopy (SEM), X-ray diffraction (XRD), time-resolved photoluminescence decay (TRPL), scanning Kelvin probe microscopy (SKPM), and ultraviolet photoemission spectroscopy (UPS). This controllable self-induced passivation technique represents an important step to understand the polycrystalline nature of hybrid perovskite thin films and contributes to the development of perovskite solar cells judiciously.
New Imaging Strategies Using a Motion-Resistant Liver Sequence in Uncooperative Patients
Kim, Bong Soo; Lee, Kyung Ryeol; Goh, Myeng Ju
2014-01-01
MR imaging has unique benefits for evaluating the liver because of its high-resolution capability and ability to permit detailed assessment of anatomic lesions. In uncooperative patients, motion artifacts can impair the image quality and lead to the loss of diagnostic information. In this setting, the recent advances in motion-resistant liver MR techniques, including faster imaging protocols (e.g., dual-echo magnetization-prepared rapid-acquisition gradient echo (MP-RAGE), view-sharing technique), the data under-sampling (e.g., gradient recalled echo (GRE) with controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA), single-shot echo-train spin-echo (SS-ETSE)), and motion-artifact minimization method (e.g., radial GRE with/without k-space-weighted image contrast (KWIC)), can provide consistent, artifact-free images with adequate image quality and can lead to promising diagnostic performance. Understanding of the different motion-resistant options allows radiologists to adopt the most appropriate technique for their clinical practice and thereby significantly improve patient care. PMID:25243115
NASA Technical Reports Server (NTRS)
Moracz, D. J.; Shipley, R. J.; Moxson, V. S.; Killman, R. J.; Munson, H. E.
1992-01-01
The objective was to apply powder metallurgy techniques for the production of improved bearing elements, specifically balls and races, for advanced cryogenic turbopump bearings. The materials and fabrication techniques evaluated were judged on the basis of their ability to improve fatigue life, wear resistance, and corrosion resistance of Space Shuttle Main Engine (SSME) propellant bearings over the currently used 440C. An extensive list of candidate bearing alloys in five different categories was considered: tool/die steels, through hardened stainless steels, cobalt-base alloys, and gear steels. Testing of alloys for final consideration included hardness, rolling contact fatigue, cross cylinder wear, elevated temperature wear, room and cryogenic fracture toughness, stress corrosion cracking, and five-ball (rolling-sliding element) testing. Results of the program indicated two alloys that showed promise for improved bearing elements. These alloys were MRC-2001 and X-405. 57mm bearings were fabricated from the MRC-2001 alloy for further actual hardware rig testing by NASA-MSFC.
Fault diagnosis model for power transformers based on information fusion
NASA Astrophysics Data System (ADS)
Dong, Ming; Yan, Zhang; Yang, Li; Judd, Martin D.
2005-07-01
Methods used to assess the insulation status of power transformers before they deteriorate to a critical state include dissolved gas analysis (DGA), partial discharge (PD) detection and transfer function techniques, etc. All of these approaches require experience in order to correctly interpret the observations. Artificial intelligence (AI) is increasingly used to improve interpretation of the individual datasets. However, a satisfactory diagnosis may not be obtained if only one technique is used. For example, the exact location of PD cannot be predicted if only DGA is performed. However, using diverse methods may result in different diagnosis solutions, a problem that is addressed in this paper through the introduction of a fuzzy information infusion model. An inference scheme is proposed that yields consistent conclusions and manages the inherent uncertainty in the various methods. With the aid of information fusion, a framework is established that allows different diagnostic tools to be combined in a systematic way. The application of information fusion technique for insulation diagnostics of transformers is proved promising by means of examples.
Advances in Structural Biology and the Application to Biological Filament Systems.
Popp, David; Koh, Fujiet; Scipion, Clement P M; Ghoshdastider, Umesh; Narita, Akihiro; Holmes, Kenneth C; Robinson, Robert C
2018-04-01
Structural biology has experienced several transformative technological advances in recent years. These include: development of extremely bright X-ray sources (microfocus synchrotron beamlines and free electron lasers) and the use of electrons to extend protein crystallography to ever decreasing crystal sizes; and an increase in the resolution attainable by cryo-electron microscopy. Here we discuss the use of these techniques in general terms and highlight their application for biological filament systems, an area that is severely underrepresented in atomic resolution structures. We assemble a model of a capped tropomyosin-actin minifilament to demonstrate the utility of combining structures determined by different techniques. Finally, we survey the methods that attempt to transform high resolution structural biology into more physiological environments, such as the cell. Together these techniques promise a compelling decade for structural biology and, more importantly, they will provide exciting discoveries in understanding the designs and purposes of biological machines. © 2018 The Authors. BioEssays Published by WILEY Periodicals, Inc.
Freeze Casting for Assembling Bioinspired Structural Materials.
Cheng, Qunfeng; Huang, Chuanjin; Tomsia, Antoni P
2017-12-01
Nature is very successful in designing strong and tough, lightweight materials. Examples include seashells, bone, teeth, fish scales, wood, bamboo, silk, and many others. A distinctive feature of all these materials is that their properties are far superior to those of their constituent phases. Many of these natural materials are lamellar or layered in nature. With its "brick and mortar" structure, nacre is an example of a layered material that exhibits extraordinary physical properties. Finding inspiration in living organisms to create bioinspired materials is the subject of intensive research. Several processing techniques have been proposed to design materials mimicking natural materials, such as layer-by-layer deposition, self-assembly, electrophoretic deposition, hydrogel casting, doctor blading, and many others. Freeze casting, also known as ice-templating, is a technique that has received considerable attention in recent years to produce bioinspired bulk materials. Here, recent advances in the freeze-casting technique are reviewed for fabricating lamellar scaffolds by assembling different dimensional building blocks, including nanoparticles, polymer chains, nanofibers, and nanosheets. These lamellar scaffolds are often infiltrated by a second phase, typically a soft polymer matrix, a hard ceramic matrix, or a metal matrix. The unique architecture of the resultant bioinspired structural materials displays excellent mechanical properties. The challenges of the current research in using the freeze-casting technique to create materials large enough to be useful are also discussed, and the technique's promise for fabricating high-performance nacre-inspired structural materials in the future is reviewed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Maegerlein, Christian; Mönch, Sebastian; Boeckh-Behrens, Tobias; Lehm, Manuel; Hedderich, Dennis M; Berndt, Maria Teresa; Wunderlich, Silke; Zimmer, Claus; Kaesmacher, Johannes; Friedrich, Benjamin
2017-12-08
Stent retriever-based mechanical thrombectomy (MT) for emergent large vessel occlusions (ELVO) is often complicated by thrombus fragmentation causing distal embolization and embolization to new vascular territories. Well-established embolic protection approaches include proximal flow arrest and distal aspiration techniques during stent retriever maneuvers. Aiming at the reduction of thrombus fragmentation during MT we evaluated a technical approach combining proximal balloon occlusion together with direct thrombus aspiration during MT: the PROTECT technique. We performed a case-control study comparing the PROTECT technique with sole distal aspiration during MT regarding technical and procedural parameters, n=200 patients with ELVO of either the terminus of the internal carotid artery or the proximal middle artery were included. PROTECT resulted in a shorter procedure time (29 vs 40 min; P=0.002), in a higher rate of successful recanalizations (100% vs 78%; P=0.001) and a higher rate of complete reperfusions (70% vs 39%; P<0.001) compared with sole distal aspiration during MT. The PROTECT technique is a promising new approach to significantly reduce thrombus fragmentation and, hence distal embolization during MT. This safe and efficient technique needs to be validated in larger trials to confirm our results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Robinson, Laura F.; Adkins, Jess F.; Frank, Norbert; Gagon, Alexander C.; Prouty, Nancy G.; Roark, E. Brendan; van de Flierdt, Tina
2014-01-01
Deep-sea corals were discovered over a century ago, but it is only over recent years that focused efforts have been made to explore the history of the oceans using the geochemistry of their skeletal remains. They offer a promising archive of past oceanic environments given their global distribution, layered growth patterns, longevity and preservation as well as our ability to date them using radiometric techniques. This paper provides an overview of the current state-of-the-art in terms of geochemical approaches to using deep-sea coral skeletons to explore the history of the ocean. Deep-sea coral skeletons have a wide array of morphologies (e.g. solitary cup corals, branching colonial corals) and materials (calcite, aragonite and proteins). As such their biomineralization strategies are diverse, leading to complex geochemistry within coral skeletons. Notwithstanding these complications, progress has been made on developing methods for reconstructing the oceanographic environment in the past using trace elements and isotopic methods. Promising approaches within certain coral groups include clumped isotopes and Mg/Li for temperature reconstructions, boron isotopes and radiocarbon for carbon cycling, εNd, and radiocarbon for circulation studies and δ15N, P/Ca and Ba/Ca for nutrient tracer studies. Likewise there is now a range of techniques for dating deep-sea corals skeletons (e.g. U-series, radiocarbon), and determining their growth rates (e.g. radiocarbon and 210Pb). Dating studies on historic coral populations in the Atlantic, Southern Ocean and Pacific point to climate and environmental changes being dominant controls on coral populations over millennial and orbital timescales. This paper provides a review of a range of successes and promising approaches. It also highlights areas in which further research would likely provide new insights into biomineralization, palaeoceanography and distribution of past coral populations.
Development and feasibility study of very brief interventions for physical activity in primary care.
Pears, Sally; Morton, Katie; Bijker, Maaike; Sutton, Stephen; Hardeman, Wendy
2015-04-08
There is increasing interest in brief and very brief behaviour change interventions for physical activity as they are potentially scalable to the population level. However, few very brief interventions (VBIs) have been published, and evidence is lacking about their feasibility, acceptability and which 'active ingredients' (behaviour change techniques) would maximise their effectiveness. The aim of this research was to identify and develop promising VBIs for physical activity and test their feasibility and acceptability in the context of preventive health checks in primary care. The process included two stages, guided by four criteria: effectiveness, feasibility, acceptability, and cost. In Stage 1, we used an iterative approach informed by systematic reviews, a scoping review of BCTs, team discussion, stakeholder consultation, a qualitative study, and cost estimation to guide the development of promising VBIs. In Stage 2, a feasibility study assessed the feasibility and acceptability of the short-listed VBIs, using tape-recordings and interviews with practitioners (n = 4) and patients (n = 68), to decide which VBIs merited further evaluation in a pilot trial. Four VBIs were short-listed: Motivational intervention; Action Planning intervention; Pedometer intervention; and Physical Activity Diary intervention. All were deliverable in around five minutes and were feasible and acceptable to participants and practitioners. Based on the results of interviews with practitioners and patients, techniques from the VBIs were combined into three new VBIs for further evaluation in a pilot trial. Using a two-stage approach, in which we considered the practicability of VBIs (acceptability, feasibility and cost) alongside potential efficacy from the outset, we developed a short-list of four promising VBIs for physical activity and demonstrated that they were acceptable and feasible as part of a preventive health check in primary care. Current Controlled Trials ISRCTN02863077. Registered 5 October 2012.
Jones, Patrick; Rai, Bhavan Prasad; Nair, Rajesh; Somani, Bhaskar K
2015-10-01
Prostate artery embolization has emerged as a promising treatment for lower urinary tract symptoms secondary to benign prostatic hyperplasia. However, although it has gained increasing attention in radiology literature, it remains under-reported from a urologic perspective. We aim at providing an up-to-date review of this minimally invasive technique. Evidence suggests it is a promising and effective option for patients with large prostate volumes, multiple comorbidities, and suboptimal results from pharmacotherapy. Larger, randomized studies with longer follow-up periods are needed for this technique to be formally established in the urology community. Copyright © 2015 Elsevier Inc. All rights reserved.
Patterning techniques for metal organic frameworks.
Falcaro, Paolo; Buso, Dario; Hill, Anita J; Doherty, Cara M
2012-06-26
The tuneable pore size and architecture, chemical properties and functionalization make metal organic frameworks (MOFs) attractive versatile stimuli-responsive materials. In this context, MOFs hold promise for industrial applications and a fervent research field is currently investigating MOF properties for device fabrication. Although the material properties have a crucial role, the ability to precisely locate the functional material is fundamental for device fabrication. In this progress report, advancements in the control of MOF positioning and precise localization of functional materials within MOF crystals are presented. Advantages and limitations of each reviewed technique are critically investigated, and several important gaps in the technological development for device fabrication are highlighted. Finally, promising patterning techniques are presented which are inspired by previous studies in organic and inorganic crystal patterning for the future of MOF lithography. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nerve regeneration with aid of nanotechnology and cellular engineering.
Sedaghati, Tina; Yang, Shi Yu; Mosahebi, Afshin; Alavijeh, Mohammad S; Seifalian, Alexander M
2011-01-01
Repairing nerve defects with large gaps remains one of the most operative challenges for surgeons. Incomplete recovery from peripheral nerve injuries can produce a diversity of negative outcomes, including numbness, impairment of sensory or motor function, possibility of developing chronic pain, and devastating permanent disability. In the last few years, numerous microsurgical techniques, such as coaptation, nerve autograft, and different biological or polymeric nerve conduits, have been developed to reconstruct a long segment of damaged peripheral nerve. A few of these techniques are promising and have become popular among surgeons. Advancements in the field of tissue engineering have led to development of synthetic nerve conduits as an alternative for the nerve autograft technique, which is the current practice to bridge nerve defects with gaps larger than 30 mm. However, to date, despite significant progress in this field, no material has been found to be an ideal alternative to the nerve autograft. This article briefly reviews major up-to-date published studies using different materials as an alternative to the nerve autograft to bridge peripheral nerve gaps in an attempt to assess their ability to support and enhance nerve regeneration and their prospective drawbacks, and also highlights the promising hope for nerve regeneration with the next generation of nerve conduits, which has been significantly enhanced with the tissue engineering approach, especially with the aid of nanotechnology in development of the three-dimensional scaffold. The goal is to determine potential alternatives for nerve regeneration and repair that are simply and directly applicable in clinical conditions. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.
Discovery of Newer Therapeutic Leads for Prostate Cancer
2009-06-01
promising plant extracts and then prepare large-scale quantities of the plant extracts using supercritical fluid extraction techniques and use this...quantities of the plant extracts using supercritical fluid extraction techniques. Large scale plant collections were conducted for 14 of the top 20...material for bioassay-guided fractionation of the biologically active constituents using modern chromatography techniques. The chemical structures of
Detecting position using ARKit
NASA Astrophysics Data System (ADS)
Dilek, Ufuk; Erol, Mustafa
2018-03-01
Developed by using ARKit, a novel app which can be used to detect position in physics experiments was introduced. The ARKit relies on a new technique. The result of the experiment presented in this study was satisfactory, suggesting that the new technique can be employed in position detection experiments/demonstrations that are conducted using mobile technology. This technique has several promising advantages over video analysis.
Wood and Wood-Based Materials as Sensors—A Review of the Piezoelectric Effect in Wood
Robert J. Ross; Jiangming Kan; Xiping Wang; Julie Blankenburg; Janet I. Stockhausen; Roy F. Pellerin
2012-01-01
A variety of techniques have been investigated for use in assessing the physical and mechanical properties of wood products and structures. Ultrasound, transverse vibration, and stress-wave based methods are all techniques that have shown promise for many nondestructive evaluation applications. These techniques and others rely on the use of measurement systems to...
The tissue-selecting technique: segmental stapled hemorrhoidopexy.
Lin, Hong-Cheng; Lian, Lei; Xie, Shang-Kui; Peng, Hui; Tai, Jian-Dong; Ren, Dong-Lin
2013-11-01
We describe a technique for the management of prolapsing hemorrhoids, with the aim to minimize the risk of anal stricture and rectovaginal fistula and to reduce the impact of the stapling technique on rectal compliance. This modified procedure was successfully applied in China, and preliminary data showed promising outcomes (see Video, Supplemental Digital Content 1, http://links.lww.com/DCR/A117).
Effects of skylight polarization, cloudiness, and view angle on the detection of oil on water.
NASA Technical Reports Server (NTRS)
Millard, J. P.; Arvesen, J. C.
1971-01-01
Three passive radiometric techniques, which use the contrast of sunlight reflected and backscattered from oil and water in specific wavelength regions, have potential application for remote sensing of oil spills. These techniques consist of measuring (1) total radiance, (2) the polarization components (normal and parallel) of radiance, and (3) the difference between the normal and parallel components. In this paper, the best view directions for these techniques are evaluated, conclusions are drawn as to the most promising technique, and explanations are developed to describe why previous total-radiance measurements yielded highest contrast between oil and water under overcast skies. The technique based on measurement of only the normal polorization component appears to be the most promising. The differential technique should be further investigated because of its potential to reduce the component of backscattered light from below the surface of the water. Measurements should be made about 45 deg nadir view angle in the direction opposite the sun. Overcast sky conditions provide a higher intensity of skylight relative to clear sky conditions and a lower intensity of backscatter within the water relative to surface reflectance. These factors result in higher contrast between oil and water under overcast skies.
Rapid Separation of Bacteria from Blood—Review and Outlook
Alizadeh, Mahsa; Husseini, Ghaleb A.; McClellan, Daniel S.; Buchanan, Clara M.; Bledsoe, Colin G.; Robison, Richard A.; Blanco, Rae; Roeder, Beverly L.; Melville, Madison; Hunter, Alex K.
2017-01-01
The high morbidity and mortality rate of bloodstream infections involving antibiotic-resistant bacteria necessitate a rapid identification of the infectious organism and its resistance profile. Traditional methods based on culturing the blood typically require at least 24 h, and genetic amplification by PCR in the presence of blood components has been problematic. The rapid separation of bacteria from blood would facilitate their genetic identification by PCR or other methods so that the proper antibiotic regimen can quickly be selected for the septic patient. Microfluidic systems that separate bacteria from whole blood have been developed, but these are designed to process only microliter quantities of whole blood or only highly diluted blood. However, symptoms of clinical blood infections can be manifest with bacterial burdens perhaps as low as 10 CFU/mL, and thus milliliter quantities of blood must be processed to collect enough bacteria for reliable genetic analysis. This review considers the advantages and shortcomings of various methods to separate bacteria from blood, with emphasis on techniques that can be done in less than 10 min on milliliter-quantities of whole blood. These techniques include filtration, screening, centrifugation, sedimentation, hydrodynamic focusing, chemical capture on surfaces or beads, field-flow fractionation, and dielectrophoresis. Techniques with the most promise include screening, sedimentation, and magnetic bead capture, as they allow large quantities of blood to be processed quickly. Some microfluidic techniques can be scaled up. PMID:27160415
Infrared fiber optic evanescent wave spectroscopy: applications in biology and medicine
NASA Astrophysics Data System (ADS)
Afanasyeva, Natalia I.; Bruch, Reinhard F.; Katzir, Abraham
1999-04-01
A new powerful and highly sensitive technique for non-invasive biomedical diagnostics in vivo has been developed using Infrared Fiberoptic Evanescent Wave Fourier Transform Spectroscopy (FEW-FTIR). This compact and portable method allows to detect functional chemical groups and bonds via vibrational spectroscopy directly from surfaces including living tissue. Such differences and similarities in molecular structure of tissue and materials can be evaluated online. Operating in the attenuated total reflection (ATR) regime in the middle-infrared (MIR) range, the FEW-FTIR technique provides direct contact between the fiber probe and tissue for non-destructive, non-invasive, fast and remote (few meters) diagnostics and quality control of materials. This method utilizes highly flexible and extremely low loss unclad fibers, for example silver halide fibers. Applications of this method include investigations of normal skin, precancerous and cancerous conditions, monitoring of the process of aging, allergic reactions and radiation damage to the skin. This setup is suitable as well for the detection of the influence of environmental factors (sun, water, pollution, and weather) on skin surfaces. The FEW-FTIR technique is very promising also for fast histological examinations in vitro. In this review, we present recent investigations of skin, breast, lung, stomach, kidney tissues in vivo and ex vivo (during surgery) to define the areas of tumor localization. The main advantages of the FEW-FTIR technique for biomedical, clinical, and environmental applications are discussed.
Delouche, Aurélie; Attyé, Arnaud; Heck, Olivier; Grand, Sylvie; Kastler, Adrian; Lamalle, Laurent; Renard, Felix; Krainik, Alexandre
2016-01-01
Mild traumatic brain injury (mTBI) is a leading cause of disability in adults, many of whom report a distressing combination of physical, emotional and cognitive symptoms, collectively known as post-concussion syndrome, that persist after the injury. Significant developments in magnetic resonance diffusion imaging, involving voxel-based quantitative analysis through the measurement of fractional anisotropy or mean diffusivity, have enhanced our knowledge on the different stages of mTBI pathophysiology. Other diffusion imaging-derived techniques, including diffusion kurtosis imaging with multi-shell diffusion and high-order tractography models, have recently demonstrated their usefulness in mTBI. Our review starts by briefly outlining the physical basis of diffusion tensor imaging including the pitfalls for use in brain trauma, before discussing findings from diagnostic trials testing its usefulness in assessing brain structural changes in patients with mTBI. Use of different post-processing techniques for the diffusion imaging data, identified the corpus callosum as the most frequently injured structure in mTBI, particularly at sub-acute and chronic stages, and a crucial location for evaluating functional outcome. However, structural changes appear too subtle for identification using traditional diffusion biomarkers, thus disallowing expansion of these techniques into clinical practice. In this regard, more advanced diffusion techniques are promising in the assessment of this complex disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Joining dissimilar materials using Friction Stir scribe technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Piyush; Hovanski, Yuri; Jana, Saumyadeep
2016-10-03
The ability to effectively join materials with vastly different melting points like Aluminum-Steel, Polymer composites - metals has been one of the road blocks in realizing multi-material components for light weighting efforts. Friction stir scribe (FSS) technique is a promising method that produces continuous overlap joint between materials with vastly different melting regimes and high temperature flow characteristics. FSS uses an offset cutting tool at the tip of the FSW pin to create an insitu mechanical interlock between material interfaces. With investments from Vehicle Technology office, US DOE and several automotive manufacturers and suppliers PNNL is developing the FSS processmore » and has demonstrated viability of joining several material combinations. Details of welding trails, unique challenges and mitigation strategies in different material combinations will be discussed. Joint characterization including mechanical tests and joint performances will also be presented.« less
Polymer-Based Electrospun Nanofibers for Biomedical Applications
Al-Enizi, Abdullah M.; Zagho, Moustafa M.
2018-01-01
Electrospinning has been considered a promising and novel procedure to fabricate polymer nanofibers due to its simplicity, cost effectiveness, and high production rate, making this technique highly relevant for both industry and academia. It is used to fabricate non-woven fibers with unique characteristics such as high permeability, stability, porosity, surface area to volume ratio, ease of functionalization, and excellent mechanical performance. Nanofibers can be synthesized and tailored to suit a wide range of applications including energy, biotechnology, healthcare, and environmental engineering. A comprehensive outlook on the recent developments, and the influence of electrospinning on biomedical uses such as wound dressing, drug release, and tissue engineering, has been presented. Concerns regarding the procedural restrictions and research contests are addressed, in addition to providing insights about the future of this fabrication technique in the biomedical field. PMID:29677145
Highlights of NASA's Role in Developing State-of-the-Art Nondestructive Evaluation for Composites
NASA Technical Reports Server (NTRS)
2001-01-01
Since the 1970's, when the promise of composites was being pursued for aeronautics applications, NASA has had programs that addressed the development of NDE methods for composites. These efforts included both microscopic and macroscopic NDE. At the microscopic level, NDE investigations interrogated composites at the submicron to micron level to understand a composite's microstructure. A novel microfocus CT system was developed as well as the science underlying applications of acoustic microscopy to a composite's component material properties. On the macroscopic scale NDE techniques were developed that advanced the capabilities to be faster and more quantitative. Techniques such as stiffness imaging, ultrasonic arrays, laser based ultrasound, advanced acoustic emission, thermography, and novel health monitoring systems were researched. Underlying these methods has been a strong modeling capability that has aided in method development.
Extending the reach of health care for obesity and diabetes using virtual worlds.
Morie, Jacquelyn Ford; Chance, Eric
2011-03-01
Today's epidemic of obesity and diabetes poses challenges to health care similar to those facing soldiers who return with postdeployment mental health issues. These include geographic barriers, social stigma, and the need for behavioral change. Researchers at University of Southern California's Institute for Creative Technologies are adapting their extensive experience in technological solutions for training to techniques that can aid veterans in need. These techniques show promise for concerns in the growing crisis of "diabesity." Virtual reality (VR) has already demonstrated itself as an impactful treatment method for several behavioral and mental health domains. Virtual worlds, the successor technology of original VR, inherited many of its predecessor's strengths but also presents the new affordances of accessibility, social connectivity, and avatar usage, which pave the way toward future treatment options on a broader scale. © 2011 Diabetes Technology Society.
8th Spacecraft Charging Technology Conference
NASA Technical Reports Server (NTRS)
Minor, J. L. (Compiler)
2004-01-01
The 8th Spacecraft Charging Technology Conference was held in Huntsville, Alabama, October 20-24, 2003. Hosted by NASA s Space Environments and Effects (SEE) Program and co-sponsored by the Air Force Research Laboratory (AFRL) and the European Space Agency (ESA), the 2003 conference saw attendance from eleven countries with over 65 oral papers and 18 poster papers. Presentation topics highlighted the latest in spacecraft charging mitigation techniques and on-orbit investigations, including: Plasma Propulsion and Tethers; Ground Testing Techniques; Interactions of Spacecraft and Systems With the Natural and Induced Plasma Environment; Materials Characterizations; Models and Computer Simulations; Environment Specifications; Current Collection and Plasma Probes in Space Plasmas; On-Orbit Investigations. A round-table discussion of international standards regarding electrostatic discharge (ESD) testing was also held with the promise of continued discussions in the off years and an official continuation at the next conference.
Advanced MR Imaging of the Placenta: Exploring the in utero placenta-brain connection
Andescavage, Nickie Niforatos; DuPlessis, Adre; Limperopoulos, Catherine
2015-01-01
The placenta is a vital organ necessary for the healthy neurodevelopment of the fetus. Despite the known associations between placental dysfunction and neurologic impairment, there is a paucity of tools available to reliably assess in vivo placental health and function. Existing clinical tools for placental assessment remain insensitive in predicting and assessing placental well-being. Advanced MRI techniques hold significant promise for the dynamic, non-invasive, real-time assessment of placental health and identification of early placental-based disorders. In this review, we summarize the available clinical tools for placental assessment including ultrasound, Doppler, and conventional MRI. We then explore the emerging role of advanced placental MR imaging techniques for supporting the developing fetus, appraise the strengths and limitations of quantitative MRI in identifying early markers of placental dysfunction for improved pregnancy monitoring and fetal outcomes. PMID:25765905
Toward detection of marine vehicles on horizon from buoy camera
NASA Astrophysics Data System (ADS)
Fefilatyev, Sergiy; Goldgof, Dmitry B.; Langebrake, Lawrence
2007-10-01
This paper presents a new technique for automatic detection of marine vehicles in open sea from a buoy camera system using computer vision approach. Users of such system include border guards, military, port safety and flow management, sanctuary protection personnel. The system is intended to work autonomously, taking images of the surrounding ocean surface and analyzing them on the subject of presence of marine vehicles. The goal of the system is to detect an approximate window around the ship and prepare the small image for transmission and human evaluation. The proposed computer vision-based algorithm combines horizon detection method with edge detection and post-processing. The dataset of 100 images is used to evaluate the performance of proposed technique. We discuss promising results of ship detection and suggest necessary improvements for achieving better performance.
Zhu, Xiao-Hong; Lu, Ming; Chen, Wei
2018-07-01
Brain energy metabolism relies predominantly on glucose and oxygen utilization to generate biochemical energy in the form of adenosine triphosphate (ATP). ATP is essential for maintaining basal electrophysiological activities in a resting brain and supporting evoked neuronal activity under an activated state. Studying complex neuroenergetic processes in the brain requires sophisticated neuroimaging techniques enabling noninvasive and quantitative assessment of cerebral energy metabolisms and quantification of metabolic rates. Recent state-of-the-art in vivo X-nuclear MRS techniques, including 2 H, 17 O and 31 P MRS have shown promise, especially at ultra-high fields, in the quest for understanding neuroenergetics and brain function using preclinical models and in human subjects under healthy and diseased conditions. Copyright © 2018 Elsevier Inc. All rights reserved.
Study of information transfer optimization for communication satellites
NASA Technical Reports Server (NTRS)
Odenwalder, J. P.; Viterbi, A. J.; Jacobs, I. M.; Heller, J. A.
1973-01-01
The results are presented of a study of source coding, modulation/channel coding, and systems techniques for application to teleconferencing over high data rate digital communication satellite links. Simultaneous transmission of video, voice, data, and/or graphics is possible in various teleconferencing modes and one-way, two-way, and broadcast modes are considered. A satellite channel model including filters, limiter, a TWT, detectors, and an optimized equalizer is treated in detail. A complete analysis is presented for one set of system assumptions which exclude nonlinear gain and phase distortion in the TWT. Modulation, demodulation, and channel coding are considered, based on an additive white Gaussian noise channel model which is an idealization of an equalized channel. Source coding with emphasis on video data compression is reviewed, and the experimental facility utilized to test promising techniques is fully described.
Applied in situ product recovery in ABE fermentation.
Outram, Victoria; Lalander, Carl-Axel; Lee, Jonathan G M; Davies, E Timothy; Harvey, Adam P
2017-05-01
The production of biobutanol is hindered by the product's toxicity to the bacteria, which limits the productivity of the process. In situ product recovery of butanol can improve the productivity by removing the source of inhibition. This paper reviews in situ product recovery techniques applied to the acetone butanol ethanol fermentation in a stirred tank reactor. Methods of in situ recovery include gas stripping, vacuum fermentation, pervaporation, liquid-liquid extraction, perstraction, and adsorption, all of which have been investigated for the acetone, butanol, and ethanol fermentation. All techniques have shown an improvement in substrate utilization, yield, productivity or both. Different fermentation modes favored different techniques. For batch processing gas stripping and pervaporation were most favorable, but in fed-batch fermentations gas stripping and adsorption were most promising. During continuous processing perstraction appeared to offer the best improvement. The use of hybrid techniques can increase the final product concentration beyond that of single-stage techniques. Therefore, the selection of an in situ product recovery technique would require comparable information on the energy demand and economics of the process. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:563-579, 2017. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.
High Tech Aids Low Vision: A Review of Image Processing for the Visually Impaired.
Moshtael, Howard; Aslam, Tariq; Underwood, Ian; Dhillon, Baljean
2015-08-01
Recent advances in digital image processing provide promising methods for maximizing the residual vision of the visually impaired. This paper seeks to introduce this field to the readership and describe its current state as found in the literature. A systematic search revealed 37 studies that measure the value of image processing techniques for subjects with low vision. The techniques used are categorized according to their effect and the principal findings are summarized. The majority of participants preferred enhanced images over the original for a wide range of enhancement types. Adapting the contrast and spatial frequency content often improved performance at object recognition and reading speed, as did techniques that attenuate the image background and a technique that induced jitter. A lack of consistency in preference and performance measures was found, as well as a lack of independent studies. Nevertheless, the promising results should encourage further research in order to allow their widespread use in low-vision aids.
4800 B/S speech compression techniques for mobile satellite systems
NASA Technical Reports Server (NTRS)
Townes, S. A.; Barnwell, T. P., III; Rose, R. C.; Gersho, A.; Davidson, G.
1986-01-01
This paper will discuss three 4800 bps digital speech compression techniques currently being investigated for application in the mobile satellite service. These three techniques, vector adaptive predictive coding, vector excitation coding, and the self excited vocoder, are the most promising among a number of techniques being developed to possibly provide near-toll-quality speech compression while still keeping the bit-rate low enough for a power and bandwidth limited satellite service.
Virtual reality exposure in anxiety disorders: impact on psychophysiological reactivity.
Diemer, Julia; Mühlberger, Andreas; Pauli, Paul; Zwanzger, Peter
2014-08-01
Anxiety disorders are among the most frequently encountered psychiatric disorders. Recommended treatments include cognitive behavioural therapy (CBT) and/or medication. In recent years, beneficial effects of virtual reality (VR) exposure therapy have been shown, making this technique a promising addition to CBT. However, the ability of VR to mimic threatening stimuli in a way comparable to in vivo cues has been discussed. In particular, it has been questioned whether VR is capable of provoking psychophysiological symptoms of anxiety. Since psychophysiological arousal is considered a prerequisite for effective exposure treatment, this systematic review aims to evaluate the evidence for the potential of VR exposure to evoke and modulate psychophysiological fear reactions. PubMed and PsycINFO/Academic Search Premier databases were searched. Thirty-eight studies investigating challenge or habituation effects were included. VR exposure does provoke psychophysiological arousal, especially in terms of electrodermal activity. Results on psychophysiological habituation in VR are inconclusive. Study design and methodological rigour vary widely. Despite several limitations, this review provides evidence that VR exposure elicits psychophysiological fear reactions in patients and healthy subjects, rendering VR a promising treatment for anxiety disorders, and a potent research tool for future investigations of psychophysiological processes and their significance during exposure treatment.
The HACMS program: using formal methods to eliminate exploitable bugs
Launchbury, John; Richards, Raymond
2017-01-01
For decades, formal methods have offered the promise of verified software that does not have exploitable bugs. Until recently, however, it has not been possible to verify software of sufficient complexity to be useful. Recently, that situation has changed. SeL4 is an open-source operating system microkernel efficient enough to be used in a wide range of practical applications. Its designers proved it to be fully functionally correct, ensuring the absence of buffer overflows, null pointer exceptions, use-after-free errors, etc., and guaranteeing integrity and confidentiality. The CompCert Verifying C Compiler maps source C programs to provably equivalent assembly language, ensuring the absence of exploitable bugs in the compiler. A number of factors have enabled this revolution, including faster processors, increased automation, more extensive infrastructure, specialized logics and the decision to co-develop code and correctness proofs rather than verify existing artefacts. In this paper, we explore the promise and limitations of current formal-methods techniques. We discuss these issues in the context of DARPA’s HACMS program, which had as its goal the creation of high-assurance software for vehicles, including quadcopters, helicopters and automobiles. This article is part of the themed issue ‘Verified trustworthy software systems’. PMID:28871050
The HACMS program: using formal methods to eliminate exploitable bugs.
Fisher, Kathleen; Launchbury, John; Richards, Raymond
2017-10-13
For decades, formal methods have offered the promise of verified software that does not have exploitable bugs. Until recently, however, it has not been possible to verify software of sufficient complexity to be useful. Recently, that situation has changed. SeL4 is an open-source operating system microkernel efficient enough to be used in a wide range of practical applications. Its designers proved it to be fully functionally correct, ensuring the absence of buffer overflows, null pointer exceptions, use-after-free errors, etc., and guaranteeing integrity and confidentiality. The CompCert Verifying C Compiler maps source C programs to provably equivalent assembly language, ensuring the absence of exploitable bugs in the compiler. A number of factors have enabled this revolution, including faster processors, increased automation, more extensive infrastructure, specialized logics and the decision to co-develop code and correctness proofs rather than verify existing artefacts. In this paper, we explore the promise and limitations of current formal-methods techniques. We discuss these issues in the context of DARPA's HACMS program, which had as its goal the creation of high-assurance software for vehicles, including quadcopters, helicopters and automobiles.This article is part of the themed issue 'Verified trustworthy software systems'. © 2017 The Authors.
Intensity mapping the Universe
NASA Astrophysics Data System (ADS)
Croft, Rupert
Intensity mapping (IM) is the use of one or more emission lines to trace out the structure of the Universe without needing to resolve individual objects (such as galaxies or gas clouds). It is one of the most promising ways to radically extend the sky survey revolution in cosmology. By making spectra of the entire sky, rather than the one part in one million captured by current fiber spectrographs, one would be sensitive to all structure. There are potentially huge discoveries to be made in the vast majority of the sky that is currently spectrally unmapped, and also great gains in signal to noise of cosmological clustering measurements. Intensity mapping with the 21cm radio line has been explored theoretically by many and instruments are being built, particularly targeting the epoch of reionization. In the UV, visible and infrared, however other lines have enormous promise, and will be exploited by a range of future NASA missions including WFIRST, Euclid, and the proposed SPHEREx instrument, a dedicated intensity mapping satellite. The first measurement of large-scale structure outside the radio (using Lyman-alpha emission) was recently made by the PI and collaborators. The Ly-a absorption line also traces a continuous cosmological field, the Lyman-alpha forest, and the enormous recent increase in the number of observed quasar spectra have made it possible to interpolate between quasar sightlines to create three-dimensional maps. Being able to trace the same cosmic structure in emission and absorption offers huge advantages when we seek to understand the processes involved. It will help us make comprehensive maps of the Universe's contents and offer us the opportunity to create new powerful cosmological tests. In our proposed work we will explore the possibilities afforded by taking grism and integral field spectra of large volumes of the Universe, using state-of-the-art cosmological hydrodynamic simulations. We will make use of analysis techniques developed for the Lyman-alpha forest, as well as forest data itself to test them. Our aim is to develop intensity mapping as a cosmological tool and show how it can be used to answer questions about the contents of the Universe and the formation of structure that are not accessible to traditional techniques. The project will involve both direct sampling of cosmic structure and cross-correlations of line intensity and objects (including galaxies, quasars and absorption lines). Emission (e.g., H-alpha emission) and absorption (Ly alpha forest) will be viewed as continuous fields. Using large volume cosmological simulations combined with population synthesis techniques we will make simulated spectral data sets. The techniques to analyse these cosmological data cubes will be developed. The expected outcomes are the following: (a) Predictions for the large-scale structure of strong emission lines (including Ha, Hb, Lya, OII, OIII) in the Universe using hydrodynamic simulations including the contribution from all components, from quasars to diffuse emssion. (b) Simulations of realistic examples of the use of IM as a cosmological probe, including Baryon Oscillations and weak gravitational lensing. (c) Tests of techniques to detection and quantify the low surface brightness Universe, leading to a complete census of the cosmic intensity in specific lines such as OII and Ha. (d) Development of techniques to extract redshifts for individual galaxies from low angular resolution IM spectroscopy. (e) Mock catalogs for SPHEREx, Euclid and WFIRST spectroscopy of diffuse emission, as well as for the Galex grism survey and tests of analysis techniques on data from the latter.
Eke, Iris; Makinde, Adeola Y; Aryankalayil, Molykutty J; Ahmed, Mansoor M; Coleman, C Norman
2016-11-01
New technologies enabling the analysis of various molecules, including DNA, RNA, proteins and small metabolites, can aid in understanding the complex molecular processes in cancer cells. In particular, for the use of novel targeted therapeutics, elucidation of the mechanisms leading to cell death or survival is crucial to eliminate tumor resistance and optimize therapeutic efficacy. While some techniques, such as genomic analysis for identifying specific gene mutations or epigenetic testing of promoter methylation, are already in clinical use, other "omics-based" assays are still evolving. Here, we provide an overview of the current status of molecular profiling methods, including promising research strategies, as well as possible challenges, and their emerging role in radiation oncology. Published by Elsevier Ireland Ltd.
Interactive distributed hardware-accelerated LOD-sprite terrain rendering with stable frame rates
NASA Astrophysics Data System (ADS)
Swan, J. E., II; Arango, Jesus; Nakshatrala, Bala K.
2002-03-01
A stable frame rate is important for interactive rendering systems. Image-based modeling and rendering (IBMR) techniques, which model parts of the scene with image sprites, are a promising technique for interactive systems because they allow the sprite to be manipulated instead of the underlying scene geometry. However, with IBMR techniques a frequent problem is an unstable frame rate, because generating an image sprite (with 3D rendering) is time-consuming relative to manipulating the sprite (with 2D image resampling). This paper describes one solution to this problem, by distributing an IBMR technique into a collection of cooperating threads and executable programs across two computers. The particular IBMR technique distributed here is the LOD-Sprite algorithm. This technique uses a multiple level-of-detail (LOD) scene representation. It first renders a keyframe from a high-LOD representation, and then caches the frame as an image sprite. It renders subsequent spriteframes by texture-mapping the cached image sprite into a lower-LOD representation. We describe a distributed architecture and implementation of LOD-Sprite, in the context of terrain rendering, which takes advantage of graphics hardware. We present timing results which indicate we have achieved a stable frame rate. In addition to LOD-Sprite, our distribution method holds promise for other IBMR techniques.
Preparation of composite materials in space. Volume 2: Technical report
NASA Technical Reports Server (NTRS)
Steurer, W. H.; Kaye, S.
1973-01-01
A study to define promising materials, significant processing criteria, and the related processing techniques and apparatus for the preparation of composite materials in space was conducted. The study also established a program for zero gravity experiments and the required developmental efforts. The following composite types were considered: (1) metal-base fiber and particle composites, including cemented compacts, (2) controlled density metals, comprising plain and reinforced metal foams, and (3) unidirectionally solidified eutectic alloys. A program of suborbital and orbital experiments for the 1972 to 1978 time period was established to identify materials, processes, and required experiment equipment.
CNF Re-Inforced Polymer Composites
NASA Astrophysics Data System (ADS)
Lake, Max L.; Tibbetts, Gary G.; Glasgow, D. Gerald
2004-09-01
In properties of physical size, performance improvement, and production cost, carbon nanofiber (CNF) lies in a spectrum of materials bounded by carbon black, fullerenes, and single wall to multi-wall carbon nanotubes on one end and continuous carbon fiber on the other. Results show promise for use of CNF for modified electrical conductivity of polymer composites. Current compounding efforts focus on techniques for nanofiber dispersion designed to retain nanofiber length, including de-bulking methods and low shear melt processing. Heat treatment of CNF as a postproduction process has also been evaluated for its influence on electrical properties of CNF-reinforced polymer composites.
Recent Progress Towards Quantum Dot Solar Cells with Enhanced Optical Absorption.
Zheng, Zerui; Ji, Haining; Yu, Peng; Wang, Zhiming
2016-12-01
Quantum dot solar cells, as a promising candidate for the next generation solar cell technology, have received tremendous attention in the last 10 years. Some recent developments in epitaxy growth and device structures have opened up new avenues for practical quantum dot solar cells. Unfortunately, the performance of quantum dot solar cells is often plagued by marginal photon absorption. In this review, we focus on the recent progress made in enhancing optical absorption in quantum dot solar cells, including optimization of quantum dot growth, improving the solar cells structure, and engineering light trapping techniques.
Emile, Sameh H; Elfeki, Hossam; Shalaby, Mostafa; Sakr, Ahmad; Sileri, Pierpaolo; Laurberg, Søren; Wexner, Steven D
2017-11-01
This review aimed to determine the overall sensitivity and specificity of indocyanine green (ICG) near-infrared (NIR) fluorescence in sentinel lymph node (SLN) detection in Colorectal cancer (CRC). A systematic search in electronic databases was conducted. Twelve studies including 248 patients were reviewed. The median sensitivity, specificity, and accuracy rates were 73.7, 100, and 75.7. The pooled sensitivity and specificity rates were 71% and 84.6%. In conclusion, ICG-NIR fluorescence is a promising technique for detecting SLNs in CRC. © 2017 Wiley Periodicals, Inc.
In situ nuclear magnetic resonance microimaging of live biofilms in a microchannel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renslow, R. S.; Marshall, M. J.; Tucker, A. E.
Nuclear magnetic resonance (NMR) microimaging and spectroscopy was used to interrogate fluids of biological importance (e.g., water, buffer, medium solution) and live biofilms in a microchannel compatible for analyses at ambient pressure and under vacuum. Studies using buffer, growth medium, and actively growing Shewanella oneidensis biofilms were used to demonstrate in situ NMR microimaging measurement capabilities including velocity mapping, diffusion coefficient mapping, relaxometry, localized spectroscopy, and 2D and 3D imaging within a microchannel suitable for different analytical platforms. This technique is promising for diverse applications of correlative imaging using a portable microfluidic platform.
Imaging detectors and electronics—a view of the future
NASA Astrophysics Data System (ADS)
Spieler, Helmuth
2004-09-01
Imaging sensors and readout electronics have made tremendous strides in the past two decades. The application of modern semiconductor fabrication techniques and the introduction of customized monolithic integrated circuits have made large-scale imaging systems routine in high-energy physics. This technology is now finding its way into other areas, such as space missions, synchrotron light sources, and medical imaging. I review current developments and discuss the promise and limits of new technologies. Several detector systems are described as examples of future trends. The discussion emphasizes semiconductor detector systems, but I also include recent developments for large-scale superconducting detector arrays.
New energy conversion techniques in space, applicable to propulsion
NASA Technical Reports Server (NTRS)
Hertzberg, A.; Sun, K. C.
1989-01-01
The powering of aircraft with laser energy from a solar power satellite may be a promising new approach to the critical problem of the rising cost of fuel for aircraft transportation systems. The result is a nearly fuelless, pollution-free flight transportation system which is cost-competitive with the fuel-conservative airplane of the future. The major components of this flight system include a laser power satellite, relay satellites, laser-powered turbofans and a conventional airframe. The relay satellites are orbiting optical systems which intercept the beam from a power satellite and refocus and redirect the beam to its next target.
Computer numeric control generation of toric surfaces
NASA Astrophysics Data System (ADS)
Bradley, Norman D.; Ball, Gary A.; Keller, John R.
1994-05-01
Until recently, the manufacture of toric ophthalmic lenses relied largely upon expensive, manual techniques for generation and polishing. Recent gains in computer numeric control (CNC) technology and tooling enable lens designers to employ single- point diamond, fly-cutting methods in the production of torics. Fly-cutting methods continue to improve, significantly expanding lens design possibilities while lowering production costs. Advantages of CNC fly cutting include precise control of surface geometry, rapid production with high throughput, and high-quality lens surface finishes requiring minimal polishing. As accessibility and affordability increase within the ophthalmic market, torics promise to dramatically expand lens design choices available to consumers.
Human recognition in a video network
NASA Astrophysics Data System (ADS)
Bhanu, Bir
2009-10-01
Video networks is an emerging interdisciplinary field with significant and exciting scientific and technological challenges. It has great promise in solving many real-world problems and enabling a broad range of applications, including smart homes, video surveillance, environment and traffic monitoring, elderly care, intelligent environments, and entertainment in public and private spaces. This paper provides an overview of the design of a wireless video network as an experimental environment, camera selection, hand-off and control, anomaly detection. It addresses challenging questions for individual identification using gait and face at a distance and present new techniques and their comparison for robust identification.
USDA-ARS?s Scientific Manuscript database
Passive acoustic techniques for the measurement of Sediment-Generated Noise (SGN) in gravel-bed rivers present a promising alternative to traditional bedload measurement techniques. Where traditional methods are often prohibitively costly, particularly in labor requirements, and produce point-scale ...
USDA-ARS?s Scientific Manuscript database
Current wet chemical methods for biomass composition analysis using two-step sulfuric acid hydrolysis are time-consuming, labor-intensive, and unable to provide structural information about biomass. Infrared techniques provide fast, low-cost analysis, are non-destructive, and have shown promising re...
Past, Present and Future of UHECR Observations
NASA Astrophysics Data System (ADS)
Dawson, B. R.; Fukushima, M.; Sokolsky, P.
2017-12-01
Great advances have been made in the study of ultra-high energy cosmic rays (UHECR) in the past two decades. These include the discovery of the spectral cut-off near 5 x 10^19 eV and complex structure at lower energies, as well as increasingly precise information about the composition of cosmic rays as a function of energy. Important improvements in techniques, including extensive surface detector arrays and high resolution air fluorescence detectors, have been instrumental in facilitating this progress. We discuss the status of the field, including the open questions about the nature of spectral structure, systematic issues related to our understanding of composition, and emerging evidence for anisotropy at the highest energies. We review prospects for upgraded and future observatories including Telescope Array, Pierre Auger and JEM-EUSO and other space-based proposals, and discuss promising new technologies based on radio emission from extensive air showers produced by UHECR.
Taylor, George C.
1971-01-01
Hydrologic instrumentation and methodology for assessing water-resource potentials have originated largely in the developed countries of the temperature zone. The developing countries lie largely in the tropic zone, which contains the full gamut of the earth's climatic environments, including most of those of the temperate zone. For this reason, most hydrologic techniques have world-wide applicability. Techniques for assessing water-resource potentials for the high priority goals of economic growth are well established in the developing countries--but much more are well established in the developing countries--but much more so in some than in other. Conventional techniques for measurement and evaluation of basic hydrologic parameters are now well-understood in the developing countries and are generally adequate for their current needs and those of the immediate future. Institutional and economic constraints, however, inhibit growth of sustained programs of hydrologic data collection and application of the data to problems in engineering technology. Computer-based technology, including processing of hydrologic data and mathematical modelling of hydrologic parameters i also well-begun in many developing countries and has much wider potential application. In some developing counties, however, there is a tendency to look on the computer as a panacea for deficiencies in basic hydrologic data collection programs. This fallacy must be discouraged, as the computer is a tool and not a "magic box." There is no real substitute for sound programs of basic data collection. Nuclear and isotopic techniques are being used increasingly in the developed countries in the measurement and evaluation of virtually all hydrologic parameter in which conventional techniques have been used traditionally. Even in the developed countries, however, many hydrologists are not using nuclear techniques, simply because they lack knowledge of the principles involved and of the potential benefits. Nuclear methodology in hydrologic applications is generally more complex than the conventional and hence requires a high level of technical expertise for effective use. Application of nuclear techniques to hydrologic problems in the developing countries is likely to be marginal for some years to come, owing to the higher costs involved and expertise required. Nuclear techniques, however, would seem to have particular promise in studies of water movement in unsaturated soils and of erosion and sedimentation where conventional techniques are inadequate, inefficient and in some cases costly. Remote sensing offers great promise for synoptic evaluations of water resources and hydrologic processes, including the transient phenomena of the hydrologic cycle. Remote sensing is not, however, a panacea for deficiencies in hydrologic data programs in the developing countries. Rather it is a means for extending and augmenting on-the-ground observations ans surveys (ground truth) to evaluated water resources and hydrologic processes on a regionall or even continental scale. With respect to economic growth goals in developing countries, there are few identifiable gaps in existing hydrologic instrumentation and methodology insofar as appraisal, development and management of available water resources are concerned. What is needed is acceleration of institutional development and professional motivation toward more effective use of existing and proven methodology. Moreover, much sophisticated methodology can be applied effectively in the developing countries only when adequate levels of indigenous scientific skills have been reached and supportive institutional frameworks are evolved to viability.
Hoffmann, Alexandra; Bleser, Gabriele
2017-01-01
Background Chronic stress has been shown to be associated with disease. This link is not only direct but also indirect through harmful health behavior such as smoking or changing eating habits. The recent mHealth trend offers a new and promising approach to support the adoption and maintenance of appropriate stress management techniques. However, only few studies have dealt with the inclusion of evidence-based content within stress management apps for mobile phones. Objective The aim of this study was to evaluate stress management apps on the basis of a new taxonomy of effective emotion-focused stress management techniques and an established taxonomy of behavior change techniques. Methods Two trained and independent raters evaluated 62 free apps found in Google Play with regard to 26 behavior change and 15 emotion-focused stress management techniques in October 2015. Results The apps included an average of 4.3 behavior change techniques (SD 4.2) and 2.8 emotion-focused stress management techniques (SD 2.6). The behavior change technique score and stress management technique score were highly correlated (r=.82, P=.01). Conclusions The broad variation of different stress management strategies found in this sample of apps goes in line with those found in conventional stress management interventions and self-help literature. Moreover, this study provided a first step toward more detailed and standardized taxonomies, which can be used to investigate evidence-based content in stress management interventions and enable greater comparability between different intervention types. PMID:28232299
Final scientific and technical report: New experiments to measure the neutrino mass scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monreal, Benjamin
In this work, we made material progress towards future measurements of the mass of the neutrino. The neutrino is a fundamental particle, first observed in the 1950s and subjected to particularly intense study over the past 20 years. It is now known to have some, non-zero mass, but we are in an unusual situation of knowing the mass exists but not knowing what value it takes. The mass may be determined by precise measurements of certain radioactive decay distributions, particularly the beta decay of tritium. The KATRIN experiment is an international project which is nearing the beginning of a tritiummore » measurement campaign using a large electrostatic spectrumeter. This research included participation in KATRIN, including construction and delivery of a key calibration subsystem, the ``Rear Section''. To obtain sensitivity beyond KATRIN's, new techniques are required; this work included R&D on a new technique we call CRES (Cyclotron Resonance Electron Spectroscopy) which has promise to enable even more sensitive tritium decay measurements. We successfully carried out CRES spectroscopy in a model system in 2014, making an important step towards the design of a next-generation tritium experiment with new neutrino mass measurement abilities.« less
Smoking education programs 1960-1976.
Thompson, E L
1978-01-01
This paper is a review of published reports, in English, of educational programs designed to change smoking behavior. Attempts to change the smoking behavior of young people have included anti-smoking campaigns, youth-to-youth programs, and a variety of message themes and teaching methods. Instruction has been presented both by teachers who were committed or persuasive and by teachers who were neutral or presented both sides of the issue. Didactic teaching, group discussion, individual study, peer instruction, and mass media have been employed. Health effects of smoking, both short- and long-term effects, have been emphasized. Most methods used with youth have shown little success. Studies of other methods have produced contradictory results. Educational programs for adults have included large scale anti-smoking campaigns, smoking cessation clinics, and a variety of more specific withdrawal methods. These methods have included individual counseling, emotional role playing, aversive conditioning, desensitization, and specific techniques to reduce the likelihood that smoking will occur in situations previously associated with smoking. Some of these techniques have produced poor results while studies of other methods have shown inconsistent results. The two methods showing the most promise are individual counseling and smoking withdrawal clinics. PMID:25026
NASA Technical Reports Server (NTRS)
Noebe, Ronald; Draper, Susan; Gaydosh, Darrell; Garga, Anita; Lerch, Brad; Penney, Nicholas; Begelow, Glen; Padula, Santo, II; Brown, Jeff
2006-01-01
TiNiPt shape memory alloys are particularly promising for use as solid state actuators in environments up to 300 C, due to a reasonable balance of properties, including acceptable work output. However, one of the challenges to commercializing a viable high-temperature shape memory alloy (HTSMA) is to establish the appropriate primary and secondary processing techniques for fabrication of the material in a required product form such as rod and wire. Consequently, a Ti(50.5)Ni(29.5)Pt20 alloy was processed using several techniques including single-pass high-temperature extrusion, multiple-pass high-temperature extrusion, and cold drawing to produce bar stock, thin rod, and fine wire, respectively. The effects of heat treatment on the hardness, grain size, room temperature tensile properties, and transformation temperatures of hot- and cold-worked material were examined. Basic tensile properties as a function of temperature and the strain-temperature response of the alloy under constant load, for the determination of work output, were also investigated for various forms of the Ti(50.5)Ni(29.5)Pt20 alloy, including fine wire.
Smoking education programs 1960-1976.
Thompson, E L
1978-03-01
This paper is a review of published reports, in English, of educational programs designed to change smoking behavior. Attempts to change the smoking behavior of young people have included anti-smoking campaigns, youth-to-youth programs, and a variety of message themes and teaching methods. Instruction has been presented both by teachers who were committed or persuasive and by teachers who were neutral or presented both sides of the issue. Didactic teaching, group discussion, individual study, peer instruction, and mass media have been employed. Health effects of smoking, both short- and long-term effects, have been emphasized. Most methods used with youth have shown little success. Studies of other methods have produced contradictory results. Educational programs for adults have included large scale anti-smoking campaigns, smoking cessation clinics, and a variety of more specific withdrawal methods. These methods have included individual counseling, emotional role playing, aversive conditioning, desensitization, and specific techniques to reduce the likelihood that smoking will occur in situations previously associated with smoking. Some of these techniques have produced poor results while studies of other methods have shown inconsistent results. The two methods showing the most promise are individual counseling and smoking withdrawal clinics.
The Emergent Landscape of Detecting EGFR Mutations Using Circulating Tumor DNA in Lung Cancer
Wei, Fang; Wong, David T.; Su, Wu-Chou
2015-01-01
The advances in targeted therapies for lung cancer are based on the evaluation of specific gene mutations especially the epidermal growth factor receptor (EGFR). The assays largely depend on the acquisition of tumor tissue via biopsy before the initiation of therapy or after the onset of acquired resistance. However, the limitations of tissue biopsy including tumor heterogeneity and insufficient tissues for molecular testing are impotent clinical obstacles for mutation analysis and lung cancer treatment. Due to the invasive procedure of tissue biopsy and the progressive development of drug-resistant EGFR mutations, the effective initial detection and continuous monitoring of EGFR mutations are still unmet requirements. Circulating tumor DNA (ctDNA) detection is a promising biomarker for noninvasive assessment of cancer burden. Recent advancement of sensitive techniques in detecting EGFR mutations using ctDNA enables a broad range of clinical applications, including early detection of disease, prediction of treatment responses, and disease progression. This review not only introduces the biology and clinical implementations of ctDNA but also includes the updating information of recent advancement of techniques for detecting EGFR mutation using ctDNA in lung cancer. PMID:26448936
2016-01-01
The tunable properties of molecular materials place them among the favorites for a variety of future generation devices. In addition, to maintain the current trend of miniaturization of those devices, a departure from the present top-down production methods may soon be required and self-assembly appears among the most promising alternatives. On-surface synthesis unites the promises of molecular materials and of self-assembly, with the sturdiness of covalently bonded structures: an ideal scenario for future applications. Following this idea, we report the synthesis of functional extended nanowires by self-assembly. In particular, the products correspond to one-dimensional organic semiconductors. The uniaxial alignment provided by our substrate templates allows us to access with exquisite detail their electronic properties, including the full valence band dispersion, by combining local probes with spatial averaging techniques. We show how, by selectively doping the molecular precursors, the product’s energy level alignment can be tuned without compromising the charge carrier’s mobility. PMID:26841052
Minimally invasive surgery for intracerebral haemorrhage.
Barnes, Benjamin; Hanley, Daniel F; Carhuapoma, Juan R
2014-04-01
Spontaneous intracerebral haemorrhage (ICH) imposes a significant health and economic burden on society. Despite this, ICH remains the only stroke subtype without a definitive treatment. Without a clearly identified and effective treatment for spontaneous ICH, clinical practice varies greatly from aggressive surgery to supportive care alone. This review will discuss the current modalities of treatments for ICH including preliminary experience and investigative efforts to advance the care of these patients. Open surgery (craniotomy), prothrombotic agents and other therapeutic interventions have failed to significantly improve the outcome of these stroke victims. Recently, the Surgical Trial in Intracerebral Haemorrhage (STICH) II assessed the surgical management of patients with superficial intraparenchymal haematomas with negative results. MISTIE II and other trials of minimally invasive surgery (MIS) have shown promise for improving patient outcomes and a phase III trial started in late 2013. ICH lacks a definitive primary treatment as well as a therapy targeting surrounding perihematomal oedema and associated secondary damage. An ongoing phase III trial using MIS techniques shows promise for providing treatment for these patients.
Tackling the challenges of fully immersive head-mounted AR devices
NASA Astrophysics Data System (ADS)
Singer, Wolfgang; Hillenbrand, Matthias; Münz, Holger
2017-11-01
The optical requirements of fully immersive head mounted AR devices are inherently determined by the human visual system. The etendue of the visual system is large. As a consequence, the requirements for fully immersive head-mounted AR devices exceeds almost any high end optical system. Two promising solutions to achieve the large etendue and their challenges are discussed. Head-mounted augmented reality devices have been developed for decades - mostly for application within aircrafts and in combination with a heavy and bulky helmet. The established head-up displays for applications within automotive vehicles typically utilize similar techniques. Recently, there is the vision of eyeglasses with included augmentation, offering a large field of view, and being unobtrusively all-day wearable. There seems to be no simple solution to reach the functional performance requirements. Known technical solutions paths seem to be a dead-end, and some seem to offer promising perspectives, however with severe limitations. As an alternative, unobtrusively all-day wearable devices with a significantly smaller field of view are already possible.
Measurement of precipitation induced FUV emission and Geocoronal Lyman Alpha from the IMI mission
NASA Technical Reports Server (NTRS)
Mende, Stephen B.; Fuselier, S. A.; Rairden, R. L.
1995-01-01
This final report describes the activities of the Lockheed Martin Palo Alto Research Laboratory in studying the measurement of ion and electron precipitation induced Far Ultra-Violet (FUV) emissions and Geocoronal Lyman Alpha for the NASA Inner Magnetospheric Imager (IMI) mission. this study examined promising techniques that may allow combining several FUV instruments that would separately measure proton aurora, electron aurora, and geocoronal Lyman alpha into a single instrument operated on a spinning spacecraft. The study consisted of two parts. First, the geocoronal Lyman alpha, proton aurora, and electron aurora emissions were modeled to determine instrument requirements. Second, several promising techniques were investigated to determine if they were suitable for use in an IMI-type mission. Among the techniques investigated were the Hydrogen gas cell for eliminating cold geocoronal Lyman alpha emissions, and a coded aperture spectrometer with sufficient resolution to separate Doppler shifted Lyman alpha components.
Advanced smoke meter development survey and analysis
NASA Technical Reports Server (NTRS)
Pitz, R. W.; Penney, C. M.; Stanforth, C. M.; Shaffernocker, W. M.
1984-01-01
Ideal smoke meter characteristics are determined to provide a basis for evaluation of candidate systems. Five promising techniques are analyzed in detail to evaluate compilance with the practical smoke meter requirements. Four of the smoke measurement concepts are optical methods: Modulated Transmission (MODTRAN), Cross Beam Absorption Counter (CBAC), Laser Induced Incandescence (LIN), and Photoacoustic Spectroscopy (PAS). A rapid response filter instrument called a Taper Element Oscillating Microbalance (TEOM) is also evaluated. For each technique, the theoretical principles are described, the expected performance is determined, and the advantages and disadvantages are discussed The expected performance is evaluated against each of the smoke meter specifications, and the key questions for further study are given. The most promising smoke meter technique analyzed was MODTRAN, which is a variation on a direct transmission measurement. The soot-laden gas is passed through a transmission cell, and the gas pressure is modulated by a speaker.
USDA-ARS?s Scientific Manuscript database
The objectives of this study were to determine which seeding techniques are appropriate for enhancing the establishment of forage kochia, a promising revegetation species for sagebrush rangelands prone to invasion by exotic annual grasses. Specifically, we evaluated three seeding methods, two timing...
Optimization of connection techniques for multipoint satellite videoconference
NASA Astrophysics Data System (ADS)
Perrone, A.; Puccio, A.; Tirro, S.
1985-12-01
Videoconferencing is increasingly considered a convenient substitute for business travels, and satellites will remain for a long time the most convenient means for quick network implementation. The paper gives indications about the most promising connection and demand assignment techniques, and defines a possible protocol for information exchange among involved entities.
Adhesive luting of indirect restorations.
Krämer, N; Lohbauer, U; Frankenberger, R
2000-11-01
To describe the potential of adhesive luting procedures with respect to (1) material characteristics and classifications, (2) film thickness, (3) overhang control, (4) bonding to different inlay materials, (5) adhesion to tooth substrates and the problem of hypersensitivities, (6) wear of luting composites, and (7) clinical performance. A literature review of relevant studies of various in vitro and in vivo studies enables an overview of possibilities and limitations of adhesively luted indirect restorations. (1) Resin-based composites are the material of choice for adhesive luting. Both material properties and wear behavior of fine particle hybrid-type resin-based composites are superior to other materials. The use of compomers is questionable due to hygroscopic expansion and possible crack formation as proven for IPS Empress caps in vitro and in vivo. (2) Recent luting cements exhibit excellent flow characteristics with mean film thicknesses ranging between 8 microm and 21 microm. The ultrasonic insertion technique is recommended for viscous luting composites or conventional restorative composites utilizing their thixotropic properties. (3) For successful overhang control, good fit of the restoration (during luting) and high radiopacity of the cement (after luting) are indispensable. Overhang control is estimated easier when the ultrasonic insertion technique is applied. (4) The pre-treatments of ceramic inlays using hydrofluoric acid or silica coating result in effective bonding; for pre-treatment of resin-based composite inlays, silica coating is promising as well. (5) Bonding to enamel and dentin is proven clinically acceptable, but it should be performed with multi-step systems providing separate primers and bonding agents producing a perfect internal seal with almost no hypersensitivities. Dual-cured multi-step bonding agents provide the most promising potential. (6) The viscosity and filler content of the resin composite used for luting does not influence the wear characteristics within the marginal luting area in vivo. However, the ultrasonic insertion technique involving high viscosity materials provides enhanced handling characteristics for luting of tooth-colored inlays. (7) Clinical results with tooth-colored inlays and veneers are promising over periods of up to 10 yrs, including use in severely destroyed teeth.
Brain Stimulation in the Treatment of Chronic Neuropathic and Non-Cancerous Pain
Plow, EB; Pascual-Leone, A; Machado, A
2012-01-01
Chronic neuropathic pain is one of the most prevalent and debilitating disorders. Conventional medical management, however, remains frustrating for both patients and clinicians owing to poor specificity of pharmacotherapy, delayed-onset of analgesia and extensive side-effects. Neuromodulation presents as a promising alternative, or at least an adjunct, as it is more specific in inducing analgesia without associated risks of pharmacotherapy. Here, we discuss common clinical and investigational methods of neuromodulation. Compared to clinical spinal cord stimulation (SCS), investigational techniques of cerebral neuromodulation, both invasive [deep brain stimulation (DBS) and motor cortical stimulation (MCS)] and noninvasive [repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS)], may be more advantageous. By adaptively targeting the multi-dimensional experience of pain, subtended by integrative pain circuitry in the brain, including somatosensory and thalamocortical, limbic and cognitive, cerebral methods may modulate the sensory-discriminative, affective-emotional and evaluative-cognitive spheres of the pain neuromatrix. Despite promise, the current state of results alludes to the possibility that cerebral neuromodulation has thus far not been effective in producing analgesia as intended in patients with chronic pain disorders. These techniques, thus, remain investigational and off-label. We discuss issues implicated in inadequate efficacy, variability of responsiveness and poor retention of benefit, while recommending design and conceptual refinements for future trials of cerebral neuromodulation in management of chronic neuropathic pain. PMID:22484179
NASA Astrophysics Data System (ADS)
Laramie, Sydney M.; Milshtein, Jarrod D.; Breault, Tanya M.; Brushett, Fikile R.; Thompson, Levi T.
2016-09-01
Non-aqueous redox flow batteries (NAqRFBs) have recently received considerable attention as promising high energy density, low cost grid-level energy storage technologies. Despite these attractive features, NAqRFBs are still at an early stage of development and innovative design techniques are necessary to improve performance and decrease costs. In this work, we investigate multi-electron transfer, common ion exchange NAqRFBs. Common ion systems decrease the supporting electrolyte requirement, which subsequently improves active material solubility and decreases electrolyte cost. Voltammetric and electrolytic techniques are used to study the electrochemical performance and chemical compatibility of model redox active materials, iron (II) tris(2,2‧-bipyridine) tetrafluoroborate (Fe(bpy)3(BF4)2) and ferrocenylmethyl dimethyl ethyl ammonium tetrafluoroborate (Fc1N112-BF4). These results help disentangle complex cycling behavior observed in flow cell experiments. Further, a simple techno-economic model demonstrates the cost benefits of employing common ion exchange NAqRFBs, afforded by decreasing the salt and solvent contributions to total chemical cost. This study highlights two new concepts, common ion exchange and multi-electron transfer, for NAqRFBs through a demonstration flow cell employing model active species. In addition, the compatibility analysis developed for asymmetric chemistries can apply to other promising species, including organics, metal coordination complexes (MCCs) and mixed MCC/organic systems, enabling the design of low cost NAqRFBs.
De Luca, Rosaria; Torrisi, Michele; Piccolo, Adriana; Bonfiglio, Giovanni; Tomasello, Provvidenza; Naro, Antonino; Calabrò, Rocco Salvatore
2017-10-11
Cognitive impairment, as well as mood and anxiety disorders, occur frequently in patients following stroke. Aim of this study was to evaluate the effects of a combined rehabilitative treatment using conventional relaxation and respiratory techniques, in a specific rehabilitative virtual environment (by using Bts-Nirvana). A 58-year-old woman, affected by hemorrhagic stroke, underwent two different rehabilitation trainings, including either standard relaxation techniques alone in a common clinical setting or the same psychological approach in a semi-immersive virtual environment with an augmented sensorial (audio-video) and motor feedback (sensory motor-interaction). We evaluated the patient's cognitive and psychological profile before and after the two different trainings, by using a specific psychometric battery, aimed to assess cognitive status, attention processes and to estimate the presence of mood alterations, anxiety and coping strategies. Only at the end of the combined approach, we observed a significant improvement in attention and memory functions, with a nearly complete relief of anxiety symptoms and an improvement in coping strategies. Relaxation and respiratory techniques in a semi-immersive virtual reality environment, using Bts-Nirvana, may be a promising tool in improving attention process, coping strategies, and anxiety in individuals with neurological disorders, including stroke.
Biologic Approaches for the Treatment of Partial Tears of the Anterior Cruciate Ligament
Dallo, Ignacio; Chahla, Jorge; Mitchell, Justin J.; Pascual-Garrido, Cecilia; Feagin, John A.; LaPrade, Robert F.
2017-01-01
Background: Anterior cruciate ligament reconstruction (ACLR) has been established as the gold standard for treatment of complete ruptures of the anterior cruciate ligament (ACL) in active, symptomatic individuals. In contrast, treatment of partial tears of the ACL remains controversial. Biologically augmented ACL-repair techniques are expanding in an attempt to regenerate and improve healing and outcomes of both the native ACL and the reconstructed graft tissue. Purpose: To review the biologic treatment options for partial tears of the ACL. Study Design: Review. Methods: A literature review was performed that included searches of PubMed, Medline, and Cochrane databases using the following keywords: partial tear of the ACL, ACL repair, bone marrow concentrate, growth factors/healing enhancement, platelet-rich plasma (PRP), stem cell therapy. Results: The use of novel biologic ACL repair techniques, including growth factors, PRP, stem cells, and bioscaffolds, have been reported to result in promising preclinical and short-term clinical outcomes. Conclusion: The potential benefits of these biological augmentation approaches for partial ACL tears are improved healing, better proprioception, and a faster return to sport and activities of daily living when compared with standard reconstruction procedures. However, long-term studies with larger cohorts of patients and with technique validation are necessary to assess the real effect of these approaches. PMID:28210653
Critical Review of Noninvasive Optical Technologies for Wound Imaging
Jayachandran, Maanasa; Rodriguez, Suset; Solis, Elizabeth; Lei, Jiali; Godavarty, Anuradha
2016-01-01
Significance: Noninvasive imaging approaches can provide greater information about a wound than visual inspection during the wound healing and treatment process. This review article focuses on various optical imaging techniques developed to image different wound types (more specifically ulcers). Recent Advances: The noninvasive optical imaging approaches in this review include hyperspectral imaging, multispectral imaging, near-infrared spectroscopy (NIRS), diffuse reflectance spectroscopy, optical coherence tomography, laser Doppler imaging, laser speckle imaging, spatial frequency domain imaging, and fluorescence imaging. The various wounds imaged using these techniques include open wounds, chronic wounds, diabetic foot ulcers, decubitus ulcers, venous leg ulcers, and burns. Preliminary work in the development and implementation of a near-infrared optical scanner for wound imaging as a noncontact hand-held device is briefly described. The technology is based on NIRS and has demonstrated its potential to differentiate a healing from nonhealing wound region. Critical Issues: While most of the optical imaging techniques can penetrate few hundred microns to a 1–2 mm from the wound surface, NIRS has the potential to penetrate deeper, demonstrating the potential to image internal wounds. Future Directions: All the technologies are currently at various stages of translational efforts to the clinic, with NIRS holding a greater promise for physiological assessment of the wounds internal, beyond the gold-standard visual assessment. PMID:27602254
Prosthetic component segmentation with blur compensation: a fast method for 3D fluoroscopy.
Tarroni, Giacomo; Tersi, Luca; Corsi, Cristiana; Stagni, Rita
2012-06-01
A new method for prosthetic component segmentation from fluoroscopic images is presented. The hybrid approach we propose combines diffusion filtering, region growing and level-set techniques without exploiting any a priori knowledge of the analyzed geometry. The method was evaluated on a synthetic dataset including 270 images of knee and hip prosthesis merged to real fluoroscopic data simulating different conditions of blurring and illumination gradient. The performance of the method was assessed by comparing estimated contours to references using different metrics. Results showed that the segmentation procedure is fast, accurate, independent on the operator as well as on the specific geometrical characteristics of the prosthetic component, and able to compensate for amount of blurring and illumination gradient. Importantly, the method allows a strong reduction of required user interaction time when compared to traditional segmentation techniques. Its effectiveness and robustness in different image conditions, together with simplicity and fast implementation, make this prosthetic component segmentation procedure promising and suitable for multiple clinical applications including assessment of in vivo joint kinematics in a variety of cases.
Integration of technologies for hepatic tissue engineering.
Nahmias, Yaakov; Berthiaume, Francois; Yarmush, Martin L
2007-01-01
The liver is the largest internal organ in the body, responsible for over 500 metabolic, regulatory, and immune functions. Loss of liver function leads to liver failure which causes over 25,000 deaths/year in the United States. Efforts in the field of hepatic tissue engineering include the design of bioartificial liver systems to prolong patient's lives during liver failure, for drug toxicity screening and for the study of liver regeneration, ischemia/reperfusion injury, fibrosis, viral infection, and inflammation. This chapter will overview the current state-of-the-art in hepatology including isolated perfused liver, culture of liver slices and tissue explants, hepatocyte culture on collagen "sandwich" and spheroids, coculture of hepatocytes with non-parenchymal cells, and the integration of these culture techniques with microfluidics and reactor design. This work will discuss the role of oxygen and medium composition in hepatocyte culture and present promising new technologies for hepatocyte proliferation and function. We will also discuss liver development, architecture, and function as they relate to these culture techniques. Finally, we will review current opportunities and major challenges in integrating cell culture, bioreactor design, and microtechnology to develop new systems for novel applications.
A review: fabrication of porous polyurethane scaffolds.
Janik, H; Marzec, M
2015-03-01
The aim of tissue engineering is the fabrication of three-dimensional scaffolds that can be used for the reconstruction and regeneration of damaged or deformed tissues and organs. A wide variety of techniques have been developed to create either fibrous or porous scaffolds from polymers, metals, composite materials and ceramics. However, the most promising materials are biodegradable polymers due to their comprehensive mechanical properties, ability to control the rate of degradation and similarities to natural tissue structures. Polyurethanes (PUs) are attractive candidates for scaffold fabrication, since they are biocompatible, and have excellent mechanical properties and mechanical flexibility. PU can be applied to various methods of porous scaffold fabrication, among which are solvent casting/particulate leaching, thermally induced phase separation, gas foaming, emulsion freeze-drying and melt moulding. Scaffold properties obtained by these techniques, including pore size, interconnectivity and total porosity, all depend on the thermal processing parameters, and the porogen agent and solvents used. In this review, various polyurethane systems for scaffolds are discussed, as well as methods of fabrication, including the latest developments, and their advantages and disadvantages. Copyright © 2014. Published by Elsevier B.V.
Heat and mass transfer in combustion - Fundamental concepts and analytical techniques
NASA Technical Reports Server (NTRS)
Law, C. K.
1984-01-01
Fundamental combustion phenomena and the associated flame structures in laminar gaseous flows are discussed on physical bases within the framework of the three nondimensional parameters of interest to heat and mass transfer in chemically-reacting flows, namely the Damkoehler number, the Lewis number, and the Arrhenius number which is the ratio of the reaction activation energy to the characteristic thermal energy. The model problems selected for illustration are droplet combustion, boundary layer combustion, and the propagation, flammability, and stability of premixed flames. Fundamental concepts discussed include the flame structures for large activation energy reactions, S-curve interpretation of the ignition and extinctin states, reaction-induced local-similarity and non-similarity in boundary layer flows, the origin and removal of the cold boundary difficulty in modeling flame propagation, and effects of flame stretch and preferential diffusion on flame extinction and stability. Analytical techniques introduced include the Shvab-Zeldovich formulation, the local Shvab-Zeldovich formulation, flame-sheet approximation and the associated jump formulation, and large activation energy matched asymptotic analysis. Potentially promising research areas are suggested.
NASA Astrophysics Data System (ADS)
Manganaris, George A.; Goulas, Vlasios; Mellidou, Ifigeneia; Drogoudi, Pavlina
2017-12-01
Horticultural commodities (fruit and vegetables) are the major dietary source of several bioactive compounds of high nutraceutical value for humans, including polyphenols, carotenoids and vitamins. The aim of the current review was dual. Firstly, towards the eventual enhancement of horticultural crops with bio-functional compounds, the natural genetic variation in antioxidants found in different species and cultivar/genotypes is underlined. Notably, some landraces and/or traditional cultivars have been characterized by substantially higher phytochemical content, i.e. small tomato of Santorini island (cv. ‘Tomataki Santorinis’) possesses appreciably high amounts of ascorbic acid. The systematic screening of key bioactive compounds in a wide range of germplasm for the identification of promising genotypes and the restoration of key gene fractions from wild species and landraces may help in reducing the loss of agro-biodiversity, creating a healthier ‘gene pool’ as the basis of future adaptation. Towards this direction, large scale comparative studies in different cultivars/genotypes of a given species provide useful insights about the ones of higher nutritional value. Secondly, the advancements in the employment of analytical techniques to determine the antioxidant potential through a convenient, easy and fast way are outlined. Such analytical techniques include electron paramagnetic resonance (EPR) and infrared (IR) spectroscopy, electrochemical and chemometric methods, flow injection analysis (FIA), optical sensors and high resolution screening (HRS). Taking into consideration that fruits and vegetables are complex mixtures of water- and lipid-soluble antioxidants, the exploitation of chemometrics to develop “omics” platforms (i.e. metabolomics, foodomics) is a promising tool for researchers to decode and/or predict antioxidant activity of fresh produce. For industry, the use of cheap and rapid optical sensors and IR spectroscopy is recommended to estimate the antioxidant activity, hence legislation does not allow its correlation with health claims.
Manganaris, George A; Goulas, Vlasios; Mellidou, Ifigeneia; Drogoudi, Pavlina
2017-01-01
Horticultural commodities (fruit and vegetables) are the major dietary source of several bioactive compounds of high nutraceutical value for humans, including polyphenols, carotenoids and vitamins. The aim of the current review was dual. Firstly, toward the eventual enhancement of horticultural crops with bio-functional compounds, the natural genetic variation in antioxidants found in different species and cultivars/genotypes is underlined. Notably, some landraces and/or traditional cultivars have been characterized by substantially higher phytochemical content, i.e., small tomato of Santorini island (cv. "Tomataki Santorinis") possesses appreciably high amounts of ascorbic acid (AsA). The systematic screening of key bioactive compounds in a wide range of germplasm for the identification of promising genotypes and the restoration of key gene fractions from wild species and landraces may help in reducing the loss of agro-biodiversity, creating a healthier "gene pool" as the basis of future adaptation. Toward this direction, large scale comparative studies in different cultivars/genotypes of a given species provide useful insights about the ones of higher nutritional value. Secondly, the advancements in the employment of analytical techniques to determine the antioxidant potential through a convenient, easy and fast way are outlined. Such analytical techniques include electron paramagnetic resonance (EPR) and infrared (IR) spectroscopy, electrochemical, and chemometric methods, flow injection analysis (FIA), optical sensors, and high resolution screening (HRS). Taking into consideration that fruits and vegetables are complex mixtures of water- and lipid-soluble antioxidants, the exploitation of chemometrics to develop "omics" platforms (i.e., metabolomics, foodomics) is a promising tool for researchers to decode and/or predict antioxidant activity of fresh produce. For industry, the use of optical sensors and IR spectroscopy is recommended to estimate the antioxidant activity rapidly and at low cost, although legislation does not allow its correlation with health claims.
Shiomi, Kazu; Kitamura, Eiji; Ono, Mototsugu; Kondo, Yasuto; Naito, Masahito; Mikubo, Masashi; Matsui, Yoshio; Nishiyama, Kazutoshi; Suda, Takashi; Satoh, Yukitoshi
2018-03-01
We have used a promising, minimally invasive thoracoscopic technique of extended thymectomy for patients with myasthenia gravis (MG). The aim of this study was to report our promising technique, a modified single-port trans-subxiphoid approach (MTXA) and to compare perioperative outcomes and effects on MG between our approach and sternotomy. We retrospectively reviewed records of all patients undergoing extended thymectomy for MG and/or thymoma between January 1, 2010 and December 31, 2016. The patients were divided into the MTXA group and Sternotomy group. Of the 50 consecutive patients undergoing extended thymectomy for MG, finally, 13 patients undergoing our MTXA extended thymectomy technique were compared with 20 patients undergoing extended thymectomy via sternotomy. Intraoperative blood loss, postoperative length of stay, and C-reactive protein value on postoperative day 1 were significantly more favorable in the MTXA group than the Sternotomy group (P<0.0001, P=0.0040 and P=0.0073, respectively). Furthermore, no significant differences in the frequency of patients with improvement of their Quantitative Myasthenia Gravis score and/or MG-Activities of Daily Living scale, decrease in the serum level of acetylcholine receptor antibody, and dose reduction of oral prednisone were seen between the two groups. Our approach to extended thymectomy might be more favorable than sternotomy in patients with MG.
NASA Astrophysics Data System (ADS)
Georgiou, M.; Fysikopoulos, E.; Loudos, G.
2017-11-01
Nanoparticle based drug delivery is considered as a new, promising technology for the efficient treatment of various diseases. When nanoparticles are radiolabelled it is possible to image them, using molecular imaging techniques. The use of magnetic nanoparticles in hyperthermia is one of the most promising nanomedicine directions and requires the accurate, non-invasive, monitoring of temperature increase and drug release. The combination of imaging and therapy has opened the very promising Theranostics domain. In this work, we present a digital data acquisition scheme for nuclear medicine dedicated detectors for Theranostic applications.
Measurement techniques and instruments suitable for life-prediction testing of photovoltaic arrays
NASA Technical Reports Server (NTRS)
Noel, G. T.; Sliemers, F. A.; Deringer, G. C.; Wood, V. E.; Wilkes, K. E.; Gaines, G. B.; Carmichael, D. C.
1978-01-01
Array failure modes, relevant materials property changes, and primary degradation mechanisms are discussed as a prerequisite to identifying suitable measurement techniques and instruments. Candidate techniques and instruments are identified on the basis of extensive reviews of published and unpublished information. These methods are organized in six measurement categories - chemical, electrical, optical, thermal, mechanical, and other physicals. Using specified evaluation criteria, the most promising techniques and instruments for use in life prediction tests of arrays were selected.
Use of randomized sampling for analysis of metabolic networks.
Schellenberger, Jan; Palsson, Bernhard Ø
2009-02-27
Genome-scale metabolic network reconstructions in microorganisms have been formulated and studied for about 8 years. The constraint-based approach has shown great promise in analyzing the systemic properties of these network reconstructions. Notably, constraint-based models have been used successfully to predict the phenotypic effects of knock-outs and for metabolic engineering. The inherent uncertainty in both parameters and variables of large-scale models is significant and is well suited to study by Monte Carlo sampling of the solution space. These techniques have been applied extensively to the reaction rate (flux) space of networks, with more recent work focusing on dynamic/kinetic properties. Monte Carlo sampling as an analysis tool has many advantages, including the ability to work with missing data, the ability to apply post-processing techniques, and the ability to quantify uncertainty and to optimize experiments to reduce uncertainty. We present an overview of this emerging area of research in systems biology.
Consolidation of silicon nitride without additives. [for gas turbine engine efficiency increase
NASA Technical Reports Server (NTRS)
Sikora, P. F.; Yeh, H. C.
1976-01-01
The use of ceramics for gas turbine engine construction might make it possible to increase engine efficiency by raising operational temperatures to values beyond those which can be tolerated by metallic alloys. The most promising ceramics being investigated in this connection are Si3N4 and SiC. A description is presented of a study which had the objective to produce dense Si3N4. The two most common methods of consolidating Si3N4 currently being used include hot pressing and reaction sintering. The feasibility was explored of producing a sound, dense Si3N4 body without additives by means of conventional gas hot isostatic pressing techniques and an uncommon hydraulic hot isostatic pressing technique. It was found that Si3N4 can be densified without additions to a density which exceeds 95% of the theoretical value
Chemodynamical Clustering Applied to APOGEE Data: Rediscovering Globular Clusters
NASA Astrophysics Data System (ADS)
Chen, Boquan; D’Onghia, Elena; Pardy, Stephen A.; Pasquali, Anna; Bertelli Motta, Clio; Hanlon, Bret; Grebel, Eva K.
2018-06-01
We have developed a novel technique based on a clustering algorithm that searches for kinematically and chemically clustered stars in the APOGEE DR12 Cannon data. As compared to classical chemical tagging, the kinematic information included in our methodology allows us to identify stars that are members of known globular clusters with greater confidence. We apply our algorithm to the entire APOGEE catalog of 150,615 stars whose chemical abundances are derived by the Cannon. Our methodology found anticorrelations between the elements Al and Mg, Na and O, and C and N previously identified in the optical spectra in globular clusters, even though we omit these elements in our algorithm. Our algorithm identifies globular clusters without a priori knowledge of their locations in the sky. Thus, not only does this technique promise to discover new globular clusters, but it also allows us to identify candidate streams of kinematically and chemically clustered stars in the Milky Way.
Advancements in oxygen generation and humidity control by water vapor electrolysis
NASA Technical Reports Server (NTRS)
Heppner, D. B.; Sudar, M.; Lee, M. C.
1988-01-01
Regenerative processes for the revitalization of manned spacecraft atmospheres or other manned habitats are essential for realization of long-term space missions. These processes include oxygen generation through water electrolysis. One promising technique of water electrolysis is the direct conversion of the water vapor contained in the cabin air to oxygen. This technique is the subject of the present program on water vapor electrolysis development. The objectives were to incorporate technology improvements developed under other similar electrochemical programs and add new ones; design and fabricate a mutli-cell electrochemical module and a testing facility; and demonstrate through testing the improvements. Each aspect of the water vapor electrolysis cell was reviewed. The materials of construction and sizing of each element were investigated analytically and sometime experimentally. In addition, operational considerations such as temperature control in response to inlet conditions were investigated. Three specific quantitative goals were established.
Fiber-Based Tissue Engineering: Progress, Challenges, and Opportunities
Tamayol, Ali; Akbari, Mohsen; Annabi, Nasim; Paul, Arghya; Khademhosseini, Ali; Juncker, David
2013-01-01
Tissue engineering aims to improve the function of diseased or damaged organs by creating biological substitutes. To fabricate a functional tissue, the engineered construct should mimic the physiological environment including its structural, topographical, and mechanical properties. Moreover, the construct should facilitate nutrients and oxygen diffusion as well as removal of metabolic waste during tissue regeneration. In the last decade, fiber-based techniques such as weaving, knitting, braiding, as well as electrospinning, and direct writing have emerged as promising platforms for making 3D tissue constructs that can address the above mentioned challenges. Here, we critically review the techniques used to form cell-free and cell-laden fibers and to assemble them into scaffolds. We compare their mechanical properties, morphological features and biological activity. We discuss current challenges and future opportunities of fiber-based tissue engineering (FBTE) for use in research and clinical practice. PMID:23195284
Neural data science: accelerating the experiment-analysis-theory cycle in large-scale neuroscience.
Paninski, L; Cunningham, J P
2018-06-01
Modern large-scale multineuronal recording methodologies, including multielectrode arrays, calcium imaging, and optogenetic techniques, produce single-neuron resolution data of a magnitude and precision that were the realm of science fiction twenty years ago. The major bottlenecks in systems and circuit neuroscience no longer lie in simply collecting data from large neural populations, but also in understanding this data: developing novel scientific questions, with corresponding analysis techniques and experimental designs to fully harness these new capabilities and meaningfully interrogate these questions. Advances in methods for signal processing, network analysis, dimensionality reduction, and optimal control-developed in lockstep with advances in experimental neurotechnology-promise major breakthroughs in multiple fundamental neuroscience problems. These trends are clear in a broad array of subfields of modern neuroscience; this review focuses on recent advances in methods for analyzing neural time-series data with single-neuronal precision. Copyright © 2018 Elsevier Ltd. All rights reserved.
Collaborative filtering to improve navigation of large radiology knowledge resources.
Kahn, Charles E
2005-06-01
Collaborative filtering is a knowledge-discovery technique that can help guide readers to items of potential interest based on the experience of prior users. This study sought to determine the impact of collaborative filtering on navigation of a large, Web-based radiology knowledge resource. Collaborative filtering was applied to a collection of 1,168 radiology hypertext documents available via the Internet. An item-based collaborative filtering algorithm identified each document's six most closely related documents based on 248,304 page views in an 18-day period. Documents were amended to include links to their related documents, and use was analyzed over the next 5 days. The mean number of documents viewed per visit increased from 1.57 to 1.74 (P < 0.0001). Collaborative filtering can increase a radiology information resource's utilization and can improve its usefulness and ease of navigation. The technique holds promise for improving navigation of large Internet-based radiology knowledge resources.
Early Diagnosis of Breast Cancer.
Wang, Lulu
2017-07-05
Early-stage cancer detection could reduce breast cancer death rates significantly in the long-term. The most critical point for best prognosis is to identify early-stage cancer cells. Investigators have studied many breast diagnostic approaches, including mammography, magnetic resonance imaging, ultrasound, computerized tomography, positron emission tomography and biopsy. However, these techniques have some limitations such as being expensive, time consuming and not suitable for young women. Developing a high-sensitive and rapid early-stage breast cancer diagnostic method is urgent. In recent years, investigators have paid their attention in the development of biosensors to detect breast cancer using different biomarkers. Apart from biosensors and biomarkers, microwave imaging techniques have also been intensely studied as a promising diagnostic tool for rapid and cost-effective early-stage breast cancer detection. This paper aims to provide an overview on recent important achievements in breast screening methods (particularly on microwave imaging) and breast biomarkers along with biosensors for rapidly diagnosing breast cancer.
NASA Astrophysics Data System (ADS)
Gawior, D.; Rutkiewicz, P.; Malik, I.; Wistuba, M.
2017-11-01
LiDAR data provide new insights into the historical development of mining industry recorded in the topography and landscape. In the study on the lead ore mining in the 13th-17th century we identified remnants of mining activity in relief that are normally obscured by dense vegetation. The industry in Tarnowice Plateau was based on exploitation of galena from the bedrock. New technologies, including DEM from airborne LiDAR provide show that present landscape and relief of post-mining area under study developed during several, subsequent phases of exploitation when different techniques of exploitation were used and probably different types of ores were exploited. Study conducted on the Tarnowice Plateau proved that combining GIS visualization techniques with historical maps, among all geological maps, is a promising approach in reconstructing development of anthropogenic relief and landscape..
Electroencephalography and quantitative electroencephalography in mild traumatic brain injury.
Haneef, Zulfi; Levin, Harvey S; Frost, James D; Mizrahi, Eli M
2013-04-15
Mild traumatic brain injury (mTBI) causes brain injury resulting in electrophysiologic abnormalities visible in electroencephalography (EEG) recordings. Quantitative EEG (qEEG) makes use of quantitative techniques to analyze EEG characteristics such as frequency, amplitude, coherence, power, phase, and symmetry over time independently or in combination. QEEG has been evaluated for its use in making a diagnosis of mTBI and assessing prognosis, including the likelihood of progressing to the postconcussive syndrome (PCS) phase. We review the EEG and qEEG changes of mTBI described in the literature. An attempt is made to separate the findings seen during the acute, subacute, and chronic phases after mTBI. Brief mention is also made of the neurobiological correlates of qEEG using neuroimaging techniques or in histopathology. Although the literature indicates the promise of qEEG in making a diagnosis and indicating prognosis of mTBI, further study is needed to corroborate and refine these methods.
Frequency Dependence of Ultrasound Neurostimulation in the Mouse Brain
Ye, Patrick Peiyong; Brown, Julian R.; Pauly, Kim Butts
2016-01-01
Ultrasound neuromodulation holds promise as a non-invasive technique for neuromodulation of the central nervous system. However, much remains to be determined about how the technique can be transformed into a useful technology, including the effect of ultrasound frequency. Previous studies have demonstrated neuromodulation in vivo using frequencies less than 1 MHz, with a trend towards improved efficacy with lower frequency. However, using higher frequencies could offer improved ultrasound spatial resolution. We investigate the ultrasound neuromodulation effects in mice at various frequencies both below and above 1 MHz and find that frequencies up to 2.9 MHz can still be effective for generating motor responses, but also confirm that as frequency increases, sonications require significantly more intensity to achieve equivalent efficacy. We argue that our results provide evidence that favors either a particle displacement or a cavitation-based mechanism for the phenomenon of ultrasound neuromodulation. PMID:27090861
Nonpoint sources as external threats to coastal water quality: lessons from Park Service experience
Burroughs, R.H.
1993-01-01
Program design for nonpoint source control was considered through an analogous problem, external threats to national parks. Nonpoint sources are diffuse land activities that degrade water quality, and recent federal legislation seeks to limit them in coastal areas. External threats occur outside a park boundary but affect the purposes for, or resources within, a park. They have been subject to federal management for many decades. Nonpoint sources are a class of external threat. Therefore, programs to limit them should consider techniques used in part protection. These park techniques include 'hard approaches', which rely on power, usually through legal devices, and 'soft approaches', which utilize shared values and objectives. A linked approach, as exemplified at the Cape Cod National Seashore, appears most promising. In a linked approach, if a soft approach fails, the manager of the protected unit is empowered to take an alternative hard action to protect the resource.
Electroencephalography and Quantitative Electroencephalography in Mild Traumatic Brain Injury
Levin, Harvey S.; Frost, James D.; Mizrahi, Eli M.
2013-01-01
Abstract Mild traumatic brain injury (mTBI) causes brain injury resulting in electrophysiologic abnormalities visible in electroencephalography (EEG) recordings. Quantitative EEG (qEEG) makes use of quantitative techniques to analyze EEG characteristics such as frequency, amplitude, coherence, power, phase, and symmetry over time independently or in combination. QEEG has been evaluated for its use in making a diagnosis of mTBI and assessing prognosis, including the likelihood of progressing to the postconcussive syndrome (PCS) phase. We review the EEG and qEEG changes of mTBI described in the literature. An attempt is made to separate the findings seen during the acute, subacute, and chronic phases after mTBI. Brief mention is also made of the neurobiological correlates of qEEG using neuroimaging techniques or in histopathology. Although the literature indicates the promise of qEEG in making a diagnosis and indicating prognosis of mTBI, further study is needed to corroborate and refine these methods. PMID:23249295
Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael
2011-01-01
In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08–0.85 MPa) and times (5–60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. (E-mail: Bazoud@tcd.ie) PMID:21208732
Studies of mist deposition for the formation of quantum dot CdSe films
NASA Astrophysics Data System (ADS)
Price, S. C.; Shanmugasundaram, K.; Ramani, S.; Zhu, T.; Zhang, F.; Xu, J.; Mohney, S. E.; Zhang, Q.; Kshirsagar, A.; Ruzyllo, J.
2009-10-01
Films of CdSe(ZnS) colloidal nanocrystalline quantum dots (NQDs) were deposited on bare silicon, glass and polymer coated silicon using mist deposition. This effort is a part of an exploratory investigation in which this deposition technique is studied for the first time as a method to form semiconductor NQD films. The process parameters, including deposition time, solution concentration and electric field, were varied to change the thickness of the deposited film. Blanket films and films deposited through a shadow mask were created to investigate the method's ability to pattern films during the deposition process. The differences between these deposition modes in terms of film morphology were observed. Overall, the results show that mist deposition of quantum dots is a viable method for creating thin, patterned quantum dot films using colloidal solution as the precursor. It is concluded that this technique shows very good promise for quantum dot (light emitting diode, LED) fabrication.
Traveling Magnetic Field Applications for Materials Processing in Space
NASA Technical Reports Server (NTRS)
Motakef, S.; Grugel, R. N.; Mazuruk, K.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Including the capability to induce a controlled fluid flow in the melt can significantly enrich research on solidification phenomena in a microgravity environment. The traveling magnetic field (TMF) is a promising technique to achieve this goal and is the aim of our ground-based project. In this presentation we will discuss new theoretical as well as experimental results recently obtained by our group. In particular, we experimentally demonstrated efficient mixing of metal alloys in long tubes subjected to TMF during processing. Application of this technique can be an elegant solution to ensure melt homogenization prior to solidification in a microgravity environment where natural convection is generally absent. Results of our theoretical work on TMF induced flows, such as convection control in Bridgman as well as in the Traveling Heater method, will be presented. Possible applications of TMF on board the ISS will also be discussed.
Turovets, Sergei; Volkov, Vasily; Zherdetsky, Aleksej; Prakonina, Alena; Malony, Allen D
2014-01-01
The Electrical Impedance Tomography (EIT) and electroencephalography (EEG) forward problems in anisotropic inhomogeneous media like the human head belongs to the class of the three-dimensional boundary value problems for elliptic equations with mixed derivatives. We introduce and explore the performance of several new promising numerical techniques, which seem to be more suitable for solving these problems. The proposed numerical schemes combine the fictitious domain approach together with the finite-difference method and the optimally preconditioned Conjugate Gradient- (CG-) type iterative method for treatment of the discrete model. The numerical scheme includes the standard operations of summation and multiplication of sparse matrices and vector, as well as FFT, making it easy to implement and eligible for the effective parallel implementation. Some typical use cases for the EIT/EEG problems are considered demonstrating high efficiency of the proposed numerical technique.
Autoregressive statistical pattern recognition algorithms for damage detection in civil structures
NASA Astrophysics Data System (ADS)
Yao, Ruigen; Pakzad, Shamim N.
2012-08-01
Statistical pattern recognition has recently emerged as a promising set of complementary methods to system identification for automatic structural damage assessment. Its essence is to use well-known concepts in statistics for boundary definition of different pattern classes, such as those for damaged and undamaged structures. In this paper, several statistical pattern recognition algorithms using autoregressive models, including statistical control charts and hypothesis testing, are reviewed as potentially competitive damage detection techniques. To enhance the performance of statistical methods, new feature extraction techniques using model spectra and residual autocorrelation, together with resampling-based threshold construction methods, are proposed. Subsequently, simulated acceleration data from a multi degree-of-freedom system is generated to test and compare the efficiency of the existing and proposed algorithms. Data from laboratory experiments conducted on a truss and a large-scale bridge slab model are then used to further validate the damage detection methods and demonstrate the superior performance of proposed algorithms.
Synthesis and Biomedical Applications of Poly((meth)acrylic acid) Brushes.
Qu, Zhenyuan; Xu, Hong; Gu, Hongchen
2015-07-15
Poly((meth)acrylic acid) (P(M)AA) brushes possess a number of distinctive properties that are particularly attractive for biomedical applications. This minireview summarizes recent advances in the synthesis and biomedical applications of P(M)AA brushes and brushes containing P(M)AA segments. First, we review different surface-initiated polymerization (SIP) methods, with a focus on recent progress in the surface-initiated controlled/living radical polymerization (SI-CLRP) techniques used to generate P(M)AA brushes with a tailored structure. Next, we discuss biomolecule immobilization methods for P(M)AA brushes, including physical adsorption, covalent binding, and affinity interactions. Finally, typical biomedical applications of P(M)AA brushes are reviewed, and their performance is discussed based on their unique properties. We conclude that P(M)AA brushes are promising biomaterials, and more potential biomedical applications are expected to emerge with the further development of synthetic techniques and increased understanding of their interactions with biological systems.
Extending the Reach of Health Care for Obesity and Diabetes Using Virtual Worlds
Morie, Jacquelyn Ford; Chance, Eric
2011-01-01
Today’s epidemic of obesity and diabetes poses challenges to health care similar to those facing soldiers who return with postdeployment mental health issues. These include geographic barriers, social stigma, and the need for behavioral change. Researchers at University of Southern California’s Institute for Creative Technologies are adapting their extensive experience in technological solutions for training to techniques that can aid veterans in need. These techniques show promise for concerns in the growing crisis of “diabesity.” Virtual reality (VR) has already demonstrated itself as an impactful treatment method for several behavioral and mental health domains. Virtual worlds, the successor technology of original VR, inherited many of its predecessor’s strengths but also presents the new affordances of accessibility, social connectivity, and avatar usage, which pave the way toward future treatment options on a broader scale. PMID:21527093
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connor, D.M.; Miller, L.; Benveniste, H.
Our understanding of early development in Alzheimer's disease (AD) is clouded by the scale at which the disease progresses; amyloid beta (A{beta}) plaques, a hallmark feature of AD, are small ({approx} 50 {micro}m) and low contrast in diagnostic clinical imaging techniques. Diffraction enhanced imaging (DEI), a phase contrast x-ray imaging technique, has greater soft tissue contrast than conventional radiography and generates higher resolution images than magnetic resonance microimaging. Thus, in this proof of principle study, DEI in micro-CT mode was performed on the brains of AD-model mice to determine if DEI can visualize A{beta} plaques. Results revealed small nodules inmore » the cortex and hippocampus of the brain. Histology confirmed that the features seen in the DEI images of the brain were A{beta} plaques. Several anatomical structures, including hippocampal subregions and white matter tracks, were also observed. Thus, DEI has strong promise in early diagnosis of AD, as well as general studies of the mouse brain.« less
Single-shot readout of accumulation mode Si/SiGe spin qubits using RF reflectometry
NASA Astrophysics Data System (ADS)
Volk, Christian; Martins, Frederico; Malinowski, Filip; Marcus, Charles M.; Kuemmeth, Ferdinand
Spin qubits based on gate-defined quantum dots are promising systems for realizing quantum computation. Due to their low concentration of nuclear-spin-carrying isotopes, Si/SiGe heterostructures are of particular interest. While high fidelities have been reported for single-qubit and two-qubit gate operations, qubit initialization and measurement times are relatively slow. In order to develop fast read-out techniques compatible with the operation of spin qubits, we characterize double and triple quantum dots confined in undoped Si/Si0.7Ge0.3 heterostructures using accumulation and depletion gates and a nearby RF charge sensor dot. We implement a RF reflectometry technique that allows single-shot charge read-out at integration times on the order of a few μs. We show our recent advancement towards implementing spin qubits in these structures, including spin-selective single-shot read-out.
Millimetre-Wave Backhaul for 5G Networks: Challenges and Solutions.
Feng, Wei; Li, Yong; Jin, Depeng; Su, Li; Chen, Sheng
2016-06-16
The trend for dense deployment in future 5G mobile communication networks makes current wired backhaul infeasible owing to the high cost. Millimetre-wave (mm-wave) communication, a promising technique with the capability of providing a multi-gigabit transmission rate, offers a flexible and cost-effective candidate for 5G backhauling. By exploiting highly directional antennas, it becomes practical to cope with explosive traffic demands and to deal with interference problems. Several advancements in physical layer technology, such as hybrid beamforming and full duplexing, bring new challenges and opportunities for mm-wave backhaul. This article introduces a design framework for 5G mm-wave backhaul, including routing, spatial reuse scheduling and physical layer techniques. The associated optimization model, open problems and potential solutions are discussed to fully exploit the throughput gain of the backhaul network. Extensive simulations are conducted to verify the potential benefits of the proposed method for the 5G mm-wave backhaul design.
Dot-Projection Photogrammetry and Videogrammetry of Gossamer Space Structures
NASA Technical Reports Server (NTRS)
Pappa, Richard S.; Black, Jonathan T.; Blandino, Joseph R.; Jones, Thomas W.; Danehy, Paul M.; Dorrington, Adrian A.
2003-01-01
This paper documents the technique of using hundreds or thousands of projected dots of light as targets for photogrammetry and videogrammetry of gossamer space structures. Photogrammetry calculates the three-dimensional coordinates of each target on the structure, and videogrammetry tracks the coordinates versus time. Gossamer structures characteristically contain large areas of delicate, thin-film membranes. Examples include solar sails, large antennas, inflatable solar arrays, solar power concentrators and transmitters, sun shields, and planetary balloons and habitats. Using projected-dot targets avoids the unwanted mass, stiffness, and installation costs of traditional retroreflective adhesive targets. Four laboratory applications are covered that demonstrate the practical effectiveness of white-light dot projection for both static-shape and dynamic measurement of reflective and diffuse surfaces, respectively. Comparisons are made between dot-projection videogrammetry and traditional laser vibrometry for membrane vibration measurements. The paper closes by introducing a promising extension of existing techniques using a novel laser-induced fluorescence approach.
NASA Astrophysics Data System (ADS)
Eshein, Adam; Nguyen, The-Quyen; Radosevich, Andrew J.; Gould, Bradley; Wu, Wenli; Konda, Vani; Yang, Leslie W.; Koons, Ann; Feder, Seth; Valuckaite, Vesta; Roy, Hemant K.; Backman, Vadim
2016-03-01
While there are a plethora of in-vivo spectroscopic techniques that have demonstrated the ability to detect a number of diseases in research trials, very few techniques have successfully become a fully realized clinical technology. This is primarily due to the stringent demands on a clinical device for widespread implementation. Some of these demands include: simple operation requiring minimal or no training, safe for in-vivo patient use, no disruption to normal clinic workflow, tracking of system performance, warning for measurement abnormality, and meeting all FDA guidelines for medical use. Previously, our group developed a fiber optic probe-based optical sensing technique known as low-coherence enhanced backscattering spectroscopy (LEBS) to quantify tissue ultrastructure in-vivo. Now we have developed this technique for the application of prescreening patients for colonoscopy in a primary care (PC) clinical setting. To meet the stringent requirements for a viable medical device used in a PC clinical setting, we developed several novel components including an automated calibration tool, optical contact sensor for signal acquisition, and a contamination sensor to identify measurements which have been affected by debris. The end result is a state-of-the-art medical device that can be realistically used by a PC physician to assess a person's risk for harboring colorectal precancerous lesions. The pilot study of this system shows great promise with excellent stability and accuracy in identifying high-risk patients. While this system has been designed and optimized for our specific application, the system and design concepts are universal to most in-vivo fiber optic based spectroscopic techniques.
Hopkins, Susan R; Prisk, G Kim
2010-12-01
Since the lung receives the entire cardiac output, sophisticated imaging techniques are not required in order to measure total organ perfusion. However, for many years studying lung function has required physiologists to consider the lung as a single entity: in imaging terms as a single voxel. Since imaging, and in particular functional imaging, allows the acquisition of spatial information important for studying lung function, these techniques provide considerable promise and are of great interest for pulmonary physiologists. In particular, despite the challenges of low proton density and short T2* in the lung, noncontrast MRI techniques to measure pulmonary perfusion have several advantages including high reliability and the ability to make repeated measurements under a number of physiologic conditions. This brief review focuses on the application of a particular arterial spin labeling (ASL) technique, ASL-FAIRER (flow sensitive inversion recovery with an extra radiofrequency pulse), to answer physiologic questions related to pulmonary function in health and disease. The associated measurement of regional proton density to correct for gravitational-based lung deformation (the "Slinky" effect (Slinky is a registered trademark of Pauf-Slinky incorporated)) and issues related to absolute quantification are also discussed. Copyright © 2010 Wiley-Liss, Inc.
Analytical Characterisation of Nanoscale Zero-Valent Iron: A ...
Zero-valent iron nanoparticles (nZVI) have been widely tested as they are showing significant promise for environmental remediation. However, many recent studies have demonstrated that their mobility and reactivity in subsurface environments are significantly affected by their tendency to aggregate. Both the mobility and reactivity of nZVI mainly depends on properties such as particle size, surface chemistry and bulk composition. In order to ensure efficient remediation, it is crucial to accurately assess and understand the implications of these properties before deploying these materials into contaminated environments. Many analytical techniques are now available to determine these parameters and this paper provides a critical review of their usefulness and limitations for nZVI characterisation. These analytical techniques include microscopy and light scattering techniques for the determination of particle size, size distribution and aggregation state, and X-ray techniques for the characterisation of surface chemistry and bulk composition. Example characterisation data derived from commercial nZVI materials is used to further illustrate method strengths and limitations. Finally, some important challenges with respect to the characterisation of nZVI in groundwater samples are discussed. In recent years, manufactured nanoparticles (MNPs) have attracted increasing interest for their potential applications in the treatment of contaminated soil and water. In compar
Maione, Camila; Barbosa, Rommel Melgaço
2018-01-24
Rice is one of the most important staple foods around the world. Authentication of rice is one of the most addressed concerns in the present literature, which includes recognition of its geographical origin and variety, certification of organic rice and many other issues. Good results have been achieved by multivariate data analysis and data mining techniques when combined with specific parameters for ascertaining authenticity and many other useful characteristics of rice, such as quality, yield and others. This paper brings a review of the recent research projects on discrimination and authentication of rice using multivariate data analysis and data mining techniques. We found that data obtained from image processing, molecular and atomic spectroscopy, elemental fingerprinting, genetic markers, molecular content and others are promising sources of information regarding geographical origin, variety and other aspects of rice, being widely used combined with multivariate data analysis techniques. Principal component analysis and linear discriminant analysis are the preferred methods, but several other data classification techniques such as support vector machines, artificial neural networks and others are also frequently present in some studies and show high performance for discrimination of rice.
Polarized Power Spectra from HERA-19 Commissioning Data: Effect of Calibration Techniques
NASA Astrophysics Data System (ADS)
Chichura, Paul; Igarashi, Amy; Fox Fortino, Austin; Kohn, Saul; Aguirre, James; HERA Collaboration
2018-01-01
Studying the Epoch of Reionization (EOR) is crucial for cosmologists as it not only provides information about the first generation of stars and galaxies, but it may also help answer any number of fundamental astrophysical questions. The Hydrogen Epoch of Reionization Array (HERA) is doing this by examining emission from the 21cm hyperfine transition of neutral hydrogen, which has been identified as a promising probe of reionization. Currently, HERA is still in its commissioning phase; 37 of the planned 350 dishes have been constructed and analysis has begun for data received from the first 19 dishes built. With the creation of fully polarized power spectra, we investigate how different data calibration techniques affect the power spectra and whether or not ordering these techniques in different ways affects the results. These calibration techniques include using both non-imaging redundant measurements within the array to calibrate, as well as more traditional approaches based on imaging and calibrating to a model of sky. We explore the degree to which the different calibration schemes affect leakage of foreground emission to regions of Fourier space where EoR the power spectrum is expected to be measurable.
Pharmacological imaging as a tool to visualise dopaminergic neurotoxicity.
Schrantee, A; Reneman, L
2014-09-01
Dopamine abnormalities underlie a wide variety of psychopathologies, including ADHD and schizophrenia. A new imaging technique, pharmacological magnetic resonance imaging (phMRI), is a promising non-invasive technique to visualize the dopaminergic system in the brain. In this review we explore the clinical potential of phMRI in detecting dopamine dysfunction or neurotoxicity, assess its strengths and weaknesses and identify directions for future research. Preclinically, phMRI is able to detect severe dopaminergic abnormalities quite similar to conventional techniques such as PET and SPECT. phMRI benefits from its high spatial resolution and the possibility to visualize both local and downstream effects of dopaminergic neurotransmission. In addition, it allows for repeated measurements and assessments in vulnerable populations. The major challenge is the complex interpretation of phMRI results. Future studies in patients with dopaminergic abnormalities need to confirm the currently reviewed preclinical findings to validate the technique in a clinical setting. Eventually, based on the current review we expect that phMRI can be of use in a clinical setting involving vulnerable populations (such as children and adolescents) for diagnosis and monitoring treatment efficacy. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Frasinski, Leszek J.
2016-08-01
Recent technological advances in the generation of intense femtosecond pulses have made covariance mapping an attractive analytical technique. The laser pulses available are so intense that often thousands of ionisation and Coulomb explosion events will occur within each pulse. To understand the physics of these processes the photoelectrons and photoions need to be correlated, and covariance mapping is well suited for operating at the high counting rates of these laser sources. Partial covariance is particularly useful in experiments with x-ray free electron lasers, because it is capable of suppressing pulse fluctuation effects. A variety of covariance mapping methods is described: simple, partial (single- and multi-parameter), sliced, contingent and multi-dimensional. The relationship to coincidence techniques is discussed. Covariance mapping has been used in many areas of science and technology: inner-shell excitation and Auger decay, multiphoton and multielectron ionisation, time-of-flight and angle-resolved spectrometry, infrared spectroscopy, nuclear magnetic resonance imaging, stimulated Raman scattering, directional gamma ray sensing, welding diagnostics and brain connectivity studies (connectomics). This review gives practical advice for implementing the technique and interpreting the results, including its limitations and instrumental constraints. It also summarises recent theoretical studies, highlights unsolved problems and outlines a personal view on the most promising research directions.
Directional analysis and filtering for dust storm detection in NOAA-AVHRR imagery
NASA Astrophysics Data System (ADS)
Janugani, S.; Jayaram, V.; Cabrera, S. D.; Rosiles, J. G.; Gill, T. E.; Rivera Rivera, N.
2009-05-01
In this paper, we propose spatio-spectral processing techniques for the detection of dust storms and automatically finding its transport direction in 5-band NOAA-AVHRR imagery. Previous methods that use simple band math analysis have produced promising results but have drawbacks in producing consistent results when low signal to noise ratio (SNR) images are used. Moreover, in seeking to automate the dust storm detection, the presence of clouds in the vicinity of the dust storm creates a challenge in being able to distinguish these two types of image texture. This paper not only addresses the detection of the dust storm in the imagery, it also attempts to find the transport direction and the location of the sources of the dust storm. We propose a spatio-spectral processing approach with two components: visualization and automation. Both approaches are based on digital image processing techniques including directional analysis and filtering. The visualization technique is intended to enhance the image in order to locate the dust sources. The automation technique is proposed to detect the transport direction of the dust storm. These techniques can be used in a system to provide timely warnings of dust storms or hazard assessments for transportation, aviation, environmental safety, and public health.
Per-oral endoscopic myotomy (POEM): a new endoscopic treatment for achalasia.
Miranda García, Pablo; Casals Seoane, Fernando; Gonzalez, Jean-Michel; Barthet, Marc; Santander Vaquero, Cecilio
2017-10-01
Per-oral endoscopic myotomy (POEM) is a new minimally invasive technique to treat achalasia. We performed a review of the literature of POEM with a special focus on technical details and the results obtained with this technique in patients with achalasia and other esophageal motility disorders. Thousands of POEM procedures have been performed worldwide since its introduction in 2008. The procedure is based on the creation of a mucosal entry point in the proximal esophagus to reach the cardia through a submucosal tunnel and then perform a myotomy of the muscular layers of the cardia, esophagogastric junction and distal esophagus, as performed in a Heller myotomy. The clinical remission rate ranges from 82 to 100%. Although no randomized studies exist and available data are from single-center studies, no differences have been found between laparoscopic Heller myotomy (LHM) and POEM in terms of perioperative outcomes, short-term outcomes (12 months) and long-term outcomes (up to three years). Procedure time and length of hospital stay were lower for POEM. Post-POEM reflux is a concern, and controversial data have been reported compared to LHM. The technique is safe, with no reported deaths related to the procedure and an adverse event rate comparable to surgery. Potential complications include bleeding, perforation, aspiration and insufflation-related adverse events. Thus, this is a complex technique that needs specific training even in expert hands. The indication for this procedure is widening and other motor hypercontractil esophageal disorders have been treated by POEM with promising results. POEM can be performed in complicated situations such as in pediatric patients, sigmoid achalasia or after failure of previous treatments. POEM is an effective treatment for achalasia and is a promising tool for other motor esophageal disorders. It is a safe procedure but, due to its technical difficulty and possible associated complications, the procedure should be performed in referral centers by trained endoscopists.
Mauri, Maddalena; Nobile, Maria; Bellina, Monica; Crippa, Alessandro; Brambilla, Paolo
2018-07-01
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by deficits in cognitive and emotional self-control. Optical technique acquisitions, such as near infrared spectroscopy (NIRS), seem to be very promising during developmental ages, as they are non- invasive techniques and less influenced by body movements than other neuroimaging methods. Recently, these new techniques are being widely used to measure neural correlates underlying neuropsychological deficits in children with ADHD. In a short series of articles, we will review the results of functional NIRS (fNIRS) studies in children with ADHD. The present brief review will focus on the results of the fNIRS studies that investigate cortical activity during neuropsychological and/or emotional tasks. According to the reviewed studies, children and adolescents with ADHD show peculiar cortical activation both during neurological and emotional tasks, and the majority of the reviewed studies revealed lower prefrontal cortex activation in patients compared to typically developmental controls. a consistent interpretation of these results is limited by the substantial methodological heterogeneity including patients' medication status and washout period, explored cerebral regions, neuropsychological tasks, number of channels and sampling temporal resolutions. fNIRS seems to be a promising tool for investigating neural substrates of emotional dysregulation and executive function deficits in individuals with ADHD during developmental ages. Copyright © 2017 Elsevier B.V. All rights reserved.
The micrometeorological flux measurement technique known as relaxed eddy accumulation (REA) holds promise as a powerful new tool for ecologists. The more popular eddy covariance (eddy correlation) technique requires the use of sensors that can respond at fast rates (10 Hz), and t...
A Semantic Rule-Based Framework for Efficient Retrieval of Educational Materials
ERIC Educational Resources Information Center
Mahmoudi, Maryam Tayefeh; Taghiyareh, Fattaneh; Badie, Kambiz
2013-01-01
Retrieving resources in an appropriate manner has a promising role in increasing the performance of educational support systems. A variety of works have been done to organize materials for educational purposes using tagging techniques. Despite the effectiveness of these techniques within certain domains, organizing resources in a way being…
The use of soil electrical conductivity to investigate soil homogeneity in Story County, Iowa, USA
USDA-ARS?s Scientific Manuscript database
Precision agriculture, environmental applications, and land use planning needs have led to calls for more detailed soil maps. A remote sensing technique that can differentiate soils with a high degree of accuracy would be ideal for soil survey purposes. One technique that has shown promise in Iowa i...
ERIC Educational Resources Information Center
Hines, Sara J.
2010-01-01
Many adolescents, especially those with learning disabilities, lack basic word identification skills. Finding motivating instructional techniques to improve word-level reading skills is increasingly difficult as students move through the grades. One technique that holds promise in motivating adolescents involves using song lyrics from their…
Laryngeal reinnervation for bilateral vocal fold paralysis.
Marina, Mat B; Marie, Jean-Paul; Birchall, Martin A
2011-12-01
Laryngeal reinnervation for bilateral vocal fold paralysis (BVFP) patients is a promising technique to achieve good airway, although preserving a good quality of voice. On the other hand, the procedure is not simple. This review explores the recent literature on surgical technique and factors that may contribute to the success. Research and literature in this area are limited due to variability and complexity of the nerve supply. The posterior cricoarytenoid (PCA) muscle also receives nerve supply from the interarytenoid branch. Transection of this nerve at the point between interarytenoid and PCA branch may prevent aberrant reinnervation of adductor nerve axons to the PCA muscle. A varying degree of regeneration of injured recurrent laryngeal nerves (RLN) in humans of more than 6 months confirms subclinical reinnervation, which may prevent denervation-induced atrophy. Several promising surgical techniques have been developed for bilateral selective reinnervation for BVFP patients. This involves reinnervation of the abductor and adductor laryngeal muscles. The surgical technique aims at reinnervating the PCA muscle to trigger abduction during the respiratory cycle and preservation of good voice by strengthening the adductor muscles as well as prevention of laryngeal synkinesis.
Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes
Hamblin, Michael R
2016-01-01
Photodynamic therapy (PDT) uses photosensitizers (non-toxic dyes) that are activated by absorption of visible light to form reactive oxygen species (including singlet oxygen) that can oxidize biomolecules and destroy cells. Antimicrobial photodynamic inactivation (aPDI) can treat localized infections. aPDI neither causes any resistance to develop in microbes, nor is affected by existing drug resistance status. We discuss some recent developments in aPDI. New photosensitizers including polycationic conjugates, stable synthetic bacteriochlorins and functionalized fullerenes are described. The microbial killing by aPDI can be synergistically potentiated (several logs) by harmless inorganic salts via photochemistry. Genetically engineered bioluminescent microbial cells allow PDT to treat infections in animal models. Photoantimicrobials have a promising future in the face of the unrelenting increase in antibiotic resistance. PMID:27421070
Galerkin v. discrete-optimal projection in nonlinear model reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlberg, Kevin Thomas; Barone, Matthew Franklin; Antil, Harbir
Discrete-optimal model-reduction techniques such as the Gauss{Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible ow problems where standard Galerkin techniques have failed. However, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform projection at the time-continuous level, while discrete-optimal techniques do so at the time-discrete level. This work provides a detailed theoretical and experimental comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge{Kutta schemes.more » We present a number of new ndings, including conditions under which the discrete-optimal ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and experimentally that decreasing the time step does not necessarily decrease the error for the discrete-optimal ROM; instead, the time step should be `matched' to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible- ow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the discrete-optimal reduced-order model by an order of magnitude.« less
A new technique for quantitative analysis of hair loss in mice using grayscale analysis.
Ponnapakkam, Tulasi; Katikaneni, Ranjitha; Gulati, Rohan; Gensure, Robert
2015-03-09
Alopecia is a common form of hair loss which can occur in many different conditions, including male-pattern hair loss, polycystic ovarian syndrome, and alopecia areata. Alopecia can also occur as a side effect of chemotherapy in cancer patients. In this study, our goal was to develop a consistent and reliable method to quantify hair loss in mice, which will allow investigators to accurately assess and compare new therapeutic approaches for these various forms of alopecia. The method utilizes a standard gel imager to obtain and process images of mice, measuring the light absorption, which occurs in rough proportion to the amount of black (or gray) hair on the mouse. Data that has been quantified in this fashion can then be analyzed using standard statistical techniques (i.e., ANOVA, T-test). This methodology was tested in mouse models of chemotherapy-induced alopecia, alopecia areata and alopecia from waxing. In this report, the detailed protocol is presented for performing these measurements, including validation data from C57BL/6 and C3H/HeJ strains of mice. This new technique offers a number of advantages, including relative simplicity of application, reliance on equipment which is readily available in most research laboratories, and applying an objective, quantitative assessment which is more robust than subjective evaluations. Improvements in quantification of hair growth in mice will improve study of alopecia models and facilitate evaluation of promising new therapies in preclinical studies.
Inclusion Detection in Aluminum Alloys Via Laser-Induced Breakdown Spectroscopy
NASA Astrophysics Data System (ADS)
Hudson, Shaymus W.; Craparo, Joseph; De Saro, Robert; Apelian, Diran
2018-04-01
Laser-induced breakdown spectroscopy (LIBS) has shown promise as a technique to quickly determine molten metal chemistry in real time. Because of its characteristics, LIBS could also be used as a technique to sense for unwanted inclusions and impurities. Simulated Al2O3 inclusions were added to molten aluminum via a metal-matrix composite. LIBS was performed in situ to determine whether particles could be detected. Outlier analysis on oxygen signal was performed on LIBS data and compared to oxide volume fraction measured through metallography. It was determined that LIBS could differentiate between melts with different amounts of inclusions by monitoring the fluctuations in signal for elements of interest. LIBS shows promise as an enabling tool for monitoring metal cleanliness.
Energy Harvesting from Salinity Gradient
NASA Astrophysics Data System (ADS)
Muhthassim, B.; Thian, X. K.; Hasan, K. N. Md
2018-04-01
Abstract: Energy harvesting from salt water received attention started back in 1970s’, but due to varying interests in the field and the growing potentials of other more promising sources, more work was required to fully establish it. This paper aims at identifying existing techniques of energy harvesting and the methodology involved determining an effective technique for small scale applications of the method. Capacitive deionization technique which involves electrochemical reaction was chosen for further analysis. The experiment was conducted to analyze factors affecting its performance including the electrode and the electrolyte. Combination electrode of carbon/aluminium, copper/aluminium and carbon/copper were selected and tested with different concentration of salty water. From the experiment, copper and aluminum electrodes were found to be the most effective among the rest. A DC-DC boost converter was used to step-up the voltage. Physical implementation of the circuit was done and the circuit was tested in which an input voltage of 1.022 V was boosted to 1.255 V. The efficiency of the boost converter was 38.17 % based on input power and output power obtained.
Rare cell isolation and analysis in microfluidics
Chen, Yuchao; Li, Peng; Huang, Po-Hsun; Xie, Yuliang; Mai, John D.; Wang, Lin; Nguyen, Nam-Trung; Huang, Tony Jun
2014-01-01
Rare cells are low-abundance cells in a much larger population of background cells. Conventional benchtop techniques have limited capabilities to isolate and analyze rare cells because of their generally low selectivity and significant sample loss. Recent rapid advances in microfluidics have been providing robust solutions to the challenges in the isolation and analysis of rare cells. In addition to the apparent performance enhancements resulting in higher efficiencies and sensitivity levels, microfluidics provides other advanced features such as simpler handling of small sample volumes and multiplexing capabilities for high-throughput processing. All of these advantages make microfluidics an excellent platform to deal with the transport, isolation, and analysis of rare cells. Various cellular biomarkers, including physical properties, dielectric properties, as well as immunoaffinities, have been explored for isolating rare cells. In this Focus article, we discuss the design considerations of representative microfluidic devices for rare cell isolation and analysis. Examples from recently published works are discussed to highlight the advantages and limitations of the different techniques. Various applications of these techniques are then introduced. Finally, a perspective on the development trends and promising research directions in this field are proposed. PMID:24406985
Quantitative imaging methods in osteoporosis.
Oei, Ling; Koromani, Fjorda; Rivadeneira, Fernando; Zillikens, M Carola; Oei, Edwin H G
2016-12-01
Osteoporosis is characterized by a decreased bone mass and quality resulting in an increased fracture risk. Quantitative imaging methods are critical in the diagnosis and follow-up of treatment effects in osteoporosis. Prior radiographic vertebral fractures and bone mineral density (BMD) as a quantitative parameter derived from dual-energy X-ray absorptiometry (DXA) are among the strongest known predictors of future osteoporotic fractures. Therefore, current clinical decision making relies heavily on accurate assessment of these imaging features. Further, novel quantitative techniques are being developed to appraise additional characteristics of osteoporosis including three-dimensional bone architecture with quantitative computed tomography (QCT). Dedicated high-resolution (HR) CT equipment is available to enhance image quality. At the other end of the spectrum, by utilizing post-processing techniques such as the trabecular bone score (TBS) information on three-dimensional architecture can be derived from DXA images. Further developments in magnetic resonance imaging (MRI) seem promising to not only capture bone micro-architecture but also characterize processes at the molecular level. This review provides an overview of various quantitative imaging techniques based on different radiological modalities utilized in clinical osteoporosis care and research.
Recent advances in rapid and non-destructive assessment of meat quality using hyperspectral imaging
NASA Astrophysics Data System (ADS)
Tao, Feifei; Ngadi, Michael
2016-05-01
Meat is an important food item in human diet. Its production and consumption has greatly increased in the last decades with the development of economies and improvement of peoples' living standards. However, most of the traditional methods for evaluation of meat quality are time-consuming, laborious, inconsistent and destructive to samples, which make them not appropriate for a fast-paced production and processing environment. Development of innovative and non-destructive optical sensing techniques to facilitate simple, fast, and accurate evaluation of quality are attracting increasing attention in the food industry. Hyperspectral imaging is one of the promising techniques. It integrates the combined merits of imaging and spectroscopic techniques. This paper provides a comprehensive review on recent advances in evaluation of the important quality attributes of meat including color, marbling, tenderness, pH, water holding capacity, and also chemical composition attributes such as moisture content, protein content and fat content in pork, beef and lamb. In addition, the future potential applications and trends of hyperspectral imaging are also discussed in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danielson, Gary R.; Augustenborg, Elsa C.; Beck, Andrew E.
2010-10-29
The IAEA is challenged with limited availability of human resources for inspection and data analysis while proliferation threats increase. PNNL has a variety of IT solutions and techniques (at varying levels of maturity and development) that take raw data closer to useful knowledge, thereby assisting with and standardizing the analytical processes. This paper highlights some PNNL tools and techniques which are applicable to the international safeguards community, including: • Intelligent in-situ triage of data prior to reliable transmission to an analysis center resulting in the transmission of smaller and more relevant data sets • Capture of expert knowledge in re-usablemore » search strings tailored to specific mission outcomes • Image based searching fused with text based searching • Use of gaming to discover unexpected proliferation scenarios • Process modeling (e.g. Physical Model) as the basis for an information integration portal, which links to data storage locations along with analyst annotations, categorizations, geographic data, search strings and visualization outputs.« less
Waste printed circuit board recycling techniques and product utilization.
Hadi, Pejman; Xu, Meng; Lin, Carol S K; Hui, Chi-Wai; McKay, Gordon
2015-01-01
E-waste, in particular waste PCBs, represents a rapidly growing disposal problem worldwide. The vast diversity of highly toxic materials for landfill disposal and the potential of heavy metal vapors and brominated dioxin emissions in the case of incineration render these two waste management technologies inappropriate. Also, the shipment of these toxic wastes to certain areas of the world for eco-unfriendly "recycling" has recently generated a major public outcry. Consequently, waste PCB recycling should be adopted by the environmental communities as an ultimate goal. This article reviews the recent trends and developments in PCB waste recycling techniques, including both physical and chemical recycling. It is concluded that the physical recycling techniques, which efficiently separate the metallic and nonmetallic fractions of waste PCBs, offer the most promising gateways for the environmentally-benign recycling of this waste. Moreover, although the reclaimed metallic fraction has gained more attention due to its high value, the application of the nonmetallic fraction has been neglected in most cases. Hence, several proposed applications of this fraction have been comprehensively examined. Copyright © 2014 Elsevier B.V. All rights reserved.
Transcranial direct current stimulation in psychiatric disorders
Tortella, Gabriel; Casati, Roberta; Aparicio, Luana V M; Mantovani, Antonio; Senço, Natasha; D’Urso, Giordano; Brunelin, Jerome; Guarienti, Fabiana; Selingardi, Priscila Mara Lorencini; Muszkat, Débora; Junior, Bernardo de Sampaio Pereira; Valiengo, Leandro; Moffa, Adriano H; Simis, Marcel; Borrione, Lucas; Brunoni, André R
2015-01-01
The interest in non-invasive brain stimulation techniques is increasing in recent years. Among these techniques, transcranial direct current stimulation (tDCS) has been the subject of great interest among researchers because of its easiness to use, low cost, benign profile of side effects and encouraging results of research in the field. This interest has generated several studies and randomized clinical trials, particularly in psychiatry. In this review, we provide a summary of the development of the technique and its mechanism of action as well as a review of the methodological aspects of randomized clinical trials in psychiatry, including studies in affective disorders, schizophrenia, obsessive compulsive disorder, child psychiatry and substance use disorder. Finally, we provide an overview of tDCS use in cognitive enhancement as well as a discussion regarding its clinical use and regulatory and ethical issues. Although many promising results regarding tDCS efficacy were described, the total number of studies is still low, highlighting the need of further studies aiming to replicate these findings in larger samples as to provide a definite picture regarding tDCS efficacy in psychiatry. PMID:25815258
Demirel, Gokhan; Babur, Esra
2014-05-21
Given their simplicity and functionality, paper-based microfluidic systems are considered to be ideal and promising bioassay platforms for use in less developed countries or in point-of-care services. Although a series of innovative techniques have recently been demonstrated for the fabrication of such platforms, development of simple, inexpensive and versatile new strategies are still needed in order to reach their full potential. In this communication, we describe a simple yet facile approach to fabricate paper-based sensor platforms with a desired design through a vapor-phase polymer deposition technique. We also show that the fabricated platforms could be readily employed for the detection of various biological target molecules including glucose, protein, ALP, ALT, and uric acid. The limit of detection for each target molecule was calculated to be 25 mg dL(-1) for glucose, 1.04 g L(-1) for protein, 7.81 unit per L for ALP, 1.6 nmol L(-1) for ALT, and 0.13 mmol L(-1) for uric acid.
NASA Astrophysics Data System (ADS)
Shine, R. A.
1997-05-01
Over the last decade, a repertoire of techniques have been developed and/or refined to improve the quality of high spatial resolution solar movies taken from ground based observatories. These include real time image motion corrections, frame selection, phase diversity measurements of the wavefront, and extensive post processing to partially remove atmospheric distortion. Their practical application has been made possible by the increasing availability and decreasing cost of large CCD's with fast digital readouts and high speed computer workstations with large memories. Most successful have been broad band (0.3 to 10 nm) filtergram movies which can use exposure times of 10 to 30 ms, short enough to ``freeze'' atmospheric motions. Even so, only a handful of movies with excellent image quality for more than a hour have been obtained to date. Narrowband filtergrams (about 0.01 nm), such as those required for constructing magnetograms and Dopplergrams, have been more challenging although some single images approach the quality of the best continuum images. Some promising new techniques and instruments, together with persistence and good luck, should continue the progress made in the last several years.
Tailoring of optical properties of fluorescein using green synthesized gold nanoparticles.
John, Jisha; Thomas, Lincy; George, Nibu A; Kurian, Achamma; George, Sajan D
2015-06-28
Dye-nanoparticle mixtures hold great promise in biological as well as photonics applications due to their capability to tailor the emission behavior of dye by tuning the nanoparticles parameters. However, as compared to the well-defined dye-nanoparticle distance, studies lack the understanding of homogenous mixtures of dye and nanoparticles. In this work, we investigate the influence of shape and concentration of gold nanoparticles prepared via green synthesis on the optical properties of fluorescein dye in a dye-nanoparticle mixture. We have investigated the radiative path of deexcitation using steady state fluorescence and the non-radiative path is probed using a laser based dual-beam thermal lens technique. The energy transfer efficiency as well as dye-nanoparticle distance is studied using both techniques. Furthermore, we have explored the influence of nanoparticles parameters on the fluorescence quantum yield of fluorescein using the thermal lens technique. The studies indicate that spherical nanoparticles are efficient quenchers while star shaped nanoparticles can probe larger dye-NP distances. The tailoring of dye properties by tuning nanoparticle parameters can be utilized in diverse areas including bioimaging, solar cells, and sensors.
Development of a Faith-Based Stress Management Intervention in a Rural African American Community.
Bryant, Keneshia; Moore, Todd; Willis, Nathaniel; Hadden, Kristie
2015-01-01
Faith-based mental health interventions developed and implemented using a community-based participatory research (CBPR) approach hold promise for reaching rural African Americans and addressing health disparities. To describe the development, challenges, and lessons learned from the Trinity Life Management, a faith-based stress management intervention in a rural African American faith community. The researchers used a CBPR approach by partnering with the African American faith community to develop a stress management intervention. Development strategies include working with key informants, focus groups, and a community advisory board (CAB). The community identified the key concepts that should be included in a stress management intervention. The faith-based "Trinity Life Management" stress management intervention was developed collaboratively by a CAB and an academic research team. The intervention includes stress management techniques that incorporate Biblical principles and information about the stress-distress-depression continuum.
NASA Technical Reports Server (NTRS)
Allario, F.; Taylor, L. V.
1986-01-01
Current plans for the Earth Observing System (EOS) include development of a lidar facility to conduct scientific experiments from a polar orbiting platforms. A recommended set of experiments were scoped, which includes techniques of atmospheric backscatter (Lidar), Differential Absorption Lidar (DIAL), altimetry, and retroranging. Preliminary assessments of the resources (power, weight, volume) required by the Eos Lidar Facility were conducted. A research program in tunable solid state laser technology was developed, which includes laser materials development, modeling and experiments on the physics of solid state laser materials, and development of solid state laser transmitters with a strong focus on Eos scientific investigations. Some of the system studies that were conducted which highlight the payoff of solid state laser technology for the Eos scientific investigations will be discussed. Additionally, a summary of some promising research results which have recently emerged from the research program will be presented.
Photorefractivity of triphenylamine polymers
NASA Astrophysics Data System (ADS)
Tsujimura, S.; Kinashi, K.; Sakai, W.; Tsutsumi, N.
2012-10-01
We present here the enhanced photorefractive performance and dynamic holographic image of poly(4-diphenylamino)styrene (PDAS)-based photorefractive polymeric composites (PPCs). PDAS and FDCST were synthesized as a photoconductive polymer and a nonlinear optical (NLO) dye, respectively. PPC films including PDAS, TPA (or ECZ), FDCST, and PCBM were investigated. The photorefractive quantities of the PDAS-based PPCs were measured by a degenerate four-wave mixing (DFWM) technique. Additionally, the dynamic holographic images were recorded through an appropriate PDAS-based PPC. Those dynamic holographic images clearly duplicate the original motion with high-speed quality. The present approach provides a promising candidate for the future application of dynamic holographic displays.
Parallelization of Unsteady Adaptive Mesh Refinement for Unstructured Navier-Stokes Solvers
NASA Technical Reports Server (NTRS)
Schwing, Alan M.; Nompelis, Ioannis; Candler, Graham V.
2014-01-01
This paper explores the implementation of the MPI parallelization in a Navier-Stokes solver using adaptive mesh re nement. Viscous and inviscid test problems are considered for the purpose of benchmarking, as are implicit and explicit time advancement methods. The main test problem for comparison includes e ects from boundary layers and other viscous features and requires a large number of grid points for accurate computation. Ex- perimental validation against double cone experiments in hypersonic ow are shown. The adaptive mesh re nement shows promise for a staple test problem in the hypersonic com- munity. Extension to more advanced techniques for more complicated ows is described.
Nanopore-CMOS Interfaces for DNA Sequencing
Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim
2016-01-01
DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces. PMID:27509529
Nanopore-CMOS Interfaces for DNA Sequencing.
Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim
2016-08-06
DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces.
Peptide-Based Materials for Cartilage Tissue Regeneration.
Hastar, Nurcan; Arslan, Elif; Guler, Mustafa O; Tekinay, Ayse B
2017-01-01
Cartilaginous tissue requires structural and metabolic support after traumatic or chronic injuries because of its limited capacity for regeneration. However, current techniques for cartilage regeneration are either invasive or ineffective for long-term repair. Developing alternative approaches to regenerate cartilage tissue is needed. Therefore, versatile scaffolds formed by biomaterials are promising tools for cartilage regeneration. Bioactive scaffolds further enhance the utility in a broad range of applications including the treatment of major cartilage defects. This chapter provides an overview of cartilage tissue, tissue defects, and the methods used for regeneration, with emphasis on peptide scaffold materials that can be used to supplement or replace current medical treatment options.
On the development of multifunctional luminescent supramolecular hydrogel of gold and egg white
NASA Astrophysics Data System (ADS)
Patra, Sudeshna; Ravulapalli, Sathyavathi; Hahm, Myung Gwan; Tadi, Kiran Kumar; Narayanan, Tharangattu N.
2016-10-01
Highly stable, luminescent, and printable/paintable supramolecular egg white hydrogel-based surface enhanced Raman scattering (SERS) matrix is created by an in situ synthesis of gold clusters inside a luminescent egg white hydrogel (Au-Gel). The synthesis of stable luminescent egg-white-based hydrogel, where the hydrogel can act as a three dimensional (3D) matrix, using a simple cross-linking chemistry, has promising application in the biomedical field including in 3D cell culturing. Furthermore, this functional hydrogel is demonstrated for micromolar-level detection of Rhodamine 6G using the SERS technique, where Au-Gel is painted over a flexible cellulose pad.
Christmann, Corinna Anna; Hoffmann, Alexandra; Bleser, Gabriele
2017-02-23
Chronic stress has been shown to be associated with disease. This link is not only direct but also indirect through harmful health behavior such as smoking or changing eating habits. The recent mHealth trend offers a new and promising approach to support the adoption and maintenance of appropriate stress management techniques. However, only few studies have dealt with the inclusion of evidence-based content within stress management apps for mobile phones. The aim of this study was to evaluate stress management apps on the basis of a new taxonomy of effective emotion-focused stress management techniques and an established taxonomy of behavior change techniques. Two trained and independent raters evaluated 62 free apps found in Google Play with regard to 26 behavior change and 15 emotion-focused stress management techniques in October 2015. The apps included an average of 4.3 behavior change techniques (SD 4.2) and 2.8 emotion-focused stress management techniques (SD 2.6). The behavior change technique score and stress management technique score were highly correlated (r=.82, P=.01). The broad variation of different stress management strategies found in this sample of apps goes in line with those found in conventional stress management interventions and self-help literature. Moreover, this study provided a first step toward more detailed and standardized taxonomies, which can be used to investigate evidence-based content in stress management interventions and enable greater comparability between different intervention types. ©Corinna Anna Christmann, Alexandra Hoffmann, Gabriele Bleser. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 23.02.2017.
NASA Technical Reports Server (NTRS)
1974-01-01
The use of optical data processing (ODP) techniques for motion analysis in two-dimensional imagery was studied. The basic feasibility of this approach was demonstrated, but inconsistent performance of the photoplastic used for recording spatial filters prevented totally automatic operation. Promising solutions to the problems encountered are discussed, and it is concluded that ODP techniques could be quite useful for motion analysis.
ERIC Educational Resources Information Center
Santicola, Craig F.
2015-01-01
The literature indicates that there is a lack of learning outcomes in economics that can be attributed to the reliance on traditional lecture and the failure to adopt innovative instructional techniques. This study sought to investigate the student learning effects of academic controversy, a cooperative learning technique that shows promise in the…
A raman microprobe investigation of the molecular architecture of loblolly pine tracheids
James S. Bond; Rajai H. Atalla
1999-01-01
Our understanding of the molecular architecture of intact, native plant cell walls is very limited. Traditional methods of investigation disturb the tissue to varying degrees and conclusions based on these methods may be intimately related to the technique used. A promising new technique to study native-state organization is polarized Raman spectroscopy. In this...
New Windows on the Biological World
ERIC Educational Resources Information Center
Arehart-Treichel, Joan
1975-01-01
Describes two new microscopes, the acoustic microscope and a scanning transmission microscope, both of which promise to yield fresh insights, based on revolutionary techniques into cellular biology. (BR)
NASA Astrophysics Data System (ADS)
Ennevor, Sean J.; Castro, Dan J.; Girardi, Gino; Lufkin, Robert B.; Farahani, Keyvan; Cho, Richard C.; Soudant, Jacques
1993-07-01
Interstitial tumor therapy guided by imaging techniques is minimally invasive and a promising surgical approach which will become clinically practical only when effective, simple, and safe modalities for tumor excision and control of tumor vascular supply are available. In a novel experiment utilizing a 1.5 T magnetic resonance (MR) scanner, the carotid artery of a New Zealand white rabbit was identified and then clamped using the Premium Surgicliptm 9.0' disposable automatic clip applier. The magnetic resonance imager equipped with an angiography package was used to locate vasculature in the carotid triangle of the rabbit via fast scan techniques. The artery was then clamped with titanium clips, and repeat magnetic resonance angiography (MRA) clearly demonstrated the cessation of blood flow within the chosen vessel. The experimental results are promising, since the angiography package not only provided the visualization of the arterial vessel, but was also used to guide an MR compatible surgical instrument to the vessel, with no artifact seen.
Quantitative proteomics in cardiovascular research: global and targeted strategies
Shen, Xiaomeng; Young, Rebeccah; Canty, John M.; Qu, Jun
2014-01-01
Extensive technical advances in the past decade have substantially expanded quantitative proteomics in cardiovascular research. This has great promise for elucidating the mechanisms of cardiovascular diseases (CVD) and the discovery of cardiac biomarkers used for diagnosis and treatment evaluation. Global and targeted proteomics are the two major avenues of quantitative proteomics. While global approaches enable unbiased discovery of altered proteins via relative quantification at the proteome level, targeted techniques provide higher sensitivity and accuracy, and are capable of multiplexed absolute quantification in numerous clinical/biological samples. While promising, technical challenges need to be overcome to enable full utilization of these techniques in cardiovascular medicine. Here we discuss recent advances in quantitative proteomics and summarize applications in cardiovascular research with an emphasis on biomarker discovery and elucidating molecular mechanisms of disease. We propose the integration of global and targeted strategies as a high-throughput pipeline for cardiovascular proteomics. Targeted approaches enable rapid, extensive validation of biomarker candidates discovered by global proteomics. These approaches provide a promising alternative to immunoassays and other low-throughput means currently used for limited validation. PMID:24920501
Hip arthroplasty today and tomorrow.
Amstutz, H C
1987-12-01
Acrylic-fixed total hip and surface replacement arthroplasty have been very effective in affording immediate relief of pain and providing improved function. Complications have been reduced by improvements in design, materials, and especially technique. They are now very low in the elderly, and the stem type acrylic-fixed design remains the procedure of choice. The failure rates in youthful patients and those with bone-stock deficiencies have been high in both THR and surface types, although the latter had the advantage of preserving femoral stock. On the femoral side, the new "macro" femoral designs from Europe and "micro" femoral porous designs have shown promise, but thigh pain, incomplete and difficult to predict bone ingrowth patterns, coupled with removal problems have influenced design and technique changes. Both press-fit stem types and porous surface replacements have produced promising initial results with less potential downside risks. On the acetabular side, both the cementless hemispherical with screw-type adjuvant fixation, or the chamfered cylinder designs, used primarily with the UCLA porous surface replacements, but also with stem-type devices, appear to achieve best short-term results, while the entire variety of screw rings are disappointing. The future will bring further refinements in technique and specific indications for certain types of replacement stem in specific types of bone stock deficiencies. The all ceramic-ceramic and ceramic-polyethylene bearings show promise of reducing wear and, hence, should improve longevity of implant fixation.
Field Measurement of the Acoustic Nonlinearity Parameter in Turbine Blades
NASA Technical Reports Server (NTRS)
Hinton, Yolanda L.; Na, Jeong K.; Yost, William T.; Kessel, Gregory L.
2000-01-01
Nonlinear acoustics techniques were used to measure fatigue in turbine blades in a power generation plant. The measurements were made in the field using a reference based measurement technique, and a reference sample previously measured in the laboratory. The acoustic nonlinearity parameter showed significant increase with fatigue in the blades, as indicated by service age and areas of increased stress. The technique shows promise for effectively measuring fatigue in field applications and predicting subsequent failures.
Peng, Lan; Cao, Xuan; Xiong, Bin; He, Yan; Yeung, Edward S
2016-06-18
We reported a novel scattering switch-on detection technique using flash-lamp polarization darkfield microscopy (FLPDM) for target-induced plasmon-coupling based sensing in homogeneous solution. With this method, we demonstrated sub-nM sensitivity for hydrogen sulfide (H2S) detection over a dynamic range of five orders of magnitude. This robust technique holds great promise for applications in toxic environmental pollutants and biological molecules.
Performance limitations of label-free sensors in molecular diagnosis using complex samples
NASA Astrophysics Data System (ADS)
Varma, Manoj
2016-03-01
Label-free biosensors promised a paradigm involving direct detection of biomarkers from complex samples such as serum without requiring multistep sample processing typical of labelled methods such as ELISA or immunofluorescence assays. Label-free sensors have witnessed decades of development with a veritable zoo of techniques available today exploiting a multitude of physical effects. It is appropriate now to critically assess whether label-free technologies have succeeded in delivering their promise with respect to diagnostic applications, particularly, ambitious goals such as early cancer detection using serum biomarkers, which require low limits of detection (LoD). Comparison of nearly 120 limits of detection (LoD) values reported by labelled and label-free sensing approaches over a wide range of detection techniques and target molecules in serum revealed that labeled techniques achieve 2-3 orders of magnitude better LoDs. Data from experiments where labelled and label-free assays were performed simultaneously using the same assay parameters also confirm that the LoD achieved by labelled techniques is 2 to 3 orders of magnitude better than that by label-free techniques. Furthermore, label-free techniques required significant signal amplification, for e.g. using nanoparticle conjugated secondary antibodies, to achieve LoDs comparable to labelled methods substantially deviating from the original "direct detection" paradigm. This finding has important implications on the practical limits of applying label-free detection methods for molecular diagnosis.
Noninvasive brain stimulation treatments for addiction and major depression
Dunlop, Katharine; Hanlon, Colleen A.
2016-01-01
Major depressive disorder (MDD) and substance use disorders (SUDs) are prevalent, disabling, and challenging illnesses for which new treatment options are needed, particularly in comorbid cases. Neuroimaging studies of the functional architecture of the brain suggest common neural substrates underlying MDD and SUDs. Intrinsic brain activity is organized into a set of functional networks, of which two are particularly relevant to psychiatry. The salience network (SN) is crucial for cognitive control and response inhibition, and deficits in SN function are implicated across a wide variety of psychiatric disorders, including MDD and SUDs. The ventromedial network (VMN) corresponds to the classic reward circuit, and pathological VMN activity for drug cues/negative stimuli is seen in SUDs/MDD. Noninvasive brain stimulation (NIBS) techniques, including rTMS and tDCS, have been used to enhance cortico–striatal–thalamic activity through the core SN nodes in the dorsal anterior cingulate cortex, dorsolateral prefrontal cortex, and anterior insula. Improvements in both MDD and SUD symptoms ensue, including in comorbid cases, via enhanced cognitive control. Inhibition of the VMN also appears promising in preclinical studies for quenching the pathological incentive salience underlying SUDs and MDD. Evolving techniques may further enhance the efficacy of NIBS for MDD and SUD cases that are unresponsive to conventional treatments. PMID:26849183
Raman spectroscopic detection of peripheral nerves towards nerve-sparing surgery
NASA Astrophysics Data System (ADS)
Minamikawa, Takeo; Harada, Yoshinori; Takamatsu, Tetsuro
2017-02-01
The peripheral nervous system plays an important role in motility, sensory, and autonomic functions of the human body. Preservation of peripheral nerves in surgery, namely nerve-sparing surgery, is now promising technique to avoid functional deficits of the limbs and organs following surgery as an aspect of the improvement of quality of life of patients. Detection of peripheral nerves including myelinated and unmyelinated nerves is required for the nerve-sparing surgery; however, conventional nerve identification scheme is sometimes difficult to identify peripheral nerves due to similarity of shape and color to non-nerve tissues or its limited application to only motor peripheral nerves. To overcome these issues, we proposed a label-free detection technique of peripheral nerves by means of Raman spectroscopy. We found several fingerprints of peripheral myelinated and unmyelinated nerves by employing a modified principal component analysis of typical spectra including myelinated nerve, unmyelinated nerve, and adjacent tissues. We finally realized the sensitivity of 94.2% and the selectivity of 92.0% for peripheral nerves including myelinated and unmyelinated nerves against adjacent tissues. Although further development of an intraoperative Raman spectroscopy system is required for clinical use, our proposed approach will serve as a unique and powerful tool for peripheral nerve detection for nerve-sparing surgery in the future.
Report on the Synchrotron Characterization of U-Mo and U-Zr Alloys and the Modeling Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okuniewski, Maria A.; Ganapathy, Varsha; Hamilton, Brenden
2016-09-01
ABSTRACT Uranium-molybdenum (U-Mo) and uranium-zirconium (U-Zr) are two promising fuel candidates for nuclear transmutation reactors which burn long-lived minor actinides and fission products within fast spectrum reactors. The objectives of this research are centered on understanding the early stages of fuel performance through the examination of the irradiation induced microstructural changes in U-Zr and U-Mo alloys subjected to low neutron fluences. Specimens that were analyzed include those that were previously irradiated in the Advanced Test Reactor at INL. This most recent work has focused on a sub-set of the irradiated specimens, specifically U-Zr and U-Mo alloys that were irradiated tomore » 0.01 dpa at temperatures ranging from (150-800oC). These specimens were analyzed with two types of synchrotron techniques, including X-ray absorption fine structure and X-ray diffraction. These techniques provide non-destructive microstructural analysis, including phase identification and quantitation, lattice parameters, crystallite sizes, as well as bonding, structure, and chemistry. Preliminary research has shown changes in the phase fractions, crystallite sizes, and lattice parameters as a function of irradiation and temperature. Future data analyses will continue to explore these microstructural changes.« less
Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies.
Mangraviti, Antonella; Gullotti, David; Tyler, Betty; Brem, Henry
2016-10-28
Despite recent technological advancements and promising preclinical experiments, brain tumor patients are still met with limited treatment options. Some of the barriers to clinical improvements include the systemic toxicity of cytotoxic compounds, the impedance of the blood brain barrier (BBB), and the lack of therapeutic agents that can selectively target the intracranial tumor environment. To overcome such barriers, a number of chemotherapeutic agents and nucleic acid-based therapies are rapidly being synthesized and tested as new brain tumor-targeted delivery strategies. Novel carriers include liposomal and polymeric nanoparticles, wafers, microchips, microparticle-based nanoplatforms and cells-based vectors. Strong preclinical results suggest that these nanotechnologies are set to transform the therapeutic paradigm for brain tumor treatment. In addition to new tumoricidal agents, parallel work is also being conducted on the BBB front. Preclinical testing of chemical and physical modulation strategies is yielding improved intracranial concentrations. New diagnostic and therapeutic imaging techniques, such as high-intensity focused ultrasound and MRI-guided focused ultrasound, are being used to modulate the BBB in a more precise and non-invasive manner. This review details some of the tremendous advances that are being explored in current brain tumor targeted therapies, including local implant development, nanobiotechnology-based delivery strategies, and techniques of BBB manipulation. Copyright © 2016 Elsevier B.V. All rights reserved.
The soft computing-based approach to investigate allergic diseases: a systematic review.
Tartarisco, Gennaro; Tonacci, Alessandro; Minciullo, Paola Lucia; Billeci, Lucia; Pioggia, Giovanni; Incorvaia, Cristoforo; Gangemi, Sebastiano
2017-01-01
Early recognition of inflammatory markers and their relation to asthma, adverse drug reactions, allergic rhinitis, atopic dermatitis and other allergic diseases is an important goal in allergy. The vast majority of studies in the literature are based on classic statistical methods; however, developments in computational techniques such as soft computing-based approaches hold new promise in this field. The aim of this manuscript is to systematically review the main soft computing-based techniques such as artificial neural networks, support vector machines, bayesian networks and fuzzy logic to investigate their performances in the field of allergic diseases. The review was conducted following PRISMA guidelines and the protocol was registered within PROSPERO database (CRD42016038894). The research was performed on PubMed and ScienceDirect, covering the period starting from September 1, 1990 through April 19, 2016. The review included 27 studies related to allergic diseases and soft computing performances. We observed promising results with an overall accuracy of 86.5%, mainly focused on asthmatic disease. The review reveals that soft computing-based approaches are suitable for big data analysis and can be very powerful, especially when dealing with uncertainty and poorly characterized parameters. Furthermore, they can provide valuable support in case of lack of data and entangled cause-effect relationships, which make it difficult to assess the evolution of disease. Although most works deal with asthma, we believe the soft computing approach could be a real breakthrough and foster new insights into other allergic diseases as well.
Current insights in allergen immunotherapy.
Passalacqua, Giovanni; Bagnasco, Diego; Ferrando, Matteo; Heffler, Enrico; Puggioni, Francesca; Canonica, Giorgio Walter
2018-02-01
Allergen-specific immunotherapy (AIT) in its subcutaneous and sublingual forms is currently a well-established and experimentally supported treatment for respiratory allergy and hymenoptera venom allergy. There have been advances in its use linked strictly to the advancement in the knowledge of the molecular mechanisms of allergy, the production of well-characterized extracts, and diagnostic techniques. The use of AIT in asthma and the application of new approaches are expanding. We briefly review the advances and concerns in the use of AIT. PubMed and Scopus. The most recent and clinically relevant literature was selected and reviewed. The introduction of high-quality products supported by large dose-finding trials has yielded better defined indications, contraindications, and modalities of use. Some specific products in tablet form have recently been approved in the United States. Sublingual immunotherapy has been found to be effective in asthma, which until recently had been a matter of debate. Another promising therapy is oral and sublingual desensitization for food allergy, for which encouraging results have recently been reported. In the near future, other options will be available, including new routes of administration (intralymphatic and epicutaneous), allergoids, engineered allergens, and peptides. The use of component-resolved diagnosis techniques will further refine and target AIT prescriptions. This condensed and updated review shows that AIT remains a viable treatment option, especially after the introduction of standardized tablets for some allergens. Food allergy and new administration routes represent a promising expansion. Copyright © 2017 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Informatics in Radiology: Dual-Energy Electronic Cleansing for Fecal-Tagging CT Colonography
Kim, Se Hyung; Lee, June-Goo; Yoshida, Hiroyuki
2013-01-01
Electronic cleansing (EC) is an emerging technique for the removal of tagged fecal materials at fecal-tagging computed tomographic (CT) colonography. However, existing EC methods may generate various types of artifacts that severely impair the quality of the cleansed CT colonographic images. Dual-energy fecal-tagging CT colonography is regarded as a next-generation imaging modality. EC that makes use of dual-energy fecal-tagging CT colonographic images promises to be effective in reducing cleansing artifacts by means of applying the material decomposition capability of dual-energy CT. The dual-energy index (DEI), which is calculated from the relative change in the attenuation values of a material at two different photon energies, is a reliable and effective indicator for differentiating tagged fecal materials from various types of tissues on fecal-tagging CT colonographic images. A DEI-based dual-energy EC scheme uses the DEI to help differentiate the colonic lumen—including the luminal air, tagged fecal materials, and air-tagging mixture—from the colonic soft-tissue structures, and then segments the entire colonic lumen for cleansing of the tagged fecal materials. As a result, dual-energy EC can help identify partial-volume effects in the air-tagging mixture and inhomogeneous tagging in residual fecal materials, the major causes of EC artifacts. This technique has the potential to significantly improve the quality of EC and promises to provide images of a cleansed colon that are free of the artifacts commonly observed with conventional single-energy EC methods. © RSNA, 2013 PMID:23479680
Opto-injection into single living cells by femtosecond near-infrared laser
NASA Astrophysics Data System (ADS)
Peng, Cheng
This dissertation presents a novel technique to deliver membrane impermeable molecules into single living cells with the assistance of femtosecond (fs) near-infrared (NIR) laser pulses. This approach merges ultrafast laser technology with key biological, biomedical, and medical applications, such as gene transfection, gene therapy and drug delivery. This technique promises several major advantages, namely, very high transfection efficiency, high cell survival rate (≈100%) and fully preserved cell viabilities. It is also a promising method to deliver molecules into cells that are difficult or even completely resistant to established physical methods, such as microinjection by glass pipettes, electroporation, and biolistics. In this work, the system for fs NIR opto-injection was designed and built. Successful fs NIR opto-injection has been performed on several cell systems including single mammalian cells (bovine aortic endothelial cells), marine animal eggs (Spisula solidissima oocytes), and human cancer cells (fibrosarcoma HT1080) cultured in a tissue-like environment. The connections between laser parameters and cell responses were explored through further experiments and in-depth analyses, especially the relationship between dye uptake rate and incident laser intensity, and the relationship between pore size created on cell membranes and incident laser intensity. Dye uptake rate of the target cells was observed to depend on incident laser intensity. Pore size was found dependent on incident laser intensity. The conclusion was made that laser-induced breakdown and plasma-induced ablation in cell membrane are the physical principles that govern the process of fs NIR opto-injection.
Ye, Xingyou; Patil, Hemlata; Feng, Xin; Tiwari, Roshan V; Lu, Jiannan; Gryczke, Andreas; Kolter, Karl; Langley, Nigel; Majumdar, Soumyajit; Neupane, Dipesh; Mishra, Sanjay R; Repka, Michael A
2016-02-01
Over the past few decades, nanocrystal formulations have evolved as promising drug delivery systems owing to their ability to enhance the bioavailability and maintain the stability of poorly water-soluble drugs. However, conventional methods of preparing nanocrystal formulations, such as spray drying and freeze drying, have some drawbacks including high cost, time and energy inefficiency, traces of residual solvent, and difficulties in continuous operation. Therefore, new techniques for the production of nanocrystal formulations are necessary. The main objective of this study was to introduce a new technique for the production of nanocrystal solid dispersions (NCSDs) by combining high-pressure homogenization (HPH) and hot-melt extrusion (HME). Efavirenz (EFZ), a Biopharmaceutics Classification System class II drug, which is used for the treatment of human immunodeficiency virus (HIV) type I, was selected as the model drug for this study. A nanosuspension (NS) was first prepared by HPH using sodium lauryl sulfate (SLS) and Kollidon® 30 as a stabilizer system. The NS was then mixed with Soluplus® in the extruder barrel, and the water was removed by evaporation. The decreased particle size and crystalline state of EFZ were confirmed by scanning electron microscopy, zeta particle size analysis, and differential scanning calorimetry. The increased dissolution rate was also determined. EFZ NCSD was found to be highly stable after storage for 6 months. In summary, the conjugation of HPH with HME technology was demonstrated to be a promising novel method for the production of NCSDs.
Biomarker detection of global infectious diseases based on magnetic particles.
Carinelli, Soledad; Martí, Mercè; Alegret, Salvador; Pividori, María Isabel
2015-09-25
Infectious diseases affect the daily lives of millions of people all around the world, and are responsible for hundreds of thousands of deaths, mostly in the developing world. Although most of these major infectious diseases are treatable, the early identification of individuals requiring treatment remains a major issue. The incidence of these diseases would be reduced if rapid diagnostic tests were widely available at the community and primary care level in low-resource settings. Strong research efforts are thus being focused on replacing standard clinical diagnostic methods, such as the invasive detection techniques (biopsy or endoscopy) or expensive diagnostic and monitoring methods, by affordable and sensitive tests based on novel biomarkers. The development of new methods that are needed includes solid-phase separation techniques. In this context, the integration of magnetic particles within bioassays and biosensing devices is very promising since they greatly improve the performance of a biological reaction. The diagnosis of clinical samples with magnetic particles can be easily achieved without pre-enrichment, purification or pretreatment steps often required for standard methods, simplifying the analytical procedures. The biomarkers can be specifically isolated and preconcentrated from complex biological matrixes by magnetic actuation, increasing specificity and the sensitivity of the assay. This review addresses these promising features of the magnetic particles for the detection of biomarkers in emerging technologies related with infectious diseases affecting global health, such as malaria, influenza, dengue, tuberculosis or HIV. Copyright © 2015 Elsevier B.V. All rights reserved.
Bex, Axel; Fournier, Laure; Lassau, Nathalie; Mulders, Peter; Nathan, Paul; Oyen, Wim J G; Powles, Thomas
2014-04-01
The introduction of targeted agents for the treatment of renal cell carcinoma (RCC) has resulted in new challenges for assessing response to therapy, and conventional response criteria using computed tomography (CT) are limited. It is widely recognised that targeted therapies may lead to significant necrosis without significant reduction in tumour size. In addition, the vascular effects of antiangiogenic therapy may occur long before there is any reduction in tumour size. To perform a systematic review of conventional and novel imaging methods for the assessment of response to targeted agents in RCC and to discuss their use from a clinical perspective. Relevant databases covering the period January 2006 to April 2013 were searched for studies reporting on the use of anatomic and functional imaging techniques to predict response to targeted therapy in RCC. Inclusion criteria were randomised trials, nonrandomised controlled studies, retrospective case series, and cohort studies. Reviews, animal and preclinical studies, case reports, and commentaries were excluded. A narrative synthesis of the evidence is presented. A total of 331 abstracts and 76 full-text articles were assessed; 34 studies met the inclusion criteria. Current methods of response assessment in RCC include anatomic methods--based on various criteria including Choi, size and attenuation CT, and morphology, attenuation, size, and structure--and functional techniques including dynamic contrast-enhanced (DCE) CT, DCE-magnetic resonance imaging, DCE-ultrasonography, positron emission tomography, and approaches utilising radiolabelled monoclonal antibodies. Functional imaging techniques are promising surrogate biomarkers of response in RCC and may be more appropriate than anatomic CT-based methods. By enabling quantification of tumour vascularisation, functional techniques can directly and rapidly detect the biologic effects of antiangiogenic therapies compared with the indirect detection of belated effects on tumour size by anatomic methods. However, larger prospective studies are needed to validate early results and standardise techniques. Copyright © 2013 European Association of Urology. All rights reserved.
X-ray generation using carbon nanotubes
NASA Astrophysics Data System (ADS)
Parmee, Richard J.; Collins, Clare M.; Milne, William I.; Cole, Matthew T.
2015-01-01
Since the discovery of X-rays over a century ago the techniques applied to the engineering of X-ray sources have remained relatively unchanged. From the inception of thermionic electron sources, which, due to simplicity of fabrication, remain central to almost all X-ray applications, there have been few fundamental technological advances. However, with the emergence of ever more demanding medical and inspection techniques, including computed tomography and tomosynthesis, security inspection, high throughput manufacturing and radiotherapy, has resulted in a considerable level of interest in the development of new fabrication methods. The use of conventional thermionic sources is limited by their slow temporal response and large physical size. In response, field electron emission has emerged as a promising alternative means of deriving a highly controllable electron beam of a well-defined distribution. When coupled to the burgeoning field of nanomaterials, and in particular, carbon nanotubes, such systems present a unique technological opportunity. This review provides a summary of the current state-of-the-art in carbon nanotube-based field emission X-ray sources. We detail the various fabrication techniques and functional advantages associated with their use, including the ability to produce ever smaller electron beam assembles, shaped cathodes, enhanced temporal stability and emergent fast-switching pulsed sources. We conclude with an overview of some of the commercial progress made towards the realisation of an innovative and disruptive technology.
Free-form machining for micro-imaging systems
NASA Astrophysics Data System (ADS)
Barkman, Michael L.; Dutterer, Brian S.; Davies, Matthew A.; Suleski, Thomas J.
2008-02-01
While mechanical ruling and single point diamond turning has been a mainstay of optical fabrication for many years, many types of micro-optical devices and structures are not conducive to simple diamond turning or ruling, such as, for example, microlens arrays, and optical surfaces with non-radial symmetry. More recent developments in machining technology have enabled significant expansion of fabrication capabilities. Modern machine tools can generate complex three-dimensional structures with optical quality surface finish, and fabricate structures across a dynamic range of dimensions not achievable with lithographic techniques. In particular, five-axis free-form micromachining offers a great deal of promise for realization of essentially arbitrary surface structures, including surfaces not realizable through binary or analog lithographic techniques. Furthermore, these machines can generate geometric features with optical finish on scales ranging from centimeters to micrometers with accuracies of 10s of nanometers. In this paper, we discuss techniques and applications of free-form surface machining of micro-optical elements. Aspects of diamond machine tool design to realize desired surface geometries in specific materials are discussed. Examples are presented, including fabrication of aspheric lens arrays in germanium for compact infrared imaging systems. Using special custom kinematic mounting equipment and the additional axes of the machine, the lenses were turned with surface finish better than 2 nm RMS and center to center positioning accuracy of +/-0.5 μm.
Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L
2014-01-01
Background Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. Objective The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Methods Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. Results All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Conclusions Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which these interventions could be translated for widespread use. This technology has broad applications for use in clinical, public health, and rehabilitation settings. PMID:25131661
History and current status of mini-invasive thoracic surgery
He, Jianxing
2011-01-01
Mini-invasive thoracic technique mainly refers to a technique involving the significant reduction of the chest wall access-related trauma. Notably, thoracoscope is the chief representative. The development of thoracoscope technique is characterized by: developing from direct peep to artificial lighting, then combination with image and video technique in equipments; technically developing from diagnostic to therapeutic approaches; developing from simpleness to complexity in application scope; and usually developing together with other techniques. At present, the widely used mini-invasive thoracic surgery refers to the mini-open thoracic surgery performed mainly by using some instruments to control target tissues and organs based on the vision associated with multi-limb coordination, which may be hand-assisted if necessary. The mini-invasive thoracic surgery consists of three approaches including video-assisted thoracic surgery (VATS), video-assisted Hybrid and hand-assisted VATS. So far the mini-invasive thoracic technique has achieved great advances due to the development in instruments of mini-invasive thoracic surgery which has the following features: instruments of mini-invasive thoracic surgery appear to be safe and practical, and have successive improvement and diversification in function; the specific instruments of open surgeries has been successively developed into dedicated instruments of endoscopic surgery; the application of endoscopic mechanical suture device generates faster fragmentation and reconstruction of organ tissues; the specific delicated instruments of endoscopic surgery have rapid development and application; and the simple instruments structurally similar to the conventional instruments are designed according to the mini-incison. In addition, the mini-invasive thoracic technique is widely used in five aspects including diseases of pleura membrane and chest wall, lung diseases, esophageal diseases, mediastinal diseases and heart diseases. However, there remain many problems in specifications and trainings, economic cost, conservation and innovation. Therefore, particular attention should be paid to these problems. Nevertheless, the promotion of thoracic surgery appears promising in the future. PMID:22263074
Lyons, Elizabeth J; Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L
2014-08-15
Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which these interventions could be translated for widespread use. This technology has broad applications for use in clinical, public health, and rehabilitation settings.
7 CFR 613.3 - NRCS responsibilities in plant materials.
Code of Federal Regulations, 2011 CFR
2011-01-01
... comparative field plantings for final testing of promising plants and techniques in cooperation with... allocation to conservation districts, experiment stations, other Federal and State research agencies, State...
7 CFR 613.3 - NRCS responsibilities in plant materials.
Code of Federal Regulations, 2010 CFR
2010-01-01
... comparative field plantings for final testing of promising plants and techniques in cooperation with... allocation to conservation districts, experiment stations, other Federal and State research agencies, State...
7 CFR 613.3 - NRCS responsibilities in plant materials.
Code of Federal Regulations, 2014 CFR
2014-01-01
... comparative field plantings for final testing of promising plants and techniques in cooperation with... allocation to conservation districts, experiment stations, other Federal and State research agencies, State...
7 CFR 613.3 - NRCS responsibilities in plant materials.
Code of Federal Regulations, 2012 CFR
2012-01-01
... comparative field plantings for final testing of promising plants and techniques in cooperation with... allocation to conservation districts, experiment stations, other Federal and State research agencies, State...
7 CFR 613.3 - NRCS responsibilities in plant materials.
Code of Federal Regulations, 2013 CFR
2013-01-01
... comparative field plantings for final testing of promising plants and techniques in cooperation with... allocation to conservation districts, experiment stations, other Federal and State research agencies, State...
Transcranial direct current stimulation (tDCS) and language
Monti, Alessia; Ferrucci, Roberta; Fumagalli, Manuela; Mameli, Francesca; Cogiamanian, Filippo; Ardolino, Gianluca; Priori, Alberto
2013-01-01
Transcranial direct current stimulation (tDCS), a non-invasive neuromodulation technique inducing prolonged brain excitability changes and promoting cerebral plasticity, is a promising option for neurorehabilitation. Here, we review progress in research on tDCS and language functions and on the potential role of tDCS in the treatment of post-stroke aphasia. Currently available data suggest that tDCS over language-related brain areas can modulate linguistic abilities in healthy individuals and can improve language performance in patients with aphasia. Whether the results obtained in experimental conditions are functionally important for the quality of life of patients and their caregivers remains unclear. Despite the fact that important variables are yet to be determined, tDCS combined with rehabilitation techniques seems a promising therapeutic option for aphasia. PMID:23138766
Reducing the Requirements and Cost of Astronomical Telescopes
NASA Technical Reports Server (NTRS)
Smith, W. Scott; Whitakter, Ann F. (Technical Monitor)
2002-01-01
Limits on astronomical telescope apertures are being rapidly approached. These limits result from logistics, increasing complexity, and finally budgetary constraints. In an historical perspective, great strides have been made in the area of aperture, adaptive optics, wavefront sensors, detectors, stellar interferometers and image reconstruction. What will be the next advances? Emerging data analysis techniques based on communication theory holds the promise of yielding more information from observational data based on significant computer post-processing. This paper explores some of the current telescope limitations and ponders the possibilities increasing the yield of scientific data based on the migration computer post-processing techniques to higher dimensions. Some of these processes hold the promise of reducing the requirements on the basic telescope hardware making the next generation of instruments more affordable.
Bar-Even, Arren; Noor, Elad; Flamholz, Avi; Milo, Ron
2013-01-01
Electrosynthesis is a promising approach that enables the biological production of commodities, like fuels and fine chemicals, using renewably produced electricity. Several techniques have been proposed to mediate the transfer of electrons from the cathode to living cells. Of these, the electroproduction of formate as a mediator seems especially promising: formate is readily soluble, of low toxicity and can be produced at relatively high efficiency and at reasonable current density. While organisms that are capable of formatotrophic growth, i.e. growth on formate, exist naturally, they are generally less suitable for bulk cultivation and industrial needs. Hence, it may be helpful to engineer a model organism of industrial relevance, such as E. coli, for growth on formate. There are numerous metabolic pathways that can potentially support formatotrophic growth. Here we analyze these diverse pathways according to various criteria including biomass yield, thermodynamic favorability, chemical motive force, kinetics and the practical challenges posed by their expression. We find that the reductive glycine pathway, composed of the tetrahydrofolate system, the glycine cleavage system, serine hydroxymethyltransferase and serine deaminase, is a promising candidate to support electrosynthesis in E. coli. The approach presented here exemplifies how combining different computational approaches into a systematic analysis methodology provides assistance in redesigning metabolism. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems. Copyright © 2012 Elsevier B.V. All rights reserved.
Imaging free zinc levels in vivo - what can be learned?
De Leon-Rodriguez, Luis; Lubag, Angelo Josue M; Sherry, A Dean
2012-12-01
Our ever-expanding knowledge about the role of zinc in biology includes its role in redox modulation, immune response, neurotransmission, reproduction, diabetes, cancer, and Alzheimers disease is galvanizing interest in detecting and monitoring the various forms of Zn(II) in biological systems. This paper reviews reported strategies for detecting and tracking of labile or "free" unchelated Zn(II) in tissues. While different bound structural forms of Zn(II) have been identified and studied in vitro by multiple techniques, very few molecular imaging methods have successfully tracked the ion in vivo. A number of MRI and optical strategies have now been reported for detection of free Zn(II) in cells and tissues but only a few have been applied successfully in vivo. A recent report of a MRI sensor for in vivo tracking of Zn(II) released from pancreatic β-cells during insulin secretion exemplifies the promise of rational design of new Zn(II) sensors for tracking this biologically important ion in vivo. Such studies promise to provide new insights into zinc trafficking in vivo and the critical role of this ion in many human diseases.
NASA Astrophysics Data System (ADS)
Sarfraz, Jawad; Borzenkov, Mykola; Niemelä, Erik; Weinberger, Christian; Törngren, Björn; Rosqvist, Emil; Collini, Maddalena; Pallavicini, Piersandro; Eriksson, John; Peltonen, Jouko; Ihalainen, Petri; Chirico, Giuseppe
2018-03-01
Inkjet-printing of metal nanoparticles is a particularly promising technique for the fabrication and modification of surfaces with a multifunctional nature. Recently copper sulfide nanoparticles (CuS NPs) have attracted wide interest due to a range of valuable properties including long term stability, photo-thermal activity, ease of synthesis and low cost. In the present study, printed CuS patterns were successfully fabricated on latex coated paper substrates and characterized by means of atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), UV-Vis-NIR spectroscopy, and grazing incidence X-ray diffraction (GID). The resulted patterns displayed pronounced photo-thermal effect under Near Infrared Irradiation (NIR) even with relatively low laser power. Finally, by utilizing an automated real-time imaging platform it was possible to verify that the CuS printed film was not cytotoxic to human dermal fibroblast cells (HDF). The pronounced photo-thermal properties and nontoxic nature of these printed low-cost flexible CuS films make them promising candidates for fabrication of devices with localized photo-thermal effect suitable for biomedical applications.
Fabrication of Gold-coated 3-D Woodpile Structures for Mid-IR Thermal Emitters
NASA Astrophysics Data System (ADS)
Li, Shengkai; Moridani, Amir; Kothari, Rohit; Lee, Jae-Hwang; Watkins, James
3-D metallic woodpile nanostructures possess enhancements in thermal radiation that are both wavelength and polarization specific and are promising for thermal-optical devices for various applications including thermal photovoltaics, self-cooling devices, and chemical and bio-sensors. However, current fabrication techniques for such structures are limited by slow speed, small area capability, the need for expensive facilities and, in general, are not suitable for high-throughput mass production. Here we demonstrate a new strategy for the fabrication of 3D metallic woodpile structures. Well-defined TiO2 woodpile structures were fabricated using a layer-by-layer nanoimprint method using TiO2 nanoparticle ink dispersions. The TiO2 woodpile was then coated with a high purity, conformal gold film via reactive deposition in supercritical carbon dioxide. The final gold-coated woodpile structures exhibit strong spectral and polarization specific thermal emission enhancements. The fabrication method demonstrated here is promising for high-throughput, low-cost preparation of 3D metallic woodpile structures and other 3D nanostructures. Center for Hierarchical Manufacturing, NSF.
Haisma, H J; de Hon, O
2006-04-01
Together with the rapidly increasing knowledge on genetic therapies as a promising new branch of regular medicine, the issue has arisen whether these techniques might be abused in the field of sports. Previous experiences have shown that drugs that are still in the experimental phases of research may find their way into the athletic world. Both the World Anti-Doping Agency (WADA) and the International Olympic Committee (IOC) have expressed concerns about this possibility. As a result, the method of gene doping has been included in the list of prohibited classes of substances and prohibited methods. This review addresses the possible ways in which knowledge gained in the field of genetic therapies may be misused in elite sports. Many genes are readily available which may potentially have an effect on athletic performance. The sporting world will eventually be faced with the phenomena of gene doping to improve athletic performance. A combination of developing detection methods based on gene arrays or proteomics and a clear education program on the associated risks seems to be the most promising preventive method to counteract the possible application of gene doping.
Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms
Zhang, S. Y.; Wu, J. T.; Zhang, Y. L.; Leng, J. X.; Yang, W. P.; Zhang, Z. G.; Zhao, J. Y.
2015-01-01
Optical clocks have been the focus of science and technology research areas due to their capability to provide highest frequency accuracy and stability to date. Their superior frequency performance promises significant advances in the fields of fundamental research as well as practical applications including satellite-based navigation and ranging. In traditional optical clocks, ultrastable optical cavities, laser cooling and particle (atoms or a single ion) trapping techniques are employed to guarantee high stability and accuracy. However, on the other hand, they make optical clocks an entire optical tableful of equipment, and cannot work continuously for a long time; as a result, they restrict optical clocks used as very convenient and compact time-keeping clocks. In this article, we proposed, and experimentally demonstrated, a novel scheme of optical frequency standard based on comb-directly-excited atomic two-photon transitions. By taking advantage of the natural properties of the comb and two-photon transitions, this frequency standard achieves a simplified structure, high robustness as well as decent frequency stability, which promise widespread applications in various scenarios. PMID:26459877
Reisenman, Carolina E; Lei, Hong; Guerenstein, Pablo G
2016-01-01
Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of "semiochemicals", which are natural volatile and non-volatile substances involved in the intra- and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies.
Reisenman, Carolina E.; Lei, Hong; Guerenstein, Pablo G.
2016-01-01
Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of “semiochemicals”, which are natural volatile and non-volatile substances involved in the intra- and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies. PMID:27445858
Psychological aspects of tinnitus and the application of cognitive-behavioral therapy.
Andersson, Gerhard
2002-09-01
This article presents an overview of tinnitus (ringing or buzzing in the ears), its psychological effects, and the application of cognitive-behavioral therapy (CBT) for its treatment. Several studies have confirmed an association between psychological factors, such as anxiety and depression, and severe tinnitus and preliminary reports suggest that a proportion of tinnitus patients suffer from mental illness. Assessment strategies used in CBT for tinnitus include structured interviews, daily diary ratings, and validated self-report questionnaires. The treatment approach described in this article includes applied relaxation, imagery and distraction techniques, advice regarding environmental sounds, management of sleep, cognitive restructuring of thoughts and beliefs associated with tinnitus, and relapse prevention. The literature pertinent to CBT approaches to treating tinnitus is reviewed, and it is concluded that CBT shows promise as a treatment of tinnitus-related distress. Future research directions are discussed.
Molecular fluorescence as a monitor of minor stratospheric constituents
NASA Technical Reports Server (NTRS)
Schofield, K.
1975-01-01
The potential of molecular fluorescence was assessed as a stratospheric monitor of the concentrations of various minor species. Seventeen molecules were considered and all spectral regions from the vacuum ultraviolet through to the infrared are included. The exercise has produced few surprises; however, further confirmation has emerged as to the feasibility of this sensitive technique for monitoring stratospheric OH, NO2, and SO2, sufficient to warrant its development as analytical flight hardware for these species. All the other molecules have been eliminated with the exception of C10 which appears to have promise but requires additional information before its detection limit can be calculated; its fluorescence spectrum is as yet uninvestigated. A handbook for molecular fluorescence is presented, and a compilation of all reported studies for simple molecules using line source excitation is included.
ERIC Educational Resources Information Center
Brossart, Daniel F.; Parker, Richard I.; Olson, Elizabeth A.; Mahadevan, Lakshmi
2006-01-01
This study explored some practical issues for single-case researchers who rely on visual analysis of graphed data, but who also may consider supplemental use of promising statistical analysis techniques. The study sought to answer three major questions: (a) What is a typical range of effect sizes from these analytic techniques for data from…
Promises and Obstacles of L1 Use in Language Classrooms: A State-of-the-Art Review
ERIC Educational Resources Information Center
Ghobadi, Mehdi; Ghasemi, Hadi
2015-01-01
Translation and language teaching techniques which take language learners' first language (L1) as point of reference for teaching the second language (L2) have been long discouraged on the ground that these teaching techniques would end in the fossilization of L2 structure forms in the learner's Interlanguage system. However, in recent years, the…
Subsurface Growth Of Silicide Structures In Silicon
NASA Technical Reports Server (NTRS)
Fathauer, Robert W.; George, Thomas; Pike, William T.; Schowalter, Leo
1993-01-01
Technique shows promise for fabrication of novel electronic, optoelectronic, and electro-optical devices. Experiments demonstrated feasibility of growing microscopic single-crystal CoSi2 structures beneath surfaces of Si substrates.
Recent advances in aerospace composite NDE
NASA Astrophysics Data System (ADS)
Georgeson, Gary E.
2002-06-01
As the aerospace industry continues to advance the design and use of composite structure, the NDE community faces the difficulties of trying to keep up. The challenges lie in manufacturing evaluation of the newest aerospace structures and materials and the in-service inspection and monitoring of damaged or aging composites. This paper provides examples of several promising NDI applications in the world of aerospace composites. Airborne (or non-contact) Ultrasonic Testing (UT) has been available for decades, but recently has generated new interest due to significant improvements in transducer design and low noise electronics. Boeing is developing inspection techniques for composite joints and core blankets using this technology. In-service inspection techniques for thick, multi-layer structures are also being advanced. One effective technique integrates the S-9 Sondicator, a traditional bond testing device, with Boeing's Mobile Automated Scanner (MAUS) platform. Composite patches have seen limited use on-aircraft, due, in part, to the difficulty of determining the quality of a bonded joint. A unique approach using Electronic Speckle Pattern Interferometry (ESPI) is showing promise as a bonded patch-inspection method. Other NDI techniques currently being developed for aerospace application are also briefly discussed.
NASA Astrophysics Data System (ADS)
Marcu, Laura
2017-02-01
The surgeon's limited ability to accurately delineate the tumor margin during surgical interventions is one key challenge in clinical management of cancer. New methods for guiding tumor resection decisions are needed. Numerous studies have shown that tissue autofluorescence properties have the potential to asses biochemical features associates with distinct pathologies in tissue and to distinguish various cancers from normal tissues. However, despite these promising reports, autofluorescence techniques were sparsely adopted in clinical settings. Moreover, when adopted they were primarily used for pre-operative diagnosis rather than guiding interventions. To address this need, we have researched and engineered instrumentation that utilizes label-free fluorescence lifetime contrast to characterize tissue biochemical features in vivo in patients and methodologies conducive to real-time (few seconds) diagnosis of tissue pathologies during surgical procedures. This presentation overviews clinically-compatible multispectral fluorescence lifetime imaging techniques developed in our laboratory and their ability to operate as stand-alone tools, integrated in a biopsy needle and in conjunction with the da Vinci surgical robot. We present pre-clinical and clinical studies in patients that demonstrate the potential of these techniques for intraoperative assessment of brain tumors and head and neck cancer. Current results demonstrate that intrinsic fluorescence signals can provide useful contrast for delineation distinct types of tissues including tumors intraoperatively. Challenges and solutions in the clinical implementation of these techniques are discussed.
A constrained joint source/channel coder design and vector quantization of nonstationary sources
NASA Technical Reports Server (NTRS)
Sayood, Khalid; Chen, Y. C.; Nori, S.; Araj, A.
1993-01-01
The emergence of broadband ISDN as the network for the future brings with it the promise of integration of all proposed services in a flexible environment. In order to achieve this flexibility, asynchronous transfer mode (ATM) has been proposed as the transfer technique. During this period a study was conducted on the bridging of network transmission performance and video coding. The successful transmission of variable bit rate video over ATM networks relies on the interaction between the video coding algorithm and the ATM networks. Two aspects of networks that determine the efficiency of video transmission are the resource allocation algorithm and the congestion control algorithm. These are explained in this report. Vector quantization (VQ) is one of the more popular compression techniques to appear in the last twenty years. Numerous compression techniques, which incorporate VQ, have been proposed. While the LBG VQ provides excellent compression, there are also several drawbacks to the use of the LBG quantizers including search complexity and memory requirements, and a mismatch between the codebook and the inputs. The latter mainly stems from the fact that the VQ is generally designed for a specific rate and a specific class of inputs. In this work, an adaptive technique is proposed for vector quantization of images and video sequences. This technique is an extension of the recursively indexed scalar quantization (RISQ) algorithm.
Stroumza, N; Fuzco, G; Laporte, J; Nail Barthelemy, R; Houry, S; Atlan, M
2017-08-01
Anal fistulas are common pathologies with a significant social impact; however, their treatment is often complex and the recurrence rate can be significant. Some surgical treatments for fistula are also associated with the risk of sphincter injury. In this technical note, we aim to evaluate the feasibility and efficacy of the Fat GRAFT technique (Fat Grafting in Anal Fistula Treatment) in the treatment of recurrent anal fistulas. All patients presenting with recurrent trans-sphincteric anal fistulas over an 18-month period were included. After abdominal fat harvesting and fat preparation, fat grafting was performed in the track and peripheral area of the fistula. The internal and external openings of the fistula were closed to maximally preserve the retention of the adipocyte graft in the fistula. Eleven patients underwent the Fat GRAFT procedure (seven men, four women). The average re-injected volume for each fistula was 21 ml (range 10-30 ml). The postoperative course was uneventful. At 6 months three patients developed recurrence (73% healed). There were no postoperative complications. The Fat GRAFT technique appears to be a promising technique with a low risk of anal incontinence, in contrast to other techniques. This method was effective in > 70% of patients in a single session. Colorectal Disease © 2017 The Association of Coloproctology of Great Britain and Ireland.
Artificial Intelligence in Surgery: Promises and Perils.
Hashimoto, Daniel A; Rosman, Guy; Rus, Daniela; Meireles, Ozanan R
2018-07-01
The aim of this review was to summarize major topics in artificial intelligence (AI), including their applications and limitations in surgery. This paper reviews the key capabilities of AI to help surgeons understand and critically evaluate new AI applications and to contribute to new developments. AI is composed of various subfields that each provide potential solutions to clinical problems. Each of the core subfields of AI reviewed in this piece has also been used in other industries such as the autonomous car, social networks, and deep learning computers. A review of AI papers across computer science, statistics, and medical sources was conducted to identify key concepts and techniques within AI that are driving innovation across industries, including surgery. Limitations and challenges of working with AI were also reviewed. Four main subfields of AI were defined: (1) machine learning, (2) artificial neural networks, (3) natural language processing, and (4) computer vision. Their current and future applications to surgical practice were introduced, including big data analytics and clinical decision support systems. The implications of AI for surgeons and the role of surgeons in advancing the technology to optimize clinical effectiveness were discussed. Surgeons are well positioned to help integrate AI into modern practice. Surgeons should partner with data scientists to capture data across phases of care and to provide clinical context, for AI has the potential to revolutionize the way surgery is taught and practiced with the promise of a future optimized for the highest quality patient care.
Zheng, Chen-Xi; Sui, Bing-Dong; Hu, Cheng-Hu; Qiu, Xin-Yu; Zhao, Pan; Jin, Yan
2018-04-27
Failure of solid organs, such as the heart, liver, and kidney, remains a major cause of the world's mortality due to critical shortage of donor organs. Tissue engineering, which uses elements including cells, scaffolds, and growth factors to fabricate functional organs in vitro, is a promising strategy to mitigate the scarcity of transplantable organs. Within recent years, different construction strategies that guide the combination of tissue engineering elements have been applied in solid organ tissue engineering and have achieved much progress. Most attractively, construction strategy based on whole-organ decellularization has become a popular and promising approach, because the overall structure of extracellular matrix can be well preserved. However, despite the preservation of whole structure, the current constructs derived from decellularization-based strategy still perform partial functions of solid organs, due to several challenges, including preservation of functional extracellular matrix structure, implementation of functional recellularization, formation of functional vascular network, and realization of long-term functional integration. This review overviews the status quo of solid organ tissue engineering, including both advances and challenges. We have also put forward a few techniques with potential to solve the challenges, mainly focusing on decellularization-based construction strategy. We propose that the primary concept for constructing tissue-engineered solid organs is fabricating functional organs based on intact structure via simulating the natural development and regeneration processes. Copyright © 2018 John Wiley & Sons, Ltd.
Two biased estimation techniques in linear regression: Application to aircraft
NASA Technical Reports Server (NTRS)
Klein, Vladislav
1988-01-01
Several ways for detection and assessment of collinearity in measured data are discussed. Because data collinearity usually results in poor least squares estimates, two estimation techniques which can limit a damaging effect of collinearity are presented. These two techniques, the principal components regression and mixed estimation, belong to a class of biased estimation techniques. Detection and assessment of data collinearity and the two biased estimation techniques are demonstrated in two examples using flight test data from longitudinal maneuvers of an experimental aircraft. The eigensystem analysis and parameter variance decomposition appeared to be a promising tool for collinearity evaluation. The biased estimators had far better accuracy than the results from the ordinary least squares technique.
Minimally Invasive Surgery (MIS) Approaches to Thoracolumbar Trauma.
Kaye, Ian David; Passias, Peter
2018-03-01
Minimally invasive surgical (MIS) techniques offer promising improvements in the management of thoracolumbar trauma. Recent advances in MIS techniques and instrumentation for degenerative conditions have heralded a growing interest in employing these techniques for thoracolumbar trauma. Specifically, surgeons have applied these techniques to help manage flexion- and extension-distraction injuries, neurologically intact burst fractures, and cases of damage control. Minimally invasive surgical techniques offer a means to decrease blood loss, shorten operative time, reduce infection risk, and shorten hospital stays. Herein, we review thoracolumbar minimally invasive surgery with an emphasis on thoracolumbar trauma classification, minimally invasive spinal stabilization, surgical indications, patient outcomes, technical considerations, and potential complications.
Rathbun, R.E.; Grant, R. Stephen
1978-01-01
There are advantages and disadvantages to both the radioactive and modified tracer techniques. The main advantage of the radioactive technique is that the tracer gas is chemically inert; the main disadvantage is that a radioactive isotope of the gas must be used to obtain the necessary analytical sensitivity. The main advantage of the modified technique is that radioactive tracers are not necessary; the main disadvantage is that the hydrocarbon tracer gases may be subject to biological degradation and sorption losses. Results of this comparison study suggest that the modified technique is a promising alternative to the use of radioactive tracers.
The Buccaneer software for automated model building. 1. Tracing protein chains.
Cowtan, Kevin
2006-09-01
A new technique for the automated tracing of protein chains in experimental electron-density maps is described. The technique relies on the repeated application of an oriented electron-density likelihood target function to identify likely C(alpha) positions. This function is applied both in the location of a few promising ;seed' positions in the map and to grow those initial C(alpha) positions into extended chain fragments. Techniques for assembling the chain fragments into an initial chain trace are discussed.
Statistical techniques for the characterization of partially observed epidemics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safta, Cosmin; Ray, Jaideep; Crary, David
Techniques appear promising to construct and integrate automated detect-and-characterize technique for epidemics - Working off biosurveillance data, and provides information on the particular/ongoing outbreak. Potential use - in crisis management and planning, resource allocation - Parameter estimation capability ideal for providing the input parameters into an agent-based model, Index Cases, Time of Infection, infection rate. Non-communicable diseases are easier than communicable ones - Small anthrax can be characterized well with 7-10 days of data, post-detection; plague takes longer, Large attacks are very easy.
Slip length measurement of gas flow.
Maali, Abdelhamid; Colin, Stéphane; Bhushan, Bharat
2016-09-16
In this paper, we present a review of the most important techniques used to measure the slip length of gas flow on isothermal surfaces. First, we present the famous Millikan experiment and then the rotating cylinder and spinning rotor gauge methods. Then, we describe the gas flow rate experiment, which is the most widely used technique to probe a confined gas and measure the slip. Finally, we present a promising technique using an atomic force microscope introduced recently to study the behavior of nanoscale confined gas.
Monitoring of tissue optical properties using OCT: application for blood glucose analysis
NASA Astrophysics Data System (ADS)
Larin, Kirill V.; Eledrisi, Mohsen S.; Ashitkov, Taras V.; Motamedi, Massoud; Esenaliev, Rinat O.
2002-07-01
Noninvasive monitoring of tissue optical properties in real time could significantly improve diagnostics and management of various diseases. Recently we proposed to use high- resolution Optical Coherence Tomography (OCT) technique for measurement of tissue scattering coefficient at the depth of up to 1mm. Our pilot studies performed in vitro and in vivo demonstrated that measurement of tissue scattering with this technique can potentially be applied for noninvasive monitoring of blood glucose concentration. High resolution and coherent photon detection of the OCT technique allowed detection of glucose-induced changes in the scattering coefficient. In this paper we report results of in vivo studies performed in dog, New Zealand rabbits, and first human subjects. OCT system with the wavelength of 1300 nm was used in our experiments. OCT signal slope was measured and compared with actual blood glucose concentration. Bolus glucose injections and glucose clamping administrations were used in animal studies. OCT signals were recorded form human subjects during oral glucose tolerance test. Results obtained form both animal and human studies show good correlation between slope of the OCT signals and actual blood glucose concentration measured using standard glucometesr. Sensitivity and accuracy of blood glucose concentrations monitoring with the OCT is discussed. Obtained result suggest that OCT is a promising technique for noninvasive monitoring of tissue analytes including glucose.
Cascianelli, Silvia; Scialpi, Michele; Amici, Serena; Forini, Nevio; Minestrini, Matteo; Fravolini, Mario Luca; Sinzinger, Helmut; Schillaci, Orazio; Palumbo, Barbara
2017-01-01
Artificial Intelligence (AI) is a very active Computer Science research field aiming to develop systems that mimic human intelligence and is helpful in many human activities, including Medicine. In this review we presented some examples of the exploiting of AI techniques, in particular automatic classifiers such as Artificial Neural Network (ANN), Support Vector Machine (SVM), Classification Tree (ClT) and ensemble methods like Random Forest (RF), able to analyze findings obtained by positron emission tomography (PET) or single-photon emission tomography (SPECT) scans of patients with Neurodegenerative Diseases, in particular Alzheimer's Disease. We also focused our attention on techniques applied in order to preprocess data and reduce their dimensionality via feature selection or projection in a more representative domain (Principal Component Analysis - PCA - or Partial Least Squares - PLS - are examples of such methods); this is a crucial step while dealing with medical data, since it is necessary to compress patient information and retain only the most useful in order to discriminate subjects into normal and pathological classes. Main literature papers on the application of these techniques to classify patients with neurodegenerative disease extracting data from molecular imaging modalities are reported, showing that the increasing development of computer aided diagnosis systems is very promising to contribute to the diagnostic process.
Eastern approaches for enhancing women's sexuality: mindfulness, acupuncture, and yoga (CME).
Brotto, Lori A; Krychman, Michael; Jacobson, Pamela
2008-12-01
A significant proportion of women report unsatisfying sexual experiences despite no obvious difficulties in the traditional components of sexual response (desire, arousal, and orgasm). Some suggest that nongoal-oriented spiritual elements to sexuality might fill the gap that more contemporary forms of treatment are not addressing. Eastern techniques including mindfulness, acupuncture, and yoga, are Eastern techniques, which have been applied to women's sexuality. Here, we review the literature on their efficacy. Our search revealed two empirical studies of mindfulness, two of acupuncture, and one of yoga in the treatment of sexual dysfunction. Literature review of empirical sources. Mindfulness significantly improves several aspects of sexual response and reduces sexual distress in women with sexual desire and arousal disorders. In women with provoked vestibulodynia, acupuncture significantly reduces pain and improves quality of life. There is also a case series of acupuncture significantly improving desire among women with hypoactive sexual desire disorder. Although yoga has only been empirically examined and found to be effective for treating sexual dysfunction (premature ejaculation) in men, numerous historical books cite benefits of yoga for women's sexuality. The empirical literature supporting Eastern techniques, such as mindfulness, acupuncture, and yoga, for women's sexual complaints and loss of satisfaction is sparse but promising. Future research should aim to empirically support Eastern techniques in women's sexuality.
Techniques for the diagnosis of Fasciola infections in animals: room for improvement.
Alvarez Rojas, Cristian A; Jex, Aaron R; Gasser, Robin B; Scheerlinck, Jean-Pierre Y
2014-01-01
The common liver fluke, Fasciola hepatica, causes fascioliasis, a significant disease in mammals, including livestock, wildlife and humans, with a major socioeconomic impact worldwide. In spite of its impact, and some advances towards the development of vaccines and new therapeutic agents, limited attention has been paid to the need for practical and reliable methods for the diagnosis of infection or disease. Accurate diagnosis is central to effective control, particularly given an emerging problem with drug resistance in F. hepatica. Traditional coprological techniques have been widely used, but are often unreliable. Although there have been some advances in establishing immunologic techniques, these tools can suffer from a lack of diagnostic specificity and/or sensitivity. Nonetheless, antigen detection tests seem to have considerable potential, but have not yet been adequately evaluated in the field. Moreover, advanced nucleic acid-based methods appear to offer the most promise for the diagnosis of current infection. This chapter (i) provides a brief account of the biology and significance of F. hepatica/fascioliasis, (ii) describes key techniques currently in use, (iii) compares their advantages/disadvantages and (iv) reviews polymerase chain reaction-based methods for specific diagnosis and/or the genetic characterization of Fasciola species. © 2014 Elsevier Ltd. All rights reserved.
Codner, E C; Lurus, A G; Miller, J B; Gavin, P R; Gallina, A; Barbee, D D
1993-04-01
Computed tomography was evaluated as a noninvasive technique for the diagnosis of chronic nasal disease in dogs. Computed tomographic images, radiographs, and histopathologic findings were compared in 11 dogs with chronic nasal disease. Definitive diagnosis was made following traumatic nasal flush, exploratory surgery, or necropsy. The study included 8 dogs with intranasal tumors, 2 dogs with bacterial rhinitis (Pasteurella sp), and 1 dog with mycotic rhinitis (Aspergillus sp). Computed tomography was superior to radiography in defining the extent of the disease process and in differentiating infectious rhinitis from nasal neoplasms. It defined lesions in the palate, nasopharyngeal meatus, maxillary sinus, caudal ethmoturbinates, and periorbital tissues that were difficult to demonstrate by use of conventional radiography. Tumors appeared as space-occupying lesions that obliterated the turbinates, caused deviation of the nasal septum, and eroded bone. Rhinitis appeared as a cavitating lesion that spared the paranasal sinuses, thickened and distorted the turbinates, and widened the meatus. Although morphologically distinct on computed tomographic images, infectious rhinitis and nasal neoplasms could not be differentiated by attenuation measurements or degree of contrast enhancement. Computed tomography appeared to be a reliable, noninvasive technique for the diagnosis of chronic nasal disease in dogs, and a promising alternative to diagnostic techniques currently in use.
Ultrasonic propulsion of kidney stones.
May, Philip C; Bailey, Michael R; Harper, Jonathan D
2016-05-01
Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the ureteropelvic junction with relief of pain, and differentiating large stones from a collection of small fragments. Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing ureteropelvic junction stones into the kidney to alleviate acute renal colic.
Ultrasonic propulsion of kidney stones
May, Philip C.; Bailey, Michael R.; Harper, Jonathan D.
2016-01-01
Purpose of review Ultrasonic propulsion is a novel technique that uses short bursts of focused ultrasonic pulses to reposition stones transcutaneously within the renal collecting system and ureter. The purpose of this review is to discuss the initial testing of effectiveness and safety, directions for refinement of technique and technology, and opinions on clinical application. Recent findings Preclinical studies with a range of probes, interfaces, and outputs have demonstrated feasibility and consistent safety of ultrasonic propulsion with room for increased outputs and refinement toward specific applications. Ultrasonic propulsion was used painlessly and without adverse events to reposition stones in 14 of 15 human study participants without restrictions on patient size, stone size, or stone location. The initial feasibility study showed applicability in a range of clinically relevant situations, including facilitating passage of residual fragments following ureteroscopy or shock wave lithotripsy, moving a large stone at the UPJ with relief of pain, and differentiating large stones from a collection of small fragments. Summary Ultrasonic propulsion shows promise as an office-based system for transcutaneously repositioning kidney stones. Potential applications include facilitating expulsion of residual fragments following ureteroscopy or shock wave lithotripsy, repositioning stones prior to treatment, and repositioning obstructing UPJ stones into the kidney to alleviate acute renal colic. PMID:26845428
Regenerative medicine in kidney disease: where we stand and where to go.
Borges, Fernanda T; Schor, Nestor
2017-07-22
The kidney is a complex organ with more than 20 types of specialized cells that play an important role in maintaining the body's homeostasis. The epithelial tubular cell is formed during embryonic development and has little proliferative capacity under physiological conditions, but after acute injury the kidney does have regenerative capacity. However, after repetitive or severe lesions, it may undergo a maladaptation process that predisposes it to chronic kidney injury. Regenerative medicine includes various repair and regeneration techniques, and these have gained increasing attention in the scientific literature. In the future, not only will these techniques contribute to the repair and regeneration of the human kidney, but probably also to the construction of an entire organ. New mechanisms studied for kidney regeneration and repair include circulating stem cells as mesenchymal stromal/stem cells and their paracrine mechanisms of action; renal progenitor stem cells; the leading role of tubular epithelial cells in the tubular repair process; the study of zebrafish larvae to understand the process of nephron development, kidney scaffold and its repopulation; and, finally, the development of organoids. This review elucidates where we are in terms of current scientific knowledge regarding these mechanisms and the promises of future scientific perspectives.
Studying Health Outcomes in Farmworker Populations Exposed to Pesticides
McCauley, Linda A.; Anger, W. Kent; Keifer, Matthew; Langley, Rick; Robson, Mark G.; Rohlman, Diane
2006-01-01
A major goal of studying farmworkers is to better understand how their work environment, including exposure to pesticides, affects their health. Although a number of health conditions have been associated with pesticide exposure, clear linkages have yet to be made between exposure and health effects except in cases of acute pesticide exposure. In this article, we review the most common health end points that have been studied and describe the epidemiologic challenges encountered in studying these health effects of pesticides among farmworkers, including the difficulties in accessing the population and challenges associated with obtaining health end point data. The assessment of neurobehavioral health effects serves as one of the most common and best examples of an approach used to study health outcomes in farmworkers and other populations exposed to pesticides. We review the current limitations in neurobehavioral assessment and strategies to improve these analytical methods. Emerging techniques to improve our assessment of health effects associated with pesticide exposure are reviewed. These techniques, which in most cases have not been applied to farmworker populations, hold promise in our ability to study and understand the relationship between pesticide exposure and a variety of health effects in this population. PMID:16760000
Comparison of turbulence mitigation algorithms
NASA Astrophysics Data System (ADS)
Kozacik, Stephen T.; Paolini, Aaron; Sherman, Ariel; Bonnett, James; Kelmelis, Eric
2017-07-01
When capturing imagery over long distances, atmospheric turbulence often degrades the data, especially when observation paths are close to the ground or in hot environments. These issues manifest as time-varying scintillation and warping effects that decrease the effective resolution of the sensor and reduce actionable intelligence. In recent years, several image processing approaches to turbulence mitigation have shown promise. Each of these algorithms has different computational requirements, usability demands, and degrees of independence from camera sensors. They also produce different degrees of enhancement when applied to turbulent imagery. Additionally, some of these algorithms are applicable to real-time operational scenarios while others may only be suitable for postprocessing workflows. EM Photonics has been developing image-processing-based turbulence mitigation technology since 2005. We will compare techniques from the literature with our commercially available, real-time, GPU-accelerated turbulence mitigation software. These comparisons will be made using real (not synthetic), experimentally obtained data for a variety of conditions, including varying optical hardware, imaging range, subjects, and turbulence conditions. Comparison metrics will include image quality, video latency, computational complexity, and potential for real-time operation. Additionally, we will present a technique for quantitatively comparing turbulence mitigation algorithms using real images of radial resolution targets.
Ashraf, Muhammad Aqeel; Ullah, Saleem; Ahmad, Irshad; Qureshi, Ahmad Kaleem; Balkhair, Khaled S; Abdur Rehman, Muhammad
2014-02-01
The study of biofilms has skyrocketed in recent years due to increased awareness of the pervasiveness and impact of biofilms. It costs the USA literally billions of dollars every year in energy losses, equipment damage, product contamination and medical infections. But biofilms also offer huge potential for cleaning up hazardous waste sites, filtering municipal and industrial water and wastewater, and forming biobarriers to protect soil and groundwater from contamination. The complexity of biofilm activity and behavior requires research contributions from many disciplines such as biochemistry, engineering, mathematics and microbiology. The aim of this review is to provide a comprehensive analysis of emerging novel antimicrobial techniques, including those using myriad organic and inorganic products as well as genetic engineering techniques, the use of coordination complex molecules, composite materials and antimicrobial peptides and the use of lasers as such or their modified use in combination treatments. This review also addresses advanced and recent modifications, including methodological changes, and biocide efficacy enhancing strategies. This review will provide future planners of biofilm control technologies with a broad understanding and perspective on the use of biocides in the field of green developments for a sustainable future. © 2013 Society of Chemical Industry.
Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction
Carlberg, Kevin Thomas; Barone, Matthew F.; Antil, Harbir
2016-10-20
Least-squares Petrov–Galerkin (LSPG) model-reduction techniques such as the Gauss–Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible flow problems where standard Galerkin techniques have failed. Furthermore, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform optimal projection associated with residual minimization at the time-continuous level, while LSPG techniques do so at the time-discrete level. This work provides a detailed theoretical and computational comparison of the two techniques for two common classes of timemore » integrators: linear multistep schemes and Runge–Kutta schemes. We present a number of new findings, including conditions under which the LSPG ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and computationally that decreasing the time step does not necessarily decrease the error for the LSPG ROM; instead, the time step should be ‘matched’ to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible-flow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the LSPG reduced-order model by an order of magnitude.« less
The Evolving Field of Wound Measurement Techniques: A Literature Review.
Khoo, Rachel; Jansen, Shirley
2016-06-01
Wound healing is a complex and multifactorial process that requires the involvement of a multidisciplinary approach. Methods of wound measurement have been developed and continually refined with the purpose of ensuring precision in wound measurement and documentation as the primary indicator of healing. This review aims to ascertain the efficacies of current wound area measurement techniques, and to highlight any perceived gaps in the literature so as to develop suggestions for future studies and practice. Med- line, PubMed, CliniKey, and CINAHL were searched using the terms "wound/ulcer measurement techniques," "wound assessment," "digi- tal planimetry," and "structured light." Articles between 2000 and 2014 were selected, and secondary searches were carried out by exam- ining the references of relevant articles. Only papers written in English were included. A universal, standardized method of wound as- sessment has not been established or proposed. At present, techniques range from the simple to the more complex - most of which have char- acteristics that allow for applicability in both rural and urban settings. Techniques covered are: ruler measurements, acetate tracings/contact planimetry, digital planimetry, and structured light devices. Conclu- sion. In reviewing the literature, the precision and reliability of digital planimetry over the more conventional methods of ruler measurements and acetate tracings are consistently demonstrated. The advent and utility of the laser or structured light approach, however, is promising, has only been analyzed by a few, and opens up the scope for further evaluation of this technique.
Beam by design: Laser manipulation of electrons in modern accelerators
NASA Astrophysics Data System (ADS)
Hemsing, Erik; Stupakov, Gennady; Xiang, Dao; Zholents, Alexander
2014-07-01
Accelerator-based light sources such as storage rings and free-electron lasers use relativistic electron beams to produce intense radiation over a wide spectral range for fundamental research in physics, chemistry, materials science, biology, and medicine. More than a dozen such sources operate worldwide, and new sources are being built to deliver radiation that meets with the ever-increasing sophistication and depth of new research. Even so, conventional accelerator techniques often cannot keep pace with new demands and, thus, new approaches continue to emerge. In this article, a variety of recently developed and promising techniques that rely on lasers to manipulate and rearrange the electron distribution in order to tailor the properties of the radiation are reviewed. Basic theories of electron-laser interactions, techniques to create microstructures and nanostructures in electron beams, and techniques to produce radiation with customizable waveforms are reviewed. An overview of laser-based techniques for the generation of fully coherent x rays, mode-locked x-ray pulse trains, light with orbital angular momentum, and attosecond or even zeptosecond long coherent pulses in free-electron lasers is presented. Several methods to generate femtosecond pulses in storage rings are also discussed. Additionally, various schemes designed to enhance the performance of light sources through precision beam preparation including beam conditioning, laser heating, emittance exchange, and various laser-based diagnostics are described. Together these techniques represent a new emerging concept of "beam by design" in modern accelerators, which is the primary focus of this article.
Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlberg, Kevin Thomas; Barone, Matthew F.; Antil, Harbir
Least-squares Petrov–Galerkin (LSPG) model-reduction techniques such as the Gauss–Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible flow problems where standard Galerkin techniques have failed. Furthermore, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform optimal projection associated with residual minimization at the time-continuous level, while LSPG techniques do so at the time-discrete level. This work provides a detailed theoretical and computational comparison of the two techniques for two common classes of timemore » integrators: linear multistep schemes and Runge–Kutta schemes. We present a number of new findings, including conditions under which the LSPG ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and computationally that decreasing the time step does not necessarily decrease the error for the LSPG ROM; instead, the time step should be ‘matched’ to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible-flow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the LSPG reduced-order model by an order of magnitude.« less
Borotikar, Bhushan; Lempereur, Mathieu; Lelievre, Mathieu; Burdin, Valérie; Ben Salem, Douraied; Brochard, Sylvain
2017-01-01
To report evidence for the concurrent validity and reliability of dynamic MRI techniques to evaluate in vivo joint and muscle mechanics, and to propose recommendations for their use in the assessment of normal and impaired musculoskeletal function. The search was conducted on articles published in Web of science, PubMed, Scopus, Academic search Premier, and Cochrane Library between 1990 and August 2017. Studies that reported the concurrent validity and/or reliability of dynamic MRI techniques for in vivo evaluation of joint or muscle mechanics were included after assessment by two independent reviewers. Selected articles were assessed using an adapted quality assessment tool and a data extraction process. Results for concurrent validity and reliability were categorized as poor, moderate, or excellent. Twenty articles fulfilled the inclusion criteria with a mean quality assessment score of 66% (±10.4%). Concurrent validity and/or reliability of eight dynamic MRI techniques were reported, with the knee being the most evaluated joint (seven studies). Moderate to excellent concurrent validity and reliability were reported for seven out of eight dynamic MRI techniques. Cine phase contrast and real-time MRI appeared to be the most valid and reliable techniques to evaluate joint motion, and spin tag for muscle motion. Dynamic MRI techniques are promising for the in vivo evaluation of musculoskeletal mechanics; however results should be evaluated with caution since validity and reliability have not been determined for all joints and muscles, nor for many pathological conditions.
Ethylene resistance in flowering ornamental plants – improvements and future perspectives
Olsen, Andreas; Lütken, Henrik; Hegelund, Josefine Nymark; Müller, Renate
2015-01-01
Various strategies of plant breeding have been attempted in order to improve the ethylene resistance of flowering ornamental plants. These approaches span from conventional techniques such as simple cross-pollination to new breeding techniques which modify the plants genetically such as precise genome-editing. The main strategies target the ethylene pathway directly; others focus on changing the ethylene pathway indirectly via pathways that are known to be antagonistic to the ethylene pathway, e.g. increasing cytokinin levels. Many of the known elements of the ethylene pathway have been addressed experimentally with the aim of modulating the overall response of the plant to ethylene. Elements of the ethylene pathway that appear particularly promising in this respect include ethylene receptors as ETR1, and transcription factors such as EIN3. Both direct and indirect approaches seem to be successful, nevertheless, although genetic transformation using recombinant DNA has the ability to save much time in the breeding process, they are not readily used by breeders yet. This is primarily due to legislative issues, economic issues, difficulties of implementing this technology in some ornamental plants, as well as how these techniques are publically perceived, particularly in Europe. Recently, newer and more precise genome-editing techniques have become available and they are already being implemented in some crops. New breeding techniques may help change the current situation and pave the way toward a legal and public acceptance if products of these technologies are indistinguishable from plants obtained by conventional techniques. PMID:26504580
Cleveland, Emily C; Albano, Nicholas J; Hazen, Alexes
2015-10-01
The use of autologous adipose tissue harvested through liposuction techniques for soft-tissue augmentation has become commonplace among cosmetic and reconstructive surgeons alike. Despite its longstanding use in the plastic surgery community, substantial controversy remains regarding the optimal method of processing harvested lipoaspirate before grafting. This evidence-based review builds on prior examinations of the literature to evaluate both established and novel methods for lipoaspirate processing. A comprehensive, systematic review of the literature was conducted using Ovid MEDLINE in January of 2015 to identify all relevant publications subsequent to the most recent review on this topic. Randomized controlled trials, clinical trials, and comparative studies comparing at least two of the following techniques were included: decanting, cotton gauze (Telfa) rolling, centrifugation, washing, filtration, and stromal vascular fraction isolation. Nine articles comparing various methods of processing human fat for autologous grafting were selected based on inclusion and exclusion criteria. Five compared established processing techniques (i.e., decanting, cotton gauze rolling, centrifugation, and washing) and four publications evaluated newer proprietary technologies, including washing, filtration, and/or methods to isolate stromal vascular fraction. The authors failed to find compelling evidence to advocate a single technique as the superior method for processing lipoaspirate in preparation for autologous fat grafting. A paucity of high-quality data continues to limit the clinician's ability to determine the optimal method for purifying harvested adipose tissue. Novel automated technologies hold promise, particularly for large-volume fat grafting; however, extensive additional research is required to understand their true utility and efficiency in clinical settings.
Khater, Nazih; Shen, Jim; Arenas, Javier; Keheila, Mohamed; Alsyouf, Muhannad; Martin, Jacob A; Lightfoot, Michelle A; Li, Roger; Olgin, Gaudencio; Smith, Jason C; Baldwin, D Duane
2016-11-01
Traditional techniques for obtaining percutaneous renal access utilize continuous fluoroscopy. In an attempt to minimize radiation exposure, we describe a novel laser direct alignment radiation reduction technique (DARRT) for percutaneous access and test it in a bench-top model. In this randomized-controlled bench-top study, 20 medical personnel obtained renal accesses using both the conventional bullseye technique and the laser DARRT. The primary endpoint was total fluoroscopy time. Secondary endpoints included insertion time, puncture attempts, course corrections, and subjective procedural difficulty. In the laser DARRT, fluoroscopy was used with the C-arm positioned with the laser beam at a 30° angle. The access needle and hub were aligned with the laser beam. Effective caliceal puncture was confirmed with fluoroscopy and direct vision. The Paired samples Wilcoxon signed rank test was used for statistical analysis with significance at p < 0.05. A total of 120 needle placements were recorded. Fluoroscopy time for needle access using the laser DARRT was significantly lower than the bullseye technique in all groups as follows: attendings (7.09 vs 18.51 seconds; p < 0.001), residents (6.55 vs 13.93 seconds; p = 0.001), and medical students (6.69 vs 20.22 seconds; p < 0.001). Students rated the laser DARRT easier to use (2.56 vs 4.89; p < 0.001). No difference was seen in total access time, puncture attempts, or course corrections between techniques. The laser DARRT reduced fluoroscopy time by 63%, compared with the conventional bullseye technique. The least experienced users found the laser DARRT significantly easier to learn. This novel technique is promising and merits additional testing in animal and human models.
Boeckel, Daniel Gonçalves; Shinkai, Rosemary Sadami Arai; Grossi, Márcio Lima; Teixeira, Eduardo Rolim
2012-09-01
Several biomaterials and techniques for bone grafting have been described in the literature for atresic bone tissue replacement caused by edentulism, surgical resectioning, and traumas. A new technique involves tissue engineering, a promising option to replace bone tissue and solve problems associated with morbidity of autogenous grafting. This literature review aims to describe tissue-engineering techniques using ex vivo cell culture as an alternative to repair bone maxillary atresias and discuss the concepts and potentials of bone regeneration through cell culture techniques as an option for restorative maxillofacial surgery.
Scanning probe microscopy of biomedical interfaces
NASA Astrophysics Data System (ADS)
Vansteenkiste, S. O.; Davies, M. C.; Roberts, C. J.; Tendler, S. J. B.; Williams, P. M.
1998-02-01
The development of the scanning probe microscopes over the past decade has provided a number of exciting new surface analytical techniques making a significant progress in the characterisation of biomedical interfaces. In this review, several examples are presented to illustrate that SPM is a powerful and promising tool for surface investigations including biomolecules, cell membranes, polymers and even living cells. The ability of the SPM instrument to monitor adhesion phenomena and provide quantitative information about intermolecular interactions is also described. Moreover, the huge potential of the scanning probe microscopes to study dynamic processes at interfaces under nearly physiological conditions is highlighted. Novel applications in the field of biochemistry, microbiology, biomaterial engineering, drug delivery and even medicine are discussed.
Separation of negatively charged carbohydrates by capillary electrophoresis.
Linhardt, R J; Pervin, A
1996-01-12
Capillary electrophoresis (CE) has recently emerged as a highly promising technique consuming an extremely small amount of sample and capable of the rapid, high-resolution separation, characterization, and quantitation of analytes. CE has been used for the separation of biopolymers, including acidic carbohydrates. Since CE is basically an analytical method for ions, acidic carbohydrates that give anions in weakly acid, neutral, or alkaline media are often the direct objects of this method. The scope of this review is limited to the use of CE for the analysis of carbohydrates containing carboxylate, sulfate, and phosphate groups as well as neutral carbohydrates that have been derivatized to incorporate strongly acidic functionality, such as sulfonate groups.
Tubular nanostructured materials for bioapplications
NASA Astrophysics Data System (ADS)
Xie, Jining; Chen, Linfeng; Srivatsan, Malathi; Varadan, Vijay K.
2009-03-01
Tubular nanomaterials possess hollow structures as well as high aspect ratios. In addition to their unique physical and chemical properties induced by their nanoscale dimensions, their inner voids and outer surfaces make them ideal candidates for a number of biomedical applications. In this work, three types of tubular nanomaterials including carbon nanotubes, hematite nanotubes, and maghemite nanotubes, were synthesized by different chemical techniques. Their structural and crystalline properties were characterized. For potential bioapplications of tubular nanomaterials, experimental investigations were carried out to demonstrate the feasibility of using carbon nanotubes, hematite nanotubes, and maghemite nanotubes in glucose sensing, neuronal growth, and drug delivery, respectively. Preliminary results show the promise of tubular nanomaterials in future biomedical applications.
Waveguide Modulator for Interference Tolerant Functional Near Infrared Spectrometer (fNIRS)
NASA Technical Reports Server (NTRS)
Walton, Joanne; Tin, Padetha; Mackey, Jeffrey
2017-01-01
Many crew-related errors in aviation and astronautics are caused by hazardous cognitive states including overstress, disengagement, high fatigue and ineffective crew coordination. Safety can be improved by monitoring and predicting these cognitive states in a non-intrusive manner and designing mitigation strategies. Measuring hemoglobin concentration changes in the brain with functional Near Infrared Spectroscopy is a promising technique for monitoring cognitive state and optimizing human performance during both space and aviation operations. A compact, wearable fNIRS system would provide an innovative early warning system during long duration missions to detect and prevent vigilance decrements in pilots and astronauts. This effort focused on developing a waveguide modulator for use in a fNIRS system.
A consensus on liquid biopsy from the 2016 Chinese Lung Cancer Summit expert panel.
Wu, Yi-Long; Wang, Chang-Li; Sun, Yan; Liao, Mei-Lin; Guan, Zhong-Zhen; Yang, Zhi-Min; Zhou, Qing-Hua; Lu, Shun; Cheng, Ying; Liu, Xiao-Qing; Zhang, Xu-Chao; Zhou, Caicun; Wang, Jie; Zhou, Qing; Song, Yong; Han, Bao-Hui; Ma, Zhi-Yong; Yang, Fan; Wang, Qun; Chuai, Shao-Kun; Shao, Yang; He, Wei; Zhu, Guanshan; Xiong, Lei; Wang, Jian-Jun; Chen, Ke-Neng; Zhang, Li; Mao, Wei-Min; Ma, Sheng-Lin; Feng, Ji-Feng; Yang, Xue-Ning; Xu, Lin; Chen, Gang; Zhao, Jian; Song, Qi-Bin; Shen-Tu, Yang; Qiao, Gui-Bin; Yu, Ding; Yu, Shi-Ying; Hu, Yi; Chen, Ming; Chen, Gong-Yan; Fan, Yun; Zhang, He-Long; Liang, Jun; Zhu, Guang-Ying; Cui, Jiu-Wei; Yang, Jin-Ji; Zhao, Qiong; Zhao, Ming-Fang; Lu, You; Chang, Jian-Hua; Li, Jun-Ling; Yang, Yue; Hu, Jie; Gu, Chun-Dong; Zhang, Yi-Chen; Zhong, Wen-Zhao
2017-01-01
The diagnosis and treatment of lung cancer have evolved into the era of precision medicine. Liquid biopsy, a minimally invasive approach, has emerged as a promising practice in genetic profiling and monitoring of lung cancer. Translating liquid biopsy from bench to bedside has encountered various challenges, including technique selection, protocol standardisation, data analysis and cost management. Regarding these challenges, the 2016 Chinese Lung Cancer Summit expert panel organised a trilateral forum involving oncologists, clinicians, clinical researchers, and industrial expertise on the 13th Chinese Lung Cancer Summit to formally discuss these controversies. Six consensuses were reached to guide the use of liquid biopsy and perform precision medicine in both clinic and research.
Optical coherence tomography in gynecology: a narrative review
NASA Astrophysics Data System (ADS)
Kirillin, Mikhail; Motovilova, Tatiana; Shakhova, Natalia
2017-12-01
Modern gynecologic practice requires noninvasive diagnostics techniques capable of detecting morphological and functional alterations in tissues of female reproductive organs. Optical coherence tomography (OCT) is a promising tool for providing imaging of biotissues with high resolution at depths up to 2 mm. Design of the customized probes provides wide opportunities for OCT use in gynecology. This paper contains a retrospective insight into the history of OCT employment in gynecology, an overview of the existing gynecologic OCT probes, including those for combination with other diagnostic modalities, and state-of-the-art application of OCT for diagnostics of tumor and nontumor pathologies of female genitalia. Perspectives of OCT both in diagnostics and treatment planning and monitoring in gynecology are overviewed.
Blood-loss Management in Spine Surgery.
Bible, Jesse E; Mirza, Muhammad; Knaub, Mark A
2018-01-15
Substantial blood loss during spine surgery can result in increased patient morbidity and mortality. Proper preoperative planning and communication with the patient, anesthesia team, and operating room staff can lessen perioperative blood loss. Advances in intraoperative antifibrinolytic agents and modified anesthesia techniques have shown promising results in safely reducing blood loss. The surgeon's attention to intraoperative hemostasis and the concurrent use of local hemostatic agents also can lessen intraoperative bleeding. Conversely, the use of intraoperative blood salvage has come into question, both for its potential inability to reduce the need for allogeneic transfusions as well as its cost-effectiveness. Allogeneic blood transfusion is associated with elevated risks, including surgical site infection. Thus, desirable transfusion thresholds should remain restrictive.
An evaluation of NASA's program in human factors research: Aircrew-vehicle system interaction
NASA Technical Reports Server (NTRS)
1982-01-01
Research in human factors in the aircraft cockpit and a proposed program augmentation were reviewed. The dramatic growth of microprocessor technology makes it entirely feasible to automate increasingly more functions in the aircraft cockpit; the promise of improved vehicle performance, efficiency, and safety through automation makes highly automated flight inevitable. An organized data base and validated methodology for predicting the effects of automation on human performance and thus on safety are lacking and without such a data base and validated methodology for analyzing human performance, increased automation may introduce new risks. Efforts should be concentrated on developing methods and techniques for analyzing man machine interactions, including human workload and prediction of performance.
Transcranial Magnetic and Direct Current Stimulation in Children.
Hameed, Mustafa Q; Dhamne, Sameer C; Gersner, Roman; Kaye, Harper L; Oberman, Lindsay M; Pascual-Leone, Alvaro; Rotenberg, Alexander
2017-02-01
Promising results in adult neurologic and psychiatric disorders are driving active research into transcranial brain stimulation techniques, particularly transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), in childhood and adolescent syndromes. TMS has realistic utility as an experimental tool tested in a range of pediatric neuropathologies such as perinatal stroke, depression, Tourette syndrome, and autism spectrum disorder (ASD). tDCS has also been tested as a treatment for a number of pediatric neurologic conditions, including ASD, attention-deficit/hyperactivity disorder, epilepsy, and cerebral palsy. Here, we complement recent reviews with an update of published TMS and tDCS results in children, and discuss developmental neuroscience considerations that should inform pediatric transcranial stimulation.
Subsurface damage detection in non-ferrous systems using 3D synchronous magnetic inspection
NASA Astrophysics Data System (ADS)
Gray, David; Berry, David
2018-04-01
Prime Photonics is developing a non-destructive inspection (NDI) technology, 3-D synchronous magnetic imaging system (3-D SMIS), that uses synchronous detection of magnetic signatures resulting from ultrasonic excitation to measure both surface and subsurface flaws in conductive structures. 3-D SMIS is showing promise in a wide range of NDI/NDE uses including characterizing surface-breaking cracks in ferrous and non-ferrous materials, locating and characterizing subsurface cracks within nonferrous conductive materials (Ti 6-4 and carbon fiber composites), and characterization of subsurface residual stresses. The technology offers a non-contact, high resolution inspection technique that does not require austere environments, and can accommodate non-planar specimen geometries.
Novel technologies provide more engineering strategies for amino acid-producing microorganisms.
Gu, Pengfei; Su, Tianyuan; Qi, Qingsheng
2016-03-01
Traditionally, amino acid-producing strains were obtained by random mutagenesis and subsequent selection. With the development of genetic and metabolic engineering techniques, various microorganisms with high amino acid production yields are now constructed by rational design of targeted biosynthetic pathways. Recently, novel technologies derived from systems and synthetic biology have emerged and open a new promising avenue towards the engineering of amino acid production microorganisms. In this review, these approaches, including rational engineering of rate-limiting enzymes, real-time sensing of end-products, pathway optimization on the chromosome, transcription factor-mediated strain improvement, and metabolic modeling and flux analysis, were summarized with regard to their application in microbial amino acid production.
Evaluation of Skin Temperatures Retrieved from GOES-8
NASA Technical Reports Server (NTRS)
Suggs, Ronnie, J.; Jedlovec, G. J.; Lapenta, W. M.; Haines, S. L.
2000-01-01
Skin temperatures derived from geostationary satellites have the potential of providing the temporal and spatial resolution needed for model assimilation. To adequately assess the potential improvements in numerical model forecasts that can be made by assimilating satellite data, an estimate of the accuracy of the skin temperature product is necessary. A particular skin temperature algorithm, the Physical Split Window Technique, that uses the longwave infrared channels of the GOES Imager has shown promise in recent model assimilation studies to provide land surface temperatures with reasonable accuracy. A comparison of retrieved GOES-8 skin temperatures from this algorithm with in situ measurements is presented. Various retrieval algorithm issues are addressed including surface emissivity
Nonmetastatic Castration-resistant Prostate Cancer: A Modern Perspective.
Cancian, Madeline; Renzulli, Joseph F
2018-06-01
Nonmetastatic castration-resistant prostate cancer (nmCRPC) presents a challenge to urologists as currently there are no Food and Drug Administration-approved therapies. However, there are new imaging modalities, including fluciclovine positron emission tomography-computed tomography and Ga-PSMA (prostate specific membrane antigent) positron emission tomography-computed tomography, which are improving accuracy of diagnosis. With improved imaging, we are better able to target therapy. Today there are 3 ongoing clinical trials studying second-generation antiandrogens in nmCRPC, which hold the promise of a new treatment paradigm. In this article, we will review the new imaging techniques and the rationale behind novel treatment modalities in nmCRPC. Copyright © 2018 Elsevier Inc. All rights reserved.
Transcranial Magnetic and Direct Current Stimulation in Children
Hameed, Mustafa Q.; Dhamne, Sameer C.; Gersner, Roman; Kaye, Harper L.; Oberman, Lindsay M.; Pascual-Leone, Alvaro
2018-01-01
Promising results in adult neurologic and psychiatric disorders are driving active research into transcranial brain stimulation techniques, particularly transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), in childhood and adolescent syndromes. TMS has realistic utility as an experimental tool tested in a range of pediatric neuropathologies such as perinatal stroke, depression, Tourette syndrome, and autism spectrum disorder (ASD). tDCS has also been tested as a treatment for a number of pediatric neurologic conditions, including ASD, attention-deficit/hyperactivity disorder, epilepsy, and cerebral palsy. Here, we complement recent reviews with an update of published TMS and tDCS results in children, and discuss developmental neuroscience considerations that should inform pediatric transcranial stimulation. PMID:28229395
Design of Z-Pinch and Dense Plasma Focus Powered Vehicles
NASA Technical Reports Server (NTRS)
Polsgrove, Tara; Fincher, Sharon; Adams, Robert B.; Cassibry, Jason; Cortez, Ross; Turner, Matthew; Maples, C. Daphne; Miermik, Janie N.; Statham, Geoffrey N.; Fabisinski, Leo;
2011-01-01
Z-pinch and Dense Plasma Focus (DPF) are two promising techniques for bringing fusion power to the field of in-space propulsion. A design team comprising of engineers and scientists from UAHuntsville, NASA's George C. Marshall Space Flight Center and the University of Wisconsin developed concept vehicles for a crewed round trip mission to Mars and an interstellar precursor mission. Outlined in this paper are vehicle concepts, complete with conceptual analysis of the mission profile, operations, structural and thermal analysis and power/avionics design. Additionally engineering design of the thruster itself is included. The design efforts adds greatly to the fidelity of estimates for power density (alpha) and overall performance for these thruster concepts
Coherent imaging at the diffraction limit
Thibault, Pierre; Guizar-Sicairos, Manuel; Menzel, Andreas
2014-01-01
X-ray ptychography, a scanning coherent diffractive imaging technique, holds promise for imaging with dose-limited resolution and sensitivity. If the foreseen increase of coherent flux by orders of magnitude can be matched by additional technological and analytical advances, ptychography may approach imaging speeds familiar from full-field methods while retaining its inherently quantitative nature and metrological versatility. Beyond promises of high throughput, spectroscopic applications in three dimensions become feasible, as do measurements of sample dynamics through time-resolved imaging or careful characterization of decoherence effects. PMID:25177990
Coherent imaging at the diffraction limit.
Thibault, Pierre; Guizar-Sicairos, Manuel; Menzel, Andreas
2014-09-01
X-ray ptychography, a scanning coherent diffractive imaging technique, holds promise for imaging with dose-limited resolution and sensitivity. If the foreseen increase of coherent flux by orders of magnitude can be matched by additional technological and analytical advances, ptychography may approach imaging speeds familiar from full-field methods while retaining its inherently quantitative nature and metrological versatility. Beyond promises of high throughput, spectroscopic applications in three dimensions become feasible, as do measurements of sample dynamics through time-resolved imaging or careful characterization of decoherence effects.
The Grape Antioxidant Resveratrol for Skin Disorders: Promise, Prospects, and Challenges
Ndiaye, Mary; Philippe, Carol; Mukhtar, Hasan; Ahmad, Nihal
2011-01-01
Resveratrol, a phytoalexin antioxidant found in red grapes, has been shown to have both chemopreventive and therapeutic effects against many diseases and disorders, including those of the skin. Studies have shown protective effects of resveratrol against ultraviolet radiation mediated oxidative stress and cutaneous damages including skin cancer. Because many of the skin conditions stem from ultraviolet radiation and oxidative stress, this antioxidant appears to have promise and prospects against a wide range of cutaneous disorders including skin aging and skin cancers. However, there are a few roadblocks in the way of this promising agent regarding its translation from the bench to the bedside. This review discusses the promise and prospects of resveratrol in the management of skin disorders and the associated challenges. PMID:21215251
Subcutaneous transplantation of embryonic pancreas for correction of type 1 diabetes
Gunawardana, Subhadra C.; Benninger, Richard K. P.; Piston, David W.
2009-01-01
Islet transplantation is a promising therapeutic approach for type 1 diabetes. However, current success rates are low due to progressive graft failure in the long term and inability to monitor graft development in vivo. Other limitations include the necessity of initial invasive surgery and continued immunosuppressive therapy. We report an alternative transplantation strategy with the potential to overcome these problems. This technique involves transplantation of embryonic pancreatic tissue into recipients’ subcutaneous space, eliminating the need for invasive surgery and associated risks. Current results in mouse models of type 1 diabetes show that embryonic pancreatic transplants in the subcutaneous space can normalize blood glucose homeostasis and achieve extensive endocrine differentiation and vascularization. Furthermore, modern imaging techniques such as two-photon excitation microscopy (TPEM) can be employed to monitor transplants through the intact skin in a completely noninvasive manner. Thus, this strategy is a convenient alternative to islet transplantation in diabetic mice and has the potential to be translated to human clinical applications with appropriate modifications. PMID:19066321
Heavily Boron-Doped Silicon Layer for the Fabrication of Nanoscale Thermoelectric Devices
Liu, Yang; Deng, Lingxiao; Zhang, Mingliang; Zhang, Shuyuan; Ma, Jing; Song, Peishuai; Liu, Qing; Ji, An; Yang, Fuhua; Wang, Xiaodong
2018-01-01
Heavily boron-doped silicon layers and boron etch-stop techniques have been widely used in the fabrication of microelectromechanical systems (MEMS). This paper provides an introduction to the fabrication process of nanoscale silicon thermoelectric devices. Low-dimensional structures such as silicon nanowire (SiNW) have been considered as a promising alternative for thermoelectric applications in order to achieve a higher thermoelectric figure of merit (ZT) than bulk silicon. Here, heavily boron-doped silicon layers and boron etch-stop processes for the fabrication of suspended SiNWs will be discussed in detail, including boron diffusion, electron beam lithography, inductively coupled plasma (ICP) etching and tetramethylammonium hydroxide (TMAH) etch-stop processes. A 7 μm long nanowire structure with a height of 280 nm and a width of 55 nm was achieved, indicating that the proposed technique is useful for nanoscale fabrication. Furthermore, a SiNW thermoelectric device has also been demonstrated, and its performance shows an obvious reduction in thermal conductivity. PMID:29385759
A review on EEG-based methods for screening and diagnosing alcohol use disorder.
Mumtaz, Wajid; Vuong, Pham Lam; Malik, Aamir Saeed; Rashid, Rusdi Bin Abd
2018-04-01
The screening test for alcohol use disorder (AUD) patients has been of subjective nature and could be misleading in particular cases such as a misreporting the actual quantity of alcohol intake. Although the neuroimaging modality such as electroencephalography (EEG) has shown promising research results in achieving objectivity during the screening and diagnosis of AUD patients. However, the translation of these findings for clinical applications has been largely understudied and hence less clear. This study advocates the use of EEG as a diagnostic and screening tool for AUD patients that may help the clinicians during clinical decision making. In this context, a comprehensive review on EEG-based methods is provided including related electrophysiological techniques reported in the literature. More specifically, the EEG abnormalities associated with the conditions of AUD patients are summarized. The aim is to explore the potentials of objective techniques involving quantities/features derived from resting EEG, event-related potentials or event-related oscillations data.
New Developments in CRISPR Technology: Improvements in Specificity and Efficiency.
Safari, Fatemeh; Farajnia, Safar; Ghasemi, Younes; Zarghami, Nosratollah
2017-01-01
RNA-guided endonuclease as a versatile genome editing technology opened new windows in various fields of biology. The simplicity of this revolutionary technique provides a promising future for its application in a broad range of approaches from functional annotation of genes to diseases, to genetic manipulation and gene therapy. Besides the site-specific activity of Cas9 endonuclease, the unintended cleavage known as off-target effect is still a major challenge for this genome editing technique. Various strategies have been developed to resolve this bottleneck including development of new softwares for designing optimized guide RNA (gRNA), engineering Cas9 enzyme, improvement in off-target detection assays, etc. Results: This review dedicated to discuss on methods that have been used for optimizing Cas9, specificity with the aim of improving this technology for therapeutic applications. In addition, the applications and novel breakthroughs in the field of CRISPR technology will be described. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
ShuXiang, Zhang; Hong, Yang; Bo, Tang; Zhaoyun, Tang; Yefeng, Xu; Jing, Xu; Jiang, Yan
2014-10-01
ALD HfO2 films fabricated by a novel multi deposition multi annealing (MDMA) technique are investigated, we have included samples both with and without a Ti scavenging layer. As compared to the reference gate stack treated by conventional one-time deposition and annealing (D&A), devices receiving MDMA show a significant reduction in leakage current. Meanwhile, EOT growth is effectively controlled by the Ti scavenging layer. This improvement strongly correlates with the cycle number of D&A (while keeping the total annealing time and total dielectrics thickness the same). Transmission electron microscope and energy-dispersive X-ray spectroscopy analysis suggests that oxygen incorporation into both the high-k film and the interfacial layer is likely to be responsible for the improvement of the device. This novel MDMA is promising for the development of gate stack technology in a gate last integration scheme.
NASA Astrophysics Data System (ADS)
Peng, Ye; Ling-Ling, Hu; Yu-Zhi, Du; Yong-Juan, Xu; Hua-Gang, Ni; Cong, Chen; Xiao-Lin, Lu; Xiao-Jun, Huang
2017-05-01
A novel method of oriented immobilization was presented: affinity Langmuir-Blodgett (LB) technique. Firstly, a long carbon chain was bond to a ligand of Horseradish Peroxidase (HRP). The ligand derivative appears surface activity with the hydrophobic carbon chain oriented to air and the hydrophilic ligand faced to water. Then, this derivative was put onto the water/air surface to assemble a LB film and formed the affinity interaction with the active site of HRP. After that, the affinity LB film with the enzyme was transferred onto the support to obtain the oriented immobilized HRP. The specific activity of HRP immobilized by affinity LB (182.1 ± 14 U/mg) was higher than that by adsorption (40.5 ± 5 U/mg). HRP immobilized by affinity LB could maintain a more native conformation, compared to that by adsorption. This method could be effectively used to immobilize protein with orientation and show widely promising applications in many fields including biosensor and bioreactor.
Experimental Study of Flow Through Carotid Aneurysms
NASA Astrophysics Data System (ADS)
Masoomi, Faezeh; Mejia-Alvarez, Ricardo
2017-11-01
There is evidence that traditional endovascular techniques like coiling are not effective for treatment of wide-neck cerebral aneurysms. Flow Diverter Stents (FDS) have emerged as promising devices for treating complex aneurysms since they enable treatment of aneurysms that were considered untreatable before. Recent studies suggest a number of associated risks with FDS, including in-stent thrombosis, perianeurysmal edema, delayed hemorrhage, and perforator occlusions. Chong et al. simulated hemodynamic behavior using patient-specific data. From their study, it is possible to infer that the standard deviation of energy loss could be a good predictor for intervention success. The aim of this study is to investigate the flow in models of cerebral aneurysms before and after FDS insertion using PIV. These models will be based on actual clinical studies and will be fabricated with advanced additive manufacturing techniques. These data will then be used to explore flow parameters that could inform the likelihood of post-intervention aneurysm rupture, and help determine FDS designs that better suit any particular patient before its procedure.
Technology for Diagnosis, Treatment, and Prevention of Cardiometabolic Disease in India.
Hameed, Safraj Shahul; Rawal, Ishita; Soni, Deepa; Ajay, Vamadevan S; Goenka, Shifalika; Prabhakaran, Dorairaj
2016-01-01
Cardiometabolic diseases (CMD) are a major cause of mortality, morbidity and disability worldwide. Among Indians, CMD onset is at a much younger age and is prevalent in all sections of the society. Prevention, control and management of CMD and its risk factors is a major public health challenge, and alternative approaches need to be explored and integrated into public health programs. Advancements in the fields of computers, electronics, telecommunication and medicine have resulted in the rapid development of health-related technology. In this paper we provide an overview of the major technological advances in diagnosis, treatment and prevention within the field of CMD in the last few decades. This non-exhaustive review focuses on the most promising technologies that the authors feel might be of relevance in the Indian context. Some of the techniques detailed include advances in imaging and mobile phone technology, surgical techniques, electronic health records, Nano medicine, telemedicine and decision support systems. Copyright © 2016 Elsevier Inc. All rights reserved.
Nondestructive prediction of pork freshness parameters using multispectral scattering images
NASA Astrophysics Data System (ADS)
Tang, Xiuying; Li, Cuiling; Peng, Yankun; Chao, Kuanglin; Wang, Mingwu
2012-05-01
Optical technology is an important and immerging technology for non-destructive and rapid detection of pork freshness. This paper studied on the possibility of using multispectral imaging technique and scattering characteristics to predict the freshness parameters of pork meat. The pork freshness parameters selected for prediction included total volatile basic nitrogen (TVB-N), color parameters (L *, a *, b *), and pH value. Multispectral scattering images were obtained from pork sample surface by a multispectral imaging system developed by ourselves; they were acquired at the selected narrow wavebands whose center wavelengths were 517,550, 560, 580, 600, 760, 810 and 910nm. In order to extract scattering characteristics from multispectral images at multiple wavelengths, a Lorentzian distribution (LD) function with four parameters (a: scattering asymptotic value; b: scattering peak; c: scattering width; d: scattering slope) was used to fit the scattering curves at the selected wavelengths. The results show that the multispectral imaging technique combined with scattering characteristics is promising for predicting the freshness parameters of pork meat.
Intersections of lung progenitor cells, lung disease and lung cancer.
Kim, Carla F
2017-06-30
The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials. Copyright ©ERS 2017.
NASA Astrophysics Data System (ADS)
Galmed, A. H.; Elshemey, Wael M.
2017-08-01
Differentiating between normal, benign and malignant excised breast tissues is one of the major worldwide challenges that need a quantitative, fast and reliable technique in order to avoid personal errors in diagnosis. Laser induced fluorescence (LIF) is a promising technique that has been applied for the characterization of biological tissues including breast tissue. Unfortunately, only few studies have adopted a quantitative approach that can be directly applied for breast tissue characterization. This work provides a quantitative means for such characterization via introduction of several LIF characterization parameters and determining the diagnostic accuracy of each parameter in the differentiation between normal, benign and malignant excised breast tissues. Extensive analysis on 41 lyophilized breast samples using scatter diagrams, cut-off values, diagnostic indices and receiver operating characteristic (ROC) curves, shows that some spectral parameters (peak height and area under the peak) are superior for characterization of normal, benign and malignant breast tissues with high sensitivity (up to 0.91), specificity (up to 0.91) and accuracy ranking (highly accurate).
Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael
2011-02-01
In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08-0.85 MPa) and times (5-60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Freire, Sergio L. S.; Thorne, Nathaniel; Wutkowski, Michael; Dao, Selina
2014-01-01
Digital microfluidics (DMF), a technique for manipulation of droplets, is a promising alternative for the development of “lab-on-a-chip” platforms. Often, droplet motion relies on the wetting of a surface, directly associated with the application of an electric field; surface interactions, however, make motion dependent on droplet contents, limiting the breadth of applications of the technique. Some alternatives have been presented to minimize this dependence. However, they rely on the addition of extra chemical species to the droplet or its surroundings, which could potentially interact with droplet moieties. Addressing this challenge, our group recently developed Field-DW devices to allow the transport of cells and proteins in DMF, without extra additives. Here, the protocol for device fabrication and operation is provided, including the electronic interface for motion control. We also continue the studies with the devices, showing that multicellular, relatively large, model organisms can also be transported, arguably unaffected by the electric fields required for device operation. PMID:25407533
Millimetre-Wave Backhaul for 5G Networks: Challenges and Solutions
Feng, Wei; Li, Yong; Jin, Depeng; Su, Li; Chen, Sheng
2016-01-01
The trend for dense deployment in future 5G mobile communication networks makes current wired backhaul infeasible owing to the high cost. Millimetre-wave (mm-wave) communication, a promising technique with the capability of providing a multi-gigabit transmission rate, offers a flexible and cost-effective candidate for 5G backhauling. By exploiting highly directional antennas, it becomes practical to cope with explosive traffic demands and to deal with interference problems. Several advancements in physical layer technology, such as hybrid beamforming and full duplexing, bring new challenges and opportunities for mm-wave backhaul. This article introduces a design framework for 5G mm-wave backhaul, including routing, spatial reuse scheduling and physical layer techniques. The associated optimization model, open problems and potential solutions are discussed to fully exploit the throughput gain of the backhaul network. Extensive simulations are conducted to verify the potential benefits of the proposed method for the 5G mm-wave backhaul design. PMID:27322265
A status of progress for the Laser Isotope Separation (LIS) process
NASA Technical Reports Server (NTRS)
Delionback, L. M.
1976-01-01
An overview of the Laser Isotope Separation (LIS) methodology is given together with illustrations showing a simplified version of the LIS technique, an example of the two-photon photoionization category, and a diagram depicting how the energy levels of various isotope influence the LIS process. Applications were proposed for the LIS system which, in addition to enriching uranium, could in themselves develop into programs of tremendous scope and breadth. These include the treatment of radioactive wastes from light-water nuclear reactors, enriching the deuterium isotope to make heavy-water, and enriching the light isotopes of such elements as titanium for aerospace weight-reducing programs. Economic comparisons of the LIS methodology with the current method of gaseous diffusion indicate an overwhelming advantage; the laser process promises to be 1000 times more efficient. The technique could also be utilized in chemical reactions with the tuned laser serving as a universal catalyst to determine the speed and direction of a chemical reaction.
Optical Imaging in Breast Cancer Diagnosis: The Next Evolution
Ruibal, Alvaro
2012-01-01
Breast cancer is one of the most common cancers among the population of the Western world. Diagnostic methods include mammography, ultrasound, and magnetic resonance; meanwhile, nuclear medicine techniques have a secondary role, being useful in regional assessment and therapy followup. Optical imaging is a very promising imaging technique that uses near-infrared light to assess optical properties of tissues and is expected to play an important role in breast cancer detection. Optical breast imaging can be performed by intrinsic breast tissue contrast alone (hemoglobin, water, and lipid content) or with the use of exogenous fluorescent probes that target specific molecules for breast cancer. Major advantages of optical imaging are that it does not use any radioactive components, very high sensitivity, relatively inexpensive, easily accessible, and the potential to be combined in a multimodal approach with other technologies such as mammography, ultrasound, MRI, and positron emission tomography. Moreover, optical imaging agents could, potentially, be used as “theranostics,” combining the process of diagnosis and therapy. PMID:23304141
Reversible conformational switching of i-motif DNA studied by fluorescence spectroscopy.
Choi, Jungkweon; Majima, Tetsuro
2013-01-01
Non-B DNAs, which can form unique structures other than double helix of B-DNA, have attracted considerable attention from scientists in various fields including biology, chemistry and physics etc. Among them, i-motif DNA, which is formed from cytosine (C)-rich sequences found in telomeric DNA and the promoter region of oncogenes, has been extensively investigated as a signpost and controller for the oncogene expression at the transcription level and as a promising material in nanotechnology. Fluorescence techniques such as fluorescence resonance energy transfer (FRET) and the fluorescence quenching are important for studying DNA and in particular for the visualization of reversible conformational switching of i-motif DNA that is triggered by the protonation. Here, we review the latest studies on the conformational dynamics of i-motif DNA as well as the application of FRET and fluorescence quenching techniques to the visualization of reversible conformational switching of i-motif DNA in nano-biotechnology. © 2013 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2013 The American Society of Photobiology.
Rhein-Knudsen, Nanna; Ale, Marcel Tutor; Meyer, Anne S.
2015-01-01
Agar, alginate, and carrageenans are high-value seaweed hydrocolloids, which are used as gelation and thickening agents in different food, pharmaceutical, and biotechnological applications. The annual global production of these hydrocolloids has recently reached 100,000 tons with a gross market value just above US$ 1.1 billion. The techno-functional properties of the seaweed polysaccharides depend strictly on their unique structural make-up, notably degree and position of sulfation and presence of anhydro-bridges. Classical extraction techniques include hot alkali treatments, but recent research has shown promising results with enzymes. Current methods mainly involve use of commercially available enzyme mixtures developed for terrestrial plant material processing. Application of seaweed polysaccharide targeted enzymes allows for selective extraction at mild conditions as well as tailor-made modifications of the hydrocolloids to obtain specific functionalities. This review provides an update of the detailed structural features of κ-, ι-, λ-carrageenans, agars, and alginate, and a thorough discussion of enzyme assisted extraction and processing techniques for these hydrocolloids. PMID:26023840
Hypnosis in the treatment of trauma: a promising, but not fully supported, efficacious intervention.
Cardeña, E
2000-04-01
Hypnotic techniques for the treatment of posttraumatic conditions were often used by the clinical pioneers of the end of the 19th century and by military therapists treating soldiers during the 20th century's conflagrations. More recently, hypnosis has also been used with survivors of sexual assault, accidents, and other traumas, and with various groups, including children and ethnic minorities. Nonetheless, there have been almost no systematic studies on the efficacy of hypnosis for posttraumatic disorders. This state of affairs is especially disappointing considering that: hypnosis can be easily integrated into therapies that are commonly used with traumatized clients; a number of PTSD individuals have shown high hypnotizability in various studies; hypnosis can be used for symptoms associated with PTSD; and hypnosis may help modulate and integrate memories of trauma. Hypnotic techniques may indeed be efficacious for posttraumatic conditions, but systematic group or single-case studies need to be conducted before reaching that conclusion.
NASA Technical Reports Server (NTRS)
Macdonald, H.; Waite, W.; Elachi, C.; Babcock, R.; Konig, R.; Gattis, J.; Borengasser, M.; Tolman, D.
1980-01-01
Imaging radar was evaluated as an adjunct to conventional petroleum exploration techniques, especially linear mapping. Linear features were mapped from several remote sensor data sources including stereo photography, enhanced LANDSAT imagery, SLAR radar imagery, enhanced SAR radar imagery, and SAR radar/LANDSAT combinations. Linear feature maps were compared with surface joint data, subsurface and geophysical data, and gas production in the Arkansas part of the Arkoma basin. The best LANDSAT enhanced product for linear detection was found to be a winter scene, band 7, uniform distribution stretch. Of the individual SAR data products, the VH (cross polarized) SAR radar mosaic provides for detection of most linears; however, none of the SAR enhancements is significantly better than the others. Radar/LANDSAT merges may provide better linear detection than a single sensor mapping mode, but because of operator variability, the results are inconclusive. Radar/LANDSAT combinations appear promising as an optimum linear mapping technique, if the advantages and disadvantages of each remote sensor are considered.
Blood-brain barrier dysfunction in brain diseases: clinical experience.
Schoknecht, Karl; Shalev, Hadar
2012-11-01
The blood-brain barrier, a unique feature of the cerebral vasculature, is gaining attention as a feature in common neurologic disorders including stroke, traumatic brain injury, epilepsy, and schizophrenia. Although acute blood-brain barrier dysfunction can induce cerebral edema, seizures, or neuropsychiatric symptoms, epileptogenesis and cognitive decline are among the chronic effects. The mechanisms underlying blood-brain barrier dysfunction are diverse and may range from physical endothelial damage in traumatic brain injury to degradation of extracellular matrix proteins via matrix metalloproteinases as part of an inflammatory response. Clinically, blood-brain barrier dysfunction is often detected using contrast-enhanced imaging. However, these techniques do not give any insights into the underlying mechanism. Elucidating the specific pathways of blood-brain barrier dysfunction at different time points and in different brain diseases using novel imaging techniques promises a more accurate blood-brain barrier terminology as well as new treatment options and personalized treatment. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.
Vocal cord paralysis in children.
King, Ericka F; Blumin, Joel H
2009-12-01
Vocal fold paralysis (VFP) is an increasingly commonly identified problem in the pediatric patient. Diagnostic and management techniques honed in adult laryngologic practice have been successfully applied to children. Iatrogenic causes, including cardiothoracic procedures, remain a common cause of unilateral VFP. Neurologic disorders predominate in the cause of bilateral VFP. Diagnosis with electromyography is currently being evaluated in children. Treatment of VFP is centered around symptomology, which is commonly divided between voice and airway concerns. Speech therapy shows promise in older children. Surgical management for unilateral VFP with injection laryngoplasty is commonly performed and well tolerated. Laryngeal reinnervation is currently being applied to the pediatric population as a permanent treatment and offers several advantages over laryngeal framework procedures. For bilateral VFP, tracheotomy is still commonly performed. Glottic dilation procedures are performed both openly and endoscopically with a high degree of success. VFP is a well recognized problem in pediatric patients with disordered voice and breathing. Some patients will spontaneously recover their laryngeal function. For those who do not, a variety of reliable techniques are available for rehabilitative treatment.
Kelly, J F Daniel; Downey, Gerard
2005-05-04
Fourier transform infrared spectroscopy and attenuated total reflection sampling have been used to detect adulteration of single strength apple juice samples. The sample set comprised 224 authentic apple juices and 480 adulterated samples. Adulterants used included partially inverted cane syrup (PICS), beet sucrose (BS), high fructose corn syrup (HFCS), and a synthetic solution of fructose, glucose, and sucrose (FGS). Adulteration was carried out on individual apple juice samples at levels of 10, 20, 30, and 40% w/w. Spectral data were compressed by principal component analysis and analyzed using k-nearest neighbors and partial least squares regression techniques. Prediction results for the best classification models achieved an overall (authentic plus adulterated) correct classification rate of 96.5, 93.9, 92.2, and 82.4% for PICS, BS, HFCS, and FGS adulterants, respectively. This method shows promise as a rapid screening technique for the detection of a broad range of potential adulterants in apple juice.
Rhein-Knudsen, Nanna; Ale, Marcel Tutor; Meyer, Anne S
2015-05-27
Agar, alginate, and carrageenans are high-value seaweed hydrocolloids, which are used as gelation and thickening agents in different food, pharmaceutical, and biotechnological applications. The annual global production of these hydrocolloids has recently reached 100,000 tons with a gross market value just above US$ 1.1 billion. The techno-functional properties of the seaweed polysaccharides depend strictly on their unique structural make-up, notably degree and position of sulfation and presence of anhydro-bridges. Classical extraction techniques include hot alkali treatments, but recent research has shown promising results with enzymes. Current methods mainly involve use of commercially available enzyme mixtures developed for terrestrial plant material processing. Application of seaweed polysaccharide targeted enzymes allows for selective extraction at mild conditions as well as tailor-made modifications of the hydrocolloids to obtain specific functionalities. This review provides an update of the detailed structural features of κ-, ι-, λ-carrageenans, agars, and alginate, and a thorough discussion of enzyme assisted extraction and processing techniques for these hydrocolloids.
Establishing Research and Management Priorities for Monoecious Hydrilla
2014-01-01
strategies. While use of high stocking rates of non-selective sterile grass carp (Ctenopharyngodon idella) has successfully controlled hydrilla in many...discussions of classical biological control agents (e.g. insects that feed specifically on hydrilla) did not yield any promising near-term candidates...possible. Diver- assisted dredging techniques and hand removal techniques were explored on the infestation in the Lake Cayuga inlet; initial results were
Dynamic traffic assignment : genetic algorithms approach
DOT National Transportation Integrated Search
1997-01-01
Real-time route guidance is a promising approach to alleviating congestion on the nations highways. A dynamic traffic assignment model is central to the development of guidance strategies. The artificial intelligence technique of genetic algorithm...
DOT National Transportation Integrated Search
1974-06-01
The report presents a summary of a study conducted for the Transportation Systems Center of promising access control techniques which are applicable to an aeronautical satellite system. Several frequency division multiple access (FDMA) and time divis...
NASA Technical Reports Server (NTRS)
Young, William D.
1992-01-01
The application of formal methods to the analysis of computing systems promises to provide higher and higher levels of assurance as the sophistication of our tools and techniques increases. Improvements in tools and techniques come about as we pit the current state of the art against new and challenging problems. A promising area for the application of formal methods is in real-time and distributed computing. Some of the algorithms in this area are both subtle and important. In response to this challenge and as part of an ongoing attempt to verify an implementation of the Interactive Convergence Clock Synchronization Algorithm (ICCSA), we decided to undertake a proof of the correctness of the algorithm using the Boyer-Moore theorem prover. This paper describes our approach to proving the ICCSA using the Boyer-Moore prover.
3D imaging with a single-aperture 3-mm objective lens: concept, fabrication, and test
NASA Astrophysics Data System (ADS)
Korniski, Ronald; Bae, Sam Y.; Shearn, Michael; Manohara, Harish; Shahinian, Hrayr
2011-10-01
There are many advantages to minimally invasive surgery (MIS). An endoscope is the optical system of choice by the surgeon for MIS. The smaller the incision or opening made to perform the surgery, the smaller the optical system needed. For minimally invasive neurological and skull base surgeries the openings are typically 10-mm in diameter (dime sized) or less. The largest outside diameter (OD) endoscope used is 4mm. A significant drawback to endoscopic MIS is that it only provides a monocular view of the surgical site thereby lacking depth information for the surgeon. A stereo view would provide the surgeon instantaneous depth information of the surroundings within the field of view, a significant advantage especially during brain surgery. Providing 3D imaging in an endoscopic objective lens system presents significant challenges because of the tight packaging constraints. This paper presents a promising new technique for endoscopic 3D imaging that uses a single lens system with complementary multi-bandpass filters (CMBFs), and describes the proof-of-concept demonstrations performed to date validating the technique. These demonstrations of the technique have utilized many commercial off-the- shelf (COTS) components including the ones used in the endoscope objective.
Tisherman, Samuel A
2013-12-01
Survival from traumatic cardiac arrest is associated with a very high mortality despite aggressive resuscitation including an Emergency Department thoracotomy (EDT). Novel salvage techniques are needed to improve these outcomes. More aggressive out-of-hospital interventions, such as chest decompression or thoracotomy by emergency physicians or anesthesiologists, seem feasible and show some promise for improving outcomes. For trauma patients who suffer severe respiratory failure or refractory cardiac arrest, there seems to be an increasing role for the use of extracorporeal life support (ECLS), utilizing heparin-bonded systems to avoid systemic anticoagulation. The development of exposure hypothermia is associated with poor outcomes in trauma patients, but preclinical studies have consistently demonstrated that mild, therapeutic hypothermia (34 °C) improves survival from severe hemorrhagic shock. Sufficient data exist to justify a clinical trial. For patients who suffer a cardiac arrest refractory to EDT, induction of emergency preservation and resuscitation by rapid cooling to a tympanic membrane temperature of 10 °C may preserve vital organs long enough to allow surgical hemostasis, followed by resuscitation with cardiopulmonary bypass. Salvage techniques, such as earlier thoracotomy, ECLS, and hypothermia, may allow survival from otherwise lethal injuries.
In situ Raman mapping of art objects
Brondeel, Ph.; Moens, L.; Vandenabeele, P.
2016-01-01
Raman spectroscopy has grown to be one of the techniques of interest for the investigation of art objects. The approach has several advantageous properties, and the non-destructive character of the technique allowed it to be used for in situ investigations. However, compared with laboratory approaches, it would be useful to take advantage of the small spectral footprint of the technique, and use Raman spectroscopy to study the spatial distribution of different compounds. In this work, an in situ Raman mapping system is developed to be able to relate chemical information with its spatial distribution. Challenges for the development are discussed, including the need for stable positioning and proper data treatment. To avoid focusing problems, nineteenth century porcelain cards are used to test the system. This work focuses mainly on the post-processing of the large dataset which consists of four steps: (i) importing the data into the software; (ii) visualization of the dataset; (iii) extraction of the variables; and (iv) creation of a Raman image. It is shown that despite the challenging task of the development of the full in situ Raman mapping system, the first steps are very promising. This article is part of the themed issue ‘Raman spectroscopy in art and archaeology’. PMID:27799424
Bai, Yan; Lin, Yusong; Zhang, Wei; Kong, Lingfei; Wang, Lifu; Zuo, Panli; Vallines, Ignacio; Schmitt, Benjamin; Tian, Jie; Song, Xiaolei; Zhou, Jinyuan; Wang, Meiyun
2017-01-24
Using noninvasive magnetic resonance imaging techniques to accurately evaluate the grading and cellularity of gliomas is beneficial for improving the patient outcomes. Amide proton transfer imaging is a noninvasive molecular magnetic resonance imaging technique based on chemical exchange saturation transfer mechanism that detects endogenous mobile proteins and peptides in biological tissues. Between August 2012 and November 2015, a total number of 44 patients with pathologically proven gliomas were included in this study. We compared the capability of amide proton transfer magnetic resonance imaging with that of noninvasive diffusion-weighted imaging and noninvasive 3-dimensional pseudo-continuous arterial spin imaging in evaluating the grading and cellularity of gliomas. Our results reveal that amide proton transfer magnetic resonance imaging is a superior imaging technique to diffusion-weighted imaging and 3-dimensional pseudo-continuous arterial spin imaging in the grading of gliomas. In addition, our results showed that the Ki-67 index correlated better with the amide proton transfer-weighted signal intensity than with the apparent diffusion coefficient value or the cerebral blood flow value in the gliomas. Amide proton transfer magnetic resonance imaging is a promising method for predicting the grading and cellularity of gliomas.
Pulmonary nodule characterization, including computer analysis and quantitative features.
Bartholmai, Brian J; Koo, Chi Wan; Johnson, Geoffrey B; White, Darin B; Raghunath, Sushravya M; Rajagopalan, Srinivasan; Moynagh, Michael R; Lindell, Rebecca M; Hartman, Thomas E
2015-03-01
Pulmonary nodules are commonly detected in computed tomography (CT) chest screening of a high-risk population. The specific visual or quantitative features on CT or other modalities can be used to characterize the likelihood that a nodule is benign or malignant. Visual features on CT such as size, attenuation, location, morphology, edge characteristics, and other distinctive "signs" can be highly suggestive of a specific diagnosis and, in general, be used to determine the probability that a specific nodule is benign or malignant. Change in size, attenuation, and morphology on serial follow-up CT, or features on other modalities such as nuclear medicine studies or MRI, can also contribute to the characterization of lung nodules. Imaging analytics can objectively and reproducibly quantify nodule features on CT, nuclear medicine, and magnetic resonance imaging. Some quantitative techniques show great promise in helping to differentiate benign from malignant lesions or to stratify the risk of aggressive versus indolent neoplasm. In this article, we (1) summarize the visual characteristics, descriptors, and signs that may be helpful in management of nodules identified on screening CT, (2) discuss current quantitative and multimodality techniques that aid in the differentiation of nodules, and (3) highlight the power, pitfalls, and limitations of these various techniques.
Carbon Nanotubes Application in the Extraction Techniques of Pesticides: A Review.
Jakubus, Aleksandra; Paszkiewicz, Monika; Stepnowski, Piotr
2017-01-02
Carbon nanotubes (CNTs) are currently one of the most promising groups of materials with some interesting properties, such as lightness, rigidity, high surface area, high mechanical strength in tension, good thermal conductivity or resistance to mechanical damage. These unique properties make CNTs a competitive alternative to conventional sorbents used in analytical chemistry, especially in extraction techniques. The amount of work that discusses the usefulness of CNTs as a sorbent in a variety of extraction techniques has increased significantly in recent years. In this review article, the most important feature and different applications of solid-phase extraction (SPE), including, classical SPE and dispersive SPE using CNTs for pesticides isolation from different matrices, are summarized. Because of high number of articles concerning the applicability of carbon materials to extraction of pesticides, the main aim of proposed publication is to provide updated review of the latest uses of CNTs by covering the period 2006-2015. Moreover, in this review, the recent papers and this one, which are covered in previous reviews, will be addressed and particular attention has been paid on the division of publications in terms of classes of pesticides, in order to systematize the available literature reports.
Evolution of Autologous Chondrocyte Repair and Comparison to Other Cartilage Repair Techniques
Dewan, Ashvin K.; Gibson, Matthew A.; Elisseeff, Jennifer H.; Trice, Michael E.
2014-01-01
Articular cartilage defects have been addressed using microfracture, abrasion chondroplasty, or osteochondral grafting, but these strategies do not generate tissue that adequately recapitulates native cartilage. During the past 25 years, promising new strategies using assorted scaffolds and cell sources to induce chondrocyte expansion have emerged. We reviewed the evolution of autologous chondrocyte implantation and compared it to other cartilage repair techniques. Methods. We searched PubMed from 1949 to 2014 for the keywords “autologous chondrocyte implantation” (ACI) and “cartilage repair” in clinical trials, meta-analyses, and review articles. We analyzed these articles, their bibliographies, our experience, and cartilage regeneration textbooks. Results. Microfracture, abrasion chondroplasty, osteochondral grafting, ACI, and autologous matrix-induced chondrogenesis are distinguishable by cell source (including chondrocytes and stem cells) and associated scaffolds (natural or synthetic, hydrogels or membranes). ACI seems to be as good as, if not better than, microfracture for repairing large chondral defects in a young patient's knee as evaluated by multiple clinical indices and the quality of regenerated tissue. Conclusion. Although there is not enough evidence to determine the best repair technique, ACI is the most established cell-based treatment for full-thickness chondral defects in young patients. PMID:25210707
NASA Astrophysics Data System (ADS)
Yamashita, Yasuo; Arimura, Hidetaka; Yoshiura, Takashi; Tokunaga, Chiaki; Magome, Taiki; Monji, Akira; Noguchi, Tomoyuki; Toyofuku, Fukai; Oki, Masafumi; Nakamura, Yasuhiko; Honda, Hiroshi
2010-03-01
Arterial spin labeling (ASL) is one of promising non-invasive magnetic resonance (MR) imaging techniques for diagnosis of Alzheimer's disease (AD) by measuring cerebral blood flow (CBF). The aim of this study was to develop a computer-aided classification system for AD patients based on CBFs measured by the ASL technique. The average CBFs in cortical regions were determined as functional image features based on the CBF map image, which was non-linearly transformed to a Talairach brain atlas by using a free-form deformation. An artificial neural network (ANN) was trained with the CBF functional features in 10 cortical regions, and was employed for distinguishing patients with AD from control subjects. For evaluation of the method, we applied the proposed method to 20 cases including ten AD patients and ten control subjects, who were scanned a 3.0-Tesla MR unit. As a result, the area under the receiver operating characteristic curve obtained by the proposed method was 0.893 based on a leave-one-out-by-case test in identification of AD cases among 20 cases. The proposed method would be feasible for classification of patients with AD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mangum, John S.; Chan, Lisa H.; Schmidt, Ute
Site-specific preparation of specimens using focused ion beam instruments for transmission electron microscopy is at the forefront of targeting regions of interest for nanoscale characterization. Typical methods of pinpointing desired features include electron backscatter diffraction for differentiating crystal structures and energy-dispersive X-Ray spectroscopy for probing compositional variations. Yet there are situations, notably in the titanium dioxide system, where these techniques can fail. Differentiating between the brookite and anatase polymorphs of titania is either excessively laborious or impossible with the aforementioned techniques. However, due to differences in bonding structure, Raman spectroscopy serves as an ideal candidate for polymorph differentiation. In thismore » work, a correlative approach utilizing Raman spectroscopy for targeted focused ion beam specimen preparation was employed. Dark field imaging and diffraction in the transmission electron microscope confirmed the region of interest located via Raman spectroscopy and demonstrated the validity of this new method. Correlative Raman spectroscopy, scanning electron microscopy, and focused ion beam is shown to be a promising new technique for identifying site-specific preparation of nanoscale specimens in cases where conventional approaches do not suffice.« less
Kirov, Ilya; Van Laere, Katrijn; De Riek, Jan; De Keyser, Ellen; Van Roy, Nadine; Khrustaleva, Ludmila
2014-01-01
In order to anchor Rosa linkage groups to physical chromosomes, a combination of the Tyramide-FISH technology and the modern molecular marker system based on High Resolution Melting (HRM) is an efficient approach. Although, Tyramide-FISH is a very promising technique for the visualization of short DNA probes, it is very challenging for plant species with small chromosomes such as Rosa. In this study, we successfully applied the Tyramide-FISH technique for Rosa and compared different detection systems. An indirect detection system exploiting biotinylated tyramides was shown to be the most suitable technique for reliable signal detection. Three gene fragments with a size of 1100 pb–1700 bp (Phenylalanine Ammonia Lyase, Pyrroline-5-Carboxylate Synthase and Orcinol O-Methyl Transferase) have been physically mapped on chromosomes 7, 4 and 1, respectively, of Rosa wichurana. The signal frequency was between 25% and 40%. HRM markers of these 3 gene fragments were used to include the gene fragments on the existing genetic linkage map of Rosa wichurana. As a result, three linkage groups could be anchored to their physical chromosomes. The information was used to check for synteny between the Rosa chromosomes and Fragaria. PMID:24755945
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somerville, Richard
2013-08-22
The long-range goal of several past and current projects in our DOE-supported research has been the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data, and the implementation and testing of these parameterizations in global models. The main objective of the present project being reported on here has been to develop and apply advanced statistical techniques, including Bayesian posterior estimates, to diagnose and evaluate features of both observed and simulated clouds. The research carried out under this project has been novel in two important ways. The first is that it is a key stepmore » in the development of practical stochastic cloud-radiation parameterizations, a new category of parameterizations that offers great promise for overcoming many shortcomings of conventional schemes. The second is that this work has brought powerful new tools to bear on the problem, because it has been a collaboration between a meteorologist with long experience in ARM research (Somerville) and a mathematician who is an expert on a class of advanced statistical techniques that are well-suited for diagnosing model cloud simulations using ARM observations (Shen).« less
Mangum, John S; Chan, Lisa H; Schmidt, Ute; Garten, Lauren M; Ginley, David S; Gorman, Brian P
2018-05-01
Site-specific preparation of specimens using focused ion beam instruments for transmission electron microscopy is at the forefront of targeting regions of interest for nanoscale characterization. Typical methods of pinpointing desired features include electron backscatter diffraction for differentiating crystal structures and energy-dispersive X-Ray spectroscopy for probing compositional variations. Yet there are situations, notably in the titanium dioxide system, where these techniques can fail. Differentiating between the brookite and anatase polymorphs of titania is either excessively laborious or impossible with the aforementioned techniques. However, due to differences in bonding structure, Raman spectroscopy serves as an ideal candidate for polymorph differentiation. In this work, a correlative approach utilizing Raman spectroscopy for targeted focused ion beam specimen preparation was employed. Dark field imaging and diffraction in the transmission electron microscope confirmed the region of interest located via Raman spectroscopy and demonstrated the validity of this new method. Correlative Raman spectroscopy, scanning electron microscopy, and focused ion beam is shown to be a promising new technique for identifying site-specific preparation of nanoscale specimens in cases where conventional approaches do not suffice. Copyright © 2018 Elsevier B.V. All rights reserved.
Mangum, John S.; Chan, Lisa H.; Schmidt, Ute; ...
2018-02-23
Site-specific preparation of specimens using focused ion beam instruments for transmission electron microscopy is at the forefront of targeting regions of interest for nanoscale characterization. Typical methods of pinpointing desired features include electron backscatter diffraction for differentiating crystal structures and energy-dispersive X-Ray spectroscopy for probing compositional variations. Yet there are situations, notably in the titanium dioxide system, where these techniques can fail. Differentiating between the brookite and anatase polymorphs of titania is either excessively laborious or impossible with the aforementioned techniques. However, due to differences in bonding structure, Raman spectroscopy serves as an ideal candidate for polymorph differentiation. In thismore » work, a correlative approach utilizing Raman spectroscopy for targeted focused ion beam specimen preparation was employed. Dark field imaging and diffraction in the transmission electron microscope confirmed the region of interest located via Raman spectroscopy and demonstrated the validity of this new method. Correlative Raman spectroscopy, scanning electron microscopy, and focused ion beam is shown to be a promising new technique for identifying site-specific preparation of nanoscale specimens in cases where conventional approaches do not suffice.« less