Science.gov

Sample records for promoter methylation assayed

  1. Heterogeneous DNA Methylation Patterns in the GSTP1 Promoter Lead to Discordant Results between Assay Technologies and Impede Its Implementation as Epigenetic Biomarkers in Breast Cancer

    PubMed Central

    Grenaker Alnaes, Grethe I.; Ronneberg, Jo Anders; Kristensen, Vessela N.; Tost, Jörg

    2015-01-01

    Altered DNA methylation patterns are found in many diseases, particularly in cancer, where the analysis of DNA methylation holds the promise to provide diagnostic, prognostic and predictive information of great clinical value. Methylation of the promoter-associated CpG island of GSTP1 occurs in many hormone-sensitive cancers, has been shown to be a biomarker for the early detection of cancerous lesions and has been associated with important clinical parameters, such as survival and response to treatment. In the current manuscript, we assessed the performance of several widely-used sodium bisulfite conversion-dependent methods (methylation-specific PCR, MethyLight, pyrosequencing and MALDI mass-spectrometry) for the analysis of DNA methylation patterns in the GSTP1 promoter. We observed large discordances between the results obtained by the different technologies. Cloning and sequencing of the investigated region resolved single-molecule DNA methylation patterns and identified heterogeneous DNA methylation patterns as the underlying cause of the differences. Heterogeneous DNA methylation patterns in the GSTP1 promoter constitute a major obstacle to the implementation of DNA methylation-based analysis of GSTP1 and might explain some of the contradictory findings in the analysis of the significance of GSTP1 promoter methylation in breast cancer. PMID:26393654

  2. In vitro Methylation Assay to Study Protein Arginine Methylation

    PubMed Central

    Bikkavilli, Rama Kamesh; Avasarala, Sreedevi; Van Scoyk, Michelle; Karuppusamy Rathinam, Manoj Kumar; Tauler, Jordi; Borowicz, Stanley; Winn, Robert A.

    2014-01-01

    Protein arginine methylation is one of the most abundant post-translational modifications in the nucleus. Protein arginine methylation can be identified and/or determined via proteomic approaches, and/or immunoblotting with methyl-arginine specific antibodies. However, these techniques sometimes can be misleading and often provide false positive results. Most importantly, these techniques cannot provide direct evidence in support of the PRMT substrate specificity. In vitro methylation assays, on the other hand, are useful biochemical assays, which are sensitive, and consistently reveal if the identified proteins are indeed PRMT substrates. A typical in vitro methylation assay includes purified, active PRMTs, purified substrate and a radioisotope labeled methyl donor (S-adenosyl-L-[methyl-3H] methionine). Here we describe a step-by-step protocol to isolate catalytically active PRMT1, a ubiquitously expressed PRMT family member. The methyl transferase activities of the purified PRMT1 were later tested on Ras-GTPase activating protein binding protein 1 (G3BP1), a known PRMT substrate, in the presence of S-adenosyl-L-[methyl-3H] methionine as the methyl donor. This protocol can be employed not only for establishing the methylation status of novel physiological PRMT1 substrates, but also for understanding the basic mechanism of protein arginine methylation. PMID:25350748

  3. Scintillation Proximity Assay of Arginine Methylation

    PubMed Central

    Wu, Jiang; Xie, Nan; Feng, You; Zheng, Y. George

    2011-01-01

    Methylation of arginine residues, catalyzed by protein arginine methyltransferases (PRMTs), is one important protein post-translational modification involved in epigenetic regulation of gene expression. A fast and effective assay for PRMT can provide valuable information for dissecting the biological functions of PRMTs, as well as for screening small-molecule inhibitors of arginine methylation. Currently, among the methods used for PRMT activity measurement, many contain laborious separation procedures, which restrict the applications of these assays for high-throughput screening (HTS) in drug discovery. The authors report here a mix-and-measure method to measure PRMT activity based on the principle of scintillation proximity assay (SPA). In this assay, 3H-AdoMet was used as methyl donor, and biotin-modified histone H4 peptide served as a methylation substrate. Following the methylation reaction catalyzed by PRMTs, streptavidin-coated SPA beads were added to the reaction solution, and SPA signals were detected by a MicroBeta scintillation counter. No separation step is needed, which simplifies the assay procedure and greatly enhances the assay speed. Particularly, the miniaturization and robustness suggest that this method is suited for HTS of PRMT inhibitors. PMID:21821785

  4. Promoter methylation of candidate genes associated with familial testicular cancer.

    PubMed

    Mirabello, Lisa; Kratz, Christian P; Savage, Sharon A; Greene, Mark H

    2012-01-01

    Recent genomic studies have identified risk SNPs in or near eight genes associated with testicular germ cell tumors (TGCT). Mouse models suggest a role for Dnd1 epigenetics in TGCT susceptibility, and we have recently reported that transgenerational inheritance of epigenetic events may be associated with familial TGCT risk. We now investigate whether aberrant promoter methylation of selected candidate genes is associated with familial TGCT risk. Pyrosequencing assays were designed to evaluate CpG methylation in the promoters of selected genes in peripheral blood DNA from 153 TGCT affecteds and 116 healthy male relatives from 101 multiple-case families. Wilcoxon rank-sum tests and logistic regression models were used to investigate associations between promoter methylation and TGCT. We also quantified gene product expression of these genes, using quantitative PCR. We observed increased PDE11A, SPRY4 and BAK1 promoter methylation, and decreased KITLG promoter methylation, in familial TGCT cases versus healthy male family controls. A significant upward risk trend was observed for PDE11A when comparing the middle and highest tertiles of methylation to the lowest [odds ratio (OR) =1.55, 95% confidence intervals (CI) 0.82-2.93, and 1.94, 95% CI 1.03-3.66], respectively; P(trend)=0.042). A significant inverse association was observed for KITLG when comparing the middle and lowest tertiles to the highest (OR=2.15, 95% CI 1.12-4.11, and 2.15, 95% CI 1.12-4.14, respectively; P(trend)=0.031). There was a weak inverse correlation between promoter methylation and KITLG expression. Our results suggest that familial TGCT susceptibility may be associated with promoter methylation of previously-identified TGCT risk-modifying genes. Larger studies are warranted. PMID:23050052

  5. Human papillomavirus type 16 E7 oncoprotein mediates CCNA1 promoter methylation

    PubMed Central

    Chalertpet, Kanwalat; Pakdeechaidan, Watcharapong; Patel, Vyomesh; Mutirangura, Apiwat; Yanatatsaneejit, Pattamawadee

    2015-01-01

    Human papillomavirus (HPV) oncoproteins drive distinctive promoter methylation patterns in cancer. However, the underlying mechanism remains to be elucidated. Cyclin A1 (CCNA1) promoter methylation is strongly associated with HPV-associated cancer. CCNA1 methylation is found in HPV-associated cervical cancers, as well as in head and neck squamous cell cancer. Numerous pieces of evidence suggest that E7 may drive CCNA1 methylation. First, the CCNA1 promoter is methylated in HPV-positive epithelial lesions after transformation. Second, the CCNA1 promoter is methylated at a high level when HPV is integrated into the human genome. Finally, E7 has been shown to interact with DNA methyltransferase 1 (Dnmt1). Here, we sought to determine the mechanism by which E7 increases methylation in cervical cancer by using CCNA1 as a gene model. We investigated whether E7 induces CCNA1 promoter methylation, resulting in the loss of expression. Using both E7 knockdown and overexpression approaches in SiHa and C33a cells, our data showed that CCNA1 promoter methylation decreases with a corresponding increase in expression in E7 siRNA-transfected cells. By contrast, CCNA1 promoter methylation was augmented with a corresponding reduction in expression in E7-overexpressing cells. To confirm whether the binding of the E7–Dnmt1 complex to the CCNA1 promoter induced methylation and loss of expression, ChIP assays were carried out in E7-, del CR3-E7 and vector control-overexpressing C33a cells. The data showed that E7 induced CCNA1 methylation by forming a complex with Dnmt1 at the CCNA1 promoter, resulting in the subsequent reduction of expression in cancers. It is interesting to further explore the genome-wide mechanism of E7 oncoprotein-mediated DNA methylation. PMID:26250467

  6. Human papillomavirus type 16 E7 oncoprotein mediates CCNA1 promoter methylation.

    PubMed

    Chalertpet, Kanwalat; Pakdeechaidan, Watcharapong; Patel, Vyomesh; Mutirangura, Apiwat; Yanatatsaneejit, Pattamawadee

    2015-10-01

    Human papillomavirus (HPV) oncoproteins drive distinctive promoter methylation patterns in cancer. However, the underlying mechanism remains to be elucidated. Cyclin A1 (CCNA1) promoter methylation is strongly associated with HPV-associated cancer. CCNA1 methylation is found in HPV-associated cervical cancers, as well as in head and neck squamous cell cancer. Numerous pieces of evidence suggest that E7 may drive CCNA1 methylation. First, the CCNA1 promoter is methylated in HPV-positive epithelial lesions after transformation. Second, the CCNA1 promoter is methylated at a high level when HPV is integrated into the human genome. Finally, E7 has been shown to interact with DNA methyltransferase 1 (Dnmt1). Here, we sought to determine the mechanism by which E7 increases methylation in cervical cancer by using CCNA1 as a gene model. We investigated whether E7 induces CCNA1 promoter methylation, resulting in the loss of expression. Using both E7 knockdown and overexpression approaches in SiHa and C33a cells, our data showed that CCNA1 promoter methylation decreases with a corresponding increase in expression in E7 siRNA-transfected cells. By contrast, CCNA1 promoter methylation was augmented with a corresponding reduction in expression in E7-overexpressing cells. To confirm whether the binding of the E7-Dnmt1 complex to the CCNA1 promoter induced methylation and loss of expression, ChIP assays were carried out in E7-, del CR3-E7 and vector control-overexpressing C33a cells. The data showed that E7 induced CCNA1 methylation by forming a complex with Dnmt1 at the CCNA1 promoter, resulting in the subsequent reduction of expression in cancers. It is interesting to further explore the genome-wide mechanism of E7 oncoprotein-mediated DNA methylation. PMID:26250467

  7. Overexpression of Mucin 13 due to Promoter Methylation Promotes Aggressive Behavior in Ovarian Cancer Cells

    PubMed Central

    Sung, Hye Youn; Park, Ae Kyung

    2014-01-01

    Purpose Recent discoveries suggest that aberrant DNA methylation provides cancer cells with advanced metastatic properties. However, the precise regulatory mechanisms controlling metastasis genes and their role in metastatic transformation are largely unknown. To address epigenetically-regulated gene products involved in ovarian cancer metastasis, we examined the mechanisms regulating mucin 13 (MUC13) expression and its influence on aggressive behaviors of ovarian malignancies. Materials and Methods We injected SK-OV-3 ovarian cancer cells peritoneally into nude mice to mimic human ovarian tumor metastasis. Overexpression of MUC13 mRNA was detected in metastatic implants from the xenografts by expression microarray analysis and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The DNA methylation status within the MUC13 promoter region was determined using bisulfite sequencing PCR and quantitative methylation-specific PCR. We evaluated the effects of exogenous MUC13 on cell invasion and migration using in vitro transwell assays. Results MUC13 mRNA expression was up-regulated, and methylation of specific CpG sites within the promoter was reduced in the metastatic implants relative to those in wild-type SK-OV-3 cells. Addition of a DNA methyltransferase inhibitor to SK-OV-3 cells induced MUC13 expression, thereby implying epigenetic regulation of MUC13 by promoter methylation. MUC13 overexpression increased migration and invasiveness, compared to control cells, suggesting aberrant up-regulation of MUC13 is strongly associated with progression of aggressive behaviors in ovarian cancer. Conclusion We provide novel evidence for epigenetic regulation of MUC13 in ovarian cancer. We suggest that the DNA methylation status within the MUC13 promoter region may be a potential biomarker of aggressive behavior in ovarian cancer. PMID:25048476

  8. A Pyrosequencing Assay for the Quantitative Methylation Analysis of GALR1 in Endometrial Samples: Preliminary Results

    PubMed Central

    Kottaridi, Christine; Koureas, Nikolaos; Margari, Niki; Terzakis, Emmanouil; Bilirakis, Evripidis; Pappas, Asimakis; Chrelias, Charalampos; Spathis, Aris; Aga, Evangelia; Pouliakis, Abraham; Panayiotides, Ioannis; Karakitsos, Petros

    2015-01-01

    Endometrial cancer is the most common malignancy of the female genital tract while aberrant DNA methylation seems to play a critical role in endometrial carcinogenesis. Galanin's expression has been involved in many cancers. We developed a new pyrosequencing assay that quantifies DNA methylation of galanin's receptor-1 (GALR1). In this study, the preliminary results indicate that pyrosequencing methylation analysis of GALR1 promoter can be a useful ancillary marker to cytology as the histological status can successfully predict. This marker has the potential to lead towards better management of women with endometrial lesions and eventually reduce unnecessary interventions. In addition it can provide early warning for women with negative cytological result. PMID:26504828

  9. [Aberrant promoter methylation as biomarker for molecular cytological diagnosis of lung cancer].

    PubMed

    Grote, H J

    2006-01-01

    Aberrant promoter methylation represents a main mechanism of tumor suppressor gene inactivation and may serve as a new source for biomarker discovery. This study investigated its applicability as a molecular tool for lung cancer diagnostics on bronchial aspirates. A methylation assay was developed applying a quantitative methylation specific real-time PCR (QMSP). A total of 552 patients with the differential diagnosis of lung cancer were investigated. The QMSP findings on bronchial aspirates were compared with the methylation status of respective genes investigated in microdissected tumor tissues (QMSP, cloning and sequencing of promoter regions after bisulfite conversion). Among the genes tested a marker panel consisting of APC, p16(INK4a) and RASSF1A proved to be the best suited for lung cancer diagnostics. This panel allowed for a correct diagnosis of lung cancer in cases with an ambiguous or false negative conventional cytology. In a cohort study on 247 patients, the combination of histology (sensitivity 59 %), cytology (sensitivity 44 %) and QMSP-assay (sensitivity 53 %) raised the sensitivity of a single bronchoscopy for the diagnosis of lung cancer up to 81%. The methylation assay yielded its major diagnostic surplus with respect to peripheral tumors representing 59 % of all primaries detected. In patients without antecedent lung cancer its specificity considering malignancy was >99 %. Therefore, the QMSP-assay is a promising technique which could enhance the sensitivity and diagnostic impact of conventional cytology. The assay is applicable to residual material of regular diagnostic cytology even in retrospect.

  10. Analysis of Promoter Non-CG Methylation in Prostate Cancer

    PubMed Central

    Truong, Matthew; Yang, Bing; Wagner, Jennifer; Desotelle, Joshua; Jarrard, David F.

    2013-01-01

    In vertebrates DNA methylation occurs primarily at CG dinucleotides, but recently non-CG methylation has been found at appreciable levels in embryonic stem cells. To assess non-CG methylation in cancer, we compared the extent of non-CG methylation at several biologically important CpG islands in prostate cancer and normal cell lines. An assessment of the promoter CpG islands Even-skipped homeobox 1 (EVX1) and filamin A-interacting protein 1-like (FILIP1L) demonstrates a 4-fold higher rate of non-CG methylation at EVX1 compared to FILIP1L across all cell lines. These loci are densely methylated at CG sites in cancer. No significant difference in non-CG methylation was demonstrated between cancer and normal. Treatment of cancer cell lines with 5-azacytidine significantly reduced methylation within EVX1 at CG and CC sites preferentially. We conclude that non-CG methylation does not correlate with CG methylation at hypermethylated promoter regions in cancer. Furthermore, global inhibition of DNA methyltransferases does not affect all methylated cytosines uniformly. PMID:23414321

  11. Quantitative Methylation Profiles for Multiple Tumor Suppressor Gene Promoters in Salivary Gland Tumors

    PubMed Central

    Durr, Megan L.; Mydlarz, Wojciech K.; Shao, Chunbo; Zahurak, Marianna L.; Chuang, Alice Y.; Hoque, Mohammad O.; Westra, William H.; Liegeois, Nanette J.; Califano, Joseph A.; Sidransky, David; Ha, Patrick K.

    2010-01-01

    Background Methylation profiling of tumor suppressor gene (TSGs) promoters is quickly becoming a powerful diagnostic tool for the early detection, prognosis, and even prediction of clinical response to treatment. Few studies address this in salivary gland tumors (SGTs); hence the promoter methylation profile of various TSGs was quantitatively assessed in primary SGT tissue to determine if tumor-specific alterations could be detected. Methodology DNA isolated from 78 tumor and 17 normal parotid gland specimens was assayed for promoter methylation status of 19 TSGs by fluorescence-based, quantitative methylation-specific PCR (qMSP). The data were utilized in a binary fashion as well as quantitatively (using a methylation quotient) allowing for better profiling and interpretation of results. Principal Findings The average number of methylation events across the studied genes was highest in salivary duct carcinoma (SDC), with a methylation value of 9.6, compared to the normal 4.5 (p<0.0003). There was a variable frequency and individual methylation quotient detected, depending on the TSG and the tumor type. When comparing normal, benign, and malignant SGTs, there was a statistically significant trend for increasing methylation in APC, Mint 1, PGP9.5, RAR-β, and Timp3. Conclusions/Significance Screening promoter methylation profiles in SGTs showed considerable heterogeneity. The methylation status of certain markers was surprisingly high in even normal salivary tissue, confirming the need for such controls. Several TSGs were found to be associated with malignant SGTs, especially SDC. Further study is needed to evaluate the potential use of these associations in the detection, prognosis, and therapeutic outcome of these rare tumors. PMID:20520817

  12. Elevated Klotho promoter methylation is associated with severity of chronic kidney disease.

    PubMed

    Chen, Jing; Zhang, Xiaoyan; Zhang, Han; Lin, Jing; Zhang, Chen; Wu, Qing; Ding, Xiaoqiang

    2013-01-01

    Klotho (KL) expression is down-regulated in the renal tissues of chronic kidney disease (CKD) animal models and patients with end-stage renal disease. The putative role of KL promoter hypermethylation in the progression of CKD remains unclear. The present study aimed to determine renal and peripheral blood mononuclear cells (PBMC) levels of KL promoter methylation and analyze their relationship with clinical and histological severity in patients with CKD. Using bisulfite pyrosequencing, renal and PBMC levels of KL promoter methylation were quantified in 47 patients with CKD. 47 nephrectomy specimens of patients with renal cell carcinoma and 48 PBMC specimens of healthy volunteers were used as renal tissue and PBMC controls, respectively. Renal expression of KL protein was assayed by immunohistochemistry staining. Receiver operating characteristic (ROC) curve was used to identify the optimal cut-off value of PBMC KL promoter methylation level for renal KL promoter hypermethylation. Higher levels of KL promoter methylation were observed in renal tissue and PBMC in patients with CKD compared with controls (8.79±3.24 vs. 5.17±1.11%, P<0.001; 7.20±2.79 vs. 3.27±0.79%, P<0.001). In these patients, renal KL methylation level correlated inversely with renal KL immunostaining intensity (ρ=-0.794, P<0.001). Estimated glomerular filtration rate correlated inversely with renal and PBMC levels of KL promoter methylation (r=-0.829, P<0.001; r=-0.645, P<0.001), while tubulointerstistial fibrosis score correlated positively (ρ=0.826, P<0.001; ρ=0.755, P<0.001). PBMC KL promoter methylation level correlated positively with renal KL promoter methylation level in patients with CKD (r=0.787, P<0.001). In ROC curve, the area under curve was 0.964 (P<0.001) and the optimal cut-off value was 5.83% with a sensitivity of 93.8% and specificity of 86.7% to predict renal KL promoter hypermethylation. The degree of KL promoter methylation is associated with clinical and histological

  13. A significant association between BDNF promoter methylation and the risk of drug addiction.

    PubMed

    Xu, Xuting; Ji, Huihui; Liu, Guili; Wang, Qinwen; Liu, Huifen; Shen, Wenwen; Li, Longhui; Xie, Xiaohu; Zhou, Wenhua; Duan, Shiwei

    2016-06-10

    As a member of the neurotrophic factor family, brain derived neurotrophic factor (BDNF) plays an important role in the survival and differentiation of neurons. The aim of our work was to evaluate the role of BDNF promoter methylation in drug addiction. A total of 60 drug abusers (30 heroin and 30 methylamphetamine addicts) and 52 healthy age- and gender-matched controls were recruited for the current case control study. Bisulfite pyrosequencing technology was used to determine the methylation levels of five CpGs (CpG1-5) on the BDNF promoter. Among the five CpGs, CpG5 methylation was significantly lower in drug abusers than controls. Moreover, significant associations were found between CpG5 methylation and addictive phenotypes including tension-anxiety, anger-hostility, fatigue-inertia, and depression-dejection. In addition, luciferase assay showed that the DNA fragment of BDNF promoter played a key role in the regulation of gene expression. Our results suggest that BDNF promoter methylation is associated with drug addiction, although further studies are needed to understand the mechanisms by which BDNF promoter methylation contributes to the pathophysiology of drug addiction. PMID:26976342

  14. Promoter Methylation of SFRP3 Is Frequent in Hepatocellular Carcinoma

    PubMed Central

    Shih, Yu-Lueng; Lien, Gi-Shih; Suk, Fat-Moon; Hsieh, Chung-Bao; Yan, Ming-De

    2014-01-01

    Oncogenic activation of the Wnt/β-catenin signaling pathway is common in human cancers. The secreted frizzled-related proteins (SFRPs) function as negative regulators of Wnt signaling and have important implications in carcinogenesis. Because there have been no reports about the role of SFRP3 in hepatocellular carcinoma (HCC), we investigated the level of methylation and transcription of SFRP3. Four HCC cell lines, 60 HCCs, 23 cirrhosis livers, 37 chronic hepatitis livers, and 30 control livers were prescreened for SFRP3 promoter methylation by methylation-specific polymerase chain reaction (MS-PCR) and bisulfite sequencing. SFRP3 promoter methylation was observed in 100%, 60%, 39.1%, 16.2%, and 0% in HCC cell lines, primary HCCs, cirrhosis livers, chronic hepatitis livers, and control livers, respectively. Demethylation treatment with 5-aza-2′-deoxycytidine in HCC cells restored or increased the SFRP3 mRNA expression. We next used quantitative MS-PCR (QMSP) to analyze the methylation level of SFRP3 in 60 HCCs and their corresponding nontumor tissues. Methylation of SFRP3 promoter region in HCCs increased significantly compared with control tissues. There is a positive correlation between promoter hypermethylation and SFRP3 mRNA downregulation. Our data suggest that promoter hypermethylation of SFRP3 is a common event in HCCs and plays an important role in regulation of SFRP3 mRNA expression. PMID:24591760

  15. EGFR Promoter Methylation, EGFR Mutation, and HPV Infection in Chinese Cervical Squamous Cell Carcinoma.

    PubMed

    Zhang, Wei; Jiang, Yinghao; Yu, Qingmiao; Qiang, Shaoying; Liang, Ping; Gao, Yane; Zhao, Xingye; Liu, Wenchao; Zhang, Ju

    2015-10-01

    Therapy strategy toward epidermal growth factor receptor (EGFR) inhibition in cervical cancer has been ongoing. EGFR promoter methylation status and EGFR tyrosine kinase inhibitor-sensitive mutations in cervical cancer may be significant for clinical outcome prediction using anti-EGFR treatment. In this study, EGFR tyrosine kinase inhibitor-sensitive mutations, EGFR exons 18, 19, and 21 mutations, were detected by sequencing in a total of 293 Chinese cervical squamous cell carcinoma tissue samples. EGFR promoter methylation status was detected by an EGFR asymmetric PCR and hybridization-fluorescence polarization assay and sequencing in 293 Chinese cervical squamous cell carcinoma tissue samples. High-risk human papillomavirus (HPV) genotypes in 293 Chinese cervical squamous cell carcinoma tissue samples were detected by an asymmetric GP5+/6+ PCR and hybridization-fluorescence polarization assay. No EGFR exons 18, 19, and 21 mutations were detected, EGFR promoter methylation status was identified in 98 samples, and HPV 16 infection was the first frequent HPV genotype. The methylated EGFR promoter was identified most frequently in cervical squamous cell carcinoma samples with HPV 16 infection (53.4%). Statistical significant difference of EGFR promoter methylation prevalence was found between HPV 16 and other HPV genotypes (P<0.01). This study suggested that there was no EGFR tyrosine kinase inhibitor-sensitive mutation in EGFR exons 18, 19, and 21 in Chinese cervical squamous cell carcinoma tissue samples. EGFR promoter methylation was common and it might be associated with HPV 16 infection in Chinese cervical squamous cell carcinoma. The results provided a novel understanding and an applicable pharmacogenomic tool for individualized management of cervical cancer patients.

  16. DNA Methylation Profile at the DNMT3L Promoter

    PubMed Central

    Gokul, Gopinathan; Gautami, Bhimana; Malathi, Surapaneni; Sowjanya, A. Pavani; Poli, Usha Rani; Jain, Meenakshi; Ramakrishna, Gayatri; Khosla, Sanjeev

    2007-01-01

    Epigenetic events play a prominent role during cancer development. This is evident from the fact that almost all cancer types show aberrant DNA methylation. These abnormal DNA methylation levels are not restricted to just a few genes but affect the whole genome. Previous studies have shown genome-wide DNA hypomethylation and gene-specific hypermethylation to be a hallmark of most cancers. Molecules like DNA methyltransferase act as effectors of epigenetic reprogramming. In the present study we have examined the possibility that the reprogramming genes themselves undergo epigenetic modifications reflecting their changed transcriptional status during cancer development. Comparison of DNA methylation status between the normal and cervical cancer samples was carried out at the promoters of a few reprogramming molecules. Our study revealed statistically significant DNA methylation differences within the promoter of DNMT3L. A regulator of de novo DNA methyltransferases DNMT3A and DNMT3B, DNMT3L promoter was found to have lost DNA methylation to varying levels in 14 out of 15 cancer cervix samples analysed. The present study highlights the importance of DNA methylation profile at DNMT3L promoter not only as a promising biomarker for cervical cancer, which is the second most common cancer among women worldwide, but also provides insight into the possible role of DNMT3L in cancer development. PMID:17965599

  17. PGC−1α Promoter Methylation in Parkinson’s Disease

    PubMed Central

    Su, Xiaomin; Chu, Yaping; Kordower, Jeffrey H.; Li, Bin; Cao, Hong; Huang, Liang; Nishida, Maki; Song, Lei; Wang, Difei; Federoff, Howard J.

    2015-01-01

    The etiopathogenesis of sporadic Parkinson’s disease (PD) remains elusive although mitochondrial dysfunction has long been implicated. Recent evidence revealed reduced expression of peroxisome proliferator-activated receptor gamma coactivator−1 α (PGC−1α) and downstream regulated nuclear encoded respiratory complex genes in affected brain tissue from PD patients. We sought to determine whether epigenetic modification of the PGC−1α gene could account for diminished expression. In substantia nigra from PD patients but not control subjects, we show significant promoter-proximal non-canonical cytosine methylation of the PGC−1α gene but not an adjacent gene. As neuroinflammation is a prominent feature of PD and a mediator of epigenetic change, we evaluated whether the pro-inflammatory fatty acid, palmitate, would stimulate PGC−1α promoter methylation in different cell types from the CNS. Indeed, in mouse primary cortical neurons, microglia and astrocytes, palmitate causes PGC−1α gene promoter non-canonical cytosine methylation, reduced expression of the gene and reduced mitochondrial content. Moreover, intracerebroventricular (ICV) injection of palmitate to transgenic human α−synuclein mutant mice resulted in increased PGC−1α promoter methylation, decreased PGC−1α expression and reduced mitochondrial content in substantia nigra. Finally we provide evidence that dysregulation of ER stress and inflammatory signaling is associated with PGC−1α promoter methylation. Together, these data strengthen the connection between saturated fatty acids, neuroflammation, ER stress, epigenetic alteration and bioenergetic compromise in PD. PMID:26317511

  18. Evaluation of MYB Promoter Methylation in Salivary Adenoid Cystic Carcinoma

    PubMed Central

    Shao, Chunbo; Bai, Weiliang; Junn, Jacqueline C.; Uemura, Mamoru; Hennessey, Patrick T.; Zaboli, David; Sidransky, David; Califano, Joseph A.; Ha, Patrick K.

    2011-01-01

    Summary The transcription factor MYB was recently proposed to be a promising oncogene candidate in salivary gland adenoid cystic carcinoma (ACC). However, the up-regulation of MYB in ACC could not be explained solely by deletion of its 3′ end. It is widely accepted that the promoter methylation status can regulate the transcription of genes, especially in human cancers. Therefore, it is important to know whether MYB promoter demethylation could explain the over-expression of MYB in ACC. By using the Methprimer program, we identified nine CpG islands in the promoter of MYB. All of these CpG islands were located within the −864 to +2,082 nt region relative to the transcription start site of MYB. We then used bisulfite genomic sequencing to evaluate the methylation levels of the CpG islands of MYB in 18 primary ACC tumors, 13 normal salivary gland tissues and nine cancer cell lines. Using cell lines, we also determined the relative MYB expression levels and correlated these with the methylation levels. With bisulfite genomic sequencing, we found no detectable methylation in the CpG islands of MYB in either ACC or normal salivary gland tissues. There was a variable degree of MYB expression in the cell lines tested, but none of these cell lines demonstrated promoter methylation. Promoter hypomethylation does not appear to explain the differential expression of MYB in ACC. An alternative mechanism needs to be proposed for the transcriptional control of MYB in ACC. PMID:21324728

  19. Evaluation of colorimetric assays for analyzing reductively methylated proteins: Biases and mechanistic insights.

    PubMed

    Brady, Pamlea N; Macnaughtan, Megan A

    2015-12-15

    Colorimetric protein assays, such as the Coomassie blue G-250 dye-binding (Bradford) and bicinchoninic acid (BCA) assays, are commonly used to quantify protein concentration. The accuracy of these assays depends on the amino acid composition. Because of the extensive use of reductive methylation in the study of proteins and the importance of biological methylation, it is necessary to evaluate the impact of lysyl methylation on the Bradford and BCA assays. Unmodified and reductively methylated proteins were analyzed using the absorbance at 280 nm to standardize the concentrations. Using model compounds, we demonstrate that the dimethylation of lysyl ε-amines does not affect the proteins' molar extinction coefficients at 280 nm. For the Bradford assay, the responses (absorbance per unit concentration) of the unmodified and reductively methylated proteins were similar, with a slight decrease in the response upon methylation. For the BCA assay, the responses of the reductively methylated proteins were consistently higher, overestimating the concentrations of the methylated proteins. The enhanced color formation in the BCA assay may be due to the lower acid dissociation constants of the lysyl ε-dimethylamines compared with the unmodified ε-amine, favoring Cu(II) binding in biuret-like complexes. The implications for the analysis of biologically methylated samples are discussed.

  20. Differential methylation of the promoter and first exon of the RASSF1A gene in hepatocarcinogenesis

    PubMed Central

    Jain, Surbhi; Xie, Lijia; Boldbaatar, Batbold; Lin, Selena Y.; Hamilton, James P.; Meltzer, Stephen J.; Chen, Shun-Hua; Hu, Chi-Tan; Block, Timothy M.; Song, Wei; Su, Ying-Hsiu

    2015-01-01

    Aim Aberrant methylation of the promoter, P2, and the first exon, E1, regions of the tumor suppressor gene RASSF1A, have been associated with hepatocellular carcinoma (HCC), albeit with poor specificity. This study analyzed the methylation profiles of P1, P2 and E1 regions of the gene to identify the region of which methylation most specifically corresponds to HCC and to evaluate the potential of this methylated region as a biomarker in urine for HCC screening. Methods Bisulfite DNA sequencing and quantitative methylation-specific polymerase chain reaction assays were performed to compare methylation of the 56 CpG sites in regions P1, P2 and E1 in DNA isolated from normal, hepatitic, cirrhotic, adjacent non-HCC, and HCC liver tissue and urine samples for the characterization of hypermethylation of the RASSF1A gene as a biomarker for HCC screening. Results In tissue, comparing HCC (n = 120) with cirrhosis and hepatitis together (n = 70), methylation of P1 had an area under the receiver operating characteristics curve (AUROC) of 0.90, whereas methylation of E1 and P2 had AUROC of 0.84 and 0.72, respectively. At 90% sensitivity, specificity for P1 methylation was 72.9% versus 38.6% for E1 and 27.1% for P2. Methylated P1 DNA was detected in urine in association with cirrhosis and HCC. It had a sensitivity of 81.8% for α-fetoprotein negative HCC. Conclusion Among the three regions analyzed, methylation of P1 is the most specific for HCC and holds great promise as a DNA marker in urine for screening of cirrhosis and HCC. PMID:25382672

  1. DNA methylation-specific multiplex assays for body fluid identification.

    PubMed

    An, Ja Hyun; Choi, Ajin; Shin, Kyoung-Jin; Yang, Woo Ick; Lee, Hwan Young

    2013-01-01

    Recent advances in whole-genome epigenetic analysis indicate that chromosome segments called tissue-specific differentially methylated regions (tDMRs) show different DNA methylation profiles according to cell or tissue type. Therefore, body fluid-specific differential DNA methylation is a promising indicator for body fluid identification. However, DNA methylation patterns are susceptible to change in response to environmental factors and aging. Therefore, we investigated age-related methylation changes in semen-specific tDMRs using body fluids from young and elderly men. After confirming the stability of the body fluid-specific DNA methylation profile over time, two different multiplex PCR systems were constructed using methylation-sensitive restriction enzyme PCR and methylation SNaPshot, in order to analyze the methylation status of specific CpG sites from the USP49, DACT1, PRMT2, and PFN3 tDMRs. Both multiplex systems could successfully identify semen with spermatozoa and could differentiate menstrual blood and vaginal fluids from blood and saliva. Although including more markers for body fluid identification might be necessary, this study adds to the support that body fluid identification by DNA methylation profiles could be a valuable tool for forensic analysis of body fluids. PMID:22653424

  2. DNA methylation-specific multiplex assays for body fluid identification.

    PubMed

    An, Ja Hyun; Choi, Ajin; Shin, Kyoung-Jin; Yang, Woo Ick; Lee, Hwan Young

    2013-01-01

    Recent advances in whole-genome epigenetic analysis indicate that chromosome segments called tissue-specific differentially methylated regions (tDMRs) show different DNA methylation profiles according to cell or tissue type. Therefore, body fluid-specific differential DNA methylation is a promising indicator for body fluid identification. However, DNA methylation patterns are susceptible to change in response to environmental factors and aging. Therefore, we investigated age-related methylation changes in semen-specific tDMRs using body fluids from young and elderly men. After confirming the stability of the body fluid-specific DNA methylation profile over time, two different multiplex PCR systems were constructed using methylation-sensitive restriction enzyme PCR and methylation SNaPshot, in order to analyze the methylation status of specific CpG sites from the USP49, DACT1, PRMT2, and PFN3 tDMRs. Both multiplex systems could successfully identify semen with spermatozoa and could differentiate menstrual blood and vaginal fluids from blood and saliva. Although including more markers for body fluid identification might be necessary, this study adds to the support that body fluid identification by DNA methylation profiles could be a valuable tool for forensic analysis of body fluids.

  3. Promoter methylation confers kidney-specific expression of the Klotho gene.

    PubMed

    Azuma, Masahiro; Koyama, Daisuke; Kikuchi, Jiro; Yoshizawa, Hiromichi; Thasinas, Dissayabutra; Shiizaki, Kazuhiro; Kuro-o, Makoto; Furukawa, Yusuke; Kusano, Eiji

    2012-10-01

    The aging suppressor geneKlotho is predominantly expressed in the kidney irrespective of species. Because Klotho protein is an essential component of an endocrine axis that regulates renal phosphate handling, the kidney-specific expression is biologically relevant; however, little is known about its underlying mechanisms. Here we provide in vitro and in vivo evidence indicating that promoter methylation restricts the expression of the Klotho gene in the kidney. Based on evolutionary conservation and histone methylation patterns, the region up to -1200 bp was defined as a major promoter element of the human Klotho gene. This region displayed promoter activity equally in Klotho-expressing and -nonexpressing cells in transient reporter assays, but the activity was reduced to ∼20% when the constructs were integrated into the chromatin in the latter. Both endogenous and transfected Klotho promoters were 30-40% methylated in Klotho-nonexpressing cells, but unmethylated in Klotho-expressing renal tubular cells. DNA demethylating agents increased Klotho expression 1.5- to 3.0-fold in nonexpressing cells and restored the activity of silenced reporter constructs. Finally, we demonstrated that a severe hypomorphic allele of Klotho had aberrant CpG methylation in kl/kl mice. These findings might be useful in therapeutic intervention for accelerated aging and several complications caused by Klotho down-regulation.

  4. Increased MTHFR promoter methylation in mothers of Down syndrome individuals.

    PubMed

    Coppedè, Fabio; Denaro, Maria; Tannorella, Pierpaola; Migliore, Lucia

    2016-05-01

    Despite that advanced maternal age at conception represents the major risk factor for the birth of a child with Down syndrome (DS), most of DS babies are born from women aging less than 35 years. Studies performed in peripheral lymphocytes of those women revealed several markers of global genome instability, including an increased frequency of micronuclei, shorter telomeres and impaired global DNA methylation. Furthermore, young mothers of DS individuals (MDS) are at increased risk to develop dementia later in life, suggesting that they might be "biologically older" than mothers of euploid babies of similar age. Mutations in folate pathway genes, and particularly in the methylenetetrahydrofolate reductase (MTHFR) one, have been often associated with maternal risk for a DS birth as well as with risk of dementia in the elderly. Recent studies pointed out that also changes in MTHFR methylation levels can contribute to human disease, but nothing is known about MTHFR methylation in MDS tissues. We investigated MTHFR promoter methylation in DNA extracted from perypheral lymphocytes of 40 MDS and 44 matched control women that coinceived their children before 35 years of age, observing a significantly increased MTHFR promoter methylation in the first group (33.3 ± 8.1% vs. 28.3 ± 5.8%; p=0.001). In addition, the frequency of micronucleated lymphocytes was available from the women included in the study, was higher in MDS than control mothers (16.1 ± 8.6‰ vs. 10.5 ± 4.3‰; p=0.0004), and correlated with MTHFR promoter methylation levels (r=0.33; p=0.006). Present data suggest that MTHFR epimutations are likely to contribute to the increased genomic instability observed in cells from MDS, and could play a role in the risk of birth of a child with DS as well as in the onset of age related diseases in those women. PMID:26926955

  5. Increased MTHFR promoter methylation in mothers of Down syndrome individuals.

    PubMed

    Coppedè, Fabio; Denaro, Maria; Tannorella, Pierpaola; Migliore, Lucia

    2016-05-01

    Despite that advanced maternal age at conception represents the major risk factor for the birth of a child with Down syndrome (DS), most of DS babies are born from women aging less than 35 years. Studies performed in peripheral lymphocytes of those women revealed several markers of global genome instability, including an increased frequency of micronuclei, shorter telomeres and impaired global DNA methylation. Furthermore, young mothers of DS individuals (MDS) are at increased risk to develop dementia later in life, suggesting that they might be "biologically older" than mothers of euploid babies of similar age. Mutations in folate pathway genes, and particularly in the methylenetetrahydrofolate reductase (MTHFR) one, have been often associated with maternal risk for a DS birth as well as with risk of dementia in the elderly. Recent studies pointed out that also changes in MTHFR methylation levels can contribute to human disease, but nothing is known about MTHFR methylation in MDS tissues. We investigated MTHFR promoter methylation in DNA extracted from perypheral lymphocytes of 40 MDS and 44 matched control women that coinceived their children before 35 years of age, observing a significantly increased MTHFR promoter methylation in the first group (33.3 ± 8.1% vs. 28.3 ± 5.8%; p=0.001). In addition, the frequency of micronucleated lymphocytes was available from the women included in the study, was higher in MDS than control mothers (16.1 ± 8.6‰ vs. 10.5 ± 4.3‰; p=0.0004), and correlated with MTHFR promoter methylation levels (r=0.33; p=0.006). Present data suggest that MTHFR epimutations are likely to contribute to the increased genomic instability observed in cells from MDS, and could play a role in the risk of birth of a child with DS as well as in the onset of age related diseases in those women.

  6. The splicing machinery promotes RNA-directed DNA methylation and transcriptional silencing in Arabidopsis

    PubMed Central

    Zhang, Cui-Jun; Zhou, Jin-Xing; Liu, Jun; Ma, Ze-Yang; Zhang, Su-Wei; Dou, Kun; Huang, Huan-Wei; Cai, Tao; Liu, Renyi; Zhu, Jian-Kang; He, Xin-Jian

    2013-01-01

    DNA methylation in transposons and other DNA repeats is conserved in plants as well as in animals. In Arabidopsis thaliana, an RNA-directed DNA methylation (RdDM) pathway directs de novo DNA methylation. We performed a forward genetic screen for suppressors of the DNA demethylase mutant ros1 and identified a novel Zinc-finger and OCRE domain-containing Protein 1 (ZOP1) that promotes Pol IV-dependent siRNA accumulation, DNA methylation, and transcriptional silencing. Whole-genome methods disclosed the genome-wide effects of zop1 on Pol IV-dependent siRNA accumulation and DNA methylation, suggesting that ZOP1 has both RdDM-dependent and -independent roles in transcriptional silencing. We demonstrated that ZOP1 is a pre-mRNA splicing factor that associates with several typical components of the splicing machinery as well as with Pol II. Immunofluorescence assay revealed that ZOP1 overlaps with Cajal body and is partially colocalized with NRPE1 and DRM2. Moreover, we found that the other development-defective splicing mutants tested including mac3a3b, mos4, mos12 and mos14 show defects in RdDM and transcriptional silencing. We propose that the splicing machinery rather than specific splicing factors is involved in promoting RdDM and transcriptional silencing. PMID:23524848

  7. hTERT promoter activity and CpG methylation in HPV-induced carcinogenesis

    PubMed Central

    2010-01-01

    Background Activation of telomerase resulting from deregulated hTERT expression is a key event during high-risk human papillomavirus (hrHPV)-induced cervical carcinogenesis. In the present study we examined hTERT promoter activity and its relation to DNA methylation as one of the potential mechanisms underlying deregulated hTERT transcription in hrHPV-transformed cells. Methods Using luciferase reporter assays we analyzed hTERT promoter activity in primary keratinocytes, HPV16- and HPV18-immortalized keratinocyte cell lines and cervical cancer cell lines. In the same cells as well as cervical specimens we determined hTERT methylation by bisulfite sequencing analysis of the region spanning -442 to +566 (relative to the ATG) and quantitative methylation specific PCR (qMSP) analysis of two regions flanking the hTERT core promoter. Results We found that in most telomerase positive cells increased hTERT core promoter activity coincided with increased hTERT mRNA expression. On the other hand basal hTERT promoter activity was also detected in telomerase negative cells with no or strongly reduced hTERT mRNA expression levels. In both telomerase positive and negative cells regulatory sequences flanking both ends of the core promoter markedly repressed exogenous promoter activity. By extensive bisulfite sequencing a strong increase in CpG methylation was detected in hTERT positive cells compared to cells with no or strongly reduced hTERT expression. Subsequent qMSP analysis of a larger set of cervical tissue specimens revealed methylation of both regions analyzed in 100% of cervical carcinomas and 38% of the high-grade precursor lesions, compared to 9% of low grade precursor lesions and 5% of normal controls. Conclusions Methylation of transcriptionally repressive sequences in the hTERT promoter and proximal exonic sequences is correlated to deregulated hTERT transcription in HPV-immortalized cells and cervical cancer cells. The detection of DNA methylation at these

  8. MethMarker: user-friendly design and optimization of gene-specific DNA methylation assays

    PubMed Central

    2009-01-01

    DNA methylation is a key mechanism of epigenetic regulation that is frequently altered in diseases such as cancer. To confirm the biological or clinical relevance of such changes, gene-specific DNA methylation changes need to be validated in multiple samples. We have developed the MethMarker http://methmarker.mpi-inf.mpg.de/ software to help design robust and cost-efficient DNA methylation assays for six widely used methods. Furthermore, MethMarker implements a bioinformatic workflow for transforming disease-specific differentially methylated genomic regions into robust clinical biomarkers. PMID:19804638

  9. A simple bridging flocculation assay for rapid, sensitive and stringent detection of gene specific DNA methylation.

    PubMed

    Wee, Eugene J H; Ha Ngo, Thu; Trau, Matt

    2015-01-01

    The challenge of bringing DNA methylation biomarkers into clinic is the lack of simple methodologies as most current assays have been developed for research purposes. To address the limitations of current methods, we describe herein a novel methyl-protein domain (MBD) enrichment protocol for simple yet rapid and highly stringent selection of highly methylated DNA from limiting input samples. We then coupled this with a DNA-mediated flocculation assay for rapid and low cost naked-eye binary evaluation of highly methylated genes in cell line and blood DNA. The low resource requirements of our method may enable widespread adoption of DNA methylation-based diagnostics in clinic and may be useful for small-scale research. PMID:26458746

  10. Promoter methylation is not associated with FLCN irregulation in lung cyst lesions of primary spontaneous pneumothorax.

    PubMed

    Ding, Yibing; Zou, Wei; Zhu, Chengchu; Min, Haiyan; Ma, Dehua; Chen, Baofu; Ye, Minhua; Pan, Yanqing; Cao, Lei; Wan, Yueming; Zhu, Qiuxiang; Xia, Haizhen; Zhang, Wenwen; Feng, Ying; Gao, Qian; Yi, Long

    2015-11-01

    Germline mutations in FLCN are responsible for ~10% of patients with primary spontaneous pneumothorax (PSP), characterized by multiple lung cysts in the middle/lower lobes and recurrent pneumothorax. These clinical features are also observed in a substantial portion of patients with sporadic PSP exhibiting no FLCN coding mutations. To assess the potential underlying mechanisms, 71 patients with PSP were selected, including 69 sporadic and 2 familial cases, who bared FLCN mutation‑like lung cysts, however, harbored no FLCN protein‑altering mutations. Notably, in a significant proportion of the patients, FLCN irregulation was observed at the transcript and protein levels. Genetic analyses of the cis‑regulatory region of FLCN were performed by sequencing and multiplex ligation‑dependent probe amplification assay. No inheritable DNA defect was detected, with the exception of a heterozygous deletion spanning the FLCN promoter, which was identified in a family with PSP. This mutation caused a reduction in the expression of FLCN in the lung cysts. Pedigree analysis demonstrated that haploinsufficiency of FLCN was pathogenic. To determine whether epigenetic mechanisms may be involved in the irregulation of FLCN, the promoter methylation status was measured in the remainder of the patients. No evidence of FLCN promoter methylation was demonstrated. The present study suggested that FLCN irregulation in lung cysts of PSP is not associated with promoter methylation.

  11. Correlation of clinical features and methylation status of MGMT gene promoter in glioblastomas.

    PubMed

    Blanc, J L; Wager, M; Guilhot, J; Kusy, S; Bataille, B; Chantereau, T; Lapierre, F; Larsen, C J; Karayan-Tapon, L

    2004-07-01

    In an effort to extend the potential relationship between the methylation status of MGMT promoter and response to CENU therapy, we examined the methylation status of MGMT promoter in 44 patients with glioblastomas. Tumor specimens were obtained during surgery before adjuvant treatment, frozen and stored at -80 degrees C until for DNA extraction process. DNA methylation patterns in the CpG island of the MGMT gene were determined in every tumor by methylation specific PCR (MSP). These results were then related to overall survival and response to alkylating agents using statistical analysis. Methylation of the MGMT promoter was detected in 68% of tumors, and 96.7% of methylated tumors exhibited also an unmethylated status. There was no relationship between the methylation status of the MGMT promoter and overall survival and response to alkylating agents. Our observations do not lead us to consider promoter methylation of MGMT gene as a prognostic factor of responsiveness to alkylating agents in glioblastomas. PMID:15332332

  12. Regulation of DEK expression by AP-2α and methylation level of DEK promoter in hepatocellular carcinoma.

    PubMed

    Qiao, Ming-Xu; Li, Chun; Zhang, Ai-Qun; Hou, Ling-Ling; Yang, Juan; Hu, Hong-Gang

    2016-10-01

    DEK is overexpressed in multiple invasive tumors. However, the transcriptional regulatory mechanism of DEK remains unclear. In the present study, progressive-type truncation assay indicated that CpG2-2 (-167 bp/+35 bp) was the DEK core promoter, whose methylation inhibited DEK expression. Bisulfite genomic sequencing analysis indicated that the methylation levels of the DEK promoter in normal hepatic cells and tissues were higher than those in hepatocellular carcinoma (HCC) cells. TFSEARCH result revealed transcription factor binding sites in CpG2-2. Among the sites, the AP-2α binding site showed the most significant methylation difference; hence, AP-2α is a key transcription factor that regulates DEK expression. Point or deletion mutation of the AP-2α binding site significantly reduced the promoter activity. Chromatin immunoprecipitation assay demonstrated the binding of AP-2α to the core promoter. Furthermore, knock down of endogenous AP-2α downregulated DEK expression, whereas overexpression of AP-2α upregulated DEK expression. Thus, AP-2α is an important transcription factor of DEK expression, which is correlated with the methylation level of the DEK core promoter in HCC.

  13. Gold nanorods-based FRET assay for ultrasensitive detection of DNA methylation and DNA methyltransferase activity.

    PubMed

    Wang, Gang Lin; Luo, Hong Qun; Li, Nian Bing

    2014-09-21

    A fluorescence method for the detection of DNA methylation and the assay of methyltransferase activity is proposed using gold nanorods as a fluorescence quencher on the basis of fluorescence resonance energy transfer. It is demonstrated that this method is capable of detecting methyltransferase with a detection limit of 0.25 U mL(-1), which might make this method a good candidate for monitoring DNA methylation in the future. PMID:25028809

  14. Evolutionary Transition of Promoter and Gene Body DNA Methylation across Invertebrate–Vertebrate Boundary

    PubMed Central

    Keller, Thomas E.; Han, Priscilla; Yi, Soojin V.

    2016-01-01

    Genomes of invertebrates and vertebrates exhibit highly divergent patterns of DNA methylation. Invertebrate genomes tend to be sparsely methylated, and DNA methylation is mostly targeted to a subset of transcription units (gene bodies). In a drastic contrast, vertebrate genomes are generally globally and heavily methylated, punctuated by the limited local hypo-methylation of putative regulatory regions such as promoters. These genomic differences also translate into functional differences in DNA methylation and gene regulation. Although promoter DNA methylation is an important regulatory component of vertebrate gene expression, its role in invertebrate gene regulation has been little explored. Instead, gene body DNA methylation is associated with expression of invertebrate genes. However, the evolutionary steps leading to the differentiation of invertebrate and vertebrate genomic DNA methylation remain unresolved. Here we analyzed experimentally determined DNA methylation maps of several species across the invertebrate–vertebrate boundary, to elucidate how vertebrate gene methylation has evolved. We show that, in contrast to the prevailing idea, a substantial number of promoters in an invertebrate basal chordate Ciona intestinalis are methylated. Moreover, gene expression data indicate significant, epigenomic context-dependent associations between promoter methylation and expression in C. intestinalis. However, there is no evidence that promoter methylation in invertebrate chordate has been evolutionarily maintained across the invertebrate–vertebrate boundary. Rather, body-methylated invertebrate genes preferentially obtain hypo-methylated promoters among vertebrates. Conversely, promoter methylation is preferentially found in lineage- and tissue-specific vertebrate genes. These results provide important insights into the evolutionary origin of epigenetic regulation of vertebrate gene expression. PMID:26715626

  15. Using a medium-throughput comet assay to evaluate the global DNA methylation status of single cells

    PubMed Central

    Lewies, Angélique; Van Dyk, Etresia; Wentzel, Johannes F.; Pretorius, Pieter J.

    2014-01-01

    The comet assay is a simple and cost effective technique, commonly used to analyze and quantify DNA damage in individual cells. The versatility of the comet assay allows introduction of various modifications to the basic technique. The difference in the methylation sensitivity of the isoschizomeric restriction enzymes HpaII and MspI are used to demonstrate the ability of the comet assay to measure the global DNA methylation level of individual cells when using cell cultures. In the experiments described here, a medium-throughput comet assay and methylation sensitive comet assay are combined to produce a methylation sensitive medium-throughput comet assay to measure changes in the global DNA methylation pattern in individual cells under various growth conditions. PMID:25071840

  16. Using a medium-throughput comet assay to evaluate the global DNA methylation status of single cells.

    PubMed

    Lewies, Angélique; Van Dyk, Etresia; Wentzel, Johannes F; Pretorius, Pieter J

    2014-01-01

    The comet assay is a simple and cost effective technique, commonly used to analyze and quantify DNA damage in individual cells. The versatility of the comet assay allows introduction of various modifications to the basic technique. The difference in the methylation sensitivity of the isoschizomeric restriction enzymes HpaII and MspI are used to demonstrate the ability of the comet assay to measure the global DNA methylation level of individual cells when using cell cultures. In the experiments described here, a medium-throughput comet assay and methylation sensitive comet assay are combined to produce a methylation sensitive medium-throughput comet assay to measure changes in the global DNA methylation pattern in individual cells under various growth conditions.

  17. DNA methylation in the Neuropeptide S Receptor 1 (NPSR1) promoter in relation to asthma and environmental factors.

    PubMed

    Reinius, Lovisa E; Gref, Anna; Sääf, Annika; Acevedo, Nathalie; Joerink, Maaike; Kupczyk, Maciej; D'Amato, Mauro; Bergström, Anna; Melén, Erik; Scheynius, Annika; Dahlén, Sven-Erik; Pershagen, Göran; Söderhäll, Cilla; Kere, Juha

    2013-01-01

    Asthma and allergy are complex disorders influenced by both inheritance and environment, a relationship that might be further clarified by epigenetics. Neuropeptide S Receptor 1 (NPSR1) has been associated with asthma and allergy and a study suggested modulation of the genetic risk by environmental factors. We aimed to study DNA methylation in the promoter region of NPSR1 in relation to asthma and environmental exposures. Electrophoretic Mobility Shift Assay (EMSA) was used to investigate potential functional roles of both genotypes and methylation status in the NPSR1 promoter. DNA methylation was analysed using EpiTYPER in blood samples from two well-characterized cohorts; the BIOAIR study of severe asthma in adults and the Swedish birth cohort BAMSE. We observed that DNA methylation and genetic variants in the promoter influenced the binding of nuclear proteins to DNA, suggesting functional relevance. Significant, although small, differences in methylation were related to both adult severe asthma (p = 0.0001) and childhood allergic asthma (p = 0.01). Furthermore, DNA methylation was associated with exposures such as current smoking in adults for two CpG sites (p = 0.005 and 0.04), parental smoking during infancy in the children (p = 0.02) and in which month the sample was taken (p = 0.01). In summary, DNA methylation levels in the promoter of NPSR1 showed small but significant associations with asthma, both in adults and in children, and to related traits such as allergy and certain environmental exposures. Both genetic variation and the methylated state of CpG sites seem to have an effect on the binding of nuclear proteins in the regulatory region of NPSR1 suggesting complex regulation of this gene in asthma and allergy. PMID:23372674

  18. Evidence of Heavy Methylation in the Galectin 3 Promoter in Early Stages of Prostate Adenocarcinoma: Development and Validation of a Methylated Marker for Early Diagnosis of Prostate Cancer1

    PubMed Central

    Ahmed, Hafiz; Cappello, Francesco; Rodolico, Vito; Vasta, Gerardo R

    2009-01-01

    Galectins, soluble intracellular and extracellular β-galactoside-binding proteins, are known to be involved in the progression and metastasis of various cancers, including prostate adenocarcinoma, but the detailed mechanism of their biological roles remains elusive. In the prostate cancer cell lines PC-3 and DU-145, galectin 3 (gal3) is present at normal levels, whereas in LNCaP, its expression is silenced. In LNCaP, the gal3 promoter was heavily methylated, whereas PC-3 or DU-145 cells showed negligible or no methylation in the gal3 promoter indicating a negative correlation between gal3 promoter methylation and its expression. On immunohistochemical analysis of normal and tumor prostate tissues, gal3 was found expressed both in nucleus and cytoplasm of benign prostatic hyperplasia, high-grade prostatic intraepithelial neoplasia, and stage I. The expression of the gal3 was found drastically downregulated in advanced stages and, interestingly, mostly in the cytoplasm. On methylation analysis, the gal3 promoter in stage II prostate adenocarcinoma (PCa) was found heavily methylated, whereas in stages III and IV, it was only lightly methylated. However, in stage I PCa, both heavy and light methylations were observed in the gal3 promoter. In normal and benign prostatic hyperplasia tissues, the gal3 promoter was almost unmethylated. The differential cytosine methylation in the gal3 promoter in stages I to IV PCa enabled us to develop and validate a methylation-specific polymerase chain reaction-based sensitive assay specific for stages I and II PCa. These stages are considered the critical stages for successful intervention, thus underscoring the significance of this diagnostic assay. PMID:19701499

  19. Defining the cutoff value of MGMT gene promoter methylation and its predictive capacity in glioblastoma.

    PubMed

    Brigliadori, Giovanni; Foca, Flavia; Dall'Agata, Monia; Rengucci, Claudia; Melegari, Elisabetta; Cerasoli, Serenella; Amadori, Dino; Calistri, Daniele; Faedi, Marina

    2016-06-01

    Despite advances in the treatment of glioblastoma (GBM), median survival is 12-15 months. O6-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation status is acknowledged as a predictive marker for temozolomide (TMZ) treatment. When MGMT promoter values fall into a "methylated" range, a better response to chemotherapy is expected. However, a cutoff that discriminates between "methylated" and "unmethylated" status has yet to be defined. We aimed to identify the best cutoff value and to find out whether variability in methylation profiles influences the predictive capacity of MGMT promoter methylation. Data from 105 GBM patients treated between 2008 and 2013 were analyzed. MGMT promoter methylation status was determined by analyzing 10 CpG islands by pyrosequencing. Patients were treated with radiotherapy followed by TMZ. MGMT promoter methylation status was classified into unmethylated 0-9 %, methylated 10-29 % and methylated 30-100 %. Statistical analysis showed that an assumed methylation cutoff of 9 % led to an overestimation of responders. All patients in the 10-29 % methylation group relapsed before the 18-month evaluation. Patients with a methylation status ≥30 % showed a median overall survival of 25.2 months compared to 15.2 months in all other patients, confirming this value as the best methylation cutoff. Despite wide variability among individual profiles, single CpG island analysis did not reveal any correlation between single CpG island methylation values and relapse or death. Specific CpG island methylation status did not influence the predictive value of MGMT. The predictive role of MGMT promoter methylation was maintained only with a cutoff value ≥30 %. PMID:27029617

  20. Correlation of MGMT promoter methylation status with gene and protein expression levels in glioblastoma

    PubMed Central

    Uno, Miyuki; Oba-Shinjo, Sueli Mieko; Camargo, Anamaria Aranha; Moura, Ricardo Pereira; de Aguiar, Paulo Henrique; Cabrera, Hector Navarro; Begnami, Marcos; Rosemberg, Sérgio; Teixeira, Manoel Jacobsen; Marie, Suely Kazue Nagahashi

    2011-01-01

    OBJECTIVES: 1) To correlate the methylation status of the O6-methylguanine-DNA-methyltransferase (MGMT) promoter to its gene and protein expression levels in glioblastoma and 2) to determine the most reliable method for using MGMT to predict the response to adjuvant therapy in patients with glioblastoma. BACKGROUND: The MGMT gene is epigenetically silenced by promoter hypermethylation in gliomas, and this modification has emerged as a relevant predictor of therapeutic response. METHODS: Fifty-one cases of glioblastoma were analyzed for MGMT promoter methylation by methylation-specific PCR and pyrosequencing, gene expression by real time polymerase chain reaction, and protein expression by immunohistochemistry. RESULTS: MGMT promoter methylation was found in 43.1% of glioblastoma by methylation-specific PCR and 38.8% by pyrosequencing. A low level of MGMT gene expression was correlated with positive MGMT promoter methylation (p = 0.001). However, no correlation was found between promoter methylation and MGMT protein expression (p = 0.297). The mean survival time of glioblastoma patients submitted to adjuvant therapy was significantly higher among patients with MGMT promoter methylation (log rank = 0.025 by methylation-specific PCR and 0.004 by pyrosequencing), and methylation was an independent predictive factor that was associated with improved prognosis by multivariate analysis. DISCUSSION AND CONCLUSION: MGMT promoter methylation status was a more reliable predictor of susceptibility to adjuvant therapy and prognosis of glioblastoma than were MGMT protein or gene expression levels. Methylation-specific polymerase chain reaction and pyrosequencing methods were both sensitive methods for determining MGMT promoter methylation status using DNA extracted from frozen tissue. PMID:22012047

  1. An assay for X inactivation based on differential methylations at the fragile X locus, FMR1

    SciTech Connect

    Carrel, L.; Willard, H.F. |

    1996-07-12

    We describe an assay analyzing methylation at the fragile X mental retardation gene, FMR1, to examine patterns of random or non-random X chromosome inactivation. Digestion of genomic DNA with the methylation-sensitive enzyme HpaII cleaves two restriction sites near the CGG repeat of the FMR1 gene if they are unmethylated on the active X chromosome, but fails to digest these sites on the inactive chromosome. Subsequent PCR using primers that flank the sites and the variable CGG repeat within the FMR1 gene amplifies alleles only on undigested, methylated inactive X chromosomes. Amplification of the hypervariable CGG repeat distinguishes alleles in heterozygous samples, while the relative ratio of alleles within a HpaII-digested sample reflects the randomness or non-randomness of inactivation. To demonstrate that methylation of the HpaII sites within the amplified FMR1 fragment correlates strictly with the activity state of the X chromosome, we have tested the validity of this assay by comparing DNA from normal males and females, as well as DNA from mouse/human somatic cell hybrids carrying either active or inactive human X chromosomes. The data demonstrate that this assay provides a reliable means of assessing the inactivation status of X chromosomes in individuals with X-linked disorders or X chromosome abnormalities. 21 refs., 2 figs., 1 tab.

  2. Evaluation of INK4A promoter methylation using pyrosequencing and circulating cell-free DNA from patients with hepatocellular carcinoma

    PubMed Central

    Kirk, Jason L.; Merwat, Shehzad N.; Ju, Hyunsu; Soloway, Roger D.; Wieck, Lucas R.; Li, Albert; Okorodudu, Anthony O.; Petersen, John R.; Abdulla, Nihal E.; Duchini, Andrea; Cicalese, Luca; Rastellini, Cristiana; Hu, Peter C.; Dong, Jianli

    2015-01-01

    Background Hyper-methylation of CpG dinucleotides in the promoter region of inhibitor of cyclin-dependent kinase 4A (INK4A) has been reported in 60%–80% of hepatocellular carcinoma (HCC). As INK4A promoter hypermethylation event occurs early in HCC progression, the quantification of INK4A promoter methylation in blood sample may represent a useful biomarker for non-invasive diagnosis and prediction of response to therapy. Methods We examined INK4A promoter methylation using circulating cell-free DNA (ccfDNA) in a total of 109 serum specimens, including 66 HCC and 43 benign chronic liver diseases. Methylation of the individual seven CpG sites was examined using pyrosequencing. Results Our results showed that there were significantly higher levels of methylated INK4A in HCC specimens than controls and that the seven CpG sites had different levels of methylation and might exist in different PCR amplicons. The area under receiver operating characteristic (ROC) curve was 0.82, with 65.3% sensitivity and 87.2% specificity at 5% (LOD), 39.0% sensitivity and 96.5% specificity at 7% LOD, and 20.3% sensitivity and 98.8% specificity at 10% LOD, respectively. Conclusions Our results support additional studies incorporating INK4A methylation testing of ccfDNA to further validate the diagnostic, predictive, and prognostic characteristics of this biomarker in HCC patients. The knowledge of the existence of epi-alleles should help improve assay design to maximize detection. PMID:24406287

  3. Assessing CpG island methylator phenotype, 1p/19q codeletion, and MGMT promoter methylation from epigenome-wide data in the biomarker cohort of the NOA-04 trial

    PubMed Central

    Wiestler, Benedikt; Capper, David; Hovestadt, Volker; Sill, Martin; Jones, David T.W.; Hartmann, Christian; Felsberg, Joerg; Platten, Michael; Feiden, Wolfgang; Keyvani, Kathy; Pfister, Stefan M.; Wiestler, Otmar D.; Meyermann, Richard; Reifenberger, Guido; Pietsch, Thorsten; von Deimling, Andreas; Weller, Michael; Wick, Wolfgang

    2014-01-01

    Background Molecular biomarkers including isocitrate dehydrogenase 1 or 2 (IDH1/2) mutation, 1p/19q codeletion, and O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation may improve prognostication and guide treatment decisions for patients with World Health Organization (WHO) anaplastic gliomas. At present, each marker is individually tested by distinct assays. Illumina Infinium HumanMethylation450 BeadChip arrays (HM450) enable the determination of large-scale methylation profiles and genome-wide DNA copy number changes. Algorithms have been developed to detect the glioma CpG island methylator phenotype (G-CIMP) associated with IDH1/2 mutation, 1p/19q codeletion, and MGMT promoter methylation using a single assay. Methods Here, we retrospectively investigated the diagnostic and prognostic performance of these algorithms in comparison to individual marker testing and patient outcome in the biomarker cohort (n = 115 patients) of the NOA-04 trial. Results Concordance for IDH and 1p/19q status was very high: In 92% of samples, the HM450 and reference data agreed. In discordant samples, survival analysis by Kaplan-Meier and Cox regression analyses suggested a more accurate assessment of biological phenotype by the HM450 analysis. The HM450-derived MGMT-STP27 model to calculate MGMT promoter methylation probability revealed this aberration in a significantly higher fraction of samples than conventional methylation-specific PCR, with 87 of 91 G-CIMP tumors predicted as MGMT promoter-methylated. Pyrosequencing of discordant samples confirmed the HM450 assessment in 14 of 17 cases. Conclusions G-CIMP and 1p/19q codeletion are reliably detectable by HM450 analysis and are associated with prognosis in the NOA-04 trial. For MGMT, HM450 suggests promoter methylation in the vast majority of G-CIMP tumors, which is supported by pyrosequencing. PMID:25028501

  4. ABERRANT PROMOTER METHYLATION OF MULTIPLE GENES IN SPUTUM FROM INDIVIDUALS EXPOSED TO SMOKY COAL EMISSIONS

    EPA Science Inventory

    Aberrant methylation in the promoter region of cancer-related genes leads to gene transcriptional inactivation and plays an integral role in lung tumorigenesis. Recent studies demonstrated that promoter methylation was detected not only in lung tumors from patients with lung canc...

  5. Light-regulated and cell-specific methylation of the maize PEPC promoter

    PubMed Central

    Tolley, Ben J.; Woodfield, Helen; Wanchana, Samart; Bruskiewich, Richard; Hibberd, Julian M.

    2012-01-01

    The molecular mechanisms governing PEPC expression in maize remain to be fully defined. Differential methylation of a region in the PEPC promoter has been shown to correlate with transcript accumulation, however, to date, investigations into the role of DNA methylation in maize PEPC expression have relied on the use of methylation-sensitive restriction enzymes. Bisulphite sequencing was used here to provide a single-base resolution methylation map of the maize PEPC promoter. It is shown that four cytosine residues in the PEPC promoter are heavily methylated in maize root tissue. In leaves, de-methylation of these cytosines is dependent on illumination and is coincident with elevated PEPC expression. Furthermore, light-regulated de-methylation of these cytosines occurs only in mesophyll cells. No methylation was discovered in the 0.6 kb promoter required for mesophyll-specific expression indicating that cytosine methylation is not required to direct the cell-specificity of PEPC expression. This raises interesting questions regarding the function of the cell-specific cytosine de-methylation observed in the upstream region of the PEPC promoter. PMID:22143916

  6. Enhanced HSP70 lysine methylation promotes proliferation of cancer cells through activation of Aurora kinase B.

    PubMed

    Cho, Hyun-Soo; Shimazu, Tadahiro; Toyokawa, Gouji; Daigo, Yataro; Maehara, Yoshihiko; Hayami, Shinya; Ito, Akihiro; Masuda, Ken; Ikawa, Noriko; Field, Helen I; Tsuchiya, Eiju; Ohnuma, Shin-ichi; Ponder, Bruce A J; Yoshida, Minoru; Nakamura, Yusuke; Hamamoto, Ryuji

    2012-01-01

    Although heat-shock protein 70 (HSP70), an evolutionarily highly conserved molecular chaperone, is known to be post-translationally modified in various ways such as phosphorylation, ubiquitination and glycosylation, physiological significance of lysine methylation has never been elucidated. Here we identify dimethylation of HSP70 at Lys-561 by SETD1A. Enhanced HSP70 methylation was detected in various types of human cancer by immunohistochemical analysis, although the methylation was barely detectable in corresponding non-neoplastic tissues. Interestingly, methylated HSP70 predominantly localizes to the nucleus of cancer cells, whereas most of the HSP70 protein locates to the cytoplasm. Nuclear HSP70 directly interacts with Aurora kinase B (AURKB) in a methylation-dependent manner and promotes AURKB activity in vitro and in vivo. We also find that methylated HSP70 has a growth-promoting effect in cancer cells. Our findings demonstrate a crucial role of HSP70 methylation in human carcinogenesis. PMID:22990868

  7. The effects of dietary supplementation of methionine on genomic stability and p53 gene promoter methylation in rats.

    PubMed

    Amaral, Cátia Lira Do; Bueno, Rafaela de Barros E Lima; Burim, Regislaine Valéria; Queiroz, Regina Helena Costa; Bianchi, Maria de Lourdes Pires; Antunes, Lusânia Maria Greggi

    2011-05-18

    Methionine is a component of one-carbon metabolism and a precursor of S-adenosylmethionine (SAM), the methyl donor for DNA methylation. When methionine intake is high, an increase of S-adenosylmethionine (SAM) is expected. DNA methyltransferases convert SAM to S-adenosylhomocysteine (SAH). A high intracellular SAH concentration could inhibit the activity of DNA methyltransferases. Therefore, high methionine ingestion could induce DNA damage and change the methylation pattern of tumor suppressor genes. This study investigated the genotoxicity of a methionine-supplemented diet. It also investigated the diet's effects on glutathione levels, SAM and SAH concentrations and the gene methylation pattern of p53. Wistar rats received either a methionine-supplemented diet (2% methionine) or a control diet (0.3% methionine) for six weeks. The methionine-supplemented diet was neither genotoxic nor antigenotoxic to kidney cells, as assessed by the comet assay. However, the methionine-supplemented diet restored the renal glutathione depletion induced by doxorubicin. This fact may be explained by the transsulfuration pathway, which converts methionine to glutathione in the kidney. Methionine supplementation increased the renal concentration of SAH without changing the SAM/SAH ratio. This unchanged profile was also observed for DNA methylation at the promoter region of the p53 gene. Further studies are necessary to elucidate this diet's effects on genomic stability and DNA methylation.

  8. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome.

    PubMed

    Weber, Michael; Hellmann, Ines; Stadler, Michael B; Ramos, Liliana; Pääbo, Svante; Rebhan, Michael; Schübeler, Dirk

    2007-04-01

    To gain insight into the function of DNA methylation at cis-regulatory regions and its impact on gene expression, we measured methylation, RNA polymerase occupancy and histone modifications at 16,000 promoters in primary human somatic and germline cells. We find CpG-poor promoters hypermethylated in somatic cells, which does not preclude their activity. This methylation is present in male gametes and results in evolutionary loss of CpG dinucleotides, as measured by divergence between humans and primates. In contrast, strong CpG island promoters are mostly unmethylated, even when inactive. Weak CpG island promoters are distinct, as they are preferential targets for de novo methylation in somatic cells. Notably, most germline-specific genes are methylated in somatic cells, suggesting additional functional selection. These results show that promoter sequence and gene function are major predictors of promoter methylation states. Moreover, we observe that inactive unmethylated CpG island promoters show elevated levels of dimethylation of Lys4 of histone H3, suggesting that this chromatin mark may protect DNA from methylation. PMID:17334365

  9. Prognosis value of MGMT promoter methylation for patients with lung cancer: a meta-analysis.

    PubMed

    Chen, Chao; Hua, Haiqing; Han, Chenglong; Cheng, Yuan; Cheng, Yin; Wang, Zhen; Bao, Jutao

    2015-01-01

    The role of MGMT promoter methylation in lung cancer (LC) remains controversial. To clarify the association of MGMT promoter methylation with survival in LC, we performed a meta-analysis of the literature with meta-analysis. Trials were selected for further analysis if they provided an independent assessment of MGMT promoter methylation in LC and reported the survival data in the context of MGMT promoter methylation status. Subgroup analyses were conducted according to the study characteristic. A total of 9 trials, which comprised 859 patients, were included in the meta-analysis. The combined hazard ratio (HR) of 1.27 [95% CI 0.88-1.82; test for heterogeneity P = 0.027] suggests that MGMT promoter methylation has none impact on patient survival. In Stage I-III or younger populations, a significant association was found for MGMT promoter methylation in the prognosis of LC. In addition, the heterogeneity disappeared when the analysis was restricted to Stage I-III LC. Our analysis indicates that MGMT promoter methylation in stage I-III or younger patients was significantly correlated with wore survival. Further study is needed to determine these specific subgroups of LC patients.

  10. Prognosis value of MGMT promoter methylation for patients with lung cancer: a meta-analysis

    PubMed Central

    Chen, Chao; Hua, Haiqing; Han, Chenglong; Cheng, Yuan; Cheng, Yin; Wang, Zhen; Bao, Jutao

    2015-01-01

    The role of MGMT promoter methylation in lung cancer (LC) remains controversial. To clarify the association of MGMT promoter methylation with survival in LC, we performed a meta-analysis of the literature with meta-analysis. Trials were selected for further analysis if they provided an independent assessment of MGMT promoter methylation in LC and reported the survival data in the context of MGMT promoter methylation status. Subgroup analyses were conducted according to the study characteristic. A total of 9 trials, which comprised 859 patients, were included in the meta-analysis. The combined hazard ratio (HR) of 1.27 [95% CI 0.88-1.82; test for heterogeneity P = 0.027] suggests that MGMT promoter methylation has none impact on patient survival. In Stage I-III or younger populations, a significant association was found for MGMT promoter methylation in the prognosis of LC. In addition, the heterogeneity disappeared when the analysis was restricted to Stage I-III LC. Our analysis indicates that MGMT promoter methylation in stage I-III or younger patients was significantly correlated with wore survival. Further study is needed to determine these specific subgroups of LC patients. PMID:26617891

  11. Prognosis value of MGMT promoter methylation for patients with lung cancer: a meta-analysis.

    PubMed

    Chen, Chao; Hua, Haiqing; Han, Chenglong; Cheng, Yuan; Cheng, Yin; Wang, Zhen; Bao, Jutao

    2015-01-01

    The role of MGMT promoter methylation in lung cancer (LC) remains controversial. To clarify the association of MGMT promoter methylation with survival in LC, we performed a meta-analysis of the literature with meta-analysis. Trials were selected for further analysis if they provided an independent assessment of MGMT promoter methylation in LC and reported the survival data in the context of MGMT promoter methylation status. Subgroup analyses were conducted according to the study characteristic. A total of 9 trials, which comprised 859 patients, were included in the meta-analysis. The combined hazard ratio (HR) of 1.27 [95% CI 0.88-1.82; test for heterogeneity P = 0.027] suggests that MGMT promoter methylation has none impact on patient survival. In Stage I-III or younger populations, a significant association was found for MGMT promoter methylation in the prognosis of LC. In addition, the heterogeneity disappeared when the analysis was restricted to Stage I-III LC. Our analysis indicates that MGMT promoter methylation in stage I-III or younger patients was significantly correlated with wore survival. Further study is needed to determine these specific subgroups of LC patients. PMID:26617891

  12. DAPK1, MGMT and RARB promoter methylation as biomarkers for high-grade cervical lesions.

    PubMed

    Sun, Yin; Li, Shu; Shen, Keng; Ye, Shuang; Cao, Dongyan; Yang, Jiaxin

    2015-01-01

    Gene promoter methylation may be used a potential biomarker for detecting solid tumor including cervical cancer. Here, we used methylation sensitive-high resolution melting (MS-HRM) analysis to detecting promoter methylation ratios of DAPK1, MGMT and RARB gene in patients with different cervical disease grade. The detection of gene promoter methylation was conducted in two hundred fifty patients' samples including normal cytology (n=48), cervical intraepithelial neoplasia grade 1 (CIN1, n=54), cervical intraepithelial neoplasia grade 2 (CIN2, n=47), cervical intraepithelial neoplasia grade 3 (CIN3, n=56) and cervical squamous cell carcinomas (SCS, n=45). We found there were a significant positive correlation between the promoter methylation status of DAPK1 and cervical disease grade (P=0.022). In addition, the methylated promoters of DAPK1 combined with MGMT, MGMT combined with RARB, DAPK1 combined with RARB were positive correlated with cervical disease grade (P < 0.05). All three genes promoters methylated were positive correlated with cervical disease grade (P < 0.001). Receiver operating characteristic (ROC) curves was conducted to evaluate whether the three genes methylation could be used to be a potential marker for diagnosing high grade cervical disease (HSIL and SCC). The cutoff values for the methylation rates of all these genes were 0-5%. Regrettably, only the methylation of MGMT combined with DAPK1 gave 43.4% sensitivity and 68.6% specificity. The current results indicated that MS-HRM-based testing for DNA methylations of MGMT plus DAPK1 genes holds some promise for high grade cervical disease screening. PMID:26823825

  13. Aberrant Methylation of MGMT Promoter in HNSCC: A Meta-Analysis

    PubMed Central

    Cai, Fucheng; Xiao, Xiyue; Niu, Xun; Shi, Hao; Zhong, Yi

    2016-01-01

    Background O6-methylguanine-DNA methyl-transferase (MGMT) gene, a DNA repair gene, plays a critical role in the repair of alkylated DNA adducts that form following exposure to genotoxic agents. MGMT is generally expressed in various tumors, and its function is frequently lost because of hypermethylation in the promoter. The promoter methylation of MGMT has been extensively investigated in head and neck squamous cell carcinoma (HNSCC). However, the association between the promoter methylation of MGMT and HNSCC risk remains inconclusive and inconsistent. Therefore, we performed a meta-analysis to better clarify the association between the promoter methylation of MGMT and HNSCC risk. Methods A systematical search was conducted in PubMed, Web of Science, EMBASE, and Ovid for studies on the association between MGMT promoter methylation and HNSCC. Odds ratio (ORs) and 95% confidence intervals (CI) were calculated to estimate association between MGMT promoter methylation and risk of HNSCC. The meta-regression and subgroup analysis were undertaken to explore the potential sources of heterogeneity. Results Twenty studies with 1,030 cases and 775 controls were finally included in this study. The frequency of MGMT promoter methylation was 46.70% in HNSCC group and 23.23% in the control group. The frequency of MGMT promoter methylation in HNSCC group was significantly higher than the control group (OR = 2.83, 95%CI = 2.25–3.56). Conclusion This meta-analysis indicates that aberrant methylation of MGMT promoter was significantly associated with the risk of HNSCC, and it may be a potential molecular marker for monitoring the disease and may provide new insights to the treatment of HNSCC. PMID:27657735

  14. Relationships between MGMT promoter methylation and gastric cancer: a meta-analysis

    PubMed Central

    Yu, Dan; Cao, Tao; Han, Ya-Di; Huang, Fu-Sheng

    2016-01-01

    A DNA repair enzyme, O6-methylguanine-DNA methyltransferase (MGMT), plays an important role in the development of gastric cancers. However, the role of MGMT promoter methylation in the occurrence of gastric cancer and its relationships with clinicopathologic characteristics has not been fully clarified. Thus, we performed a meta-analysis to evaluate the associations between MGMT promoter methylation and gastric cancer. Electronic databases, including PubMed and Web of Science, were used to systematically search related clinical studies published in English until April 1, 2016. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated to evaluate the associations between MGMT promoter methylation and gastric cancer risk or clinicopathologic characteristics. A total of 16 studies including 1,935 patients and 1,948 control persons were included in the analysis. Our study suggested that MGMT promoter methylation frequency was associated with gastric cancer (OR=3.46, 95% CI: 2.13–5.61, P<0.001). Moreover, the frequency of MGMT promoter methylation in the no lymph node metastasis group was lower than that in lymph node metastasis group, with marginal significance (OR=0.65, 95% CI: 0.42–1.01, P=0.05). Additionally, the methylation rate of the MGMT promoter was much lower in patients without distant metastases than in those with metastases (OR=0.27, 95% CI: 0.18–0.40, P<0.001). No significant association of MGMT promoter methylation with Lauren classification, tumor location, tumor invasion, or Helicobacter pylori infection was found. In conclusion, the methylation status of the MGMT promoter was related to gastric cancer risk, distant metastasis, and lymph node metastasis, which indicates that MGMT promoter methylation may play an important role in gastric cancer development. PMID:27785051

  15. Microarray-based resonance light scattering assay for detecting DNA methylation and human DNA methyltransferase simultaneously with high sensitivity.

    PubMed

    Ma, Lan; Su, Min; Li, Tao; Wang, Zhenxin

    2014-07-21

    A microarray-based resonance light scattering assay, with the combination of methylation-sensitive endonuclease and gold nanoparticle (GNP) probes, has been proposed to sensitively distinguish the DNA methylation level as low as 0.01% (10 pM methylated DNA in 100 nM total DNA) and detect human DNA methyltransferase 1 (Dnmt1) down to 0.1 U mL(-1).

  16. Genome-wide Mapping Reveals Conservation of Promoter DNA Methylation Following Chicken Domestication

    PubMed Central

    Li, Qinghe; Wang, Yuanyuan; Hu, Xiaoxiang; Zhao, Yaofeng; Li, Ning

    2015-01-01

    It is well-known that environment influences DNA methylation, however, the extent of heritable DNA methylation variation following animal domestication remains largely unknown. Using meDIP-chip we mapped the promoter methylomes for 23,316 genes in muscle tissues of ancestral and domestic chickens. We systematically examined the variation of promoter DNA methylation in terms of different breeds, differentially expressed genes, SNPs and genes undergo genetic selection sweeps. While considerable changes in DNA sequence and gene expression programs were prevalent, we found that the inter-strain DNA methylation patterns were highly conserved in promoter region between the wild and domestic chicken breeds. Our data suggests a global preservation of DNA methylation between the wild and domestic chicken breeds in either a genome-wide or locus-specific scale in chick muscle tissues. PMID:25735894

  17. Genome-wide mapping reveals conservation of promoter DNA methylation following chicken domestication.

    PubMed

    Li, Qinghe; Wang, Yuanyuan; Hu, Xiaoxiang; Zhao, Yaofeng; Li, Ning

    2015-01-01

    It is well-known that environment influences DNA methylation, however, the extent of heritable DNA methylation variation following animal domestication remains largely unknown. Using meDIP-chip we mapped the promoter methylomes for 23,316 genes in muscle tissues of ancestral and domestic chickens. We systematically examined the variation of promoter DNA methylation in terms of different breeds, differentially expressed genes, SNPs and genes undergo genetic selection sweeps. While considerable changes in DNA sequence and gene expression programs were prevalent, we found that the inter-strain DNA methylation patterns were highly conserved in promoter region between the wild and domestic chicken breeds. Our data suggests a global preservation of DNA methylation between the wild and domestic chicken breeds in either a genome-wide or locus-specific scale in chick muscle tissues.

  18. Quantitative detection of TUSC3 promoter methylation -a potential biomarker for prognosis in lung cancer

    PubMed Central

    Duppel, Uta; Woenckhaus, Matthias; Schulz, Christian; Merk, Johannes; Dietmaier, Wolfgang

    2016-01-01

    Aberrant promoter methylation of tumor relevant genes frequently occurs in early steps of carcinogenesis and during tumor progression. Epigenetic alterations could be used as potential biomarkers for early detection and for prediction of prognosis and therapy response in lung cancer. The present study quantitatively analyzed the methylation status of known and potential gatekeeper and tumor suppressor genes [O-6-methylguanine-DNA methyltransferase (MGMT), Ras association domain family member 1A (RASSF1A), Ras protein activator like 1 (RASAL1), programmed cell death 4 (PDCD4), metastasis suppressor 1 (MTSS1) and tumor suppressor candidate 3 (TUSC3)] in 42 lung cancers and in corresponding non-malignant bronchus and lung tissue using bisulfite-conversion independent methylation-quantification of endonuclease-resistant DNA (MethyQESD). Methylation status was associated with clinical and pathological parameters. No methylation was found in the promoter regions of PDCD4 and MTSS1 of either compartment. MGMT, RASSF1A and RASAL1 showed sporadic (up to 26.2%) promoter methylation. The promoter of TUSC3, however, was frequently methylated in the tumor (59.5%), benign bronchus (67.9%) and alveolar lung (31.0%) tissues from each tumor patient. The methylation status of TUSC3 was significantly associated with smaller tumor size (P=0.008) and a longer overall survival (P=0.013). Pooled blood DNA of healthy individuals did not show any methylation of either gene. Therefore, methylation of TUSC3 shows prognostic and pathobiological relevance in lung cancer. Furthermore, quantitative detection of TUSC3 promoter methylation appears to be a promising tool for early detection and prediction of prognosis in lung cancer. However, additional studies are required to confirm this finding. PMID:27698890

  19. Quantitative detection of TUSC3 promoter methylation -a potential biomarker for prognosis in lung cancer

    PubMed Central

    Duppel, Uta; Woenckhaus, Matthias; Schulz, Christian; Merk, Johannes; Dietmaier, Wolfgang

    2016-01-01

    Aberrant promoter methylation of tumor relevant genes frequently occurs in early steps of carcinogenesis and during tumor progression. Epigenetic alterations could be used as potential biomarkers for early detection and for prediction of prognosis and therapy response in lung cancer. The present study quantitatively analyzed the methylation status of known and potential gatekeeper and tumor suppressor genes [O-6-methylguanine-DNA methyltransferase (MGMT), Ras association domain family member 1A (RASSF1A), Ras protein activator like 1 (RASAL1), programmed cell death 4 (PDCD4), metastasis suppressor 1 (MTSS1) and tumor suppressor candidate 3 (TUSC3)] in 42 lung cancers and in corresponding non-malignant bronchus and lung tissue using bisulfite-conversion independent methylation-quantification of endonuclease-resistant DNA (MethyQESD). Methylation status was associated with clinical and pathological parameters. No methylation was found in the promoter regions of PDCD4 and MTSS1 of either compartment. MGMT, RASSF1A and RASAL1 showed sporadic (up to 26.2%) promoter methylation. The promoter of TUSC3, however, was frequently methylated in the tumor (59.5%), benign bronchus (67.9%) and alveolar lung (31.0%) tissues from each tumor patient. The methylation status of TUSC3 was significantly associated with smaller tumor size (P=0.008) and a longer overall survival (P=0.013). Pooled blood DNA of healthy individuals did not show any methylation of either gene. Therefore, methylation of TUSC3 shows prognostic and pathobiological relevance in lung cancer. Furthermore, quantitative detection of TUSC3 promoter methylation appears to be a promising tool for early detection and prediction of prognosis in lung cancer. However, additional studies are required to confirm this finding.

  20. 5-Aza-CdR can reverse gefitinib resistance caused by DAPK gene promoter methylation in lung adenocarcinoma cells.

    PubMed

    Yang, Bo; Yang, Zhi-Guang; Gao, Bao; Shao, Guo-Guang; Li, Guang-Hu

    2015-01-01

    To explore the relationship between death associated protein kinase (DAPK) gene promoter methylation and gefitinib resistance in Lung adenocarcinoma cell lines. EGFR-mutation lung adenocarcinoma cell lines PC9 and the gefitinib-resistant with T790M Mutation cell lines PC9/GR were chosen as cell models, and PC9/GR were treated with 5-aza-CdR (1 μmol/L). The experiments were divided into three groups: PC9 group, PC9/GR group and PC9/GR with 5-Aza-CdR pretreatment group. Treat three groups cell with different concentrations gefitinib, the cell proliferation was determined by MTT assay. The apoptotic rates were detected by flow cytometry. The methylation of DAPK gene promoter region was examined by methylation-specific PCR (MSP). The expressions of DAPK protein were detected by Western blot. MTT results showed that the half maximal inhibitory concentration (IC50) of PC9 and PC9/GR cell lines increase from 0.12 μmol/L to 8.52 μmol/L. But after treated with 5-aza-CdR, the IC50 of PC9/GR cell lines decrease to 4.35 μmol/L, and the resistance index (RI) decrease from 71 to 36 (P<0.05). Flow cytometry results showed that the apoptosis rate were 24.80% ± 0.28%, 12.70% ± 0.31%, 19.8% ± 0.15% respectively. MSP results showed that DAPK gene promoter region was un-methylated in PC9 cells and methylated in PC9/GR cells, when treated with 5-aza-CdR, DAPK gene promoter region was partly methylated in PC9/GR cells (P<0.05). Western blot results showed that the levels of DAPK protein were reduced significantly in PC9/GR cell lines compared with PC9, and after treated with 5-aza-CdR, the expression levels of DAPK protein in PC9/GR were increased (P<0.05). In conclusion, DAPK gene promoter methylation may contribute to the downregulation of DAPK gene and protein, and consequently affect the sensitivity of gefitinib in lung adenocarcinoma lines, induced gefitinib resistance. But 5-Aza-CdR can reverse gefitinib resistance by demethylation of DAPK gene promoter.

  1. Differential methylation of the TRPA1 promoter in pain sensitivity.

    PubMed

    Bell, J T; Loomis, A K; Butcher, L M; Gao, F; Zhang, B; Hyde, C L; Sun, J; Wu, H; Ward, K; Harris, J; Scollen, S; Davies, M N; Schalkwyk, L C; Mill, J; Williams, F M K; Li, N; Deloukas, P; Beck, S; McMahon, S B; Wang, J; John, S L; Spector, T D

    2014-01-01

    Chronic pain is a global public health problem, but the underlying molecular mechanisms are not fully understood. Here we examine genome-wide DNA methylation, first in 50 identical twins discordant for heat pain sensitivity and then in 50 further unrelated individuals. Whole-blood DNA methylation was characterized at 5.2 million loci by MeDIP sequencing and assessed longitudinally to identify differentially methylated regions associated with high or low pain sensitivity (pain DMRs). Nine meta-analysis pain DMRs show robust evidence for association (false discovery rate 5%) with the strongest signal in the pain gene TRPA1 (P=1.2 × 10(-13)). Several pain DMRs show longitudinal stability consistent with susceptibility effects, have similar methylation levels in the brain and altered expression in the skin. Our approach identifies epigenetic changes in both novel and established candidate genes that provide molecular insights into pain and may generalize to other complex traits. PMID:24496475

  2. Differential methylation of the TRPA1 promoter in pain sensitivity.

    PubMed

    Bell, J T; Loomis, A K; Butcher, L M; Gao, F; Zhang, B; Hyde, C L; Sun, J; Wu, H; Ward, K; Harris, J; Scollen, S; Davies, M N; Schalkwyk, L C; Mill, J; Williams, F M K; Li, N; Deloukas, P; Beck, S; McMahon, S B; Wang, J; John, S L; Spector, T D

    2014-01-01

    Chronic pain is a global public health problem, but the underlying molecular mechanisms are not fully understood. Here we examine genome-wide DNA methylation, first in 50 identical twins discordant for heat pain sensitivity and then in 50 further unrelated individuals. Whole-blood DNA methylation was characterized at 5.2 million loci by MeDIP sequencing and assessed longitudinally to identify differentially methylated regions associated with high or low pain sensitivity (pain DMRs). Nine meta-analysis pain DMRs show robust evidence for association (false discovery rate 5%) with the strongest signal in the pain gene TRPA1 (P=1.2 × 10(-13)). Several pain DMRs show longitudinal stability consistent with susceptibility effects, have similar methylation levels in the brain and altered expression in the skin. Our approach identifies epigenetic changes in both novel and established candidate genes that provide molecular insights into pain and may generalize to other complex traits.

  3. Polymorphic tandem repeats within gene promoters act as modifiers of gene expression and DNA methylation in humans

    PubMed Central

    Quilez, Javier; Guilmatre, Audrey; Garg, Paras; Highnam, Gareth; Gymrek, Melissa; Erlich, Yaniv; Joshi, Ricky S.; Mittelman, David; Sharp, Andrew J.

    2016-01-01

    Despite representing an important source of genetic variation, tandem repeats (TRs) remain poorly studied due to technical difficulties. We hypothesized that TRs can operate as expression (eQTLs) and methylation (mQTLs) quantitative trait loci. To test this we analyzed the effect of variation at 4849 promoter-associated TRs, genotyped in 120 individuals, on neighboring gene expression and DNA methylation. Polymorphic promoter TRs were associated with increased variance in local gene expression and DNA methylation, suggesting functional consequences related to TR variation. We identified >100 TRs associated with expression/methylation levels of adjacent genes. These potential eQTL/mQTL TRs were enriched for overlaps with transcription factor binding and DNaseI hypersensitivity sites, providing a rationale for their effects. Moreover, we showed that most TR variants are poorly tagged by nearby single nucleotide polymorphisms (SNPs) markers, indicating that many functional TR variants are not effectively assayed by SNP-based approaches. Our study assigns biological significance to TR variations in the human genome, and suggests that a significant fraction of TR variations exert functional effects via alterations of local gene expression or epigenetics. We conclude that targeted studies that focus on genotyping TR variants are required to fully ascertain functional variation in the genome. PMID:27060133

  4. Polymorphic tandem repeats within gene promoters act as modifiers of gene expression and DNA methylation in humans.

    PubMed

    Quilez, Javier; Guilmatre, Audrey; Garg, Paras; Highnam, Gareth; Gymrek, Melissa; Erlich, Yaniv; Joshi, Ricky S; Mittelman, David; Sharp, Andrew J

    2016-05-01

    Despite representing an important source of genetic variation, tandem repeats (TRs) remain poorly studied due to technical difficulties. We hypothesized that TRs can operate as expression (eQTLs) and methylation (mQTLs) quantitative trait loci. To test this we analyzed the effect of variation at 4849 promoter-associated TRs, genotyped in 120 individuals, on neighboring gene expression and DNA methylation. Polymorphic promoter TRs were associated with increased variance in local gene expression and DNA methylation, suggesting functional consequences related to TR variation. We identified >100 TRs associated with expression/methylation levels of adjacent genes. These potential eQTL/mQTL TRs were enriched for overlaps with transcription factor binding and DNaseI hypersensitivity sites, providing a rationale for their effects. Moreover, we showed that most TR variants are poorly tagged by nearby single nucleotide polymorphisms (SNPs) markers, indicating that many functional TR variants are not effectively assayed by SNP-based approaches. Our study assigns biological significance to TR variations in the human genome, and suggests that a significant fraction of TR variations exert functional effects via alterations of local gene expression or epigenetics. We conclude that targeted studies that focus on genotyping TR variants are required to fully ascertain functional variation in the genome. PMID:27060133

  5. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder

    PubMed Central

    Na, Kyoung-Sae; Won, Eunsoo; Kang, June; Chang, Hun Soo; Yoon, Ho-Kyoung; Tae, Woo Suk; Kim, Yong-Ku; Lee, Min-Soo; Joe, Sook-Haeng; Kim, Hyun; Ham, Byung-Joo

    2016-01-01

    Recent studies have reported that methylation of the brain-derived neurotrophic factor (BDNF) gene promoter is associated with major depressive disorder (MDD). This study aimed to investigate the association between cortical thickness and methylation of BDNF promoters as well as serum BDNF levels in MDD. The participants consisted of 65 patients with recurrent MDD and 65 age- and gender-matched healthy controls. Methylation of BDNF promoters and cortical thickness were compared between the groups. The right medial orbitofrontal, right lingual, right lateral occipital, left lateral orbitofrontal, left pars triangularis, and left lingual cortices were thinner in patients with MDD than in healthy controls. Among the MDD group, right pericalcarine, right medical orbitofrontal, right rostral middle frontal, right postcentral, right inferior temporal, right cuneus, right precuneus, left frontal pole, left superior frontal, left superior temporal, left rostral middle frontal and left lingual cortices had inverse correlations with methylation of BDNF promoters. Higher levels of BDNF promoter methylation may be closely associated with the reduced cortical thickness among patients with MDD. Serum BDNF levels were significantly lower in MDD, and showed an inverse relationship with BDNF methylation only in healthy controls. Particularly the prefrontal and occipital cortices seem to indicate key regions in which BDNF methylation has a significant effect on structure. PMID:26876488

  6. Promoter Methylation and mRNA Expression of Response Gene to Complement 32 in Breast Carcinoma

    PubMed Central

    Eskandari-Nasab, Ebrahim; Hashemi, Mohammad; Rafighdoost, Firoozeh

    2016-01-01

    Background. Response gene to complement 32 (RGC32), induced by activation of complements, has been characterized as a cell cycle regulator; however, its role in carcinogenesis is still controversial. In the present study we compared RGC32 promoter methylation patterns and mRNA expression in breast cancerous tissues and adjacent normal tissues. Materials and Methods. Sixty-three breast cancer tissues and 63 adjacent nonneoplastic tissues were included in our study. Design. Nested methylation-specific polymerase chain reaction (Nested-MSP) and quantitative PCR (qPCR) were used to determine RGC32 promoter methylation status and its mRNA expression levels, respectively. Results. RGC32 methylation pattern was not different between breast cancerous tissue and adjacent nonneoplastic tissue (OR = 2.30, 95% CI = 0.95–5.54). However, qPCR analysis displayed higher levels of RGC32 mRNA in breast cancerous tissues than in noncancerous tissues (1.073 versus 0.959; P = 0.001), irrespective of the promoter methylation status. The expression levels and promoter methylation of RGC32 were not correlated with any of patients' clinical characteristics (P > 0.05). Conclusion. Our findings confirmed upregulation of RGC32 in breast cancerous tumors, but it was not associated with promoter methylation patterns. PMID:27118972

  7. Epigenetic features in the oyster Crassostrea gigas suggestive of functionally relevant promoter DNA methylation in invertebrates

    PubMed Central

    Rivière, Guillaume

    2014-01-01

    DNA methylation is evolutionarily conserved. Vertebrates exhibit high, widespread DNA methylation whereas invertebrate genomes are less methylated, predominantly within gene bodies. DNA methylation in invertebrates is associated with transcription level, alternative splicing, and genome evolution, but functional outcomes of DNA methylation remain poorly described in lophotrochozoans. Recent genome-wide approaches improve understanding in distant taxa such as molluscs, where the phylogenetic position, and life traits of Crassostrea gigas make this bivalve an ideal model to study the physiological and evolutionary implications of DNA methylation. We review the literature about DNA methylation in invertebrates and focus on DNA methylation features in the oyster. Indeed, though our MeDIP-seq results confirm predominant intragenic methylation, the profiles depend on the oyster's developmental and reproductive stage. We discuss the perspective that oyster DNA methylation could be biased toward the 5′-end of some genes, depending on physiological status, suggesting important functional outcomes of putative promoter methylation from cell differentiation during early development to sustained adaptation of the species to the environment. PMID:24778620

  8. Promoter methylation analysis on microdissected paraffin-embedded tissues using bisulfite treatment and PCR-SSCP.

    PubMed

    Bian, Y S; Yan, P; Osterheld, M C; Fontolliet, C; Benhattar, J

    2001-01-01

    Methylation-sensitive single-strand conformation analysis (MS-SSCA) is a new method of screening for DNA methylation changes. The combination of bisulfite modification and PCR results in the conversion of unmethylated cytosines to thymines, whereas methylated cytosines remain unchanged. This sequence conversion can lead to methylation-dependent alterations of single-strand conformation, which can be detected by SSCA. An analysis of mixtures of methylated and unmethylated DNA at known ratios revealed that the relative intensities of the corresponding bands following MS-SSCA were maintained. MS-SSCA was applied for methylation analysis of human p16 promoter region using genomic DNA obtained from either frozen, fixed, or microdissected fixed tissue sections. MS-SSCA is a rapid, specific, and semiquantitative approach that allows the detection of methylation of the p16 gene promoter. In reconstruction experiments, the method permits the detection of 10% or less of cells harboring a methylated p16 promoter. We have been successful in analyzing by MS-SSCA almost all (96%) tumor samples microdissected from archival paraffin-embedded fixed tissue sections and obtaining reproducible results. In addition, when microdissection was performed, the clonality of this genetic alteration could be identified.

  9. Global DNA Methylation Detection System Using MBD-Fused Luciferase Based on Bioluminescence Resonance Energy Transfer Assay.

    PubMed

    Yoshida, Wataru; Baba, Yuji; Karube, Isao

    2016-09-20

    DNA methylation plays an important role in the regulation of gene expression. In normal cells, transposable elements that constitute approximately 45% of the human genome are highly methylated to silence their expression. In cancer cells, transposable elements are hypomethylated; therefore, global DNA methylation level is considered as a biomarker for cancer diagnostics. In this study, a homogeneous assay for measuring global DNA methylation level based on bioluminescence resonance energy transfer (BRET) was developed using methyl-CpG binding domain (MBD)-fused luciferase. In this assay, the MBD-luciferase recognizes methylated CpG, thus, BRET between the luciferase and fluorescent DNA intercalating dye is detected. We demonstrated that the BRET signal depended on the DNA methylation level of the target DNA. Moreover, the BRET signal was correlated with the LINE1 DNA methylation level on human genomic DNA, as determined by the bisulfite method. These results indicate that the global DNA methylation level of human genomic DNA could be detected simply by measuring the BRET signal. PMID:27541340

  10. Methylation Status of Vitamin D Receptor Gene Promoter in Benign and Malignant Adrenal Tumors

    PubMed Central

    Pilon, Catia; Rebellato, Andrea; Urbanet, Riccardo; Guzzardo, Vincenza; Cappellesso, Rocco; Sasano, Hironobu; Fassina, Ambrogio

    2015-01-01

    We previously showed a decreased expression of vitamin D receptor (VDR) mRNA/protein in a small group of adrenocortical carcinoma (ACC) tissues, suggesting the loss of a protective role of VDR against malignant cell growth in this cancer type. Downregulation of VDR gene expression may result from epigenetics events, that is, methylation of cytosine nucleotide of CpG islands in VDR gene promoter. We analyzed methylation of CpG sites in the VDR gene promoter in normal adrenals and adrenocortical tumor samples. Methylation of CpG-rich 5′ regions was assessed by bisulfite sequencing PCR using bisulfite-treated DNA from archival microdissected paraffin-embedded adrenocortical tissues. Three normal adrenals and 23 various adrenocortical tumor samples (15 adenomas and 8 carcinomas) were studied. Methylation in the promoter region of VDR gene was found in 3/8 ACCs, while no VDR gene methylation was observed in normal adrenals and adrenocortical adenomas. VDR mRNA and protein levels were lower in ACCs than in benign tumors, and VDR immunostaining was weak or negative in ACCs, including all 3 methylated tissue samples. The association between VDR gene promoter methylation and reduced VDR gene expression is not a rare event in ACC, suggesting that VDR epigenetic inactivation may have a role in adrenocortical carcinogenesis. PMID:26843863

  11. Thiopurine methyl transferase activity: new extraction conditions for high-performance liquid chromatographic assay.

    PubMed

    Ganiere-Monteil, C; Pineau, A; Kergueris, M F; Azoulay, C; Bourin, M

    1999-04-30

    A new liquid-liquid extraction is described for thiopurine methyl transferase (TPMT, EC 2.1.1.67) activity determination: the use of a pH 9.5 NH4Cl buffer solution, before adding the solvent mixture, allows more rapid extraction, avoiding a centrifugation step, and reduces the global cost of analysis. After the extraction step, 6-methylmercaptopurine, synthesised during the enzymatic reaction, is determined by a liquid chromatographic assay. Analytical performance of the assay was tested on spiked erythrocyte lysates. The linear concentration range was 5-250 ng ml(-1) (r> or =0.997, slope=1.497, intercept=-0.367). The recoveries were 82.8, 89.9 and 82.2% for 75, 125 and 225 ng ml(-1), respectively. The coefficients of variation were < or =6.1% for within-day assay (n=6) and < or =9.5% for between-day assay precision (n=6; 14 days). TPMT activity was determined in a French adult Caucasian population (7 =70). The results ranged from 7.8 to 27.8 nmol h(-1) ml(-1) packed red blood cells and the frequency distribution histogram is similar to that previously published.

  12. De novo methylation, long-term promoter silencing, methylation patterns in the human genome, and consequences of foreign DNA insertion.

    PubMed

    Doerfler, W

    2006-01-01

    This chapter presents a personal account of the work on DNA methylation in viral and mammalian systems performed in the author's laboratory in the course of the past 30 years. The text does not attempt to give a complete and meticulous account of the work accomplished in many other laboratories; in that sense it is not a review of the field in a conventional sense. Since the author is also one of the editors of this series of Current Topics in Immunology and Microbiology on DNA methylation, to which contributions by many of our colleagues in this field have been invited, the author's conscience is alleviated that he has not cited many of the relevant and excellent reports by others. The choice of viral model systems in molecular biology is well founded. Over many decades, viruses have proved their invaluable and pioneering role as tools in molecular genetics. When our interest turned to the demonstration of genome-wide patterns of DNA methylation, we focused mainly on the human genome. The following topics in DNA methylation will be treated in detail: (1) The de novo methylation of integrated foreign genomes; (2) the long-term gene silencing effect of sequence-specific promoter methylation and its reversal; (3) the properties and specificity of patterns of DNA methylation in the human genome and their possible relations to pathogenesis; (4) the long-range global effects on cellular DNA methylation and transcriptional profiles as a consequence of foreign DNA insertion into an established genome; (5) the patterns of DNA methylation can be considered part of a cellular defense mechanism against foreign or repetitive DNA; which role has food-ingested DNA played in the elaboration of this mechanism? The interest in problems related to DNA methylation has spread-like the mechanism itself-into many neighboring fields. The nature of the transcriptional programs orchestrating embryonal and fetal development, chromatin structure, genetic imprinting, genetic disease, X

  13. Aberrant promoter methylation of multiple genes in sputum from individuals exposed to smoky coal emissions

    PubMed Central

    Liu, Yang; Lan, Qing; Shen, Min; Mumford, Judy; Keohavong, Phouthone

    2010-01-01

    Summary Aberrant methylation in the promoter region of cancer-related genes leads to gene transcriptional inactivation and plays an integral role in lung tumorigenesis. Recent studies demonstrated that promoter methylation was detected not only in lung tumors from patients with lung cancer but also in sputum of smokers without the disease, suggesting the potential for aberrant gene promoter methylation in sputum as a predictive marker for lung cancer. In the present study, we investigated promoter methylation of 4 genes frequently detected in lung tumors, including p16, MGMT, RASSF1A and DAPK genes, in sputum samples obtained from 107 individuals, including 34 never-smoking females and 73 mostly smoking males, who had no evidence of lung cancer but who were exposed to smoky coal emission in Xuan Wei County, China, where lung cancer rate is more than 6 times the Chinese national average rate. Forty nine of the individuals showed evidence of chronic bronchitis while the remaining 58 individuals showed no such a symptom. Promoter methylation of p16, MGMT, RASSF1A and DAPK was detected in 51.4% (55/107), 17.8% (19/107), 29.9% (32/107), and 15.9% (17/107) of the sputum samples from these individuals, respectively. There were no differences in promoter methylation frequencies of any of these genes according to smoking status or gender of the subjects or between individuals with chronic bronchitis and those without evidence of such a symptom. Therefore, individuals exposed to smoky coal emissions in this region harbored in their sputum frequent promoter methylation of these genes that have been previously found in lung tumors and implicated in lung cancer development. PMID:18751376

  14. Reporter Gene Silencing in Targeted Mouse Mutants Is Associated with Promoter CpG Island Methylation

    PubMed Central

    Kirov, Julia V.; Adkisson, Michael; Nava, A. J.; Cipollone, Andreana; Willis, Brandon; Engelhard, Eric K.; Lloyd, K. C. Kent; de Jong, Pieter; West, David B.

    2015-01-01

    Targeted mutations in mouse disrupt local chromatin structure and may lead to unanticipated local effects. We evaluated targeted gene promoter silencing in a group of six mutants carrying the tm1a Knockout Mouse Project allele containing both a LacZ reporter gene driven by the native promoter and a neo selection cassette. Messenger RNA levels of the reporter gene and targeted gene were assessed by qRT-PCR, and methylation of the promoter CpG islands and LacZ coding sequence were evaluated by sequencing of bisulfite-treated DNA. Mutants were stratified by LacZ staining into presumed Silenced and Expressed reporter genes. Silenced mutants had reduced relative quantities LacZ mRNA and greater CpG Island methylation compared with the Expressed mutant group. Within the silenced group, LacZ coding sequence methylation was significantly and positively correlated with CpG Island methylation, while promoter CpG methylation was only weakly correlated with LacZ gene mRNA. The results support the conclusion that there is promoter silencing in a subset of mutants carrying the tm1a allele. The features of targeted genes which promote local silencing when targeted remain unknown. PMID:26275310

  15. Potential clinical significance of ERβ ON promoter methylation in sporadic breast cancer.

    PubMed

    Božović, Ana; Markićević, Milan; Dimitrijević, Bogomir; Jovanović Ćupić, Snežana; Krajnović, Milena; Lukić, Silvana; Mandušić, Vesna

    2013-01-01

    The aim of the study was to assess how hypermethylation of the ON promoter of the estrogen receptor beta (ERβ) gene affects its expression (at the mRNA and protein level) and to correlate these with some clinical and histopathological parameters. A total of 131 samples of frozen breast cancer tissue was analyzed. A custom-designed, two-step PCR method was used to measure the methylation index of the ERβ gene ON promoter region. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was performed to quantify mRNA of the ERβ1 isoform, while ERβ1 protein was determined using the Western blot method. There was a significant difference in the methylation index of the ERβ gene ON promoter between the groups of patients with negative and positive axillary lymph node status (P = 0.03). In addition, the methylation index of the ON promoter was positively correlated with estrogen receptor alfa (ERα) protein levels (ρ = 0.31, P = 0.02). There was a significant difference in the methylation index of the ON promoter between the progesterone receptor (PR)-negative and PR-positive groups of patients (P = 0.01). ERβ1 protein levels were negatively correlated with ERα protein (ρ = -0.27, P < 0.01). The methylation index of the ON promoter could be a more reliable additional parameter for prediction and/or prognosis in breast cancer than ERβ1-mRNA and/or protein levels. PMID:23794253

  16. Demonstration of DSI-semen--A novel DNA methylation-based forensic semen identification assay.

    PubMed

    Wasserstrom, Adam; Frumkin, Dan; Davidson, Ariane; Shpitzen, Moshe; Herman, Yael; Gafny, Ron

    2013-01-01

    Determining whether the source tissue of biological material is semen is important in confirming sexual assaults, which account for a considerable percentage of crime cases. The gold standard for confirming the presence of semen is microscopic identification of sperm cells, however, this method is labor intensive and operator-dependent. Protein-based immunologic assays, such as PSA, are highly sensitive and relatively fast, but suffer from low specificity in some situations. In addition, proteins are less stable than DNA under most environmental insults. Recently, forensic tissue identification advanced with the development of several approaches based on mRNA and miRNA for identification of various body fluids. Herein is described DNA source identifier (DSI)-semen, a DNA-based assay that determines whether the source tissue of a sample is semen based on detection of semen-specific methylation patterns in five genomic loci. The assay is comprised of a simple single tube biochemical procedure, similar to DNA profiling, followed by automatic software analysis, yielding the identification (semen/non-semen) accompanied by a statistical confidence level. Three additional internal control loci are used to ascertain the reliability of the results. The assay, which aims to replace microscopic examination, can easily be integrated by forensic laboratories and is automatable. The kit was tested on 135 samples of semen, saliva, venous blood, menstrual blood, urine, and vaginal swabs and the identification of semen vs. non-semen was correct in all cases. In order to test the assay's applicability in "real-life" situations, 33 actual casework samples from the forensic biological lab of the Israeli police were analyzed, and the results were compared with microscopic examination performed by Israeli police personnel. There was complete concordance between both analyses except for one sample, in which the assay identified semen whereas no sperm was seen in the microscope. This

  17. Site-specific methylation of the rat prolactin and growth hormone promoters correlates with gene expression.

    PubMed Central

    Ngô, V; Gourdji, D; Laverrière, J N

    1996-01-01

    The methylation patterns of the rat prolactin (rPRL) (positions -440 to -20) and growth hormone (rGH) (positions -360 to -110) promoters were analyzed by bisulfite genomic sequencing. Two normal tissues, the anterior pituitary and the liver, and three rat pituitary GH3 cell lines that differ considerably in their abilities to express both genes were tested. High levels of rPRL gene expression were correlated with hypomethylation of the CpG dinucleotides located at positions -277 and -97, near or within positive cis-acting regulatory elements. For the nine CpG sites analyzed in the rGH promoter, an overall hypomethylation-expression coupling was also observed for the anterior pituitary, the liver, and two of the cell lines. The effect of DNA methylation was tested by measuring the transient expression of the chloramphenicol acetyltransferase reporter gene driven by a regionally methylated rPRL promoter. CpG methylation resulted in a decrease in the activity of the rPRL promoter which was proportional to the number of modified CpG sites. The extent of the inhibition was also found to be dependent on the position of methylated sites. Taken together, these data suggest that site-specific methylation may modulate the action of transcription factors that dictate the tissue-specific expression of the rPRL and rGH genes in vivo. PMID:8668139

  18. Reversible Regulation of Promoter and Enhancer Histone Landscape by DNA Methylation in Mouse Embryonic Stem Cells.

    PubMed

    King, Andrew D; Huang, Kevin; Rubbi, Liudmilla; Liu, Shuo; Wang, Cun-Yu; Wang, Yinsheng; Pellegrini, Matteo; Fan, Guoping

    2016-09-27

    DNA methylation is one of a number of modes of epigenetic gene regulation. Here, we profile the DNA methylome, transcriptome, and global occupancy of histone modifications (H3K4me1, H3K4me3, H3K27me3, and H3K27ac) in a series of mouse embryonic stem cells (mESCs) with varying DNA methylation levels to study the effects of DNA methylation on deposition of histone modifications. We find that genome-wide DNA demethylation alters occupancy of histone modifications at both promoters and enhancers. This is reversed upon remethylation by Dnmt expression. DNA methylation promotes H3K27me3 deposition at bivalent promoters, while opposing H3K27me3 at silent promoters. DNA methylation also reversibly regulates H3K27ac and H3K27me3 at previously identified tissue-specific enhancers. These effects require DNMT catalytic activity. Collectively, our data show that DNA methylation is essential and instructive for deposition of specific histone modifications across regulatory regions, which together influences gene expression patterns in mESCs. PMID:27681438

  19. Methylation of an intragenic alternative promoter regulates transcription of GARP.

    PubMed

    Haupt, Sonja; Söntgerath, Viktoria Sophie Apollonia; Leipe, Jan; Schulze-Koops, Hendrik; Skapenko, Alla

    2016-02-01

    Alternative promoter usage has been proposed as a mechanism regulating transcriptional and translational diversity in highly elaborated systems like the immune system in humans. Here, we report that transcription of human glycoprotein A repetitions predominant (GARP) in regulatory CD4 T cells (Tregs) is tightly regulated by two alternative promoters. An intragenic promoter contains several CpGs and acts as a weak promoter that is demethylated and initiates transcription Treg-specifically. The strong up-stream promoter containing a CpG-island is, in contrast, fully demethylated throughout tissues. Transcriptional activity of the strong promoter was surprisingly down-regulated upon demethylation of the weak promoter. This demethylation-induced transcriptional attenuation regulated the magnitude of GARP expression and correlated with disease activity in rheumatoid arthritis. Treg-specific GARP transcription was initiated by synergistic interaction of forkhead box protein 3 (Foxp3) with nuclear factor of activated T cells (NFAT) and was underpinned by permissive chromatin remodeling caused by release of the H3K4 demethylase, PLU-1. Our findings describe a novel function of alternative promoters in regulating the extent of transcription. Moreover, since GARP functions as a transporter of transforming growth factor β (TGFβ), a cytokine with broad pleiotropic traits, GARP transcriptional attenuation by alternative promoters might provide a mechanism regulating peripheral TGFβ to avoid unwanted harmful effects.

  20. Methylation of the Gpat2 promoter regulates transient expression during mouse spermatogenesis

    PubMed Central

    Garcia-Fabiani, Maria B.; Montanaro, Mauro A.; Lacunza, Ezequiel; Cattaneo, Elizabeth R.; Coleman, Rosalind A.; Pellon-Maison, Magali; Gonzalez-Baro, Maria R.

    2015-01-01

    Spermatogenesis is a highly regulated process that involves both mitotic and meiotic divisions, as well as cellular differentiation to yield mature spermatozoa from undifferentiated germinal stem cells. Although Gpat2 was originally annotated as encoding a glycerol-3-phosphate acyltransferase by sequence homology to Gpat1, GPAT2 is highly expressed in testis but not in lipogenic tissues and is not up-regulated during adipocyte differentiation. New data show that GPAT2 is required for the synthesis of piRNAs (piwi-interacting RNAs), a group of small RNAs that protect the germ cell genome from retrotransposable elements. In order to understand the relationship between GPAT2 and its role in the testis, we focused on Gpat2 expression during the first wave of mouse spermatogenesis. Gpat2 expression was analysed by qPCR (quantitative real-time PCR), in situ hybridization, immunohistochemistry and Western blotting. Gpat2 mRNA content and protein expression were maximal at 15 dpp (days post-partum) and were restricted to pachytene spermatocytes. To achieve this transient expression, both epigenetic mechanisms and trans-acting factors are involved. In vitro assays showed that Gpat2 expression correlates with DNA demethylation and histone acetylation and that it is up-regulated by retinoic acid. Epigenetic regulation by DNA methylation was confirmed in vivo in germ cells by bisulfite sequencing of the Gpat2 promoter. Consistent with the initiation of meiosis at 11 dpp, methylation decreased dramatically. Thus, Gpat2 is expressed at a specific stage of spermatogenesis, consistent with piRNA synthesis and meiosis I prophase, and its on–off expression pattern responds predominantly to epigenetic modifications. PMID:26268560

  1. Methylation of the Gpat2 promoter regulates transient expression during mouse spermatogenesis.

    PubMed

    Garcia-Fabiani, Maria B; Montanaro, Mauro A; Lacunza, Ezequiel; Cattaneo, Elizabeth R; Coleman, Rosalind A; Pellon-Maison, Magali; Gonzalez-Baro, Maria R

    2015-10-15

    Spermatogenesis is a highly regulated process that involves both mitotic and meiotic divisions, as well as cellular differentiation to yield mature spermatozoa from undifferentiated germinal stem cells. Although Gpat2 was originally annotated as encoding a glycerol-3-phosphate acyltransferase by sequence homology to Gpat1, GPAT2 is highly expressed in testis but not in lipogenic tissues and is not up-regulated during adipocyte differentiation. New data show that GPAT2 is required for the synthesis of piRNAs (piwi-interacting RNAs), a group of small RNAs that protect the germ cell genome from retrotransposable elements. In order to understand the relationship between GPAT2 and its role in the testis, we focused on Gpat2 expression during the first wave of mouse spermatogenesis. Gpat2 expression was analysed by qPCR (quantitative real-time PCR), in situ hybridization, immunohistochemistry and Western blotting. Gpat2 mRNA content and protein expression were maximal at 15 dpp (days post-partum) and were restricted to pachytene spermatocytes. To achieve this transient expression, both epigenetic mechanisms and trans-acting factors are involved. In vitro assays showed that Gpat2 expression correlates with DNA demethylation and histone acetylation and that it is up-regulated by retinoic acid. Epigenetic regulation by DNA methylation was confirmed in vivo in germ cells by bisulfite sequencing of the Gpat2 promoter. Consistent with the initiation of meiosis at 11 dpp, methylation decreased dramatically. Thus, Gpat2 is expressed at a specific stage of spermatogenesis, consistent with piRNA synthesis and meiosis I prophase, and its on-off expression pattern responds predominantly to epigenetic modifications. PMID:26268560

  2. The utility of quantitative methylation assays at imprinted genes for the diagnosis of fetal and placental disorders.

    PubMed

    Bourque, D K; Peñaherrera, M S; Yuen, R K C; Van Allen, M I; McFadden, D E; Robinson, W P

    2011-02-01

    An imbalance of imprinted gene expression within 11p15.5 is observed in Beckwith-Wiedemann syndrome (BWS), as well as in a variety of placental abnormalities including complete hydatidiform mole (CHM), placental mesenchymal dysplasia (PMD) and triploidy. To facilitate the diagnosis of epigenetic errors and chromosomal imbalance of 11p15.5, we validated a pyrosequencing assay to measure methylation at KvDMR1 using blood samples from 13 BWS cases, 8 of which showed reduced methylation as compared to control blood. An imbalance between maternal and paternal genomes as is found in triploidy, CHM or PMD was also associated with altered KvDMR1 methylation. A reciprocal pattern of methylation was obtained in the triploid cases by assaying the proximal 11p15.5 ICR associated with H19. To distinguish chromosome 11 specific alterations from whole genome imbalance, other imprinted differentially methylated regions (DMRs) can be utilized. Thus, pyrosequencing assays for DMRs associated with SGCE, SNRPN, and MEST were also compared for their utility in diagnosing parental imbalance in placental samples. While each of these assays could successfully distinguish parental origin of triploidy, SGCE showed the clearest separation between groups. The combined use of a chromosome 11p15.5 assay (e.g. KvDMR1 or H19-ICR) and non-chromosome 11 assay (e.g. SGCE) provides a potentially valuable diagnostic tool in the rapid screening of methylation errors in placental disorders. These results also show the maintenance of imprinting status at these loci in the human placenta, even in the presence of abnormal pathology.

  3. Effect of cigarette smoke condensate on gene promoter methylation in human lung cells

    PubMed Central

    2014-01-01

    Background In lung cancer, an association between tobacco smoking and promoter DNA hypermethylation has been demonstrated for several genes. However, underlying mechanisms for promoter hypermethylation in tobacco-induced cancer are yet to be fully established. Methods Promoter methylation was evaluated in control and cigarette smoke condensate (CSC) exposed human lung cells using the Methyl-Profiler DNA Methylation PCR System. PSAE cells were exposed to 0.3 or 1.0 μg/ml CSC for 72 hours and longer term for 14 and 30 days. NL-20 cells were exposed for 30 days to 10 or 100 μg/ml CSC. Results Promoters of several genes, including hsa-let-7a-3, CHD1, CXCL12, PAX5, RASSF2, and TCF21, were highly methylated (>90%); hsa-let-7a-3 was affected in both cell lines and under all exposure conditions. Level of methylation tended to increase with CSC concentration and exposure duration (statistical differences were not determined). Percentage methylation of TCF21, which was >98% at exposures of 10 or 100 μg/ml CSC, was found to be reduced to 28% and 42%, respectively, in the presence of the dietary agent genistein. Conclusions Using array techniques, several tumor suppressor genes in human lung cells were identified that undergo promoter hypermethylation, providing further evidence of their potential involvement in tobacco smoke-induced lung carcinogenesis and their use as potential biomarkers of harm in tobacco smoke exposure. Results from the study also demonstrated the potential of a dietary agent to exert chemopreventive activity in human tissue against tobacco smoke related diseases through modulation of DNA methylation. Additional studies are needed to confirm these findings. PMID:25214829

  4. A critical re-assessment of DNA repair gene promoter methylation in non-small cell lung carcinoma

    PubMed Central

    Do, Hongdo; Wong, Nicholas C.; Murone, Carmel; John, Thomas; Solomon, Benjamin; Mitchell, Paul L.; Dobrovic, Alexander

    2014-01-01

    DNA repair genes that have been inactivated by promoter methylation offer potential therapeutic targets either by targeting the specific repair deficiency, or by synthetic lethal approaches. This study evaluated promoter methylation status for eight selected DNA repair genes (ATM, BRCA1, ERCC1, MGMT, MLH1, NEIL1, RAD23B and XPC) in 56 non-small cell lung cancer (NSCLC) tumours and 11 lung cell lines using the methylation-sensitive high resolution melting (MS-HRM) methodology. Frequent methylation in NEIL1 (42%) and infrequent methylation in ERCC1 (2%) and RAD23B (2%) are reported for the first time in NSCLC. MGMT methylation was detected in 13% of the NSCLCs. Contrary to previous studies, methylation was not detected in ATM, BRCA1, MLH1 and XPC. Data from The Cancer Genome Atlas (TCGA) was consistent with these findings. The study emphasises the importance of using appropriate methodology for accurate assessment of promoter methylation. PMID:24569633

  5. Methylation of the ATM promoter in glioma cells alters ionizing radiation sensitivity

    SciTech Connect

    Roy, Kanaklata; Wang, Lilin; Makrigiorgos, G. Mike; Price, Brendan D. . E-mail: brendan_price@dfci.harvard.edu

    2006-06-09

    Glioblastomas are among the malignancies most resistant to radiation therapy. In contrast, cells lacking the ATM protein are highly sensitive to ionizing radiation. The relationship between ATM protein expression and radiosensitivity in 3 glioma cell lines was examined. T98G cells exhibited normal levels of ATM protein, whereas U118 and U87 cells had significantly lower levels of ATM and increased (>2-fold) sensitivity to ionizing radiation compared to T98G cells. The ATM promoter was methylated in U87 cells. Demethylation by azacytidine treatment increased ATM protein levels in the U87 cells and decreased their radiosensitivity. In contrast, the ATM promoter in U118 cells was not methylated. Further, expression of exogenous ATM did not significantly alter the radiosensitivity of U118 cells. ATM expression is therefore heterogeneous in the glioma cells examined. In conclusion, methylation of the ATM promoter may account for the variable radiosensitivity and heterogeneous ATM expression in a fraction of glioma cells.

  6. Promoter CpG methylation of multiple genes in pituitary adenomas: frequent involvement of caspase-8.

    PubMed

    Bello, M Josefa; De Campos, Jose M; Isla, Alberto; Casartelli, Cacilda; Rey, Juan A

    2006-02-01

    The epigenetic changes in pituitary adenomas were identified by evaluating the methylation status of nine genes (RB1, p14(ARF), p16(INK4a), p73, TIMP-3, MGMT, DAPK, THBS1 and caspase-8) in a series of 35 tumours using methylation-specific PCR analysis plus sequencing. The series included non-functional adenomas (n=23), prolactinomas (n=6), prolactinoma plus thyroid-stimulating hormone adenoma (n=1), growth hormone adenomas (n=4), and adrenocorticotropic adenoma (n=1). All of the tumours had methylation of at least one of these genes and 40% of samples (14 of 35) displayed concurrent methylation of at least three genes. The frequencies of aberrant methylation were: 20% for RB1, 17% for p14(ARF), 34% for p16(INK4a), 29% for p73, 11% for TIMP-3, 23% for MGMT, 6% for DAPK, 43% for THBS1 and 54% for caspase-8. No aberrant methylation was observed in two non-malignant pituitary samples from healthy controls. Although some differences in the frequency of gene methylation between functional and non-functional adenomas were detected, these differences did not reach statistical significance. Our results suggest that promoter methylation is a frequent event in pituitary adenoma tumourigenesis, a process in which inactivation of apoptosis-related genes (DAPK, caspase-8) might play a key role.

  7. Epigenetic Methylation of Parathyroid CaR and VDR Promoters in Experimental Secondary Hyperparathyroidism.

    PubMed

    Hofman-Bang, Jacob; Gravesen, Eva; Olgaard, Klaus; Lewin, Ewa

    2012-01-01

    Secondary hyperparathyroidism (s-HPT) in uremia is characterized by decreased expression in the parathyroids of calcium sensing (CaR) and vitamin D receptors (VDR). Parathyroid hormone (PTH) is normalized despite low levels of CaR and VDR after experimental reversal of uremia. The expression of CaR in parathyroid cultures decreases rapidly. Methylation of promoter regions is often detected during epigenetic downregulation of gene expression. Therefore, using an experimental rat model, we examined changes in methylation levels of parathyroid CaR and VDR promoters in vivo and in vitro. Methods. Uremia was induced by 5/6 nephrectomy. Melting temperature profiling of CaR and VDR PCR products after bisulfite treatment of genomic DNA from rat parathyroids was performed. Real-time PCR measured expression of PTH, CaR, VDR, and klotho genes in vitro. Results. Parathyroids from uremic rats had similar low levels of methylation in vivo and in vitro. In culture, a significant downregulation of CaR, VDR, and klotho within two hours of incubation was observed, while housekeeping genes remained stable for 24 hours. Conclusion. In uremic s-HPT and in vitro, no overall changes in methylation levels in the promoter regions of parathyroid CaR and VDR genes were found. Thus, epigenetic methylation of these promoters does not explain decreased parathyroid expression of CaR and VDR genes in uremic s-HPT.

  8. ABCB1 regulation through LRPPRC is influenced by the methylation status of the GC -100 box in its promoter

    PubMed Central

    Corrêa, Stephany; Binato, Renata; Du Rocher, Bárbara; Ferreira, Gerson; Cappelletti, Paola; Soares-Lima, Sheila; Pinto, Luis Felipe; Mencalha, André; Abdelhay, Eliana

    2014-01-01

    One of the potential mechanisms of imatinib mesylate (IM) resistance in chronic myeloid leukemia (CML) is increased level of P-glycoprotein (Pgp). Pgp is an efflux pump capable of activating the multidrug resistance (MDR) phenotype. The gene encoding Pgp (ABCB1) has several binding sites in its promoter region, along with CpG islands and GC boxes, involved in its epigenetic control. In previous work, we performed a proteomic study to identify proteins involved in IM cross-resistance in acute leukemia. Among these proteins, we identified LRPPRC as a potential regulator of ABCB1 transcription via an invMED1 binding site in ABCB1. Interestingly, this invMED1 binding site overlaps with the GC -100 box. In this work, we investigated the potential role of LRPPRC in the regulation of ABCB1 transcriptional activity in CML resistance. In addition, we evaluated the potential connection between this regulation and the methylation status of the ABCB1 promoter in its GC -100 box. Our results show that LRPPRC binds prominently to the ABCB1 promoter in Lucena cells, an IM-resistant cell line. Luciferase assays showed that ABCB1 transcription is positively regulated by LRPPRC upon its knockdown. Pyrosequencing analysis showed that the ABCB1 promoter is differentially methylated at its GC -100 box in K562 cells compared with Lucena cells, and in CML patients with different response to IM. Chromatin immunoprecipitation and Pgp expression after DNA demethylation treatment showed that LRPPRC binding is affected by the methylation status of ABCB1 GC -100 box. Taken together, our findings indicate that LRPPRC is a transcription factor related to ABCB1 expression and highlight the importance of epigenetic regulation in CML resistance. PMID:25089713

  9. ABCB1 regulation through LRPPRC is influenced by the methylation status of the GC -100 box in its promoter.

    PubMed

    Corrêa, Stephany; Binato, Renata; Du Rocher, Bárbara; Ferreira, Gerson; Cappelletti, Paola; Soares-Lima, Sheila; Pinto, Luis Felipe; Mencalha, André; Abdelhay, Eliana

    2014-08-01

    One of the potential mechanisms of imatinib mesylate (IM) resistance in chronic myeloid leukemia (CML) is increased level of P-glycoprotein (Pgp). Pgp is an efflux pump capable of activating the multidrug resistance (MDR) phenotype. The gene encoding Pgp (ABCB1) has several binding sites in its promoter region, along with CpG islands and GC boxes, involved in its epigenetic control. In previous work, we performed a proteomic study to identify proteins involved in IM cross-resistance in acute leukemia. Among these proteins, we identified LRPPRC as a potential regulator of ABCB1 transcription via an invMED1 binding site in ABCB1. Interestingly, this invMED1 binding site overlaps with the GC -100 box. In this work, we investigated the potential role of LRPPRC in the regulation of ABCB1 transcriptional activity in CML resistance. In addition, we evaluated the potential connection between this regulation and the methylation status of the ABCB1 promoter in its GC -100 box. Our results show that LRPPRC binds prominently to the ABCB1 promoter in Lucena cells, an IM-resistant cell line. Luciferase assays showed that ABCB1 transcription is positively regulated by LRPPRC upon its knockdown. Pyrosequencing analysis showed that the ABCB1 promoter is differentially methylated at its GC -100 box in K562 cells compared with Lucena cells, and in CML patients with different response to IM. Chromatin immunoprecipitation and Pgp expression after DNA demethylation treatment showed that LRPPRC binding is affected by the methylation status of ABCB1 GC -100 box. Taken together, our findings indicate that LRPPRC is a transcription factor related to ABCB1 expression and highlight the importance of epigenetic regulation in CML resistance.

  10. ABCB1 regulation through LRPPRC is influenced by the methylation status of the GC -100 box in its promoter.

    PubMed

    Corrêa, Stephany; Binato, Renata; Du Rocher, Bárbara; Ferreira, Gerson; Cappelletti, Paola; Soares-Lima, Sheila; Pinto, Luis Felipe; Mencalha, André; Abdelhay, Eliana

    2014-08-01

    One of the potential mechanisms of imatinib mesylate (IM) resistance in chronic myeloid leukemia (CML) is increased level of P-glycoprotein (Pgp). Pgp is an efflux pump capable of activating the multidrug resistance (MDR) phenotype. The gene encoding Pgp (ABCB1) has several binding sites in its promoter region, along with CpG islands and GC boxes, involved in its epigenetic control. In previous work, we performed a proteomic study to identify proteins involved in IM cross-resistance in acute leukemia. Among these proteins, we identified LRPPRC as a potential regulator of ABCB1 transcription via an invMED1 binding site in ABCB1. Interestingly, this invMED1 binding site overlaps with the GC -100 box. In this work, we investigated the potential role of LRPPRC in the regulation of ABCB1 transcriptional activity in CML resistance. In addition, we evaluated the potential connection between this regulation and the methylation status of the ABCB1 promoter in its GC -100 box. Our results show that LRPPRC binds prominently to the ABCB1 promoter in Lucena cells, an IM-resistant cell line. Luciferase assays showed that ABCB1 transcription is positively regulated by LRPPRC upon its knockdown. Pyrosequencing analysis showed that the ABCB1 promoter is differentially methylated at its GC -100 box in K562 cells compared with Lucena cells, and in CML patients with different response to IM. Chromatin immunoprecipitation and Pgp expression after DNA demethylation treatment showed that LRPPRC binding is affected by the methylation status of ABCB1 GC -100 box. Taken together, our findings indicate that LRPPRC is a transcription factor related to ABCB1 expression and highlight the importance of epigenetic regulation in CML resistance. PMID:25089713

  11. BDNF promoter methylation and genetic variation in late-life depression

    PubMed Central

    Januar, V; Ancelin, M-L; Ritchie, K; Saffery, R; Ryan, J

    2015-01-01

    The regulation of the brain-derived neurotrophic factor (BDNF) is important for depression pathophysiology and epigenetic regulation of the BDNF gene may be involved. This study investigated whether BDNF methylation is a marker of depression. One thousand and twenty-four participants were recruited as part of a longitudinal study of psychiatric disorders in general population elderly (age⩾65). Clinical levels of depression were assessed using the Mini International Neuropsychiatric Interview for the diagnosis of major depressive disorder according to the Diagnostic and Statistical Manual of Mental Disorder IV criteria, and the Centre for Epidemiologic Studies Depression Scale (CES-D) for assessment of moderate to severe depressive symptoms. Buccal DNA methylation at the two most widely studied BDNF promoters, I and IV, was investigated using the Sequenom MassARRAY platform that allows high-throughput investigation of methylation at individual CpG sites within defined genomic regions. In multivariate linear regression analyses adjusted for a range of participant characteristics including antidepressant use, depression at baseline, as well as chronic late-life depression over the 12-year follow-up, were associated with overall higher BDNF methylation levels, with two sites showing significant associations (promoter I, Δ mean=0.4%, P=0.0002; promoter IV, Δ mean=5.4%, P=0.021). Three single-nucleotide polymorphisms (rs6265, rs7103411 and rs908867) were also found to modify the association between depression and promoter I methylation. As one of the largest epigenetic studies of depression, and the first investigating BDNF methylation in buccal tissue, our findings highlight the potential for buccal BDNF methylation to be a biomarker of depression. PMID:26285129

  12. Epigenetic DNA methylation in the promoters of the Igf1 receptor and insulin receptor genes in db/db mice.

    PubMed

    Nikoshkov, Andrej; Sunkari, Vivekananda; Savu, Octavian; Forsberg, Elisabete; Catrina, Sergiu-Bogdan; Brismar, Kerstin

    2011-04-01

    We have investigated promoter methylation of the Insr, Igf1 and Igf1r genes in skeletal and cardiac muscles of normal and diabetic db/db mice. No differences in Insr promoter methylation were found in the heart and skeletal muscles and no methylation was detected in the Igf1 promoter in skeletal muscle. In skeletal muscle, db/db males exhibited a 7.4-fold increase in Igf1r promoter methylation, which was accompanied by a 1.8-fold decrease in Igf1r mRNA levels, compared with controls. More than 50% of the detected methylation events were concentrated within an 18 bp sequence that includes one of the Sp1 binding sites. We conclude that the methylation level and pattern of the Igf1r promoter in skeletal muscle is related to gender and the diabetic state. PMID:21474992

  13. Aquaporin 5 Expression in Mouse Mammary Gland Cells Is Not Driven by Promoter Methylation

    PubMed Central

    Römer, Winfried; Sonnleitner, Alois

    2015-01-01

    Several studies have revealed that aquaporins play a role in tumor progression and invasion. In breast carcinomas, high levels of aquaporin 5 (AQP5), a membrane protein involved in water transport, have been linked to increased cell proliferation and migration, thus facilitating tumor progression. Despite the potential role of AQP5 in mammary oncogenesis, the mechanisms controlling mammary AQP5 expression are poorly understood. In other tissues, AQP5 expression has been correlated with its promoter methylation, yet, very little is known about AQP5 promoter methylation in the mammary gland. In this work, we used the mouse mammary gland cell line EpH4, in which we controlled AQP5 expression via the steroid hormone dexamethasone (Dex) to further investigate mechanisms regulating AQP5 expression. In this system, we observed a rapid drop of AQP5 mRNA levels with a delay of several hours in AQP5 protein, suggesting transcriptional control of AQP5 levels. Yet, AQP5 expression was independent of its promoter methylation, or to the presence of negative glucocorticoid receptor elements (nGREs) in its imminent promoter region, but was rather influenced by the cell proliferative state or cell density. We conclude that AQP5 promoter methylation is not a universal mechanism for AQP5 regulation and varies on cell and tissue type. PMID:25767807

  14. c-Myc inhibits TP53INP1 expression via promoter methylation in esophageal carcinoma

    SciTech Connect

    Weng, Wenhao; Yang, Qinyuan; Huang, Miaolong; Qiao, Yongxia; Xie, Yuan; Yu, Yongchun; Jing, An; Li, Zhi

    2011-02-11

    Research highlights: {yields} TP53INP1 expression is down-regulated in esophageal carcinoma and is associated with CGI-131 methylation. {yields} Inhibition of CGI-131 methylation upregulates TP53INP1 expression in ESCC cell lines. {yields} Ectopic expression of TP53INP1 inhibits growth of ESCC cells by inducing apoptosis and inhibiting cell cycle progression. {yields} c-Myc binds to the promoter of TP53INP1 in vivo and vitro and recruits DNMT3A to TP53INP1 promoter for CGI-131 methylation. -- Abstract: Tumor protein p53-induced nuclear protein 1 (TP53INP1) is a well known stress-induced protein that plays a role in both cell cycle arrest and p53-mediated apoptosis. Loss of TP53INP1 expression has been reported in human melanoma, breast carcinoma, and gastric cancer. However, TP53INP1 expression and its regulatory mechanism in esophageal squamous cell carcinoma (ESCC) remain unclear. Our findings are in agreement with previous reports in that the expression of TP53INP1 was downregulated in 28% (10/36 cases) of ESCC lesions, and this was accompanied by significant promoter methylation. Overexpression of TP53INP1 induced G1 cell cycle arrest and increased apoptosis in ESCC cell lines (EC-1, EC-109, EC-9706). Furthermore, our study showed that the oncoprotein c-Myc bound to the core promoter of TP53INP1 and recruited DNA methyltransferase 3A to methylate the local promoter region, leading to the inhibition of TP53INP1 expression. Our findings revealed that TP53INP1 is a tumor suppressor in ESCC and that c-Myc-mediated DNA methylation-associated silencing of TP53INP1 contributed to the pathogenesis of human ESCC.

  15. Promoter methylation and age-related downregulation of Klotho in rhesus monkey.

    PubMed

    King, Gwendalyn D; Rosene, Douglas L; Abraham, Carmela R

    2012-12-01

    While overall DNA methylation decreases with age, CpG-rich areas of the genome can become hypermethylated. Hypermethylation near transcription start sites typically decreases gene expression. Klotho (KL) is important in numerous age-associated pathways including insulin/IGF1 and Wnt signaling and naturally decreases with age in brain, heart, and liver across species. Brain tissues from young and old rhesus monkeys were used to determine whether epigenetic modification of the KL promoter underlies age-related decreases in mRNA and protein levels of KL. The KL promoter in genomic DNA from brain white matter did not show evidence of oxidation in vivo but did exhibit an increase in methylation with age. Further analysis identified individual CpG motifs across the region of interest with increased methylation in old animals. In vitro methyl modification of these individual cytosine residues confirmed that methylation of the promoter can decrease gene transcription. These results provide evidence that changes in KL gene expression with age may, at least in part, be the result of epigenetic changes to the 5' regulatory region. PMID:21922250

  16. Promoter methylation and downregulated expression of the TBX15 gene in ovarian carcinoma

    PubMed Central

    Gozzi, Gaia; Chelbi, Sonia T.; Manni, Paola; Alberti, Loredana; Fonda, Sergio; Saponaro, Sara; Fabbiani, Luca; Rivasi, Francesco; Benhattar, Jean; Losi, Lorena

    2016-01-01

    TBX15 is a gene involved in the development of mesodermal derivatives. As the ovaries and the female reproductive system are of mesodermal origin, the aim of the present study was to determine the methylation status of the TBX15 gene promoter and the expression levels of TBX15 in ovarian carcinoma, which is the most lethal and aggressive type of gynecological tumor, in order to determine the role of TBX15 in the pathogenesis of ovarian carcinoma. This alteration could be used to predict tumor development, progression, recurrence and therapeutic effects. The study was conducted on 80 epithelial ovarian carcinoma and 17 control cases (normal ovarian and tubal tissues). TBX15 promoter methylation was first determined by pyrosequencing following bisulfite modification, then by cloning and sequencing, in order to obtain information about the epigenetic haplotype. Immunohistochemical analysis was performed to evaluate the correlation between the methylation and protein expression levels. Data revealed a statistically significant increase of the TBX15 promoter region methylation in 82% of the tumor samples and in various histological subtypes. Immunohistochemistry showed an inverse correlation between methylation levels and the expression of the TBX15 protein. Furthermore, numerous tumor samples displayed varying degrees of intratumor heterogeneity. Thus, the present study determined that ovarian carcinoma typically expresses low levels of TBX15 protein, predominantly due to an epigenetic mechanism. This may have a role in the pathogenesis of ovarian carcinoma independent of the histological subtype.

  17. Promoter methylation and downregulated expression of the TBX15 gene in ovarian carcinoma

    PubMed Central

    Gozzi, Gaia; Chelbi, Sonia T.; Manni, Paola; Alberti, Loredana; Fonda, Sergio; Saponaro, Sara; Fabbiani, Luca; Rivasi, Francesco; Benhattar, Jean; Losi, Lorena

    2016-01-01

    TBX15 is a gene involved in the development of mesodermal derivatives. As the ovaries and the female reproductive system are of mesodermal origin, the aim of the present study was to determine the methylation status of the TBX15 gene promoter and the expression levels of TBX15 in ovarian carcinoma, which is the most lethal and aggressive type of gynecological tumor, in order to determine the role of TBX15 in the pathogenesis of ovarian carcinoma. This alteration could be used to predict tumor development, progression, recurrence and therapeutic effects. The study was conducted on 80 epithelial ovarian carcinoma and 17 control cases (normal ovarian and tubal tissues). TBX15 promoter methylation was first determined by pyrosequencing following bisulfite modification, then by cloning and sequencing, in order to obtain information about the epigenetic haplotype. Immunohistochemical analysis was performed to evaluate the correlation between the methylation and protein expression levels. Data revealed a statistically significant increase of the TBX15 promoter region methylation in 82% of the tumor samples and in various histological subtypes. Immunohistochemistry showed an inverse correlation between methylation levels and the expression of the TBX15 protein. Furthermore, numerous tumor samples displayed varying degrees of intratumor heterogeneity. Thus, the present study determined that ovarian carcinoma typically expresses low levels of TBX15 protein, predominantly due to an epigenetic mechanism. This may have a role in the pathogenesis of ovarian carcinoma independent of the histological subtype. PMID:27698863

  18. Fibrillarin methylates H2A in RNA polymerase I trans-active promoters in Brassica oleracea

    PubMed Central

    Loza-Muller, Lloyd; Rodríguez-Corona, Ulises; Sobol, Margarita; Rodríguez-Zapata, Luis C.; Hozak, Pavel; Castano, Enrique

    2015-01-01

    Fibrillarin is a well conserved methyltransferase involved in several if not all of the more than 100 methylations sites in rRNA which are essential for proper ribosome function. It is mainly localized in the nucleoli and Cajal bodies inside the cell nucleus where it exerts most of its functions. In plants, fibrillarin binds directly the guide RNA together with Nop56, Nop58, and 15.5ka proteins to form a snoRNP complex that selects the sites to be methylated in pre-processing of ribosomal RNA. Recently, the yeast counterpart NOP1 was found to methylate histone H2A in the nucleolar regions. Here we show that plant fibrillarin can also methylate histone H2A. In Brassica floral meristem cells the methylated histone H2A is mainly localized in the nucleolus but unlike yeast or human cells it also localize in the periphery of the nucleus. In specialized transport cells the pattern is altered and it exhibits a more diffuse staining in the nucleus for methylated histone H2A as well as for fibrillarin. Here we also show that plant fibrillarin is capable of interacting with H2A and carry out its methylation in the rDNA promoter. PMID:26594224

  19. Classification of Colon Cancer Patients Based on the Methylation Patterns of Promoters

    PubMed Central

    Choi, Wonyoung; Lee, Jungwoo; Lee, Jin-Young; Lee, Sun-Min; Kim, Da-Won

    2016-01-01

    Diverse somatic mutations have been reported to serve as cancer drivers. Recently, it has also been reported that epigenetic regulation is closely related to cancer development. However, the effect of epigenetic changes on cancer is still elusive. In this study, we analyzed DNA methylation data on colon cancer taken from The Caner Genome Atlas. We found that several promoters were significantly hypermethylated in colon cancer patients. Through clustering analysis of differentially methylated DNA regions, we were able to define subgroups of patients and observed clinical features associated with each subgroup. In addition, we analyzed the functional ontology of aberrantly methylated genes and identified the G-protein-coupled receptor signaling pathway as one of the major pathways affected epigenetically. In conclusion, our analysis shows the possibility of characterizing the clinical features of colon cancer subgroups based on DNA methylation patterns and provides lists of important genes and pathways possibly involved in colon cancer development. PMID:27445647

  20. S-Adenosylmethionine suppresses the expression of Smad3/4 in activated human hepatic stellate cells via Rac1 promoter methylation

    PubMed Central

    BIAN, KANGQI; ZHANG, FENG; WANG, TINGTING; ZOU, XIAOPING; DUAN, XUHONG; CHEN, GUANGXIA; ZHUGE, YUZHENG

    2016-01-01

    The aim of the present study was to investigate whether S-adenosylmethionine (SAM) was able to suppress activated human hepatic stellate cells (HSCs). Human LX-2 HSCs were cultured with SAM or NSC23766, and were transfected with plasmids encoding ras-related C3 botulinum toxin substrate 1 (Rac1) protein or an empty expression vector. Cell proliferation was detected by Cell Counting Kit-8. Cell migration and invasion were determined using the Transwell assay. The expression levels of Rac1 and Smad3/4 were detected by reverse transcription-quantitative polymerase chain reaction (PCR) or western blotting. The methylation status of Rac1 promoters was measured by methylation-specific PCR. The results demonstrated that SAM and NSC23766 suppressed the expression of Smad3/4 in LX-2 cells. The overexpression of Rac1 enhanced the proliferation, migration and invasion of LX-2 cells. In addition, compared with the control groups, a marked increase was observed in the protein expression levels of Smad3/4 in the LX-2 cells transfected with Rac1 plasmids. The methylation-specific PCR findings showed that SAM increased the methylation of Rac1 promoters. The results of the present study suggested that Rac1 enhanced the expression of Smad3/4 in activated HSCs; however, this increase may be suppressed by SAM-induced methylation of Rac1 promoters. PMID:26986629

  1. Polyisoprenylated methylated protein methyl esterase overexpression and hyperactivity promotes lung cancer progression

    PubMed Central

    Amissah, Felix; Duverna, Randolph; Aguilar, Byron J; Poku, Rosemary A; Kiros, Gebre-Egziabher; Lamango, Nazarius S

    2014-01-01

    The involvement of hyperactive polyisoprenylated proteins in cancers has stimulated the search for drugs to target and suppress their excessive activities. Polyisoprenylated methylated protein methyl esterase (PMPMEase) inhibition has been shown to modulate polyisoprenylated protein function. For PMPMEase inhibition to be effective against cancers, polyisoprenylated proteins, the signaling pathways they mediate and/or PMPMEase must be overexpressed, hyperactive and be involved in at least some cases of cancer. PMPMEase activity in lung cancer cells and its expression in lung cancer cells and cancer tissues were investigated. PMPMEase was found to be overexpressed and significantly more active in lung cancer A549 and H460 cells than in normal lung fibroblasts. In a tissue microarray study, PMPMEase immunoreactivity was found to be significantly higher in lung cancer tissues compared to the normal controls (p < 0.0001). The mean scores ± SEM were 118.8 ± 7.7 (normal), 232.1 ± 25.1 (small-cell lung carcinomas), 352.1 ± 9.4 (squamous cell carcinomas), 311.7 ± 9.8 (adenocarcinomas), 350.0 ± 24.2 (papillary adenocarcinomas), 334.7 ± 30.1 (adenosquamous carcinomas), 321.9 ± 39.7 (bronchioloalveolar carcinomas), and 331.3 ± 85.0 (large-cell carcinomas). Treatment of lung cancer cells with L-28, a specific PMPMEase inhibitor, resulted in concentration-dependent cell death (EC50 of 8.5 μM for A549 and 2.8 μM for H460 cells). PMPMEase inhibition disrupted actin filament assembly, significantly inhibited cell migration and altered the transcription of cancer-related genes. These results indicate that elevated PMPMEase activity spur cell growth and migration, implying the possible use of PMPMEase as a protein biomarker and drug target for lung cancer. PMID:24660102

  2. Use of RNA polymerase molecular beacon assay to measure RNA polymerase interactions with model promoter fragments.

    PubMed

    Mekler, Vladimir; Severinov, Konstantin

    2015-01-01

    RNA polymerase-promoter interactions that keep the transcription initiation complex together are complex and multipartite, and formation of the RNA polymerase-promoter complex proceeds through multiple intermediates. Short promoter fragments can be used as a tool to dissect RNA polymerase-promoter interactions and to pinpoint elements responsible for specific properties of the entire promoter complex. A recently developed fluorometric molecular beacon assay allows one to monitor the enzyme interactions with various DNA probes and quantitatively characterize partial RNA polymerase-promoter interactions. Here, we present detailed protocols for the preparation of an Escherichia coli molecular beacon and its application to study RNA polymerase interactions with model promoter fragments.

  3. Promoter Methylation of Glucocorticoid Receptor Gene Is Associated with Subclinical Atherosclerosis: a Monozygotic Twin Study

    PubMed Central

    Zhao, Jinying; An, Qiang; Goldberg, Jack; Quyyumi, Arshed A.; Vaccarino, Viola

    2015-01-01

    Objective Endothelial dysfunction assessed by brachial artery flow-mediated dilation (FMD) is a marker of early atherosclerosis. Glucocorticoid receptor gene (NR3C1) regulates many biological processes, including stress response, behavioral, cardiometabolic and immunologic functions. Genetic variants in NR3C1 have been associated with atherosclerosis and related risk factors. This study investigated the association of NR3C1 promoter methylation with FMD, independent of genetic and family-level environmental factors. Methods We studied 84 middle-aged, male-male monozygotic twin pairs recruited from the Vietnam Era Twin Registry. Brachial artery FMD was measured by ultrasound. DNA methylation levels at 22 CpG residues in the NR3C1 exon 1F promoter region were quantified by bisulfite pyrosequencing in genomic DNA isolated from peripheral blood leukocytes. Co-twin control analyses were conducted to examine the association of methylation variation with FMD, adjusting for smoking, physical activity, body mass index, lipids, blood pressure, fasting glucose, and depressive symptoms. Multiple testing was corrected using the false discovery rate. Results Mean methylation level across the 22 studied CpG sites was 2.02%. Methylation alterations at 12 out of the 22 CpG residues were significantly associated with FMD. On average, a 1% increase in the intra-pair difference in mean DNA methylation was associated with 2.83% increase in the intra-pair difference in FMD (95% CI: 1.46-4.20; P <0.0001) after adjusting for risk factors and multiple testing. Conclusion Methylation variation in NR3C1 exon 1F promoter significantly influences subclinical atherosclerosis, independent of genetic, early family environmental and other risk factors. PMID:26186654

  4. MGMT promoter methylation and correlation with protein expression in primary central nervous system lymphoma.

    PubMed

    Toffolatti, L; Scquizzato, E; Cavallin, S; Canal, F; Scarpa, M; Stefani, P M; Gherlinzoni, F; Dei Tos, A P

    2014-11-01

    The O (6)-methylguanine-DNA-methyltransferase (MGMT) gene encodes for a DNA repairing enzyme of which silencing by promoter methylation is involved in brain tumorigenesis. MGMT promoter methylation represents a favorable prognostic factor and has been associated with a better response to alkylating agents in glioma and systemic lymphoma. Primary central nervous system lymphoma (PCNSL) is a rare and aggressive extranodal malignant lymphoma. The current standard of care, based on high-dose methotrexate chemotherapy, has improved prognosis but outcome remains poor for a majority of patients. Therapeutic progress in this field is conditioned by limited biological and molecular knowledge about the disease. Temozolomide has recently emerged as an alternative option for PCNSL treatment. We aimed to analyze the MGMT gene methylation status in a series of 24 PCNSLs, to investigate the relationship between methylation status of the gene and immunohistochemical expression of MGMT protein and to evaluate the possible prognostic significance of these biomarkers. Our results confirm that methylation of the MGMT gene and loss of MGMT protein are frequent events in these lymphomas (54 % of our cases) and suggest that they are gender and age related. MGMT methylation showed high correlation with loss of protein expression (concordance correlation coefficient = -0.49; Fisher exact test: p < 0.01), different from what has been observed in other brain tumors. In the subgroup of ten patients who received high dose chemotherapy, the presence of methylated MGMT promoter (n = 4), seems to be associated with a prolonged overall survival (>60 months in three of four patients). The prognostic significance of these molecular markers in PCNSL needs to be further studied in groups of patients treated in a homogeneous way.

  5. Interleukin-6 promotes tumorigenesis by altering DNA methylation in oral cancer cells.

    PubMed

    Gasche, Jacqueline A; Hoffmann, Jürgen; Boland, C Richard; Goel, Ajay

    2011-09-01

    Worldwide oral squamous cell carcinoma (OSCC) accounts for more than 100,000 deaths each year. Chronic inflammation constitutes one of the key risk factors for OSCC. Accumulating evidence suggests that aberrant DNA methylation may contribute to OSCC tumorigenesis. This study investigated whether chronic inflammation alters DNA methylation and expression of cancer-associated genes in OSCC. We established an in vitro model of interleukin (IL)-6 mediating chronic inflammation in OSCC cell lines. Thereafter, we measured the ability of IL-6 to induce global hypomethylation of long interspersed nuclear element-1 (LINE-1) sequences, as well as CpG methylation changes using multiple methodologies including quantitative pyrosequencing, methylation-specific multiplex ligation-dependent probe amplification and sensitive melting analysis after real-time-methylation-specific polymerase chain reaction (PCR). Gene expression was investigated by quantitative reverse transcriptase-PCR. IL-6 induced significant global LINE-1 hypomethylation (p=0.016) in our in vitro model of inflammatory stress in OSCC cell lines. Simultaneously, IL-6 induced CpG promoter methylation changes in several important putative tumor suppressor genes including CHFR, GATA5 and PAX6. Methylation changes correlated inversely with the changes in the expression of corresponding genes. Our results indicate that IL-6-induced inflammation promotes tumorigenesis in the oral cavity by altering global LINE-1 hypomethylation. In addition, concurrent hypermethylation of multiple tumor suppressor genes by IL-6 suggests that epigenetic gene silencing may be an important consequence of chronic inflammation in the oral cavity. These findings have clinical relevance, as both methylation and inflammation are suitable targets for developing novel preventive and therapeutic measures.

  6. N-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture.

    PubMed

    Balázs, R; Jørgensen, O S; Hack, N

    1988-11-01

    Our previous studies on the survival-promoting influence of elevated concentrations of extracellular K+ ([K+]e) on cultured cerebellar granule cells led to the proposal that depolarization in vitro mimics the effect of the earliest afferent inputs received by the granule cells in vivo. This, in turn, might be mediated through the stimulation of excitatory amino acid receptors, in particular the N-methyl-D-aspartate-preferring subtype gating ion channels which are also permeable to Ca2+. Here we report that N-methyl-D-aspartate indeed has a dramatic effect on the survival in culture of cells derived from dissociated cerebella of 7-8-day-old rats and cultured in media containing 'low' [K+]e (5-15 mM). In addition to the visual inspection of the cultures, the effect of N-methyl-D-aspartate was quantitatively evaluated, using estimates related to the number of viable cells (determination of DNA and of reduction rate of a tetrazolium salt). Furthermore, proteins which are relatively enriched in either nerve cells (neuronal cell adhesion molecule, D3-protein and synaptin) or in glia (glutamine synthetase) were also measured. The findings showed that the rescue of cells by N-methyl-D-aspartate involved primarily nerve cells and that the survival requirement for N-methyl-D-aspartate, as for high K+, developed between 2 and 4 days in vitro. The effect depended on both the concentration of N-methyl-D-aspartate and the degree of depolarization of the cells: both the potency and the efficacy of N-methyl-D-aspartate were increased as [K+]e was raised from 5 to 15 mM, at which range K+ on its own has little if any influence on granule cell survival. These characteristics are consistent with the voltage-dependence of ion conductance through the N-methyl-D-aspartate receptor-linked channel. The most pronounced effect of N-methyl-D-aspartate was obtained in the presence of 15 mM K+, when cell survival approached that obtained in 'control' cultures (grown in 25 mM K

  7. Age-associated methylation change of TAP1 promoter in piglet.

    PubMed

    Dong, Wenhua; Yin, Xuemei; Sun, Li; Wang, Jing; Sun, Shouyong; Zhu, Guoqiang; Wu, Shenglong; Bao, Wenbin

    2015-11-15

    Diarrhea and edematous disease are two major causes of mortality in postweaning piglets. These conditions lead to huge economic losses in the swine industry. Escherichia coli F18 is the primary causative agent of these two diseases. Transported associated with antigen processing (TAP) plays an important role in the immune response and the TAP1 gene could be an effective anti-E. coli F18 molecular marker in pigs. The aim of this study was to determine the correlation between TAP1 gene promoter CpG island methylation status and mRNA expression in piglets. In this study, bisulfite sequencing PCR (BSP) was used to detect the methylation status of the TAP1 gene promoter CpG islands and fluorescence quantitative PCR was used to detect TAP1 expression in the jejunum of Sutai piglets from birth to weaning age. The fragment of the TAP1 gene promoter region under investigation has no mutation, has 13 putative transcription factor binding sites containing 19 CpG sites, and may be important for regulation of gene expression. With increasing age, the overall methylation levels decreased, while the TAP1 expression levels increased, indicating a negative correlation between TAP1 expression and promoter methylation levels. Variance analysis showed significant differences in the methylation status of CpG_4, CpG_13 and CpG_15 among the different age groups (P<0.05). Our data indicate that TAP1 expression is increased by demethylation of promoter CpG islands, with CpG_4, CpG_13 and CpG_15 implicated as the critical regulatory sites. PMID:26169022

  8. RUNX3 promoter methylation correlation with pathogenesis of hepatocellular carcinoma in Asians.

    PubMed

    Lu, W; Liu, Y; Liu, L-L; Zhuang, P-H

    2016-01-01

    The aim of this study was to elucidate the role of RUNX3 promoter methylation in the pathogenesis of hepatocellular carcinoma (HCC) among Asians. For this purpose, we performed a comprehensive search of Chinese and English language scientific literature databases using stringent selection criteria; ultimately, we identified relevant studies that specifically assessed the correlation between RUNX3 promoter methylation and HCC. All data was retrieved and analyzed by two independent investigators using the STATA software (version 12.0). Initially, 132 studies (103 in Chinese, 29 in English) were retrieved; 122 were eliminated through a stepwise filtering process. Finally, 10 studies conducted in Asian populations (5 Chinese, 4 Japanese, 1 Korean) fulfilled all the inclusion criteria of our meta-analysis. The studies included 588 HCC patients (641 cancer tissues; 593 adjacent normal tissues) and 184 healthy controls. We observed that RUNX3 promoter methylation was significantly higher in cancer tissues than in adjacent normal tissues (RR = 6.35, 95%CI = 3.62-11.14, P < 0.001) and normal control tissues (RR = 17.31, 95%CI = 7.08-42.34, P < 0.001). RUNX3 promoter methylation status did not differ significantly between patients with different TNM stages (RR = 0.88, 95%CI = 0.70-1.10, P = 0.269) and histological grades (RR = 0.86, 95%CI = 0.65-1.14, P = 0.304), suggesting that RUNX3 promoter methylation is linked to the origin of HCC but not to its progression from non-metastatic to metastatic stages. This in turn indicated that RUNX3 could be an early diagnostic marker distinguishing benign from malignant hepatocellular carcinoma. PMID:27420934

  9. Silencing of transgene transcription precedes methylation of promoter DNA and histone H3 lysine 9.

    PubMed

    Mutskov, Vesco; Felsenfeld, Gary

    2004-01-14

    Transgenes stably integrated into cells or animals in many cases are silenced rapidly, probably under the influence of surrounding endogenous condensed chromatin. This gene silencing correlates with repressed chromatin structure marked by histone hypoacetylation, loss of methylation at H3 lysine 4, increase of histone H3 lysine 9 methylation as well as CpG DNA methylation at the promoter. However, the order and the timing of these modifications and their impact on transcription inactivation are less well understood. To determine the temporal order of these events, we examined a model system consisting of a transgenic cassette stably integrated in chicken erythroid cells. We found that histone H3 and H4 hypoacetylation and loss of methylation at H3 lysine 4 all occurred during the same window of time as transgene inactivation in both multicopy and low-copy-number lines. These results indicate that these histone modifications were the primary events in gene silencing. We show that the kinetics of silencing exclude histone H3 K9 and promoter DNA methylation as the primary causative events in our transgene system. PMID:14685282

  10. APC promoter is frequently methylated in pancreatic juice of patients with pancreatic carcinomas or periampullary tumors

    PubMed Central

    Ginesta, Mireia M.; Diaz-Riascos, Zamira Vanessa; Busquets, Juli; Pelaez, Núria; Serrano, Teresa; Peinado, Miquel Àngel; Jorba, Rosa; García-Borobia, Francisco Javier; Capella, Gabriel; Fabregat, Joan

    2016-01-01

    Early detection of pancreatic and periampullary neoplasms is critical to improve their clinical outcome. The present authors previously demonstrated that DNA hypermethylation of adenomatous polyposis coli (APC), histamine receptor H2 (HRH2), cadherin 13 (CDH13), secreted protein acidic and cysteine rich (SPARC) and engrailed-1 (EN-1) promoters is frequently detected in pancreatic tumor cells. The aim of the present study was to assess their prevalence in pancreatic juice of carcinomas of the pancreas and periampullary area. A total of 135 pancreatic juices obtained from 85 pancreatic cancer (PC), 26 ampullary carcinoma (AC), 10 intraductal papillary mucinous neoplasm (IPMN) and 14 chronic pancreatitis (CP) patients were analyzed. The methylation status of the APC, HRH2, CDH13, SPARC and EN-1 promoters was analyzed using methylation specific-melting curve analysis (MS-MCA). Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations were also tested with allele-specific quantitative polymerase chain reaction amplification. Out of the 5 promoters analyzed, APC (71%) and HRH2 (65%) were the most frequently methylated in PC juice. APC methylation was also detected at a high frequency in AC (76%) and IPMN (80%), but only occasionally observed in CP (7%). APC methylation had a high sensitivity (71–80%) for all types of cancer analyzed. The panel (where a sample scored as positive when ≥2 markers were methylated) did not outperform APC as a single marker. Finally, KRAS detection in pancreatic juice offered a lower sensitivity (50%) and specificity (71%) for detection of any cancer. APC hypermethylation in pancreatic juice, as assessed by MS-MCA, is a frequent event of potential clinical usefulness in the diagnosis of pancreatic and periampullary neoplasms.

  11. APC promoter is frequently methylated in pancreatic juice of patients with pancreatic carcinomas or periampullary tumors

    PubMed Central

    Ginesta, Mireia M.; Diaz-Riascos, Zamira Vanessa; Busquets, Juli; Pelaez, Núria; Serrano, Teresa; Peinado, Miquel Àngel; Jorba, Rosa; García-Borobia, Francisco Javier; Capella, Gabriel; Fabregat, Joan

    2016-01-01

    Early detection of pancreatic and periampullary neoplasms is critical to improve their clinical outcome. The present authors previously demonstrated that DNA hypermethylation of adenomatous polyposis coli (APC), histamine receptor H2 (HRH2), cadherin 13 (CDH13), secreted protein acidic and cysteine rich (SPARC) and engrailed-1 (EN-1) promoters is frequently detected in pancreatic tumor cells. The aim of the present study was to assess their prevalence in pancreatic juice of carcinomas of the pancreas and periampullary area. A total of 135 pancreatic juices obtained from 85 pancreatic cancer (PC), 26 ampullary carcinoma (AC), 10 intraductal papillary mucinous neoplasm (IPMN) and 14 chronic pancreatitis (CP) patients were analyzed. The methylation status of the APC, HRH2, CDH13, SPARC and EN-1 promoters was analyzed using methylation specific-melting curve analysis (MS-MCA). Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations were also tested with allele-specific quantitative polymerase chain reaction amplification. Out of the 5 promoters analyzed, APC (71%) and HRH2 (65%) were the most frequently methylated in PC juice. APC methylation was also detected at a high frequency in AC (76%) and IPMN (80%), but only occasionally observed in CP (7%). APC methylation had a high sensitivity (71–80%) for all types of cancer analyzed. The panel (where a sample scored as positive when ≥2 markers were methylated) did not outperform APC as a single marker. Finally, KRAS detection in pancreatic juice offered a lower sensitivity (50%) and specificity (71%) for detection of any cancer. APC hypermethylation in pancreatic juice, as assessed by MS-MCA, is a frequent event of potential clinical usefulness in the diagnosis of pancreatic and periampullary neoplasms. PMID:27602165

  12. Promoter Methylation of RASSF1A Associates to Adult Secondary Glioblastomas and Pediatric Glioblastomas

    PubMed Central

    Muñoz, Jorge; Inda, María del Mar; Lázcoz, Paula; Zazpe, Idoya; Fan, Xing; Alfaro, Jorge; Tuñón, Teresa; Rey, Juan A.; Castresana, Javier S.

    2012-01-01

    While allelic losses and mutations of tumor suppressor genes implicated in the etiology of astrocytoma have been widely assessed, the role of epigenetics is still a matter of study. We analyzed the frequency of promoter hypermethylation by methylation-specific PCR (MSP) in five tumor suppressor genes (PTEN, MGMT, RASSF1A, p14ARF, and p16INK4A), in astrocytoma samples and cell lines. RASSF1A was the most frequently hypermethylated gene in all grades of astrocytoma samples, in cell lines, and in adult secondary GBM. It was followed by MGMT. PTEN showed a slight methylation signal in only one GBM and one pilocytic astrocytoma, and in two cell lines; while p14ARF and p16INK4A did not show any evidence of methylation in primary tumors or cell lines. In pediatric GBM, RASSF1A was again the most frequently altered gene, followed by MGMT; PTEN, p14 and p16 showed no alterations. Lack or reduced expression of RASSF1A in cell lines was correlated with the presence of methylation. RASSF1A promoter hypermethylation might be used as a diagnostic marker for secondary GBM and pediatric GBM. Promoter hypermethylation might not be an important inactivation mechanism in other genes like PTEN, p14ARF and p16INK4A, in which other alterations (mutations, homozygous deletions) are prevalent. PMID:22389839

  13. TET2 Promoter DNA Methylation and Expression in Childhood Acute Lymphoblastic Leukemia.

    PubMed

    Bahari, Gholamreza; Hashemi, Mohammad; Naderi, Majid; Taheri, Mohsen

    2016-01-01

    The ten-eleven-translocation-2 (TET2) gene is a novel tumor suppressor gene involved in several hematological malignancies of myeloid and lymphoid origin. Besides loss-of-function mutations and deletions, hypermethylation of the CpG island at the TET2 promoter has been found in human cancers. The TET2 encoded protein regulates DNA methylation. The present study aimed to examine DNA promoter methylation of TET2 in 100 childhood acute lymphoblastic leukemia (ALL) cases and 120 healthy children in southeast Iran. In addition, mRNA expression levels were assessed in 30 new cases of ALL and 32 controls. Our findings indicated that promoter methylation of TET2 significantly increases the risk of ALL (OR=2.60, 95% CI=1.31-5.12, p=0.0060) in comparison with absent methylation. Furthermore, the TET2 gene was significantly downregulated in childhood ALL compared to healthy children (p=0.0235). The results revealed that hypermethylation and downregulation of TET2 gene may play a role in predisposition to childhood ALL. Further studies with larger sample sizes and different ethnicities are needed to confirm our findings. PMID:27644645

  14. Racial variation in breast tumor promoter methylation in the Carolina Breast Cancer Study

    PubMed Central

    Conway, Kathleen; Edmiston, Sharon N.; Tse, Chiu-Kit; Bryant, Christopher; Kuan, Pei Fen; Hair, Brionna Y.; Parrish, Eloise A.; May, Ryan; Swift-Scanlan, Theresa

    2015-01-01

    Background African American (AA) women are diagnosed with more advanced breast cancers and have worse survival than white women, but a comprehensive understanding of the basis for this disparity remains unclear. Analysis of DNA methylation, an epigenetic mechanism that can regulate gene expression, could help to explain racial differences in breast tumor clinical biology and outcomes. Methods DNA methylation was evaluated at 1287 CpGs in the promoters of cancer-related genes in 517 breast tumors of AA (n=216) or non-AA (n=301) cases in the Carolina Breast Cancer Study. Results Multivariable linear regression analysis of all tumors, controlling for age, menopausal status, stage, intrinsic subtype, and multiple comparisons (FDR), identified 7 CpG probes that showed significant (adjusted p<0.05) differential methylation between AAs and non-AAs. Stratified analyses detected an additional 4 CpG probes differing by race within hormone receptor-negative (HR−) tumors. Genes differentially methylated by race included DSC2, KCNK4, GSTM1, AXL, DNAJC15, HBII-52, TUSC3 and TES; the methylation state of several of these genes may be associated with worse survival in AAs. TCGA breast tumor data confirmed the differential methylation by race and negative correlations with expression for most of these genes. Several loci also showed racial differences in methylation in peripheral blood leukocytes (PBLs) from CBCS cases, indicating that these variations were not necessarily tumor-specific. Conclusions Racial differences in the methylation of cancer-related genes are detectable in both tumors and PBLs from breast cancer cases. Impact Epigenetic variation could contribute to differences in breast tumor development and outcomes between AAs and non-AAs. PMID:25809865

  15. Methylation of Epstein-Barr virus Rta promoter in EBV primary infection, reactivation and lymphoproliferation.

    PubMed

    Germi, Raphaële; Guigue, Nicolas; Lupo, Julien; Semenova, Touyana; Grossi, Laurence; Vermeulen, Odile; Epaulard, Olivier; de Fraipont, Florence; Morand, Patrice

    2016-10-01

    During Epstein-Barr virus (EBV) latency, the EBV genome is largely silenced by methylation. This silencing is overturned during the switch to the lytic cycle. A key event is the production of the viral protein Zta which binds to three Zta-response elements (ZRE) from the Rta promoter (Rp), two of which (ZRE2 and ZRE3) include three CpG motifs methylated in the latent genome. The bisulphite pyrosequencing reaction was used to quantify the methylation of ZRE2, ZRE3a, and ZRE3b in EBV-positive cell lines and in ex vivo samples of EBV-related diseases, in order to assess whether the level of methylation in these ZREs could provide additional information to viral DNA load and serology in the characterization of EBV-associated diseases. In PBMC from two patients with infectious mononucleosis, over time Rp became increasingly methylated whereas EBV load decreased. In tonsil from patients with chronic tonsillitis, the methylation was less than in EBV-associated tumors, regardless of the viral load. This was even more striking when only the ZRE3a and ZRE3b were considered since some samples presented unbalanced profiles on ZRE2. EBV reactivation in cell culture showed that the reduction in the overall level of methylation was closely related to the production of unmethylated virions. Thus, an assessment of the level of methylation may help to better characterize EBV replication in PBMC and in biopsies with high EBV load, during infectious mononucleosis and EBV-associated cancers. J. Med. Virol. 88:1814-1820, 2016. © 2016 Wiley Periodicals, Inc. PMID:26990870

  16. SUVH1, a Su(var)3–9 family member, promotes the expression of genes targeted by DNA methylation

    PubMed Central

    Li, Shaofang; Liu, Lin; Li, Shengben; Gao, Lei; Zhao, Yuanyuan; Kim, Yun Ju; Chen, Xuemei

    2016-01-01

    Transposable elements are found throughout the genomes of all organisms. Repressive marks such as DNA methylation and histone H3 lysine 9 (H3K9) methylation silence these elements and maintain genome integrity. However, how silencing mechanisms are themselves regulated to avoid the silencing of genes remains unclear. Here, an anti-silencing factor was identified using a forward genetic screen on a reporter line that harbors a LUCIFERASE (LUC) gene driven by a promoter that undergoes DNA methylation. SUVH1, a Su(var)3–9 homolog, was identified as a factor promoting the expression of the LUC gene. Treatment with a cytosine methylation inhibitor completely suppressed the LUC expression defects of suvh1, indicating that SUVH1 is dispensable for LUC expression in the absence of DNA methylation. SUVH1 also promotes the expression of several endogenous genes with promoter DNA methylation. However, the suvh1 mutation did not alter DNA methylation levels at the LUC transgene or on a genome-wide scale; thus, SUVH1 functions downstream of DNA methylation. Histone H3 lysine 4 (H3K4) trimethylation was reduced in suvh1; in contrast, H3K9 methylation levels remained unchanged. This work has uncovered a novel, anti-silencing function for a member of the Su(var)3–9 family that has previously been associated with silencing through H3K9 methylation. PMID:26400170

  17. Age and Obesity Promote Methylation and Suppression of 5-Alpha Reductase 2–Implications for Personalized Therapy in Benign Prostatic Hyperplasia

    PubMed Central

    Bechis, Seth K.; Otsetov, Alexander G.; Ge, Rongbin; Wang, Zongwei; Vangel, Mark G.; Wu, Chin-Lee; Tabatabaei, Shahin; Olumi, Aria F.

    2016-01-01

    Purpose 5α reductase inhibitors (5ARIs) are a main modality of treatment for men suffering from symptomatic benign prostatic hyperplasia (BPH). Over 30% of men do not respond to the therapeutic effects of 5ARIs. We have found that 1/3 of adult prostate samples do not express 5AR2 secondary to epigenetic modifications. We sought to evaluate whether 5AR2 expression in BPH specimens of symptomatic men was linked to methylation of the 5AR2 gene promoter and identify associations with age, obesity, cardiac risk factors, and prostate specific antigen (PSA). Materials and Methods Prostate samples from men undergoing transurethral prostate resection were used. 5AR2 protein expression and gene promoter methylation status were determined by common assays. Clinical variables included age, body mass index (BMI), hypertension, hyperlipidemia, diabetes, PSA, and prostate volume. Univariate and multivariate statistical analyses were performed, followed by stepwise logistic regression modeling. Results BMI and age were significantly correlated with methylation of the 5AR2 gene promoter (p<0.05), whereas prostate volume, PSA, or use of BPH medication were not. Methylation was highly correlated with 5AR protein expression (p<0.0001). In a predictive model, both increasing age and BMI significantly predicted methylation status and protein expression (p<0.01). Conclusions Increasing age and BMI correlate with increased 5AR2 gene promoter methylation and decreased protein expression in men with symptomatic BPH. These results highlight the interplay between age, obesity and gene regulation. Our findings suggest the presence of an individualized epigenetic signature for symptomatic BPH, which may be important for choosing appropriate personalized treatment options. PMID:25916673

  18. DNA methylation signatures of the AIRE promoter in thymic epithelial cells, thymomas and normal tissues.

    PubMed

    Kont, Vivian; Murumägi, Astrid; Tykocinski, Lars-Oliver; Kinkel, Sarah A; Webster, Kylie E; Kisand, Kai; Tserel, Liina; Pihlap, Maire; Ströbel, Philipp; Scott, Hamish S; Marx, Alexander; Kyewski, Bruno; Peterson, Pärt

    2011-12-01

    Mutations in the AIRE gene cause autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), which is associated with autoimmunity towards several peripheral organs. The AIRE protein is almost exclusively expressed in medullary thymic epithelial cells (mTEC) and CpG methylation in the promoter of the AIRE gene has been suggested to control its tissue-specific expression pattern. We found that in human AIRE-positive medullary and AIRE-negative cortical epithelium, the AIRE promoter is hypomethylated, whereas in thymocytes, the promoter had high level of CpG methylation. Likewise, in mouse mTECs the AIRE promoter was uniformly hypomethylated. In the same vein, the AIRE promoter was hypomethylated in AIRE-negative thymic epithelial tumors (thymomas) and in several peripheral tissues. Our data are compatible with the notion that promoter hypomethylation is necessary but not sufficient for tissue-specific regulation of the AIRE gene. In contrast, a positive correlation between AIRE expression and histone H3 lysine 4 trimethylation, an active chromatin mark, was found in the AIRE promoter in human and mouse TECs.

  19. Reduction of TIP30 in esophageal squamous cell carcinoma cells involves promoter methylation and microRNA-10b

    SciTech Connect

    Dong, Wenjie; Shen, Ruizhe; Cheng, Shidan

    2014-10-31

    Highlights: • TIP30 expression is frequently suppressed in ESCC. • TIP30 was hypermethylated in ESCC. • Reduction of TIP30 was significantly correlated with LN metastasis. • miR-10b is a direct regulator of TIP30. - Abstract: TIP30 is a putative tumor suppressor that can promote apoptosis and inhibit angiogenesis. However, the role of TIP30 in esophageal squamous cell carcinoma (ESCC) biology has not been investigated. Immunohistochemistry was used to investigate the expression of TIP30 in 70 ESCC. Hypermethylation of TIP30 was evaluated by the methylation specific PCR (MSP) method in ESCC (tumor and paired adjacent non-tumor tissues). Lost expression of TIP30 was observed in 50 of 70 (71.4%) ESCC. 61.4% (43 of 70) of primary tumors analyzed displayed TIP30 hypermethylation, indicating that this aberrant characteristic is common in ESCC. Moreover, a statistically significant inverse association was found between TIP30 methylation status and expression of the TIP30 protein in tumor tissues (p = 0.001). We also found that microRNA-10b (miR-10b) targets a homologous DNA region in the 3′untranslated region of the TIP30 gene and represses its expression at the transcriptional level. Reporter assay with 3′UTR of TIP30 cloned downstream of the luciferase gene showed reduced luciferase activity in the presence of miR-10b, providing strong evidence that miR-10b is a direct regulator of TIP30. These results suggest that TIP30 expression is regulated by promoter methylation and miR-10b in ESCC.

  20. Transcription Factor ZBED6 Mediates IGF2 Gene Expression by Regulating Promoter Activity and DNA Methylation in Myoblasts

    NASA Astrophysics Data System (ADS)

    Huang, Yong-Zhen; Zhang, Liang-Zhi; Lai, Xin-Sheng; Li, Ming-Xun; Sun, Yu-Jia; Li, Cong-Jun; Lan, Xian-Yong; Lei, Chu-Zhao; Zhang, Chun-Lei; Zhao, Xin; Chen, Hong

    2014-04-01

    Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. In this study, we found that the expression of the ZBED6 and IGF2 were upregulated during C2C12 differentiation. The IGF2 expression levels were negatively associated with the methylation status in beef cattle (P < 0.05). A luciferase assay for the IGF2 intron 3 and P3 promoter showed that the mutant-type 439 A-SNP-pGL3 in driving reporter gene transcription is significantly higher than that of the wild-type 439 G-SNP-pGL3 construct (P < 0.05). An over-expression assay revealed that ZBED6 regulate IGF2 expression and promote myoblast differentiation. Furthermore, knockdown of ZBED6 led to IGF2 expression change in vitro. Taken together, these results suggest that ZBED6 inhibits IGF2 activity and expression via a G to A transition disrupts the interaction. Thus, we propose that ZBED6 plays a critical role in myogenic differentiation.

  1. Survey of Differentially Methylated Promoters in Prostate Cancer Cell Lines1*

    PubMed Central

    Wang, Yipeng; Yu, Qiuju; Cho, Ann H; Rondeau, Gaelle; Welsh, John; Adamson, Eileen; Mercola, Dan; McClelland, Michael

    2005-01-01

    Abstract DNA methylation and copy number in the genomes of three immortalized prostate epithelial and five cancer cell lines (LNCaP, PC3, PC3M, PC3M-Pro4, and PC3M-LN4) were compared using a microarray-based technique. Genomic DNA is cut with a methylation-sensitive enzyme HpaII, followed by linker ligation, polymerase chain reaction (PCR) amplification, labeling, and hybridization to an array of promoter sequences. Only those parts of the genomic DNA that have unmethylated restriction sites within a few hundred base pairs generate PCR products detectable on an array. Of 2732 promoter sequences on a test array, 504 (18.5%) showed differential hybridization between immortalized prostate epithelial and cancer cell lines. Among candidate hypermethylated genes in cancer-derived lines, there were eight (CD44, CDKN1A, ESR1, PLAU, RARB, SFN, TNFRSF6, and TSPY) previously observed in prostate cancer and 13 previously known methylation targets in other cancers (ARHI, bcl-2, BRCA1, CDKN2C, GADD45A, MTAP, PGR, SLC26A4, SPARC, SYK, TJP2, UCHL1, and WIT-1). The majority of genes that appear to be both differentially methylated and differentially regulated between prostate epithelial and cancer cell lines are novel methylation targets, including PAK6, RAD50, TLX3, PIR51, MAP2K5, INSR, FBN1, and GG2-1, representing a rich new source of candidate genes used to study the role of DNA methylation in prostate tumors. PMID:16207477

  2. The impact of P2Y12 promoter DNA methylation on the recurrence of ischemic events in Chinese patients with ischemic cerebrovascular disease

    PubMed Central

    Li, Xin-Gang; Ma, Ning; Wang, Bo; Li, Xiao-Qing; Mei, Sheng-Hui; Zhao, Kun; Wang, Yong-Jun; Li, Wei; Zhao, Zhi-Gang; Sun, Shu-Sen; Miao, Zhong-Rong

    2016-01-01

    The primary mechanism of clopidogrel resistance is still unclear. We aimed to investigate whether the methylation status of the P2Y12 promoter has effects on platelet function and clinical ischemic events. Patients with ischemic cerebrovascular disease were enrolled into our study. Venous blood samples were drawn for thrombelastograpy (TEG) and active metabolite assay. Patients were divided into a case- or control-group based on the occurrence of ischemic events during a one year follow-up. Two TEG parameters between the case and control groups were statistically significant [ADP inhibition rate (ADP%): P = 0.018; ADP-induced platelet-fibrin clot strength (MAADP): P = 0.030]. The concentrations of clopidogrel active metabolite had no significant difference (P = 0.281). Sixteen CpG dinucleotides on P2Y12 promoter were tested. Three CpG sites (CpG11 and CpG12 + 13) showed lower methylation status, which correlated with a strong association with increased risk of clinical events. Changes of MAADP and ADP% were also associated with methylation levels of CpG 11 and CpG 12 + 13. Hypomethylation of the P2Y12 promoter is associated with a higher platelet reactivity and increased risk of ischemic events in our patients. Methylation analysis of peripheral blood samples might be a novel molecular marker to help early identification of patients at high risk for clinical ischemic events. PMID:27686864

  3. Assessment of methyl methanesulfonate using the repeated-dose liver micronucleus assay in young adult rats.

    PubMed

    Muto, Shigeharu; Yamada, Katsuya; Kato, Tatsuya; Wako, Yumi; Kawasako, Kazufumi; Iwase, Yumiko; Uno, Yoshifumi

    2015-03-01

    A repeated-dose liver micronucleus assay using young adult rats was conducted with methyl methanesulfonate (MMS) as a part of a collaborative study supported by the Collaborative Study Group for the Micronucleus Test/the Japanese Environmental Mutagen Society-Mammalian Mutagenicity Study Group. MMS is a classical DNA-reactive carcinogen, but it is not a liver carcinogen. In the first experiment (14-day study), MMS was administered per os to 6-week-old male Crl:CD (SD) rats every day for 14 days at a dose of 12.5, 25, or 50mg/kg/day. In the second experiment (28-day study), 6-week-old male SD rats were treated with MMS at 7.5, 15, or 30mg/kg/day for 28 days, because the highest dose used in the 14-day study (50mg/kg/day) caused mortality. Hepatocyte and bone marrow cell specimens were prepared on the day after the final dose. The frequency of micronucleated hepatocytes (MNHEPs) in the liver and that of micronucleated immature erythrocytes (MNIMEs) in the bone marrow were evaluated. Exposure to 50mg/kg/day MMS for 14 days resulted in an increased frequency of MNHEPs, but MMS had no effect on the frequency of MNHEPs in the rats exposed to the chemical for 28 days at doses up to 30mg/kg/day. MMS induced MNIMEs production at doses of 25 and 50mg/kg/day in the 14-day study and at doses of 15 and 30mg/kg/day in the 28-day study. Overall, the effect of MMS on the frequency of MNHEPs was considered to be equivocal.

  4. The EpiTect Methyl qPCR Assay as novel age estimation method in forensic biology.

    PubMed

    Mawlood, Shakhawan K; Dennany, Lynn; Watson, Nigel; Pickard, Benjamin S

    2016-07-01

    Human aging is associated with epigenetic modification of the genome. DNA methylation at cytosines appears currently as the best characterised modification that occurs during the mammalian lifetime. Such methylation changes at regulatory region can provide insights to track contributor age for criminal investigation. The EpiTect Methyl II PCR system (QIAGEN) was used to compare methylation levels of CpG islands in the promoter regions of a number of age related genes, of which four successfully showed changes across the lifespan (NPTX2, KCNQ1DN, GRIA2 and TRIM58). This technique is based on the detection of remaining input genome after digestion with a methylation-sensitive restriction enzyme. This study examined DNA specimens from 80 female subjects of various ages (18-91 years) obtained from blood, using primers designed to flank the studied gene loci. The data obtained from DNA methylation quantification showed successful discrimination among volunteered ages. Overall, the difference between predicted and real age was about 11 years and absolute mean differences (AMD) was only 7.2 years error. We suggest the EpiTect system can be used as fast and simple innovative tool in future forensic age estimation.

  5. Loss of expression and promoter methylation of SLIT2 are associated with sessile serrated adenoma formation.

    PubMed

    Beggs, Andrew D; Jones, Angela; Shepherd, Neil; Arnaout, Abed; Finlayson, Caroline; Abulafi, A Muti; Morton, Dion G; Matthews, Glenn M; Hodgson, Shirley V; Tomlinson, Ian P M

    2013-05-01

    Serrated adenomas form a distinct subtype of colorectal pre-malignant lesions that may progress to malignancy along a different molecular pathway than the conventional adenoma-carcinoma pathway. Previous studies have hypothesised that BRAF mutation and promoter hypermethylation plays a role, but the evidence for this is not robust. We aimed to carry out a whole-genome loss of heterozygosity analysis, followed by targeted promoter methylation and expression analysis to identify potential pathways in serrated adenomas. An initial panel of 9 sessile serrated adenomas (SSA) and one TSA were analysed using Illumina Goldengate HumanLinkage panel arrays to ascertain regions of loss of heterozygosity. This was verified via molecular inversion probe analysis and microsatellite analysis of a further 32 samples. Methylation analysis of genes of interest was carried out using methylation specific PCR (verified by pyrosequencing) and immunohistochemistry used to correlate loss of expression of genes of interest. All experiments used adenoma samples and normal tissue samples as control. SSA samples were found on whole-genome analysis to have consistent loss of heterozygosity at 4p15.1-4p15.31, which was not found in the sole TSA, adenomas, or normal tissues. Genes of interest in this region were PDCH7 and SLIT2, and combined MSP/IHC analysis of these genes revealed significant loss of SLIT2 expression associated with promoter methylation of SLIT2. Loss of expression of SLIT2 by promoter hypermethylation and loss of heterozygosity events is significantly associated with serrated adenoma development, and SLIT2 may represent a epimutated tumour suppressor gene according to the Knudson "two hit" hypothesis.

  6. Inhibition of radical reactions for an improved potassium tert-butoxide-promoted (11) C-methylation strategy for the synthesis of α-(11) C-methyl amino acids.

    PubMed

    Suzuki, Chie; Kato, Koichi; Tsuji, Atsushi B; Zhang, Ming-Rong; Arano, Yasushi; Saga, Tsuneo

    2015-03-01

    α-(11) C-Methyl amino acids are useful tools for biological imaging studies. However, a robust procedure for the labeling of amino acids has not yet been established. In this study, the (11) C-methylation of Schiff-base-activated α-amino acid derivatives has been optimized for the radiosynthesis of various α-(11) C-methyl amino acids. The benzophenone imine analog of methyl 2-amino butyrate was (11) C-methylated with [(11) C]methyl iodide following its initial deprotonation with potassium tert-butoxide (KOtBu). The use of an alternative base such as tetrabutylammonium fluoride, triethylamine, and 1,8-diazabicyclo[5.4.0]undec-7-ene did not result in the (11) C-methylated product. Furthermore, the KOtBu-promoted (11) C-methylation of the Schiff-base-activated amino acid analog was enhanced by the addition of 1,2,4,5-tetramethoxybenzene or 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and inhibited by the addition of 1,10-phenanthroline. These results suggest that inhibition of radical generation induced by KOtBu improves the α-(11) C-methylation of the Schiff-base-activated amino acids. The addition of a mixture of KOtBu and TEMPO to a solution of Schiff-base-activated amino acid ester and [(11) C]methyl iodide provided optimal results, and the tert-butyl ester and benzophenone imine groups could be readily hydrolyzed to give the desired α-(11) C-methyl amino acids with a high radiochemical conversion. This strategy could be readily applied to the synthesis of other α-(11) C-methyl amino acids.

  7. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    SciTech Connect

    Zhang, Heyu; Nan, Xu; Li, Xuefen; Chen, Yan; Zhang, Jianyun; Sun, Lisha; Han, Wenlin; Li, Tiejun

    2014-05-02

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma.

  8. Formalin-fixed, paraffin-embedded (FFPE) tissue epigenomics using Infinium HumanMethylation450 BeadChip assays.

    PubMed

    de Ruijter, Tim C; de Hoon, Joep P J; Slaats, Jeroen; de Vries, Bart; Janssen, Marjolein J F W; van Wezel, Tom; Aarts, Maureen J B; van Engeland, Manon; Tjan-Heijnen, Vivianne C G; Van Neste, Leander; Veeck, Jürgen

    2015-07-01

    Current genome-wide methods to detect DNA-methylation in healthy and diseased tissue require high-quality DNA from fresh-frozen (FF) samples. However, well-annotated clinical samples are mostly available as formalin-fixed, paraffin-embedded (FFPE) tissues containing poor-quality DNA. To overcome this limitation, we here aimed to evaluate a DNA restoration protocol for usage with the genome-wide Infinium HumanMethylation450 BeadChip assay (HM-450K). Sixty-six DNA samples from normal colon (n=9) and breast cancer (n=11) were interrogated separately using HM-450K. Analyses included matched FF/FFPE samples and technical duplicates. FFPE DNA was processed with (FFPEr) or without a DNA restoration protocol (Illumina). Differentially methylated genes were finally validated in 24 additional FFPE tissues using nested methylation-specific PCR (MSP). In summary, β-values correlation between FFPEr duplicates was high (ρ=0.9927 (s.d. ±0.0015)). Matched FF/FFPEr correlation was also high (ρ=0.9590 (s.d. ±0.0184)) compared with matched FF/FFPE (ρ=0.8051 (s.d. ±0.1028). Probe detection rate in FFPEr samples (98.37%, s.d. ±0.66) was comparable to FF samples (99.98%, s.d. ±0.019) and substantially lower in FFPE samples (82.31%, s.d. ±18.65). Assay robustness was not decreased by sample archival age up to 10 years. We could also demonstrate no decrease in assay robustness when using 100 ng of DNA input only. Four out of the five selected differentially methylated genes could be validated by MSP. The gene failing validation by PCR showed high variation of CpG β-values in primer-binding sites. In conclusion, by using the FFPE DNA restoration protocol, HM-450K assays provide robust, accurate and reproducible results with FFPE tissue-derived DNA, which are comparable to those obtained with FF tissue. Most importantly, differentially methylated genes can be validated using more sensitive techniques, such as nested MSP, altogether providing an epigenomics platform for

  9. Methylation pattern of ALX4 gene promoter as a potential biomarker for blood-based early detection of colorectal cancer

    PubMed Central

    Salehi, Rasoul; Atapour, Norollah; Vatandoust, Nasimeh; Farahani, Najmeh; Ahangari, Fatemeh; Salehi, Ahmad Reza

    2015-01-01

    Background: To develop a non-invasive screening method for colorectal cancer, we evaluated the methylation of ALX4 gene promoter in serum samples from patients with colorectal cancer (CRC) and equal number of healthy individuals. Materials and Methods: In serum samples from 25 patients with colorectal cancer and 25 healthy control subjects, isolated serum free-floating DNA was treated with sodium bisulfite and analyzed by methylation-specific polymerase chain reaction (MSP) with primers specific for methylated or unmethylated promoter CpG island sequences of the ALX4 gene. Results: Methylation of the ALX4 gene promoter was present in the serum DNA of patients with adenoma and colorectal cancer. A sensitivity of 68% and specificity of 88% were achieved in the detection of promoter methylation in colorectal neoplasia samples. The difference in methylation status of the ALX4 promoter between the patients with colorectal neoplasia and the control group was statistically highly significant (P < 0.001). Conclusions: The results indicate that this serum free DNA test of methylation of the ALX4 gene promoter is a sensitive and specific method. Therefore in combination with other useful markers it seems ALX4 has the potential of a clinically useful test for the early detection of colorectal cancer. PMID:26918234

  10. The Silencing of CCND2 by Promoter Aberrant Methylation in Renal Cell Cancer and Analysis of the Correlation between CCND2 Methylation Status and Clinical Features

    PubMed Central

    Wang, Lu; Cui, Yun; Zhang, Lian; Sheng, Jindong; Yang, Yang; Kuang, Guanyu; Fan, Yu; Zhang, Qian; Jin, Jie

    2016-01-01

    Cyclin D2 (CCND2) is a member of the D-type cyclins, which plays a pivotal role in cell cycle regulation, differentiation and malignant transformation. However, its expression status and relative regulation mechanism remains unclear in renal cell cancer (RCC). In our study, the mRNA expression level of CCND2 is down-regulated in 22/23 paired RCC tissues (p<0.05). In addition, its protein expression level is also decreased in 43/43 RCC tumor tissues compared with its corresponding non-malignant tissues (p<0.001). We further detected that CCND2 was down-regulated or silenced in 6/7 RCC cell lines, but expressed in “normal” human proximal tubular (HK-2) cell line. Subsequently, MSP and BGS results showed that the methylation status in CCND2 promoter region is closely associated with its expression level in RCC cell lines. Treatment with 5-Aza with or without TSA restored CCND2 expression in several methylated RCC cell lines. Among the 102 RCC tumors, methylation of CCND2 was detected in 29/102 (28%) cases. Only 2/23 (8.7%) adjacent non-malignant tissues showed methylation. We then analyzed the correlation of clinical features and its promoter methylation. Collectively, our data suggested that loss of CCND2 expression is closely associated with the promoter aberrant methylation. PMID:27583477

  11. The Silencing of CCND2 by Promoter Aberrant Methylation in Renal Cell Cancer and Analysis of the Correlation between CCND2 Methylation Status and Clinical Features.

    PubMed

    Wang, Lu; Cui, Yun; Zhang, Lian; Sheng, Jindong; Yang, Yang; Kuang, Guanyu; Fan, Yu; Zhang, Qian; Jin, Jie

    2016-01-01

    Cyclin D2 (CCND2) is a member of the D-type cyclins, which plays a pivotal role in cell cycle regulation, differentiation and malignant transformation. However, its expression status and relative regulation mechanism remains unclear in renal cell cancer (RCC). In our study, the mRNA expression level of CCND2 is down-regulated in 22/23 paired RCC tissues (p<0.05). In addition, its protein expression level is also decreased in 43/43 RCC tumor tissues compared with its corresponding non-malignant tissues (p<0.001). We further detected that CCND2 was down-regulated or silenced in 6/7 RCC cell lines, but expressed in "normal" human proximal tubular (HK-2) cell line. Subsequently, MSP and BGS results showed that the methylation status in CCND2 promoter region is closely associated with its expression level in RCC cell lines. Treatment with 5-Aza with or without TSA restored CCND2 expression in several methylated RCC cell lines. Among the 102 RCC tumors, methylation of CCND2 was detected in 29/102 (28%) cases. Only 2/23 (8.7%) adjacent non-malignant tissues showed methylation. We then analyzed the correlation of clinical features and its promoter methylation. Collectively, our data suggested that loss of CCND2 expression is closely associated with the promoter aberrant methylation. PMID:27583477

  12. Correlation between the methylation of SULF2 and WRN promoter and the irinotecan chemosensitivity in gastric cancer

    PubMed Central

    2013-01-01

    Background At present, no study has compared the correlation between SULF2, WRN promoter methylation and clinicopathological parameters of patients with gastric cancer and the sensitivity to irinotecan (CPT-11). Methods We collected 102 fresh tumor tissues from pathologically diagnosed gastric carcinoma patients. Methylation specific PCR was used to detect the promoter methylation of SULF2 and WRN. The chemosensitivity of irinotecan to gastric tomor was tested by MTT. Then we compared the chemosensitivity difference of the methylated group with unmethylated group. Results The rates of SULF2, WRN methylation were 28.3% (29/102) and 23.6% (24/102), separately. Patients with SULF2 methylation were more sensitive to CPT-11 than those without SULF2 methylation (P < 0.01). Patients with both SULF2 and WRN methylation were also more sensitive to CPT-11 than others ( P < 0.05). Conclusion SULF2 and WRN promoter methylation detection indicates potential predictive biomarkers to identify and target the most sensitive gastric cancer subpopulation for personalized CPT-11 therapy. PMID:24359226

  13. Specificity of Methylation Assays in Cancer Research: A Guideline for Designing Primers and Probes

    PubMed Central

    Barekati, Zeinab; Radpour, Ramin; Kohler, Corina; Zhong, Xiao Yan

    2010-01-01

    DNA methylation is an epigenetic regulation mechanism of genomic function, and aberrant methylation pattern has been found to be a common event in many diseases and human cancers. A large number of cancer studies have been focused on identification of methylation changes as biomarkers (i.e., breast cancer). However, still clinical use of them is very limited because of lack of specificity and sensitivity for diagnostic test. This highlights the critical need for specific primer and probe design to avoid false-positive detection of methylation profiling. The guideline and online web tools that are introduced in this paper might help to perform a successful experiment and to develop specific diagnosis biomarkers by designing right primer pair and probe prior to experimental step. PMID:20798774

  14. Monozygotic twins discordant for constitutive BRCA1 promoter methylation, childhood cancer and secondary cancer.

    PubMed

    Galetzka, Danuta; Hansmann, Tamara; El Hajj, Nady; Weis, Eva; Irmscher, Benjamin; Ludwig, Marco; Schneider-Rätzke, Brigitte; Kohlschmidt, Nicolai; Beyer, Vera; Bartsch, Oliver; Zechner, Ulrich; Spix, Claudia; Haaf, Thomas

    2012-01-01

    We describe monozygotic twins discordant for childhood leukemia and secondary thyroid carcinoma. We used bisulfite pyrosequencing to compare the constitutive promoter methylation of BRCA1 and several other tumor suppressor genes in primary fibroblasts. The affected twin displayed an increased BRCA1 methylation (12%), compared with her sister (3%). Subsequent bisulfite plasmid sequencing demonstrated that 13% (6 of 47) BRCA1 alleles were fully methylated in the affected twin, whereas her sister displayed only single CpG errors without functional implications. This between-twin methylation difference was also found in irradiated fibroblasts and untreated saliva cells. The BRCA1 epimutation may have originated by an early somatic event in the affected twin: approximately 25% of her body cells derived from different embryonic cell lineages carry one epigenetically inactivated BRCA1 allele. This epimutation was associated with reduced basal protein levels and a higher induction of BRCA1 after DNA damage. In addition, we performed a genome-wide microarray analysis of both sisters and found several copy number variations, i.e., heterozygous deletion and reduced expression of the RSPO3 gene in the affected twin. This monozygotic twin pair represents an impressive example of epigenetic somatic mosaicism, suggesting a role for constitutive epimutations, maybe along with de novo genetic alterations in recurrent tumor development.

  15. Development of Tyrosinase Promoter-Based Fluorescent Assay for Screening of Anti-melanogenic Agents.

    PubMed

    Lee, JaeHo; Lee, SeungJun; Lee, ByungMan; Roh, KyungBaeg; Park, DeokHoon; Jung, EunSun

    2015-01-01

    For screening of skin-whitening ingredients that modulate inhibition of melanogenesis, tyrosinase promoter-based assay using a three-dimensional (3D) spheroid culture technique is a beneficial tool to improve the accuracy of raw material screening in cosmetics through mimicking of the in vivo microenvironment. Although the advantages of high-throughput screening (HTS) are widely known, there has been little focus on specific cell-based promoter assays for HTS in identifying skin-whitening ingredients that inhibit accumulation of melanin. The aim of this study was therefore to develop a large-scale compatible assay through pTyr-EGFP, an enhanced green fluorescent protein (EGFP)-based tyrosinase-specific promoter, to seek potential melanogenesis inhibitors for cosmetic use. Herein, a stably transfected human melanoma cell line expressing EGFP under the control of a 2.2-kb fragment derived from the tyrosinase gene was generated. Spontaneous induction of the tyrosinase promoter by 3D spheroid culture resulted in increased expression of EGFP, providing a significant correlation with the tyrosinase mRNA level, and subsequent inhibition of tyrosinase activity. Importantly, the pTyr-EGFP system provided successful tracking of the changes in the live image and real-time monitoring. Thus tyrosinase promoter-based fluorescent assay using a 3D spheroid culture can be useful as a screening system for exploring the efficiency of anti-melanogenesis ingredients. PMID:26179334

  16. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status

    PubMed Central

    2011-01-01

    Background Increased cyclooxygenase activity promotes progression of colorectal cancer, but the mechanisms behind COX-2 induction remain elusive. This study was therefore aimed to define external cell signaling and transcription factors relating to high COX-2 expression in colon cancer tissue. Method Tumor and normal colon tissue were collected at primary curative operation in 48 unselected patients. COX-2 expression in tumor and normal colon tissue was quantified including microarray analyses on tumor mRNA accounting for high and low tumor COX-2 expression. Cross hybridization was performed between tumor and normal colon tissue. Methylation status of up-stream COX-2 promoter region was evaluated. Results Tumors with high COX-2 expression displayed large differences in gene expression compared to normal colon. Numerous genes with altered expression appeared in tumors of high COX-2 expression compared to tumors of low COX-2. COX-2 expression in normal colon was increased in patients with tumors of high COX-2 compared to normal colon from patients with tumors of low COX-2. IL1β, IL6 and iNOS transcripts were up-regulated among external cell signaling factors; nine transcription factors (ATF3, C/EBP, c-Fos, Fos-B, JDP2, JunB, c-Maf, NF-κB, TCF4) showed increased expression and 5 (AP-2, CBP, Elk-1, p53, PEA3) were decreased in tumors with high COX-2. The promoter region of COX-2 gene did not show consistent methylation in tumor or normal colon tissue. Conclusions Transcription and external cell signaling factors are altered as covariates to COX-2 expression in colon cancer tissue, but DNA methylation of the COX-2 promoter region was not a significant factor behind COX-2 expression in tumor and normal colon tissue. PMID:21668942

  17. Involvement of B-cell CLL/lymphoma 2 promoter methylation in cigarette smoke extract-induced emphysema

    PubMed Central

    Zeng, Huihui; Shi, Zhihui; Kong, Xianglong; Chen, Yan; Zhang, Hongliang; Peng, Hong; Luo, Hong

    2016-01-01

    Abnormal apoptotic events play an important role in the pathogenesis of emphysema. The B-cell CLL/lymphoma 2 (Bcl-2) family proteins are essential and critical regulators of apoptosis. We determined whether the anti-apoptotic Bcl-2 play a role in the cigarette smoke extract (CSE)-induced emphysema. Furthermore, given the involvement of epigenetics in chronic obstructive pulmonary disease, we hypothesized that the deregulation of Bcl-2 might be caused by gene methylation. The emphysema in BALB/C mice was established by intraperitoneally injection of CSE. 5-aza-2′-deoxycytidine (AZA; a demethylation reagent) and phosphate-buffered saline were also administered intraperitoneally as CSE. TUNEL assay was used to assess apoptotic index of pulmonary cells. The methylation status of CpG dinucleotides within the Bcl-2 promoter was observed in all groups by bisulfite sequencing PCR. Pulmonary expression of Bcl-2, Bax, and cytochrome C were measured after four weeks of treatment. The apoptotic index of pulmonary cells in CSE injection group was much higher than control ((25.88 ± 7.55)% vs. (6.28 ± 2.96)%). Compared to control mice, decreased expression of Bcl-2 and high methylation of Bcl-2 promoter was observed in CSE injected mice (0.88 ± 0.08 vs. 0.49 ± 0.11, (3.82 ± 1.34)% vs. (35.68 ± 5.99)%, P < 0.01).CSE treatment induced lung cell apoptosis and decreased lung function. AZA treatment increased Bcl-2 expression with Bcl-2 promoter demethylation. AZA also alleviated the lung cell apoptosis and function failure caused by CSE treatment. The decreased expression of anti-apoptotic Bcl-2 might account for the increased apoptosis in CSE induced-emphysema. Apparently, epigenetic alternation played a role in this deregulation of Bcl-2 expression, and it might support the involvement of epigenetic events in the pathogenesis of emphysema. PMID:26924842

  18. N-methyl-D-aspartate promotes the survival of cerebellar granule cells: pharmacological characterization.

    PubMed

    Balázs, R; Hack, N; Jørgensen, O S; Cotman, C W

    1989-07-01

    The survival of cerebellar granule cells in culture is promoted by chronic exposure to N-methyl-D-aspartate (NMDA). The effect is due to the stimulation of 'conventional' NMDA receptor-ionophore complex: it is concentration dependent, voltage dependent and blocked by the selective antagonists D-2-amino-5-phosphonovalerate, D-2-amino-7-phosphonoheptanoate, dextromethorphan and (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-imin emaleate (MK 801). The most potent antagonist tested was MK-801. In contrast, non-selective antagonists, including kynurenate, were much less effective. Further, the trophic effect of NMDA is not reproduced by ibotenate or quinolinate at the concentration range tested. It could also be shown that glutamate released into the culture medium is responsible for limited cell survival in the absence of NMDA.

  19. Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and promoter methylation in cervical oncogenic lesions and cancer

    PubMed Central

    Botezatu, Anca; Socolov, Demetra; Iancu, Iulia V; Huica, Irina; Plesa, Adriana; Ungureanu, Carmen; Anton, Gabriela

    2013-01-01

    The aim of this study was to investigate the role of methylenetetrahydrofolate reductase (MTHFR) polymorphisms and MTHFR methylation pattern in cervical lesions development among women from Romania, a country with high prevalence of human papillomavirus (HPV) cervical infections. To achieve this goal, blood samples and cervical cytology specimens (n = 77)/tumour tissue specimens (n = 23) were investigated. As control, blood and negative cytological smears (n = 50) were used. A statistically significant association was found between T allele of C677T polymorphism and cervical lesions, heterozygote women presenting a threefold increased risk (normal/cervical lesions and tumours: wild homozygote 34/41 (0.68/0.41), heterozygote 14/51 (0.28/0.51), mutant homozygote 2/8 (0.04/0.08); OR = 3.081, P = 0.0035). Using χ square test for the control group, the HPV-negative and HPV-positive patients with cervix lesions, a significant correlation between viral infection and T allele of C677T polymorphism (P = 0.0287) was found. The MTHFR promoter was methylated in all HGSIL and tumour samples, significant differences being noted between HPV-positive samples, control group and cases of cervical dysplastic lesions without HPV DNA (P < 0. 0001) and between samples from patients with high-risk (hr)HPV versus low-risk (lr)HPV (P = 0.0026). No correlations between polymorphisms and methylation were observed. In Romania, individuals carrying T allele are susceptible for cervical lesions. MTHFR promoter methylation is associated with cervical severity lesions and with hrHPV. PMID:23444906

  20. Methylation loss at H19 imprinted gene correlates with methylenetetrahydrofolate reductase gene promoter hypermethylation in semen samples from infertile males.

    PubMed

    Rotondo, John C; Selvatici, Rita; Di Domenico, Maura; Marci, Roberto; Vesce, Fortunato; Tognon, Mauro; Martini, Fernanda

    2013-09-01

    Aberrant methylation at the H19 paternal imprinted gene has been identified in different cohorts of infertile males. The causes of H19 methylation errors are poorly understood. In this study, we investigated the methylation status of the H19 gene in semen DNA samples from infertile males affected by MTHFR gene promoter hypermethylation. DNA from normal and abnormal semen samples harbouring MTHFR gene promoter hypermethylated, hmMTHFR-nor and hmMTHFR-abn, and without MTHFR methylation, MTHFR-nor and MTHFR-abn, were investigated for methylation status in the H19 locus using bisulfite-treated DNA PCR, followed by cloning and sequencing. The prevalence of H19 hypomethylated clones was 20% in hmMTHFR-nor and 0% in MTHFR-nor semen samples (p<0.05), and 28% in hmMTHFR-abn compared with 16% in MTHFR-abn semen samples (p>0.05). These results underscore the association between H19 methylation defects and hypermethylation of the MTHFR gene promoter in normal semen samples and suggest that aberrant methylation at H19 may occur in the normal sperm of infertile males affected by MTHFR gene dysfunction. These findings provide new insights into the mechanisms causing abnormal methylation in imprinted genes and, in turn, male infertility.

  1. The epigenetic modifier CHD5 functions as a novel tumor suppressor for renal cell carcinoma and is predominantly inactivated by promoter CpG methylation

    PubMed Central

    Du, Zhenfang; Li, Lili; Huang, Xin; Jin, Jie; Huang, Suming; Zhang, Qian; Tao, Qian

    2016-01-01

    Renal cell carcinoma (RCC) is the most common urological cancer with steadily increasing incidence. A series of tumor suppressor genes (TSGs) have been identified methylated in RCC as potential epigenetic biomarkers. We identified a 1p36.3 TSG candidate CHD5 as a methylated target in RCC through epigenome study. As the role of CHD5 in RCC pathogenesis remains elusive, we further studied its expression and molecular functions in RCC cells. We found that CHD5 was broadly expressed in most normal genitourinary tissues including kidney, but frequently silenced or downregulated by promoter CpG methylation in 78% of RCC cell lines and 44% (24/55) of primary tumors. In addition, CHD5 mutations appear to be rare in RCC tumors through genome database mining. In methylated/silenced RCC cell lines, CHD5 expression could be restored with azacytidine demethylation treatment. Ectopic expression of CHD5 in RCC cells significantly inhibited their clonogenicity, migration and invasion. Moreover, we found that CHD5, as a chromatin remodeling factor, suppressed the expression of multiple targets including oncogenes (MYC, MDM2, STAT3, CCND1, YAP1), epigenetic master genes (Bmi-1, EZH2, JMJD2C), as well as epithelial-mesenchymal transition and stem cell markers (SNAI1, FN1, OCT4). Further chromatin immunoprecipitation (ChIP) assays confirmed the binding of CHD5 to target gene promoters. Thus, we demonstrate that CHD5 functions as a novel TSG for RCC, but is predominantly inactivated by promoter methylation in primary tumors. PMID:26943038

  2. Methylation of Adjacent CpG Sites Affects Sp1/Sp3 Binding and Activity in the p21Cip1 Promoter

    PubMed Central

    Zhu, Wei-Guo; Srinivasan, Kanur; Dai, Zunyan; Duan, Wenrui; Druhan, Lawrence J.; Ding, Haiming; Yee, Lisa; Villalona-Calero, Miguel A.; Plass, Christoph; Otterson, Gregory A.

    2003-01-01

    DNA methylation in the promoter of certain genes is associated with transcriptional silencing. Methylation affects gene expression directly by interfering with transcription factor binding and/or indirectly by recruiting histone deacetylases through methyl-DNA-binding proteins. In this study, we demonstrate that the human lung cancer cell line H719 lacks p53-dependent and -independent p21Cip1 expression. p53 response to treatment with gamma irradiation or etoposide is lost due to a mutation at codon 242 of p53 (C→W). Treatment with depsipeptide, an inhibitor of histone deacetylase, was unable to induce p53-independent p21Cip1 expression because the promoter of p21Cip1 in these cells is hypermethylated. By analyzing luciferase activity of transfected p21Cip1 promoter vectors, we demonstrate that depsipeptide functions on Sp1-binding sites to induce p21Cip1 expression. We hypothesize that hypermethylation may interfere with Sp1/Sp3 binding. By using an electrophoretic mobility shift assay, we show that, although methylation within the consensus Sp1-binding site did not reduce Sp1/Sp3 binding, methylation outside of the consensus Sp1 element induced a significant decrease in Sp1/Sp3 binding. Depsipeptide induced p21Cip1 expression was reconstituted when cells were pretreated with 5-aza-2′-deoxycytidine. Our data suggest, for the first time, that hypermethylation around the consensus Sp1-binding sites may directly reduce Sp1/Sp3 binding, therefore leading to a reduced p21Cip1 expression in response to depsipeptide treatment. PMID:12773551

  3. Association between P16INK4a Promoter Methylation and Ovarian Cancer: A Meta-Analysis of 12 Published Studies

    PubMed Central

    Niu, Xun; Shi, Hao; Zhong, Yi

    2016-01-01

    Background Ovarian cancer is the primary cause of death in women diagnosed with gynecological malignancies worldwide. Absence of early symptoms prevents prompt diagnosis or successful therapeutic intervention. P16INK4a is a well-known tumor suppressor gene (TSG). Aberrant methylation of TSG promoter is an important epigenetic silencing mechanism leading to ovarian cancer progression. Studies have reported differences in methylation frequencies of the p16INK4a promoter between ovarian cancer and the corresponding control group. However, the association between p16INK4a promoter methylation and ovarian cancer remains unclear and controversial. Therefore, a meta-analysis was conducted to clarify the relationship between p16INK4a promoter methylation and ovarian cancer. Methods PubMed, Web of Science, EMBASE and CNKI were searched to identify eligible studies for the evaluation of the association between p16INK4a promoter methylation and ovarian cancer. Odds ratio (ORs) and 95% confidence intervals (95%CI) were calculated to determine the strength of association between p16INK4a promoter methylation and ovarian cancer. Results A total of 612 ovarian cancer patients and 289 controls from 12 eligible studies were included in the meta-analysis. Overall, a significant association was observed between p16INK4a methylation status and ovarian cancer risk using a fixed-effects model (OR = 2.02, 95% CI = 1.39–2.94). Conclusion The results of our meta-analysis show that aberrant methylation of p16INK4a promoter was significantly associated with ovarian cancer. It may represent a promising molecular marker to monitor the disease and provides new insights into the treatment of human ovarian cancer. PMID:27648827

  4. Down-Regulation of miR-148a Promotes Metastasis by DNA Methylation and is Associated with Prognosis of Skin Cancer by Targeting TGIF2

    PubMed Central

    Tian, Yanli; Wei, Wei; Li, Li; Yang, Rongya

    2015-01-01

    Background MicroRNAs (miRNA) dysregulation has been considered to be significantly related to the occurrence and development of cancers. Several studies had proved that DNA methylation is an important cause of the abnormal expression of miRNAs. The purpose of this study was to investigate the methylation status of miR-148a and its effects on the metastasis and prognosis of skin cancer, as well as the interaction with TGIF2 gene. Material/Methods According to the qRT-PCR analysis, the expression of miR-148a was down-regulated in tumor tissues compared with the adjacent tissues and healthy controls (P<0.05). In vitro cell metastasis assay revealed that miR-148a could inhibit cell metastasis and its down-regulation promoted metastasis. Luciferase reporter assay found that TGIF2 gene was a target gene and its expression was suppressed by miR-148a in skin cancer. Results Methylation-specific PCR demonstrated that DNA methylation rate of miR-148a was higher in tumor tissues than in adjacent tissues and healthy tissues (P<0.05). miR-148a expression was proved to be epigenetically regulated after the demethylation of it by 5-aza-20-deoxycytidine treatment and qRT-PCR analysis. miR-148a methylation was significantly influenced by many clinicopathologic characteristics such as age (P=0.000), pathological differentiation (P=0.000), and lymph node metastasis (P=0.000). Besides, Kaplan-Meier analysis showed patients with miR-148a methylation lived shorter than those without that (P<0.001). Cox regression analysis manifested that miR-148a methylation (HR=0.053, 95CI%=0.005–0.548, P=0.014) could be serve as an independent prognostic marker for skin cancer. Conclusions Taken together, the expression of miR-148a was regulated by DNA methylation and targeted by TGIF2. Its methylation may be a potential prognostic indicator in skin cancer. PMID:26638007

  5. Promoter methylation of fas apoptotic inhibitory molecule 2 gene is associated with obesity and dyslipidaemia in Chinese children.

    PubMed

    Wu, Lijun; Zhao, Xiaoyuan; Shen, Yue; Zhang, Mei-Xian; Yan, Yinkun; Hou, Dongqing; Meng, Linghui; Liu, Junting; Cheng, Hong; Mi, Jie

    2015-05-01

    Fas apoptotic inhibitory molecule 2 (FAIM2) is an obesity-related gene, but the mechanisms by which FAIM2 is involved in obesity are not understood. Epigenetic alterations are important factors in the development of obesity. The purpose of this study was to investigate the potential associations of FAIM2 promoter methylation with obesity and components of dyslipidaemia in Chinese children. We studied FAIM2 promoter methylation in 59 obese and 39 lean children using the Sequenom MassARRAY platform. The methylation levels at 8 CpG sites in the FAIM2 promoter were significantly different between the obese and lean subjects, especially the methylation level at CpG site 500 (p = 0.01). The methylation levels at several of the examined CpG sites were significantly associated with dyslipidaemia and its components after adjusting for age, gender and body mass index (BMI). The methylation levels at two CpG sites (sites -362 and -360 and site -164) were highly significantly associated with high level of triglycerides (p = 0.00002 and 0.0009, respectively). This study provides the first evidence that the methylation levels of the FAIM2 promoter are significantly associated with obesity and are independently associated with dyslipidaemia and its components in Chinese children.

  6. Chromatin inactivation precedes de novo dna methylation during the progressive epigenetic silencing of the rassf1a promoter

    SciTech Connect

    Strunnikova Maria; Schagdarsurengin, Undraga; Kehlen, Astrid; Garbe, James C.; Stampfer, Martha R.; Dammann, Reinhard

    2005-02-23

    Epigenetic inactivation of the RASSF1A tumor suppressor by CpG island methylation was frequently detected in cancer. However, the mechanisms of this aberrant DNA methylation are unknown. In the RASSF1A promoter, we characterized four Sp1 sites, which are frequently methylated in cancer. We examined the functional relationship between DNA methylation, histone modification, Sp1 binding, and RASSF1A expression in proliferating human mammary epithelial cells. With increasing passages, the transcription of RASSF1A was dramatically silenced. This inactivation was associated with deacetylation and lysine 9 trimethylation of histone H3 and an impaired binding of Sp1 at the RASSF1A promoter. In mammary epithelial cells that had overcome a stress-associated senescence barrier, a spreading of DNA methylation in the CpG island promoter was observed. When the RASSF1A-silenced cells were treated with inhibitors of DNA methyltransferase and histone deacetylase, binding of Sp1 and expression of RASSF1 A reoccurred. In summary, we observed that histone H3 deacetylation and H3 lysine 9 trimethylation occur in the same time window as gene inactivation and precede DNA methylation. Our data suggest that in epithelial cells, histone inactivation may trigger de novo DNA methylation of the RASSF1A promoter and this system may serve as a model for CpG island inactivation of tumor suppressor genes.

  7. Promoter competition assay for analyzing gene regulation in joint tissue engineering.

    PubMed

    Sun, Hui Bin; Malacinski, George M; Yokota, Hiroki

    2002-08-01

    We describe a new biochemical technique, "promoter competition assay," for examining the role of cis-acting DNA elements in tissue cultures. Recent advances in tissue engineering permit the culture of a variety of cells. Many tissues are engineered, however, without an appropriate understanding of molecular machinery that regulates gene expression and cellular growth. For elucidating the role of cis-acting regulatory elements in cellular differentiation and growth, we developed the promoter competition assay. This assay uses a transient transfer into cells of double-stranded DNA fragments consisting of cis-acting regulatory elements. The transferred DNA fragments act as a competitor and titrate the function of their genomic counterparts. Using synovial cells derived from a rheumatoid arthritis patient, we examined a role of NF-kappa B binding sites in the regulation of the expression of matrix metalloproteinase (MMP) genes. The results support a stimulatory role of NF-kappa B in transcriptional regulation of MMP-1 and MMP-13.

  8. Pyrosequencing quantified methylation level of BRCA1 promoter as prognostic factor for survival in breast cancer patient

    PubMed Central

    Lin, Xiao-Yan; Zhang, Lian; Zhang, Jia-Xin; Wang, Lian-Xin; Yang, Jun; Ding, Jin-Hua; Pan, Xin; Shao, Zhi-Ming; Biskup, Ewelina

    2016-01-01

    BRCA1 promoter methylation is an essential epigenetic transcriptional silencing mechanism, related to breast cancer (BC) occurrence and progression. We quantified the methylation level of BRCA1 promoter and evaluated its significance as prognostic and predictive factor. BRCA1 promoter methylation level was quantified by pyrosequencing in surgical cancerous and adjacent normal specimens from 154 BC patients. A follow up of 98 months was conducted to assess the correlation between BRCA1-methylation level vs. overall survival (OS) and disease free survival (DFS). The mean methylation level in BC tissues was significantly higher (mean 32.6%; median 31.9%) than in adjacent normal samples (mean 16.2%; median 13.0%) (P < 0.0001). Tumor stage (R = 0.6165, P < 0.0001) and size (R = 0.7328, P < 0.0001) were significantly correlated with the methylation level. Patients with unmethylated BRCA1 had a better OS and DFS compared to the methylated group (each P < 0.0001). BRCA1 promoter methylation level has a statistically significance on survival in BC patients (HazR = 1.465, P = 0.000) and is an independent prognostic factor for OS in BC patients (HazR = 2.042, P = 0.000). Patients with ductal type, HER2 negative, lymph node negative stage 1+2 tumors had a better OS and DFS. Classification of grades and molecular subtypes did not show any prognostic significance. Pyrosequencing is a precise and efficient method to quantify BRCA1 promoter methylation level, with a high potential for future clinical implication, as it identifies subgroups of patients with poorer prognosis. PMID:27027444

  9. Pyrosequencing quantified methylation level of BRCA1 promoter as prognostic factor for survival in breast cancer patient.

    PubMed

    Cai, Feng-Feng; Chen, Su; Wang, Ming-Hong; Lin, Xiao-Yan; Zhang, Lian; Zhang, Jia-Xin; Wang, Lian-Xin; Yang, Jun; Ding, Jin-Hua; Pan, Xin; Shao, Zhi-Ming; Biskup, Ewelina

    2016-05-10

    BRCA1 promoter methylation is an essential epigenetic transcriptional silencing mechanism, related to breast cancer (BC) occurrence and progression. We quantified the methylation level of BRCA1 promoter and evaluated its significance as prognostic and predictive factor. BRCA1 promoter methylation level was quantified by pyrosequencing in surgical cancerous and adjacent normal specimens from 154 BC patients. A follow up of 98 months was conducted to assess the correlation between BRCA1-methylation level vs. overall survival (OS) and disease free survival (DFS). The mean methylation level in BC tissues was significantly higher (mean 32.6%; median 31.9%) than in adjacent normal samples (mean 16.2%; median 13.0%) (P < 0.0001). Tumor stage (R = 0.6165, P < 0.0001) and size (R = 0.7328, P < 0.0001) were significantly correlated with the methylation level. Patients with unmethylated BRCA1 had a better OS and DFS compared to the methylated group (each P < 0.0001). BRCA1 promoter methylation level has a statistically significance on survival in BC patients (HazR = 1.465, P = 0.000) and is an independent prognostic factor for OS in BC patients (HazR = 2.042, P = 0.000). Patients with ductal type, HER2 negative, lymph node negative stage 1+2 tumors had a better OS and DFS. Classification of grades and molecular subtypes did not show any prognostic significance. Pyrosequencing is a precise and efficient method to quantify BRCA1 promoter methylation level, with a high potential for future clinical implication, as it identifies subgroups of patients with poorer prognosis. PMID:27027444

  10. CpG promoter methylation status is not a prognostic indicator of gene expression in beryllium challenge.

    PubMed

    Tooker, Brian C; Ozawa, Katherine; Newman, Lee S

    2016-05-01

    Individuals exposed to beryllium (Be) may develop Be sensitization (BeS) and progress to chronic beryllium disease (CBD). Recent studies with other metal antigens suggest epigenetic mechanisms may be involved in inflammatory disease processes, including granulomatous lung disorders and that a number of metal cations alter gene methylation. The objective of this study was to determine if Be can exert an epigenetic effect on gene expression by altering methylation in the promoter region of specific genes known to be involved in Be antigen-mediated gene expression. To investigate this objective, three macrophage tumor mouse cell lines known to differentially produce tumor necrosis factor (TNF)-α, but not interferon (IFN)-γ, in response to Be antigen were cultured with Be or controls. Following challenges, ELISA were performed to quantify induced TNFα and IFNγ expression. Bisulfate-converted DNA was evaluated by pyrosequencing to quantify CpG methylation within the promoters of TNFα and IFNγ. Be-challenged H36.12J cells expressed higher levels of TNFα compared to either H36.12E cells or P388D.1 cells. However, there were no variations in TNFα promoter CpG methylation levels between cell lines at the six CpG sites tested. H36.12J cell TNFα expression was shown to be metal-specific by the induction of significantly more TNFα when exposed to Be than when exposed to aluminum sulfate, or nickel (II) chloride, but not when exposed to cobalt (II) chloride. However, H36.12J cell methylation levels at the six CpG sites examined in the TNFα promoter did not correlate with cytokine expression differences. Nonetheless, all three cell lines had significantly more promoter methylation at the six CpG sites investigated within the IFNγ promoter (a gene that is not expressed) when compared to the six CpG sites investigated in the TNFα promoter, regardless of treatment condition (p < 1.17 × 10(-9)). These findings suggest that, in this cell system, promoter hypo-methylation

  11. CpG promoter methylation status is not a prognostic indicator of gene expression in beryllium challenge.

    PubMed

    Tooker, Brian C; Ozawa, Katherine; Newman, Lee S

    2016-05-01

    Individuals exposed to beryllium (Be) may develop Be sensitization (BeS) and progress to chronic beryllium disease (CBD). Recent studies with other metal antigens suggest epigenetic mechanisms may be involved in inflammatory disease processes, including granulomatous lung disorders and that a number of metal cations alter gene methylation. The objective of this study was to determine if Be can exert an epigenetic effect on gene expression by altering methylation in the promoter region of specific genes known to be involved in Be antigen-mediated gene expression. To investigate this objective, three macrophage tumor mouse cell lines known to differentially produce tumor necrosis factor (TNF)-α, but not interferon (IFN)-γ, in response to Be antigen were cultured with Be or controls. Following challenges, ELISA were performed to quantify induced TNFα and IFNγ expression. Bisulfate-converted DNA was evaluated by pyrosequencing to quantify CpG methylation within the promoters of TNFα and IFNγ. Be-challenged H36.12J cells expressed higher levels of TNFα compared to either H36.12E cells or P388D.1 cells. However, there were no variations in TNFα promoter CpG methylation levels between cell lines at the six CpG sites tested. H36.12J cell TNFα expression was shown to be metal-specific by the induction of significantly more TNFα when exposed to Be than when exposed to aluminum sulfate, or nickel (II) chloride, but not when exposed to cobalt (II) chloride. However, H36.12J cell methylation levels at the six CpG sites examined in the TNFα promoter did not correlate with cytokine expression differences. Nonetheless, all three cell lines had significantly more promoter methylation at the six CpG sites investigated within the IFNγ promoter (a gene that is not expressed) when compared to the six CpG sites investigated in the TNFα promoter, regardless of treatment condition (p < 1.17 × 10(-9)). These findings suggest that, in this cell system, promoter hypo-methylation

  12. CpG Promoter Methylation Status is not a Prognostic Indicator of Gene Expression in Beryllium Challenge

    PubMed Central

    Tooker, Brian C.; Ozawa, Katie; Newman, Lee S.

    2016-01-01

    Individuals exposed to beryllium (Be) may develop Be sensitization (BeS) and progress to chronic beryllium disease (CBD). Recent studies with other metal antigens suggest epigenetic mechanisms may be involved in inflammatory disease processes, including granulomatous lung disorders and that a number of metal cations alter gene methylation. The objective of this study was to determine if Be can exert an epigenetic effect on gene expression by altering methylation in the promoter region of specific genes known to be involved in Be antigen-mediated gene expression. To investigate this objective, three macrophage tumor mouse cell lines known to differentially produce tumor necrosis factor (TNF)-α, but not interferon (IFN)-γ, in response to Be antigen were cultured with Be or controls. Following challenges, ELISA were performed to quantify induced TNFα and IFNγ expression. Bisulfate-converted DNA was evaluated by pyrosequencing to quantify CpG methylation within the promoters of TNFα and IFNγ. Be-challenged H36.12J cells expressed higher levels of TNFα compared to either H36.12E cells or P388D.1 cells. However, there were no variations in TNFα promoter CpG methylation levels between cell lines at the 6 CpG sites tested. H36.12J cell TNFα expression was shown to be metal specific by the induction of significantly more TNFα when exposed to Be than when exposed to aluminum sulfate, or nickel (II) chloride but not when exposed to cobalt (II) chloride. However, H36.12J cell methylation levels at the six CpG sites examined in the TNFα promoter did not correlate with cytokine expression differences. Nonetheless, all three cell lines had significantly more promoter methylation at the six CpG sites investigated within the IFNα promoter (a gene that is not expressed) when compared to the six CpG sites investigated in the TNFα promoter, regardless of treatment condition (p < 1.17 × 10−9). These findings suggest that in this cell system, promoter hypo-methylation

  13. Effect of vitrification on promoter methylation and the expression of pluripotency and differentiation genes in mouse blastocysts.

    PubMed

    Zhao, Xue-Ming; Du, Wei-Hua; Hao, Hai-Sheng; Wang, Dong; Qin, Tong; Liu, Yan; Zhu, Hua-Bin

    2012-07-01

    The present study was designed to determine the effects of vitrification on promoter methylation and the expression levels of pluripotency and differentiation genes in mouse blastocysts. Promoter region CpG methylation patterns and the expression levels of octamer-binding transcription factor (Oct4), Nanog homeobox (Nanog), caudal-type homeobox 2 (Cdx2), and heart and neural crest derivatives-expressed transcript 1 (Hand1) were analyzed in fresh and vitrified mouse blastocysts. Methylation was measured by bisulphate mutagenesis and sequencing; gene expression was determined by real-time reverse transcription-PCR. The results showed that vitrification significantly reduced the methylation levels of the Oct4 (85% vs. 62.5%), Nanog (77.5% vs. 55%), and Cdx2 promoters (4.6% vs. 1.4%; P < 0.05) in mouse blastocysts, which correlated with increased expression of Oct4 and Nanog in vitrified blastocysts. Hand1 promoter methylation was not significantly different in the fresh (17.9%) versus vitrification group (21.4%; P > 0.05). The expression levels of Cdx2 and Hand1 were not significantly different in fresh and vitrified blastocysts. In conclusion, vitrification significantly decreased Oct4, Nanog, and Cdx2 promoter methylation in mouse blastocysts, which correlated with increased expression of Oct4 and Nanog.

  14. Nicotine induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production

    SciTech Connect

    Wang, Tingting; Chen, Man; Liu, Lian; Cheng, Huaiyan; Yan, You-E; Feng, Ying-Hong; Wang, Hui

    2011-12-15

    Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. -- Highlights: Black-Right-Pointing-Pointer Nicotine-induced StAR inhibition in two human adrenal cell models. Black-Right-Pointing-Pointer Nicotine-induced single CpG site methylation in StAR promoter. Black-Right-Pointing-Pointer Persistent StAR inhibition and single CpG methylation after nicotine termination

  15. Ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) is a potential tumour suppressor in prostate cancer and is frequently silenced by promoter methylation

    PubMed Central

    2011-01-01

    Background We have previously reported significant downregulation of ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) in prostate cancer (PCa) compared to the surrounding benign tissue. UCHL1 plays an important role in ubiquitin system and different cellular processes such as cell proliferation and differentiation. We now show that the underlying mechanism of UCHL1 downregulation in PCa is linked to its promoter hypermethylation. Furthermore, we present evidences that UCHL1 expression can affect the behavior of prostate cancer cells in different ways. Results Methylation specific PCR analysis results showed a highly methylated promoter region for UCHL1 in 90% (18/20) of tumor tissue compared to 15% (3/20) of normal tissues from PCa patients. Pyrosequencing results confirmed a mean methylation of 41.4% in PCa whereas only 8.6% in normal tissues. To conduct functional analysis of UCHL1 in PCa, UCHL1 is overexpressed in LNCaP cells whose UCHL1 expression is normally suppressed by promoter methylation and found that UCHL1 has the ability to decrease the rate of cell proliferation and suppresses anchorage-independent growth of these cells. In further analysis, we found evidence that exogenous expression of UCHL1 suppress LNCaP cells growth probably via p53-mediated inhibition of Akt/PKB phosphorylation and also via accumulation of p27kip1 a cyclin dependant kinase inhibitor of cell cycle regulating proteins. Notably, we also observed that exogenous expression of UCHL1 induced a senescent phenotype that was detected by using the SA-ß-gal assay and might be due to increased p14ARF, p53, p27kip1 and decreased MDM2. Conclusion From these results, we propose that UCHL1 downregulation via promoter hypermethylation plays an important role in various molecular aspects of PCa biology, such as morphological diversification and regulation of proliferation. PMID:21999842

  16. RlmCD-mediated U747 methylation promotes efficient G748 methylation by methyltransferase RlmAII in 23S rRNA in Streptococcus pneumoniae; interplay between two rRNA methylations responsible for telithromycin susceptibility

    PubMed Central

    Shoji, Tatsuma; Takaya, Akiko; Sato, Yoshiharu; Kimura, Satoshi; Suzuki, Tsutomu; Yamamoto, Tomoko

    2015-01-01

    Adenine at position 752 in a loop of helix 35 from positions 745 to 752 in domain II of 23S rRNA is involved in binding to the ribosome of telithromycin (TEL), a member of ketolides. Methylation of guanine at position 748 by the intrinsic methyltransferase RlmAII enhances binding of telithromycin (TEL) to A752 in Streptococcus pneumoniae. We have found that another intrinsic methylation of the adjacent uridine at position 747 enhances G748 methylation by RlmAII, rendering TEL susceptibility. U747 and another nucleotide, U1939, were methylated by the dual-specific methyltransferase RlmCD encoded by SP_1029 in S. pneumoniae. Inactivation of RlmCD reduced N1-methylated level of G748 by RlmAII in vivo, leading to TEL resistance when the nucleotide A2058, located in domain V of 23S rRNA, was dimethylated by the dimethyltransferase Erm(B). In vitro methylation of rRNA showed that RlmAII activity was significantly enhanced by RlmCD-mediated pre-methylation of 23S rRNA. These results suggest that RlmCD-mediated U747 methylation promotes efficient G748 methylation by RlmAII, thereby facilitating TEL binding to the ribosome. PMID:26365244

  17. Inhibition of DNA methylation promotes breast tumor sensitivity to netrin-1 interference.

    PubMed

    Grandin, Mélodie; Mathot, Pauline; Devailly, Guillaume; Bidet, Yannick; Ghantous, Akram; Favrot, Clementine; Gibert, Benjamin; Gadot, Nicolas; Puisieux, Isabelle; Herceg, Zdenko; Delcros, Jean-Guy; Bernet, Agnès; Mehlen, Patrick; Dante, Robert

    2016-01-01

    In a number of human cancers, NTN1 upregulation inhibits apoptosis induced by its so-called dependence receptors DCC and UNC5H, thus promoting tumor progression. In other cancers however, the selective inhibition of this dependence receptor death pathway relies on the silencing of pro-apoptotic effector proteins. We show here that a substantial fraction of human breast tumors exhibits simultaneous DNA methylation-dependent loss of expression of NTN1 and of DAPK1, a serine threonine kinase known to transduce the netrin-1 dependence receptor pro-apoptotic pathway. The inhibition of DNA methylation by drugs such as decitabine restores the expression of both NTN1 and DAPK1 in netrin-1-low cancer cells. Furthermore, a combination of decitabine with NTN1 silencing strategies or with an anti-netrin-1 neutralizing antibody potentiates tumor cell death and efficiently blocks tumor growth in different animal models. Thus, combining DNA methylation inhibitors with netrin-1 neutralizing agents may be a valuable strategy for combating cancer. PMID:27378792

  18. Aberrant Methylation of the E-Cadherin Gene Promoter Region in the Endometrium of Women With Uterine Fibroids.

    PubMed

    Li, Yan; Ran, Ran; Guan, Yingxia; Zhu, Xiaoxiong; Kang, Shan

    2016-08-01

    A uterine fibroid is a leiomyoma that originates from the smooth muscle layer of the uterus. A variety of endometrial abnormalities are associated with uterine fibroids. This study aims to investigate the methylation status of the E-cadherin gene (CDH1) promoter region in the endometrium of patients with uterine fibroids. The methylation of CDH1 was studied using methylation-specific polymerase chain reaction in the endometrial tissue of 102 patients with uterine fibroids and 50 control patients. The E-cadherin expression was examined by flow cytometry. The methylation rate of CDH1 promoter region was 33.3% in the endometrium of patients with uterine fibroids and 8% in the endometrium of women without fibroids. The frequency of CDH1 promoter methylation in the endometrium of patients with fibroids was significantly higher than that in the endometrium of women without fibroids (P = .001). Furthermore, the E-cadherin expression level in methylation-positive tissues was significantly lower than that in methylation-negative tissues (P = .017). These results suggest that epigenetic aberration of CDH1 may occur in the endometrium of patients with fibroids, which may be associated with E-cadherin protein expression in endometrial tissue. PMID:26880767

  19. Aberrant Methylation of the E-Cadherin Gene Promoter Region in the Endometrium of Women With Uterine Fibroids.

    PubMed

    Li, Yan; Ran, Ran; Guan, Yingxia; Zhu, Xiaoxiong; Kang, Shan

    2016-08-01

    A uterine fibroid is a leiomyoma that originates from the smooth muscle layer of the uterus. A variety of endometrial abnormalities are associated with uterine fibroids. This study aims to investigate the methylation status of the E-cadherin gene (CDH1) promoter region in the endometrium of patients with uterine fibroids. The methylation of CDH1 was studied using methylation-specific polymerase chain reaction in the endometrial tissue of 102 patients with uterine fibroids and 50 control patients. The E-cadherin expression was examined by flow cytometry. The methylation rate of CDH1 promoter region was 33.3% in the endometrium of patients with uterine fibroids and 8% in the endometrium of women without fibroids. The frequency of CDH1 promoter methylation in the endometrium of patients with fibroids was significantly higher than that in the endometrium of women without fibroids (P = .001). Furthermore, the E-cadherin expression level in methylation-positive tissues was significantly lower than that in methylation-negative tissues (P = .017). These results suggest that epigenetic aberration of CDH1 may occur in the endometrium of patients with fibroids, which may be associated with E-cadherin protein expression in endometrial tissue.

  20. Interplay between promoter methylation and chromosomal loss in gene silencing at 3p11-p14 in cervical cancer

    PubMed Central

    Lando, Malin; Fjeldbo, Christina S; Wilting, Saskia M; Snoek, Barbara C; Aarnes, Eva-Katrine; Forsberg, Malin F; Kristensen, Gunnar B; Steenbergen, Renske DM; Lyng, Heidi

    2015-01-01

    Loss of 3p11-p14 is a frequent event in epithelial cancer and a candidate prognostic biomarker in cervical cancer. In addition to loss, promoter methylation can participate in gene silencing and promote tumor aggressiveness. We have performed a complete mapping of promoter methylation at 3p11-p14 in two independent cohorts of cervical cancer patients (n = 149, n = 121), using Illumina 450K methylation arrays. The aim was to investigate whether hyperm-ethylation was frequent and could contribute to gene silencing and disease aggressiveness either alone or combined with loss. By comparing the methylation level of individual CpG sites with corresponding data of normal cervical tissue, 26 out of 41 genes were found to be hypermethylated in both cohorts. The frequency of patients with hypermethylation of these genes was found to be higher at tumor stages of 3 and 4 than in stage 1 tumors. Seventeen of the 26 genes were transcriptionally downregulated in cancer compared to normal tissue, whereof 6 genes showed a significant correlation between methylation and expression. Integrated analysis of methylation, gene dosage, and expression of the 26 hypermethylated genes identified 3 regulation patterns encompassing 8 hypermethylated genes; a methylation driven pattern (C3orf14, GPR27, ZNF717), a gene dosage driven pattern (THOC7, PSMD6), and a combined methylation and gene dosage driven pattern (FHIT, ADAMTS9, LRIG1). In survival analysis, patients with both hypermethylation and loss of LRIG1 had a worse outcome compared to those harboring only hypermethylation or none of the events. C3orf14 emerged as a novel methylation regulated suppressor gene, for which knockdown was found to promote invasive growth in human papilloma virus (HPV)-transformed keratinocytes. In conclusion, hypermethylation at 3p11-p14 is common in cervical cancer and may exert a selection pressure during carcinogenesis alone or combined with loss. Information on both events could lead to improved

  1. Promoter Methylation Status Modulate the Expression of Tumor Suppressor (RbL2/p130) Gene in Breast Cancer

    PubMed Central

    Ullah, Farman; Khan, Taimoor; Ali, Nawab; Malik, Faraz Arshad; Kayani, Mahmood Akhtar; Shah, Syed Tahir Abbas; Saeed, Muhammad

    2015-01-01

    Background Aberrant expression of tumor suppressor genes may correspond to the abnormal cell development and tumorigenesis. Rbl2/p130, a member of retinoblastoma family of proteins, has growth suppressive properties. Numerous studies reported de-regulation of Rbl2/p130 in various types of cancer as a consequence of a number of genetic alterations. However, role of epigenetic mechanisms like DNA methylation in Rbl2/p130 expression remains elusive. Methods In the current study, 76 breast cancer tumors along with normal tissues (n = 76), blood (n = 76) of respective individuals and control blood (n = 50) were analyzed. Rbl2/p130 expression was analyzed by quantitative real time PCR (syber green method). Promoter methylation status was studied through methylation specific PCR of bisulfite converted genomic DNA. Data was analyzed using various statistical tests. Results We report significantly reduced Rbl2/p130 expression (P = 0.001) in tumors tissues as compared to control samples. Similarly, Rbl2/p130 expression varies with age and disease stages (P = 0.022), which suggest its involvement in tumor progression. Aberrant promoter methylation (Δmeth) was found in almost all the diseased samples and that was significantly different (P<0.001) with control samples. Similarly, methylation status varies significantly with tumor progression stages (P = 0.022). Hyper-methylation was observed at -1, +3, +15 and +75 of Rbl2/p130 promoter flanking around the TSS. Statistical analysis revealed that Rbl2/p130 expression negatively correlates to its promoter methylation (r = -0.412) in tumor tissues. Our results reflect an epigenetic regulation of Rbl2/p130 expression in breast cancer. This highlights the importance of Rbl2/p130 promoter methylation in breast cancer pathogenesis. PMID:26271034

  2. Influence of lifestyle on the FAIM2 promoter methylation between obese and lean children: a cohort study

    PubMed Central

    Wu, Lijun; Zhao, Xiaoyuan; Shen, Yue; Huang, Guimin; Zhang, Meixian; Yan, Yinkun; Hou, Dongqing; Meng, Linghui; Liu, Junting; Cheng, Hong; Mi, Jie

    2015-01-01

    Objective An obesity-related gene, Fas apoptotic inhibitory molecule 2 (FAIM2), is regulated by nutritional state and the methylation levels of the FAIM2 promoter are significantly associated with obesity. Lifestyle factors, such as sedentary behaviour and physical activity, might modify epigenetic patterns that have been related to obesity. Whether the molecular mechanisms by which FAIM2 affects obesity are involved in lifestyle is unclear. This study investigates the potential differences of the FAIM2 promoter methylation with sedentary behaviour and physical activity in obese and lean children. Design Cohort study. Setting Institute of Pediatrics in China. Participants 59 obese cases and 39 lean controls aged 8–18 years recruited from a cross-sectional survey of children from Beijing in 2013. Primary and secondary outcome measures The FAIM2 promoter methylation was quantified using the Sequenom MassARRAY platform. Sedentary behaviour and physical activity were investigated using a questionnaire. The influences of different lifestyles on methylation variations in obese and lean children were examined by multiple linear regression. Results The methylation levels at seven CpG sites of the FAIM2 promoter were significantly associated with sedentary behaviour, especially the methylation levels at site −975, site −413, sites −362 and −360, and sites −353 and −349 (p=0.00004, 0.00009, 0.0006 and 0.00005, respectively). There were significant differences between the methylation levels at four CpG sites in obese and lean participants with high or moderate physical activity level <150 min/week. Conclusions This study provides the first evidence that there are significant differences in the associations of the FAIM2 promoter methylation with sedentary behaviour and physical activity between obese and lean children. Our results suggest that lifestyle may possibly be mediating the process of the FAIM2 involved in obesity. PMID:25922107

  3. Methylation of the Sox9 and Oct4 promoters and its correlation with gene expression during testicular development in the laboratory mouse

    PubMed Central

    Pamnani, Mamta; Sinha, Puja; Singh, Alka; Nara, Seema; Sachan, Manisha

    2016-01-01

    Abstract Sox9 and Oct4 are two important regulatory factors involved in mammalian development. Sox9, a member of the group E Sox transcription factor family, has a crucial role in the development of the genitourinary system, while Oct4, commonly known as octamer binding transcription factor 4, belongs to class V of the transcription family. The expression of these two proteins exhibits a dynamic pattern with regard to their expression sites and levels. The aim of this study was to investigate the role of de novo methylation in the regulation of the tissue- and site-specific expression of these proteins. The dynamics of the de novo methylation of 15 CpGs and six CpGs in Sox9 and Oct4 respectively, was studied with sodium bisulfite genomic DNA sequencing in mouse testis at different developmental stages. Consistent methylation of three CpGs was observed in adult ovary in which the expression of Sox9 was feeble, while the level of methylation in somatic tissue was greater in Oct4 compared to germinal tissue. The promoter-chromatin status of Sox9 was also studied with a chromatin immune-precipitation assay. PMID:27560488

  4. Chemiluminescence resonance energy transfer biosensing platform for site-specific determination of DNA methylation and assay of DNA methyltransferase activity using exonuclease III-assisted target recycling amplification.

    PubMed

    Chen, Chun; Li, Baoxin

    2014-04-15

    Site-specific determination of DNA methylation and assay of MTase activity can be used for determining specific cancer types, providing insights into the mechanism of gene repression, and developing novel drugs to treat methylation-related diseases. Herein, we develop a simple and highly sensitive chemiluminescence (CL) biosensing platform for site-specific determination of DNA methylation using Exonuclease III (Exo III)-assisted target recycling signal amplification. After bisulfite treatment of mixture of methylated DNA and unmethylated DNA, methylated DNA can hybridize with fluorescein (FAM)-labeled probe DNA to form double-stranded DNA (dsDNA), removing the FAM-labeled probe DNA from the surface of grapheme oxide, and the chemiluminescence resonance energy transfer (CRET) sensing signal can be observed and then amplified using Exo III-based recycling strategy. The biosensing platform exhibits excellent high sensitivity, and it can ever distinguish as low as 0.002% methylation level from the mixture, which is superior to most currently reported methods used for DNA methylation assay. In addition, the proposed method can also be used to sensitively assay MTase activity with determination limit of 0.007 U/mL. This CL biosensing offers the advantages of being facile, sensitive, rapid and cost-effective. These features make the system promising for future use for early cancer diagnosis and discover of new anticancer drugs.

  5. The promoter methylomes of monochorionic twin placentas reveal intrauterine growth restriction-specific variations in the methylation patterns

    PubMed Central

    He, Zhiming; Lu, Hanlin; Luo, Huijuan; Gao, Fei; Wang, Tong; Gao, Yu; Fang, Qun; Wang, Junwen

    2016-01-01

    Intrauterine growth restriction (IUGR) affects the foetus and has a number of pathological consequences throughout life. Recent work has indicated that variations in DNA methylation might cause placental dysfunction, which may be associated with adverse pregnancy complications. Here, we investigated the promoter methylomes of placental shares from seven monochorionic (MC) twins with selective intrauterine growth restriction (sIUGR) using the healthy twin as an ideal control. Our work demonstrated that the IUGR placental shares harboured a distinct DNA hypomethylation pattern and that the methylation variations preferentially occurred in CpG island shores or non-CpG island promoters. The differentially methylated promoters could significantly separate the IUGR placental shares from the healthy ones. Ultra‐performance liquid chromatography/tandem mass spectrometry (UPLC‐MS/MS) further confirmed the genome‐wide DNA hypomethylation and the lower level of hydroxymethylation statuses in the IUGR placental shares. The methylation variations of the LRAT and SLC19A1 promoters, which are involved in vitamin A metabolism and folate transportation, respectively, and the EFS promoter were further validated in an additional 12 pairs of MC twins with sIUGR. Although the expressions of LRAT, SLC19A1 and EFS were not affected, we still speculated that DNA methylation and hydroxymethylation might serve a functional role during in utero foetal development. PMID:26830322

  6. Expression of human histo-blood group ABO genes is dependent upon DNA methylation of the promoter region.

    PubMed

    Kominato, Y; Hata, Y; Takizawa, H; Tsuchiya, T; Tsukada, J; Yamamoto, F

    1999-12-24

    We have investigated the regulatory role of DNA methylation in the expression of the human histo-blood group ABO genes. The ABO gene promoter region contains a CpG island whose methylation status correlates well with gene expression in the cell lines tested. The CpG island was found hypomethylated in some cell lines that expressed ABO genes, whereas the other cell lines that did not express ABO genes were hypermethylated. Whereas constitutive transcriptional activity of the ABO gene promoter was demonstrated in both expressor and nonexpressor cell lines by transient transfection of reporter constructs containing the ABO gene promoter sequence, HhaI methylase-catalyzed in vitro methylation of the promoter region prior to DNA transfection suppressed the promoter activity when introduced into the expressor gastric cancer cell line KATOIII cells. On the other hand, in the nonexpressor gastric cancer cell line MKN28 cells, treatment with DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine resulted in demethylation of the ABO gene promoter and appearance of A-transferase messages, as well as A-antigens synthesized by A-transferase. Taken together, these studies suggest that DNA methylation of the ABO gene promoter may play an important role in the regulation of ABO gene expression. PMID:10601288

  7. Promoter CpG island methylation of RET predicts poor prognosis in stage II colorectal cancer patients.

    PubMed

    Draht, Muriel X G; Smits, Kim M; Tournier, Benjamin; Jooste, Valerie; Chapusot, Caroline; Carvalho, Beatriz; Cleven, Arjen H G; Derks, Sarah; Wouters, Kim A D; Belt, Eric J T; Stockmann, Hein B A C; Bril, Herman; Weijenberg, Matty P; van den Brandt, Piet A; de Bruïne, Adriaan P; Herman, James G; Meijer, Gerrit A; Piard, Françoise; Melotte, Veerle; van Engeland, Manon

    2014-05-01

    Improved prognostic stratification of patients with TNM stage II colorectal cancer (CRC) is desired, since 20-30% of high-risk stage II patients may die within five years of diagnosis. This study was conducted to investigate REarranged during Transfection (RET) gene promoter CpG island methylation as a possible prognostic marker for TNM stage II CRC patients. The utility of RET promoter CpG island methylation in tumors of stage II CRC patients as a prognostic biomarker for CRC related death was studied in three independent series (including 233, 231, and 294 TNM stage II patients, respectively) by using MSP and pyrosequencing. The prognostic value of RET promoter CpG island methylation was analyzed by using Cox regression analysis. In the first series, analyzed by MSP, CRC stage II patients (n = 233) with RET methylated tumors had a significantly worse overall survival as compared to those with unmethylated tumors (HRmultivariable = 2.51, 95%-CI: 1.42-4.43). Despite a significant prognostic effect of RET methylation in stage III patients of a second series, analyzed by MSP, the prognostic effect in stage II patients (n = 231) was not statistically significant (HRmultivariable = 1.16, 95%-CI 0.71-1.92). The third series (n = 294), analyzed by pyrosequencing, confirmed a statistically significant association between RET methylation and poor overall survival in stage II patients (HRmultivariable = 1.91, 95%-CI: 1.04-3.53). Our results show that RET promoter CpG island methylation, analyzed by two different techniques, is associated with a poor prognosis in stage II CRC in two independent series and a poor prognosis in stage III CRC in one series. RET methylation may serve as a useful and robust tool for clinical practice to identify high-risk stage II CRC patients with a poor prognosis. This merits further investigation. PMID:24560444

  8. Sex-dichotomous effects of NOS1AP promoter DNA methylation on intracranial aneurysm and brain arteriovenous malformation.

    PubMed

    Wang, Zhepei; Zhao, Jikuang; Sun, Jie; Nie, Sheng; Li, Keqing; Gao, Feng; Zhang, Tiefeng; Duan, Shiwei; Di, Yazhen; Huang, Yi; Gao, Xiang

    2016-05-16

    The goal of this study was to investigate the contribution of NOS1AP-promoter DNA methylation to the risk of intracranial aneurysm (IA) and brain arteriovenous malformation (BAVM) in a Han Chinese population. A total of 48 patients with IAs, 22 patients with BAVMs, and 26 control individuals were enrolled in the study. DNA methylation was tested using bisulfite pyrosequencing technology. We detected significantly higher DNA methylation levels in BAVM patients than in IA patients based on the multiple testing correction (CpG4-5 methylation: 5.86±1.04% vs. 4.37±2.64%, P=0.006). In women, CpG4-5 methylation levels were much lower in IA patients (3.64±1.97%) than in BAVM patients (6.11±1.20%, P<0.0001). However, in men, CpG1-3 methylation levels were much higher in the controls (6.92±0.78%) than in BAVM patients (5.99±0.70%, P=0.008). Additionally, there was a gender-based difference in CpG1 methylation within the controls (men vs. women: 5.75±0.50% vs. 4.99±0.53%, P=0.003) and BAVM patients (men vs. women: 4.70±0.74% vs. 5.50±0.87%, P=0.026). A subgroup analysis revealed significantly higher CpG3 methylation in patients who smoked than in those who did not (P=0.041). Our results suggested that gender modulated the interaction between NOS1AP promoter DNA methylation in IA and BAVM patients. Our results also confirmed that regular tobacco smoking was associated with increased NOS1AP methylation in humans. Additional studies with larger sample sizes are required to replicate and extend these findings. PMID:27080431

  9. Histone Methyltransferase Enhancer of Zeste Homolog 2-Mediated ABCA1 Promoter DNA Methylation Contributes to the Progression of Atherosclerosis

    PubMed Central

    Wan, Wei; Yao, Feng; He, Ping-Ping; Xie, Wei; Mo, Zhong-Cheng; Shi, Jin-Feng; Wu, Jian-Feng; Peng, Juan; Liu, Dan; Cayabyab, Francisco S.; Zheng, Xi-Long; Tang, Xiang-Yang; Ouyang, Xin-Ping; Tang, Chao-Ke

    2016-01-01

    ATP-binding cassette transporter A1 (ABCA1) plays a critical role in maintaining cellular cholesterol homeostasis. The purpose of this study is to identify the molecular mechanism(s) underlying ABCA1 epigenetic modification and determine its potential impact on ABCA1 expression in macrophage-derived foam cell formation and atherosclerosis development. DNA methylation induced foam cell formation from macrophages and promoted atherosclerosis in apolipoprotein E-deficient (apoE−/−) mice. Bioinformatics analyses revealed a large CpG island (CGI) located in the promoter region of ABCA1. Histone methyltransferase enhancer of zeste homolog 2 (EZH2) downregulated ABCA1 mRNA and protein expression in THP-1 and RAW264.7 macrophage-derived foam cells. Pharmacological inhibition of DNA methyltransferase 1 (DNMT1) with 5-Aza-dC or knockdown of DNMT1 prevented the downregulation of macrophage ABCA1 expression, suggesting a role of DNA methylation in ABCA1 expression. Polycomb protein EZH2 induced DNMT1 expression and methyl-CpG-binding protein-2 (MeCP2) recruitment, and stimulated the binding of DNMT1 and MeCP2 to ABCA1 promoter, thereby promoting ABCA1 gene DNA methylation and atherosclerosis. Knockdown of DNMT1 inhibited EZH2-induced downregulation of ABCA1 in macrophages. Conversely, EZH2 overexpression stimulated DNMT1-induced ABCA1 gene promoter methylation and atherosclerosis. EZH2-induced downregulation of ABCA1 gene expression promotes foam cell formation and the development of atherosclerosis by DNA methylation of ABCA1 gene promoter. PMID:27295295

  10. Host-cell-determined methylation of specific Epstein-Barr virus promoters regulates the choice between distinct viral latency programs.

    PubMed Central

    Schaefer, B C; Strominger, J L; Speck, S H

    1997-01-01

    Epstein-Barr virus (EBV) is capable of adopting three distinct forms of latency: the type III latency program, in which six EBV-encoded nuclear antigens (EBNAs) are expressed, and the type I and type II latency programs, in which only a single viral nuclear protein, EBNA1, is produced. Several groups have reported heavy CpG methylation of the EBV genome in Burkitt's lymphoma cell lines which maintain type I latency, and loss of viral genome methylation in tumor cell lines has been correlated with a switch to type III latency. Here, evidence that the type III latency program must be inactivated by methylation to allow EBV to enter the type I or type II restricted latency program is provided. The data demonstrates that the EBNA1 gene promoter, Qp, active in types I and II latency, is encompassed by a CpG island which is protected from methylation. CpG methylation inactivates the type III latency program and consequently allows the type I or II latency program to operate by alleviating EBNA1-mediated repression of Qp. Methylation of the type III latency EBNA gene promoter, Cp, appears to be essential to prevent type III latency, since EBNA1 is expressed in all latently infected cells and, as shown here, is the only viral antigen required for activation of Cp. EBV is thus a pathogen which subverts host-cell-determined methylation to regulate distinct genetic programs. PMID:8972217

  11. The effects of omega-3 polyunsaturated fatty acids and genetic variants on methylation levels of the interleukin-6 gene promoter

    PubMed Central

    Ma, Yiyi; Smith, Caren E.; Lai, Chao-Qiang; Irvin, Marguerite R.; Parnell, Laurence D.; Lee, Yu-Chi; Pham, Lucia D.; Aslibekyan, Stella; Claas, Steven A.; Tsai, Michael Y.; Borecki, Ingrid B.; Kabagambe, Edmond K.; Ordovás, José M.; Absher, Devin M.; Arnett, Donna K.

    2016-01-01

    Scope Omega-3 PUFAs (n-3 PUFAs) reduce IL-6 gene expression, but their effects on transcription regulatory mechanisms are unknown. We aimed to conduct an integrated analysis with both population and in vitro studies to systematically explore the relationships among n-3 PUFA, DNA methylation, single nucleotide polymorphisms (SNPs), gene expression, and protein concentration of IL6. Methods and results Using data in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study and the Encyclopedia of DNA Elements (ENCODE) consortium, we found that higher methylation of IL6 promoter cg01770232 was associated with higher IL-6 plasma concentration (p = 0.03) and greater IL6 gene expression (p = 0.0005). Higher circulating total n-3 PUFA was associated with lower cg01770232 methylation (p = 0.007) and lower IL-6 concentration (p = 0.02). Moreover, an allele of IL6 rs2961298 was associated with higher cg01770232 methylation (p = 2.55 × 10−7). The association between n-3 PUFA and cg01770232 methylation was dependent on rs2961298 genotype (p = 0.02), but higher total n-3 PUFA was associated with lower cg01770232 methylation in the heterozygotes (p = 0.04) not in the homozygotes. Conclusion Higher n-3 PUFA is associated with lower methylation at IL6 promoter, which may be modified by IL6 SNPs. PMID:26518637

  12. [Methylation of FHIT gene promoter region in DNA from plasma of patients with myelodysplastic syndromes and demethylating effect of decitabine].

    PubMed

    Deng, Yin-Fen; Zhang, Lei; Zhang, Xiu-Qun; Hu, Ming-Qiu; Dai, Dan; Zhang, Xue-Zhong; Xu, Yan-Li

    2012-10-01

    This study was aimed to detect the methylation status of FHIT gene promoter region in the DNA from plasma of patients with myelodysplastic syndrome (MDS), and to investigate the demethylating effect of decitabine. Methylation-specific PCR method was used to detect the methylation status of FHIT gene promoter region in the DNA from plasma of 4 patients with MDS before and after treatment with decitabine plus semis CAG therapy (among them, 1 case of newly diagnosed MDS, 3 cases progressed into acute leukemia). The results indicated that 3 cases were found to have an increased methylation in the promoter region. After treatment with decitabine plus semis CAG, increased methylation was reversed in 2 cases. In 4 cases, 2 cases displayed clinical response. It is concluded that FHIT gene hypermethylation is associated with MDS pathogenesis. Decitabine has demethylating effect on the FHIT gene hypermethylation of plasma from MDS patients. Detecting the methylation status of FHIT gene in DNA from plasma may play a role in MDS auxiliary diagnosis or prognosis.

  13. Promoter-restricted H3 Lys 4 di-methylation is an epigenetic mark for monoallelic expression.

    PubMed

    Rougeulle, Claire; Navarro, Pablo; Avner, Philip

    2003-12-15

    Methylation of histone tails has been implicated in long-term epigenetic memory. Methylated H3 Lys 4 (K4) is a generally conserved mark for euchromatic, transcriptionally active regions, although the effect of this modification is likely also to depend on its distribution both within the euchromatic region and more specifically within a given gene. Here we describe a profile of H3K4 di-methylation that is specific for monoallelically expressed genes. Both X-linked genes subject to X-inactivation and autosomal imprinted genes have di-methylated H3K4 restricted to their promoter regions. In contrast, high levels of H3K4 di-methylation are found in both promoters and exonic parts of autosomal genes and of X-linked genes that escape X-inactivation. We suggest that this pattern of promoter restricted H3 Lys 4 di-methylation, already present in totipotent cells, is causally related to the long-term programming of allelic expression and provides an epigenetic mark for monoallelically expressed genes.

  14. Association between early promoter-specific DNA methylation changes and outcome in older acute myeloid leukemia patients.

    PubMed

    Achille, Nicholas J; Othus, Megan; Phelan, Kathleen; Zhang, Shubin; Cooper, Kathrine; Godwin, John E; Appelbaum, Frederick R; Radich, Jerald P; Erba, Harry P; Nand, Sucha; Zeleznik-Le, Nancy J

    2016-03-01

    Treatment options for older patients with acute myeloid leukemia (AML) range from supportive care alone to full-dose chemotherapy. Identifying factors that predict response to therapy may help increase efficacy and avoid toxicity. The phase II SWOG S0703 study investigated the use of hydroxyurea and azacitidine with gemtuzumab ozogamicin in the elderly AML population and found survival rates similar to those expected with standard AML regimens, with less toxicity. As part of this study, global DNA methylation along with promoter DNA methylation and expression analysis of six candidate genes (CDKN2A, CDKN2B, HIC1, RARB, CDH1 and APAF1) were determined before and during therapy to investigate whether very early changes are prognostic for clinical response. Global DNA methylation was not associated with a clinical response. Samples after 3 or 4 days of treatment with azacitidine showed significantly decreased CDKN2A promoter DNA methylation in patients achieving complete remission (CR) compared to those who did not. Samples from day 7 of treatment showed significantly decreased RARB, CDKN2B and CDH1 promoter DNA methylation in responders compared to nonresponders. Gene-specific DNA methylation analysis of peripheral blood samples may help early identification of those older AML patients most likely to benefit from demethylating agent therapy.

  15. FHIT promoter methylation status, low protein and high mRNA levels in patients with non-small cell lung cancer.

    PubMed

    Czarnecka, Karolina H; Migdalska-Sęk, Monika; Domańska, Daria; Pastuszak-Lewandoska, Dorota; Dutkowska, Agata; Kordiak, Jacek; Nawrot, Ewa; Kiszałkiewicz, Justyna; Antczak, Adam; Brzeziańska-Lasota, Ewa

    2016-09-01

    FHIT is a tumor suppressor gene that is frequently silenced in non-small cell lung cancer (NSCLC) and also in preneoplastic lesions. Promoter hypermethylation was previously observed in NSCLC, and its epigenetic silencing, observed on mRNA or protein level, was proposed to predict NSCLC outcome. In the present study we evaluated the relationship between FHIT expression on mRNA level and promoter methylation, or immunoexpression level. The aim of this study was to analyze the usefulness of FHIT as early differentiating biomarker in NSCLC patients. Lung tissue specimens were obtained from 59 patients with diagnosed NSCLC (SCC=34, AC=20, LCC=5). FHIT promoter methylation was assessed in methylation-specific PCR. Relative expression analysis of FHIT was performed in real-time PCR (qPCR) and protein immunoexpression by ELISA assay. Significant differences in FHIT expression between NSCLC histopathological groups (SCC, AC, LCC) were observed (p=0.000009), with the lowest level in SCC. FHIT expression was significantly higher (p=0.034) in men vs. women. Methylated FHIT alleles were present both in NSCLC and control specimens. Mean MI value was higher in control tissue vs. neoplasm, and in men vs. women and it increased with patient age. Significant increase in MI level was observed in N0 group vs. N1 and N2, according to the TNM staging (p=0.0073). Differences in FHIT expression levels between AC, LCC and SCC indicated the usefulness of this gene as a diagnostic marker for NSCLC subtype differentiation. FHIT promoter hypermethylation both in cancer and control tissue indicated the presence of epigenetic alterations in early stage of NSCLC development. Differences in gene promoter methylation between cancer patients with and without node infiltration might be considered as a prognostic marker. Significantly lower FHIT protein immunoexpression was revealed in the group with long and intense history of smoking assessed as PYs (PY<40 vs. PY≥40, p=0.01). These results

  16. G9a orchestrates PCL3 and KDM7A to promote histone H3K27 methylation

    PubMed Central

    Pan, Mei-Ren; Hsu, Ming-Chuan; Chen, Li-Tzong; Hung, Wen-Chun

    2015-01-01

    Methylation of histone H3-lysine 9 (H3K9) and H3K27 by the methyltransferase G9a and polycomb repressive complex 2 (PRC2) inhibits transcription of target genes. A crosstalk between G9a and PRC2 via direct physical interaction has been shown recently. Here, we demonstrate an alternative mechanism by which G9a promotes H3K27 methylation. Overexpression of G9a increases both H3K9 and H3K27 methylation, reduces E-cadherin expression, and induces epithelial-mesenchymal transition in PANC-1 pancreatic cancer cells. Conversely, the depletion of G9a or ectopic expression of methyltransferase-dead G9a in G9a-overexpressing gemcitabine-resistant PANC-1-R cells exhibits opposite effects. G9a promotes H3K27 methylation of the E-cadherin promoter by upregulating PCL3 to increase PRC2 promoter recruitment and by downregulating the H3K27 demethylase KDM7A to silence E-cadherin gene. The depletion of PCL3 or overexpression of KDM7A elevated expression of E-cadherin in PANC-1-R cells while ectopic expression of PCL3 or knockdown of KDM7A downregulated E-cadherin in PANC-1 cells. Collectively, we provide evidence that G9a orchestrates the dynamic balance within histone-modifying enzymes to regulate H3K27 methylation and gene expression. PMID:26688070

  17. Long-term pancreatic beta cell exposure to high levels of glucose but not palmitate induces DNA methylation within the insulin gene promoter and represses transcriptional activity.

    PubMed

    Ishikawa, Kota; Tsunekawa, Shin; Ikeniwa, Makoto; Izumoto, Takako; Iida, Atsushi; Ogata, Hidetada; Uenishi, Eita; Seino, Yusuke; Ozaki, Nobuaki; Sugimura, Yoshihisa; Hamada, Yoji; Kuroda, Akio; Shinjo, Keiko; Kondo, Yutaka; Oiso, Yutaka

    2015-01-01

    Recent studies have implicated epigenetics in the pathophysiology of diabetes. Furthermore, DNA methylation, which irreversibly deactivates gene transcription, of the insulin promoter, particularly the cAMP response element, is increased in diabetes patients. However, the underlying mechanism remains unclear. We aimed to investigate insulin promoter DNA methylation in an over-nutrition state. INS-1 cells, the rat pancreatic beta cell line, were cultured under normal-culture-glucose (11.2 mmol/l) or experimental-high-glucose (22.4 mmol/l) conditions for 14 days, with or without 0.4 mmol/l palmitate. DNA methylation of the rat insulin 1 gene (Ins1) promoter was investigated using bisulfite sequencing and pyrosequencing analysis. Experimental-high-glucose conditions significantly suppressed insulin mRNA and increased DNA methylation at all five CpG sites within the Ins1 promoter, including the cAMP response element, in a time-dependent and glucose concentration-dependent manner. DNA methylation under experimental-high-glucose conditions was unique to the Ins1 promoter; however, palmitate did not affect DNA methylation. Artificial methylation of Ins1 promoter significantly suppressed promoter-driven luciferase activity, and a DNA methylation inhibitor significantly improved insulin mRNA suppression by experimental-high-glucose conditions. Experimental-high-glucose conditions significantly increased DNA methyltransferase activity and decreased ten-eleven-translocation methylcytosine dioxygenase activity. Oxidative stress and endoplasmic reticulum stress did not affect DNA methylation of the Ins1 promoter. High glucose but not palmitate increased ectopic triacylglycerol accumulation parallel to DNA methylation. Metformin upregulated insulin gene expression and suppressed DNA methylation and ectopic triacylglycerol accumulation. Finally, DNA methylation of the Ins1 promoter increased in isolated islets from Zucker diabetic fatty rats. This study helps to clarify the

  18. Sensitive and specific radioenzymatic assay for norepinephrine, epinephrine and dopamine based on the thin-layer chromatographic separation of their Dns-O-methyl derivatives.

    PubMed

    Philips, S R; Robson, A M

    1983-01-01

    A radioenzymatic assay is described in which norepinephrine, epinephrine and dopamine are converted to their tritiated 3-O-methyl derivatives by reaction with S-[methyl-3H]adenosyl-L-methionine in the presence of catechol-O-methyltransferase. The methylated compounds are then reacted with Dns chloride, and the Dns derivatives are extracted into ethyl acetate, isolated by thin-layer chromatography and quantified by liquid scintillation spectrometry. The assay displays a high degree of specificity for each compound, due in large part to the chromatographic properties of the Dns derivatives. It is capable of measuring 2 pg of each catecholamine, and is linear to at least 5 ng. Approximately 50 samples can be assayed in 1.5 days.

  19. ASXL2 promotes proliferation of breast cancer cells by linking ERα to histone methylation.

    PubMed

    Park, U-H; Kang, M-R; Kim, E-J; Kwon, Y-S; Hur, W; Yoon, S K; Song, B-J; Park, J H; Hwang, J-T; Jeong, J-C; Um, S-J

    2016-07-14

    Estrogen receptor alpha (ERα) has a pivotal role in breast carcinogenesis by associating with various cellular factors. Selective expression of additional sex comb-like 2 (ASXL2) in ERα-positive breast cancer cells prompted us to investigate its role in chromatin modification required for ERα activation and breast carcinogenesis. Here, we observed that ASXL2 interacts with ligand E2-bound ERα and mediates ERα activation. Chromatin immunoprecipitation-sequencing analysis supports a positive role of ASXL2 at ERα target gene promoters. ASXL2 forms a complex with histone methylation modifiers including LSD1, UTX and MLL2, which all are recruited to the E2-responsive genes via ASXL2 and regulate methylations at histone H3 lysine 4, 9 and 27. The preferential binding of the PHD finger of ASXL2 to the dimethylated H3 lysine 4 may account for its requirement for ERα activation. On ASXL2 depletion, the proliferative potential of MCF7 cells and tumor size of xenograft mice decreased. Together with our finding on the higher ASXL2 expression in ERα-positive patients, we propose that ASXL2 could be a novel prognostic marker in breast cancer. PMID:26640146

  20. Implementation of a fluorescence-based screening assay identifies histamine H3 receptor antagonists clobenpropit and iodophenpropit as subunit-selective N-methyl-D-aspartate receptor antagonists.

    PubMed

    Hansen, Kasper B; Mullasseril, Praseeda; Dawit, Sara; Kurtkaya, Natalie L; Yuan, Hongjie; Vance, Katie M; Orr, Anna G; Kvist, Trine; Ogden, Kevin K; Le, Phuong; Vellano, Kimberly M; Lewis, Iestyn; Kurtkaya, Serdar; Du, Yuhong; Qui, Min; Murphy, T J; Snyder, James P; Bräuner-Osborne, Hans; Traynelis, Stephen F

    2010-06-01

    N-Methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca(2+)-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describe a fluorescence-based assay that measures NMDA receptor-mediated changes in intracellular calcium in a BHK-21 cell line stably expressing NMDA receptor NR2D with NR1 under the control of a tetracycline-inducible promoter (Tet-On). The assay selectively identifies allosteric modulators by using supramaximal concentrations of glutamate and glycine to minimize detection of competitive antagonists. The assay is validated by successfully identifying known noncompetitive, but not competitive NMDA receptor antagonists among 1800 screened compounds from two small focused libraries, including the commercially available library of pharmacologically active compounds. Hits from the primary screen are validated through a secondary screen that used two-electrode voltage-clamp recordings on recombinant NMDA receptors expressed in Xenopus laevis oocytes. This strategy identified several novel modulators of NMDA receptor function, including the histamine H3 receptor antagonists clobenpropit and iodophenpropit, as well as the vanilloid receptor transient receptor potential cation channel, subfamily V, member 1 (TRPV1) antagonist capsazepine. These compounds are noncompetitive antagonists and the histamine H3 receptor ligand showed submicromolar potency at NR1/NR2B NMDA receptors, which raises the possibility that compounds can be developed that act with high potency on both glutamate and histamine receptor systems simultaneously. Furthermore, it is possible that some actions attributed to histamine H3 receptor inhibition in vivo may also involve NMDA receptor antagonism.

  1. Implementation of a Fluorescence-Based Screening Assay Identifies Histamine H3 Receptor Antagonists Clobenpropit and Iodophenpropit as Subunit-Selective N-Methyl-d-Aspartate Receptor Antagonists

    PubMed Central

    Hansen, Kasper B.; Mullasseril, Praseeda; Dawit, Sara; Kurtkaya, Natalie L.; Yuan, Hongjie; Vance, Katie M.; Orr, Anna G.; Kvist, Trine; Ogden, Kevin K.; Le, Phuong; Vellano, Kimberly M.; Lewis, Iestyn; Kurtkaya, Serdar; Du, Yuhong; Qui, Min; Murphy, T. J.; Snyder, James P.; Bräuner-Osborne, Hans

    2010-01-01

    N-Methyl-d-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca2+-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describe a fluorescence-based assay that measures NMDA receptor-mediated changes in intracellular calcium in a BHK-21 cell line stably expressing NMDA receptor NR2D with NR1 under the control of a tetracycline-inducible promoter (Tet-On). The assay selectively identifies allosteric modulators by using supramaximal concentrations of glutamate and glycine to minimize detection of competitive antagonists. The assay is validated by successfully identifying known noncompetitive, but not competitive NMDA receptor antagonists among 1800 screened compounds from two small focused libraries, including the commercially available library of pharmacologically active compounds. Hits from the primary screen are validated through a secondary screen that used two-electrode voltage-clamp recordings on recombinant NMDA receptors expressed in Xenopus laevis oocytes. This strategy identified several novel modulators of NMDA receptor function, including the histamine H3 receptor antagonists clobenpropit and iodophenpropit, as well as the vanilloid receptor transient receptor potential cation channel, subfamily V, member 1 (TRPV1) antagonist capsazepine. These compounds are noncompetitive antagonists and the histamine H3 receptor ligand showed submicromolar potency at NR1/NR2B NMDA receptors, which raises the possibility that compounds can be developed that act with high potency on both glutamate and histamine receptor systems simultaneously. Furthermore, it is possible that some actions attributed to histamine H3 receptor inhibition in vivo may also involve NMDA receptor antagonism. PMID:20197375

  2. Association of APC, GSTP1 and SOCS1 promoter methylation with the risk of hepatocellular carcinoma: a meta-analysis.

    PubMed

    Liu, Meng; Cui, Lian-Hua; Li, Cheng-Cheng; Zhang, Li

    2015-11-01

    Studies of the relationships of adenomatous polyposis coli (APC), glutathione-S-transferase P1 (GSTP1) and suppressor of the cytokine signalling 1 (SOCS1) promoter region methylation with the risk of hepatocellular carcinoma (HCC) have yielded inconsistent results. We carried out the current meta-analysis to comprehensively assess the associations between APC, GSTP1 and SOCS1 promoter methylation frequency and the risk of HCC. All relevant reports were identified by searching the PubMed, Embase, Web of Science, CNKI and the Chinese BioMedical Literature databases before 1 March 2014, with restriction to articles published in the Chinese and English languages. Pooled odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated to investigate the rates of APC, GSTP1 and SOCS1 promoter methylation and the risk of HCC. Our meta-analysis identified relationships of APC (12 studies with 592 HCC tumour tissues), GSTP1 (14 studies including 646 HCC tumour tissues) and SOCS1 (11 studies with 512 HCC tumour tissues) promoter methylation with the risk of HCC. Compared with paracancerous tissues, the pooled ORs of APC, GSTP1 and SOCS1 promoter region methylation in HCC cancer tissues were 5.32 (95% CI=2.96-9.56), 5.65, (95% CI=3.41-9.35) and 2.73 (95% CI=1.37-5.44), respectively. Compared with normal liver tissues as controls, the pooled ORs of APC, GSTP1 and SOCS1 promoter region methylation in HCC cancer tissues were 20.43 (95% CI=5.56-75.08), 18.78 (95% CI=5.76-61.19) and 13.00 (95% CI=5.20-32.47), respectively. Subgroup analysis by ethnicity showed that APC, GSTP1 and SOCS1 promoter methylation was associated significantly with the risk of HCC in both Asian and White populations (all P<0.05). Our meta-analysis suggested strong associations between APC, GSTP1 and SOCS1 gene promoter methylation and the risk of HCC, suggesting these to be promising biomarkers for HCC. PMID:25853848

  3. Cigarette Smoking, BPDE-DNA Adducts, and Aberrant Promoter Methylations of Tumor Suppressor Genes (TSGs) in NSCLC from Chinese Population.

    PubMed

    Jin, Yongtang; Xu, Peiwei; Liu, Xinneng; Zhang, Chunye; Tan, Cong; Chen, Chunmei; Sun, Xiaoyu; Xu, Yingchun

    2016-01-01

    Non-small cell lung cancer (NSCLC) is related to the genetic and epigenetic factors. The goal of this study was to determine association of cigarette smoking and BPDE-DNA adducts with promoter methylations of several genes in NSCLC. Methylation of the promoters of p16, RARβ, DAPK, MGMT, and TIMP-3 genes of tumor tissues from 199 lung cancer patients was analyzed with methylation-specific PCR (MSP), and BPDE-DNA adduct level in lung cancer tissue was obtained by ELISA. Level of BPDE-DNA adduct increased significantly in males, aged people (over 60 years), and smokers; however, no significant difference was found while comparing the BPDE-DNA adduct levels among different tumor types, locations, and stages. Cigarette smoking was also associated with increased BPDE-DNA adducts level (OR = 2.43, p > .05) and increased methylation level in at least 1 gene (OR = 5.22, p < .01), both in dose-response manner. Similarly, cigarette smoking also significantly increase the risk of p16 or DAPK methylation (OR = 3.02, p < .05 for p16, and 3.66, p < .05 for DAPK). The highest risk of BPDE-DNA adducts was detected among individuals with cigarette smoking for more than 40 pack-years (OR = 4.21, p < .01). Furthermore, the present study did not show that BPDE-DNA adducts are significantly associated with abnormal TSGs methylations in NSCLC, including SCC and AdO, respectively. Conclusively, cigarette smoking is significantly associated with the increase of BPDE-DNA adduct level, promoter hypermethylation of p16 and DAPK genes, while BPDE-DNA adduct was not significantly related to abnormal promoter hypermethylation in TSGs, suggesting that BPDE-DNA adducts and TSGs methylations play independent roles in NSCLC.

  4. Cigarette Smoking, BPDE-DNA Adducts, and Aberrant Promoter Methylations of Tumor Suppressor Genes (TSGs) in NSCLC from Chinese Population.

    PubMed

    Jin, Yongtang; Xu, Peiwei; Liu, Xinneng; Zhang, Chunye; Tan, Cong; Chen, Chunmei; Sun, Xiaoyu; Xu, Yingchun

    2016-01-01

    Non-small cell lung cancer (NSCLC) is related to the genetic and epigenetic factors. The goal of this study was to determine association of cigarette smoking and BPDE-DNA adducts with promoter methylations of several genes in NSCLC. Methylation of the promoters of p16, RARβ, DAPK, MGMT, and TIMP-3 genes of tumor tissues from 199 lung cancer patients was analyzed with methylation-specific PCR (MSP), and BPDE-DNA adduct level in lung cancer tissue was obtained by ELISA. Level of BPDE-DNA adduct increased significantly in males, aged people (over 60 years), and smokers; however, no significant difference was found while comparing the BPDE-DNA adduct levels among different tumor types, locations, and stages. Cigarette smoking was also associated with increased BPDE-DNA adducts level (OR = 2.43, p > .05) and increased methylation level in at least 1 gene (OR = 5.22, p < .01), both in dose-response manner. Similarly, cigarette smoking also significantly increase the risk of p16 or DAPK methylation (OR = 3.02, p < .05 for p16, and 3.66, p < .05 for DAPK). The highest risk of BPDE-DNA adducts was detected among individuals with cigarette smoking for more than 40 pack-years (OR = 4.21, p < .01). Furthermore, the present study did not show that BPDE-DNA adducts are significantly associated with abnormal TSGs methylations in NSCLC, including SCC and AdO, respectively. Conclusively, cigarette smoking is significantly associated with the increase of BPDE-DNA adduct level, promoter hypermethylation of p16 and DAPK genes, while BPDE-DNA adduct was not significantly related to abnormal promoter hypermethylation in TSGs, suggesting that BPDE-DNA adducts and TSGs methylations play independent roles in NSCLC. PMID:27042875

  5. FOXA1 repression is associated with loss of BRCA1 and increased promoter methylation and chromatin silencing in breast cancer.

    PubMed

    Gong, C; Fujino, K; Monteiro, L J; Gomes, A R; Drost, R; Davidson-Smith, H; Takeda, S; Khoo, U S; Jonkers, J; Sproul, D; Lam, E W-F

    2015-09-24

    FOXA1 expression correlates with the breast cancer luminal subtype and patient survival. RNA and protein analysis of a panel of breast cancer cell lines revealed that BRCA1 deficiency is associated with the downregulation of FOXA1 expression. Knockdown of BRCA1 resulted in the downregulation of FOXA1 expression and enhancement of FOXA1 promoter methylation in MCF-7 breast cancer cells, whereas the reconstitution of BRCA1 in Brca1-deficent mouse mammary epithelial cells (MMECs) promoted Foxa1 expression and methylation. These data suggest that BRCA1 suppresses FOXA1 hypermethylation and silencing. Consistently, the treatment of MMECs with the DNA methylation inhibitor 5-aza-2'-deoxycitydine induced Foxa1 mRNA expression. Furthermore, treatment with GSK126, an inhibitor of EZH2 methyltransferase activity, induced FOXA1 expression in BRCA1-deficient but not in BRCA1-reconstituted MMECs. Likewise, the depletion of EZH2 by small interfering RNA enhanced FOXA1 mRNA expression. Chromatin immunoprecipitation (ChIP) analysis demonstrated that BRCA1, EZH2, DNA methyltransferases (DNMT)1/3a/3b and H3K27me3 are recruited to the endogenous FOXA1 promoter, further supporting the hypothesis that these proteins interact to modulate FOXA1 methylation and repression. Further co-immunoprecipitation and ChIP analysis showed that both BRCA1 and DNMT3b form complexes with EZH2 but not with each other, consistent with the notion that BRCA1 binds to EZH2 and negatively regulates its methyltransferase activity. We also found that EZH2 promotes and BRCA1 impairs the deposit of the gene silencing histone mark H3K27me3 on the FOXA1 promoter. These associations were validated in a familial breast cancer patient cohort. Integrated analysis of the global gene methylation and expression profiles of a set of 33 familial breast tumours revealed that FOXA1 promoter methylation is inversely correlated with the transcriptional expression of FOXA1 and that BRCA1 mutation breast cancer is significantly

  6. Two distinct repressive mechanisms for histone 3 lysine 4 methylation through promoting 3'-end antisense transcription.

    PubMed

    Margaritis, Thanasis; Oreal, Vincent; Brabers, Nathalie; Maestroni, Laetitia; Vitaliano-Prunier, Adeline; Benschop, Joris J; van Hooff, Sander; van Leenen, Dik; Dargemont, Catherine; Géli, Vincent; Holstege, Frank C P

    2012-09-01

    Histone H3 di- and trimethylation on lysine 4 are major chromatin marks that correlate with active transcription. The influence of these modifications on transcription itself is, however, poorly understood. We have investigated the roles of H3K4 methylation in Saccharomyces cerevisiae by determining genome-wide expression-profiles of mutants in the Set1 complex, COMPASS, that lays down these marks. Loss of H3K4 trimethylation has virtually no effect on steady-state or dynamically-changing mRNA levels. Combined loss of H3K4 tri- and dimethylation results in steady-state mRNA upregulation and delays in the repression kinetics of specific groups of genes. COMPASS-repressed genes have distinct H3K4 methylation patterns, with enrichment of H3K4me3 at the 3'-end, indicating that repression is coupled to 3'-end antisense transcription. Further analyses reveal that repression is mediated by H3K4me3-dependent 3'-end antisense transcription in two ways. For a small group of genes including PHO84, repression is mediated by a previously reported trans-effect that requires the antisense transcript itself. For the majority of COMPASS-repressed genes, however, it is the process of 3'-end antisense transcription itself that is the important factor for repression. Strand-specific qPCR analyses of various mutants indicate that this more prevalent mechanism of COMPASS-mediated repression requires H3K4me3-dependent 3'-end antisense transcription to lay down H3K4me2, which seems to serve as the actual repressive mark. Removal of the 3'-end antisense promoter also results in derepression of sense transcription and renders sense transcription insensitive to the additional loss of SET1. The derepression observed in COMPASS mutants is mimicked by reduction of global histone H3 and H4 levels, suggesting that the H3K4me2 repressive effect is linked to establishment of a repressive chromatin structure. These results indicate that in S. cerevisiae, the non-redundant role of H3K4 methylation by

  7. DNA Methylation and Histone Modifications Are Associated with Repression of the Inhibin α Promoter in the Rat Corpus Luteum

    PubMed Central

    Meldi, Kristen M.; Gaconnet, Georgia A.

    2012-01-01

    The transition from follicle to corpus luteum after ovulation is associated with profound morphological and functional changes and is accompanied by corresponding changes in gene expression. The gene encoding the α subunit of the dimeric reproductive hormone inhibin is maximally expressed in the granulosa cells of the preovulatory follicle, is rapidly repressed by the ovulatory LH surge, and is expressed at only very low levels in the corpus luteum. Although previous studies have identified transient repressors of inhibin α gene transcription, little is known about how this repression is maintained in the corpus luteum. This study examines the role of epigenetic changes, including DNA methylation and histone modification, in silencing of inhibin α gene expression. Bisulfite sequencing reveals that methylation of the inhibin α proximal promoter is low in preovulatory and ovulatory follicles but is elevated in the corpus luteum. Increased methylation during luteinization is observed within the cAMP response element in the promoter, and EMSA demonstrate that methylation of this site inhibits cAMP response element binding protein binding in vitro. Chromatin immunoprecipitation reveals that repressive histone marks H3K9 and H3K27 trimethylation are increased on the inhibin α promoter in primary luteal cells, whereas the activation mark H3K4 trimethylation is decreased. The changes in histone modification precede the alterations in DNA methylation, suggesting that they facilitate the recruitment of DNA methyltransferases. We show that the DNA methyltransferase DNMT3a is present in the ovary and in luteal cells when the inhibin α promoter becomes methylated and observe recruitment of DNMT3a to the inhibin promoter during luteinization. PMID:22865368

  8. Correlations of Promoter Methylation in WIF-1, RASSF1A, and CDH13 Genes with the Risk and Prognosis of Esophageal Cancer

    PubMed Central

    Guo, Qiang; Wang, Hai-Bo; Li, Yong-Hui; Li, He-Fei; Li, Ting-Ting; Zhang, Wen-Xue; Xiang, Sha-Sha; Sun, Zhen-Qing

    2016-01-01

    Background This study was designed to explore the correlations of promoter methylation in Wnt inhibitory factor-1 (WIF-1), ras-association domain family member 1A (RASSF1A), and Cadherin 13 (CDH13) genes with the risk and prognosis of esophageal cancer (EC). Material/Methods A total of 71 EC tissues from resection and 35 adjacent normal tissues were collected. Methylation status in the promoter region was detected by methylation- and non-methylation-specific primers. Corresponding mRNA levels were detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Correlations between the methylations of these 3 genes and clinicopathologic characteristics were analyzed. Kaplan-Meier method and Cox regression model were used to investigate the relationships between WIF-1, RASSF1A, and CDH13 promoter methylations and the prognosis of EC. Results Compared with adjacent normal tissues, the methylation frequencies of WIF-1, RASSF1A, and CDH13 genes were significantly higher but the mRNA levels of these 3 genes were significantly lower in EC tissues (all P<0.05). WIF-1 and CDH13 promoter methylations were associated with the degree of tumor differentiation and WIF-1 and RASSF1A promoter methylations were associated with age (all P<0.05). The survival rates of patients with WIF-1, RASSF1A, and CDH13 methylations were significantly lower than those of patients without methylation (all P<0.05). WIF-1, RASSF1A, and CDH13 promoter methylations were independent risk factors affecting the prognosis of EC (all P<0.05). Conclusions WIF-1, RASSF1A, and CDH13 promoter methylations are associated with EC. The methylation levels are negatively related with the prognosis in EC. PMID:27506957

  9. Exploring the potential relationship between Notch pathway genes expression and their promoter methylation in mice hippocampal neurogenesis.

    PubMed

    Zhang, Zhen; Gao, Feng; Kang, Xiaokui; Li, Jia; Zhang, Litong; Dong, Wentao; Jin, Zhangning; Li, Fan; Gao, Nannan; Cai, Xinwang; Yang, Shuyuan; Zhang, Jianning; Ren, Xinliang; Yang, Xinyu

    2015-04-01

    The Notch pathway is a highly conserved pathway that regulates hippocampal neurogenesis during embryonic development and adulthood. It has become apparent that intracellular epigenetic modification including DNA methylation is deeply involved in fate specification of neural stem cells (NSCs). However, it is still unclear whether the Notch pathway regulates hippocampal neurogenesis by changing the Notch genes' DNA methylation status. Here, we present the evidence from DNA methylation profiling of Notch1, Hes1 and Ngn2 promoters during neurogenesis in the dentate gyrus (DG) of postnatal, adult and traumatic brains. We observed the expression of Notch1, Hes1 and Ngn2 in hippocampal DG with qPCR, Western blot and immunofluorescence staining. In addition, we investigated the methylation status of Notch pathway genes using the bisulfite sequencing PCR (BSP) method. The number of Notch1 or Hes1 (+) and BrdU (+) cells decreased in the subgranular zone (SGZ) of the DG in the hippocampus following TBI. Nevertheless, the number of Ngn2-positive cells in the DG of injured mice was markedly higher than in the DG of non-TBI mice. Accordingly, the DNA methylation level of the three gene promoters changed with their expression in the DG. These findings suggest that the strict spatio-temporal expression of Notch effector genes plays an important role during hippocampal neurogenesis and suggests the possibility that Notch1, Hes1 and Ngn2 were regulated by changing some specific CpG sites of their promoters to further orchestrate neurogenesis in vivo.

  10. Global indiscriminate methylation in cell-specific gene promoters following reprogramming into human induced pluripotent stem cells.

    PubMed

    Nissenbaum, Jonathan; Bar-Nur, Ori; Ben-David, Eyal; Benvenisty, Nissim

    2013-01-01

    Molecular reprogramming of somatic cells into human induced pluripotent stem cells (iPSCs) is accompanied by extensive changes in gene expression patterns and epigenetic marks. To better understand the link between gene expression and DNA methylation, we have profiled human somatic cells from different embryonic cell types (endoderm, mesoderm, and parthenogenetic germ cells) and the iPSCs generated from them. We show that reprogramming is accompanied by extensive DNA methylation in CpG-poor promoters, sparing CpG-rich promoters. Intriguingly, methylation in CpG-poor promoters occurred not only in downregulated genes, but also in genes that are not expressed in the parental somatic cells or their respective iPSCs. These genes are predominantly tissue-specific genes of other cell types from different lineages. Our results suggest a role of DNA methylation in the silencing of the somatic cell identity by global nonspecific methylation of tissue-specific genes from all lineages, regardless of their expression in the parental somatic cells. PMID:24371806

  11. Global indiscriminate methylation in cell-specific gene promoters following reprogramming into human induced pluripotent stem cells.

    PubMed

    Nissenbaum, Jonathan; Bar-Nur, Ori; Ben-David, Eyal; Benvenisty, Nissim

    2013-01-01

    Molecular reprogramming of somatic cells into human induced pluripotent stem cells (iPSCs) is accompanied by extensive changes in gene expression patterns and epigenetic marks. To better understand the link between gene expression and DNA methylation, we have profiled human somatic cells from different embryonic cell types (endoderm, mesoderm, and parthenogenetic germ cells) and the iPSCs generated from them. We show that reprogramming is accompanied by extensive DNA methylation in CpG-poor promoters, sparing CpG-rich promoters. Intriguingly, methylation in CpG-poor promoters occurred not only in downregulated genes, but also in genes that are not expressed in the parental somatic cells or their respective iPSCs. These genes are predominantly tissue-specific genes of other cell types from different lineages. Our results suggest a role of DNA methylation in the silencing of the somatic cell identity by global nonspecific methylation of tissue-specific genes from all lineages, regardless of their expression in the parental somatic cells.

  12. Global Indiscriminate Methylation in Cell-Specific Gene Promoters following Reprogramming into Human Induced Pluripotent Stem Cells

    PubMed Central

    Nissenbaum, Jonathan; Bar-Nur, Ori; Ben-David, Eyal; Benvenisty, Nissim

    2013-01-01

    Summary Molecular reprogramming of somatic cells into human induced pluripotent stem cells (iPSCs) is accompanied by extensive changes in gene expression patterns and epigenetic marks. To better understand the link between gene expression and DNA methylation, we have profiled human somatic cells from different embryonic cell types (endoderm, mesoderm, and parthenogenetic germ cells) and the iPSCs generated from them. We show that reprogramming is accompanied by extensive DNA methylation in CpG-poor promoters, sparing CpG-rich promoters. Intriguingly, methylation in CpG-poor promoters occurred not only in downregulated genes, but also in genes that are not expressed in the parental somatic cells or their respective iPSCs. These genes are predominantly tissue-specific genes of other cell types from different lineages. Our results suggest a role of DNA methylation in the silencing of the somatic cell identity by global nonspecific methylation of tissue-specific genes from all lineages, regardless of their expression in the parental somatic cells. PMID:24371806

  13. Methylation status and chromatin structure of the myostatin gene promoter region in the sea perch Lateolabrax japonicus (Perciformes).

    PubMed

    Abbas, E M; Takayanagi, A; Shimizu, N; Kato, M

    2011-01-01

    Myostatin is a negative regulator of the growth and development of skeletal muscle mass. In fish, myostatin is expressed in several organs in addition to skeletal muscle. To understand the mechanisms regulating myostatin gene expression in the sea perch, Lateolabrax japonicus, we examined the methylation status of the myostatin gene promoter region in several tissues (liver, eye, kidney, brain, and heart) isolated from adult specimens. The frequency of methylated cytosines was very low in all tissues, regardless of the level of myostatin expression, suggesting that DNA methylation is not involved in the tissue-specific regulation of myostatin expression. Southern blot analysis of genomic DNA obtained from micrococcal nuclease-treated nuclei showed that chromatin digestion occurs in tissues where the myostatin gene is actively transcribed and that the myostatin gene is protected from micrococcal nuclease in tissues where myostatin is not expressed. The chromatin structure in the myostatin gene region appears to regulate its expression without DNA methylation. PMID:22183947

  14. Methylated DNA Binding Domain Protein 2 (MBD2) Coordinately Silences Gene Expression through Activation of the MicroRNA hsa-mir-496 Promoter in Breast Cancer Cell Line

    PubMed Central

    Alvarado, Sebastian; Wyglinski, Joanne; Suderman, Matthew; Andrews, Stephen A.; Szyf, Moshe

    2013-01-01

    Methylated DNA binding protein 2 (MBD2) binds methylated promoters and suppresses transcription in cis through recruitment of a chromatin modification repressor complex. We show here a new mechanism of action for MBD2: suppression of gene expression indirectly through activation of microRNA hsa-mir-496. Overexpression of MBD2 in breast epithelial cell line MCF-10A results in induced expression and demethylation of hsa-mir-496 while depletion of MBD2 in a human breast cancer cell lines MCF-7 and MDA-MB231 results in suppression of hsa-mir-496. Activation of hsa-mir-496 by MBD2 is associated with silencing of several of its target genes while depletion of MBD2 leads to induction of hsa-mir-496 target genes. Depletion of hsa-mir-496 by locked nucleic acid (LNA) antisense oligonucleotide leads to activation of these target genes in MBD2 overexpressing cells supporting that hsa-mir-496 is mediating in part the effects of MBD2 on gene expression. We demonstrate that MBD2 binds the promoter of hsa-mir-496 in MCF-10A, MCF-7 and MDA-MB-231 cells and that it activates an in vitro methylated hsa-mir-496 promoter driving a CG-less luciferase reporter in a transient transfection assay. The activation of hsa-mir-496 is associated with reduced methylation of the promoter. Taken together these results describe a novel cascade for gene regulation by DNA methylation whereby activation of a methylated microRNA by MBD2 that is associated with loss of methylation triggers repression of downstream targets. PMID:24204564

  15. Promoter methylation and expression changes of BRCA1 in cancerous tissues of patients with sporadic breast cancer

    PubMed Central

    LI, QIUYUN; WEI, WEI; JIANG, YI; YANG, HUAWEI; LIU, JIANLUN

    2015-01-01

    BRCA1 is a susceptibility gene that has a genetic predisposition for breast cancer. BRCA1 gene mutation is closely associated with familial hereditary breast cancer, but the BRCA1 gene mutation is rarely found in sporadic breast cancer. According to previous studies, decreased expression of BRCA1 was detected in certain types of sporadic breast cancer. Aberrant methylation of DNA promoter CpG islands is one of the mechanisms by which tumor suppressor gene expression and function is lost. The aim of the present study was to investigate BRCA1 gene expression, methylation status and clinical significance in sporadic types of breast cancer. Quantitative polymerase chain reaction (PCR) and bisulfite sequencing PCR were respectively used to detect expression differences of BRCA1 mRNA and BRCA1 methylation in the 49 cancerous and paired non-cancerous samples from patients with breast cancer. The associations of BRCA1 expression and methylation status with the clinicopathologic characteristics were analysed. BRCA1 mRNA expression levels in the 49 breast cancer tissues were lower than those in the paired non-cancerous tissues. There was a significant statistical difference (P=0.001). BRCA1 mRNA expression was not associated with the main clinicopathologic characteristics. Frequency of the BRCA1 promoter methylation in the breast cancerous tissues was significantly higher than that in the non-cancerous tissues (P=0.007); BRCA1 gene methylation status was negatively correlated with mRNA expression (P=0.029); and BRCA1 methylation exhibited no association with all clinicopathological features. DNA promoter hypermethylation may be the potential mechanism accounting for BRCA1 expression silence in part of sporadic types of breast cancer. Some patients with hypermethylated BRCA1 may display favorable clinicopathological status. PMID:25789047

  16. Methylation of promoters of microRNAs and their host genes in myelodysplastic syndromes

    PubMed Central

    Erdogan, Begum; Bosompem, Amma; Peng, Dunfa; Han, Leng; Smith, Emily; Kennedy, Mija E.; Alford, Catherine E.; Wu, Huiyun; Zhao, Zhongming; Mosse, Claudio A.; El-Rifai, Wael; Kim, Annette S.

    2014-01-01

    Myelodysplastic syndromes (MDS) are a group of hematopoietic malignancies characterized by ineffective hematopoiesis. Recently, we identified MDS-associated microRNAs (miRNAs) that are down-regulated in MDS. This study examines possible explanations for that observed down-regulation of miRNA expression in MDS. Since genomic losses are insufficient to explain the down-regulation of all our MDS-associated miRNAs, we explored other avenues. We demonstrate that these miRNAs are predominantly intragenic, and that, in many cases, they and their host genes are expressed in a similar pattern during myeloid maturation, suggesting their co-regulation. This co-regulation is further supported by the down-regulation of several of the host genes in MDS and increased methylation of the shared promoters of several miRNAs and their respective host genes. These studies identify a role of hypermethylation of miRNA promoters in the down-regulation of MDS-associated miRNAs, unifying research on miRNAs in MDS and epigenetic regulation in MDS into a common pathway. PMID:23547841

  17. Hepatitis B virus can be inhibited by DNA methyltransferase 3a via specific zinc-finger-induced methylation of the X promoter.

    PubMed

    Xirong, L; Rui, L; Xiaoli, Y; Qiuyan, H; Bikui, T; Sibo, Z; Naishuo, Z

    2014-02-01

    In this work we explored whether DNA methyltransferase 3a (Dnmt3a) targeted to the HBV X promoter (XP) causes epigenetic suppression of hepatitis B virus (HBV). The C-terminus of Dnmt3a (Dnmt3aC) was fused to a six-zinc-finger peptide specific to XP to form a fused DNA methyltransferase (XPDnmt3aC). The binding and methyl-modifying specificity of XPDnmt3aC were verified with an electrophoretic mobility shift assay and methylation-specific PCR, respectively. XP activity and HBV expression were clearly downregulated in HepG2 cells transfected with plasmid pXPDnmt3aC. The injection of XPDnmt3aC into HBV transgenic (TgHBV) mice also showed significant inhibition, leading to low serum HBV surface protein (HBsAg) levels and a reduced viral load. Thus, XPDnmt3aC specifically silenced HBV via site-selective DNA methylation delivered by zinc-finger peptides. This study establishes the foundation of an epigenetic way of controlling HBV-related diseases. PMID:24794726

  18. Utility of the mouse dermal promotion assay in comparing the tumorigenic potential of cigarette mainstream smoke.

    PubMed

    Smith, Carr J; Perfetti, Thomas A; Garg, Rajni; Hansch, Corwin

    2006-10-01

    The International Agency for Research on Cancer (IARC) has classified a number of the chemical constituents reported in cigarette mainstream smoke (MS) as carcinogens. In the international literature, 81 IARC classified carcinogens have been reported historically in MS. Cigarette smoke is a complex aerosol of minute liquid droplets (termed the particulate phase) suspended within a mixture of gases (CO(2), CO, NO(x), etc.) and semi-volatile compounds. The gases and semi-volatiles are termed the vapor phase. Due to early difficulties in inducing carcinomas in laboratory animals following inhalation exposure to MS, the mouse dermal promotion assay became the standard method of comparing the tumorigenic potential of cigarette smoke condensates (the particulate phase of MS nearly devoid of MS gases and having a significant reduction of the semi-volatile components of the vapor phase). Of the 81 IARC carcinogens reported in MS, 48 are found exclusively in the particulate phase, 29 in the vapor phase only, and four IARC carcinogens in both phases. A general comparison of the quantity and potency of the individual carcinogenic constituents of the MS vapor and particulate phases illustrates that the potential carcinogenic contribution from the vapor phase might be significant. Therefore, the mouse dermal promotion assay may not be a sensitive comparator of the tumorigenic potential of different MSs displaying a diversity of vapor phase components. However, when used in a weight-of-the-evidence approach that includes smoke chemistry, in vitro studies using whole smoke and human exposure studies evaluating both vapor and particulate phase smoke constituents, the mouse dermal promotion assay remains an important risk assessment tool as the only test that reproducibly measures the tumorigenic potential of cigarette smoke condensate.

  19. Methylation pattern of CDH1 promoter and its association with CDH1 gene expression in cytological cervical specimens

    PubMed Central

    Holubeková, Veronika; Mendelová, Andrea; Grendár, Marián; Meršaková, Sandra; Kapustová, Ivana; Jašek, Karin; Vaňochová, Andrea; Danko, Jan; Lasabová, Zora

    2016-01-01

    Cervical cancer is the fourth leading cause of cancer mortality in females worldwide. Infection with high-risk human papillomavirus (HPV) is essential but insufficient to cause cervical cancer, and the clearance of HPV infection is mediated by the immune system. The deficit of molecules responsible for adhesion may play a role in the development of cervical cancer. E-cadherin is encoded by the cadherin 1 (CDH1) gene, and is involved in cell adhesion by forming adherens junctions. The aim of present study was to investigate the methylation pattern of the CDH1 promoter and to identify the association between CDH1 promoter hypermethylation, CDH1 gene expression and HPV infection in cervical specimens obtained from 93 patients with low-grade squamous intraepithelial lesions (SILs), high-grade SILs or squamous cell carcinomas, and from 47 patients with normal cervical cytology (HPV-negative). The methylation pattern of the CDH1 promoter was investigated by methylation-specific polymerase chain reaction and quantitative pyrosequencing. CDH1 gene expression was measured by relative quantification. CDH1 methylation was significantly higher in both types of lesions and in cervical cancer than in normal samples, and CDH1 gene expression was significantly reduced during SIL progression (P=0.0162). However, the influence of HPV infection or HPV E6 expression on the methylation pattern of the CDH1 gene or its gene expression levels could not be confirmed. The present results support that the methylation of the CDH1 gene is age-related in patients with cervical lesions (P=0.01085), and therefore, older patients could be more susceptible to cancer than younger patients. The important methylation of the CDH1 promoter occurred near the transcription factor binding sites on nucleotides −13 and +103, which are close to the translational start codon. These results suggest that methylation at these sites may be an important event in the transcriptional regulation of E-cadherin, and

  20. AN EVALUATION OF THE RELATIVE GENOTOXICITY OF ARSENITE, ARSENATE, AND FOUR METHYLATED METABOLITES IN VITRO USING THE ALKALINE SINGLE CELL GEL ASSAY

    EPA Science Inventory

    An Evaluation of the Relative Genotoxicity of Arsenite, Arsenate, and Four Methylated
    Metabolites In Vitro Using the Alkaline Single Cell Gel Assay (ASCG).

    Arsenic ( As) is a genotoxic and carcinogenic metal found in many drinking water systems throughout the world. ...

  1. Prognostic role of APC and RASSF1A promoter methylation status in cell free circulating DNA of operable gastric cancer patients.

    PubMed

    Balgkouranidou, I; Matthaios, D; Karayiannakis, A; Bolanaki, H; Michailidis, P; Xenidis, N; Amarantidis, K; Chelis, L; Trypsianis, G; Chatzaki, E; Lianidou, E S; Kakolyris, S

    2015-08-01

    Gastric carcinogenesis is a multistep process including not only genetic mutations but also epigenetic alterations. The best known and more frequent epigenetic alteration is DNA methylation affecting tumor suppressor genes that may be involved in various carcinogenetic pathways. The aim of the present study was to investigate the methylation status of APC promoter 1A and RASSF1A promoter in cell free DNA of operable gastric cancer patients. Using methylation specific PCR, we examined the methylation status of APC promoter 1A and RASSF1A promoter in 73 blood samples obtained from patients with gastric cancer. APC and RASSF1A promoters were found to be methylated in 61 (83.6%) and 50 (68.5%) of the 73 gastric cancer samples examined, but in none of the healthy control samples (p < 0.001). A significant association between methylated RASSF1A promoter status and lymph node positivity was observed (p = 0.005). Additionally, a significant correlation between a methylated APC promoter and elevated CEA (p = 0.033) as well as CA-19.9 (p = 0.032) levels, was noticed. The Kaplan-Meier estimates of survival, significantly favored patients with a non-methylated APC promoter status (p = 0.008). No other significant correlations between APC and RASSF1A methylation status and different tumor variables examined was observed. Serum RASSF1A and APC promoter hypermethylation is a frequent epigenetic event in patients with early operable gastric cancer. The observed correlations between APC promoter methylation status and survival as well as between a hypermethylated RASSF1A promoter and nodal positivity may be indicative of a prognostic role for those genes in early operable gastric cancer. Additional studies, in a larger cohort of patients are required to further explore whether these findings could serve as potential molecular biomarkers of survival and/or response to specific treatments. PMID:26073472

  2. Association of the CpG methylation pattern of the proximal insulin gene promoter with type 1 diabetes.

    PubMed

    Fradin, Delphine; Le Fur, Sophie; Mille, Clémence; Naoui, Nadia; Groves, Chris; Zelenika, Diana; McCarthy, Mark I; Lathrop, Mark; Bougnères, Pierre

    2012-01-01

    The insulin (INS) region is the second most important locus associated with Type 1 Diabetes (T1D). The study of the DNA methylation pattern of the 7 CpGs proximal to the TSS in the INS gene promoter revealed that T1D patients have a lower level of methylation of CpG -19, -135 and -234 (p = 2.10(-16)) and a higher methylation of CpG -180 than controls, while methylation was comparable for CpG -69, -102, -206. The magnitude of the hypomethylation relative to a control population was 8-15% of the corresponding levels in controls and was correlated in CpGs -19 and -135 (r = 0.77) and CpG -135 and -234 (r = 0.65). 70/485 (14%) of T1D patients had a simultaneous decrease in methylation of CpG -19, -135, -234 versus none in 317 controls. CpG methylation did not correlate with glycated hemoglobin or with T1D duration. The methylation of CpG -69, -102, -180, -206, but not CpG -19, -135, -234 was strongly influenced by the cis-genotype at rs689, a SNP known to show a strong association with T1D. We hypothesize that part of this genetic association could in fact be mediated at the statistical and functional level by the underlying changes in neighboring CpG methylation. Our observation of a CpG-specific, locus-specific methylation pattern, although it can provide an epigenetic biomarker of a multifactorial disease, does not indicate whether the reported epigenetic pattern preexists or follows the establishment of T1D. To explore the effect of chronic hyperglycemia on CpG methylation, we studied non obese patients with type 2 diabetes (T2D) who were found to have decreased CpG-19 methylation versus age-matched controls, similar to T1D (p = 2.10(-6)) but increased CpG-234 methylation (p = 5.10(-8)), the opposite of T1D. The causality and natural history of the different epigenetic changes associated with T1D or T2D remain to be determined. PMID:22567146

  3. DNA methylation analysis of human myoblasts during in vitro myogenic differentiation: de novo methylation of promoters of muscle-related genes and its involvement in transcriptional down-regulation

    PubMed Central

    Miyata, Kohei; Miyata, Tomoko; Nakabayashi, Kazuhiko; Okamura, Kohji; Naito, Masashi; Kawai, Tomoko; Takada, Shuji; Kato, Kiyoko; Miyamoto, Shingo; Hata, Kenichiro; Asahara, Hiroshi

    2015-01-01

    Although DNA methylation is considered to play an important role during myogenic differentiation, chronological alterations in DNA methylation and gene expression patterns in this process have been poorly understood. Using the Infinium HumanMethylation450 BeadChip array, we obtained a chronological profile of the genome-wide DNA methylation status in a human myoblast differentiation model, where myoblasts were cultured in low-serum medium to stimulate myogenic differentiation. As the differentiation of the myoblasts proceeded, their global DNA methylation level increased and their methylation patterns became more distinct from those of mesenchymal stem cells. Gene ontology analysis revealed that genes whose promoter region was hypermethylated upon myoblast differentiation were highly significantly enriched with muscle-related terms such as ‘muscle contraction’ and ‘muscle system process’. Sequence motif analysis identified 8-bp motifs somewhat similar to the binding motifs of ID4 and ZNF238 to be most significantly enriched in hypermethylated promoter regions. ID4 and ZNF238 have been shown to be critical transcriptional regulators of muscle-related genes during myogenic differentiation. An integrated analysis of DNA methylation and gene expression profiles revealed that de novo DNA methylation of non-CpG island (CGI) promoters was more often associated with transcriptional down-regulation than that of CGI promoters. These results strongly suggest the existence of an epigenetic mechanism in which DNA methylation modulates the functions of key transcriptional factors to coordinately regulate muscle-related genes during myogenic differentiation. PMID:25190712

  4. The SNF2 family ATPase LSH promotes cell-autonomous de novo DNA methylation in somatic cells

    PubMed Central

    Termanis, Ausma; Torrea, Natalia; Culley, Jayne; Kerr, Alastair; Ramsahoye, Bernard; Stancheva, Irina

    2016-01-01

    Methylation of DNA at carbon 5 of cytosine is essential for mammalian development and implicated in transcriptional repression of genes and transposons. New patterns of DNA methylation characteristic of lineage-committed cells are established at the exit from pluripotency by de novo DNA methyltransferases enzymes, DNMT3A and DNMT3B, which are regulated by developmental signaling and require access to chromatin-organized DNA. Whether or not the capacity for de novo DNA methylation of developmentally regulated loci is preserved in differentiated somatic cells and can occur in the absence of exogenous signals is currently unknown. Here, we demonstrate that fibroblasts derived from chromatin remodeling ATPase LSH (HELLS)-null mouse embryos, which lack DNA methylation from centromeric repeats, transposons and a number of gene promoters, are capable of reestablishing DNA methylation and silencing of misregulated genes upon re-expression of LSH. We also show that the ability of LSH to bind ATP and the cellular concentration of DNMT3B are critical for cell-autonomous de novo DNA methylation in somatic cells. These data suggest the existence of cellular memory that persists in differentiated cells through many cell generations and changes in transcriptional state. PMID:27179028

  5. COX-2 gene promoter DNA methylation status in eutopic and ectopic endometrium of Egyptian women with endometriosis.

    PubMed

    Zidan, Haidy E; Rezk, Noha A; Alnemr, Amr Abd Almohsen; Abd El Ghany, Amany M

    2015-11-01

    The pathophysiology of COX-2 expression in endometriosis is a matter of debate. The aim was to investigate the role of DNA methylation of the NF-IL6 site within the promoter of COX-2 gene in the pathogenesis of endometriosis. The endometrial tissues (ectopic and eutopic) were collected from 60 women with endometriosis and 30 women without endometriosis (control group). The methylation status of COX-2 was examined by methylation-specific PCR. Quantitative real-time PCR (RT-PCR) was performed to measure COX-2 mRNA levels in endometrial tissues. We found significantly higher levels of COX-2 in ectopic endometriotic tissue compared with eutopic tissue. Also, we found that the frequencies of methylation status of the NF-IL6 site within the COX-2 promoter in the eutopic and ectopic endometrial tissues of endometriosis groups were significantly decreased in comparison to controls (P=0.002, P=0.000 respectively). Our study demonstrated that DNA hypomethylation of the NF-IL6 site within the promoter of COX-2 gene could be a key mechanism for its elevated expression in the eutopic and ectopic tissues of endometriosis.

  6. Prenatal stress-induced programming of genome-wide promoter DNA methylation in 5-HTT-deficient mice

    PubMed Central

    Schraut, K G; Jakob, S B; Weidner, M T; Schmitt, A G; Scholz, C J; Strekalova, T; El Hajj, N; Eijssen, L M T; Domschke, K; Reif, A; Haaf, T; Ortega, G; Steinbusch, H W M; Lesch, K P; Van den Hove, D L

    2014-01-01

    The serotonin transporter gene (5-HTT/SLC6A4)-linked polymorphic region has been suggested to have a modulatory role in mediating effects of early-life stress exposure on psychopathology rendering carriers of the low-expression short (s)-variant more vulnerable to environmental adversity in later life. The underlying molecular mechanisms of this gene-by-environment interaction are not well understood, but epigenetic regulation including differential DNA methylation has been postulated to have a critical role. Recently, we used a maternal restraint stress paradigm of prenatal stress (PS) in 5-HTT-deficient mice and showed that the effects on behavior and gene expression were particularly marked in the hippocampus of female 5-Htt+/− offspring. Here, we examined to which extent these effects are mediated by differential methylation of DNA. For this purpose, we performed a genome-wide hippocampal DNA methylation screening using methylated-DNA immunoprecipitation (MeDIP) on Affymetrix GeneChip Mouse Promoter 1.0 R arrays. Using hippocampal DNA from the same mice as assessed before enabled us to correlate gene-specific DNA methylation, mRNA expression and behavior. We found that 5-Htt genotype, PS and their interaction differentially affected the DNA methylation signature of numerous genes, a subset of which showed overlap with the expression profiles of the corresponding transcripts. For example, a differentially methylated region in the gene encoding myelin basic protein (Mbp) was associated with its expression in a 5-Htt-, PS- and 5-Htt × PS-dependent manner. Subsequent fine-mapping of this Mbp locus linked the methylation status of two specific CpG sites to Mbp expression and anxiety-related behavior. In conclusion, hippocampal DNA methylation patterns and expression profiles of female prenatally stressed 5-Htt+/− mice suggest that distinct molecular mechanisms, some of which are promoter methylation-dependent, contribute to the behavioral effects of the 5-Htt

  7. 5-azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation, but prevents subsequent embryo development in rapeseed and barley

    PubMed Central

    Solís, María-Teresa; El-Tantawy, Ahmed-Abdalla; Cano, Vanesa; Risueño, María C.; Testillano, Pilar S.

    2015-01-01

    Microspores are reprogrammed by stress in vitro toward embryogenesis. This process is an important tool in breeding to obtain double-haploid plants. DNA methylation is a major epigenetic modification that changes in differentiation and proliferation. We have shown changes in global DNA methylation during microspore reprogramming. 5-Azacytidine (AzaC) cannot be methylated and leads to DNA hypomethylation. AzaC is a useful demethylating agent to study DNA dynamics, with a potential application in microspore embryogenesis. This work analyzes the effects of short and long AzaC treatments on microspore embryogenesis initiation and progression in two species, the dicot Brassica napus and the monocot Hordeum vulgare. This involved the quantitative analyses of proembryo and embryo production, the quantification of DNA methylation, 5-methyl-deoxy-cytidine (5mdC) immunofluorescence and confocal microscopy, and the analysis of chromatin organization (condensation/decondensation) by light and electron microscopy. Four days of AzaC treatments (2.5 μM) increased embryo induction, response associated with a decrease of DNA methylation, modified 5mdC, and heterochromatin patterns compared to untreated embryos. By contrast, longer AzaC treatments diminished embryo production. Similar effects were found in both species, indicating that DNA demethylation promotes microspore reprogramming, totipotency acquisition, and embryogenesis initiation, while embryo differentiation requires de novo DNA methylation and is prevented by AzaC. This suggests a role for DNA methylation in the repression of microspore reprogramming and possibly totipotency acquisition. Results provide new insights into the role of epigenetic modifications in microspore embryogenesis and suggest a potential benefit of inhibitors, such as AzaC, to improve the process efficiency in biotechnology and breeding programs. PMID:26161085

  8. Abnormal PTPN11 enhancer methylation promotes rheumatoid arthritis fibroblast-like synoviocyte aggressiveness and joint inflammation

    PubMed Central

    Maeshima, Keisuke; Stanford, Stephanie M.; Hammaker, Deepa; Sacchetti, Cristiano; Zeng, Li-fan; Ai, Rizi; Zhang, Vida; Boyle, David L.; Aleman Muench, German R.; Feng, Gen-Sheng; Whitaker, John W.; Zhang, Zhong-Yin; Wang, Wei; Bottini, Nunzio; Firestein, Gary S.

    2016-01-01

    The PTPN11 gene, encoding the tyrosine phosphatase SHP-2, is overexpressed in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) compared with osteoarthritis (OA) FLS and promotes RA FLS invasiveness. Here, we explored the molecular basis for PTPN11 overexpression in RA FLS and the role of SHP-2 in RA pathogenesis. Using computational methods, we identified a putative enhancer in PTPN11 intron 1, which contained a glucocorticoid receptor–binding (GR-binding) motif. This region displayed enhancer function in RA FLS and contained 2 hypermethylation sites in RA compared with OA FLS. RA FLS stimulation with the glucocorticoid dexamethasone induced GR binding to the enhancer and PTPN11 expression. Glucocorticoid responsiveness of PTPN11 was significantly higher in RA FLS than OA FLS and required the differentially methylated CpGs for full enhancer function. SHP-2 expression was enriched in the RA synovial lining, and heterozygous Ptpn11 deletion in radioresistant or innate immune cells attenuated K/BxN serum transfer arthritis in mice. Treatment with SHP-2 inhibitor 11a-1 reduced RA FLS migration and responsiveness to TNF and IL-1β stimulation and reduced arthritis severity in mice. Our findings demonstrate how abnormal epigenetic regulation of a pathogenic gene determines FLS behavior and demonstrate that targeting SHP-2 or the SHP-2 pathway could be a therapeutic strategy for RA. PMID:27275015

  9. Abnormal PTPN11 enhancer methylation promotes rheumatoid arthritis fibroblast-like synoviocyte aggressiveness and joint inflammation

    PubMed Central

    Maeshima, Keisuke; Stanford, Stephanie M.; Hammaker, Deepa; Sacchetti, Cristiano; Zeng, Li-fan; Ai, Rizi; Zhang, Vida; Boyle, David L.; Aleman Muench, German R.; Feng, Gen-Sheng; Whitaker, John W.; Zhang, Zhong-Yin; Wang, Wei; Bottini, Nunzio; Firestein, Gary S.

    2016-01-01

    The PTPN11 gene, encoding the tyrosine phosphatase SHP-2, is overexpressed in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) compared with osteoarthritis (OA) FLS and promotes RA FLS invasiveness. Here, we explored the molecular basis for PTPN11 overexpression in RA FLS and the role of SHP-2 in RA pathogenesis. Using computational methods, we identified a putative enhancer in PTPN11 intron 1, which contained a glucocorticoid receptor– binding (GR-binding) motif. This region displayed enhancer function in RA FLS and contained 2 hypermethylation sites in RA compared with OA FLS. RA FLS stimulation with the glucocorticoid dexamethasone induced GR binding to the enhancer and PTPN11 expression. Glucocorticoid responsiveness of PTPN11 was significantly higher in RA FLS than OA FLS and required the differentially methylated CpGs for full enhancer function. SHP-2 expression was enriched in the RA synovial lining, and heterozygous Ptpn11 deletion in radioresistant or innate immune cells attenuated K/BxN serum transfer arthritis in mice. Treatment with SHP-2 inhibitor 11a-1 reduced RA FLS migration and responsiveness to TNF and IL-1β stimulation and reduced arthritis severity in mice. Our findings demonstrate how abnormal epigenetic regulation of a pathogenic gene determines FLS behavior and demonstrate that targeting SHP-2 or the SHP-2 pathway could be a therapeutic strategy for RA. PMID:27275015

  10. Applicability of the methylated CpG sites of paired box 5 (PAX5) promoter for prediction the prognosis of gastric cancer

    PubMed Central

    Deng, Jingyu; Liang, Han; Zhang, Rupeng; Dong, Qiuping; Hou, Yachao; Yu, Jun; Fan, Daiming; Hao, Xishan

    2014-01-01

    Paired box gene 5 (PAX5), a member of the paired box gene family, is involved in control of organ development and tissue differentiation. In previous study, PAX5 promoter methylation was found in gastric cancer (GC) cells and tissues. At present study, we found that the inconsistently methylated levels of PAX5 promoter were identified in the different GC tissues. The methylated CpG site count and the methylated statuses of four CpG sites (-236, -183, -162, and -152) were significantly associated with the survival of 460 GC patients, respectively. Ultimately, the methylated CpG -236 was the optimal prognostic predictor of patients identified by using the Cox regression with AIC value calculation. These findings indicated that the methylated CpG -236 of PAX5 promoter has the potential applicability for clinical evaluation the prognosis of GC. PMID:25277182

  11. Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation

    PubMed Central

    Nagarajan, Raman P.; Hogart, Amber R.; Gwye, Ynnez; Martin, Michelle R.; LaSalle, Janine M.

    2007-01-01

    Mutations in MECP2, encoding methyl CpG binding protein 2 (MeCP2), cause most cases of Rett syndrome (RTT), an X-linked neurodevelopmental disorder. Both RTT and autism are “pervasive developmental disorders” and share a loss of social, cognitive and language skills and a gain in repetitive stereotyped behavior, following apparently normal perinatal development. Although MECP2 coding mutations are a rare cause of autism, MeCP2 expression defects were previously found in autism brain. To further study the role of MeCP2 in autism spectrum disorders (ASDs), we determined the frequency of MeCP2 expression defects in brain samples from autism and other ASDs. We also tested the hypotheses that MECP2 promoter mutations or aberrant promoter methylation correlate with reduced expression in cases of idiopathic autism. MeCP2 immunofluorescence in autism and other neurodevelopmental disorders was quantified by laser scanning cytometry and compared with control postmortem cerebral cortex samples on a large tissue microarray. A significant reduction in MeCP2 expression compared to age-matched controls was found in 11/14 autism (79%), 9/9 RTT (100%), 4/4 Angelman syndrome (100%), 3/4 Prader-Willi syndrome (75%), 3/5 Down syndrome (60%), and 2/2 attention deficit hyperactivity disorder (100%) frontal cortex samples. One autism female was heterozygous for a rare MECP2 promoter variant that correlated with reduced MeCP2 expression. A more frequent occurrence was significantly increased MECP2 promoter methylation in autism male frontal cortex compared to controls. Furthermore, percent promoter methylation of MECP2 significantly correlated with reduced MeCP2 protein expression. These results suggest that both genetic and epigenetic defects lead to reduced MeCP2 expression and may be important in the complex etiology of autism. PMID:17486179

  12. Large sex differences in chicken behavior and brain gene expression coincide with few differences in promoter DNA-methylation.

    PubMed

    Nätt, Daniel; Agnvall, Beatrix; Jensen, Per

    2014-01-01

    While behavioral sex differences have repeatedly been reported across taxa, the underlying epigenetic mechanisms in the brain are mostly lacking. Birds have previously shown to have only limited dosage compensation, leading to high sex bias of Z-chromosome gene expression. In chickens, a male hyper-methylated region (MHM) on the Z-chromosome has been associated with a local type of dosage compensation, but a more detailed characterization of the avian methylome is limiting our interpretations. Here we report an analysis of genome wide sex differences in promoter DNA-methylation and gene expression in the brain of three weeks old chickens, and associated sex differences in behavior of Red Junglefowl (ancestor of domestic chickens). Combining DNA-methylation tiling arrays with gene expression microarrays we show that a specific locus of the MHM region, together with the promoter for the zinc finger RNA binding protein (ZFR) gene on chromosome 1, is strongly associated with sex dimorphism in gene expression. Except for this, we found few differences in promoter DNA-methylation, even though hundreds of genes were robustly differentially expressed across distantly related breeds. Several of the differentially expressed genes are known to affect behavior, and as suggested from their functional annotation, we found that female Red Junglefowl are more explorative and fearful in a range of tests performed throughout their lives. This paper identifies new sites and, with increased resolution, confirms known sites where DNA-methylation seems to affect sexually dimorphic gene expression, but the general lack of this association is noticeable and strengthens the view that birds do not have dosage compensation. PMID:24782041

  13. Large Sex Differences in Chicken Behavior and Brain Gene Expression Coincide with Few Differences in Promoter DNA-Methylation

    PubMed Central

    Nätt, Daniel; Agnvall, Beatrix; Jensen, Per

    2014-01-01

    While behavioral sex differences have repeatedly been reported across taxa, the underlying epigenetic mechanisms in the brain are mostly lacking. Birds have previously shown to have only limited dosage compensation, leading to high sex bias of Z-chromosome gene expression. In chickens, a male hyper-methylated region (MHM) on the Z-chromosome has been associated with a local type of dosage compensation, but a more detailed characterization of the avian methylome is limiting our interpretations. Here we report an analysis of genome wide sex differences in promoter DNA-methylation and gene expression in the brain of three weeks old chickens, and associated sex differences in behavior of Red Junglefowl (ancestor of domestic chickens). Combining DNA-methylation tiling arrays with gene expression microarrays we show that a specific locus of the MHM region, together with the promoter for the zinc finger RNA binding protein (ZFR) gene on chromosome 1, is strongly associated with sex dimorphism in gene expression. Except for this, we found few differences in promoter DNA-methylation, even though hundreds of genes were robustly differentially expressed across distantly related breeds. Several of the differentially expressed genes are known to affect behavior, and as suggested from their functional annotation, we found that female Red Junglefowl are more explorative and fearful in a range of tests performed throughout their lives. This paper identifies new sites and, with increased resolution, confirms known sites where DNA-methylation seems to affect sexually dimorphic gene expression, but the general lack of this association is noticeable and strengthens the view that birds do not have dosage compensation. PMID:24782041

  14. Large sex differences in chicken behavior and brain gene expression coincide with few differences in promoter DNA-methylation.

    PubMed

    Nätt, Daniel; Agnvall, Beatrix; Jensen, Per

    2014-01-01

    While behavioral sex differences have repeatedly been reported across taxa, the underlying epigenetic mechanisms in the brain are mostly lacking. Birds have previously shown to have only limited dosage compensation, leading to high sex bias of Z-chromosome gene expression. In chickens, a male hyper-methylated region (MHM) on the Z-chromosome has been associated with a local type of dosage compensation, but a more detailed characterization of the avian methylome is limiting our interpretations. Here we report an analysis of genome wide sex differences in promoter DNA-methylation and gene expression in the brain of three weeks old chickens, and associated sex differences in behavior of Red Junglefowl (ancestor of domestic chickens). Combining DNA-methylation tiling arrays with gene expression microarrays we show that a specific locus of the MHM region, together with the promoter for the zinc finger RNA binding protein (ZFR) gene on chromosome 1, is strongly associated with sex dimorphism in gene expression. Except for this, we found few differences in promoter DNA-methylation, even though hundreds of genes were robustly differentially expressed across distantly related breeds. Several of the differentially expressed genes are known to affect behavior, and as suggested from their functional annotation, we found that female Red Junglefowl are more explorative and fearful in a range of tests performed throughout their lives. This paper identifies new sites and, with increased resolution, confirms known sites where DNA-methylation seems to affect sexually dimorphic gene expression, but the general lack of this association is noticeable and strengthens the view that birds do not have dosage compensation.

  15. Enhanced GSH synthesis by Bisphenol A exposure promoted DNA methylation process in the testes of adult rare minnow Gobiocypris rarus.

    PubMed

    Yuan, Cong; Zhang, Yingying; Liu, Yan; Zhang, Ting; Wang, Zaizhao

    2016-09-01

    DNA methylation is a commonly studied epigenetic modification. The mechanism of BPA on DNA methylation is poorly understood. The present study aims to explore whether GSH synthesis affects DNA methylation in the testes of adult male rare minnow Gobiocypris rarus in response to Bisphenol A (BPA). Male G. rarus was exposed to 1, 15 and 225μgL(-1) BPA for 7 days. The levels of global DNA methylation, hydrogen peroxide (H2O2) and glutathione (GSH) in the testes were analyzed. Meanwhile, the levels of enzymes involved in DNA methylation and de novo GSH synthesis, and the substrate contents for GSH production were measured. Furthermore, gene expression profiles of the corresponding genes of all studied enzymes were analyzed. Results indicated that BPA at 15 and 225μgL(-1) caused hypermethylation of global DNA in the testes. The 15μgL(-1) BPA resulted in significant decrease of ten-eleven translocation proteins (TETs) while 225μgL(-1) BPA caused significant increase of DNA methyltransferase proteins (DNMTs). Moreover, 225μgL(-1) BPA caused significant increase of H2O2 and GSH levels, and the de novo GSH synthesis was enhanced. These results indicated that the significant decrease of the level of TETs may be sufficient to cause the DNA hypermethylation by 15μgL(-1) BPA. However, the significantly increased of DNMTs contributed to the significant increase of DNA methylation levels by 225μgL(-1) BPA. Moreover, the elevated de novo GSH synthesis may promote the DNA methylation process. PMID:27474941

  16. Effects of Gestational Magnetic Resonance Imaging on Methylation Status of Leptin Promoter in the Placenta and Cord Blood.

    PubMed

    Wang, Ying; Yan, Feng-Shan; Lian, Jian-Min; Dou, She-Wei

    2016-01-01

    Over the past two decades, magnetic resonance imaging (MRI) has been widely used for diagnosis in gestational women. Though it has several advantages, animal and human studies on the safety of MRI for the fetus remain inconclusive. Epigenetic modifications, which are crucial for cellular functioning, are prone to being affected by environmental changes. Therefore, we hypothesized that MRI during gestation may cause epigenetic modification alterations. Here, we investigated DNA methylation patterns of leptin promoter in the placenta and cord blood of women exposed to MRI during gestation. Results showed that average methylation levels of leptin in the placenta and cord blood were not affected by MRI. We also found that the methylation levels in the placenta and cord blood were not affected by different magnetic fields (1.5T and 3.0T MRI). However, if pregnant women were exposed to MRI at 15 to 20 weeks of gestation, the methylation level of leptin in cord blood was visibly lower than that of pregnant women exposed to MRI after 20-weeks of gestation (P = 0.037). mRNA expression level of leptin in cord blood was also altered, though mRNA expression of leptin in the placenta was not significantly affected. Therefore, we concluded that gestational MRI may not have major effects on the methylation level of leptin in cord blood and the placenta except for MRI applied before 20 weeks of gestation.

  17. Effects of Gestational Magnetic Resonance Imaging on Methylation Status of Leptin Promoter in the Placenta and Cord Blood.

    PubMed

    Wang, Ying; Yan, Feng-Shan; Lian, Jian-Min; Dou, She-Wei

    2016-01-01

    Over the past two decades, magnetic resonance imaging (MRI) has been widely used for diagnosis in gestational women. Though it has several advantages, animal and human studies on the safety of MRI for the fetus remain inconclusive. Epigenetic modifications, which are crucial for cellular functioning, are prone to being affected by environmental changes. Therefore, we hypothesized that MRI during gestation may cause epigenetic modification alterations. Here, we investigated DNA methylation patterns of leptin promoter in the placenta and cord blood of women exposed to MRI during gestation. Results showed that average methylation levels of leptin in the placenta and cord blood were not affected by MRI. We also found that the methylation levels in the placenta and cord blood were not affected by different magnetic fields (1.5T and 3.0T MRI). However, if pregnant women were exposed to MRI at 15 to 20 weeks of gestation, the methylation level of leptin in cord blood was visibly lower than that of pregnant women exposed to MRI after 20-weeks of gestation (P = 0.037). mRNA expression level of leptin in cord blood was also altered, though mRNA expression of leptin in the placenta was not significantly affected. Therefore, we concluded that gestational MRI may not have major effects on the methylation level of leptin in cord blood and the placenta except for MRI applied before 20 weeks of gestation. PMID:26789724

  18. Lactobacillus rhamnosus GG Lysate Increases Re-Epithelialization of Keratinocyte Scratch Assays by Promoting Migration.

    PubMed

    Mohammedsaeed, Walaa; Cruickshank, Sheena; McBain, Andrew J; O'Neill, Catherine A

    2015-11-05

    A limited number of studies have investigated the potential of probiotics to promote wound healing in the digestive tract. The aim of the current investigation was to determine whether probiotic bacteria or their extracts could be beneficial in cutaneous wound healing. A keratinocyte monolayer scratch assay was used to assess re-epithelialization; which comprises keratinocyte proliferation and migration. Primary human keratinocyte monolayers were scratched then exposed to lysates of Lactobacillus (L) rhamnosus GG, L. reuteri, L. plantarum or L. fermentum. Re-epithelialization of treated monolayers was compared to that of untreated controls. Lysates of L. rhamnosus GG and L. reuteri significantly increased the rate of re-epithelialization, with L. rhamnosus GG being the most efficacious. L. reuteri increased keratinocyte proliferation while L. rhamnosus GG lysate significantly increased proliferation and migration. Microarray analysis of L. rhamnosus GG treated scratches showed increased expression of multiple genes including the chemokine CXCL2 and its receptor CXCR2. These are involved in normal wound healing where they stimulate keratinocyte proliferation and/or migration. Increased protein expression of both CXCL2 and CXCR2 were confirmed by ELISA and immunoblotting. These data demonstrate that L. rhamnosus GG lysate accelerates re-epithelialization of keratinocyte scratch assays, potentially via chemokine receptor pairs that induce keratinocyte migration.

  19. Methylation of the Glucocorticoid Receptor Gene Promoter in Preschoolers: Links with Internalizing Behavior Problems

    ERIC Educational Resources Information Center

    Parade, Stephanie H.; Ridout, Kathryn K.; Seifer, Ronald; Armstrong, David A.; Marsit, Carmen J.; McWilliams, Melissa A.; Tyrka, Audrey R.

    2016-01-01

    Accumulating evidence suggests that early adversity is linked to methylation of the glucocorticoid receptor (GR) gene, "NR3C1," which is a key regulator of the hypothalamic-pituitary-adrenal axis. Yet no prior work has considered the contribution of methylation of "NR3C1" to emerging behavior problems and psychopathology in…

  20. Methylation pattern of methylene tetrahydrofolate reductase and small nuclear ribonucleoprotein polypeptide N promoters in oligoasthenospermia: a case-control study.

    PubMed

    Botezatu, Anca; Socolov, Razvan; Socolov, Demetra; Iancu, Iulia Virginia; Anton, Gabriela

    2014-02-01

    Alterations in DNA methylation patterns in several genes may lead to abnormal male sexual development and infertility. This study investigated the promoter methylation status of MTHFR and SNRPN in infertile men from Romania by quantitative methylation-specific PCR in order to investigate possible correlations with sperm abnormalities. The study groups included patients (n=27) with a median age of 31 years (range 26-41 years) as well as controls (n=11) with a median age of 30 years (range 24-37 years) recruited from couples seeking advice for infertility. DNA was isolated from sperm samples and promoter methylation was assessed using direct. Significant trends were detected for both genes that indicate a tendency towards promoter hypermethylation in spermatozoa with low motility (MTHFR P=0.0032, r=0.23; SNRPN P=0.0003, r=0.32) and poor morphology (MTHFR P=0.0012, r=0.27; SNRPN P=0.0003, r=0.33) but no trend was found in cases of low sperm count (MTHFR r=0.007; SNRPN r=0.06). The data indicate that the methylation patterns of the promoters of MTHFR and SNRPN are associated with changes in sperm motility and morphology, which could lead to male infertility. A large number of studies are now focused on the causes of male infertility. Among these are epigenetic modifications, which are important contributors to reproductive pathology in the male by providing dynamic changes of the phenotype according to the environmental and metabolic factors. The most known epigenetic modification is DNA methylation and alterations in this pattern in several genes could induce male infertility. The present study aims to investigate the promoter methylation status of the genes for methylene tetrahydrofolate reductase (MTHFR) and small nuclear ribonucleoprotein polypeptide N (SNRPN) in infertile males from Romania, in order to establish a correlation with sperm parameters. MTHFR is an enzyme involved in the folate pathway and in de novo nucleotide biosynthesis but also a good example for

  1. Simultaneous Analysis of SEPT9 Promoter Methylation Status, Micronuclei Frequency, and Folate-Related Gene Polymorphisms: The Potential for a Novel Blood-Based Colorectal Cancer Biomarker.

    PubMed

    Ravegnini, Gloria; Zolezzi Moraga, Juan Manuel; Maffei, Francesca; Musti, Muriel; Zenesini, Corrado; Simeon, Vittorio; Sammarini, Giulia; Festi, Davide; Hrelia, Patrizia; Angelini, Sabrina

    2015-12-01

    One challenge in colorectal cancer (CRC) is identifying novel biomarkers to be introduced in screening programs. The present study investigated the promoter methylation status of the SEPT9 gene in peripheral blood samples of subjects' positive fecal occult blood test (FOBT). In order to add new insights, we investigated the association between SEPT9 promoter methylation and micronuclei frequency, and polymorphisms in the folate-related pathway genes. SEPT9 promoter methylation, micronuclei frequency, and genotypes were evaluated on 74 individuals' FOBT positive. Individuals were subjected to a colonoscopy that provided written informed consent for study participation. SEPT9 promoter methylation status was significantly lower in the CRC group than controls (p = 0.0006). In contrast, the CaCo2 cell-line, analyzed as a tissue specific model of colon adenocarcinoma, showed a significantly higher percentage of SEPT9 promoter methylation compared to the CRC group (p < 0.0001). Linear regression analysis showed an inverse correlation between micronuclei frequency and the decrease in the methylation levels of SEPT9 promoter region among CRC patients (β = -0.926, p = 0.0001). With regard to genotype analysis, we showed the involvement of the DHFR polymorphism (rs70991108) in SEPT9 promoter methylation level in CRC patients only. In particular, the presence of at least one 19 bp del allele significantly correlates with decreased SEPT9 promoter methylation, compared to the 19 bp ins/ins genotype (p = 0.007). While remaining aware of the strengths and limitations of the study, this represents the first evidence of a novel approach for the early detection of CRC, using SEPT9 promoter methylation, micronuclei frequency and genotypes, with the potential to improve CRC risk assessment.

  2. Simultaneous Analysis of SEPT9 Promoter Methylation Status, Micronuclei Frequency, and Folate-Related Gene Polymorphisms: The Potential for a Novel Blood-Based Colorectal Cancer Biomarker

    PubMed Central

    Ravegnini, Gloria; Zolezzi Moraga, Juan Manuel; Maffei, Francesca; Musti, Muriel; Zenesini, Corrado; Simeon, Vittorio; Sammarini, Giulia; Festi, Davide; Hrelia, Patrizia; Angelini, Sabrina

    2015-01-01

    One challenge in colorectal cancer (CRC) is identifying novel biomarkers to be introduced in screening programs. The present study investigated the promoter methylation status of the SEPT9 gene in peripheral blood samples of subjects’ positive fecal occult blood test (FOBT). In order to add new insights, we investigated the association between SEPT9 promoter methylation and micronuclei frequency, and polymorphisms in the folate-related pathway genes. SEPT9 promoter methylation, micronuclei frequency, and genotypes were evaluated on 74 individuals’ FOBT positive. Individuals were subjected to a colonoscopy that provided written informed consent for study participation. SEPT9 promoter methylation status was significantly lower in the CRC group than controls (p = 0.0006). In contrast, the CaCo2 cell-line, analyzed as a tissue specific model of colon adenocarcinoma, showed a significantly higher percentage of SEPT9 promoter methylation compared to the CRC group (p < 0.0001). Linear regression analysis showed an inverse correlation between micronuclei frequency and the decrease in the methylation levels of SEPT9 promoter region among CRC patients (β = −0.926, p = 0.0001). With regard to genotype analysis, we showed the involvement of the DHFR polymorphism (rs70991108) in SEPT9 promoter methylation level in CRC patients only. In particular, the presence of at least one 19 bp del allele significantly correlates with decreased SEPT9 promoter methylation, compared to the 19 bp ins/ins genotype (p = 0.007). While remaining aware of the strengths and limitations of the study, this represents the first evidence of a novel approach for the early detection of CRC, using SEPT9 promoter methylation, micronuclei frequency and genotypes, with the potential to improve CRC risk assessment. PMID:26633373

  3. Simultaneous Analysis of SEPT9 Promoter Methylation Status, Micronuclei Frequency, and Folate-Related Gene Polymorphisms: The Potential for a Novel Blood-Based Colorectal Cancer Biomarker.

    PubMed

    Ravegnini, Gloria; Zolezzi Moraga, Juan Manuel; Maffei, Francesca; Musti, Muriel; Zenesini, Corrado; Simeon, Vittorio; Sammarini, Giulia; Festi, Davide; Hrelia, Patrizia; Angelini, Sabrina

    2015-01-01

    One challenge in colorectal cancer (CRC) is identifying novel biomarkers to be introduced in screening programs. The present study investigated the promoter methylation status of the SEPT9 gene in peripheral blood samples of subjects' positive fecal occult blood test (FOBT). In order to add new insights, we investigated the association between SEPT9 promoter methylation and micronuclei frequency, and polymorphisms in the folate-related pathway genes. SEPT9 promoter methylation, micronuclei frequency, and genotypes were evaluated on 74 individuals' FOBT positive. Individuals were subjected to a colonoscopy that provided written informed consent for study participation. SEPT9 promoter methylation status was significantly lower in the CRC group than controls (p = 0.0006). In contrast, the CaCo2 cell-line, analyzed as a tissue specific model of colon adenocarcinoma, showed a significantly higher percentage of SEPT9 promoter methylation compared to the CRC group (p < 0.0001). Linear regression analysis showed an inverse correlation between micronuclei frequency and the decrease in the methylation levels of SEPT9 promoter region among CRC patients (β = -0.926, p = 0.0001). With regard to genotype analysis, we showed the involvement of the DHFR polymorphism (rs70991108) in SEPT9 promoter methylation level in CRC patients only. In particular, the presence of at least one 19 bp del allele significantly correlates with decreased SEPT9 promoter methylation, compared to the 19 bp ins/ins genotype (p = 0.007). While remaining aware of the strengths and limitations of the study, this represents the first evidence of a novel approach for the early detection of CRC, using SEPT9 promoter methylation, micronuclei frequency and genotypes, with the potential to improve CRC risk assessment. PMID:26633373

  4. Methylation status of the APC and RASSF1A promoter in cell-free circulating DNA and its prognostic role in patients with colorectal cancer

    PubMed Central

    MATTHAIOS, DIMITRIOS; BALGKOURANIDOU, IOANNA; KARAYIANNAKIS, ANASTASIOS; BOLANAKI, HELEN; XENIDIS, NIKOLAOS; AMARANTIDIS, KYRIAKOS; CHELIS, LEONIDAS; ROMANIDIS, KONSTANTINOS; CHATZAKI, AIKATERINI; LIANIDOU, EVI; TRYPSIANIS, GRIGORIOS; KAKOLYRIS, STYLIANOS

    2016-01-01

    DNA methylation is the most frequent epigenetic alteration. Using methylation-specific polymerase chain reaction (MSP), the methylation status of the adenomatous polyposis coli (APC) and Ras association domain family 1 isoform A (RASSF1A) genes was examined in cell-free circulating DNA from 155 plasma samples obtained from patients with early and advanced colorectal cancer (CRC). APC and RASSF1A hypermethylation was frequently observed in both early and advanced disease, and was significantly associated with a poorer disease outcome. The methylation status of the APC and RASSF1A promoters was investigated in cell-free DNA of patients with CRC. Using MSP, the promoter methylation status of APC and RASSF1A was examined in 155 blood samples obtained from patients with CRC, 88 of whom had operable CRC (oCRC) and 67 had metastatic CRC (mCRC). The frequency of APC methylation in patients with oCRC was 33%. Methylated APC promoter was significantly associated with older age (P=0.012), higher stage (P=0.014) and methylated RASSF1A status (P=0.050). The frequency of APC methylation in patients with mCRC was 53.7%. In these patients, APC methylation was significantly associated with methylated RASSF1A status (P=0.016). The frequency of RASSF1A methylation in patients with oCRC was 25%. Methylated RASSF1A in oCRC was significantly associated with higher stage (P=0.021). The frequency of RASSF1A methylation in mCRC was 44.8%. Methylated RASSF1A in mCRC was associated with moderate differentiation (P=0.012), high levels of carcinoembryonic antigen (P=0.023) and methylated APC status (P=0.016). Patients with an unmethylated APC gene had better survival in both early (81±5 vs. 27±4 months, P<0.001) and advanced disease (37±7 vs. 15±3 months, P<0.001), compared with patients with methylated APC. Patients with an unmethylated RASSF1A gene had better survival in both early (71±6 vs. 46±8 months, P<0.001) and advanced disease (28±4 vs. 16±3 months, P<0.001) than patients with

  5. Direct DNA Methylation Profiling Using Methyl Binding Domain Proteins

    PubMed Central

    Yu, Yinni; Blair, Steve; Gillespie, David; Jensen, Randy; Myszka, David G.; Badran, Ahmed H.; Ghosh, Indraneel; Chagovetz, Alexander

    2010-01-01

    Methylation of DNA is responsible for gene silencing by establishing heterochromatin structure that represses transcription, and studies have shown that cytosine methylation of CpG islands in promoter regions acts as a precursor to early cancer development. The naturally occurring methyl binding domain (MBD) proteins from mammals are known to bind to the methylated CpG dinucleotide (mCpG), and subsequently recruit other chromatin-modifying proteins to suppress transcription. Conventional methods of detection for methylated DNA involve bisulfite treatment or immunoprecipitation prior to performing an assay. We focus on proof-of-concept studies for a direct microarray-based assay using surface-bound methylated probes. The recombinant protein 1xMBD-GFP recognizes hemi-methylation and symmetric methylation of the CpG sequence of hybridized dsDNA, while displaying greater affinity for the symmetric methylation motif, as evaluated by SPR. From these studies, for symmetric mCpG, the KD for 1xMBD-GFP ranged from 106 nM to 870 nM, depending upon the proximity of the methylation site to the sensor surface. The KD values for non-symmetrical methylation motifs were consistently greater (> 2 µM), but the binding selectivity between symmetric and hemi-methylation motifs ranged from 4 to 30, with reduced selectivity for sites close to the surface or multiple sites in proximity, which we attribute to steric effects. Fitting skew normal probability density functions to our data, we estimate an accuracy of 97.5% for our method in identifying methylated CpG loci, which can be improved through optimization of probe design and surface density. PMID:20507169

  6. Differential Radiosensitizing Potential of Temozolomide in MGMT Promoter Methylated Glioblastoma Multiforme Cell Lines

    SciTech Connect

    Nifterik, Krista A. van; Berg, Jaap van den; Stalpers, Lukas J.A.; Lafleur, M. Vincent M.; Leenstra, Sieger; Slotman, Ben J.; Hulsebos, Theo J.M.; Sminia, Peter

    2007-11-15

    Purpose: To investigate the radiosensitizing potential of temozolomide (TMZ) for human glioblastoma multiforme (GBM) cell lines using single-dose and fractionated {gamma}-irradiation. Methods and Materials: Three genetically characterized human GBM cell lines (AMC-3046, VU-109, and VU-122) were exposed to various single (0-6 Gy) and daily fractionated doses (2 Gy per fraction) of {gamma}-irradiation. Repeated TMZ doses were given before and concurrent with irradiation treatment. Immediately plated clonogenic cell-survival curves were determined for both the single-dose and the fractionated irradiation experiments. To establish the net effect of clonogenic cell survival and cell proliferation, growth curves were determined, expressed as the number of surviving cells. Results: All three cell lines showed MGMT promoter methylation, lacked MGMT protein expression, and were sensitive to TMZ. The isotoxic TMZ concentrations used were in a clinically feasible range of 10 {mu}mol/L (AMC-3046), 3 {mu}mol/L (VU-109), and 2.5 {mu}mol/L (VU-122). Temozolomide was able to radiosensitize two cell lines (AMC 3046 and VU-122) using single-dose irradiation. A reduction in the number of surviving cells after treatment with the combination of TMZ and fractionated irradiation was seen in all three cell lines, but only AMC 3046 showed a radiosensitizing effect. Conclusions: This study on TMZ-sensitive GBM cell lines shows that TMZ can act as a radiosensitizer and is at least additive to {gamma}-irradiation. Enhancement of the radiation response by TMZ seems to be independent of the epigenetically silenced MGMT gen000.

  7. A viral satellite DNA vector-induced transcriptional gene silencing via DNA methylation of gene promoter in Nicotiana benthamiana.

    PubMed

    Ju, Zheng; Wang, Lei; Cao, Dongyan; Zuo, Jinhua; Zhu, Hongliang; Fu, Daqi; Luo, Yunbo; Zhu, Benzhong

    2016-09-01

    Virus-induced gene silencing (VIGS) has been widely used for plant functional genomics study at the post-transcriptional level using various DNA or RNA viral vectors. However, while virus-induced transcriptional gene silencing (VITGS) via DNA methylation of gene promoter was achieved using several plant RNA viral vectors, it has not yet been done using a satellite DNA viral vector. In this study, a viral satellite DNA associated with tomato yellow leaf curl China virus (TYLCCNV), which has been modified as a VIGS vector in previous research, was developed as a VITGS vector. Firstly, the viral satellite DNA VIGS vector was further optimized to a more convenient p1.7A+2mβ vector with high silencing efficiency of the phytoene desaturase (PDS) gene in Nicotiana benthamiana plants. Secondly, the constructed VITGS vector (TYLCCNV:35S), which carried a portion of the cauliflower mosaic virus 35S promoter, could successfully induce heritable transcriptional gene silencing (TGS) of the green fluorescent protein (GFP) gene in the 35S-GFP transgenic N. benthamiana line 16c plants. Moreover, bisulfite sequencing results revealed higher methylated cytosine residues at CG, CHG and CHH sites of the 35S promoter sequence in TYLCCNV:35S-inoculated plants than in TYLCCNV-inoculated line 16c plants (control). Overall, these results demonstrated that the viral satellite DNA vector could be used as an effective VITGS vector to study DNA methylation in plant genomes. PMID:27422476

  8. The promoter competition assay (PCA): a new approach to identify motifs involved in the transcriptional activity of reporter genes.

    PubMed

    Hube, Florent; Myal, Yvonne; Leygue, Etienne

    2006-05-01

    Identifying particular motifs responsible for promoter activity is a crucial step toward the development of new gene-based preventive and therapeutic strategies. However, to date, experimental methods to study promoter activity remain limited. We present in this report a promoter competition assay designed to identify, within a given promoter region, motifs critical for its activity. This assay consists in co-transfecting the promoter to be analyzed and double-stranded oligonucleotides which will compete for the binding of transcription factors. Using the recently characterized SBEM promoter as model, we first delineated the feasibility of the method and optimized the experimental conditions. We then identified, within an 87-bp region responsible for a strong expression of the reporter gene, an octamer-binding site essential for its transcriptional regulation. The importance of this motif has been confirmed by site-directed mutagenesis. The promoter competition assay appears to be a fast and efficient approach to identify, within a given promoter sequence, sites critical for its activity.

  9. ZCT1 and ZCT2 transcription factors repress the activity of a gene promoter from the methyl erythritol phosphate pathway in Madagascar periwinkle cells.

    PubMed

    Chebbi, Mouadh; Ginis, Olivia; Courdavault, Vincent; Glévarec, Gaëlle; Lanoue, Arnaud; Clastre, Marc; Papon, Nicolas; Gaillard, Cécile; Atanassova, Rossitza; St-Pierre, Benoit; Giglioli-Guivarc'h, Nathalie; Courtois, Martine; Oudin, Audrey

    2014-10-15

    In Catharanthus roseus, accumulating data highlighted the existence of a coordinated transcriptional regulation of structural genes that takes place within the secoiridoid biosynthetic branch, including the methyl erythritol phosphate (MEP) pathway and the following steps leading to secologanin. To identify transcription factors acting in these pathways, we performed a yeast one-hybrid screening using as bait a promoter region of the hydroxymethylbutenyl 4-diphosphate synthase (HDS) gene involved in the responsiveness of C. roseus cells to hormonal signals inducing monoterpene indole alkaloid (MIA) production. We identified that ZCT2, one of the three members of the zinc finger Catharanthus protein (ZCT) family, can bind to a HDS promoter region involved in hormonal responsiveness. By trans-activation assays, we demonstrated that ZCT1 and ZCT2 but not ZCT3 repress the HDS promoter activity. Gene expression analyses in C. roseus cells exposed to methyljasmonate revealed a persistence of induction of ZCT2 gene expression suggesting the existence of feed-back regulatory events acting on HDS gene expression in correlation with the MIA production.

  10. Promoter methylation and expression of CDH1 and susceptibility and prognosis of eyelid squamous cell carcinoma.

    PubMed

    Wang, Yong-Qiang; Yuan, Ye; Jiang, Shan; Jiang, Hua

    2016-07-01

    Eyelid skin tumors are the most frequent type of cancer in ophthalmology. And, eyelid squamous cell carcinoma (SCC) accounts for a large part of it. CDH1 encodes E-cadherin, a glycoprotein that plays an important part in cell-cell interaction. Loss of CDH1 function was suspected to be associated with tumorigenesis. Methylation of CDH1 promotors can alter the expression of its protein and is also considered as a contributor to various cancers. In this study, CDH1 methylation and expression profile as well as prognosis of 38 cases of eyelid SCC and the corresponding adjacent tissues were analyzed to clarify the role of CDH1 methylation in SCC carcinogenesis and prognosis. Methylation was detected by PCR, and CDH1 expression was evaluated by immunohistochemistry. We observed that CDH1 methylation is significantly correlated with decreased CDH1 protein expression in eyelid SCC patients. Patients with methylation and low expression of CDH1 are significantly associated with advanced and aggressive phenotypes. Therefore, CDH1 methylation and CDH1 expression are both independent prognostic factors for prognosis of eyelid SCC patients.

  11. Clinical Neuropathology practice news 1-2014: pyrosequencing meets clinical and analytical performance criteria for routine testing of MGMT promoter methylation status in glioblastoma.

    PubMed

    Preusser, Matthias; Berghoff, Anna S; Manzl, Claudia; Filipits, Martin; Weinhäusel, Andreas; Pulverer, Walter; Dieckmann, Karin; Widhalm, Georg; Wöhrer, Adelheid; Knosp, Engelbert; Marosi, Christine; Hainfellner, Johannes A

    2014-01-01

    Testing of the MGMT promoter methylation status in glioblastoma is relevant for clinical decision making and research applications. Two recent and independent phase III therapy trials confirmed a prognostic and predictive value of the MGMT promoter methylation status in elderly glioblastoma patients. Several methods for MGMT promoter methylation testing have been proposed, but seem to be of limited test reliability. Therefore, and also due to feasibility reasons, translation of MGMT methylation testing into routine use has been protracted so far. Pyrosequencing after prior DNA bisulfite modification has emerged as a reliable, accurate, fast and easy-to-use method for MGMT promoter methylation testing in tumor tissues (including formalin fixed and paraffin-embedded samples). We performed an intra- and inter-laboratory ring trial which demonstrates a high analytical performance of this technique. Thus, pyrosequencing- based assessment of MGMT promoter methylation status in glioblastoma meets the criteria of high analytical test performance and can be recommended for clinical application, provided that strict quality control is performed. Our article summarizes clinical indications, practical instructions and open issues for MGMT promoter methylation testing in glioblastoma using pyrosequencing. PMID:24359605

  12. Clinical Neuropathology practice news 1-2014: Pyrosequencing meets clinical and analytical performance criteria for routine testing of MGMT promoter methylation status in glioblastoma

    PubMed Central

    Preusser, Matthias; Berghoff, Anna S.; Manzl, Claudia; Filipits, Martin; Weinhäusel, Andreas; Pulverer, Walter; Dieckmann, Karin; Widhalm, Georg; Wöhrer, Adelheid; Knosp, Engelbert; Marosi, Christine; Hainfellner, Johannes A.

    2014-01-01

    Testing of the MGMT promoter methylation status in glioblastoma is relevant for clinical decision making and research applications. Two recent and independent phase III therapy trials confirmed a prognostic and predictive value of the MGMT promoter methylation status in elderly glioblastoma patients. Several methods for MGMT promoter methylation testing have been proposed, but seem to be of limited test reliability. Therefore, and also due to feasibility reasons, translation of MGMT methylation testing into routine use has been protracted so far. Pyrosequencing after prior DNA bisulfite modification has emerged as a reliable, accurate, fast and easy-to-use method for MGMT promoter methylation testing in tumor tissues (including formalin-fixed and paraffin-embedded samples). We performed an intra- and inter-laboratory ring trial which demonstrates a high analytical performance of this technique. Thus, pyrosequencing-based assessment of MGMT promoter methylation status in glioblastoma meets the criteria of high analytical test performance and can be recommended for clinical application, provided that strict quality control is performed. Our article summarizes clinical indications, practical instructions and open issues for MGMT promoter methylation testing in glioblastoma using pyrosequencing. PMID:24359605

  13. Cytosine methylation in CTF and Sp1 recognition sites of an HSV tk promoter: effects on transcription in vivo and on factor binding in vitro.

    PubMed Central

    Ben-Hattar, J; Beard, P; Jiricny, J

    1989-01-01

    We methylated specific cytosine residues within or immediately around the CTF and Sp1 binding sites of the Herpes simplex virus thymidine kinase promoter. The efficiency of transcription in vivo was reduced at least 50-fold compared with transcription from the unmethylated promoter. However, methylation within the CTF recognition site had no effect on the affinity of CTF for this site in vitro. Methylation of the Sp1 site resulted in only a small decrease in the affinity of this factor for its recognition site. In vivo studies showed that the same gene inserted in different vector DNAs was regulated differently by methylation in the promoter. These results show that cytosine methylation can inhibit transcription by a mechanism other than directly blocking the binding of transcription factors. Images PMID:2557588

  14. Assessment of genotoxicity in gonads, liver and gills of zebrafish (Danio rerio) by use of the comet assay and micronucleus test after in vivo exposure to methyl methanesulfonate.

    PubMed

    Faßbender, Christopher; Braunbeck, Thomas

    2013-07-01

    Since generative tissues are a link between the generations, the detection of genetic damage in testis and ovary of fish is conductive to elucidating the relationship between genotoxicity and impairment of reproduction. In the current study, exposure of zebrafish to methyl methanesulfonate over two weeks caused concentration dependent genotoxic effects in gonads, liver and gills using the alkaline comet assay. Likewise, the micronucleus frequency was elevated in all of these organs. Thus, the comet assay and the micronucleus test proved appropriate for the detection of genotoxicity in primary male and female gonad cells and histological sections of the gonads from zebrafish, respectively.

  15. Splice variants and promoter methylation status of the Bovine Vasa Homology (Bvh) gene may be involved in bull spermatogenesis

    PubMed Central

    2013-01-01

    Background Vasa is a member of the DEAD-box protein family that plays an indispensable role in mammalian spermatogenesis, particularly during meiosis. Bovine vasa homology (Bvh) of Bos taurus has been reported, however, its function in bovine testicular tissue remains obscure. This study aimed to reveal the functions of Bvh and to determine whether Bvh is a candidate gene in the regulation of spermatogenesis in bovine, and to illustrate whether its transcription is regulated by alternative splicing and DNA methylation. Results Here we report the molecular characterization, alternative splicing pattern, expression and promoter methylation status of Bvh. The full-length coding region of Bvh was 2190 bp, which encodes a 729 amino acid (aa) protein containing nine consensus regions of the DEAD box protein family. Bvh is expressed only in the ovary and testis of adult cattle. Two splice variants were identified and termed Bvh-V4 (2112 bp and 703 aa) and Bvh-V45 (2040 bp and 679 aa). In male cattle, full-length Bvh (Bvh-FL), Bvh-V4 and Bvh-V45 are exclusively expressed in the testes in the ratio of 2.2:1.6:1, respectively. Real-time PCR revealed significantly reduced mRNA expression of Bvh-FL, Bvh-V4 and Bvh-V45 in testes of cattle-yak hybrids, with meiotic arrest compared with cattle and yaks with normal spermatogenesis (P < 0.01). The promoter methylation level of Bvh in the testes of cattle-yak hybrids was significantly greater than in cattle and yaks (P < 0.01). Conclusion In the present study, Bvh was isolated and characterized. These data suggest that Bvh functions in bovine spermatogenesis, and that transcription of the gene in testes were regulated by alternative splice and promoter methylation. PMID:23815438

  16. Promoter methylation of E-cadherin, p16, and RAR-beta(2) genes in breast tumors and dietary intake of nutrients important in one-carbon metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aberrant DNA methylation plays a critical role in carcinogenesis, and the availability of dietary factors involved in 1-carbon metabolism may contribute to aberrant DNA methylation. We investigated the association of intake of folate, vitamins B(2), B(6), B(12), and methionine with promoter methylat...

  17. Determination of Methylated CpG Sites in the Promoter Region of Catechol-O-Methyltransferase (COMT) and their Involvement in the Etiology of Tobacco Smoking.

    PubMed

    Xu, Qing; Ma, Jennie Z; Payne, Thomas J; Li, Ming D

    2010-01-01

    We previously reported that catechol-O-methyltransferase (COMT) is significantly associated with nicotine dependence (ND) in humans. In this study, we examined whether there exists any difference in the extent of methylation of CpG dinucleotides in the promoter region of COMT in smokers and non-smokers by analyzing the methylation status of cytosines at 33 CpG sites through direct sequencing of bisulfite-treated DNA (N = 50 per group). The cytosine was methylated at 13 of 33 CpG sites, and two of these sites showed significant differences between smokers and matched non-smoker controls. Specifically, in the -193 CpG site, the degree of methylation was 19.1% in smokers and 13.2% in non-smokers (P < 0.01). This finding was confirmed by methylation-specific PCR using an additional 100 smoker and 100 non-smoker control samples, which showed the degree of methylation to be 22.2% in smokers and 18.3% in non-smokers (P < 0.01). For the -39 CpG site, the degree of methylation was 9.2% in smokers, whereas no methylation was found in non-smoker controls. Together, our findings provide the first molecular explanation at the epigenetic level for the association of ND with methylation of the COMT promoter, implying that methylation plays a role in smoking dependence. PMID:21423427

  18. DNA Methylation of the Gonadal Aromatase (cyp19a) Promoter Is Involved in Temperature-Dependent Sex Ratio Shifts in the European Sea Bass

    PubMed Central

    Navarro-Martín, Laia; Viñas, Jordi; Ribas, Laia; Díaz, Noelia; Gutiérrez, Arantxa; Di Croce, Luciano; Piferrer, Francesc

    2011-01-01

    Sex ratio shifts in response to temperature are common in fish and reptiles. However, the mechanism linking temperature during early development and sex ratios has remained elusive. We show in the European sea bass (sb), a fish in which temperature effects on sex ratios are maximal before the gonads form, that juvenile males have double the DNA methylation levels of females in the promoter of gonadal aromatase (cyp19a), the enzyme that converts androgens into estrogens. Exposure to high temperature increased the cyp19a promoter methylation levels of females, indicating that induced-masculinization involves DNA methylation-mediated control of aromatase gene expression, with an observed inverse relationship between methylation levels and expression. Although different CpGs within the sb cyp19a promoter exhibited different sensitivity to temperature, we show that the increased methylation of the sb cyp19a promoter, which occurs in the gonads but not in the brain, is not a generalized effect of temperature. Importantly, these effects were also observed in sexually undifferentiated fish and were not altered by estrogen treatment. Thus, methylation of the sb cyp19a promoter is the cause of the lower expression of cyp19a in temperature-masculinized fish. In vitro, induced methylation of the sb cyp19a promoter suppressed the ability of SF-1 and Foxl2 to stimulate transcription. Finally, a CpG differentially methylated by temperature and adjacent to a Sox transcription factor binding site is conserved across species. Thus, DNA methylation of the aromatase promoter may be an essential component of the long-sought-after mechanism connecting environmental temperature and sex ratios in vertebrate species with temperature-dependent sex determination. PMID:22242011

  19. High fructose consumption induces DNA methylation at PPARα and CPT1A promoter regions in the rat liver.

    PubMed

    Ohashi, Koji; Munetsuna, Eiji; Yamada, Hiroya; Ando, Yoshitaka; Yamazaki, Mirai; Taromaru, Nao; Nagura, Ayuri; Ishikawa, Hiroaki; Suzuki, Koji; Teradaira, Ryoji; Hashimoto, Shuji

    DNA methylation status is affected by environmental factors, including nutrition. Fructose consumption is considered a risk factor for the conditions that make up metabolic syndrome such as dyslipidemia. However, the pathogenetic mechanism by which fructose consumption leads to metabolic syndrome is unclear. Based on observations that epigenetic modifications are closely related to induction of metabolic syndrome, we hypothesized that fructose-induced metabolic syndrome is caused by epigenetic alterations. Male SD rats were designated to receive water or 20% fructose solution for 14 weeks. mRNA levels for peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1A (CPT1A) was analyzed using Real-time PCR. Restriction digestion and real-time PCR (qAMP) was used for the analysis of DNA methylation status. Hepatic lipid accumulation was also observed by fructose intake. Fructose feeding also significantly decreased mRNA levels for PPARα and CPT1A. qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status, and pathogenesis of metabolic syndrome induced by fructose relates to DNA methylation status.

  20. Methyl-branched lipids promote the membrane adsorption of α-synuclein by enhancing shallow lipid-packing defects.

    PubMed

    Garten, Matthias; Prévost, Coline; Cadart, Clotilde; Gautier, Romain; Bousset, Luc; Melki, Ronald; Bassereau, Patricia; Vanni, Stefano

    2015-06-28

    Alpha-synuclein (AS) is a synaptic protein that is directly involved in Parkinson's disease due to its tendency to form protein aggregates. Since AS aggregation can be dependent on the interactions between the protein and the cell plasma membrane, elucidating the membrane binding properties of AS is of crucial importance to establish the molecular basis of AS aggregation into toxic fibrils. Using a combination of in vitro reconstitution experiments based on Giant Unilamellar Vesicles (GUVs), confocal microscopy and all-atom molecular dynamics simulations, we have investigated the membrane binding properties of AS, with a focus on the relative contribution of hydrophobic versus electrostatic interactions. In contrast with previous observations, we did not observe any binding of AS to membranes containing the ganglioside GM1, even at relatively high GM1 content. AS, on the other hand, showed a stronger affinity for neutral flat membranes consisting of methyl-branched lipids. To rationalize these results, we used all-atom molecular dynamics simulations to investigate the influence of methyl-branched lipids on interfacial membrane properties. We found that methyl-branched lipids promote the membrane adsorption of AS by creating shallow lipid-packing defects to a larger extent than polyunsaturated and monounsaturated lipids. Our findings suggest that methyl-branched lipids may constitute a remarkably adhesive substrate for peripheral proteins that adsorb on membranes via hydrophobic insertions.

  1. High fructose consumption induces DNA methylation at PPARα and CPT1A promoter regions in the rat liver.

    PubMed

    Ohashi, Koji; Munetsuna, Eiji; Yamada, Hiroya; Ando, Yoshitaka; Yamazaki, Mirai; Taromaru, Nao; Nagura, Ayuri; Ishikawa, Hiroaki; Suzuki, Koji; Teradaira, Ryoji; Hashimoto, Shuji

    DNA methylation status is affected by environmental factors, including nutrition. Fructose consumption is considered a risk factor for the conditions that make up metabolic syndrome such as dyslipidemia. However, the pathogenetic mechanism by which fructose consumption leads to metabolic syndrome is unclear. Based on observations that epigenetic modifications are closely related to induction of metabolic syndrome, we hypothesized that fructose-induced metabolic syndrome is caused by epigenetic alterations. Male SD rats were designated to receive water or 20% fructose solution for 14 weeks. mRNA levels for peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1A (CPT1A) was analyzed using Real-time PCR. Restriction digestion and real-time PCR (qAMP) was used for the analysis of DNA methylation status. Hepatic lipid accumulation was also observed by fructose intake. Fructose feeding also significantly decreased mRNA levels for PPARα and CPT1A. qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status, and pathogenesis of metabolic syndrome induced by fructose relates to DNA methylation status. PMID:26519879

  2. Sensitivity of human prostate cancer cells to chemotherapeutic drugs depends on EndoG expression regulated by promoter methylation

    PubMed Central

    Wang, Xiaoying; Tryndyak, Volodymyr; Apostolov, Eugene O.; Yin, Xiaoyan; Shah, Sudhir V.; Pogribny, Igor P.; Basnakian, Alexei G.

    2016-01-01

    Analysis of promoter sequences of all known human cytotoxic endonucleases showed that endonuclease G (EndoG) is the only endonuclease that contains a CpG island, a segment of DNA with high G+C content and a site for methylation, in the promoter region. A comparison of three human prostate cancer cell lines showed that EndoG is highly expressed in 22Rv1 and LNCaP cells. In PC3 cells, EndoG was not expressed and the EndoG CpG island was hypermethylated. The expression of EndoG correlated positively with sensitivity to cisplatin and etoposide, and the silencing of EndoG by siRNA decreased the sensitivity of the cells to the chemotherapeutic agents in the two EndoG-expressing cell lines. 5-aza-2′-deoxycytidine caused hypomethylation of the EndoG promoter in PC3 cells, induced EndoG mRNA and protein expression, and made the cells sensitive to both cisplatin and etoposide. The acetylation of histones by trichostatin A, the histone deacetylase inhibitor, induced EndoG expression in 22Rv1 cells, while it had no such effect in PC3 cells. These data are the first indication that EndoG may be regulated by methylation of its gene promoter, and partially by histone acetylation, and that EndoG is essential for prostate cancer cell death in the used models. PMID:18565644

  3. Promoter Methylation in Prostate Cancer and its Application for the Early Detection of Prostate Cancer Using Serum and Urine Samples

    PubMed Central

    Ahmed, Hafiz

    2010-01-01

    Prostate cancer is the second most common cancer and the second leading cause of cancer death in men. However, prostate cancer can be effectively treated and cured, if it is diagnosed in its early stages when the tumor is still confined to the prostate. Combined with the digital rectal examination, the PSA test has been widely used to detect prostate cancer. But, the PSA screening method for early detection of prostate cancer is not reliable due to the high prevalence of false positive and false negative results. Epigenetic alterations including hypermethylation of gene promoters are believed to be the early events in neoplastic progression and thus these methylated genes can serve as biomarkers for the detection of cancer from clinical specimens. This review discusses DNA methylation of several gene promoters during prostate carcinogenesis and evaluates the usefulness of monitoring methylated DNA sequences, such as GSTP1, RASSF1A, RARβ2 and galectin-3, for early detection of prostate cancer in tissue biopsies, serum and urine. PMID:20657713

  4. Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia

    NASA Technical Reports Server (NTRS)

    Holst, Charles R.; Nuovo, Gerard J.; Esteller, Manel; Chew, Karen; Baylin, Stephen B.; Herman, James G.; Tlsty, Thea D.

    2003-01-01

    Cultures of human mammary epithelial cells (HMECs) contain a subpopulation of variant cells with the capacity to propagate beyond an in vitro proliferation barrier. These variant HMECs, which contain hypermethylated and silenced p16(INK4a) (p16) promoters, eventually accumulate multiple chromosomal changes, many of which are similar to those detected in premalignant and malignant lesions of breast cancer. To determine the origin of these variant HMECs in culture, we used Luria-Delbruck fluctuation analysis and found that variant HMECs exist within the population before the proliferation barrier, thereby raising the possibility that variant HMECs exist in vivo before cultivation. To test this hypothesis, we examined mammary tissue from normal women for evidence of p16 promoter hypermethylation. Here we show that epithelial cells with methylation of p16 promoter sequences occur in focal patches of histologically normal mammary tissue of a substantial fraction of healthy, cancer-free women.

  5. 35S Promoter Methylation in Kanamycin-Resistant Kalanchoe (Kalanchoe pinnata L.) Plants Expressing the Antimicrobial Peptide Cecropin P1 Transgene.

    PubMed

    Shevchuk, T V; Zakharchenko, N S; Tarlachkov, S V; Furs, O V; Dyachenko, O V; Buryanov, Y I

    2016-09-01

    Transgenic kalanchoe plants (Kalanchoe pinnata L.) expressing the antimicrobial peptide cecropin P1 gene (cecP1) under the control of the 35S cauliflower mosaic virus 35S RNA promoter and the selective neomycin phosphotransferase II (nptII) gene under the control of the nopaline synthase gene promoter were studied. The 35S promoter methylation and the cecropin P1 biosynthesis levels were compared in plants growing on media with and without kanamycin. The low level of active 35S promoter methylation further decreases upon cultivation on kanamycin-containing medium, while cecropin P1 synthesis increases. PMID:27682168

  6. Design, measurement and processing of region-specific DNA methylation assays: the mass spectrometry-based method EpiTYPER

    PubMed Central

    Suchiman, H. Eka D.; Slieker, Roderick C.; Kremer, Dennis; Slagboom, P. Eline; Heijmans, Bastiaan T.; Tobi, Elmar W.

    2015-01-01

    EpiTYPER® is a mass spectrometry-based bisulfite sequencing method that enables region-specific DNA methylation analysis in a quantitative and high-throughput fashion. The technology targets genomic regions of 100–600 base pairs and results in the quantitative measurement of DNA methylation levels largely at single-nucleotide resolution. It is particularly suitable for larger scale efforts to study candidate regions or to validate regions from genome-wide DNA methylation studies. Here, we describe in detail how to design and perform EpiTYPER measurements and preprocess the data, providing details for high quality measurements not provided in the standard EpiTYPER protocol. PMID:26442105

  7. Association of NDRG1 gene promoter methylation with reduced NDRG1 expression in gastric cancer cells and tissue specimens.

    PubMed

    Chang, Xiaojing; Zhang, Shuanglong; Ma, Jinguo; Li, Zhenhua; Zhi, Yu; Chen, Jing; Lu, Yao; Dai, Dongqiu

    2013-05-01

    NDRG1 (N-myc downstream-regulated gene 1) plays a role in cell differentiation and suppression of tumor metastasis. This study aims to determine the expression of NDRG1 mRNA and protein in gastric cancer cell lines and tissue specimens and then assess the possible cause of its aberrant expression. Six gastric cancer cell lines and 20 pairs of normal and gastric cancer tissue samples were used to assess NDRG1 expression using Real-time PCR and Western blot. High-resolution melting analysis (HRM) and methylation-specific PCR (MSP) were performed to detect gene mutation and methylation, respectively, in cell lines and tissues samples. Expression of NDRG1 mRNA and protein was downregulated in gastric cancer cell lines and tissues. Specifically, expression of NDRG1 mRNA and protein was lower in all six gastric cancer cell lines than that of normal gastric cells, while 15 out of 20 cases of gastric cancer tissues had the reduced levels of NDRG1 mRNA and protein. HRM data showed that there was no mutation in NDRG1 gene, but MSP data showed high levels of NDRG1 gene promoter methylation in the CpG islands in both cell lines and tissue samples. Moreover, treatment with the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine upregulated NDRG1 expression in gastric cancer HGC27 cells, but not in the histone deacetylase inhibitor trichostatin A-treated HGC27 cells. In conclusion, this study has shown that expression of NDRG1 mRNA and protein was reduced in gastric cancer cell lines and tissues, which is due to methylation of NDRG1 gene promoter. Further study will unearth the clinical significance of the reduced NDRG1 protein in gastric cancer.

  8. Alternative splicing, promoter methylation, and functional SNPs of sperm flagella 2 gene in testis and mature spermatozoa of Holstein bulls.

    PubMed

    Guo, F; Yang, B; Ju, Z H; Wang, X G; Qi, C; Zhang, Y; Wang, C F; Liu, H D; Feng, M Y; Chen, Y; Xu, Y X; Zhong, J F; Huang, J M

    2014-02-01

    The sperm flagella 2 (SPEF2) gene is essential for development of normal sperm tail and male fertility. In this study, we characterized first the splice variants, promoter and its methylation, and functional single-nucleotide polymorphisms (SNPs) of the SPEF2 gene in newborn and adult Holstein bulls. Four splice variants were identified in the testes, epididymis, sperm, heart, spleen, lungs, kidneys, and liver tissues through RT-PCR, clone sequencing, and western blot analysis. Immunohistochemistry revealed that the SPEF2 was specifically expressed in the primary spermatocytes, elongated spermatids, and round spermatids in the testes and epididymis. SPEF2-SV1 was differentially expressed in the sperms of high-performance and low-performance adult bulls; SPEF2-SV2 presents the highest expression in testis and epididymis; SPEF2-SV3 was only detected in testis and epididymis. An SNP (c.2851G>T) in exon 20 of SPEF2, located within a putative exonic splice enhancer, potentially produced SPEF2-SV3 and was involved in semen deformity rate and post-thaw cryopreserved sperm motility. The luciferase reporter and bisulfite sequencing analysis suggested that the methylation pattern of the core promoter did not significantly differ between the full-sib bulls that presented hypomethylation in the ejaculated semen and testis. This finding indicates that sperm quality is unrelated to SPEF2 methylation pattern. Our data suggest that alternative splicing, rather than methylation, is involved in the regulation of SPEF2 expression in the testes and sperm and is one of the determinants of sperm motility during bull spermatogenesis. The exonic SNP (c.2851G>T) produces aberrant splice variants, which can be used as a candidate marker for semen traits selection breeding of Holstein bulls.

  9. The use of tetrabutylammonium fluoride to promote N- and O-(11) C-methylation reactions with iodo[(11) C]methane in dimethyl sulfoxide.

    PubMed

    Kikuchi, Tatsuya; Minegishi, Katsuyuki; Hashimoto, Hiroki; Zhang, Ming-Rong; Kato, Koichi

    2013-11-01

    The N- or O-methylation reactions of compounds bearing amide, aniline, or phenol moieties using iodo[(11) C]methane (1) with the aid of a base are frequently applied to the preparation of (11) C-labeled radiopharmaceuticals. Although sodium hydride and alkaline metal hydroxides are commonly employed as bases in these reactions, their poor solubility properties in organic solvents and hydrolytic activities have sometimes limited their application and made the associated (11) C-methylation reactions difficult. In contrast to these bases, tetrabutylammonium fluoride (TBAF) is moderately basic, highly soluble in organic solvents, and weakly nucleophilic. Although it was envisaged that TBAF could be used as the preferred base for (11) C-methylation reactions using 1, studies concerning the use of TBAF to promote (11) C-methylation reactions are scarce. Herein, we have evaluated the efficiency of the (11) C-methylation reactions of 13 model compounds using TBAF and 1. In most cases, the N-(11) C-methylations were efficiently promoted by TBAF in dimethyl sulfoxide at ambient temperature, whereas the O-(11) C-methylations required heating in some cases. Comparison studies revealed that the efficiencies of the (11) C-methylation reactions with TBAF were comparable or sometimes greater than those conducted with sodium hydride. Based on these results, TBAF should be considered as the preferred base for (11) C-methylation reactions using 1. PMID:25196029

  10. Gene promoter DNA methylation patterns have a limited role in orchestrating transcriptional changes in the fetal liver in response to maternal folate depletion during pregnancy

    PubMed Central

    Adriaens, Michiel; Evelo, Chris T.; Ford, Dianne; Mathers, John C.

    2016-01-01

    Scope Early‐life exposures are critical in fetal programming and may influence function and health in later life. Adequate maternal folate consumption during pregnancy is essential for healthy fetal development and long‐term offspring health. The mechanisms underlying fetal programming are poorly understood, but are likely to involve gene regulation. Epigenetic marks, including DNA methylation, regulate gene expression and are modifiable by folate supply. We observed transcriptional changes in fetal liver in response to maternal folate depletion and hypothesized that these changes are concomitant with altered gene promoter methylation. Methods and results Female C57BL/6J mice were fed diets containing 2 or 0.4 mg folic acid/kg for 4 wk before mating and throughout pregnancy. At 17.5‐day gestation, genome‐wide gene expression and promoter methylation were measured by microarray analysis in male fetal livers. While 989 genes were differentially expressed, 333 promoters had altered methylation (247 hypermethylated, 86 hypomethylated) in response to maternal folate depletion. Only 16 genes had both expression and methylation changes. However, most methylation changes occurred in genomic regions neighboring expression changes. Conclusion In response to maternal folate depletion, altered expression at the mRNA level was not associated with altered promoter methylation of the same gene in fetal liver. PMID:27133805

  11. 4-N,N-Dimethylaminopyridine promoted selective oxidation of methyl aromatics with molecular oxygen.

    PubMed

    Zhang, Zhan; Gao, Jin; Wang, Feng; Xu, Jie

    2012-03-30

    4-N,N-Dimethylaminopyridine (DMAP) as catalyst in combination with benzyl bromide was developed for the selective oxidation of methyl aromatics. DMAP exhibited higher catalytic activity than other pyridine analogues, such as 4-carboxypyridine, 4-cyanopyridine and pyridine. The sp3 hybrid carbon-hydrogen (C-H) bonds of different methyl aromatics were successfully oxygenated with molecular oxygen. The real catalyst is due to the formation of a pyridine onium salt from the bromide and DMAP. The onium salt was well characterized by NMR and the reaction mechanism was discussed.

  12. Molecular cloning and functional characterization of Catharanthus roseus hydroxymethylbutenyl 4-diphosphate synthase gene promoter from the methyl erythritol phosphate pathway.

    PubMed

    Ginis, Olivia; Courdavault, Vincent; Melin, Céline; Lanoue, Arnaud; Giglioli-Guivarc'h, Nathalie; St-Pierre, Benoit; Courtois, Martine; Oudin, Audrey

    2012-05-01

    The Madagascar periwinkle produces monoterpenoid indole alkaloids (MIA) of high interest due to their therapeutical values. The terpenoid moiety of MIA is derived from the methyl erythritol phosphate (MEP) and seco-iridoid pathways. These pathways are regarded as the limiting branch for MIA biosynthesis in C. roseus cell and tissue cultures. In previous studies, we demonstrated a coordinated regulation at the transcriptional and spatial levels of genes from both pathways. We report here on the isolation of the 5'-flanking region (1,049 bp) of the hydroxymethylbutenyl 4-diphosphate synthase (HDS) gene from the MEP pathway. To investigate promoter transcriptional activities, the HDS promoter was fused to GUS reporter gene. Agrobacterium-mediated transformation of young tobacco leaves revealed that the cloned HDS promoter displays a tissue-specific GUS staining restricted to the vascular region of the leaves and limited to a part of the vein that encompasses the phloem in agreement with the previous localization of HDS transcripts in C. roseus aerial organs. Further functional characterizations in stably or transiently transformed C. roseus cells allowed us to identify the region that can be consider as the minimal promoter and to demonstrate the induction of HDS promoter by several hormonal signals (auxin, cytokinin, methyljasmonate and ethylene) leading to MIA production. These results, and the bioinformatic analysis of the HDS 5'-region, suggest that the HDS promoter harbours a number of cis-elements binding specific transcription factors that would regulate the flux of terpenoid precursors involved in MIA biosynthesis.

  13. Differential vitamin D 24-hydroxylase/CYP24A1 gene promoter methylation in endothelium from benign and malignant human prostate

    PubMed Central

    Karpf, Adam R; Omilian, Angela R; Bshara, Wiam; Tian, Lili; Tangrea, Michael A; Morrison, Carl D; Johnson, Candace S

    2011-01-01

    Epigenetic alterations occur in tumor-associated vessels in the tumor microenvironment. Methylation of the CYP24A1 gene promoter differs in endothelial cells isolated from tumors and non-tumor microenvironments in mice. The epigenetic makeup of endothelial cells of human tumor-associated vasculature is unknown due to difficulty of isolating endothelial cells populations from a heterogeneous tissue microenvironment. To ascertain CYP24A1 promoter methylation in tumor-associated endothelium, we utilized laser microdissection guided by CD31 immunohistochemistry to procure endothelial cells from human prostate tumor specimens. Prostate tissues were obtained following robotic radical prostatectomy from men with clinically localized prostate cancer. Adjacent histologically benign prostate tissues were used to compare endothelium from benign versus tumor microenvironments. Sodium bisulfite sequencing of CYP24A1 promoter region showed that the average CYP24A1 promoter methylation in the endothelium was 20% from the tumor microenvironment compared with 8.2% in the benign microenvironment (p < 0.05). A 2-fold to 17-fold increase in CYP24A1 promoter methylation was observed in the prostate tumor endothelium compared with the matched benign prostate endothelium in four patient samples, while CYP24A1 promoter methylation remained unchanged in two patient samples. In addition, there is no correlation of the level of CYP24A1 promoter methylation in prostate tumor-associated endothelium with that of epithelium/stroma. This study demonstrates that the CYP24A1 promoter is methylated in tumor-associated endothelium, indicating that epigenetic alterations in CYP24A1 may play a role in determining the phenotype of tumor-associated vasculature in the prostate tumor microenvironment. PMID:21725204

  14. PAK4 Methylation by SETD6 Promotes the Activation of the Wnt/β-Catenin Pathway.

    PubMed

    Vershinin, Zlata; Feldman, Michal; Chen, Ayelet; Levy, Dan

    2016-03-25

    Lysine methylation of non-histone proteins has emerged as a key regulator of many cellular functions. Although less studied than other post-translational modifications such as phosphorylation and acetylation, the number of known methylated non-histone proteins is rapidly expanding. We have identified the p21-activated kinase 4 (PAK4) as a new substrate for methylation by the protein lysine methyltransferase SETD6. Our data demonstrate that SETD6 methylates PAK4 bothin vitroand at chromatin in cells. Interestingly, depletion of SETD6 in various cellular systems significantly hinders the activation of the Wnt/β-catenin target genes. PAK4 was recently shown to regulate β-catenin signaling, and we show that SETD6 is a key mediator of this pathway. In the presence of SETD6, the physical interaction between PAK4 and β-catenin is dramatically increased, leading to a significant increase in the transcription of β-catenin target genes. Taken together, our results uncover a new regulatory layer of the Wnt/β-catenin signaling cascade and provide new insight into SETD6 biology. PMID:26841865

  15. PRMT1 promotes mitosis of cancer cells through arginine methylation of INCENP.

    PubMed

    Deng, Xiaolan; Von Keudell, Gottfried; Suzuki, Takehiro; Dohmae, Naoshi; Nakakido, Makoto; Piao, Lianhua; Yoshioka, Yuichiro; Nakamura, Yusuke; Hamamoto, Ryuji

    2015-11-01

    Inner centromere protein (INCENP) is a part of a protein complex known as the chromosomal passenger complex (CPC) that is essential for correcting non-bipolar chromosome attachments and for cytokinesis. We here demonstrate that a protein arginine methyltransferase PRMT1, which are overexpressed in various types of cancer including lung and bladder cancer, methylates arginine 887 in an Aurora Kinase B (AURKB)-binding region of INCENP both in vitro and in vivo. R887-substituted INCENP revealed lower binding-affinity to AURKB than wild-type INCENP in the presence of PRMT1. Knockdown of PRMT1 as well as overexpression of methylation-inactive INCENP attenuated the AURKB activity in cancer cells, and resulted in abnormal chromosomal alignment and segregation. Furthermore, introduction of methylation-inactive INCENP into cancer cells reduced the growth rate, compared with those introduced wild-type INCENP or Mock. Our data unveils a novel mechanism of PRMT1-mediated CPC regulation through methylation of INCENP.

  16. Induction and maintenance of DNA methylation in plant promoter sequences by apple latent spherical virus-induced transcriptional gene silencing.

    PubMed

    Kon, Tatsuya; Yoshikawa, Nobuyuki

    2014-01-01

    Apple latent spherical virus (ALSV) is an efficient virus-induced gene silencing vector in functional genomics analyses of a broad range of plant species. Here, an Agrobacterium-mediated inoculation (agroinoculation) system was developed for the ALSV vector, and virus-induced transcriptional gene silencing (VITGS) is described in plants infected with the ALSV vector. The cDNAs of ALSV RNA1 and RNA2 were inserted between the cauliflower mosaic virus 35S promoter and the NOS-T sequences in a binary vector pCAMBIA1300 to produce pCALSR1 and pCALSR2-XSB or pCALSR2-XSB/MN. When these vector constructs were agroinoculated into Nicotiana benthamiana plants with a construct expressing a viral silencing suppressor, the infection efficiency of the vectors was 100%. A recombinant ALSV vector carrying part of the 35S promoter sequence induced transcriptional gene silencing of the green fluorescent protein gene in a line of N. benthamiana plants, resulting in the disappearance of green fluorescence of infected plants. Bisulfite sequencing showed that cytosine residues at CG and CHG sites of the 35S promoter sequence were highly methylated in the silenced generation zero plants infected with the ALSV carrying the promoter sequence as well as in progeny. The ALSV-mediated VITGS state was inherited by progeny for multiple generations. In addition, induction of VITGS of an endogenous gene (chalcone synthase-A) was demonstrated in petunia plants infected with an ALSV vector carrying the native promoter sequence. These results suggest that ALSV-based vectors can be applied to study DNA methylation in plant genomes, and provide a useful tool for plant breeding via epigenetic modification. PMID:25426109

  17. Induction and maintenance of DNA methylation in plant promoter sequences by apple latent spherical virus-induced transcriptional gene silencing

    PubMed Central

    Kon, Tatsuya; Yoshikawa, Nobuyuki

    2014-01-01

    Apple latent spherical virus (ALSV) is an efficient virus-induced gene silencing vector in functional genomics analyses of a broad range of plant species. Here, an Agrobacterium-mediated inoculation (agroinoculation) system was developed for the ALSV vector, and virus-induced transcriptional gene silencing (VITGS) is described in plants infected with the ALSV vector. The cDNAs of ALSV RNA1 and RNA2 were inserted between the cauliflower mosaic virus 35S promoter and the NOS-T sequences in a binary vector pCAMBIA1300 to produce pCALSR1 and pCALSR2-XSB or pCALSR2-XSB/MN. When these vector constructs were agroinoculated into Nicotiana benthamiana plants with a construct expressing a viral silencing suppressor, the infection efficiency of the vectors was 100%. A recombinant ALSV vector carrying part of the 35S promoter sequence induced transcriptional gene silencing of the green fluorescent protein gene in a line of N. benthamiana plants, resulting in the disappearance of green fluorescence of infected plants. Bisulfite sequencing showed that cytosine residues at CG and CHG sites of the 35S promoter sequence were highly methylated in the silenced generation zero plants infected with the ALSV carrying the promoter sequence as well as in progeny. The ALSV-mediated VITGS state was inherited by progeny for multiple generations. In addition, induction of VITGS of an endogenous gene (chalcone synthase-A) was demonstrated in petunia plants infected with an ALSV vector carrying the native promoter sequence. These results suggest that ALSV-based vectors can be applied to study DNA methylation in plant genomes, and provide a useful tool for plant breeding via epigenetic modification. PMID:25426109

  18. Deletion of A-antigen in a human cancer cell line is associated with reduced promoter activity of CBF/NF-Y binding region, and possibly with enhanced DNA methylation of A transferase promoter.

    PubMed

    Iwamoto, S; Withers, D A; Handa, K; Hakomori, S

    1999-10-01

    Employing blood group A- and A+ clones derived from the same parental colonic cancer cell lines, we studied the molecular mechanism of deletion/reduction vs. continuous expression of A antigen in A tumors, a crucial determinant of human tumor malignancy. A- transferase mRNA level in one of the A- clones (A- SW480) was undetectable, while that in A+ SW480 was strongly detectable by semiquantitative RT-PCR. Relatively lower (approximately 1/3) transcript level was detectable in another A- clone (A- HT29) in comparison to A+ HT29 by the same RT-PCR procedure, although none of these tumor cell lines showed detectable level of A transcript by Northern blotting or RNase protection methods. Therefore, subsequent studies were performed employing A- vs. A+ SW480 clones. Deletion of A transcript in A- cells was not due to gene deletion, since Southern blot analysis showed equal presence of genomic DNA regardless of A- vs. A+ (SW480 or HT29) or B+ (KATOIII) tumor cells. Two transcriptional control mechanisms leading to differences of A expression in SW480 cells are indicated. i. Luciferase assay in A- and A+ SW480 cells showed that promoter activities of segments of 5' flanking sequence of ABO gene reflected transcript levels in these cell lines. The enhancing activity of a 43 bp tandem repeat unit located between -3899 to -3618 was reduced in A- compared to A+ cells. ii. Distinct differences in the pattern of CpG dinucleotide methylation were found in A- vs. A+ cells. Therefore, the methylation process of A promoter DNA may be another important factor controlling A activity in SW480 tumor cells. Since proliferation and motility of tumor cells are associated closely with A expression, transcription control mechanism for expression of A transferase as described above may be of crucial importance in defining human tumor malignancy. PMID:10972144

  19. Poor survival is associated with the methylated degree of zinc-finger protein 545 (ZNF545) DNA promoter in gastric cancer.

    PubMed

    Deng, Jingyu; Liang, Han; Ying, Guoguang; Dong, Qiuping; Zhang, Rupeng; Yu, Jun; Fan, Daiming; Hao, Xishan

    2015-02-28

    Zinc-finger protein 545 (ZNF545) was identified as a gastric tumour suppressor and potentially independent prognostic factor. At the present study, we found that lower expression of ZNF545 was specific in gastric cancer (GC) tissues, and the inconsistently methylated levels of ZNF545 promoter were identified in the gastric cancer tissues. In the methylation-specific PCR (MSP) analysis cohort, we found that GC patients with hypermethylated ZNF545 promoter exhibited significantly shorter median OS than those with unmethylated ZNF545 promoter and those with hypomethylated ZNF545 promoter. In the other cohort, we also demonstrated that GC patients with three or more methylated CpG sites in the ZNF545 promoter were significantly associated with poor survival by using the bisulphite gene sequencing (BGS). The methylated degrees of five CpG sites (-232, -214, -176, -144 and -116) could also provide distinct survival discrimination of patients with GC. These findings indicated that the methylated CpG sites of the ZNF545 promoter could be used for the clinical prediction of the prognosis of GC. PMID:25714013

  20. Expression and promoter methylation status of hMLH1, MGMT, APC, and CDH1 genes in patients with colon adenocarcinoma

    PubMed Central

    Michailidi, Christina; Theocharis, Stamatios; Tsourouflis, Gerasimos; Pletsa, Vasiliki; Kouraklis, Gregorios; Patsouris, Efstratios; Papavassiliou, Athanasios G

    2015-01-01

    Colorectal cancer (CRC) is the third most common cancer in men and the second in women worldwide. CRC development is the result of genetic and epigenetic alterations accumulation in the epithelial cells of colon mucosa. In the present study, DNA methylation, an epigenetic event, was evaluated in tumoral and matching normal epithelium in a cohort of 61 CRC patients. The results confirmed and expanded knowledge for the tumor suppressor genes hMLH1, MGMT, APC, and CDH1. Promoter methylation was observed for all the examined genes in different percentage. A total of 71% and 10% of the examined cases were found to be methylated in two or more and in all genes, respectively. mRNA and protein levels were also evaluated. Promoter methylation of hMLH1, MGMT, APC, and CDH1 genes was present at the early stages of tumor’s formation and it could also be detected in the normal mucosa. Correlations of the methylated genes with patient’s age and tumor’s clinicopathological characteristics were also observed. Our findings suggest that DNA methylation is a useful marker for tumor progression monitoring and that promoter methylation in certain genes is associated with more advanced tumor stage, poor differentiation, and metastasis. PMID:25908636

  1. Methylation of a CpG Island within the Uroplakin Ib Promoter: A Possible Mechanism for Loss of Uroplakin Ib Expression in Bladder Carcinoma1

    PubMed Central

    Varga, Andrea E; Leonardos, Lefta; Jackson, Paul; Marreiros, Alexandra; Cowled, Prue A

    2004-01-01

    Abstract Uroplakin Ib is a structural protein on the surface of urothelial cells. Expression of uroplakin Ib mRNA is reduced or absent in many transitional cell carcinomas (TCCs) but molecular mechanisms underlying loss of expression remain to be determined. Analysis of the uroplakin Ib promoter identified a weak CpG island spanning the proximal promoter, exon 1, and the beginning of intron 1. This study examined the hypothesis that methylation of this CpG island regulates uroplakin Ib expression. Uroplakin Ib mRNA levels were determined by reverse transcription polymerase chain reaction and CpG methylation was assessed by bisulfite modification of DNA, PCR, and sequencing. A correlation was demonstrated in 15 TCC lines between uroplakin Ib mRNA expression and lack of CpG methylation. In support of a regulatory role for methylation, incubating uroplakin Ib-negative lines with 5-aza-2′-deoxycytidine reactivated uroplakin Ib mRNA expression. A trend between uroplakin Ib mRNA expression and CpG methylation was also observed in normal urothelium and bladder carcinomas. In particular, loss of uroplakin Ib expression correlated with methylation of a putative Sp1/NFκB binding motif. The data are consistent with the hypothesis that methylation of specific sites within the uroplakin Ib promoter may be an important factor in the loss of uroplakin Ib expression in TCCs. PMID:15140401

  2. DNA methylation in the NCAPH2/LMF2 promoter region is associated with hippocampal atrophy in Alzheimer's disease and amnesic mild cognitive impairment patients.

    PubMed

    Shinagawa, Shunichiro; Kobayashi, Nobuyuki; Nagata, Tomoyuki; Kusaka, Akira; Yamada, Hisashi; Kondo, Kazuhiro; Nakayama, Kazuhiko

    2016-08-26

    Several studies have noted an effect of DNA methylation on the pathogenesis of Alzheimer's disease (AD). We have already reported that DNA methylation levels in the NCAPH2/LMF2 promoter region can be a useful biomarker for the diagnosis of AD and amnesic mild cognitive impairment (aMCI). However, there is still uncertainty about the mechanism by which NCAPH2/LMF2 methylation affects the pathogenesis of AD and aMCI. In this study, we investigated relationships between NCAPH2/LMF2 methylation and other factors. AD (n=30) and aMCI (n=28) subjects were included in this study. NCAPH2/LMF2 methylation levels were measured by pyrosequencing. Correlations between methylation levels and other factors including age at onset, sex, duration of disease, education, mini-mental state examination (MMSE) and frontal assessment battery (FAB) scores, APOE genotype, degree of hippocampal atrophy, and total brain atrophy were measured. Degrees of hippocampal atrophy and total brain atrophy were measured by VSRAD (Voxel-Based Specific Regional Analysis System for Alzheimer's Disease). Regression analysis revealed that only hippocampal atrophy according to VSRAD is a significant dependent variable correlated with NCAPH2/LMF2 methylation levels. Our results suggest that DNA methylation in the NCAPH2/LMF2 promoter region is associated with hippocampal atrophy through apoptosis. PMID:27356276

  3. Methyl-CpG-binding domain sequencing reveals a prognostic methylation signature in neuroblastoma

    PubMed Central

    Decock, Anneleen; Ongenaert, Maté; Cannoodt, Robrecht; Verniers, Kimberly; De Wilde, Bram; Laureys, Geneviève; Van Roy, Nadine; Berbegall, Ana P.; Bienertova-Vasku, Julie; Bown, Nick; Clément, Nathalie; Combaret, Valérie; Haber, Michelle; Hoyoux, Claire; Murray, Jayne; Noguera, Rosa; Pierron, Gaelle; Schleiermacher, Gudrun; Schulte, Johannes H.; Stallings, Ray L.; Tweddle, Deborah A.; De Preter, Katleen; Speleman, Frank; Vandesompele, Jo

    2016-01-01

    Accurate assessment of neuroblastoma outcome prediction remains challenging. Therefore, this study aims at establishing novel prognostic tumor DNA methylation biomarkers. In total, 396 low- and high-risk primary tumors were analyzed, of which 87 were profiled using methyl-CpG-binding domain (MBD) sequencing for differential methylation analysis between prognostic patient groups. Subsequently, methylation-specific PCR (MSP) assays were developed for 78 top-ranking differentially methylated regions and tested on two independent cohorts of 132 and 177 samples, respectively. Further, a new statistical framework was used to identify a robust set of MSP assays of which the methylation score (i.e. the percentage of methylated assays) allows accurate outcome prediction. Survival analyses were performed on the individual target level, as well as on the combined multimarker signature. As a result of the differential DNA methylation assessment by MBD sequencing, 58 of the 78 MSP assays were designed in regions previously unexplored in neuroblastoma, and 36 are located in non-promoter or non-coding regions. In total, 5 individual MSP assays (located in CCDC177, NXPH1, lnc-MRPL3-2, lnc-TREX1-1 and one on a region from chromosome 8 with no further annotation) predict event-free survival and 4 additional assays (located in SPRED3, TNFAIP2, NPM2 and CYYR1) also predict overall survival. Furthermore, a robust 58-marker methylation signature predicting overall and event-free survival was established. In conclusion, this study encompasses the largest DNA methylation biomarker study in neuroblastoma so far. We identified and independently validated several novel prognostic biomarkers, as well as a prognostic 58-marker methylation signature. PMID:26646589

  4. A combination of TERT promoter mutation and MGMT methylation status predicts clinically relevant subgroups of newly diagnosed glioblastomas.

    PubMed

    Arita, Hideyuki; Yamasaki, Kai; Matsushita, Yuko; Nakamura, Taishi; Shimokawa, Asanao; Takami, Hirokazu; Tanaka, Shota; Mukasa, Akitake; Shirahata, Mitsuaki; Shimizu, Saki; Suzuki, Kaori; Saito, Kuniaki; Kobayashi, Keiichi; Higuchi, Fumi; Uzuka, Takeo; Otani, Ryohei; Tamura, Kaoru; Sumita, Kazutaka; Ohno, Makoto; Miyakita, Yasuji; Kagawa, Naoki; Hashimoto, Naoya; Hatae, Ryusuke; Yoshimoto, Koji; Shinojima, Naoki; Nakamura, Hideo; Kanemura, Yonehiro; Okita, Yoshiko; Kinoshita, Manabu; Ishibashi, Kenichi; Shofuda, Tomoko; Kodama, Yoshinori; Mori, Kanji; Tomogane, Yusuke; Fukai, Junya; Fujita, Koji; Terakawa, Yuzo; Tsuyuguchi, Naohiro; Moriuchi, Shusuke; Nonaka, Masahiro; Suzuki, Hiroyoshi; Shibuya, Makoto; Maehara, Taketoshi; Saito, Nobuhito; Nagane, Motoo; Kawahara, Nobutaka; Ueki, Keisuke; Yoshimine, Toshiki; Miyaoka, Etsuo; Nishikawa, Ryo; Komori, Takashi; Narita, Yoshitaka; Ichimura, Koichi

    2016-01-01

    The prognostic impact of TERT mutations has been controversial in IDH-wild tumors, particularly in glioblastomas (GBM). The controversy may be attributable to presence of potential confounding factors such as MGMT methylation status or patients' treatment. This study aimed to evaluate the impact of TERT status on patient outcome in association with various factors in a large series of adult diffuse gliomas. We analyzed a total of 951 adult diffuse gliomas from two cohorts (Cohort 1, n = 758; Cohort 2, n = 193) for IDH1/2, 1p/19q, and TERT promoter status. The combined IDH/TERT classification divided Cohort 1 into four molecular groups with distinct outcomes. The overall survival (OS) was the shortest in IDH wild-type/TERT mutated groups, which mostly consisted of GBMs (P < 0.0001). To investigate the association between TERT mutations and MGMT methylation on survival of patients with GBM, samples from a combined cohort of 453 IDH-wild-type GBM cases treated with radiation and temozolomide were analyzed. A multivariate Cox regression model revealed that the interaction between TERT and MGMT was significant for OS (P = 0.0064). Compared with TERT mutant-MGMT unmethylated GBMs, the hazard ratio (HR) for OS incorporating the interaction was the lowest in the TERT mutant-MGMT methylated GBM (HR, 0.266), followed by the TERT wild-type-MGMT methylated (HR, 0.317) and the TERT wild-type-MGMT unmethylated GBMs (HR, 0.542). Thus, patients with TERT mutant-MGMT unmethylated GBM have the poorest prognosis. Our findings suggest that a combination of IDH, TERT, and MGMT refines the classification of grade II-IV diffuse gliomas. PMID:27503138

  5. DNA promoter methylation as a diagnostic and therapeutic biomarker in gallbladder cancer

    PubMed Central

    2012-01-01

    Gallbladder cancer is an infrequent neoplasia with noticeable geographical variations in its incidence around the world. In Chile, it is the main cause of death owing to cancer in women over 40 years old, with mortality rates up to 16.5 per 100,000 cases. The prognosis is poor with few therapeutic options; in advanced cases there is only a 10% survival at 5 years. Several studies mention the possible role of DNA methylation in gallbladder carcinogenesis. This epigenetic modification affects tumor suppressor genes involved in regulation pathways, cell cycle control, cell adhesion and extracellular matrix degradation, in a sequential and cumulative way. Determining DNA methylation patterns would allow them to be used as biomarkers for the early detection, diagnosis, prognosis and/or therapeutic selection in gallbladder cancer. PMID:22794276

  6. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape.

    PubMed

    Lu, Chao; Jain, Siddhant U; Hoelper, Dominik; Bechet, Denise; Molden, Rosalynn C; Ran, Leili; Murphy, Devan; Venneti, Sriram; Hameed, Meera; Pawel, Bruce R; Wunder, Jay S; Dickson, Brendan C; Lundgren, Stefan M; Jani, Krupa S; De Jay, Nicolas; Papillon-Cavanagh, Simon; Andrulis, Irene L; Sawyer, Sarah L; Grynspan, David; Turcotte, Robert E; Nadaf, Javad; Fahiminiyah, Somayyeh; Muir, Tom W; Majewski, Jacek; Thompson, Craig B; Chi, Ping; Garcia, Benjamin A; Allis, C David; Jabado, Nada; Lewis, Peter W

    2016-05-13

    Several types of pediatric cancers reportedly contain high-frequency missense mutations in histone H3, yet the underlying oncogenic mechanism remains poorly characterized. Here we report that the H3 lysine 36-to-methionine (H3K36M) mutation impairs the differentiation of mesenchymal progenitor cells and generates undifferentiated sarcoma in vivo. H3K36M mutant nucleosomes inhibit the enzymatic activities of several H3K36 methyltransferases. Depleting H3K36 methyltransferases, or expressing an H3K36I mutant that similarly inhibits H3K36 methylation, is sufficient to phenocopy the H3K36M mutation. After the loss of H3K36 methylation, a genome-wide gain in H3K27 methylation leads to a redistribution of polycomb repressive complex 1 and de-repression of its target genes known to block mesenchymal differentiation. Our findings are mirrored in human undifferentiated sarcomas in which novel K36M/I mutations in H3.1 are identified.

  7. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape

    PubMed Central

    Lu, Chao; Jain, Siddhant U.; Hoelper, Dominik; Bechet, Denise; Molden, Rosalynn C.; Ran, Leili; Murphy, Devan; Venneti, Sriram; Hameed, Meera; Pawel, Bruce R.; Wunder, Jay S.; Dickson, Brendan C.; Lundgren, Stefan M.; Jani, Krupa S.; De Jay, Nicolas; Papillon-Cavanagh, Simon; Andrulis, Irene L.; Sawyer, Sarah L.; Grynspan, David; Turcotte, Robert E.; Nadaf, Javad; Fahiminiyah, Somayyeh; Muir, Tom W.; Majewski, Jacek; Thompson, Craig B.; Chi, Ping; Garcia, Benjamin A.; Allis, C. David; Jabado, Nada; Lewis, Peter W.

    2016-01-01

    Several types of pediatric cancers reportedly contain high frequency missense mutations in histone H3, yet the underlying oncogenic mechanism remains poorly characterized. Here, we report that the H3 lysine 36 to methionine (H3K36M) mutation impairs the differentiation of mesenchymal progenitor cells and generates undifferentiated sarcoma in vivo. H3K36M mutant nucleosomes inhibit the enzymatic activities of several H3K36 methyltransferases. Depleting H3K36 methyltransferases, or expressing an H3K36I mutant that similarly inhibits H3K36 methylation, is sufficient to phenocopy the H3K36M mutation. Following the loss of H3K36 methylation, a genome-wide gain in H3K27 methylation leads to a redistribution of Polycomb Repressive Complex 1 and de-repression of its target genes known to block mesenchymal differentiation. Our findings are mirrored in human undifferentiated sarcomas where novel K36M/I mutations in H3.1 are identified. PMID:27174990

  8. Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape.

    PubMed

    Lu, Chao; Jain, Siddhant U; Hoelper, Dominik; Bechet, Denise; Molden, Rosalynn C; Ran, Leili; Murphy, Devan; Venneti, Sriram; Hameed, Meera; Pawel, Bruce R; Wunder, Jay S; Dickson, Brendan C; Lundgren, Stefan M; Jani, Krupa S; De Jay, Nicolas; Papillon-Cavanagh, Simon; Andrulis, Irene L; Sawyer, Sarah L; Grynspan, David; Turcotte, Robert E; Nadaf, Javad; Fahiminiyah, Somayyeh; Muir, Tom W; Majewski, Jacek; Thompson, Craig B; Chi, Ping; Garcia, Benjamin A; Allis, C David; Jabado, Nada; Lewis, Peter W

    2016-05-13

    Several types of pediatric cancers reportedly contain high-frequency missense mutations in histone H3, yet the underlying oncogenic mechanism remains poorly characterized. Here we report that the H3 lysine 36-to-methionine (H3K36M) mutation impairs the differentiation of mesenchymal progenitor cells and generates undifferentiated sarcoma in vivo. H3K36M mutant nucleosomes inhibit the enzymatic activities of several H3K36 methyltransferases. Depleting H3K36 methyltransferases, or expressing an H3K36I mutant that similarly inhibits H3K36 methylation, is sufficient to phenocopy the H3K36M mutation. After the loss of H3K36 methylation, a genome-wide gain in H3K27 methylation leads to a redistribution of polycomb repressive complex 1 and de-repression of its target genes known to block mesenchymal differentiation. Our findings are mirrored in human undifferentiated sarcomas in which novel K36M/I mutations in H3.1 are identified. PMID:27174990

  9. Developmental genes significantly afflicted by aberrant promoter methylation and somatic mutation predict overall survival of late-stage colorectal cancer

    PubMed Central

    An, Ning; Yang, Xue; Cheng, Shujun; Wang, Guiqi; Zhang, Kaitai

    2015-01-01

    Carcinogenesis is an exceedingly complicated process, which involves multi-level dysregulations, including genomics (majorly caused by somatic mutation and copy number variation), DNA methylomics, and transcriptomics. Therefore, only looking into one molecular level of cancer is not sufficient to uncover the intricate underlying mechanisms. With the abundant resources of public available data in the Cancer Genome Atlas (TCGA) database, an integrative strategy was conducted to systematically analyze the aberrant patterns of colorectal cancer on the basis of DNA copy number, promoter methylation, somatic mutation and gene expression. In this study, paired samples in each genomic level were retrieved to identify differentially expressed genes with corresponding genetic or epigenetic dysregulations. Notably, the result of gene ontology enrichment analysis indicated that the differentially expressed genes with corresponding aberrant promoter methylation or somatic mutation were both functionally concentrated upon developmental process, suggesting the intimate association between development and carcinogenesis. Thus, by means of random walk with restart, 37 significant development-related genes were retrieved from a priori-knowledge based biological network. In five independent microarray datasets, Kaplan–Meier survival and Cox regression analyses both confirmed that the expression of these genes was significantly associated with overall survival of Stage III/IV colorectal cancer patients. PMID:26691761

  10. Identification of animals produced by somatic cell nuclear transfer using DNA methylation in the retrotransposon-like 1 promoter.

    PubMed

    Couldrey, Christine; Maclean, Paul; Wells, David N

    2014-12-01

    Public perception of somatic cell nuclear transfer (SCNT) in the production of agricultural animals is surrounded by fear, which is exacerbated by the inability to differentiate animals generated by SCNT from those generated by natural mating or artificial insemination (AI). Unfortunately, the DNA sequence of animals produced by SCNT is indistinguishable from those generated by fertilization. With the current banning of all SCNT animal products from entering the food supply in some countries, the lack of a diagnostic test to identify SCNT animals may jeopardize market access for producers. The aim of this research was to exploit differences in epigenetic reprogramming that occur during SCNT and fertilization in the early embryo. The resulting differences in epigenetic signatures that persist to adulthood are proposed as the basis for a diagnostic test to identify animals generated by SCNT. Here we describe differences in DNA methylation at eight CpG sites in the retrotransposon-like 1 (Rtl1) promoter region in cattle blood and test whether these differences could be used as a diagnostic tool. For a definitive diagnosis, it is critical that no overlap in DNA methylation levels is observed between individuals produced by SCNT and fertilization. This was the case for the cohort of SCNT animals studied, their female half-siblings generated by AI, and a collection of unrelated cows also generated by AI. Further rigorous testing is required to determine what effects donor cell type, age, sex, genetic background, SCNT methods, and the environment have on the DNA methylation across this region, but the Rtl1 promoter is currently a promising candidate for the identification of SCNT generated cattle.

  11. Using the apparent diffusion coefficient to identifying MGMT promoter methylation status early in glioblastoma: importance of analytical method

    SciTech Connect

    Rundle-Thiele, Dayle; Day, Bryan; Stringer, Brett; Fay, Michael; Martin, Jennifer; Jeffree, Rosalind L; Thomas, Paul; Bell, Christopher; Salvado, Olivier; Gal, Yaniv; Coulthard, Alan; Crozier, Stuart; Rose, Stephen

    2015-06-15

    Accurate knowledge of O{sup 6}-methylguanine methyltransferase (MGMT) gene promoter subtype in patients with glioblastoma (GBM) is important for treatment. However, this test is not always available. Pre-operative diffusion MRI (dMRI) can be used to probe tumour biology using the apparent diffusion coefficient (ADC); however, its ability to act as a surrogate to predict MGMT status has shown mixed results. We investigated whether this was due to variations in the method used to analyse ADC. We undertook a retrospective study of 32 patients with GBM who had MGMT status measured. Matching pre-operative MRI data were used to calculate the ADC within contrast enhancing regions of tumour. The relationship between ADC and MGMT was examined using two published ADC methods. A strong trend between a measure of ‘minimum ADC’ and methylation status was seen. An elevated minimum ADC was more likely in the methylated compared to the unmethylated MGMT group (U = 56, P = 0.0561). In contrast, utilising a two-mixture model histogram approach, a significant reduction in mean measure of the ‘low ADC’ component within the histogram was associated with an MGMT promoter methylation subtype (P < 0.0246). This study shows that within the same patient cohort, the method selected to analyse ADC measures has a significant bearing on the use of that metric as a surrogate marker of MGMT status. Thus for dMRI data to be clinically useful, consistent methods of data analysis need to be established prior to establishing any relationship with genetic or epigenetic profiling.

  12. Highly sensitive fluorescence assay of DNA methyltransferase activity via methylation-sensitive cleavage coupled with nicking enzyme-assisted signal amplification.

    PubMed

    Zhao, Yongxi; Chen, Feng; Wu, Yayan; Dong, Yanhua; Fan, Chunhai

    2013-04-15

    Herein, using DNA adenine methylation (Dam) methyltransferase (MTase) as a model analyte, a simple, rapid, and highly sensitive fluorescence sensing platform for monitoring the activity and inhibition of DNA MTase was developed on the basis of methylation-sensitive cleavage and nicking enzyme-assisted signal amplification. In the presence of Dam MTase, an elaborately designed hairpin probe was methylated. With the help of methylation-sensitive restriction endonuclease DpnI, the methylated hairpin probe could be cleaved to release a single-stranded DNA (ssDNA). Subsequently, this released ssDNA would hybridize with the molecular beacon (MB) to open its hairpin structure, resulting in the restoration of fluorescence signal as well as formation of the double-stranded recognition site for nicking enzyme Nt.BbvCI. Eventually, an amplified fluorescence signal was observed through the enzymatic recycling cleavage of MBs. Based on this unique strategy, a very low detection limit down to 0.06 U/mL was achieved within a short assay time (60 min) in one step, which is superior to those of most existing approaches. Owing to the specific site recognition of MTase toward its substrate, the proposed sensing system was able to readily discriminate Dam MTase from other MTase such as M.SssI and even detect the target in complex biological matrix. Furthermore, the application of the proposed sensing strategy for screening Dam MTase inhibitors was also demonstrated with satisfactory results. This novel method not only provides a promising platform for monitoring activity and inhibition of DNA MTases, but also shows great potentials in biological process researches, drugs discovery and clinical diagnostics.

  13. Pentraxin 3 (PTX3) promoter methylation associated with PTX3 plasma levels and neutrophil to lymphocyte ratio in coronary artery disease

    PubMed Central

    Guo, Tang-Meng; Huang, Li-Li; Liu, Kai; Ke, Li; Luo, Zhi-Jian; Li, Yun-Qiao; Chen, Xing-Lin; Cheng, Bei

    2016-01-01

    Background Pentraxin 3 (PTX3) is expressed in the heart under inflammatory conditions and plays an important role in atherogenesis. Patients with increased PTX3 levels may suffer from higher rates of cardiac events. Regulation of specific genes by promoter methylation is important in atherogenesis. The factors influencing PTX3 levels and the association between epigenetics and PTX3 levels have not been investigated. Methods Blood samples were collected from 64 patients admitted to the Department of Cardiology, 35 who had coronary artery disease (CAD), and 29 who were CAD-free. Plasma levels of PTX3 were measured by ELISA. PTX3 promoter methylation was evaluated via methyl-specific PCR. The severity of coronary artery lesion was evaluated by angiography. Results The level of PTX3 promoter methylation in the CAD group was 62.69% ± 20.57%, significantly lower than that of the CAD-free group, which was 72.45% ± 11.84% (P = 0.03). Lower PTX3 promoter methylation levels in the CAD group were associated with higher plasma PTX3 concentrations (r = −0.29, P = 0.02). Furthermore, lower PTX3 promoter methylation levels were associated with higher neutrophil to lymphocyte ratio (NLR) in men (r = −0.58, P = 0.002). Conclusions The present study provides new evidence that methylation of the PTX3 promoter is associated with PTX3 plasma levels and NLR in coronary artery disease. This study also shows that modification of epigenetics by chronic inflammation might be a significant molecular mechanism in the atherosclerotic processes that influence plasma PTX3 concentrations. PMID:27781062

  14. Epigenetic Loss of MLH1 Expression in Normal Human Hematopoietic Stem Cell Clones is Defined by the Promoter CpG Methylation Pattern Observed by High-Throughput Methylation Specific Sequencing

    PubMed Central

    Kenyon, Jonathan; Nickel-Meester, Gabrielle; Qing, Yulan; Santos-Guasch, Gabriela; Drake, Ellen; PingfuFu; Sun, Shuying; Bai, Xiaodong; Wald, David; Arts, Eric; Gerson, Stanton L.

    2016-01-01

    Normal human hematopoietic stem and progenitor cells (HPC) lose expression of MLH1, an important mismatch repair (MMR) pathway gene, with age. Loss of MMR leads to replication dependent mutational events and microsatellite instability observed in secondary acute myelogenous leukemia and other hematologic malignancies. Epigenetic CpG methylation upstream of the MLH1 promoter is a contributing factor to acquired loss of MLH1 expression in tumors of the epithelia and proximal mucosa. Using single molecule high-throughput bisulfite sequencing we have characterized the CpG methylation landscape from −938 to −337 bp upstream of the MLH1 transcriptional start site (position +0), from 30 hematopoietic colony forming cell clones (CFC) either expressing or not expressing MLH1. We identify a correlation between MLH1 promoter methylation and loss of MLH1 expression. Additionally, using the CpG site methylation frequencies obtained in this study we were able to generate a classification algorithm capable of sorting the expressing and non-expressing CFC. Thus, as has been previously described for many tumor cell types, we report for the first time a correlation between the loss of MLH1 expression and increased MLH1 promoter methylation in CFC derived from CD34+ selected hematopoietic stem and progenitor cells. PMID:27570841

  15. DNA methylation in Cosmc promoter region and aberrantly glycosylated IgA1 associated with pediatric IgA nephropathy.

    PubMed

    Sun, Qiang; Zhang, Jianqian; Zhou, Nan; Liu, Xiaorong; Shen, Ying

    2015-01-01

    IgA nephropathy (IgAN) is one of the most common glomerular diseases leading to end-stage renal failure. Elevation of aberrantly glycosylated IgA1 is a key feature of it. The expression of the specific molecular chaperone of core1ß1, 3galactosyl transferase (Cosmc) is known to be reduced in IgAN. We aimed to investigate whether the methylation of CpG islands of Cosmc gene promoter region could act as a possible mechanism responsible for down-regulation of Cosmc and related higher secretion of aberrantly glycosylated IgA1in lymphocytes from children with IgA nephropathy. Three groups were included: IgAN children (n = 26), other renal diseases (n = 11) and healthy children (n = 13). B-lymphocytes were isolated and cultured, treated or not with IL-4 or 5-Aza-2'-deoxycytidine (AZA). The levels of DNA methylation of Cosmc promotor region were not significantly different between the lymphocytes of the three children populations (P = 0.113), but there were significant differences between IgAN lymphocytes and lymphocytes of the other two children populations after IL-4 (P<0.0001) or AZA (P<0.0001). Cosmc mRNA expression was low in IgAN lymphocytes compared to the other two groups (P<0.0001). The level of aberrantly glycosylated IgA1 was markedly higher in IgAN group compared to the other groups (P<0.0001). After treatment with IL-4, the levels of Cosmc DNA methylation and aberrantly glycosylated IgA1 in IgAN lymphocytes were remarkably higher than the other two groups (P<0.0001) with more markedly decreased Cosmc mRNA content (P<0.0001). After treatment with AZA, the levels in IgAN lymphocytes were decreased, but was still remarkably higher than the other two groups (P<0.0001), while Cosmc mRNA content in IgAN lymphocytes were more markedly increased than the other two groups (P<0.0001). The alteration of DNA methylation by IL-4 or AZA specifically correlates in IgAN lymphocytes with alterations in Cosmc mRNA expression and with the level of aberrantly glycosylated IgA1

  16. PTHrP in differentiating human mesenchymal stem cells: transcript isoform expression, promoter methylation, and protein accumulation.

    PubMed

    Longo, Alessandra; Librizzi, Mariangela; Naselli, Flores; Caradonna, Fabio; Tobiasch, Edda; Luparello, Claudio

    2013-10-01

    Human PTHrP gene displays a complex organization with nine exons producing diverse mRNA variants due to alternative splicing at 5' and 3' ends and the existence of three different transcriptional promoters (P1, P2 and P3), two of which (P2 and P3) contain CpG islands. It is known that the expression of PTHrP isoforms may be differentially regulated in a developmental stage- and tissue-specific manner. To search for novel molecular markers of stemness/differentiation, here we have examined isoform expression in fat-derived mesenchymal stem cells both maintained in stem conditions and induced toward adipo- and osteogenesis. In addition, the expression of the splicing isoforms derived from P2 and P3 promoters was correlated to the state of methylation of the latter. Moreover, we also performed a quantitative evaluation of intracellular and secreted PTHrP protein product in undifferentiated stem cells and in parallel cultures at various differentiation stages. The data obtained indicate that from the stemness condition to that of osteo- and adipo-genic differentiated cells, the expression of isoforms becomes increasingly selective, thereby being a potential gene signature for the monitoring of cell stem or committed/differentiating state and that the switching-off of PTHrP isoform expression is mostly promoter methylation-dependent. Moreover, PTHrP intracellular retention is down-regulated in osteo-differentiating cells whereas the secretion of the protein in the extracellular medium is up-regulated with respect to stem cells, thereby suggesting that these variations of the intracellular and extracellular levels of PTHrP could potentially be enclosed in the list of the available protein signature of osteogenic differentiation.

  17. MGMT Promoter Methylation and BRAF V600E Mutations Are Helpful Markers to Discriminate Pleomorphic Xanthoastrocytoma from Giant Cell Glioblastoma.

    PubMed

    Lohkamp, Laura-Nanna; Schinz, Maren; Gehlhaar, Claire; Guse, Katrin; Thomale, Ulrich-Wilhelm; Vajkoczy, Peter; Heppner, Frank L; Koch, Arend

    2016-01-01

    Giant Cell Glioblastoma (gcGBM) and Pleomorphic Xanthoastrocytoma (PXA) are rare astroglial tumors of the central nervous system. Although they share certain histomorphological and immunohistochemical features, they are characterized by different clinical behavior and prognosis. Nevertheless, few cases remain uncertain, as their histomorphological hallmarks and immunophenotypes do correspond to the typical pattern neither of gcGBM nor PXA. Therefore, in addition to the routinely used diagnostic histochemical and immunohistochemical markers like Gömöri, p53 and CD34, we analyzed if genetic variations like MGMT promoter methylation, mutations in the IDH1/2 genes, or BRAF mutations, which are actually used as diagnostic, prognostic and predictive molecular markers in anaplastic glial tumors, could be helpful in the differential diagnostic of both tumor entities. We analyzed 34 gcGBM and 20 PXA for genetic variations in the above-named genes and found distinct distributions between both groups. MGMT promoter hypermethylation was observed in 3 out of 20 PXA compared to 14 out of 34 gcGBM (15% vs. 41.2%, p-value 0.09). BRAF V600E mutations were detected in 50% of the PXA but not in any of the gcGBM (50% vs. 0%, p-value < 0.001). IDH1 R132 and IDH R172 mutations were not present in any of the PXA and gcGBM cases. Our data indicate, that in addition to the histological and immunohistochemical evaluation, investigation of MGMT promoter methylation and in particular BRAF V600E mutations represent reliable additional tools to sustain differentiation of gcGBM from PXA on a molecular basis. Based on these data specific BRAF kinase inhibitors could represent a promising agent in the therapy of PXA and their use should be emphasized. PMID:27253461

  18. PTHrP in differentiating human mesenchymal stem cells: transcript isoform expression, promoter methylation, and protein accumulation.

    PubMed

    Longo, Alessandra; Librizzi, Mariangela; Naselli, Flores; Caradonna, Fabio; Tobiasch, Edda; Luparello, Claudio

    2013-10-01

    Human PTHrP gene displays a complex organization with nine exons producing diverse mRNA variants due to alternative splicing at 5' and 3' ends and the existence of three different transcriptional promoters (P1, P2 and P3), two of which (P2 and P3) contain CpG islands. It is known that the expression of PTHrP isoforms may be differentially regulated in a developmental stage- and tissue-specific manner. To search for novel molecular markers of stemness/differentiation, here we have examined isoform expression in fat-derived mesenchymal stem cells both maintained in stem conditions and induced toward adipo- and osteogenesis. In addition, the expression of the splicing isoforms derived from P2 and P3 promoters was correlated to the state of methylation of the latter. Moreover, we also performed a quantitative evaluation of intracellular and secreted PTHrP protein product in undifferentiated stem cells and in parallel cultures at various differentiation stages. The data obtained indicate that from the stemness condition to that of osteo- and adipo-genic differentiated cells, the expression of isoforms becomes increasingly selective, thereby being a potential gene signature for the monitoring of cell stem or committed/differentiating state and that the switching-off of PTHrP isoform expression is mostly promoter methylation-dependent. Moreover, PTHrP intracellular retention is down-regulated in osteo-differentiating cells whereas the secretion of the protein in the extracellular medium is up-regulated with respect to stem cells, thereby suggesting that these variations of the intracellular and extracellular levels of PTHrP could potentially be enclosed in the list of the available protein signature of osteogenic differentiation. PMID:23810909

  19. MGMT Promoter Methylation and BRAF V600E Mutations Are Helpful Markers to Discriminate Pleomorphic Xanthoastrocytoma from Giant Cell Glioblastoma

    PubMed Central

    Lohkamp, Laura-Nanna; Schinz, Maren; Gehlhaar, Claire; Guse, Katrin; Thomale, Ulrich-Wilhelm; Vajkoczy, Peter; Heppner, Frank L.; Koch, Arend

    2016-01-01

    Giant Cell Glioblastoma (gcGBM) and Pleomorphic Xanthoastrocytoma (PXA) are rare astroglial tumors of the central nervous system. Although they share certain histomorphological and immunohistochemical features, they are characterized by different clinical behavior and prognosis. Nevertheless, few cases remain uncertain, as their histomorphological hallmarks and immunophenotypes do correspond to the typical pattern neither of gcGBM nor PXA. Therefore, in addition to the routinely used diagnostic histochemical and immunohistochemical markers like Gömöri, p53 and CD34, we analyzed if genetic variations like MGMT promoter methylation, mutations in the IDH1/2 genes, or BRAF mutations, which are actually used as diagnostic, prognostic and predictive molecular markers in anaplastic glial tumors, could be helpful in the differential diagnostic of both tumor entities. We analyzed 34 gcGBM and 20 PXA for genetic variations in the above-named genes and found distinct distributions between both groups. MGMT promoter hypermethylation was observed in 3 out of 20 PXA compared to 14 out of 34 gcGBM (15% vs. 41.2%, p-value 0.09). BRAF V600E mutations were detected in 50% of the PXA but not in any of the gcGBM (50% vs. 0%, p-value < 0.001). IDH1 R132 and IDH R172 mutations were not present in any of the PXA and gcGBM cases. Our data indicate, that in addition to the histological and immunohistochemical evaluation, investigation of MGMT promoter methylation and in particular BRAF V600E mutations represent reliable additional tools to sustain differentiation of gcGBM from PXA on a molecular basis. Based on these data specific BRAF kinase inhibitors could represent a promising agent in the therapy of PXA and their use should be emphasized. PMID:27253461

  20. Association between small heat shock protein B11 and the prognostic value of MGMT promoter methylation in patients with high-grade glioma.

    PubMed

    Cheng, Wen; Li, Mingyang; Jiang, Yang; Zhang, Chuanbao; Cai, Jinquan; Wang, Kuanyu; Wu, Anhua

    2016-07-01

    OBJECT This study investigated the role and prognostic value of heat shock proteins (HSPs) in glioma. METHODS Data from 3 large databases of glioma samples (Chinese Glioma Genome Atlas, Repository for Molecular Brain Neoplasia Data, and GSE16011), which contained whole-genome messenger RNA microarray expression data and patients' clinical data, were analyzed. Immunohistochemical analysis was performed to validate protein expression in another set of 50 glioma specimens. RESULTS Of 28 HSPs, 11 were overexpressed in high-grade glioma (HGG) compared with low-grade glioma. A univariate Cox analysis revealed that HSPB11 has significant prognostic value for each glioma grade, which was validated by a Kaplan-Meier survival analysis. HSPB11 expression was associated with poor prognosis and was independently correlated with overall survival (OS) in HGG. This study further explored the combined role of HSPB11 and other molecular markers in HGG, such as isocitrate dehydrogenase 1 (IDH1) mutation and O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. HSPB11 expression was able to refine the prognostic value of IDH1 mutation in patients with HGG. However, when combined with MGMT promoter methylation status, among patients with a methylated MGMT promoter, those with lower levels of HSPB11 expression had longer OS and progression-free survival than patients with higher levels of HSPB11 expression or with an unmethylated MGMT promoter. Moreover, within the MGMT promoter methylation group, patients with low levels of HSPB11 expression were more sensitive to combined radiochemotherapy than those with high levels of HSPB11 expression, which may explain why some patients with HGG with a methylated MGMT promoter show tolerance to radiochemotherapy. CONCLUSIONS HSPB11 was identified as a novel prognostic marker in patients with HGG. Together with MGMT promoter methylation status, HSPB11 expression can predict outcome for patients with HGG and identify those who

  1. Aberrant Promoter Methylation at CpG Cytosines Induce the Upregulation of the E2F5 Gene in Breast Cancer

    PubMed Central

    Ali, Arshad; Ullah, Farman; Ali, Irum Sabir; Faraz, Ahmad; Khan, Mumtaz; Shah, Syed Tahir Ali; Ali, Nawab

    2016-01-01

    Purpose The promoter methylation status of cell cycle regulatory genes plays a crucial role in the regulation of the eukaryotic cell cycle. CpG cytosines are actively subjected to methylation during tumorigenesis, resulting in gain/loss of function. E2F5 gene has growth repressive activities; various studies suggest its involvement in tumorigenesis. This study aims to investigate the epigenetic regulation of E2F5 in breast cancer to better understand tumor biology. Methods The promoter methylation status of 50 breast tumor tissues and adjacent normal control tissues was analyzed. mRNA expression was determined using SYBR® green quantitative polymerase chain reaction (PCR), and methylation-specific PCR was performed for bisulfite-modified genomic DNA using E2F5-specific primers to assess promoter methylation. Data was statistically analyzed. Results Significant (p<0.001) upregulation was observed in E2F5 expression among tumor tissues, relative to the control group. These samples were hypo-methylated at the E2F5 promoter region in the tumor tissues, compared to the control. Change in the methylation status (Δmeth) was significantly lower (p=0.022) in the tumor samples, indicating possible involvement in tumorigenesis. Patients at the postmenopausal stage showed higher methylation (75%) than those at the premenopausal stage (23.1%). Interestingly, methylation levels gradually increased from the early to the advanced stages of the disease (p<0.001), which suggests a putative role of E2F5 methylation in disease progression that can significantly modulate tumor biology at more advanced stage and at postmenopausal age (Pearson's r=0.99 and 0.86, respectively). Among tissues with different histological status, methylation frequency was higher in invasive lobular carcinoma (80.0%), followed by invasive ductal carcinoma (46.7%) and ductal carcinoma in situ (20.0%). Conclusion Methylation is an important epigenetic factor that might be involved in the upregulation of E2F5

  2. Short Hairpin RNA Causes the Methylation of Transforming Growth Factor-β Receptor II Promoter and Silencing of the Target Gene in Rat Hepatic Stellate Cells

    PubMed Central

    Kim, Jin-Wook; Zhang, Yan-Hong; Zern, Mark A; Rossi, John J.; Wu, Jian

    2008-01-01

    Small interfering RNA (siRNA) induces transcriptional gene silencing (TGS) in plant and animal cells. RNA dependent DNA methylation (RdDM) accounts for TGS in plants, but it is unclear whether siRNA induces RdDM in mammalian cells. To determine whether stable expression of short hairpin siRNA (shRNA) induces DNA methylation in mammalian cells, we transduced rat hepatic stellate SBC10 cells with lentiviral vectors which encode an U6 promoter-driven shRNA expression cassette homologous to the transforming growth factor-β receptor (TGFβRII) promoter region. Sequencing analysis of bisulfite-modified genomic DNA showed the methylation of cytosine residues both in CpG dinucleotides and non-CpG sites around the target region of the TGFβRII promoter in SBC10 cells transduced with the promoter-targeting lentiviral vector. In these cells, real-time RT-PCR showed a decrease in TGFβRII mRNA levels which were reversed by treatment with 5-aza-2-deoxycytidine. Our results demonstrate that recombinant lentivirus-mediated shRNA delivery resulted in the methylation of the homologous promoter area in mammalian cells, and this approach may be used as a tool for transcriptional gene silencing by epigenetic modification of mammalian cell promoters. PMID:17533113

  3. Promoter Methylation Status of Breast Cancer Susceptibility Gene 1 and 17 Beta Hydroxysteroid Dehydrogenase Type 1 Gene in Sporadic Breast Cancer Patients

    PubMed Central

    Hosny, Marwa M.; Sabek, Nagwan A.; El-Abaseri, Taghrid B.; Hassan, Fathalla M.; Farrag, Sherif H.

    2016-01-01

    Epigenetic modifications are involved in breast carcinogenesis. Identifying genes that are epigenetically silenced via methylation could select target patients for diagnostic as well as therapeutic potential. We assessed promoter methylation of breast cancer susceptibility gene 1 (BRCA1) and 17 Beta Hydroxysteroid Dehydrogenase Type 1 (17βHSD-1) in normal and cancer breast tissues of forty sporadic breast cancer (BC) cases using restriction enzyme based methylation-specific PCR (REMS-PCR). In cancerous tissues, BRCA1 and 17βHSD-1 were methylated in 42.5% and 97.5%, respectively, while normal tissues had 35% and 95% methylation, respectively. BRCA1 methylation in normal tissues was 12.2-fold more likely to associate with methylation in cancer tissues (p < 0.001). It correlated significantly with increased age at menopause, mitosis, the negative status of Her2, and the molecular subtype “luminal A” (p = 0.048, p = 0.042, p = 0.007, and p = 0.049, resp.). Methylation of BRCA1 and 17βHSD-1 related to luminal A subtype of breast cancer. Since a small proportion of normal breast epithelial cells had BRCA1 methylation, our preliminary findings suggest that methylation of BRCA1 may be involved in breast tumors initiation and progression; therefore, it could be used as a biomarker for the early detection of sporadic breast cancer. Methylation of 17βHSD-1 in normal and cancer tissue could save patients the long term use of adjuvant antiestrogen therapies. PMID:27413552

  4. Promoter methylation status of tumor suppressor genes and inhibition of expression of DNA methyltransferase 1 in non-small cell lung cancer.

    PubMed

    Liu, Bangqing; Song, Jianfei; Luan, Jiaqiang; Sun, Xiaolin; Bai, Jian; Wang, Haiyong; Li, Angui; Zhang, Lifei; Feng, Xiaoyan; Du, Zhenzong

    2016-08-01

    DNA methylation is an epigenetic DNA modification catalyzed by DNA methyltransferase 1 (DNMT1). The purpose of this study was to investigate DNMT1 gene and protein expression and the effects of methylation status on tumor suppressor genes in human non-small cell lung cancer (NSCLC) cell lines grown in vitro and in vivo Human lung adenocarcinoma cell lines, A549 and H838, were grown in vitro and inoculated subcutaneously into nude mice to form tumors and were then treated with the DNA methylation inhibitor, 5-aza-2'-deoxycytidine, with and without treatment with the benzamide histone deacetylase inhibitor, entinostat (MS-275). DNMT1 protein expression was quantified by Western blot. Promoter methylation status of tumor suppressor genes (RASSF1A, ASC, APC, MGMT, CDH13, DAPK, ECAD, P16, and GATA4) was evaluated by methylation-specific polymerase chain reaction. Methylation status of the tumor suppressor genes was regulated by the DNMT1 gene, with the decrease of DNMT1 expression following DNA methylation treatment. Demethylation of tumor suppressor genes (APC, ASC, and RASSF1A) restored tumor growth in nude mice. The results of this study support a role for methylation of DNA as a potential epigenetic clinical biomarker of prognosis or response to therapy and for DNMT1 as a potential therapeutic target in NSCLC. PMID:27190263

  5. Promoter methylation and large intragenic rearrangements of DPYD are not implicated in severe toxicity to 5-fluorouracil-based chemotherapy in gastrointestinal cancer patients

    PubMed Central

    2010-01-01

    Background Severe toxicity to 5-fluorouracil (5-FU) based chemotherapy in gastrointestinal cancer has been associated with constitutional genetic alterations of the dihydropyrimidine dehydrogenase gene (DPYD). Methods In this study, we evaluated DPYD promoter methylation through quantitative methylation-specific PCR and screened DPYD for large intragenic rearrangements in peripheral blood from 45 patients with gastrointestinal cancers who developed severe 5-FU toxicity. DPYD promoter methylation was also assessed in tumor tissue from 29 patients Results Two cases with the IVS14+1G > A exon 14 skipping mutation (c.1905+1G > A), and one case carrying the 1845 G > T missense mutation (c.1845G > T) in the DPYD gene were identified. However, DPYD promoter methylation and large DPYD intragenic rearrangements were absent in all cases analyzed. Conclusions Our results indicate that DPYD promoter methylation and large intragenic rearrangements do not contribute significantly to the development of 5-FU severe toxicity in gastrointestinal cancer patients, supporting the need for additional studies on the mechanisms underlying genetic susceptibility to severe 5-FU toxicity. PMID:20809970

  6. Tissue-specific promoter methylation coincides with Cyp19 gene expression in buffalo (Bubalus bubalis) placenta of different stages of gestation.

    PubMed

    Ghai, Sandeep; Monga, Rachna; Mohanty, T K; Chauhan, M S; Singh, Dheer

    2010-11-01

    Aromatase is the key enzyme for estrogen biosynthesis and is encoded by Cyp19 gene. Placental cotyledons are the main site of Cyp19 gene expression during pregnancy. The present study was aimed to investigate if DNA methylation and thus epigenetic mechanisms play a potential role in stage-specific regulation of Cyp19 expression in placental cotyledons of pregnant water buffaloes (Bubalus bubalis). Significantly higher expression of Cyp19 gene (p<0.05) in placental cotyledons of early gestation period and post parturition period was found in comparison to mid-gestation placenta. Tissue-specific promoter driven transcript analyses showed that the change in expression was mainly due to change in the relative abundance of transcripts from exon I.1 while the transcripts from exon II showed comparatively less variation. Methylation analysis of 5 CpG dinucleotides of placenta-specific promoter I.1 and proximal promoter, PII showed hypo-methylation of PI.1 in early and term placenta while hyper-methylation in mid-placenta. However, PII was found to be hypomethylated in all the three tissues. In conclusion, result of the present study demonstrated that stage-specific methylation status of PI.1, the major promoter responsible for aromatase expression in buffalo placental cotyledons, coincides with the change in expression of Cyp19 gene in different stages of pregnancy.

  7. BVES regulates EMT in human corneal and colon cancer cells and is silenced via promoter methylation in human colorectal carcinoma

    PubMed Central

    Williams, Christopher S.; Zhang, Baolin; Smith, J. Joshua; Jayagopal, Ashwath; Barrett, Caitlyn W.; Pino, Christopher; Russ, Patricia; Presley, Sai H.; Peng, DunFa; Rosenblatt, Daniel O.; Haselton, Frederick R.; Yang, Jin-Long; Washington, M. Kay; Chen, Xi; Eschrich, Steven; Yeatman, Timothy J.; El-Rifai, Wael; Beauchamp, R. Daniel; Chang, Min S.

    2011-01-01

    The acquisition of a mesenchymal phenotype is a critical step in the metastatic progression of epithelial carcinomas. Adherens junctions (AJs) are required for suppressing this epithelial-mesenchymal transition (EMT) but less is known about the role of tight junctions (TJs) in this process. Here, we investigated the functions of blood vessel epicardial substance (BVES, also known as POPDC1 and POP1), an integral membrane protein that regulates TJ formation. BVES was found to be underexpressed in all stages of human colorectal carcinoma (CRC) and in adenomatous polyps, indicating its suppression occurs early in transformation. Similarly, the majority of CRC cell lines tested exhibited decreased BVES expression and promoter DNA hypermethylation, a modification associated with transcriptional silencing. Treatment with a DNA-demethylating agent restored BVES expression in CRC cell lines, indicating that methylation represses BVES expression. Reexpression of BVES in CRC cell lines promoted an epithelial phenotype, featuring decreased proliferation, migration, invasion, and anchorage-independent growth; impaired growth of an orthotopic xenograft; and blocked metastasis. Conversely, interfering with BVES function by expressing a dominant-negative mutant in human corneal epithelial cells induced mesenchymal features. These biological outcomes were associated with changes in AJ and TJ composition and related signaling. Therefore, BVES prevents EMT, and its epigenetic silencing may be an important step in promoting EMT programs during colon carcinogenesis. PMID:21911938

  8. Subtissue-Specific Evaluation of Promoter Efficiency by Quantitative Fluorometric Assay in Laser Microdissected Tissues of Rapeseed[W

    PubMed Central

    Jasik, Jan; Schiebold, Silke; Rolletschek, Hardy; Denolf, Peter; Van Adenhove, Katrien; Altmann, Thomas; Borisjuk, Ljudmilla

    2011-01-01

    β-Glucuronidase (GUS) is a useful reporter for the evaluation of promoter characteristics in transgenic plants. Here, we introduce an original technique to quantify the strength of promoters at subtissue resolution of cell clusters. The method combines cryotomy, laser microdissection, and improved fluorometric analysis of GUS activity using 6-chloro-4-methylumbelliferyl-β-d-glucuronide as an efficient fluorogenic substrate for kinetic studies in plants. The laser microdissection/6-chloro-4-methylumbelliferyl-β-d-glucuronide method is robust and reliable in a wide range of GUS expression levels and requires extremely low (few cells) tissue amounts. Suitability of the assay was demonstrated on rapeseed (Brassica napus) plants transformed with a P35S2::GUS construct. GUS expression patterns were visualized and quantified in approximately 30 tissues of vegetative and generative organs. Considerable differences in promoter activity within the tissues are discussed in relation to the cell type and developmental state. PMID:21825109

  9. Performance of the HPV-16 L1 methylation assay and HPV E6/E7 mRNA test for the detection of squamous intraepithelial lesions in cervical cytological samples.

    PubMed

    Qiu, Cui; Zhi, Yanfang; Shen, Yong; Gong, Jiaomei; Li, Ya; Rong, Shouhua; Okunieff, Paul; Zhang, Lulu; Li, Xiaofu

    2015-11-01

    HPV-16 L1 methylation and E6/E7 mRNA have suggested that they had close relationship with cervical neoplastic progression. This study aimed to evaluate the clinical performance of the HPV-16 L1 methylation assay and E6/E7 mRNA test for detecting high-grade cervical lesions (CIN2+). A total of 81 women with liquid-based cytology (LBC) samples, histological results, and positive HPV-DNA test for HPV type 16 only were included in this study. HPV-16 L1 methylation and E6/E7 mRNA levels were measured using methylation-sensitive high resolution melting (MS-HRM) analysis and Quantivirus®HPV E6/E7 RNA 3.0 assay (bDNA), respectively, in the same residue of LBC samples. The current date showed a positive correlation between the HPV-16 L1 methylation and the E6/E7 mRNA levels. The L1 methylation and mRNA levels both increased with disease severity. The mRNA test method showed higher sensitivity and NPV (98.0 and 91.7% vs. 89.8 and 80.8%), while lower specificity and PPV (34.4 and 69.6% vs. 65.6 and 80.0%), than the L1 methylation assay for detecting histology-confirmed CIN2+. When using the detection method of mRNA test combined with L1 methylation assay, we obtained a sensitivity of 89.8% and a specificity of 71.9%. These findings suggest that assessment of HPV-16 L1 methylation testing combined with E6/E7 mRNA testing may be a promising method for the triage of women with HPV type 16 only. PMID:26297960

  10. PCFT/SLC46A1 promoter methylation and restoration of gene expression in human leukemia cells

    SciTech Connect

    Gonen, Nitzan; Bram, Eran E.; Assaraf, Yehuda G.

    2008-11-28

    The proton-coupled folate transporter (PCFT/SLC46A1) displays optimal and prominent folate and antifolate transport activity at acidic pH in human carcinoma cells but poor activity in leukemia cells. Consistently herein, human leukemia cell lines expressed poor PCFT transcript levels, whereas various carcinoma cell lines showed substantial PCFT gene expression. We identified a CpG island with high density at nucleotides -200 through +100 and explored its role in PCFT promoter silencing. Leukemia cells with barely detectable PCFT transcripts consistently harbored 85-100% methylation of this CpG island, whereas no methylation was found in carcinoma cells. Treatment with 5-Aza-2'-deoxycytidine which induced demethylation but not with the histone deacetylase inhibitor trichostatin A, restored 50-fold PCFT expression only in leukemia cells. These findings constitute the first demonstration of the dominant epigenetic silencing of the PCFT gene in leukemia cells. The potential translational implications of the restoration of PCFT expression in chemotherapy of leukemia are discussed.

  11. Aging and chronic alcohol consumption are determinants of p16 gene expression, genomic DNA methylation and p16 promoter methylation in the mouse colon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elder age and chronic alcohol consumption are important risk factors for the development of colon cancer. Each factor can alter genomic and gene-specific DNA methylation. This study examined the effects of aging and chronic alcohol consumption on genomic and p16-specific methylation, and p16 express...

  12. Ageing, chronic alcohol consumption and folate are determinants of genomic DNA methylation, p16 promoter methylation and the expression of p16 in the mouse colon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elder age and chronic alcohol consumption are important risk factors for the development of colon cancer. Each factor can alter genomic and gene-specific DNA methylation. This study examined the effects of aging and chronic alcohol consumption on genomic and p16-specific methylation, and p16 express...

  13. ESR1 gene promoter region methylation in free circulating DNA and its correlation with estrogen receptor protein expression in tumor tissue in breast cancer patients

    PubMed Central

    2014-01-01

    Background Tumor expression of estrogen receptor (ER) is an important marker of prognosis, and is predictive of response to endocrine therapy in breast cancer. Several studies have observed that epigenetic events, such methylation of cytosines and deacetylation of histones, are involved in the complex mechanisms that regulate promoter transcription. However, the exact interplay of these factors in transcription activity is not well understood. In this study, we explored the relationship between ER expression status in tumor tissue samples and the methylation of the 5′ CpG promoter region of the estrogen receptor gene (ESR1) isolated from free circulating DNA (fcDNA) in plasma samples from breast cancer patients. Methods Patients (n = 110) with non-metastatic breast cancer had analyses performed of ER expression (luminal phenotype in tumor tissue, by immunohistochemistry method), and the ESR1-DNA methylation status (fcDNA in plasma, by quantitative methylation specific PCR technique). Results Our results showed a significant association between presence of methylated ESR1 in patients with breast cancer and ER negative status in the tumor tissue (p = 0.0179). There was a trend towards a higher probability of ESR1-methylation in those phenotypes with poor prognosis i.e. 80% of triple negative patients, 60% of HER2 patients, compared to 28% and 5.9% of patients with better prognosis such as luminal A and luminal B, respectively. Conclusion Silencing, by methylation, of the promoter region of the ESR1 affects the expression of the estrogen receptor protein in tumors of breast cancer patients; high methylation of ESR1-DNA is associated with estrogen receptor negative status which, in turn, may be implicated in the patient’s resistance to hormonal treatment in breast cancer. As such, epigenetic markers in plasma may be of interest as new targets for anticancer therapy, especially with respect to endocrine treatment. PMID:24495356

  14. Chromatin immunoprecipitation assays revealed CREB and serine 133 phospho-CREB binding to the CART gene proximal promoter

    PubMed Central

    Rogge, George A; Shen, Li-Ling; Kuhar, Michael J.

    2010-01-01

    Both over expression of cyclic AMP response element binding protein (CREB) in the nucleus accumbens (NAc), and intra-accumbal injection of cocaine- and amphetamine-regulated transcript (CART) peptides, have been shown to decrease cocaine reward. Also, over expression of CREB in the rat NAc increased CART mRNA and peptide levels, but it is not known if this was due to a direct action of P-CREB on the CART gene promoter. The goal of this study was to test if CREB and P-CREB bound directly to the CRE site in the CART promoter, using chromatin immunoprecipitation (ChIP) assays. ChIP assay with anti-CREB antibodies showed an enrichment of the CART promoter fragment containing the CRE region over IgG precipitated material, a non-specific control. Forskolin, which was known to increase CART mRNA levels in GH3 cells, was utilized to show that the drug increased levels of P-CREB protein and P-CREB binding to the CART promoter CRE-containing region. A region of the c-Fos promoter containing a CRE cis-regulatory element was previously shown to bind P-CREB, and it was used here as a positive control. These data suggest that the effects of CREB over expression on blunting cocaine reward could be, at least in part, attributed to the increased expression of the CART gene by direct interaction of P-CREB with the CART promoter CRE site, rather than by some indirect action. PMID:20451507

  15. Methylation of the leukocyte glucocorticoid receptor gene promoter in adults: associations with early adversity and depressive, anxiety and substance-use disorders.

    PubMed

    Tyrka, A R; Parade, S H; Welch, E S; Ridout, K K; Price, L H; Marsit, C; Philip, N S; Carpenter, L L

    2016-01-01

    Early adversity increases risk for developing psychopathology. Epigenetic modification of stress reactivity genes is a likely mechanism contributing to this risk. The glucocorticoid receptor (GR) gene is of particular interest because of the regulatory role of the GR in hypothalamic-pituitary-adrenal (HPA) axis function. Mounting evidence suggests that early adversity is associated with GR promoter methylation and gene expression. Few studies have examined links between GR promoter methylation and psychopathology, and findings to date have been mixed. Healthy adult participants (N=340) who were free of psychotropic medications reported on their childhood experiences of maltreatment and parental death and desertion. Lifetime depressive and anxiety disorders and past substance-use disorders were assessed using the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Methylation of exon 1F of the GR gene (NR3C1) was examined in leukocyte DNA via pyrosequencing. On a separate day, a subset of the participants (n=231) completed the dexamethasone/corticotropin-releasing hormone (Dex/CRH) test. Childhood adversity and a history of past substance-use disorder and current or past depressive or anxiety disorders were associated with lower levels of NR3C1 promoter methylation across the region as a whole and at individual CpG sites (P<0.05). The number of adversities was negatively associated with NR3C1 methylation in participants with no lifetime disorder (P=0.018), but not in those with a lifetime disorder. GR promoter methylation was linked to altered cortisol responses to the Dex/CRH test (P<0.05). This study presents evidence of reduced methylation of NR3C1 in association with childhood maltreatment and depressive, anxiety and substance-use disorders in adults. This finding stands in contrast to our prior work, but is consistent with emerging findings, suggesting complexity in the regulation of this gene.

  16. Methylation of the leukocyte glucocorticoid receptor gene promoter in adults: associations with early adversity and depressive, anxiety and substance-use disorders.

    PubMed

    Tyrka, A R; Parade, S H; Welch, E S; Ridout, K K; Price, L H; Marsit, C; Philip, N S; Carpenter, L L

    2016-01-01

    Early adversity increases risk for developing psychopathology. Epigenetic modification of stress reactivity genes is a likely mechanism contributing to this risk. The glucocorticoid receptor (GR) gene is of particular interest because of the regulatory role of the GR in hypothalamic-pituitary-adrenal (HPA) axis function. Mounting evidence suggests that early adversity is associated with GR promoter methylation and gene expression. Few studies have examined links between GR promoter methylation and psychopathology, and findings to date have been mixed. Healthy adult participants (N=340) who were free of psychotropic medications reported on their childhood experiences of maltreatment and parental death and desertion. Lifetime depressive and anxiety disorders and past substance-use disorders were assessed using the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Methylation of exon 1F of the GR gene (NR3C1) was examined in leukocyte DNA via pyrosequencing. On a separate day, a subset of the participants (n=231) completed the dexamethasone/corticotropin-releasing hormone (Dex/CRH) test. Childhood adversity and a history of past substance-use disorder and current or past depressive or anxiety disorders were associated with lower levels of NR3C1 promoter methylation across the region as a whole and at individual CpG sites (P<0.05). The number of adversities was negatively associated with NR3C1 methylation in participants with no lifetime disorder (P=0.018), but not in those with a lifetime disorder. GR promoter methylation was linked to altered cortisol responses to the Dex/CRH test (P<0.05). This study presents evidence of reduced methylation of NR3C1 in association with childhood maltreatment and depressive, anxiety and substance-use disorders in adults. This finding stands in contrast to our prior work, but is consistent with emerging findings, suggesting complexity in the regulation of this gene. PMID

  17. Methylation of the leukocyte glucocorticoid receptor gene promoter in adults: associations with early adversity and depressive, anxiety and substance-use disorders

    PubMed Central

    Tyrka, A R; Parade, S H; Welch, E S; Ridout, K K; Price, L H; Marsit, C; Philip, N S; Carpenter, L L

    2016-01-01

    Early adversity increases risk for developing psychopathology. Epigenetic modification of stress reactivity genes is a likely mechanism contributing to this risk. The glucocorticoid receptor (GR) gene is of particular interest because of the regulatory role of the GR in hypothalamic–pituitary–adrenal (HPA) axis function. Mounting evidence suggests that early adversity is associated with GR promoter methylation and gene expression. Few studies have examined links between GR promoter methylation and psychopathology, and findings to date have been mixed. Healthy adult participants (N=340) who were free of psychotropic medications reported on their childhood experiences of maltreatment and parental death and desertion. Lifetime depressive and anxiety disorders and past substance-use disorders were assessed using the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Methylation of exon 1F of the GR gene (NR3C1) was examined in leukocyte DNA via pyrosequencing. On a separate day, a subset of the participants (n=231) completed the dexamethasone/corticotropin-releasing hormone (Dex/CRH) test. Childhood adversity and a history of past substance-use disorder and current or past depressive or anxiety disorders were associated with lower levels of NR3C1 promoter methylation across the region as a whole and at individual CpG sites (P<0.05). The number of adversities was negatively associated with NR3C1 methylation in participants with no lifetime disorder (P=0.018), but not in those with a lifetime disorder. GR promoter methylation was linked to altered cortisol responses to the Dex/CRH test (P<0.05). This study presents evidence of reduced methylation of NR3C1 in association with childhood maltreatment and depressive, anxiety and substance-use disorders in adults. This finding stands in contrast to our prior work, but is consistent with emerging findings, suggesting complexity in the regulation of this gene. PMID

  18. Prenatal Stress Down-Regulates Reelin Expression by Methylation of Its Promoter and Induces Adult Behavioral Impairments in Rats

    PubMed Central

    Palacios-García, Ismael; Lara-Vásquez, Ariel; Montiel, Juan F.; Díaz-Véliz, Gabriela F.; Sepúlveda, Hugo; Utreras, Elías; Montecino, Martín; González-Billault, Christian; Aboitiz, Francisco

    2015-01-01

    Prenatal stress causes predisposition to cognitive and emotional disturbances and is a risk factor towards the development of neuropsychiatric conditions like depression, bipolar disorders and schizophrenia. The extracellular protein Reelin, expressed by Cajal-Retzius cells during cortical development, plays critical roles on cortical lamination and synaptic maturation, and its deregulation has been associated with maladaptive conditions. In the present study, we address the effect of prenatal restraint stress (PNS) upon Reelin expression and signaling in pregnant rats during the last 10 days of pregnancy. Animals from one group, including control and PNS exposed fetuses, were sacrificed and analyzed using immunohistochemical, biochemical, cell biology and molecular biology approaches. We scored changes in the expression of Reelin, its signaling pathway and in the methylation of its promoter. A second group included control and PNS exposed animals maintained until young adulthood for behavioral studies. Using the optical dissector, we show decreased numbers of Reelin-positive neurons in cortical layer I of PNS exposed animals. In addition, neurons from PNS exposed animals display decreased Reelin expression that is paralleled by changes in components of the Reelin-signaling cascade, both in vivo and in vitro. Furthermore, PNS induced changes in the DNA methylation levels of the Reelin promoter in culture and in histological samples. PNS adult rats display excessive spontaneous locomotor activity, high anxiety levels and problems of learning and memory consolidation. No significant visuo-spatial memory impairment was detected on the Morris water maze. These results highlight the effects of prenatal stress on the Cajal-Retzius neuronal population, and the persistence of behavioral consequences using this treatment in adults, thereby supporting a relevant role of PNS in the genesis of neuropsychiatric diseases. We also propose an in vitro model that can yield new

  19. Prenatal stress down-regulates Reelin expression by methylation of its promoter and induces adult behavioral impairments in rats.

    PubMed

    Palacios-García, Ismael; Lara-Vásquez, Ariel; Montiel, Juan F; Díaz-Véliz, Gabriela F; Sepúlveda, Hugo; Utreras, Elías; Montecino, Martín; González-Billault, Christian; Aboitiz, Francisco

    2015-01-01

    Prenatal stress causes predisposition to cognitive and emotional disturbances and is a risk factor towards the development of neuropsychiatric conditions like depression, bipolar disorders and schizophrenia. The extracellular protein Reelin, expressed by Cajal-Retzius cells during cortical development, plays critical roles on cortical lamination and synaptic maturation, and its deregulation has been associated with maladaptive conditions. In the present study, we address the effect of prenatal restraint stress (PNS) upon Reelin expression and signaling in pregnant rats during the last 10 days of pregnancy. Animals from one group, including control and PNS exposed fetuses, were sacrificed and analyzed using immunohistochemical, biochemical, cell biology and molecular biology approaches. We scored changes in the expression of Reelin, its signaling pathway and in the methylation of its promoter. A second group included control and PNS exposed animals maintained until young adulthood for behavioral studies. Using the optical dissector, we show decreased numbers of Reelin-positive neurons in cortical layer I of PNS exposed animals. In addition, neurons from PNS exposed animals display decreased Reelin expression that is paralleled by changes in components of the Reelin-signaling cascade, both in vivo and in vitro. Furthermore, PNS induced changes in the DNA methylation levels of the Reelin promoter in culture and in histological samples. PNS adult rats display excessive spontaneous locomotor activity, high anxiety levels and problems of learning and memory consolidation. No significant visuo-spatial memory impairment was detected on the Morris water maze. These results highlight the effects of prenatal stress on the Cajal-Retzius neuronal population, and the persistence of behavioral consequences using this treatment in adults, thereby supporting a relevant role of PNS in the genesis of neuropsychiatric diseases. We also propose an in vitro model that can yield new

  20. SHP-1 promoter 2 methylation in cerebrospinal fluid for diagnosis of leptomeningeal epithelial-derived malignancy (carcinomatous meningitis).

    PubMed

    Vinayanuwattikun, Chanida; Mingmalairak, Siyamol; Jittapiromsak, Nutchawan; Thaipisuttikul, Iyavut; Sriuranpong, Virote; Mutirangura, Apiwat; Shuangshoti, Shanop

    2016-09-01

    Current diagnostic methods for leptomeningeal metastasis (LM) from epithelial-derived malignancy (EDM) have limited sensitivity. Here, we explored SHP-1 promoter 2 methylation (SHP1P2)-an epithelial-specific methylation marker previously proven as risk stratification and potential diagnostic marker in non-small cell lung cancer-for EDM with LM. We prospectively recruited 136 patients who were diagnosed EDM with LM (n = 25), EDM without LM (n = 14), non-EDM with LM (n = 8), and benign meningeal diseases (n = 89). The primary cancer sites for EDM with LM were lung (n = 17), breast (n = 5), and colon (n = 3). We performed quantitative analyses of cell-free (cfSHP1P2) and whole fraction (wSHP1P2) from cerebrospinal fluid (CSF); results were correlated with the clinicopathological data, including CSF cytology. Median cfSHP1P2 and wSHP1P2 were 3.08 [range: 0-163.5] and 9.35 [0.69-91.63] ng/ml, respectively, in EDM with LM; 0 [0-0.08] and 0.23 [0-7.84] ng/ml in EDM without LM; and were undetectable in most cases of benign meningeal diseases and non-EDM with LM. The cut-off values of 0.22 ng/ml for methylated cfSHP1P2 and 0.59 ng/ml for wSHP1P2 were the best to discriminate EDM with LM from EDM without LM (sensitivity: 79-100 %; specificity: 83-100 %), as well as from other benign conditions (sensitivity: 85-100 % specificity: 78-100 %). CSF cytology yielded 76 % sensitivity for diagnosing EDM with LM. Further validation of CSF SHP1P2 methylation detection as a role of adjunctive tool for LM from EDM should be interested based on our study.

  1. SHP-1 promoter 2 methylation in cerebrospinal fluid for diagnosis of leptomeningeal epithelial-derived malignancy (carcinomatous meningitis).

    PubMed

    Vinayanuwattikun, Chanida; Mingmalairak, Siyamol; Jittapiromsak, Nutchawan; Thaipisuttikul, Iyavut; Sriuranpong, Virote; Mutirangura, Apiwat; Shuangshoti, Shanop

    2016-09-01

    Current diagnostic methods for leptomeningeal metastasis (LM) from epithelial-derived malignancy (EDM) have limited sensitivity. Here, we explored SHP-1 promoter 2 methylation (SHP1P2)-an epithelial-specific methylation marker previously proven as risk stratification and potential diagnostic marker in non-small cell lung cancer-for EDM with LM. We prospectively recruited 136 patients who were diagnosed EDM with LM (n = 25), EDM without LM (n = 14), non-EDM with LM (n = 8), and benign meningeal diseases (n = 89). The primary cancer sites for EDM with LM were lung (n = 17), breast (n = 5), and colon (n = 3). We performed quantitative analyses of cell-free (cfSHP1P2) and whole fraction (wSHP1P2) from cerebrospinal fluid (CSF); results were correlated with the clinicopathological data, including CSF cytology. Median cfSHP1P2 and wSHP1P2 were 3.08 [range: 0-163.5] and 9.35 [0.69-91.63] ng/ml, respectively, in EDM with LM; 0 [0-0.08] and 0.23 [0-7.84] ng/ml in EDM without LM; and were undetectable in most cases of benign meningeal diseases and non-EDM with LM. The cut-off values of 0.22 ng/ml for methylated cfSHP1P2 and 0.59 ng/ml for wSHP1P2 were the best to discriminate EDM with LM from EDM without LM (sensitivity: 79-100 %; specificity: 83-100 %), as well as from other benign conditions (sensitivity: 85-100 % specificity: 78-100 %). CSF cytology yielded 76 % sensitivity for diagnosing EDM with LM. Further validation of CSF SHP1P2 methylation detection as a role of adjunctive tool for LM from EDM should be interested based on our study. PMID:27401153

  2. Optimal dose selection of N-methyl-N-nitrosourea for the rat comet assay to evaluate DNA damage in organs with different susceptibility to cytotoxicity.

    PubMed

    Kitamoto, Sachiko; Matsuyama, Ryoko; Uematsu, Yasuaki; Ogata, Keiko; Ota, Mika; Yamada, Toru; Miyata, Kaori; Funabashi, Hitoshi; Saito, Koichi

    2015-07-01

    The in vivo rodent alkaline comet assay (comet assay) is a promising technique to evaluate DNA damage in vivo. However, there is no agreement on a method to evaluate DNA damage in organs where cytotoxicity is observed. As a part of the Japanese Center for the Validation of Alternative Methods (JaCVAM)-initiative international validation study of the comet assay, we examined DNA damage in the liver, stomach, and bone marrow of rats given three oral doses of N-methyl-N-nitrosourea (MNU) up to the maximum tolerated dose based on systemic toxicity. MNU significantly increased the % tail DNA in all the organs. Histopathological analysis showed no cytotoxic effect on the liver, indicating clearly that MNU has a genotoxic potential in the liver. In the stomach, however, the cytotoxic effects were very severe at systemically non-toxic doses. Low-dose MNU significantly increased the % tail DNA even at a non-cytotoxic dose, indicating that MNU has a genotoxic potential also in the stomach. Part of the DNA damage at cytotoxic doses was considered to be a secondary effect of severe cell damage. In the bone marrow, both the % tail DNA and incidence of micronucleated polychromatic erythrocytes significantly increased at non-hematotoxic doses, which were different from the non-cytotoxic doses for liver and stomach. These findings indicate that an optimal dose for detecting DNA damage may vary among organs and that careful attention is required to select an optimum dose for the comet assay based on systemic toxicity such as mortality and clinical observations. The present study shows that when serious cytotoxicity is suggested by increased % hedgehogs in the comet assay, histopathological examination should be included for the evaluation of a positive response.

  3. Roux-En Y Gastric Bypass Surgery Induces Genome-Wide Promoter-Specific Changes in DNA Methylation in Whole Blood of Obese Patients

    PubMed Central

    Nilsson, Emil K.; Ernst, Barbara; Voisin, Sarah; Almén, Markus Sällman; Benedict, Christian; Mwinyi, Jessica; Fredriksson, Robert; Schultes, Bernd; Schiöth, Helgi B.

    2015-01-01

    Context DNA methylation has been proposed to play a critical role in many cellular and biological processes. Objective To examine the influence of Roux-en-Y gastric bypass (RYGB) surgery on genome-wide promoter-specific DNA methylation in obese patients. Promoters are involved in the initiation and regulation of gene transcription. Methods Promoter-specific DNA methylation in whole blood was measured in 11 obese patients (presurgery BMI >35 kg/m2, 4 females), both before and 6 months after RYGB surgery, as well as once only in a control group of 16 normal-weight men. In addition, body weight and fasting plasma glucose were measured after an overnight fast. Results The mean genome-wide distance between promoter-specific DNA methylation of obese patients at six months after RYGB surgery and controls was shorter, as compared to that at baseline (p<0.001). Moreover, postsurgically, the DNA methylation of 51 promoters was significantly different from corresponding values that had been measured at baseline (28 upregulated and 23 downregulated, P<0.05 for all promoters, Bonferroni corrected). Among these promoters, an enrichment for genes involved in metabolic processes was found (n = 36, P<0.05). In addition, the mean DNA methylation of these 51 promoters was more similar after surgery to that of controls, than it had been at baseline (P<0.0001). When controlling for the RYGB surgery-induced drop in weight (-24% of respective baseline value) and fasting plasma glucose concentration (-16% of respective baseline value), the DNA methylation of only one out of 51 promoters (~2%) remained significantly different between the pre-and postsurgery time points. Conclusions Epigenetic modifications are proposed to play an important role in the development of and predisposition to metabolic diseases, including type II diabetes and obesity. Thus, our findings may form the basis for further investigations to unravel the molecular effects of gastric bypass surgery. Clinical Trial

  4. Interlaboratory studies with the Chinese hamster V79 cell metabolic cooperation assay to detect tumor-promoting agents

    SciTech Connect

    Bohrman, J.S.; Burg, J.R.; Elmore, E.; Gulati, D.K.; Barfknecht, T.R.; Niemeier, R.W.; Dames, B.L.; Toraason, M.; Langenbach, R.

    1988-01-01

    Three laboratories participated in an interlaboratory study to evaluate the usefulness of the Chinese hamster V79 cell metabolic cooperation assay to predict the tumor-promoting activity of selected chemical. Twenty-three chemicals of different chemical structures (phorbol esters, barbiturates, phenols, artificial sweeteners, alkanes, and peroxides) were chosen for testing based on in vivo promotion activities, as reported in the literature. Assay protocols and materials were standardized, and the chemicals were coded to facilitate unbiased evaluation. A chemical was tested only once in each laboratory, with one of the three laboratories testing only 15 out of 23 chemicals. Dunnett's test was used for statistical analysis. Chemicals were scored as positive (at least two concentration levels statistically different than control), equivocal (only one concentration statistically different), or negative. For 15 chemicals tested in all three laboratories, there was complete agreement among the laboratories for nine chemicals. For the 23 chemicals tested in only two laboratories, there was agreement on 16 chemicals. With the exception of the peroxides and alkanes, the metabolic cooperation data were in general agreement with in vivo data. However, an overall evaluation of the V79 cell system for predicting in vivo promotion activity was difficult because of the organ specificity of certain chemicals and/or the limited number of adequately tested nonpromoting chemicals.

  5. Colon cancer cell apoptosis is induced by combined exposure to the n-3 fatty acid docosahexaenoic acid and butyrate through promoter methylation.

    PubMed

    Cho, Youngmi; Turner, Nancy D; Davidson, Laurie A; Chapkin, Robert S; Carroll, Raymond J; Lupton, Joanne R

    2014-03-01

    DNA methylation and histone acetylation contribute to the transcriptional regulation of genes involved in apoptosis. We have demonstrated that docosahexaenoic acid (DHA, 22:6 n-3) and butyrate enhance colonocyte apoptosis. To determine if DHA and/or butyrate elevate apoptosis through epigenetic mechanisms thereby restoring the transcription of apoptosis-related genes, we examined global methylation; gene-specific promoter methylation of 24 apoptosis-related genes; transcription levels of Cideb, Dapk1, and Tnfrsf25; and global histone acetylation in the HCT-116 colon cancer cell line. Cells were treated with combinations of (50 µM) DHA or linoleic acid (18:2 n-6), (5 mM) butyrate or an inhibitor of DNA methyltransferases, and 5-aza-2'-deoxycytidine (5-Aza-dC, 2 µM). Among highly methylated genes, the combination of DHA and butyrate significantly reduced methylation of the proapoptotic Bcl2l11, Cideb, Dapk1, Ltbr, and Tnfrsf25 genes compared to untreated control cells. DHA treatment reduced the methylation of Cideb, Dapk1, and Tnfrsf25. These data suggest that the induction of apoptosis by DHA and butyrate is mediated, in part, through changes in the methylation state of apoptosis-related genes.

  6. Deletion analysis of a phytochrome-regulated monocot rbcS promoter in a transient assay system.

    PubMed Central

    Rolfe, S A; Tobin, E M

    1991-01-01

    We have developed a transient gene expression assay system in the aquatic monocot Lemna gibba in which DNA was introduced into intact tissue by particle bombardment. Constructs based on the Lemna rbcS gene SSU5B, which is positively regulated by phytochrome in vivo, also showed phytochrome regulation in the transient assay system. Reporter gene expression increased 12-fold over dark levels in response to a single treatment with red light. This increase was not observed if far-red light was immediately followed by the red light. A 5' deletion analysis of the promoter defined a region from position -205 to position -83 relative to the start of transcription as necessary to observe the phytochrome response. This region contains the binding site for the light-induced binding activity (LRF-1) found in Lemna nuclear extracts. Upstream of position -205, we found evidence for the presence of at least two upstream activating sequences and a silencer. Images PMID:2011579

  7. Neonatal pain and COMT Val158Met genotype in relation to serotonin transporter (SLC6A4) promoter methylation in very preterm children at school age

    PubMed Central

    Chau, Cecil M. Y.; Ranger, Manon; Sulistyoningrum, Dian; Devlin, Angela M.; Oberlander, Tim F.; Grunau, Ruth E.

    2014-01-01

    Children born very preterm are exposed to repeated neonatal procedures that induce pain and stress during hospitalization in the neonatal intensive care unit (NICU). The COMT Val158Met genotype is involved with pain sensitivity, and early life stress is implicated in altered expression of methylation of the serotonin transporter. We examined: (1) whether methylation of the serotonin transporter gene (SLC6A4) promoter differs between very preterm children and full-term controls at school age, (2) relationships with child behavior problems, and (3) whether the extent of neonatal pain exposure interacts with the COMT Val158Met genotype to predict SLC6A4 methylation at 7 years in the very preterm children. We examined the associations between the COMT genotypes, neonatal pain exposure (adjusted for neonatal clinical confounders), SLC6A4 methylation and behavior problems. Very preterm children had significantly higher methylation at 7/10 CpG sites in the SLC6A4 promoter compared to full-term controls at 7 years. Neonatal pain (adjusted for clinical confounders) was significantly associated with total child behavior problems on the Child Behavior Checklist (CBCL) questionnaire (adjusted for concurrent stressors and 5HTTLPR genotype) (p = 0.035). CBCL Total Problems was significantly associated with greater SLC6A4 methylation in very preterm children (p = 0.01). Neonatal pain (adjusted for clinical confounders) and COMT Met/Met genotype were associated with SLC6A4 promoter methylation in very preterm children at 7 years (p = 0.001). These findings provide evidence that both genetic predisposition and early environment need to be considered in understanding susceptibility for developing behavioral problems in this vulnerable population. PMID:25520635

  8. Betaine attenuates hepatic steatosis by reducing methylation of the MTTP promoter and elevating genomic methylation in mice fed a high-fat diet.

    PubMed

    Wang, Li-jun; Zhang, Hong-wei; Zhou, Jing-ya; Liu, Yan; Yang, Yang; Chen, Xiao-ling; Zhu, Cui-hong; Zheng, Rui-dan; Ling, Wen-hua; Zhu, Hui-lian

    2014-03-01

    Aberrant DNA methylation contributes to the abnormality of hepatic gene expression, one of the main factors in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Betaine is a methyl donor and has been considered to be a lipotropic agent. However, whether betaine supplementation improves NAFLD via its effect on the DNA methylation of specific genes and the genome has not been explored. Male C57BL/6 mice were fed either a control diet or high-fat diet (HFD) supplemented with 0%, 1% and 2% betaine in water (wt/vol) for 12 weeks. Betaine supplementation ameliorated HFD-induced hepatic steatosis in a dose-dependent manner. HFD up-regulated FAS and ACOX messenger RNA (mRNA) expression and down-regulated PPARα, ApoB and MTTP mRNA expression; however, these alterations were reversed by betaine supplementation, except ApoB. MTTP mRNA expression was negatively correlated with the DNA methylation of its CpG sites at -184, -156, -63 and -60. Methylation of these CpG sites was lower in both the 1% and 2% betaine-supplemented groups than in the HFD group (averages; 25.55% and 14.33% vs. 30.13%). In addition, both 1% and 2% betaine supplementation significantly restored the methylation capacity [S-adenosylmethionine (SAM) concentration and SAM/S-adenosylhomocysteine ratios] and genomic methylation level, which had been decreased by HFD (0.37% and 0.47% vs. 0.25%). These results suggest that the regulation of aberrant DNA methylation by betaine might be a possible mechanism of the improvements in NAFLD upon betaine supplementation.

  9. Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression.

    PubMed

    Kalb, Reinhard; Latwiel, Sebastian; Baymaz, H Irem; Jansen, Pascal W T C; Müller, Christoph W; Vermeulen, Michiel; Müller, Jürg

    2014-06-01

    A key step in gene repression by Polycomb is trimethylation of histone H3 K27 by PCR2 to form H3K27me3. H3K27me3 provides a binding surface for PRC1. We show that monoubiquitination of histone H2A by PRC1-type complexes to form H2Aub creates a binding site for Jarid2-Aebp2-containing PRC2 and promotes H3K27 trimethylation on H2Aub nucleosomes. Jarid2, Aebp2 and H2Aub thus constitute components of a positive feedback loop establishing H3K27me3 chromatin domains.

  10. Biosynthesis of seven carbon-13 labeled Alternaria toxins including altertoxins, alternariol, and alternariol methyl ether, and their application to a multiple stable isotope dilution assay.

    PubMed

    Liu, Yang; Rychlik, Michael

    2015-02-01

    An unprecedented stable isotope dilution assay for the genotoxic altertoxins along with exposure data of consumers is presented to enable a first risk assessment of these Alternaria toxins in foods. Altertoxins were produced as the most abundant Alternaria toxins in a modified Czapek-Dox medium with a low level of glucose as the carbon source and ammonium sulfate as the sole nitrogen source. Labeled altertoxins were synthesized in the same way using [(13)C6]glucose. Moreover, labeled alternariol, alternariol methyl ether, altenuene, and alternuisol were biosynthesized in another modified medium containing [(13)C6]glucose and sodium [(13)C2]acetate. A stable isotope dilution LC-MS/MS method was developed and used for food analysis. For altertoxin I, altertoxin II, alterperylenol, alternariol, and alternariol methyl ether, the limits of detection ranged from 0.09 to 0.53 μg kg(-1). The inter-/intra-day (n = 3 × 6) relative standard deviations of the method were below 13%, and the recoveries ranged between 96 and 109%. Among the various commercial food samples, some of the organic whole grains revealed low-level contamination with altertoxin I and alterperylenol, and paprika powder, which was heavily loaded with alternariol, alternariol methyl ether, and tentoxin, showed higher contamination level of altertoxin I and alterperylenol. Altertoxin II and III and stemphyltoxin III were not detectable. In addition, if the food was contaminated with altertoxins, it was likely to be co-contaminated with the other Alternaria toxins, but not necessarily vice versa. Maximum concentrations of altertoxin I and alterperylenol were detected in sorghum feed samples containing 43 and 58 μg kg(-1), respectively. This was significantly higher than that in the measured food samples.

  11. The histone methyltransferase KMT2B is required for RNA polymerase II association and protection from DNA methylation at the MagohB CpG island promoter.

    PubMed

    Ladopoulos, Vasileios; Hofemeister, Helmut; Hoogenkamp, Maarten; Riggs, Arthur D; Stewart, A Francis; Bonifer, Constanze

    2013-04-01

    KMT2B (MLL2/WBP7) is a member of the MLL subfamily of H3K4-specific histone lysine methyltransferases (KMT2) and is vital for normal embryonic development in the mouse. To gain insight into the molecular mechanism underlying KMT2B function, we focused on MagohB, which is controlled by a CpG island promoter. We show that in cells lacking Mll2-the gene encoding KMT2B-the MagohB promoter resides in inaccessible chromatin and is methylated. To dissect the molecular events leading to the establishment of silencing, we performed kinetic studies in Mll2-conditional-knockout embryonic stem cells. KMT2B depletion was followed by the loss of the active chromatin marks and progressive loss of RNA polymerase II binding with a concomitant downregulation of MagohB expression. Once the active chromatin marks were lost, the MagohB promoter was rapidly methylated. We demonstrate that in the presence of KMT2B, neither transcription elongation nor RNA polymerase II binding is required to maintain H3K4 trimethylation at the MagohB promoter and protect it from DNA methylation. Reexpression of KMT2B was sufficient to reinstate an active MagohB promoter. Our study provides a paradigm for the idea that KMT2 proteins are crucial components for establishing and maintaining the transcriptionally active and unmethylated state of CpG island promoters. PMID:23358417

  12. Development of a short-term, in vivo mutagenesis assay: the effects of methylation on the recovery of a lambda phage shuttle vector from transgenic mice.

    PubMed Central

    Kohler, S W; Provost, G S; Kretz, P L; Dycaico, M J; Sorge, J A; Short, J M

    1990-01-01

    Transgenic mice suitable for the in vivo assay of suspected mutagens at the chromosome level have been constructed by stable integration of a lambda phage shuttle vector. The shuttle vector, which contains a beta-galactosidase (beta-gal) target gene, can be rescued from genomic DNA with in vitro packaging extracts. Mutations in the target gene are detected by a change in lambda phage plaque color on indicator agar plates. Initial rescue efficiencies of less than 1 plaque forming unit (pfu)/100 micrograms of genomic DNA were too low for mutation analysis. We determined the cause of the low rescue efficiencies by examining primary fibroblast cultures prepared from fetuses of lambda transgenic animals. The rescue efficiency of 5-azacytidine-treated cells increased 50-fold over non-treated controls indicating that methylation was inhibiting rescue. The inhibitory role of methylation was supported by the observation that mcr deficient E. coli plating strains and mcr deficient lambda packaging extracts further improved lambda rescue efficiency. Present rescue efficiencies of greater than 2000 pfu/copy/micrograms of genomic DNA represent a 100,000-fold improvement over initial rescue efficiencies, permitting quantitative mutational analysis. The background mutagenesis rate was estimated at 1 x 10(-5) in two separate lineages. Following treatment with the mutagen N-ethyl-N-nitrosourea (EtNU), a dose dependent increase in the mutation rate was observed in DNA isolated from mouse spleen, with significant induction also observed in mouse testes DNA. Images PMID:1693420

  13. MicroRNA-7 Promotes Glycolysis to Protect against 1-Methyl-4-phenylpyridinium-induced Cell Death.

    PubMed

    Chaudhuri, Amrita Datta; Kabaria, Savan; Choi, Doo Chul; Mouradian, M Maral; Junn, Eunsung

    2015-05-01

    Parkinson disease is associated with decreased activity of the mitochondrial electron transport chain. This defect can be recapitulated in vitro by challenging dopaminergic cells with 1-methyl-4-phenylpyridinium (MPP(+)), a neurotoxin that inhibits complex I of electron transport chain. Consequently, oxidative phosphorylation is blocked, and cells become dependent on glycolysis for ATP production. Therefore, increasing the rate of glycolysis might help cells to produce more ATP to meet their energy demands. In the present study, we show that microRNA-7, a non-coding RNA that protects dopaminergic neuronal cells against MPP(+)-induced cell death, promotes glycolysis in dopaminergic SH-SY5Y and differentiated human neural progenitor ReNcell VM cells, as evidenced by increased ATP production, glucose consumption, and lactic acid production. Through a series of experiments, we demonstrate that targeted repression of RelA by microRNA-7, as well as subsequent increase in the neuronal glucose transporter 3 (Glut3), underlies this glycolysis-promoting effect. Consistently, silencing Glut3 expression diminishes the protective effect of microRNA-7 against MPP(+). Further, microRNA-7 fails to prevent MPP(+)-induced cell death when SH-SY5Y cells are cultured in a low glucose medium, as well as when differentiated ReNcell VM cells or primary mouse neurons are treated with the hexokinase inhibitor, 2-deoxy-d-glucose, indicating that a functional glycolytic pathway is required for this protective effect. In conclusion, microRNA-7, by down-regulating RelA, augments Glut3 expression, promotes glycolysis, and subsequently prevents MPP(+)-induced cell death. This protective effect of microRNA-7 could be exploited to correct the defects in oxidative phosphorylation in Parkinson disease. PMID:25814668

  14. Effects of Post Weaning Diet on Metabolic Parameters and DNA Methylation Status of the Cryptic Promoter in the Avy Allele of Viable Yellow Mice

    PubMed Central

    Warzak, Denise A.; Johnson, Sarah A.; Ellersieck, Mark R.; Roberts, R. Michael; Zhang, Xiang; Ho, Shuk-Mei; Rosenfeld, Cheryl S.

    2015-01-01

    Mice carrying the Avy allele are epigenetic mosaics. If the majority of cells have an active (demethylated) intracisternal A particle (IAP), mice have a yellow coat color and develop adult-onset obesity and diabetes, while mice whose mosaicism predominantly reflects an inactive (methylated) IAP are pseudoagouti (brown) and less prone to metabolic disease. Brown and yellow coat color Avy/a post-weaning mice were placed on one of three diets (AIN, and two lower calorie diets NIH and methyl-supplemented, NIHMe) to determine whether coat color, weight gain, blood glucose, and methylation of hepatic IAP became altered. None of the diets altered Avy/a mice coat color. NIHMe did not protect against increasing obesity or the usual onset of hyperglycemia in males. Nor did it promote increased methylation of Avy IAP in liver tissue. By contrast, AIN, despite its higher content of fat and carbohydrate and ability to promote greater weight gains than the NIH and NIHMe diets, protected males better against hyperglycemia than either the NIH or NIHMe diets. This diet led to a significantly reduced (~ 50 %; P = 0.003) average methylation state of all CpG sites within the hepatic IAP for the pseudoagouti mice. On AIN, but not on the other diets, extent of hepatic IAP methylation was negatively correlated (R = 0.97, P ≤ 0.001) with body weight of pseudoagouti mice. The findings indicate that post-weaning diet might influence interpretation of studies with Avy/a mice because IAP methylation patterns may be malleable in certain organs and influenced by post-weaning diet. PMID:25818200

  15. Monoclonal antibody production and indirect competitive enzyme-linked immunosorbent assay development of 3-methyl-quinoxaline-2-carboxylic acid based on novel haptens.

    PubMed

    Li, Guopeng; Zhao, Liang; Zhou, Feng; Li, Jiaying; Xing, Yuan; Wang, Tiangang; Zhou, Xilong; Ji, Baoping; Ren, Wanpeng

    2016-10-15

    Two novel immunizing haptens of 3-methyl-quinoxaline-2-carboxylic acid (MQCA) were synthesized and conjugated with cationized bovine serum albumin. Female BALB/c mice were immunized with above conjugates, splenocytes were fused with Sp2/0 cells to produce monoclonal antibody. Compared with previous studies, antibodies raised in this work showed higher sensitivity. Meantime, a novel heterologous coating hapten was also prepared. The indirect competitive enzyme-linked immunosorbent assay (icELISA) based on the optimum condition showed an IC50 of 3.1μg/kg (ppb), and the linear range of 0.46-10.5ppb for MQCA. The limit of detect (LOD) of MQCA in swine muscle, swine liver and chicken was 0.32, 0.54, and 0.28ppb, respectively. The LOD of this assay can satisfy the minimum required performance levels (4ppb) for MQCA. These results indicated that the proposed ELISA, with high sensitivity and specificity, as well as good reproducibility and accuracy, is suitable for determination of MQCA residues in food samples.

  16. DNA methylation of the GC box in the promoter region mediates isolation rearing-induced suppression of srd5a1 transcription in the prefrontal cortex.

    PubMed

    Araki, Ryota; Nishida, Shoji; Hiraki, Yosuke; Matsumoto, Kinzo; Yabe, Takeshi

    2015-10-01

    The levels of allopregnanolone (ALLO), a neurosteroid, in brain and serum are related to severity of depression and anxiety. Steroid 5α-reductase type I is the rate-limiting enzyme in ALLO biosynthesis and plays an important role in control of the ALLO level in mammalian brain. In this study, we examined an epigenetic mechanism for transcriptional regulation of srd5a1, which codes for steroid 5α-reductase type I, using isolation-reared mice. The mRNA level of srd5a1 was decreased in the prefrontal cortex (PFC) in isolation-reared mice. Rearing in social isolation increased methylation of cytosines at -82 and -12 bp downstream of the transcription start site, which are located in a GC box element in the promoter region of srd5a1. Binding of Sp1, a ubiquitous transcription factor, to the GC box was decreased in the promoter region of srd5a1 in the PFC in isolation-reared mice. Site-specific methylation at cytosine -12 of a srd5a1 promoter-luciferase reporter construct, but not that of cytosine -82, downregulated the promoter activity of srd5a1. These findings suggest that transcription of srd5a1 in brain is regulated by environmental factor-induced cytosine methylation in the promoter region. This finding could contribute to development of antidepressant and anxiolytic agents.

  17. Development and in vitro assay of oxidative stress modifying formulations for wound healing promotion.

    PubMed

    Atrux-Tallau, Nicolas; Callejon, Sylvie; Migdal, Camille; Padois, Karine; Bertholle, Valérie; Denis, Alain; Chavagnac-Bonneville, Marlène; Haftek, Marek; Falson, Françoise; Pirot, Fabrice

    2011-05-01

    Often presented as metabolism byproducts, reactive oxygen species are linked to detrimental effects such as chronic wound, mutagenesis, cancer and skin ageing. However, recent in vitro and in vivo observations suggest that ROS, and mainly hydrogen peroxide, interfere with cell signaling acting like second messenger and inducing adaptive responses. This is particularly observed in skin wound healing where cells are exposed to H₂O₂ following injury. In this study, we developed and characterized an innovative formulation producing H₂O₂ at low concentrations, in order to mimic physiological inflammation phase. Then, this pro-oxidative formulation (CAM-GOx) was assayed in vitro on keratinocytes cell culture, compared to the blank formulation (CAM) and the anti-oxidative formulation (CAM-CAT) to assess whether oxidative stress was implied or not in cellular responses.

  18. Mouse Pig-a and micronucleus assays respond to N-ethyl-N-nitrosourea, benzo[a]pyrene, and ethyl carbamate, but not pyrene or methyl carbamate.

    PubMed

    Labash, Carson; Avlasevich, Svetlana L; Carlson, Kristine; Berg, Ariel; Torous, Dorothea K; Bryce, Steven M; Bemis, Jeffrey C; MacGregor, James T; Dertinger, Stephen D

    2016-01-01

    This laboratory previously described a method for scoring the incidence of peripheral blood Pig-a mutant phenotype rat erythrocytes using immunomagnetic separation in conjunction with flow cytometric analysis (In Vivo MutaFlow®). The current work extends the method to mouse blood, using the frequency of CD24-negative reticulocytes (RET(CD24-)) and erythrocytes (RBC(CD24-)) as phenotypic reporters of Pig-a gene mutation. Following assay optimization, reconstruction experiments demonstrated the ability of the methodology to return expected values. Subsequently, the responsiveness of the assay to the genotoxic carcinogens N-ethyl-N-nitrosourea, benzo[a]pyrene, and ethyl carbamate was studied in male CD-1 mice exposed for 3 days to several dose levels via oral gavage. Blood samples were collected on Day 4 for micronucleated reticulocyte analyses, and on Days 15 and 30 for determination of RET(CD24-) and RBC(CD24-) frequencies. The same design was used to study pyrene, with benzo[a]pyrene as a concurrent positive control, and methyl carbamate, with ethyl carbamate as a concurrent positive control. The three genotoxicants produced marked dose-related increases in the frequencies of Pig-a mutant phenotype cells and micronucleated reticulocytes. Ethyl carbamate exposure resulted in moderately higher micronucleated reticulocyte frequencies relative to N-ethyl-N-nitrosourea or benzo[a]pyrene (mean ± SEM = 3.0 ± 0.36, 2.3 ± 0.17, and 2.3 ± 0.49%, respectively, vs. an aggregate vehicle control frequency of 0.18 ± 0.01%). However, it was considerably less effective at inducing Pig-a mutant cells (e.g., Day 15 mean no. RET(CD24-) per 1 million reticulocytes = 7.6 ± 3, 150 ± 9, and 152 ± 43 × 10(-6), respectively, vs. an aggregate vehicle control frequency of 0.6 ± 0.13 × 10(-6)). Pyrene and methyl carbamate, tested to maximum tolerated dose or limit dose levels, had no effect on mutant cell or micronucleated reticulocyte frequencies. Collectively, these results

  19. [Estimation of the methylation status of the promoter region of the cell cycle gene P14ARF in placental tissues of spontaneous abortuses with chromosomal mosaicism].

    PubMed

    Kashevarova, A A; Tolmacheva, E N; Sukhanova, N N; Sazhenova, E A; Lebedev, I N

    2009-06-01

    The methylation status of the promoter region of the cell cycle gene P14ARF was studied in the extraembryonic mesoderm and in the chorion cytotrophoblast of 46 human spontaneous abortuses with chromosomal mosaicism. Aberrant methylation of alleles of this gene was revealed for the first time in placental tissues of 9% of embryos. The identified epimutations were found to be characteristic of embryos with aneuploid cell clones of postzygotic origin. It is suggested that epigenetic inactivation of loci responsible for the regulation of cell division and for segregation of chromosomes is associated with the occurrence of mosaic forms of the karyotype at early stages of human embryonic development. PMID:19639877

  20. Environmental Stress Affects DNA Methylation of a CpG Rich Promoter Region of Serotonin Transporter Gene in a Nurse Cohort

    PubMed Central

    Alasaari, Jukka S.; Lagus, Markus; Ollila, Hanna M.; Toivola, Auli; Kivimäki, Mika; Vahtera, Jussi; Kronholm, Erkki; Härmä, Mikko; Puttonen, Sampsa; Paunio, Tiina

    2012-01-01

    Background Shift-working nurses are exposed to a stressful work environment, which puts them at an increased risk for burnout and depression. We explored the effect of environmental stress on serotonin transporter gene (SLC6A4) promoter methylation among nurses from high and low work stress environments. Methodology Using bisulfite sequencing, we investigated the methylation status of five CpG residues of a CpG-rich region in the promoter of SLC6A4 by comparing female shift working nurses from a high work stress environment (n = 24) to low work stress environment (n = 25). We also analyzed the association of 5-HTTLPR polymorphism at 5′ end of SLC6A4. Work stress was assessed by the Karasek’s Model and possible signs of burnout or depression were measured by the Maslach Burnout Index General Survey and Beck Depression Index. Methylation levels were assessed by bisulfite sequencing of DNA extracted from peripheral blood leucocytes. Restriction enzyme treatment followed by standard PCR was used to identify 5-HTTLPR genotypes. Principal Findings We found that nurses in the high stress environment had significantly lower promoter methylation levels at all five CpG residues compared to nurses in the low stress environment (p<0.01). There was no significant interaction of 5-HTTLPR genotype and work stress with methylation (p = 0.58). In unadjusted (bivariate) analysis, burnout was not significantly associated to methylation levels. However, when mutually adjusted for both, burnout and work stress were significant contributors (p = 0.038 and p<0.0001 respectively) to methylation levels. Conclusions Our findings show that environmental stress is concurrent with decreased methylation of the SLC6A4 promoter. This may lead to increased transcriptional activity of the gene, increased reuptake of serotonin from synaptic clefts, and termination of the activity of serotonin. This could present a possible coping mechanism for environmental stress in humans that

  1. Effects of parturition and dexamethasone on DNA methylation patterns of IFN-γ and IL-4 promoters in CD4+ T-lymphocytes of Holstein dairy cows.

    PubMed

    Paibomesai, Marlene; Hussey, Brendan; Nino-Soto, Maria; Mallard, Bonnie A

    2013-01-01

    This study investigated epigenetic mechanisms by which DNA methylation affects the function of bovine adaptive immune system cells, particularly during the peripartum period, when shifts in type 1 and type 2 immune response (IR) biases are thought to occur. Stimulation of CD4+ T-lymphocytes isolated from 5 Holstein dairy cows before and after parturition with concanavalin A (ConA) and stimulation of CD4+ T-lymphocytes isolated from 3 Holstein dairy cows in mid-lactation with ConA alone or ConA plus dexamethasone (Dex) had significant effects on production of the cytokines interferon gamma (IFN-γ, type 1) and interleukin 4 (IL-4, type 2) that were consistent with DNA methylation profiles of the IFN-γ gene promoter region but not consistent for the IL-4 promoter region. ConA stimulation increased the production of both cytokines before and after parturition. It decreased DNA methylation in the IFN-γ promoter region but increased for IL-4 promoter region. Parturition was associated with an increase in IFN-γ production in ConA-stimulated cells that approached significance. Overall, DNA methylation in both promoter regions increased between the prepartum and postpartum periods, although this did not correlate with secreted cytokine concentrations. Dexamethasone treated cells acted in a manner consistent with the glucocorticoid's immunosuppressive activity, which mimicked the change at the IFN-γ promoter region observed during parturition. These results support pregnancy as type 2 IR biased, with increases of IFN-γ occurring after parturition and an increase in IL-4 production before calving. It is likely that these changes may be epigenetically controlled.

  2. Effects of parturition and dexamethasone on DNA methylation patterns of IFN-γ and IL-4 promoters in CD4+ T-lymphocytes of Holstein dairy cows

    PubMed Central

    Paibomesai, Marlene; Hussey, Brendan; Nino-Soto, Maria; Mallard, Bonnie A.

    2013-01-01

    This study investigated epigenetic mechanisms by which DNA methylation affects the function of bovine adaptive immune system cells, particularly during the peripartum period, when shifts in type 1 and type 2 immune response (IR) biases are thought to occur. Stimulation of CD4+ T-lymphocytes isolated from 5 Holstein dairy cows before and after parturition with concanavalin A (ConA) and stimulation of CD4+ T-lymphocytes isolated from 3 Holstein dairy cows in mid-lactation with ConA alone or ConA plus dexamethasone (Dex) had significant effects on production of the cytokines interferon gamma (IFN-γ, type 1) and interleukin 4 (IL-4, type 2) that were consistent with DNA methylation profiles of the IFN-γ gene promoter region but not consistent for the IL-4 promoter region. ConA stimulation increased the production of both cytokines before and after parturition. It decreased DNA methylation in the IFN-γ promoter region but increased for IL-4 promoter region. Parturition was associated with an increase in IFN-γ production in ConA-stimulated cells that approached significance. Overall, DNA methylation in both promoter regions increased between the prepartum and postpartum periods, although this did not correlate with secreted cytokine concentrations. Dexamethasone treated cells acted in a manner consistent with the glucocorticoid’s immunosuppressive activity, which mimicked the change at the IFN-γ promoter region observed during parturition. These results support pregnancy as type 2 IR biased, with increases of IFN-γ occurring after parturition and an increase in IL-4 production before calving. It is likely that these changes may be epigenetically controlled. PMID:23814356

  3. Aberrant gene promoter methylation of p16, FHIT, CRBP1, WWOX, and DLC-1 in Epstein-Barr virus-associated gastric carcinomas.

    PubMed

    He, Dan; Zhang, Yi-wang; Zhang, Na-na; Zhou, Lu; Chen, Jian-ning; Jiang, Ye; Shao, Chun-kui

    2015-04-01

    Alterations in global DNA methylation and specific regulatory gene methylation are frequently found in cancer, but the significance of these epigenetic changes in EBV-associated gastric carcinoma (EBVaGC) remains unclear. We evaluated global DNA methylation status in 49 EBVaGC and 45 EBV-negative gastric carcinoma (EBVnGC) tissue samples and cell lines by 5-methylcytosine immunohistochemical staining and methylation quantification. We determined promoter methylation status and protein expression for the p16, FHIT, CRBP1, WWOX, and DLC-1 genes in tissues and studied the correlation between CpG island methylator phenotype (CIMP) class and clinicopathological characteristics. Changes in gene methylation and mRNA expression in EBVaGC cell line SNU-719 and in EBVnGC cell lines SGC-7901, BGC-823, and AGS were assessed after treatment with 5-aza-2'-deoxycytidine (5-aza-dC), trichostatin A (TSA), or a combination of both, by methylation-specific PCR and quantitative real-time RT-PCR. Global genomic DNA hypomethylation was more pronounced in EBVnGC than in EBVaGC. Promoter methylation of all five genes was more frequent in EBVaGC than in EBVnGC (p < 0.05). p16 and FHIT methylation was reversely correlated with protein expression in EBVaGC. Most (41/49) EBVaGC exhibited CIMP-high (CIMP-H), and the prognosis of CIMP-H patients was significantly worse than that of CIMP-low (p = 0.027) and CIMP-none (p = 0.003) patients. Treatment with 5-aza-dC and/or TSA induced upregulation of RNA expression of all five genes in SNU-719; meanwhile, individual gene expression increased in EBVnGC cell lines. In summary, EBV-induced hypermethylation of p16, FHIT, CRBP1, WWOX, and DLC-1 may contribute to EBVaGC development. Demethylation therapy may represent a novel therapeutic strategy for EBVaGC.

  4. The ability of the high-throughput comet assay to measure the sensitivity of five cell lines toward methyl methanesulfonate, hydrogen peroxide, and pentachlorophenol.

    PubMed

    Stang, Andre; Witte, Irene

    2010-08-30

    A new, high-throughput version of the comet assay was developed using human fibroblasts (Stang and Witte, 2009). The present study examines the suitability of other adherent and non-adherent cell types in this high-throughput assay. We found that in addition to V79 human fibroblasts, HeLa cells, Hep-G2 cells, and lymphocytes can be used. The time intervals needed for attachment on the agarose-coated 96-well multi-chamber plate (MCP, specially developed for the high-throughput comet assay) differed for all adherent cell lines mentioned. V79 cells needed 6h for attachment, fibroblasts 2-4h, Hep-G2 required 18 h, and HeLa cells 16 h. After this period, chemical treatment could occur. Non-adherent lymphocytes could be treated with the chemicals directly after they had been pipetted into the wells of the MCP and centrifuged. We compared the sensitivities of these five cell types toward the directly DNA-damaging compounds methyl methanesulfonate (MMS), and hydrogen peroxide (H(2)O(2)), and toward the indirectly acting agent pentachlorophenol (PCP). Except for Hep-G2 cells, exposure to PCP was conducted in the presence of an S9 microsome fraction. DNA damage, measured as an increase in the percentage of DNA in the tail region of the comets, occurred in a concentration-dependent manner. Under the test conditions used in this study, human lymphocytes were the most sensitive cells toward the three chemicals tested, fibroblasts showed a similar sensitivity toward the directly acting MMS and H(2)O(2), but were less sensitive toward PCP. HeLa, V79, and Hep-G2 cells reacted with similar sensitivity. PMID:20399888

  5. DNA Methylation Profiling Revealed Promoter Hypermethylation-induced Silencing of p16, DDAH2 and DUSP1 in Primary Oral Squamous Cell Carcinoma

    PubMed Central

    Khor, Goot Heah; Froemming, Gabriele Ruth Anisah; Zain, Rosnah Binti; Abraham, Mannil Thomas; Omar, Effat; Tan, Su Keng; Tan, Aik Choon; Vincent-Chong, Vui King; Thong, Kwai Lin

    2013-01-01

    Background: Hypermethylation in promoter regions of genes might lead to altered gene functions and result in malignant cellular transformation. Thus, biomarker identification for hypermethylated genes would be very useful for early diagnosis, prognosis, and therapeutic treatment of oral squamous cell carcinoma (OSCC). The objectives of this study were to screen and validate differentially hypermethylated genes in OSCC and correlate the hypermethylation-induced genes with demographic, clinocopathological characteristics and survival rate of OSCC. Methods: DNA methylation profiling was utilized to screen the differentially hypermethylated genes in OSCC. Three selected differentially-hypermethylated genes of p16, DDAH2 and DUSP1 were further validated for methylation status and protein expression. The correlation between demographic, clinicopathological characteristics, and survival rate of OSCC patients with hypermethylation of p16, DDAH2 and DUSP1 genes were analysed in the study. Results: Methylation profiling demonstrated 33 promoter hypermethylated genes in OSCC. The differentially-hypermethylated genes of p16, DDAH2 and DUSP1 revealed positivity of 78%, 80% and 88% in methylation-specific polymerase chain reaction and 24% and 22% of immunoreactivity in DDAH2 and DUSP1 genes, respectively. Promoter hypermethylation of p16 gene was found significantly associated with tumour site of buccal, gum, tongue and lip (P=0.001). In addition, DDAH2 methylation level was correlated significantly with patients' age (P=0.050). In this study, overall five-year survival rate was 38.1% for OSCC patients and was influenced by sex difference. Conclusions: The study has identified 33 promoter hypermethylated genes that were significantly silenced in OSCC, which might be involved in an important mechanism in oral carcinogenesis. Our approaches revealed signature candidates of differentially hypermethylated genes of DDAH2 and DUSP1 which can be further developed as potential

  6. Molecular Subtype-Specific Expression of MicroRNA-29c in Breast Cancer Is Associated with CpG Dinucleotide Methylation of the Promoter

    PubMed Central

    Poli, Elizabeth; Zhang, Jing; Nwachukwu, Chika; Zheng, Yonglan; Adedokun, Babatunde; Olopade, Olufunmilayo I.; Han, Yoo-Jeong

    2015-01-01

    Basal-like breast cancer is a molecularly distinct subtype of breast cancer that is highly aggressive and has a poor prognosis. MicroRNA-29c (miR-29c) has been shown to be significantly down-regulated in basal-like breast tumors and to be involved in cell invasion and sensitivity to chemotherapy. However, little is known about the genetic and regulatory factors contributing to the altered expression of miR-29c in basal-like breast cancer. We here report that epigenetic modifications at the miR-29c promoter, rather than copy number variation of the gene, may drive the lower expression of miR-29c in basal-like breast cancer. Bisulfite sequencing of CpG sites in the miR-29c promoter region showed higher methylation in basal-like breast cancer cell lines compared to luminal subtype cells with a significant inverse correlation between expression and methylation of miR-29c. Analysis of primary breast tumors using The Cancer Genome Atlas (TCGA) dataset confirmed significantly higher levels of methylation of the promoter in basal-like breast tumors compared to all other subtypes. Furthermore, inhibition of CpG methylation with 5-aza-CdR increases miR-29c expression in basal-like breast cancer cells. Flourescent In Situ Hybridization (FISH) revealed chromosomal abnormalities at miR-29c loci in breast cancer cell lines, but with no correlation between copy number variation and expression of miR-29c. Our data demonstrated that dysregulation of miR-29c in basal-like breast cancer cells may be in part driven by methylation at CpG sites. Epigenetic control of the miR-29c promoter by epigenetic modifiers may provide a potential therapeutic target to overcome the aggressive behavior of these cancers. PMID:26539832

  7. Cell-specific transcriptional regulation and reactivation of galectin-1 gene expression are controlled by DNA methylation of the promoter region.

    PubMed Central

    Benvenuto, G; Carpentieri, M L; Salvatore, P; Cindolo, L; Bruni, C B; Chiariotti, L

    1996-01-01

    The galectin-1 gene is developmentally regulated gene whose activity is strongly modulated during cell differentiation and transformation. We have previously shown that galectin-1 promoter constructs are highly active when transiently transfected in cells both expressing and not expressing the endogenous gene and that the basal activity is determined by a small region encompassing the transcription start site (from positions -50 to +50). We have now investigated the role of DNA methylation in galectin-1 gene expression. Southern blot analysis with HpaII and MspI endonucleases and sodium bisulfite analysis of genomic DNA from expressing and nonexpressing cell lines and cell hybrids showed a close correlation between gene activity and demethylation of the 5' region of the galectin-1 gene. We found that the galectin-1 promoter region is fully methylated, at every CpG site on both strands, in nonexpressing differentiated rat liver (FAO) and thyroid (PC C13) cells and unmethylated in the expressing undifferentiated liver (BRL3A) and thyroid transformed (PC myc/raf) cell lines. In addition, reactivation of the silent FAO alleles in FAO-human osteosarcoma (143tk-) hybrid cells is accompanied by a complete demethylation of the promoter region. Finally, when galectin-1 chloramphenicol acetyltransferase (CAT) promoter constructs were methylated in vitro by SssI methylase at every cytosine residue of the CpG doublets and transfected into mouse fibroblasts, the transcription of the CAT reporter gene was strongly inhibited. PMID:8649381

  8. Quantification of regional DNA methylation by liquid chromatography/tandem mass spectrometry.

    PubMed

    Liu, Zhongfa; Wu, Jiejun; Xie, Zhiliang; Liu, Shujun; Fan-Havard, Patty; Huang, Tim H-M; Plass, Christoph; Marcucci, Guido; Chan, Kenneth K

    2009-08-15

    Promoter hypermethylation-associated tumor suppressor gene (TSG) silencing has been explored as a therapeutic target for hypomethylating agents. Promoter methylation change may serve as a pharmacodynamic endpoint for evaluation of the efficacy of these agents and predict the patient's clinical response. Here a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay has been developed for quantitative regional DNA methylation analysis using the molar ratio of 5-methyl-2'-deoxycytidine (5mdC) to 2'-deoxycytidine (2dC) in the enzymatic hydrolysate of fully methylated bisulfite-converted polymerase chain reaction (PCR) amplicons as the methylation indicator. The assay can differentiate 5% of promoter methylation level with an intraday precision ranging from 3 to 16% using two TSGs: HIN-1 and RASSF1A. This method was applied to characterize decitabine-induced promoter DNA methylation changes of these two TSGs in a breast cancer MCF-7 cell line. Promoter methylation of these TSGs was found to decrease in a dose-dependent manner. Correspondingly, the expression of these TSGs was enhanced. The sensitivity and reproducibility of the method make it a valuable tool for specific gene methylation analysis that could aid characterization of hypomethylating activity on specific genes by hypomethylating agents in a clinical setting.

  9. Zinc-Finger Protein 545 Inhibits Cell Proliferation as a Tumor Suppressor through Inducing Apoptosis and is Disrupted by Promoter Methylation in Breast Cancer

    PubMed Central

    Luo, Xinrong; Li, Chunhong; Li, Qianqian; Peng, Weiyan; Li, Lili; Li, Shuman; Wang, Zhenyu; Tang, Liping; Ren, Guosheng; Tao, Qian

    2014-01-01

    Krüppel-associated box-containing zinc finger proteins (KRAP-ZFPs) are well recognized as key regulators of transcription, which play a crucial role in the regulation of cell proliferation, differentiation, apoptosis and tumorigenesis. We previously identified a KRAP-ZFP protein ZNF545 acting as a tumor suppressor involved in tumor pathogenesis. However, its expression and biological function in breast cancer remain elusive. In this study, we found that ZNF545 was frequently downregulated in estrogen receptor-positive (ER+), progesterone receptor-positive (PR+) and human epidermal growth factor receptor 2-negative (HER2−) breast tumor tissues compared with paired adjacent non-tumor tissues. We further examined its expression and methylation in breast cancer cell lines by semi-quantitative RT-PCR and methylation-specific PCR. We found that ZNF545 was silenced by promoter methylation in MCF7 cell line, and its expression could be restored by demethylation, concomitant with increased unmethylated alleles. ZNF545 methylation was detected in 29% of breast tumor tissues, but not in normal breast tissues, suggesting tumor-specific methylation of ZNF545 in breast cancer. Ectopic expression of ZNF545 in MCF7 cells inhibited cell proliferation through inducing cell cycle G0/G1 arrest and apoptosis, thus as a tumor suppressor. Moreover, ZNF545 upregulated mRNA and protein levels of c-Jun/AP1, BAX, p53 and Caspase 3. Taken together, these results demonstrate that ZNF545 inhibits breast tumor cell proliferation through inducing apoptosis and is disrupted by promoter methylation in breast cancer. PMID:25360542

  10. DNA Methylation in Basal Metazoans: Insights from Ctenophores.

    PubMed

    Dabe, Emily C; Sanford, Rachel S; Kohn, Andrea B; Bobkova, Yelena; Moroz, Leonid L

    2015-12-01

    Epigenetic modifications control gene expression without altering the primary DNA sequence. However, little is known about DNA methylation in invertebrates and its evolution. Here, we characterize two types of genomic DNA methylation in ctenophores, 5-methyl cytosine (5-mC) and the unconventional form of methylation 6-methyl adenine (6-mA). Using both bisulfite sequencing and an ELISA-based colorimetric assay, we experimentally confirmed the presence of 5-mC DNA methylation in ctenophores. In contrast to other invertebrates studied, Mnemiopsis leidyi has lower levels of genome-wide 5-mC methylation, but higher levels of 5-mC methylation in promoters when compared with gene bodies. Phylogenetic analysis showed that ctenophores have distinct forms of DNA methyltransferase 1 (DNMT1); the zf-CXXC domain type, which localized DNMT1 to CpG sites, and is a metazoan specific innovation. We also show that ctenophores encode the full repertoire of putative enzymes for 6-mA DNA methylation, and these genes are expressed in the aboral organ of Mnemiopsis. Using an ELISA-based colorimetric assay, we experimentally confirmed the presence of 6-mA methylation in the genomes of three different species of ctenophores, M. leidyi, Beroe abyssicola, and Pleurobrachia bachei. The functional role of this novel epigenomic mark is currently unknown. In summary, despite their compact genomes, there is a wide variety of epigenomic mechanisms employed by basal metazoans that provide novel insights into the evolutionary origins of biological novelties.

  11. Promoter methylation of RNF180 is associated with H.pylori infection and serves as a marker for gastric cancer and atrophic gastritis

    PubMed Central

    Liu, Shuang; Xu, Qian; Liang, Qiao-yi; Zhang, Zhe; Cao, Hai-chao; Yu, Jun; Fan, Dai-ming; Nie, Yong-zhan; Wu, Kai-chun; Yuan, Yuan

    2016-01-01

    Promoter methylation (PM) of RING-finger protein (RNF) 180 affects gastric cancer (GC) prognosis, but its association with risk of GC or atrophic gastritis (AG) is unclear. We investigated relationships between RNF180 PM and GC or AG, and the effects of Helicobactor pylori (H.pylori) infection on RNF180 PM. This study included 513 subjects (159 with GC, 186 with AG, and 168 healthy controls [CON]) for RNF180 PM analysis, and another 55 GC patients for RNF180 gene expression analysis. Methylation was quantified using average methylation rates (AMR), methylated CpG site counts (MSC) and hypermethylated CpG site counts (HSC). RNF180 promoter AMR and MSC increased with disease severity. Optimal cut-offs were GC + AG: AMR > 0.153, MSC > 4 or HSC > 1; GC: AMR > 0.316, MSC > 15 and HSC > 6. Hypermethylation at 5 CpG sites differed significantly between GC/AG and CON groups, and was more common in GC patients than AG and CON groups for 2 other CpG sites. The expression of RNF180 mRNA levels in tumor were significantly lower than those in non-tumor, with the same as in hypermethylation than hypomethylation group. H.pylori infection increased methylation in normal tissue or mild gastritis, and increased hypermethylation risk at 3 CpG sites in AG. In conclusion, higher AMR, MSC and HSC levels could identify AG + GC or GC. Some RNF180 promoter CpG sites could identify precancerous or early-stage GC. H.pylori affects RNF180 PM in normal tissue or mild gastritis, and increases hypermethylation in 3 CpG sites in AG. PMID:27050149

  12. Differential roles for MBD2 and MBD3 at methylated CpG islands, active promoters and binding to exon sequences

    PubMed Central

    Günther, Katharina; Rust, Mareike; Leers, Joerg; Boettger, Thomas; Scharfe, Maren; Jarek, Michael; Bartkuhn, Marek; Renkawitz, Rainer

    2013-01-01

    The heterogeneous collection of nucleosome remodelling and deacetylation (NuRD) complexes can be grouped into the MBD2- or MBD3-containing complexes MBD2–NuRD and MBD3–NuRD. MBD2 is known to bind to methylated CpG sequences in vitro in contrast to MBD3. Although functional differences have been described, a direct comparison of MBD2 and MBD3 in respect to genome-wide binding and function has been lacking. Here, we show that MBD2–NuRD, in contrast to MBD3–NuRD, converts open chromatin with euchromatic histone modifications into tightly compacted chromatin with repressive histone marks. Genome-wide, a strong enrichment for MBD2 at methylated CpG sequences is found, whereas CpGs bound by MBD3 are devoid of methylation. MBD2-bound genes are generally lower expressed as compared with MBD3-bound genes. When depleting cells for MBD2, the MBD2-bound genes increase their activity, whereas MBD2 plus MBD3-bound genes reduce their activity. Most strikingly, MBD3 is enriched at active promoters, whereas MBD2 is bound at methylated promoters and enriched at exon sequences of active genes. PMID:23361464

  13. From the laboratory to the field: assaying histone methylation at FLOWERING LOCUS C in naturally growing Arabidopsis halleri.

    PubMed

    Nishio, Haruki; Buzas, Diana Mihaela; Nagano, Atsushi J; Suzuki, Yutaka; Sugano, Sumio; Ito, Motomi; Morinaga, Shin-Ichi; Kudoh, Hiroshi

    2016-07-20

    Gene regulatory mechanisms are often defined in studies performed in the laboratory but are seldom validated for natural habitat conditions, i.e., in natura. Vernalization, the promotion of flowering by winter cold, is a prominent naturally occurring phenomenon, so far best characterized using artificial warm and cold treatments. The floral inhibitor FLOWERING LOCUS C (FLC) gene of Arabidopsis thaliana has been identified as the central regulator of vernalization. FLC shows an idiosyncratic pattern of histone modification at different stages of cold exposure, believed to regulate transcriptional responses of FLC. Chromatin modifications, including H3K4me3 and H3K27me3, are routinely quantified using chromatin immunoprecipitation (ChIP), standardized for laboratory samples. In this report, we modified a ChIP protocol to make it suitable for analysis of field samples. We first validated candidate normalization control genes at two stages of cold exposure in the laboratory and two seasons in the field, also taking into account nucleosome density. We further describe experimental conditions for performing sampling and sample preservation in the field and demonstrate that these conditions give robust results, comparable with those from laboratory samples. The ChIP protocol incorporating these modifications, "Field ChIP", was used to initiate in natura chromatin analysis of AhgFLC, an FLC orthologue in A. halleri, of which a natural population is already under investigation. Here, we report results on levels of H3K4me3 and H3K27me3 at three representative regions of AhgFLC in controlled cold and field samples, before and during cold exposure. We directly compared the results in the field with those from laboratory samples. These data revealed largely similar trends in histone modification dynamics between laboratory and field samples at AhgFLC, but also identified some possible differences. The Field ChIP method described here will facilitate comprehensive chromatin

  14. From the laboratory to the field: assaying histone methylation at FLOWERING LOCUS C in naturally growing Arabidopsis halleri.

    PubMed

    Nishio, Haruki; Buzas, Diana Mihaela; Nagano, Atsushi J; Suzuki, Yutaka; Sugano, Sumio; Ito, Motomi; Morinaga, Shin-Ichi; Kudoh, Hiroshi

    2016-07-20

    Gene regulatory mechanisms are often defined in studies performed in the laboratory but are seldom validated for natural habitat conditions, i.e., in natura. Vernalization, the promotion of flowering by winter cold, is a prominent naturally occurring phenomenon, so far best characterized using artificial warm and cold treatments. The floral inhibitor FLOWERING LOCUS C (FLC) gene of Arabidopsis thaliana has been identified as the central regulator of vernalization. FLC shows an idiosyncratic pattern of histone modification at different stages of cold exposure, believed to regulate transcriptional responses of FLC. Chromatin modifications, including H3K4me3 and H3K27me3, are routinely quantified using chromatin immunoprecipitation (ChIP), standardized for laboratory samples. In this report, we modified a ChIP protocol to make it suitable for analysis of field samples. We first validated candidate normalization control genes at two stages of cold exposure in the laboratory and two seasons in the field, also taking into account nucleosome density. We further describe experimental conditions for performing sampling and sample preservation in the field and demonstrate that these conditions give robust results, comparable with those from laboratory samples. The ChIP protocol incorporating these modifications, "Field ChIP", was used to initiate in natura chromatin analysis of AhgFLC, an FLC orthologue in A. halleri, of which a natural population is already under investigation. Here, we report results on levels of H3K4me3 and H3K27me3 at three representative regions of AhgFLC in controlled cold and field samples, before and during cold exposure. We directly compared the results in the field with those from laboratory samples. These data revealed largely similar trends in histone modification dynamics between laboratory and field samples at AhgFLC, but also identified some possible differences. The Field ChIP method described here will facilitate comprehensive chromatin

  15. Double Strand Breaks Can Initiate Gene Silencing and SIRT1-Dependent Onset of DNA Methylation in an Exogenous Promoter CpG Island

    PubMed Central

    O'Hagan, Heather M.; Mohammad, Helai P.; Baylin, Stephen B.

    2008-01-01

    Chronic exposure to inducers of DNA base oxidation and single and double strand breaks contribute to tumorigenesis. In addition to the genetic changes caused by this DNA damage, such tumors often contain epigenetically silenced genes with aberrant promoter region CpG island DNA hypermethylation. We herein explore the relationships between such DNA damage and epigenetic gene silencing using an experimental model in which we induce a defined double strand break in an exogenous promoter construct of the E-cadherin CpG island, which is frequently aberrantly DNA hypermethylated in epithelial cancers. Following the onset of repair of the break, we observe recruitment to the site of damage of key proteins involved in establishing and maintaining transcriptional repression, namely SIRT1, EZH2, DNMT1, and DNMT3B, and the appearance of the silencing histone modifications, hypoacetyl H4K16, H3K9me2 and me3, and H3K27me3. Although in most cells selected after the break, DNA repair occurs faithfully with preservation of activity of the promoter, a small percentage of the plated cells demonstrate induction of heritable silencing. The chromatin around the break site in such a silent clone is enriched for most of the above silent chromatin proteins and histone marks, and the region harbors the appearance of increasing DNA methylation in the CpG island of the promoter. During the acute break, SIRT1 appears to be required for the transient recruitment of DNMT3B and subsequent methylation of the promoter in the silent clones. Taken together, our data suggest that normal repair of a DNA break can occasionally cause heritable silencing of a CpG island–containing promoter by recruitment of proteins involved in silencing. Furthermore, with contribution of the stress-related protein SIRT1, the break can lead to the onset of aberrant CpG island DNA methylation, which is frequently associated with tight gene silencing in cancer. PMID:18704159

  16. Interrupted E2F1-miR-34c-SCF negative feedback loop by hyper-methylation promotes colorectal cancer cell proliferation

    PubMed Central

    Yang, Shu; Wu, Bo; Sun, Haimei; Ji, Fengqing; Sun, Tingyi; Zhao, Yan; Zhou, Deshan

    2015-01-01

    Tumour suppressor miR-34c deficiency resulted from hyper-methylation in its promoter is believed to be one of the main causes of colorectal cancer (CRC). Till date, miR-34c has been validated as a direct target of p53; but previous evidence suggested other transcription factor(s) must be involved in miR-34c transcription. In the present study, we in the first place identified a core promoter region (−1118 to −883 bp) of pre-miR-34c which was embedded within a hyper-methylated CpG island. Secondly, E2F1 promoted miR-34c transcription by physical interaction with the miR-34c promoter at site −897 to −889 bp. The transcriptional activating effect of E2F1 on miR-34c was in a p53 independent manner but profoundly promoted in the presence of p53 with exposure to 5-aza-2′-deoxycytidine (DAC). Thirdly, stem cell factor (SCF), a miR-34c target, was specifically reduced upon an introduction of E2F1 which lead to suppression of CRC cell proliferation. The E2F1-suppressed cell proliferation was partially abrogated by additional miR-34c inhibitor, indicating that the anti-proliferation effect of E2F1 was probably through activating miR-34c-SCF axis. Finally, SCF/KIT signalling increased E2F1 production by reducing its proteosomal degradation dependent on PI3K/Akt-GSK3β pathway. In conclusion, our results suggested the existence of E2F1-miR-34c-SCF negative feedback loop which was interrupted by the hyper-methylation of miR-34c promoter in CRC cells and increased cell proliferation. PMID:26704889

  17. Frequency and Prognostic Impact of CEBPA Proximal, Distal and Core Promoter Methylation in Normal Karyotype AML: A Study on 623 Cases

    PubMed Central

    Fasan, Annette; Alpermann, Tamara; Haferlach, Claudia; Grossmann, Vera; Roller, Andreas; Kohlmann, Alexander; Eder, Christiane; Kern, Wolfgang; Haferlach, Torsten; Schnittger, Susanne

    2013-01-01

    The clinical impact of aberrant CEBPA promoter methylation (PM) in AML is controversially discussed. The aim of this study was to clarify the significance of aberrant CEBPA PM with regard to clinical features in a cohort of 623 cytogenetically normal (CN) de novo AML. 555 cases had wild-type CEBPA, 68 cases harbored CEBPA mutations. The distal promoter was methylated in 238/623 cases (38.2%), the core promoter in 8 of 326 cases (2.5%), whereas proximal PM was never detected. CEBPA PM and CEBPA mutations were mutually exclusive. CEBPA distal PM positive cases were characterized by reduced CEBPA mRNA expression levels and elevated white blood cell counts. CEBPA distal PM was less frequent in patients with mutations in FLT3, NPM1 and TET2 and more frequent in cases with RUNX1 and IDH2R140 mutations. Overall, no association of methylation to prognosis was seen. However CEBPA distal PM was associated with inferior outcome in cases with low FLT3-ITD ratio or TET2 mutations. A distinct gene expression profile of CEBPA distal PM positive cases compared to CEBPA mutated and CEBPA distal PM negative cases was observed. In conclusion, the presence of aberrant CEBPA PM is associated with distinct biological features but impact on outcome is weak. PMID:23383300

  18. Feasibility of measuring the bioavailability of topical ibuprofen in commercial formulations using drug content in epidermis and a methyl nicotinate skin inflammation assay.

    PubMed

    Treffel, P; Gabard, B

    1993-01-01

    A method has been developed which simultaneously compares the inhibition of an inflammation induced by a methyl nicotinate assay with the concentration of drug in the human epidermis determined in vitro following topical application of two 10% ibuprofen formulations. The bioavailability of drug from commercial gel and emulsion was assessed after the application of various doses (3, 6 and 12 mg/cm2) and an application time of 0.5 h at two time points: 0.5 and 24 h (only with the 12 mg/cm2 dose) after the removal of the non-steroidal anti-inflammatory drug (NSAID) from the skin. In parallel, we assessed the epidermal concentration of the drug in vitro and evaluated the anti-inflammatory effect of the topicals in vivo. A correlation (r = 0.9603, p < 0.001) between the amount of drug in the epidermis expressed as micrograms per milligram of epidermal protein and the corresponding inhibition of the inflammation was observed. Increasing the amount of drug in the epidermis correlated with an increased inhibition of the inflammation. The gel formulation released more drug to the skin and produced a greater anti-inflammatory effect. Topical NSAID concentration in treated skin can therefore be determined and correlates well with the resulting pharmacodynamic activity. This approach will likely have utility in optimizing topical NSAIDs.

  19. Short-term fish reproduction assays with methyl tertiary butyl ether with zebrafish and fathead minnow: Implications for evaluation of potential for endocrine activity.

    PubMed

    Mihaich, Ellen; Erler, Steffen; Le Blanc, Gerald; Gallagher, Sean

    2015-09-01

    The authors report on short-term fish reproduction assays in zebrafish and fathead minnow conducted to examine the potential for methyl tertiary butyl ether (MTBE) to cause effects on the endocrine system. Both studies were performed under good laboratory practice and in accordance with Organisation for Economic Co-operation and Development and US Environmental Protection Agency test guidelines. The results of the first study demonstrated that exposure to a high test concentration (147 mg/L) of MTBE impaired reproductive output of female zebrafish, evident by a reduction in fecundity. Based on the endpoints evaluated in the present study however, there was no supporting evidence to indicate that this effect was caused by disruption of or interaction with the endocrine system. In the second study, fathead minnows exposed to a wider but lower range of test concentrations showed no effects on any reproductive parameter of male or female fish, at the maximum recommended testing concentration of 100 mg/L (62 mg/L measured). The results of these 2 guideline studies indicate that MTBE does not interact with the hypothalamic-pituitary-gonadal axis of zebrafish or fathead minnow. PMID:25866897

  20. Short-term fish reproduction assays with methyl tertiary butyl ether with zebrafish and fathead minnow: Implications for evaluation of potential for endocrine activity.

    PubMed

    Mihaich, Ellen; Erler, Steffen; Le Blanc, Gerald; Gallagher, Sean

    2015-09-01

    The authors report on short-term fish reproduction assays in zebrafish and fathead minnow conducted to examine the potential for methyl tertiary butyl ether (MTBE) to cause effects on the endocrine system. Both studies were performed under good laboratory practice and in accordance with Organisation for Economic Co-operation and Development and US Environmental Protection Agency test guidelines. The results of the first study demonstrated that exposure to a high test concentration (147 mg/L) of MTBE impaired reproductive output of female zebrafish, evident by a reduction in fecundity. Based on the endpoints evaluated in the present study however, there was no supporting evidence to indicate that this effect was caused by disruption of or interaction with the endocrine system. In the second study, fathead minnows exposed to a wider but lower range of test concentrations showed no effects on any reproductive parameter of male or female fish, at the maximum recommended testing concentration of 100 mg/L (62 mg/L measured). The results of these 2 guideline studies indicate that MTBE does not interact with the hypothalamic-pituitary-gonadal axis of zebrafish or fathead minnow.

  1. Arginine methylation of REF/ALY promotes efficient handover of mRNA to TAP/NXF1.

    PubMed

    Hung, Ming-Lung; Hautbergue, Guillaume M; Snijders, Ambrosius P L; Dickman, Mark J; Wilson, Stuart A

    2010-06-01

    The REF/ALY mRNA export adaptor binds TAP/NXF1 via an arginine-rich region, which overlaps with its RNA-binding domain. When TAP binds a REF:RNA complex, it triggers transfer of the RNA from REF to TAP. Here, we have examined the effects of arginine methylation on the activities of the REF protein in mRNA export. We have mapped the arginine methylation sites of REF using mass spectrometry and find that several arginines within the TAP and RNA binding domains are methylated in vivo. However, arginine methylation has no effect on the REF:TAP interaction. Instead, arginine methylation reduces the RNA-binding activity of REF in vitro and in vivo. The reduced RNA-binding activity of REF in its methylated state is essential for efficient displacement of RNA from REF by TAP in vivo. Therefore, arginine methylation fine-tunes the RNA-binding activity of REF such that the RNA-protein interaction can be readily disrupted by export factors further down the pathway.

  2. Racial Differences in DNA-Methylation of CpG Sites Within Preterm-Promoting Genes and Gene Variants.

    PubMed

    Salihu, H M; Das, R; Morton, L; Huang, H; Paothong, A; Wilson, R E; Aliyu, M H; Salemi, J L; Marty, P J

    2016-08-01

    Objective To evaluate the role DNA methylation may play in genes associated with preterm birth for higher rates of preterm births in African-American women. Methods Fetal cord blood samples from births collected at delivery and maternal demographic and medical information were used in a cross-sectional study to examine fetal DNA methylation of genes implicated in preterm birth among black and non-black infants. Allele-specific DNA methylation analysis was performed using a methylation bead array. Targeted maximum likelihood estimation was applied to examine the relationship between race and fetal DNA methylation of candidate preterm birth genes. Receiver-operating characteristic analyses were then conducted to validate the CpG site methylation marker within the two racial groups. Bootstrapping, a method of validation and replication, was employed. Results 42 CpG sites were screened within 20 candidate gene variants reported consistently in the literature as being associated with preterm birth. Of these, three CpG sites on TNFAIP8 and PON1 genes (corresponding to: cg23917399; cg07086380; and cg07404485, respectively) were significantly differentially methylated between black and non-black individuals. The three CpG sites showed lower methylation status among infants of black women. Bootstrapping validated and replicated results. Conclusion for Practice Our study identified significant differences in levels of methylation on specific genes between black and non-black individuals. Understanding the genetic/epigenetic mechanisms that lead to preterm birth may lead to enhanced prevention strategies to reduce morbidity and mortality by eventually providing a means to identify individuals with a genetic predisposition to preterm labor.

  3. Intra-uterine undernutrition amplifies age-associated glucose intolerance in pigs via altered DNA methylation at muscle GLUT4 promoter.

    PubMed

    Wang, Jun; Cao, Meng; Yang, Mei; Lin, Yan; Che, Lianqiang; Fang, Zhengfeng; Xu, Shengyu; Feng, Bin; Li, Jian; Wu, De

    2016-08-01

    The present study aimed to investigate the effect of maternal malnutrition on offspring glucose tolerance and the epigenetic mechanisms involved. In total, twelve primiparous Landrace×Yorkshire gilts were fed rations providing either 100 % (control (CON)) or 75 % (undernutrition (UN)) nutritional requirements according to the National Research Council recommendations, throughout gestation. Muscle samples of offspring were collected at birth (dpn1), weaning (dpn28) and adulthood (dpn189). Compared with CON pigs, UN pigs showed lower serum glucose concentrations at birth, but showed higher serum glucose and insulin concentrations as well as increased area under the blood glucose curve during intravenous glucose tolerance test at dpn189 (P<0·05). Compared with CON pigs, GLUT-4 gene and protein expressions were decreased at dpn1 and dpn189 in the muscle of UN pigs, which was accompanied by increased methylation at the GLUT4 promoter (P<0·05). These alterations in methylation concurred with increased mRNA levels of DNA methyltransferase (DNMT) 1 at dpn1 and dpn28, DNMT3a at dpn189 and DNMT3b at dpn1 in UN pigs compared with CON pigs (P<0·05). Interestingly, although the average methylation levels at the muscle GLUT4 promoter were decreased at dpn189 compared with dpn1 in pigs exposed to a poor maternal diet (P<0·05), the methylation differences in individual CpG sites were more pronounced with age. Our results indicate that in utero undernutrition persists to silence muscle GLUT4 likely through DNA methylation during the ageing process, which may lead to the amplification of age-associated glucose intolerance. PMID:27265204

  4. The regulation of TIM-3 transcription in T cells involves c-Jun binding but not CpG methylation at the TIM-3 promoter.

    PubMed

    Yun, Su Jin; Jun, Ka-Jung; Komori, Kuniharu; Lee, Mi Jin; Kwon, Myung-Hee; Chwae, Yong-Joon; Kim, Kyongmin; Shin, Ho-Joon; Park, Sun

    2016-07-01

    Tim-3 is an immunomodulatory protein that is expressed constitutively on monocytes but is induced in activated T cells. The mechanisms involved in the regulation of TIM-3 transcription are poorly understood. In the present study, we investigated whether methylation of the TIM-3 promoter is involved in regulatingTIM-3 transcription in T cells, and identified a transcription factor that regulates TIM-3 transcription by associating with the TIM-3 minimal promoter region. Pyrosequencing of the TIM-3 promoter up to -1440bp revealed 11 hypermethylated CpG sites and 4 hypomethylated CpG sites in human CD4(+) T cells as well as in CD11b(+) cells. Dimethylation of histone H3 lysine 4 (H3K4), a mark of transcriptional activation, was predominantly found in the proximal TIM-3 promoter -954 to -34bp region, whereas trimethylation of H3K9 and H3K27, which are markers of transcriptional suppression, were mostly observed in the distal promoter -1549 to -1048bp region in human CD4(+) T cells and CD11b(+) cells. However, no change in the methylation status of CpG sites and the histone H3 in the TIM-3 promoter was found during induction of TIM-3 transcription in T cells. Finally, AP-1 involvement in TIM-3 transcription was shown in relation with the TIM-3 minimal promoter -146 to +144bp region. The present study defines the minimal TIM-3 promoter region and demonstrates its interaction with c-Jun during TIM-3 transcription in CD4(+) T cells.

  5. Evidence for widespread changes in promoter methylation profile in human placenta in response to increasing gestational age and environmental/stochastic factors

    PubMed Central

    2011-01-01

    Background The human placenta facilitates the exchange of nutrients, gas and waste between the fetal and maternal circulations. It also protects the fetus from the maternal immune response. Due to its role at the feto-maternal interface, the placenta is subject to many environmental exposures that can potentially alter its epigenetic profile. Previous studies have reported gene expression differences in placenta over gestation, as well as inter-individual variation in expression of some genes. However, the factors contributing to this variation in gene expression remain poorly understood. Results In this study, we performed a genome-wide DNA methylation analysis of gene promoters in placenta tissue from three pregnancy trimesters. We identified large-scale differences in DNA methylation levels between first, second and third trimesters, with an overall progressive increase in average methylation from first to third trimester. The most differentially methylated genes included many immune regulators, reflecting the change in placental immuno-modulation as pregnancy progresses. We also detected increased inter-individual variation in the third trimester relative to first and second, supporting an accumulation of environmentally induced (or stochastic) changes in DNA methylation pattern. These highly variable genes were enriched for those involved in amino acid and other metabolic pathways, potentially reflecting the adaptation of the human placenta to different environments. Conclusions The identification of cellular pathways subject to drift in response to environmental influences provide a basis for future studies examining the role of specific environmental factors on DNA methylation pattern and placenta-associated adverse pregnancy outcomes. PMID:22032438

  6. Body Mass Index in Pregnancy Does Not Affect Peroxisome Proliferator-activated Receptor Gamma Promoter Region (−359 to −260) Methylation in the Neonate

    PubMed Central

    Casamadrid, VRE; Amaya, CA; Mendieta, ZH

    2016-01-01

    Background: Obesity in pregnancy can contribute to epigenetic changes. Aim: To assess whether body mass index (BMI) in pregnancy is associated with changes in the methylation of the peroxisome proliferator-activated receptor γ (PPAR) promoter region (-359 to - 260) in maternal and neonatal leukocytes. Subjects and Methods: In this matched, cohort study 41 pregnant women were allocated into two groups: (a) Normal weight (n = 21) and (b) overweight (n = 20). DNA was extracted from maternal and neonatal leukocytes (4000-10,000 cells) in MagNA Pure (Roche) using MagNA Pure LC DNA Isolation Kit 1 (Roche, Germany). Treatment of DNA (2 μg) was performed with sodium bisulfite (EZ DNA Methylation-Direct™ Kit; Zymo Research). Real-time quantitative polymerase chain reaction (qPCR) was performed in a LightCycler 2.0 (Roche) using the SYBR® Advantage® qPCR Premix Kit (Clontech). The primers used for PPARγ coactivator (PPARG) M3 were 5’- aagacggtttggtcgatc-3’ (forward), and5’- cgaaaaaaaatccgaaatttaa-3’ (reverse) and those for PPARG unmethylated were: 5’-gggaagatggtttggttgatt-3’ (forward) and 5’- ttccaaaaaaaaatccaaaatttaa-3’ (reverse). Intergroup differences were calculated using the Mann-Whitney U-test, and intragroup differences, with the Wilcoxon test (IBM SPSS Statistics for Windows, Version 19.0. Armonk, NY: IBM Corp.). Results: Significant differences were found in BMI, pregestational weight, and postdelivery weight between groups but not in the methylation status of the PPARγ promoter region (-359 to - 260). Conclusion: The PPARγ promoter region (-359 to - 260) in peripheral leukocytes is unlikely to get an obesity-induced methylation in pregnancy. PMID:27144075

  7. RASSF1A and DOK1 Promoter Methylation Levels in Hepatocellular Carcinoma, Cirrhotic and Non-Cirrhotic Liver, and Correlation with Liver Cancer in Brazilian Patients.

    PubMed

    Araújo, Oscar C; Rosa, Agatha S; Fernandes, Arlete; Niel, Christian; Villela-Nogueira, Cristiane A; Pannain, Vera; Araujo, Natalia M

    2016-01-01

    Hepatocellular carcinoma (HCC) is the second most common cause of cancer mortality worldwide. Most cases of HCC are associated with cirrhosis related to chronic hepatitis B virus or hepatitis C virus infections. Hypermethylation of promoter regions is the main epigenetic mechanism of gene silencing and has been involved in HCC development. The aim of this study was to determine whether aberrant methylation of RASSF1A and DOK1 gene promoters is associated with the progression of liver disease in Brazilian patients. Methylation levels were measured by pyrosequencing in 41 (20 HCC, 9 cirrhotic, and 12 non-cirrhotic) liver tissue samples. Mean rates of methylation in RASSF1A and DOK1 were 16.2% and 12.0% in non-cirrhotic, 26.1% and 19.6% in cirrhotic, and 59.1% and 56.0% in HCC tissues, respectively, showing a gradual increase according to the progression of the disease, with significantly higher levels in tumor tissues. In addition, hypermethylation of RASSF1A and DOK1 was found in the vast majority (88%) of the HCC cases. Interestingly, DOK1 methylation levels in HCC samples were significantly higher in the group of younger (<40 years) patients, and higher in moderately differentiated than in poorly differentiated tumors (p < 0.05). Our results reinforce the hypothesis that hypermethylation of RASSF1A and DOK1 contributes to hepatocarcinogenesis and is associated to clinicopathological characteristics. RASSF1A and DOK1 promoter hypermethylation may be a valuable biomarker for early diagnosis of HCC and a potential molecular target for epigenetic-based therapy. PMID:27078152

  8. RASSF1A and DOK1 Promoter Methylation Levels in Hepatocellular Carcinoma, Cirrhotic and Non-Cirrhotic Liver, and Correlation with Liver Cancer in Brazilian Patients

    PubMed Central

    Araújo, Oscar C.; Rosa, Agatha S.; Fernandes, Arlete; Niel, Christian; Villela-Nogueira, Cristiane A.; Pannain, Vera; Araujo, Natalia M.

    2016-01-01

    Hepatocellular carcinoma (HCC) is the second most common cause of cancer mortality worldwide. Most cases of HCC are associated with cirrhosis related to chronic hepatitis B virus or hepatitis C virus infections. Hypermethylation of promoter regions is the main epigenetic mechanism of gene silencing and has been involved in HCC development. The aim of this study was to determine whether aberrant methylation of RASSF1A and DOK1 gene promoters is associated with the progression of liver disease in Brazilian patients. Methylation levels were measured by pyrosequencing in 41 (20 HCC, 9 cirrhotic, and 12 non-cirrhotic) liver tissue samples. Mean rates of methylation in RASSF1A and DOK1 were 16.2% and 12.0% in non-cirrhotic, 26.1% and 19.6% in cirrhotic, and 59.1% and 56.0% in HCC tissues, respectively, showing a gradual increase according to the progression of the disease, with significantly higher levels in tumor tissues. In addition, hypermethylation of RASSF1A and DOK1 was found in the vast majority (88%) of the HCC cases. Interestingly, DOK1 methylation levels in HCC samples were significantly higher in the group of younger (<40 years) patients, and higher in moderately differentiated than in poorly differentiated tumors (p < 0.05). Our results reinforce the hypothesis that hypermethylation of RASSF1A and DOK1 contributes to hepatocarcinogenesis and is associated to clinicopathological characteristics. RASSF1A and DOK1 promoter hypermethylation may be a valuable biomarker for early diagnosis of HCC and a potential molecular target for epigenetic-based therapy. PMID:27078152

  9. Maternal and post-weaning high-fat, high-sucrose diet modulates glucose homeostasis and hypothalamic POMC promoter methylation in mouse offspring.

    PubMed

    Zheng, Jia; Xiao, Xinhua; Zhang, Qian; Yu, Miao; Xu, Jianping; Wang, Zhixin; Qi, Cuijuan; Wang, Tong

    2015-10-01

    Substantial evidence demonstrated that maternal dietary nutrients can significantly determine the susceptibility to developing metabolic disorders in the offspring. Therefore, we aimed to investigate the later-life effects of maternal and postweaning diets interaction on epigenetic modification of the central nervous system in the offspring. We examined the effects of dams fed a high-fat, high-sucrose (FS) diet during pregnancy and lactation and weaned to FS diet continuously until 32 weeks of age. Then, DNA methylation and gene expressions of hypothalamic proopiomelanocortin (POMC) and melanocortin receptor 4 (MC4R) were determined in the offspring. Offspring of FS diet had heavier body weight, impaired glucose tolerance, decreased insulin sensitivity and higher serum leptin level at 32-week age (p < 0.05). The expression of POMC and MC4R genes were significantly increased in offspring exposed to FS diet during gestation, lactation and into 32-week age (p < 0.05). Consistently, hypomethylation of POMC promoter in the hypothalamus occurred in the FS diet offspring (p < 0.05), compared with the C group. However, no methylation was detected of MC4R promoter in both the two groups. Furthermore, POMC-specific methylation (%) was negatively associated with glucose response to a glucose load (r = -0.273, p = 0.039). Maternal and post-weaning high-fat diet predisposes the offspring for obesity, glucose intolerance and insulin resistance in later life. Our findings can advance our thinking around the DNA methylation status of the promoter of the POMC and MC4R genes between long-term high-fat, high-sucrose diet and glucose homeostasis in mouse.

  10. Association between aberrant APC promoter methylation and breast cancer pathogenesis: a meta-analysis of 35 observational studies

    PubMed Central

    Zhou, Dan; Tang, Weiwei; Wang, Wenyi; Pan, Xiaoyan

    2016-01-01

    Background. Adenomatous polyposis coli (APC) is widely known as an antagonist of the Wnt signaling pathway via the inactivation of β-catenin. An increasing number of studies have reported that APC methylation contributes to the predisposition to breast cancer (BC). However, recent studies have yielded conflicting results. Methods. Herein, we systematically carried out a meta-analysis to assess the correlation between APC methylation and BC risk. Based on searches of the Cochrane Library, PubMed, Web of Science and Embase databases, the odds ratio (OR) with 95% confidence interval (CI) values were pooled and summarized. Results. A total of 31 articles involving 35 observational studies with 2,483 cases and 1,218 controls met the inclusion criteria. The results demonstrated that the frequency of APC methylation was significantly higher in BC cases than controls under a random effect model (OR = 8.92, 95% CI [5.12–15.52]). Subgroup analysis further confirmed the reliable results, regardless of the sample types detected, methylation detection methods applied and different regions included. Interestingly, our results also showed that the frequency of APC methylation was significantly lower in early-stage BC patients than late-stage ones (OR = 0.62, 95% CI [0.42–0.93]). Conclusion. APC methylation might play an indispensable role in the pathogenesis of BC and could be regarded as a potential biomarker for the diagnosis of BC. PMID:27478702

  11. Association between aberrant APC promoter methylation and breast cancer pathogenesis: a meta-analysis of 35 observational studies.

    PubMed

    Zhou, Dan; Tang, Weiwei; Wang, Wenyi; Pan, Xiaoyan; An, Han-Xiang; Zhang, Yun

    2016-01-01

    Background. Adenomatous polyposis coli (APC) is widely known as an antagonist of the Wnt signaling pathway via the inactivation of β-catenin. An increasing number of studies have reported that APC methylation contributes to the predisposition to breast cancer (BC). However, recent studies have yielded conflicting results. Methods. Herein, we systematically carried out a meta-analysis to assess the correlation between APC methylation and BC risk. Based on searches of the Cochrane Library, PubMed, Web of Science and Embase databases, the odds ratio (OR) with 95% confidence interval (CI) values were pooled and summarized. Results. A total of 31 articles involving 35 observational studies with 2,483 cases and 1,218 controls met the inclusion criteria. The results demonstrated that the frequency of APC methylation was significantly higher in BC cases than controls under a random effect model (OR = 8.92, 95% CI [5.12-15.52]). Subgroup analysis further confirmed the reliable results, regardless of the sample types detected, methylation detection methods applied and different regions included. Interestingly, our results also showed that the frequency of APC methylation was significantly lower in early-stage BC patients than late-stage ones (OR = 0.62, 95% CI [0.42-0.93]). Conclusion. APC methylation might play an indispensable role in the pathogenesis of BC and could be regarded as a potential biomarker for the diagnosis of BC. PMID:27478702

  12. Methylation of Exons 1D, 1F, and 1H of the Glucocorticoid Receptor Gene Promoter and Exposure to Adversity in Pre-School Aged Children

    PubMed Central

    Tyrka, Audrey R.; Parade, Stephanie H.; Eslinger, Nicole M.; Marsit, Carmen J.; Lesseur, Corina; Armstrong, David A.; Philip, Noah S.; Josefson, Brittney; Seifer, Ronald

    2016-01-01

    Epigenetic modifications to the genome are a key mechanism involved in the biological encoding of experience. Animal studies and a growing body of literature in humans have shown that early adversity is linked to methylation of the gene for the glucocorticoid receptor (GR) which is a key regulator of the hypothalamic-pituitary-adrenal (HPA) axis as well as a broad range of physiological systems including metabolic and immune function. One hundred eighty-four families participated, including n=74 with child welfare documentation of moderate-severe maltreatment in the past six months. Children ranged in age from 3 to 5 years, and were racially and ethnically diverse. Structured record review and interviews in the home were used to assess a history of maltreatment, other traumas, and contextual life stressors, and a composite variable assessed the number exposures to these adversities. Methylation of regions 1D, 1F, and 1H of the GR gene was measured via sodium bisulfite pyrosequencing. The composite measure of adversity was positively correlated with methylation at exons 1D and 1F in the promoter of NR3C1. Individual stress measures were significantly associated with a several CpG sites in these regions. GR gene methylation may be a mechanism of the bio-behavioral effects of adverse exposures in young children. PMID:25997773

  13. Increased methylation of the MOR gene proximal promoter in primary sensory neurons plays a crucial role in the decreased analgesic effect of opioids in neuropathic pain

    PubMed Central

    2014-01-01

    Background The analgesic potency of opioids is reduced in neuropathic pain. However, the molecular mechanism is not well understood. Results The present study demonstrated that increased methylation of the Mu opioid receptor (MOR) gene proximal promoter (PP) in dorsal root ganglion (DRG) plays a crucial role in the decreased morphine analgesia. Subcutaneous (s.c.), intrathecal (i.t.) and intraplantar (i.pl.), not intracerebroventricular (i.c.v.) injection of morphine, the potency of morphine analgesia was significantly reduced in nerve-injured mice compared with control sham-operated mice. After peripheral nerve injury, we observed a decreased expression of MOR protein and mRNA, accompanied by an increased methylation status of MOR gene PP, in DRG. However, peripheral nerve injury could not induce a decreased expression of MOR mRNA in the spinal cord. Treatment with 5-aza-2′-deoxycytidine (5-aza-dC), inhibited the increased methylation of MOR gene PP and prevented the decreased expression of MOR in DRG, thereby improved systemic, spinal and periphery morphine analgesia. Conclusions Altogether, our results demonstrate that increased methylation of the MOR gene PP in DRG is required for the decreased morphine analgesia in neuropathic pain. PMID:25118039

  14. DNA methylation of SPARC and chronic low back pain

    PubMed Central

    2011-01-01

    Background The extracellular matrix protein SPARC (Secreted Protein, Acidic, Rich in Cysteine) has been linked to degeneration of the intervertebral discs and chronic low back pain (LBP). In humans, SPARC protein expression is decreased as a function of age and disc degeneration. In mice, inactivation of the SPARC gene results in the development of accelerated age-dependent disc degeneration concurrent with age-dependent behavioral signs of chronic LBP. DNA methylation is the covalent modification of DNA by addition of methyl moieties to cytosines in DNA. DNA methylation plays an important role in programming of gene expression, including in the dynamic regulation of changes in gene expression in response to aging and environmental signals. We tested the hypothesis that DNA methylation down-regulates SPARC expression in chronic LBP in pre-clinical models and in patients with chronic LBP. Results Our data shows that aging mice develop anatomical and behavioral signs of disc degeneration and back pain, decreased SPARC expression and increased methylation of the SPARC promoter. In parallel, we show that human subjects with back pain exhibit signs of disc degeneration and increased methylation of the SPARC promoter. Methylation of either the human or mouse SPARC promoter silences its activity in transient transfection assays. Conclusions This study provides the first evidence that DNA methylation of a single gene plays a role in chronic pain in humans and animal models. This has important implications for understanding the mechanisms involved in chronic pain and for pain therapy. PMID:21867537

  15. A Downstream CpG Island Controls Transcript Initiation and Elongation and the Methylation State of the Imprinted Airn Macro ncRNA Promoter

    PubMed Central

    Koerner, Martha V.; Pauler, Florian M.; Hudson, Quanah J.; Santoro, Federica; Sawicka, Anna; Guenzl, Philipp M.; Stricker, Stefan H.; Schichl, Yvonne M.; Latos, Paulina A.; Klement, Ruth M.; Warczok, Katarzyna E.; Wojciechowski, Jacek; Seiser, Christian; Kralovics, Robert; Barlow, Denise P.

    2012-01-01

    A CpG island (CGI) lies at the 5′ end of the Airn macro non-protein-coding (nc) RNA that represses the flanking Igf2r promoter in cis on paternally inherited chromosomes. In addition to being modified on maternally inherited chromosomes by a DNA methylation imprint, the Airn CGI shows two unusual organization features: its position immediately downstream of the Airn promoter and transcription start site and a series of tandem direct repeats (TDRs) occupying its second half. The physical separation of the Airn promoter from the CGI provides a model to investigate if the CGI plays distinct transcriptional and epigenetic roles. We used homologous recombination to generate embryonic stem cells carrying deletions at the endogenous locus of the entire CGI or just the TDRs. The deleted Airn alleles were analyzed by using an ES cell imprinting model that recapitulates the onset of Igf2r imprinted expression in embryonic development or by using knock-out mice. The results show that the CGI is required for efficient Airn initiation and to maintain the unmethylated state of the Airn promoter, which are both necessary for Igf2r repression on the paternal chromosome. The TDRs occupying the second half of the CGI play a minor role in Airn transcriptional elongation or processivity, but are essential for methylation on the maternal Airn promoter that is necessary for Igf2r to be expressed from this chromosome. Together the data indicate the existence of a class of regulatory CGIs in the mammalian genome that act downstream of the promoter and transcription start. PMID:22396659

  16. p53 inhibits the expression of p125 and the methylation of POLD1 gene promoter by downregulating the Sp1-induced DNMT1 activities in breast cancer.

    PubMed

    Zhang, Liang; Yang, Weiping; Zhu, Xiao; Wei, Changyuan

    2016-01-01

    p125 is one of four subunits of human DNA polymerases - DNA Pol δ as well as one of p53 target protein encoded by POLD1. However, the function and significance of p125 and the role that p53 plays in regulating p125 expression are not fully understood in breast cancer. Tissue sections of human breast cancer obtained from 70 patients whose median age was 47.6 years (range: 38-69 years) with stage II-III breast cancer were studied with normal breast tissue from the same patients and two human breast cell lines (MCF-7 and MCF-10A). p53 expression levels were reduced, while p125 protein expression was increased in human breast cancer tissues and cell line detected by Western blot and quantitative reverse transcriptase-polymerase chain reaction. The methylation level of the POLD1 gene promoter was greater in breast cancer tissues and cells when compared with normal tissues and cells. In MCF-7 cell model, p53 overexpression caused a decrease in the level of p125 protein, while the methylation level of the p125 gene promoter was also inhibited by p53 overexpression. To further investigate the regulating mechanism of p53 on p125 expression, our study focused on DNA methyltransferase 1 (DNMT1) and transcription factor Sp1. Both DNMT1 and Sp1 protein expression were reduced when p53 was overexpressed in MCF-7 cells. The Sp1 binding site appears to be important for DNMT1 gene transcription; Sp1 and p53 can bind together, which means that DNMT1 gene expression may be downregulated by p53 through binding to Sp1. Because DNMT1 methylation level of the p125 gene promoter can affect p125 gene transcription, we propose that p53 may indirectly regulate p125 gene promoter expression through the control of DNMT1 gene transcription. In conclusion, the data from this preliminary study have shown that p53 inhibits the methylation of p125 gene promoter by downregulating the activities of Sp1 and DNMT1 in breast cancer.

  17. p53 inhibits the expression of p125 and the methylation of POLD1 gene promoter by downregulating the Sp1-induced DNMT1 activities in breast cancer

    PubMed Central

    Zhang, Liang; Yang, Weiping; Zhu, Xiao; Wei, Changyuan

    2016-01-01

    p125 is one of four subunits of human DNA polymerases – DNA Pol δ as well as one of p53 target protein encoded by POLD1. However, the function and significance of p125 and the role that p53 plays in regulating p125 expression are not fully understood in breast cancer. Tissue sections of human breast cancer obtained from 70 patients whose median age was 47.6 years (range: 38–69 years) with stage II–III breast cancer were studied with normal breast tissue from the same patients and two human breast cell lines (MCF-7 and MCF-10A). p53 expression levels were reduced, while p125 protein expression was increased in human breast cancer tissues and cell line detected by Western blot and quantitative reverse transcriptase-polymerase chain reaction. The methylation level of the POLD1 gene promoter was greater in breast cancer tissues and cells when compared with normal tissues and cells. In MCF-7 cell model, p53 overexpression caused a decrease in the level of p125 protein, while the methylation level of the p125 gene promoter was also inhibited by p53 overexpression. To further investigate the regulating mechanism of p53 on p125 expression, our study focused on DNA methyltransferase 1 (DNMT1) and transcription factor Sp1. Both DNMT1 and Sp1 protein expression were reduced when p53 was overexpressed in MCF-7 cells. The Sp1 binding site appears to be important for DNMT1 gene transcription; Sp1 and p53 can bind together, which means that DNMT1 gene expression may be downregulated by p53 through binding to Sp1. Because DNMT1 methylation level of the p125 gene promoter can affect p125 gene transcription, we propose that p53 may indirectly regulate p125 gene promoter expression through the control of DNMT1 gene transcription. In conclusion, the data from this preliminary study have shown that p53 inhibits the methylation of p125 gene promoter by downregulating the activities of Sp1 and DNMT1 in breast cancer. PMID:27022290

  18. Gene Expression Status and Methylation Pattern in Promoter of P15INK4b and P16INK4a in Cord Blood CD34+ Stem Cells

    PubMed Central

    Azad, Mehdi; Kaviani, Saeid; Noruzinia, Mehrdad; Mortazavi, Yousef; Mobarra, Naser; Alizadeh, Shaban; Shahjahani, Mohammad; Skandari, Fatemeh; Ahmadi, Mohammad Hosein; Atashi, Amir; Abroun, Saeid; Zonoubi, Zahra

    2013-01-01

    Objective(s) : Stem cell differentiation into different cell lineages depends upon several factors, cell cycle control elements and intracellular signaling elements, including P15INK4b and P16INK4a genes. Epigenetics may be regarded as a control mechanism which is affected by these factors with respect to their promoter structure. Materials and Methods : The CD34 + cord blood stem cells were purified, isolated and then expanded. The undifferentiated day genome was isolated from part of the cultured cells, and the seventh day differentiated genome was isolated from the other part after differentiation to erythroid lineage. The procedure was followed by a separate Real-Time PCR for the two genes using the obtained cDNA. The processed DNA of the former stages was used for MSP (Methylation Specific PCR) reaction. Finally, pre- and post differentiation results were compared.  Results : After performing MSP for each gene, it became clear that P15INK4b gene has undergone methylation and expression in predifferentiation stage. In addition, its status has not been changed after differentiation. P15INK4b gene expression was reduced after the differentiation. The other gene, P16INK4a, showed no predifferentiation methylation. Itwas completely expressed methylated and underwent reduced expression after differentiation. Conclusion : Specific predifferentiation expression of P15INK4b and P16INK4a genes along with reduction in their expression after erythroid differentiation indicated animportant role for these two genes in biology of CD34+ cells in primary stages and before differentiation. In addition, both genes are capable of epigenetic modifications due to the structure of their promoters. PMID:23997911

  19. The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter.

    PubMed

    Gijselinck, I; Van Mossevelde, S; van der Zee, J; Sieben, A; Engelborghs, S; De Bleecker, J; Ivanoiu, A; Deryck, O; Edbauer, D; Zhang, M; Heeman, B; Bäumer, V; Van den Broeck, M; Mattheijssens, M; Peeters, K; Rogaeva, E; De Jonghe, P; Cras, P; Martin, J-J; de Deyn, P P; Cruts, M; Van Broeckhoven, C

    2016-08-01

    Pathological expansion of a G4C2 repeat, located in the 5' regulatory region of C9orf72, is the most common genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). C9orf72 patients have highly variable onset ages suggesting the presence of modifying factors and/or anticipation. We studied 72 Belgian index patients with FTLD, FTLD-ALS or ALS and 61 relatives with a C9orf72 repeat expansion. We assessed the effect of G4C2 expansion size on onset age, the role of anticipation and the effect of repeat size on methylation and C9orf72 promoter activity. G4C2 expansion sizes varied in blood between 45 and over 2100 repeat units with short expansions (45-78 units) present in 5.6% of 72 index patients with an expansion. Short expansions co-segregated with disease in two families. The subject with a short expansion in blood but an indication of mosaicism in brain showed the same pathology as those with a long expansion. Further, we provided evidence for an association of G4C2 expansion size with onset age (P<0.05) most likely explained by an association of methylation state of the 5' flanking CpG island and expansion size in blood (P<0.0001) and brain (P<0.05). In several informative C9orf72 parent-child transmissions, we identified earlier onset ages, increasing expansion sizes and/or increasing methylation states (P=0.0034) of the 5' CpG island, reminiscent of disease anticipation. Also, intermediate repeats (7-24 units) showed a slightly higher methylation degree (P<0.0001) and a decrease of C9orf72 promoter activity (P<0.0001) compared with normal short repeats (2-6 units). Decrease of transcriptional activity was even more prominent in the presence of small deletions flanking G4C2 (P<0.0001). Here we showed that increased methylation of CpGs in the C9orf72 promoter may explain how an increasing G4C2 size lead to loss-of-function without excluding repeat length-dependent toxic gain-of-function. These data provide insights into

  20. The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter

    PubMed Central

    Gijselinck, I; Van Mossevelde, S; van der Zee, J; Sieben, A; Engelborghs, S; De Bleecker, J; Ivanoiu, A; Deryck, O; Edbauer, D; Zhang, M; Heeman, B; Bäumer, V; Van den Broeck, M; Mattheijssens, M; Peeters, K; Rogaeva, E; De Jonghe, P; Cras, P; Martin, J-J; de Deyn, P P; Cruts, M; Van Broeckhoven, C

    2016-01-01

    Pathological expansion of a G4C2 repeat, located in the 5' regulatory region of C9orf72, is the most common genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). C9orf72 patients have highly variable onset ages suggesting the presence of modifying factors and/or anticipation. We studied 72 Belgian index patients with FTLD, FTLD–ALS or ALS and 61 relatives with a C9orf72 repeat expansion. We assessed the effect of G4C2 expansion size on onset age, the role of anticipation and the effect of repeat size on methylation and C9orf72 promoter activity. G4C2 expansion sizes varied in blood between 45 and over 2100 repeat units with short expansions (45–78 units) present in 5.6% of 72 index patients with an expansion. Short expansions co-segregated with disease in two families. The subject with a short expansion in blood but an indication of mosaicism in brain showed the same pathology as those with a long expansion. Further, we provided evidence for an association of G4C2 expansion size with onset age (P<0.05) most likely explained by an association of methylation state of the 5' flanking CpG island and expansion size in blood (P<0.0001) and brain (P<0.05). In several informative C9orf72 parent–child transmissions, we identified earlier onset ages, increasing expansion sizes and/or increasing methylation states (P=0.0034) of the 5' CpG island, reminiscent of disease anticipation. Also, intermediate repeats (7–24 units) showed a slightly higher methylation degree (P<0.0001) and a decrease of C9orf72 promoter activity (P<0.0001) compared with normal short repeats (2–6 units). Decrease of transcriptional activity was even more prominent in the presence of small deletions flanking G4C2 (P<0.0001). Here we showed that increased methylation of CpGs in the C9orf72 promoter may explain how an increasing G4C2 size lead to loss-of-function without excluding repeat length-dependent toxic gain-of-function. These data provide

  1. DNA Methylation

    PubMed Central

    Marinus, M.G.; Løbner-Olesen, A.

    2014-01-01

    The DNA of E. coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcm methyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during repair of replication errors, controlling the frequency of initiation of chromosome replication at oriC, and regulation of transcription initiation at promoters containing GATC sequences. In contrast, there is no known function for Dcm methylation although Dcm recognition sites constitute sequence motifs for Very Short Patch repair of T/G base mismatches. In certain bacteria (e.g., Vibrio cholerae, Caulobacter crescentus) adenine methylation is essential and in C. crescentus, it is important for temporal gene expression which, in turn, is required for coordinating chromosome initiation, replication and division. In practical terms, Dam and Dcm methylation can inhibit restriction enzyme cleavage; decrease transformation frequency in certain bacteria; decrease the stability of short direct repeats; are necessary for site-directed mutagenesis; and to probe eukaryotic structure and function. PMID:26442938

  2. Promoter methylation of TIMP3 and CDH1 predicts better outcome in head and neck squamous cell carcinoma treated by radiotherapy only.

    PubMed

    De Schutter, H; Geeraerts, H; Verbeken, E; Nuyts, S

    2009-02-01

    As with other solid tumor types, head and neck squamous cell carcinoma (HNSCC) has been identified as an epigenetic, as well as genetic, disease. Consequently, promoter hypermethylation, being the most important aberrant epigenetic characteristic, has been intensively investigated for its biomarker potential in this cancer type. As many of these evaluations are obscured by a heterogeneity of treatments, the current study aimed to evaluate the incidence and prognostic value of the promoter hypermethylation of TIMP3, CDH1, DAPK, RASSF1A, p16INK4A and MGMT in HNSCC treated solely by radiotherapy. In 46 patients with advanced HNSCC treated with a hybrid accelerated fractionation radiotherapy schedule, DNA extracted from pretreatment paraffin-embedded tumor biopsies was used to determine the methylation status of the genes of interest by methylation-specific PCR (MSP). The detected epigenetic silencing was related with outcome in terms of locoregional control (LRC), and overall (OS), disease-free (DFS) and disease-specific survival (DSS). Tumor biopsies revealed the epigenetic silencing of MGMT in 42.5% (17 of 40) of patients and of TIMP3 in 40.5% (17 of 42) of cases. For the remaining investigated genes, a lower methylation percentage was detected: 13.2% (5 of 38) for CDH1, 11.4% (4 of 44) for DAPK, 4.8% (2 of 42) for p16INK4A and 2.4% (1 of 41) for RASSF1A. The promoter hypermethylation of TIMP3 and CDH1 was significantly related with better LRC (p=0.009 and p=0.02, respectively), OS (p=0.005 and p=0.002, respectively), DFS (p=0.02 and p=0.004, respectively) and DSS (p=0.12 and p=0.007, respectively). In conclusion, in this representative group of 46 patients with advanced HNSCC treated by radiotherapy only, the epigenetic silencing of TIMP3 and CDH1 predicted a better outcome.

  3. Early-life stress changes expression of GnRH and kisspeptin genes and DNA methylation of GnRH3 promoter in the adult zebrafish brain.

    PubMed

    Khor, Yee Min; Soga, Tomoko; Parhar, Ishwar S

    2016-02-01

    Early-life stress can cause long-term effects in the adulthood such as alterations in behaviour, brain functions and reproduction. DNA methylation is a mechanism of epigenetic change caused by early-life stress. Dexamethasone (DEX) was administered to zebrafish larvae to study its effect on reproductive dysfunction. The level of GnRH2, GnRH3, Kiss1 and Kiss2 mRNAs were measured between different doses of DEX treatment groups in adult zebrafish. Kiss1 and GnRH2 expression were increased in the 200mg/L DEX treated while Kiss2 and GnRH3 mRNA levels were up-regulated in the 2mg/L DEX-treated zebrafish. The up-regulation may be related to programming effect of DEX in the zebrafish larvae, causing overcompensation mechanism to increase the mRNA levels. Furthermore, DEX treatment caused negative impact on the development and maturation of the testes, in particular spermatogenesis. Therefore, immature gonadal development may cause positive feedback by increasing GnRH and Kiss. This indicates that DEX can alter the regulation of GnRH2, GnRH3, Kiss1 and Kiss2 in adult zebrafish, which affects maturation of gonads. Computer analysis of 1.5 kb region upstream of the 5' UTR of Kiss1, Kiss2, GnRH2 and GnRH3 promoter showed that there are putative binding sites of glucocorticoid response element and transcription factors involved in stress response. GnRH3 promoter analysed from pre-optic area, ventral telencephalon and ventral olfactory bulb showed higher methylation at CpG residues located on -1410, -1377 and -1355 between control and 2mg/L DEX-treated groups. Hence, early-life DEX treatment can alter methylation of GnRH3 gene promoter, which subsequently affects gene regulation and reproductive functions.

  4. Down-regulation of promoter methylation level of CD4 gene after MDV infection in MD-susceptible chicken line

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease virus (MDV) is an oncovirus that induces lymphoid tumors in susceptible chickens, and may affect the epigenetic stability of the CD4 gene. The purpose of this study was to find how the effect of MDV infection on DNA methylation status of the CD4 gene differed between MD-resistant (L6...

  5. Effects on specific promoter DNA methylation in zebrafish embryos and larvae following benzo[a]pyrene exposure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Benzo[a]pyrene (BaP) is an established reproductive and developmental toxicant. BaP exposure in humans and animals has been linked to infertility and multigenerational health consequences. DNA methylation is the most studied epigenetic mechanism that regulates gene expression, and mapping of methyla...

  6. PRMT4-Mediated Arginine Methylation Negatively Regulates Retinoblastoma Tumor Suppressor Protein and Promotes E2F-1 Dissociation

    PubMed Central

    Kim, Kevin Y.; Wang, Don-Hong; Campbell, Mel; Huerta, Steve B.; Shevchenko, Bogdan; Izumiya, Chie

    2014-01-01

    The retinoblastoma protein (pRb/p105) tumor suppressor plays a pivotal role in cell cycle regulation by blockage of the G1-to-S-phase transition. pRb tumor suppressor activity is governed by a variety of posttranslational modifications, most notably phosphorylation by cyclin-dependent kinase (Cdk) complexes. Here we report a novel regulation of pRb through protein arginine methyltransferase 4 (PRMT4)-mediated arginine methylation, which parallels phosphorylation. PRMT4 specifically methylates pRb at the pRb C-terminal domain (pRb Cterm) on arginine (R) residues R775, R787, and R798 in vitro and R787 in vivo. Arginine methylation is important for efficient pRb Cterm phosphorylation, as manifested by the reduced phosphorylation of a methylation-impaired mutant, pRb (R3K). A methylmimetic form of pRb, pRb (R3F), disrupts the formation of the E2F-1/DP1-pRb complex in cells as well as in an isolated system. Finally, studies using a Gal4–E2F-1 reporter system show that pRb (R3F) expression reduces the ability of pRb to repress E2F-1 transcriptional activation, while pRb (R3K) expression further represses E2F-1 transcriptional activation relative to that for cells expressing wild-type pRb. Together, our results suggest that arginine methylation negatively regulates the tumor suppressor function of pRb during cell cycle control, in part by creating a better substrate for Cdk complex phosphorylation and disrupting the interaction of pRb with E2F-1. PMID:25348716

  7. DNA methylation regulates the expression of CXCL12 in rheumatoid arthritis synovial fibroblasts.

    PubMed

    Karouzakis, E; Rengel, Y; Jüngel, A; Kolling, C; Gay, R E; Michel, B A; Tak, P P; Gay, S; Neidhart, M; Ospelt, C

    2011-12-01

    In the search for specific genes regulated by DNA methylation in rheumatoid arthritis (RA), we investigated the expression of CXCL12 in synovial fibroblasts (SFs) and the methylation status of its promoter and determined its contribution to the expression of matrix metalloproteinases (MMPs). DNA was isolated from SFs and methylation was analyzed by bisulfite sequencing and McrBC assay. CXCL12 protein was quantified by enzyme-linked immunosorbent assay before and after treatment with 5-azacytidine. RASFs were transfected with CXCR7-siRNA and stimulated with CXCL12. Expression of MMPs was analyzed by real-time PCR. Basal expression of CXCL12 was higher in RASFs than osteoarthritis (OA) SFs. 5-azacytidine demethylation increased the expression of CXCL12 and reduced the methylation of CpG nucleotides. A lower percentage of CpG methylation was found in the CXCL12 promoter of RASFs compared with OASFs. Overall, we observed a significant correlation in the mRNA expression and the CXCL12 promoter DNA methylation. Stimulation of RASFs with CXCL12 increased the expression of MMPs. CXCR7 but not CXCR4 was expressed and functional in SFs. We show here that RASFs produce more CXCL12 than OASFs due to promoter methylation changes and that stimulation with CXCL12 activates MMPs via CXCR7 in SFs. Thereby we describe an endogenously activated pathway in RASFs, which promotes joint destruction. PMID:21753787

  8. The Arabidopsis gibberellin methyl transferase 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato.

    PubMed

    Nir, Ido; Moshelion, Menachem; Weiss, David

    2014-01-01

    Previous studies have shown that reduced gibberellin (GA) level or signal promotes plant tolerance to environmental stresses, including drought, but the underlying mechanism is not yet clear. Here we studied the effects of reduced levels of active GAs on tomato (Solanum lycopersicum) plant tolerance to drought as well as the mechanism responsible for these effects. To reduce the levels of active GAs, we generated transgenic tomato overexpressing the Arabidopsis thaliana GA METHYL TRANSFERASE 1 (AtGAMT1) gene. AtGAMT1 encodes an enzyme that catalyses the methylation of active GAs to generate inactive GA methyl esters. Tomato plants overexpressing AtGAMT1 exhibited typical GA-deficiency phenotypes and increased tolerance to drought stress. GA application to the transgenic plants restored normal growth and sensitivity to drought. The transgenic plants maintained high leaf water status under drought conditions, because of reduced whole-plant transpiration. The reduced transpiration can be attributed to reduced stomatal conductance. GAMT1 overexpression inhibited the expansion of leaf-epidermal cells, leading to the formation of smaller stomata with reduced stomatal pores. It is possible that under drought conditions, plants with reduced GA activity and therefore, reduced transpiration, will suffer less from leaf desiccation, thereby maintaining higher capabilities and recovery rates.

  9. Inactivation of the WNT5A Alternative Promoter B Is Associated with DNA Methylation and Histone Modification in Osteosarcoma Cell Lines U2OS and SaOS-2.

    PubMed

    Vaidya, Himani; Rumph, Candie; Katula, Karen S

    2016-01-01

    WNT5A is a secreted ligand involved in Wnt pathway signaling and has a role in cell movement and differentiation. Altered WNT5A expression is associated with various cancers, although in most studies the focus has been on only one of the known WNT5A isoforms. In this study, we analyzed expression from two of the major WNT5A promoters, termed promoter A and promoter B, in normal human osteoblasts, SaOS-2 and U2OS osteosarcoma cell lines, and osteosarcoma tumor tissue. We found that both promoters A and B are active in normal osteoblasts with nearly 11-fold more promoter B than A transcripts. Promoter B but not promoter A transcripts are decreased or nearly undetectable in the SaOS-2 and U2OS cell lines and osteosarcoma tumor tissues. Transient transfection of promoter A and promoter B reporter constructs confirmed that SaOS-2 cells have the necessary factors to transcribe both promoters. Bisulfite sequencing analysis revealed that three CpG enriched regions upstream of the promoter B exon 1βare highly methylated in both SaOS-2 and U2OS cells. The CpG island sub-region R6 located in promoter B exon 1β was approximately 51% methylated in SaOS-2 and 25% methylated in U2OS. Region 3 was approximately 28% methylated in normal osteoblasts, whereas the others were unmethylated. Promoter B was re-activated by treatment of SaOS-2 cells with 1 μM 5-azacytidine, which was associated with only a small insignificant change in methylation of sub-region R6. ChIP analysis of U2OS and SaOS-2 cells indicated that the promoter B region is less enriched in the active histone mark H3K4me3, in comparison to promoter A and that there is increased enrichment of the repressive mark H3K27me3 in association with the promoter B genomic region in the cell line SaOS-2. These findings show that epigenetic inactivation of the WNT5A promoter B involves both DNA methylation and histone modifications and suggest that differential expression of the WNT5A alternative promoters A and B is a

  10. Levels of DNA Methylation Vary at CpG Sites across the BRCA1 Promoter, and Differ According to Triple Negative and "BRCA-Like" Status, in Both Blood and Tumour DNA.

    PubMed

    Daniels, Sarah L; Burghel, George J; Chambers, Philip; Al-Baba, Shadi; Connley, Daniel D; Brock, Ian W; Cramp, Helen E; Dotsenko, Olena; Wilks, Octavia; Wyld, Lynda; Cross, Simon S; Cox, Angela

    2016-01-01

    Triple negative breast cancer is typically an aggressive and difficult to treat subtype. It is often associated with loss of function of the BRCA1 gene, either through mutation, loss of heterozygosity or methylation. This study aimed to measure methylation of the BRCA1 gene promoter at individual CpG sites in blood, tumour and normal breast tissue, to assess whether levels were correlated between different tissues, and with triple negative receptor status, histopathological scoring for BRCA-like features and BRCA1 protein expression. Blood DNA methylation levels were significantly correlated with tumour methylation at 9 of 11 CpG sites examined (p<0.0007). The levels of tumour DNA methylation were significantly higher in triple negative tumours, and in tumours with high BRCA-like histopathological scores (10 of 11 CpG sites; p<0.01 and p<0.007 respectively). Similar results were observed in blood DNA (6 of 11 CpG sites; p<0.03 and 7 of 11 CpG sites; p<0.02 respectively). This study provides insight into the pattern of CpG methylation across the BRCA1 promoter, and supports previous studies suggesting that tumours with BRCA1 promoter methylation have similar features to those with BRCA1 mutations, and therefore may be suitable for the same targeted therapies. PMID:27463681

  11. Levels of DNA Methylation Vary at CpG Sites across the BRCA1 Promoter, and Differ According to Triple Negative and “BRCA-Like” Status, in Both Blood and Tumour DNA

    PubMed Central

    Burghel, George J.; Chambers, Philip; Al-Baba, Shadi; Connley, Daniel D.; Brock, Ian W.; Cramp, Helen E.; Dotsenko, Olena; Wilks, Octavia; Wyld, Lynda; Cross, Simon S.; Cox, Angela

    2016-01-01

    Triple negative breast cancer is typically an aggressive and difficult to treat subtype. It is often associated with loss of function of the BRCA1 gene, either through mutation, loss of heterozygosity or methylation. This study aimed to measure methylation of the BRCA1 gene promoter at individual CpG sites in blood, tumour and normal breast tissue, to assess whether levels were correlated between different tissues, and with triple negative receptor status, histopathological scoring for BRCA-like features and BRCA1 protein expression. Blood DNA methylation levels were significantly correlated with tumour methylation at 9 of 11 CpG sites examined (p<0.0007). The levels of tumour DNA methylation were significantly higher in triple negative tumours, and in tumours with high BRCA-like histopathological scores (10 of 11 CpG sites; p<0.01 and p<0.007 respectively). Similar results were observed in blood DNA (6 of 11 CpG sites; p<0.03 and 7 of 11 CpG sites; p<0.02 respectively). This study provides insight into the pattern of CpG methylation across the BRCA1 promoter, and supports previous studies suggesting that tumours with BRCA1 promoter methylation have similar features to those with BRCA1 mutations, and therefore may be suitable for the same targeted therapies. PMID:27463681

  12. Recurrent patterns of DNA methylation in the ZNF154, CASP8, and VHL promoters across a wide spectrum of human solid epithelial tumors and cancer cell lines

    PubMed Central

    Sánchez-Vega, Francisco; Gotea, Valer; Petrykowska, Hanna M; Margolin, Gennady; Krivak, Thomas C; DeLoia, Julie A; Bell, Daphne W; Elnitski, Laura

    2013-01-01

    The study of aberrant DNA methylation in cancer holds the key to the discovery of novel biological markers for diagnostics and can help to delineate important mechanisms of disease. We have identified 12 loci that are differentially methylated in serous ovarian cancers and endometrioid ovarian and endometrial cancers with respect to normal control samples. The strongest signal showed hypermethylation in tumors at a CpG island within the ZNF154 promoter. We show that hypermethylation of this locus is recurrent across solid human epithelial tumor samples for 15 of 16 distinct cancer types from TCGA. Furthermore, ZNF154 hypermethylation is strikingly present across a diverse panel of ENCODE cell lines, but only in those derived from tumor cells. By extending our analysis from the Illumina 27K Infinium platform to the 450K platform, to sequencing of PCR amplicons from bisulfite treated DNA, we demonstrate that hypermethylation extends across the breadth of the ZNF154 CpG island. We have also identified recurrent hypomethylation in two genomic regions associated with CASP8 and VHL. These three genes exhibit significant negative correlation between methylation and gene expression across many cancer types, as well as patterns of DNaseI hypersensitivity and histone marks that reflect different chromatin accessibility in cancer vs. normal cell lines. Our findings emphasize hypermethylation of ZNF154 as a biological marker of relevance for tumor identification. Epigenetic modifications affecting the promoters of ZNF154, CASP8, and VHL are shared across a vast array of tumor types and may therefore be important for understanding the genomic landscape of cancer. PMID:24149212

  13. Lack of Correlation between Aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 Protein Expression and Promoter Methylation in Squamous Cell Carcinoma Accompanying Candida albicans-Induced Inflammation.

    PubMed

    Terayama, Yui; Matsuura, Tetsuro; Ozaki, Kiyokazu

    2016-01-01

    Hyperplastic candidiasis is characterized by thickening of the mucosal epithelia with Candida albicans infection with occasional progression to squamous cell carcinoma (SCC). C. albicans is a critical factor in tumor development; however, the oncogenic mechanism is unclear. We have previously produced an animal model for hyperplastic candidiasis in the rat forestomach. In the present study, we investigate whether impaired DNA methylation and associated protein expression of tumor suppressor and DNA repair genes are involved in the SCC carcinogenesis process using this hyperplastic candidiasis model. Promoter methylation and protein expression were analyzed by methylation specific PCR and immunohistochemical staining, respectively, of 5 areas in the forestomachs of alloxan-induced diabetic rats with hyperplastic candidiasis: normal squamous epithelia, squamous hyperplasia, squamous hyperplasia adjacent to SCC, squamous hyperplasia transitioning to SCC, and SCC. We observed nuclear p16 overexpression despite increases in p16 gene promoter methylation during the carcinogenic process. TIMP3 and RAR-β2 promoter methylation progressed until the precancerous stage but disappeared upon malignant transformation. In comparison, TIMP3 protein expression was suppressed during carcinogenesis and RAR-β2 expression was attenuated in the cytoplasm but enhanced in nuclei. ERCC1 and BRCA1 promoters were not methylated at any stage; however, their protein expression disappeared beginning at hyperplasia and nuclear protein re-expression in SCC was observed only for ERCC1. These results suggest that aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 expression might occur that is inconsistent with the respective gene promoter methylation status, and that this overexpression might serve to promote the inflammatory carcinogenesis caused by C. albicans infection. PMID:27410681

  14. Lack of Correlation between Aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 Protein Expression and Promoter Methylation in Squamous Cell Carcinoma Accompanying Candida albicans-Induced Inflammation

    PubMed Central

    Terayama, Yui; Matsuura, Tetsuro; Ozaki, Kiyokazu

    2016-01-01

    Hyperplastic candidiasis is characterized by thickening of the mucosal epithelia with Candida albicans infection with occasional progression to squamous cell carcinoma (SCC). C. albicans is a critical factor in tumor development; however, the oncogenic mechanism is unclear. We have previously produced an animal model for hyperplastic candidiasis in the rat forestomach. In the present study, we investigate whether impaired DNA methylation and associated protein expression of tumor suppressor and DNA repair genes are involved in the SCC carcinogenesis process using this hyperplastic candidiasis model. Promoter methylation and protein expression were analyzed by methylation specific PCR and immunohistochemical staining, respectively, of 5 areas in the forestomachs of alloxan-induced diabetic rats with hyperplastic candidiasis: normal squamous epithelia, squamous hyperplasia, squamous hyperplasia adjacent to SCC, squamous hyperplasia transitioning to SCC, and SCC. We observed nuclear p16 overexpression despite increases in p16 gene promoter methylation during the carcinogenic process. TIMP3 and RAR-β2 promoter methylation progressed until the precancerous stage but disappeared upon malignant transformation. In comparison, TIMP3 protein expression was suppressed during carcinogenesis and RAR-β2 expression was attenuated in the cytoplasm but enhanced in nuclei. ERCC1 and BRCA1 promoters were not methylated at any stage; however, their protein expression disappeared beginning at hyperplasia and nuclear protein re-expression in SCC was observed only for ERCC1. These results suggest that aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 expression might occur that is inconsistent with the respective gene promoter methylation status, and that this overexpression might serve to promote the inflammatory carcinogenesis caused by C. albicans infection. PMID:27410681

  15. Lack of Phosphotyrosine Phosphatase SHP-1 Expression in Malignant T-Cell Lymphoma Cells Results from Methylation of the SHP-1 Promoter

    PubMed Central

    Zhang, Qian; Raghunath, Puthiyaveettil N.; Vonderheid, Eric; Ødum, Niels; Wasik, Mariusz A.

    2000-01-01

    SHP-1 is an important negative regulator of signaling by several receptors including receptors for interleukin-2 (IL-2R) and other cytokines. SHP-1 acts by dephosphorylating the receptors and receptor-associated kinases such as IL-2R-associated Jak3 kinase. We found that SHP-1 protein was not detectable or greatly diminished in most (six of seven) T cell lines derived from various types of T cell lymphomas and all (eight of eight) cutaneous T-cell lymphoma tissues with a transformed, large-cell morphology. All T-cell lymphoma lines tested (eight of eight) expressed diminished amounts or no detectable SHP-1 mRNA. These T cell lines did not, however, carry any mutations in the SHP-1 gene-coding, splice-junction, and promoter regions. Importantly, SHP-1 DNA promoter region in the T cell lines was resistant to digestion with three different methylation-sensitive restriction enzymes. This resistance was reversed by treatment of the cells with a demethylating agent, 5-deoxyazacytidine. The treatment resulted also in the expression of SHP-1 mRNA and, less frequently, SHP-1 protein. The expression of SHP-1 protein was associated with dephosphorylation of the Jak3 kinase. These results show that lack of SHP-1 expression is frequent in malignant T cells and results from methylation of the SHP-1 gene promoter. Furthermore, they indicate that SHP-1 loss may play a role in the pathogenesis of T cell lymphomas by permitting persistence of signals generated by IL-2R and, possibly, other receptor complexes. PMID:11021818

  16. COLD-PCR amplification of bisulfite-converted DNA allows the enrichment and sequencing of rare un-methylated genomic regions.

    PubMed

    Castellanos-Rizaldos, Elena; Milbury, Coren A; Karatza, Elli; Chen, Clark C; Makrigiorgos, G Mike; Merewood, Anne

    2014-01-01

    Aberrant hypo-methylation of DNA is evident in a range of human diseases including cancer and diabetes. Development of sensitive assays capable of detecting traces of un-methylated DNA within methylated samples can be useful in several situations. Here we describe a new approach, fast-COLD-MS-PCR, which amplifies preferentially un-methylated DNA sequences. By employing an appropriate denaturation temperature during PCR of bi-sulfite converted DNA, fast-COLD-MS-PCR enriches un-methylated DNA and enables differential melting analysis or bisulfite sequencing. Using methylation on the MGMT gene promoter as a model, it is shown that serial dilutions of controlled methylation samples lead to the reliable sequencing of un-methylated sequences down to 0.05% un-methylated-to-methylated DNA. Screening of clinical glioma tumor and infant blood samples demonstrated that the degree of enrichment of un-methylated over methylated DNA can be modulated by the choice of denaturation temperature, providing a convenient method for analysis of partially methylated DNA or for revealing and sequencing traces of un-methylated DNA. Fast-COLD-MS-PCR can be useful for the detection of loss of methylation/imprinting in cancer, diabetes or diet-related methylation changes. PMID:24728321

  17. COLD-PCR amplification of bisulfite-converted DNA allows the enrichment and sequencing of rare un-methylated genomic regions.

    PubMed

    Castellanos-Rizaldos, Elena; Milbury, Coren A; Karatza, Elli; Chen, Clark C; Makrigiorgos, G Mike; Merewood, Anne

    2014-01-01

    Aberrant hypo-methylation of DNA is evident in a range of human diseases including cancer and diabetes. Development of sensitive assays capable of detecting traces of un-methylated DNA within methylated samples can be useful in several situations. Here we describe a new approach, fast-COLD-MS-PCR, which amplifies preferentially un-methylated DNA sequences. By employing an appropriate denaturation temperature during PCR of bi-sulfite converted DNA, fast-COLD-MS-PCR enriches un-methylated DNA and enables differential melting analysis or bisulfite sequencing. Using methylation on the MGMT gene promoter as a model, it is shown that serial dilutions of controlled methylation samples lead to the reliable sequencing of un-methylated sequences down to 0.05% un-methylated-to-methylated DNA. Screening of clinical glioma tumor and infant blood samples demonstrated that the degree of enrichment of un-methylated over methylated DNA can be modulated by the choice of denaturation temperature, providing a convenient method for analysis of partially methylated DNA or for revealing and sequencing traces of un-methylated DNA. Fast-COLD-MS-PCR can be useful for the detection of loss of methylation/imprinting in cancer, diabetes or diet-related methylation changes.

  18. DNA Methylation Adjusts the Specificity of Memories Depending on the Learning Context and Promotes Relearning in Honeybees.

    PubMed

    Biergans, Stephanie D; Claudianos, Charles; Reinhard, Judith; Galizia, C G

    2016-01-01

    The activity of the epigenetic writers DNA methyltransferases (Dnmts) after olfactory reward conditioning is important for both stimulus-specific long-term memory (LTM) formation and extinction. It, however, remains unknown which components of memory formation Dnmts regulate (e.g., associative vs. non-associative) and in what context (e.g., varying training conditions). Here, we address these aspects in order to clarify the role of Dnmt-mediated DNA methylation in memory formation. We used a pharmacological Dnmt inhibitor and classical appetitive conditioning in the honeybee Apis mellifera, a well characterized model for classical conditioning. We quantified the effect of DNA methylation on naïve odor and sugar responses, and on responses following olfactory reward conditioning. We show that (1) Dnmts do not influence naïve odor or sugar responses, (2) Dnmts do not affect the learning of new stimuli, but (3) Dnmts influence odor-coding, i.e., 'correct' (stimulus-specific) LTM formation. Particularly, Dnmts reduce memory specificity when experience is low (one-trial training), and increase memory specificity when experience is high (multiple-trial training), generating an ecologically more useful response to learning. (4) In reversal learning conditions, Dnmts are involved in regulating both excitatory (re-acquisition) and inhibitory (forgetting) processes. PMID:27672359

  19. DNA Methylation Adjusts the Specificity of Memories Depending on the Learning Context and Promotes Relearning in Honeybees

    PubMed Central

    Biergans, Stephanie D.; Claudianos, Charles; Reinhard, Judith; Galizia, C. G.

    2016-01-01

    The activity of the epigenetic writers DNA methyltransferases (Dnmts) after olfactory reward conditioning is important for both stimulus-specific long-term memory (LTM) formation and extinction. It, however, remains unknown which components of memory formation Dnmts regulate (e.g., associative vs. non-associative) and in what context (e.g., varying training conditions). Here, we address these aspects in order to clarify the role of Dnmt-mediated DNA methylation in memory formation. We used a pharmacological Dnmt inhibitor and classical appetitive conditioning in the honeybee Apis mellifera, a well characterized model for classical conditioning. We quantified the effect of DNA methylation on naïve odor and sugar responses, and on responses following olfactory reward conditioning. We show that (1) Dnmts do not influence naïve odor or sugar responses, (2) Dnmts do not affect the learning of new stimuli, but (3) Dnmts influence odor-coding, i.e., ‘correct’ (stimulus-specific) LTM formation. Particularly, Dnmts reduce memory specificity when experience is low (one-trial training), and increase memory specificity when experience is high (multiple-trial training), generating an ecologically more useful response to learning. (4) In reversal learning conditions, Dnmts are involved in regulating both excitatory (re-acquisition) and inhibitory (forgetting) processes.

  20. DNA Methylation Adjusts the Specificity of Memories Depending on the Learning Context and Promotes Relearning in Honeybees.

    PubMed

    Biergans, Stephanie D; Claudianos, Charles; Reinhard, Judith; Galizia, C G

    2016-01-01

    The activity of the epigenetic writers DNA methyltransferases (Dnmts) after olfactory reward conditioning is important for both stimulus-specific long-term memory (LTM) formation and extinction. It, however, remains unknown which components of memory formation Dnmts regulate (e.g., associative vs. non-associative) and in what context (e.g., varying training conditions). Here, we address these aspects in order to clarify the role of Dnmt-mediated DNA methylation in memory formation. We used a pharmacological Dnmt inhibitor and classical appetitive conditioning in the honeybee Apis mellifera, a well characterized model for classical conditioning. We quantified the effect of DNA methylation on naïve odor and sugar responses, and on responses following olfactory reward conditioning. We show that (1) Dnmts do not influence naïve odor or sugar responses, (2) Dnmts do not affect the learning of new stimuli, but (3) Dnmts influence odor-coding, i.e., 'correct' (stimulus-specific) LTM formation. Particularly, Dnmts reduce memory specificity when experience is low (one-trial training), and increase memory specificity when experience is high (multiple-trial training), generating an ecologically more useful response to learning. (4) In reversal learning conditions, Dnmts are involved in regulating both excitatory (re-acquisition) and inhibitory (forgetting) processes.

  1. DNA Methylation Adjusts the Specificity of Memories Depending on the Learning Context and Promotes Relearning in Honeybees

    PubMed Central

    Biergans, Stephanie D.; Claudianos, Charles; Reinhard, Judith; Galizia, C. G.

    2016-01-01

    The activity of the epigenetic writers DNA methyltransferases (Dnmts) after olfactory reward conditioning is important for both stimulus-specific long-term memory (LTM) formation and extinction. It, however, remains unknown which components of memory formation Dnmts regulate (e.g., associative vs. non-associative) and in what context (e.g., varying training conditions). Here, we address these aspects in order to clarify the role of Dnmt-mediated DNA methylation in memory formation. We used a pharmacological Dnmt inhibitor and classical appetitive conditioning in the honeybee Apis mellifera, a well characterized model for classical conditioning. We quantified the effect of DNA methylation on naïve odor and sugar responses, and on responses following olfactory reward conditioning. We show that (1) Dnmts do not influence naïve odor or sugar responses, (2) Dnmts do not affect the learning of new stimuli, but (3) Dnmts influence odor-coding, i.e., ‘correct’ (stimulus-specific) LTM formation. Particularly, Dnmts reduce memory specificity when experience is low (one-trial training), and increase memory specificity when experience is high (multiple-trial training), generating an ecologically more useful response to learning. (4) In reversal learning conditions, Dnmts are involved in regulating both excitatory (re-acquisition) and inhibitory (forgetting) processes. PMID:27672359

  2. Identification of genes specifically methylated in Epstein-Barr virus-associated gastric carcinomas.

    PubMed

    Okada, Toshiyuki; Nakamura, Munetaka; Nishikawa, Jun; Sakai, Kouhei; Zhang, Yibo; Saito, Mari; Morishige, Akihiro; Oga, Atsunori; Sasaki, Kosuke; Suehiro, Yutaka; Hinoda, Yuji; Sakaida, Isao

    2013-10-01

    We studied the comprehensive DNA methylation status in the naturally derived gastric adenocarcinoma cell line SNU-719, which was infected with the Epstein-Barr virus (EBV) by methylated CpG island recovery on chip assay. To identify genes specifically methylated in EBV-associated gastric carcinomas (EBVaGC), we focused on seven genes, TP73, BLU, FSD1, BCL7A, MARK1, SCRN1, and NKX3.1, based on the results of methylated CpG island recovery on chip assay. We confirmed DNA methylation of the genes by methylation-specific PCR and bisulfite sequencing in SNU-719. The expression of the genes, except for BCL7A, was upregulated by a combination of 5-Aza-2'-deoxycytidine and trichostatin A treatment in SNU-719. After the treatment, unmethylated DNA became detectable in all seven genes by methylation-specific PCR. We verified DNA methylation of the genes in 75 primary gastric cancer tissues from 25 patients with EBVaGC and 50 EBV-negative patients who were controls. The methylation frequencies of TP73, BLU, FSD1, BCL7A, MARK1, SCRN1, and NKX3.1 were significantly higher in EBVaGC than in EBV-negative gastric carcinoma. We identified seven genes with promoter regions that were specifically methylated in EBVaGC. Inactivation of these genes may suppress their function as tumor suppressor genes or tumor-associated antigens and help to develop and maintain EBVaGC. PMID:23829175

  3. WNT5A expression is regulated by the status of its promoter methylation in leukaemia and can inhibit leukemic cell malignant proliferation.

    PubMed

    Deng, Gang; Li, Zhao Quan; Zhao, Chen; Yuan, Yuan; Niu, Chang Chun; Zhao, Chen; Pan, Jing; Si, Wei Ke

    2011-02-01

    Although down-regulation of WNT5A expression has been reported in some types of leukaemias, the level of WNT5A expression has not been assessed in leukaemia complete remission (CR) cases, the relationship among WNT5A expression level, the status of its promoter methylation, and the curative effect of leukaemia has not been reported, and the effect of WNT5A on cell proliferation has not been assessed. In this study, we analyzed WNT5A expression in various kinds of leukaemia cases, leukaemia CR cases, non-malignant hematopoietic (NMH) cases, as well as in leukemic cell lines and CD34+ cells. The methylation status of the WNT5A promoter and the levels of the Wnt5a protein were also studied. We also investigated the effect of Wnt5a on leukemic cell proliferation. WNT5A expression level was higher in NMH but lower in leukaemia cases compared to that in CR-cases (P<0.01), and was expressed at low level in leukemic cell lines K562, U937 and Jurkat. Wnt5a protein was positive in NMH, CR cases and CD34+, but negative in leukaemia cases. WNT5A promoter was methylated in leukaemia cases and all leukemic cell lines, but not in NMH and CR cases. WNT5A expression was up-regulated after exposure to the demethylating agent 5-Aza-2'-deoxycytidine (Aza) in the K562, U937, Jurkat leukemic cell lines and in 83.3% (10/12) of CR patients after cure, respectively. The increased Wnt5a protein can inhibit K562 malignant proliferation and arrest cell cycle at the G2/M phase after exposure to Aza. These results indicate that WNT5A expression was restored in complete remission cases due to demethylation, and Wnt5a can inhibit leukaemic cell proliferation. We propose that WNT5A can act as a suppressor factor in leukemogenesis and can be used as a potential marker for curative effect assessment in leukaemia.

  4. Hydration properties of natural and synthetic DNA sequences with methylated adenine or cytosine bases in the R.DpnI target and BDNF promoter studied by molecular dynamics simulations.

    PubMed

    Shanak, Siba; Helms, Volkhard

    2014-12-14

    Adenine and cytosine methylation are two important epigenetic modifications of DNA sequences at the levels of the genome and transcriptome. To characterize the differential roles of methylating adenine or cytosine with respect to their hydration properties, we performed conventional MD simulations and free energy perturbation calculations for two particular DNA sequences, namely the brain-derived neurotrophic factor (BDNF) promoter and the R.DpnI-bound DNA that are known to undergo methylation of C5-methyl cytosine and N6-methyl adenine, respectively. We found that a single methylated cytosine has a clearly favorable hydration free energy over cytosine since the attached methyl group has a slightly polar character. In contrast, capping the strongly polar N6 of adenine with a methyl group gives a slightly unfavorable contribution to its free energy of solvation. Performing the same demethylation in the context of a DNA double-strand gave quite similar results for the more solvent-accessible cytosine but much more unfavorable results for the rather buried adenine. Interestingly, the same demethylation reactions are far more unfavorable when performed in the context of the opposite (BDNF or R.DpnI target) sequence. This suggests a natural preference for methylation in a specific sequence context. In addition, free energy calculations for demethylating adenine or cytosine in the context of B-DNA vs. Z-DNA suggest that the conformational B-Z transition of DNA transition is rather a property of cytosine methylated sequences but is not preferable for the adenine-methylated sequences investigated here.

  5. Hydration properties of natural and synthetic DNA sequences with methylated adenine or cytosine bases in the R.DpnI target and BDNF promoter studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Shanak, Siba; Helms, Volkhard

    2014-12-01

    Adenine and cytosine methylation are two important epigenetic modifications of DNA sequences at the levels of the genome and transcriptome. To characterize the differential roles of methylating adenine or cytosine with respect to their hydration properties, we performed conventional MD simulations and free energy perturbation calculations for two particular DNA sequences, namely the brain-derived neurotrophic factor (BDNF) promoter and the R.DpnI-bound DNA that are known to undergo methylation of C5-methyl cytosine and N6-methyl adenine, respectively. We found that a single methylated cytosine has a clearly favorable hydration free energy over cytosine since the attached methyl group has a slightly polar character. In contrast, capping the strongly polar N6 of adenine with a methyl group gives a slightly unfavorable contribution to its free energy of solvation. Performing the same demethylation in the context of a DNA double-strand gave quite similar results for the more solvent-accessible cytosine but much more unfavorable results for the rather buried adenine. Interestingly, the same demethylation reactions are far more unfavorable when performed in the context of the opposite (BDNF or R.DpnI target) sequence. This suggests a natural preference for methylation in a specific sequence context. In addition, free energy calculations for demethylating adenine or cytosine in the context of B-DNA vs. Z-DNA suggest that the conformational B-Z transition of DNA transition is rather a property of cytosine methylated sequences but is not preferable for the adenine-methylated sequences investigated here.

  6. Prognostic Stratification of GBMs Using Combinatorial Assessment of IDH1 Mutation, MGMT Promoter Methylation, and TERT Mutation Status: Experience from a Tertiary Care Center in India.

    PubMed

    Purkait, Suvendu; Mallick, Supriya; Sharma, Vikas; Kumar, Anupam; Pathak, Pankaj; Jha, Prerana; Biswas, Ahitagni; Julka, Pramod Kumar; Gupta, Deepak; Suri, Ashish; Datt Upadhyay, Ashish; Suri, Vaishali; Sharma, Mehar C; Sarkar, Chitra

    2016-08-01

    This study aims to establish the best and simplified panel of molecular markers for prognostic stratification of glioblastomas (GBMs). One hundred fourteen cases of GBMs were studied for IDH1, TP53, and TERT mutation by Sanger sequencing; EGFR and PDGFRA amplification by fluorescence in situ hybridization; NF1expression by quantitative real time polymerase chain reaction (qRT-PCR); and MGMT promoter methylation by methylation-specific PCR. IDH1 mutant cases had significantly longer progression-free survival (PFS) and overall survival (OS) as compared to IDH1 wild-type cases. Combinatorial assessment of MGMT and TERT emerged as independent prognostic markers, especially in the IDH1 wild-type GBMs. Thus, within the IDH1 wild-type group, cases with only MGMT methylation (group 1) had the best outcome (median PFS: 83.3 weeks; OS: not reached), whereas GBMs with only TERT mutation (group 3) had the worst outcome (PFS: 19.7 weeks; OS: 32.8 weeks). Cases with both or none of these alterations (group 2) had intermediate prognosis (PFS: 47.6 weeks; OS: 89.2 weeks). Majority of the IDH1 mutant GBMs belonged to group 1 (75%), whereas only 18.7% and 6.2% showed group 2 and 3 signatures, respectively. Interestingly, none of the other genetic alterations were significantly associated with survival in IDH1 mutant or wild-type GBMs. Based on above findings, we recommend assessment of three markers, viz., IDH1, MGMT, and TERT, for GBM prognostication in routine practice. We show for the first time that IDH1 wild-type GBMs which constitute majority of the GBMs can be effectively stratified into three distinct prognostic subgroups based on MGMT and TERT status, irrespective of other genetic alterations. PMID:27567961

  7. A New Schizosaccharomyces pombe Chronological Lifespan Assay Reveals that Caloric Restriction Promotes Efficient Cell Cycle Exit and Extends Longevity

    PubMed Central

    Chen, Bo-Ruei; Runge, Kurt W.

    2009-01-01

    We describe a new chronological lifespan (CLS) assay for the yeast Schizosaccharomyces pombe. Yeast CLS assays monitor the loss of cell viability in a culture over time, and this new assay shows a continuous decline in viability without detectable regrowth until all cells in the culture are dead. Thus, the survival curve is not altered by the generation of mutants that can grow during the experiments, and one can monitor the entire lifespan of a strain until the number of viable cells has decreased over 106-fold. This CLS assay recapitulates the evolutionarily conserved features of lifespan shortening by over nutrition, lifespan extension by caloric restriction, increased stress resistance of calorically restricted cells and lifespan control by the AKT kinases. Both S. pombe AKT kinase orthologs regulate CLS: loss of sck1+ extended lifespan in over nutrition conditions, loss of sck2+ extended lifespan under both normal and over nutrition conditions, and loss of both genes showed that sck1+ and sck2+ control different longevity pathways. The longest-lived S. pombe cells showed the most efficient cell cycle exit, demonstrating that caloric restriction links these two processes. This new S. pombe CLS assay will provide a valuable tool for aging research. PMID:19409973

  8. Evaluation of methyl methanesulfonate, 2,6-diaminotoluene and 5-fluorouracil: Part of the Japanese center for the validation of alternative methods (JaCVAM) international validation study of the in vivo rat alkaline comet assay.

    PubMed

    Plappert-Helbig, Ulla; Junker-Walker, Ursula; Martus, Hans-Joerg

    2015-07-01

    As a part of the Japanese Center for the Validation of Alternative Methods (JaCVAM)-initiative international validation study of the in vivo rat alkaline comet assay (comet assay), we examined methyl methanesulfonate, 2,6-diaminotoluene, and 5-fluorouracil under coded test conditions. Rats were treated orally with the maximum tolerated dose (MTD) and two additional descending doses of the respective compounds. In the MMS treated groups liver and stomach showed significantly elevated DNA damage at each dose level and a significant dose-response relationship. 2,6-diaminotoluene induced significantly elevated DNA damage in the liver at each dose and a statistically significant dose-response relationship whereas no DNA damage was obtained in the stomach. 5-fluorouracil did not induce DNA damage in either liver or stomach.

  9. DNA methylation-mediated transcription factors regulate Piwil1 expression during chicken spermatogenesis

    PubMed Central

    QIU, Lingling; XU, Lu; CHANG, Guobin; GUO, Qixin; LIU, Xiangping; BI, Yulin; ZHANG, Yu; WANG, Hongzhi; WANG, Kehua; LU, Wei; REN, Lichen; ZHU, Pengfei; WU, Yun; ZHANG, Yang; XU, Qi; CHEN, Guohong

    2016-01-01

    The P-element induced wimpy testis (Piwi) protein family is responsible for initiating spermatogenesis and maintaining the integrity of germ cells and stem cells, but little is known regarding its transcriptional regulation in poultry. Here, we characterized the methylation status of the Piwil1 promoter in five different spermatogenic cell lines using direct bisulfite pyrosequencing and determined that methylation correlates negatively with germ cell type-specific expression patterns of piwil1. We demonstrated that methylation of the −148 CpG site, which is the predicted binding site for the transcription factors TCF3 and NRF1, was differentially methylated in different spermatogenic cells. This site was completely methylated in PGCs (primordial germ cells), but was unmethylated in round spermatids. A similar result was obtained in the region from +121 to +139 CpG sites of the Piwil1 promoter CpG island, which was predicted to contain SOX2 binding sites. In addition, demethylation assays further demonstrated that DNA methylation indeed regulates Piwil1 expression during chicken spermatogenesis. Combined with transcription factor binding site prediction, we speculate that methylation influences the recruitment of corresponding transcription factors. Collectively, we show the negative correlation between promoter methylation and piwil1 expression and that the spatiotemporal expression of chicken Piwil1 from the PGC stage to the round spermatid stage is influenced by methylation-mediated transcription factor regulation. PMID:27108736

  10. Dynamic Changes in the Follicular Transcriptome and Promoter DNA Methylation Pattern of Steroidogenic Genes in Chicken Follicles throughout the Ovulation Cycle

    PubMed Central

    Zhu, Guiyu; Mao, Yong; Zhou, Wendi; Jiang, Yunliang

    2015-01-01

    The molecular mechanisms associated with follicle maturation and ovulation are not well defined in avian species. In this study, we used RNA-seq to study the gene expression profiles of the chicken follicles from different developmental stages (pre-hierarchical, pre-ovulatory and post-ovulatory). Transcriptomic analysis revealed a total of 1,277 and 2,310 genes were differentially expressed when follicles progressed through the pre-hierarchical to hierarchical and pre-ovulatory to post-ovulatory transitions, respectively. The differentially expressed genes (DEG) were involved in signaling pathways such as adherens junction, apoptosis and steroid biosynthesis. We further investigated the transcriptional regulation of follicular steroidogenesis by examining the follicle-specific methylation profiles of Star (steroidogenic acute regulatory protein), Cyp11a1 (cytochrome P450, family 11, subfamily a, polypeptide 1) and Hsd3b (hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1), genes encoding the key enzymes for progesterone synthesis. The varied patterns of DNA methylation in proximal promoters of Star and Cyp11a1but not Hsd3b in different follicles could play a major role in controlling gene expression as well as follicular steroidogenic activity. Finally, the promoter-reporter analysis suggests that TGF-β could be involved in the regulation of Hsd3b expression during ovulation. Together, current data not only provide novel insights into the molecular mechanisms of follicular physiology in chicken follicles, but also present the first evidence of epigenetic regulation of ovarian steroidogenesis in avian species. PMID:26716441

  11. Chito-oligosaccharide inhibits the de-methylation of a 'CpG' island within the leptin (LEP) promoter during adipogenesis of 3T3-L1 cells.

    PubMed

    Bahar, Bojlul; O'Doherty, John V; O'Doherty, Alan M; Sweeney, Torres

    2013-01-01

    Chito-oligosaccharide (COS) is a natural bioactive compound, which has been shown to suppress lipid metabolic genes and lipid accumulation in differentiating adipocytes. Leptin has been identified as a key regulator of energy homeostasis and is known to be under epigenetic regulation during adipogenesis. Hence, the first objective of this experiment was to compare leptin gene (LEP) expression and leptin secretion during the different stages of adipogenesis and to investigate the effect of COS on these processes. As COS inhibited LEP expression during adipogenesis, the second aim was to investigate the methylation dynamics of a 'CpG' island in the proximal region of the LEP promoter during adipogenesis and to determine the effect of COS on this process. Mouse 3T3-L1 cells were stimulated to differentiate in the absence or presence of COS and the levels of leptin mRNA and protein were evaluated on days 0, 2, 4 and 6 post-induction of differentiation (PID). The extent of de-methylation of six CpG sites was evaluated. LEP mRNA transcript and protein could not be detected on either day 0PID or 2PID. In contrast, both were detected on day 4PID (P<0.05) and 6PID (P<0.001) and both were inhibited by COS (P<0.001). Of the six CpG sites analyzed, CpG_52, CpG_62 and CpG_95 became 11.5, 5.0 and 5.0% de-methylated between day 2PID and 6PID, respectively. COS blocked this de-methylation event at CpG_52 (P<0.001), CpG_62 (P<0.01) and CpG_95 (P<0.01) on day 6PID. These data suggest that COS can have an epigenetic effect on differentiating adipocytes, a novel biological function of COS which has potential applications for the manipulation of leptin gene expression, adipogenesis, and conditions within the metabolic syndrome spectrum.

  12. Analysis of the transcriptional regulation of cancer-related genes by aberrant DNA methylation of the cis-regulation sites in the promoter region during hepatocyte carcinogenesis caused by arsenic

    PubMed Central

    Miao, Zhuang; Wu, Lin; Lu, Ming; Meng, Xianzhi; Gao, Bo; Qiao, Xin; Zhang, Weihui; Xue, Dongbo

    2015-01-01

    Liver is the major organ for arsenic methylation metabolism and may be the potential target of arsenic-induced cancer. In this study, normal human liver cell was treated with arsenic trioxide, and detected using DNA methylation microarray. Some oncogenes, tumor suppressor genes, transcription factors (TF), and tumor-associated genes (TAG) that have aberrant DNA methylation have been identified. However, simple functional studies of genes adjacent to aberrant methylation sites cannot well reflect the regulatory relationship between DNA methylation and gene transcription during the pathogenesis of arsenic-induced liver cancer, whereas a further analysis of the cis-regulatory elements and their trans-acting factors adjacent to DNA methylation can more precisely reflect the relationship between them. MYC and MAX (MYC associated factor X) were found to participating cell cycle through a bioinformatics analysis. Additionally, it was found that the hypomethylation of cis-regulatory sites in the MYC promoter region and the hypermethylation of cis-regulatory sites in the MAX promoter region result in the up-regulation of MYC mRNA expression and the down-regulation of MAX mRNA, which increased the hepatocyte carcinogenesis tendency. PMID:26046465

  13. Identification of trichlormethiazide as a Mdr1a/b gene expression enhancer via a dual secretion-based promoter assay.

    PubMed

    Schulze, Sarina; Reinhardt, Sven; Freese, Christian; Schmitt, Ulrich; Endres, Kristina

    2015-02-01

    Transporters of the ATP-binding cassette (ABC) family such as MDR1 play a pivotal role in persistence of brain homeostasis by contributing to the strict permeability properties of the blood-brain barrier. This barrier on one hand compromises treatment of central nervous system diseases by restricting access of drugs; on the other hand, an impaired or altered function of barrier building cells has been described in neurological disorders. The latter might contribute to increased vulnerability of the brain under pathological conditions or even enforce pathogenesis. Here, we present a novel approach for a systematic examination of drug impact on Mdr1 gene expression by establishing a dual reporter gene assay for the murine upstream core promoters of Mdr1a and b. We validated the time-resolved assay in comparison with single reporter gene constructs and applied it to analyze effects of a Food and Drug Administration (FDA)-approved drug library consisting of 627 substances. The chemo-preventive synthetic dithiolethione oltipraz was reidentified with our assay as an already known inducer of Mdr1 gene expression. Together with two newly characterized modifiers - gemcitabine and trichlormethiazide - we prove our findings in a blood-brain barrier culture model as well as in wild-type and Mdr1 knockout mice. In sum, we could demonstrate that our dual reporter gene assay delivers results, which also persist in the living animal and consequently is applicable for further analysis and prediction of Mdr1 regulation in vivo.

  14. Aberrant methylation patterns in cancer: a clinical view

    PubMed Central

    Paska, Alja Videtic; Hudler, Petra

    2015-01-01

    Epigenetic mechanisms, such as DNA methylation, DNA hydroxymethylation, post-translational modifications (PTMs) of histone proteins affecting nucleosome remodelling, and regulation by small and large non-coding RNAs (ncRNAs) work in concert with cis and trans acting elements to drive appropriate gene expression. Advances in detection methods and development of dedicated platforms and methylation arrays resulted in an explosion of information on aberrantly methylated sequences linking deviations in epigenetic landscape with the initiation and progression of complex diseases. Here, we consider how DNA methylation changes in malignancies, such as breast, pancreatic, colorectal, and gastric cancer could be exploited for the purpose of developing specific diagnostic tools. DNA methylation changes can be applicable as biomarkers for detection of malignant disease in easily accessible tissues. Methylation signatures are already proving to be an important marker for determination of drug sensitivity. Even more, promoter methylation patterns of some genes, such as MGMT, SHOX2, and SEPT9, have already been translated into commercial clinical assays aiding in patient assessment as adjunct diagnostic tools. In conclusion, the changes in DNA methylation patterns in tumour cells are slowly gaining entrance into routine diagnostic tests as promising biomarkers and as potential therapeutic targets. PMID:26110029

  15. Assessment of Quantitative and Allelic MGMT Methylation Patterns as a Prognostic Marker in Glioblastoma.

    PubMed

    Kristensen, Lasse S; Michaelsen, Signe R; Dyrbye, Henrik; Aslan, Derya; Grunnet, Kirsten; Christensen, Ib J; Poulsen, Hans S; Grønbæk, Kirsten; Broholm, Helle

    2016-03-01

    Methylation of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene is a predictive and prognostic marker in newly diagnosed glioblastoma patients treated with temozolomide but how MGMT methylation should be assessed to ensure optimal detection accuracy is debated. We developed a novel quantitative methylation-specific PCR (qMSP) MGMT assay capable of providing allelic methylation data and analyzed 151 glioblastomas from patients receiving standard of care treatment (Stupp protocol). The samples were also analyzed by immunohistochemistry (IHC), standard bisulfite pyrosequencing, and genotyped for the rs1690252 MGMT promoter single nucleotide polymorphism. Monoallelic methylation was observed more frequently than biallelic methylation, and some cases with monoallelic methylation expressed the MGMT protein whereas others did not. The presence of MGMT methylation was associated with better overall survival (p = 0.006; qMSP and p = 0.002; standard pyrosequencing), and the presence of the protein was associated with worse overall survival (p = 0.009). Combined analyses of qMSP and standard pyrosequencing or IHC identified additional patients who benefited from temozolomide treatment. Finally, low methylation levels were also associated with better overall survival (p = 0.061; qMSP and p = 0.02; standard pyrosequencing). These data support the use of both MGMT methylation and MGMT IHC but not allelic methylation data as prognostic markers in patients with temozolomide-treated glioblastoma. PMID:26883115

  16. A reporter promoter assay confirmed the role of a distal promoter NOBOX binding element in enhancing expression of GDF9 gene in buffalo oocytes.

    PubMed

    Roy, Bhaskar; Rajput, Sandeep; Raghav, Sarvesh; Kumar, Parveen; Verma, Arpana; Kumar, Sandeep; De, Sachinandan; Goswami, Surender Lal; Datta, Tirtha Kumar

    2012-11-01

    Growth differentiation factor 9 is primarily expressed in oocytes and plays a vital role in oocyte cumulus crosstalk. Earlier studies with buffalo oocytes revealed differential expression of this gene under different media stimulation conditions which, in turn, are correlated with the blastocyst yield. In this study, different germ cell specific cis elements including a NOBOX binding elements (NBE) and several E-boxes were identified at the 5' upstream region of buffalo GDF9 gene and their potential role in GDF9 expression was investigated. Transfecting oocytes with GDF9 promoter deletion constructs harbouring the NBE reporter gene revealed a 33% increase in GFP as well as the luciferase signal signifying its role in stimulating the minimal promoter activity of GDF9 in buffalo oocytes. Site directed mutation of core binding nucleotides at NBE at 1.8 kb upstream to TSS further confirmed its role for enhancing the basal transcriptional activity of GDF9 promoter in buffalo oocytes. Current work will provide important leads for understanding the role of GDF9 in oocytes competence and designing a more physiological IVF protocol in case of buffalo.

  17. Solar-simulated ultraviolet radiation induces histone 3 methylation changes in the gene promoters of matrix metalloproteinases 1 and 3 in primary human dermal fibroblasts.

    PubMed

    Gesumaria, Lisa; Matsui, Mary S; Kluz, Thomas; Costa, Max

    2015-05-01

    Molecular signalling pathways delineating the induction of matrix metalloproteinases (MMPs) by ultraviolet radiation (UVR) are currently well-defined; however, the effects of UVR on epigenetic mechanisms of MMP induction are not as well understood. In this study, we examined solar-simulated UVR (ssUVR)-induced gene expression changes and alterations to histone methylation in the promoters of MMP1 and MMP3 in primary human dermal fibroblasts (HDF). Gene expression changes, including the increased expression of MMP1 and MMP3, were observed using Affymetrix GeneChip arrays and confirmed by qRT-PCR. Using ChIP-PCR, we showed for the first time that in HDF irradiated with 12 J/cm(2) ssUVR, the H3K4me3 transcriptional activating mark increased and the H3K9me2 transcriptional silencing mark decreased in abundance in promoters, correlating with the observed elevation of MMP1 and MMP3 mRNA levels following ssUVR exposure. Changes in mRNA levels due to a single exposure were transient and decreased 5 days after exposure. PMID:25707437

  18. Solar-simulated ultraviolet radiation induces histone 3 methylation changes in the gene promoters of matrix metalloproteinases 1 and 3 in primary human dermal fibroblasts.

    PubMed

    Gesumaria, Lisa; Matsui, Mary S; Kluz, Thomas; Costa, Max

    2015-05-01

    Molecular signalling pathways delineating the induction of matrix metalloproteinases (MMPs) by ultraviolet radiation (UVR) are currently well-defined; however, the effects of UVR on epigenetic mechanisms of MMP induction are not as well understood. In this study, we examined solar-simulated UVR (ssUVR)-induced gene expression changes and alterations to histone methylation in the promoters of MMP1 and MMP3 in primary human dermal fibroblasts (HDF). Gene expression changes, including the increased expression of MMP1 and MMP3, were observed using Affymetrix GeneChip arrays and confirmed by qRT-PCR. Using ChIP-PCR, we showed for the first time that in HDF irradiated with 12 J/cm(2) ssUVR, the H3K4me3 transcriptional activating mark increased and the H3K9me2 transcriptional silencing mark decreased in abundance in promoters, correlating with the observed elevation of MMP1 and MMP3 mRNA levels following ssUVR exposure. Changes in mRNA levels due to a single exposure were transient and decreased 5 days after exposure.

  19. Long-term arsenic exposure induces histone H3 Lys9 dimethylation without altering DNA methylation in the promoter region of p16(INK4a) and down-regulates its expression in the liver of mice.

    PubMed

    Suzuki, Takehiro; Nohara, Keiko

    2013-09-01

    Long-term exposure of humans to high concentrations of arsenic is associated with an increased risk of cancer. Previous studies have suggested that arsenic exposure promotes tumorigenesis by inducing changes in the expression of tumor-related genes by dysregulating DNA methylation at tumor-related gene loci. However, the causal relationships between epigenetic changes and both arsenic exposure and tumorigenesis are still unclear. In the present study, we investigated whether arsenic can change the expression of tumor-related genes by inducing epigenetic modifications before tumorigenesis. We did so by investigating the effects of long-term arsenic exposure on representative epigenetic modifications, DNA methylation and histone modifications, in the tumor-free normal liver of C57Bl/6 mice. We focused on the tumor-related genes, p16(INK4a) , RASSF1A, Ha-ras and ER-α as target genes, because their expression and promoter methylation status in mice have been reported to be affected by long-term arsenic exposure. The results showed that long-term arsenic exposure induced a significant decrease in expression of p16(INK4a) associated with an increase in level of dimethylated histone H3 lysine 9 (H3K9), a transcription-suppressive histone modification, in the promoter region, but that DNA methylation of the promoter region was unaffected. The results also showed a significant increase in recruitment of H3K9 histone methyltransferase G9a to the promoter after arsenic exposure. These findings suggest that long-term arsenic exposure may induce down-regulation of p16(INK4a) by targeting recruitment of G9a and H3K9 dimethylation without altering DNA methylation before tumorigenesis in the liver.

  20. DNA Methylation Screening and Analysis

    PubMed Central

    Sant, Karilyn E.; Nahar, Muna S.; Dolinoy, Dana C.

    2013-01-01

    DNA methylation is an epigenetic form of gene regulation that is universally important throughout the life course, especially during in utero and postnatal development. DNA methylation aids in cell cycle regulation and cellular differentiation processes. Previous studies have demonstrated that DNA methylation profiles may be altered by diet and the environment, and that these profiles are especially vulnerable during development. Thus, it is important to understand the role of DNA methylation in developmental governance and subsequent disease progression. A variety of molecular methods exist to assay for global, gene-specific, and epigenome-wide methylation. Here we describe these methods and discuss their relative strengths and limitations. PMID:22669678

  1. Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation

    PubMed Central

    Nguyen, Carvell T.; Gonzales, Felicidad A.; Jones, Peter A.

    2001-01-01

    Silencing of tumor-suppressor genes by hypermethylation of promoter CpG islands is well documented in human cancer and may be mediated by methyl-CpG-binding proteins, like MeCP2, that are associated in vivo with chromatin modifiers and transcriptional repressors. However, the exact dynamic between methylation and chromatin structure in the regulation of gene expression is not well understood. In this study, we have analyzed the methylation status and chromatin structure of three CpG islands in the p14(ARF)/p16(INK4A) locus in a series of normal and cancer cell lines using methylation-sensitive digestion, MspI accessibility in intact nuclei and chromatin immunoprecipitation (ChIP) assays. We demonstrate the existence of an altered chromatin structure associated with the silencing of tumor-suppressor genes in human cancer cell lines involving CpG island methylation, chromatin condensation, histone deacetylation and MeCP2 binding. The data showed that MeCP2 could bind to methylated CpG islands in both promoters and exons; MeCP2 does not interfere with transcription when bound at an exon, suggesting a more generalized role for the protein beyond transcriptional repression. In the absence of methylation, it is demonstrated that CpG islands located in promoters versus exons display marked differences in the levels of acetylation of associated histone H3, suggesting that chromatin remodeling can be achieved by methylation-independent processes and perhaps explaining why non-promoter CpG islands are more susceptible to de novo methylation than promoter islands. PMID:11713309

  2. Antimicrobial, crown gall tumor inhibitory and cytotoxicity assays of N-[(1-methyl-1H-indole-3-yl)methylene]amines synthesized by an improved protocol.

    PubMed

    Singh, Girija S; Al-kahraman, Yasser M S A; Mpadi, Disah; Yasinzai, Masoom

    2014-06-01

    The present paper reports an easy preparation of imines of N-methyl-1H-indole-3-carboxaldehyde by its condensation with alkyl and aromatic amines in ethanol without using any catalyst or dehydrating agent. The compounds have been screened for their antibacterial, antifungal, crown gall tumor inhibitory, and cytotoxic activities. As a major finding some of the compounds exhibited potential biological activity. The imine containing a 4-chlorophenyl group exhibits potential antitumor activity and brine shrimp lethality against crown gall tumor and brine shrimps, respectively. Furthermore, this imine containing a 4-chlorophenyl group also exhibits significant antifungal activity against Candida albicans fungal strains. The compound containing N-diphenylmethyl group has been observed most active against the Gram-positive bacteria. PMID:23909290

  3. Role for Tissue-Dependent Methylation Differences in the Expression of FOXE1 in Nontumoral Thyroid Glands

    PubMed Central

    Abu-Khudir, Rasha; Magne, Fabien; Chanoine, Jean-Pierre; Deal, Cheri; Van Vliet, Guy; Deladoëy, Johnny

    2016-01-01

    Background Discordance of monozygotic twins for thyroid dysgenesis suggests that epigenetic mechanisms may underlie defects in thyroid gland development. This prompted us to evaluate whether differentially methylated regions (DMRs) can be found between human thyroids (either eutopic or ectopic) and matched leukocytes. Methods To compare the genome-wide methylation profile of thyroids and leukocytes, immunoprecipitated methylated DNA was interrogated on human promoter plus CpG island tiling arrays. In addition, the methylation profile of the human FOXE1, PAX8, and NKX2.1 promoter was examined using bisulfite sequencing. Finally, the functional impact of CpG methylation of the promoter on FOXE1 expression was assessed with luciferase assays. Results Genome-wide methylation profiling and bisulfite sequencing of CpG islands of PAX8 and NKX2.1 promoters revealed no DMR between thyroid and leukocytes. However, bisulfite sequencing revealed that the methylation level of two consecutive CpG dinucleotides (CpG14 and CpG15, which were not covered by the genome-wide array) in one CpG island of the FOXE1 promoter (−1600 to −1140 from the transcription start site) is significantly higher in leukocytes than in eutopic or ectopic thyroid tissues, suggesting that methylation of this region may decrease FOXE1 gene expression. Indeed, luciferase activities were decreased when FOXE1 promoter constructs were methylated in vitro. Moreover, derepression of luciferase activity was observed when the methylation of CpG14 and CpG15 was prevented by mutations. Conclusion We report a tissue-dependent DMR in the FOXE1 promoter. This DMR contains two consecutive CpG dinucleotides, which are epigenetic modifiers of FOXE1 expression in nontumoral tissues. PMID:24646064

  4. Experimental factors affecting the robustness of DNA methylation analysis

    PubMed Central

    Pharo, Heidi D.; Honne, Hilde; Vedeld, Hege M.; Dahl, Christina; Andresen, Kim; Liestøl, Knut; Jeanmougin, Marine; Guldberg, Per; Lind, Guro E.

    2016-01-01

    Diverging methylation frequencies are often reported for the same locus in the same disease, underscoring the need for limiting technical variability in DNA methylation analyses. We have investigated seven likely sources of variability at different steps of bisulfite PCR-based DNA methylation analyses using a fully automated quantitative methylation-specific PCR setup of six gene promoters across 20 colon cancer cell lines. Based on >15,000 individual PCRs, all tested parameters affected the normalized percent of methylated reference (PMR) differences, with a fourfold varying magnitude. Additionally, large variations were observed across the six genes analyzed. The highest variation was seen using single-copy genes as reference for normalization, followed by different amounts of template in the PCR, different amounts of DNA in the bisulfite reaction, and storage of bisulfite converted samples. Finally, when a highly standardized pipeline was repeated, the difference in PMR value for the same assay in the same cell line was on average limited to five (on a 0–100 scale). In conclusion, a standardized pipeline is essential for consistent methylation results, where parameters are kept constant for all samples. Nevertheless, a certain level of variation in methylation values must be expected, underscoring the need for careful interpretation of data. PMID:27671843

  5. Multiplexed methylation profiles of tumor suppressor genes and clinical outcome in oligodendroglial tumors.

    PubMed

    Kuo, Lu-Ting; Lu, Hsueh-Yi; Lee, Chien-Chang; Tsai, Jui-Chang; Lai, Hong-Shiee; Tseng, Ham-Min; Kuo, Meng-Fai; Tu, Yong-Kwang

    2016-08-01

    Aberrant methylation has been associated with transcriptional inactivation of tumor-related genes in a wide spectrum of human neoplasms. The influence of DNA methylation in oligodendroglial tumors is not fully understood. Genomic DNA was isolated from 61 oligodendroglial tumors for analysis of methylation using methylation-specific multiplex ligation-dependent probe amplification assay (MS-MLPA). We correlated methylation status with clinicopathological findings and outcome. The genes found to be most frequently methylated in oligodendroglial tumors were RASSF1A (80.3%), CASP8 (70.5%), and CDKN2A (52.5%). Kaplan-Meier survival curve analysis demonstrated longer duration of progression-free survival in patients with 19q loss, aged less than 38 years, and with a proliferative index of less than 5%. Methylation of the ESR1 promoter is significantly associated with shorter duration of overall survival and progression-free survival, and that methylation of IGSF4 and RASSF1A is significantly associated with shorter duration of progression-free survival. However, none of the methylation status of ESR1, IGSF4, and RASSF1A was of prognostic value for survival in a multivariate Cox model. A number of novel and interesting epigenetic alterations were identified in this study. The findings highlight the importance of methylation profiles in oligodendroglial tumors and their possible involvement in tumorigenesis. PMID:27367901

  6. Genistein mediates the selective radiosensitizing effect in NSCLC A549 cells via inhibiting methylation of the keap1 gene promoter region

    PubMed Central

    Liu, Xiongxiong; Sun, Chao; Liu, Bingtao; Jin, Xiaodong; Li, Ping; Zheng, Xiaogang; Zhao, Ting; Li, Feifei; Li, Qiang

    2016-01-01

    Non-small cell lung cancer (NSCLC) cells often possess a hypermethylated Keap1 promoter, which decreases Keap1 mRNA and protein expression levels, thus impairing the Nrf2-Keap1 pathway and thereby leading to chemo- or radio-resistance. In this study, we showed that genistein selectively exhibited a radiosensitizing effect on NSCLC A549 cells but not on normal lung fibroblast MRC-5 cells. Genistein caused oxidative stress in A549 cells rather than MRC-5 cells, as determined by the oxidation of the ROS-sensitive probe DCFH-DA and oxidative damage marked by MDA, PCO or 8-OHdG content. In A549 instead of MRC-5 cells, genistein reduced the level of methylation in the Keap1 promoter region, leading to an increased mRNA expression, thus effectively inhibited the transcription of Nrf2 to the nucleus, which suppressed the Nrf2-dependent antioxidant and resulted in the upregulation of ROS. Importantly, when combined with radiation, genistein further increased the ROS levels in A549 cells whereas decreasing the radiation-induced oxidative stress in MRC-5 cells, possibly via increasing the expression levels of Nrf2, GSH and HO-1. Moreover, radiation combined with genistein significantly increased cell apoptosis in A549 but not MRC-5 cells. Together, the results herein show that the intrinsic difference in the redox status of A549 and MRC-5 cells could be the target for genistein to selectively sensitize A549 cells to radiation, thereby leading to an increase in radiosensitivity for A549 cells. PMID:27029077

  7. Identification of Antiviral Agents Targeting Hepatitis B Virus Promoter from Extracts of Indonesian Marine Organisms by a Novel Cell-Based Screening Assay

    PubMed Central

    Yamashita, Atsuya; Fujimoto, Yuusuke; Tamaki, Mayumi; Setiawan, Andi; Tanaka, Tomohisa; Okuyama-Dobashi, Kaori; Kasai, Hirotake; Watashi, Koichi; Wakita, Takaji; Toyama, Masaaki; Baba, Masanori; de Voogd, Nicole J.; Maekawa, Shinya; Enomoto, Nobuyuki; Tanaka, Junichi; Moriishi, Kohji

    2015-01-01

    The current treatments of chronic hepatitis B (CHB) face a limited choice of vaccine, antibody and antiviral agents. The development of additional antiviral agents is still needed for improvement of CHB therapy. In this study, we established a screening system in order to identify compounds inhibiting the core promoter activity of hepatitis B virus (HBV). We prepared 80 extracts of marine organisms from the coral reefs of Indonesia and screened them by using this system. Eventually, two extracts showed high inhibitory activity (>95%) and low cytotoxicity (66% to 77%). Solvent fractionation, column chromatography and NMR analysis revealed that 3,5-dibromo-2-(2,4-dibromophenoxy)-phenol (compound 1) and 3,4,5-tribromo-2-(2,4-dibromophenoxy)-phenol (compound 2), which are classified as polybrominated diphenyl ethers (PBDEs), were identified as anti-HBV agents in the extracts. Compounds 1 and 2 inhibited HBV core promoter activity as well as HBV production from HepG2.2.15.7 cells in a dose-dependent manner. The EC50 values of compounds 1 and 2 were 0.23 and 0.80 µM, respectively, while selectivity indexes of compound 1 and 2 were 18.2 and 12.8, respectively. These results suggest that our cell-based HBV core promoter assay system is useful to determine anti-HBV compounds, and that two PBDE compounds are expected to be candidates of lead compounds for the development of anti-HBV drugs. PMID:26561821

  8. Identification of Antiviral Agents Targeting Hepatitis B Virus Promoter from Extracts of Indonesian Marine Organisms by a Novel Cell-Based Screening Assay.

    PubMed

    Yamashita, Atsuya; Fujimoto, Yuusuke; Tamaki, Mayumi; Setiawan, Andi; Tanaka, Tomohisa; Okuyama-Dobashi, Kaori; Kasai, Hirotake; Watashi, Koichi; Wakita, Takaji; Toyama, Masaaki; Baba, Masanori; de Voogd, Nicole J; Maekawa, Shinya; Enomoto, Nobuyuki; Tanaka, Junichi; Moriishi, Kohji

    2015-11-01

    The current treatments of chronic hepatitis B (CHB) face a limited choice of vaccine, antibody and antiviral agents. The development of additional antiviral agents is still needed for improvement of CHB therapy. In this study, we established a screening system in order to identify compounds inhibiting the core promoter activity of hepatitis B virus (HBV). We prepared 80 extracts of marine organisms from the coral reefs of Indonesia and screened them by using this system. Eventually, two extracts showed high inhibitory activity (>95%) and low cytotoxicity (66% to 77%). Solvent fractionation, column chromatography and NMR analysis revealed that 3,5-dibromo-2-(2,4-dibromophenoxy)-phenol (compound 1) and 3,4,5-tribromo-2-(2,4-dibromophenoxy)-phenol (compound 2), which are classified as polybrominated diphenyl ethers (PBDEs), were identified as anti-HBV agents in the extracts. Compounds 1 and 2 inhibited HBV core promoter activity as well as HBV production from HepG2.2.15.7 cells in a dose-dependent manner. The EC50 values of compounds 1 and 2 were 0.23 and 0.80 µM, respectively, while selectivity indexes of compound 1 and 2 were 18.2 and 12.8, respectively. These results suggest that our cell-based HBV core promoter assay system is useful to determine anti-HBV compounds, and that two PBDE compounds are expected to be candidates of lead compounds for the development of anti-HBV drugs. PMID:26561821

  9. Molecular detection of noninvasive and invasive bladder tumor tissues and exfoliated cells by aberrant promoter methylation of laminin-5 encoding genes.

    PubMed

    Sathyanarayana, Ubaradka G; Maruyama, Riichiroh; Padar, Asha; Suzuki, Makoto; Bondaruk, Jolanta; Sagalowsky, Arthur; Minna, John D; Frenkel, Eugene P; Grossman, H Barton; Czerniak, Bogdan; Gazdar, Adi F

    2004-02-15

    Laminin-5 (LN5) anchors epithelial cells to the underlying basement membrane, and it is encoded by three distinct genes: LAMA3, LAMB3, and LAMC2. To metastasize and grow, cancer cells must invade and destroy the basement membrane. Our previous work has shown that epigenetic inactivation is a major mechanism of silencing LN5 genes in lung cancers. We extended our methylation studies to resected bladder tumors (n = 128) and exfoliated cell samples (bladder washes and voided urine; n = 71) and correlated the data with clinicopathologic findings. Nonmalignant urothelium had uniform expression of LN5 genes and lacked methylation. The methylation frequencies for LN5 genes in tumors were 21-45%, and there was excellent concordance between methylation in tumors and corresponding exfoliated cells. Methylation of LAMA3 and LAMB3 and the methylation index were correlated significantly with several parameters of poor prognosis (tumor grade, growth pattern, muscle invasion, tumor stage, and ploidy pattern), whereas methylation of LAMC2 and methylation index were associated with shortened patient survival. Of particular interest, methylation frequencies of LAMA3 helped to distinguish invasive (72%) from noninvasive (12%) tumors. These results suggest that methylation of LN5 genes has potential clinical applications in bladder cancers. PMID:14973053

  10. DNA methylation-mediated silencing of matricellular protein dermatopontin promotes hepatocellular carcinoma metastasis by α3β1 integrin-Rho GTPase signaling.

    PubMed

    Fu, Ying; Feng, Ming-Xuan; Yu, Jian; Ma, Ming-Ze; Liu, Xiao-Jin; Li, Jun; Yang, Xiao-Mei; Wang, Ya-Hui; Zhang, Yan-Li; Ao, Jun-Ping; Xue, Feng; Qin, Wenxin; Gu, Jianren; Xia, Qiang; Zhang, Zhi-Gang

    2014-08-30

    Dermatopontin (DPT), a tyrosine-rich, acidic matricellular protein, has been implicated in several human cancers. However, its biological functions and molecular mechanisms in cancer progression, particular hepatocellular carcinoma (HCC), remain unknown. We demonstrated that DPT was significantly down-regulated in 202 HCC clinical samples and that its expression level was closely correlated with cancer metastasis and patient prognosis. The overexpression of DPT dramatically suppressed HCC cell migration in vitro and intrahepatic metastasis in vivo. We further revealed that the down-regulation of DPT in HCC was due to epigenetic silencing by promoter DNA methylation. And the inhibitory effects of DPT on HCC cell motility were associated with dysregulated focal adhesion assembly, decreased RhoA activity and reduced focal adhesion kinase (FAK) and c-Src tyrosine kinase (Src) phosphorylation, and all of these alterations required the involvement of integrin signaling. Furthermore, we determined that the inhibitory effects of DPT on HCC cell motility were primarily mediated through α3β1 integrin. Our study provides new evidence for epigenetic control of tumor microenvironment, and suggests matricellular protein DPT may serve as a novel prognostic marker and act as a HCC metastasis suppressor. PMID:25149533

  11. TMEM16A/ANO1 is differentially expressed in HPV-negative versus HPV-positive head and neck squamous cell carcinoma through promoter methylation

    PubMed Central

    Dixit, Ronak; Kemp, Carolyn; Kulich, Scott; Seethala, Raja; Chiosea, Simion; Ling, Shizhang; Ha, Patrick K.; Duvvuri, Umamaheswar

    2015-01-01

    Head and neck squamous cell carcinoma (HNSCC) has a variety of causes. Recently, the human papilloma virus (HPV) has been implicated in the rising incidence of oropharyngeal cancer and has led to variety of studies exploring the differences between HPV-positive and HPV-negative HNSCC. The calcium-activated chloride channel TMEM16A is overexpressed in a variety of cancers, including HNSCC, but whether or not it plays different roles in HPV-positive and HPV-negative HNSCC is unknown. Here, we demonstrate that TMEM16A is preferentially overexpressed in HPV-negative HNSCC and that this overexpression of TMEM16A is associated with decreased patient survival. We also show that TMEM16A expression is decreased in HPV-positive HNSCC at the DNA, RNA, and protein levels in patient samples as well as cell lines. We demonstrate that the lower levels of TMEM16A expression in HPV-positive tumors can be attributed to both a combination of copy number alteration and promoter methylation at the DNA level. Additionally, our cellular data show that HPV-negative cell lines are more dependent on TMEM16A for survival than HPV-positive cell lines. Therefore, we suspect that the down-regulation of TMEM16A in HPV-positive HNSCC makes TMEM16A a poor therapeutic target in HPV-positive HNSCC, but a potentially useful target in HPV-negative HNSCC. PMID:26563938

  12. Curcumin attenuates arsenic-induced hepatic injuries and oxidative stress in experimental mice through activation of Nrf2 pathway, promotion of arsenic methylation and urinary excretion.

    PubMed

    Gao, Shuang; Duan, Xiaoxu; Wang, Xin; Dong, Dandan; Liu, Dan; Li, Xin; Sun, Guifan; Li, Bing

    2013-09-01

    Oxidative stress is one of the major mechanisms implicated in inorganic arsenic poisoning. Curcumin is a natural phenolic compound with impressive antioxidant properties. What's more, curcumin is recently proved to exert its chemopreventive effects partly through the activation of nuclear factor (erythroid-2 related) factor 2 (Nrf2) and its antioxidant and phase II detoxifying enzymes. In vivo, we investigated the protective effects of curcumin against arsenic-induced hepatotoxicity and oxidative injuries. Our results showed that arsenic-induced elevation of serum alanine amino transferase (ALT) and aspartate aminotransferase (AST) activities, augmentation of hepatic malonaldehyde (MDA), as well as the reduction of blood and hepatic glutathione (GSH) levels, were all consistently relieved by curcumin. We also observed the involvement of curcumin in promoting arsenic methylation and urinary elimination in vivo. Furthermore, both the hepatic Nrf2 protein and two typically recognized Nrf2 downstream genes, NADP(H) quinine oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), were consistently up-regulated in curcumin-treated mice. Our study confirmed the antagonistic roles of curcumin to counteract inorganic arsenic-induced hepatic toxicity in vivo, and suggested that the potent Nrf2 activation capability might be valuable for the protective effects of curcumin against arsenic intoxication. This provides a potential useful chemopreventive dietary component for human populations. PMID:23871787

  13. TMEM16A/ANO1 is differentially expressed in HPV-negative versus HPV-positive head and neck squamous cell carcinoma through promoter methylation.

    PubMed

    Dixit, Ronak; Kemp, Carolyn; Kulich, Scott; Seethala, Raja; Chiosea, Simion; Ling, Shizhang; Ha, Patrick K; Duvvuri, Umamaheswar

    2015-11-13

    Head and neck squamous cell carcinoma (HNSCC) has a variety of causes. Recently, the human papilloma virus (HPV) has been implicated in the rising incidence of oropharyngeal cancer and has led to variety of studies exploring the differences between HPV-positive and HPV-negative HNSCC. The calcium-activated chloride channel TMEM16A is overexpressed in a variety of cancers, including HNSCC, but whether or not it plays different roles in HPV-positive and HPV-negative HNSCC is unknown. Here, we demonstrate that TMEM16A is preferentially overexpressed in HPV-negative HNSCC and that this overexpression of TMEM16A is associated with decreased patient survival. We also show that TMEM16A expression is decreased in HPV-positive HNSCC at the DNA, RNA, and protein levels in patient samples as well as cell lines. We demonstrate that the lower levels of TMEM16A expression in HPV-positive tumors can be attributed to both a combination of copy number alteration and promoter methylation at the DNA level. Additionally, our cellular data show that HPV-negative cell lines are more dependent on TMEM16A for survival than HPV-positive cell lines. Therefore, we suspect that the down-regulation of TMEM16A in HPV-positive HNSCC makes TMEM16A a poor therapeutic target in HPV-positive HNSCC, but a potentially useful target in HPV-negative HNSCC.

  14. Curcumin attenuates arsenic-induced hepatic injuries and oxidative stress in experimental mice through activation of Nrf2 pathway, promotion of arsenic methylation and urinary excretion.

    PubMed

    Gao, Shuang; Duan, Xiaoxu; Wang, Xin; Dong, Dandan; Liu, Dan; Li, Xin; Sun, Guifan; Li, Bing

    2013-09-01

    Oxidative stress is one of the major mechanisms implicated in inorganic arsenic poisoning. Curcumin is a natural phenolic compound with impressive antioxidant properties. What's more, curcumin is recently proved to exert its chemopreventive effects partly through the activation of nuclear factor (erythroid-2 related) factor 2 (Nrf2) and its antioxidant and phase II detoxifying enzymes. In vivo, we investigated the protective effects of curcumin against arsenic-induced hepatotoxicity and oxidative injuries. Our results showed that arsenic-induced elevation of serum alanine amino transferase (ALT) and aspartate aminotransferase (AST) activities, augmentation of hepatic malonaldehyde (MDA), as well as the reduction of blood and hepatic glutathione (GSH) levels, were all consistently relieved by curcumin. We also observed the involvement of curcumin in promoting arsenic methylation and urinary elimination in vivo. Furthermore, both the hepatic Nrf2 protein and two typically recognized Nrf2 downstream genes, NADP(H) quinine oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), were consistently up-regulated in curcumin-treated mice. Our study confirmed the antagonistic roles of curcumin to counteract inorganic arsenic-induced hepatic toxicity in vivo, and suggested that the potent Nrf2 activation capability might be valuable for the protective effects of curcumin against arsenic intoxication. This provides a potential useful chemopreventive dietary component for human populations.

  15. DNA methylation-mediated silencing of matricellular protein dermatopontin promotes hepatocellular carcinoma metastasis by α3β1 integrin-Rho GTPase signaling.

    PubMed

    Fu, Ying; Feng, Ming-Xuan; Yu, Jian; Ma, Ming-Ze; Liu, Xiao-Jin; Li, Jun; Yang, Xiao-Mei; Wang, Ya-Hui; Zhang, Yan-Li; Ao, Jun-Ping; Xue, Feng; Qin, Wenxin; Gu, Jianren; Xia, Qiang; Zhang, Zhi-Gang

    2014-08-30

    Dermatopontin (DPT), a tyrosine-rich, acidic matricellular protein, has been implicated in several human cancers. However, its biological functions and molecular mechanisms in cancer progression, particular hepatocellular carcinoma (HCC), remain unknown. We demonstrated that DPT was significantly down-regulated in 202 HCC clinical samples and that its expression level was closely correlated with cancer metastasis and patient prognosis. The overexpression of DPT dramatically suppressed HCC cell migration in vitro and intrahepatic metastasis in vivo. We further revealed that the down-regulation of DPT in HCC was due to epigenetic silencing by promoter DNA methylation. And the inhibitory effects of DPT on HCC cell motility were associated with dysregulated focal adhesion assembly, decreased RhoA activity and reduced focal adhesion kinase (FAK) and c-Src tyrosine kinase (Src) phosphorylation, and all of these alterations required the involvement of integrin signaling. Furthermore, we determined that the inhibitory effects of DPT on HCC cell motility were primarily mediated through α3β1 integrin. Our study provides new evidence for epigenetic control of tumor microenvironment, and suggests matricellular protein DPT may serve as a novel prognostic marker and act as a HCC metastasis suppressor.

  16. Development of an In Vitro Assay for Detection of Drug-Induced Resuscitation-Promoting-Factor-Dependent Mycobacteria

    PubMed Central

    Loraine, Jessica; Pu, Feifei; Turapov, Obolbek

    2016-01-01

    Tuberculosis is a major infectious disease that requires prolonged chemotherapy with a combination of four drugs. Here we present data suggesting that treatment of Mycobacterium tuberculosis, the causative agent of tuberculosis, and Mycobacterium smegmatis, a model organism widely used for the screening of antituberculosis agents, with first-line drugs resulted in the generation of substantial populations that could be recovered only by the addition of a culture supernatant from growing mycobacteria. These bacilli failed to grow in standard media, resulting in significant underestimation of the numbers of viable mycobacteria in treated samples. We generated M. smegmatis strains overexpressing M. tuberculosis resuscitation-promoting factors (Rpfs) and demonstrated their application for the detection of Rpf-dependent mycobacteria generated after drug exposure. Our data offer novel opportunities for validation of the sterilizing activity of antituberculosis agents. PMID:27503641

  17. Impaired Regulation of ALDH2 Protein Expression Revealing a Yet Unknown Epigenetic Impact of rs886205 on Specific Methylation of a Negative Regulatory Promoter Region in Alcohol-Dependent Patients.

    PubMed

    Haschemi Nassab, Mani; Rhein, Mathias; Hagemeier, Lars; Kaeser, Marius; Muschler, Marc; Glahn, Alexander; Pich, Andreas; Heberlein, Annemarie; Kornhuber, Johannes; Bleich, Stefan; Frieling, Helge; Hillemacher, Thomas

    2016-01-01

    Acetaldehyde, the carcinogenic metabolite of ethanol known to provoke aversive symptoms of alcohol consumption, is predominantly eliminated by aldehyde dehydrogenase 2 (ALDH2). Reduced ALDH2 activity correlates with low alcohol tolerance and low risk for alcohol dependence. The ALDH2 promoter polymorphism rs886205 (A>G) is associated with decreased promoter activity, but a molecular mechanism and allele-dependent ALDH2 protein expression has not been described yet. On the basis of allele-dependent epigenetic effects, we analyzed the rs886205 genotype, methylation rates of cytosine-phosphatidyl-guanine (CpG)-sites within a regulatory promoter region and ALDH2 protein levels in 82 alcohol-dependent patients during a 2-week withdrawal and compared them to 34 matched controls. Patients without the G-allele of rs886205 showed higher methylation of the promoter region than controls and readily adapted epigenetically as well as on protein level during withdrawal, while patients with the G-allele displayed retarded methylation readjustment and no change in ALDH2 protein levels. Our data provide novel insights into an unknown genetic-epigenetic interaction, revealing impaired ALDH2 protein expression in patients with the G-allele of rs886205. Additionally, we checked for an association between rs886205 and protection against alcohol dependence and found a trend association between the G-allele and protection against alcohol dependence that needs replication in a larger Caucasian cohort. PMID:26339786

  18. In vitro tRNA methylation assay with the Entamoeba histolytica DNA and tRNA methyltransferase Dnmt2 (Ehmeth) enzyme.

    PubMed

    Tovy, Ayala; Hofmann, Benjamin; Helm, Mark; Ankri, Serge

    2010-01-01

    Protozoan parasites are among the most devastating infectious agents of humans responsible for a variety of diseases including amebiasis, which is one of the three most common causes of death from parasitic disease. The agent of amebiasis is the amoeba parasite Entamoeba histolytica that exists under two stages: the infective cyst found in food or water and the invasive trophozoite living in the intestine. The clinical manifestations of amebiasis range from being asymptomatic to colitis, dysentery or liver abscesses. E. histolytica is one of the rare unicellular parasite with 5-methylcytosine (5mC) in its genome. It contains a single DNA methyltransferase, Ehmeth, that belongs to the Dnmt2 family. A role for Dnmt2 in the control of repetitive elements has been established in E. histolytica, Dictyostelium discoideum and Drosophila. Our recent work has shown that Ehmeth methylates tRNA(Asp), and this finding indicates that this enzyme has a dual DNA/tRNA(Asp) methyltransferase activity. This observation is in agreement with the dual activity that has been reported for D. discoideum and D. melanogaster. The functional significance of the DNA/tRNA specificity of Dnmt2 enzymes is still unknown. To address this question, a method to determine the tRNA methyltransferase activity of Dnmt2 proteins was established. In this video, we describe a straightforward approach to prepare an adequate tRNA substrate for Dnmt2 and a method to measure its tRNA methyltransferase activity. PMID:21048666

  19. EWS Knockdown and Taxifolin Treatment Induced Differentiation and Removed DNA Methylation from p53 Promoter to Promote Expression of Puma and Noxa for Apoptosis in Ewing’s Sarcoma

    PubMed Central

    Hossain, Mohammad Motarab; Ray, Swapan Kumar

    2016-01-01

    Ewing’s sarcoma is a pediatric tumor that mainly occurs in soft tissues and bones. Malignant characteristics of Ewing’s sarcoma are correlated with expression of EWS oncogene. We achieved knockdown of EWS expression using a plasmid vector encoding EWS short hairpin RNA (shRNA) to increase anti-tumor mechanisms of taxifolin (TFL), a new flavonoid, in human Ewing’s sarcoma cells in culture and animal models. Immunofluorescence microscopy and flow cytometric analysis showed high expression of EWS in human Ewing’s sarcoma SK-N-MC and RD-ES cell lines. EWS shRNA plus TFL inhibited 80% cell viability and caused the highest decreases in EWS expression at mRNA and protein levels in both cell lines. Knockdown of EWS expression induced morphological features of differentiation. EWS shRNA plus TFL caused more alterations in molecular markers of differentiation than either agent alone. EWS shRNA plus TFL caused the highest decreases in cell migration with inhibition of survival, angiogenic and invasive factors. Knockdown of EWS expression was associated with removal of DNA methylation from p53 promoter, promoting expression of p53, Puma, and Noxa. EWS shRNA plus TFL induced the highest amounts of apoptosis with activation of extrinsic and intrinsic pathways in both cell lines in culture. EWS shRNA plus TFL also inhibited growth of Ewing’s sarcoma tumors in animal models due to inhibition of differentiation inhibitors and angiogenic and invasive factors and also induction of activation of caspase-3 for apoptosis. Collectively, knockdown of EWS expression increased various anti-tumor mechanisms of TFL in human Ewing’s sarcoma in cell culture and animal models. PMID:27547487

  20. A CPG ISLAND AT THE PROMOTER OF THE PDE8B GENE IS METHYLATED IN PLACENTA AND HYDATIDIFORM MOLES, BUT NOT IN CONTROL DNA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: We used a genome-wide CpG methylation screen, restriction landmark genome scanning (RLGS) to identify CpG islands that have altered methylation in complete hydatidiform moles (CHM), compared to control genomic DNA. Because CHM are diploid, but of uniparental parental inheritance and uniq...