Science.gov

Sample records for promoter methylation assayed

  1. Gene promoter methylation assayed in exhaled breath, with differences in smokers and lung cancer patients

    PubMed Central

    2009-01-01

    Background There is a need for new, noninvasive risk assessment tools for use in lung cancer population screening and prevention programs. Methods To investigate the technical feasibility of determining DNA methylation in exhaled breath condensate, we applied our previously-developed method for tag-adapted bisulfite genomic DNA sequencing (tBGS) for mapping of DNA methylation, and adapted it to exhaled breath condensate (EBC) from lung cancer cases and non-cancer controls. Promoter methylation patterns were analyzed in DAPK, RASSF1A and PAX5β promoters in EBC samples from 54 individuals, comprised of 37 controls [current- (n = 19), former- (n = 10), and never-smokers (n = 8)] and 17 lung cancer cases [current- (n = 5), former- (n = 11), and never-smokers (n = 1)]. Results We found: (1) Wide inter-individual variability in methylation density and spatial distribution for DAPK, PAX5β and RASSF1A. (2) Methylation patterns from paired exhaled breath condensate and mouth rinse specimens were completely divergent. (3) For smoking status, the methylation density of RASSF1A was statistically different (p = 0.0285); pair-wise comparisons showed that the former smokers had higher methylation density versus never smokers and current smokers (p = 0.019 and p = 0.031). For DAPK and PAX5β, there was no such significant smoking-related difference. Underlying lung disease did not impact on methylation density for this geneset. (4) In case-control comparisons, CpG at -63 of DAPK promoter and +52 of PAX5β promoter were significantly associated with lung cancer status (p = 0.0042 and 0.0093, respectively). After adjusting for multiple testing, both loci were of borderline significance (padj = 0.054 and 0.031). (5) The DAPK gene had a regional methylation pattern with two blocks (1)~-215~-113 and (2) -84 ~+26); while similar in block 1, there was a significant case-control difference in methylation density in block 2 (p = 0.045); (6)Tumor stage and histology did not impact on the

  2. Promoter methylation in the PTCH gene in cervical epithelial cancer and ovarian cancer tissue as studied by eight novel Pyrosequencing® assays.

    PubMed

    Löf-Öhlin, Zarah M; Levanat, Sonja; Sabol, Maja; Sorbe, Bengt; Nilsson, Torbjörn K

    2011-03-01

    DNA methylation status in the CpG sites of promoter regions in cancer-related genes, such as PTCH, has traditionally been investigated using either dye-terminator sequencing or methylation-specific PCR. We aimed to study the PTCH gene promoter methylation in gynecological cancers, with a method that gives a quantitative measure of the methylation status of the promoter region of the studied gene, and for this purpose, we designed novel Pyrosequencing-based assays. Bisulfite-treated genomic DNA (bsDNA) was amplified by standard PCR and applied to novel Pyrosequencing® assays, in order to measure the methylated fraction (%) at each CpG site of the PTCH gene promoter. We analyzed 22 squamous cell cervical cancer tissue specimens (11 with good and 11 with poor outcomes after radiotherapy) and 5 ovarian cancer tissue specimens matched with 5 normal ovarian tissue specimens. Six optimized PCR protocols which generated 8 Pyrosequencing assays covering 63 CpG sites in the promoter regions 1 and 2 as well as the previously unanalyzed promoter region 3 in the PTCH gene were developed. The 27 tumor tissue specimens and 5 normal tissues did not show any methylation within any of the 63 CpG sites. Our data suggest that methylation of the PTCH promoter is not a high-prevalence feature of squamous cell cervical cancer or ovarian cancer, but Pyrosequencing assays are a good method for studying promoter methylation.

  3. Detection of p16INK4a promoter methylation status in non-small cell lung cancer by a fluorescence polarization assay.

    PubMed

    Song, Zujun; Zhou, Rongbin; Li, Ding; Chen, Yanan; Liang, Ping; Liu, Wenchao; Zhang, Ju

    2011-09-01

    The detection of the p16INK4a promoter methylation status has a good value for the prognosis, early detection, and individualized management of patients with non-small cell lung cancer. A novel method detecting the p16INK4a promoter methylation status of primary carcinoma tissue samples by a fluorescence polarization assay was developed in this research. A pair of general primers was used to amplify a 305-basepair fragment in the promoter region of p16INK4a. Two probes specific for either methylated p16INK4a or unmethylated p16INK4a DNA labeled with either tetramethyl 6-carboxyrhodamine or 6-carboxy-fluorescein hybridized, respectively, with their target amplicons, and the hybridization increased the fluorescence polarization values. The p16INK4a promoter methylation status was determined by the analysis of the fluorescence polarization values. One hundred and twenty-nine non-small cell lung cancer samples were analyzed in parallel with a fluorescence polarization assay and a gel-based methylation-specific polymerase chain reaction (PCR) assay. There was no significant difference between the results of the p16INK4a promoter methylation status obtained with the fluorescence polarization assay and the results obtained with the gel-based methylation-specific PCR assay. The minimum detection level of the fluorescence polarization assay was 25 copies/μL. The fluorescence polarization assay allowed the semiautomated detection of the methylated p16INK4a and unmethylated p16INK4a promoters directly in the solution with 1 PCR cycle, and it was much simpler than methylation-specific PCR and methylation-specific multiplex ligation-dependent probe amplification assays.

  4. In vitro Assays of Inorganic Arsenic Methylation

    PubMed Central

    Drobna, Zuzana; Styblo, Miroslav; Thomas, David J.

    2009-01-01

    Inorganic arsenic is extensively metabolized to produce mono-, di-, and trimethylated products. The formation of these metabolites produces a variety of intermediates that differ from inorganic arsenic in terms of patterns of distribution and retention and in toxic effects. In order to elucidate the pathway for arsenic methylation, it was necessary to develop a reliable in vitro assay system in which the formation of methylated metabolites could be monitored. Here, in vitro assay system that uses the postmicrosomal supernate from rat liver is used as the source of the enzymatic activity that catalyzes methylation reactions. This system can be used to study the requirements for methylation reactions (e.g., identifying the donor of methyl groups) and for screening of compounds as potential activators or inhibitors of arsenic methylation. PMID:20440380

  5. Detection of MGMT promoter methylation in glioblastoma using pyrosequencing.

    PubMed

    Xie, Hao; Tubbs, Raymond; Yang, Bin

    2015-01-01

    Recent clinical trials on patients with glioblastoma revealed that O6-Methylguanine-DNA methyltransferase (MGMT) methylation status significantly predicts patient's response to alkylating agents. In this study, we sought to develop and validate a quantitative MGMT methylation assay using pyrosequencing on glioblastoma. We quantified promoter methylation of MGMT using pyrosequencing on paraffin-embedded fine needle aspiration biopsy tissues from 43 glioblastoma. Using a 10% cutoff, MGMT methylation was identified in 37% cases of glioblastoma and 0% of the non-neoplastic epileptic tissue. Methylation of any individual CpG island in MGMT promoter ranged between 33% and 95%, with a mean of 65%. By a serial dilution of genomic DNA of a homogenously methylated cancer cell line with an unmethylated cell line, the analytical sensitivity is at 5% for pyrosequencing to detect MGMT methylation. The minimal amount of genomic DNA required is 100 ng (approximately 3,000 cells) in small fine needle biopsy specimens. Compared with methylation-specific PCR, pyrosequencing is comparably sensitive, relatively specific, and also provides quantitative information for each CpG methylation.

  6. Detection of MGMT promoter methylation in glioblastoma using pyrosequencing.

    PubMed

    Xie, Hao; Tubbs, Raymond; Yang, Bin

    2015-01-01

    Recent clinical trials on patients with glioblastoma revealed that O(6)-Methylguanine-DNA methyltransferase (MGMT) methylation status significantly predicts patient's response to alkylating agents. In this study, we sought to develop and validate a quantitative MGMT methylation assay using pyrosequencing on glioblastoma. We quantified promoter methylation of MGMT using pyrosequencing on paraffin-embedded fine needle aspiration biopsy tissues from 43 glioblastoma. Using a 10% cutoff, MGMT methylation was identified in 37% cases of glioblastoma and 0% of the non-neoplastic epileptic tissue. Methylation of any individual CpG island in MGMT promoter ranged between 33% and 95%, with a mean of 65%. By a serial dilution of genomic DNA of a homogenously methylated cancer cell line with an unmethylated cell line, the analytical sensitivity is at 5% for pyrosequencing to detect MGMT methylation. The minimal amount of genomic DNA required is 100 ng (approximately 3,000 cells) in small fine needle biopsy specimens. Compared with methylation-specific PCR, pyrosequencing is comparably sensitive, relatively specific, and also provides quantitative information for each CpG methylation.

  7. DNA methylation profiling using the methylated-CpG island recovery assay (MIRA).

    PubMed

    Rauch, Tibor A; Pfeifer, Gerd P

    2010-11-01

    The methylated-CpG island recovery assay (MIRA) exploits the intrinsic specificity and the high affinity of a methylated-CpG-binding protein complex (MBD2B and MBD3L1) to methylated CpG dinucleotides in genomic DNA. The MIRA approach works on double-stranded DNA and does not depend on the application of methylation-sensitive restriction enzymes. It can be performed on a few hundred nanograms of genomic DNA. Recently, the MIRA technique has been used to profile DNA methylation patterns at a resolution of 100 base pairs along the entire genome of normal human B-lymphocytes. The MIRA method is compatible with microarray and next generation DNA sequencing approaches. We describe the principles and details of this method applied for methylation profiling of genomes containing methylated CpG sequences.

  8. Prognostic Relevance of Tumor Purity and TERT Promoter Mutations on MGMT Promoter Methylation in Glioblastoma.

    PubMed

    Schulze Heuling, Eva; Knab, Felix; Radke, Josefine; Eskilsson, Eskil; Martinez-Ledesma, Emmanuel; Koch, Arend; Czabanka, Marcus; Dieterich, Christoph; Verhaak, Roel G; Harms, Christoph; Euskirchen, Philipp

    2017-02-01

    Promoter methylation status of O-6-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme, is a critical biomarker in glioblastoma multiforme (GBM) as treatment decisions and clinical trial inclusion rely on its accurate assessment. However, interpretation of results is complicated by poor inter-assay reproducibility as well as weak a correlation between methylation status and expression levels of MGMT. The present study systematically investigates the influence of tumor purity on tissue subjected to MGMT analysis. A quantitative, allele-specific real-time PCR (qAS-PCR) assay was developed to determine genotype and mutant allele frequency of telomerase promoter (pTERT) mutations as a direct measure of tumor purity. We studied tumor purity, pTERT mutation by Sanger sequencing, MGMT methylation by pyrosequencing, IDH1 mutation status, and clinical parameters in a cohort of high-grade gliomas (n=97). The qAS-PCR reliably predicted pTERT genotype and tumor purity compared with independent methods. Tumor purity positively and significantly correlated with the extent of methylation in MGMT methylated GBMs. Extent of MGMT methylation differed significantly with respect to pTERT mutation hotspot (C228T vs. C250T). Interestingly, frontal lobe tumors showed greater tumor purity than those in other locations. Above all, tumor purity was identified as an independent prognostic factor in GBM. In conclusion, we determined mutual associations of tumor purity with MGMT methylation and pTERT mutations and found that the extent of MGMT methylation reflects tumor purity. In turn, tumor purity is prognostic in IDH1 wildtype GBM.

  9. A colorimetric assay for determination of methyl parathion using recombinant methyl parathion hydrolase.

    PubMed

    Anh, Dau Hung; Cheunrungsikul, Kritsananporn; Wichitwechkarn, Jesdawan; Surareungchai, Werasak

    2011-05-01

    A simple, rapid and sensitive colorimetric dipstick assay for the detection of the organophosphorous insecticide methyl parathion (MPT) residue in vegetables was developed. The assay was based on the hydrolysis of MPT by a recombinant methyl parathion hydrolase (recMPH), the encoding gene of which was isolated from Burkholderia cepacia, a soil bacterium indigenous to Thailand. This reaction generates protons leading to a change in pH that correlates with the amount of MPH present. Hence, the pH indicator bromothymol blue was used to monitor the MPH hydrolysis as the associated color changes can be observed by the naked eye. The recMPH was immobilized on a PVDF membrane to establish a dipstick assay format. The assays could detect MPT residues in spiked vegetable samples at the concentration of 1 mg/L without using analytical instrumentation. The test is reusable and stable for up to 3 months in the absence of any preservatives.

  10. Deoxyribonucleic acid (DNA) methyltransferase contributes to p16 promoter CpG island methylation in lung adenocarcinoma with smoking.

    PubMed

    Sun, Rongju; Liu, Jiahong; Wang, Bo; Ma, Lingyun; Quan, Xiaojiao; Chu, Zhixiang; Li, Tanshi

    2015-01-01

    In this study, the relationship between CpG island methylation and smoking and DNA methyltransferase in the occurrence and development of lung adenocarcinoma was explored by detecting p16 promoter methylation status. Protein and mRNA levels of p16 were detected by immunohistochemistry and in situ hybridization assays. p16 gene promoter and exon 1 CpG island locus Hap II sites methylation status was analyzed with the methylation-specific PCR. Only 4 of 40 p16-positive cases were detected to methylate on CpG islands with 10% methylating rate whereas 18 of p16-negative cases were methylated up to 36.73% of methylating rate. The methylating rates of both p16-positive and p16-negative groups were significantly different. 17 of 50 cases with smoking from total 89 lung adenocarcinoma cases were detected to methylate on CpG islands while only 5 of the remaining 39 non-smokers to methylate. The difference of the methylating rates in both smokers and non-smokers was significant to suggest the closely association of CpG island methylation of p16 with smoking. Furthermore, p16 promoter CpG islands were detected to methylate in 15 of 35 cases with higher DNA methyltransferase activity whereas only 7 detected to methylate in the remaining 54 cases with lower DNA methyltransferase activity. p16 promoter CpG island methylation likely made p16 expressing silence thus contributed to the tumorigenesis of lung adenocarcinoma. Smoking is likely to promote p16 CpG island methylation or by its effect of the activity and metabolism of DNA methyltransferase 1 (DNMT) on CpG island methylation status.

  11. Clinical effect of DAPK promoter methylation in gastric cancer

    PubMed Central

    Jia, Wenzhuo; Yu, Tao; Cao, Xianglong; An, Qi; Yang, Hua

    2016-01-01

    Abstract Background: The loss of death-associated protein kinase (DAPK) gene expression through promoter methylation is involved in many tumors. However, the relationship between DAPK promoter methylation and clinicopathological features of gastric cancer (GC) remains to be done. Therefore, we performed a meta-analysis to assess the role of DAPK promoter methylation in GC. Methods: Literature databases were searched to retrieve eligible studies. The pooled odds ratios (ORs) with its 95% confidence intervals (CIs) were calculated using the Stata 12.0 software. Results: Final 22 available studies with 1606 GC patients and 1508 nonmalignant controls were analyzed. A significant correlation was found between DAPK promoter methylation and GC (OR = 3.23, 95% CI = 1.70–6.14, P < 0.001), but we did not find any significant association in Caucasian population, and in blood samples in subgroup analyses. DAPK promoter methylation was associated with tumor stage and lymph node status (OR = 0.69, 95% CI = 0.49–0.96, P = 0.03; OR = 1.50, 95% CI = 1.12–2.01, P = 0.007; respectively). However, we did not find that DAPK promoter methylation was associated with gender status and tumor histology. Conclusion: Our findings suggested that DAPK promoter methylation may play a key role in the carcinogenesis and progression of GC. In addition, methylated DAPK was a susceptible gene for Asian population. However, more studies with larger subjects should be done to further evaluate the effect of DAPK promoter methylation in GC patients, especially in blood and Caucasian population subgroup. PMID:27787359

  12. Sequential gene promoter methylation during HPV-induced cervical carcinogenesis.

    PubMed

    Henken, F E; Wilting, S M; Overmeer, R M; van Rietschoten, J G I; Nygren, A O H; Errami, A; Schouten, J P; Meijer, C J L M; Snijders, P J F; Steenbergen, R D M

    2007-11-19

    We aimed to link DNA methylation events occurring in cervical carcinomas to distinct stages of HPV-induced transformation. Methylation specific-multiplex ligation-dependent probe amplification (MS-MLPA) analysis of cervical carcinomas revealed promoter methylation of 12 out of 29 tumour suppressor genes analysed, with MGMT being most frequently methylated (92%). Subsequently, consecutive stages of HPV16/18-transfected keratinocytes (n=11), ranging from pre-immortal to anchorage-independent phenotypes, were analysed by MS-MLPA. Whereas no methylation was evident in pre-immortal cells, progression to anchorage independence was associated with an accumulation of frequent methylation events involving five genes, all of which were also methylated in cervical carcinomas. TP73 and ESR1 methylation became manifest in early immortal cells followed by RARbeta and DAPK1 methylation in late immortal passages. Complementary methylation of MGMT was related to anchorage independence. Analysis of nine cervical cancer cell lines, representing the tumorigenic phenotype, revealed in addition to these five genes frequent methylation of CADM1, CDH13 and CHFR. In conclusion, eight recurrent methylation events in cervical carcinomas could be assigned to different stages of HPV-induced transformation. Hence, our in vitro model system provides a valuable tool to further functionally address the epigenetic alterations that are common in cervical carcinomas.

  13. Sequential gene promoter methylation during HPV-induced cervical carcinogenesis

    PubMed Central

    Henken, F E; Wilting, S M; Overmeer, R M; van Rietschoten, J G I; Nygren, A O H; Errami, A; Schouten, J P; Meijer, C J L M; Snijders, P J F; Steenbergen, R D M

    2007-01-01

    We aimed to link DNA methylation events occurring in cervical carcinomas to distinct stages of HPV-induced transformation. Methylation specific-multiplex ligation-dependent probe amplification (MS-MLPA) analysis of cervical carcinomas revealed promoter methylation of 12 out of 29 tumour suppressor genes analysed, with MGMT being most frequently methylated (92%). Subsequently, consecutive stages of HPV16/18-transfected keratinocytes (n=11), ranging from pre-immortal to anchorage-independent phenotypes, were analysed by MS-MLPA. Whereas no methylation was evident in pre-immortal cells, progression to anchorage independence was associated with an accumulation of frequent methylation events involving five genes, all of which were also methylated in cervical carcinomas. TP73 and ESR1 methylation became manifest in early immortal cells followed by RARβ and DAPK1 methylation in late immortal passages. Complementary methylation of MGMT was related to anchorage independence. Analysis of nine cervical cancer cell lines, representing the tumorigenic phenotype, revealed in addition to these five genes frequent methylation of CADM1, CDH13 and CHFR. In conclusion, eight recurrent methylation events in cervical carcinomas could be assigned to different stages of HPV-induced transformation. Hence, our in vitro model system provides a valuable tool to further functionally address the epigenetic alterations that are common in cervical carcinomas. PMID:17971771

  14. A significant association between BDNF promoter methylation and the risk of drug addiction.

    PubMed

    Xu, Xuting; Ji, Huihui; Liu, Guili; Wang, Qinwen; Liu, Huifen; Shen, Wenwen; Li, Longhui; Xie, Xiaohu; Zhou, Wenhua; Duan, Shiwei

    2016-06-10

    As a member of the neurotrophic factor family, brain derived neurotrophic factor (BDNF) plays an important role in the survival and differentiation of neurons. The aim of our work was to evaluate the role of BDNF promoter methylation in drug addiction. A total of 60 drug abusers (30 heroin and 30 methylamphetamine addicts) and 52 healthy age- and gender-matched controls were recruited for the current case control study. Bisulfite pyrosequencing technology was used to determine the methylation levels of five CpGs (CpG1-5) on the BDNF promoter. Among the five CpGs, CpG5 methylation was significantly lower in drug abusers than controls. Moreover, significant associations were found between CpG5 methylation and addictive phenotypes including tension-anxiety, anger-hostility, fatigue-inertia, and depression-dejection. In addition, luciferase assay showed that the DNA fragment of BDNF promoter played a key role in the regulation of gene expression. Our results suggest that BDNF promoter methylation is associated with drug addiction, although further studies are needed to understand the mechanisms by which BDNF promoter methylation contributes to the pathophysiology of drug addiction.

  15. GPER Promoter Methylation Controls GPER Expression in Breast Cancer Patients.

    PubMed

    Weissenborn, Christine; Ignatov, Tanja; Nass, Norbert; Kalinski, Thomas; Dan Costa, Serban; Zenclussen, Ana Claudia; Ignatov, Atanas

    2017-02-07

    Recently, we found that G-protein-coupled estrogen receptor (GPER) protein expression decreased during breast carcinogenesis, and that GPER promoter is methylated. Here we analyzed GPER promoter methylation in 260 primary breast cancer specimens by methylation-specific polymerized chain reaction. The results demonstrated that GPER protein down-regulation significantly correlated with GPER promoter hypermethylation (p < .001). Comparison of 108 tumors and matched normal breast tissues indicated a significant GPER down-regulation in cancer tissues correlating with GPER promoter hypermethylation (p < .001). The latter was an unfavorable factor for overall survival of patients with triple-negative breast cancer (p = .025). Thus GPER promoter hypermethylation might be used as a prognostic factor.

  16. EGFR Promoter Methylation, EGFR Mutation, and HPV Infection in Chinese Cervical Squamous Cell Carcinoma.

    PubMed

    Zhang, Wei; Jiang, Yinghao; Yu, Qingmiao; Qiang, Shaoying; Liang, Ping; Gao, Yane; Zhao, Xingye; Liu, Wenchao; Zhang, Ju

    2015-10-01

    Therapy strategy toward epidermal growth factor receptor (EGFR) inhibition in cervical cancer has been ongoing. EGFR promoter methylation status and EGFR tyrosine kinase inhibitor-sensitive mutations in cervical cancer may be significant for clinical outcome prediction using anti-EGFR treatment. In this study, EGFR tyrosine kinase inhibitor-sensitive mutations, EGFR exons 18, 19, and 21 mutations, were detected by sequencing in a total of 293 Chinese cervical squamous cell carcinoma tissue samples. EGFR promoter methylation status was detected by an EGFR asymmetric PCR and hybridization-fluorescence polarization assay and sequencing in 293 Chinese cervical squamous cell carcinoma tissue samples. High-risk human papillomavirus (HPV) genotypes in 293 Chinese cervical squamous cell carcinoma tissue samples were detected by an asymmetric GP5+/6+ PCR and hybridization-fluorescence polarization assay. No EGFR exons 18, 19, and 21 mutations were detected, EGFR promoter methylation status was identified in 98 samples, and HPV 16 infection was the first frequent HPV genotype. The methylated EGFR promoter was identified most frequently in cervical squamous cell carcinoma samples with HPV 16 infection (53.4%). Statistical significant difference of EGFR promoter methylation prevalence was found between HPV 16 and other HPV genotypes (P<0.01). This study suggested that there was no EGFR tyrosine kinase inhibitor-sensitive mutation in EGFR exons 18, 19, and 21 in Chinese cervical squamous cell carcinoma tissue samples. EGFR promoter methylation was common and it might be associated with HPV 16 infection in Chinese cervical squamous cell carcinoma. The results provided a novel understanding and an applicable pharmacogenomic tool for individualized management of cervical cancer patients.

  17. A novel real-time PCR assay for quantitative analysis of methylated alleles (QAMA): analysis of the retinoblastoma locus.

    PubMed

    Zeschnigk, Michael; Böhringer, Stefan; Price, Elizabeth Ann; Onadim, Zerrin; Masshöfer, Lars; Lohmann, Dietmar R

    2004-09-07

    Altered methylation patterns have been found to play a role in developmental disorders, cancer and aging. Increasingly, changes in DNA methylation are used as molecular markers of disease. Therefore, there is a need for reliable and easy to use techniques to detect and measure DNA methylation in research and routine diagnostics. We have established a novel quantitative analysis of methylated alleles (QAMA) which is essentially a major improvement over a previous method based on real-time PCR (MethyLight). This method is based on real-time PCR on bisulfite-treated DNA. A significant advantage over conventional MethyLight is gained by the use of TaqMan probes based on minor groove binder (MGB) technology. Their improved sequence specificity facilitates relative quantification of methylated and unmethylated alleles that are simultaneously amplified in single tube. This improvement allows precise measurement of the ratio of methylated versus unmethylated alleles and cuts down potential sources of inter-assay variation. Therefore, fewer control assays are required. We have used this novel technical approach to identify hypermethylation of the CpG island located in the promoter region of the retinoblastoma (RB1) gene and found that QAMA facilitates reliable and fast measurement of the relative quantity of methylated alleles and improves handling of diagnostic methylation analysis. Moreover, the simplified reaction setup and robustness inherent to the single tube assay facilitates high-throughput methylation analysis. Because the high sequence specificity inherent to the MGB technology is widely used to discriminate single nucleotide polymorphisms, QAMA potentially can be used to discriminate the methylation status of single CpG dinucleotides.

  18. SHISA3 Promoter Methylation Is a Potential Diagnostic and Prognostic Biomarker for Laryngeal Squamous Cell Carcinoma

    PubMed Central

    Zhou, Chongchang; Li, Jinyun; Ye, Dong; Deng, Hongxia; Cao, Bin; Hao, Wenjuan; Lin, Lexi

    2017-01-01

    The purpose of this study was to evaluate the contribution of SHISA3 promoter methylation to laryngeal squamous cell carcinoma (LSCC). SHISA3 promoter methylation status and expression were determined using methylation-specific polymerase chain reaction (MSP) and quantitative real-time PCR (qRT-PCR) in 93 paired LSCC and adjacent normal tissues, respectively. Furthermore, the regulatory function of the SHISA3 promoter fragment was analyzed using a luciferase reporter assay. The results reveal that there is a significant increase in SHISA3 methylation in LSCC tissues compared with corresponding nontumor tissues (P = 4.58E − 12). The qRT-PCR results show a significant association between SHISA3 methylation and expression in LSCC (P = 1.67E − 03). In addition, the area under the receiver operating characteristic curve was 0.91. Consequently, a log-rank test and multivariate Cox analysis suggest that SHISA3 promoter hypermethylation is a predictor of poor overall survival for LSCC (log-rank P = 0.024; HR = 2.71; 95% CI = 1.024–7.177; P = 0.047). The results indicate that SHISA3 promoter hypermethylation might increase the risk of LSCC through regulation of gene expression and is a potential diagnostic and prognostic biomarker for LSCC. PMID:28299336

  19. Correlation between quantified promoter methylation and enzymatic activity of O6-methylguanine-DNA methyltransferase in glioblastomas.

    PubMed

    Kishida, Yugo; Natsume, Atsushi; Toda, Hiroshi; Toi, Yuki; Motomura, Kazuya; Koyama, Hiroko; Matsuda, Keiji; Nakayama, Osamu; Sato, Makoto; Suzuki, Masaaki; Kondo, Yutaka; Wakabayashi, Toshihiko

    2012-04-01

    The DNA repair protein O (6)-methylguanine-DNA methyltransferase (MGMT, AGT) is a determinant of the resistance of tumor cells to alkylating anticancer agents that target the O(6) position of guanine. MGMT promoter methylation in tumors is regarded as the most common predictor of the responsiveness of glioblastoma to alkylating agents. However, MGMT promoter methylation status has been investigated mainly by methylation-specific PCR, which is a qualitative and subjective assay. In addition, the actual enzymatic activities associated with the methylation status of MGMT have not been explored. In the present study, MGMT promoter methylation in glioblastomas was quantified by bisulfite pyrosequencing, and its correlation with enzymatic activity was determined using a novel quantitative assay for studying the functional activity of MGMT. MGMT enzymatic activity was assessed using fluorometrically labeled oligonucleotide substrates containing MGMT-specific DNA lesions and capillary electrophoresis to detect and quantify these lesions. In comparison with existing traditional assays, this assay was equally sensitive but less time consuming and easier to perform. MGMT promoter methylation was assessed in 41 glioblastomas by bisulfite pyrosequencing, and five samples with different values were chosen for comparison with enzymatic assays. Bisulfite pyrosequencing using primers designed to work in the upstream promoter regions of MGMT demonstrated high quantitative capability and reproducibility in triplicate measurements. In comparative studies, MGMT promoter methylation values obtained by bisulfite pyrosequencing were inversely proportional to the measured enzymatic activity. The present results indicate that the quantification of MGMT methylation by bisulfite pyrosequencing represents its enzymatic activity and thus, its therapeutic responsiveness to alkylating agents.

  20. Outcome in unresectable glioblastoma: MGMT promoter methylation makes the difference.

    PubMed

    Thon, Niklas; Thorsteinsdottir, Jun; Eigenbrod, Sabina; Schüller, Ulrich; Lutz, Jürgen; Kreth, Simone; Belka, Claus; Tonn, Jörg-Christian; Niyazi, Maximilian; Kreth, Friedrich Wilhelm

    2017-02-01

    In 2011, we reported a predominant prognostic/predictive role of MGMT promoter methylation status on progression-free survival (PFS) in unresectable glioblastoma patients undergoing upfront radiotherapy plus concomitant and maintenance temozolomide (RTX/TMZ → TMZ). We, here, present the final results of this prospective study focussing on the prognostic/predictive value of MGMT promoter methylation status for death risk stratification. Overall, 56 adult patients with unresectable, biopsy proven glioblastoma were prospectively assigned to upfront RTX/TMZ → TMZ treatment between March 2006 and August 2008. Last follow-up was performed in June 2016. MGMT promoter methylation was determined using methylation-specific PCR (MSP) and sodium bisulfite sequencing. Analyses were done by intention to treat. Prognostic factors were obtained from proportional hazard models. At the time of the final analysis 55 patients showed progressive disease and 53 patients had died. MGMT promoter was methylated (unmethylated) in 30 (26) patients. Methylation of the MGMT promoter was the strongest favorable predictor for overall survival (OS, median: 20.3 vs. 7.3 months, p < 0.001, HR 0.30, 95% CI 0.16-0.55), and PFS (median: 15.0 vs. 6.1 months, p < 0.001, HR 0.31, 95% CI 0.17-0.57) and was also associated with higher frequencies of treatment response and prolonged post-recurrence survival (PRS, median: 4.5 vs. 1.4 months, p < 0.002, HR 0.39, 95% CI 0.21-0.71). Knowledge of MGMT promoter methylation status is essential for patients' counseling, prognostic evaluation, and for the design of future trials dealing with unresectable glioblastomas.

  1. Evaluation of Colorimetric Assays for Analyzing Reductively Methylated Proteins: Biases and Mechanistic Insights

    PubMed Central

    Brady, Pamlea N.; Macnaughtan, Megan A.

    2015-01-01

    Colorimetric protein assays, such as the Coomassie blue G-250 dye-binding (Bradford) and bicinchoninic acid (BCA) assays, are commonly used to quantify protein concentration. The accuracy of these assays depends on the amino acid composition. Because of the extensive use of reductive methylation in the study of proteins and the importance of biological methylation, it is necessary to evaluate the impact of lysyl methylation on the Bradford and BCA assays. Unmodified and reductively methylated proteins were analyzed using the absorbance at 280 nm to standardize the concentrations. Using model compounds, we demonstrate that the dimethylation of lysyl ε-amines does not affect the proteins’ molar extinction coefficients at 280 nm. For the Bradford assay, the response (absorbance per unit concentration) of the unmodified and reductively methylated proteins were similar with a slight decrease in the response upon methylation. For the BCA assay, the responses of the reductively methylated proteins were consistently higher, overestimating the concentrations of the methylated proteins. The enhanced color-formation in the BCA assay may be due to the lower acid dissociation constants of the lysyl ε-dimethylamines, compared to the unmodified ε-amine, favoring Cu(II) binding in biuret-like complexes. The implications for the analysis of biologically methylated samples are discussed. PMID:26342307

  2. Evaluation of colorimetric assays for analyzing reductively methylated proteins: Biases and mechanistic insights.

    PubMed

    Brady, Pamlea N; Macnaughtan, Megan A

    2015-12-15

    Colorimetric protein assays, such as the Coomassie blue G-250 dye-binding (Bradford) and bicinchoninic acid (BCA) assays, are commonly used to quantify protein concentration. The accuracy of these assays depends on the amino acid composition. Because of the extensive use of reductive methylation in the study of proteins and the importance of biological methylation, it is necessary to evaluate the impact of lysyl methylation on the Bradford and BCA assays. Unmodified and reductively methylated proteins were analyzed using the absorbance at 280 nm to standardize the concentrations. Using model compounds, we demonstrate that the dimethylation of lysyl ε-amines does not affect the proteins' molar extinction coefficients at 280 nm. For the Bradford assay, the responses (absorbance per unit concentration) of the unmodified and reductively methylated proteins were similar, with a slight decrease in the response upon methylation. For the BCA assay, the responses of the reductively methylated proteins were consistently higher, overestimating the concentrations of the methylated proteins. The enhanced color formation in the BCA assay may be due to the lower acid dissociation constants of the lysyl ε-dimethylamines compared with the unmodified ε-amine, favoring Cu(II) binding in biuret-like complexes. The implications for the analysis of biologically methylated samples are discussed.

  3. PGC−1α Promoter Methylation in Parkinson’s Disease

    PubMed Central

    Su, Xiaomin; Chu, Yaping; Kordower, Jeffrey H.; Li, Bin; Cao, Hong; Huang, Liang; Nishida, Maki; Song, Lei; Wang, Difei; Federoff, Howard J.

    2015-01-01

    The etiopathogenesis of sporadic Parkinson’s disease (PD) remains elusive although mitochondrial dysfunction has long been implicated. Recent evidence revealed reduced expression of peroxisome proliferator-activated receptor gamma coactivator−1 α (PGC−1α) and downstream regulated nuclear encoded respiratory complex genes in affected brain tissue from PD patients. We sought to determine whether epigenetic modification of the PGC−1α gene could account for diminished expression. In substantia nigra from PD patients but not control subjects, we show significant promoter-proximal non-canonical cytosine methylation of the PGC−1α gene but not an adjacent gene. As neuroinflammation is a prominent feature of PD and a mediator of epigenetic change, we evaluated whether the pro-inflammatory fatty acid, palmitate, would stimulate PGC−1α promoter methylation in different cell types from the CNS. Indeed, in mouse primary cortical neurons, microglia and astrocytes, palmitate causes PGC−1α gene promoter non-canonical cytosine methylation, reduced expression of the gene and reduced mitochondrial content. Moreover, intracerebroventricular (ICV) injection of palmitate to transgenic human α−synuclein mutant mice resulted in increased PGC−1α promoter methylation, decreased PGC−1α expression and reduced mitochondrial content in substantia nigra. Finally we provide evidence that dysregulation of ER stress and inflammatory signaling is associated with PGC−1α promoter methylation. Together, these data strengthen the connection between saturated fatty acids, neuroflammation, ER stress, epigenetic alteration and bioenergetic compromise in PD. PMID:26317511

  4. Human hedgehog interacting protein expression and promoter methylation in medulloblastoma cell lines and primary tumor samples

    PubMed Central

    Shahi, Mehdi H.; Afzal, Mohammad; Sinha, Subrata; Eberhart, Charles G.; Rey, Juan A.; Fan, Xing

    2015-01-01

    Medulloblastoma is the most common pediatric brain tumor and its development is affected by genetic and epigenetic factors. In this study we found there is low or no expression of the hedgehog interacting protein (HHIP), a negative regulator of the sonic hedgehog pathway, in most medulloblastoma cell lines and primary samples explored. We proceeded to promoter methylation assays of this gene by MCA-Meth, and found that HHIP was hypermethylated in all medulloblastoma cell lines, but only in 2 out of 14 (14%) primary tumor samples. Methylation correlated with low or unexpressed HHIP in cell lines but not in primary tumor samples. These results suggest the possibility of epigenetic regulation of HHIP in medulloblastoma, similarly to gastric, hepatic and pancreatic cancer. However, HHIP seems to be not only under regulation of promoter methylation, but under other factors involved in the control of its low levels of expression in medulloblastoma. PMID:20853133

  5. Differential methylation of the promoter and first exon of the RASSF1A gene in hepatocarcinogenesis

    PubMed Central

    Jain, Surbhi; Xie, Lijia; Boldbaatar, Batbold; Lin, Selena Y.; Hamilton, James P.; Meltzer, Stephen J.; Chen, Shun-Hua; Hu, Chi-Tan; Block, Timothy M.; Song, Wei; Su, Ying-Hsiu

    2015-01-01

    Aim Aberrant methylation of the promoter, P2, and the first exon, E1, regions of the tumor suppressor gene RASSF1A, have been associated with hepatocellular carcinoma (HCC), albeit with poor specificity. This study analyzed the methylation profiles of P1, P2 and E1 regions of the gene to identify the region of which methylation most specifically corresponds to HCC and to evaluate the potential of this methylated region as a biomarker in urine for HCC screening. Methods Bisulfite DNA sequencing and quantitative methylation-specific polymerase chain reaction assays were performed to compare methylation of the 56 CpG sites in regions P1, P2 and E1 in DNA isolated from normal, hepatitic, cirrhotic, adjacent non-HCC, and HCC liver tissue and urine samples for the characterization of hypermethylation of the RASSF1A gene as a biomarker for HCC screening. Results In tissue, comparing HCC (n = 120) with cirrhosis and hepatitis together (n = 70), methylation of P1 had an area under the receiver operating characteristics curve (AUROC) of 0.90, whereas methylation of E1 and P2 had AUROC of 0.84 and 0.72, respectively. At 90% sensitivity, specificity for P1 methylation was 72.9% versus 38.6% for E1 and 27.1% for P2. Methylated P1 DNA was detected in urine in association with cirrhosis and HCC. It had a sensitivity of 81.8% for α-fetoprotein negative HCC. Conclusion Among the three regions analyzed, methylation of P1 is the most specific for HCC and holds great promise as a DNA marker in urine for screening of cirrhosis and HCC. PMID:25382672

  6. GSH2 promoter methylation in pancreatic cancer analyzed by quantitative methylation-specific polymerase chain reaction

    PubMed Central

    GAO, FEI; HUANG, HAO-JIE; GAO, JUN; LI, ZHAO-SHEN; MA, SHU-REN

    2015-01-01

    Tumor suppressor gene silencing via promoter hypermethylation is an important event in pancreatic cancer pathogenesis. Aberrant DNA hypermethylation events are highly tumor specific, and may provide a diagnostic tool for pancreatic cancer patients. The objective of the current study was to identify novel methylation-related genes that may potentially be used to establish novel therapeutic and diagnostic strategies against pancreatic cancer. The methylation status of the GS homeobox 2 (GSH2) gene was analyzed using the sodium bisulfite sequencing method. The GSH2 methylation ratio was examined in primary carcinomas and corresponding normal tissues derived from 47 patients with pancreatic cancer, using quantitative methylation-specific polymerase chain reaction. Methylation ratios were found to be associated with the patient's clinicopathological features. GSH2 gene methylation was detected in 26 (55.3%) of the 47 pancreatic cancer patients, indicating that it occurs frequently in pancreatic cancer. A significant association with methylation was observed for tumor-node-metastasis stage (P=0.031). GSH2 may be a novel methylation-sensitive tumor suppressor gene in pancreatic cancer and may be a tumor-specific biomarker of the disease. PMID:26171036

  7. Core promoter analysis of porcine Six1 gene and its regulation of the promoter activity by CpG methylation.

    PubMed

    Wu, Wangjun; Ren, Zhuqing; Liu, Honglin; Wang, Linjie; Huang, Ruihua; Chen, Jie; Zhang, Lin; Li, Pinghua; Xiong, Yuanzhu

    2013-10-25

    Six1, an evolutionary conserved transcription factor, has been shown to play an important role in organogenesis and diseases. However, no reports were shown to investigate its transcriptional regulatory mechanisms. In the present study, we first identified porcine Six1 gene core promoter region (+170/-360) using luciferase reporter assay system and found that promoter activities were significantly higher in the mouse myoblast C2C12 cells than that in the mouse fibroblast C3H10T1/2 cells, implying that Six1 promoter could possess muscle-specific characteristics. Moreover, our results showed that promoter activities of Six1 were decreased as induction of differentiation of C2C12 cells, which was accompanied by the down-regulation of mRNA expression of Six1 gene. In addition, we found that the DNA methylation of Six1 promoters in vitro obviously influences the promoter activities and the DNA methylation level of Six1 promoter core region was negatively correlated to Six1 gene expression in vivo. Taken together, we preliminarily clarified transcriptional regulatory mechanisms of Six1 gene, which should be useful for investigating its subtle transcriptional regulatory mechanisms in the future. On the other hand, based on Six1 involved in tumorigenesis, our data also provide a genetic foundation to control the generation of diseases via pursuing Six1 as therapeutic target gene.

  8. A simple modification to the luminometric methylation assay to control for the effects of DNA fragmentation.

    PubMed

    Duman, Elif Aysimi; Kriaucionis, Skirmantas; Dunn, John J; Hatchwell, Eli

    2015-05-01

    Variations in DNA methylation have been implicated in a number of disorders. Changes in global DNA methylation levels have long been associated with various types of cancer. One of the recently described methods for determining global DNA methylation levels is the LUminometric Methylation Assay (LUMA), which utilizes methylation sensitive and insensitive restriction endonucleases and pyrosequencing technology for quantification. Here we provide evidence suggesting that the global methylation level reported by LUMA is affected by the integrity of the DNA being analyzed. The less intact the DNA, the lower the global methylation levels reported by LUMA. In order to overcome this problem, we propose the use of undigested DNA alongside digested samples. Finally, we demonstrate that this results in a more accurate assessment of global DNA methylation levels.

  9. Mass Spectrometry Based Ultrasensitive DNA Methylation Profiling Using Target Fragmentation Assay.

    PubMed

    Lin, Xiang-Cheng; Zhang, Ting; Liu, Lan; Tang, Hao; Yu, Ru-Qin; Jiang, Jian-Hui

    2016-01-19

    Efficient tools for profiling DNA methylation in specific genes are essential for epigenetics and clinical diagnostics. Current DNA methylation profiling techniques have been limited by inconvenient implementation, requirements of specific reagents, and inferior accuracy in quantifying methylation degree. We develop a novel mass spectrometry method, target fragmentation assay (TFA), which enable to profile methylation in specific sequences. This method combines selective capture of DNA target from restricted cleavage of genomic DNA using magnetic separation with MS detection of the nonenzymatic hydrolysates of target DNA. This method is shown to be highly sensitive with a detection limit as low as 0.056 amol, allowing direct profiling of methylation using genome DNA without preamplification. Moreover, this method offers a unique advantage in accurately determining DNA methylation level. The clinical applicability was demonstrated by DNA methylation analysis using prostate tissue samples, implying the potential of this method as a useful tool for DNA methylation profiling in early detection of related diseases.

  10. Accumulated promoter methylation as a potential biomarker for esophageal cancer

    PubMed Central

    Shi, Peiyi; Wang, Jianping; Wang, Jianming

    2017-01-01

    We performed a two-stage molecular epidemiological study to explore DNA methylation profiles for potential biomarkers of esophageal squamous cell carcinoma (ESCC) in a Chinese population. Infinium Methylation 450K BeadChip was used to identify genes with differentially methylated CpG sites. Sixteen candidate genes were validated by sequencing 1160 CpG sites in their promoter regions using the Illumina MiSeq platform. When excluding sites with negative changes, 10 genes (BNIP3, BRCA1, CCND1, CDKN2A, HTATIP2, ITGAV, NFKB1, PIK3R1, PRDM16 and PTX3) showed significantly different methylation levels among cancer lesions, remote normal-appearing tissues, and healthy controls. PRDM16 had the highest diagnostic value with the AUC (95% CI) of 0.988 (0.965–1.000), followed by PIK3R1, with the AUC (95% CI) of 0.969 (0.928–1.000). In addition, the methylation status was higher in patients with advanced cancer stages. These results indicate that aberrant DNA methylation may be a potential biomarker for the diagnosis of ESCC. PMID:27893424

  11. Increased MTHFR promoter methylation in mothers of Down syndrome individuals.

    PubMed

    Coppedè, Fabio; Denaro, Maria; Tannorella, Pierpaola; Migliore, Lucia

    2016-05-01

    Despite that advanced maternal age at conception represents the major risk factor for the birth of a child with Down syndrome (DS), most of DS babies are born from women aging less than 35 years. Studies performed in peripheral lymphocytes of those women revealed several markers of global genome instability, including an increased frequency of micronuclei, shorter telomeres and impaired global DNA methylation. Furthermore, young mothers of DS individuals (MDS) are at increased risk to develop dementia later in life, suggesting that they might be "biologically older" than mothers of euploid babies of similar age. Mutations in folate pathway genes, and particularly in the methylenetetrahydrofolate reductase (MTHFR) one, have been often associated with maternal risk for a DS birth as well as with risk of dementia in the elderly. Recent studies pointed out that also changes in MTHFR methylation levels can contribute to human disease, but nothing is known about MTHFR methylation in MDS tissues. We investigated MTHFR promoter methylation in DNA extracted from perypheral lymphocytes of 40 MDS and 44 matched control women that coinceived their children before 35 years of age, observing a significantly increased MTHFR promoter methylation in the first group (33.3 ± 8.1% vs. 28.3 ± 5.8%; p=0.001). In addition, the frequency of micronucleated lymphocytes was available from the women included in the study, was higher in MDS than control mothers (16.1 ± 8.6‰ vs. 10.5 ± 4.3‰; p=0.0004), and correlated with MTHFR promoter methylation levels (r=0.33; p=0.006). Present data suggest that MTHFR epimutations are likely to contribute to the increased genomic instability observed in cells from MDS, and could play a role in the risk of birth of a child with DS as well as in the onset of age related diseases in those women.

  12. DNA Methylation in Promoter Region as Biomarkers in Prostate Cancer

    PubMed Central

    Yang, Mihi; Park, Jong Y.

    2013-01-01

    The prostate gland is the most common site of cancer and the second leading cause of cancer death in American men. Recent emerging molecular biological technologies help us to know that epigenetic alterations such as DNA methylation within the regulatory (promoter) regions of genes are associated with transcriptional silencing in cancer. Promoter hypermethylation of critical pathway genes could be potential biomarkers and therapeutic targets for prostate cancer. In this chapter, we updated current information on methylated genes associated with the development and progression of prostate cancer. Over 40 genes have been investigated for methylation in promoter region in prostate cancer. These methylated genes are involved in critical pathways, such as DNA repair, metabolism, and invasion/metastasis. The role of hypermethylated genes in regulation of critical pathways in prostate cancer is discussed. These findings may provide new information of the pathogenesis, the exciting potential to be predictive and to provide personalized treatment of prostate cancer. Indeed, some epigenetic alterations in prostate tumors are being translated into clinical practice for therapeutic use. PMID:22359288

  13. DAPK1 Promoter Methylation and Cervical Cancer Risk: A Systematic Review and a Meta-Analysis

    PubMed Central

    Agodi, Antonella; Barchitta, Martina; Quattrocchi, Annalisa; Maugeri, Andrea; Vinciguerra, Manlio

    2015-01-01

    Objective The Death-Associated Protein Kinase 1 (DAPK1) gene has been frequently investigated in cervical cancer (CC). The aim of the present study was to carry out a systematic review and a meta-analysis in order to evaluate DAPK1 promoter methylation as an epigenetic marker for CC risk. Methods A systematic literature search was carried out. The Cochrane software package Review Manager 5.2 was used. The fixed-effects or random-effects models, according to heterogeneity across studies, were used to calculate odds ratios (ORs) and 95% Confidence Intervals (CIs). Furthermore, subgroup analyses were conducted by histological type, assays used to evaluate DAPK1 promoter methylation, and control sample source. Results A total of 20 papers, published between 2001 and 2014, on 1929 samples, were included in the meta-analysis. DAPK1 promoter methylation was associated with an increased CC risk based on the random effects model (OR: 21.20; 95%CI = 11.14–40.35). Omitting the most heterogeneous study, the between study heterogeneity decreased and the association increased (OR: 24.13; 95% CI = 15.83–36.78). The association was also confirmed in all the subgroups analyses. Conclusions A significant strong association between DAPK1 promoter methylation and CC was shown and confirmed independently by histological tumor type, method used to evaluate methylation and source of control samples. Methylation markers may have value in early detection of CC precursor lesions, provide added reassurances of safety for women who are candidates for less frequent screens, and predict outcomes of women infected with human papilloma virus. PMID:26267895

  14. MIEN1 is tightly regulated by SINE Alu methylation in its promoter

    PubMed Central

    Van Treuren, Timothy; Klinkebiel, David L.; Vishwanatha, Jamboor K.

    2016-01-01

    Migration and invasion enhancer 1 (MIEN1) is a novel gene involved in prostate cancer progression by enhancing prostate cancer cell migration and invasion. DNA methylation, an important epigenetic regulation, is one of the most widely altered mechanisms in prostate cancer. This phenomenon frames the basis to study the DNA methylation patterns in the promoter region of MIEN1. Bisulfite pyrosequencing demonstrates the MIEN1 promoter contains a short interspersed nuclear Alu element (SINE Alu) repeat sequence. Validation of methylation inhibition on MIEN1 was performed using nucleoside analogs and non-nucleoside inhibitors and resulted in an increase in both MIEN1 RNA and protein in normal cells. MIEN1 mRNA and protein increases upon inhibition of individual DNA methyltransferases using RNA interference technologies. Furthermore, dual luciferase reporter assays, in silico analysis, and chromatin immunoprecipitation assays identified a sequence upstream of the transcription start site that has a site for binding of the USF transcription factors. These results suggest the MIEN1 promoter has a SINE Alu region that is hypermethylated in normal cells leading to repression of the gene. In cancer, the hypomethylation of a part of this repeat, in addition to the binding of USF, results in MIEN1 expression. PMID:27589566

  15. In vitro methylation of nuclear respiratory factor-2 binding sites suppresses the promoter activity of the human TOMM70 gene.

    PubMed

    Blesa, José R; Hegde, Anita A; Hernández-Yago, José

    2008-12-31

    TOMM70 is a subunit of the outer mitochondrial membrane translocase that plays a major role as a receptor of hydrophobic preproteins targeted to mitochondria. We have previously reported that two binding sites for transcription factor NRF-2 in the promoter region of the human TOMM70 gene are essential in activating transcription (Blesa et al., Mitochondrion 2004; 3:251-59. Blesa et al., Biochem Cell Biol 2006; 84:813-22). This region contains thirteen CpG methylation sites, three of which occur in the sequence 5'-CCGG-3' that is specifically recognized by HpaII methylase which modifies the internal cytosine residue. Interestingly, each NRF-2 site contains one CCGG sequence, allowing specific methylation of the NRF-2 sites and, therefore, providing an ideal model to study how methylation of these sites affects promoter activity. In this paper we report that site-specific methylation of the NRF-2 binding sites in the TOMM70 promoter down-regulated expression of a luciferase reporter in HeLa S3 cells. Electrophoretic mobility shift assays confirmed abrogation of NRF-2 binding at the methylated sites. These results suggest that methylation of the TOMM70 promoter in mammalian cells may silence TOMM70 expression. However, studies of methylation degree on DNAs from different sources found no methylation in the promoter regions of TOMM70 and other TOMM/TIMM family genes. Thus, although in vitro methylation inactivates the expression of TOMM70, our results suggest that this is not the mechanism modulating its expression in vivo. Since a number of nuclear genes encoding mitochondrial translocases have NRF-2 binding sequences containing CpG methylation sites, a possible role of methylation as a regulatory mechanism of mitochondrial biogenesis can be ruled out.

  16. Transcriptional regulation of 15-lipoxygenase expression by promoter methylation.

    PubMed

    Liu, Cheng; Xu, Dawei; Sjöberg, Jan; Forsell, Pontus; Björkholm, Magnus; Claesson, Hans-Erik

    2004-07-01

    15-Lipoxygenase type 1 (15-LO), a lipid-peroxidating enzyme implicated in physiological membrane remodeling and the pathogenesis of atherosclerosis, inflammation, and carcinogenesis, is highly regulated and expressed in a tissue- and cell-type-specific fashion. It is known that interleukins (IL) 4 and 13 play important roles in transactivating the 15-LO gene. However, the fact that they only exert such effects on a few types of cells suggests additional mechanism(s) for the profile control of 15-LO expression. In the present study, we demonstrate that hyper- and hypomethylation of CpG islands in the 15-LO promoter region is intimately associated with the transcriptional repression and activation of the 15-LO gene, respectively. The 15-LO promoter was exclusively methylated in all examined cells incapable of expressing 15-LO (certain solid tumor and human lymphoma cell lines and human T lymphocytes) while unmethylated in 15-LO-competent cells (the human airway epithelial cell line A549 and human monocytes) where 15-LO expression is IL4-inducible. Inhibition of DNA methylation in L428 lymphoma cells restores IL4 inducibility to 15-LO expression. Consistent with this, the unmethylated 15-LO promoter reporter construct exhibited threefold higher activity in A549 cells compared to its methylated counterpart. Taken together, demethylation of the 15-LO promoter is a prerequisite for the gene transactivation, which contributes to tissue- and cell-type-specific regulation of 15-LO expression.

  17. Elevated OPRD1 promoter methylation in Alzheimer’s disease patients

    PubMed Central

    Chen, Zhongming; Zhou, Dongsheng; Xu, Xuting; Cui, Wei; Hong, Qingxiao; Jiang, Liting; Li, Jinfeng; Zhou, Xiaohui; Li, Ying; Guo, Zhiping; Zha, Qin; Niu, Yanfang; Weng, Qiuyan; Duan, Shiwei; Wang, Qinwen

    2017-01-01

    Aberrant DNA methylation has been observed in the patients with Alzheimer’s disease (AD), a common neurodegenerative disorder in the elderly. OPRD1 encodes the delta opioid receptor, a member of the opioid family of G-protein-coupled receptors. In the current study, we compare the DNA methylation levels of OPRD1 promoter CpG sites (CpG1, CpG2, and CpG3) between 51 AD cases and 63 controls using the bisulfite pyrosequencing technology. Our results show that significantly higher CpG3 methylation is found in AD cases than controls. Significant associations are found between several biochemical parameters (including HDL-C and ALP) and CpG3 methylation. Subsequent luciferase reporter gene assay shows that DNA fragment containing the three OPRD1 promoter CpGs is able to regulate gene expression. In summary, our results suggest that OPRD1 promoter hypermethylation is associated with the risk of AD. PMID:28253273

  18. Predicting Breast Cancer Risk by Assaying Peripheral Blood Methylation. Addendum

    DTIC Science & Technology

    2007-10-01

    0 citations...methylation of MGMT in colorectal cancers. The T allele of a SNP within the 5′ untranslated region (UTR; rs16906252; c.- 56 C>T) was strongly...34# $! ! # ! % &’ #%’ ’ "# # ! ! #(’’ !’) * + , - ! # ! .! # # % / ! " # $ ! % & ’( )*" ’( + ! "

  19. Promoter analysis of mouse Scn3a gene and regulation of the promoter activity by GC box and CpG methylation.

    PubMed

    Deng, Guang-Fei; Qin, Jia-Ming; Sun, Xun-Sha; Kuang, Zu-Ying; Su, Tao; Zhao, Qi-Hua; Shi, Yi-Wu; Liu, Xiao-Rong; Yu, Mei-Juan; Yi, Yong-Hong; Liao, Wei-Ping; Long, Yue-Sheng

    2011-06-01

    Voltage-gated sodium channel α-subunit type III (Na(v)1.3) is mainly expressed in the central nervous system and is associated with neurological disorders. The expression of mouse Scn3a product (Na(v)1.3) mainly occurs in embryonic and early postnatal brain but not in adult brain. Here, we report for the first time the identification and characterization of the mouse Scn3a gene promoter region and regulation of the promoter activity by GC box and CpG methylation. Luciferase assay showed that the promoter region F1.2 (nt -1,049 to +157) had significantly higher activity in PC12 cells, comparing with that in SH-SY5Y cells and HEK293 cells. A stepwise 5' truncation of the promoter region found that the minimal functional promoter located within the region nt -168 to +157. Deletion of a GC box (nt -254 to -258) in the mouse Scn3a promoter decreased the promoter activity. CpG methylation of the F1.2 without the GC box completely repressed the promoter activity, suggesting that the GC box is a critical element in the CpG-methylated Scn3a promoter. These results suggest that the GC box and CpG methylation might play important roles in regulating mouse Scn3a gene expression.

  20. Promoter Methylation Analysis of IDH Genes in Human Gliomas.

    PubMed

    Flanagan, Simon; Lee, Maggie; Li, Cheryl C Y; Suter, Catherine M; Buckland, Michael E

    2012-01-01

    Mutations in isocitrate dehydrogenase (IDH)-1 or -2 are found in the majority of WHO grade II and III astrocytomas and oligodendrogliomas, and secondary glioblastomas. Almost all described mutations are heterozygous missense mutations affecting a conserved arginine residue in the substrate binding site of IDH1 (R132) or IDH2 (R172). But the exact mechanism of IDH mutations in neoplasia is not understood. It has been proposed that IDH mutations impart a "toxic gain-of-function" to the mutant protein, however a dominant-negative effect of mutant IDH has also been described, implying that IDH may function as a tumor suppressor gene. As most, if not all, tumor suppressor genes are inactivated by epigenetic silencing, in a wide variety of tumors, we asked if IDH1 or IDH2 carry the epigenetic signature of a tumor suppressor by assessing cytosine methylation at their promoters. Methylation was quantified in 68 human brain tumors, including both IDH-mutant and IDH wildtype, by bisulfite pyrosequencing. In all tumors examined, CpG methylation levels were less than 8%. Our data demonstrate that inactivation of IDH function through promoter hypermethylation is not common in human gliomas and other brain tumors. These findings do not support a tumor suppressor role for IDH genes in human gliomas.

  1. Long-term survival in glioblastoma: methyl guanine methyl transferase (MGMT) promoter methylation as independent favourable prognostic factor

    PubMed Central

    Smrdel, Uros; Zwitter, Matjaz; Bostjancic, Emanuela; Zupan, Andrej; Kovac, Viljem; Glavac, Damjan; Bokal, Drago; Jerebic, Janja

    2016-01-01

    Abstract Background In spite of significant improvement after multi-modality treatment, prognosis of most patients with glioblastoma remains poor. Standard clinical prognostic factors (age, gender, extent of surgery and performance status) do not clearly predict long-term survival. The aim of this case-control study was to evaluate immuno-histochemical and genetic characteristics of the tumour as additional prognostic factors in glioblastoma. Patients and methods Long-term survivor group were 40 patients with glioblastoma with survival longer than 30 months. Control group were 40 patients with shorter survival and matched to the long-term survivor group according to the clinical prognostic factors. All patients underwent multimodality treatment with surgery, postoperative conformal radiotherapy and temozolomide during and after radiotherapy. Biopsy samples were tested for the methylation of MGMT promoter (with methylation specific polymerase chain reaction), IDH1 (with immunohistochemistry), IDH2, CDKN2A and CDKN2B (with multiplex ligation-dependent probe amplification), and 1p and 19q mutations (with fluorescent in situ hybridization). Results Methylation of MGMT promoter was found in 95% and in 36% in the long-term survivor and control groups, respectively (p < 0.001). IDH1 R132H mutated patients had a non-significant lower risk of dying from glioblastoma (p = 0.437), in comparison to patients without this mutation. Other mutations were rare, with no significant difference between the two groups. Conclusions Molecular and genetic testing offers additional prognostic and predictive information for patients with glioblastoma. The most important finding of our analysis is that in the absence of MGMT promoter methylation, longterm survival is very rare. For patients without this mutation, alternative treatments should be explored. PMID:27904447

  2. Endothelial Cell–Specific Expression of Roundabout 4 Is Regulated by Differential DNA Methylation of the Proximal Promoter

    PubMed Central

    Okada, Yoshiaki; Funahashi, Nobuaki; Tanaka, Toru; Nishiyama, Yuji; Yuan, Lei; Shirakura, Keisuke; Turjman, Alexis S.; Kano, Yoshihiro; Naruse, Hiroki; Suzuki, Ayano; Sakai, Miki; Zhixia, Jiang; Kitajima, Kenji; Ishimoto, Kenji; Hino, Nobumasa; Kondoh, Masuo; Mukai, Yohei; Nakagawa, Shinsaku; García-Cardeña, Guillermo; Aird, William C.; Doi, Takefumi

    2017-01-01

    Objective The molecular basis of endothelial cell (EC)–specific gene expression is poorly understood. Roundabout 4 (Robo4) is expressed exclusively in ECs. We previously reported that the 3-kb 5′-flanking region of the human Robo4 gene contains information for lineage-specific expression in the ECs. Our studies implicated a critical role for GA-binding protein and specificity protein 1 (SP1) in mediating overall expression levels. However, these transcription factors are also expressed in non-ECs. In this study, we tested the hypothesis that epigenetic mechanisms contribute to EC-specific Robo4 gene expression. Methods and Results Bisulfite sequencing analysis indicated that the proximal promoter of Robo4 is methylated in non-ECs but not in ECs. Treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine increased Robo4 gene expression in non-ECs but not in ECs. Proximal promoter methylation significantly decreased the promoter activity in ECs. Electrophoretic mobility shift assays showed that DNA methylation of the proximal promoter inhibited SP1 binding to the −42 SP1 site. In DNase hypersensitivity assays, chromatin condensation of the Robo4 promoter was observed in some but not all nonexpressing cell types. In Hprt (hypoxanthine phosphoribosyltransferase)-targeted mice, a 0.3-kb proximal promoter directed cell-type–specific expression in the endothelium. Bisulfite sequencing analysis using embryonic stem cell–derived mesodermal cells and ECs indicated that the EC-specific methylation pattern of the promoter is determined by demethylation during differentiation and that binding of GA-binding protein and SP1 to the proximal promoter is not essential for demethylation. Conclusions The EC-specific DNA methylation pattern of the Robo4 proximal promoter is determined during cell differentiation and contributes to regulation of EC-specific Robo4 gene expression. PMID:24855053

  3. Differential Promoter Methylation and Histone Modification Contribute to the Brain Specific Expression of the Mouse Mbu-1 Gene

    PubMed Central

    Kim, Byungtak; Kang, Seongeun; Kim, Sun Jung

    2012-01-01

    Mbu-1 (Csrnp-3) is a mouse gene that was identified in our previous study as showing highly restricted expression to the central nervous system. In this study, to elucidate the regulatory mechanism for tissue specificity of the gene, epigenetic approaches that identify the profiles of CpG methylation, as well as histone modifications at the promoter region were conducted. Methylation-specific PCR revealed that the CpG sites in brain tissues from embryo to adult stages showed virtually no methylation (0.052–0.67%). Lung (9.0%) and pancreas (3.0%) also showed lower levels. Other tissues such as liver, kidney, and heart showed much higher methylation levels ranging from approximately 39–93%. Treatment of 5-aza-2′-deoxycytidine (5-Aza-dC) significantly decreased promoter methylation, reactivating Mbu-1 expression in NG108-15 and Neuro-2a neuronal cells. Chromatin immunoprecipitation assay revealed that 5-Aza-dC decreased levels of acetylated H3K9 and methylated H3K4, and increased methylated H3K9. This result indicates that CpG methylation converses with histone modifications in an opposing sense of regulating Mbu-1 expression. PMID:23076708

  4. Regulation of DEK expression by AP-2α and methylation level of DEK promoter in hepatocellular carcinoma.

    PubMed

    Qiao, Ming-Xu; Li, Chun; Zhang, Ai-Qun; Hou, Ling-Ling; Yang, Juan; Hu, Hong-Gang

    2016-10-01

    DEK is overexpressed in multiple invasive tumors. However, the transcriptional regulatory mechanism of DEK remains unclear. In the present study, progressive-type truncation assay indicated that CpG2-2 (-167 bp/+35 bp) was the DEK core promoter, whose methylation inhibited DEK expression. Bisulfite genomic sequencing analysis indicated that the methylation levels of the DEK promoter in normal hepatic cells and tissues were higher than those in hepatocellular carcinoma (HCC) cells. TFSEARCH result revealed transcription factor binding sites in CpG2-2. Among the sites, the AP-2α binding site showed the most significant methylation difference; hence, AP-2α is a key transcription factor that regulates DEK expression. Point or deletion mutation of the AP-2α binding site significantly reduced the promoter activity. Chromatin immunoprecipitation assay demonstrated the binding of AP-2α to the core promoter. Furthermore, knock down of endogenous AP-2α downregulated DEK expression, whereas overexpression of AP-2α upregulated DEK expression. Thus, AP-2α is an important transcription factor of DEK expression, which is correlated with the methylation level of the DEK core promoter in HCC.

  5. Evolutionary Transition of Promoter and Gene Body DNA Methylation across Invertebrate-Vertebrate Boundary.

    PubMed

    Keller, Thomas E; Han, Priscilla; Yi, Soojin V

    2016-04-01

    Genomes of invertebrates and vertebrates exhibit highly divergent patterns of DNA methylation. Invertebrate genomes tend to be sparsely methylated, and DNA methylation is mostly targeted to a subset of transcription units (gene bodies). In a drastic contrast, vertebrate genomes are generally globally and heavily methylated, punctuated by the limited local hypo-methylation of putative regulatory regions such as promoters. These genomic differences also translate into functional differences in DNA methylation and gene regulation. Although promoter DNA methylation is an important regulatory component of vertebrate gene expression, its role in invertebrate gene regulation has been little explored. Instead, gene body DNA methylation is associated with expression of invertebrate genes. However, the evolutionary steps leading to the differentiation of invertebrate and vertebrate genomic DNA methylation remain unresolved. Here we analyzed experimentally determined DNA methylation maps of several species across the invertebrate-vertebrate boundary, to elucidate how vertebrate gene methylation has evolved. We show that, in contrast to the prevailing idea, a substantial number of promoters in an invertebrate basal chordate Ciona intestinalis are methylated. Moreover, gene expression data indicate significant, epigenomic context-dependent associations between promoter methylation and expression in C. intestinalis. However, there is no evidence that promoter methylation in invertebrate chordate has been evolutionarily maintained across the invertebrate-vertebrate boundary. Rather, body-methylated invertebrate genes preferentially obtain hypo-methylated promoters among vertebrates. Conversely, promoter methylation is preferentially found in lineage- and tissue-specific vertebrate genes. These results provide important insights into the evolutionary origin of epigenetic regulation of vertebrate gene expression.

  6. Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters.

    PubMed

    Shen, Lanlan; Kondo, Yutaka; Guo, Yi; Zhang, Jiexin; Zhang, Li; Ahmed, Saira; Shu, Jingmin; Chen, Xinli; Waterland, Robert A; Issa, Jean-Pierre J

    2007-10-01

    The role of CpG island methylation in normal development and cell differentiation is of keen interest, but remains poorly understood. We performed comprehensive DNA methylation profiling of promoter regions in normal peripheral blood by methylated CpG island amplification in combination with microarrays. This technique allowed us to simultaneously determine the methylation status of 6,177 genes, 92% of which include dense CpG islands. Among these 5,549 autosomal genes with dense CpG island promoters, we have identified 4.0% genes that are nearly completely methylated in normal blood, providing another exception to the general rule that CpG island methylation in normal tissue is limited to X inactivation and imprinted genes. We examined seven genes in detail, including ANKRD30A, FLJ40201, INSL6, SOHLH2, FTMT, C12orf12, and DPPA5. Dense promoter CpG island methylation and gene silencing were found in normal tissues studied except testis and sperm. In both tissues, bisulfite cloning and sequencing identified cells carrying unmethylated alleles. Interestingly, hypomethylation of several genes was associated with gene activation in cancer. Furthermore, reactivation of silenced genes could be induced after treatment with a DNA demethylating agent or in a cell line lacking DNMT1 and/or DNMT3b. Sequence analysis identified five motifs significantly enriched in this class of genes, suggesting that cis-regulatory elements may facilitate preferential methylation at these promoter CpG islands. We have identified a group of non-X-linked bona fide promoter CpG islands that are densely methylated in normal somatic tissues, escape methylation in germline cells, and for which DNA methylation is a primary mechanism of tissue-specific gene silencing.

  7. Linking ATM Promoter Methylation to Cell Cycle Protein Expression in Brain Tumor Patients: Cellular Molecular Triangle Correlation in ATM Territory.

    PubMed

    Mehdipour, P; Karami, F; Javan, Firouzeh; Mehrazin, M

    2015-08-01

    Ataxia telangiectasia mutated (ATM) is a key gene in DNA double-strand break (DSB), and therefore, most of its disabling genetic alterations play an important initiative role in many types of cancer. However, the exact role of ATM gene and its epigenetic alterations, especially promoter methylation in different grades of brain tumors, remains elusive. The current study was conducted to query possible correlations among methylation statue of ATM gene, ATM/ retinoblastoma (RB) protein expression, D1853N ATM polymorphism, telomere length (TL), and clinicopathological characteristics of various types of brain tumors. Isolated DNA from 30 fresh tissues was extracted from different types of brain tumors and two brain tissues from deceased normal healthy individuals. DNAs were treated with bisulfate sodium using DNA modification kit (Qiagen). Methylation-specific polymerase chain reaction (MSP-PCR) was implicated to determine the methylation status of treated DNA templates confirmed by promoter sequencing. Besides, the ATM and RB protein levels were determined by immunofluorescence (IF) assay using monoclonal mouse antihuman against ATM, P53, and RB proteins. To achieve an interactive correlation, the methylation data were statistically analyzed by considering TL and D1853N ATM polymorphism. More than 73% of the brain tumors were methylated in ATM gene promoter. There was strong correlation between ATM promoter methylation and its protein expression (p < 0.001). As a triangle, meaningful correlation was also found between methylated ATM promoter and ATM protein expression with D1853N ATM polymorphism (p = 0.01). ATM protein expression was not in line with RB protein expression while it was found to be significantly correlated with ATM promoter methylation (p = 0.01). There was significant correlation between TL neither with ATM promoter methylation nor with ATM protein expression nor with D1853N polymorphism. However, TL has shown strong correlation with patient's age and

  8. Using a medium-throughput comet assay to evaluate the global DNA methylation status of single cells.

    PubMed

    Lewies, Angélique; Van Dyk, Etresia; Wentzel, Johannes F; Pretorius, Pieter J

    2014-01-01

    The comet assay is a simple and cost effective technique, commonly used to analyze and quantify DNA damage in individual cells. The versatility of the comet assay allows introduction of various modifications to the basic technique. The difference in the methylation sensitivity of the isoschizomeric restriction enzymes HpaII and MspI are used to demonstrate the ability of the comet assay to measure the global DNA methylation level of individual cells when using cell cultures. In the experiments described here, a medium-throughput comet assay and methylation sensitive comet assay are combined to produce a methylation sensitive medium-throughput comet assay to measure changes in the global DNA methylation pattern in individual cells under various growth conditions.

  9. Elevated DRD4 promoter methylation increases the risk of Alzheimer's disease in males.

    PubMed

    Ji, Huihui; Wang, Yunliang; Jiang, Danjie; Liu, Guili; Xu, Xuting; Dai, Dongjun; Zhou, Xiaohui; Cui, Wei; Li, Jinfeng; Chen, Zhongming; Li, Ying; Zhou, Dongsheng; Zha, Qin; Zhuo, Renjie; Jiang, Liting; Liu, Yu; Shen, Lili; Zhang, Beibei; Xu, Lei; Hu, Haochang; Zhang, Yuzheng; Yin, Honglei; Duan, Shiwei; Wang, Qinwen

    2016-09-01

    Aberrant promoter methylation of multiple genes is associated with various diseases, including Alzheimer's disease (AD). The goal of the present study was to determine whether dopamine receptor D4 (DRD4) promoter methylation is associated with AD. In the current study, the methylation levels of the DRD4 promoter were measured in 46 AD patients and 61 controls using bisulfite pyrosequencing technology. The results of the present study demonstrated that DRD4 promoter methylation was significantly higher in AD patients than in controls. A further breakdown analysis by gender revealed that there was a significant association of DRD4 promoter methylation with AD in males (23 patients and 45 controls). In conclusion, the results of the present study demonstrated that elevated DRD4 promoter methylation was associated with AD risk in males.

  10. Defining the cutoff value of MGMT gene promoter methylation and its predictive capacity in glioblastoma.

    PubMed

    Brigliadori, Giovanni; Foca, Flavia; Dall'Agata, Monia; Rengucci, Claudia; Melegari, Elisabetta; Cerasoli, Serenella; Amadori, Dino; Calistri, Daniele; Faedi, Marina

    2016-06-01

    Despite advances in the treatment of glioblastoma (GBM), median survival is 12-15 months. O6-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation status is acknowledged as a predictive marker for temozolomide (TMZ) treatment. When MGMT promoter values fall into a "methylated" range, a better response to chemotherapy is expected. However, a cutoff that discriminates between "methylated" and "unmethylated" status has yet to be defined. We aimed to identify the best cutoff value and to find out whether variability in methylation profiles influences the predictive capacity of MGMT promoter methylation. Data from 105 GBM patients treated between 2008 and 2013 were analyzed. MGMT promoter methylation status was determined by analyzing 10 CpG islands by pyrosequencing. Patients were treated with radiotherapy followed by TMZ. MGMT promoter methylation status was classified into unmethylated 0-9 %, methylated 10-29 % and methylated 30-100 %. Statistical analysis showed that an assumed methylation cutoff of 9 % led to an overestimation of responders. All patients in the 10-29 % methylation group relapsed before the 18-month evaluation. Patients with a methylation status ≥30 % showed a median overall survival of 25.2 months compared to 15.2 months in all other patients, confirming this value as the best methylation cutoff. Despite wide variability among individual profiles, single CpG island analysis did not reveal any correlation between single CpG island methylation values and relapse or death. Specific CpG island methylation status did not influence the predictive value of MGMT. The predictive role of MGMT promoter methylation was maintained only with a cutoff value ≥30 %.

  11. Association between RASSF1A promoter methylation and renal cell cancer susceptibility: a meta-analysis.

    PubMed

    Huang, Y Q; Guan, H; Liu, C H; Liu, D C; Xu, B; Jiang, L; Lin, Z X; Chen, M

    2016-04-25

    Epigenetic inactivation of Ras-associated domain family 1A (RASSF1A) by hyper-methylation of its promoter region has been identified in various cancers. However, the role of RASSF1A in renal cancer has neither been thoroughly investigated nor reviewed. In this study, we reviewed and performed a meta-analysis of 13 published studies reporting correlations between methylation frequency of the RASSF1A promoter region and renal cancer risk. The odds ratios (ORs) of eligible studies and their corresponding 95% confidence intervals (95%CIs) were used to correlate RASSF1A promoter methylation with renal cell cancer risk and clinical or pathological variables, respectively. RASSF1A promoter methylation was significantly associated with the risk of renal cell cancer (OR = 19.35, 95%CI = 9.57-39.13). RASSF1A promoter methylation was significantly associated with pathological tumor grade (OR = 3.32, 95%CI = 1.55-7.12), and a possible positive correlation between RASSF1A promoter methylation status and tumor stage was noted (OR = 1.89, 95%CI = 1.00-3.56, P = 0.051). Overall, this meta-analysis demonstrated that RASSF1A promoter methylation is significantly associated with increased risk of renal cell cancer. RASSF1A promoter methylation frequency was positively correlated with pathological tumor grade, but not the clinical stage. This study showed that RASSF1A promoter methylation could be utilized to predict renal cell cancer prognosis.

  12. RUNX3 Promoter Methylation Is Associated with Hepatocellular Carcinoma Risk: A Meta-Analysis.

    PubMed

    Zhang, Xueyan; He, Hairong; Zhang, Xu; Guo, Wenjie; Wang, Yueqi

    2015-04-01

    Runt-related transcription factor 3 (RUNX3) has been reported to be a tumor-suppressing gene in hepatocellular carcinoma. Association between hepatocellular carcinoma and RUNX3 promoter methylation has been investigated in studies with specific ethnic backgrounds and small sample sizes. In this study, a meta-analysis was adopted to combine the data from 11 studies of association between RUNX3 promoter methylation and hepatocellular carcinoma. Pooled odds ratio for RUNX3 promoter methylation status in hepatocellular carcinoma versus control liver tissue was 24.37 (95%CI: 12.14, 48.92), p < .00001, indicates a strong association between methylation of the RUNX3 promoter and hepatocellular carcinoma.

  13. Alternative Multiorgan Initiation-Promotion Assay for Chemical Carcinogenesis in the Wistar Rat.

    PubMed

    Solano, Marize de Lourdes Marzo; Rocha, Noeme Souza; Barbisan, Luis Fernando; Franchi, Carla Adriene da Silva; Spinardi-Barbisan, Ana Lúcia Tozzi; de Oliveira, Maria Luiza Cotrim Sartor; Salvadori, Daisy Maria Fávero; Ribeiro, Lúcia Regina; de Camargo, João Lauro Viana

    2016-12-01

    The medium-term multiorgan initiation-promotion chemical bioassay (diethylnitrosamine, methyl-nitrosourea, butyl-hydroxybutylnitrosamine, dihydroxypropylnitrosamine, dimethylhydrazine [DMBDD]) with the Fischer 344 rat was proposed as an alternative to the conventional 2-year carcinogenesis bioassay for regulatory purposes. The acronym DMBDD stands for the names of five genotoxic agents used for initiation of multiorgan carcinogenesis. The Brazilian Agency for the Environment officially recognized a variation of this assay (DMBDD(b)) as a valid method to assess the carcinogenic potential of agrochemicals. Different from the original protocol, this DMBDD(b) is 30-week long, uses Wistar rats and two positive control groups exposed to carcinogenesis promoters sodium phenobarbital (PB) or 2-acetylaminofluorene (2-AAF). This report presents the experience of an academic laboratory with the DMBDD(b) assay and contributes to the establishment of this alternative DMBDD bioassay in a different rat strain. Frequent lesions observed in positive groups to evaluate the promoting potential of pesticides and the immunohistochemical expressions of liver cytochrome P450 (CYP) 2B1/2B2 and CYP1A2 enzymes were assessed. Commonly affected organs were liver, kidney, intestines, urinary bladder, and thyroid. PB promoting activity was less evident than that of 2-AAF, especially in males. This study provides a repository of characteristic lesions occurring in positive control animals submitted to a modified alternative 2-stage multiorgan protocol for carcinogenesis in Wistar rat.

  14. Correlation of MGMT promoter methylation status with gene and protein expression levels in glioblastoma

    PubMed Central

    Uno, Miyuki; Oba-Shinjo, Sueli Mieko; Camargo, Anamaria Aranha; Moura, Ricardo Pereira; de Aguiar, Paulo Henrique; Cabrera, Hector Navarro; Begnami, Marcos; Rosemberg, Sérgio; Teixeira, Manoel Jacobsen; Marie, Suely Kazue Nagahashi

    2011-01-01

    OBJECTIVES: 1) To correlate the methylation status of the O6-methylguanine-DNA-methyltransferase (MGMT) promoter to its gene and protein expression levels in glioblastoma and 2) to determine the most reliable method for using MGMT to predict the response to adjuvant therapy in patients with glioblastoma. BACKGROUND: The MGMT gene is epigenetically silenced by promoter hypermethylation in gliomas, and this modification has emerged as a relevant predictor of therapeutic response. METHODS: Fifty-one cases of glioblastoma were analyzed for MGMT promoter methylation by methylation-specific PCR and pyrosequencing, gene expression by real time polymerase chain reaction, and protein expression by immunohistochemistry. RESULTS: MGMT promoter methylation was found in 43.1% of glioblastoma by methylation-specific PCR and 38.8% by pyrosequencing. A low level of MGMT gene expression was correlated with positive MGMT promoter methylation (p = 0.001). However, no correlation was found between promoter methylation and MGMT protein expression (p = 0.297). The mean survival time of glioblastoma patients submitted to adjuvant therapy was significantly higher among patients with MGMT promoter methylation (log rank = 0.025 by methylation-specific PCR and 0.004 by pyrosequencing), and methylation was an independent predictive factor that was associated with improved prognosis by multivariate analysis. DISCUSSION AND CONCLUSION: MGMT promoter methylation status was a more reliable predictor of susceptibility to adjuvant therapy and prognosis of glioblastoma than were MGMT protein or gene expression levels. Methylation-specific polymerase chain reaction and pyrosequencing methods were both sensitive methods for determining MGMT promoter methylation status using DNA extracted from frozen tissue. PMID:22012047

  15. An assay for X inactivation based on differential methylations at the fragile X locus, FMR1

    SciTech Connect

    Carrel, L.; Willard, H.F. |

    1996-07-12

    We describe an assay analyzing methylation at the fragile X mental retardation gene, FMR1, to examine patterns of random or non-random X chromosome inactivation. Digestion of genomic DNA with the methylation-sensitive enzyme HpaII cleaves two restriction sites near the CGG repeat of the FMR1 gene if they are unmethylated on the active X chromosome, but fails to digest these sites on the inactive chromosome. Subsequent PCR using primers that flank the sites and the variable CGG repeat within the FMR1 gene amplifies alleles only on undigested, methylated inactive X chromosomes. Amplification of the hypervariable CGG repeat distinguishes alleles in heterozygous samples, while the relative ratio of alleles within a HpaII-digested sample reflects the randomness or non-randomness of inactivation. To demonstrate that methylation of the HpaII sites within the amplified FMR1 fragment correlates strictly with the activity state of the X chromosome, we have tested the validity of this assay by comparing DNA from normal males and females, as well as DNA from mouse/human somatic cell hybrids carrying either active or inactive human X chromosomes. The data demonstrate that this assay provides a reliable means of assessing the inactivation status of X chromosomes in individuals with X-linked disorders or X chromosome abnormalities. 21 refs., 2 figs., 1 tab.

  16. Nuclear matrix attachment regions antagonize methylation-dependent repression of long-range enhancer–promoter interactions

    PubMed Central

    Forrester, William C.; Fernández, Luis A.; Grosschedl, Rudolf

    1999-01-01

    The immunoglobulin intragenic μ enhancer region acts as a locus control region that mediates transcriptional activation over large distances in germ line transformation assays. In transgenic mice, but not in transfected tissue culture cells, the activation of a variable region (VH) promoter by the μ enhancer is dependent on flanking nuclear matrix attachment regions (MARs). Here, we examine the effects of DNA methylation, which occurs in early mouse development, on the function of the μ enhancer and the MARs. We find that methylation of rearranged μ genes in vitro, before transfection, represses the ability of the μ enhancer to activate the VH promoter over the distance of 1.2 kb. However, methylation does not affect enhancer-mediated promoter activation over a distance of 150 bp. In methylated DNA templates, the μ enhancer alone induces only local chromatin remodeling, whereas in combination with MARs, the μ enhancer generates an extended domain of histone acetylation. These observations provide evidence that DNA methylation impairs the distance independence of enhancer function and thereby imposes a requirement for additional regulatory elements, such as MARs, which facilitate long-range chromatin remodeling. PMID:10580007

  17. Altered expression of PTCH and HHIP in gastric cancer through their gene promoter methylation: novel targets for gastric cancer.

    PubMed

    Song, Yu; Tian, Ye; Zuo, Yun; Tu, Jian-Cheng; Feng, Yu-Fang; Qu, Chen-Jiang

    2013-04-01

    Human hedgehog-interacting protein (HHIP) and protein patched homolog (PTCH) are two negative regulators of the hedgehog signal, however, the mechanism of action in gastric cancer is unknown. Methylation of TSG promoters has been considered as a causative mechanism of tumorigenesis. In the present study, we first determined the expression of PTCH and HHIP mRNA and protein in gastric cancer tissues and adjacent normal tissues, and then detected methylation of the two genes to associate their expression and gene promoter methylation in gastric cancer. Expression in gastric cancer tissues and the cancer cells (AGS) were evaluated by reverse transcription-PCR (RT-PCR), qRT-PCR and IHC, while the methylation expression was valued by methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP). Cell viability and apoptosis were analyzed by MTT assay and flow cytometry following treatment with 5-aza-dc. Results showed that PTCH and HHIP expression was reduced in gastric cancer tissues that were not associated with clinical features. Moreover, methylation of the promoters was reversely correlated with the expression. Following treatment with 5-aza-dc, AGS reduced cell viability and induced apoptosis, which is associated with upregulation of HHIP expression. The data demonstrated that loss of expression of HHIP and PTCH is associated with the methylation of gene promoters. In addition, 5-aza-dc-induced apoptosis correlated with the upregulation of HHIP expression in AGS. The findings demonstrated that the PTCH and HHIP genes may be novel targets for the control of gastric cancer.

  18. Assessing CpG island methylator phenotype, 1p/19q codeletion, and MGMT promoter methylation from epigenome-wide data in the biomarker cohort of the NOA-04 trial

    PubMed Central

    Wiestler, Benedikt; Capper, David; Hovestadt, Volker; Sill, Martin; Jones, David T.W.; Hartmann, Christian; Felsberg, Joerg; Platten, Michael; Feiden, Wolfgang; Keyvani, Kathy; Pfister, Stefan M.; Wiestler, Otmar D.; Meyermann, Richard; Reifenberger, Guido; Pietsch, Thorsten; von Deimling, Andreas; Weller, Michael; Wick, Wolfgang

    2014-01-01

    Background Molecular biomarkers including isocitrate dehydrogenase 1 or 2 (IDH1/2) mutation, 1p/19q codeletion, and O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation may improve prognostication and guide treatment decisions for patients with World Health Organization (WHO) anaplastic gliomas. At present, each marker is individually tested by distinct assays. Illumina Infinium HumanMethylation450 BeadChip arrays (HM450) enable the determination of large-scale methylation profiles and genome-wide DNA copy number changes. Algorithms have been developed to detect the glioma CpG island methylator phenotype (G-CIMP) associated with IDH1/2 mutation, 1p/19q codeletion, and MGMT promoter methylation using a single assay. Methods Here, we retrospectively investigated the diagnostic and prognostic performance of these algorithms in comparison to individual marker testing and patient outcome in the biomarker cohort (n = 115 patients) of the NOA-04 trial. Results Concordance for IDH and 1p/19q status was very high: In 92% of samples, the HM450 and reference data agreed. In discordant samples, survival analysis by Kaplan-Meier and Cox regression analyses suggested a more accurate assessment of biological phenotype by the HM450 analysis. The HM450-derived MGMT-STP27 model to calculate MGMT promoter methylation probability revealed this aberration in a significantly higher fraction of samples than conventional methylation-specific PCR, with 87 of 91 G-CIMP tumors predicted as MGMT promoter-methylated. Pyrosequencing of discordant samples confirmed the HM450 assessment in 14 of 17 cases. Conclusions G-CIMP and 1p/19q codeletion are reliably detectable by HM450 analysis and are associated with prognosis in the NOA-04 trial. For MGMT, HM450 suggests promoter methylation in the vast majority of G-CIMP tumors, which is supported by pyrosequencing. PMID:25028501

  19. Correlation of CTGF gene promoter methylation with CTGF expression in type 2 diabetes mellitus with or without nephropathy.

    PubMed

    Zhang, Hao; Cai, Xu; Yi, Bin; Huang, Jing; Wang, Jianwen; Sun, Jian

    2014-06-01

    Increasing evidence shows that DNA methylation is involved in the development and progression of diabetes mellitus (DM) and its complications. Previous studies conducted by our group have indicated that high glucose levels may induce the demethylation process of the connective tissue growth factor (CTGF) gene promoter and increase the expression of CTGF in human glomerular mesangial cells. Based on these findings, the aim of the present study was to investigate the methylation level of genomic DNA and the CTGF promoter in patients with type 2 DM and to analyze its possible correlation with CTGF expression. Methylation levels of the whole genomic DNA were detected by high-performance liquid chromatography in a non-diabetes control (NDM) group (n=29), a diabetes without nephropathy (NDN) group (n=37) and a diabetes with nephropathy (DN) group (n=38). CTGF promoter methylation levels were detected by methylation-specific polymerase chain reaction and bisulfite sequencing. The levels of serum CTGF were assessed using the enzyme-linked immunosorbent assay. The methylation levels of the whole genomic DNA were not significantly different among the three groups. However, the CTGF methylation levels in the two diabetes groups were significantly lower than those in the NDM group (P<0.05), with the lowest methylation level in the DN group (P<0.05). The CTGF protein levels in the DN group were significantly higher than those in the NDM and NDN groups (P<0.05). Levels of CTGF were negatively correlated with the estimated glomerular filtration rate (eGFR) and the methylation level of the promoter, while they were positively correlated with age, urinary albumin-to-creatinine ratio (UACR), blood urea nitrogen, creatinine, fasting blood sugar and postprandial blood glucose. Multiple stepwise regression analysis showed that CTGF expression was associated with the UACR, CTGF methylation level and eGFR. DNA methylation is a regulatory mechanism of CTGF expression, which is decreased

  20. ABERRANT PROMOTER METHYLATION OF MULTIPLE GENES IN SPUTUM FROM INDIVIDUALS EXPOSED TO SMOKY COAL EMISSIONS

    EPA Science Inventory

    Aberrant methylation in the promoter region of cancer-related genes leads to gene transcriptional inactivation and plays an integral role in lung tumorigenesis. Recent studies demonstrated that promoter methylation was detected not only in lung tumors from patients with lung canc...

  1. RASSF1A promoter methylation in high-grade serous ovarian cancer: A direct comparison study in primary tumors, adjacent morphologically tumor cell-free tissues and paired circulating tumor DNA.

    PubMed

    Giannopoulou, Lydia; Chebouti, Issam; Pavlakis, Kitty; Kasimir-Bauer, Sabine; Lianidou, Evi S

    2017-02-10

    The RASSF1A promoter is frequently methylated in high-grade serous ovarian cancer (HGSC). We examined RASSF1A promoter methylation in primary tumors, adjacent morphologically tumor cell-free tissues and corresponding circulating tumor DNA (ctDNA) samples of patients with HGSC, using a real-time methylation specific PCR (real-time MSP) and a methylation-sensitive high-resolution melting analysis (MS-HRMA) assay for the detection and semi-quantitative estimation of methylation, respectively. Two groups of primary HGSC tumor FFPE samples were recruited (Group A n=67 and Group B n=61), along with matched adjacent morphologically tumor cell-free tissues (n=58) and corresponding plasma samples (n=59) for group B. Using both assays, RASSF1A promoter was found highly methylated in primary tumors of both groups, and at lower percentages in the adjacent morphologically tumor cell-free tissues. Interestingly, RASSF1A promoter methylation was also observed in ctDNA by real-time MSP. Overall survival (OS) was significantly associated with RASSF1A promoter methylation in primary tumor samples using MS-HRMA (P=0.023). Our results clearly indicate that RASSF1A promoter is methylated in adjacent tissue surrounding the tumor in HGSC patients. We report for the first time that RASSF1A promoter methylation provides significant prognostic information in HGSC patients.

  2. Light-regulated and cell-specific methylation of the maize PEPC promoter

    PubMed Central

    Tolley, Ben J.; Woodfield, Helen; Wanchana, Samart; Bruskiewich, Richard; Hibberd, Julian M.

    2012-01-01

    The molecular mechanisms governing PEPC expression in maize remain to be fully defined. Differential methylation of a region in the PEPC promoter has been shown to correlate with transcript accumulation, however, to date, investigations into the role of DNA methylation in maize PEPC expression have relied on the use of methylation-sensitive restriction enzymes. Bisulphite sequencing was used here to provide a single-base resolution methylation map of the maize PEPC promoter. It is shown that four cytosine residues in the PEPC promoter are heavily methylated in maize root tissue. In leaves, de-methylation of these cytosines is dependent on illumination and is coincident with elevated PEPC expression. Furthermore, light-regulated de-methylation of these cytosines occurs only in mesophyll cells. No methylation was discovered in the 0.6 kb promoter required for mesophyll-specific expression indicating that cytosine methylation is not required to direct the cell-specificity of PEPC expression. This raises interesting questions regarding the function of the cell-specific cytosine de-methylation observed in the upstream region of the PEPC promoter. PMID:22143916

  3. Role of CTGF gene promoter methylation in the development of hepatic fibrosis

    PubMed Central

    Shi, Cuicui; Li, Guangming; Tong, Yanyan; Deng, Yilin; Fan, Jiangao

    2016-01-01

    Connective tissue growth factor (CTGF) plays a critical role in the hepatic stellate cells (HSCs)-mediated development of hepatic fibrosis. Nevertheless, the effects of CTGF gene promoter methylation in the pathogenesis of hepatic fibrosis remain largely unknown. In the current study, we isolated and overexpressed CTGF in primary HSCs. We analyzed the CTGF gene promoter methylation inHSCs that undergo a phenotypic change into myofibroblast-like cellsthat express α-smooth muscle actin (α-SMA) in vitro and in vivo in a CCl4-induced rat hepatic fibrosis model. We found that CTGF promoted the phenotypic changes of HSCs into myofibroblasts in vitro, while inhibition of CTGF promoter methylation augmented the process, suggesting that CTGF gene promoter methylation may negatively regulate hepatic fibrosis. In vivo, CCl4 induced hepatic fibrosis in rats, and the severity of hepatic fibrosis inversely correlated with the levels of CTGF gene promoter methylation in HSCs. Together, our data demonstrate that CTGF gene promoter methylation may prevent the development of hepatic fibrosis, and low level of CTGF gene promoter methylation in HSCs may be a predisposing factor for developing liver fibrotic disease. PMID:27069546

  4. The effects of dietary supplementation of methionine on genomic stability and p53 gene promoter methylation in rats.

    PubMed

    Amaral, Cátia Lira Do; Bueno, Rafaela de Barros E Lima; Burim, Regislaine Valéria; Queiroz, Regina Helena Costa; Bianchi, Maria de Lourdes Pires; Antunes, Lusânia Maria Greggi

    2011-05-18

    Methionine is a component of one-carbon metabolism and a precursor of S-adenosylmethionine (SAM), the methyl donor for DNA methylation. When methionine intake is high, an increase of S-adenosylmethionine (SAM) is expected. DNA methyltransferases convert SAM to S-adenosylhomocysteine (SAH). A high intracellular SAH concentration could inhibit the activity of DNA methyltransferases. Therefore, high methionine ingestion could induce DNA damage and change the methylation pattern of tumor suppressor genes. This study investigated the genotoxicity of a methionine-supplemented diet. It also investigated the diet's effects on glutathione levels, SAM and SAH concentrations and the gene methylation pattern of p53. Wistar rats received either a methionine-supplemented diet (2% methionine) or a control diet (0.3% methionine) for six weeks. The methionine-supplemented diet was neither genotoxic nor antigenotoxic to kidney cells, as assessed by the comet assay. However, the methionine-supplemented diet restored the renal glutathione depletion induced by doxorubicin. This fact may be explained by the transsulfuration pathway, which converts methionine to glutathione in the kidney. Methionine supplementation increased the renal concentration of SAH without changing the SAM/SAH ratio. This unchanged profile was also observed for DNA methylation at the promoter region of the p53 gene. Further studies are necessary to elucidate this diet's effects on genomic stability and DNA methylation.

  5. Prognosis value of MGMT promoter methylation for patients with lung cancer: a meta-analysis.

    PubMed

    Chen, Chao; Hua, Haiqing; Han, Chenglong; Cheng, Yuan; Cheng, Yin; Wang, Zhen; Bao, Jutao

    2015-01-01

    The role of MGMT promoter methylation in lung cancer (LC) remains controversial. To clarify the association of MGMT promoter methylation with survival in LC, we performed a meta-analysis of the literature with meta-analysis. Trials were selected for further analysis if they provided an independent assessment of MGMT promoter methylation in LC and reported the survival data in the context of MGMT promoter methylation status. Subgroup analyses were conducted according to the study characteristic. A total of 9 trials, which comprised 859 patients, were included in the meta-analysis. The combined hazard ratio (HR) of 1.27 [95% CI 0.88-1.82; test for heterogeneity P = 0.027] suggests that MGMT promoter methylation has none impact on patient survival. In Stage I-III or younger populations, a significant association was found for MGMT promoter methylation in the prognosis of LC. In addition, the heterogeneity disappeared when the analysis was restricted to Stage I-III LC. Our analysis indicates that MGMT promoter methylation in stage I-III or younger patients was significantly correlated with wore survival. Further study is needed to determine these specific subgroups of LC patients.

  6. Gene promoter methylation in colorectal cancer and healthy adjacent mucosa specimens

    PubMed Central

    Coppedè, Fabio; Migheli, Francesca; Lopomo, Angela; Failli, Alessandra; Legitimo, Annalisa; Consolini, Rita; Fontanini, Gabriella; Sensi, Elisa; Servadio, Adele; Seccia, Massimo; Zocco, Giuseppe; Chiarugi, Massimo; Spisni, Roberto; Migliore, Lucia

    2014-01-01

    We evaluated the promoter methylation levels of the APC, MGMT, hMLH1, RASSF1A and CDKN2A genes in 107 colorectal cancer (CRC) samples and 80 healthy adjacent tissues. We searched for correlation with both physical and pathological features, polymorphisms of folate metabolism pathway genes (MTHFR, MTRR, MTR, RFC1, TYMS, and DNMT3B), and data on circulating folate, vitamin B12 and homocysteine, which were available in a subgroup of the CRC patients. An increased number of methylated samples were found in CRC respect to adjacent healthy tissues, with the exception of APC, which was also frequently methylated in healthy colonic mucosa. Statistically significant associations were found between RASSF1A promoter methylation and tumor stage, and between hMLH1 promoter methylation and tumor location. Increasing age positively correlated with both hMLH1 and MGMT methylation levels in CRC tissues, and with APC methylation levels in the adjacent healthy mucosa. Concerning gender, females showed higher hMLH1 promoter methylation levels with respect to males. In CRC samples, the MTR 2756AG genotype correlated with higher methylation levels of RASSF1A, and the TYMS 1494 6bp ins/del polymorphism correlated with the methylation levels of both APC and hMLH1. In adjacent healthy tissues, MTR 2756AG and TYMS 1494 6bp del/del genotypes correlated with APC and MGMT promoter methylation, respectively. Low folate levels were associated with hMLH1 hypermethylation. Present results support the hypothesis that DNA methylation in CRC depends from both physiological and environmental factors, with one-carbon metabolism largely involved in this process. PMID:24500500

  7. Quantitative assessment of the relationship between RASSF1A gene promoter methylation and bladder cancer (PRISMA)

    PubMed Central

    Zhan, Leyun; Zhang, Bingyi; Tan, Yaojun; Yang, Chengliang; Huang, Chenhong; Wu, Qiongya; Zhang, Yulin; Chen, Xiaobo; Zhou, Mi; Shu, Aihua

    2017-01-01

    Abstract Background: Methylation of the Ras-association domain family 1 isoform A (RASSF1A) gene promoter region is thought to participate in the initiation and development of many different cancers. However, in bladder cancer the role of RASSF1A methylation was unclear. To evaluate the relationship between RASSF1A methylation and bladder cancer, a quantitative assessment of an independent meta-analysis was performed. In addition, a DNA methylation microarray database from the cancer genome atlas (TCGA) project was used to validate the results of the meta-analysis. Methods: We searched published articles from computerized databases, and DNA methylation data were extracted from TCGA project. All data were analyzed by R software. Results: The results of the meta-analysis indicated that the frequency of RASSF1A gene methylation in bladder cancer patients is significantly higher than in healthy controls. The hazard ratio (HR) was 2.24 (95% CI = [1.45; 3.48], P = 0.0003) for overall survival (OS), and the RASSF1A gene promoter methylation status was strongly associated with the TNM stage and differentiation grade of the tumor. The similar results were also found by the data from TCGA project. Conclusion: There was a significant relationship between the methylation of the RASSF1A gene promoter and bladder cancer. Therefore, RASSF1A gene promoter methylation will be a potential biomarker for the clinical diagnosis of bladder cancer. PMID:28207521

  8. Determination of methyl parathion in water and its removal on zirconia using optical enzyme assay.

    PubMed

    Deshpande, Kanchanmala; Mishra, Rupesh K; Bhand, Sunil

    2011-07-01

    A simple, miniaturized microplate chemiluminescence assay for determination of methyl parathion (MP) was developed in 384-microwell plates. Zirconia (ZrO(2)) was added in microwell for adsorption of acetylcholinesterase (AChE). The developed assay is based on inhibition of AChE by MP. A good dynamic range 0.008-1,000 ng/mL was obtained for MP with limit of detection 0.008 ng/mL. Intrabatch and interbatch reproducibility for miniaturized assay was obtained with % RSD up to 3.07 and 5.66, respectively. In 384 well plate formats, 70 samples were simultaneously analyzed within 20 min with assay volume of 41.5 μL. The application of developed assay was extended for MP remediation. Column containing ZrO(2) was utilized for remediation where MP was selectively adsorbed. Under optimized condition, adsorption of MP on ZrO(2) was found to be 98-99% with 2-h contact time in real water samples. Adsorption of MP on ZrO(2) column followed by quantification using developed bioassay provides a novel approach to monitor remediation. The applicability of assay was successfully extended for determination of MP in water samples after removal through ZrO(2).

  9. Relationships between MGMT promoter methylation and gastric cancer: a meta-analysis.

    PubMed

    Yu, Dan; Cao, Tao; Han, Ya-Di; Huang, Fu-Sheng

    2016-01-01

    A DNA repair enzyme, O6-methylguanine-DNA methyltransferase (MGMT), plays an important role in the development of gastric cancers. However, the role of MGMT promoter methylation in the occurrence of gastric cancer and its relationships with clinicopathologic characteristics has not been fully clarified. Thus, we performed a meta-analysis to evaluate the associations between MGMT promoter methylation and gastric cancer. Electronic databases, including PubMed and Web of Science, were used to systematically search related clinical studies published in English until April 1, 2016. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated to evaluate the associations between MGMT promoter methylation and gastric cancer risk or clinicopathologic characteristics. A total of 16 studies including 1,935 patients and 1,948 control persons were included in the analysis. Our study suggested that MGMT promoter methylation frequency was associated with gastric cancer (OR=3.46, 95% CI: 2.13-5.61, P<0.001). Moreover, the frequency of MGMT promoter methylation in the no lymph node metastasis group was lower than that in lymph node metastasis group, with marginal significance (OR=0.65, 95% CI: 0.42-1.01, P=0.05). Additionally, the methylation rate of the MGMT promoter was much lower in patients without distant metastases than in those with metastases (OR=0.27, 95% CI: 0.18-0.40, P<0.001). No significant association of MGMT promoter methylation with Lauren classification, tumor location, tumor invasion, or Helicobacter pylori infection was found. In conclusion, the methylation status of the MGMT promoter was related to gastric cancer risk, distant metastasis, and lymph node metastasis, which indicates that MGMT promoter methylation may play an important role in gastric cancer development.

  10. Delta DNMT3B variants regulate DNA methylation in a promoter-specific manner.

    PubMed

    Wang, Jie; Bhutani, Manisha; Pathak, Ashutosh K; Lang, Wenhua; Ren, Hening; Jelinek, Jaroslav; He, Rong; Shen, Lanlan; Issa, Jean-Pierre; Mao, Li

    2007-11-15

    DNA methyltransferase 3B (DNMT3B) is critical in de novo DNA methylation during development and tumorigenesis. We recently reported the identification of a DNMT3B subfamily, DeltaDNMT3B, which contains at least seven variants, resulting from alternative pre-mRNA splicing. DeltaDNMT3Bs are the predominant expression forms of DNMT3B in human lung cancer. A strong correlation was observed between the promoter methylation of RASSF1A gene but not p16 gene (both frequently inactivated by promoter methylation in lung cancer) and expression of DeltaDNMT3B4 in primary lung cancer, suggesting a role of DeltaDNMT3B in regulating promoter-specific methylation of common tumor suppressor genes in tumorigenesis. In this report, we provide first experimental evidence showing a direct involvement of DeltaDNMT3B4 in regulating RASSF1A promoter methylation in human lung cancer cells. Knockdown of DeltaDNMT3B4 expression by small interfering RNA resulted in a rapid demethylation of RASSF1A promoter and reexpression of RASSF1A mRNA but had no effect on p16 promoter in the lung cancer cells. Conversely, normal bronchial epithelial cells with stably transfected DeltaDNMT3B4 gained an increased DNA methylation in RASSF1A promoter but not p16 promoter. We conclude that promoter DNA methylation can be differentially regulated and DeltaDNMT3Bs are involved in regulation of such promoter-specific de novo DNA methylation.

  11. MGMT promoter methylation in serum and cerebrospinal fluid as a tumor-specific biomarker of glioma.

    PubMed

    Wang, Zheng; Jiang, Wei; Wang, Yahong; Guo, Yang; Cong, Zheng; DU, Fangfang; Song, Bin

    2015-07-01

    O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation is a conventional technique to predict the prognosis or individualized treatment of glioma in tumor tissue following surgery or biopsy. However, the technique cannot be applied in those glioma patients with concomitant neurological dysfunctions or advanced age. The present study aimed to find a new minimally invasive and efficient alternative method for the detection of MGMT promoter methylation. The expression of MGMT promoter methylation was assessed in peripheral blood and cerebrospinal fluid (CSF), and compared to the corresponding tumor tissue from glioma patients. The 89 patients in the study [32 World Health Organization (WHO) grade II, 19 WHO grade III and 38 WHO grade IV) were pathologically-diagnosed glioma and received radiation therapy following sample collection. The resected glioma tumor tissue (89), corresponding serum (89) and CSF (78) samples were collected for the detection of MGMT promoter methylation using methylation-specific polymerase chain reaction. The sensitivity and specificity of detecting MGMT promoter methylation in CSF and serum were compared. Among the tumor tissue samples, 51/89 (57.3%) showed MGMT promoter methylation. The specificity of the detection in the CSF and serum samples reached 100%. The sensitivity of MGMT promoter methylation detection in CSF and serum were 26/40 (65.0%) and 19/51 (37.3%), respectively (P<0.05). In the WHO II, III and IV subgroups, the sensitivities of MGMT promoter methylation detection using CSF were 8/12 (66.7%), 11/18 (61.1%) and 7/10 (70.0%), respectively, which were significantly higher than the sensitivities using serum (7/21, 33.3%; 7/19, 36.8%; and 5/11, 45.5%, respectively P<0.05). Among patients with residual postoperative tumors, the sensitivities of detecting MGMT promoter methylation using CSF and serum were 18/25 (72.0%) and 10/24 (41.7%), respectively, both of which were significantly higher than the corresponding

  12. Differential Methylation of the Arsenic (III) Methyltransferase Promoter According to Arsenic Exposure

    PubMed Central

    Gribble, Matthew O.; Tang, Wan-yee; Shang, Yan; Pollak, Jonathan; Umans, Jason G.; Francesconi, Kevin A.; Goessler, Walter; Silbergeld, Ellen K.; Guallar, Eliseo; Cole, Shelley A.; Fallin, M. Daniele; Navas-Acien, Ana

    2013-01-01

    Inorganic arsenic is methylated in the body by arsenic (III) methyltransferase. Arsenic methylation is thought to play a role in arsenic-related epigenetic phenomena including aberrant DNA and histone methylation. However, it is unclear whether the promoter of the AS3MT gene, which codes for arsenic (III) methyltransferase, is differentially methylated as a function of arsenic exposure. In this study we evaluated AS3MT promoter methylation according to exposure, assessed by urinary arsenic excretion in a stratified random sample of 48 participants from the Strong Heart Study who had urine arsenic measured at baseline and DNA available from 1989–1991 and 1998–1999. For this study, all data are from the 1989–1991 visit. We measured AS3MT promoter methylation at its 48 CpG loci by bisulphite sequencing. We compared mean % methylation at each CpG locus by arsenic exposure group using linear regression adjusted for study centre, age and sex. A hypomethylated region in the AS3MT promoter was associated with higher arsenic exposure. In vitro, arsenic induced AS3MT promoter hypomethylation and it increased AS3MT expression in human peripheral blood mononuclear cells. These findings may suggest that arsenic exposure influences the epigenetic regulation of a major arsenic metabolism gene. PMID:24154821

  13. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder.

    PubMed

    Na, Kyoung-Sae; Won, Eunsoo; Kang, June; Chang, Hun Soo; Yoon, Ho-Kyoung; Tae, Woo Suk; Kim, Yong-Ku; Lee, Min-Soo; Joe, Sook-Haeng; Kim, Hyun; Ham, Byung-Joo

    2016-02-15

    Recent studies have reported that methylation of the brain-derived neurotrophic factor (BDNF) gene promoter is associated with major depressive disorder (MDD). This study aimed to investigate the association between cortical thickness and methylation of BDNF promoters as well as serum BDNF levels in MDD. The participants consisted of 65 patients with recurrent MDD and 65 age- and gender-matched healthy controls. Methylation of BDNF promoters and cortical thickness were compared between the groups. The right medial orbitofrontal, right lingual, right lateral occipital, left lateral orbitofrontal, left pars triangularis, and left lingual cortices were thinner in patients with MDD than in healthy controls. Among the MDD group, right pericalcarine, right medical orbitofrontal, right rostral middle frontal, right postcentral, right inferior temporal, right cuneus, right precuneus, left frontal pole, left superior frontal, left superior temporal, left rostral middle frontal and left lingual cortices had inverse correlations with methylation of BDNF promoters. Higher levels of BDNF promoter methylation may be closely associated with the reduced cortical thickness among patients with MDD. Serum BDNF levels were significantly lower in MDD, and showed an inverse relationship with BDNF methylation only in healthy controls. Particularly the prefrontal and occipital cortices seem to indicate key regions in which BDNF methylation has a significant effect on structure.

  14. Antimutagenic components in Glycyrrhiza against N-methyl-N-nitrosourea in the Ames assay.

    PubMed

    Inami, Keiko; Mine, Yusuke; Kojo, Yukiko; Tanaka, Satomi; Ishikawa, Satoko; Mochizuki, Masataka

    2017-03-01

    Antimutagenesis against N-nitroso compounds contribute to prevention of human cancer. We have found that Glycyrrhiza aspera ethanolic extract exhibits antimutagenic activity against N-methyl-N-nitrosourea (MNU) using the Ames assay with Salmonella typhimurium TA1535. In the present study, eight purified components from Glycyrrhiza, namely glabridin, glycyrrhetinic acid, glycyrrhizin, licochalcone A, licoricesaponin H2, licoricesaponin G2, liquiritigenin and liquiritin were evaluated for their antimutagenicity against MNU in the Ames assay with S. typhimurium TA1535. Glycyrrhetinic acid, glycyrrhizin, licoricesaponin G2, licoricesaponin H2 and liquiritin did not show the antimutagenicity against MNU in S. typhimurium TA1535. Glabridin, licochalcone A and liquiritigenin reduced revertant colonies derived from MNU in S. typhimurium TA1535 without showing cytotoxic effects, indicating that these compounds possess antimutagenic activity against MNU. The inhibitory activity of glabridin and licochalcone A was more effective than that of liquiritigenin. Thus, Glycyrrhiza contains antimutagenic components against DNA alkylating, direct-acting carcinogens.

  15. Meta-analysis of the association between APC promoter methylation and colorectal cancer

    PubMed Central

    Ding, Zhenyu; Jiang, Tong; Piao, Ying; Han, Tao; Han, Yaling; Xie, Xiaodong

    2015-01-01

    Previous studies investigating the association between adenomatous polyposis coli (APC) gene promoter methylation and colorectal cancer (CRC) have yielded conflicting results. The aim of this study was to comprehensively evaluate the potential application of the detection of APC promoter methylation to the prevention and treatment of CRC. PubMed, Embase, and MEDLINE (results updated to October 2014) were searched for relevant studies. The effect size was defined as the weighted odds ratio (OR), which was calculated using either the fixed-effects or random-effects model. Prespecified subgroup and sensitivity analyses were conducted to evaluate potential heterogeneity among the included studies. Nineteen studies comprising 2,426 participants were selected for our meta-analysis. The pooled results of nine studies comprising a total of 740 subjects indicated that APC promoter methylation was significantly associated with CRC risk (pooled OR 5.53; 95% confidence interval [CI] 3.50–8.76; P<0.01). Eleven studies with a total of 1,219 patients evaluated the association between APC promoter methylation and the presence of CRC metastasis, and the pooled OR was 0.80 (95% CI 0.44–1.46; P=0.47). A meta-analysis conducted with four studies with a total of 467 patients found no significant correlation between APC promoter methylation and the presence of colorectal adenoma (pooled OR 1.85; 95% CI 0.67–5.10; P=0.23). No significant correlation between APC promoter methylation and patients’ Dukes’ stage, TNM stage, differentiation grade, age, or sex was identified. In conclusion, APC promoter methylation was found to be significantly associated with a higher risk of developing CRC. The findings indicate that APC promoter methylation may be a potential biomarker for the carcinogenesis of CRC. PMID:25632237

  16. Meta-analysis of the association between APC promoter methylation and colorectal cancer.

    PubMed

    Ding, Zhenyu; Jiang, Tong; Piao, Ying; Han, Tao; Han, Yaling; Xie, Xiaodong

    2015-01-01

    Previous studies investigating the association between adenomatous polyposis coli (APC) gene promoter methylation and colorectal cancer (CRC) have yielded conflicting results. The aim of this study was to comprehensively evaluate the potential application of the detection of APC promoter methylation to the prevention and treatment of CRC. PubMed, Embase, and MEDLINE (results updated to October 2014) were searched for relevant studies. The effect size was defined as the weighted odds ratio (OR), which was calculated using either the fixed-effects or random-effects model. Prespecified subgroup and sensitivity analyses were conducted to evaluate potential heterogeneity among the included studies. Nineteen studies comprising 2,426 participants were selected for our meta-analysis. The pooled results of nine studies comprising a total of 740 subjects indicated that APC promoter methylation was significantly associated with CRC risk (pooled OR 5.53; 95% confidence interval [CI] 3.50-8.76; P<0.01). Eleven studies with a total of 1,219 patients evaluated the association between APC promoter methylation and the presence of CRC metastasis, and the pooled OR was 0.80 (95% CI 0.44-1.46; P=0.47). A meta-analysis conducted with four studies with a total of 467 patients found no significant correlation between APC promoter methylation and the presence of colorectal adenoma (pooled OR 1.85; 95% CI 0.67-5.10; P=0.23). No significant correlation between APC promoter methylation and patients' Dukes' stage, TNM stage, differentiation grade, age, or sex was identified. In conclusion, APC promoter methylation was found to be significantly associated with a higher risk of developing CRC. The findings indicate that APC promoter methylation may be a potential biomarker for the carcinogenesis of CRC.

  17. Association between promoter methylation of DAPK gene and HNSCC: A meta-analysis

    PubMed Central

    Cai, Fucheng; Xiao, Xiyue; Niu, Xun; Zhong, Yi

    2017-01-01

    Background The death-associated protein kinase (DAPK) is a tumor suppressor gene, which is a mediator of cell death of INF-γ–induced apoptosis. Aberrant methylation of DAPK promoter has been reported in patients with head and neck squamous cell carcinoma (HNSCC). However, the results of these studies are inconsistent. Hence, the present study aimed to evaluate the association between the promoter methylation of DAPK gene and HNSCC. Methods Relevant studies were systematically searched in PubMed, Web of Science, Ovid, and Embase. The association between DAPK promoter methylation and HNSCC was assessed by odds ratio (ORs) and 95% confidence intervals (CI). To evaluate the potential sources of heterogeneity, we conducted the meta-regression analysis and subgroup analysis. Results Eighteen studies were finally included in the meta-analysis. The frequency of DAPK promoter methylation in patients with HNSCC was 4.09-fold higher than the non-cancerous controls (OR = 3.96, 95%CI = 2.26–6.95). A significant association between DAPK promoter methylation and HNSCC was found among the Asian region and the Non-Asia region (Asian region, OR = 4.43, 95% CI = 2.29–8.58; Non-Asia region, OR = 3.39, 95% CI = 1.18–9.78). In the control source, the significant association between DAPK promoter methylation and HNSCC was seen among the autologous group and the heterogeneous group (autologous group, OR = 2.71, 95% CI = 1.49–4.93; heterogeneous group, OR = 9.50, 95% CI = 2.98–30.27). DAPK promoter methylation was significantly correlated with alcohol status (OR = 1.85, 95% CI = 1.07–3.21). Conclusion The results of this meta-analysis suggested that aberrant methylation of DAPK promoter was associated with HNSCC. PMID:28249042

  18. DNA promoter methylation in breast tumors: no association with genetic polymorphisms in MTHFR and MTR.

    PubMed

    Tao, Meng Hua; Shields, Peter G; Nie, Jing; Marian, Catalin; Ambrosone, Christine B; McCann, Susan E; Platek, Mary; Krishnan, Shiva S; Xie, Bin; Edge, Stephen B; Winston, Janet; Vito, Dominica; Trevisan, Maurizio; Freudenheim, Jo L

    2009-03-01

    Aberrant promoter methylation is recognized as an important feature of breast carcinogenesis. We hypothesized that genetic variation of genes for methylenetetrahydrofolate reductase (MTHFR) and methionine synthase (MTR), two critical enzymes in the one-carbon metabolism, may alter DNA methylation levels and thus influence DNA methylation in breast cancer. We evaluated case-control association of MTHFR C677T, A1298C, and MTR A2756G polymorphisms for cases strata-defined by promoter methylation status for each of three genes, E-cadherin, p16, and RAR-beta2 in breast cancer; in addition, we evaluated case-case comparisons of the likelihood of promoter methylation in relation to genotypes using a population-based case-control study conducted in Western New York State. Methylation was evaluated with real-time methylation-specific PCRs for 803 paraffin-embedded breast tumor tissues from women with primary, incident breast cancer. We applied unordered polytomous regression and unconditional logistic regression to derive adjusted odds ratios and 95% confidence intervals. We did not find any association of MTHFR and MTR polymorphisms with breast cancer risk stratified by methylation status nor between polymorphisms and likelihood of promoter methylation of any of the genes. There was no evidence of difference within strata defined by menopausal status, estrogen receptor status, folate intake, and lifetime alcohol consumption. Overall, we found no evidence that these common polymorphisms of the MTHFR and MTR genes are associated with promoter methylation of E-cadherin, p16, and RAR-beta2 genes in breast cancer.

  19. DNA promoter methylation in breast tumors: No association with genetic polymorphisms in MTHFR and MTR

    PubMed Central

    Tao, Meng Hua; Shields, Peter G.; Nie, Jing; Marian, Catalin; Ambrosone, Christine B.; McCann, Susan E.; Platek, Mary; Krishnan, Shiva S.; Xie, Bin; Edge, Stephen B.; Winston, Janet; Vito, Dominica; Trevisan, Maurizio; Freudenheim, Jo L.

    2013-01-01

    Aberrant promoter methylation is recognized as an important feature of breast carcinogenesis. We hypothesized that genetic variation of genes for methylenetetrahydrofolate reductase (MTHFR) and methionine synthase (MTR), two critical enzymes in one-carbon metabolism, may alter DNA methylation levels, and thus influence DNA methylation in breast cancer. We evaluated case-control association of MTHFR C677T, A1298C, and MTR A2756G polymorphisms for cases strata defined by promoter methylation status for each of three genes, E- cadherin, p16, and RAR-β2 in breast cancer; in addition, we evaluated case-case comparisons of likelihood of promoter methylation in relation to genotypes using a population-based case-control study conducted in Western New York State. Methylation was evaluated with real time methylation-specific PCRs for 803 paraffin embedded breast tumor tissues from women with primary, incident breast cancer. We applied unordered polytomous regression and unconditional logistic regression to derive adjusted odds ratios (OR) and 95% confidence intervals (CI). We did not find any association of MTHFR and MTR polymorphisms with breast cancer risk stratified by methylation status nor between polymorphisms and likelihood of promoter methylation of any of the genes. There was no evidence of difference within strata defined by menopausal status, ER status, folate intake and lifetime alcohol consumption. Overall, we found no evidence that these common polymorphisms of the MTHFR and MTR genes are associated with promoter methylation of E- cadherin, p16, and RAR-β2 genes in breast cancer. PMID:19240236

  20. TNF-alpha promoter methylation as a predictive biomarker for weight-loss response.

    PubMed

    Campión, Javier; Milagro, Fermin I; Goyenechea, Estibaliz; Martínez, J Alfredo

    2009-06-01

    Tumor necrosis factor-alpha (TNF-alpha) is a proinflammatory cytokine which is commonly elevated in obese subjects and whose promoter is susceptible to be regulated by cytosine methylation. The aim of this research was to analyze whether epigenetic regulation of human TNF-alpha promoter by cytosine methylation could be involved in the predisposition to lose body weight after following a balanced hypocaloric diet. Twenty-four patients (12 women/12 men) with excessive body weight-for-height (BMI: 30.5+/-0.32 kg/m2; age: 34+/-4 years old) followed an 8-week energy-restricted diet. Blood mononuclear cell DNA, isolated before the nutritional intervention, was treated with bisulfite and a region of TNF-alpha gene promoter (from -360 to +50 bp) was sequenced. Obese men with successful weight loss (>or=5% of initial body weight) showed lower levels of total TNF-alpha promoter methylation (r=0.74; P=0.021), especially in the positions -170 bp (r=0.75, P=0.005) and -120 bp (r=0.70, P=0.011). Baseline TNF-alpha circulating levels were positively associated with total promoter methylation (r=0.84, P=0.005) and methylation at position -245 bp (r=0.75, P=0.020). TNF-alpha promoter methylation could be a good inflammation marker predicting the hypocaloric diet-induced weight-loss, and constitutes a first step toward personalized nutrition based on epigenetic criteria.

  1. Quantitative analysis of follistatin (FST) promoter methylation in peripheral blood of patients with polycystic ovary syndrome.

    PubMed

    Sang, Qing; Zhang, Shaozhen; Zou, Shien; Wang, Huan; Feng, Ruizhi; Li, Qiaoli; Jin, Li; He, Lin; Xing, Qinghe; Wang, Lei

    2013-02-01

    Epigenetic mechanisms may contribute to polycystic ovary syndrome (PCOS). To date, however, no studies have associated CpG methylation levels of any candidate gene with PCOS susceptibility. Follistatin (FST), an activin-binding protein, is expressed in numerous tissues and is shown to have linkage with PCOS. However, results from case-control association analyses between this gene and PCOS are inconsistent. Thus, this study investigated possible association of methylation levels in the promoter and 5'-untranscribed region (UTR) of the FST gene with PCOS incidence in peripheral blood leukocytes and endometrial tissue. Using mass array quantitative methylation analysis, first the 5'-UTR methylation in FST was analysed in 130 PCOS patients and 120 controls. The methylation level of the FST gene was further studied in endometrium from 24 controls and 24 PCOS patients. This study demonstrates that methylation levels of CpG sites in the FST promoter and 5'-UTR are not associated with PCOS. Nonetheless, this was the first study to quantitatively evaluate the methylation levels of a candidate gene in association with PCOS. Further studies should be performed to examine methylation in other candidate genes. Understanding the epigenetic mechanisms involved in PCOS may yield new insights into the pathophysiology of the disorder. Animal models demonstrate that epigenetic reprogramming may contribute to polycystic ovary syndrome (PCOS). To date, however, no studies have associated CpG methylation levels of any candidate gene with PCOS susceptibility. Follistatin (FST), an activin-binding protein, is expressed in numerous tissues and is a PCOS candidate gene. However, results from association analyses between this gene and PCOS are inconsistent. Thus, we investigated possible association of methylation levels in the promoter and 5'-UTR of the FST gene with PCOS incidence in peripheral blood leukocytes and endometrial tissue. Using mass array quantitative methylation analysis, we

  2. Association between DNA Methylation of the BDNF Promoter Region and Clinical Presentation in Alzheimer's Disease

    PubMed Central

    Nagata, Tomoyuki; Kobayashi, Nobuyuki; Ishii, Jumpei; Shinagawa, Shunichiro; Nakayama, Ritsuko; Shibata, Nobuto; Kuerban, Bolati; Ohnuma, Tohru; Kondo, Kazuhiro; Arai, Heii; Yamada, Hisashi; Nakayama, Kazuhiko

    2015-01-01

    Background/Aims In the present study, we examined whether DNA methylation of the brain-derived neurotrophic factor (BDNF) promoter is associated with the manifestation and clinical presentation of Alzheimer's disease (AD). Methods Of 20 patients with AD and 20 age-matched normal controls (NCs), the DNA methylation of the BDNF promoter (measured using peripheral blood samples) was completely analyzed in 12 patients with AD and 6 NCs. The resulting methylation levels were compared statistically. Next, we investigated the correlation between the DNA methylation levels and the clinical presentation of AD. Results The total methylation ratio (in %) of the 20 CpG sites was significantly higher in the AD patients (5.08 ± 5.52%) than in the NCs (2.09 ± 0.81%; p < 0.05). Of the 20 CpG sites, the methylation level at the CpG4 site was significantly higher in the AD subjects than in the NCs (p < 0.05). Moreover, the methylation level was significantly and negatively correlated with some neuropsychological test subscores (registration, recall, and prehension behavior scores; p < 0.05). Conclusion These results suggest that the DNA methylation of the BDNF promoter may significantly influence the manifestation of AD and might be associated with its neurocognitive presentation. PMID:25873928

  3. Comparison of three different techniques of human sperm DNA isolation for methylation assay.

    PubMed

    Yuan, Hong-fang; Kuete, Martin; Su, Li; Yang, Fan; Hu, Zhi-yong; Tian, Bo-zhen; Zhang, Hui-ping; Zhao, Kai

    2015-12-01

    Human sperm DNA is an important genetic and epigenetic material, whose chromatin structure differs from that of somatic cells. As such, conventional methods for DNA extraction of somatic cells may not be suitable for obtaining sperm DNA. In this study, we evaluated and compared three sperm DNA extraction techniques, namely, modified guanidinium thiocyanate method (method A), traditional phenol-chloroform method (method B), and TianGen kit method (method C). Spectrophotometry and agarose gel electrophoresis analyses showed that method A produced DNA with higher quantity and purity than those of methods B and C (P<0.01). PCR results revealed that method A was more reliable in amplifying DEAD-box polypeptide 4 (DDX4) and copy number variations (CNVs) than methods B and C, which generated false-positive errors. The results of sperm DNA methylation assay further indicated that methods A and B were effective, and the former yielded higher quantitative accuracy. In conclusion, the modified guanidinium thiocyanate method provided high quality and reliable results and could be an optimal technique for extracting sperm DNA for methylation assay.

  4. Promoter DNA Methylation Pattern Identifies Prognostic Subgroups in Childhood T-Cell Acute Lymphoblastic Leukemia

    PubMed Central

    Borssén, Magnus; Palmqvist, Lars; Karrman, Kristina; Abrahamsson, Jonas; Behrendtz, Mikael; Heldrup, Jesper; Forestier, Erik; Roos, Göran; Degerman, Sofie

    2013-01-01

    Background Treatment of pediatric T-cell acute lymphoblastic leukemia (T-ALL) has improved, but there is a considerable fraction of patients experiencing a poor outcome. There is a need for better prognostic markers and aberrant DNA methylation is a candidate in other malignancies, but its potential prognostic significance in T-ALL is hitherto undecided. Design and Methods Genome wide promoter DNA methylation analysis was performed in pediatric T-ALL samples (n = 43) using arrays covering >27000 CpG sites. Clinical outcome was evaluated in relation to methylation status and compared with a contemporary T-ALL group not tested for methylation (n = 32). Results Based on CpG island methylator phenotype (CIMP), T-ALL samples were subgrouped as CIMP+ (high methylation) and CIMP− (low methylation). CIMP− T-ALL patients had significantly worse overall and event free survival (p = 0.02 and p = 0.001, respectively) compared to CIMP+ cases. CIMP status was an independent factor for survival in multivariate analysis including age, gender and white blood cell count. Analysis of differently methylated genes in the CIMP subgroups showed an overrepresentation of transcription factors, ligands and polycomb target genes. Conclusions We identified global promoter methylation profiling as being of relevance for subgrouping and prognostication of pediatric T-ALL. PMID:23762353

  5. Methylation Status of Vitamin D Receptor Gene Promoter in Benign and Malignant Adrenal Tumors

    PubMed Central

    Pilon, Catia; Rebellato, Andrea; Urbanet, Riccardo; Guzzardo, Vincenza; Cappellesso, Rocco; Sasano, Hironobu; Fassina, Ambrogio

    2015-01-01

    We previously showed a decreased expression of vitamin D receptor (VDR) mRNA/protein in a small group of adrenocortical carcinoma (ACC) tissues, suggesting the loss of a protective role of VDR against malignant cell growth in this cancer type. Downregulation of VDR gene expression may result from epigenetics events, that is, methylation of cytosine nucleotide of CpG islands in VDR gene promoter. We analyzed methylation of CpG sites in the VDR gene promoter in normal adrenals and adrenocortical tumor samples. Methylation of CpG-rich 5′ regions was assessed by bisulfite sequencing PCR using bisulfite-treated DNA from archival microdissected paraffin-embedded adrenocortical tissues. Three normal adrenals and 23 various adrenocortical tumor samples (15 adenomas and 8 carcinomas) were studied. Methylation in the promoter region of VDR gene was found in 3/8 ACCs, while no VDR gene methylation was observed in normal adrenals and adrenocortical adenomas. VDR mRNA and protein levels were lower in ACCs than in benign tumors, and VDR immunostaining was weak or negative in ACCs, including all 3 methylated tissue samples. The association between VDR gene promoter methylation and reduced VDR gene expression is not a rare event in ACC, suggesting that VDR epigenetic inactivation may have a role in adrenocortical carcinogenesis. PMID:26843863

  6. PTCH promoter methylation at low level in sporadic basal cell carcinoma analysed by three different approaches.

    PubMed

    Heitzer, Ellen; Bambach, Isabella; Dandachi, Nadia; Horn, Michael; Wolf, Peter

    2010-10-01

    Basal cell carcinoma (BCC) is the most common form of skin cancer. Mutations of the PTCH hallmark gene are detected in about 50-60% of BCCs, which raises the question whether other mechanisms such as promoter methylation can inactivate PTCH. Therefore, we performed methylation analysis of the PTCH promoter in a total of 56 BCCs. The sensitivity of three different methods, including direct bisulphite sequencing PCR, MethyLight and high-resolution melting (HRM), was applied and compared. We found that HRM analysis of DNA from fresh tissue [rather than formalin-fixed and paraffin-embedded tissue (FFPE)] was the most sensitive method to detect methylation. Low-level methylation of the PTCH promoter was detected in five out of 16 analysed BCCs (31%) on DNA from fresh tissue but only in two (13%) samples on short-time stored FFPE DNA from the very same tumors. In contrast, we were unable to detect methylation by HRM on long-time stored DNA in any of the remaining 40 BCC samples. Our data suggest that (i) HRM on DNA extracted from fresh tissue is the most sensitive method to detect methylation and (ii) methylation of the PTCH promoter may only play a minor role in BCC carcinogenesis.

  7. Polymorphism and DNA methylation in the promoter modulate KISS1 gene expression and are associated with litter size in goats.

    PubMed

    An, X P; Hou, J X; Lei, Y N; Gao, T Y; Cao, B Y

    2015-04-01

    Polymorphisms in the promoter region are likely to impact KISS1 gene transcription and reproductive traits. In this study, Guanzhong (GZ, n=350) and Boer (BE, n=196) goats were used to detect polymorphism in the promoter of the goat KISS1 gene by DNA sequencing. In the GZ goats, the g.1384G>A mutation was identified in the promoter of the goat KISS1 gene. Guanzhong goats were in Hardy-Weinberg disequilibrium at g.1384G>A locus (P<0.05). The 1384A allele was predicted to eliminate methylation, AHR-arnt heterodimers and AHR-related factors (AHRR) and myoblast determining factors (MYOD) transcription factor-binding sites. Statistical results indicated that the g.1384G>A SNP was associated with litter size in the GZ goats (P<0.05). Luciferase assay analysis suggested that the 1384A allele increased luciferase activity when compared to the 1384G allele. The RT-qPCR assay also demonstrated that the 1384A allele had greater amounts of KISS1 mRNA than the 1384G allele in homozygous individuals. Functional analysis suggested that this g.1384G>A SNP may be an important genetic regulator of KISS1 gene expression with effects on downstream processes that are modulated by KISS1 gene because of the changes of methylation and transcription factor-binding sites. Therefore, the current study provides evidence in goats for genetic markers that might be used in breeding programs.

  8. Dnmt3L antagonizes DNA methylation at bivalent promoters and favors DNA methylation at gene bodies in ESCs.

    PubMed

    Neri, Francesco; Krepelova, Anna; Incarnato, Danny; Maldotti, Mara; Parlato, Caterina; Galvagni, Federico; Matarese, Filomena; Stunnenberg, Hendrik G; Oliviero, Salvatore

    2013-09-26

    The de novo DNA methyltransferase 3-like (Dnmt3L) is a catalytically inactive DNA methyltransferase that cooperates with Dnmt3a and Dnmt3b to methylate DNA. Dnmt3L is highly expressed in mouse embryonic stem cells (ESCs), but its function in these cells is unknown. Through genome-wide analysis of Dnmt3L knockdown in ESCs, we found that Dnmt3L is a positive regulator of methylation at the gene bodies of housekeeping genes and, more surprisingly, is also a negative regulator of methylation at promoters of bivalent genes. Dnmt3L is required for the differentiation of ESCs into primordial germ cells (PGCs) through the activation of the homeotic gene Rhox5. We demonstrate that Dnmt3L interacts with the Polycomb PRC2 complex in competition with the DNA methyltransferases Dnmt3a and Dnmt3b to maintain low methylation levels at the H3K27me3 regions. Thus, in ESCs, Dnmt3L counteracts the activity of de novo DNA methylases to maintain hypomethylation at promoters of bivalent developmental genes.

  9. Quantitative evaluation of DNMT3B promoter methylation in breast cancer patients using differential high resolution melting analysis.

    PubMed

    Naghitorabi, M; Mohammadi Asl, J; Mir Mohammad Sadeghi, H; Rabbani, M; Jafarian-Dehkordi, A; Javanmard, Haghjooye S

    2013-07-01

    DNA methylation plays an important role in carcinogenesis through epigenetic silencing of tumor suppressor genes. Aberrant methylation usually results from changes in the activity of DNA methyltransferases (DNMTs). Some studies show that the overexpression of the DNMTs may lead to aberrant methylation of tumor suppressor genes. Also the overexpression of DNMTs may be related to methylation status of their genes. Due to limited number of studies on DNMT3B promoter methylation, this study was performed to quantitatively measure the methylation level of DNMT3B gene in archival formalin fixed paraffin embedded (FFPE) tissues from breast cancer patients. Using differential high resolution melting analysis (D-HRMA) technology, the methylation level of DNMT3B gene promoter was quantified in 98 breast cancer FFPE tissues and also 10 fresh frozen normal tissue samples. Statistical analyses used for analyzing the correlation between the methylation and clinical variables. All the normal samples were found to be methylated at the DNMT3B promoter (the average methylation level 3.34%). Patients were identified as hypo-methylated (mean methylation level 0.8%), methylated (mean methylation level 2.48%) and hyper-methylated (mean methylation level 10.5%). Statistical analysis showed a significant correlation between the methylation status and the sample type, cancer type and tumor size. Also the methylation level was significantly associated with histologic grade. It is concluded that quantification of DNMT3B promoter methylation might be used as a reliable and sensitive diagnostic and prognostic tool in breast cancer. Also D-HRMA is demonstrated as a rapid and cost effective method for quantitative evaluation of promoter methylation.

  10. Role of CDH13 promoter methylation in the carcinogenesis, progression, and prognosis of colorectal cancer

    PubMed Central

    Ye, Meng; Huang, Tao; Li, Jinyun; Zhou, Chongchang; Yang, Ping; Ni, Chao; Chen, Si

    2017-01-01

    Abstract Background: H-cadherin (CDH13) is commonly downregulated through promoter methylation in various cancers. However, the role of CDH13 promoter methylation status in patients with colorectal cancer (CRC) remains to be clarified. Methods: Eligible articles were identified from online electronic database based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement criteria. The pooled odds ratio (OR) and the corresponding 95% confidence interval (95% CI) were calculated and analyzed. Results: Eventually, a total of nine studies were included in this meta-analysis, including 488 CRC, 298 adjacent, 144 normal, 68 premalignant tissues. The results demonstrated that CDH13 promoter methylation was notably higher in CRC than in normal, adjacent, and premalignant tissues (cancer tissues vs normal tissues: OR = 16.94, P < 0.001; cancer tissues vs adjacent tissues: OR = 20.06, P < 0.001; cancer tissues vs premalignant tissues: OR = 2.23, P = 0.038). CDH13 promoter methylation had a significantly increased risk for poorly differentiated CRC (OR = 4.07, P = 0.001). CDH13 promoter methylation was not associated with sex status, tumor stage, and lymph node status (all P > 0.05). One study with 85 CRC patients reported that CDH13 promoter methylation was correlated with poor prognosis in overall survival (OS). Conclusions: CDH13 promoter methylation may play an important role in the initiation and progression of CRC, and may be correlated with OS of patients with CRC. Additional studies with large sample sizes are needed to further confirm our findings in the future. PMID:28121942

  11. DAPK Promoter Methylation and Bladder Cancer Risk: A Systematic Review and Meta-Analysis

    PubMed Central

    Zhang, Zhensheng; Zeng, Shuxiong; Liu, Anwei; Tang, Shijie; Ren, Qian; Sun, Yinghao; Xu, Chuanliang

    2016-01-01

    Background Methylation of tumor suppressor gene promoter leads to transcription inactivation and is involved in tumorigenesis. Several studies demonstrate a potential association between the Death-Associated Protein Kinase (DAPK) gene promoter methylation and bladder cancer risk, tumor stage and histological grade. Due to inconsistent results of these studies, we performed this meta-analysis to ascertain the association. Methods Studies were retrieved from the PubMed, Embase, Web of Science and the Cochrane Library databases. Study selection and data extraction were executed by two reviewers independently. Meta-analysis was performed using Stata 13.0 and Review Manager 5.3 software. Results A total of 21 articles involving 15 case control and 8 case series studies were included in this meta-analysis. DAPK promoter methylation was associated with bladder cancer risk (OR: 5.81; 95%CI = 3.83–8.82, P<0.00001). The frequency of DAPK promoter methylation was equal in bladder cancer tissue and paired adjacent normal tissue (OR: 0.87; 95%CI = 0.31–2.48, P = 0.794). Furthermore, DAPK promoter methylation was associated with higher histological grade (OR: 1.52; 95%CI = 1.10–2.09, P = 0.011) but not associated with tumor stage (OR: 1.12; 95%CI = 0.67–1.87, P = 0.668). Conclusions The result suggests that DAPK promoter methylation is significantly increased in bladder cancer patients compared to normal controls. DAPK promoter methylation could serve as a biomarker for bladder cancer detection and management. PMID:27907054

  12. Aberrant promoter methylation of multiple genes in sputum from individuals exposed to smoky coal emissions

    PubMed Central

    Liu, Yang; Lan, Qing; Shen, Min; Mumford, Judy; Keohavong, Phouthone

    2010-01-01

    Summary Aberrant methylation in the promoter region of cancer-related genes leads to gene transcriptional inactivation and plays an integral role in lung tumorigenesis. Recent studies demonstrated that promoter methylation was detected not only in lung tumors from patients with lung cancer but also in sputum of smokers without the disease, suggesting the potential for aberrant gene promoter methylation in sputum as a predictive marker for lung cancer. In the present study, we investigated promoter methylation of 4 genes frequently detected in lung tumors, including p16, MGMT, RASSF1A and DAPK genes, in sputum samples obtained from 107 individuals, including 34 never-smoking females and 73 mostly smoking males, who had no evidence of lung cancer but who were exposed to smoky coal emission in Xuan Wei County, China, where lung cancer rate is more than 6 times the Chinese national average rate. Forty nine of the individuals showed evidence of chronic bronchitis while the remaining 58 individuals showed no such a symptom. Promoter methylation of p16, MGMT, RASSF1A and DAPK was detected in 51.4% (55/107), 17.8% (19/107), 29.9% (32/107), and 15.9% (17/107) of the sputum samples from these individuals, respectively. There were no differences in promoter methylation frequencies of any of these genes according to smoking status or gender of the subjects or between individuals with chronic bronchitis and those without evidence of such a symptom. Therefore, individuals exposed to smoky coal emissions in this region harbored in their sputum frequent promoter methylation of these genes that have been previously found in lung tumors and implicated in lung cancer development. PMID:18751376

  13. Reporter Gene Silencing in Targeted Mouse Mutants Is Associated with Promoter CpG Island Methylation

    PubMed Central

    Kirov, Julia V.; Adkisson, Michael; Nava, A. J.; Cipollone, Andreana; Willis, Brandon; Engelhard, Eric K.; Lloyd, K. C. Kent; de Jong, Pieter; West, David B.

    2015-01-01

    Targeted mutations in mouse disrupt local chromatin structure and may lead to unanticipated local effects. We evaluated targeted gene promoter silencing in a group of six mutants carrying the tm1a Knockout Mouse Project allele containing both a LacZ reporter gene driven by the native promoter and a neo selection cassette. Messenger RNA levels of the reporter gene and targeted gene were assessed by qRT-PCR, and methylation of the promoter CpG islands and LacZ coding sequence were evaluated by sequencing of bisulfite-treated DNA. Mutants were stratified by LacZ staining into presumed Silenced and Expressed reporter genes. Silenced mutants had reduced relative quantities LacZ mRNA and greater CpG Island methylation compared with the Expressed mutant group. Within the silenced group, LacZ coding sequence methylation was significantly and positively correlated with CpG Island methylation, while promoter CpG methylation was only weakly correlated with LacZ gene mRNA. The results support the conclusion that there is promoter silencing in a subset of mutants carrying the tm1a allele. The features of targeted genes which promote local silencing when targeted remain unknown. PMID:26275310

  14. The effect of smoking on MAOA promoter methylation in DNA prepared from lymphoblasts and whole blood.

    PubMed

    Philibert, Robert A; Beach, Steven R H; Gunter, Tracy D; Brody, Gene H; Madan, Anup; Gerrard, Meg

    2010-03-05

    Prior work using lymphoblast DNA prepared from 192 subjects from the Iowa Adoption Studies (IAS) demonstrated that decreased MAOA promoter methylation was associated with lifetime symptom count for nicotine dependence (ND) and provided suggestive evidence that the amount of methylation is genotype dependent. In the current investigation, we replicate and extend these prior findings in three ways using another 289 IAS subjects and the same methodologies. First, we show that methylation is dependent on current smoking status. Second, we introduce a factor analytic approach to DNA methylation, highlighting three distinct regions of the promoter that may function in somewhat different ways for males and females. Third, we directly compare the methylation signatures in DNA prepared from whole blood and lymphoblasts from a subset of these subjects and provide suggestive evidence favoring the use of lymphoblast DNA. We conclude that smoking reliably decreases MAOA methylation, but exact characterization of effects on level of methylation depend on genotype, smoking history, current smoking status, gender, and region of the promoter-associated CpG Island examined.

  15. Analysis of APC and IGFBP7 promoter gene methylation in Swedish and Vietnamese colorectal cancer patients.

    PubMed

    Dimberg, Jan; Hong, Thai Trinh; Skarstedt, Marita; Löfgren, Sture; Zar, Niklas; Matussek, Andreas

    2013-01-01

    The tumour suppressor gene adenomatous polyposis coli (APC) is a key component that drives colorectal carcinogenesis. The reported DNA methylation in the promoter of APC varies greatly among studies of colorectal cancer (CRC) in different populations. Insulin-like growth factor binding protein 7 (IGFBP7), also known as IGFBP-related protein 1 (IGFBP-rP1), is expressed in various tissue types, including the lung, brain, prostate and gastrointestinal tract, and has been suggested to play a tumour suppressor role against colorectal carcinogenesis. Studies have indicated that IGFBP7 is inactivated by DNA methylation in human colon, lung and breast cancer. In the present study, we used the methylation-specific polymerase chain reaction to study the methylation status of the APC and IGFBP7 gene promoters in cancerous and paired normal tissue to evaluate its impact on clinical factors and association with ethnicity, represented by Swedish and Vietnamese CRC patients. We also investigated the distribution of CpG islands and the CpG dinucleotide density of each CpG island in the regions which were the subject of our investigation. Overall, normal tissue from Swedish patients exhibited a significantly higher frequency of IGFBP7 gene methylation in comparison with that of Vietnamese patients. Moreover, a significantly higher number of cancer tissues from Vietnamese individuals showed higher levels of methylation versus the paired normal tissue compared with that of Swedish patients. When we studied the methylation in cancer compared with the matched normal tissue in individuals, we found that a significantly higher number of Vietnamese patients had a higher degree of IGFBP7 gene methylation in cancer versus matched normal tissue in comparison with Swedish patients. Taken together, our results suggest that the methylation of the APC and IGFBP7 gene promoter region in cancerous tissue, in combination with the predominance of methylation in normal tissue, may serve as a

  16. Antipsychotic drugs attenuate aberrant DNA methylation of DTNBP1 (dysbindin) promoter in saliva and post-mortem brain of patients with schizophrenia and Psychotic bipolar disorder.

    PubMed

    Abdolmaleky, Hamid M; Pajouhanfar, Sara; Faghankhani, Masoomeh; Joghataei, Mohammad Taghi; Mostafavi, Ashraf; Thiagalingam, Sam

    2015-12-01

    Due to the lack of genetic association between individual genes and schizophrenia (SCZ) pathogenesis, the current consensus is to consider both genetic and epigenetic alterations. Here, we report the examination of DNA methylation status of DTNBP1 promoter region, one of the most credible candidate genes affected in SCZ, assayed in saliva and post-mortem brain samples. The Illumina DNA methylation profiling and bisulfite sequencing of representative samples were used to identify methylation status of the DTNBP1 promoter region. Quantitative methylation specific PCR (qMSP) was employed to assess methylation of DTNBP1 promoter CpGs flanking a SP1 binding site in the saliva of SCZ patients, their first-degree relatives and control subjects (30, 15, and 30/group, respectively) as well as in post-mortem brains of patients with SCZ and bipolar disorder (BD) versus controls (35/group). qRT-PCR was used to assess DTNBP1 expression. We found DNA hypermethylation of DTNBP1 promoter in the saliva of SCZ patients (∼12.5%, P = 0.036), particularly in drug-naïve patients (∼20%, P = 0.011), and a trend toward hypermethylation in their first-degree relatives (P = 0.085) versus controls. Analysis of post-mortem brain samples revealed an inverse correlation between DTNBP1 methylation and expression, and normalization of this epigenetic change by classic antipsychotic drugs. Additionally, BD patients with psychotic depression exhibited higher degree of methylation versus other BD patients (∼80%, P = 0.025). DTNBP1 promoter DNA methylation may become a key element in a panel of biomarkers for diagnosis, prevention, or therapy in SCZ and at risk individuals pending confirmatory studies with larger sample sizes to attain a higher degree of significance.

  17. Site-specific methylation of the rat prolactin and growth hormone promoters correlates with gene expression.

    PubMed Central

    Ngô, V; Gourdji, D; Laverrière, J N

    1996-01-01

    The methylation patterns of the rat prolactin (rPRL) (positions -440 to -20) and growth hormone (rGH) (positions -360 to -110) promoters were analyzed by bisulfite genomic sequencing. Two normal tissues, the anterior pituitary and the liver, and three rat pituitary GH3 cell lines that differ considerably in their abilities to express both genes were tested. High levels of rPRL gene expression were correlated with hypomethylation of the CpG dinucleotides located at positions -277 and -97, near or within positive cis-acting regulatory elements. For the nine CpG sites analyzed in the rGH promoter, an overall hypomethylation-expression coupling was also observed for the anterior pituitary, the liver, and two of the cell lines. The effect of DNA methylation was tested by measuring the transient expression of the chloramphenicol acetyltransferase reporter gene driven by a regionally methylated rPRL promoter. CpG methylation resulted in a decrease in the activity of the rPRL promoter which was proportional to the number of modified CpG sites. The extent of the inhibition was also found to be dependent on the position of methylated sites. Taken together, these data suggest that site-specific methylation may modulate the action of transcription factors that dictate the tissue-specific expression of the rPRL and rGH genes in vivo. PMID:8668139

  18. Methylation of an intragenic alternative promoter regulates transcription of GARP.

    PubMed

    Haupt, Sonja; Söntgerath, Viktoria Sophie Apollonia; Leipe, Jan; Schulze-Koops, Hendrik; Skapenko, Alla

    2016-02-01

    Alternative promoter usage has been proposed as a mechanism regulating transcriptional and translational diversity in highly elaborated systems like the immune system in humans. Here, we report that transcription of human glycoprotein A repetitions predominant (GARP) in regulatory CD4 T cells (Tregs) is tightly regulated by two alternative promoters. An intragenic promoter contains several CpGs and acts as a weak promoter that is demethylated and initiates transcription Treg-specifically. The strong up-stream promoter containing a CpG-island is, in contrast, fully demethylated throughout tissues. Transcriptional activity of the strong promoter was surprisingly down-regulated upon demethylation of the weak promoter. This demethylation-induced transcriptional attenuation regulated the magnitude of GARP expression and correlated with disease activity in rheumatoid arthritis. Treg-specific GARP transcription was initiated by synergistic interaction of forkhead box protein 3 (Foxp3) with nuclear factor of activated T cells (NFAT) and was underpinned by permissive chromatin remodeling caused by release of the H3K4 demethylase, PLU-1. Our findings describe a novel function of alternative promoters in regulating the extent of transcription. Moreover, since GARP functions as a transporter of transforming growth factor β (TGFβ), a cytokine with broad pleiotropic traits, GARP transcriptional attenuation by alternative promoters might provide a mechanism regulating peripheral TGFβ to avoid unwanted harmful effects.

  19. Comprehensive Analysis of MGMT Promoter Methylation: Correlation with MGMT Expression and Clinical Response in GBM

    PubMed Central

    Shah, Nameeta; Lin, Biaoyang; Sibenaller, Zita; Ryken, Timothy; Lee, Hwahyung; Yoon, Jae-Geun; Rostad, Steven; Foltz, Greg

    2011-01-01

    O6-methylguanine DNA-methyltransferase (MGMT) promoter methylation has been identified as a potential prognostic marker for glioblastoma patients. The relationship between the exact site of promoter methylation and its effect on gene silencing, and the patient's subsequent response to therapy, is still being defined. The aim of this study was to comprehensively characterize cytosine-guanine (CpG) dinucleotide methylation across the entire MGMT promoter and to correlate individual CpG site methylation patterns to mRNA expression, protein expression, and progression-free survival. To best identify the specific MGMT promoter region most predictive of gene silencing and response to therapy, we determined the methylation status of all 97 CpG sites in the MGMT promoter in tumor samples from 70 GBM patients using quantitative bisulfite sequencing. We next identified the CpG site specific and regional methylation patterns most predictive of gene silencing and improved progression-free survival. Using this data, we propose a new classification scheme utilizing methylation data from across the entire promoter and show that an analysis based on this approach, which we call 3R classification, is predictive of progression-free survival (HR  = 5.23, 95% CI [2.089–13.097], p<0.0001). To adapt this approach to the clinical setting, we used a methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) test based on the 3R classification and show that this test is both feasible in the clinical setting and predictive of progression free survival (HR  = 3.076, 95% CI [1.301–7.27], p = 0.007). We discuss the potential advantages of a test based on this promoter-wide analysis and compare it to the commonly used methylation-specific PCR test. Further prospective validation of these two methods in a large independent patient cohort will be needed to confirm the added value of promoter wide analysis of MGMT methylation in the clinical setting. PMID

  20. Methylation of the Gpat2 promoter regulates transient expression during mouse spermatogenesis

    PubMed Central

    Garcia-Fabiani, Maria B.; Montanaro, Mauro A.; Lacunza, Ezequiel; Cattaneo, Elizabeth R.; Coleman, Rosalind A.; Pellon-Maison, Magali; Gonzalez-Baro, Maria R.

    2015-01-01

    Spermatogenesis is a highly regulated process that involves both mitotic and meiotic divisions, as well as cellular differentiation to yield mature spermatozoa from undifferentiated germinal stem cells. Although Gpat2 was originally annotated as encoding a glycerol-3-phosphate acyltransferase by sequence homology to Gpat1, GPAT2 is highly expressed in testis but not in lipogenic tissues and is not up-regulated during adipocyte differentiation. New data show that GPAT2 is required for the synthesis of piRNAs (piwi-interacting RNAs), a group of small RNAs that protect the germ cell genome from retrotransposable elements. In order to understand the relationship between GPAT2 and its role in the testis, we focused on Gpat2 expression during the first wave of mouse spermatogenesis. Gpat2 expression was analysed by qPCR (quantitative real-time PCR), in situ hybridization, immunohistochemistry and Western blotting. Gpat2 mRNA content and protein expression were maximal at 15 dpp (days post-partum) and were restricted to pachytene spermatocytes. To achieve this transient expression, both epigenetic mechanisms and trans-acting factors are involved. In vitro assays showed that Gpat2 expression correlates with DNA demethylation and histone acetylation and that it is up-regulated by retinoic acid. Epigenetic regulation by DNA methylation was confirmed in vivo in germ cells by bisulfite sequencing of the Gpat2 promoter. Consistent with the initiation of meiosis at 11 dpp, methylation decreased dramatically. Thus, Gpat2 is expressed at a specific stage of spermatogenesis, consistent with piRNA synthesis and meiosis I prophase, and its on–off expression pattern responds predominantly to epigenetic modifications. PMID:26268560

  1. Promoter Methylation Analysis Reveals that KCNA5 Ion Channel Silencing Supports Ewing Sarcoma Cell Proliferation

    PubMed Central

    Ryland, Katherine E; Hawkins, Allegra G.; Weisenberger, Daniel J.; Punj, Vasu; Borinstein, Scott C.; Laird, Peter W.; Martens, Jeffrey R.; Lawlor, Elizabeth R.

    2015-01-01

    Polycomb proteins are essential regulators of gene expression in stem cells and development. They function to reversibly repress gene transcription via post-translational modification of histones and chromatin compaction. In many human cancers, genes that are repressed by polycomb in stem cells are subject to more stable silencing via DNA methylation of promoter CpG islands. Ewing sarcoma is an aggressive bone and soft tissue tumor that is characterized by over-expression of polycomb proteins. This study investigates the DNA methylation status of polycomb target gene promoters in Ewing sarcoma tumors and cell lines and observes that the promoters of differentiation genes are frequent targets of CpG-island DNA methylation. In addition, the promoters of ion channel genes are highly differentially methylated in Ewing sarcoma compared to non-malignant adult tissues. Ion channels regulate a variety of biological processes, including proliferation, and dysfunction of these channels contributes to tumor pathogenesis. In particular, reduced expression of the voltage-gated Kv1.5 channel has been implicated in tumor progression. These data show that DNA methylation of the KCNA5 promoter contributes to stable epigenetic silencing of Kv1.5 channel. This epigenetic repression is reversed by exposure to the DNA methylation inhibitor decitabine, which inhibits Ewing sarcoma cell proliferation through mechanisms that include restoration of Kv1.5 channel function. Implications This study demonstrates that promoters of ion channels are aberrantly methylated in Ewing sarcoma and that epigenetic silencing of KCNA5 contributes to tumor cell proliferation, thus providing further evidence of the importance of ion channel dyregulation to tumorigenesis. PMID:26573141

  2. Alcohol and nicotine codependence-associated DNA methylation changes in promoter regions of addiction-related genes

    PubMed Central

    Xu, Hongqin; Wang, Fan; Kranzler, Henry R.; Gelernter, Joel; Zhang, Huiping

    2017-01-01

    Altered DNA methylation in addiction-related genes may modify the susceptibility to alcohol or drug dependence (AD or ND). We profiled peripheral blood DNA methylation levels of 384 CpGs in promoter regions of 82 addiction-related genes in 256 African Americans (AAs) (117 cases with AD-ND codependence and 139 controls) and 196 European Americans (103 cases with AD-ND codependence and 93 controls) using Illumina’s GoldenGate DNA methylation array assays. AD-ND codependence-associated DNA methylation changes were analyzed using linear mixed-effects models with consideration of batch effects and covariates age, sex, and ancestry proportions. Seventy CpGs (in 41 genes) showed nominally significant associations (P < 0.05) with AD-ND codependence in both AAs and EAs. One CpG (HTR2B cg27531267) was hypomethylated in AA cases (P = 7.2 × 10−5), while 17 CpGs in 16 genes (including HTR2B cg27531267) were hypermethylated in EA cases (5.6 × 10−9 ≤ P ≤ 9.5 × 10−5). Nevertheless, 13 single nucleotide polymorphisms (SNPs) nearby HTR2B cg27531267 and the interaction of these SNPs and cg27531267 did not show significant effects on AD-ND codependence in either AAs or EAs. Our study demonstrated that DNA methylation changes in addiction-related genes could be potential biomarkers for AD-ND co-dependence. Future studies need to explore whether DNA methylation alterations influence the risk of AD-ND codependence or the other way around. PMID:28165486

  3. Evaluation of methyl methacrylate monomer cytotoxicity in dental lab technicians using buccal micronucleus cytome assay.

    PubMed

    Azhar, Dawasaz Ali; Syed, Sadatullah; Luqman, Master; Ali, Assiry A

    2013-01-01

    Methyl methacrylate (MMA) monomer, a primary component of dental resins, is known to induce cytotoxicity, dermatitis, and neuropathy. The objective of this study was to assess the incidence of micronuclei (MN) in buccal mucosal cells of dental technicians exposed to MMA using Buccal Micronucleus Cytome (BMCyt) assay. The Risk Group (RG=13) consisted of all the technicians working in the prosthetic production laboratory of KKU-College of Dentistry. The Control Group (CG=14) consisted of healthy students and doctors matching the age of RG subjects. Buccal mucosa scrapes obtained from all the 27 RG and CG subjects were stained with Papanicolaou stain and observed under oil immersion lens (100×) for the presence of MN. There were no significant differences in the incidence of MN between RG and CG (p>0.05).

  4. Promoter methylation of yes-associated protein (YAP1) gene in polycystic ovary syndrome

    PubMed Central

    Jiang, Li-Le; Xie, Juan-Ke; Cui, Jin-Quan; Wei, Duo; Yin, Bao-Li; Zhang, Ya-Nan; Chen, Yuan-Hui; Han, Xiao; Wang, Qian; Zhang, Cui-Lian

    2017-01-01

    Abstract Background: DNA methylation modification has been proved to influence the phenotype of polycystic ovary syndrome (PCOS). Genome-wide association studies (GWAS) demonstrate that yes-associated protein (YAP1) genetic sites are associated with PCOS. The study aims to detect the methylation status of YAP1 promoter in ovary granulosa cells (GCs) of PCOS patients and explore novel therapeutic targets for PCOS. Methods: Randomized controlled trial was applied and a total of 72 women were included in the study, including 36 cases of PCOS patients and 36 cases of health controls. Ovary GCs were extracted from in vitro fertilization embryo transfer. Methylation status of YAP1 promoter was detected by bisulfite sequencing PCR (BSP). Protein and mRNA expression of YAP1 were measured by western blotting and real-time quantitate PCR. Results: Overall methylation level of YAP1 promoter region from PCOS group was significantly lower than that from control group. CpG sites analysis revealed that 12 sites (−443, −431, −403, −371, −331, −120, −49, −5, +1, +9, +15, +22) were significantly hypomethylated in women with PCOS (P < 0.05). A significant upregulation of YAP1 mRNA and protein expression levels was observed. Testosterone concentration could alleviate the methylation status and demonstrate obvious dose–dependent relation. Conclusion: Our research achievements manifest that hypomethylation of YAP1 promoter promotes the YAP1 expression, which plays a key role in the pathogenesis and accelerate PCOS. PMID:28079802

  5. A CpG-methylation-based assay to predict survival in clear cell renal cell carcinoma

    PubMed Central

    Wei, Jin-Huan; Haddad, Ahmed; Wu, Kai-Jie; Zhao, Hong-Wei; Kapur, Payal; Zhang, Zhi-Ling; Zhao, Liang-Yun; Chen, Zhen-Hua; Zhou, Yun-Yun; Zhou, Jian-Cheng; Wang, Bin; Yu, Yan-Hong; Cai, Mu-Yan; Xie, Dan; Liao, Bing; Li, Cai-Xia; Li, Pei-Xing; Wang, Zong-Ren; Zhou, Fang-Jian; Shi, Lei; Liu, Qing-Zuo; Gao, Zhen-Li; He, Da-Lin; Chen, Wei; Hsieh, Jer-Tsong; Li, Quan-Zhen; Margulis, Vitaly; Luo, Jun-Hang

    2015-01-01

    Clear cell renal cell carcinomas (ccRCCs) display divergent clinical behaviours. Molecular markers might improve risk stratification of ccRCC. Here we use, based on genome-wide CpG methylation profiling, a LASSO model to develop a five-CpG-based assay for ccRCC prognosis that can be used with formalin-fixed paraffin-embedded specimens. The five-CpG-based classifier was validated in three independent sets from China, United States and the Cancer Genome Atlas data set. The classifier predicts the overall survival of ccRCC patients (hazard ratio=2.96−4.82; P=3.9 × 10−6−2.2 × 10−9), independent of standard clinical prognostic factors. The five-CpG-based classifier successfully categorizes patients into high-risk and low-risk groups, with significant differences of clinical outcome in respective clinical stages and individual ‘stage, size, grade and necrosis' scores. Moreover, methylation at the five CpGs correlates with expression of five genes: PITX1, FOXE3, TWF2, EHBP1L1 and RIN1. Our five-CpG-based classifier is a practical and reliable prognostic tool for ccRCC that can add prognostic value to the staging system. PMID:26515236

  6. Quantitative analysis of promoter methylation in exfoliated epithelial cells isolated from breast milk of healthy women.

    PubMed

    Wong, Chung M; Anderton, Douglas L; Smith-Schneider, Sallie; Wing, Megan A; Greven, Melissa C; Arcaro, Kathleen F

    2010-10-01

    Promoter methylation analysis of genes frequently silenced in breast cancer is a promising indicator of breast cancer risk, as these methylation events are thought to occur long before presentation of disease. The numerous exfoliated epithelial cells present in breast milk may provide the breast epithelial DNA needed for detailed methylation analysis and assessment of breast cancer risk. Fresh breast milk samples and health, lifestyle, and reproductive history questionnaires were collected from 111 women. Pyrosequencing analysis was conducted on DNA isolated from the exfoliated epithelial cells immunomagnetically separated from the total cell population in the breast milk of 102 women. A total of 65 CpG sites were examined in six tumor suppressor genes: PYCARD (also known as ASC or TMS1), CDH1, GSTP1, RBP1 (also known as CRBP1), SFRP1, and RASSF1. A sufficient quantity of DNA was obtained for meaningful analysis of promoter methylation; women donated an average of 86 ml of milk with a mean yield of 32,700 epithelial cells per ml. Methylation scores were in general low as expected of benign tissue, but analysis of outlier methylation scores revealed a significant relationship between breast cancer risk, as indicated by previous biopsy, and methylation score for several CpG sites in CDH1, GSTP1, SFRP1, and RBP1. Methylation of RASSF1 was positively correlated with women's age irrespective of her reproductive history. Promoter methylation patterns in DNA from breast milk epithelial cells can likely be used to assess breast cancer risk. Additional studies of women at high breast cancer risk are warranted.

  7. Quantitation of inhibition of DNA methylation of the retinoic acid receptor beta gene by 5-Aza-2'-deoxycytidine in tumor cells using a single-nucleotide primer extension assay.

    PubMed

    Bovenzi, V; Momparler, R L

    2000-05-15

    The expression of several cancer-related genes has been reported to be silenced by DNA methylation of their promoter region. 5-Aza-2'-deoxycytidine (5-AZA-CdR), a potent and specific inhibitor of DNA methylation, can reactivate the in vitro expression of these genes. In future clinical trials in tumor therapy with 5-AZA-CdR a method to quantitate its inhibition of methylation of specific tumor suppressor genes would provide important data for the analysis of the therapeutic efficacy of this analogue. We have modified the methylation-sensitive single-nucleotide primer extension assay reported by Gonzalgo and Jones (Nucleic Acids Res. 25, 2529-2531, 1997). Genomic DNA was treated with bisulfite and a fragment of the promoter region of the human retinoic acid receptor beta (RARbeta) gene, a tumor suppressor gene, was amplified using seminested PCR. Using two different primers we quantitated the inhibition of methylation produced by 5-AZA-CdR at two specific CpG sites in the RARbeta promoter in a human colon and a breast carcinoma cell line. The results obtained with the modified assay show a precise and reproducible quantitation of inhibition of DNA methylation produced by 5-AZA-CdR in tumor cells.

  8. Increased promoter methylation in exfoliated breast epithelial cells in women with a previous breast biopsy.

    PubMed

    Browne, Eva P; Punska, Elizabeth C; Lenington, Sarah; Otis, Christopher N; Anderton, Douglas L; Arcaro, Kathleen F

    2011-12-01

    Accurately identifying women at increased risk of developing breast cancer will provide greater opportunity for early detection and prevention. DNA promoter methylation is a promising biomarker for assessing breast cancer risk. Breast milk contains large numbers of exfoliated epithelial cells that are ideal for methylation analyses. Exfoliated epithelial cells were isolated from the milk obtained from each breast of 134 women with a history of a non-proliferative benign breast biopsy (Biopsy Group). Promoter methylation of three tumor suppressor genes, RASSF1, SFRP1 and GSTP1, was assessed by pyrosequencing of bisulfite-modified DNA. Methylation scores from the milk of the 134 women in the Biopsy Group were compared to scores from 102 women for whom a breast biopsy was not a recruitment requirement (Reference Group). Mean methylation scores for RASSF1 and GSTP1 were significantly higher in the Biopsy than in the Reference Group. For all three genes the percentage of outlier scores was greater in the Biopsy than in the Reference Group but reached statistical significance only for GSTP1. A comparison between the biopsied and non-biopsied breasts of the Biopsy Group revealed higher mean methylation and a greater number of outlier scores in the biopsied breast for both SFRP1 and RASSF1, but not for GSTP1. This is the first evidence of CpG island methylation in tumor suppressor genes of women who may be at increased risk of developing breast cancer based on having had a prior breast biopsy.

  9. BRAF mutation-specific promoter methylation of FOX genes in colorectal cancer

    PubMed Central

    2013-01-01

    Background Cancer-specific hypermethylation of (promoter) CpG islands is common during the tumorigenesis of colon cancer. Although associations between certain genetic aberrations, such as BRAF mutation and microsatellite instability, and the CpG island methylator phenotype (CIMP), have been found, the mechanisms by which these associations are established are still unclear. We studied genome-wide DNA methylation differences between colorectal tumors carrying a BRAF mutation and BRAF wildtype tumors. Results Using differential methylation hybridization on oligonucleotide microarrays representing 32,171 CpG-rich regions, we identified 1,770 regions with differential methylation between colorectal tumor and paired normal colon. Next, we compared the tumor/normal methylation ratios between different groups of patients. Related to CIMP, we identified 749 differentially methylated regions, of which 86% had a higher tumor/normal methylation ratio in the CIMP-positive group. We identified 758 regions with a BRAF mutation-specific methylation change, of which 96% had a higher tumor/normal methylation ratio in the BRAF mutant group. Among the genes affected by BRAF mutation-specific methylation changes, we found enrichment of several cancer-related pathways, including the PI3 kinase and Wnt signaling pathways. To focus on genes that are silenced in a tumor-specific rather than a lineage-specific manner, we used information on the epigenetic silencing mark H3K27me3 in embryonic stem (ES) cells. Among the genes showing BRAF mutation-specific promoter methylation but no H3K27me3 mark in ES cells were forkhead box (FOX) transcription factors associated with the PI3 kinase pathway, as well as MLH1 and SMO. Repression of FOXD3 gene expression in tumors could be related to its promoter hypermethylation. Conclusions We identified new BRAF mutation-specific methylation changes in colorectal cancer. Epigenetic downregulation of these targets may contribute to mutationally active BRAF

  10. Promoter CpG methylation of multiple genes in pituitary adenomas: frequent involvement of caspase-8.

    PubMed

    Bello, M Josefa; De Campos, Jose M; Isla, Alberto; Casartelli, Cacilda; Rey, Juan A

    2006-02-01

    The epigenetic changes in pituitary adenomas were identified by evaluating the methylation status of nine genes (RB1, p14(ARF), p16(INK4a), p73, TIMP-3, MGMT, DAPK, THBS1 and caspase-8) in a series of 35 tumours using methylation-specific PCR analysis plus sequencing. The series included non-functional adenomas (n=23), prolactinomas (n=6), prolactinoma plus thyroid-stimulating hormone adenoma (n=1), growth hormone adenomas (n=4), and adrenocorticotropic adenoma (n=1). All of the tumours had methylation of at least one of these genes and 40% of samples (14 of 35) displayed concurrent methylation of at least three genes. The frequencies of aberrant methylation were: 20% for RB1, 17% for p14(ARF), 34% for p16(INK4a), 29% for p73, 11% for TIMP-3, 23% for MGMT, 6% for DAPK, 43% for THBS1 and 54% for caspase-8. No aberrant methylation was observed in two non-malignant pituitary samples from healthy controls. Although some differences in the frequency of gene methylation between functional and non-functional adenomas were detected, these differences did not reach statistical significance. Our results suggest that promoter methylation is a frequent event in pituitary adenoma tumourigenesis, a process in which inactivation of apoptosis-related genes (DAPK, caspase-8) might play a key role.

  11. Association of BRCA1 promoter methylation with sporadic breast cancers: Evidence from 40 studies.

    PubMed

    Zhang, Li; Long, Xinghua

    2015-12-08

    Breast cancer susceptibility gene 1 (BRCA1) located at chromosome 17q12-21 is a classic tumor suppressor gene, and has been considered as a significant role in hereditary breast cancers. Moreover, numerous studies demonstrated the methylation status of CpG islands in the promoter regions of BRCA1 gene was aberrant in patients with sporadic breast tumors compared with healthy females or patients with benign diseases. However, these conclusions were not always consistent. Hence, a meta-analysis was performed to get a more precise estimate for these associations. Crude odds ratio with 95% confidence interval were used to assess the association of BRCA1 promoter methylation and the risk or clinicopathologic characteristics of breast cancers under fixed or random effect model. A total of 40 studies were eligible for this present study. We observed the frequency of BRCA1 promoter methylation was statistically significant higher in breast cancers than non-cancer controls. Furthermore, BRCA1 methylation was statistically associated with lymph node metastasis, histological grade 3, ER(-), PR(-), triple-negative phenotype, and decreased or lack levels of BRCA1 protein expression. In conclusion, this study indicated that BRCA1 promoter methylation appeared to be a useful predictive or prognostic biomarker for breast cancers in clinical assessment.

  12. ABCB1 regulation through LRPPRC is influenced by the methylation status of the GC -100 box in its promoter

    PubMed Central

    Corrêa, Stephany; Binato, Renata; Du Rocher, Bárbara; Ferreira, Gerson; Cappelletti, Paola; Soares-Lima, Sheila; Pinto, Luis Felipe; Mencalha, André; Abdelhay, Eliana

    2014-01-01

    One of the potential mechanisms of imatinib mesylate (IM) resistance in chronic myeloid leukemia (CML) is increased level of P-glycoprotein (Pgp). Pgp is an efflux pump capable of activating the multidrug resistance (MDR) phenotype. The gene encoding Pgp (ABCB1) has several binding sites in its promoter region, along with CpG islands and GC boxes, involved in its epigenetic control. In previous work, we performed a proteomic study to identify proteins involved in IM cross-resistance in acute leukemia. Among these proteins, we identified LRPPRC as a potential regulator of ABCB1 transcription via an invMED1 binding site in ABCB1. Interestingly, this invMED1 binding site overlaps with the GC -100 box. In this work, we investigated the potential role of LRPPRC in the regulation of ABCB1 transcriptional activity in CML resistance. In addition, we evaluated the potential connection between this regulation and the methylation status of the ABCB1 promoter in its GC -100 box. Our results show that LRPPRC binds prominently to the ABCB1 promoter in Lucena cells, an IM-resistant cell line. Luciferase assays showed that ABCB1 transcription is positively regulated by LRPPRC upon its knockdown. Pyrosequencing analysis showed that the ABCB1 promoter is differentially methylated at its GC -100 box in K562 cells compared with Lucena cells, and in CML patients with different response to IM. Chromatin immunoprecipitation and Pgp expression after DNA demethylation treatment showed that LRPPRC binding is affected by the methylation status of ABCB1 GC -100 box. Taken together, our findings indicate that LRPPRC is a transcription factor related to ABCB1 expression and highlight the importance of epigenetic regulation in CML resistance. PMID:25089713

  13. ABCB1 regulation through LRPPRC is influenced by the methylation status of the GC -100 box in its promoter.

    PubMed

    Corrêa, Stephany; Binato, Renata; Du Rocher, Bárbara; Ferreira, Gerson; Cappelletti, Paola; Soares-Lima, Sheila; Pinto, Luis Felipe; Mencalha, André; Abdelhay, Eliana

    2014-08-01

    One of the potential mechanisms of imatinib mesylate (IM) resistance in chronic myeloid leukemia (CML) is increased level of P-glycoprotein (Pgp). Pgp is an efflux pump capable of activating the multidrug resistance (MDR) phenotype. The gene encoding Pgp (ABCB1) has several binding sites in its promoter region, along with CpG islands and GC boxes, involved in its epigenetic control. In previous work, we performed a proteomic study to identify proteins involved in IM cross-resistance in acute leukemia. Among these proteins, we identified LRPPRC as a potential regulator of ABCB1 transcription via an invMED1 binding site in ABCB1. Interestingly, this invMED1 binding site overlaps with the GC -100 box. In this work, we investigated the potential role of LRPPRC in the regulation of ABCB1 transcriptional activity in CML resistance. In addition, we evaluated the potential connection between this regulation and the methylation status of the ABCB1 promoter in its GC -100 box. Our results show that LRPPRC binds prominently to the ABCB1 promoter in Lucena cells, an IM-resistant cell line. Luciferase assays showed that ABCB1 transcription is positively regulated by LRPPRC upon its knockdown. Pyrosequencing analysis showed that the ABCB1 promoter is differentially methylated at its GC -100 box in K562 cells compared with Lucena cells, and in CML patients with different response to IM. Chromatin immunoprecipitation and Pgp expression after DNA demethylation treatment showed that LRPPRC binding is affected by the methylation status of ABCB1 GC -100 box. Taken together, our findings indicate that LRPPRC is a transcription factor related to ABCB1 expression and highlight the importance of epigenetic regulation in CML resistance.

  14. c-Myc inhibits TP53INP1 expression via promoter methylation in esophageal carcinoma

    SciTech Connect

    Weng, Wenhao; Yang, Qinyuan; Huang, Miaolong; Qiao, Yongxia; Xie, Yuan; Yu, Yongchun; Jing, An; Li, Zhi

    2011-02-11

    Research highlights: {yields} TP53INP1 expression is down-regulated in esophageal carcinoma and is associated with CGI-131 methylation. {yields} Inhibition of CGI-131 methylation upregulates TP53INP1 expression in ESCC cell lines. {yields} Ectopic expression of TP53INP1 inhibits growth of ESCC cells by inducing apoptosis and inhibiting cell cycle progression. {yields} c-Myc binds to the promoter of TP53INP1 in vivo and vitro and recruits DNMT3A to TP53INP1 promoter for CGI-131 methylation. -- Abstract: Tumor protein p53-induced nuclear protein 1 (TP53INP1) is a well known stress-induced protein that plays a role in both cell cycle arrest and p53-mediated apoptosis. Loss of TP53INP1 expression has been reported in human melanoma, breast carcinoma, and gastric cancer. However, TP53INP1 expression and its regulatory mechanism in esophageal squamous cell carcinoma (ESCC) remain unclear. Our findings are in agreement with previous reports in that the expression of TP53INP1 was downregulated in 28% (10/36 cases) of ESCC lesions, and this was accompanied by significant promoter methylation. Overexpression of TP53INP1 induced G1 cell cycle arrest and increased apoptosis in ESCC cell lines (EC-1, EC-109, EC-9706). Furthermore, our study showed that the oncoprotein c-Myc bound to the core promoter of TP53INP1 and recruited DNA methyltransferase 3A to methylate the local promoter region, leading to the inhibition of TP53INP1 expression. Our findings revealed that TP53INP1 is a tumor suppressor in ESCC and that c-Myc-mediated DNA methylation-associated silencing of TP53INP1 contributed to the pathogenesis of human ESCC.

  15. Role of CDH1 promoter polymorphism and DNA methylation in bladder carcinogenesis: a meta-analysis.

    PubMed

    Wang, Yi; Kong, Chui-Ze; Zhang, Zhe; Yang, Chun-Ming; Li, Jun

    2014-04-01

    Increasing scientific evidences suggest that CDH1 gene promoter polymorphism and DNA methylation may contribute to the development and progression of bladder cancer, but many existing studies have yielded inconclusive results. This meta-analysis aims to assess the role of CDH1 gene promoter polymorphism and methylation in bladder carcinogenesis. An extensive literature search for relevant studies was conducted in PubMed, Embase, Web of Science, Cochrane Library, and CBM databases from their inception through April 1, 2013. This meta-analysis was performed using the STATA 12.0 software. The crude odds ratio with 95% confidence interval was calculated. Fifteen studies were included in this meta-analysis with a total of 824 bladder cancer patients and 818 healthy controls being assessed. Our meta-analysis revealed that the A variant of CDH1 -160C/A polymorphism was associated with an increased risk of bladder cancer. Further analysis by pathological subtype indicated that patients with invasive carcinoma had a higher frequency of CDH1 -160A variant than those with superficial carcinoma. We analyzed the methylation frequency of CDH1 gene in 608 bladder cancer samples and 338 normal bladder samples. Our data strongly suggest that the CDH1 promoter methylation frequencies in bladder cancer tissues were greater than those in normal control tissues. In conclusion, our meta-analysis indicates that promoter polymorphism and methylation of CDH1 gene may be involved in the development and progression of bladder cancer. CDH1 gene promoter polymorphism and methylation might be promising biomarkers for the diagnosis and prognosis of bladder cancer.

  16. Methylation of tumour suppressor gene promoters in the presence and absence of transcriptional silencing in high hyperdiploid acute lymphoblastic leukaemia.

    PubMed

    Paulsson, Kajsa; An, Qian; Moorman, Anthony V; Parker, Helen; Molloy, Gael; Davies, Teresa; Griffiths, Mike; Ross, Fiona M; Irving, Julie; Harrison, Christine J; Young, Bryan D; Strefford, Jon C

    2009-03-01

    Promoter methylation is a common phenomenon in tumours, including haematological malignancies. In the present study, we investigated 36 cases of high hyperdiploid (>50 chromosomes) acute lymphoblastic leukaemia (ALL) with methylation-specific multiplex ligase-dependent probe amplification to determine the extent of aberrant methylation in this subgroup. The analysis, which comprised the promoters of 35 known tumour suppressor genes, showed that 16 genes displayed abnormal methylation in at least one case each. The highest number of methylated gene promoters seen in a single case was thirteen, with all but one case displaying methylation for at least one gene. The most common targets were ESR1 (29/36 cases; 81%), CADM1 (IGSF4, TSLC1; 25/36 cases; 69%), FHIT (24/36 cases; 67%) and RARB (22/36 cases; 61%). Interestingly, quantitative reverse transcription-polymerase chain reaction showed that although methylation of the CADM1 and RARB promoters resulted in the expected pattern of downregulation of the respective genes, no difference could be detected in FHIT expression between methylation-positive and -negative cases. Furthermore, TIMP3 was not expressed regardless of methylation status, showing that aberrant methylation does not always lead to gene expression changes. Taken together, our findings suggest that aberrant methylation of tumour suppressor gene promoters is a common phenomenon in high hyperdiploid ALL.

  17. Restoration of CpG Methylation in The Egf Promoter Region during Rat Liver Regeneration

    PubMed Central

    Deming, Li; Ziwei, Li; Xueqiang, Guo; Cunshuan, Xu

    2015-01-01

    Epidermal growth factor (EGF) is an important factor for healing after tissue damage in diverse experimental models. It plays an important role in liver regeneration (LR). The objective of this experiment is to investigate the methylation variation of 10 CpG sites in the Egf promoter region and their relevance to Egf expression during rat liver regenera- tion. As a follow up of our previous study, rat liver tissue was collected after rat 2/3 partial hepatectomy (PH) during the re-organization phase (from days 14 to days 28). Liver DNA was extracted and modified by sodium bisulfate. The methylation status of 10 CpG sites in Egf promoter region was determined using bisulfite sequencing polymerase chain reaction (PCR), as BSP method. The results showed that 3 (sites 3, 4 and 9) out of 10 CpG sites have strikingly methylation changes during the re-organization phase compared to the regeneration phase (from 2 hours to 168 hours, P=0.002, 0.048 and 0.018, respectively). Our results showed that methylation modification of CpGs in the Egf promoter region could be restored to the status before PH operation and changes of methylation didn’t affect Egf mRNA expression during the re-organization phase. PMID:26464832

  18. Fibrillarin methylates H2A in RNA polymerase I trans-active promoters in Brassica oleracea

    PubMed Central

    Loza-Muller, Lloyd; Rodríguez-Corona, Ulises; Sobol, Margarita; Rodríguez-Zapata, Luis C.; Hozak, Pavel; Castano, Enrique

    2015-01-01

    Fibrillarin is a well conserved methyltransferase involved in several if not all of the more than 100 methylations sites in rRNA which are essential for proper ribosome function. It is mainly localized in the nucleoli and Cajal bodies inside the cell nucleus where it exerts most of its functions. In plants, fibrillarin binds directly the guide RNA together with Nop56, Nop58, and 15.5ka proteins to form a snoRNP complex that selects the sites to be methylated in pre-processing of ribosomal RNA. Recently, the yeast counterpart NOP1 was found to methylate histone H2A in the nucleolar regions. Here we show that plant fibrillarin can also methylate histone H2A. In Brassica floral meristem cells the methylated histone H2A is mainly localized in the nucleolus but unlike yeast or human cells it also localize in the periphery of the nucleus. In specialized transport cells the pattern is altered and it exhibits a more diffuse staining in the nucleus for methylated histone H2A as well as for fibrillarin. Here we also show that plant fibrillarin is capable of interacting with H2A and carry out its methylation in the rDNA promoter. PMID:26594224

  19. Classification of Colon Cancer Patients Based on the Methylation Patterns of Promoters

    PubMed Central

    Choi, Wonyoung; Lee, Jungwoo; Lee, Jin-Young; Lee, Sun-Min; Kim, Da-Won

    2016-01-01

    Diverse somatic mutations have been reported to serve as cancer drivers. Recently, it has also been reported that epigenetic regulation is closely related to cancer development. However, the effect of epigenetic changes on cancer is still elusive. In this study, we analyzed DNA methylation data on colon cancer taken from The Caner Genome Atlas. We found that several promoters were significantly hypermethylated in colon cancer patients. Through clustering analysis of differentially methylated DNA regions, we were able to define subgroups of patients and observed clinical features associated with each subgroup. In addition, we analyzed the functional ontology of aberrantly methylated genes and identified the G-protein-coupled receptor signaling pathway as one of the major pathways affected epigenetically. In conclusion, our analysis shows the possibility of characterizing the clinical features of colon cancer subgroups based on DNA methylation patterns and provides lists of important genes and pathways possibly involved in colon cancer development. PMID:27445647

  20. Assay and characterization of a strong promoter element from B. subtilis.

    PubMed

    Zhang, Ai-Ling; Liu, Hui; Yang, Ming-Ming; Gong, Yue-Sheng; Chen, Hong

    2007-03-02

    A new strong promoter fragment isolated from Bacillus subtilis was identified and characterized. Using the heat stable beta-galactosidase as reporter, the promoter fragment exhibited high expression strength both in Escherichia coli and B. subtilis. The typical prokaryotic promoter conservation regions were found in the promoter fragment and the putative promoter was identified as the control element of yxiE gene via sequencing assay and predication of promoter. To further verify and characterize the cloned strong promoter, the putative promoter was sub-cloned and the beta-Gal directed by the promoters was high-level expressed both in E. coli and B. subtilis. By means of the isolated promoter, an efficient expression system was developed in B. subtilis and the benefit and usefulness was demonstrated through expression of three heterologous and homogenous proteins. Thus, we identified a newly strong promoter of B. subtilis and provided a robust expression system for genetic engineering of B. subtilis.

  1. S-Adenosylmethionine suppresses the expression of Smad3/4 in activated human hepatic stellate cells via Rac1 promoter methylation

    PubMed Central

    BIAN, KANGQI; ZHANG, FENG; WANG, TINGTING; ZOU, XIAOPING; DUAN, XUHONG; CHEN, GUANGXIA; ZHUGE, YUZHENG

    2016-01-01

    The aim of the present study was to investigate whether S-adenosylmethionine (SAM) was able to suppress activated human hepatic stellate cells (HSCs). Human LX-2 HSCs were cultured with SAM or NSC23766, and were transfected with plasmids encoding ras-related C3 botulinum toxin substrate 1 (Rac1) protein or an empty expression vector. Cell proliferation was detected by Cell Counting Kit-8. Cell migration and invasion were determined using the Transwell assay. The expression levels of Rac1 and Smad3/4 were detected by reverse transcription-quantitative polymerase chain reaction (PCR) or western blotting. The methylation status of Rac1 promoters was measured by methylation-specific PCR. The results demonstrated that SAM and NSC23766 suppressed the expression of Smad3/4 in LX-2 cells. The overexpression of Rac1 enhanced the proliferation, migration and invasion of LX-2 cells. In addition, compared with the control groups, a marked increase was observed in the protein expression levels of Smad3/4 in the LX-2 cells transfected with Rac1 plasmids. The methylation-specific PCR findings showed that SAM increased the methylation of Rac1 promoters. The results of the present study suggested that Rac1 enhanced the expression of Smad3/4 in activated HSCs; however, this increase may be suppressed by SAM-induced methylation of Rac1 promoters. PMID:26986629

  2. MGMT promoter methylation and correlation with protein expression in primary central nervous system lymphoma.

    PubMed

    Toffolatti, L; Scquizzato, E; Cavallin, S; Canal, F; Scarpa, M; Stefani, P M; Gherlinzoni, F; Dei Tos, A P

    2014-11-01

    The O (6)-methylguanine-DNA-methyltransferase (MGMT) gene encodes for a DNA repairing enzyme of which silencing by promoter methylation is involved in brain tumorigenesis. MGMT promoter methylation represents a favorable prognostic factor and has been associated with a better response to alkylating agents in glioma and systemic lymphoma. Primary central nervous system lymphoma (PCNSL) is a rare and aggressive extranodal malignant lymphoma. The current standard of care, based on high-dose methotrexate chemotherapy, has improved prognosis but outcome remains poor for a majority of patients. Therapeutic progress in this field is conditioned by limited biological and molecular knowledge about the disease. Temozolomide has recently emerged as an alternative option for PCNSL treatment. We aimed to analyze the MGMT gene methylation status in a series of 24 PCNSLs, to investigate the relationship between methylation status of the gene and immunohistochemical expression of MGMT protein and to evaluate the possible prognostic significance of these biomarkers. Our results confirm that methylation of the MGMT gene and loss of MGMT protein are frequent events in these lymphomas (54 % of our cases) and suggest that they are gender and age related. MGMT methylation showed high correlation with loss of protein expression (concordance correlation coefficient = -0.49; Fisher exact test: p < 0.01), different from what has been observed in other brain tumors. In the subgroup of ten patients who received high dose chemotherapy, the presence of methylated MGMT promoter (n = 4), seems to be associated with a prolonged overall survival (>60 months in three of four patients). The prognostic significance of these molecular markers in PCNSL needs to be further studied in groups of patients treated in a homogeneous way.

  3. DNMT3B7 expression related to MENT expression and its promoter methylation in human lymphomas.

    PubMed

    Alkebsi, Lobna; Handa, Hiroshi; Sasaki, Yoshiko; Osaki, Yohei; Yanagisawa, Kunio; Ogawa, Yoshiaki; Yokohama, Akihiko; Hattori, Hikaru; Koiso, Hiromi; Saitoh, Takayuki; Mitsui, Takeki; Tsukamoto, Norifumi; Nojima, Yoshihisa; Murakami, Hirokazu

    2013-12-01

    DNA methyltransferase (DNMT) 3B7 is the most expressed DNMT3B splice variant. It was reported that the loss of DNMT3B function led to overexpression of the MEthylated in Normal Thymocyes (MENT) and accelerated mouse lymphomagenesis. We investigated the DNMT3B7 expression and its relationship to MENT expression and promoter methylation in human lymphomas. DNMT3B7 and MENT expression were significantly (p<0.0001, p<0.01) higher in lymphomas than in non-malignant. Expression of DNMT3B7 and MENT were associated with MENT promoter hypomethylation. DNMT3B7 overexpression might interfere with the normal DNA methylation mechanism required for silencing the MENT proto-oncogene, and may accelerate human lymphomagenesis.

  4. High fat diet-induced obesity modifies the methylation pattern of leptin promoter in rats.

    PubMed

    Milagro, F I; Campión, J; García-Díaz, D F; Goyenechea, E; Paternain, L; Martínez, J A

    2009-03-01

    Leptin is an adipokine involved in body weight and food intake regulation whose promoter region presents CpG islands that could be subject to dynamic methylation. This methylation process could be affected by environmental (e.g. diet) or endogenous (e.g., adipocyte differentiation, inflammation, hypoxia) factors, and could influence adipocyte leptin gene expression. The aim of this article was to study whether a high-energy diet may affect leptin gene promoter methylation in rats. A group of eleven male Wistar rats were assigned into two dietary groups, one fed on a control diet for 11 weeks and the other on a high-fat cafeteria diet. Rats fed a high-energy diet become overweight and hyperleptinemic as compared to the controls. DNA isolated from retroperitoneal adipocytes was treated with bisulfite and a distal portion of leptin promoter (from -694 to -372 bp) including 13 CpG sites was amplified by PCR and sequenced. The studied promoter portion was slightly more methylated in the cafeteria-fed animals, which was statistically significant (p < 0.05) for one of the CpG sites (located at the position -443). In obese rats, such methylation was associated to lower circulating leptin levels, suggesting that this position could be important in the regulation of leptin gene expression, probably by being a target sequence of different transcription factors. Our findings reveal, for the first time, that leptin methylation pattern can be influenced by diet-induced obesity, and suggest that epigenetic mechanisms could be involved in obesity by regulating the expression of important epiobesigenic genes.

  5. The risk of clopidogrel resistance is associated with ABCB1 polymorphisms but not promoter methylation in a Chinese Han population

    PubMed Central

    Su, Jia; Yu, Qinglin; Zhu, Hao; Li, Xiaojing; Cui, Hanbin; Du, Weiping; Ji, Lindan; Tong, Maoqing; Zheng, Yibo; Xu, Hongyu; Zhang, Jianjiang; Zhu, Yunyun; Xia, Yezi; Liu, Ting; Yao, Qi; Yang, Jun; Chen, Xiaomin; Yu, Jingbo

    2017-01-01

    The goal of our study was to investigate the contribution of ABCB1 expression to the risk of clopidogrel resistance (CR). Platelets functions were measured using the Verify-Now P2Y12 assay. Applying Polymerase Chain Reaction–Restriction Fragment Length Polymorphism (PCR-RFLP), the single-nucleotide polymorphisms (SNPs) was tested. Using bisulphite pyrosequencing assay, we investigated the association of the ABCB1 DNA methylation levels and CR. It was shown that female, hypertension, and lower albumin levels increased the risk of CR (P<0.05). If patients did not have hypoproteinaemia or had hypertension, the SNP in rs1045642 was associated with CR (CC vs. TT: albumin ≥35, P = 0.042; hypertension, P = 0.045; C vs. T: albumin ≥35, P = 0.033; hypertension, P = 0.040). Additionally, the platelet inhibition of the CT+TT genotype in rs1128503 was larger than that of the CC genotype (P = 0.021). Multivariate logistic regression analysis showed that male, higher albumin and hsCRP decreased the risk of CR, and the stent size maybe positively correlated with CR. The SNP in rs1045642 was related to all-cause mortality (P = 0.024). We did not find any relationship between the methylation levels of the ABCB1 promoter and CR. In conclusions, our study indicated that ABCB1 polymorphisms might be useful in further evaluating the pathogenesis of CR. PMID:28358842

  6. Regulation of Hox orthologues in the oyster Crassostrea gigas evidences a functional role for promoter DNA methylation in an invertebrate.

    PubMed

    Saint-Carlier, Emma; Riviere, Guillaume

    2015-06-04

    DNA methylation within promoter regions (PRDM) controls vertebrate early gene transcription and thereby development, but is neglected outside this group. However, epigenetic features in the oyster Crassostrea gigas suggest functional significance of PDRM in invertebrates. To investigate this, reporter constructs containing in vitro methylated oyster Hox gene promoters were transfected into oyster embryos. The influence of in vivo methylation was studied using bisulfite sequencing and DNA methyltransferase inhibition during development. Our results demonstrate that methylation controls the transcriptional activity of the promoters investigated, unraveling a functional role for PRDM in a lophotrochozoan, an important finding regarding the evolution of epigenetic regulation.

  7. Role of CDH1 promoter methylation in colorectal carcinogenesis: a meta-analysis.

    PubMed

    Li, Yu-Xi; Lu, Yao; Li, Chun-Yu; Yuan, Peng; Lin, Shu-Sen

    2014-07-01

    This meta-analysis was performed to evaluate the role of CDH1 promoter methylation in colorectal carcinogenesis. The PubMed, CISCOM, CINAHL, Web of Science, Google Scholar, EBSCO, Cochrane Library, and CBM databases were searched for relevant articles published before November 1st, 2013 without any language restrictions. Meta-analysis was conducted using the STATA 12.0 software. Crude odds ratios (ORs) with 95% confidence intervals (95% CIs) were calculated. Nine clinical cohort studies met all our inclusion criteria and were included in this meta-analysis. A total of 883 colorectal cancer (CRC) patients were assessed. Our meta-analysis results revealed that the frequencies of CDH1 promoter methylation in CRC tissues were higher than those in control tissues (OR=2.61, 95% CI=1.24-5.50, p=0.012). A subgroup analysis by ethnicity showed that CDH1 promoter methylation was closely linked to the pathogenesis of CRC among Asians and Africans (Asians: OR=2.90, 95% CI=1.26-6.67, p=0.012; Africans: OR=3.81, 95% CI=1.56-9.34, p=0.003; respectively), but not among Caucasians (OR=1.68, 95% CI=0.24-11.72, p=0.598). A further subgroup analysis by type of control tissues suggested that CRC tissues also exhibited higher frequencies of CDH1 promoter methylation than those of normal and adjacent tissues (normal: OR=1.57, 95% CI=1.12-2.21, p=0.009; adjacent: OR=5.07, 95% CI=2.91-8.82, p<0.001; respectively). However, we found no evidence for any significant difference in the frequencies of CDH1 promoter methylation between CRC tissues and adenomas tissues (OR=1.18, 95% CI=0.74-1.90, p=0.485). Our findings provide empirical evidence that CDH1 promoter methylation may play an important role in colorectal carcinogenesis. Thus, CDH1 promoter methylation may be a useful biomarker for the early diagnosis of CRC.

  8. Endometrial tumour BRAF mutations and MLH1 promoter methylation as predictors of germline mismatch repair gene mutation status: a literature review.

    PubMed

    Metcalf, Alexander M; Spurdle, Amanda B

    2014-03-01

    Colorectal cancer (CRC) that displays high microsatellite instability (MSI-H) can be caused by either germline mutations in mismatch repair (MMR) genes, or non-inherited transcriptional silencing of the MLH1 promoter. A correlation between MLH1 promoter methylation, specifically the 'C' region, and BRAF V600E status has been reported in CRC studies. Germline MMR mutations also greatly increase risk of endometrial cancer (EC), but no systematic review has been undertaken to determine if these tumour markers may be useful predictors of MMR mutation status in EC patients. Endometrial cancer cohorts meeting review inclusion criteria encompassed 2675 tumours from 20 studies for BRAF V600E, and 447 tumours from 11 studies for MLH1 methylation testing. BRAF V600E mutations were reported in 4/2675 (0.1%) endometrial tumours of unknown MMR mutation status, and there were 7/823 (0.9%) total sequence variants in exon 11 and 27/1012 (2.7%) in exon 15. Promoter MLH1 methylation was not observed in tumours from 32 MLH1 mutation carriers, or for 13 MSH2 or MSH6 mutation carriers. MMR mutation-negative individuals with tumour MLH1 and PMS2 IHC loss displayed MLH1 methylation in 48/51 (94%) of tumours. We have also detailed specific examples that show the importance of MLH1 promoter region, assay design, and quantification of methylation. This review shows that BRAF mutations occurs so infrequently in endometrial tumours they can be discounted as a useful marker for predicting MMR-negative mutation status, and further studies of endometrial cohorts with known MMR mutation status are necessary to quantify the utility of tumour MLH1 promoter methylation as a marker of negative germline MMR mutation status in EC patients.

  9. DNA Methylation Analysis of BRD1 Promoter Regions and the Schizophrenia rs138880 Risk Allele

    PubMed Central

    Dyrvig, Mads; Qvist, Per; Lichota, Jacek; Larsen, Knud; Nyegaard, Mette; Børglum, Anders D.

    2017-01-01

    The bromodomain containing 1 gene, BRD1 is essential for embryogenesis and CNS development. It encodes a protein that participates in histone modifying complexes and thereby regulates the expression of a large number of genes. Genetic variants in the BRD1 locus show association with schizophrenia and bipolar disorder and risk alleles in the promoter region correlate with reduced BRD1 expression. Insights into the transcriptional regulation of BRD1 and the pathogenic mechanisms associated with BRD1 risk variants, however, remain sparse. By studying transcripts in human HeLa and SH-SY5Y cells we provide evidence for differences in relative expression of BRD1 transcripts with three alternative 5’ UTRs (exon 1C, 1B, and 1A). We further show that expression of these transcript variants covaries negatively with DNA methylation proportions in their upstream promoter regions suggesting that promoter usage might be regulated by DNA methylation. In line with findings that the risk allele of the rs138880 SNP in the BRD1 promoter region correlates with reduced BRD1 expression, we find that it is also associated with moderate regional BRD1 promoter hypermethylation in both adipose tissue and blood. Importantly, we demonstrate by inspecting available DNA methylation and expression data that these regions undergo changes in methylation during fetal brain development and that differences in their methylation proportions in fetal compared to postnatal frontal cortex correlate significantly with BRD1 expression. These findings suggest that BRD1 may be dysregulated in both the developing and mature brain of risk allele carriers. Finally, we demonstrate that commonly used mood stabilizers Lithium, Valproate, and Carbamazepine affect the expression of BRD1 in SH-SY5Y cells. Altogether this study indicates a link between genetic risk and epigenetic dysregulation of BRD1 which raises interesting perspectives for targeting the mechanisms pharmacologically. PMID:28095495

  10. RUNX3 promoter methylation correlation with pathogenesis of hepatocellular carcinoma in Asians.

    PubMed

    Lu, W; Liu, Y; Liu, L-L; Zhuang, P-H

    2016-06-20

    The aim of this study was to elucidate the role of RUNX3 promoter methylation in the pathogenesis of hepatocellular carcinoma (HCC) among Asians. For this purpose, we performed a comprehensive search of Chinese and English language scientific literature databases using stringent selection criteria; ultimately, we identified relevant studies that specifically assessed the correlation between RUNX3 promoter methylation and HCC. All data was retrieved and analyzed by two independent investigators using the STATA software (version 12.0). Initially, 132 studies (103 in Chinese, 29 in English) were retrieved; 122 were eliminated through a stepwise filtering process. Finally, 10 studies conducted in Asian populations (5 Chinese, 4 Japanese, 1 Korean) fulfilled all the inclusion criteria of our meta-analysis. The studies included 588 HCC patients (641 cancer tissues; 593 adjacent normal tissues) and 184 healthy controls. We observed that RUNX3 promoter methylation was significantly higher in cancer tissues than in adjacent normal tissues (RR = 6.35, 95%CI = 3.62-11.14, P < 0.001) and normal control tissues (RR = 17.31, 95%CI = 7.08-42.34, P < 0.001). RUNX3 promoter methylation status did not differ significantly between patients with different TNM stages (RR = 0.88, 95%CI = 0.70-1.10, P = 0.269) and histological grades (RR = 0.86, 95%CI = 0.65-1.14, P = 0.304), suggesting that RUNX3 promoter methylation is linked to the origin of HCC but not to its progression from non-metastatic to metastatic stages. This in turn indicated that RUNX3 could be an early diagnostic marker distinguishing benign from malignant hepatocellular carcinoma.

  11. Promoter histone H3 lysine 9 di-methylation is associated with DNA methylation and aberrant expression of p16 in gastric cancer cells.

    PubMed

    Meng, Chun-Feng; Zhu, Xin-Jiang; Peng, Guo; Dai, Dong-Qiu

    2009-11-01

    In the course of gastric cancer development, gene silencing by DNA hypermethylation is an important mechanism. While DNA methylation often co-exists with histone modifications to regulate gene expression, the function of histone modifications in gene silencing in gastric cancer has not been evaluated in detail. p16, a well-known tumor suppressor gene, is frequently silenced in DNA hypermethylation manner in gastric cancer. Accordingly, we chose p16 to clarify whether there is a correlation among histone H3 lysine 9 (H3-K9) di-methylation, H3-K9 acetylation, DNA methylation and p16 expression in human gastric cancer. Three gastric cancer cells, MKN-45, SGC-7901 and BGC-823, were treated with 5-aza-2'-deoxycytidine (5-Aza-dC) and/or trichostatin A (TSA). We investigated p16 promoter DNA methylation status, p16 mRNA levels, regional and global levels of di-methyl-H3-K9 and acetyl-H3-K9 in four groups: i) 5-Aza-dC, ii) TSA, iii) the combination of 5-Aza-dC and TSA and iv) control group with no treatments. p16 silencing is characterized by DNA hypermethylation, H3-K9 hypoacetylation and H3-K9 hypermethylation at the promoter region. Treatment with TSA, increased H3-K9 acetylation at the hypermethylated promoter, but did not affect H3-K9 di-methylation or p16 expression. By contrast, treatment with 5-Aza-dC, reduced H3-K9 di-methylation, increased H3-K9 acetylation at the hypermethylated promoter and reactivated the expression of p16. Combined treatment restored the expression of p16 synergistically. In addition, 5-Aza-dC and the combined treatment did not result in global alteration of H3-K9 di-methylation. These results suggest that H3-K9 di-methylation, H3-K9 acetylation and DNA methylation work in combination to silence p16 in gastric cancer. The decreased H3-K9 di-methylation correlates with DNA demethylation and reactivation of p16. H3-K9 di-methylation as well as DNA methylation related to p16 silencing is limited to the promoter region. In addition to its effect

  12. Aldosterone reprograms promoter methylation to regulate αENaC transcription in the collecting duct.

    PubMed

    Yu, Zhiyuan; Kong, Qun; Kone, Bruce C

    2013-10-01

    Aldosterone increases tubular Na(+) absorption largely by increasing α-epithelial Na(+) channel (αENaC) transcription in collecting duct principal cells. How aldosterone reprograms basal αENaC transcription to high-level activity in the collecting duct is incompletely understood. Promoter methylation, a covalent but reversible epigenetic process, has been implicated in the control of gene expression in health and disease. We investigated the role of promoter methylation/demethylation in the epigenetic control of basal and aldosterone-stimulated αENaC transcription in mIMCD3 collecting duct cells. Bisulfite treatment and sequencing analysis after treatment of the cells with the DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-Aza-CdR) identified clusters of methylated cytosines in a CpG island near the transcription start site of the αENaC promoter. 5-Aza-CdR treatment or small interfering RNA-mediated knockdown of DNMT3b or methyl-CpG-binding domain protein (MBD)-4 derepressed basal αENaC transcription, indicating that promoter methylation suppresses basal αENaC transcription. Aldosterone triggered a time-dependent decrease in 5mC and DNMT3b and a concurrent enrichment in 5-hydroxymethylcytosine (5hmC) and ten-eleven translocation (Tet)2 at the αENaC promoter, consistent with active demethylation. 5-Aza-CdR mimicked aldosterone by enhancing Sp1 binding to the αENaC promoter. We conclude that DNMT3b- and MBD4-dependent methylation of the αENaC promoter limits basal αENaC transcription, in part by limiting Sp1 binding and trans-activation. Aldosterone stimulates the dispersal of DNMT3b and recruitment of Tet2 to demethylate the αENaC promoter to induce αENaC transcription. These results disclose a novel epigenetic mechanism for the control of basal and aldosterone-induced αENaC transcription that adds to previously described epigenetic controls exerted by histone modifications.

  13. Methylation level of CpG islands in GGH gene promoter in pediatric acute leukemia

    PubMed Central

    Wang, Huihui; Mai, Huirong; Yuan, Xiuli; Li, Changgang; Wen, Feiqiu

    2017-01-01

    Background γ-Glutamyl hydrolase (GGH) regulates intracellular folates and antifolates such as methotrexate (MTX) for proper nucleotide biosynthesis and antifolate-induced cytotoxicity, respectively. In addition to genetic polymorphism and karyotypic abnormalities, methylation of CpG island 1 (CpG1) in the promoter region is found to modulate GGH activity by reducing GGH mRNA expression in acute lymphoblastic leukemia (ALL) cells. We aim to investigate methylation status of two CpG islands (CpG1 and CpG2) in the GGH promoter region in pediatric patients with ALL and acute myelogenous leukemia (AML). Methods 70B-ALL, 29 AML, 10 ITP (idiopathic thrombocytopenic purpura) and 40 healthy children are recruited in the present study. MS-HRM (methylation-sensitive high-resolution melting) and bisulfite sequencing PCR (BSP) are used to detect methylation change and its level in CpG1 and CpG2 in the GGH promoter region. GGH mRNA expression is quantified by real-time PCR. Correlation between CpG island methylation and GGH mRNA expression is assessed by statistical software. Results Methylations of CpG1 are detected in leukemia cells samples obtained from 30.9% (21/68) of patients with ALL and 20.7% (6/29) of patients with AML. These methylations are not detected in the controls. Methylations of CpG2 are detected in leukemia cell samples obtained from 44.1% (30/68) of the ALL patients and 37.9% (11/29) of the AML patients. These percentages are significantly higher than that observed in the control cell samples: 6.0% (3/50) (Fisher's exact test, P = 0.000). The abundance of CpG1 methylation in all leukemia cell samples is classified as Grade I (methylation level is less than 10%) and the abundance of CpG2 methylation in leukemia cell samples is classified in separate grades. Our results indicate that methylation of CpG1 or hypermethylation (the methylation level is greater than 10%) of CpG2 could significantly reduce GGH mRNA expression in leukemia cells from the ALL and AML

  14. Pre-B cell to macrophage transdifferentiation without significant promoter DNA methylation changes.

    PubMed

    Rodríguez-Ubreva, Javier; Ciudad, Laura; Gómez-Cabrero, David; Parra, Maribel; Bussmann, Lars H; di Tullio, Alessandro; Kallin, Eric M; Tegnér, Jesper; Graf, Thomas; Ballestar, Esteban

    2012-03-01

    Transcription factor-induced lineage reprogramming or transdifferentiation experiments are essential for understanding the plasticity of differentiated cells. These experiments helped to define the specific role of transcription factors in conferring cell identity and played a key role in the development of the regenerative medicine field. We here investigated the acquisition of DNA methylation changes during C/EBPα-induced pre-B cell to macrophage transdifferentiation. Unexpectedly, cell lineage conversion occurred without significant changes in DNA methylation not only in key B cell- and macrophage-specific genes but also throughout the entire set of genes differentially methylated between the two parental cell types. In contrast, active and repressive histone modification marks changed according to the expression levels of these genes. We also demonstrated that C/EBPα and RNA Pol II are associated with the methylated promoters of macrophage-specific genes in reprogrammed macrophages without inducing methylation changes. Our findings not only provide insights about the extent and hierarchy of epigenetic events in pre-B cell to macrophage transdifferentiation but also show an important difference to reprogramming towards pluripotency where promoter DNA demethylation plays a pivotal role.

  15. MGMT promoter methylation is associated with temozolomide response and prolonged progression-free survival in disseminated cutaneous melanoma.

    PubMed

    Tuominen, Rainer; Jewell, Rosalyn; van den Oord, Joost J; Wolter, Pascal; Stierner, Ulrika; Lindholm, Christer; Hertzman Johansson, Carolina; Lindén, Diana; Johansson, Hemming; Frostvik Stolt, Marianne; Walker, Christy; Snowden, Helen; Newton-Bishop, Julia; Hansson, Johan; Egyházi Brage, Suzanne

    2015-06-15

    To investigate the predictive and prognostic value of O(6) -methylguanine DNA methyltransferase (MGMT) inactivation by analyses of promoter methylation in pretreatment tumor biopsies from patients with cutaneous melanoma treated with dacarbazine (DTIC) or temozolomide (TMZ) were performed. The patient cohorts consisted of Belgian and Swedish disseminated melanoma patients. Patients were subdivided into those receiving single-agent treatment with DTIC/TMZ (cohort S, n = 74) and those treated with combination chemotherapy including DTIC/TMZ (cohort C, n = 79). Median follow-up was 248 and 336 days for cohort S and cohort C, respectively. MGMT promoter methylation was assessed by three methods. The methylation-related transcriptional silencing of MGMT mRNA expression was assessed by real-time RT-PCR. Response to chemotherapy and progression-free survival (PFS) and overall survival were correlated to MGMT promoter methylation status. MGMT promoter methylation was detected in tumor biopsies from 21.5 % of the patients. MGMT mRNA was found to be significantly lower in tumors positive for MGMT promoter methylation compared to tumors without methylation in both treatment cohorts (p < 0.005). DTIC/TMZ therapy response rate was found to be significantly associated with MGMT promoter methylation in cohort S (p = 0.0005), but did not reach significance in cohort C (p = 0.16). Significantly longer PFS was observed among patients with MGMT promoter-methylated tumors (p = 0.002). Multivariate Cox regression analysis identified presence of MGMT promoter methylation as an independent variable associated with longer PFS. Together, this implies that MGMT promoter methylation is associated with response to single-agent DTIC/TMZ and longer PFS in disseminated cutaneous melanoma.

  16. A spectrophotometric assay for the determination of 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase activity.

    PubMed

    Bernal, Cristobal; Mendez, Eva; Terencio, José; Boronat, Albert; Imperial, Santiago

    2005-05-15

    We report an assay for the determination of the activity of 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase, the enzyme which catalyzes the fourth reaction step of the 2-C-methyl-D-erythritol 4-phosphate pathway for the synthesis of isoprenoids, which is based on the spectrophotometrical determination of adenosine 5'-diphosphate using pyruvate kinase and L-lactate dehydrogenase as auxiliary enzymes. This method can be adapted to microtiter plates, can be automated, and because of its simplicity and speed can be useful for the functional characterization of the enzyme and for the screening of inhibitors with potential antibiotic or antimalarial action.

  17. APC promoter is frequently methylated in pancreatic juice of patients with pancreatic carcinomas or periampullary tumors

    PubMed Central

    Ginesta, Mireia M.; Diaz-Riascos, Zamira Vanessa; Busquets, Juli; Pelaez, Núria; Serrano, Teresa; Peinado, Miquel Àngel; Jorba, Rosa; García-Borobia, Francisco Javier; Capella, Gabriel; Fabregat, Joan

    2016-01-01

    Early detection of pancreatic and periampullary neoplasms is critical to improve their clinical outcome. The present authors previously demonstrated that DNA hypermethylation of adenomatous polyposis coli (APC), histamine receptor H2 (HRH2), cadherin 13 (CDH13), secreted protein acidic and cysteine rich (SPARC) and engrailed-1 (EN-1) promoters is frequently detected in pancreatic tumor cells. The aim of the present study was to assess their prevalence in pancreatic juice of carcinomas of the pancreas and periampullary area. A total of 135 pancreatic juices obtained from 85 pancreatic cancer (PC), 26 ampullary carcinoma (AC), 10 intraductal papillary mucinous neoplasm (IPMN) and 14 chronic pancreatitis (CP) patients were analyzed. The methylation status of the APC, HRH2, CDH13, SPARC and EN-1 promoters was analyzed using methylation specific-melting curve analysis (MS-MCA). Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations were also tested with allele-specific quantitative polymerase chain reaction amplification. Out of the 5 promoters analyzed, APC (71%) and HRH2 (65%) were the most frequently methylated in PC juice. APC methylation was also detected at a high frequency in AC (76%) and IPMN (80%), but only occasionally observed in CP (7%). APC methylation had a high sensitivity (71–80%) for all types of cancer analyzed. The panel (where a sample scored as positive when ≥2 markers were methylated) did not outperform APC as a single marker. Finally, KRAS detection in pancreatic juice offered a lower sensitivity (50%) and specificity (71%) for detection of any cancer. APC hypermethylation in pancreatic juice, as assessed by MS-MCA, is a frequent event of potential clinical usefulness in the diagnosis of pancreatic and periampullary neoplasms. PMID:27602165

  18. Identification of MGMT promoter methylation sites correlating with gene expression and IDH1 mutation in gliomas.

    PubMed

    Zhang, Jie; Yang, Jian-Hui; Quan, Jia; Kang, Xing; Wang, Hui-Juan; Dai, Peng-Gao

    2016-10-01

    O(6)-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation was reported to be an independent prognostic and predictive factor in glioma patients who received temozolomide treatment. However, the predictive value of MGMT methylation was recently questioned by several large clinical studies. The purpose of this study is to identify MGMT gene promoter CpG sites or region whose methylation were closely correlated with its gene expression to elucidate this contradictory clinical observations. The methylation status for all CpG dinucleotides in MGMT promoter and first exon region were determined in 42 Chinese glioma patients, which were then correlated with MGMT gene expression, IDH1 mutation, and tumor grade. In whole 87 CpG dinucleotides analyzed, three distinct CpG regions covering 28 CpG dinucleotides were significantly correlated with MGMT gene expression; 10 CpG dinucleotides were significantly correlated with glioma classification (p < 0.05). Isocitrate dehydrogenase 1 (IDH1) mutation and MGMT gene hypermethylation significantly co-existed, but not for MGMT gene expression. The validation cohort of gliomas treated with standard of care and comparison of the CpGs we identified with the current CpGs used in clinical setting will be very important for gliomas individual medicine in the future.

  19. Promoter Methylation of RASSF1A Associates to Adult Secondary Glioblastomas and Pediatric Glioblastomas

    PubMed Central

    Muñoz, Jorge; Inda, María del Mar; Lázcoz, Paula; Zazpe, Idoya; Fan, Xing; Alfaro, Jorge; Tuñón, Teresa; Rey, Juan A.; Castresana, Javier S.

    2012-01-01

    While allelic losses and mutations of tumor suppressor genes implicated in the etiology of astrocytoma have been widely assessed, the role of epigenetics is still a matter of study. We analyzed the frequency of promoter hypermethylation by methylation-specific PCR (MSP) in five tumor suppressor genes (PTEN, MGMT, RASSF1A, p14ARF, and p16INK4A), in astrocytoma samples and cell lines. RASSF1A was the most frequently hypermethylated gene in all grades of astrocytoma samples, in cell lines, and in adult secondary GBM. It was followed by MGMT. PTEN showed a slight methylation signal in only one GBM and one pilocytic astrocytoma, and in two cell lines; while p14ARF and p16INK4A did not show any evidence of methylation in primary tumors or cell lines. In pediatric GBM, RASSF1A was again the most frequently altered gene, followed by MGMT; PTEN, p14 and p16 showed no alterations. Lack or reduced expression of RASSF1A in cell lines was correlated with the presence of methylation. RASSF1A promoter hypermethylation might be used as a diagnostic marker for secondary GBM and pediatric GBM. Promoter hypermethylation might not be an important inactivation mechanism in other genes like PTEN, p14ARF and p16INK4A, in which other alterations (mutations, homozygous deletions) are prevalent. PMID:22389839

  20. TP53 Promoter Methylation in Primary Glioblastoma: Relationship with TP53 mRNA and Protein Expression and Mutation Status

    PubMed Central

    Szybka, Malgorzata; Malachowska, Beata; Fendler, Wojciech; Potemski, Piotr; Piaskowski, Sylwester; Jaskolski, Dariusz; Papierz, Wielislaw; Skowronski, Wieslaw; Och, Waldemar; Kordek, Radzislaw

    2014-01-01

    Reduced expression of TP53 by promoter methylation has been reported in several neoplasms. It remains unclear whether TP53 promoter methylation is associated with reduced transcriptional and protein expression in glioblastoma (GB). The aim of our work was to study the impact of TP53 methylation and mutations on TP53 mRNA level and protein expression in 42 molecularly characterized primary GB tumors. We also evaluate the impact of all molecular alterations on the overall patient survival. The frequency of TP53 promoter methylation was found in 21.4%. To the best of our knowledge, this is the first report showing such high frequency of TP53 promoter methylation in primary GB. There was no relation between TP53 promoter methylation and TP53 mRNA level (p=0.5722) and between TP53 promoter methylation and TP53 protein expression (p=0.2045). No significant associations were found between TP53 mRNA expression and mutation of TP53 gene (p=0.9076). However, significant association between TP53 mutation and TP53 protein expression was found (p=0.0016). Our data suggest that in primary GB TP53 promoter methylation does not play a role in silencing of TP53 transcriptional and protein expression and is probably regulated by other genetic and epigenetic mechanisms associated with genes involved in the TP53 pathway. PMID:24506545

  1. Interleukin 6 supports the maintenance of p53 tumor suppressor gene promoter methylation.

    PubMed

    Hodge, David R; Peng, Benjamin; Cherry, James C; Hurt, Elaine M; Fox, Stephen D; Kelley, James A; Munroe, David J; Farrar, William L

    2005-06-01

    A strong association exists between states of chronic inflammation and cancer, and it is believed that mediators of inflammation may be responsible for this phenomenon. Interleukin 6 (IL-6) is an inflammatory cytokine known to play a role in the growth and survival of many types of tumors, yet the mechanisms employed by this pleomorphic cytokine to accomplish this feat are still poorly understood. Another important factor in tumor development seems to be the hypermethylation of CpG islands located within the promoter regions of tumor suppressor genes. This common epigenetic alteration enables tumor cells to reduce or inactivate the expression of important tumor suppressor and cell cycle regulatory genes. Here we show that in the IL-6-responsive human multiple myeloma cell line KAS 6/1, the promoter region of p53 is epigenetically modified by methyltransferases, resulting in decreased levels of expression. Furthermore, cells treated with IL-6 exhibit an increase in the expression of the DNA maintenance methylation enzyme, DNMT-1. The DNA methyltransferase inhibitor zebularine reverses the methylation of the p53 promoter, allowing the resumption of its expression. However, when zebularine is withdrawn from the cells, the reestablishment of the original CpG island methylation within the p53 promoter does not occur in the absence of IL-6, and cells which do not receive IL-6 eventually die, as p53 expression continues unchecked by remethylation. Interestingly, this loss of viability seems to involve not the withdrawal of cytokine, but the inability of the cell to resilence the promoter. Consistent with this model, when cells that express IL-6 in an autocrine fashion are subjected to identical treatment, p53 expression is reduced shortly after withdrawal of zebularine. Therefore, it seems IL-6 is capable of maintaining promoter methylation thus representing one of the possible mechanisms used by inflammatory mediators in the growth and survival of tumors.

  2. Racial variation in breast tumor promoter methylation in the Carolina Breast Cancer Study

    PubMed Central

    Conway, Kathleen; Edmiston, Sharon N.; Tse, Chiu-Kit; Bryant, Christopher; Kuan, Pei Fen; Hair, Brionna Y.; Parrish, Eloise A.; May, Ryan; Swift-Scanlan, Theresa

    2015-01-01

    Background African American (AA) women are diagnosed with more advanced breast cancers and have worse survival than white women, but a comprehensive understanding of the basis for this disparity remains unclear. Analysis of DNA methylation, an epigenetic mechanism that can regulate gene expression, could help to explain racial differences in breast tumor clinical biology and outcomes. Methods DNA methylation was evaluated at 1287 CpGs in the promoters of cancer-related genes in 517 breast tumors of AA (n=216) or non-AA (n=301) cases in the Carolina Breast Cancer Study. Results Multivariable linear regression analysis of all tumors, controlling for age, menopausal status, stage, intrinsic subtype, and multiple comparisons (FDR), identified 7 CpG probes that showed significant (adjusted p<0.05) differential methylation between AAs and non-AAs. Stratified analyses detected an additional 4 CpG probes differing by race within hormone receptor-negative (HR−) tumors. Genes differentially methylated by race included DSC2, KCNK4, GSTM1, AXL, DNAJC15, HBII-52, TUSC3 and TES; the methylation state of several of these genes may be associated with worse survival in AAs. TCGA breast tumor data confirmed the differential methylation by race and negative correlations with expression for most of these genes. Several loci also showed racial differences in methylation in peripheral blood leukocytes (PBLs) from CBCS cases, indicating that these variations were not necessarily tumor-specific. Conclusions Racial differences in the methylation of cancer-related genes are detectable in both tumors and PBLs from breast cancer cases. Impact Epigenetic variation could contribute to differences in breast tumor development and outcomes between AAs and non-AAs. PMID:25809865

  3. Methylation of Epstein-Barr virus Rta promoter in EBV primary infection, reactivation and lymphoproliferation.

    PubMed

    Germi, Raphaële; Guigue, Nicolas; Lupo, Julien; Semenova, Touyana; Grossi, Laurence; Vermeulen, Odile; Epaulard, Olivier; de Fraipont, Florence; Morand, Patrice

    2016-10-01

    During Epstein-Barr virus (EBV) latency, the EBV genome is largely silenced by methylation. This silencing is overturned during the switch to the lytic cycle. A key event is the production of the viral protein Zta which binds to three Zta-response elements (ZRE) from the Rta promoter (Rp), two of which (ZRE2 and ZRE3) include three CpG motifs methylated in the latent genome. The bisulphite pyrosequencing reaction was used to quantify the methylation of ZRE2, ZRE3a, and ZRE3b in EBV-positive cell lines and in ex vivo samples of EBV-related diseases, in order to assess whether the level of methylation in these ZREs could provide additional information to viral DNA load and serology in the characterization of EBV-associated diseases. In PBMC from two patients with infectious mononucleosis, over time Rp became increasingly methylated whereas EBV load decreased. In tonsil from patients with chronic tonsillitis, the methylation was less than in EBV-associated tumors, regardless of the viral load. This was even more striking when only the ZRE3a and ZRE3b were considered since some samples presented unbalanced profiles on ZRE2. EBV reactivation in cell culture showed that the reduction in the overall level of methylation was closely related to the production of unmethylated virions. Thus, an assessment of the level of methylation may help to better characterize EBV replication in PBMC and in biopsies with high EBV load, during infectious mononucleosis and EBV-associated cancers. J. Med. Virol. 88:1814-1820, 2016. © 2016 Wiley Periodicals, Inc.

  4. Enhanced HSP70 lysine methylation promotes proliferation of cancer cells through activation of Aurora kinase B

    PubMed Central

    Cho, Hyun-Soo; Shimazu, Tadahiro; Toyokawa, Gouji; Daigo, Yataro; Maehara, Yoshihiko; Hayami, Shinya; Ito, Akihiro; Masuda, Ken; Ikawa, Noriko; Field, Helen I.; Tsuchiya, Eiju; Ohnuma, Shin-ichi; Ponder, Bruce A.J.; Yoshida, Minoru; Nakamura, Yusuke; Hamamoto, Ryuji

    2012-01-01

    Although heat-shock protein 70 (HSP70), an evolutionarily highly conserved molecular chaperone, is known to be post-translationally modified in various ways such as phosphorylation, ubiquitination and glycosylation, physiological significance of lysine methylation has never been elucidated. Here we identify dimethylation of HSP70 at Lys-561 by SETD1A. Enhanced HSP70 methylation was detected in various types of human cancer by immunohistochemical analysis, although the methylation was barely detectable in corresponding non-neoplastic tissues. Interestingly, methylated HSP70 predominantly localizes to the nucleus of cancer cells, whereas most of the HSP70 protein locates to the cytoplasm. Nuclear HSP70 directly interacts with Aurora kinase B (AURKB) in a methylation-dependent manner and promotes AURKB activity in vitro and in vivo. We also find that methylated HSP70 has a growth-promoting effect in cancer cells. Our findings demonstrate a crucial role of HSP70 methylation in human carcinogenesis. PMID:22990868

  5. SUVH1, a Su(var)3–9 family member, promotes the expression of genes targeted by DNA methylation

    PubMed Central

    Li, Shaofang; Liu, Lin; Li, Shengben; Gao, Lei; Zhao, Yuanyuan; Kim, Yun Ju; Chen, Xuemei

    2016-01-01

    Transposable elements are found throughout the genomes of all organisms. Repressive marks such as DNA methylation and histone H3 lysine 9 (H3K9) methylation silence these elements and maintain genome integrity. However, how silencing mechanisms are themselves regulated to avoid the silencing of genes remains unclear. Here, an anti-silencing factor was identified using a forward genetic screen on a reporter line that harbors a LUCIFERASE (LUC) gene driven by a promoter that undergoes DNA methylation. SUVH1, a Su(var)3–9 homolog, was identified as a factor promoting the expression of the LUC gene. Treatment with a cytosine methylation inhibitor completely suppressed the LUC expression defects of suvh1, indicating that SUVH1 is dispensable for LUC expression in the absence of DNA methylation. SUVH1 also promotes the expression of several endogenous genes with promoter DNA methylation. However, the suvh1 mutation did not alter DNA methylation levels at the LUC transgene or on a genome-wide scale; thus, SUVH1 functions downstream of DNA methylation. Histone H3 lysine 4 (H3K4) trimethylation was reduced in suvh1; in contrast, H3K9 methylation levels remained unchanged. This work has uncovered a novel, anti-silencing function for a member of the Su(var)3–9 family that has previously been associated with silencing through H3K9 methylation. PMID:26400170

  6. Specific association between the methyl-CpG-binding domain protein 2 and the hypermethylated region of the human telomerase reverse transcriptase promoter in cancer cells.

    PubMed

    Chatagnon, Amandine; Bougel, Stéphanie; Perriaud, Laury; Lachuer, Joël; Benhattar, Jean; Dante, Robert

    2009-01-01

    Human telomerase reverse transcriptase (hTERT) is expressed in most cancer cells. Paradoxically, its promoter is embedded in a hypermethylated CpG island. A short region escapes to this alteration, allowing a basal level of transcription. However, the methylation of adjacent regions may play a role in the maintenance of low hTERT expression. It is now well established that methyl-CpG binding domain proteins mediate the transcriptional silencing of hypermethylated genes. The potential involvement of these proteins in the control of hTERT expression was firstly investigated in HeLa cells. Chromatin immunoprecipitation assays showed that only methyl-CpG-binding domain protein 2 (MBD2) associated the hypermethylated hTERT promoter. In MBD2 knockdown HeLa cells, constitutively depleted in MBD2, neither methyl CpG binding protein 2 (MeCP2) nor MBD1 acted as substitutes for MBD2. MBD2 depletion by transient or constitutive RNA interference led to an upregulation of hTERT transcription that can be downregulated by expressing mouse Mbd2 protein. Our results indicate that MBD2 is specifically and directly involved in the transcriptional repression of hTERT in HeLa cells. This specific transcriptional repression was also observed in breast, liver and neuroblastoma cancer cell lines. Thus, MBD2 seems to be a general repressor of hTERT in hTERT-methylated telomerase-positive cells.

  7. Reduction of TIP30 in esophageal squamous cell carcinoma cells involves promoter methylation and microRNA-10b

    SciTech Connect

    Dong, Wenjie; Shen, Ruizhe; Cheng, Shidan

    2014-10-31

    Highlights: • TIP30 expression is frequently suppressed in ESCC. • TIP30 was hypermethylated in ESCC. • Reduction of TIP30 was significantly correlated with LN metastasis. • miR-10b is a direct regulator of TIP30. - Abstract: TIP30 is a putative tumor suppressor that can promote apoptosis and inhibit angiogenesis. However, the role of TIP30 in esophageal squamous cell carcinoma (ESCC) biology has not been investigated. Immunohistochemistry was used to investigate the expression of TIP30 in 70 ESCC. Hypermethylation of TIP30 was evaluated by the methylation specific PCR (MSP) method in ESCC (tumor and paired adjacent non-tumor tissues). Lost expression of TIP30 was observed in 50 of 70 (71.4%) ESCC. 61.4% (43 of 70) of primary tumors analyzed displayed TIP30 hypermethylation, indicating that this aberrant characteristic is common in ESCC. Moreover, a statistically significant inverse association was found between TIP30 methylation status and expression of the TIP30 protein in tumor tissues (p = 0.001). We also found that microRNA-10b (miR-10b) targets a homologous DNA region in the 3′untranslated region of the TIP30 gene and represses its expression at the transcriptional level. Reporter assay with 3′UTR of TIP30 cloned downstream of the luciferase gene showed reduced luciferase activity in the presence of miR-10b, providing strong evidence that miR-10b is a direct regulator of TIP30. These results suggest that TIP30 expression is regulated by promoter methylation and miR-10b in ESCC.

  8. Meningeal hemangiopericytomas: a clinicopathological study with emphasis on MGMT (O(6) -methylguanine-DNA methyltransferase) promoter methylation status.

    PubMed

    Kakkar, Aanchal; Kumar, Anupam; Jha, Prerana; Goyal, Nishant; Mallick, Supriya; Sharma, Mehar Chand; Suri, Ashish; Singh, Manmohan; Kale, Shashank S; Julka, Pramod Kumar; Sarkar, Chitra; Suri, Vaishali

    2014-08-01

    Meningeal hemangiopericytomas (HPCs) are aggressive dural-based tumors, for which no prognostic or predictive marker has been identified. Gross total resection is treatment of choice, but not easily achieved; hence, alkylating agents like temozolomide (TMZ) are now being tried. O(6) -methylguanine-DNA methyltransferase (MGMT) promoter methylation has proven prognostic and predictive value in glioblastomas. This study evaluates MGMT promoter methylation in meningeal HPCs to determine its role in HPC oncogenesis and its association with patient outcome. Meningeal HPCs diagnosed between 2002 and 2011 were retrieved and clinicopathological features reviewed. MGMT promoter methylation status was assessed by methylation-specific polymerase chain reaction (MSP) and immunohistochemistry (IHC) for MGMT protein. HPCs accounted for 1.1% of all CNS tumors. Forty cases were analyzed; the majority were adults (mean age = 41.4 years). Seventy percent were primary and 30% were recurrent tumors; 60% were grade II and 40% were grade III. MGMT promoter methylation was identified in 45% of cases, including Grade II (54.2%) and Grade III (31.3%) (P = 0.203). Promoter methylation was significantly (P = 0.035) more frequent in primary (57.1%) than in recurrent (16.7%) tumors. No correlation was noted between MGMT promoter methylation by MSP and MGMT protein expression by IHC, or with progression-free survival. Thus, a significant proportion of HPCs demonstrate MGMT promoter methylation, suggesting possible susceptibility to TMZ. As promoter methylation is more frequent in primary tumors, TMZ may serve as a therapeutic option in residual primary tumors. Epigenetic inactivation of MGMT in HPCs necessitates the assessment of prognostic and predictive value of MGMT promoter methylation in HPCs in larger clinical trials.

  9. ABCG2 expression, function, and promoter methylation in human multiple myeloma

    PubMed Central

    Turner, Joel G.; Gump, Jana L.; Zhang, Chunchun; Cook, James M.; Marchion, Douglas; Hazlehurst, Lori; Munster, Pamela; Schell, Michael J.; Dalton, William S.; Sullivan, Daniel M.

    2006-01-01

    We investigated the role of the breast cancer resistance protein (BCRP/ABCG2) in drug resistance in multiple myeloma (MM). Human MM cell lines, and MM patient plasma cells isolated from bone marrow, were evaluated for ABCG2 mRNA expression by quantitative polymerase chain reaction (PCR) and ABCG2 protein, by Western blot analysis, immunofluorescence microscopy, and flow cytometry. ABCG2 function was determined by measuring topotecan and doxorubicin efflux using flow cytometry, in the presence and absence of the specific ABCG2 inhibitor, tryprostatin A. The methylation of the ABCG2 promoter was determined using bisulfite sequencing. We found that ABCG2 expression in myeloma cell lines increased after exposure to topotecan and doxorubicin, and was greater in logphase cells when compared with quiescent cells. Myeloma patients treated with topotecan had an increase in ABCG2 mRNA and protein expression after treatment with topotecan, and at relapse. Expression of ABCG2 is regulated, at least in part, by promoter methylation both in cell lines and in patient plasma cells. Demethylation of the promoter increased ABCG2 mRNA and protein expression. These findings suggest that ABCG2 is expressed and functional in human myeloma cells, regulated by promoter methylation, affected by cell density, up-regulated in response to chemotherapy, and may contribute to intrinsic drug resistance. PMID:16917002

  10. Transcription Factor ZBED6 Mediates IGF2 Gene Expression by Regulating Promoter Activity and DNA Methylation in Myoblasts

    NASA Astrophysics Data System (ADS)

    Huang, Yong-Zhen; Zhang, Liang-Zhi; Lai, Xin-Sheng; Li, Ming-Xun; Sun, Yu-Jia; Li, Cong-Jun; Lan, Xian-Yong; Lei, Chu-Zhao; Zhang, Chun-Lei; Zhao, Xin; Chen, Hong

    2014-04-01

    Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. In this study, we found that the expression of the ZBED6 and IGF2 were upregulated during C2C12 differentiation. The IGF2 expression levels were negatively associated with the methylation status in beef cattle (P < 0.05). A luciferase assay for the IGF2 intron 3 and P3 promoter showed that the mutant-type 439 A-SNP-pGL3 in driving reporter gene transcription is significantly higher than that of the wild-type 439 G-SNP-pGL3 construct (P < 0.05). An over-expression assay revealed that ZBED6 regulate IGF2 expression and promote myoblast differentiation. Furthermore, knockdown of ZBED6 led to IGF2 expression change in vitro. Taken together, these results suggest that ZBED6 inhibits IGF2 activity and expression via a G to A transition disrupts the interaction. Thus, we propose that ZBED6 plays a critical role in myogenic differentiation.

  11. Aberrant promoter methylation of cancer-related genes in human breast cancer

    PubMed Central

    Wu, Liang; Shen, Ye; Peng, Xianzhen; Zhang, Simin; Wang, Ming; Xu, Guisheng; Zheng, Xianzhi; Wang, Jianming; Lu, Cheng

    2016-01-01

    The clinical relevance of aberrant DNA methylation is being increasingly recognized in breast cancer. The present study aimed to evaluate the promoter methylation status of seven candidate genes and to explore their potential use as a biomarker for the diagnosis of breast cancer. A total of 70 Chinese patients with breast cancer were recruited, and matched with 20 patients with benign breast disease (BBD). Methylation-specific polymerase chain reaction was performed to measure the methylation status of selected genes. The protein expression of candidate genes was determined by immunohistochemistry. Hypermethylation of Breast cancer 1, early onset; DNA repair associated (BRCA1), glutathione S-transferase pi 1 (GSTP1), cyclin dependent kinase inhibitor 2A, O-6-methylguanine-DNA methyltransferase, phosphatase and tensin homolog, retinoic acid receptor beta 2 and cyclin D2 was observed to be more common in cancerous tissues (24.3, 31.4, 40.0, 27.1, 48.6, 55.7 and 67.1%, respectively) as compared with BBD controls (0.0, 0.0, 20.0, 25.0, 40.0, 40.0 and 45.0%, respectively). Immunohistochemical analysis demonstrated a correlation between the methylation of the target gene and downregulation of protein expression. When BRCA1 and GSTP1 were combined as the biomarker, the area under the receiver operating characteristic curve reached 0.721 (95% confidence interval, 0.616–0.827). The present findings indicated that promoter methylation of cancer-related genes was frequently observed in patients with breast cancer and was associated with various clinical features. Hypermethylation of BRCA1 and GSTP1 may be used as promising biomarkers for breast cancer. PMID:28105221

  12. The impact of P2Y12 promoter DNA methylation on the recurrence of ischemic events in Chinese patients with ischemic cerebrovascular disease

    PubMed Central

    Li, Xin-Gang; Ma, Ning; Wang, Bo; Li, Xiao-Qing; Mei, Sheng-Hui; Zhao, Kun; Wang, Yong-Jun; Li, Wei; Zhao, Zhi-Gang; Sun, Shu-Sen; Miao, Zhong-Rong

    2016-01-01

    The primary mechanism of clopidogrel resistance is still unclear. We aimed to investigate whether the methylation status of the P2Y12 promoter has effects on platelet function and clinical ischemic events. Patients with ischemic cerebrovascular disease were enrolled into our study. Venous blood samples were drawn for thrombelastograpy (TEG) and active metabolite assay. Patients were divided into a case- or control-group based on the occurrence of ischemic events during a one year follow-up. Two TEG parameters between the case and control groups were statistically significant [ADP inhibition rate (ADP%): P = 0.018; ADP-induced platelet-fibrin clot strength (MAADP): P = 0.030]. The concentrations of clopidogrel active metabolite had no significant difference (P = 0.281). Sixteen CpG dinucleotides on P2Y12 promoter were tested. Three CpG sites (CpG11 and CpG12 + 13) showed lower methylation status, which correlated with a strong association with increased risk of clinical events. Changes of MAADP and ADP% were also associated with methylation levels of CpG 11 and CpG 12 + 13. Hypomethylation of the P2Y12 promoter is associated with a higher platelet reactivity and increased risk of ischemic events in our patients. Methylation analysis of peripheral blood samples might be a novel molecular marker to help early identification of patients at high risk for clinical ischemic events. PMID:27686864

  13. Methyl-CpG-Binding Protein MeCP2 Represses Sp1-Activated Transcription of the Human Leukosialin Gene When the Promoter Is Methylated

    PubMed Central

    Kudo, Shinichi

    1998-01-01

    Human leukosialin (CD43) is expressed in a cell lineage-specific as well as a differentiation stage-specific fashion. The leukosialin promoter, made up of an Sp1 binding site and a sequence similar to that of an initiator, possesses high transcriptional potential. Previous data have demonstrated that the leukosialin gene is down-regulated in nonproducing cells by DNA methylation. In this paper the repressive mechanism of DNA methylation in expression systems is reported. In vitro DNA methylation with SssI (CpG) methylase of leukosialin-chloramphenicol acetyltransferase (CAT) constructs drastically reduced transcriptional activities in stable transfection systems with the human HeLa and Jurkat cell lines. On the other hand, the transcriptional repression by in vitro methylation was less pronounced in Drosophila melanogaster cells, which lack genomic methylation. In these cells, Sp1 could transactivate equally well both the unmethylated and methylated leukosialin promoter. In order to test whether one of the methyl-CpG-binding proteins, MeCP2, is responsible for transcriptional repression of the leukosialin gene, I isolated the human MeCP2 cDNA (encoding 486 amino acid residues) and expressed it in Drosophila cells. I found that MeCP2 substantially inhibited Sp1-activated transcription when the leukosialin promoter was methylated. The level of repression was directly proportional to the amount of MeCP2 expression vector transfected. Analysis of C-terminal deletion mutants of MeCP2 showed that repressive activity of Sp1 transactivation is localized to the N-terminal region consisting of amino acid residues 1 to 193, which encompass the methyl-binding domain. These results suggest that interference with Sp1 transactivation by MeCP2 is an important factor in the down-regulation of leukosialin gene expression by DNA methylation. PMID:9710633

  14. Evaluation of the 1-methyl-2-phenylindole colorimetric assay for aldehydic lipid peroxidation products in plants: malondialdehyde and 4-hydroxynonenal.

    PubMed

    Johnston, Jason W; Horne, Susan; Harding, Keith; Benson, Erica E

    2007-02-01

    The 1-methyl-2-phenylindole colorimetric assay is considered specific for malondialdehyde (MDA) and 4-hydroxynonenal (HNE) in mammalian systems, but its specificity in plant tissues is unknown. This study demonstrates that the assay produces a purple/blue chromophore with an absorbance peak at 586 nm for a malondialdehyde standard, while aqueous extractions from Ribes spp. Beta vulgaris, and Lycopersicon esculentum tissues produce an orange chromophore with an absorbance maximum at 450 nm and a large shoulder that extends to 700 nm. No distinctive MDA peak was discernable in plant samples at lambda=586 nm and absorbance was attributed to background interference. The reaction between sucrose and 1-methyl-2-phenylindole produced an orange chromophore with a spectrum similar to those obtained from plant extractions, suggesting that simple sugars are the likely source of background interference. This study demonstrates that the 1-methyl-2-phenylindole colorimetric assay is non-specific for detecting MDA and HNE in plants and its use is cautioned due to interference, particularly from sugars.

  15. Expression analysis and promoter methylation under osmotic and salinity stress of TaGAPC1 in wheat (Triticum aestivum L).

    PubMed

    Fei, Ying; Xue, Yuanxia; Du, Peixiu; Yang, Shushen; Deng, Xiping

    2017-03-01

    Cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) catalyzes a key reaction in glycolysis and encoded by a multi-gene family which showed instability expression under abiotic stress. DNA methylation is an epigenetic modification that plays an important role in gene regulation in response to abiotic stress. The comprehension of DNA methylation at promoter region of TaGAPC1 can provide insights into the transcription regulation mechanisms of plant genes under abiotic stress. In this study, we cloned TaGAPC1 genes and its promoters from two wheat genomes, then investigated the expression patterns of TaGAPC1 under osmotic and salinity stress, and analyzed the promoter sequences. Moreover, the methylation patterns of promoters under stress were confirmed. Expression analysis indicated that TaGAPC1 was induced inordinately by stresses in two wheat genotypes with contrasting drought tolerance. Several stress-related cis-acting elements (MBS, DRE, GT1 and LTR et al.) were located in its promoters. Furthermore, the osmotic and salinity stress induced the demethylation of CG and CHG nucleotide in the promoter region of Changwu134. The methylation level of CHG and CHH in promoter of Zhengyin1 was always increased under stresses, and the CG contexts remained unchanged. The cytosine loci of stress-related cis-acting elements also showed different methylation changes in this process. These results provide insights into the relationship between promoter methylation and gene expression, promoting the function investigation of GAPC.

  16. DNA promoter and histone H3 methylation downregulate NGX6 in gastric cancer cells.

    PubMed

    Liu, Jian; Zhu, Xinjiang; Xu, Xiaoyang; Dai, Dongqiu

    2014-01-01

    Nasopharyngeal carcinoma-associated gene 6 (NGX6) is a novel candidate tumor metastasis suppressor gene. Our study was to determine whether DNA hypermethylation and histone modification at the NGX6 gene promoter play important roles in silencing NGX6 expression in gastric cancer. NGX6 expression was downregulated in all gastric cancer cells and 76.19 % tissues. In three GC cell lines, hypermethylated NGX6 loci were characterized by histone H3-K9 hypoacetylation and hypermethylation. Trichostatin A treatment could moderately increase H3-K9 acetylation at the silenced loci; however, it had no effect on DNA and H3-K9 methylation and minimal effects on NGX6 expression. In contrast, 5'aza-2'-deoxycytidine treatment could rapidly decrease DNA and H3-K9 methylation at the silenced loci, leading to the reexpression of NGX6. Combined treatment with 5'aza-2'-deoxycytidine and trichostatin A had synergistic effects on the reexpression of NGX6 at the hypermethylation loci. Our current study shows that NGX6 expression is downregulated in GC cancer cells and tissues due to NGX6 promoter methylation and H3-K9 methylation, but not H3-K9 acetylation. Our findings indicate that the downregulation of NGX6 expression contributes to the development and progression of gastric cancer. More studies are needed to determine the precise mechanism of NGX6 in the progression of gastric cancer.

  17. A three-gene signature for prognosis in patients with MGMT promoter-methylated glioblastoma.

    PubMed

    Wang, Wen; Zhang, Lu; Wang, Zheng; Yang, Fan; Wang, Haoyuan; Liang, Tingyu; Wu, Fan; Lan, Qing; Wang, Jiangfei; Zhao, Jizong

    2016-10-25

    Glioblastoma is the most malignant tumor and has high mortality rate. The methylated prompter of MGMT results in chemotherapy sensitivity for these patients. However, there are still other factors that affected the prognosis for the glioblastoma patients with similar MGMT methylation status. We developed a signature with three genes screened from the whole genome mRNA expression profile from Chinese Glioma Genome Atlas (CGGA) and RNAseq data from The Cancer Genome Atlas (TCGA). Patients with MGMT methylation in low risk group had longer survival than those in high risk group (median overall survival 1074 vs. 372 days; P = 0.0033). Moreover, the prognostic value of the signature was significant difference in cohorts stratified by MGMT methylation and chemotherapy (P=0.0473), while there is no significant difference between low and high risk group or unmethylated MGMT patients without chemotherapy. Multivariate analysis indicated that the risk score was an independent prognosis factor (P = 0.004). In conclusion, our results showed that the signature has prognostic value for patients with MGMT promoter-methylated glioblastomas based on bioinformatics analysis.

  18. Correcting Transcription Factor Gene Sets for Copy Number and Promoter Methylation Variations

    PubMed Central

    Rathi, Komal S.; Gaykalova, Daria A.; Hennesey, Patrick; Califano, Joseph A.; Ochs, Michael F.

    2014-01-01

    Gene set analysis provides a method to generate statistical inferences across sets of linked genes, primarily using high-throughput expression data. Common gene sets include biological pathways, operons, and targets of transcriptional regulators. In higher eukaryotes, especially when dealing with diseases with strong genetic and epigenetic components such as cancer, copy number loss and gene silencing through promoter methylation can eliminate the possibility that a gene is transcribed. This, in turn, can adversely affect the estimation of transcription factor or pathway activity from a set of target genes, since some of the targets may not be responsive to transcriptional regulation. Here we introduce a simple filtering approach that removes genes from consideration if they show copy number loss or promoter methylation and demonstrate the improvement in inference of transcription factor activity in a simulated data set based on the background expression observed in normal head and neck tissue. PMID:25195578

  19. Correcting transcription factor gene sets for copy number and promoter methylation variations.

    PubMed

    Rathi, Komal S; Gaykalova, Daria A; Hennessey, Patrick; Califano, Joseph A; Ochs, Michael F

    2014-09-01

    Gene set analysis provides a method to generate statistical inferences across sets of linked genes, primarily using high-throughput expression data. Common gene sets include biological pathways, operons, and targets of transcriptional regulators. In higher eukaryotes, especially when dealing with diseases with strong genetic and epigenetic components such as cancer, copy number loss and gene silencing through promoter methylation can eliminate the possibility that a gene is transcribed. This, in turn, can adversely affect the estimation of transcription factor or pathway activity from a set of target genes, as some of the targets may not be responsive to transcriptional regulation. Here we introduce a simple filtering approach that removes genes from consideration if they show copy number loss or promoter methylation, and demonstrate the improvement in inference of transcription factor activity in a simulated dataset based on the background expression observed in normal head and neck tissue.

  20. The Correlation of MGMT Promoter Methylation and Clinicopathological Features in Gastric Cancer: A Systematic Review and Meta-Analysis.

    PubMed

    Ding, Yong; Yang, Qihua; Wang, Bojun; Ye, Guoliang; Tong, Xiaoqiong

    2016-01-01

    The silencing of the tumor suppressor gene O-6-methylguanine-DNA methyltransferase (MGMT) by promoter methylation commonly occurs in human cancers. The relationship between MGMT promoter methylation and gastric cancer (GC) remains inconsistent. This study aimed to evaluate the potential value of MGMT promoter methylation in GC patients. Electronic databases were searched to identify eligible studies. The pooled odds ratio (OR) and the corresponding 95% confidence interval (95% CI) were used to evaluate the effects of MGMT methylation on GC risk and clinicopathological characteristics. In total, 31 eligible studies including 2988 GC patients and 2189 nonmalignant controls were involved in meta-analysis. In the pooled analysis, MGMT promoter methylation was significantly associated with GC risk (OR = 3.34, P < 0.001) and substantial heterogeneity (P < 0.001). Meta-regression and subgroup analyses based on the testing method, sample material and ethnicity failed to explain the sources of heterogeneity. Interestingly, MGMT methylation showed a trend associated with gender, and methylation is lower in males compared with females (OR = 0.76, 95% CI = 0.56-1.03). We did not find a significant association in relation to tumor types, clinical stage, age status or H. pylori status in cancer (all P > 0.1). MGMT promoter methylation may be correlated with the prognosis of GCs in disease free survival (DFS) or overall survival (OS) for univariate analysis. MGMT promoter methylation may play a crucial role in the carcinogenesis and prognosis of GC. MGMT methylation was not correlated with tumor types, clinical stage, age status, H. pylori status. However, the result of the association of MGMT methylation and gender should be considered with caution.

  1. The Correlation of MGMT Promoter Methylation and Clinicopathological Features in Gastric Cancer: A Systematic Review and Meta-Analysis

    PubMed Central

    Ding, Yong; Yang, Qihua; Wang, Bojun; Ye, Guoliang; Tong, Xiaoqiong

    2016-01-01

    The silencing of the tumor suppressor gene O-6-methylguanine-DNA methyltransferase (MGMT) by promoter methylation commonly occurs in human cancers. The relationship between MGMT promoter methylation and gastric cancer (GC) remains inconsistent. This study aimed to evaluate the potential value of MGMT promoter methylation in GC patients. Electronic databases were searched to identify eligible studies. The pooled odds ratio (OR) and the corresponding 95% confidence interval (95% CI) were used to evaluate the effects of MGMT methylation on GC risk and clinicopathological characteristics. In total, 31 eligible studies including 2988 GC patients and 2189 nonmalignant controls were involved in meta-analysis. In the pooled analysis, MGMT promoter methylation was significantly associated with GC risk (OR = 3.34, P < 0.001) and substantial heterogeneity (P < 0.001). Meta-regression and subgroup analyses based on the testing method, sample material and ethnicity failed to explain the sources of heterogeneity. Interestingly, MGMT methylation showed a trend associated with gender, and methylation is lower in males compared with females (OR = 0.76, 95% CI = 0.56–1.03). We did not find a significant association in relation to tumor types, clinical stage, age status or H. pylori status in cancer (all P > 0.1). MGMT promoter methylation may be correlated with the prognosis of GCs in disease free survival (DFS) or overall survival (OS) for univariate analysis. MGMT promoter methylation may play a crucial role in the carcinogenesis and prognosis of GC. MGMT methylation was not correlated with tumor types, clinical stage, age status, H. pylori status. However, the result of the association of MGMT methylation and gender should be considered with caution. PMID:27824946

  2. Formalin-fixed, paraffin-embedded (FFPE) tissue epigenomics using Infinium HumanMethylation450 BeadChip assays.

    PubMed

    de Ruijter, Tim C; de Hoon, Joep P J; Slaats, Jeroen; de Vries, Bart; Janssen, Marjolein J F W; van Wezel, Tom; Aarts, Maureen J B; van Engeland, Manon; Tjan-Heijnen, Vivianne C G; Van Neste, Leander; Veeck, Jürgen

    2015-07-01

    Current genome-wide methods to detect DNA-methylation in healthy and diseased tissue require high-quality DNA from fresh-frozen (FF) samples. However, well-annotated clinical samples are mostly available as formalin-fixed, paraffin-embedded (FFPE) tissues containing poor-quality DNA. To overcome this limitation, we here aimed to evaluate a DNA restoration protocol for usage with the genome-wide Infinium HumanMethylation450 BeadChip assay (HM-450K). Sixty-six DNA samples from normal colon (n=9) and breast cancer (n=11) were interrogated separately using HM-450K. Analyses included matched FF/FFPE samples and technical duplicates. FFPE DNA was processed with (FFPEr) or without a DNA restoration protocol (Illumina). Differentially methylated genes were finally validated in 24 additional FFPE tissues using nested methylation-specific PCR (MSP). In summary, β-values correlation between FFPEr duplicates was high (ρ=0.9927 (s.d. ±0.0015)). Matched FF/FFPEr correlation was also high (ρ=0.9590 (s.d. ±0.0184)) compared with matched FF/FFPE (ρ=0.8051 (s.d. ±0.1028). Probe detection rate in FFPEr samples (98.37%, s.d. ±0.66) was comparable to FF samples (99.98%, s.d. ±0.019) and substantially lower in FFPE samples (82.31%, s.d. ±18.65). Assay robustness was not decreased by sample archival age up to 10 years. We could also demonstrate no decrease in assay robustness when using 100 ng of DNA input only. Four out of the five selected differentially methylated genes could be validated by MSP. The gene failing validation by PCR showed high variation of CpG β-values in primer-binding sites. In conclusion, by using the FFPE DNA restoration protocol, HM-450K assays provide robust, accurate and reproducible results with FFPE tissue-derived DNA, which are comparable to those obtained with FF tissue. Most importantly, differentially methylated genes can be validated using more sensitive techniques, such as nested MSP, altogether providing an epigenomics platform for

  3. Promoter methylation and histone modifications affect the expression of the exogenous DsRed gene in transgenic goats.

    PubMed

    Nuo, M T; Yuan, J L; Yang, W L; Gao, X Y; He, N; Liang, H; Cang, M; Liu, D J

    2016-08-29

    Transgene silencing, which is common in transgenic plants and animals, limits the generation and application of genetically modified organisms, and is associated with the exogenous gene copy number, the methylation status of its promoters, and histone modification abnormalities. Here, we analyzed the expression of the exogenous gene DsRed and the methylation status of its cytomegalovirus (CMV) promoter in six healthy transgenic cashmere goats and transgenic nuclear donor cells. The CMV promoter exhibited high methylation levels (74.4-88.2%) in four of the goats, a moderate methylation level (58.7%) in one, and a low methylation level (21.2%) in one, while the methylation level of the transgenic nuclear donor cells was comparatively low (14.3%). DsRed expression was negatively correlated with promoter methylation status. Transgenic cashmere goats carried one to three copies of the CMV promoter fragment and one to six copies of the DsRed fragment, but copy number showed no obvious correlation with DsRed expression. After treatment with the methylation inhibitor 5-azacytidine, DsRed expression in transgenic goat cells significantly increased and CMV promoter methylation significantly decreased; this indicated an inverse correlation between promoter methylation status and DsRed expression. After treatment with the histone deacetylase inhibitor trichostatin A, DsRed expression increased, indicating that an abnormal histone modification in transgenic goats is also involved in exogenous gene silencing. These findings indicate the potential of trichostatin A and 5-azacytidine to rescue the biological activity of silenced exogenous transgenes in adult-derived transgenic cells under culture conditions.

  4. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    SciTech Connect

    Zhang, Heyu; Nan, Xu; Li, Xuefen; Chen, Yan; Zhang, Jianyun; Sun, Lisha; Han, Wenlin; Li, Tiejun

    2014-05-02

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma.

  5. A study on the correlation between MTHFR promoter methylation and diabetic nephropathy

    PubMed Central

    Yang, Xiao-Hui; Cao, Ren-Fang; Yu, Yang; Sui, Miao; Zhang, Tao; Xu, Jing-Yi; Wang, Xiao-Mei

    2016-01-01

    Objective: In order to observe the relationship between MTHFR promoter and DN, the determinations on MTHFR promoter methylation level and expression of HCY from DN patients have been carried out. Methods: According to the Diabetes diagnosis and classification standard from WHO in 1999, 85 patients with DM diagnosed by Endocrinology and 30 healthy participants from our medical examination center were chosen as control specimen to study in this paper. All this specimen were divided into A, B, C and D four groups , which are corresponding simple diabetes mellitus group (SDM), early diabetic nephropathy group (EDN), clinical diabetic nephropathy group (CDN) and normal control group. And then, all common materials and clinical experiments data have been collected respectively. (1) Extracted the peripheral blood DNA of each group and determinate the methylation status of MTHFR gene promoter by PCR (MSP). (2) Determinated the serum HCY protein expression of each group. Results: (1) The MTHFR promoter methylation of SDM and diabetic nephropathy group are wear off comparied with normal control group. And MTHFR promoter was in demethylation state in normal control group, a slightly weak in SDN, a obviously weak in early diabetic nephropathy group; the MTHFR promoter was in methylation state in clinical diabetic nephropathy group. (2) The HCY protein of simple diabetes mellitus group, early diabetic nephropathy group and clinical diabetic nephropathy group are Pitch with normal control group. HCY protein level of each group are as 7.41±1.61 umol/L, 10.34±2.89 umol/L, 10.95±5.89 umol/L and 13.03±6.14 umol/L corresponding normal control group, simple diabetes mellitus group, early diabetic nephropathy group and clinical diabetic nephropathy group. And there is no statistical significance about the differences among four groups. Conclusion: The demethylation state of MTHFR promoter was obviously weaker in clinical diabetic nephropathy group than in SDM. The level of serum

  6. Loss of methylation at the IFNG promoter and CNS-1 is associated with the development of functional IFN-γ memory in human CD4(+) T lymphocytes.

    PubMed

    Dong, Jun; Chang, Hyun-Dong; Ivascu, Claudia; Qian, Yu; Rezai, Soheila; Okhrimenko, Anna; Cosmi, Lorenzo; Maggi, Laura; Eckhardt, Florian; Wu, Peihua; Sieper, Joachim; Alexander, Tobias; Annunziato, Francesco; Gossen, Manfred; Li, Jun; Radbruch, Andreas; Thiel, Andreas

    2013-03-01

    Cytokine memory for IFN-γ production by effector/memory Th1 cells plays a key role in both protective and pathological immune responses. To understand the epigenetic mechanism determining the ontogeny of effector/memory Th1 cells characterized by stable effector functions, we identified a T-cell-specific methylation pattern at the IFNG promoter and CNS-1 in ex vivo effector/memory Th1 cells, and investigated methylation dynamics of these regions during the development of effector/memory Th1 cells. During Th1 differentiation, demethylation occurred at both the promoter and CNS-1 regions of IFNG as early as 16 h, and this process was independent of cell proliferation and DNA synthesis. Using an IFN-γ capture assay, we found early IFN-γ-producing cells from 2-day differentiating cultures acquired "permissive" levels of demethylation and developed into effector/memory Th1 cells undergoing progressive demethylation at the IFNG promoter and CNS-1 when induced by IL-12. Methylation levels of these regions in effector/memory Th1 cells of peripheral blood from rheumatoid arthritis patients correlated inversely with reduced frequencies of IFN-γ-producers, coincident with recruitment of effector/memory Th1 cells to the site of inflammation. Thus, after termination of TCR stimulation, IL-12 signaling potentiates the stable functional IFN-γ memory in effector/memory Th1 cells characterized by hypomethylation at the IFNG promoter and CNS-1.

  7. Interactions between CYP11B2 Promoter Methylation and Smoking Increase Risk of Essential Hypertension

    PubMed Central

    Mao, Shuqi; Fan, Rui; Zhong, Fade; Zhu, Fubao; Hao, Lingmei

    2016-01-01

    Aldosterone synthase (CYP11B2) is closely linked to essential hypertension (EH). However, it remains unclear whether the methylation of the CYP11B2 promoter is involved in the development of EH in humans. Our study is aimed at evaluating the contribution of CYP11B2 promoter methylation to the risk of EH. Methylation levels were measured using pyrosequencing technology in 192 participants in a hospital-based case-control study. Logistic regression and multiple linear regression analyses were utilized to adjust for confounding factors and the GMDR method was applied to investigate high-order gene-environment interactions. Although no significant result was observed linking the four analyzed CpG sites to EH, GMDR detected significant interactions among CpG1, CpG3, CpG4, and smoking correlated with an increased risk of EH (OR = 4.62, adjusted P = 0.011). In addition, CpG2 (adjusted P = 0.013) and CpG3 (adjusted P = 0.039) methylation was significantly lower in healthy males than in healthy females. Likewise, after adjusting for confounding factors, CpG2 methylation (adjusted P = 0.007) still showed significant gender-specific differences among the participants of the study. CpG1 (P = 0.009) site was significantly positively correlated with age, and CpG3 (P = 0.007) and CpG4 (P = 0.006) were both inversely linked to smoking. Our findings suggest that gene-environment interactions are associated with the pathogenesis and progression of EH. PMID:28078278

  8. The expression of RUNDC3B is associated with promoter methylation in lymphoid malignancies.

    PubMed

    Burmeister, Dane W; Smith, Emily H; Cristel, Robert T; McKay, Stephanie D; Shi, Huidong; Arthur, Gerald L; Davis, Justin Wade; Taylor, Kristen H

    2017-03-01

    DNA methylation is an epigenetic modification that plays an important role in the regulation of gene expression. The function of RUNDC3B has yet to be determined, although its dysregulated expression has been associated with malignant potential of both breast and lung carcinoma. To elucidate the potential of using DNA methylation in RUNDC3B as a biomarker in lymphoid malignancies, the methylation status of six regions spanning the CpG island in the promoter region of RUNDC3B was determined in cancer cell lines. Lymphoid malignancies were found to have more prominent methylation and did not express RUNDC3B compared with myeloid malignancies and solid tumours, supporting the potential use of DNA methylation in this region as a biomarker for lymphoid malignancies. RUNDC3B contains a RUN domain in its N-terminal region that mediates interaction with Rap2, an important component of the mitogen-activated protein kinase (MAPK) cascade, which regulates cellular proliferation and differentiation. The protein sequence of RUNDC3B also contains characteristic binding sites for MAPK intermediates. Therefore, it is possible that RUNDC3B serves as a mediator between Rap2 and the MAPK signalling cascade. Three genes with MAPK-inducible expression were downregulated in a methylated leukaemia cell line (HSPA5, Jun and Fos). Jun and Fos combine to form the activating protein 1 transcription factor, and loss of this factor is associated with the dysregulation of genes involved in differentiation and proliferation. We hypothesize that the loss of RUNDC3B secondary to aberrant hypermethylation of the early growth response 3 transcription factor binding site results in dysregulated MAPK signalling and carcinogenesis in lymphoid malignancies. © 2015 The Authors. Hematological Oncology published by John Wiley & Sons Ltd.

  9. The expression of RUNDC3B is associated with promoter methylation in lymphoid malignancies

    PubMed Central

    Burmeister, Dane W.; Smith, Emily H.; Cristel, Robert T.; McKay, Stephanie D.; Shi, Huidong; Arthur, Gerald L.; Davis, Justin Wade

    2015-01-01

    Abstract DNA methylation is an epigenetic modification that plays an important role in the regulation of gene expression. The function of RUNDC3B has yet to be determined, although its dysregulated expression has been associated with malignant potential of both breast and lung carcinoma. To elucidate the potential of using DNA methylation in RUNDC3B as a biomarker in lymphoid malignancies, the methylation status of six regions spanning the CpG island in the promoter region of RUNDC3B was determined in cancer cell lines. Lymphoid malignancies were found to have more prominent methylation and did not express RUNDC3B compared with myeloid malignancies and solid tumours, supporting the potential use of DNA methylation in this region as a biomarker for lymphoid malignancies. RUNDC3B contains a RUN domain in its N‐terminal region that mediates interaction with Rap2, an important component of the mitogen‐activated protein kinase (MAPK) cascade, which regulates cellular proliferation and differentiation. The protein sequence of RUNDC3B also contains characteristic binding sites for MAPK intermediates. Therefore, it is possible that RUNDC3B serves as a mediator between Rap2 and the MAPK signalling cascade. Three genes with MAPK‐inducible expression were downregulated in a methylated leukaemia cell line (HSPA5, Jun and Fos). Jun and Fos combine to form the activating protein 1 transcription factor, and loss of this factor is associated with the dysregulation of genes involved in differentiation and proliferation. We hypothesize that the loss of RUNDC3B secondary to aberrant hypermethylation of the early growth response 3 transcription factor binding site results in dysregulated MAPK signalling and carcinogenesis in lymphoid malignancies. © 2015 The Authors. Hematological Oncology published by John Wiley & Sons Ltd PMID:26011749

  10. The Silencing of CCND2 by Promoter Aberrant Methylation in Renal Cell Cancer and Analysis of the Correlation between CCND2 Methylation Status and Clinical Features

    PubMed Central

    Wang, Lu; Cui, Yun; Zhang, Lian; Sheng, Jindong; Yang, Yang; Kuang, Guanyu; Fan, Yu; Zhang, Qian; Jin, Jie

    2016-01-01

    Cyclin D2 (CCND2) is a member of the D-type cyclins, which plays a pivotal role in cell cycle regulation, differentiation and malignant transformation. However, its expression status and relative regulation mechanism remains unclear in renal cell cancer (RCC). In our study, the mRNA expression level of CCND2 is down-regulated in 22/23 paired RCC tissues (p<0.05). In addition, its protein expression level is also decreased in 43/43 RCC tumor tissues compared with its corresponding non-malignant tissues (p<0.001). We further detected that CCND2 was down-regulated or silenced in 6/7 RCC cell lines, but expressed in “normal” human proximal tubular (HK-2) cell line. Subsequently, MSP and BGS results showed that the methylation status in CCND2 promoter region is closely associated with its expression level in RCC cell lines. Treatment with 5-Aza with or without TSA restored CCND2 expression in several methylated RCC cell lines. Among the 102 RCC tumors, methylation of CCND2 was detected in 29/102 (28%) cases. Only 2/23 (8.7%) adjacent non-malignant tissues showed methylation. We then analyzed the correlation of clinical features and its promoter methylation. Collectively, our data suggested that loss of CCND2 expression is closely associated with the promoter aberrant methylation. PMID:27583477

  11. Development of Tyrosinase Promoter-Based Fluorescent Assay for Screening of Anti-melanogenic Agents.

    PubMed

    Lee, JaeHo; Lee, SeungJun; Lee, ByungMan; Roh, KyungBaeg; Park, DeokHoon; Jung, EunSun

    2015-01-01

    For screening of skin-whitening ingredients that modulate inhibition of melanogenesis, tyrosinase promoter-based assay using a three-dimensional (3D) spheroid culture technique is a beneficial tool to improve the accuracy of raw material screening in cosmetics through mimicking of the in vivo microenvironment. Although the advantages of high-throughput screening (HTS) are widely known, there has been little focus on specific cell-based promoter assays for HTS in identifying skin-whitening ingredients that inhibit accumulation of melanin. The aim of this study was therefore to develop a large-scale compatible assay through pTyr-EGFP, an enhanced green fluorescent protein (EGFP)-based tyrosinase-specific promoter, to seek potential melanogenesis inhibitors for cosmetic use. Herein, a stably transfected human melanoma cell line expressing EGFP under the control of a 2.2-kb fragment derived from the tyrosinase gene was generated. Spontaneous induction of the tyrosinase promoter by 3D spheroid culture resulted in increased expression of EGFP, providing a significant correlation with the tyrosinase mRNA level, and subsequent inhibition of tyrosinase activity. Importantly, the pTyr-EGFP system provided successful tracking of the changes in the live image and real-time monitoring. Thus tyrosinase promoter-based fluorescent assay using a 3D spheroid culture can be useful as a screening system for exploring the efficiency of anti-melanogenesis ingredients.

  12. The influence of one-carbon metabolism on gene promoter methylation in a population-based breast cancer study

    PubMed Central

    Gammon, Marilie D; Jefferson, Elizabeth; Zhang, Yujing; Cho, Yoon Hee; Wetmur, James G; Teitelbaum, Susan L; Bradshaw, Patrick T; Terry, Mary Beth; Garbowski, Gail; Hibshoosh, Hanina; Neugut, Alfred I; Santella, Regina M

    2011-01-01

    Abnormal methylation in gene promoters is a hallmark of the cancer genome; however, factors that may influence promoter methylation have not been well elucidated. As the one-carbon metabolism pathway provides the universal methyl donor for methylation reactions, perturbation of this pathway might influence DNA methylation and, ultimately, affect gene functions. Utilizing approximately 800 breast cancer tumor tissues from a large population-based study, we investigated the relationships between dietary and genetic factors involved in the one-carbon metabolism pathway and promoter methylation of a panel of 13 breast cancer-related genes. We found that CCND2, HIN1 and CHD1 were the most “dietary sensitive” genes, as methylation of their promoters was associated with intakes of at least two out of the eight dietary methyl factors examined. On the other hand, some micronutrients (i.e., B2 and B6) were more “epigenetically active” as their intake levels correlated with promoter methylation status in 3 out of the 13 breast cancer genes evaluated. Both positive (hypermethylation) and inverse (hypomethylation) associations with high micronutrient intake were observed. Unlike what we saw for dietary factors, we did not observe any clear patterns between one-carbon genetic polymorphisms and the promoter methylation status of the genes examined. Our results provide preliminary evidence that one-carbon metabolism may have the capacity to influence the breast cancer epigenome. Given that epigenetic alterations are thought to occur early in cancer development and are potentially reversible, dietary modifications may offer promising venues for cancer intervention and prevention. PMID:22048254

  13. Reduced promoter methylation and increased expression of CSPG4 negatively influences survival of HNSCC patients.

    PubMed

    Warta, Rolf; Herold-Mende, Christel; Chaisaingmongkol, Jittiporn; Popanda, Odilia; Mock, Andreas; Mogler, Carolin; Osswald, Florian; Herpel, Esther; Küstner, Sabine; Eckstein, Volker; Plass, Christoph; Plinkert, Peter; Schmezer, Peter; Dyckhoff, Gerhard

    2014-12-01

    Proteoglycans are often overexpressed in tumors and can be found on several normal and neoplastic stem cells. In this study, we analyzed in-depth the role of CSPG4 in head and neck squamous cell carcinomas (HNSCC). Analysis of CSPG4 in a homogeneous study sample of HPV-negative stage IVa HNSCCs revealed overexpression of protein and mRNA levels in a subgroup of HNSCC tumors and a significant association of high CSPG4 protein levels with poor survival. This could be validated in three publicly available microarray datasets. As a potential cause for upregulated CSPG4 expression, we identified DNA hypomethylation in a CpG-island of the promoter region. Accordingly, we found an inverse correlation of methylation and patient outcome. Finally, CSPG4 re-expression was achieved by demethylating treatment of highly methylated HNSCC cell lines establishing a direct link between methylation and CSPG4 expression. In conclusion, we identified CSPG4 as a novel biomarker in HNSCC on several biological levels and established a causative link between DNA methylation and CSPG4 protein and mRNA expression.

  14. Quantitative assessment of the diagnostic role of FHIT promoter methylation in non-small cell lung cancer

    PubMed Central

    Tan, Yulong; Lu, Zhouyi; Wang, An; Tan, Lixing; Chen, Sidi; Guo, Shicheng; Wang, Jiucun; Chen, Xiaofeng

    2017-01-01

    Aberrant methylation of CpG islands acquired in promoter regions plays an important role in carcinogenesis. Accumulated evidence demonstrates FHIT gene promoter hyper-methylation is involved in non-small cell lung cancer (NSCLC). To test the diagnostic ability of FHIT methylation status on NSCLC, thirteen studies, including 2,119 samples were included in our meta-analysis. Simultaneously, four independent DNA methylation datasets from TCGA and GEO database were analyzed for validation. The pooled odds ratio of FHIT promoter methylation in cancer samples was 3.43 (95% CI: 1.85 to 6.36) compared with that in controls. In subgroup analysis, significant difference of FHIT gene promoter methylation status in NSCLC and controls was found in Asians but not in Caucasian population. In validation stage, 950 Caucasian samples, including 126 paired samples from TCGA, 568 cancer tissues and 256 normal controls from GEO database were analyzed, and all 8 CpG sites near the promoter region of FHIT gene were not significantly differentially methylated. Thus the diagnostic role of FHIT gene in the lung cancer may be relatively limited in the Caucasian population but useful in the Asians. PMID:28036263

  15. CDH1 promoter methylation correlates with decreased gene expression and poor prognosis in patients with breast cancer.

    PubMed

    Liu, Jian; Sun, Xin; Qin, Sida; Wang, Huangzhen; DU, Ning; Li, Yanbo; Pang, Yamei; Wang, Cuicui; Xu, Chongwen; Ren, Hong

    2016-04-01

    The E-cadherin gene (CDH1) is associated with poor prognosis and metastasis in patients with breast cancer, and methylation of its promoter is correlated with decreased gene expression. However, there is currently no direct evidence that CDH1 promoter methylation indicates poor prognosis in patients with breast cancer. In the present study, methylation-specific polymerase chain reaction (PCR) was applied to detect the methylation status of the CDH1 promoter in 137 primary breast cancer, 85 matched normal breast tissue and 13 lung metastasis specimens. Reverse transcription-quantitative PCR was used to assess the relative expression levels of CDH1 mRNA, and correlation analysis between CDH1 methylation status, and gene expression, clinicopathological characteristics and patient survival was performed. Methylation of CDH1 was identified in 40.9% (56/137) of primary breast cancer specimens, 61.5% (8/13) of lung metastasis specimens and none of the matched normal breast specimens. The downregulation of CDH1 mRNA and E-cadherin protein expression were identified to be significantly correlated with CDH1 methylation (P<0.05). In addition, CDH1 methylation was significantly associated with lymph node metastasis and estrogen receptor status of patients (P<0.05). In univariate analyses, patients with CDH1 methylation exhibited poor overall survival (OS) and disease-free survival (DFS; P<0.05). Furthermore, multivariate analyses revealed that CDH1 methylation was an independent prognostic factor predicting poor OS (HR, 1.737; 95% CI, 0.957-3.766; P=0.041) and DFS (HR, 2.018; 95% CI, 2.057-3.845; P=0.033) in patients with breast cancer. Therefore, the present study suggests that CDH1 promoter methylation may be correlated with breast carcinogenesis and indicates poor prognosis in patients with breast cancer.

  16. Promoter Methylation Pattern Controls Corticotropin Releasing Hormone Gene Activity in Human Trophoblasts

    PubMed Central

    Pan, Xin; Bowman, Maria; Scott, Rodney J.; Fitter, John; Smith, Roger

    2017-01-01

    Placental CRH production increases with advancing pregnancy in women and its course predicts gestational length. We hypothesized that CRH gene expression in the placenta is epigenetically controlled setting gestational trajectories characteristic of normal and pathological pregnancies. Here we determined histone modification and DNA methylation levels and DNA methylation patterns at the CRH promoter in primary trophoblast cultures by chromatin immunoprecipitation combined with clonal bisulfite sequencing and identified the transcriptionally active epialleles that associate with particular histone modifications and transcription factors during syncytialisation and cAMP-stimulation. CRH gene expression increased during syncytial differentiation and cAMP stimulation, which was associated with increased activating and decreased repressive histone modification levels at the promoter. DNA methylation levels remained unchanged. The nine CpGs of the CRH proximal promoter were partially and allele-independently methylated displaying many (>100) epialleles. RNA-polymerase-II (Pol-II) bound only to three particular epialleles in cAMP-stimulated cells, while phospho-cAMP response element-binding protein (pCREB) bound to only one epiallele, which was different from those selected by Pol-II. Binding of TATA-binding protein increased during syncytial differentiation preferentially at epialleles compatible with Pol-II and pCREB binding. Histone-3 acetylation was detected only at epialleles targeted by Pol-II and pCREB, while gene activating histone-4 acetylation and histone-3-lysine-4 trimethylation occurred at CRH epialleles not associated with Pol-II or pCREB. The suppressive histone-3-lysine-27 trimethyl and–lysine-9 trimethyl modifications showed little or no epiallele preference. The epiallele selectivity of activating histone modifications and transcription factor binding demonstrates the epigenetic and functional diversity of the CRH gene in trophoblasts, which is

  17. DNA methylation abnormalities at gene promoters are extensive and variable in the elderly and phenocopy cancer cells.

    PubMed

    Gautrey, Hannah E; van Otterdijk, Sanne D; Cordell, Heather J; Mathers, John C; Strathdee, Gordon

    2014-07-01

    Abnormal patterns of DNA methylation are one of the hallmarks of cancer cells. The process of aging has also been associated with similar, albeit less dramatic, changes in methylation patterns, leading to the hypothesis that age-related changes in DNA methylation may partially underlie the increased risk of cancer in the elderly. Here we studied 377 participants aged 85 yr from the Newcastle 85+ Study to investigate the extent of, and interindividual variation in, age-related changes in DNA methylation at specific CpG islands. Using highly quantitative pyrosequencing analysis, we found extensive and highly variable methylation of promoter-associated CpG islands with levels ranging from 4% to 35%, even at known tumor suppressor genes such as TWIST2. Furthermore, the interindividual differences in methylation seen across this elderly population phenocopies multiple features of the altered methylation patterns seen in cancer cells. Both aging- and cancer-related methylation can occur at similar sets of genes, both result in the formation of densely methylated, and likely transcriptionally repressed, alleles, and both exhibit coordinate methylation across multiple loci. In addition, high methylation levels were associated with subsequent diagnosis of leukemia or lymphoma during a 3-yr follow-up period (P=0.00008). These data suggest that the accumulation of age-related changes in promoter-associated CpG islands may contribute to the increased cancer risk seen during aging.-Gautrey, H. E., van Otterdijk, S. D., Cordell, H. J., Newcastle 85+ study core team, Mathers, J. C., Strathdee, G. DNA methylation abnormalities at gene promoters are extensive and variable in the elderly and phenocopy cancer cells.

  18. Oxidative stress levels are correlated with P15 and P16 gene promoter methylation in myelodysplastic syndrome patients.

    PubMed

    Gonçalves, Ana Cristina; Cortesão, Emília; Oliveiros, Barbara; Alves, Vera; Espadana, Ana Isabel; Rito, Luís; Magalhães, Emília; Pereira, Sónia; Pereira, Amélia; Costa, José Manuel Nascimento; Mota-Vieira, Luisa; Sarmento-Ribeiro, Ana Bela

    2016-08-01

    Oxidative stress and abnormal DNA methylation have been implicated in some types of cancer, namely in myelodysplastic syndromes (MDS). Since both mechanisms are observed in MDS patients, we analyzed the correlation of intracellular levels of peroxides, superoxide anion, and glutathione (GSH), as well as ratios of peroxides/GSH and superoxide/GSH, with the methylation status of P15 and P16 gene promoters in bone marrow leukocytes from MDS patients. Compared to controls, these patients had lower GSH content, higher peroxide levels, peroxides/GSH and superoxide/GSH ratios, as well as higher methylation frequency of P15 and P16 gene promoters. Moreover, patients with methylated P15 gene had higher oxidative stress levels than patients without methylation (peroxides: 460 ± 42 MIF vs 229 ± 25 MIF, p = 0.001; superoxide: 383 ± 48 MIF vs 243 ± 17 MIF, p = 0.022; peroxides/GSH: 2.50 ± 0.08 vs 1.04 ± 0.34, p < 0.001; superoxide/GSH: 1.76 ± 0.21 vs 1.31 ± 0.10, p = 0.007). Patients with methylated P16 and at least one methylated gene had higher peroxide levels as well as peroxides/GSH ratio than patients without methylation. Interestingly, oxidative stress levels allow the discrimination of patients without methylation from ones with methylated P15, methylated P16, or at least one methylated (P15 or P16) promoter. Taken together, these findings support the hypothesis that oxidative stress is correlated with P15 and P16 hypermethylation.

  19. Involvement of B-cell CLL/lymphoma 2 promoter methylation in cigarette smoke extract-induced emphysema

    PubMed Central

    Zeng, Huihui; Shi, Zhihui; Kong, Xianglong; Chen, Yan; Zhang, Hongliang; Peng, Hong; Luo, Hong

    2016-01-01

    Abnormal apoptotic events play an important role in the pathogenesis of emphysema. The B-cell CLL/lymphoma 2 (Bcl-2) family proteins are essential and critical regulators of apoptosis. We determined whether the anti-apoptotic Bcl-2 play a role in the cigarette smoke extract (CSE)-induced emphysema. Furthermore, given the involvement of epigenetics in chronic obstructive pulmonary disease, we hypothesized that the deregulation of Bcl-2 might be caused by gene methylation. The emphysema in BALB/C mice was established by intraperitoneally injection of CSE. 5-aza-2′-deoxycytidine (AZA; a demethylation reagent) and phosphate-buffered saline were also administered intraperitoneally as CSE. TUNEL assay was used to assess apoptotic index of pulmonary cells. The methylation status of CpG dinucleotides within the Bcl-2 promoter was observed in all groups by bisulfite sequencing PCR. Pulmonary expression of Bcl-2, Bax, and cytochrome C were measured after four weeks of treatment. The apoptotic index of pulmonary cells in CSE injection group was much higher than control ((25.88 ± 7.55)% vs. (6.28 ± 2.96)%). Compared to control mice, decreased expression of Bcl-2 and high methylation of Bcl-2 promoter was observed in CSE injected mice (0.88 ± 0.08 vs. 0.49 ± 0.11, (3.82 ± 1.34)% vs. (35.68 ± 5.99)%, P < 0.01).CSE treatment induced lung cell apoptosis and decreased lung function. AZA treatment increased Bcl-2 expression with Bcl-2 promoter demethylation. AZA also alleviated the lung cell apoptosis and function failure caused by CSE treatment. The decreased expression of anti-apoptotic Bcl-2 might account for the increased apoptosis in CSE induced-emphysema. Apparently, epigenetic alternation played a role in this deregulation of Bcl-2 expression, and it might support the involvement of epigenetic events in the pathogenesis of emphysema. PMID:26924842

  20. A five-miRNA signature with prognostic and predictive value for MGMT promoter-methylated glioblastoma patients.

    PubMed

    Cheng, Wen; Ren, Xiufang; Cai, Jinquan; Zhang, Chuanbao; Li, Mingyang; Wang, Kuanyu; Liu, Yang; Han, Sheng; Wu, Anhua

    2015-10-06

    Although O(6)-methylguanine DNA methyltransferase (MGMT) promoter methylation status is an important marker for glioblastoma multiforme (GBM), there is considerable variability in the clinical outcome of patients with similar methylation profiles. The present study aimed to refine the prognostic and predictive value of MGMT promoter status in GBM by identifying a micro (mi)RNA risk signature. Data from The Cancer Genome Atlas was used for this study, with MGMT promoter-methylated samples randomly divided into training and internal validation sets. Data from The Chinese Glioma Genome Atlas was used for independent validation. A five miRNA-based risk signature was established for MGMT promoter-methylated GBM to distinguish cases as high- or low-risk with distinct prognoses, which was confirmed using internal and external validation sets. Importantly, the prognostic value of the signature was significant in different cohorts stratified by clinicopathologic factors and alkylating chemotherapy, and a multivariate Cox analysis found it to be an independent prognostic marker along with age and chemotherapy. Based on these three factors, we developed a quantitative model with greater accuracy for predicting the 1-year survival of patients with MGMT promoter-methylated GBM. These results indicate that the five-miRNA signature is an independent risk predictor for GBM with MGMT promoter methylation and can be used to identify patients at high risk of unfavorable outcome and resistant to alkylating chemotherapy, underscoring its potential for personalized GBM management.

  1. BRCA1 promoter methylation is a marker of better response to anthracycline-based therapy in sporadic TNBC.

    PubMed

    Ignatov, T; Poehlmann, A; Ignatov, A; Schinlauer, A; Costa, S D; Roessner, A; Kalinski, T; Bischoff, J

    2013-09-01

    The aim of the current study was to investigate the role of BRCA1 gene aberrations in sporadic triple-negative breast cancer (TNBC) and its impact on anthracycline-based therapy. BRCA1 promoter methylation was analyzed in 70 TNBC and compared with the clinical and pathologic characteristics. As a control group, we used 70 patients with non-TNBC. BRCA1 promoter methylation was observed in 65.2 % of patients and was similar in both groups. BRCA1 promoter methylation was associated with decreased intensity of BRCA1 protein expression (P = 0.002) and significant increase of median disease-free survival (DFS) of TNBC patients receiving adjuvant anthracycline-based chemotherapy (P = 0.001). Multivariate analysis revealed that BRCA1 promoter methylation remains a favorable factor in regard to DFS (HR 0.224; 95 % CI 0.092-0.546, P = 0.001) in TNBC after adjustment for other prognostic factors. In contrast, in non-TNBC, BRCA1 promoter methylation was not associated with any clinical and pathologic parameters. BRCA1 promoter methylation is a common mechanism of BRCA1 gene aberration in sporadic breast cancer and is predictive for better response to anthracycline-based therapies.

  2. Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and promoter methylation in cervical oncogenic lesions and cancer.

    PubMed

    Botezatu, Anca; Socolov, Demetra; Iancu, Iulia V; Huica, Irina; Plesa, Adriana; Ungureanu, Carmen; Anton, Gabriela

    2013-04-01

    The aim of this study was to investigate the role of methylenetetrahydrofolate reductase (MTHFR) polymorphisms and MTHFR methylation pattern in cervical lesions development among women from Romania, a country with high prevalence of human papillomavirus (HPV) cervical infections. To achieve this goal, blood samples and cervical cytology specimens (n = 77)/tumour tissue specimens (n = 23) were investigated. As control, blood and negative cytological smears (n = 50) were used. A statistically significant association was found between T allele of C677T polymorphism and cervical lesions, heterozygote women presenting a threefold increased risk (normal/cervical lesions and tumours: wild homozygote 34/41 (0.68/0.41), heterozygote 14/51 (0.28/0.51), mutant homozygote 2/8 (0.04/0.08); OR = 3.081, P = 0.0035). Using χ square test for the control group, the HPV-negative and HPV-positive patients with cervix lesions, a significant correlation between viral infection and T allele of C677T polymorphism (P = 0.0287) was found. The MTHFR promoter was methylated in all HGSIL and tumour samples, significant differences being noted between HPV-positive samples, control group and cases of cervical dysplastic lesions without HPV DNA (P < 0. 0001) and between samples from patients with high-risk (hr)HPV versus low-risk (lr)HPV (P = 0.0026). No correlations between polymorphisms and methylation were observed. In Romania, individuals carrying T allele are susceptible for cervical lesions. MTHFR promoter methylation is associated with cervical severity lesions and with hrHPV.

  3. Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1β (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG sites.

    PubMed

    Hashimoto, Ko; Otero, Miguel; Imagawa, Kei; de Andrés, María C; Coico, Jonathan M; Roach, Helmtrud I; Oreffo, Richard O C; Marcu, Kenneth B; Goldring, Mary B

    2013-04-05

    The role of DNA methylation in the regulation of catabolic genes such as MMP13 and IL1B, which have sparse CpG islands, is poorly understood in the context of musculoskeletal diseases. We report that demethylation of specific CpG sites at -110 bp and -299 bp of the proximal MMP13 and IL1B promoters, respectively, detected by in situ methylation analysis of chondrocytes obtained directly from human cartilage, strongly correlated with higher levels of gene expression. The methylation status of these sites had a significant impact on promoter activities in chondrocytes, as revealed in transfection experiments with site-directed CpG mutants in a CpG-free luciferase reporter. Methylation of the -110 and -299 CpG sites, which reside within a hypoxia-inducible factor (HIF) consensus motif in the respective MMP13 and IL1B promoters, produced the most marked suppression of their transcriptional activities. Methylation of the -110 bp CpG site in the MMP13 promoter inhibited its HIF-2α-driven transactivation and decreased HIF-2α binding to the MMP13 proximal promoter in chromatin immunoprecipitation assays. In contrast to HIF-2α, MMP13 transcriptional regulation by other positive (RUNX2, AP-1, ELF3) and negative (Sp1, GATA1, and USF1) factors was not affected by methylation status. However, unlike the MMP13 promoter, IL1B was not susceptible to HIF-2α transactivation, indicating that the -299 CpG site in the IL1B promoter must interact with other transcription factors to modulate IL1B transcriptional activity. Taken together, our data reveal that the methylation of different CpG sites in the proximal promoters of the human MMP13 and IL1B genes modulates their transcription by distinct mechanisms.

  4. The epigenetic modifier CHD5 functions as a novel tumor suppressor for renal cell carcinoma and is predominantly inactivated by promoter CpG methylation

    PubMed Central

    Du, Zhenfang; Li, Lili; Huang, Xin; Jin, Jie; Huang, Suming; Zhang, Qian; Tao, Qian

    2016-01-01

    Renal cell carcinoma (RCC) is the most common urological cancer with steadily increasing incidence. A series of tumor suppressor genes (TSGs) have been identified methylated in RCC as potential epigenetic biomarkers. We identified a 1p36.3 TSG candidate CHD5 as a methylated target in RCC through epigenome study. As the role of CHD5 in RCC pathogenesis remains elusive, we further studied its expression and molecular functions in RCC cells. We found that CHD5 was broadly expressed in most normal genitourinary tissues including kidney, but frequently silenced or downregulated by promoter CpG methylation in 78% of RCC cell lines and 44% (24/55) of primary tumors. In addition, CHD5 mutations appear to be rare in RCC tumors through genome database mining. In methylated/silenced RCC cell lines, CHD5 expression could be restored with azacytidine demethylation treatment. Ectopic expression of CHD5 in RCC cells significantly inhibited their clonogenicity, migration and invasion. Moreover, we found that CHD5, as a chromatin remodeling factor, suppressed the expression of multiple targets including oncogenes (MYC, MDM2, STAT3, CCND1, YAP1), epigenetic master genes (Bmi-1, EZH2, JMJD2C), as well as epithelial-mesenchymal transition and stem cell markers (SNAI1, FN1, OCT4). Further chromatin immunoprecipitation (ChIP) assays confirmed the binding of CHD5 to target gene promoters. Thus, we demonstrate that CHD5 functions as a novel TSG for RCC, but is predominantly inactivated by promoter methylation in primary tumors. PMID:26943038

  5. Gene promoter methylation and expression of Pin1 differ between patients with frontotemporal dementia and Alzheimer's disease.

    PubMed

    Ferri, Evelyn; Arosio, Beatrice; D'Addario, Claudio; Galimberti, Daniela; Gussago, Cristina; Pucci, Mariangela; Casati, Martina; Fenoglio, Chiara; Abbate, Carlo; Rossi, Paolo Dionigi; Scarpini, Elio; Maccarrone, Mauro; Mari, Daniela

    2016-03-15

    Frontotemporal Dementia (FTD) and Alzheimer's Disease (AD) share the accumulation of fibrillar aggregates of misfolded proteins. To better understand these neurodegenerative diseases and identify biomarkers in easily accessible cells, we investigated DNA methylation at Pin1 gene promoter and its expression in peripheral blood mononuclear cells of FTD patients. We found a lower gene expression of Pin1 with a higher DNA methylation in three CpG sites at Pin1 gene promoter analysed in FTD subjects, in contrast to a higher gene expression with a lower methylation in AD subjects and controls. These data suggest an important and distinct involvement of Pin1 in these two types of dementia.

  6. Methylation of BRCA1 promoter region is associated with unfavorable prognosis in women with early-stage breast cancer.

    PubMed

    Hsu, Nicholas C; Huang, Ya-Fang; Yokoyama, Kazunari K; Chu, Pei-Yi; Chen, Fang-Ming; Hou, Ming-Feng

    2013-01-01

    BRCA1-associated breast cancers are associated with particular features such as early onset, poor histological differentiation, and hormone receptor negativity. Previous studies conducted in Taiwanese population showed that the mutation of BRCA1 gene does not play a significant role in the occurrence of breast cancer. The present study explored methylation of BRCA1 promoter and its relationship to clinical features and outcome in Taiwanese breast cancer patients. Tumor specimens from a cohort of 139 early-stage breast cancer patients were obtained during surgery before adjuvant treatment for DNA extraction. Methylation of BRCA1 promoter region was determined by methylation-specific PCR and the results were related to clinical features and outcome of patients using statistical analysis. Methylation of the BRCA1 promoter was detected in 78 (56%) of the 139 tumors. Chi-square analysis indicated that BRCA1 promoter methylation correlated significantly with triple-negative (ER-/PR-/HER2-) status of breast cancer patients (p = 0.041). The Kaplan-Meier method showed that BRCA1 promoter methylation was significantly associated with poor overall survival (p = 0.026) and disease-free survival (p = 0.001). Multivariate analysis which incorporated variables of patients' age, tumor size, grade, and lymph node metastasis revealed that BRCA1 promoter methylation was associated with overall survival (p = 0.027; hazard ratio, 16.38) and disease-free survival (p = 0.003; hazard ratio, 12.19) [corrected].Our findings underscore the clinical relevance of the methylation of BRCA1 promoter in Taiwanese patients with early-stage breast cancer.

  7. Promoter methylation of fas apoptotic inhibitory molecule 2 gene is associated with obesity and dyslipidaemia in Chinese children.

    PubMed

    Wu, Lijun; Zhao, Xiaoyuan; Shen, Yue; Zhang, Mei-Xian; Yan, Yinkun; Hou, Dongqing; Meng, Linghui; Liu, Junting; Cheng, Hong; Mi, Jie

    2015-05-01

    Fas apoptotic inhibitory molecule 2 (FAIM2) is an obesity-related gene, but the mechanisms by which FAIM2 is involved in obesity are not understood. Epigenetic alterations are important factors in the development of obesity. The purpose of this study was to investigate the potential associations of FAIM2 promoter methylation with obesity and components of dyslipidaemia in Chinese children. We studied FAIM2 promoter methylation in 59 obese and 39 lean children using the Sequenom MassARRAY platform. The methylation levels at 8 CpG sites in the FAIM2 promoter were significantly different between the obese and lean subjects, especially the methylation level at CpG site 500 (p = 0.01). The methylation levels at several of the examined CpG sites were significantly associated with dyslipidaemia and its components after adjusting for age, gender and body mass index (BMI). The methylation levels at two CpG sites (sites -362 and -360 and site -164) were highly significantly associated with high level of triglycerides (p = 0.00002 and 0.0009, respectively). This study provides the first evidence that the methylation levels of the FAIM2 promoter are significantly associated with obesity and are independently associated with dyslipidaemia and its components in Chinese children.

  8. Chromatin inactivation precedes de novo dna methylation during the progressive epigenetic silencing of the rassf1a promoter

    SciTech Connect

    Strunnikova Maria; Schagdarsurengin, Undraga; Kehlen, Astrid; Garbe, James C.; Stampfer, Martha R.; Dammann, Reinhard

    2005-02-23

    Epigenetic inactivation of the RASSF1A tumor suppressor by CpG island methylation was frequently detected in cancer. However, the mechanisms of this aberrant DNA methylation are unknown. In the RASSF1A promoter, we characterized four Sp1 sites, which are frequently methylated in cancer. We examined the functional relationship between DNA methylation, histone modification, Sp1 binding, and RASSF1A expression in proliferating human mammary epithelial cells. With increasing passages, the transcription of RASSF1A was dramatically silenced. This inactivation was associated with deacetylation and lysine 9 trimethylation of histone H3 and an impaired binding of Sp1 at the RASSF1A promoter. In mammary epithelial cells that had overcome a stress-associated senescence barrier, a spreading of DNA methylation in the CpG island promoter was observed. When the RASSF1A-silenced cells were treated with inhibitors of DNA methyltransferase and histone deacetylase, binding of Sp1 and expression of RASSF1 A reoccurred. In summary, we observed that histone H3 deacetylation and H3 lysine 9 trimethylation occur in the same time window as gene inactivation and precede DNA methylation. Our data suggest that in epithelial cells, histone inactivation may trigger de novo DNA methylation of the RASSF1A promoter and this system may serve as a model for CpG island inactivation of tumor suppressor genes.

  9. Chronic exposure to trichloroethylene increases DNA methylation of the Ifng promoter in CD4(+) T cells.

    PubMed

    Gilbert, Kathleen M; Blossom, Sarah J; Erickson, Stephen W; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Li, Jingyun; Cooney, Craig A

    2016-10-17

    CD4(+) T cells in female MRL+/+ mice exposed to solvent and water pollutant trichloroethylene (TCE) skew toward effector/memory CD4(+) T cells, and demonstrate seemingly non-monotonic alterations in IFN-γ production. In the current study we examined the mechanism for this immunotoxicity using effector/memory and naïve CD4(+) T cells isolated every 6 weeks during a 40 week exposure to TCE (0.5mg/ml in drinking water). A time-dependent effect of TCE exposure on both Ifng gene expression and IFN-γ protein production was observed in effector/memory CD4(+) T cells, with an increase after 22 weeks of exposure and a decrease after 40 weeks of exposure. No such effect of TCE was observed in naïve CD4(+) T cells. A cumulative increase in DNA methylation in the CpG sites of the promoter of the Ifng gene was observed in effector/memory, but not naïve, CD4(+) T cells over time. Also unique to the Ifng promoter was an increase in methylation variance in effector/memory compared to naïve CD4(+) T cells. Taken together, the CpG sites of the Ifng promoter in effector/memory CD4(+) T cells were especially sensitive to the effects of TCE exposure, which may help explain the regulatory effect of the chemical on this gene.

  10. Rapid Room-Temperature 11C-Methylation of Arylamines with [11C]Methyl Iodide Promoted by Solid Inorganic Bases in DMF

    PubMed Central

    Cai, Lisheng; Xu, Rong; Guo, Xuelei; Pike, Victor W.

    2013-01-01

    11[C]Methyl iodide is the most widely used reagent for labeling radiotracers with carbon-11 (t1/2 = 20.4 min) for molecular imaging with positron emission tomography. However, some substrates for labeling, especially primary arylamines and pyrroles, are sluggishly reactive towards [11C]methyl iodide. We found that insoluble inorganic bases, especially Li3N or Li2O, are effective in promoting rapid reactions (≤ 10 min) of such substrates with no-carrier-added [11C]methyl iodide in DMF at room temperature to give 11C-methylated products in useful radiochemical yields. In particular, we discovered that some primary arylamines in Li3N-DMF were converted into their formanilides, and that these were readily N-methylated with [11C]methyl iodide, preceding easy basic hydrolysis to the desired [11C]N-methyl secondary arylamines. Use of a solid base permitted selective reaction at an arylamino group and in some cases also avoided undesirable side reaction, such as ester group hydrolysis. An ultrasound device proved useful to provide remote and constant agitation of the radioactive heterogeneous reaction mixtures, but imparted no ‘ultrasound-specific’ chemical effect. PMID:24659907

  11. Methylation of the BRCA1 promoter in peripheral blood DNA is associated with triple-negative and medullary breast cancer.

    PubMed

    Gupta, Satish; Jaworska-Bieniek, Katarzyna; Narod, Steven A; Lubinski, Jan; Wojdacz, Tomasz K; Jakubowska, Anna

    2014-12-01

    It has been proposed that methylation signatures in blood-derived DNA may correlate with cancer risk. In this study, we evaluated whether methylation of the promoter region of the BRCA1 gene detectable in DNA from peripheral blood cells is a risk factor for breast cancer, in particular for tumors with pathologic features characteristic for cancers with BRCA1 gene mutations. We conducted a case-control study of 66 breast cancer cases and 36 unaffected controls. Cases were triple-negative or of medullary histology, or both; 30 carried a constitutional BRCA1 mutation and 36 did not carry a mutation. Blood for DNA methylation analysis was taken within three months of diagnosis. Methylation of the promoter of the BRCA1 gene was measured in cases and controls using methylation-sensitive high-resolution melting (MS-HRM). A sample with any detectable level of methylation was considered to be positive. Methylation of the BRCA1 promoter was detected in 15 of 66 cases and in 2 of 36 controls (OR 5.0, p = 0.03). Methylation was present in 15 of 36 women with breast cancer and without germline BRCA1 mutation, but in none of 30 women with breast cancer and a germline mutation (p < 0.01). The association between methylation and breast cancer was restricted to women with no constitutional BRCA1 mutation (OR 12.1, p = 0.0006). Methylation of the promoter of the BRCA1 gene detectable in peripheral blood DNA may be a marker of increased susceptibility to triple-negative or medullary breast cancer.

  12. Pyrosequencing quantified methylation level of BRCA1 promoter as prognostic factor for survival in breast cancer patient

    PubMed Central

    Lin, Xiao-Yan; Zhang, Lian; Zhang, Jia-Xin; Wang, Lian-Xin; Yang, Jun; Ding, Jin-Hua; Pan, Xin; Shao, Zhi-Ming; Biskup, Ewelina

    2016-01-01

    BRCA1 promoter methylation is an essential epigenetic transcriptional silencing mechanism, related to breast cancer (BC) occurrence and progression. We quantified the methylation level of BRCA1 promoter and evaluated its significance as prognostic and predictive factor. BRCA1 promoter methylation level was quantified by pyrosequencing in surgical cancerous and adjacent normal specimens from 154 BC patients. A follow up of 98 months was conducted to assess the correlation between BRCA1-methylation level vs. overall survival (OS) and disease free survival (DFS). The mean methylation level in BC tissues was significantly higher (mean 32.6%; median 31.9%) than in adjacent normal samples (mean 16.2%; median 13.0%) (P < 0.0001). Tumor stage (R = 0.6165, P < 0.0001) and size (R = 0.7328, P < 0.0001) were significantly correlated with the methylation level. Patients with unmethylated BRCA1 had a better OS and DFS compared to the methylated group (each P < 0.0001). BRCA1 promoter methylation level has a statistically significance on survival in BC patients (HazR = 1.465, P = 0.000) and is an independent prognostic factor for OS in BC patients (HazR = 2.042, P = 0.000). Patients with ductal type, HER2 negative, lymph node negative stage 1+2 tumors had a better OS and DFS. Classification of grades and molecular subtypes did not show any prognostic significance. Pyrosequencing is a precise and efficient method to quantify BRCA1 promoter methylation level, with a high potential for future clinical implication, as it identifies subgroups of patients with poorer prognosis. PMID:27027444

  13. Pyrosequencing quantified methylation level of BRCA1 promoter as prognostic factor for survival in breast cancer patient.

    PubMed

    Cai, Feng-Feng; Chen, Su; Wang, Ming-Hong; Lin, Xiao-Yan; Zhang, Lian; Zhang, Jia-Xin; Wang, Lian-Xin; Yang, Jun; Ding, Jin-Hua; Pan, Xin; Shao, Zhi-Ming; Biskup, Ewelina

    2016-05-10

    BRCA1 promoter methylation is an essential epigenetic transcriptional silencing mechanism, related to breast cancer (BC) occurrence and progression. We quantified the methylation level of BRCA1 promoter and evaluated its significance as prognostic and predictive factor. BRCA1 promoter methylation level was quantified by pyrosequencing in surgical cancerous and adjacent normal specimens from 154 BC patients. A follow up of 98 months was conducted to assess the correlation between BRCA1-methylation level vs. overall survival (OS) and disease free survival (DFS). The mean methylation level in BC tissues was significantly higher (mean 32.6%; median 31.9%) than in adjacent normal samples (mean 16.2%; median 13.0%) (P < 0.0001). Tumor stage (R = 0.6165, P < 0.0001) and size (R = 0.7328, P < 0.0001) were significantly correlated with the methylation level. Patients with unmethylated BRCA1 had a better OS and DFS compared to the methylated group (each P < 0.0001). BRCA1 promoter methylation level has a statistically significance on survival in BC patients (HazR = 1.465, P = 0.000) and is an independent prognostic factor for OS in BC patients (HazR = 2.042, P = 0.000). Patients with ductal type, HER2 negative, lymph node negative stage 1+2 tumors had a better OS and DFS. Classification of grades and molecular subtypes did not show any prognostic significance. Pyrosequencing is a precise and efficient method to quantify BRCA1 promoter methylation level, with a high potential for future clinical implication, as it identifies subgroups of patients with poorer prognosis.

  14. CpG promoter methylation status is not a prognostic indicator of gene expression in beryllium challenge.

    PubMed

    Tooker, Brian C; Ozawa, Katherine; Newman, Lee S

    2016-05-01

    Individuals exposed to beryllium (Be) may develop Be sensitization (BeS) and progress to chronic beryllium disease (CBD). Recent studies with other metal antigens suggest epigenetic mechanisms may be involved in inflammatory disease processes, including granulomatous lung disorders and that a number of metal cations alter gene methylation. The objective of this study was to determine if Be can exert an epigenetic effect on gene expression by altering methylation in the promoter region of specific genes known to be involved in Be antigen-mediated gene expression. To investigate this objective, three macrophage tumor mouse cell lines known to differentially produce tumor necrosis factor (TNF)-α, but not interferon (IFN)-γ, in response to Be antigen were cultured with Be or controls. Following challenges, ELISA were performed to quantify induced TNFα and IFNγ expression. Bisulfate-converted DNA was evaluated by pyrosequencing to quantify CpG methylation within the promoters of TNFα and IFNγ. Be-challenged H36.12J cells expressed higher levels of TNFα compared to either H36.12E cells or P388D.1 cells. However, there were no variations in TNFα promoter CpG methylation levels between cell lines at the six CpG sites tested. H36.12J cell TNFα expression was shown to be metal-specific by the induction of significantly more TNFα when exposed to Be than when exposed to aluminum sulfate, or nickel (II) chloride, but not when exposed to cobalt (II) chloride. However, H36.12J cell methylation levels at the six CpG sites examined in the TNFα promoter did not correlate with cytokine expression differences. Nonetheless, all three cell lines had significantly more promoter methylation at the six CpG sites investigated within the IFNγ promoter (a gene that is not expressed) when compared to the six CpG sites investigated in the TNFα promoter, regardless of treatment condition (p < 1.17 × 10(-9)). These findings suggest that, in this cell system, promoter hypo-methylation

  15. Nicotine induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production

    SciTech Connect

    Wang, Tingting; Chen, Man; Liu, Lian; Cheng, Huaiyan; Yan, You-E; Feng, Ying-Hong; Wang, Hui

    2011-12-15

    Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. -- Highlights: Black-Right-Pointing-Pointer Nicotine-induced StAR inhibition in two human adrenal cell models. Black-Right-Pointing-Pointer Nicotine-induced single CpG site methylation in StAR promoter. Black-Right-Pointing-Pointer Persistent StAR inhibition and single CpG methylation after nicotine termination

  16. RlmCD-mediated U747 methylation promotes efficient G748 methylation by methyltransferase RlmAII in 23S rRNA in Streptococcus pneumoniae; interplay between two rRNA methylations responsible for telithromycin susceptibility

    PubMed Central

    Shoji, Tatsuma; Takaya, Akiko; Sato, Yoshiharu; Kimura, Satoshi; Suzuki, Tsutomu; Yamamoto, Tomoko

    2015-01-01

    Adenine at position 752 in a loop of helix 35 from positions 745 to 752 in domain II of 23S rRNA is involved in binding to the ribosome of telithromycin (TEL), a member of ketolides. Methylation of guanine at position 748 by the intrinsic methyltransferase RlmAII enhances binding of telithromycin (TEL) to A752 in Streptococcus pneumoniae. We have found that another intrinsic methylation of the adjacent uridine at position 747 enhances G748 methylation by RlmAII, rendering TEL susceptibility. U747 and another nucleotide, U1939, were methylated by the dual-specific methyltransferase RlmCD encoded by SP_1029 in S. pneumoniae. Inactivation of RlmCD reduced N1-methylated level of G748 by RlmAII in vivo, leading to TEL resistance when the nucleotide A2058, located in domain V of 23S rRNA, was dimethylated by the dimethyltransferase Erm(B). In vitro methylation of rRNA showed that RlmAII activity was significantly enhanced by RlmCD-mediated pre-methylation of 23S rRNA. These results suggest that RlmCD-mediated U747 methylation promotes efficient G748 methylation by RlmAII, thereby facilitating TEL binding to the ribosome. PMID:26365244

  17. Inhibition of DNA methylation promotes breast tumor sensitivity to netrin-1 interference.

    PubMed

    Grandin, Mélodie; Mathot, Pauline; Devailly, Guillaume; Bidet, Yannick; Ghantous, Akram; Favrot, Clementine; Gibert, Benjamin; Gadot, Nicolas; Puisieux, Isabelle; Herceg, Zdenko; Delcros, Jean-Guy; Bernet, Agnès; Mehlen, Patrick; Dante, Robert

    2016-08-01

    In a number of human cancers, NTN1 upregulation inhibits apoptosis induced by its so-called dependence receptors DCC and UNC5H, thus promoting tumor progression. In other cancers however, the selective inhibition of this dependence receptor death pathway relies on the silencing of pro-apoptotic effector proteins. We show here that a substantial fraction of human breast tumors exhibits simultaneous DNA methylation-dependent loss of expression of NTN1 and of DAPK1, a serine threonine kinase known to transduce the netrin-1 dependence receptor pro-apoptotic pathway. The inhibition of DNA methylation by drugs such as decitabine restores the expression of both NTN1 and DAPK1 in netrin-1-low cancer cells. Furthermore, a combination of decitabine with NTN1 silencing strategies or with an anti-netrin-1 neutralizing antibody potentiates tumor cell death and efficiently blocks tumor growth in different animal models. Thus, combining DNA methylation inhibitors with netrin-1 neutralizing agents may be a valuable strategy for combating cancer.

  18. Selective DNA methylation of BDNF promoter in bipolar disorder: differences among patients with BDI and BDII.

    PubMed

    D'Addario, Claudio; Dell'Osso, Bernardo; Palazzo, Maria Carlotta; Benatti, Beatrice; Lietti, Licia; Cattaneo, Elisabetta; Galimberti, Daniela; Fenoglio, Chiara; Cortini, Francesca; Scarpini, Elio; Arosio, Beatrice; Di Francesco, Andrea; Di Benedetto, Manuela; Romualdi, Patrizia; Candeletti, Sanzio; Mari, Daniela; Bergamaschini, Luigi; Bresolin, Nereo; Maccarrone, Mauro; Altamura, A Carlo

    2012-06-01

    The etiology of bipolar disorder (BD) is still poorly understood, involving genetic and epigenetic mechanisms as well as environmental contributions. This study aimed to investigate the degree of DNA methylation at the promoter region of the brain-derived neurotrophic factor (BDNF) gene, as one of the candidate genes associated with major psychoses, in peripheral blood mononuclear cells isolated from 94 patients with BD (BD I=49, BD II=45) and 52 healthy controls. A significant BDNF gene expression downregulation was observed in BD II 0.53±0.11%; P<0.05), but not in BD I (1.13±0.19%) patients compared with controls (CONT: 1±0.2%). Consistently, an hypermethylation of the BDNF promoter region was specifically found in BD II patients (CONT: 24.0±2.1%; BDI: 20.4±1.7%; BDII: 33.3±3.5%, P<0.05). Of note, higher levels of DNA methylation were observed in BD subjects on pharmacological treatment with mood stabilizers plus antidepressants (34.6±4.2%, predominantly BD II) compared with those exclusively on mood-stabilizing agents (21.7±1.8%; P<0.01, predominantly BD I). Moreover, among the different pharmacological therapies, lithium (20.1±3.8%, P<0.05) and valproate (23.6±2.9%, P<0.05) were associated with a significant reduction of DNA methylation compared with other drugs (35.6±4.6%). Present findings suggest selective changes in DNA methylation of BDNF promoter in subjects with BD type II and highlight the importance of epigenetic factors in mediating the onset and/or susceptibility to BD, providing new insight into the mechanisms of gene expression. Moreover, they shed light on possible mechanisms of action of mood-stabilizing compounds vs antidepressants in the treatment of BD, pointing out that BDNF regulation might be a key target for their effects.

  19. HDAC4, a prognostic and chromosomal instability marker, refines the predictive value of MGMT promoter methylation.

    PubMed

    Cheng, Wen; Li, Mingyang; Cai, Jinquan; Wang, Kuanyu; Zhang, Chuanbao; Bao, Zhaoshi; Liu, Yanwei; Wu, Anhua

    2015-04-01

    Chromosomal instability is a hallmark of human cancers and is closely linked to tumorigenesis. The prognostic value of molecular signatures of chromosomal instability (CIN) has been validated in various cancers. However, few studies have examined the relationship between CIN and glioma. Histone deacetylases (HDACs) regulate chromosome structure and are linked to the loss of genomic integrity in cancer cells. In this study, the prognostic value of HDAC4 expression and its association with markers of CIN were investigated by analyzing data from our own and four other large sample databases. The results showed that HDAC4 expression is downregulated in high- as compared to low-grade glioma and is associated with a favorable clinical outcome. HDAC4 expression and CIN were closely related in glioma from both functional and statistical standpoints. Moreover, the predictive value of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status-a widely used glioma marker-was refined by HDAC4 expression level, which was significantly related to CIN in our study. In conclusion, we propose that HDAC4 expression, a prognostic and CIN marker, enhances the predictive value of MGMT promoter methylation status for identifying patients who will most benefit from radiochemotherapy.

  20. Phosphorylation/dephosphorylation of the repressor MDBP-2-H1 selectively affects the level of transcription from a methylated promoter in vitro.

    PubMed Central

    Bruhat, A; Jost, J P

    1996-01-01

    We have previously shown that in vivo estradiol-dependent dephosphorylation of MDBP-2-H1 (a member of the histone H1 family) correlates with the loss of in vitro preferential binding to methylated DNA. To study the effects of the phosphorylation/dephosphorylation of MDBP-2-H1 on the expression of the avian vitellogenin II gene, we optimised an in vitro transcription system using HeLa nuclear extracts. We show that in the absence of the phosphorylated form of MDBP-2-H1 from rooster, methylation of the vitellogenin II promoter does not affect the transcription. Addition of purified MDBP-2-H1 from rooster to the in vitro transcription system inhibits transcription more efficiently from a methylated than an unmethylated DNA template. Dephosphorylation of rooster MDBP-2-H1 by phosphatase treatment or estradiol treatment of rooster lead to the loss of inhibitory activity of the protein when added to the in vitro transcription assays. These findings indicate that the phosphorylation of MDBP-2-H1 is essential for the repression of the transcription. Taken together these results establish the relationship between the dephosphorylation of MDBP-2-H1 caused by estradiol, the down regulation of its binding activity to methylated DNA and the derepression of vitellogenin II transcription. PMID:8657560

  1. DUSP1 promoter methylation in peripheral blood leukocyte is associated with triple-negative breast cancer risk.

    PubMed

    Li, Jing; Chen, Yanbo; Yu, Hongyuan; Tian, Jingshen; Yuan, Fengshun; Fan, Jialong; Liu, Yupeng; Zhu, Lin; Wang, Fan; Zhao, Yashuang; Pang, Da

    2017-02-21

    DNA methylation is one of the most common epigenetic alterations, providing important information regarding cancer risk and prognosis. A case-control study (423 breast cancer cases, 509 controls) and a case-only study (326 cases) were conducted to evaluate the association of DUSP1 promoter methylation with breast cancer risk and clinicopathological characteristics. No significant association between DUSP1 methylation in peripheral blood leukocyte (PBL) DNA and breast cancer risk was observed. DUSP1 methylation was significantly associated with ER/PR-negative status; in particular, triple-negative breast cancer patients showed the highest frequency of DUSP1 methylation in both tumour DNA and PBL DNA. Soybean intake was significantly correlated with methylated DUSP1 only in ER-negative (OR 2.978; 95% CI 1.245-7.124) and PR negative (OR 2.735; 95% CI 1.315-5.692) patients. Irregular menstruation was significantly associated with methylated DUSP1 only in ER-positive (OR 3.564; 95% CI 1.691-7.511) and PR-positive (OR 3.902, 95% CI 1.656-9.194) patients. Thus, DUSP1 methylation is a cancer-associated hypermethylation event that is closely linked with triple-negative status. Further investigations are warranted to confirm the association of environmental factors, including fruit and soybean intake, irregular menstruation, and ER/PR status, with DUSP1 methylation in breast tumour DNA.

  2. DUSP1 promoter methylation in peripheral blood leukocyte is associated with triple-negative breast cancer risk

    PubMed Central

    Li, Jing; Chen, Yanbo; Yu, Hongyuan; Tian, Jingshen; Yuan, Fengshun; Fan, Jialong; Liu, Yupeng; Zhu, Lin; Wang, Fan; Zhao, Yashuang; Pang, Da

    2017-01-01

    DNA methylation is one of the most common epigenetic alterations, providing important information regarding cancer risk and prognosis. A case-control study (423 breast cancer cases, 509 controls) and a case-only study (326 cases) were conducted to evaluate the association of DUSP1 promoter methylation with breast cancer risk and clinicopathological characteristics. No significant association between DUSP1 methylation in peripheral blood leukocyte (PBL) DNA and breast cancer risk was observed. DUSP1 methylation was significantly associated with ER/PR-negative status; in particular, triple-negative breast cancer patients showed the highest frequency of DUSP1 methylation in both tumour DNA and PBL DNA. Soybean intake was significantly correlated with methylated DUSP1 only in ER-negative (OR 2.978; 95% CI 1.245–7.124) and PR negative (OR 2.735; 95% CI 1.315–5.692) patients. Irregular menstruation was significantly associated with methylated DUSP1 only in ER-positive (OR 3.564; 95% CI 1.691–7.511) and PR-positive (OR 3.902, 95% CI 1.656–9.194) patients. Thus, DUSP1 methylation is a cancer-associated hypermethylation event that is closely linked with triple-negative status. Further investigations are warranted to confirm the association of environmental factors, including fruit and soybean intake, irregular menstruation, and ER/PR status, with DUSP1 methylation in breast tumour DNA. PMID:28220843

  3. Integrated analysis of promoter mutation, methylation and expression of AKT1 gene in Chinese breast cancer patients

    PubMed Central

    Heng, Jianfu; Guo, Xinwu; Wu, Wenhan; Wang, Yue; Li, Guoli; Chen, Ming; Peng, Limin; Wang, Shouman; Dai, Lizhong; Tang, Lili; Wang, Jun

    2017-01-01

    Background As downstream mediators of PI3K /PTEN /AKT /mTORC1 pathway, the AKT isoforms play critical roles in tumorgenesis. Although the pleiotropic effects of AKT1 in breast cancer have been reported, the genetic and epigenetic characteristics of AKT1 promoter region in breast cancer remains to be identified. In this study we aimed to investigate the promoter mutation spectrum, methylation and gene expression pattern of AKT1 and their relationship with breast cancer. Methods By using PCR target sequence enrichment and next-generation sequencing technology, we sequenced AKT1 promoter region in pairs of breast tumor and normal tissues from 95 unselected Chinese breast cancer patients. The methylation of the promoter region and the expression profile of AKT1 in the same cohort were detected with bisulfite next-generation sequencing and qPCR, respectively. Results We identified 28 somatic mutations in 23 of the 95 (24.2%) breast cancer samples. And 19 of the 28 mutations were located in transcription factor (TF) binding sites. In the 23 patients with somatic mutations, no significant change of methylation or expression was found comparing with other patients. AKT1 promoter region was significantly hypo-methylated in tumor compared with matched normal tissue (P = 0.0014) in the 95 patients. The expression of AKT1 was significantly suppressed in tumor tissue (P = 0.0375). In clinicopathological factor analysis, AKT1 showed significant hypo-methylation (P = 0.0249) and suppressed expression (P = 0.0375) in HER2 negative subtype. And a trend of decrease in expression level (P = 0.0624) of AKT1 in the ER negative subtype was observed, which is significantly decreased in basal-like breast tumor (P = 0.0328). Conclusions Hypo-methylation and suppressed expression of AKT1 was observed to be associated with breast cancer in our cohort. The methylation and expression of AKT1 were both significantly associated with HER2 status. The promoter mutation of AKT1 did not show

  4. A novel bisulfite-microfluidic temperature gradient capillary electrophoresis platform for highly sensitive detection of gene promoter methylation.

    PubMed

    Zhang, Huidan; Shan, Lianfeng; Wang, Xiaonan; Ma, Qian; Fang, Jin

    2013-04-15

    The hypermethylated tumor suppressor gene promoters are widely recognized as promising markers for cancer screening and ideal targets for cancer therapy, however, a major obstacle in their clinical study is highly sensitive screening. To address this limitation, we developed a novel bisulfite-microfluidic temperature gradient capillary electrophoresis (bisulfite-μTGCE) platform for gene methylation analysis by combining bisulfite treatment and slantwise radiative heating system-based μTGCE. Bisulfite-treated genomic DNA (gDNA) was amplified with universal primers for both methylated and unmethylated sequences, and introduced into glass microfluidic chip to perform electrophorectic separation under a continuous temperature gradient based on the formation of heteroduplexes. Eight CDKN2A promoter model fragments with different number and location of methylation sites were prepared and successfully analyzed according to their electrophoretic peak patterns, with high stability, picoliter-scale sample consumption, and significantly increased detection speed. The bisulfite-μTGCE could detect methylated gDNA with a detection limit of 7.5pg, and could distinguish as low as 0.1% methylation level in CDKN2A in an unmethylated background. Detection of seven colorectal cancer (CRC) cell lines with known and unknown methylation statuses of CDKN2A promoter and 20 tumor tissues derived from CRC patients demonstrated the capability of detecting hypermethylation in real-world samples. The wider adaptation of this platform was further supported by the detection of the CDKN2A and MLH1 promoters' methylation statuses in combination. This highly sensitive, fast, and low-consumption platform for methylation detection shows great potential for future clinical applications.

  5. Promoter CpG island methylation of RET predicts poor prognosis in stage II colorectal cancer patients.

    PubMed

    Draht, Muriel X G; Smits, Kim M; Tournier, Benjamin; Jooste, Valerie; Chapusot, Caroline; Carvalho, Beatriz; Cleven, Arjen H G; Derks, Sarah; Wouters, Kim A D; Belt, Eric J T; Stockmann, Hein B A C; Bril, Herman; Weijenberg, Matty P; van den Brandt, Piet A; de Bruïne, Adriaan P; Herman, James G; Meijer, Gerrit A; Piard, Françoise; Melotte, Veerle; van Engeland, Manon

    2014-05-01

    Improved prognostic stratification of patients with TNM stage II colorectal cancer (CRC) is desired, since 20-30% of high-risk stage II patients may die within five years of diagnosis. This study was conducted to investigate REarranged during Transfection (RET) gene promoter CpG island methylation as a possible prognostic marker for TNM stage II CRC patients. The utility of RET promoter CpG island methylation in tumors of stage II CRC patients as a prognostic biomarker for CRC related death was studied in three independent series (including 233, 231, and 294 TNM stage II patients, respectively) by using MSP and pyrosequencing. The prognostic value of RET promoter CpG island methylation was analyzed by using Cox regression analysis. In the first series, analyzed by MSP, CRC stage II patients (n = 233) with RET methylated tumors had a significantly worse overall survival as compared to those with unmethylated tumors (HRmultivariable = 2.51, 95%-CI: 1.42-4.43). Despite a significant prognostic effect of RET methylation in stage III patients of a second series, analyzed by MSP, the prognostic effect in stage II patients (n = 231) was not statistically significant (HRmultivariable = 1.16, 95%-CI 0.71-1.92). The third series (n = 294), analyzed by pyrosequencing, confirmed a statistically significant association between RET methylation and poor overall survival in stage II patients (HRmultivariable = 1.91, 95%-CI: 1.04-3.53). Our results show that RET promoter CpG island methylation, analyzed by two different techniques, is associated with a poor prognosis in stage II CRC in two independent series and a poor prognosis in stage III CRC in one series. RET methylation may serve as a useful and robust tool for clinical practice to identify high-risk stage II CRC patients with a poor prognosis. This merits further investigation.

  6. Sex-dichotomous effects of NOS1AP promoter DNA methylation on intracranial aneurysm and brain arteriovenous malformation.

    PubMed

    Wang, Zhepei; Zhao, Jikuang; Sun, Jie; Nie, Sheng; Li, Keqing; Gao, Feng; Zhang, Tiefeng; Duan, Shiwei; Di, Yazhen; Huang, Yi; Gao, Xiang

    2016-05-16

    The goal of this study was to investigate the contribution of NOS1AP-promoter DNA methylation to the risk of intracranial aneurysm (IA) and brain arteriovenous malformation (BAVM) in a Han Chinese population. A total of 48 patients with IAs, 22 patients with BAVMs, and 26 control individuals were enrolled in the study. DNA methylation was tested using bisulfite pyrosequencing technology. We detected significantly higher DNA methylation levels in BAVM patients than in IA patients based on the multiple testing correction (CpG4-5 methylation: 5.86±1.04% vs. 4.37±2.64%, P=0.006). In women, CpG4-5 methylation levels were much lower in IA patients (3.64±1.97%) than in BAVM patients (6.11±1.20%, P<0.0001). However, in men, CpG1-3 methylation levels were much higher in the controls (6.92±0.78%) than in BAVM patients (5.99±0.70%, P=0.008). Additionally, there was a gender-based difference in CpG1 methylation within the controls (men vs. women: 5.75±0.50% vs. 4.99±0.53%, P=0.003) and BAVM patients (men vs. women: 4.70±0.74% vs. 5.50±0.87%, P=0.026). A subgroup analysis revealed significantly higher CpG3 methylation in patients who smoked than in those who did not (P=0.041). Our results suggested that gender modulated the interaction between NOS1AP promoter DNA methylation in IA and BAVM patients. Our results also confirmed that regular tobacco smoking was associated with increased NOS1AP methylation in humans. Additional studies with larger sample sizes are required to replicate and extend these findings.

  7. Prenatal stress-induced programming of genome-wide promoter DNA methylation in 5-HTT-deficient mice.

    PubMed

    Schraut, K G; Jakob, S B; Weidner, M T; Schmitt, A G; Scholz, C J; Strekalova, T; El Hajj, N; Eijssen, L M T; Domschke, K; Reif, A; Haaf, T; Ortega, G; Steinbusch, H W M; Lesch, K P; Van den Hove, D L

    2014-10-21

    The serotonin transporter gene (5-HTT/SLC6A4)-linked polymorphic region has been suggested to have a modulatory role in mediating effects of early-life stress exposure on psychopathology rendering carriers of the low-expression short (s)-variant more vulnerable to environmental adversity in later life. The underlying molecular mechanisms of this gene-by-environment interaction are not well understood, but epigenetic regulation including differential DNA methylation has been postulated to have a critical role. Recently, we used a maternal restraint stress paradigm of prenatal stress (PS) in 5-HTT-deficient mice and showed that the effects on behavior and gene expression were particularly marked in the hippocampus of female 5-Htt+/- offspring. Here, we examined to which extent these effects are mediated by differential methylation of DNA. For this purpose, we performed a genome-wide hippocampal DNA methylation screening using methylated-DNA immunoprecipitation (MeDIP) on Affymetrix GeneChip Mouse Promoter 1.0 R arrays. Using hippocampal DNA from the same mice as assessed before enabled us to correlate gene-specific DNA methylation, mRNA expression and behavior. We found that 5-Htt genotype, PS and their interaction differentially affected the DNA methylation signature of numerous genes, a subset of which showed overlap with the expression profiles of the corresponding transcripts. For example, a differentially methylated region in the gene encoding myelin basic protein (Mbp) was associated with its expression in a 5-Htt-, PS- and 5-Htt × PS-dependent manner. Subsequent fine-mapping of this Mbp locus linked the methylation status of two specific CpG sites to Mbp expression and anxiety-related behavior. In conclusion, hippocampal DNA methylation patterns and expression profiles of female prenatally stressed 5-Htt+/- mice suggest that distinct molecular mechanisms, some of which are promoter methylation-dependent, contribute to the behavioral effects of the 5-Htt

  8. The effects of omega-3 polyunsaturated fatty acids and genetic variants on methylation levels of the interleukin-6 gene promoter

    PubMed Central

    Ma, Yiyi; Smith, Caren E.; Lai, Chao-Qiang; Irvin, Marguerite R.; Parnell, Laurence D.; Lee, Yu-Chi; Pham, Lucia D.; Aslibekyan, Stella; Claas, Steven A.; Tsai, Michael Y.; Borecki, Ingrid B.; Kabagambe, Edmond K.; Ordovás, José M.; Absher, Devin M.; Arnett, Donna K.

    2016-01-01

    Scope Omega-3 PUFAs (n-3 PUFAs) reduce IL-6 gene expression, but their effects on transcription regulatory mechanisms are unknown. We aimed to conduct an integrated analysis with both population and in vitro studies to systematically explore the relationships among n-3 PUFA, DNA methylation, single nucleotide polymorphisms (SNPs), gene expression, and protein concentration of IL6. Methods and results Using data in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study and the Encyclopedia of DNA Elements (ENCODE) consortium, we found that higher methylation of IL6 promoter cg01770232 was associated with higher IL-6 plasma concentration (p = 0.03) and greater IL6 gene expression (p = 0.0005). Higher circulating total n-3 PUFA was associated with lower cg01770232 methylation (p = 0.007) and lower IL-6 concentration (p = 0.02). Moreover, an allele of IL6 rs2961298 was associated with higher cg01770232 methylation (p = 2.55 × 10−7). The association between n-3 PUFA and cg01770232 methylation was dependent on rs2961298 genotype (p = 0.02), but higher total n-3 PUFA was associated with lower cg01770232 methylation in the heterozygotes (p = 0.04) not in the homozygotes. Conclusion Higher n-3 PUFA is associated with lower methylation at IL6 promoter, which may be modified by IL6 SNPs. PMID:26518637

  9. Construction and Analysis of an Adipose Tissue-Specific and Methylation-Sensitive Promoter of Leptin Gene.

    PubMed

    Zhang, Qinkai; Xu, Denggao; Zhang, Min; Dong, Xiao; Dong, Huansheng; Pan, Qingjie

    2016-11-01

    DNA methylation plays a very important role in the regulation of gene expression. Under general situations, methylation in a gene promoter region is frequently accompanied by transcriptional suppression, and those genes that are highly methylated display the phenomenon of low expression. In contrast, those genes whose methylation level is low display the phenomenon of active expression. In this study, we conducted DNA methylation analysis on the CpG sites within the promoter regions of five adipose tissue-specific transcriptional factors-Adiponectin, Chemerin, Leptin, Smaf-1, and Vaspin-and examined their messenger RNA (mRNA) expression levels in different mouse tissues. We also performed analyses on the correlation between the DNA methylation levels of these genes and their mRNA expression levels in these tissues. The correlation coefficient for Leptin was the highest, and it displayed a high expression in an adipose tissue-specific manner. Thus, we cloned the regulatory region of Leptin gene and incorporated its promoter into the eukaryotic expression vector pEGFP-N1 and constructed a recombinant plasmid named pEGFP-N1-(p-Lep). This recombinant plasmid was first verified by DNA sequencing and then transfected into mouse pre-adipocytes via electroporation. Measurement of the activity of luciferase (reporter) indicated that p-Lep was capable of driving the expression of the reporter gene. This study has paved a solid basis for subsequent studies on generating transgenic animals.

  10. HNF1B variants associate with promoter methylation and regulate gene networks activated in prostate and ovarian cancer

    PubMed Central

    Ross-Adams, Helen; Ball, Stephen; Lawrenson, Kate; Halim, Silvia; Russell, Roslin; Wells, Claire; Strand, Siri H.; Ørntoft, Torben F.; Larson, Melissa; Armasu, Sebastian; Massie, Charles E.; Asim, Mohammad; Mortensen, Martin M.; Borre, Michael; Woodfine, Kathryn; Warren, Anne Y.; Lamb, Alastair D.; Kay, Jonathan; Whitaker, Hayley; Ramos-Montoya, Antonio; Murrell, Adele; Sørensen, Karina D.; Fridley, Brooke L.; Goode, Ellen L.; Gayther, Simon A.; Masters, John

    2016-01-01

    Two independent regions within HNF1B are consistently identified in prostate and ovarian cancer genome-wide association studies (GWAS); their functional roles are unclear. We link prostate cancer (PC) risk SNPs rs11649743 and rs3760511 with elevated HNF1B gene expression and allele-specific epigenetic silencing, and outline a mechanism by which common risk variants could effect functional changes that increase disease risk: functional assays suggest that HNF1B is a pro-differentiation factor that suppresses epithelial-to-mesenchymal transition (EMT) in unmethylated, healthy tissues. This tumor-suppressor activity is lost when HNF1B is silenced by promoter methylation in the progression to PC. Epigenetic inactivation of HNF1B in ovarian cancer also associates with known risk SNPs, with a similar impact on EMT. This represents one of the first comprehensive studies into the pleiotropic role of a GWAS-associated transcription factor across distinct cancer types, and is the first to describe a conserved role for a multi-cancer genetic risk factor. PMID:27732966

  11. Methylation of the Claudin 1 Promoter Is Associated with Loss of Expression in Estrogen Receptor Positive Breast Cancer

    PubMed Central

    Di Cello, Francescopaolo; Cope, Leslie; Li, Huili; Jeschke, Jana; Wang, Wei; Baylin, Stephen B.; Zahnow, Cynthia A.

    2013-01-01

    Downregulation of the tight junction protein claudin 1 is a frequent event in breast cancer and is associated with recurrence, metastasis, and reduced survival, suggesting a tumor suppressor role for this protein. Tumor suppressor genes are often epigenetically silenced in cancer. Downregulation of claudin 1 via DNA promoter methylation may thus be an important determinant in breast cancer development and progression. To investigate if silencing of claudin 1 has an epigenetic etiology in breast cancer we compared gene expression and methylation data from 217 breast cancer samples and 40 matched normal samples available through the Cancer Genome Atlas (TCGA). Moreover, we analyzed claudin 1 expression and methylation in 26 breast cancer cell lines. We found that methylation of the claudin 1 promoter CpG island is relatively frequent in estrogen receptor positive (ER+) breast cancer and is associated with low claudin 1 expression. In contrast, the claudin 1 promoter was not methylated in most of the ER-breast cancers samples and some of these tumors overexpress claudin 1. In addition, we observed that the demethylating agents, azacitidine and decitabine can upregulate claudin 1 expression in breast cancer cell lines that have a methylated claudin 1 promoter. Taken together, our results indicate that DNA promoter methylation is causally associated with downregulation of claudin 1 in a subgroup of breast cancer that includes mostly ER+ tumors, and suggest that epigenetic therapy to restore claudin 1 expression might represent a viable therapeutic strategy in this subtype of breast cancer. PMID:23844228

  12. Aberrant Promoter Methylation of Caveolin-1 Is Associated with Favorable Response to Taxane-Platinum Combination Chemotherapy in Advanced NSCLC

    PubMed Central

    Brodie, Seth A.; Lombardo, Courtney; Li, Ge; Kowalski, Jeanne; Gandhi, Khanjan; You, Shaojin; Khuri, Fadlo R.; Marcus, Adam; Vertino, Paula M.; Brandes, Johann C.

    2014-01-01

    Purpose Aberrant promoter DNA methylation can serve as a predictive biomarker for improved clinical responses to certain chemotherapeutics. One of the major advantages of methylation biomarkers is the ease of detection and clinical application. In order to identify methylation biomarkers predictive of a response to a taxane-platinum based chemotherapy regimen in advanced NSCLC we performed an unbiased methylation analysis of 1,536 CpG dinucleotides in cancer-associated gene loci and correlated results with clinical outcomes. Methods We studied a cohort of 49 patients (median age 62 years) with advanced NSCLC treated at the Atlanta VAMC between 1999 and 2010. Methylation analysis was done on the Illumina GoldenGate Cancer panel 1 methylation microarray platform. Methylation data were correlated with clinical response and adjusted for false discovery rates. Results Cav1 methylation emerged as a powerful predictor for achieving disease stabilization following platinum taxane based chemotherapy (p = 1.21E-05, FDR significance  = 0.018176). In Cox regression analysis after multivariate adjustment for age, performance status, gender, histology and the use of bevacizumab, CAV1 methylation was significantly associated with improved overall survival (HR 0.18 (95%CI: 0.03–0.94)). Silencing of CAV1 expression in lung cancer cell lines(A549, EKVX)by shRNA led to alterations in taxane retention. Conclusions CAV1 methylation is a predictor of disease stabilization and improved overall survival following chemotherapy with a taxane-platinum combination regimen in advanced NSCLC. CAV1 methylation may predict improved outcomes for other chemotherapeutic agents which are subject to cellular clearance mediated by caveolae. PMID:25222296

  13. CXCL12 promoter methylation and PD-L1 expression as prognostic biomarkers in prostate cancer patients

    PubMed Central

    Gevensleben, Heidrun; Sailer, Verena; Dietrich, Jörn; Jung, Maria; Röhler, Magda; Meller, Sebastian; Ellinger, Jörg; Kristiansen, Glen; Dietrich, Dimo

    2016-01-01

    Background The CXCR4/CXCL12 axis plays a central role in systemic metastasis of prostate carcinoma (PCa), thereby representing a promising target for future therapies. Recent data suggest that the CXCR4/CXCL12 axis is functionally linked to the PD-1/PD-L1 immune checkpoint. We evaluated the prognostic value of aberrant CXCL12 DNA methylation with respect to PD-L1 expression in primary PCa. Results CXCL12 methylation showed a consistent significant correlation with Gleason grading groups in both cohorts (p < 0.001 for training and p = 0.034 for testing cohort). Short BCR-free survival was significantly associated with aberrant CXCL12 methylation in both cohorts and served as an independent prognostic factor in the testing cohort (hazard ratio = 1.92 [95%CI: 1.12–3.27], p = 0.049). Concomitant aberrant CXCL12 methylation and high PD-L1 expression was significantly associated with shorter BCR-free survival (p = 0.005). In comparative analysis, the CXCL12 methylation assay was able to provide approximately equivalent results in biopsy and prostatectomy specimens. Materials and Methods CXCL12 methylation was determined by means of a methylation specific quantitative PCR analysis in a radical prostatectomy patient cohort (n = 247, training cohort). Data published by The Cancer Genome Atlas served as a testing cohort (n = 498). CXCL12 methylation results were correlated to clinicopathological parameters including biochemical recurrence (BCR)-free survival. Conclusions CXCL12 methylation is a powerful prognostic biomarker for BCR in PCa patients after radical prostatectomy. Further studies need to ascertain if CXCL12 methylation may aid in planning active surveillance strategies. PMID:27462860

  14. Prognostic impact of MGMT promoter methylation and MGMT and CD133 expression in colorectal adenocarcinoma

    PubMed Central

    2014-01-01

    Background New biomarkers are needed for the prognosis of advanced colorectal cancer, which remains incurable by conventional treatments. O6-methylguanine DNA methyltransferase (MGMT) methylation and protein expression have been related to colorectal cancer treatment failure and tumor progression. Moreover, the presence in these tumors of cancer stem cells, which are characterized by CD133 expression, has been associated with chemoresistance, radioresistance, metastasis, and local recurrence. The objective of this study was to determine the prognostic value of CD133 and MGMT and their possible interaction in colorectal cancer patients. Methods MGMT and CD133 expression was analyzed by immunohistochemistry in 123 paraffin-embedded colorectal adenocarcinoma samples, obtaining the percentage staining and intensity. MGMT promoter methylation status was obtained by using bisulfite modification and methylation-specific PCR (MSP). These values were correlated with clinical data, including overall survival (OS), disease-free survival (DFS), tumor stage, and differentiation grade. Results Low MGMT expression intensity was significantly correlated with shorter OS and was a prognostic factor independently of treatment and histopathological variables. High percentage of CD133 expression was significantly correlated with shorter DFS but was not an independent factor. Patients with low-intensity MGMT expression and ≥50% CD133 expression had the poorest DFS and OS outcomes. Conclusions Our results support the hypothesis that MGMT expression may be an OS biomarker as useful as tumor stage or differentiation grade and that CD133 expression may be a predictive biomarker of DFS. Thus, MGMT and CD133 may both be useful for determining the prognosis of colorectal cancer patients and to identify those requiring more aggressive adjuvant therapies. Future studies will be necessary to determine its clinical utility. PMID:25015560

  15. Implementation of a fluorescence-based screening assay identifies histamine H3 receptor antagonists clobenpropit and iodophenpropit as subunit-selective N-methyl-D-aspartate receptor antagonists.

    PubMed

    Hansen, Kasper B; Mullasseril, Praseeda; Dawit, Sara; Kurtkaya, Natalie L; Yuan, Hongjie; Vance, Katie M; Orr, Anna G; Kvist, Trine; Ogden, Kevin K; Le, Phuong; Vellano, Kimberly M; Lewis, Iestyn; Kurtkaya, Serdar; Du, Yuhong; Qui, Min; Murphy, T J; Snyder, James P; Bräuner-Osborne, Hans; Traynelis, Stephen F

    2010-06-01

    N-Methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca(2+)-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describe a fluorescence-based assay that measures NMDA receptor-mediated changes in intracellular calcium in a BHK-21 cell line stably expressing NMDA receptor NR2D with NR1 under the control of a tetracycline-inducible promoter (Tet-On). The assay selectively identifies allosteric modulators by using supramaximal concentrations of glutamate and glycine to minimize detection of competitive antagonists. The assay is validated by successfully identifying known noncompetitive, but not competitive NMDA receptor antagonists among 1800 screened compounds from two small focused libraries, including the commercially available library of pharmacologically active compounds. Hits from the primary screen are validated through a secondary screen that used two-electrode voltage-clamp recordings on recombinant NMDA receptors expressed in Xenopus laevis oocytes. This strategy identified several novel modulators of NMDA receptor function, including the histamine H3 receptor antagonists clobenpropit and iodophenpropit, as well as the vanilloid receptor transient receptor potential cation channel, subfamily V, member 1 (TRPV1) antagonist capsazepine. These compounds are noncompetitive antagonists and the histamine H3 receptor ligand showed submicromolar potency at NR1/NR2B NMDA receptors, which raises the possibility that compounds can be developed that act with high potency on both glutamate and histamine receptor systems simultaneously. Furthermore, it is possible that some actions attributed to histamine H3 receptor inhibition in vivo may also involve NMDA receptor antagonism.

  16. Ancestral TCDD exposure promotes epigenetic transgenerational inheritance of imprinted gene Igf2: Methylation status and DNMTs.

    PubMed

    Ma, Jing; Chen, Xi; Liu, Yanan; Xie, Qunhui; Sun, Yawen; Chen, Jingshan; Leng, Ling; Yan, Huan; Zhao, Bin; Tang, Naijun

    2015-12-01

    Ancestral TCDD exposure could induce epigenetic transgenerational phenotypes, which may be mediated in part by imprinted gene inheritance. The aim of our study was to evaluate the transgenerational effects of ancestral TCDD exposure on the imprinted gene insulin-like growth factor-2 (Igf2) in rat somatic tissue. TCDD was administered daily by oral gavage to groups of F0 pregnant SD rats at dose levels of 0 (control), 200 or 800 ng/kg bw during gestation day 8-14. Animal transgenerational model of ancestral exposure to TCDD was carefully built, avoiding sibling inbreeding. Hepatic Igf2 expression of the TCDD male progeny was decreased concomitantly with hepatic damage and increased activities of serum hepatic enzymes both in the F1 and F3 generation. Imprinted Control Region (ICR) of Igf2 manifested a hypermethylated pattern, whereas methylation status in the Differentially Methylated Region 2 (DMR2) showed a hypomethylated manner in the F1 generation. These epigenetic alterations in these two regions maintained similar trends in the F3 generation. Meanwhile, the expressions of DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) changed in a non-monotonic manner both in the F1 and F3 generation. This study provides evidence that ancestral TCDD exposure may promote epigenetic transgenerational alterations of imprinted gene Igf2 in adult somatic tissue.

  17. Aberrant methylation of MUC1 and MUC4 promoters are potential prognostic biomarkers for pancreatic ductal adenocarcinomas

    PubMed Central

    Yokoyama, Seiya; Higashi, Michiyo; Kitamoto, Sho; Oeldorf, Monika; Knippschild, Uwe; Kornmann, Marko; Maemura, Kosei; Kurahara, Hiroshi; Wiest, Edwin; Hamada, Tomofumi; Kitazono, Ikumi; Goto, Yuko; Tasaki, Takashi; Hiraki, Tsubasa; Hatanaka, Kazuhito; Mataki, Yuko; Taguchi, Hiroki; Hashimoto, Shinichi; Batra, Surinder K.; Tanimoto, Akihide; Yonezawa, Suguru; Hollingsworth, Michael A.

    2016-01-01

    Pancreatic cancer is still a disease of high mortality despite availability of diagnostic techniques. Mucins (MUC) play crucial roles in carcinogenesis and tumor invasion in pancreatic neoplasms. MUC1 and MUC4 are high molecular weight transmembrane mucins. These are overexpressed in many carcinomas, and high expression of these molecules is a risk factor associated with poor prognosis. We evaluated the methylation status of MUC1 and MUC4 promoter regions in pancreatic tissue samples from 169 patients with various pancreatic lesions by the methylation specific electrophoresis (MSE) method. These results were compared with expression of MUC1 and MUC4, several DNA methylation/demethylation factors (e.g. ten-eleven translocation or TET, and activation-induced cytidine deaminase or AID) and CAIX (carbonic anhydrase IX, as a hypoxia biomarker). These results were also analyzed with clinicopathological features including time of overall survival of PDAC patients. We show that the DNA methylation status of the promoters of MUC1 and MUC4 in pancreatic tissue correlates with the expression of MUC1 and MUC4 mRNA. In addition, the expression of several DNA methylation/demethylation factors show a significant correlation with MUC1 and MUC4 methylation status. Furthermore, CAIX expression significantly correlates with the expression of MUC1 and MUC4. Interestingly, our results indicate that low methylation of MUC1 and/or MUC4 promoters correlates with decreased overall survival. This is the first report to show a relationship between MUC1 and/or MUC4 methylation status and prognosis. Analysis of epigenetic changes in mucin genes may be of diagnostic utility and one of the prognostic predictors for patients with PDAC. PMID:27283771

  18. Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation.

    PubMed

    Gérard-Monnier, D; Erdelmeier, I; Régnard, K; Moze-Henry, N; Yadan, J C; Chaudière, J

    1998-10-01

    Under acidic and mild-temperature conditions, 1-methyl-2-phenylindole was found to react with malondialdehyde (MDA) and 4-hydroxyalkenals to yield a stable chromophore with intense maximal absorbance at 586 nm. The use of methanesulfonic acid results in optimal yields of chromophore produced from MDA as well as from 4-hydroxynonenal. By contrast, the use of hydrochloric acid results in an optimal yield of chromophore produced from MDA and a negligible reaction of 4-hydroxynonenal. Taking advantage of such chromogenic reactions, we developed a new colorimetric assay of lipid peroxidation. Using a methanesulfonic acid-based medium, MDA and 4-hydroxyalkenals can be measured at the 586 nm wavelength. However, the presence of endogenous inhibitors of the reaction with 4-hydroxyalkenals is common, and this means that the latter may be underestimated in some biological samples. The assay performed in a hydrochloric acid-based medium enables the specific measurement of MDA in the presence of 4-hydroxyalkenals. Upon hydrolysis of Schiff bases in hydrochloric acid (pH 1.5), either assay can be used to specifically measure the amount of total MDA in biological samples because 4-hydroxyalkenals undergo an irreversible cyclization reaction under the hydrochloric acid-based conditions of hydrolysis. The two assays were applied to the determination of the amount of MDA alone and of MDA and 4-hydroxyalkenals in an in vitro model of lipid peroxidation. This methodology was also used to clarify complex patterns of tissue-specific MDA production in vivo, following hydrolysis of Schiff bases, in rodents treated with doxorubicin.

  19. Alterations of the retinoblastoma and p16 pathway correlate with promoter methylation in malignant fibrous histiocytomas.

    PubMed

    Brinck, Ulrich; Schlott, Thilo; Störber, Steffi; Stachura, Jerzy; Bortkiewicz, Pawel; Nagel, Wolf-Dieter; Hasse, Frank Michael; Cordon-Cardo, Carlos; Fischer, Gösta; Korabiowska, Monika

    2006-01-01

    Recent reports indicate that the alterations in the p16 and pRb pathways can influence tumour progression and poor prognosis in several tumours. The objective of this study was to analyse p16 and pRb expression in161 patients with malignant fibrous histiocytomas (MFH). By immunohistochemistry, p16 and pRb were demonstrated in 25% and 56% of MFH, respectively. Cox regression analysis demonstrated an independent prognostic influence of both genes. Generally, the loss of p16 and pRb expression correlated with poorer prognosis. Promoter methylation of p16 was found in 16/42 of p16 negative MFH and of pRb in 2/42 of pRb-negative MFH. It can be concluded that p16 and pRb alterations play an important role in the progression of soft tissue sarcomas.

  20. FOXA1 repression is associated with loss of BRCA1 and increased promoter methylation and chromatin silencing in breast cancer.

    PubMed

    Gong, C; Fujino, K; Monteiro, L J; Gomes, A R; Drost, R; Davidson-Smith, H; Takeda, S; Khoo, U S; Jonkers, J; Sproul, D; Lam, E W-F

    2015-09-24

    FOXA1 expression correlates with the breast cancer luminal subtype and patient survival. RNA and protein analysis of a panel of breast cancer cell lines revealed that BRCA1 deficiency is associated with the downregulation of FOXA1 expression. Knockdown of BRCA1 resulted in the downregulation of FOXA1 expression and enhancement of FOXA1 promoter methylation in MCF-7 breast cancer cells, whereas the reconstitution of BRCA1 in Brca1-deficent mouse mammary epithelial cells (MMECs) promoted Foxa1 expression and methylation. These data suggest that BRCA1 suppresses FOXA1 hypermethylation and silencing. Consistently, the treatment of MMECs with the DNA methylation inhibitor 5-aza-2'-deoxycitydine induced Foxa1 mRNA expression. Furthermore, treatment with GSK126, an inhibitor of EZH2 methyltransferase activity, induced FOXA1 expression in BRCA1-deficient but not in BRCA1-reconstituted MMECs. Likewise, the depletion of EZH2 by small interfering RNA enhanced FOXA1 mRNA expression. Chromatin immunoprecipitation (ChIP) analysis demonstrated that BRCA1, EZH2, DNA methyltransferases (DNMT)1/3a/3b and H3K27me3 are recruited to the endogenous FOXA1 promoter, further supporting the hypothesis that these proteins interact to modulate FOXA1 methylation and repression. Further co-immunoprecipitation and ChIP analysis showed that both BRCA1 and DNMT3b form complexes with EZH2 but not with each other, consistent with the notion that BRCA1 binds to EZH2 and negatively regulates its methyltransferase activity. We also found that EZH2 promotes and BRCA1 impairs the deposit of the gene silencing histone mark H3K27me3 on the FOXA1 promoter. These associations were validated in a familial breast cancer patient cohort. Integrated analysis of the global gene methylation and expression profiles of a set of 33 familial breast tumours revealed that FOXA1 promoter methylation is inversely correlated with the transcriptional expression of FOXA1 and that BRCA1 mutation breast cancer is significantly

  1. Effects on specific promoter DNA methylation in zebrafish embryos and larvae following benzo[a]pyrene exposure☛

    PubMed Central

    Corrales, J.; Fang, X.; Thornton, C.; Mei, W.; Barbazuk, W.B.; Duke, M.; Scheffler, B.E.; Willett, K.L.

    2014-01-01

    Benzo[a]pyrene (BaP) is an established carcinogen and reproductive and developmental toxicant. BaP exposure in humans and animals has been linked to infertility and multigenerational health consequences. DNA methylation is the most studied epigenetic mechanism that regulates gene expression, and mapping of methylation patterns has become an important tool for understanding pathologic gene expression events. The goal of this study was to investigate aberrant changes in promoter DNA methylation in zebrafish embryos and larvae following a parental and continued embryonic waterborne BaP exposure. A total of 21 genes known for their role in human diseases were selected to measure percent methylation by multiplex deep sequencing. At 96 hours post fertilization (hpf) compared to 3.3 hpf, dazl, nqo1, sox3, cyp1b1, and gstp1 had higher methylation percentages while c-fos and cdkn1a had decreased CG methylation. BaP exposure significantly reduced egg production and offspring survival. Moreover, BaP decreased global methylation and altered CG, CHH, and CHG methylation both at 3.3 and 96 hpf. CG methylation changed by 10% or more due to BaP in six genes (c-fos, cdkn1a, dazl, nqo1, nrf2, and sox3) at 3.3 hpf and in ten genes (c-fos, cyp1b1, dazl, gstp1, mlh1, nqo1, pten, p53, sox2, and sox3) at 96 hpf. BaP also induced gene expression of cyp1b1 and gstp1 at 96 hpf which were found to be hypermethylated. Further studies are needed to link aberrant CG, CHH, and CHG methylation to heritable epigenetic consequences associated with disease in later life. PMID:24576477

  2. [DNA methylation in the promoter regions of the laminin family genes in normal and breast carcinoma tissues].

    PubMed

    Simonova, O A; Kuznetsova, E B; Poddubskaya, E V; Kekeeva, T V; Kerimov, R A; Trotsenko, I D; Tanas, A S; Rudenko, V V; Alekseeva, E A; Zaletayev, D V; Strelnikov, V V

    2015-01-01

    Extracellular glycoproteins of the laminin family are essential components of basement membranes involved in a number of biological processes, including tissue differentiation, wound healing, and tumorigenesis. We present the first comprehensive study of promoter methylation status of the genes encoding laminin chains in normal tissues (peripheral blood leucocytes, buccal epithelial cells, autopsy breast tissue samples) and in breast carcinoma samples. Based on the results of this study, we divide laminin genes into three categories. Genes, constitutively methylated in breast tissues include LAMA3A, LAMB2, LAMB3, and LAMC2. Genes prone to abnormal methylation in breast carcinoma include LAMA1, LAMA2, LAMA3B, LAMA4, LAMB1, and LAMC3. Genes that are rarely if ever methylated in breast carcinoma include LAMA5 and LAMC1. The constitutively methylated group includes all of the genes that encode subunits of laminin-5 (the historical name of laminin 332), the promoters of which were previously considered unmethylated in normal tissues and prone to abnormal methylation in breast cancer.

  3. Correlations of Promoter Methylation in WIF-1, RASSF1A, and CDH13 Genes with the Risk and Prognosis of Esophageal Cancer

    PubMed Central

    Guo, Qiang; Wang, Hai-Bo; Li, Yong-Hui; Li, He-Fei; Li, Ting-Ting; Zhang, Wen-Xue; Xiang, Sha-Sha; Sun, Zhen-Qing

    2016-01-01

    Background This study was designed to explore the correlations of promoter methylation in Wnt inhibitory factor-1 (WIF-1), ras-association domain family member 1A (RASSF1A), and Cadherin 13 (CDH13) genes with the risk and prognosis of esophageal cancer (EC). Material/Methods A total of 71 EC tissues from resection and 35 adjacent normal tissues were collected. Methylation status in the promoter region was detected by methylation- and non-methylation-specific primers. Corresponding mRNA levels were detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Correlations between the methylations of these 3 genes and clinicopathologic characteristics were analyzed. Kaplan-Meier method and Cox regression model were used to investigate the relationships between WIF-1, RASSF1A, and CDH13 promoter methylations and the prognosis of EC. Results Compared with adjacent normal tissues, the methylation frequencies of WIF-1, RASSF1A, and CDH13 genes were significantly higher but the mRNA levels of these 3 genes were significantly lower in EC tissues (all P<0.05). WIF-1 and CDH13 promoter methylations were associated with the degree of tumor differentiation and WIF-1 and RASSF1A promoter methylations were associated with age (all P<0.05). The survival rates of patients with WIF-1, RASSF1A, and CDH13 methylations were significantly lower than those of patients without methylation (all P<0.05). WIF-1, RASSF1A, and CDH13 promoter methylations were independent risk factors affecting the prognosis of EC (all P<0.05). Conclusions WIF-1, RASSF1A, and CDH13 promoter methylations are associated with EC. The methylation levels are negatively related with the prognosis in EC. PMID:27506957

  4. Exploring the potential relationship between Notch pathway genes expression and their promoter methylation in mice hippocampal neurogenesis.

    PubMed

    Zhang, Zhen; Gao, Feng; Kang, Xiaokui; Li, Jia; Zhang, Litong; Dong, Wentao; Jin, Zhangning; Li, Fan; Gao, Nannan; Cai, Xinwang; Yang, Shuyuan; Zhang, Jianning; Ren, Xinliang; Yang, Xinyu

    2015-04-01

    The Notch pathway is a highly conserved pathway that regulates hippocampal neurogenesis during embryonic development and adulthood. It has become apparent that intracellular epigenetic modification including DNA methylation is deeply involved in fate specification of neural stem cells (NSCs). However, it is still unclear whether the Notch pathway regulates hippocampal neurogenesis by changing the Notch genes' DNA methylation status. Here, we present the evidence from DNA methylation profiling of Notch1, Hes1 and Ngn2 promoters during neurogenesis in the dentate gyrus (DG) of postnatal, adult and traumatic brains. We observed the expression of Notch1, Hes1 and Ngn2 in hippocampal DG with qPCR, Western blot and immunofluorescence staining. In addition, we investigated the methylation status of Notch pathway genes using the bisulfite sequencing PCR (BSP) method. The number of Notch1 or Hes1 (+) and BrdU (+) cells decreased in the subgranular zone (SGZ) of the DG in the hippocampus following TBI. Nevertheless, the number of Ngn2-positive cells in the DG of injured mice was markedly higher than in the DG of non-TBI mice. Accordingly, the DNA methylation level of the three gene promoters changed with their expression in the DG. These findings suggest that the strict spatio-temporal expression of Notch effector genes plays an important role during hippocampal neurogenesis and suggests the possibility that Notch1, Hes1 and Ngn2 were regulated by changing some specific CpG sites of their promoters to further orchestrate neurogenesis in vivo.

  5. Association study of polymorphism in the serotonin transporter gene promoter, methylation profiles, and expression in patients with major depressive disorder.

    PubMed

    Iga, Jun-Ichi; Watanabe, Shin-Ya; Numata, Shusuke; Umehara, Hidehiro; Nishi, Akira; Kinoshita, Makoto; Inoshita, Masatoshi; Shimodera, Shinji; Fujita, Hirokazu; Ohmori, Tetsuro

    2016-05-01

    The serotonin transporter (5HTT) may be associated with the pathogenesis of major depressive disorder (MDD). The 5HTT-linked polymorphic region (5HTTLPR) genotype may determine how levels of 5HTT mRNA are influenced by promoter methylation. We examined the association of 5HTT gene methylation, which influences gene expression, and the 5HTTLPR genotype before antidepressant treatment and expression before and after treatment. The aims of this study were (1) to investigate the association between 5HTT methylation or expression in leukocytes and depression and (2) to investigate a possible effect of 5HTT methylation, expression, and genotype on clinical symptoms in MDD. The 5HTTLPR genotype was significantly associated with mean methylation levels in patients only (patients: r = 0.40, p = 0.035, controls: p = 0.96). The mean methylation level was significantly increased in patients compared with controls (patients: 5.30 ± 0.24, controls: 4.70 ± 0.19, unpaired t-test, p = 0.04). 5HTT expression using real-time PCR and Taqman probes was increased in unmedicated patients compared with controls and then decreased 8 weeks after antidepressant treatment. The mean 5HTT expression level was not associated with the 5HTTLPR genotype in patients or controls. Increased depressive symptoms were related to decreased levels of methylation. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Mercury-associated DNA hypomethylation in polar bear brains via the LUminometric Methylation Assay: a sensitive method to study epigenetics in wildlife.

    PubMed

    Pilsner, J Richard; Lazarus, Alicia L; Nam, Dong-Ha; Letcher, Robert J; Sonne, Christian; Dietz, Rune; Basu, Niladri

    2010-01-01

    In this paper we describe a novel approach that may shed light on the genomic DNA methylation of organisms with non-resolved genomes. The LUminometric Methylation Assay (LUMA) is permissive for genomic DNA methylation studies of any genome as it relies on the use of methyl-sensitive and -insensitive restriction enzymes followed by polymerase extension via Pyrosequencing technology. Here, LUMA was used to characterize genomic DNA methylation in the lower brain stem region from 47 polar bears subsistence hunted in central East Greenland between 1999 and 2001. In these samples, average genomic DNA methylation was 57.9% +/- 6.69 (SD; range was 42.0 to 72.4%). When genomic DNA methylation was related to brain mercury (Hg) exposure levels, an inverse association was seen between these two variables for the entire study population (P for trend = 0.17). After dichotomizing animals by gender and controlling for age, a negative trend was seen amongst male animals (P for trend = 0.07) but no associations were found in female bears. Such sexually dimorphic responses have been found in other toxicological studies. Our results show that genomic DNA methylation can be quantitatively studied in a highly reproducible manner in tissue samples from a wild organism with a non-resolved genome. As such, LUMA holds great promise as a novel method to explore consequential questions across the ecological sciences that may require an epigenetic understanding.

  7. Altered regulation of DNA ligase IV activity by aberrant promoter DNA methylation and gene amplification in colorectal cancer.

    PubMed

    Kuhmann, Christine; Li, Carmen; Kloor, Matthias; Salou, Mariam; Weigel, Christoph; Schmidt, Christopher R; Ng, Linda W C; Tsui, Wendy W Y; Leung, Suet Y; Yuen, Siu T; Becker, Natalia; Weichenhan, Dieter; Plass, Christoph; Schmezer, Peter; Chan, Tsun L; Popanda, Odilia

    2014-04-15

    Colorectal cancer (CRC) presents as a very heterogeneous disease which cannot sufficiently be characterized with the currently known genetic and epigenetic markers. To identify new markers for CRC we scrutinized the methylation status of 231 DNA repair-related genes by methyl-CpG immunoprecipitation followed by global methylation profiling on a CpG island microarray, as altered expression of these genes could drive genomic and chromosomal instability observed in these tumors. We show for the first time hypermethylation of MMP9, DNMT3A and LIG4 in CRC which was confirmed in two CRC patient groups with different ethnicity. DNA ligase IV (LIG4) showed strong differential promoter methylation (up to 60%) which coincided with downregulation of mRNA in 51% of cases. This functional association of LIG4 methylation and gene expression was supported by LIG4 re-expression in 5-aza-2'-deoxycytidine-treated colon cancer cell lines, and reduced ligase IV amounts and end-joining activity in extracts of tumors with hypermethylation. Methylation of LIG4 was not associated with other genetic and epigenetic markers of CRC in our study. As LIG4 is located on chromosome 13 which is frequently amplified in CRC, two loci were tested for gene amplification in a subset of 47 cases. Comparison of amplification, methylation and expression data revealed that, in 30% of samples, the LIG4 gene was amplified and methylated, but expression was not changed. In conclusion, hypermethylation of the LIG4 promoter is a new mechanism to control ligase IV expression. It may represent a new epigenetic marker for CRC independent of known markers.

  8. Phosphatidylinositol 3-Kinase Promotes Activation and Vacuolar Acidification and Delays Methyl Jasmonate-Induced Leaf Senescence.

    PubMed

    Liu, Jian; Ji, Yingbin; Zhou, Jun; Xing, Da

    2016-03-01

    PI3K and its product PI3P are both involved in plant development and stress responses. In this study, the down-regulation of PI3K activity accelerated leaf senescence induced by methyl jasmonate (MeJA) and suppressed the activation of vacuolar H(+)-ATPase (V-ATPase). Yeast two-hybrid analyses indicated that PI3K bound to the V-ATPase B subunit (VHA-B). Analysis of bimolecular fluorescence complementation in tobacco guard cells showed that PI3K interacted with VHA-B2 in the tonoplasts. Through the use of pharmacological and genetic tools, we found that PI3K and V-ATPase promoted vacuolar acidification and stomatal closure during leaf senescence. Vacuolar acidification was suppressed by the PIKfyve inhibitor in 35S:AtVPS34-YFP Arabidopsis during MeJA-induced leaf senescence, but the decrease was lower than that in YFP-labeled Arabidopsis. These results suggest that PI3K promotes V-ATPase activation and consequently induces vacuolar acidification and stomatal closure, thereby delaying MeJA-induced leaf senescence.

  9. MLH1 promoter methylation, diet, and lifestyle factors in mismatch repair deficient colorectal cancer patients from EPIC-Norfolk.

    PubMed

    Gay, Laura J; Arends, Mark J; Mitrou, Panagiota N; Bowman, Richard; Ibrahim, Ashraf E; Happerfield, Lisa; Luben, Robert; McTaggart, Alison; Ball, Richard Y; Rodwell, Sheila A

    2011-01-01

    There is conflicting evidence for the role diet and lifestyle play in the development of mismatch repair (MMR)-deficient colorectal cancers (CRC). In this study, associations between MMR deficiency, clinicopathological characteristics, and dietary and lifestyle factors in sporadic CRC were investigated. Tumor samples from 185 individuals in the EPIC-Norfolk study were analyzed for MLH1 gene promoter methylation and microsatellite instability (MSI). Dietary and lifestyle data were collected prospectively using 7-day food diaries (7dd) and questionnaires. MMR-deficient tumor cases (MLH1 promoter methylation positive, MSI-H) were more likely to be female, older at diagnosis, early Dukes' stage (A/B), and proximal in location (MSI-H P = 0.03, 0.03, 0.02, and 0.001, respectively). Tumors with positive MLH1 promoter methylation (>20%) were associated with poor differentiation (P = 0.03). Low physical activity was associated with cases without MSI (P = 0.05). MMR deficiency was not significantly associated with cigarette smoking or alcohol, folate, fruit, vegetable, or meat consumption. We conclude that MMR-deficient tumors represent a distinct subset of sporadic CRC that are proximal in location, early Dukes' stage, and poorly differentiated, in cases that are female and older at diagnosis. There is no overall role for diet and lifestyle in MMR status in CRC, consistent with age-related susceptibility to MLH1 promoter methylation.

  10. Methylation pattern of CDH1 promoter and its association with CDH1 gene expression in cytological cervical specimens

    PubMed Central

    Holubeková, Veronika; Mendelová, Andrea; Grendár, Marián; Meršaková, Sandra; Kapustová, Ivana; Jašek, Karin; Vaňochová, Andrea; Danko, Jan; Lasabová, Zora

    2016-01-01

    Cervical cancer is the fourth leading cause of cancer mortality in females worldwide. Infection with high-risk human papillomavirus (HPV) is essential but insufficient to cause cervical cancer, and the clearance of HPV infection is mediated by the immune system. The deficit of molecules responsible for adhesion may play a role in the development of cervical cancer. E-cadherin is encoded by the cadherin 1 (CDH1) gene, and is involved in cell adhesion by forming adherens junctions. The aim of present study was to investigate the methylation pattern of the CDH1 promoter and to identify the association between CDH1 promoter hypermethylation, CDH1 gene expression and HPV infection in cervical specimens obtained from 93 patients with low-grade squamous intraepithelial lesions (SILs), high-grade SILs or squamous cell carcinomas, and from 47 patients with normal cervical cytology (HPV-negative). The methylation pattern of the CDH1 promoter was investigated by methylation-specific polymerase chain reaction and quantitative pyrosequencing. CDH1 gene expression was measured by relative quantification. CDH1 methylation was significantly higher in both types of lesions and in cervical cancer than in normal samples, and CDH1 gene expression was significantly reduced during SIL progression (P=0.0162). However, the influence of HPV infection or HPV E6 expression on the methylation pattern of the CDH1 gene or its gene expression levels could not be confirmed. The present results support that the methylation of the CDH1 gene is age-related in patients with cervical lesions (P=0.01085), and therefore, older patients could be more susceptible to cancer than younger patients. The important methylation of the CDH1 promoter occurred near the transcription factor binding sites on nucleotides −13 and +103, which are close to the translational start codon. These results suggest that methylation at these sites may be an important event in the transcriptional regulation of E-cadherin, and

  11. Methylation pattern of CDH1 promoter and its association with CDH1 gene expression in cytological cervical specimens.

    PubMed

    Holubeková, Veronika; Mendelová, Andrea; Grendár, Marián; Meršaková, Sandra; Kapustová, Ivana; Jašek, Karin; Vaňochová, Andrea; Danko, Jan; Lasabová, Zora

    2016-10-01

    Cervical cancer is the fourth leading cause of cancer mortality in females worldwide. Infection with high-risk human papillomavirus (HPV) is essential but insufficient to cause cervical cancer, and the clearance of HPV infection is mediated by the immune system. The deficit of molecules responsible for adhesion may play a role in the development of cervical cancer. E-cadherin is encoded by the cadherin 1 (CDH1) gene, and is involved in cell adhesion by forming adherens junctions. The aim of present study was to investigate the methylation pattern of the CDH1 promoter and to identify the association between CDH1 promoter hypermethylation, CDH1 gene expression and HPV infection in cervical specimens obtained from 93 patients with low-grade squamous intraepithelial lesions (SILs), high-grade SILs or squamous cell carcinomas, and from 47 patients with normal cervical cytology (HPV-negative). The methylation pattern of the CDH1 promoter was investigated by methylation-specific polymerase chain reaction and quantitative pyrosequencing. CDH1 gene expression was measured by relative quantification. CDH1 methylation was significantly higher in both types of lesions and in cervical cancer than in normal samples, and CDH1 gene expression was significantly reduced during SIL progression (P=0.0162). However, the influence of HPV infection or HPV E6 expression on the methylation pattern of the CDH1 gene or its gene expression levels could not be confirmed. The present results support that the methylation of the CDH1 gene is age-related in patients with cervical lesions (P=0.01085), and therefore, older patients could be more susceptible to cancer than younger patients. The important methylation of the CDH1 promoter occurred near the transcription factor binding sites on nucleotides -13 and +103, which are close to the translational start codon. These results suggest that methylation at these sites may be an important event in the transcriptional regulation of E-cadherin, and in

  12. AN EVALUATION OF THE RELATIVE GENOTOXICITY OF ARSENITE, ARSENATE, AND FOUR METHYLATED METABOLITES IN VITRO USING THE ALKALINE SINGLE CELL GEL ASSAY

    EPA Science Inventory

    An Evaluation of the Relative Genotoxicity of Arsenite, Arsenate, and Four Methylated
    Metabolites In Vitro Using the Alkaline Single Cell Gel Assay (ASCG).

    Arsenic ( As) is a genotoxic and carcinogenic metal found in many drinking water systems throughout the world. ...

  13. The CEBPA gene is down-regulated in acute promyelocytic leukemia and its upstream promoter, but not the core promoter, is highly methylated

    PubMed Central

    Santana-Lemos, Bárbara Amélia; de Lima Lange, Ana Paula Alencar; de Lira Benício, Mariana Tereza; da Silva José, Thiago Donizete; Lucena-Araújo, Antônio Roberto; Krause, Alexandre; Thomé, Carolina Hassibe; Rego, Eduardo Magalhães

    2011-01-01

    Impairment of CCAAT Enhancer Binding Protein alpha (CEBPA) function is a common finding in acute myeloid leukemia; nevertheless, its relevance for acute promyelocytic leukemia pathogenesis is unclear. We analyzed the expression and assessed the methylation status of the core and upstream promoters of CEBPA in acute promyelocytic leukemia at diagnosis. Patients with acute promyelocytic leukemia (n=18) presented lower levels of CEBPA expression compared to healthy controls (n=5), but higher levels than those in acute myeloid leukemia with t(8;21) (n=9) and with inv(16) (n=5). Regarding the core promoter, we detected no methylation in 39 acute promyelocytic leukemia samples or in 8 samples from controls. In contrast, analysis of the upstream promoter showed methylation in 37 of 39 samples, with 17 patients showing methylation levels over 30%. Our results corroborate data obtained in animal models showing that CEBPA is down-regulated in acute promyelocytic leukemia stem cells and suggest that epigenetic mechanisms may be involved. PMID:21134977

  14. Rat Pig-a mutation assay responds to the genotoxic carcinogen ethyl carbamate but not the non-genotoxic carcinogen methyl carbamate.

    PubMed

    Bemis, Jeffrey C; Labash, Carson; Avlasevich, Svetlana L; Carlson, Kristine; Berg, Ariel; Torous, Dorothea K; Barragato, Matthew; MacGregor, James T; Dertinger, Stephen D

    2015-05-01

    Determination of the mode of action of carcinogenic agents is an important factor in risk assessment and regulatory practice. To assess the ability of the erythrocyte-based Pig-a mutation assay to discriminate between genotoxic and non-genotoxic modes of action, the mutagenic response of Sprague Dawley rats exposed to methyl carbamate (MC) or ethyl carbamate (EC) was investigated. EC, a potent carcinogen, is believed to induce DNA damage through the formation of a DNA-reactive epoxide group, whereas the closely structurally related compound, MC, cannot form this epoxide and its weaker carcinogenic activity is thought to be secondary to inflammation and promotion of cell proliferation. The frequency of Pig-a mutant phenotype cells was monitored before, during, and after 28 consecutive days of oral gavage exposure to either MC (doses ranging from 125 to 500 mg/kg/day) or EC (250 mg/kg/day). Significant increases in the frequency of mutant reticulocytes were observed from Days 15 through 43, with a peak mean frequency of 19.9×10(-6) on Day 29 (i.e. 24.9-fold increase relative to mean vehicle control across all four sampling times). As expected, mutant erythrocyte responses lagged behind mutant reticulocyte responses, with a maximal mean frequency of 8.2×10(-6) on Day 43 (i.e. 16.4-fold increase). No mutagenic effects were observed with MC. A second indicator of in vivo genotoxicity, peripheral blood micronucleated reticulocytes, was also studied. This endpoint was responsive to EC (3.3-fold mean increase), but not to MC. These results support the hypothesis that genotoxicity contributes to the carcinogenicity of EC but not of MC, and illustrates the value of the Pig-a assay for discriminating between genotoxic and non-genotoxic modes of action.

  15. IDH1/2 Mutation and MGMT Promoter Methylation - the Relevant Survival Predictors in Czech Patients with Brain Gliomas.

    PubMed

    Kramář, F; Minárik, M; Benešová, L; Halková, T; Netuka, D; Bradáč, O; Beneš, V

    2016-01-01

    Gliomas are a heterogeneous group of tumours varying in prognosis, treatment approach, and overall survival. Recently, novel markers have been identified which are linked to patient prognosis and therapeutic response. Especially the mutation of the enzyme isocitrate dehydrogenase 1 or 2 (IDH1/2) gene and the O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status seem to be the most important predictors of survival. From 2012 to 2015, 94 Czech patients with primary brain tumours were enrolled into the study. The IDH1/2 mutation was detected by denaturing capillary electrophores.The methylation status of the MGMT gene and other 46 genes was revealed by MS-MLPA. In all 94 patients, the clinical data were correlated with molecular markers by Kaplan-Meier analyses and Cox regression model. The MGMT promoter methylation status was established and compared to clinical data. In our study eight different probes were used to elucidate the MGMT methylation status; hypermethylation was proclaimed if four and more probes were positive. This 3 : 5 ratio was tested and confirmed by Kaplan-Meier and Cox analyses. The study confirmed the importance of the IDH1/2 mutation and hypermethylation of the MGMT gene promoter being present in tumour tissue. Both markers are independent positive survival predictors; in the Cox model the IDH hazard ratio was 0.10 and in the case of MGMT methylation it reached 0.32. The methylation analysis of the panel of additional 46 genes did not reveal any other significant epigenetic markers; none of the candidate genes have been confirmed in the Cox regression analyses as an independent prognostic factor.

  16. N-hexane inhalation during pregnancy alters DNA promoter methylation in the ovarian granulosa cells of rat offspring.

    PubMed

    Li, Hong; Liu, Jin; Sun, Yan; Wang, Wenxiang; Weng, Shaozheng; Xiao, Shihua; Huang, Huiling; Zhang, Wenchang

    2014-08-01

    The N-hexane-induced impact on the reproductive system of the offspring of animals exposed to n-hexane has caused great concern. Pregnant Wistar rats inhaled 500, 2 500 or 12 500 ppm n-hexane during gestational days 1-20. Clinical characteristics and developmental indices were observed. Ovarian granulosa cells were extracted from F1 rats, the number of follicles was determined in ovarian slices and promoter methylation was assessed using MeDIP-Chip. Several methods were used to analyze the scanned genes, including the Gene Ontology Consortium tools, the DAVID Functional Annotation Clustering Tool, hierarchical clustering and KEGG pathway analysis. The results indicated that the live pups/litter ratio was significantly lowest in the 12 500 ppm group. A significant decrease in secondary follicles and an increase in atresic follicles were observed in the 12 500 ppm group. The number of shared demethylated genes was higher than that of the methylated genes, and the differentially methylated genes were enriched in cell death and apoptosis, cell growth and hormone regulation. The methylation profiles of the offspring from the 500 ppm and control groups were different from those of the 2500 and 12 500 ppm groups. Furthermore, the methylation status of genes in the PI3K-Akt and NF-kappa B signaling pathways was changed after n-hexane exposure. The Cyp11a1, Cyp17a1, Hsd3b1, Cyp1a1 and Srd5a1 promoters were hypermethylated in the n-hexane-exposed groups. These results indicate that the developmental toxicity of n-hexane in F1 ovaries is accompanied by the altered methylation of promoters of genes associated with apoptotic processes and steroid hormone biosynthesis.

  17. Helicobacter pylori Infection Promotes Methylation and Silencing of Trefoil Factor 2, Leading to Gastric Tumor Development in Mice and Humans

    PubMed Central

    Peterson, Anthony J.; Menheniott, Trevelyan R.; O’Connor, Louise; Walduck, Anna K.; Fox, James G.; Kawakami, Kazuyuki; Minamoto, Toshinari; Ong, Eng Kok; Wang, Timothy C.; Judd, Louise M.; Giraud, Andrew S.

    2014-01-01

    BACKGROUND & AIMS Trefoil factors (TFFs) regulate mucosal repair and suppress tumor formation in the stomach. Tff1 deficiency results in gastric cancer, whereas Tff2 deficiency increases gastric inflammation. TFF2 expression is frequently lost in gastric neoplasms, but the nature of the silencing mechanism and associated impact on tumorigenesis have not been determined. METHODS We investigated the epigenetic silencing of TFF2 in gastric biopsy specimens from individuals with Helicobacter pylori-positive gastritis, intestinal metaplasia, gastric cancer, and disease-free controls. TFF2 function and methylation were manipulated in gastric cancer cell lines. The effects of Tff2 deficiency on tumor growth were investigated in the gp130F/F mouse model of gastric cancer. RESULTS In human tissue samples, DNA methylation at the TFF2 promoter began at the time of H pylori infection and increased throughout gastric tumor progression. TFF2 methylation levels were inversely correlated with TFF2 messenger RNA levels and could be used to discriminate between disease-free controls, H pylori-infected, and tumor tissues. Genome demethylation restored TFF2 expression in gastric cancer cell lines, so TFF2 silencing requires methylation. In Tff2-deficient gp130F/F/Tff2−/− mice, proliferation of mucosal cells and release of T helper cell type-1 (Th-1) 1 cytokines increased, whereas expression of gastric tumor suppressor genes and Th-2 cytokines were reduced, compared with gp130F/Fcontrols. The fundus of gp130F/F/Tff2−/− mice displayed glandular atrophy and metaplasia, indicating accelerated preneoplasia. Experimental H pylori infection in wild-type mice reduced antral expression of Tff2 by increased promoter methylation. CONCLUSIONS TFF2 negatively regulates preneoplastic progression and subsequent tumor development in the stomach, a role that is subverted by promoter methylation during H pylori infection. PMID:20801119

  18. Screening for inhibitors of low-affinity epigenetic peptide-protein interactions: an AlphaScreen-based assay for antagonists of methyl-lysine binding proteins.

    PubMed

    Wigle, Tim J; Herold, J Martin; Senisterra, Guillermo A; Vedadi, Masoud; Kireev, Dmitri B; Arrowsmith, Cheryl H; Frye, Stephen V; Janzen, William P

    2010-01-01

    The histone code comprises many posttranslational modifications that occur mainly in histone tail peptides. The identity and location of these marks are read by a variety of histone-binding proteins that are emerging as important regulators of cellular differentiation and development and are increasingly being implicated in numerous disease states. The authors describe the development of the first high-throughput screening assay for the discovery of inhibitors of methyl-lysine binding proteins that will be used to initiate a full-scale discovery effort for this broad target class. They focus on the development of an AlphaScreen-based assay for malignant brain tumor (MBT) domain-containing proteins, which bind to the lower methylation states of lysine residues present in histone tail peptides. This assay takes advantage of the avidity of the AlphaScreen beads to clear the hurdle to assay development presented by the low micromolar binding constants of the histone binding proteins for their cognate peptides. The assay is applicable to other families of methyl-lysine binding proteins, and it has the potential to be used in screening efforts toward the discovery of novel small molecules with utility as research tools for cellular reprogramming and ultimately drug discovery.

  19. Loss of heterozygosity of the Mutated in Colorectal Cancer gene is not associated with promoter methylation in non-small cell lung cancer.

    PubMed

    Poursoltan, Pirooz; Currey, Nicola; Pangon, Laurent; van Kralingen, Christa; Selinger, Christina I; Mahar, Annabelle; Cooper, Wendy A; Kennedy, Catherine W; McCaughan, Brian C; Trent, Ronald; Kohonen-Corish, Maija R J

    2012-08-01

    'Mutated in Colorectal Cancer' (MCC) is emerging as a multifunctional protein that affects several cellular processes and pathways. Although the MCC gene is rarely mutated in colorectal cancer, it is frequently silenced through promoter methylation. Previous studies have reported loss of heterozygosity (LOH) of the closely linked MCC and APC loci in both colorectal and lung cancers. APC promoter methylation is a marker of poor survival in non-small cell lung cancer (NSCLC). However, MCC methylation has not been previously studied in lung cancer. Therefore, we wanted to determine if MCC is silenced through promoter methylation in lung cancer and whether this methylation is associated with LOH of the MCC locus or methylation of the APC gene. Three polymorphic markers for the APC/MCC locus were analysed for LOH in 64 NSCLC specimens and matching normal tissues. Promoter methylation of both genes was determined using methylation specific PCR in primary tumours. LOH of the three markers was found in 41-49% of the specimens. LOH within the MCC locus was less common in adenocarcinoma (ADC) (29%) than in squamous cell carcinoma (SCC) (72%; P=0.006) or large cell carcinoma (LCC) (75%; P=0.014). However, this LOH was not accompanied by MCC promoter methylation, which was found in only two cancers (3%). In contrast, 39% of the specimens showed APC methylation, which was more common in ADC (58%) than in SCC (13%). Western blotting revealed that MCC was expressed in a subset of lung tissue specimens but there was marked variation between patients rather than between cancer and matching non-cancer tissue specimens. In conclusion, we have shown that promoter methylation of the APC gene does not extend to the neighbouring MCC gene in lung cancer, but LOH is found at both loci. The variable levels of MCC expression were not associated with promoter methylation and may be regulated through other cellular mechanisms.

  20. COX-2 gene promoter DNA methylation status in eutopic and ectopic endometrium of Egyptian women with endometriosis.

    PubMed

    Zidan, Haidy E; Rezk, Noha A; Alnemr, Amr Abd Almohsen; Abd El Ghany, Amany M

    2015-11-01

    The pathophysiology of COX-2 expression in endometriosis is a matter of debate. The aim was to investigate the role of DNA methylation of the NF-IL6 site within the promoter of COX-2 gene in the pathogenesis of endometriosis. The endometrial tissues (ectopic and eutopic) were collected from 60 women with endometriosis and 30 women without endometriosis (control group). The methylation status of COX-2 was examined by methylation-specific PCR. Quantitative real-time PCR (RT-PCR) was performed to measure COX-2 mRNA levels in endometrial tissues. We found significantly higher levels of COX-2 in ectopic endometriotic tissue compared with eutopic tissue. Also, we found that the frequencies of methylation status of the NF-IL6 site within the COX-2 promoter in the eutopic and ectopic endometrial tissues of endometriosis groups were significantly decreased in comparison to controls (P=0.002, P=0.000 respectively). Our study demonstrated that DNA hypomethylation of the NF-IL6 site within the promoter of COX-2 gene could be a key mechanism for its elevated expression in the eutopic and ectopic tissues of endometriosis.

  1. Arginine methylation promotes translation repression activity of eIF4G-binding protein, Scd6

    PubMed Central

    Poornima, Gopalakrishna; Shah, Shanaya; Vignesh, Venkadasubramanian; Parker, Roy; Rajyaguru, Purusharth I.

    2016-01-01

    Regulation of translation plays a critical role in determining mRNA fate. A new role was recently reported for a subset of RGG-motif proteins in repressing translation initiation by binding eIF4G1. However the signaling mechanism(s) that leads to spatial and temporal regulation of repression activity of RGG-motif proteins remains unknown. Here we report the role of arginine methylation in regulation of repression activity of Scd6, a conserved RGG-motif protein. We demonstrate that Scd6 gets arginine methylated at its RGG-motif and Hmt1 plays an important role in its methylation. We identify specific methylated arginine residues in the Scd6 RGG-motif in vivo. We provide evidence that methylation augments Scd6 repression activity. Arginine methylation defective (AMD) mutant of Scd6 rescues the growth defect caused by overexpression of Scd6, a feature of translation repressors in general. Live-cell imaging of the AMD mutant revealed that it is defective in inducing formation of stress granules. Live-cell imaging and pull-down results indicate that it fails to bind eIF4G1 efficiently. Consistent with these results, a strain lacking Hmt1 is also defective in Scd6-eIF4G1 interaction. Our results establish that arginine methylation augments Scd6 repression activity by promoting eIF4G1-binding. We propose that arginine methylation of translation repressors with RGG-motif could be a general modulator of their repression activity. PMID:27613419

  2. 5-azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation, but prevents subsequent embryo development in rapeseed and barley

    PubMed Central

    Solís, María-Teresa; El-Tantawy, Ahmed-Abdalla; Cano, Vanesa; Risueño, María C.; Testillano, Pilar S.

    2015-01-01

    Microspores are reprogrammed by stress in vitro toward embryogenesis. This process is an important tool in breeding to obtain double-haploid plants. DNA methylation is a major epigenetic modification that changes in differentiation and proliferation. We have shown changes in global DNA methylation during microspore reprogramming. 5-Azacytidine (AzaC) cannot be methylated and leads to DNA hypomethylation. AzaC is a useful demethylating agent to study DNA dynamics, with a potential application in microspore embryogenesis. This work analyzes the effects of short and long AzaC treatments on microspore embryogenesis initiation and progression in two species, the dicot Brassica napus and the monocot Hordeum vulgare. This involved the quantitative analyses of proembryo and embryo production, the quantification of DNA methylation, 5-methyl-deoxy-cytidine (5mdC) immunofluorescence and confocal microscopy, and the analysis of chromatin organization (condensation/decondensation) by light and electron microscopy. Four days of AzaC treatments (2.5 μM) increased embryo induction, response associated with a decrease of DNA methylation, modified 5mdC, and heterochromatin patterns compared to untreated embryos. By contrast, longer AzaC treatments diminished embryo production. Similar effects were found in both species, indicating that DNA demethylation promotes microspore reprogramming, totipotency acquisition, and embryogenesis initiation, while embryo differentiation requires de novo DNA methylation and is prevented by AzaC. This suggests a role for DNA methylation in the repression of microspore reprogramming and possibly totipotency acquisition. Results provide new insights into the role of epigenetic modifications in microspore embryogenesis and suggest a potential benefit of inhibitors, such as AzaC, to improve the process efficiency in biotechnology and breeding programs. PMID:26161085

  3. Abnormal PTPN11 enhancer methylation promotes rheumatoid arthritis fibroblast-like synoviocyte aggressiveness and joint inflammation

    PubMed Central

    Maeshima, Keisuke; Stanford, Stephanie M.; Hammaker, Deepa; Sacchetti, Cristiano; Zeng, Li-fan; Ai, Rizi; Zhang, Vida; Boyle, David L.; Aleman Muench, German R.; Feng, Gen-Sheng; Whitaker, John W.; Zhang, Zhong-Yin; Wang, Wei; Bottini, Nunzio; Firestein, Gary S.

    2016-01-01

    The PTPN11 gene, encoding the tyrosine phosphatase SHP-2, is overexpressed in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) compared with osteoarthritis (OA) FLS and promotes RA FLS invasiveness. Here, we explored the molecular basis for PTPN11 overexpression in RA FLS and the role of SHP-2 in RA pathogenesis. Using computational methods, we identified a putative enhancer in PTPN11 intron 1, which contained a glucocorticoid receptor–binding (GR-binding) motif. This region displayed enhancer function in RA FLS and contained 2 hypermethylation sites in RA compared with OA FLS. RA FLS stimulation with the glucocorticoid dexamethasone induced GR binding to the enhancer and PTPN11 expression. Glucocorticoid responsiveness of PTPN11 was significantly higher in RA FLS than OA FLS and required the differentially methylated CpGs for full enhancer function. SHP-2 expression was enriched in the RA synovial lining, and heterozygous Ptpn11 deletion in radioresistant or innate immune cells attenuated K/BxN serum transfer arthritis in mice. Treatment with SHP-2 inhibitor 11a-1 reduced RA FLS migration and responsiveness to TNF and IL-1β stimulation and reduced arthritis severity in mice. Our findings demonstrate how abnormal epigenetic regulation of a pathogenic gene determines FLS behavior and demonstrate that targeting SHP-2 or the SHP-2 pathway could be a therapeutic strategy for RA. PMID:27275015

  4. Promoter methylation of PCDH10 by HOTAIR regulates the progression of gastrointestinal stromal tumors

    PubMed Central

    Lee, Na Keum; Lee, Jung Hwa; Kim, Won Kyu; Yun, Seongju; Youn, Young Hoon; Park, Chan Hyuk; Choi, Yun Young; Kim, Hogeun; Lee, Sang Kil

    2016-01-01

    HOTAIR, a long non-coding RNA (lncRNA), plays a crucial role in tumor initiation and metastasis by interacting with the PRC2 complex and the modulation of its target genes. The role of HOTAIR in gastrointestinal stromal tumors (GISTs) is remains unclear. Herein we investigate the mechanism of HOTAIR in the genesis and promotion of GISTs. The expression of HOTAIR was found to be higher in surgically resected high-risk GISTs than that in low- and intermediate-risk GISTs. Using GIST-T1 and GIST882 cells, we demonstrated that HOTAIR repressed apoptosis, was associated with cell cycle progression, and controlled the invasion and migration of GIST cells. Using a gene expression microarray and lists of HOTAIR-associated candidate genes, we suggested that protocadherin 10 (PCDH10) is a key molecule. PCDH10 expression was significantly decreased in GIST-T1 and GIST882 cells, possibly as a consequence of hypermethylation. We observed that HOTAIR induced PCDH10 methylation in a SUZ12-dependent manner. In this study, we found that the malignant character of GISTs was initiated and amplified by PCDH10 in a process regulated by HOTAIR. In summary, our findings imply that PCDH10 and HOTAIR may be useful markers of disease progression and therapeutic targets. PMID:27659532

  5. Poly(methyl methacrylate) Surface Modification for Surfactant-Free Real-Time Toxicity Assay on Droplet Microfluidic Platform.

    PubMed

    Ortiz, Raphael; Chen, Jian Lin; Stuckey, David C; Steele, Terry W J

    2017-04-07

    Microfluidic droplet reactors have many potential uses, from analytical to synthesis. Stable operation requires preferential wetting of the channel surface by the continuous phase which is often not fulfilled by materials commonly used for lab-on-chip devices. Here we show that a silica nanoparticle (SiNP) layer coated onto a Poly(methyl methacrylate) (PMMA) and other thermoplastics surface enhances its wetting properties by creating nanoroughness, and allows simple grafting of hydrocarbon chains through silane chemistry. Using the unusual stability of silica sols at their isoelectric point, a dense SiNP layer is adsorbed onto PMMA and renders the surface superhydrophilic. Subsequently, a self-assembled dodecyltrichlorosilane (DTS) monolayer yields a superhydrophobic surface that allows the repeatable generation of aqueous droplets in a hexadecane continuous phase without surfactant addition. A SiNP-DTS modified chip has been used to monitor bacterial viability with a resazurin assay. The whole process involving sequential reagents injection, and multiplexed droplet fluorescence intensity monitoring is carried out on chip. Metabolic inhibition of the anaerobe Enterococcus faecalis by 30 mg L(-1) of NiCl2 was detected in 5 min.

  6. Lower Placental Leptin Promoter Methylation in Association with Fine Particulate Matter Air Pollution during Pregnancy and Placental Nitrosative Stress at Birth in the ENVIRONAGE Cohort

    PubMed Central

    Saenen, Nelly D.; Vrijens, Karen; Janssen, Bram G.; Roels, Harry A.; Neven, Kristof Y.; Vanden Berghe, Wim; Gyselaers, Wilfried; Vanpoucke, Charlotte; Lefebvre, Wouter; De Boever, Patrick; Nawrot, Tim S.

    2016-01-01

    Background: Particulate matter with a diameter ≤ 2.5 μm (PM2.5) affects human fetal development during pregnancy. Oxidative stress is a putative mechanism by which PM2.5 may exert its effects. Leptin (LEP) is an energy-regulating hormone involved in fetal growth and development. Objectives: We investigated in placental tissue whether DNA methylation of the LEP promoter is associated with PM2.5 and whether the oxidative/nitrosative stress biomarker 3-nitrotyrosine (3-NTp) is involved. Methods: LEP DNA methylation status of 361 placentas from the ENVIRONAGE birth cohort was assessed using bisulfite-PCR-pyrosequencing. Placental 3-NTp (n = 313) was determined with an ELISA assay. Daily PM2.5 exposure levels were estimated for each mother’s residence, accounting for residential mobility during pregnancy, using a spatiotemporal interpolation model. Results: After adjustment for a priori chosen covariates, placental LEP methylation was 1.4% lower (95% CI: –2.7, –0.19%) in association with an interquartile range increment (7.5 μg/m3) in second-trimester PM2.5 exposure and 0.43% lower (95% CI: –0.85, –0.02%) in association with a doubling of placental 3-NTp content. Conclusions: LEP methylation status in the placenta was negatively associated with PM2.5 exposure during the second trimester, and with placental 3-NTp, a marker of oxidative/nitrosative stress. Additional research is needed to confirm our findings and to assess whether oxidative/nitrosative stress might contribute to associations between PM2.5 and placental epigenetic events. Potential consequences for health during the neonatal period and later in life warrant further exploration. Citation: Saenen ND, Vrijens K, Janssen BG, Roels HA, Neven KY, Vanden Berghe W, Gyselaers W, Vanpoucke C, Lefebvre W, De Boever P, Nawrot TS. 2017. Lower placental leptin promoter methylation in association with fine particulate matter air pollution during pregnancy and placental nitrosative stress at birth in the

  7. Lactobacillus rhamnosus GG Lysate Increases Re-Epithelialization of Keratinocyte Scratch Assays by Promoting Migration.

    PubMed

    Mohammedsaeed, Walaa; Cruickshank, Sheena; McBain, Andrew J; O'Neill, Catherine A

    2015-11-05

    A limited number of studies have investigated the potential of probiotics to promote wound healing in the digestive tract. The aim of the current investigation was to determine whether probiotic bacteria or their extracts could be beneficial in cutaneous wound healing. A keratinocyte monolayer scratch assay was used to assess re-epithelialization; which comprises keratinocyte proliferation and migration. Primary human keratinocyte monolayers were scratched then exposed to lysates of Lactobacillus (L) rhamnosus GG, L. reuteri, L. plantarum or L. fermentum. Re-epithelialization of treated monolayers was compared to that of untreated controls. Lysates of L. rhamnosus GG and L. reuteri significantly increased the rate of re-epithelialization, with L. rhamnosus GG being the most efficacious. L. reuteri increased keratinocyte proliferation while L. rhamnosus GG lysate significantly increased proliferation and migration. Microarray analysis of L. rhamnosus GG treated scratches showed increased expression of multiple genes including the chemokine CXCL2 and its receptor CXCR2. These are involved in normal wound healing where they stimulate keratinocyte proliferation and/or migration. Increased protein expression of both CXCL2 and CXCR2 were confirmed by ELISA and immunoblotting. These data demonstrate that L. rhamnosus GG lysate accelerates re-epithelialization of keratinocyte scratch assays, potentially via chemokine receptor pairs that induce keratinocyte migration.

  8. The CpG Island in the Murine Foxl2 Proximal Promoter Is Differentially Methylated in Primary and Immortalized Cells

    PubMed Central

    Tran, Stella; Wang, Ying; Lamba, Pankaj; Zhou, Xiang; Boehm, Ulrich; Bernard, Daniel J.

    2013-01-01

    Forkhead box L2 (Foxl2), a member of the forkhead transcription factor family, plays important roles in pituitary follicle-stimulating hormone synthesis and in ovarian maintenance and function. Mutations in the human FOXL2 gene cause eyelid malformations and premature ovarian failure. FOXL2/Foxl2 is expressed in pituitary gonadotrope and thyrotrope cells, the perioptic mesenchyme of the developing eyelid, and ovarian granulosa cells. The mechanisms governing this cell-restricted expression have not been described. We mapped the Foxl2 transcriptional start site in immortalized murine gonadotrope-like cells, LβT2, by 5’ rapid amplification of cDNA ends and then PCR amplified approximately 1 kb of 5’ flanking sequence from murine genomic DNA. When ligated into a reporter plasmid, the proximal promoter conferred luciferase activity in both homologous (LβT2) and, unexpectedly, heterologous (NIH3T3) cells. In silico analyses identified a CpG island in the proximal promoter and 5’ untranslated region, suggesting that Foxl2 transcription might be regulated epigenetically. Indeed, pyrosequencing and quantitative analysis of DNA methylation using real-time PCR revealed Foxl2 proximal promoter hypomethylation in homologous compared to some, though not all, heterologous cell lines. The promoter was also hypomethylated in purified murine gonadotropes. In vitro promoter methylation completely silenced reporter activity in heterologous and homologous cells. Collectively, the data suggest that differential proximal promoter DNA methylation may contribute to cell-specific Foxl2 expression in some cellular contexts. However, gonadotrope-specific expression of the gene cannot be explained by promoter hypomethylation alone. PMID:24098544

  9. Prognostic value of three different methods of MGMT promoter methylation analysis in a prospective trial on newly diagnosed glioblastoma.

    PubMed

    Christians, Arne; Hartmann, Christian; Benner, Axel; Meyer, Jochen; von Deimling, Andreas; Weller, Michael; Wick, Wolfgang; Weiler, Markus

    2012-01-01

    Hypermethylation in the promoter region of the MGMT gene encoding the DNA repair protein O(6)-methylguanine-DNA methyltransferase is among the most important prognostic factors for patients with glioblastoma and predicts response to treatment with alkylating agents like temozolomide. Hence, the MGMT status is widely determined in most clinical trials and frequently requested in routine diagnostics of glioblastoma. Since various different techniques are available for MGMT promoter methylation analysis, a generally accepted consensus as to the most suitable diagnostic method remains an unmet need. Here, we assessed methylation-specific polymerase chain reaction (MSP) as a qualitative and semi-quantitative method, pyrosequencing (PSQ) as a quantitative method, and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) as a semi-quantitative method in a series of 35 formalin-fixed, paraffin-embedded glioblastoma tissues derived from patients treated in a prospective clinical phase II trial that tested up-front chemoradiotherapy with dose-intensified temozolomide (UKT-05). Our goal was to determine which of these three diagnostic methods provides the most accurate prediction of progression-free survival (PFS). The MGMT promoter methylation status was assessable by each method in almost all cases (n = 33/35 for MSP; n = 35/35 for PSQ; n = 34/35 for MS-MLPA). We were able to calculate significant cut-points for the continuous methylation signals at each CpG site analysed by PSQ (range, 11.5 to 44.9%) and at one CpG site assessed by MS-MLPA (3.6%) indicating that a dichotomisation of continuous methylation data as a prerequisite for comparative survival analyses is feasible. Our results show that, unlike MS-MLPA, MSP and PSQ provide a significant improvement of predicting PFS compared with established clinical prognostic factors alone (likelihood ratio tests: p<0.001). Conclusively, taking into consideration prognostic value, cost

  10. Promoter methylation of argininosuccinate synthetase-1 sensitises lymphomas to arginine deiminase treatment, autophagy and caspase-dependent apoptosis.

    PubMed

    Delage, B; Luong, P; Maharaj, L; O'Riain, C; Syed, N; Crook, T; Hatzimichael, E; Papoudou-Bai, A; Mitchell, T J; Whittaker, S J; Cerio, R; Gribben, J; Lemoine, N; Bomalaski, J; Li, C-F; Joel, S; Fitzgibbon, J; Chen, L-T; Szlosarek, P W

    2012-07-05

    Tumours lacking argininosuccinate synthetase-1 (ASS1) are auxotrophic for arginine and sensitive to amino-acid deprivation. Here, we investigated the role of ASS1 as a biomarker of response to the arginine-lowering agent, pegylated arginine deiminase (ADI-PEG20), in lymphoid malignancies. Although ASS1 protein was largely undetectable in normal and malignant lymphoid tissues, frequent hypermethylation of the ASS1 promoter was observed specifically in the latter. A good correlation was observed between ASS1 methylation, low ASS1 mRNA, absence of ASS1 protein expression and sensitivity to ADI-PEG20 in malignant lymphoid cell lines. We confirmed that the demethylating agent 5-Aza-dC reactivated ASS1 expression and rescued lymphoma cell lines from ADI-PEG20 cytotoxicity. ASS1-methylated cell lines exhibited autophagy and caspase-dependent apoptosis following treatment with ADI-PEG20. In addition, the autophagy inhibitor chloroquine triggered an accumulation of light chain 3-II protein and potentiated the apoptotic effect of ADI-PEG20 in malignant lymphoid cells and patient-derived tumour cells. Finally, a patient with an ASS1-methylated cutaneous T-cell lymphoma responded to compassionate-use ADI-PEG20. In summary, ASS1 promoter methylation contributes to arginine auxotrophy and represents a novel biomarker for evaluating the efficacy of arginine deprivation in patients with lymphoma.

  11. Novel screening assay for in vivo selection of Klebsiella pneumoniae genes promoting gastrointestinal colonisation

    PubMed Central

    2012-01-01

    Background Klebsiella pneumoniae is an important opportunistic pathogen causing pneumonia, sepsis and urinary tract infections. Colonisation of the gastrointestinal (GI) tract is a key step in the development of infections; yet the specific factors important for K. pneumoniae to colonize and reside in the GI tract of the host are largely unknown. To identify K. pneumoniae genes promoting GI colonisation, a novel genomic-library-based approach was employed. Results Screening of a K. pneumoniae C3091 genomic library, expressed in E. coli strain EPI100, in a mouse model of GI colonisation led to the positive selection of five clones containing genes promoting persistent colonisation of the mouse GI tract. These included genes encoding the global response regulator ArcA; GalET of the galactose operon; and a cluster of two putative membrane-associated proteins of unknown function. Both ArcA and GalET are known to be involved in metabolic pathways in Klebsiella but may have additional biological actions beneficial to the pathogen. In support of this, GalET was found to confer decreased bile salt sensitivity to EPI100. Conclusions The present work establishes the use of genomic-library-based in vivo screening assays as a valuable tool for identification and characterization of virulence factors in K. pneumoniae and other bacterial pathogens. PMID:22967317

  12. Gene promoter methylation in colorectal cancer and healthy adjacent mucosa specimens: correlation with physiological and pathological characteristics, and with biomarkers of one-carbon metabolism.

    PubMed

    Coppedè, Fabio; Migheli, Francesca; Lopomo, Angela; Failli, Alessandra; Legitimo, Annalisa; Consolini, Rita; Fontanini, Gabriella; Sensi, Elisa; Servadio, Adele; Seccia, Massimo; Zocco, Giuseppe; Chiarugi, Massimo; Spisni, Roberto; Migliore, Lucia

    2014-04-01

    We evaluated the promoter methylation levels of the APC, MGMT, hMLH1, RASSF1A and CDKN2A genes in 107 colorectal cancer (CRC) samples and 80 healthy adjacent tissues. We searched for correlation with both physical and pathological features, polymorphisms of folate metabolism pathway genes (MTHFR, MTRR, MTR, RFC1, TYMS, and DNMT3B), and data on circulating folate, vitamin B12 and homocysteine, which were available in a subgroup of the CRC patients. An increased number of methylated samples were found in CRC respect to adjacent healthy tissues, with the exception of APC, which was also frequently methylated in healthy colonic mucosa. Statistically significant associations were found between RASSF1A promoter methylation and tumor stage, and between hMLH1 promoter methylation and tumor location. Increasing age positively correlated with both hMLH1 and MGMT methylation levels in CRC tissues, and with APC methylation levels in the adjacent healthy mucosa. Concerning gender, females showed higher hMLH1 promoter methylation levels with respect to males. In CRC samples, the MTR 2756AG genotype correlated with higher methylation levels of RASSF1A, and the TYMS 1494 6bp ins/del polymorphism correlated with the methylation levels of both APC and hMLH1. In adjacent healthy tissues, MTR 2756AG and TYMS 1494 6bp del/del genotypes correlated with APC and MGMT promoter methylation, respectively. Low folate levels were associated with hMLH1 hypermethylation. Present results support the hypothesis that DNA methylation in CRC depends from both physiological and environmental factors, with one-carbon metabolism largely involved in this process.

  13. RASSF1A promoter methylation is associated with increased risk of thyroid cancer: a meta-analysis

    PubMed Central

    Shou, Feiyan; Xu, Feng; Li, Gang; Zhao, Zhenhua; Mao, Ying; Yang, Fangfang; Wang, Hongming; Guo, Hangyuan

    2017-01-01

    Objective Previous studies have reported that Ras-associated domain family 1A (RASSF1A), the most commonly silenced tumor suppressor via promoter methylation, played vital roles in the development of carcinogenesis. The purpose of this meta-analysis was to determine whether RASSF1A promoter methylation increased the risk of thyroid cancer. Methods PubMed, Embase, ISI Web of Knowledge, and Chinese National Knowledge Infrastructure databases were searched to obtain eligible studies. The pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to estimate the strength of the associations, using Stata 12.0 software. The methodological quality of included studies was evaluated using Newcastle–Ottawa scale table. Egger’s test and Begg’s test were applied to detect publication biases. TSA 0.9 software was used to calculate the required information size and whether the result was conclusive. Results A total of 10 articles with 12 studies that included 422 thyroid cancer patients, identifying the association of RASSF1A promoter methylation with thyroid cancer risk, were collected in this meta-analysis. Overall, RASSF1A promoter methylation significantly increased the risk of thyroid cancer (total, OR=8.27, CI=4.38–15.62, P<0.05; Caucasian, OR=9.25, CI=3.97–21.56, P<0.05; Asian, OR=7.01, CI=2.68–18.38, P<0.05). In the subgroup analysis based on sample type, a significant association between thyroid cancer group and control group was found (normal tissue, OR=9.55, CI=4.21–21.67, P<0.05; adjacent tissue, OR=6.80, CI=2.49–18.56, P<0.05). The frequency of RASSF1A promoter methylation in follicular thyroid carcinoma was higher than in control group (OR=11.88, CI=5.80–24.32, P<0.05). In addition, the results indicated that the RASSF1A promoter methylation was correlated with papillary thyroid carcinoma in Caucasians and Asians (total, OR=8.07, CI=3.54–18.41, P<0.05; Caucasian, OR=11.35, CI=2.39–53.98, P<0.05; Asian, OR=6.67, CI=2.53–17

  14. Methylation of the Glucocorticoid Receptor Gene Promoter in Preschoolers: Links with Internalizing Behavior Problems

    PubMed Central

    Parade, Stephanie H.; Ridout, Kathryn K.; Seifer, Ronald; Armstrong, David A.; Marsit, Carmen J.; McWilliams, Melissa A.; Tyrka, Audrey R.

    2015-01-01

    Accumulating evidence suggests that early adversity is linked to methylation of the glucocorticoid receptor gene NR3C1, which is a key regulator of the hypothalamic-pituitary-adrenal (HPA) axis. Yet no prior work has considered the contribution of methylation of NR3C1 to emerging behavior problems and psychopathology in childhood. The current study examined links between methylation of NR3C1 and behavior problems in preschoolers. Data were drawn from a sample of preschoolers with early adversity (n=171). Children ranged in age from 3 to 5 years, were racially and ethnically diverse, and nearly all qualified for public assistance. Seventy-one children had child welfare documentation of moderate-severe maltreatment in the past six months. Structured record review and interviews in the home were used to assess early adversity. Parents reported on child internalizing and externalizing behavior problems. Methylation of NR3C1 at exons 1D, 1F, and 1H were measured via sodium bisulfite pyrosequencing from saliva DNA. Methylation of NR3C1 at exons 1D and 1F was positively associated with internalizing (r = .21, p < .01 and r = .23, p < .01 respectively), but not externalizing, behavior problems. Furthermore, NR3C1 methylation mediated effects of early adversity on internalizing behavior problems. These results suggest that methylation of NR3C1 contributes to psychopathology in young children, and NR3C1 methylation from saliva DNA is salient to behavioral outcomes. PMID:26822445

  15. Methylation of the Glucocorticoid Receptor Gene Promoter in Preschoolers: Links with Internalizing Behavior Problems

    ERIC Educational Resources Information Center

    Parade, Stephanie H.; Ridout, Kathryn K.; Seifer, Ronald; Armstrong, David A.; Marsit, Carmen J.; McWilliams, Melissa A.; Tyrka, Audrey R.

    2016-01-01

    Accumulating evidence suggests that early adversity is linked to methylation of the glucocorticoid receptor (GR) gene, "NR3C1," which is a key regulator of the hypothalamic-pituitary-adrenal axis. Yet no prior work has considered the contribution of methylation of "NR3C1" to emerging behavior problems and psychopathology in…

  16. Simultaneous Analysis of SEPT9 Promoter Methylation Status, Micronuclei Frequency, and Folate-Related Gene Polymorphisms: The Potential for a Novel Blood-Based Colorectal Cancer Biomarker

    PubMed Central

    Ravegnini, Gloria; Zolezzi Moraga, Juan Manuel; Maffei, Francesca; Musti, Muriel; Zenesini, Corrado; Simeon, Vittorio; Sammarini, Giulia; Festi, Davide; Hrelia, Patrizia; Angelini, Sabrina

    2015-01-01

    One challenge in colorectal cancer (CRC) is identifying novel biomarkers to be introduced in screening programs. The present study investigated the promoter methylation status of the SEPT9 gene in peripheral blood samples of subjects’ positive fecal occult blood test (FOBT). In order to add new insights, we investigated the association between SEPT9 promoter methylation and micronuclei frequency, and polymorphisms in the folate-related pathway genes. SEPT9 promoter methylation, micronuclei frequency, and genotypes were evaluated on 74 individuals’ FOBT positive. Individuals were subjected to a colonoscopy that provided written informed consent for study participation. SEPT9 promoter methylation status was significantly lower in the CRC group than controls (p = 0.0006). In contrast, the CaCo2 cell-line, analyzed as a tissue specific model of colon adenocarcinoma, showed a significantly higher percentage of SEPT9 promoter methylation compared to the CRC group (p < 0.0001). Linear regression analysis showed an inverse correlation between micronuclei frequency and the decrease in the methylation levels of SEPT9 promoter region among CRC patients (β = −0.926, p = 0.0001). With regard to genotype analysis, we showed the involvement of the DHFR polymorphism (rs70991108) in SEPT9 promoter methylation level in CRC patients only. In particular, the presence of at least one 19 bp del allele significantly correlates with decreased SEPT9 promoter methylation, compared to the 19 bp ins/ins genotype (p = 0.007). While remaining aware of the strengths and limitations of the study, this represents the first evidence of a novel approach for the early detection of CRC, using SEPT9 promoter methylation, micronuclei frequency and genotypes, with the potential to improve CRC risk assessment. PMID:26633373

  17. Methylation status of the APC and RASSF1A promoter in cell-free circulating DNA and its prognostic role in patients with colorectal cancer.

    PubMed

    Matthaios, Dimitrios; Balgkouranidou, Ioanna; Karayiannakis, Anastasios; Bolanaki, Helen; Xenidis, Nikolaos; Amarantidis, Kyriakos; Chelis, Leonidas; Romanidis, Konstantinos; Chatzaki, Aikaterini; Lianidou, Evi; Trypsianis, Grigorios; Kakolyris, Stylianos

    2016-07-01

    DNA methylation is the most frequent epigenetic alteration. Using methylation-specific polymerase chain reaction (MSP), the methylation status of the adenomatous polyposis coli (APC) and Ras association domain family 1 isoform A (RASSF1A) genes was examined in cell-free circulating DNA from 155 plasma samples obtained from patients with early and advanced colorectal cancer (CRC). APC and RASSF1A hypermethylation was frequently observed in both early and advanced disease, and was significantly associated with a poorer disease outcome. The methylation status of the APC and RASSF1A promoters was investigated in cell-free DNA of patients with CRC. Using MSP, the promoter methylation status of APC and RASSF1A was examined in 155 blood samples obtained from patients with CRC, 88 of whom had operable CRC (oCRC) and 67 had metastatic CRC (mCRC). The frequency of APC methylation in patients with oCRC was 33%. Methylated APC promoter was significantly associated with older age (P=0.012), higher stage (P=0.014) and methylated RASSF1A status (P=0.050). The frequency of APC methylation in patients with mCRC was 53.7%. In these patients, APC methylation was significantly associated with methylated RASSF1A status (P=0.016). The frequency of RASSF1A methylation in patients with oCRC was 25%. Methylated RASSF1A in oCRC was significantly associated with higher stage (P=0.021). The frequency of RASSF1A methylation in mCRC was 44.8%. Methylated RASSF1A in mCRC was associated with moderate differentiation (P=0.012), high levels of carcinoembryonic antigen (P=0.023) and methylated APC status (P=0.016). Patients with an unmethylated APC gene had better survival in both early (81±5 vs. 27±4 months, P<0.001) and advanced disease (37±7 vs. 15±3 months, P<0.001), compared with patients with methylated APC. Patients with an unmethylated RASSF1A gene had better survival in both early (71±6 vs. 46±8 months, P<0.001) and advanced disease (28±4 vs. 16±3 months, P<0.001) than patients with

  18. Methylation status of a single CpG locus 3 bases upstream of TATA-box of receptor activator of nuclear factor-kappaB ligand (RANKL) gene promoter modulates cell- and tissue-specific RANKL expression and osteoclastogenesis.

    PubMed

    Kitazawa, Riko; Kitazawa, Sohei

    2007-01-01

    Receptor activator of nuclear factor-kappaB ligand (RANKL) expression is tissue specific and limited to certain subsets of T-lymphocytes and stromal/osteoblastic cells. Even among osteoblasts, RANKL is expressed on about 20% of osteoblasts of the normal mouse. To clarify the mechanism of population-specific RANKL expression, we analyzed the effect of CpG methylation on its transcription, mRNA and protein expression as well as on osteoclastogenesis. Subpopulations of ST2 cells were used: P9, which expresses RANKL and supports osteoclastogenesis, and P16, which does not. By sodium bisulfite mapping, the rate of CpG methylation of the -65/+350 region, especially of CpG locus no. 1 three bases upstream of the TATA-box, was higher in P16 than in P9 ST2 cells. ChIP and gel shift assay showed that methylated CpG locus no. 1 was a target of MeCP2 binding that, in turn, blocked the binding of the TATA-box binding protein to the TATA-box. In vitro methylation by SssI of the promoter construct reduced its transcriptional activity at the steady state and its response to 1alpha,25(OH)2 vitamin D3. Conversely, treatment with DNA methylase inhibitor, 5-aza-2'-deoxycytidine, significantly restored RANKL expression and osteoclastogenesis in P16 cells. Except for primary cultured osteoblasts, CpG locus no. 1 was frequently methylated in various normal mouse tissues. We propose that the methylation status of the CpG locus three bases upstream of the TATA-box modulates the control of cell- and tissue-specific expression of RANKL gene and osteoclastogenesis. The heterogeneity of stromal/ osteoblastic cells in response to bone-resorbing stimuli may be attributed, in part, to the methylation status of the RANKL gene promoter.

  19. Altered expression of miRNAs and methylation of their promoters are correlated in neuroblastoma.

    PubMed

    Maugeri, Marco; Barbagallo, Davide; Barbagallo, Cristina; Banelli, Barbara; Di Mauro, Stefania; Purrello, Francesco; Magro, Gaetano; Ragusa, Marco; Di Pietro, Cinzia; Romani, Massimo; Purrello, Michele

    2016-12-13

    Neuroblastoma is the most common human extracranial solid tumor during infancy. Involvement of several miRNAs in its pathogenesis has been ascertained. Interestingly, most of their encoding genes reside in hypermethylated genomic regions: thus, their tumor suppressor function is normally disallowed in these tumors. To date, the therapeutic role of the demethylating agent 5'-Aza-2 deoxycytidine (5'-AZA) and its effects on miRNAome modulation in neuroblastoma have not been satisfactorily explored. Starting from a high-throughput expression profiling of 754 miRNAs and based on a proper selection, we focused on miR-29a-3p, miR-34b-3p, miR-181c-5p and miR-517a-3p as candidate miRNAs for our analysis. They resulted downregulated in four neuroblastoma cell lines with respect to normal adrenal gland. MiRNAs 29a-3p and 34b-3p also resulted downregulated in vivo in a murine neuroblastoma progression model. Unlike the amount of methylation of their encoding gene promoters, all these miRNAs were significantly overexpressed following treatment with 5'-AZA. Transfection with candidate miRNAs mimics significantly decreased neuroblastoma cells proliferation rate. A lower expression of miR-181c was significantly associated to a worse overall survival in a public dataset of 498 neuroblastoma samples (http://r2.amc.nl). Our data strongly suggest that CDK6, DNMT3A, DNMT3B are targets of miR-29a-3p, while CCNE2 and E2F3 are targets of miR-34b-3p. Based on all these data, we propose that miR-29a-3p, miR-34b-3p, miR-181c-5p and miR-517a-3p are disallowed tumor suppressor genes in neuroblastoma and suggest them as new therapeutic targets in neuroblastoma.

  20. Differential Radiosensitizing Potential of Temozolomide in MGMT Promoter Methylated Glioblastoma Multiforme Cell Lines

    SciTech Connect

    Nifterik, Krista A. van; Berg, Jaap van den; Stalpers, Lukas J.A.; Lafleur, M. Vincent M.; Leenstra, Sieger; Slotman, Ben J.; Hulsebos, Theo J.M.; Sminia, Peter

    2007-11-15

    Purpose: To investigate the radiosensitizing potential of temozolomide (TMZ) for human glioblastoma multiforme (GBM) cell lines using single-dose and fractionated {gamma}-irradiation. Methods and Materials: Three genetically characterized human GBM cell lines (AMC-3046, VU-109, and VU-122) were exposed to various single (0-6 Gy) and daily fractionated doses (2 Gy per fraction) of {gamma}-irradiation. Repeated TMZ doses were given before and concurrent with irradiation treatment. Immediately plated clonogenic cell-survival curves were determined for both the single-dose and the fractionated irradiation experiments. To establish the net effect of clonogenic cell survival and cell proliferation, growth curves were determined, expressed as the number of surviving cells. Results: All three cell lines showed MGMT promoter methylation, lacked MGMT protein expression, and were sensitive to TMZ. The isotoxic TMZ concentrations used were in a clinically feasible range of 10 {mu}mol/L (AMC-3046), 3 {mu}mol/L (VU-109), and 2.5 {mu}mol/L (VU-122). Temozolomide was able to radiosensitize two cell lines (AMC 3046 and VU-122) using single-dose irradiation. A reduction in the number of surviving cells after treatment with the combination of TMZ and fractionated irradiation was seen in all three cell lines, but only AMC 3046 showed a radiosensitizing effect. Conclusions: This study on TMZ-sensitive GBM cell lines shows that TMZ can act as a radiosensitizer and is at least additive to {gamma}-irradiation. Enhancement of the radiation response by TMZ seems to be independent of the epigenetically silenced MGMT gen000.

  1. Role of p14ARF and p15INK4B promoter methylation in patients with lung cancer: a systematic meta-analysis

    PubMed Central

    Yang, Xinmei; Yang, Lei; Dai, Wanrong; Ye, Bo

    2016-01-01

    Background The cyclin-dependent kinase inhibitors p14ARF and p15INK4B are tumor suppressor genes that have been reported to be silenced through promoter methylation in many human cancers. However, the strength of association between p14ARF or p15INK4B promoter methylation and lung cancer remains unclear. Thus, we first determined whether p14ARF and p15INK4B promoter methylation played a key role in the carcinogenesis of lung cancer. Methods Eligible studies were selected from the online electronic databases. The pooled odds ratios or hazard ratios and 95% confidence intervals were calculated and summarized. Results Finally, 12 studies with 625 lung cancer samples and 488 nontumor samples were included under the fixed-effects model. The pooled odds ratio showed that p14ARF promoter methylation was observed to be significantly higher in non-small-cell lung cancer (NSCLC) than in nontumor samples (P<0.001). No significant correlation was found between p15INK4B promoter methylation and lung cancer (P=0.27). Subgroup analysis of ethnicity revealed that p14ARF promoter methylation was significantly related to the risk of NSCLC in Asian and Caucasian populations. Subgroup analysis of sample type demonstrated that p14ARF promoter methylation was correlated with the risk of NSCLC in tissue samples (P<0.001), but not in bronchoalveolar lavage fluid and blood samples. P14ARF promoter methylation from one study was not significantly correlated with overall survival of patients with NSCLC. Promoter methylation of p14ARF and p15INK4B was not correlated with clinicopathological characteristics, such as gender status, smoking status, tumor differentiation, and tumor stage (P>0.05). Conclusion Our findings suggested that p14ARF promoter methylation may play an important role in the carcinogenesis of lung cancer, but not p15INK4B promoter methylation. Promoter methylation of p14ARF and p15INK4B was not associated with clinicopathological parameters. However, more extensive large

  2. Clinical Neuropathology practice news 1-2014: pyrosequencing meets clinical and analytical performance criteria for routine testing of MGMT promoter methylation status in glioblastoma.

    PubMed

    Preusser, Matthias; Berghoff, Anna S; Manzl, Claudia; Filipits, Martin; Weinhäusel, Andreas; Pulverer, Walter; Dieckmann, Karin; Widhalm, Georg; Wöhrer, Adelheid; Knosp, Engelbert; Marosi, Christine; Hainfellner, Johannes A

    2014-01-01

    Testing of the MGMT promoter methylation status in glioblastoma is relevant for clinical decision making and research applications. Two recent and independent phase III therapy trials confirmed a prognostic and predictive value of the MGMT promoter methylation status in elderly glioblastoma patients. Several methods for MGMT promoter methylation testing have been proposed, but seem to be of limited test reliability. Therefore, and also due to feasibility reasons, translation of MGMT methylation testing into routine use has been protracted so far. Pyrosequencing after prior DNA bisulfite modification has emerged as a reliable, accurate, fast and easy-to-use method for MGMT promoter methylation testing in tumor tissues (including formalin fixed and paraffin-embedded samples). We performed an intra- and inter-laboratory ring trial which demonstrates a high analytical performance of this technique. Thus, pyrosequencing- based assessment of MGMT promoter methylation status in glioblastoma meets the criteria of high analytical test performance and can be recommended for clinical application, provided that strict quality control is performed. Our article summarizes clinical indications, practical instructions and open issues for MGMT promoter methylation testing in glioblastoma using pyrosequencing.

  3. Unstable expression of transgene is associated with the methylation of CAG promoter in the offspring from the same litter of homozygous transgenic mice.

    PubMed

    Zhou, Yang; Zhang, Teng; Zhang, Qin-Kai; Jiang, Ying; Xu, Deng-Gao; Zhang, Min; Shen, Wei; Pan, Qing-Jie

    2014-08-01

    Transgenic animals have been established for studying gene function, improving animals' production traits, and providing organ models for the exploration of human diseases. However, the stability of inheritance and transgene expression in transgenic animals has gained extensive attention. The unstable expression of transgene through DNA methyltransferase (DNMT) targeting to the methylation of transgenic DNA such as CAG promoter and Egfp coding region in homozygous transgenic animals is still unknown. In the present study, the offspring from the same litter of homozygous transgenic mice carrying ubiquitously expressed enhanced green fluorescence protein driven by CMV early enhancer/chicken β-actin (CAG) promoter was observed to have unstable expression of transgene Egfp, quantitative PCR, western blot and bisulfite sequencing were conducted to quantify the expressional characteristics and methylation levels in various tissues. The correlation between transgene expression and methylation was analyzed. We have found that transgene expression is dependent on the methylation of CAG promoter, but not Egfp coding region. We have also characterized the correlation between the methylation of CAG promoter and DNMT, and found that only Dnmt3b expression is correlated with the methylation of CAG promoter. In conclusion, Dnmt3b-related methylation of CAG promoter can inhibit the transgene expression and may result in the unstable expression of transgene in the offspring from the same litter of homozygous transgenic mice.

  4. Promoter methylation and expression of CDH1 and susceptibility and prognosis of eyelid squamous cell carcinoma.

    PubMed

    Wang, Yong-Qiang; Yuan, Ye; Jiang, Shan; Jiang, Hua

    2016-07-01

    Eyelid skin tumors are the most frequent type of cancer in ophthalmology. And, eyelid squamous cell carcinoma (SCC) accounts for a large part of it. CDH1 encodes E-cadherin, a glycoprotein that plays an important part in cell-cell interaction. Loss of CDH1 function was suspected to be associated with tumorigenesis. Methylation of CDH1 promotors can alter the expression of its protein and is also considered as a contributor to various cancers. In this study, CDH1 methylation and expression profile as well as prognosis of 38 cases of eyelid SCC and the corresponding adjacent tissues were analyzed to clarify the role of CDH1 methylation in SCC carcinogenesis and prognosis. Methylation was detected by PCR, and CDH1 expression was evaluated by immunohistochemistry. We observed that CDH1 methylation is significantly correlated with decreased CDH1 protein expression in eyelid SCC patients. Patients with methylation and low expression of CDH1 are significantly associated with advanced and aggressive phenotypes. Therefore, CDH1 methylation and CDH1 expression are both independent prognostic factors for prognosis of eyelid SCC patients.

  5. Genome-wide methylation profiling reveals Zinc finger protein 516 (ZNF516) and FK-506-binding protein 6 (FKBP6) promoters frequently methylated in cervical neoplasia, associated with HPV status and ethnicity in a Chilean population

    PubMed Central

    Brebi, Priscilla; Maldonado, Leonel; Noordhuis, Maartje G; Ili, Carmen; Leal, Pamela; Garcia, Patricia; Brait, Mariana; Ribas, Judit; Michailidi, Christina; Perez, Jimena; Soudry, Ethan; Tapia, Oscar; Guzman, Pablo; Muñoz, Sergio; Van Neste, Leander; Van Criekinge, Wim; Irizarry, Rafael; Sidransky, David; Roa, Juan C; Guerrero-Preston, Rafael

    2014-01-01

    Cervical cancer is a major health concern among women in Latin America due to its high incidence and mortality. Therefore, the discovery of molecular markers for cervical cancer screening and triage is imperative. The aim of this study was to use a genome wide DNA methylation approach to identify novel methylation biomarkers in cervical cancer. DNA from normal cervical mucosa and cervical cancer tissue samples from Chile was enriched with Methylated DNA Immunoprecipitation (MeDIP), hybridized to oligonucleotide methylation microarrays and analyzed with a stringent bioinformatics pipeline to identify differentially methylated regions (DMRs) as candidate biomarkers. Quantitative Methylation Specific PCR (qMSP) was used to study promoter methylation of candidate DMRs in clinical samples from two independent cohorts. HPV detection and genotyping were performed by Reverse Line Blot analysis. Bioinformatics analysis revealed GGTLA4, FKBP6, ZNF516, SAP130, and INTS1 to be differentially methylated in cancer and normal tissues in the Discovery cohort. In the Validation cohort FKBP6 promoter methylation had 73% sensitivity and 80% specificity (AUC = 0.80). ZNF516 promoter methylation was the best biomarker, with both sensitivity and specificity of 90% (AUC = 0.92), results subsequently corroborated in a Prevalence cohort. Together, ZNF516 and FKBP6 exhibited a sensitivity of 84% and specificity of 81%, when considering both cohorts. Our genome wide DNA methylation assessment approach (MeDIP-chip) successfully identified novel biomarkers that differentiate between cervical cancer and normal samples, after adjusting for age and HPV status. These biomarkers need to be further explored in case-control and prospective cohorts to validate them as cervical cancer biomarkers. PMID:24241165

  6. H3 Lysine 4 Is Acetylated at Active Gene Promoters and Is Regulated by H3 Lysine 4 Methylation

    PubMed Central

    Guillemette, Benoit; Drogaris, Paul; Lin, Hsiu-Hsu Sophia; Armstrong, Harry; Hiragami-Hamada, Kyoko; Imhof, Axel; Bonneil, Éric; Thibault, Pierre; Verreault, Alain; Festenstein, Richard J.

    2011-01-01

    Methylation of histone H3 lysine 4 (H3K4me) is an evolutionarily conserved modification whose role in the regulation of gene expression has been extensively studied. In contrast, the function of H3K4 acetylation (H3K4ac) has received little attention because of a lack of tools to separate its function from that of H3K4me. Here we show that, in addition to being methylated, H3K4 is also acetylated in budding yeast. Genetic studies reveal that the histone acetyltransferases (HATs) Gcn5 and Rtt109 contribute to H3K4 acetylation in vivo. Whilst removal of H3K4ac from euchromatin mainly requires the histone deacetylase (HDAC) Hst1, Sir2 is needed for H3K4 deacetylation in heterochomatin. Using genome-wide chromatin immunoprecipitation (ChIP), we show that H3K4ac is enriched at promoters of actively transcribed genes and located just upstream of H3K4 tri-methylation (H3K4me3), a pattern that has been conserved in human cells. We find that the Set1-containing complex (COMPASS), which promotes H3K4me2 and -me3, also serves to limit the abundance of H3K4ac at gene promoters. In addition, we identify a group of genes that have high levels of H3K4ac in their promoters and are inadequately expressed in H3-K4R, but not in set1Δ mutant strains, suggesting that H3K4ac plays a positive role in transcription. Our results reveal a novel regulatory feature of promoter-proximal chromatin, involving mutually exclusive histone modifications of the same histone residue (H3K4ac and H3K4me). PMID:21483810

  7. Aberrant promoter CpG methylation as a molecular marker for disease monitoring in natural killer cell lymphomas.

    PubMed

    Siu, Lisa L P; Chan, John K C; Wong, Kit F; Choy, Carolyn; Kwong, Yok L

    2003-07-01

    Natural killer (NK) cell lymphomas lack suitable clonal markers for tumour cell detection, making the monitoring of minimal residual lymphoma difficult. Aberrant promoter CpG methylation occurs frequently in NK cell lymphomas. The objective of this study was to assess the potential of aberrant methylation as a surrogate tumour marker. Twenty-five primary tumours and 105 serial biopsies taken at various time points after treatment were examined using a methylation-specific polymerase chain reaction (MSP) for a panel of genes, comprising p73, p16, hMLH1, RARbeta and p15, previously shown to be methylated in NK cell lymphomas. All samples underwent independent morphological examination, supplemented by immunostaining for CD56 and in-situ hybridization for Epstein-Barr-virus-encoded RNA. Primary tumours showed the frequent methylation of the genes p73 (92%), p16 (71%), hMLH1 (61%), RARbeta (56%) and p15 (48%). MSP results in serial post-treatment biopsies were correlated with clinicopathological findings. Results were concordant in 89 follow-up samples (18 samples, histology positive/MSP positive; 71 samples, histology negative/MSP negative) and discordant in 16. Fifteen samples were histology negative/MSP positive, and tumour involvement was subsequently confirmed (positive re-biopsies or relapses at the same sites), indicating that MSP was more sensitive for minimal lymphoma detection. One sample was histology positive/MSP negative; a subsequent histological review and continuous clinical remission of the patient did not support tumour involvement. Our findings suggest that MSP for aberrantly methylated genes is a potentially valuable molecular marker for detecting either residual or relapsed disease in NK cell lymphoma patients.

  8. Usefulness of DNA Methylation Levels in COASY and SPINT1 Gene Promoter Regions as Biomarkers in Diagnosis of Alzheimer’s Disease and Amnestic Mild Cognitive Impairment

    PubMed Central

    Shinagawa, Shunichiro; Nagata, Tomoyuki; Shimada, Kazuya; Shibata, Nobuto; Ohnuma, Tohru; Kasanuki, Koji; Arai, Heii; Yamada, Hisashi; Nakayama, Kazuhiko; Kondo, Kazuhiro

    2016-01-01

    In order to conduct early therapeutic interventions for Alzheimer’s disease (AD), convenient, early diagnosis markers are required. We previously reported that changes in DNA methylation levels were associated with amnestic mild cognitive impairment (aMCI) and AD. As the results suggested changes in DNA methylation levels in the COASY and SPINT1 gene promoter regions, in the present study we examined DNA methylation in these regions in normal controls (NCs, n = 30), aMCI subjects (n = 28) and AD subjects (n = 30) using methylation-sensitive high resolution melting (MS-HRM) analysis. The results indicated that DNA methylation in the two regions was significantly increased in AD and aMCI as compared to NCs (P < 0.0001, P < 0.0001, ANOVA). Further analysis suggested that DNA methylation in the COASY gene promoter region in particular could be a high sensitivity, high specificity diagnosis biomarker (COASY: sensitivity 96.6%, specificity 96.7%; SPINT1: sensitivity 63.8%, specificity 83.3%). DNA methylation in the COASY promoter region was associated with CDR Scale Sum of Boxes (CDR-SB), an indicator of dementia severity. In the SPINT1 promoter region, DNA methylation was negatively associated with age in NCs and elevated in aMCI and AD subjects positive for antibodies to Herpes simplex virus type 1 (HSV-1). These findings suggested that changes in DNA methylation in the COASY and SPINT1 promoter regions are influenced by various factors. In conclusion, DNA methylation levels in the COASY and SPINT1 promoter regions were considered to potentially be a convenient and useful biomarker for diagnosis of AD and aMCI. PMID:27992572

  9. Association between the methylation status of the MGMT promoter in bone marrow specimens and chemotherapy outcomes of patients with acute myeloid leukemia.

    PubMed

    Hong, Qingxiao; Chen, Xiaoying; Ye, Huadan; Zhou, Annan; Gao, Yuting; Jiang, Danjie; Wu, Xiaodong; Tian, Bingru; Chen, Youfen; Wang, Ming; Xie, Jiping; Xia, Yongming; Duan, Shiwei

    2016-04-01

    The O(6)-methylguanine-DNA methyltransferase (MGMT) gene is a tumor suppressor gene that is associated with the risk of developing acute myeloid leukemia (AML). However, the association between the methylation status of the MGMT promoter and the chemotherapeutic outcomes of patients with AML remains unknown. In the present study, 30 bone marrow samples derived from patients with AML were collected prior and subsequent to chemotherapy. The methylation status of the MGMT promoter in the bone marrow specimens was determined by methylation-specific polymerase chain reaction. The results indicated that the methylation status of the MGMT promoter was influenced by different chemotherapeutic regimens. The MGMT methylation status of M4 patients (3 out of 6) were more chemosensitive, compared with that of patients with other AML subtypes (M1, 1 out of 3; M2, 0 out of 8; M3, 3 out of 7; M5, 0 out of 3; and M6, 1 out of 3). Age-based analysis revealed that the group aged ≤60 years (7 out of 24 patients) exhibited more methylation changes than patients aged >60 years (1 out of 6). Male patients (4 out of 13) were more susceptible to chemotherapy-induced methylation changes than female patients (4 out of 17). Thus, the methylation status of the MGMT promoter may serve as a potential biomarker to predict the therapeutic outcomes in male AML patients. However, further studies in larger sample sets are required to confirm the present findings.

  10. Promoter methylation of E-cadherin, p16, and RAR-beta(2) genes in breast tumors and dietary intake of nutrients important in one-carbon metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aberrant DNA methylation plays a critical role in carcinogenesis, and the availability of dietary factors involved in 1-carbon metabolism may contribute to aberrant DNA methylation. We investigated the association of intake of folate, vitamins B(2), B(6), B(12), and methionine with promoter methylat...

  11. Berberine reduces methylation of the MTTP promoter and alleviates fatty liver induced by a high-fat diet in rats[S

    PubMed Central

    Chang, XinXia; Yan, HongMei; Fei, Jing; Jiang, MingHong; Zhu, HongGuang; Lu, DaRu; Gao, Xin

    2010-01-01

    High-calorie food leads to nonalcoholic fatty liver disease (NAFLD) through dysregulation of genes involved in lipid metabolism, but the precise mechanism remains unclear. DNA methylation represents one of the mechanisms that contributes to dysregulation of gene expression via interaction with environmental factors. Berberine can alleviate fatty liver in db/db and ob/ob mice. Here, we investigated whether DNA methylation is involved in the pathogenesis of NAFLD induced by a high-fat diet (HFD) and whether berberine improves NAFLD through influencing the methylation status of promoters of key genes. HFD markedly decreased the mRNA levels encoding CPT-1α, MTTP, and LDLR in the liver. In parallel, DNA methylation levels in the MTTP promoter of rats with NAFLD were elevated in the liver. Interestingly, berberine reversed the downregulated expression of these genes and selectively inhibited HFD-induced increase in the methylation of MTTP. Consistently, berberine increased hepatic triglyceride (TG) export and ameliorated HFD-induced fatty liver. Furthermore, a close negative correlation was observed between the MTTP expression and its DNA methylation (at sites −113 and −20). These data indicate that DNA methylation of the MTTP promoter likely contributes to its downregulation during HFD-induced NAFLD and, further, that berberine can partially counteract the HFD-elicited dysregulation of MTTP by reversing the methylation state of its promoter, leading to reduced hepatic fat content. PMID:20567026

  12. Tumor-promoting activities of hydroquinone and 1,1-dimethylhydrazine after initiation of newborn mice with 1-methyl-1-nitrosourea.

    PubMed

    Tamura, T; Shibutani, M; Toyoda, K; Shoda, T; Takada, K; Uneyama, C; Takahashi, M; Hirose, M

    1999-08-23

    To clarify the suitability of a newborn-mouse carcinogenesis assay to detect tumor-promoting activities of carcinogens, the non-genotoxic hydroquinone (HQ) and genotoxic 1,1-dimethylhydrazine (UDMH) were administered to mice during the promotion stage after treatment with 1-methyl-1-nitrosourea (MNU) (20 mg/kg body wt, single intraperitoneal injection) at day 9 after birth. Initiated males and females thus received either HQ at 0.8% in basal diet, or UDMH, at 20 mg/kg body wt once weekly by subcutaneous injection, from day 14 until the end of the experiment at 30 weeks of age. Uninitiated newborn mice, given an injection of the vehicle (0.01 M citrate buffer (pH 5.5), 20 mg/kg body wt), also received HQ or UDMH in the same way. Histopathologically, focal proliferative lesions were found in the livers of male mice and in the lungs of both male and female mice in the MNU-treated groups. HQ significantly increased the incidence and multiplicity of altered hepatocellular foci, the combined incidence of hepatocellular adenomas and carcinomas in males and the incidence and multiplicity of lung adenomas and the combined incidence of lung adenomas and carcinomas in female mice. In addition, four out of eleven MNU + HQ-treated male mice developed lung carcinomas, showing a significant elevation in multiplicity. UDMH also exhibited a tendency to increase the incidence and multiplicity of lung adenomas in female mice. Thus tumor-promoting effects of HQ or UDMH were apparently exerted in the target organs and the MNU-initiated two-stage newborn-mouse carcinogenesis assay may be useful for detection of genotoxic or non-genotoxic carcinogenicity.

  13. Protective vaccination and blood-stage malaria modify DNA methylation of gene promoters in the liver of Balb/c mice.

    PubMed

    Al-Quraishy, Saleh; Dkhil, Mohamed A; Abdel-Baki, Abdel-Azeem S; Ghanjati, Foued; Erichsen, Lars; Santourlidis, Simeon; Wunderlich, Frank; Araúzo-Bravo, Marcos J

    2017-03-18

    Epigenetic mechanisms such as DNA methylation are increasingly recognized to be critical for vaccination efficacy and outcome of different infectious diseases, but corresponding information is scarcely available for host defense against malaria. In the experimental blood-stage malaria Plasmodium chabaudi, we investigate the possible effects of a blood-stage vaccine on DNA methylation of gene promoters in the liver, known as effector against blood-stage malaria, using DNA methylation microarrays. Naturally susceptible Balb/c mice acquire, by protective vaccination, the potency to survive P. chabaudi malaria and, concomitantly, modifications of constitutive DNA methylation of promoters of numerous genes in the liver; specifically, promoters of 256 genes are hyper(=up)- and 345 genes are hypo(=down)-methylated (p < 0.05). Protective vaccination also leads to changes in promoter DNA methylation upon challenge with P. chabaudi at peak parasitemia on day 8 post infection (p.i.), when 571 and 1013 gene promoters are up- and down-methylated, respectively, in relation to constitutive DNA methylation (p < 0.05). Gene set enrichment analyses reveal that both vaccination and P. chabaudi infections mainly modify promoters of those genes which are most statistically enriched with functions relating to regulation of transcription. Genes with down-methylated promoters encompass those encoding CX3CL1, GP130, and GATA2, known to be involved in monocyte recruitment, IL-6 trans-signaling, and onset of erythropoiesis, respectively. Our data suggest that vaccination may epigenetically improve parts of several effector functions of the liver against blood-stage malaria, as, e.g., recruitment of monocyte/macrophage to the liver accelerated liver regeneration and extramedullary hepatic erythropoiesis, thus leading to self-healing of otherwise lethal P. chabaudi blood-stage malaria.

  14. Impact of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and MGMT expression on dacarbazine resistance of Hodgkin's lymphoma cells.

    PubMed

    Kewitz, Stefanie; Stiefel, Martina; Kramm, Christof M; Staege, Martin S

    2014-01-01

    We analyzed the methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter and mRNA expression in HL cells and assessed the response of these cells to dacarbazine. Expression of MGMT correlated with the presence of non-methylated promoters and cell lines with non-methylated promoters showed increased resistance against dacarbazine. KM-H2 cells expressed fusion transcripts between MGMT and proline-rich coiled-coil 2B (PRRC2B) but no wild type MGMT transcripts. Dacarbazine sensitivity suggested that fusion transcripts are translated into a protein with reduced functionality. MGMT promoter methylation predicts dacarbazine sensitivity of HL cells and it might be interesting to analyze this factor in HL patients.

  15. Altered expression of miRNAs and methylation of their promoters are correlated in neuroblastoma

    PubMed Central

    Di Mauro, Stefania; Purrello, Francesco; Magro, Gaetano; Ragusa, Marco; Di Pietro, Cinzia; Romani, Massimo; Purrello, Michele

    2016-01-01

    Neuroblastoma is the most common human extracranial solid tumor during infancy. Involvement of several miRNAs in its pathogenesis has been ascertained. Interestingly, most of their encoding genes reside in hypermethylated genomic regions: thus, their tumor suppressor function is normally disallowed in these tumors. To date, the therapeutic role of the demethylating agent 5′-Aza-2 deoxycytidine (5'-AZA) and its effects on miRNAome modulation in neuroblastoma have not been satisfactorily explored. Starting from a high-throughput expression profiling of 754 miRNAs and based on a proper selection, we focused on miR-29a-3p, miR-34b-3p, miR-181c-5p and miR-517a-3p as candidate miRNAs for our analysis. They resulted downregulated in four neuroblastoma cell lines with respect to normal adrenal gland. MiRNAs 29a-3p and 34b-3p also resulted downregulated in vivo in a murine neuroblastoma progression model. Unlike the amount of methylation of their encoding gene promoters, all these miRNAs were significantly overexpressed following treatment with 5′-AZA. Transfection with candidate miRNAs mimics significantly decreased neuroblastoma cells proliferation rate. A lower expression of miR-181c was significantly associated to a worse overall survival in a public dataset of 498 neuroblastoma samples (http://r2.amc.nl). Our data strongly suggest that CDK6, DNMT3A, DNMT3B are targets of miR-29a-3p, while CCNE2 and E2F3 are targets of miR-34b-3p. Based on all these data, we propose that miR-29a-3p, miR-34b-3p, miR-181c-5p and miR-517a-3p are disallowed tumor suppressor genes in neuroblastoma and suggest them as new therapeutic targets in neuroblastoma. PMID:27829219

  16. Association of Promoter Methylation of VGF and PGP9.5 with Ovarian Cancer Progression

    PubMed Central

    Noordhuis, Maartje; Begum, Shahnaz; Loyo, Myriam; Poeta, Maria Luana; Barbosa, Alvaro; Fazio, Vito M.; Angioli, Roberto; Rabitti, Carla; Marchionni, Luigi; de Graeff, Pauline; J. van der Zee, Ate G.; Wisman, G. Bea A.; Sidransky, David; Hoque, Mohammad O.

    2013-01-01

    Purpose To elucidate the role of biological and clinical impact of aberrant promoter hypermethylation (PH) in ovarian cancer (OC). Experimental Design PH of PGP9.5, HIC1, AIM1, APC, PAK3, MGMT, KIF1A, CCNA1, ESR1, SSBP2, GSTP1, FKBP4 and VGF were assessed by quantitative methylation specific PCR (QMSP) in a training set. We selected two genes (VGF and PGP9.5) for further QMSP analysis in a larger independent validation (IV) set with available clinical data. Biologic relevance of VGF gene was also evaluated. Results PH frequency for PGP9.5 and VGF were 85% (316/372) and 43% (158/366) respectively in the IV set of samples while no PH was observed in controls. In 372 OC cases with available follow up, PGP9.5 and VGF PH were correlated with better patient survival [Hazard Ratios (HR) for overall survival (OS) were 0.59 (95% Confidence Intervals (CI)  = 0.42–0.84, p = 0.004), and 0.73 (95%CI = 0.55–0.97, p = 0.028) respectively, and for disease specific survival (DSS) were 0.57 (95%CI 0.39–0.82, p = 0.003) and 0.72 (95%CI 0.54–0.96, p = 0.027). In multivariate analysis, VGF PH remained an independent prognostic factor for OS (HR 0.61, 95%CI 0.43–0.86, p<0.005) and DSS (HR 0.58, 95%CI 0.41–0.83, p<0.003). Furthermore, PGP9.5 PH was significantly correlated with lower grade, early stage tumors, and with absence of residual disease. Forced expression of VGF in OC cell lines inhibited cell growth. Conclusions Our results indicate that VGF and PGP9.5 PH are potential biomarkers for ovarian carcinoma. Confirmatory cohorts with longitudinal follow-up are required in future studies to define the clinical impact of VGF and PGP9.5 PH before clinical application. PMID:24086249

  17. Success of the PCR-based replication assay depends on the number of methylation sensitive restriction sites in the PCR amplifying region.

    PubMed

    Metta, M K; Tantravahi, S; Kunaparaju, R

    2015-06-02

    The PCR—based replication assay is one of the most simple, quick and economical methods for the analysis of episomal replication. However, in spite of its advantages the method has not been able to replace the southern—based replication assay, the latter of which is a tedious and time—consuming process. This is due to the generation of spurious amplification products in the PCR—based replication assay. The replication assay is based on the use of methylation—sensitive restriction endonucleases (eg. DpnI, MboI) to distinguish bacterial replicated (adenosine methylated) and mammalian replicated plasmids (adenosine non—methylated). In this work we addressed the problem by evaluating (a) restriction enzyme digestion and (b) the minimum number of restriction sites that are required in the amplifying region. The efficiency of restriction digestion was tested by subjecting the plasmid to one and two rounds of digestion. Multiple rounds of digestions were found to be inefficient in preventing false positives when the number of DpnI sites in the amplifying region is less than 8. However, use of a minimum of 15 DpnI sites in the amplifying region was found to overcome the false positives.

  18. Spp1, a member of the Set1 Complex, promotes meiotic DSB formation in promoters by tethering histone H3K4 methylation sites to chromosome axes.

    PubMed

    Sommermeyer, Vérane; Béneut, Claire; Chaplais, Emmanuel; Serrentino, Maria Elisabetta; Borde, Valérie

    2013-01-10

    Meiotic chromosomes are organized into arrays of loops that are anchored to the chromosome axis structure. Programmed DNA double-strand breaks (DSBs) that initiate meiotic recombination, catalyzed by Spo11 and accessory DSB proteins, form in loop sequences in promoters, whereas the DSB proteins are located on chromosome axes. Mechanisms bridging these two chromosomal regions for DSB formation have remained elusive. Here we show that Spp1, a conserved member of the histone H3K4 methyltransferase Set1 complex, is required for normal levels of DSB formation and is associated with chromosome axes during meiosis, where it physically interacts with the Mer2 DSB protein. The PHD finger module of Spp1, which reads H3K4 methylation close to promoters, promotes DSB formation by tethering these regions to chromosome axes and activating cleavage by the DSB proteins. This paper provides the molecular mechanism linking DSB sequences to chromosome axes and explains why H3K4 methylation is important for meiotic recombination.

  19. Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia

    NASA Technical Reports Server (NTRS)

    Holst, Charles R.; Nuovo, Gerard J.; Esteller, Manel; Chew, Karen; Baylin, Stephen B.; Herman, James G.; Tlsty, Thea D.

    2003-01-01

    Cultures of human mammary epithelial cells (HMECs) contain a subpopulation of variant cells with the capacity to propagate beyond an in vitro proliferation barrier. These variant HMECs, which contain hypermethylated and silenced p16(INK4a) (p16) promoters, eventually accumulate multiple chromosomal changes, many of which are similar to those detected in premalignant and malignant lesions of breast cancer. To determine the origin of these variant HMECs in culture, we used Luria-Delbruck fluctuation analysis and found that variant HMECs exist within the population before the proliferation barrier, thereby raising the possibility that variant HMECs exist in vivo before cultivation. To test this hypothesis, we examined mammary tissue from normal women for evidence of p16 promoter hypermethylation. Here we show that epithelial cells with methylation of p16 promoter sequences occur in focal patches of histologically normal mammary tissue of a substantial fraction of healthy, cancer-free women.

  20. 35S Promoter Methylation in Kanamycin-Resistant Kalanchoe (Kalanchoe pinnata L.) Plants Expressing the Antimicrobial Peptide Cecropin P1 Transgene.

    PubMed

    Shevchuk, T V; Zakharchenko, N S; Tarlachkov, S V; Furs, O V; Dyachenko, O V; Buryanov, Y I

    2016-09-01

    Transgenic kalanchoe plants (Kalanchoe pinnata L.) expressing the antimicrobial peptide cecropin P1 gene (cecP1) under the control of the 35S cauliflower mosaic virus 35S RNA promoter and the selective neomycin phosphotransferase II (nptII) gene under the control of the nopaline synthase gene promoter were studied. The 35S promoter methylation and the cecropin P1 biosynthesis levels were compared in plants growing on media with and without kanamycin. The low level of active 35S promoter methylation further decreases upon cultivation on kanamycin-containing medium, while cecropin P1 synthesis increases.

  1. The vaccinia virus K7 protein promotes histone methylation associated with heterochromatin formation

    PubMed Central

    Noyce, Ryan S.; Shenouda, Mira; Umer, Brittany

    2017-01-01

    It has been well established that many vaccinia virus proteins suppress host antiviral pathways by targeting the transcription of antiviral proteins, thus evading the host innate immune system. However, whether viral proteins have an effect on the host’s overall cellular transcription is less understood. In this study we investigated the regulation of heterochromatin during vaccinia virus infection. Heterochromatin is a highly condensed form of chromatin that is less transcriptionally active and characterized by methylation of histone proteins. We examined the change in methylation of two histone proteins, H3 and H4, which are major markers of heterochromatin, during the course of viral infection. Using immunofluorescence microscopy and flow cytometry we were able to track the overall change in the methylated levels of H3K9 and H4K20. Our results suggest that there is significant increase in methylation of H3K9 and H4K20 during Orthopoxviruses infection compared to mock-infected cells. However, this effect was not seen when we infected cells with Leporipoxviruses. We further screened several vaccinia virus single and multi-gene deletion mutant and identified the vaccinia virus gene K7R as a contributor to the increase in cellular histone methylation during infection. PMID:28257484

  2. Association of NDRG1 gene promoter methylation with reduced NDRG1 expression in gastric cancer cells and tissue specimens.

    PubMed

    Chang, Xiaojing; Zhang, Shuanglong; Ma, Jinguo; Li, Zhenhua; Zhi, Yu; Chen, Jing; Lu, Yao; Dai, Dongqiu

    2013-05-01

    NDRG1 (N-myc downstream-regulated gene 1) plays a role in cell differentiation and suppression of tumor metastasis. This study aims to determine the expression of NDRG1 mRNA and protein in gastric cancer cell lines and tissue specimens and then assess the possible cause of its aberrant expression. Six gastric cancer cell lines and 20 pairs of normal and gastric cancer tissue samples were used to assess NDRG1 expression using Real-time PCR and Western blot. High-resolution melting analysis (HRM) and methylation-specific PCR (MSP) were performed to detect gene mutation and methylation, respectively, in cell lines and tissues samples. Expression of NDRG1 mRNA and protein was downregulated in gastric cancer cell lines and tissues. Specifically, expression of NDRG1 mRNA and protein was lower in all six gastric cancer cell lines than that of normal gastric cells, while 15 out of 20 cases of gastric cancer tissues had the reduced levels of NDRG1 mRNA and protein. HRM data showed that there was no mutation in NDRG1 gene, but MSP data showed high levels of NDRG1 gene promoter methylation in the CpG islands in both cell lines and tissue samples. Moreover, treatment with the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine upregulated NDRG1 expression in gastric cancer HGC27 cells, but not in the histone deacetylase inhibitor trichostatin A-treated HGC27 cells. In conclusion, this study has shown that expression of NDRG1 mRNA and protein was reduced in gastric cancer cell lines and tissues, which is due to methylation of NDRG1 gene promoter. Further study will unearth the clinical significance of the reduced NDRG1 protein in gastric cancer.

  3. Alternative splicing, promoter methylation, and functional SNPs of sperm flagella 2 gene in testis and mature spermatozoa of Holstein bulls.

    PubMed

    Guo, F; Yang, B; Ju, Z H; Wang, X G; Qi, C; Zhang, Y; Wang, C F; Liu, H D; Feng, M Y; Chen, Y; Xu, Y X; Zhong, J F; Huang, J M

    2014-02-01

    The sperm flagella 2 (SPEF2) gene is essential for development of normal sperm tail and male fertility. In this study, we characterized first the splice variants, promoter and its methylation, and functional single-nucleotide polymorphisms (SNPs) of the SPEF2 gene in newborn and adult Holstein bulls. Four splice variants were identified in the testes, epididymis, sperm, heart, spleen, lungs, kidneys, and liver tissues through RT-PCR, clone sequencing, and western blot analysis. Immunohistochemistry revealed that the SPEF2 was specifically expressed in the primary spermatocytes, elongated spermatids, and round spermatids in the testes and epididymis. SPEF2-SV1 was differentially expressed in the sperms of high-performance and low-performance adult bulls; SPEF2-SV2 presents the highest expression in testis and epididymis; SPEF2-SV3 was only detected in testis and epididymis. An SNP (c.2851G>T) in exon 20 of SPEF2, located within a putative exonic splice enhancer, potentially produced SPEF2-SV3 and was involved in semen deformity rate and post-thaw cryopreserved sperm motility. The luciferase reporter and bisulfite sequencing analysis suggested that the methylation pattern of the core promoter did not significantly differ between the full-sib bulls that presented hypomethylation in the ejaculated semen and testis. This finding indicates that sperm quality is unrelated to SPEF2 methylation pattern. Our data suggest that alternative splicing, rather than methylation, is involved in the regulation of SPEF2 expression in the testes and sperm and is one of the determinants of sperm motility during bull spermatogenesis. The exonic SNP (c.2851G>T) produces aberrant splice variants, which can be used as a candidate marker for semen traits selection breeding of Holstein bulls.

  4. Regulation of deoxycytidine kinase expression and sensitivity to gemcitabine by micro-RNA 330 and promoter methylation in cancer cells.

    PubMed

    Hodzic, Jasmina; Giovannetti, Elisa; Diosdado, Begoňa; Calvo, Begona Diosdado; Adema, A D; Peters, G J

    2011-12-01

    Deoxycytidine kinase (dCK) is essential for phosphorylation of natural deoxynucleosides and analogs, such as gemcitabine and cytarabine, two widely used anticancer compounds. Regulation of dCK is complex, including Ser-74 phosphorylation. We hypothesized that dCK could be regulated by two additional mechanisms: micro-RNA (miRNA) and promoter methylation. Methylation-specific PCR (MSP) revealed methylation of the 3' GC box in three out of six cancer cell lines. The 3' GC box is located at the dCK promoter region. The methylation status was related to dCK mRNA expression. TargetScan and miRanda prediction algorithms revealed several possible miRNAs targeting dCK and identified miR-330 (micro-RNA 330) as the one conserved between the human, the chimpanzee, and the rhesus monkey genomes. Expression of miR-330 in various colon and lung cancer cell lines, as measured by QRT-PCR, varied five-fold between samples and correlated with in-vitro gemcitabine resistance (R = 0.82, p = 0.04). Exposure to gemcitabine also appeared to influence miR-330 levels in these cell lines. Furthermore, in our cell line panel, miR-330 expression negatively correlated with dCK mRNA expression (R = 0.74), suggesting a role of miR-330 in post-transcriptional regulation of dCK. In conclusion, the 3' GC box and miR-330 may regulate dCK expression in cancer cells.

  5. Genomic characterization and dynamic methylation of promoter facilitates transcriptional regulation of H2A variants, H2A.1 and H2A.2 in various pathophysiological states of hepatocyte.

    PubMed

    Tyagi, Monica; Reddy, Divya; Gupta, Sanjay

    2017-02-03

    Differential expression of homomorphous variants of H2A family of histone H2A.1 and H2A.2 have been associated with hepatocellular carcinoma and maintenance of undifferentiated state of hepatocyte. However, not much is known about the transcriptional regulation of these H2A variants. The current study revealed the presence of 43bp 5'-regulatory region upstream of translation start site and a 26bp 3' stem loop conserved region for both the H2A.1 and H2A.2 variants. However, alignment of both H2A.1 and H2A.2 5'-untranslated region (UTR) sequences revealed no significant degree of homology between them despite the coding exon being very similar amongst the variants. Further, transient transfection coupled with dual luciferase assay of cloned 5' upstream sequences of H2A.1 and H2A.2 of length 1.2 (-1056 to +144) and 1.379kb (-1160 to +219) from experimentally identified 5'UTR in rat liver cell line (CL38) confirmed their promoter activity. Moreover, in silico analysis revealed a presence of multiple CpG sites interspersed in the cloned promoter of H2A.1 and a CpG island near TSS for H2A.2, suggesting that histone variants transcription might be regulated epigenetically. Indeed, treatment with DNMT and HDAC inhibitors increased the expression of H2A.2 with no significant change in H2A.1 levels. Further, methyl DNA immunoprecipitation coupled with quantitative analysis of DNA methylation using real-time PCR revealed hypo-methylation and hyper-methylation of H2A.1 and H2A.2 respectively in embryonic and HCC compared to control adult liver tissue. Collectively, the data suggests that differential DNA methylation on histone promoters is a dynamic player regulating their expression status in different pathophysiological stages of liver.

  6. Expression of Delta DNMT3B variants and its association with promoter methylation of p16 and RASSF1A in primary non-small cell lung cancer.

    PubMed

    Wang, Jie; Walsh, Garret; Liu, Diane D; Lee, J Jack; Mao, Li

    2006-09-01

    Despite the role of DNMT3B in de novo DNA methylation, a correlation between DNMT3B expression and promoter DNA methylation has not being established in tumors. We recently reported DeltaDNMT3B, a subfamily of DNMT3B, with seven variants, as the predominant expression forms in non-small cell lung cancer (NSCLC). We hypothesized that expression of the DeltaDNMT3B variants plays a role in promoter methylation formation during lung tumorigenesis. Expression of seven DeltaDNMT3B variants was measured in 119 NSCLCs and the corresponding normal lungs using reverse transcription-PCR. The expression patterns of DeltaDNMT3B variants were analyzed with the status of p16 and RASSF1A promoter methylation in the tumors as well as in patients' clinical variables, including outcomes. Expression of DeltaDNMT3B variants was detected in 94 of 119 (80%) tumors but in only 22 (18%) of the corresponding normal lungs (P < 0.0001). DeltaDNMT3B1, DeltaDNMT3B2, and DeltaDNMT3B4 were the most frequently detected transcripts in the tumors (62%, 76%, and 46%, respectively). The expression of DeltaDNMT3B variants was associated with p16 and RASSF1A promoter methylation in the tumors, but the strongest association was between DeltaDNMT3B4 and RASSF1A. Forty-two of 46 (91%) tumors with RASSF1A promoter methylation expressed DeltaDNMT3B4 compared with only 13 of 73 (18%) tumors without the promoter methylation (P < 0.0001). Strong associations were also observed between expression of the variants in the tumors and in patients' clinical outcomes. Expression of DeltaDNMT3B variants is common in NSCLC and may play an important role in the development of promoter methylation.

  7. Gene promoter DNA methylation patterns have a limited role in orchestrating transcriptional changes in the fetal liver in response to maternal folate depletion during pregnancy

    PubMed Central

    Adriaens, Michiel; Evelo, Chris T.; Ford, Dianne; Mathers, John C.

    2016-01-01

    Scope Early‐life exposures are critical in fetal programming and may influence function and health in later life. Adequate maternal folate consumption during pregnancy is essential for healthy fetal development and long‐term offspring health. The mechanisms underlying fetal programming are poorly understood, but are likely to involve gene regulation. Epigenetic marks, including DNA methylation, regulate gene expression and are modifiable by folate supply. We observed transcriptional changes in fetal liver in response to maternal folate depletion and hypothesized that these changes are concomitant with altered gene promoter methylation. Methods and results Female C57BL/6J mice were fed diets containing 2 or 0.4 mg folic acid/kg for 4 wk before mating and throughout pregnancy. At 17.5‐day gestation, genome‐wide gene expression and promoter methylation were measured by microarray analysis in male fetal livers. While 989 genes were differentially expressed, 333 promoters had altered methylation (247 hypermethylated, 86 hypomethylated) in response to maternal folate depletion. Only 16 genes had both expression and methylation changes. However, most methylation changes occurred in genomic regions neighboring expression changes. Conclusion In response to maternal folate depletion, altered expression at the mRNA level was not associated with altered promoter methylation of the same gene in fetal liver. PMID:27133805

  8. Molecular cloning and functional characterization of Catharanthus roseus hydroxymethylbutenyl 4-diphosphate synthase gene promoter from the methyl erythritol phosphate pathway.

    PubMed

    Ginis, Olivia; Courdavault, Vincent; Melin, Céline; Lanoue, Arnaud; Giglioli-Guivarc'h, Nathalie; St-Pierre, Benoit; Courtois, Martine; Oudin, Audrey

    2012-05-01

    The Madagascar periwinkle produces monoterpenoid indole alkaloids (MIA) of high interest due to their therapeutical values. The terpenoid moiety of MIA is derived from the methyl erythritol phosphate (MEP) and seco-iridoid pathways. These pathways are regarded as the limiting branch for MIA biosynthesis in C. roseus cell and tissue cultures. In previous studies, we demonstrated a coordinated regulation at the transcriptional and spatial levels of genes from both pathways. We report here on the isolation of the 5'-flanking region (1,049 bp) of the hydroxymethylbutenyl 4-diphosphate synthase (HDS) gene from the MEP pathway. To investigate promoter transcriptional activities, the HDS promoter was fused to GUS reporter gene. Agrobacterium-mediated transformation of young tobacco leaves revealed that the cloned HDS promoter displays a tissue-specific GUS staining restricted to the vascular region of the leaves and limited to a part of the vein that encompasses the phloem in agreement with the previous localization of HDS transcripts in C. roseus aerial organs. Further functional characterizations in stably or transiently transformed C. roseus cells allowed us to identify the region that can be consider as the minimal promoter and to demonstrate the induction of HDS promoter by several hormonal signals (auxin, cytokinin, methyljasmonate and ethylene) leading to MIA production. These results, and the bioinformatic analysis of the HDS 5'-region, suggest that the HDS promoter harbours a number of cis-elements binding specific transcription factors that would regulate the flux of terpenoid precursors involved in MIA biosynthesis.

  9. Differential vitamin D 24-hydroxylase/CYP24A1 gene promoter methylation in endothelium from benign and malignant human prostate

    PubMed Central

    Karpf, Adam R; Omilian, Angela R; Bshara, Wiam; Tian, Lili; Tangrea, Michael A; Morrison, Carl D; Johnson, Candace S

    2011-01-01

    Epigenetic alterations occur in tumor-associated vessels in the tumor microenvironment. Methylation of the CYP24A1 gene promoter differs in endothelial cells isolated from tumors and non-tumor microenvironments in mice. The epigenetic makeup of endothelial cells of human tumor-associated vasculature is unknown due to difficulty of isolating endothelial cells populations from a heterogeneous tissue microenvironment. To ascertain CYP24A1 promoter methylation in tumor-associated endothelium, we utilized laser microdissection guided by CD31 immunohistochemistry to procure endothelial cells from human prostate tumor specimens. Prostate tissues were obtained following robotic radical prostatectomy from men with clinically localized prostate cancer. Adjacent histologically benign prostate tissues were used to compare endothelium from benign versus tumor microenvironments. Sodium bisulfite sequencing of CYP24A1 promoter region showed that the average CYP24A1 promoter methylation in the endothelium was 20% from the tumor microenvironment compared with 8.2% in the benign microenvironment (p < 0.05). A 2-fold to 17-fold increase in CYP24A1 promoter methylation was observed in the prostate tumor endothelium compared with the matched benign prostate endothelium in four patient samples, while CYP24A1 promoter methylation remained unchanged in two patient samples. In addition, there is no correlation of the level of CYP24A1 promoter methylation in prostate tumor-associated endothelium with that of epithelium/stroma. This study demonstrates that the CYP24A1 promoter is methylated in tumor-associated endothelium, indicating that epigenetic alterations in CYP24A1 may play a role in determining the phenotype of tumor-associated vasculature in the prostate tumor microenvironment. PMID:21725204

  10. Induction and maintenance of DNA methylation in plant promoter sequences by apple latent spherical virus-induced transcriptional gene silencing

    PubMed Central

    Kon, Tatsuya; Yoshikawa, Nobuyuki

    2014-01-01

    Apple latent spherical virus (ALSV) is an efficient virus-induced gene silencing vector in functional genomics analyses of a broad range of plant species. Here, an Agrobacterium-mediated inoculation (agroinoculation) system was developed for the ALSV vector, and virus-induced transcriptional gene silencing (VITGS) is described in plants infected with the ALSV vector. The cDNAs of ALSV RNA1 and RNA2 were inserted between the cauliflower mosaic virus 35S promoter and the NOS-T sequences in a binary vector pCAMBIA1300 to produce pCALSR1 and pCALSR2-XSB or pCALSR2-XSB/MN. When these vector constructs were agroinoculated into Nicotiana benthamiana plants with a construct expressing a viral silencing suppressor, the infection efficiency of the vectors was 100%. A recombinant ALSV vector carrying part of the 35S promoter sequence induced transcriptional gene silencing of the green fluorescent protein gene in a line of N. benthamiana plants, resulting in the disappearance of green fluorescence of infected plants. Bisulfite sequencing showed that cytosine residues at CG and CHG sites of the 35S promoter sequence were highly methylated in the silenced generation zero plants infected with the ALSV carrying the promoter sequence as well as in progeny. The ALSV-mediated VITGS state was inherited by progeny for multiple generations. In addition, induction of VITGS of an endogenous gene (chalcone synthase-A) was demonstrated in petunia plants infected with an ALSV vector carrying the native promoter sequence. These results suggest that ALSV-based vectors can be applied to study DNA methylation in plant genomes, and provide a useful tool for plant breeding via epigenetic modification. PMID:25426109

  11. Allium cepa anaphase-telophase root tip chromosome aberration assay on N-methyl-N-nitrosourea, maleic hydrazide, sodium azide, and ethyl methanesulfonate.

    PubMed

    Rank, J; Nielsen, M H

    1997-04-24

    The Allium anaphase-telophase assay was used to show genotoxicity of N-methyl-N-nitrosourea (MNU), maleic hydrazide (MH), sodium azide (NaN3) and ethyl methanesulfonate (EMS). All agents induced chromosome aberrations at statistically significant levels. The rank of the lowest doses with positive effect was as follows: NaN3 0.3 mg/l < MH 1 mg/l < MNU 41 mg/l < EMS 100 mg/l. The results were compared with results from other plant assays (Arabidopsis, Vicia, Tradescantia) and for MH and MNU the values were found to be within the same range, whereas the results in the Allium test for NaN3 and EMS were in a lower range than that found for the other plant assays. EMS and MMS (methyl methanesulfonate), two chemicals used as positive controls in mutagenicity testing, were compared in the Allium test, and MMS was found to be about ten times more potent in inducing chromosome aberrations than EMS. Recording of micronuclei in interphase cells showed that this endpoint does not give more information of clastogenicity than recording of chromosome aberrations in anaphase-telophase cells.

  12. Increased hTR expression during transition from adenoma to carcinoma is not associated with promoter methylation.

    PubMed

    Nakamura, Atsuo; Suda, Takeshi; Honma, Terasu; Takahashi, Toru; Igarashi, Masato; Waguri, Nobuo; Kawai, Hirokazu; Mita, Yusaku; Aoyagi, Yutaka

    2004-09-01

    Human telomerase RNA component (hTR) expression, which increases in the majority of cancer cells with an acquisition of telomerase activity, was concomitantly evaluated with methylation status and human telomerase reverse transcriptase (hTERT) expression in colorectal cancers and precursor lesions. hTR and hTERT expressions were detected by in situ hybridization and reverse transcription following polymerase chain reaction, respectively, in 15 colonic adenomas, 19 sporadic colonic cancers at various histological stages, and 3 normal colonic mucosa samples. The methylationstatus of hTR was evaluated by methylation-specific polymerase chain reaction following restriction endonuclease digestion and direct sequencing. hTERT expression was detected in 16 of 19 cancers. hTR expression was detected in all cancers including two cases of intramucosal carcinoma. No hTR signals were detected in the normal epithelium or in the adenomas with severe atypism. CpG dinucleotides in the 5'-untranslated region of hTR were completely unmethylated from -204 to -3 and mosaically methylated from -290 to -272, irrespective of the atypism. These results suggest that hTR expression is increased at the adenoma-to-carcinoma transition stage but is not always associated with hTERT expression. Hypomethylation of the hTR promoter region is not likely to be the main mechanism regulating hTR expression.

  13. Quantitative analysis of DNA methylation in the promoter region of the methylguanine-O(6) -DNA-methyltransferase gene by COBRA and subsequent native capillary gel electrophoresis.

    PubMed

    Goedecke, Simon; Mühlisch, Jörg; Hempel, Georg; Frühwald, Michael C; Wünsch, Bernhard

    2015-12-01

    Along with histone modifications, RNA interference and delayed replication timing, DNA methylation belongs to the key processes in epigenetic regulation of gene expression. Therefore, reliable information about the methylation level of particular DNA fragments is of major interest. Herein the methylation level at two positions of the promoter region of the gene methylguanine-O(6) -DNA-Methyltransferase (MGMT) was investigated. Previously, it was demonstrated that the epigenetic status of this DNA region correlates with response to alkylating anticancer agents. An automated CGE method with LIF detection was established to separate the six DNA fragments resulting from combined bisulfite restriction analysis of the methylated and non-methylated MGMT promoter. In COBRA, the DNA was treated with bisulfite converting cytosine into uracil. During PCR uracil pairs with adenine, which changes the original recognition site of the restriction enzyme Taql. Artificial probes generated by mixing appropriate amounts of DNA after bisulfite treatment and PCR amplification were used for validation of the method. The methylation levels of these samples could be determined with high accuracy and precision. DNA samples prepared by mixing the corresponding clones first and then performing PCR amplification led to non-linear correlation between the corrected peak areas and the methylation levels. This effect is explained by slightly different PCR amplification of DNA with different sequences present in the mixture. The superiority of CGE over PAGE was clearly demonstrated. Finally, the established method was used to analyze the methylation levels of human brain tumor tissue samples.

  14. Repetitive elements and enforced transcriptional repression co-operate to enhance DNA methylation spreading into a promoter CpG-island

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Repression of many tumor suppressor genes in cancer is concurrent with aberrantly increased DNA methylation levels at promoter CpG islands (CGIs). About one-fourth of empirically defined human promoters are surrounded by or contain clustered repetitive elements. It was previously observed that a sha...

  15. A combination of TERT promoter mutation and MGMT methylation status predicts clinically relevant subgroups of newly diagnosed glioblastomas.

    PubMed

    Arita, Hideyuki; Yamasaki, Kai; Matsushita, Yuko; Nakamura, Taishi; Shimokawa, Asanao; Takami, Hirokazu; Tanaka, Shota; Mukasa, Akitake; Shirahata, Mitsuaki; Shimizu, Saki; Suzuki, Kaori; Saito, Kuniaki; Kobayashi, Keiichi; Higuchi, Fumi; Uzuka, Takeo; Otani, Ryohei; Tamura, Kaoru; Sumita, Kazutaka; Ohno, Makoto; Miyakita, Yasuji; Kagawa, Naoki; Hashimoto, Naoya; Hatae, Ryusuke; Yoshimoto, Koji; Shinojima, Naoki; Nakamura, Hideo; Kanemura, Yonehiro; Okita, Yoshiko; Kinoshita, Manabu; Ishibashi, Kenichi; Shofuda, Tomoko; Kodama, Yoshinori; Mori, Kanji; Tomogane, Yusuke; Fukai, Junya; Fujita, Koji; Terakawa, Yuzo; Tsuyuguchi, Naohiro; Moriuchi, Shusuke; Nonaka, Masahiro; Suzuki, Hiroyoshi; Shibuya, Makoto; Maehara, Taketoshi; Saito, Nobuhito; Nagane, Motoo; Kawahara, Nobutaka; Ueki, Keisuke; Yoshimine, Toshiki; Miyaoka, Etsuo; Nishikawa, Ryo; Komori, Takashi; Narita, Yoshitaka; Ichimura, Koichi

    2016-08-08

    The prognostic impact of TERT mutations has been controversial in IDH-wild tumors, particularly in glioblastomas (GBM). The controversy may be attributable to presence of potential confounding factors such as MGMT methylation status or patients' treatment. This study aimed to evaluate the impact of TERT status on patient outcome in association with various factors in a large series of adult diffuse gliomas. We analyzed a total of 951 adult diffuse gliomas from two cohorts (Cohort 1, n = 758; Cohort 2, n = 193) for IDH1/2, 1p/19q, and TERT promoter status. The combined IDH/TERT classification divided Cohort 1 into four molecular groups with distinct outcomes. The overall survival (OS) was the shortest in IDH wild-type/TERT mutated groups, which mostly consisted of GBMs (P < 0.0001). To investigate the association between TERT mutations and MGMT methylation on survival of patients with GBM, samples from a combined cohort of 453 IDH-wild-type GBM cases treated with radiation and temozolomide were analyzed. A multivariate Cox regression model revealed that the interaction between TERT and MGMT was significant for OS (P = 0.0064). Compared with TERT mutant-MGMT unmethylated GBMs, the hazard ratio (HR) for OS incorporating the interaction was the lowest in the TERT mutant-MGMT methylated GBM (HR, 0.266), followed by the TERT wild-type-MGMT methylated (HR, 0.317) and the TERT wild-type-MGMT unmethylated GBMs (HR, 0.542). Thus, patients with TERT mutant-MGMT unmethylated GBM have the poorest prognosis. Our findings suggest that a combination of IDH, TERT, and MGMT refines the classification of grade II-IV diffuse gliomas.

  16. HLA-DRB1 and HLA-DQB1 methylation changes promote the occurrence and progression of Kazakh ESCC.

    PubMed

    Hu, Jian Ming; Li, Ling; Chen, Yun Zhao; Liu, Chunxia; Cui, Xiaobin; Yin, Liang; Yang, Lan; Zou, Hong; Pang, Lijuan; Zhao, Jin; Qi, Yan; Cao, Yuwen; Jiang, Jinfang; Liang, Weihua; Li, Feng

    2014-10-01

    Human leukocyte antigen II (HLA-II) plays an important role in host immune responses to cancer cells. Changes in gene methylation may result in aberrant expression of HLA-II, serving a key role in the pathogenesis of Kazakh esophageal squamous cell carcinoma (ESCC). We analyzed the expression level of HLA-II (HLA-DP, -DQ, and -DR) by immunohistochemistry, as well as the methylation status of HLA-DRB1 and HLA-DQB1 by MassARRAY spectrometry in Xinjiang Kazakh ESCC. Expression of HLA-II in ESCC was significantly higher than that in cancer adjacent normal (ACN) samples (P < 0.05). Decreased HLA-II expression was closely associated with later clinical stages of ESCC (P < 0.05). Hypomethylation of HLA-DRB1 and hypermethylation of HLA-DQB1 was significantly correlated with occurrence of Kazakh ESCC (P < 0.01), and mainly manifested as hypomethylation of CpG9, CpG10-11, and CpG16 in HLA-DRB1 and hypermethylation of CpG6-7 and CpG16-17 in HLA-DQB1 (P < 0.01). Moreover, hypomethylation of HLA-DQB1 CpG6-7 correlated with poor differentiation in ESCCs, whereas hypermethylation of HLA-DRB1 CpG16 and hypomethylation of HLA-DQB1 CpG16-17 were significantly associated with later stages of ESCC (P < 0.05). A significant inverse association between HLA-DRB1 CpG9 methylation and HLA-II expression was found in ESCC (P < 0.05). These findings suggest aberrant HLA-DRB1 and HLA-DQB1 methylation contributes to the aberrant expression of HLA-II. These molecular changes may influence the immune response to specific tumor epitopes, promoting the occurrence and progression of Kazakh ESCC.

  17. DNA promoter methylation as a diagnostic and therapeutic biomarker in gallbladder cancer

    PubMed Central

    2012-01-01

    Gallbladder cancer is an infrequent neoplasia with noticeable geographical variations in its incidence around the world. In Chile, it is the main cause of death owing to cancer in women over 40 years old, with mortality rates up to 16.5 per 100,000 cases. The prognosis is poor with few therapeutic options; in advanced cases there is only a 10% survival at 5 years. Several studies mention the possible role of DNA methylation in gallbladder carcinogenesis. This epigenetic modification affects tumor suppressor genes involved in regulation pathways, cell cycle control, cell adhesion and extracellular matrix degradation, in a sequential and cumulative way. Determining DNA methylation patterns would allow them to be used as biomarkers for the early detection, diagnosis, prognosis and/or therapeutic selection in gallbladder cancer. PMID:22794276

  18. Methyl-CpG-binding domain sequencing reveals a prognostic methylation signature in neuroblastoma.

    PubMed

    Decock, Anneleen; Ongenaert, Maté; Cannoodt, Robrecht; Verniers, Kimberly; De Wilde, Bram; Laureys, Geneviève; Van Roy, Nadine; Berbegall, Ana P; Bienertova-Vasku, Julie; Bown, Nick; Clément, Nathalie; Combaret, Valérie; Haber, Michelle; Hoyoux, Claire; Murray, Jayne; Noguera, Rosa; Pierron, Gaelle; Schleiermacher, Gudrun; Schulte, Johannes H; Stallings, Ray L; Tweddle, Deborah A; De Preter, Katleen; Speleman, Frank; Vandesompele, Jo

    2016-01-12

    Accurate assessment of neuroblastoma outcome prediction remains challenging. Therefore, this study aims at establishing novel prognostic tumor DNA methylation biomarkers. In total, 396 low- and high-risk primary tumors were analyzed, of which 87 were profiled using methyl-CpG-binding domain (MBD) sequencing for differential methylation analysis between prognostic patient groups. Subsequently, methylation-specific PCR (MSP) assays were developed for 78 top-ranking differentially methylated regions and tested on two independent cohorts of 132 and 177 samples, respectively. Further, a new statistical framework was used to identify a robust set of MSP assays of which the methylation score (i.e. the percentage of methylated assays) allows accurate outcome prediction. Survival analyses were performed on the individual target level, as well as on the combined multimarker signature. As a result of the differential DNA methylation assessment by MBD sequencing, 58 of the 78 MSP assays were designed in regions previously unexplored in neuroblastoma, and 36 are located in non-promoter or non-coding regions. In total, 5 individual MSP assays (located in CCDC177, NXPH1, lnc-MRPL3-2, lnc-TREX1-1 and one on a region from chromosome 8 with no further annotation) predict event-free survival and 4 additional assays (located in SPRED3, TNFAIP2, NPM2 and CYYR1) also predict overall survival. Furthermore, a robust 58-marker methylation signature predicting overall and event-free survival was established. In conclusion, this study encompasses the largest DNA methylation biomarker study in neuroblastoma so far. We identified and independently validated several novel prognostic biomarkers, as well as a prognostic 58-marker methylation signature.

  19. Methyl-CpG-binding domain sequencing reveals a prognostic methylation signature in neuroblastoma

    PubMed Central

    Decock, Anneleen; Ongenaert, Maté; Cannoodt, Robrecht; Verniers, Kimberly; De Wilde, Bram; Laureys, Geneviève; Van Roy, Nadine; Berbegall, Ana P.; Bienertova-Vasku, Julie; Bown, Nick; Clément, Nathalie; Combaret, Valérie; Haber, Michelle; Hoyoux, Claire; Murray, Jayne; Noguera, Rosa; Pierron, Gaelle; Schleiermacher, Gudrun; Schulte, Johannes H.; Stallings, Ray L.; Tweddle, Deborah A.; De Preter, Katleen; Speleman, Frank; Vandesompele, Jo

    2016-01-01

    Accurate assessment of neuroblastoma outcome prediction remains challenging. Therefore, this study aims at establishing novel prognostic tumor DNA methylation biomarkers. In total, 396 low- and high-risk primary tumors were analyzed, of which 87 were profiled using methyl-CpG-binding domain (MBD) sequencing for differential methylation analysis between prognostic patient groups. Subsequently, methylation-specific PCR (MSP) assays were developed for 78 top-ranking differentially methylated regions and tested on two independent cohorts of 132 and 177 samples, respectively. Further, a new statistical framework was used to identify a robust set of MSP assays of which the methylation score (i.e. the percentage of methylated assays) allows accurate outcome prediction. Survival analyses were performed on the individual target level, as well as on the combined multimarker signature. As a result of the differential DNA methylation assessment by MBD sequencing, 58 of the 78 MSP assays were designed in regions previously unexplored in neuroblastoma, and 36 are located in non-promoter or non-coding regions. In total, 5 individual MSP assays (located in CCDC177, NXPH1, lnc-MRPL3-2, lnc-TREX1-1 and one on a region from chromosome 8 with no further annotation) predict event-free survival and 4 additional assays (located in SPRED3, TNFAIP2, NPM2 and CYYR1) also predict overall survival. Furthermore, a robust 58-marker methylation signature predicting overall and event-free survival was established. In conclusion, this study encompasses the largest DNA methylation biomarker study in neuroblastoma so far. We identified and independently validated several novel prognostic biomarkers, as well as a prognostic 58-marker methylation signature. PMID:26646589

  20. Downregulated ECRG4 is associated with poor prognosis in renal cell cancer and is regulated by promoter DNA methylation.

    PubMed

    Luo, Liya; Wu, Jianting; Xie, Jun; Xia, Lingling; Qian, Xuemin; Cai, Zhiming; Li, Zesong

    2016-01-01

    Esophageal cancer-related gene 4 (ECRG4) has been proposed as a putative tumor suppressor gene in several tumors. However, the role and regulation of ECRG4 in the pathogenesis of human renal cancer remain largely unknown. Our current study revealed that expression of ECRG4 is downregulated in renal cell lines and renal cancer tissues. ECRG4 expression was significantly associated with histological grade of tumors (p < 0.001), primary tumor stage (p = 0.017), and distant metastasis (p = 0.017). Low expression of ECRG4 was an independent prognostic indicator for survival of renal cancer patients. Silencing of ECRG4 expression in renal cell lines was associated with its promoter methylation. Moreover, ectopic expression of ECRG4 markedly inhibited cell proliferation and invasion in renal cancer cell lines. These results indicated that ECRG4 is frequently silenced by the methylation of promoter in renal cell cancers. ECRG4 may be a tumor suppressor in renal cancer and serve as a prognostic marker.

  1. Unmasking of epigenetically silenced genes reveals DNA promoter methylation and reduced expression of PTCH in breast cancer.

    PubMed

    Wolf, Ido; Bose, Shikha; Desmond, Julian C; Lin, Bryan T; Williamson, Elizabeth A; Karlan, Beth Y; Koeffler, H Phillip

    2007-10-01

    A pharmacological-based global screen for epigenetically silenced tumor suppressor genes was performed in MCF-7 and MDA-MB-231 breast cancer cells. Eighty-one genes in MCF-7 cells and 131 in MDA-MB-231 cells were identified, that had low basal expression and were significantly upregulated following treatment. Eighteen genes were studied for methylation and/or expression in breast cancer; PTCH, the receptor for the hedgehog (Hh) pathway and a known tumor suppressor gene, was selected for further analysis. Methylation of the PTCH promoter was found in MCF-7 cells and in breast cancer samples, and correlated with low PTCH expression. Immunohistochemical analysis of breast tissue arrays revealed high expression of PTCH in normal breast compared to ductal carcinomas in situ (DCIS) and invasive ductal carcinomas; furthermore, association was found between PTCH expression and favorable prognostic factors. PTCH is an inhibitor of the Hh pathway, and its silencing activates the pathway and promotes growth. Indeed, high activity of the Hh pathway was identified in MCF-7 cells and overexpression of PTCH inhibited the pathway. Moreover, treatment with cyclopamine, an inhibitor of the pathway, reduced cell growth and slowed the cell cycle in these cells. Thus, unmasking of epigenetic silencing in breast cancer enabled us to discover a large number of candidate tumor suppressor genes. Further analysis suggested a role of one of these genes, PTCH, in breast cancer tumorigenesis.

  2. Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor.

    PubMed

    Radtke, K M; Ruf, M; Gunter, H M; Dohrmann, K; Schauer, M; Meyer, A; Elbert, T

    2011-07-19

    Prenatal exposure to maternal stress can have lifelong implications for psychological function, such as behavioral problems and even the development of mental illness. Previous research suggests that this is due to transgenerational epigenetic programming of genes operating in the hypothalamic-pituitary-adrenal axis, such as the glucocorticoid receptor (GR). However, it is not known whether intrauterine exposure to maternal stress affects the epigenetic state of these genes beyond infancy. Here, we analyze the methylation status of the GR gene in mothers and their children, at 10-19 years after birth. We combine these data with a retrospective evaluation of maternal exposure to intimate partner violence (IPV). Methylation of the mother's GR gene was not affected by IPV. For the first time, we show that methylation status of the GR gene of adolescent children is influenced by their mother's experience of IPV during pregnancy. As these sustained epigenetic modifications are established in utero, we consider this to be a plausible mechanism by which prenatal stress may program adult psychosocial function.

  3. Using the apparent diffusion coefficient to identifying MGMT promoter methylation status early in glioblastoma: importance of analytical method

    SciTech Connect

    Rundle-Thiele, Dayle; Day, Bryan; Stringer, Brett; Fay, Michael; Martin, Jennifer; Jeffree, Rosalind L; Thomas, Paul; Bell, Christopher; Salvado, Olivier; Gal, Yaniv; Coulthard, Alan; Crozier, Stuart; Rose, Stephen

    2015-06-15

    Accurate knowledge of O{sup 6}-methylguanine methyltransferase (MGMT) gene promoter subtype in patients with glioblastoma (GBM) is important for treatment. However, this test is not always available. Pre-operative diffusion MRI (dMRI) can be used to probe tumour biology using the apparent diffusion coefficient (ADC); however, its ability to act as a surrogate to predict MGMT status has shown mixed results. We investigated whether this was due to variations in the method used to analyse ADC. We undertook a retrospective study of 32 patients with GBM who had MGMT status measured. Matching pre-operative MRI data were used to calculate the ADC within contrast enhancing regions of tumour. The relationship between ADC and MGMT was examined using two published ADC methods. A strong trend between a measure of ‘minimum ADC’ and methylation status was seen. An elevated minimum ADC was more likely in the methylated compared to the unmethylated MGMT group (U = 56, P = 0.0561). In contrast, utilising a two-mixture model histogram approach, a significant reduction in mean measure of the ‘low ADC’ component within the histogram was associated with an MGMT promoter methylation subtype (P < 0.0246). This study shows that within the same patient cohort, the method selected to analyse ADC measures has a significant bearing on the use of that metric as a surrogate marker of MGMT status. Thus for dMRI data to be clinically useful, consistent methods of data analysis need to be established prior to establishing any relationship with genetic or epigenetic profiling.

  4. Comparison of Diagnostic Accuracy of Microscopy and Flow Cytometry in Evaluating N-Methyl-D-Aspartate Receptor Antibodies in Serum Using a Live Cell-Based Assay

    PubMed Central

    Ramberger, Melanie; Peschl, Patrick; Schanda, Kathrin; Irschick, Regina; Höftberger, Romana; Deisenhammer, Florian; Rostásy, Kevin; Berger, Thomas; Dalmau, Josep; Reindl, Markus

    2015-01-01

    N-methyl-D-aspartate receptor (NMDAR) encephalitis is an autoimmune neurological disease, diagnosed by a specific autoantibody against NMDAR. Antibody testing using commercially available cell-based assays (CBA) or immunohistochemistry on rat brain tissue has proven high specificity and sensitivity. Here we compare an immunofluorescence live CBA to a flow cytometry (FACS) based assay to detect NMDAR antibodies by their binding to the surface of HEK293A cells functionally expressing NMDAR. Both assays were first established using a discovery group of 76 individuals and then validated in a group of 32 patients in a blinded manner. In the CBA, 23 of 23 patients with NMDAR encephalitis were positive for NMDAR antibodies and 0 of 85 controls (32 healthy controls and 53 patients with other neurological diseases), resulting in a sensitivity and specificity of 100% (95% confidence intervals (CI) 85.1–100.0 and 95.7–100.0, respectively). The FACS based assay detected NMDAR antibodies in 20 of 23 patients and in 0 of 85 controls. Therefore, with an equally high specificity (95% CI 95.7–100.0) the sensitivity of the FACS based assay was 87% (95% CI 66.4–97.2). Comparing antibody titers from CBA with delta median fluorescence intensities from FACS showed a high concordance (kappa = 0.943, p<0.0001) and correlation (r = 0.697, p<0.0001). In conclusion, evaluation of the FACS based assay revealed a lower sensitivity and high inter-assay variation, making the CBA a more reliable detection method. PMID:25815887

  5. Comparison of diagnostic accuracy of microscopy and flow cytometry in evaluating N-methyl-D-aspartate receptor antibodies in serum using a live cell-based assay.

    PubMed

    Ramberger, Melanie; Peschl, Patrick; Schanda, Kathrin; Irschick, Regina; Höftberger, Romana; Deisenhammer, Florian; Rostásy, Kevin; Berger, Thomas; Dalmau, Josep; Reindl, Markus

    2015-01-01

    N-methyl-D-aspartate receptor (NMDAR) encephalitis is an autoimmune neurological disease, diagnosed by a specific autoantibody against NMDAR. Antibody testing using commercially available cell-based assays (CBA) or immunohistochemistry on rat brain tissue has proven high specificity and sensitivity. Here we compare an immunofluorescence live CBA to a flow cytometry (FACS) based assay to detect NMDAR antibodies by their binding to the surface of HEK293A cells functionally expressing NMDAR. Both assays were first established using a discovery group of 76 individuals and then validated in a group of 32 patients in a blinded manner. In the CBA, 23 of 23 patients with NMDAR encephalitis were positive for NMDAR antibodies and 0 of 85 controls (32 healthy controls and 53 patients with other neurological diseases), resulting in a sensitivity and specificity of 100% (95% confidence intervals (CI) 85.1-100.0 and 95.7-100.0, respectively). The FACS based assay detected NMDAR antibodies in 20 of 23 patients and in 0 of 85 controls. Therefore, with an equally high specificity (95% CI 95.7-100.0) the sensitivity of the FACS based assay was 87% (95% CI 66.4-97.2). Comparing antibody titers from CBA with delta median fluorescence intensities from FACS showed a high concordance (kappa = 0.943, p<0.0001) and correlation (r = 0.697, p<0.0001). In conclusion, evaluation of the FACS based assay revealed a lower sensitivity and high inter-assay variation, making the CBA a more reliable detection method.

  6. In vitro screening of six anthelmintic plant products against larval Haemonchus contortus with a modified methyl-thiazolyl-tetrazolium reduction assay.

    PubMed

    Hördegen, P; Cabaret, J; Hertzberg, H; Langhans, W; Maurer, V

    2006-11-03

    Because of the increasing anthelmintic resistance and the impact of conventional anthelmintics on the environment, it is important to look for alternative strategies against gastrointestinal nematodes. Phytotherapy could be one of the major options to control these pathologies. Extracts or ingredients of six different plant species were tested against exsheathed infective larvae of Haemonchus contortus using a modified methyl-thiazolyl-tetrazolium (MTT) reduction assay. Pyrantel tartrate was used as reference anthelmintic. Bromelain, the enzyme complex of the stem of Ananas comosus (Bromeliaceae), the ethanolic extracts of seeds of Azadirachta indica (Meliaceae), Caesalpinia crista (Caesalpiniaceae) and Vernonia anthelmintica (Asteraceae), and the ethanolic extracts of the whole plant of Fumaria parviflora (Papaveraceae) and of the fruit of Embelia ribes (Myrsinaceae) showed an anthelmintic efficacy of up to 93%, relative to pyrantel tartrate. Based on these results obtained with larval Haemonchus contortus, the modified MTT reduction assay could be a possible method for testing plant products with anthelmintic properties.

  7. 6-C-methyl flavonoids isolated from Pinus densata inhibit the proliferation and promote the apoptosis of the HL-60 human promyelocytic leukaemia cell line.

    PubMed

    Yue, Rongcai; Li, Bo; Shen, Yunheng; Zeng, Huawu; Li, Bo; Yuan, Hu; He, Yiren; Shan, Lei; Zhang, Weidong

    2013-08-01

    Three structurally related 6-C-methyl flavonoids isolated from Pinus densata, including 5,4'-dihydroxy-3,7,8-trimethoxy-6-C-methylflavone (PD1), 5,7,4'-trihydroxy-3,8-dimethoxy-6-C-methylflavone (PD2), and 5,7,4'-trihydroxy-3-methoxy-6-C-methylflavone (PD3), were tested for their ability to inhibit the proliferation and promote the apoptosis of the HL-60 human leukaemia cell line. Cytotoxicity assays in the HL-60 human cancer cell line demonstrated that 5,4'-dihydroxy-3,7,8-trimethoxy-6-C-methylflavone exhibited the most potent cytotoxicity of the three structurally related 6-C-methyl flavonoids. 5,4'-Dihydroxy-3,7,8-trimethoxy-6-C-methylflavone inhibited the proliferation of HL-60 cells in a dose-dependent manner with an IC₅₀ of 7.91 µM (48 h treatment). Furthermore, 5,4'-dihydroxy-3,7,8-trimethoxy-6-C-methylflavone-induced apoptosis was associated with mitochondrial membrane disruption and cytochome c release. Flow cytometry analyses revealed an increase in the hypodiploid population in 5,4'-dihydroxy-3,7,8-trimethoxy-6-C-methylflavone-treated HL-60 cells. Treatment with a concentration of 5,4'-dihydroxy-3,7,8-trimethoxy-6-C-methylflavone that induced apoptosis activated caspase-3 but did not activate caspase-1. A caspase-3 inhibitor (Ac-DEVD-CHO), but not a caspase-1 inhibitor (Ac-YVAD-CHO), reversed the cytotoxic effects of 5,4'-dihydroxy-3,7,8-trimethoxy-6-C-methylflavone in HL-60 cells. These data demonstrated that 5,4'-dihydroxy-3,7,8-trimethoxy-6-C-methylflavone effectively induced the apoptosis of HL-60 cells and exhibited significant anticancer activity via the mitochondrial caspase-3-dependent apoptosis pathway.

  8. Mediation of the malignant biological characteristics of gastric cancer cells by the methylated CpG islands in RNF180 DNA promoter

    PubMed Central

    Deng, Jingyu; Guo, Jiangtao; Guo, Xiaofan; Hou, Yachao; Xie, Xingming; Sun, Changyu; Zhang, Rupeng; Yu, Xiaohua; Liang, Han

    2016-01-01

    We previously demonstrated that the methylation of ring finger protein 180 (RNF180) DNA promoter was specific to gastric cancer tissues. We reported that four hypermethylated CpG islands, namely, CpG-116, CpG-80, CpG+97, and CpG+102, in RNF180 promoter were significantly associated with the postoperative overall survival of gastric cancer patients. Correlation analysis revealed that the methylated status of CpG islands was significantly associated with the lymph node metastasis of gastric cancer. We formulated four types of MGC-803 cells with the specific demethylation of one of the four CpG islands through vector transfection method. Conventional detections for the biological characteristics of cancer cells showed that 1) the methylation of CpG+102 island in RNF180 DNA promoter could remarkably influence the comprehensively malignant biological characteristics of gastric cancer cells, including their proliferation, invasion, cell cycle, anti-apoptosis, and tumorigenicity. 2) The CpG+97 island, in addition to the CpG+102 island, should be considered as the other key methylated locus in RNF180 DNA promoter to mediate the malignant biological characteristics of gastric cancer cells. The methylated status of the key CpG islands of RNF180 DNA promoter may be used to predict the variations of the malignant biological characteristics of gastric cancer cells. The proposed method is a promising molecular therapy for gastric cancer. PMID:27223257

  9. Mediation of the malignant biological characteristics of gastric cancer cells by the methylated CpG islands in RNF180 DNA promoter.

    PubMed

    Deng, Jingyu; Guo, Jiangtao; Guo, Xiaofan; Hou, Yachao; Xie, Xingming; Sun, Changyu; Zhang, Rupeng; Yu, Xiaohua; Liang, Han

    2016-07-12

    We previously demonstrated that the methylation of ring finger protein 180 (RNF180) DNA promoter was specific to gastric cancer tissues. We reported that four hypermethylated CpG islands, namely, CpG-116, CpG-80, CpG+97, and CpG+102, in RNF180 promoter were significantly associated with the postoperative overall survival of gastric cancer patients. Correlation analysis revealed that the methylated status of CpG islands was significantly associated with the lymph node metastasis of gastric cancer. We formulated four types of MGC-803 cells with the specific demethylation of one of the four CpG islands through vector transfection method. Conventional detections for the biological characteristics of cancer cells showed that 1) the methylation of CpG+102 island in RNF180 DNA promoter could remarkably influence the comprehensively malignant biological characteristics of gastric cancer cells, including their proliferation, invasion, cell cycle, anti-apoptosis, and tumorigenicity. 2) The CpG+97 island, in addition to the CpG+102 island, should be considered as the other key methylated locus in RNF180 DNA promoter to mediate the malignant biological characteristics of gastric cancer cells. The methylated status of the key CpG islands of RNF180 DNA promoter may be used to predict the variations of the malignant biological characteristics of gastric cancer cells. The proposed method is a promising molecular therapy for gastric cancer.

  10. Association of weight regain with specific methylation levels in the NPY and POMC promoters in leukocytes of obese men: a translational study.

    PubMed

    Crujeiras, Ana B; Campion, Javier; Díaz-Lagares, Angel; Milagro, Fermin I; Goyenechea, Estíbaliz; Abete, Itziar; Casanueva, Felipe F; Martínez, J Alfredo

    2013-09-10

    Specific methylation of appetite-related genes in leukocytes could serve as a useful biomarker to predict weight regain after an energy restriction program. We aimed to evaluate whether the pre-intervention DNA methylation patterns involved in the epigenetic control of appetite-regulatory genes in leukocytes are associated with the weight regain process. Eighteen men who lost ≥5% of body weight after an 8-week nutritional intervention were categorized as "regainers" (≥10% weight regain) and "non-regainers" (<10% weight regain) 32weeks after stopping dieting. At baseline, leukocytes were isolated and DNA was analyzed for epigenetic methylation patterns of appetite-related gene promoters by MALDI-TOF mass spectrometry. Regainers showed higher methylation levels than non-regainers in proopiomelanocortin (POMC) CpG sites +136bp and +138bp (fold change from non-regainers=26%; p=0.020) and lower methylation of the whole analyzed region of neuropeptide Y (NPY; fold change from non-regainers=-22%; p=0.033), as well as of several individual NPY-promoter CpG sites. Importantly, total baseline NPY methylation was associated with weight-loss regain (r=-0.76; p<0.001), baseline plasma ghrelin levels (r=0.60; p=0.011) and leptin/ghrelin ratio (r=-0.52; p=0.046). Lower methylation levels of POMC CpG sites +136bp and +138bp were associated with success in weight-loss maintenance (odds ratio=0.042 [95% CI 0.01-0.57]; p=0.018), whereas lower total methylation levels in NPY promoter were associated with higher risk of weight regain (odds ratio=14.0 [95% CI 1.13-172]; p=0.039). Therefore, the study of leukocyte methylation levels reflects a putative epigenetic regulation of NPY and POMC, which might be implicated in the weight regain process and be used as biomarkers for predicting weight regain after dieting.

  11. Noninnocent role of N-methyl pyrrolidinone in thiazolidinethione-promoted asymmetric aldol reactions.

    PubMed

    Sreenithya, A; Sunoj, Raghavan B

    2012-11-16

    The origin of stereoselectivity in the reaction between α-azido titanium enolate derived from chiral auxiliary N-acyl thiazolidinethione and benzaldehyde is established using the DFT(B3LYP) method. A nonchelated transition state with N-methyl-2-pyrrolidinone (NMP) bound to a TiCl(3) enolate is found to be energetically the most preferred model responsible for the formation of an Evans syn aldol product. The TS model devoid of NMP, although of higher energy, is found to be successful in predicting the right stereochemical outcome.

  12. Association between small heat shock protein B11 and the prognostic value of MGMT promoter methylation in patients with high-grade glioma.

    PubMed

    Cheng, Wen; Li, Mingyang; Jiang, Yang; Zhang, Chuanbao; Cai, Jinquan; Wang, Kuanyu; Wu, Anhua

    2016-07-01

    OBJECT This study investigated the role and prognostic value of heat shock proteins (HSPs) in glioma. METHODS Data from 3 large databases of glioma samples (Chinese Glioma Genome Atlas, Repository for Molecular Brain Neoplasia Data, and GSE16011), which contained whole-genome messenger RNA microarray expression data and patients' clinical data, were analyzed. Immunohistochemical analysis was performed to validate protein expression in another set of 50 glioma specimens. RESULTS Of 28 HSPs, 11 were overexpressed in high-grade glioma (HGG) compared with low-grade glioma. A univariate Cox analysis revealed that HSPB11 has significant prognostic value for each glioma grade, which was validated by a Kaplan-Meier survival analysis. HSPB11 expression was associated with poor prognosis and was independently correlated with overall survival (OS) in HGG. This study further explored the combined role of HSPB11 and other molecular markers in HGG, such as isocitrate dehydrogenase 1 (IDH1) mutation and O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. HSPB11 expression was able to refine the prognostic value of IDH1 mutation in patients with HGG. However, when combined with MGMT promoter methylation status, among patients with a methylated MGMT promoter, those with lower levels of HSPB11 expression had longer OS and progression-free survival than patients with higher levels of HSPB11 expression or with an unmethylated MGMT promoter. Moreover, within the MGMT promoter methylation group, patients with low levels of HSPB11 expression were more sensitive to combined radiochemotherapy than those with high levels of HSPB11 expression, which may explain why some patients with HGG with a methylated MGMT promoter show tolerance to radiochemotherapy. CONCLUSIONS HSPB11 was identified as a novel prognostic marker in patients with HGG. Together with MGMT promoter methylation status, HSPB11 expression can predict outcome for patients with HGG and identify those who

  13. Epigenetic Loss of MLH1 Expression in Normal Human Hematopoietic Stem Cell Clones is Defined by the Promoter CpG Methylation Pattern Observed by High-Throughput Methylation Specific Sequencing

    PubMed Central

    Kenyon, Jonathan; Nickel-Meester, Gabrielle; Qing, Yulan; Santos-Guasch, Gabriela; Drake, Ellen; PingfuFu; Sun, Shuying; Bai, Xiaodong; Wald, David; Arts, Eric; Gerson, Stanton L.

    2016-01-01

    Normal human hematopoietic stem and progenitor cells (HPC) lose expression of MLH1, an important mismatch repair (MMR) pathway gene, with age. Loss of MMR leads to replication dependent mutational events and microsatellite instability observed in secondary acute myelogenous leukemia and other hematologic malignancies. Epigenetic CpG methylation upstream of the MLH1 promoter is a contributing factor to acquired loss of MLH1 expression in tumors of the epithelia and proximal mucosa. Using single molecule high-throughput bisulfite sequencing we have characterized the CpG methylation landscape from −938 to −337 bp upstream of the MLH1 transcriptional start site (position +0), from 30 hematopoietic colony forming cell clones (CFC) either expressing or not expressing MLH1. We identify a correlation between MLH1 promoter methylation and loss of MLH1 expression. Additionally, using the CpG site methylation frequencies obtained in this study we were able to generate a classification algorithm capable of sorting the expressing and non-expressing CFC. Thus, as has been previously described for many tumor cell types, we report for the first time a correlation between the loss of MLH1 expression and increased MLH1 promoter methylation in CFC derived from CD34+ selected hematopoietic stem and progenitor cells. PMID:27570841

  14. Aberrant Promoter Methylation at CpG Cytosines Induce the Upregulation of the E2F5 Gene in Breast Cancer

    PubMed Central

    Ali, Arshad; Ullah, Farman; Ali, Irum Sabir; Faraz, Ahmad; Khan, Mumtaz; Shah, Syed Tahir Ali; Ali, Nawab

    2016-01-01

    Purpose The promoter methylation status of cell cycle regulatory genes plays a crucial role in the regulation of the eukaryotic cell cycle. CpG cytosines are actively subjected to methylation during tumorigenesis, resulting in gain/loss of function. E2F5 gene has growth repressive activities; various studies suggest its involvement in tumorigenesis. This study aims to investigate the epigenetic regulation of E2F5 in breast cancer to better understand tumor biology. Methods The promoter methylation status of 50 breast tumor tissues and adjacent normal control tissues was analyzed. mRNA expression was determined using SYBR® green quantitative polymerase chain reaction (PCR), and methylation-specific PCR was performed for bisulfite-modified genomic DNA using E2F5-specific primers to assess promoter methylation. Data was statistically analyzed. Results Significant (p<0.001) upregulation was observed in E2F5 expression among tumor tissues, relative to the control group. These samples were hypo-methylated at the E2F5 promoter region in the tumor tissues, compared to the control. Change in the methylation status (Δmeth) was significantly lower (p=0.022) in the tumor samples, indicating possible involvement in tumorigenesis. Patients at the postmenopausal stage showed higher methylation (75%) than those at the premenopausal stage (23.1%). Interestingly, methylation levels gradually increased from the early to the advanced stages of the disease (p<0.001), which suggests a putative role of E2F5 methylation in disease progression that can significantly modulate tumor biology at more advanced stage and at postmenopausal age (Pearson's r=0.99 and 0.86, respectively). Among tissues with different histological status, methylation frequency was higher in invasive lobular carcinoma (80.0%), followed by invasive ductal carcinoma (46.7%) and ductal carcinoma in situ (20.0%). Conclusion Methylation is an important epigenetic factor that might be involved in the upregulation of E2F5

  15. Promoter methylation status of tumor suppressor genes and inhibition of expression of DNA methyltransferase 1 in non-small cell lung cancer

    PubMed Central

    Liu, Bangqing; Song, Jianfei; Luan, Jiaqiang; Sun, Xiaolin; Bai, Jian; Wang, Haiyong; Li, Angui; Zhang, Lifei; Feng, Xiaoyan

    2016-01-01

    DNA methylation is an epigenetic DNA modification catalyzed by DNA methyltransferase 1 (DNMT1). The purpose of this study was to investigate DNMT1 gene and protein expression and the effects of methylation status on tumor suppressor genes in human non-small cell lung cancer (NSCLC) cell lines grown in vitro and in vivo. Human lung adenocarcinoma cell lines, A549 and H838, were grown in vitro and inoculated subcutaneously into nude mice to form tumors and were then treated with the DNA methylation inhibitor, 5-aza-2′-deoxycytidine, with and without treatment with the benzamide histone deacetylase inhibitor, entinostat (MS-275). DNMT1 protein expression was quantified by Western blot. Promoter methylation status of tumor suppressor genes (RASSF1A, ASC, APC, MGMT, CDH13, DAPK, ECAD, P16, and GATA4) was evaluated by methylation-specific polymerase chain reaction. Methylation status of the tumor suppressor genes was regulated by the DNMT1 gene, with the decrease of DNMT1 expression following DNA methylation treatment. Demethylation of tumor suppressor genes (APC, ASC, and RASSF1A) restored tumor growth in nude mice. The results of this study support a role for methylation of DNA as a potential epigenetic clinical biomarker of prognosis or response to therapy and for DNMT1 as a potential therapeutic target in NSCLC. PMID:27190263

  16. Quercetin and Quercetin-Rich Red Onion Extract Alter Pgc-1α Promoter Methylation and Splice Variant Expression

    PubMed Central

    Devarshi, Prasad P.; Jones, Aarin D.; Taylor, Erin M.; Stefanska, Barbara

    2017-01-01

    Pgc-1α and its various isoforms may play a role in determining skeletal muscle mitochondrial adaptations in response to diet. 8 wks of dietary supplementation with the flavonoid quercetin (Q) or red onion extract (ROE) in a high fat diet (HFD) ameliorates HFD-induced obesity and insulin resistance in C57BL/J mice while upregulating Pgc-1α and increasing skeletal muscle mitochondrial number and function. Here, mice were fed a low fat (LF), high fat (HF), high fat plus quercetin (HF + Q), or high fat plus red onion extract (HF + RO) diet for 9 wks and skeletal muscle Pgc-1α isoform expression and DNA methylation were determined. Quantification of various Pgc-1α isoforms, including isoforms Pgc-1α-a, Pgc-1α-b, Pgc-1α-c, Pgc-1α4, total NT-Pgc-1α, and FL-Pgc-1α, showed that only total NT-Pgc-1α expression was increased in LF, HF + Q, and HF + RO compared to HF. Furthermore, Q supplementation decreased Pgc-1α-a expression compared to LF and HF, and ROE decreased Pgc-1α-a expression compared to LF. FL-Pgc-1α was decreased in HF + Q and HF + RO compared to LF and HF. HF exhibited hypermethylation at the −260 nucleotide (nt) in the Pgc-1α promoter. Q and ROE prevented HFD-induced hypermethylation. −260 nt methylation levels were associated with NT-Pgc-1α expression only. Pgc-1α isoform expression may be epigenetically regulated by Q and ROE through DNA methylation. PMID:28191013

  17. PCFT/SLC46A1 promoter methylation and restoration of gene expression in human leukemia cells

    SciTech Connect

    Gonen, Nitzan; Bram, Eran E.; Assaraf, Yehuda G.

    2008-11-28

    The proton-coupled folate transporter (PCFT/SLC46A1) displays optimal and prominent folate and antifolate transport activity at acidic pH in human carcinoma cells but poor activity in leukemia cells. Consistently herein, human leukemia cell lines expressed poor PCFT transcript levels, whereas various carcinoma cell lines showed substantial PCFT gene expression. We identified a CpG island with high density at nucleotides -200 through +100 and explored its role in PCFT promoter silencing. Leukemia cells with barely detectable PCFT transcripts consistently harbored 85-100% methylation of this CpG island, whereas no methylation was found in carcinoma cells. Treatment with 5-Aza-2'-deoxycytidine which induced demethylation but not with the histone deacetylase inhibitor trichostatin A, restored 50-fold PCFT expression only in leukemia cells. These findings constitute the first demonstration of the dominant epigenetic silencing of the PCFT gene in leukemia cells. The potential translational implications of the restoration of PCFT expression in chemotherapy of leukemia are discussed.

  18. Gene promoter methylation signature predicts survival of head and neck squamous cell carcinoma patients

    PubMed Central

    Kostareli, Efterpi; Hielscher, Thomas; Zucknick, Manuela; Baboci, Lorena; Wichmann, Gunnar; Holzinger, Dana; Mücke, Oliver; Pawlita, Michael; Del Mistro, Annarosa; Boscolo-Rizzo, Paolo; Da Mosto, Maria Cristina; Tirelli, Giancarlo; Plinkert, Peter; Dietz, Andreas; Plass, Christoph; Weichenhan, Dieter; Hess, Jochen

    2016-01-01

    Abstract Infection with high-risk types of human papilloma virus (HPV) is currently the best-established prognostic marker for head and neck squamous cell carcinoma (HNSCC), one of the most common and lethal human malignancies worldwide. Clinical trials have been launched to address the concept of treatment de-escalation for HPV-positive HNSCC with the final aim to reduce treatment related toxicity and debilitating long-term impacts on the quality of life. However, HPV-related tumors are mainly restricted to oropharyngeal SCC (OPSCC) and there is an urgent need to establish reliable biomarkers for all patients at high risk for treatment failure. A patient cohort (n = 295) with mainly non-OPSCC (72.9%) and a low prevalence of HPV16-related tumors (8.8%) was analyzed by MassARRAY to determine a previously established prognostic methylation score (MS). Kaplan-Meier revealed a highly significant correlation between a high MS and a favorable survival for OPSCC (P = 0.0004) and for non-OPSCC (P<0.0001), which was confirmed for all HNSCC by multivariate Cox regression models (HR: 9.67, 95% CI [4.61–20.30], P<0.0001). Next, we established a minimal methylation signature score (MMSS), which consists of ten most informative of the originally 62 CpG units used for the MS. The prognostic value of the MMSS was confirmed by Kaplan-Meier analysis for all HNSCC (P<0.0001) and non-OPSCC (P = 0.0002), and was supported by multivariate Cox regression models for all HNSCC (HR: 2.15, 95% CI [1.36–3.41], P = 0.001). In summary, the MS and the MMSS exhibit an excellent performance as prognosticators for survival, which is not limited by the anatomical site, and both could be implemented in future clinical trials. PMID:26786582

  19. Gene promoter methylation signature predicts survival of head and neck squamous cell carcinoma patients.

    PubMed

    Kostareli, Efterpi; Hielscher, Thomas; Zucknick, Manuela; Baboci, Lorena; Wichmann, Gunnar; Holzinger, Dana; Mücke, Oliver; Pawlita, Michael; Del Mistro, Annarosa; Boscolo-Rizzo, Paolo; Da Mosto, Maria Cristina; Tirelli, Giancarlo; Plinkert, Peter; Dietz, Andreas; Plass, Christoph; Weichenhan, Dieter; Hess, Jochen

    2016-01-01

    Infection with high-risk types of human papilloma virus (HPV) is currently the best-established prognostic marker for head and neck squamous cell carcinoma (HNSCC), one of the most common and lethal human malignancies worldwide. Clinical trials have been launched to address the concept of treatment de-escalation for HPV-positive HNSCC with the final aim to reduce treatment related toxicity and debilitating long-term impacts on the quality of life. However, HPV-related tumors are mainly restricted to oropharyngeal SCC (OPSCC) and there is an urgent need to establish reliable biomarkers for all patients at high risk for treatment failure. A patient cohort (n = 295) with mainly non-OPSCC (72.9%) and a low prevalence of HPV16-related tumors (8.8%) was analyzed by MassARRAY to determine a previously established prognostic methylation score (MS). Kaplan-Meier revealed a highly significant correlation between a high MS and a favorable survival for OPSCC (P = 0.0004) and for non-OPSCC (P<0.0001), which was confirmed for all HNSCC by multivariate Cox regression models (HR: 9.67, 95% CI [4.61-20.30], P<0.0001). Next, we established a minimal methylation signature score (MMSS), which consists of ten most informative of the originally 62 CpG units used for the MS. The prognostic value of the MMSS was confirmed by Kaplan-Meier analysis for all HNSCC (P<0.0001) and non-OPSCC (P = 0.0002), and was supported by multivariate Cox regression models for all HNSCC (HR: 2.15, 95% CI [1.36-3.41], P = 0.001). In summary, the MS and the MMSS exhibit an excellent performance as prognosticators for survival, which is not limited by the anatomical site, and both could be implemented in future clinical trials.

  20. Mapping the methylation status of the miR-145 promoter in saphenous vein smooth muscle cells from individuals with type 2 diabetes.

    PubMed

    Riches, Kirsten; Huntriss, John; Keeble, Claire; Wood, Ian C; O'Regan, David J; Turner, Neil A; Porter, Karen E

    2017-03-01

    Type 2 diabetes mellitus prevalence is growing globally, and the leading cause of mortality in these patients is cardiovascular disease. Epigenetic mechanisms such as microRNAs (miRs) and DNA methylation may contribute to complications of type 2 diabetes mellitus. We discovered an aberrant type 2 diabetes mellitus-smooth muscle cell phenotype driven by persistent up-regulation of miR-145. This study aimed to determine whether elevated expression was due to changes in methylation at the miR-145 promoter. Smooth muscle cells were cultured from saphenous veins of 22 non-diabetic and 22 type 2 diabetes mellitus donors. DNA was extracted, bisulphite treated and pyrosequencing used to interrogate methylation at 11 CpG sites within the miR-145 promoter. Inter-patient variation was high irrespective of type 2 diabetes mellitus. Differential methylation trends were apparent between non-diabetic and type 2 diabetes mellitus-smooth muscle cells at most sites but were not statistically significant. Methylation at CpGs -112 and -106 was consistently lower than all other sites explored in non-diabetic and type 2 diabetes mellitus-smooth muscle cells. Finally, miR-145 expression per se was not correlated with methylation levels observed at any site. The persistent up-regulation of miR-145 observed in type 2 diabetes mellitus-smooth muscle cells is not related to methylation at the miR-145 promoter. Crucially, miR-145 methylation is highly variable between patients, serving as a cautionary note for future studies of this region in primary human cell types.

  1. Mapping the methylation status of the miR-145 promoter in saphenous vein smooth muscle cells from individuals with type 2 diabetes

    PubMed Central

    Riches, Kirsten; Huntriss, John; Keeble, Claire; Wood, Ian C; O’Regan, David J; Turner, Neil A; Porter, Karen E

    2016-01-01

    Type 2 diabetes mellitus prevalence is growing globally, and the leading cause of mortality in these patients is cardiovascular disease. Epigenetic mechanisms such as microRNAs (miRs) and DNA methylation may contribute to complications of type 2 diabetes mellitus. We discovered an aberrant type 2 diabetes mellitus–smooth muscle cell phenotype driven by persistent up-regulation of miR-145. This study aimed to determine whether elevated expression was due to changes in methylation at the miR-145 promoter. Smooth muscle cells were cultured from saphenous veins of 22 non-diabetic and 22 type 2 diabetes mellitus donors. DNA was extracted, bisulphite treated and pyrosequencing used to interrogate methylation at 11 CpG sites within the miR-145 promoter. Inter-patient variation was high irrespective of type 2 diabetes mellitus. Differential methylation trends were apparent between non-diabetic and type 2 diabetes mellitus–smooth muscle cells at most sites but were not statistically significant. Methylation at CpGs −112 and −106 was consistently lower than all other sites explored in non-diabetic and type 2 diabetes mellitus–smooth muscle cells. Finally, miR-145 expression per se was not correlated with methylation levels observed at any site. The persistent up-regulation of miR-145 observed in type 2 diabetes mellitus–smooth muscle cells is not related to methylation at the miR-145 promoter. Crucially, miR-145 methylation is highly variable between patients, serving as a cautionary note for future studies of this region in primary human cell types. PMID:28185533

  2. Litter and Sex Effects on Maternal Behavior and DNA Methylation of the Nr3c1 Exon17 Promoter Gene in Hippocampus and Cerebellum

    PubMed Central

    Kosten, Therese A; Nielsen, David A

    2014-01-01

    Early life events can alter gene expression through DNA methylation. The methylation status of the exon 17 promoter of the glucocorticoid receptor (Nr3c1 gene) in hippocampus associates with frequency of pup licking. Much of this work was conducted with male rats. Because dams more frequently lick male pups, this may contribute to sex differences in phenotypes through DNA methylation. Modifying litter gender composition (LGC), in which offspring of single-sex litters are compared to mixed-sex litters, alters maternal behavior. Previously, we demonstrated that LGC and sex affected pup licking times as well as anxiety and hippocampal DNA methylation of the Nr3c1 exon 17 promoter gene in adolescence. Now, we expand upon this work by examining effects in cerebellum and measuring mRNA levels. We also re-assessed DNA methylation in hippocampus using pyrosequencing and re-analyzed pup licking with the more commonly used frequency measure. Litters, culled to 8 pups on postnatal day 1 (PN1), were assigned to one of three conditions: all male, (n=10), all female, (n=12), or half of each sex (n=20). Licking was rated on PN4, 7, and 10. On PN35, hippocampal and cerebellar samples were obtained. Single-sex males were licked the least and mixed-sex males, the most. Hippocampal Nr3c1 mRNA levels were lowest in mixed females with no LGC or Sex effects in DNA methylation. Cerebellar DNA methylation levels were lowest in mixed males with no effect on mRNA levels. Maternal pup licking associated with DNA methylation of the Nr3c1 exon 17 promoter gene in cerebellum and with hippocampal mRNA. PMID:24721039

  3. Aging and chronic alcohol consumption are determinants of p16 gene expression, genomic DNA methylation and p16 promoter methylation in the mouse colon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elder age and chronic alcohol consumption are important risk factors for the development of colon cancer. Each factor can alter genomic and gene-specific DNA methylation. This study examined the effects of aging and chronic alcohol consumption on genomic and p16-specific methylation, and p16 express...

  4. Ageing, chronic alcohol consumption and folate are determinants of genomic DNA methylation, p16 promoter methylation and the expression of p16 in the mouse colon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elder age and chronic alcohol consumption are important risk factors for the development of colon cancer. Each factor can alter genomic and gene-specific DNA methylation. This study examined the effects of aging and chronic alcohol consumption on genomic and p16-specific methylation, and p16 express...

  5. Methylation-associated silencing of microRNA-129-3p promotes epithelial-mesenchymal transition, invasion and metastasis of hepatocelluar cancer by targeting Aurora-A

    PubMed Central

    Li, Chen; Chen, Jing; Pan, Yan; Feng, Bing; Lu, Lei; Zhu, Ziman; Wang, Rui; Chen, Longbang

    2016-01-01

    Metastasis and recurrence has become one major obstacle for further improving the survival of hepatocelluar cancer (HCC) patients. Therefore, it is critical to elucidate the mechanisms involved in HCC metastasis. This study aimed to investigate the roles of microRNA (miR)-129-3p in HCC metastasis and its possible molecular mechanisms. By using microarray analysis to compare levels of different miRNAs in HCC tissues with or without lymph node metastasis (LNM), we showed that HCC tissues with LNM had reduced levels of miR-129-3p, which was related to its promoter hypermethylation and correlated with tumor metastasis, recurrence and poor prognosis. Gain - and loss - of - function assays indicated that re-expression of miR-129-3p could reverse epithelial-mesenchymal transition (EMT), and reduce in vitro invasion and in vivo metastasis of HCC cells. Aurora-A, a serine/threonine protein kinase, was identified as a direct target of miR-129-3p. Knockdown of Aurora-A phenocopied the effect of miR-129-3p overexpression on HCC metastasis. In addition, Aurora-A upregulation could partially rescue the effect of miR-129-3p. We further demonstrated that activation of PI3K/Akt and p38-MAPK signalings were involved in miR-129-3p-mediated HCC metastasis. These findings suggest that methylation-mediated miR-129-3p downregulation promotes EMT, in vitro invasion and in vivo metastasis of HCC cells via activation of PI3K/Akt and p38-MAPK signalings partially by targeting Aurora-A. Therefore, miR-129-3p may be a novel prognostic biomarker and potential therapeutic target for HCC. PMID:27793005

  6. Methylation of the leukocyte glucocorticoid receptor gene promoter in adults: associations with early adversity and depressive, anxiety and substance-use disorders

    PubMed Central

    Tyrka, A R; Parade, S H; Welch, E S; Ridout, K K; Price, L H; Marsit, C; Philip, N S; Carpenter, L L

    2016-01-01

    Early adversity increases risk for developing psychopathology. Epigenetic modification of stress reactivity genes is a likely mechanism contributing to this risk. The glucocorticoid receptor (GR) gene is of particular interest because of the regulatory role of the GR in hypothalamic–pituitary–adrenal (HPA) axis function. Mounting evidence suggests that early adversity is associated with GR promoter methylation and gene expression. Few studies have examined links between GR promoter methylation and psychopathology, and findings to date have been mixed. Healthy adult participants (N=340) who were free of psychotropic medications reported on their childhood experiences of maltreatment and parental death and desertion. Lifetime depressive and anxiety disorders and past substance-use disorders were assessed using the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Methylation of exon 1F of the GR gene (NR3C1) was examined in leukocyte DNA via pyrosequencing. On a separate day, a subset of the participants (n=231) completed the dexamethasone/corticotropin-releasing hormone (Dex/CRH) test. Childhood adversity and a history of past substance-use disorder and current or past depressive or anxiety disorders were associated with lower levels of NR3C1 promoter methylation across the region as a whole and at individual CpG sites (P<0.05). The number of adversities was negatively associated with NR3C1 methylation in participants with no lifetime disorder (P=0.018), but not in those with a lifetime disorder. GR promoter methylation was linked to altered cortisol responses to the Dex/CRH test (P<0.05). This study presents evidence of reduced methylation of NR3C1 in association with childhood maltreatment and depressive, anxiety and substance-use disorders in adults. This finding stands in contrast to our prior work, but is consistent with emerging findings, suggesting complexity in the regulation of this gene. PMID

  7. Methylation of the leukocyte glucocorticoid receptor gene promoter in adults: associations with early adversity and depressive, anxiety and substance-use disorders.

    PubMed

    Tyrka, A R; Parade, S H; Welch, E S; Ridout, K K; Price, L H; Marsit, C; Philip, N S; Carpenter, L L

    2016-07-05

    Early adversity increases risk for developing psychopathology. Epigenetic modification of stress reactivity genes is a likely mechanism contributing to this risk. The glucocorticoid receptor (GR) gene is of particular interest because of the regulatory role of the GR in hypothalamic-pituitary-adrenal (HPA) axis function. Mounting evidence suggests that early adversity is associated with GR promoter methylation and gene expression. Few studies have examined links between GR promoter methylation and psychopathology, and findings to date have been mixed. Healthy adult participants (N=340) who were free of psychotropic medications reported on their childhood experiences of maltreatment and parental death and desertion. Lifetime depressive and anxiety disorders and past substance-use disorders were assessed using the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Methylation of exon 1F of the GR gene (NR3C1) was examined in leukocyte DNA via pyrosequencing. On a separate day, a subset of the participants (n=231) completed the dexamethasone/corticotropin-releasing hormone (Dex/CRH) test. Childhood adversity and a history of past substance-use disorder and current or past depressive or anxiety disorders were associated with lower levels of NR3C1 promoter methylation across the region as a whole and at individual CpG sites (P<0.05). The number of adversities was negatively associated with NR3C1 methylation in participants with no lifetime disorder (P=0.018), but not in those with a lifetime disorder. GR promoter methylation was linked to altered cortisol responses to the Dex/CRH test (P<0.05). This study presents evidence of reduced methylation of NR3C1 in association with childhood maltreatment and depressive, anxiety and substance-use disorders in adults. This finding stands in contrast to our prior work, but is consistent with emerging findings, suggesting complexity in the regulation of this gene.

  8. Optimal dose selection of N-methyl-N-nitrosourea for the rat comet assay to evaluate DNA damage in organs with different susceptibility to cytotoxicity.

    PubMed

    Kitamoto, Sachiko; Matsuyama, Ryoko; Uematsu, Yasuaki; Ogata, Keiko; Ota, Mika; Yamada, Toru; Miyata, Kaori; Funabashi, Hitoshi; Saito, Koichi

    2015-07-01

    The in vivo rodent alkaline comet assay (comet assay) is a promising technique to evaluate DNA damage in vivo. However, there is no agreement on a method to evaluate DNA damage in organs where cytotoxicity is observed. As a part of the Japanese Center for the Validation of Alternative Methods (JaCVAM)-initiative international validation study of the comet assay, we examined DNA damage in the liver, stomach, and bone marrow of rats given three oral doses of N-methyl-N-nitrosourea (MNU) up to the maximum tolerated dose based on systemic toxicity. MNU significantly increased the % tail DNA in all the organs. Histopathological analysis showed no cytotoxic effect on the liver, indicating clearly that MNU has a genotoxic potential in the liver. In the stomach, however, the cytotoxic effects were very severe at systemically non-toxic doses. Low-dose MNU significantly increased the % tail DNA even at a non-cytotoxic dose, indicating that MNU has a genotoxic potential also in the stomach. Part of the DNA damage at cytotoxic doses was considered to be a secondary effect of severe cell damage. In the bone marrow, both the % tail DNA and incidence of micronucleated polychromatic erythrocytes significantly increased at non-hematotoxic doses, which were different from the non-cytotoxic doses for liver and stomach. These findings indicate that an optimal dose for detecting DNA damage may vary among organs and that careful attention is required to select an optimum dose for the comet assay based on systemic toxicity such as mortality and clinical observations. The present study shows that when serious cytotoxicity is suggested by increased % hedgehogs in the comet assay, histopathological examination should be included for the evaluation of a positive response.

  9. Prenatal stress down-regulates Reelin expression by methylation of its promoter and induces adult behavioral impairments in rats.

    PubMed

    Palacios-García, Ismael; Lara-Vásquez, Ariel; Montiel, Juan F; Díaz-Véliz, Gabriela F; Sepúlveda, Hugo; Utreras, Elías; Montecino, Martín; González-Billault, Christian; Aboitiz, Francisco

    2015-01-01

    Prenatal stress causes predisposition to cognitive and emotional disturbances and is a risk factor towards the development of neuropsychiatric conditions like depression, bipolar disorders and schizophrenia. The extracellular protein Reelin, expressed by Cajal-Retzius cells during cortical development, plays critical roles on cortical lamination and synaptic maturation, and its deregulation has been associated with maladaptive conditions. In the present study, we address the effect of prenatal restraint stress (PNS) upon Reelin expression and signaling in pregnant rats during the last 10 days of pregnancy. Animals from one group, including control and PNS exposed fetuses, were sacrificed and analyzed using immunohistochemical, biochemical, cell biology and molecular biology approaches. We scored changes in the expression of Reelin, its signaling pathway and in the methylation of its promoter. A second group included control and PNS exposed animals maintained until young adulthood for behavioral studies. Using the optical dissector, we show decreased numbers of Reelin-positive neurons in cortical layer I of PNS exposed animals. In addition, neurons from PNS exposed animals display decreased Reelin expression that is paralleled by changes in components of the Reelin-signaling cascade, both in vivo and in vitro. Furthermore, PNS induced changes in the DNA methylation levels of the Reelin promoter in culture and in histological samples. PNS adult rats display excessive spontaneous locomotor activity, high anxiety levels and problems of learning and memory consolidation. No significant visuo-spatial memory impairment was detected on the Morris water maze. These results highlight the effects of prenatal stress on the Cajal-Retzius neuronal population, and the persistence of behavioral consequences using this treatment in adults, thereby supporting a relevant role of PNS in the genesis of neuropsychiatric diseases. We also propose an in vitro model that can yield new

  10. Prenatal Stress Down-Regulates Reelin Expression by Methylation of Its Promoter and Induces Adult Behavioral Impairments in Rats

    PubMed Central

    Palacios-García, Ismael; Lara-Vásquez, Ariel; Montiel, Juan F.; Díaz-Véliz, Gabriela F.; Sepúlveda, Hugo; Utreras, Elías; Montecino, Martín; González-Billault, Christian; Aboitiz, Francisco

    2015-01-01

    Prenatal stress causes predisposition to cognitive and emotional disturbances and is a risk factor towards the development of neuropsychiatric conditions like depression, bipolar disorders and schizophrenia. The extracellular protein Reelin, expressed by Cajal-Retzius cells during cortical development, plays critical roles on cortical lamination and synaptic maturation, and its deregulation has been associated with maladaptive conditions. In the present study, we address the effect of prenatal restraint stress (PNS) upon Reelin expression and signaling in pregnant rats during the last 10 days of pregnancy. Animals from one group, including control and PNS exposed fetuses, were sacrificed and analyzed using immunohistochemical, biochemical, cell biology and molecular biology approaches. We scored changes in the expression of Reelin, its signaling pathway and in the methylation of its promoter. A second group included control and PNS exposed animals maintained until young adulthood for behavioral studies. Using the optical dissector, we show decreased numbers of Reelin-positive neurons in cortical layer I of PNS exposed animals. In addition, neurons from PNS exposed animals display decreased Reelin expression that is paralleled by changes in components of the Reelin-signaling cascade, both in vivo and in vitro. Furthermore, PNS induced changes in the DNA methylation levels of the Reelin promoter in culture and in histological samples. PNS adult rats display excessive spontaneous locomotor activity, high anxiety levels and problems of learning and memory consolidation. No significant visuo-spatial memory impairment was detected on the Morris water maze. These results highlight the effects of prenatal stress on the Cajal-Retzius neuronal population, and the persistence of behavioral consequences using this treatment in adults, thereby supporting a relevant role of PNS in the genesis of neuropsychiatric diseases. We also propose an in vitro model that can yield new

  11. Interlaboratory studies with the Chinese hamster V79 cell metabolic cooperation assay to detect tumor-promoting agents

    SciTech Connect

    Bohrman, J.S.; Burg, J.R.; Elmore, E.; Gulati, D.K.; Barfknecht, T.R.; Niemeier, R.W.; Dames, B.L.; Toraason, M.; Langenbach, R.

    1988-01-01

    Three laboratories participated in an interlaboratory study to evaluate the usefulness of the Chinese hamster V79 cell metabolic cooperation assay to predict the tumor-promoting activity of selected chemical. Twenty-three chemicals of different chemical structures (phorbol esters, barbiturates, phenols, artificial sweeteners, alkanes, and peroxides) were chosen for testing based on in vivo promotion activities, as reported in the literature. Assay protocols and materials were standardized, and the chemicals were coded to facilitate unbiased evaluation. A chemical was tested only once in each laboratory, with one of the three laboratories testing only 15 out of 23 chemicals. Dunnett's test was used for statistical analysis. Chemicals were scored as positive (at least two concentration levels statistically different than control), equivocal (only one concentration statistically different), or negative. For 15 chemicals tested in all three laboratories, there was complete agreement among the laboratories for nine chemicals. For the 23 chemicals tested in only two laboratories, there was agreement on 16 chemicals. With the exception of the peroxides and alkanes, the metabolic cooperation data were in general agreement with in vivo data. However, an overall evaluation of the V79 cell system for predicting in vivo promotion activity was difficult because of the organ specificity of certain chemicals and/or the limited number of adequately tested nonpromoting chemicals.

  12. Genetic variants of methyl metabolizing enzymes and epigenetic regulators: associations with promoter CpG island hypermethylation in colorectal cancer.

    PubMed

    de Vogel, Stefan; Wouters, Kim A D; Gottschalk, Ralph W H; van Schooten, Frederik J; de Goeij, Anton F P M; de Bruïne, Adriaan P; Goldbohm, Royle A; van den Brandt, Piet A; Weijenberg, Matty P; van Engeland, Manon

    2009-11-01

    Aberrant DNA methylation affects carcinogenesis of colorectal cancer. Folate metabolizing enzymes may influence the bioavailability of methyl groups, whereas DNA and histone methyltransferases are involved in epigenetic regulation of gene expression. We studied associations of genetic variants of folate metabolizing enzymes (MTHFR, MTR, and MTRR), DNA methyltransferase DNMT3b, and histone methyltransferases (EHMT1, EHMT2, and PRDM2), with colorectal cancers, with or without the CpG island methylator phenotype (CIMP), MLH1 hypermethylation, or microsatellite instability. Incidence rate ratios were calculated in case-cohort analyses, with common homozygotes as reference, among 659 cases and 1,736 subcohort members of the Netherlands Cohort Study on diet and cancer (n = 120,852). Men with the MTHFR 677TT genotype were at decreased colorectal cancer risk (incidence rate ratio, 0.49; P = 0.01), but the T allele was associated with increased risk in women (incidence rate ratio, 1.39; P = 0.02). The MTR 2756GG genotype was associated with increased colorectal cancer risk (incidence rate ratio, 1.58; P = 0.04), and inverse associations were observed among women carrying DNMT3b C-->T (rs406193; incidence rate ratio, 0.72; P = 0.04) or EHMT2 G-->A (rs535586; incidence rate ratio, 0.76; P = 0.05) polymorphisms. Although significantly correlated (P < 0.001), only 41.5% and 33.3% of CIMP tumors harbored MLH1 hypermethylation or microsatellite instability, respectively. We observed inverse associations between MTR A2756G and CIMP among men (incidence rate ratio, 0.58; P = 0.04), and between MTRR A66G and MLH1 hypermethylation among women (incidence rate ratio, 0.55; P = 0.02). In conclusion, MTHFR, MTR, DNMT3b, and EHMT2 polymorphisms are associated with colorectal cancer, and rare variants of MTR and MTRR may reduce promoter hypermethylation. The incomplete overlap between CIMP, MLH1 hypermethylation, and microsatellite instability indicates that these related "methylation

  13. Off Target, but Sequence-Specific, shRNA-Associated Trans-Activation of Promoter Reporters in Transient Transfection Assays

    PubMed Central

    Wan, Jun; Yerrabelli, Anitha; Berlinicke, Cindy; Kallman, Alyssa; Qian, Jiang; Zack, Donald J.

    2016-01-01

    Transient transfection promoter reporter assays are commonly used in the study of transcriptional regulation, and can be used to define and characterize both cis-acting regulatory sequences and trans-acting factors. In the process of using a variety of reporter assays designed to study regulation of the rhodopsin (rho) promoter, we discovered that rhodopsin promoter-driven reporter expression could be activated by certain species of shRNA in a gene-target-independent but shRNA sequence-specific manner, suggesting involvement of a specific shRNA associated pathway. Interestingly, the shRNA-mediated increase of rhodopsin promoter activity was synergistically enhanced by the rhodopsin transcriptional regulators CRX and NRL. Additionally, the effect was cell line-dependent, suggesting that this pathway requires the expression of cell-type specific factors. Since microRNA (miRNA) and interferon response-mediated processes have been implicated in RNAi off-target phenomena, we performed miRNA and gene expression profiling on cells transfected with shRNAs that do target a specific gene but have varied effects on rho reporter expression in order to identify transcripts whose expression levels are associated with shRNA induced rhodopsin promoter reporter activity. We identified a total of 50 miRNA species, and by microarray analysis, 320 protein-coding genes, some of which were predicted targets of the identified differentially expressed miRNAs, whose expression was altered in the presence of shRNAs that stimulated rhodopsin-promoter activity in a non-gene-targeting manner. Consistent with earlier studies on shRNA off-target effects, a number of interferon response genes were among those identified to be upregulated. Taken together, our results confirm the importance of considering off-target effects when interpreting data from RNAi experiments and extend prior results by focusing on the importance of including multiple and carefully designed controls in the design and

  14. Breed-specific expression of GR exon 1 mRNA variants and profile of GR promoter CpG methylation in the hippocampus of newborn piglets.

    PubMed

    Sun, Q; Jia, Y; Li, R; Li, X; Yang, X; Zhao, R

    2014-11-01

    Glucocorticoid receptor (GR) transcription is driven by alternative promoters to produce different exon 1 mRNA variants. CpG methylation on GR promoters profoundly affects GR transcription. GR in hippocampus is critical for energy homeostasis and stress responses, yet it remains unclear whether hippocampal expression of GR exon 1 mRNA variants and the methylation status of GR promoters differ between Large White (LW) and Erhualian (EHL) pigs showing distinct metabolic and stress-coping characteristics. EHL pigs had higher hippocampus weight relative to BW (P<0.01), which was associated with higher serum cortisol level compared with LW pigs. Hippocampal expression of brain-derived neurotrophic factor (P<0.05) was significantly higher, while Bax, a pro-apoptotic gene, was significantly lower in EHL pigs (P<0.05). Hippocampal expression of total GR did not differ between breeds, yet GR exon 1 to 11 mRNA was significantly higher (P<0.01) in EHL pigs, which was associated with a trend of increase (P=0.057) in GR protein content. No significant breed difference was detected for the methylation status across the whole region of the proximal GR promoter, while CpG334 and CpG266.267 were differentially methylated, in a reversed manner, between breeds. The methylation status of CpGs 248, 259, 260, 268 and 271 was negatively correlated (P<0.05) with GR exon 1 to 11 mRNA abundance. Our results provide fundamental information on the breed-specific characteristics of GR and its mRNA variants expression and the status of DNA methylation on the proximal GR promoter in the pig hippocampus.

  15. Promoter methylation of Wnt antagonist DKK1 gene and prognostic value in Korean patients with non-small cell lung cancers.

    PubMed

    Na, Yeonkyung; Lee, Su Man; Kim, Dong Sun; Park, Jae Yong

    2012-01-01

    Dickkopf-1 (DKK1) is known as a negative regulator of the Wnt signaling pathway, which plays a crucial role in carcinogenesis. However, aberrant expression and the role of DKK1 in human cancers remain controversial. To estimate the role of DKK1 and its prognostic potential in lung cancer, promoter methylation of DKK1 was evaluated in 139 primary non-small cell lung cancers (NSCLCs) by methylation-specific PCR and its association with clinical and prognostic parameters. DKK1 hypermethylation was detected in 48.9% of neoplastic lung tissues and was significantly more frequent in stage I than the more advanced stages II-IIIA (P=0.04). Additionally, patients with DKK1 methylation had a better overall survival than those with no methylation under univariate analysis. When stratified by clinicopathologic features, DKK1 methylation was significantly associated with a favorable survival in a subset of patients. The current findings suggested that DKK1 promoter methylation may be a tumor-associated event in the early stage of NSCLC and could also be useful prognostic indicator for NSCLC. Further work may clarify the molecular basis of DKK1 action in progression of NSCLC.

  16. Coupling ex vivo electroporation of mouse retinas and luciferase reporter assays to assess rod-specific promoter activity.

    PubMed

    Boulling, Arnaud; Escher, Pascal

    2016-07-01

    Ex vivo electroporation of mouse retinas is an established tool to modulate gene expression and to study cell type-specific gene expression. Here we coupled ex vivo electroporation to luciferase reporter assays to facilitate the study of rod-photoreceptor-specific gene promoters. The activity of the rod-specific proximal bovine rhodopsin promoter was significantly increased in C57BL/6J wild-type retinas at postnatal days 1 and 7 by 3.4-fold and 8.7-fold respectively. In C57BL/6J Nr2e3(rd7/rd7) retinas, where the rod photoreceptor-specific nuclear receptor Nr2e3 is not expressed, a significant increase by 2.5-fold was only observed at postnatal day 7. Cone-specific S-opsin promoter activity was not modulated in C57BL/6J wild-type and Nr2e3(rd7/rd7) retinas. Taken together, we describe an easily implementable protocol to assess rod-specific promoter activity in a physiological context resembling that of the developing postnatal mouse retina.

  17. Betaine attenuates hepatic steatosis by reducing methylation of the MTTP promoter and elevating genomic methylation in mice fed a high-fat diet.

    PubMed

    Wang, Li-jun; Zhang, Hong-wei; Zhou, Jing-ya; Liu, Yan; Yang, Yang; Chen, Xiao-ling; Zhu, Cui-hong; Zheng, Rui-dan; Ling, Wen-hua; Zhu, Hui-lian

    2014-03-01

    Aberrant DNA methylation contributes to the abnormality of hepatic gene expression, one of the main factors in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Betaine is a methyl donor and has been considered to be a lipotropic agent. However, whether betaine supplementation improves NAFLD via its effect on the DNA methylation of specific genes and the genome has not been explored. Male C57BL/6 mice were fed either a control diet or high-fat diet (HFD) supplemented with 0%, 1% and 2% betaine in water (wt/vol) for 12 weeks. Betaine supplementation ameliorated HFD-induced hepatic steatosis in a dose-dependent manner. HFD up-regulated FAS and ACOX messenger RNA (mRNA) expression and down-regulated PPARα, ApoB and MTTP mRNA expression; however, these alterations were reversed by betaine supplementation, except ApoB. MTTP mRNA expression was negatively correlated with the DNA methylation of its CpG sites at -184, -156, -63 and -60. Methylation of these CpG sites was lower in both the 1% and 2% betaine-supplemented groups than in the HFD group (averages; 25.55% and 14.33% vs. 30.13%). In addition, both 1% and 2% betaine supplementation significantly restored the methylation capacity [S-adenosylmethionine (SAM) concentration and SAM/S-adenosylhomocysteine ratios] and genomic methylation level, which had been decreased by HFD (0.37% and 0.47% vs. 0.25%). These results suggest that the regulation of aberrant DNA methylation by betaine might be a possible mechanism of the improvements in NAFLD upon betaine supplementation.

  18. Investigation into the promoter DNA methylation of three genes (CAMK1D, CRY2 and CALM2) in the peripheral blood of patients with type 2 diabetes.

    PubMed

    Cheng, Jia; Tang, Linlin; Hong, Qingxiao; Ye, Huadan; Xu, Xuting; Xu, Leiting; Bu, Shizhong; Wang, Qinwen; Dai, Dongjun; Jiang, Danjie; Duan, Shiwei

    2014-08-01

    Promoter DNA methylation may reflect the interaction between genetic backgrounds and environmental factors in the development of metabolic disorders, including type 2 diabetes (T2D). Calcium/calmodulin-dependent protein kinase 1D (CAMK1D), cryptochrome 2 (CRY2) and calmodulin 2 (CALM2) genes have been identified to be associated with a risk of T2D. Therefore, the aim of the present study was to investigate the contribution of promoter DNA methylation of these genes to the risk of T2D. Using bisulfite pyrosequencing technology, the DNA methylation levels of the CpG dinucleotides within the CAMK1D, CRY2 and CALM2 gene promoters were measured in 48 patients with T2D and 48 age- and gender-matched healthy controls. The results demonstrated that the promoters of these three genes were hypomethylated in the peripheral blood of all the subjects, and DNA methylation of these three genes did not contribute to the risk of T2D.

  19. Direct assay for O6-methylguanine-DNA methyltransferase and comparison of detection methods for the methylated enzyme in polyacrylamide gels and electroblots.

    PubMed

    Major, G N; Gardner, E J; Lawley, P D

    1991-07-01

    We describe in detail a direct assay for the substrate-inactivated DNA-repair enzyme, O6-methylguanine-DNA methyltransferase (O6-MT), which measures the transfer of radiolabelled methyl groups from a prepared O6-methylguanine-DNA substrate to the protein fraction of an enzyme-containing cell/tissue extract. This assay, a modification of a previously suggested method for monitoring O6-ethylguanine-DNA repair [Renard, Verly, Mehta & Ludlum (1983) Eur. J. Biochem. 136, 461-467], is sensitive, highly reproducible, accurate and is, as described here and relative to previously published methods, well suited for use with a large number of test samples. We identified two problems with the O6-[Me-3H]methylguanine-DNA substrate used in the present work and in other reported assay: firstly, that of progressively higher assay backgrounds with increasing age of substrate, which was nullified by once-only purification of the double-stranded substrate by hydroxyapatite chromatography; secondly, a substrate of high specific radioactivity (30 Ci/mmol), made with freshly prepared tritiated methylnitrosourea, behaved as a substrate of 5 Ci/mmol when referenced against radiolabelled O6-methylguanine-DNA made with either [3H]- or [14C]-methylnitrosourea at the lower specific radioactivities of 1 Ci/mmol and 61 mCi/mmol respectively. This apparently stemmed from the known instability of high-specific-radioactivity [3H]methylnitrosourea and indicated that an expected increase in sensitivity of the assay does not necessarily result from increasing the specific radioactivity of substrates above approx. 1 Ci/mmol. Although O6-MT was stable to preincubation at 25 degrees C, marked losses of activity were observed at 37 degrees C, and more so at 45 degrees C. Enzyme lability at the higher temperatures was not, however, seen during preincubation in the presence of its substrate. O6-[Me-3H]methylguanine-DNA, which apparently protected O6-MT against thermal inactivation. As previously seen with

  20. MicroRNA-7 Promotes Glycolysis to Protect against 1-Methyl-4-phenylpyridinium-induced Cell Death.

    PubMed

    Chaudhuri, Amrita Datta; Kabaria, Savan; Choi, Doo Chul; Mouradian, M Maral; Junn, Eunsung

    2015-05-08

    Parkinson disease is associated with decreased activity of the mitochondrial electron transport chain. This defect can be recapitulated in vitro by challenging dopaminergic cells with 1-methyl-4-phenylpyridinium (MPP(+)), a neurotoxin that inhibits complex I of electron transport chain. Consequently, oxidative phosphorylation is blocked, and cells become dependent on glycolysis for ATP production. Therefore, increasing the rate of glycolysis might help cells to produce more ATP to meet their energy demands. In the present study, we show that microRNA-7, a non-coding RNA that protects dopaminergic neuronal cells against MPP(+)-induced cell death, promotes glycolysis in dopaminergic SH-SY5Y and differentiated human neural progenitor ReNcell VM cells, as evidenced by increased ATP production, glucose consumption, and lactic acid production. Through a series of experiments, we demonstrate that targeted repression of RelA by microRNA-7, as well as subsequent increase in the neuronal glucose transporter 3 (Glut3), underlies this glycolysis-promoting effect. Consistently, silencing Glut3 expression diminishes the protective effect of microRNA-7 against MPP(+). Further, microRNA-7 fails to prevent MPP(+)-induced cell death when SH-SY5Y cells are cultured in a low glucose medium, as well as when differentiated ReNcell VM cells or primary mouse neurons are treated with the hexokinase inhibitor, 2-deoxy-d-glucose, indicating that a functional glycolytic pathway is required for this protective effect. In conclusion, microRNA-7, by down-regulating RelA, augments Glut3 expression, promotes glycolysis, and subsequently prevents MPP(+)-induced cell death. This protective effect of microRNA-7 could be exploited to correct the defects in oxidative phosphorylation in Parkinson disease.

  1. An interferon-beta promoter reporter assay for high throughput identification of compounds against multiple RNA viruses.

    PubMed

    Guo, Fang; Zhao, Xuesen; Gill, Tina; Zhou, Yan; Campagna, Matthew; Wang, Lijuan; Liu, Fei; Zhang, Pinghu; DiPaolo, Laura; Du, Yanming; Xu, Xiaodong; Jiang, Dong; Wei, Lai; Cuconati, Andrea; Block, Timothy M; Guo, Ju-Tao; Chang, Jinhong

    2014-07-01

    Virus infection of host cells is sensed by innate pattern recognition receptors (PRRs) and induces production of type I interferons (IFNs) and other inflammatory cytokines. These cytokines orchestrate the elimination of the viruses but are occasionally detrimental to the hosts. The outcomes and pathogenesis of viral infection are largely determined by the specific interaction between the viruses and their host cells. Therefore, compounds that either inhibit viral infection or modulate virus-induced cytokine response should be considered as candidates for managing virus infection. The aim of the study was to identify compounds in both categories, using a single cell-based assay. Our screening platform is a HEK293 cell-based reporter assay where the expression of a firefly luciferase is under the control of a human IFN-β promoter. We have demonstrated that infection of the reporter cell line with a panel of RNA viruses activated the reporter gene expression that correlates quantitatively with the levels of virus replication and progeny virus production, and could be inhibited in a dose-dependent manner by known antiviral compound or inhibitors of PRR signal transduction pathways. Using Dengue virus as an example, a pilot screening of a small molecule library consisting of 26,900 compounds proved the concept that the IFN-β promoter reporter assay can serve as a convenient high throughput screening platform for simultaneous discovery of antiviral and innate immune response modulating compounds. A representative antiviral compound from the pilot screening, 1-(6-ethoxybenzo[d]thiazol-2-yl)-3-(3-methoxyphenyl) urea, was demonstrated to specifically inhibit several viruses belonging to the family of flaviviridae.

  2. Role of DNA methylation of AHR1 and AHR2 promoters in differential sensitivity to PCBs in Atlantic Killifish, Fundulus heteroclitus.

    PubMed

    Aluru, Neelakanteswar; Karchner, Sibel I; Hahn, Mark E

    2011-01-17

    Atlantic killifish (Fundulus heteroclitus) inhabiting the PCB-contaminated Superfund site in New Bedford Harbor (MA, USA) have evolved genetic resistance to the toxic effects of these compounds. They also lack induction of cytochrome P4501A (CYP1A) and other aryl hydrocarbon receptor (AHR)-dependent responses after exposure to AHR agonists, suggesting an overall down-regulation of the AHR signaling pathway. In this study, we hypothesized that the genetic resistance is due to altered AHR expression resulting from hypermethylation of DNA in the promoter region of AHR genes in fish inhabiting New Bedford Harbor. To test this hypothesis, we cloned and sequenced AHR1 and AHR2 promoter regions and employed bisulfite conversion-polymerase chain reaction (BS-PCR) followed by clonal analysis to compare the methylation status of CpG islands of AHR1 and AHR2 in livers of adult killifish collected from New Bedford Harbor and a reference site (Scorton Creek, MA). No significant differences in methylation profiles were observed in either AHR1 or AHR2 promoter regions between NBH and SC fish. However, hypermethylation of the AHR1 promoter correlated with low expression of transcripts in the liver in both populations. In comparison to AHR1, hepatic mRNA expression of AHR2 is high and its promoter is hypomethylated. Taken together, our results suggest that genetic resistance to contaminants in NBH fish is not due to altered methylation of AHR promoter regions, but that promoter methylation may control tissue-specific expression of AHR genes in killifish.

  3. CG methylation.

    PubMed

    Vinson, Charles; Chatterjee, Raghunath

    2012-12-01

    A striking feature of mammalian genomes is the paucity of the CG dinucleotide. There are approximately 20,000 regions termed CpG islands where CGs cluster. This represents 5% of all CGs and 1% of the genome. CpG islands are typically unmethylated and are often promoters for housekeeping genes. The remaining 95% of CG dinucleotides are disposed throughout 99% of the genome and are typically methylated and found in half of all promoters. CG methylation facilitates binding of the C/EBP family of transcription factors, proteins critical for differentiation of many tissues. This allows these proteins to localize in the methylated CG poor regions of the genome where they may produce advantageous changes in gene expression at nearby or more distant regions of the genome. In this review, our growing understanding of the consequences of CG methylation will be surveyed.

  4. Differential incubation temperatures result in dimorphic DNA methylation patterning of the SOX9 and aromatase promoters in gonads of alligator (Alligator mississippiensis) embryos.

    PubMed

    Parrott, Benjamin B; Kohno, Satomi; Cloy-McCoy, Jessica A; Guillette, Louis J

    2014-01-01

    Environmental factors are known to influence sex determination in many nonmammalian vertebrates. In all crocodilians studied thus far, temperature is the only known determinant of sex. However, the molecular mechanisms mediating the effect of temperature on sex determination are not known. Aromatase (CYP19A1) and SOX9 play critical roles in vertebrate sex determination and gonadogenesis. Here, we used a variety of techniques to investigate the potential roles of DNA methylation patterning on CYP19A1 and SOX9 expression in the American alligator, an organism that relies on temperature-dependent sex determination. Our findings reveal that developing gonads derived from embryos incubated at a male-producing temperature (MPT) show elevated CYP19A1 promoter methylation and decreased levels of gene expression relative to incubation at a female-producing temperature (FPT). The converse was observed at the SOX9 locus, with increased promoter methylation and decreased expression occurring in embryonic gonads resulting from incubation at FPT relative to that of MPT. We also examined the gonadal expression of the three primary, catalytically active DNA methyltransferase enzymes and show that they are present during critical stages of gonadal development. Together, these data strongly suggest that DNA methylation patterning is a central component in coordinating the genetic cascade responsible for sexual differentiation. In addition, these data raise the possibility that DNA methylation could act as a key mediator integrating temperature into a molecular trigger that determines sex in the alligator.

  5. Mouse Pig-a and micronucleus assays respond to N-ethyl-N-nitrosourea, benzo[a]pyrene, and ethyl carbamate, but not pyrene or methyl carbamate.

    PubMed

    Labash, Carson; Avlasevich, Svetlana L; Carlson, Kristine; Berg, Ariel; Torous, Dorothea K; Bryce, Steven M; Bemis, Jeffrey C; MacGregor, James T; Dertinger, Stephen D

    2016-01-01

    This laboratory previously described a method for scoring the incidence of peripheral blood Pig-a mutant phenotype rat erythrocytes using immunomagnetic separation in conjunction with flow cytometric analysis (In Vivo MutaFlow®). The current work extends the method to mouse blood, using the frequency of CD24-negative reticulocytes (RET(CD24-)) and erythrocytes (RBC(CD24-)) as phenotypic reporters of Pig-a gene mutation. Following assay optimization, reconstruction experiments demonstrated the ability of the methodology to return expected values. Subsequently, the responsiveness of the assay to the genotoxic carcinogens N-ethyl-N-nitrosourea, benzo[a]pyrene, and ethyl carbamate was studied in male CD-1 mice exposed for 3 days to several dose levels via oral gavage. Blood samples were collected on Day 4 for micronucleated reticulocyte analyses, and on Days 15 and 30 for determination of RET(CD24-) and RBC(CD24-) frequencies. The same design was used to study pyrene, with benzo[a]pyrene as a concurrent positive control, and methyl carbamate, with ethyl carbamate as a concurrent positive control. The three genotoxicants produced marked dose-related increases in the frequencies of Pig-a mutant phenotype cells and micronucleated reticulocytes. Ethyl carbamate exposure resulted in moderately higher micronucleated reticulocyte frequencies relative to N-ethyl-N-nitrosourea or benzo[a]pyrene (mean ± SEM = 3.0 ± 0.36, 2.3 ± 0.17, and 2.3 ± 0.49%, respectively, vs. an aggregate vehicle control frequency of 0.18 ± 0.01%). However, it was considerably less effective at inducing Pig-a mutant cells (e.g., Day 15 mean no. RET(CD24-) per 1 million reticulocytes = 7.6 ± 3, 150 ± 9, and 152 ± 43 × 10(-6), respectively, vs. an aggregate vehicle control frequency of 0.6 ± 0.13 × 10(-6)). Pyrene and methyl carbamate, tested to maximum tolerated dose or limit dose levels, had no effect on mutant cell or micronucleated reticulocyte frequencies. Collectively, these results

  6. Gene-Specific Promoter Methylation Status in Hormone-Receptor-Positive Breast Cancer Associates with Postmenopausal Body Size and Recreational Physical Activity

    PubMed Central

    McCullough, Lauren E.; Chen, Jia; White, Alexandra J.; Xu, Xinran; Cho, Yoon Hee; Bradshaw, Patrick T.; Eng, Sybil M.; Teitelbaum, Susan L.; Terry, Mary Beth; Garbowski, Gail; Neugut, Alfred I.; Hibshoosh, Hanina; Santella, Regina M.; Gammon, Marilie D.

    2015-01-01

    Introduction Breast cancer, the leading cancer diagnosis among American women, is positively associated with postmenopausal obesity and little or no recreational physical activity (RPA). However, the underlying mechanisms of these associations remain unresolved. Aberrant changes in DNA methylation may represent an early event in carcinogenesis, but few studies have investigated associations between obesity/RPA and gene methylation, particularly in postmenopausal breast tumors where these lifestyle factors are most relevant. Methods We used case-case unconditional logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CI) for the associations between body mass index (BMI=weight [kg]/height [m2]) in the year prior to diagnosis, or RPA (average hours/week), and methylation status (methylated vs. unmethylated) of 13 breast cancer-related genes in 532 postmenopausal breast tumor samples from the Long Island Breast Cancer Study Project. We also explored whether the association between BMI/RPA and estrogen/progesterone-receptor status (ER+PR+ vs. all others) was differential with respect to gene methylation status. Methylation-specific PCR and the MethyLight assay were used to assess gene methylation. Results BMI 25-29.9kg/m2, and perhaps BMI≥30kg/m2, was associated with methylated HIN1 in breast tumor tissue. Cases with BMI≥30kg/m2 were more likely to have ER+PR+ breast tumors in the presence of unmethylated ESR1 (OR=2.63, 95% CI 1.32-5.25) and women with high RPA were more likely to have ER+PR+ breast tumors with methylated GSTP1 (OR=2.33, 95% CI 0.79-6.84). Discussion While biologically plausible, our findings that BMI is associated with methylated HIN1 and BMI/RPA are associated with ER+PR+ breast tumors in the presence of unmethylated ESR1 and methylated GSTP1, respectively, warrant further investigation. Future studies would benefit from enrolling greater numbers of postmenopausal women and examining a larger panel of breast cancer

  7. Constitutive promoter methylation of BRCA1 and RAD51C in patients with familial ovarian cancer and early-onset sporadic breast cancer.

    PubMed

    Hansmann, Tamara; Pliushch, Galyna; Leubner, Monika; Kroll, Patricia; Endt, Daniela; Gehrig, Andrea; Preisler-Adams, Sabine; Wieacker, Peter; Haaf, Thomas

    2012-11-01

    Genetic defects in breast cancer (BC) susceptibility genes, most importantly BRCA1 and BRCA2, account for ~40% of hereditary BC and ovarian cancer (OC). Little is known about the contribution of constitutive (soma-wide) epimutations to the remaining cases. We developed bisulfite pyrosequencing assays to screen >600 affected BRCA1/BRCA2 mutation-negative patients from the German Consortium for Hereditary Breast and Ovarian Cancer for constitutive hypermethylation of ATM, BRCA1, BRCA2, RAD51C, PTEN and TP53 in blood cells. In a second step, patients with ≥6% promoter methylation were analyzed by bisulfite plasmid sequencing to demonstrate the presence of hypermethylated alleles (epimutations), indicative of epigenetic gene silencing. Altogether we identified nine (1.4%) patients with constitutive BRCA1 and three (0.5%) with RAD51C hypermethylation. Epimutations were found in both sporadic cases, in particular in 2 (5.5%) of 37 patients with early-onset BC, and familial cases, in particular 4 (10%) of 39 patients with OC. Hypermethylation was always confined to one of the two parental alleles in a subset (12-40%) of the analyzed cells. Because epimutations occurred in cell types from different embryonal layers, they most likely originated in single cells during early somatic development. We propose that analogous to germline genetic mutations constitutive epimutations may serve as the first hit of tumor development. Because the role of constitutive epimutations in cancer development is likely to be largely underestimated, future strategies for effective testing of susceptibility to BC and OC should include an epimutation screen.

  8. Downregulation of N-myc downstream regulated gene 1 caused by the methylation of CpG islands of NDRG1 promoter promotes proliferation and invasion of prostate cancer cells.

    PubMed

    Li, Yalin; Pan, Pan; Qiao, Pengfei; Liu, Ranlu

    2015-09-01

    Current studies tend to consider N-myc downstream regulated gene 1 (NDRG1) as a tumor suppressor gene, inhibiting cell proliferation and invasion. NDRG1 expression in cancer cells is generally low, but the molecular mechanism is unclear. Aberrant methylation of CpG islands (CGIs) in gene promoter was able to inactivate tumor suppressor genes and activate oncogenes, disordering cell proliferation and apoptosis, playing a promotion role in tumor occurrence and progression. The present study was performed to investigate the effect of epigenetic modification of NDRG1 on prostate cancer (PCa) cells. The protein expression in human specimens was measured by immunohistochemical staining. The expression level of NDRG1 was changed by plasmid vectors in PCa cells. These cells were used to study proliferation and invasiveness. NDRG1 expression in normal prostate cells was higher than that in PCa cells. Downregulation of NDRG1 expression enhanced cell proliferation and invasiveness. In contrast, its upregulation could reduce cell proliferation and invasiveness. In PCa cells, the methylation rate of CGIs in the promoter region of NDRG1 was higher than that in normal prostate cells. 5-Aza-CdR, a methylation inhibitor, was able to effectively reverse the aberrant methylation of NDRG1, enhancing its expression, inhibiting cell growth. NDRG1 can inhibit the cell proliferation and invasion of PCa, but its expression level is low. The aberrant methylation of NDRG1 promoter is an important mechanism for gene silencing, playing an important role in tumor occurrence and progression. Therefore, reversing the aberrant methylation of NDRG1 may be used for PCa treatment.

  9. Nuclear translocation of Acinetobacter baumannii transposase induces DNA methylation of CpG regions in the promoters of E-cadherin gene.

    PubMed

    Moon, Dong Chan; Choi, Chul Hee; Lee, Su Man; Lee, Jung Hwa; Kim, Seung Il; Kim, Dong Sun; Lee, Je Chul

    2012-01-01

    Nuclear targeting of bacterial proteins has emerged as a pathogenic mechanism whereby bacterial proteins induce host cell pathology. In this study, we examined nuclear targeting of Acinetobacter baumannii transposase (Tnp) and subsequent epigenetic changes in host cells. Tnp of A. baumannii ATCC 17978 possesses nuclear localization signals (NLSs), (225)RKRKRK(230). Transient expression of A. baumannii Tnp fused with green fluorescent protein (GFP) resulted in the nuclear localization of these proteins in COS-7 cells, whereas the truncated Tnp without NLSs fused with GFP were exclusively localized in the cytoplasm. A. baumannii Tnp was found in outer membrane vesicles, which delivered this protein to the nucleus of host cells. Nuclear expression of A. baumannii Tnp fused with GFP in A549 cells induced DNA methylation of CpG regions in the promoters of E-cadherin (CDH1) gene, whereas the cytoplasmic localization of the truncated Tnp without NLSs fused with GFP did not induce DNA methylation. DNA methylation in the promoters of E-cadherin gene induced by nuclear targeting of A. baumannii Tnp resulted in down-regulation of gene expression. In conclusion, our data show that nuclear traffic of A. baumannii Tnp induces DNA methylation of CpG regions in the promoters of E-cadherin gene, which subsequently down-regulates gene expression. This study provides a new insight into the epigenetic control of host genes by bacterial proteins.

  10. Early life adversity and serotonin transporter gene variation interact to affect DNA methylation of the corticotropin-releasing factor gene promoter region in the adult rat brain.

    PubMed

    van der Doelen, Rick H A; Arnoldussen, Ilse A; Ghareh, Hussein; van Och, Liselot; Homberg, Judith R; Kozicz, Tamás

    2015-02-01

    The interaction between childhood maltreatment and the serotonin transporter (5-HTT) gene linked polymorphic region has been associated with increased risk to develop major depression. This Gene × Environment interaction has furthermore been linked with increased levels of anxiety and glucocorticoid release upon exposure to stress. Both endophenotypes are regulated by the neuropeptide corticotropin-releasing factor (CRF) or hormone, which is expressed by the paraventricular nucleus of the hypothalamus, the bed nucleus of the stria terminalis, and the central amygdala (CeA). Therefore, we hypothesized that altered regulation of the expression of CRF in these areas represents a major neurobiological mechanism underlying the interaction of early life stress and 5-HTT gene variation. The programming of gene transcription by Gene × Environment interactions has been proposed to involve epigenetic mechanisms such as DNA methylation. In this study, we report that early life stress and 5-HTT genotype interact to affect DNA methylation of the Crf gene promoter in the CeA of adult male rats. Furthermore, we found that DNA methylation of a specific site in the Crf promoter significantly correlated with CRF mRNA levels in the CeA. Moreover, CeA CRF mRNA levels correlated with stress coping behavior in a learned helplessness paradigm. Together, our findings warrant further investigation of the link of Crf promoter methylation and CRF expression in the CeA with behavioral changes that are relevant for psychopathology.

  11. Sevoflurane attenuate hypoxia-induced VEGF level in tongue squamous cell carcinoma cell by upregulating the DNA methylation states of the promoter region.

    PubMed

    Lu, Yi; Wang, Jing; Yan, Jia; Yang, Yaqiong; Sun, Yu; Huang, Yan; Hu, Rong; Zhang, Ying; Jiang, Hong

    2015-04-01

    Anaesthetic agents were confirmed to play a role on the tumor angiogenesis. The effect of sevoflurane on tongue squamous cell carcinoma (TSCC) cell has not been investigated. SCC-4 cells were exposed to sevoflurane after simulating hypoxia. Then, both the mRNA and protein level of hypoxia-inducible factor (HIF)-1α and VEGF were detected. The methylation states of the VEGF promoter region were also assessed to reveal the underlying mechanism. Finally, the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-Aza) was administrated to reveal the relationship of DNA methylation on the regulation of the VEGF level. Results showed that sevoflurane attenuated the hypoxia-induced VEGF level without altering the HIF-1α after exposure for 24 and 72 h. Sevoflurane increased the DNA methylation of the VEGF promoter region. The attenuation effect of sevoflurane on hypoxia-induced VEGF level could be blocked by 5-Aza. We concluded that sevoflurane attenuates hypoxia-induced VEGF level via DNA methylation of the promoter region in TSCC cell.

  12. Dietary methyl donors, methyl metabolizing enzymes, and epigenetic regulators: diet-gene interactions and promoter CpG island hypermethylation in colorectal cancer.

    PubMed

    de Vogel, Stefan; Wouters, Kim A D; Gottschalk, Ralph W H; van Schooten, Frederik J; de Goeij, Anton F P M; de Bruïne, Adriaan P; Goldbohm, R Alexandra; van den Brandt, Piet A; van Engeland, Manon; Weijenberg, Matty P

    2011-01-01

    Dietary methyl donors might influence DNA methylation during carcinogenesis of colorectal cancer (CRC). Among 609 CRC cases and 1,663 subcohort members of the Netherlands Cohort Study on diet and cancer (n = 120,852), we estimated CRC risk according to methyl donor intake across genotypes of folate metabolizing enzymes and methyltransferases.Although diet-gene interactions were not statistically significant, methionine intake was inversely associated with CRC among subjects having both common rs2424913 and rs406193 DNMT3B C > T genotypes (highest versus lowest tertile: RR = 0.44; p (trend) = 0.05). Likewise, vitamin B2 was modestly inversely associated among individuals with the MTHFR c.665CC (rs1801133) genotype (RR = 0.66; p (trend) = 0.08), but with a significant reduced risk when ≤ 1 rare allele occurred in the combination of folate metabolizing enzymes MTHFR, MTRR and MTR (RR = 0.30; p (trend) = 0.005). Folate or vitamin B6 were neither inversely associated with CRC nor was methyl donor intake associated with the CpG island methylator phenotype (CIMP).Despite the absence of heterogeneity across genotypes, might an effect of methyl donors on CRC be more pronounced among individuals carrying common variants of folate metabolizing enzymes or DNA methyltransferases. Combining genotypes may assist to reveal diet associations with CRC, possibly because rare variants of related genes may collectively affect specific metabolic pathways or enzymatic functions.

  13. The relationship between RASSF1A gene promoter methylation and the susceptibility and prognosis of melanoma: A meta-analysis and bioinformatics

    PubMed Central

    Li, Haili; Tang, Wenru; Jia, Shuting; Wu, Xiaoming; Luo, Ying

    2017-01-01

    Background The function of the tumor suppressor gene RASSF1A in cancer cells has been detailed in many studies. However, due to the methylation of its promoter, the expression of RASSF1A is missing in most cancers. In the literature, we found that the conclusion regarding the relationship between RASSF1A gene promoter methylation and the susceptibility and prognosis of melanoma was not unified. This study adopts the use of a meta-analysis and bioinformatics to explore the relationship between RASSF1A gene promoter methylation and the susceptibility and prognosis of melanoma. Methods Data on melanoma susceptibility were downloaded from the PubMed, Cochrane Library, Web of Science and Google Scholar databases, which were analyzed via a meta-analysis. The effect sizes were estimated by measuring an odds ratio (OR) with a 95% confidence interval (CI). We also used a chi-squared-based Q test to examine the between-study heterogeneity, and used funnel plots to evaluate publication bias. The data on melanoma prognosis, which were analyzed by bioinformatics methods, were downloaded from The Cancer Genome Atlas (TCGA) project. The effect sizes were estimated by measuring the hazard ratios (HRs) with a 95% confidence interval (CI). Results Our meta-analysis included 10 articles. We found that RASSF1A gene promoter methylation was closely related to melanoma susceptibility (OR = 12.67, 95% CI: 6.16 ∼ 26.05, z = 6.90, P<0.0001 according to a fixed effects model and OR = 9.25, 95% CI: 4.37 ∼ 19.54, z = 5.82, P<0.0001 according to a random effects model). The results of the meta-analysis did not reveal any heterogeneity (tau2 = 0.00; H = 1 [1; 1.55]; I2 = 0% [0%; 58.6%], P = 0.5158) or publication bias (t = 0.87, P = 0.4073 by Egger’s test; Z = 0.45, P = 0.6547 by Begg’s test); therefore, we believe that the results of our meta-analysis were more reliable. To explore the relationship between RASSF1A gene methylation, the prognosis of melanoma and the clinical features of

  14. Effects of parturition and dexamethasone on DNA methylation patterns of IFN-γ and IL-4 promoters in CD4+ T-lymphocytes of Holstein dairy cows

    PubMed Central

    Paibomesai, Marlene; Hussey, Brendan; Nino-Soto, Maria; Mallard, Bonnie A.

    2013-01-01

    This study investigated epigenetic mechanisms by which DNA methylation affects the function of bovine adaptive immune system cells, particularly during the peripartum period, when shifts in type 1 and type 2 immune response (IR) biases are thought to occur. Stimulation of CD4+ T-lymphocytes isolated from 5 Holstein dairy cows before and after parturition with concanavalin A (ConA) and stimulation of CD4+ T-lymphocytes isolated from 3 Holstein dairy cows in mid-lactation with ConA alone or ConA plus dexamethasone (Dex) had significant effects on production of the cytokines interferon gamma (IFN-γ, type 1) and interleukin 4 (IL-4, type 2) that were consistent with DNA methylation profiles of the IFN-γ gene promoter region but not consistent for the IL-4 promoter region. ConA stimulation increased the production of both cytokines before and after parturition. It decreased DNA methylation in the IFN-γ promoter region but increased for IL-4 promoter region. Parturition was associated with an increase in IFN-γ production in ConA-stimulated cells that approached significance. Overall, DNA methylation in both promoter regions increased between the prepartum and postpartum periods, although this did not correlate with secreted cytokine concentrations. Dexamethasone treated cells acted in a manner consistent with the glucocorticoid’s immunosuppressive activity, which mimicked the change at the IFN-γ promoter region observed during parturition. These results support pregnancy as type 2 IR biased, with increases of IFN-γ occurring after parturition and an increase in IL-4 production before calving. It is likely that these changes may be epigenetically controlled. PMID:23814356

  15. Effects of parturition and dexamethasone on DNA methylation patterns of IFN-γ and IL-4 promoters in CD4+ T-lymphocytes of Holstein dairy cows.

    PubMed

    Paibomesai, Marlene; Hussey, Brendan; Nino-Soto, Maria; Mallard, Bonnie A

    2013-01-01

    This study investigated epigenetic mechanisms by which DNA methylation affects the function of bovine adaptive immune system cells, particularly during the peripartum period, when shifts in type 1 and type 2 immune response (IR) biases are thought to occur. Stimulation of CD4+ T-lymphocytes isolated from 5 Holstein dairy cows before and after parturition with concanavalin A (ConA) and stimulation of CD4+ T-lymphocytes isolated from 3 Holstein dairy cows in mid-lactation with ConA alone or ConA plus dexamethasone (Dex) had significant effects on production of the cytokines interferon gamma (IFN-γ, type 1) and interleukin 4 (IL-4, type 2) that were consistent with DNA methylation profiles of the IFN-γ gene promoter region but not consistent for the IL-4 promoter region. ConA stimulation increased the production of both cytokines before and after parturition. It decreased DNA methylation in the IFN-γ promoter region but increased for IL-4 promoter region. Parturition was associated with an increase in IFN-γ production in ConA-stimulated cells that approached significance. Overall, DNA methylation in both promoter regions increased between the prepartum and postpartum periods, although this did not correlate with secreted cytokine concentrations. Dexamethasone treated cells acted in a manner consistent with the glucocorticoid's immunosuppressive activity, which mimicked the change at the IFN-γ promoter region observed during parturition. These results support pregnancy as type 2 IR biased, with increases of IFN-γ occurring after parturition and an increase in IL-4 production before calving. It is likely that these changes may be epigenetically controlled.

  16. Identification of aberrant gene expression associated with aberrant promoter methylation in primordial germ cells between E13 and E16 rat F3 generation vinclozolin lineage

    PubMed Central

    2015-01-01

    Background Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is heritable between generations. However, because methylation is removed and then re-established during development, it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to exhibit TGE abnormalities. Methods This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature extraction to previously reported and publically available gene expression/promoter methylation profiles of rat primordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during development. Results The biological feasibility of the identified genes were tested via enrichment analyses of various biological concepts including pathway analysis, gene ontology terms and protein-protein interactions. All validations suggested superiority of the proposed method over three conventional and popular supervised methods that employed t test, limma and significance analysis of microarrays, respectively. The identified genes were globally related to tumors, the prostate, kidney, testis and the immune system and were previously reported to be related to various diseases caused by TGE. Conclusions Among the genes reported by PCA-based unsupervised feature extraction, we propose that chemokine signaling pathways and leucine rich repeat proteins are key factors that initiate transgenerational epigenetic-mediated diseases, because multiple genes included in these two categories were identified in this study. PMID:26677731

  17. Promoter methylation patterns of ABCB1, ABCC1 and ABCG2 in human cancer cell lines, multidrug-resistant cell models and tumor, tumor-adjacent and tumor-distant tissues from breast cancer patients

    PubMed Central

    Spitzwieser, Melanie; Pirker, Christine; Koblmüller, Bettina; Pfeiler, Georg; Hacker, Stefan; Berger, Walter; Heffeter, Petra; Cichna-Markl, Margit

    2016-01-01

    Overexpression of ABCB1, ABCC1 and ABCG2 in tumor tissues is considered a major cause of limited efficacy of anticancer drugs. Gene expression of ABC transporters is regulated by multiple mechanisms, including changes in the DNA methylation status. Most of the studies published so far only report promoter methylation levels for either ABCB1 or ABCG2, and data on the methylation status for ABCC1 are scarce. Thus, we determined the promoter methylation patterns of ABCB1, ABCC1 and ABCG2 in 19 human cancer cell lines. In order to contribute to the elucidation of the role of DNA methylation changes in acquisition of a multidrug resistant (MDR) phenotype, we also analyzed the promoter methylation patterns in drug-resistant sublines of the cancer cell lines GLC-4, SW1573, KB-3-1 and HL-60. In addition, we investigated if aberrant promoter methylation levels of ABCB1, ABCC1 and ABCG2 occur in tumor and tumor-surrounding tissues from breast cancer patients. Our data indicates that hypomethylation of the ABCC1 promoter is not cancer type-specific but occurs in cancer cell lines of different origins. Promoter methylation was found to be an important mechanism in gene regulation of ABCB1 in parental cancer cell lines and their drug-resistant sublines. Overexpression of ABCC1 in MDR cell models turned out to be mediated by gene amplification, not by changes in the promoter methylation status of ABCC1. In contrast to the promoters of ABCC1 and ABCG2, the promoter of ABCB1 was significantly higher methylated in tumor tissues than in tumor-adjacent and tumor-distant tissues from breast cancer patients. PMID:27689338

  18. Cell-specific transcriptional regulation and reactivation of galectin-1 gene expression are controlled by DNA methylation of the promoter region.

    PubMed Central

    Benvenuto, G; Carpentieri, M L; Salvatore, P; Cindolo, L; Bruni, C B; Chiariotti, L

    1996-01-01

    The galectin-1 gene is developmentally regulated gene whose activity is strongly modulated during cell differentiation and transformation. We have previously shown that galectin-1 promoter constructs are highly active when transiently transfected in cells both expressing and not expressing the endogenous gene and that the basal activity is determined by a small region encompassing the transcription start site (from positions -50 to +50). We have now investigated the role of DNA methylation in galectin-1 gene expression. Southern blot analysis with HpaII and MspI endonucleases and sodium bisulfite analysis of genomic DNA from expressing and nonexpressing cell lines and cell hybrids showed a close correlation between gene activity and demethylation of the 5' region of the galectin-1 gene. We found that the galectin-1 promoter region is fully methylated, at every CpG site on both strands, in nonexpressing differentiated rat liver (FAO) and thyroid (PC C13) cells and unmethylated in the expressing undifferentiated liver (BRL3A) and thyroid transformed (PC myc/raf) cell lines. In addition, reactivation of the silent FAO alleles in FAO-human osteosarcoma (143tk-) hybrid cells is accompanied by a complete demethylation of the promoter region. Finally, when galectin-1 chloramphenicol acetyltransferase (CAT) promoter constructs were methylated in vitro by SssI methylase at every cytosine residue of the CpG doublets and transfected into mouse fibroblasts, the transcription of the CAT reporter gene was strongly inhibited. PMID:8649381

  19. Promoter analyses and transcriptional profiling of eggplant polyphenol oxidase 1 gene (SmePPO1) reveal differential response to exogenous methyl jasmonate and salicylic acid.

    PubMed

    Shetty, Santoshkumar M; Chandrashekar, Arun; Venkatesh, Yeldur P

    2012-05-01

    The transcriptional regulation of multigenic eggplant (Solanum melongena) polyphenol oxidase genes (SmePPO) is orchestrated by their corresponding promoters which mediate developmentally regulated expression in response to myriad biotic and abiotic factors. However, information on structural features of SmePPO promoters and modulation of their expression by plant defense signals are lacking. In the present study, SmePPOPROMOTERs were cloned by genome walking, and their transcription start sites (TSS) were determined by RLM-RACE. Extensive sequence analyses revealed the presence of evolutionarily conserved and over-represented putative cis-acting elements involved in light-regulated transcription, biosynthetic pathways (phenylpropanoid/flavonoid), hormone signaling (abscisic acid, gibberellic acid, jasmonate and salicylate), elicitor and stress responses (cold/dehydration responses), sugar metabolism and plant defense signaling (W-BOX/WRKY) that are common to SmePPOPROMOTER1 and 2. The TSS for SmePPO genes are located 9-15bp upstream of ATG with variable lengths of 5' untranslated regions. Transcriptional profiling of SmePPOs in eggplant seedlings has indicated differential response to methyl jasmonate (MeJA) or salicylic acid (SA) treatment. In planta, while MeJA elicited expression of all the six SmePPOs, SA was only able to induce the expression of SmePPO4-6. Interestingly, in dual treatment, SA considerably repressed the MeJA-induced expression of SmePPOs. Functional dissection of SmePPOPROMOTER1 by deletion analyses using Agrobacterium-mediated transient expression in tobacco leaves has shown that MeJA enhances the SmePPOPROMOTER1-β-glucuronidase (GUS) expression in vivo, while SA does not. Histochemical and quantitative GUS assays have also indicated the negative effect of SA on MeJA-induced expression of SmePPOPROMOTER1. By combining in silico analyses, transcriptional profiling and expression of SmePPOPROMOTER1-GUS fusions, the role of SA on the modulation

  20. CDKN2A (p14(ARF)/p16(INK4a)) and ATM promoter methylation in patients with impalpable breast lesions.

    PubMed

    Delmonico, Lucas; Moreira, Aline dos Santos; Franco, Marco Felipe; Esteves, Eliane Barbosa; Scherrer, Luciano; Gallo, Claúdia Vitória de Moura; do Nascimento, Cristina Moreira; Ornellas, Maria Helena Faria; de Azevedo, Carolina Maria; Alves, Gilda

    2015-10-01

    Early detection of breast cancer increases the chances of cure, but the reliable identification of impalpable lesions is still a challenge. In spite of the advances in breast cancer detection, the molecular basis of impalpable lesions and the corresponding circulating biomarkers are not well understood. Impalpable lesions, classified by radiologists according to the Breast Imaging Reporting and Data System in the categories 3 and 4, can be either benign or malignant (slow growing or aggressive). In this article, we report the DNA methylation pattern in CDKN2A (p14(ARF)/p16(INK4a)) and in ATM gene promoters from 62 impalpable lesions, 39 peripheral blood samples, and 39 saliva samples, assessed by methylation-specific polymerase chain reaction method. ATM showed the greatest percentage of methylation in DNA from lesions (benign and malignant), blood (even with p16(INK4a)), and saliva, followed by p16(INK4a) and p14(ARF). Among the malignant cases, ATM promoter was the most hypermethylated in lesion DNA and in blood and saliva DNAs, and p14(ARF), the least. The highest percentage of p16(INK4a) methylation was found in the blood. Finally, our data are relevant because they were obtained using impalpable breast lesions from patients who were carefully recruited in 2 public hospitals of Rio de Janeiro.

  1. Autophagy impairment by Helicobacter pylori-induced methylation silencing of MAP1LC3Av1 promotes gastric carcinogenesis.

    PubMed

    Muhammad, Jibran Sualeh; Nanjo, Sohachi; Ando, Takayuki; Yamashita, Satoshi; Maekita, Takao; Ushijima, Toshikazu; Tabuchi, Yoshiaki; Sugiyama, Toshiro

    2017-05-15

    Helicobacter pylori (H. pylori) infection induces methylation silencing of tumor suppressor genes causing gastric carcinogenesis. Impairment of autophagy induces DNA damage leading to genetic instability and carcinogenesis. We aimed to identify whether H. pylori infection induced methylation silencing of host autophagy-related (Atg) genes, impairing autophagy and enhancing gastric carcinogenesis. Gastric mucosae were obtained from 41 gastric cancer patients and 11 healthy volunteers (8 H. pylori-uninfected and 3 H. pylori-infected). Methylation status of Atg genes was analyzed by a methylation microarray and quantitative methylation-specific PCR (qMSP); mRNA expression was assessed by quantitative reverse transcription PCR (qRT-PCR). Cell proliferation, migration and invasion were assessed in normal rat gastric epithelial cells. Gene knock-down was performed by siRNA. Autophagy was assessed by western blotting. Of 34 Atg genes, MAP1LC3A variant 1 (MAP1LC3Av1) and ULK2 were identified by methylation microarray analysis as exhibiting specific methylation in H. pylori-infected mucosae and gastric cancer tissues. Methylation silencing of MAP1LC3Av1 was confirmed by qMSP, qRT-PCR and de-methylation treatment in two gastric cancer cell lines. Knock-down of map1lc3a, the rat homolog of the human MAP1LC3Av1, inhibited autophagy response and increased cell proliferation, migration and invasion in normal rat gastric epithelial cells, despite the presence of map1lc3b, the rat homolog of the human MAP1LC3B gene important for autophagy. Furthermore, MAP1LC3Av1 was methylation-silenced in 23.3% of gastric cancerous mucosae and 40% of non-cancerous mucosae with H. pylori infection. MAP1LC3Av1 is essential for autophagy and H. pylori-induced methylation silencing of MAP1LC3Av1 may impair autophagy, facilitating gastric carcinogenesis.

  2. DNA Methylation in Basal Metazoans: Insights from Ctenophores

    PubMed Central

    Dabe, Emily C.; Sanford, Rachel S.; Kohn, Andrea B.; Bobkova, Yelena; Moroz, Leonid L.

    2015-01-01

    Epigenetic modifications control gene expression without altering the primary DNA sequence. However, little is known about DNA methylation in invertebrates and its evolution. Here, we characterize two types of genomic DNA methylation in ctenophores, 5-methyl cytosine (5-mC) and the unconventional form of methylation 6-methyl adenine (6-mA). Using both bisulfite sequencing and an ELISA-based colorimetric assay, we experimentally confirmed the presence of 5-mC DNA methylation in ctenophores. In contrast to other invertebrates studied, Mnemiopsis leidyi has lower levels of genome-wide 5-mC methylation, but higher levels of 5-mC methylation in promoters when compared with gene bodies. Phylogenetic analysis showed that ctenophores have distinct forms of DNA methyltransferase 1 (DNMT1); the zf-CXXC domain type, which localized DNMT1 to CpG sites, and is a metazoan specific innovation. We also show that ctenophores encode the full repertoire of putative enzymes for 6-mA DNA methylation, and these genes are expressed in the aboral organ of Mnemiopsis. Using an ELISA-based colorimetric assay, we experimentally confirmed the presence of 6-mA methylation in the genomes of three different species of ctenophores, M. leidyi, Beroe abyssicola, and Pleurobrachia bachei. The functional role of this novel epigenomic mark is currently unknown. In summary, despite their compact genomes, there is a wide variety of epigenomic mechanisms employed by basal metazoans that provide novel insights into the evolutionary origins of biological novelties. PMID:26173712

  3. DNA Methylation in Basal Metazoans: Insights from Ctenophores.

    PubMed

    Dabe, Emily C; Sanford, Rachel S; Kohn, Andrea B; Bobkova, Yelena; Moroz, Leonid L

    2015-12-01

    Epigenetic modifications control gene expression without altering the primary DNA sequence. However, little is known about DNA methylation in invertebrates and its evolution. Here, we characterize two types of genomic DNA methylation in ctenophores, 5-methyl cytosine (5-mC) and the unconventional form of methylation 6-methyl adenine (6-mA). Using both bisulfite sequencing and an ELISA-based colorimetric assay, we experimentally confirmed the presence of 5-mC DNA methylation in ctenophores. In contrast to other invertebrates studied, Mnemiopsis leidyi has lower levels of genome-wide 5-mC methylation, but higher levels of 5-mC methylation in promoters when compared with gene bodies. Phylogenetic analysis showed that ctenophores have distinct forms of DNA methyltransferase 1 (DNMT1); the zf-CXXC domain type, which localized DNMT1 to CpG sites, and is a metazoan specific innovation. We also show that ctenophores encode the full repertoire of putative enzymes for 6-mA DNA methylation, and these genes are expressed in the aboral organ of Mnemiopsis. Using an ELISA-based colorimetric assay, we experimentally confirmed the presence of 6-mA methylation in the genomes of three different species of ctenophores, M. leidyi, Beroe abyssicola, and Pleurobrachia bachei. The functional role of this novel epigenomic mark is currently unknown. In summary, despite their compact genomes, there is a wide variety of epigenomic mechanisms employed by basal metazoans that provide novel insights into the evolutionary origins of biological novelties.

  4. Comparative study of the comet assay and the micronucleus test in amphibian larvae (Xenopus laevis) using benzo(a)pyrene, ethyl methanesulfonate, and methyl methanesulfonate: establishment of a positive control in the amphibian comet assay.

    PubMed

    Mouchet, F; Gauthier, L; Mailhes, C; Ferrier, V; Devaux, A

    2005-02-01

    The present investigation explored the potential use of the comet assay (CA) as a genotoxicity test in the amphibian Xenopus laevis and compared it with the French standard micronucleus test (MNT). Benzo[a]pyrene (B[a]P), methyl methanesulfonate (MMS), and ethyl methanesulfonate (EMS) were used as model compounds for assessing DNA damage. Damage levels were measured as DNA strand breaks after alkaline electrophoresis of nuclei isolated from larval amphibian erythrocytes using the CA in order to establish a positive control for further ecotoxicological investigations. The results led to the selection of MMS as a positive control on the basis of the higher sensitivity of Xenopus laevis to this compound. The CA and MNT were compared for their ability to detect DNA damage with the doses of chemical agents and exposure times applied. EMS and MMS were shown to increase micronucleus and DNA strand break formation in larval erythrocytes concurrently. However, B[a]P increased micronucleus formation but not that of DNA strand breaks. Time-dose experiments over 12 days of exposure suggest that the CA provides an earlier significant response to genotoxicants than does the MNT. In Xenopus the CA appears to be a sensitive and suitable method for detecting genotoxicity like that caused by EMS and MMS. It can be considered a genotoxicity-screening tool. The results for B[a]P show that both tests should be used in a complementary manner on Xenopus.

  5. The association, clinicopathological significance, and diagnostic value of CDH1 promoter methylation in head and neck squamous cell carcinoma: a meta-analysis of 23 studies

    PubMed Central

    Shen, Zhisen; Zhou, Chongchang; Li, Jinyun; Deng, Hongxia; Li, Qun; Wang, Jian

    2016-01-01

    Epithelial cadherin (encoded by the CDH1 gene) is a tumor suppressor glycoprotein that plays a role in the invasion and metastasis of human cancers. As previous studies regarding the association between CDH1 promoter methylation and head and neck squamous cell carcinoma (HNSCC) have yielded inconsistent conclusions, a meta-analysis was performed. A systematic literature review was undertaken from four databases: PubMed, Embase, Google Scholar, and Web of Science. Finally, a total of 23 studies (including 1,727 cases of HNSCC and 555 normal controls) were included in the present study. Our results showed that the frequency of CDH1 promoter methylation in HNSCC was statistically greater than in controls (odds ratio [OR] =5.94, 95% confidence interval [CI]: 3.36–10.51, P<0.001). In reported cases of HNSCC, CDH1 promoter methylation was statistically associated with tumor stage (OR =0.46, 95% CI: 0.27–0.78, P=0.004) and a history of alcohol consumption (OR =6.04, 95% CI: 2.41–15.14, P<0.001). Moreover, the sensitivity, specificity, and area under the curve of the summary receiver operator characteristic for the included studies were 0.50 (95% CI: 0.4–0.61), 0.89 (95% CI: 0.79–0.95), and 0.74 (95% CI: 0.70–0.78), respectively. In conclusion, our meta-analyses indicated that CDH1 promoter methylation was associated with HNSCC risk, and may be utilized as a valuable diagnostic biomarker for HNSCC. PMID:27826202

  6. The association, clinicopathological significance, and diagnostic value of CDH1 promoter methylation in head and neck squamous cell carcinoma: a meta-analysis of 23 studies.

    PubMed

    Shen, Zhisen; Zhou, Chongchang; Li, Jinyun; Deng, Hongxia; Li, Qun; Wang, Jian

    2016-01-01

    Epithelial cadherin (encoded by the CDH1 gene) is a tumor suppressor glycoprotein that plays a role in the invasion and metastasis of human cancers. As previous studies regarding the association between CDH1 promoter methylation and head and neck squamous cell carcinoma (HNSCC) have yielded inconsistent conclusions, a meta-analysis was performed. A systematic literature review was undertaken from four databases: PubMed, Embase, Google Scholar, and Web of Science. Finally, a total of 23 studies (including 1,727 cases of HNSCC and 555 normal controls) were included in the present study. Our results showed that the frequency of CDH1 promoter methylation in HNSCC was statistically greater than in controls (odds ratio [OR] =5.94, 95% confidence interval [CI]: 3.36-10.51, P<0.001). In reported cases of HNSCC, CDH1 promoter methylation was statistically associated with tumor stage (OR =0.46, 95% CI: 0.27-0.78, P=0.004) and a history of alcohol consumption (OR =6.04, 95% CI: 2.41-15.14, P<0.001). Moreover, the sensitivity, specificity, and area under the curve of the summary receiver operator characteristic for the included studies were 0.50 (95% CI: 0.4-0.61), 0.89 (95% CI: 0.79-0.95), and 0.74 (95% CI: 0.70-0.78), respectively. In conclusion, our meta-analyses indicated that CDH1 promoter methylation was associated with HNSCC risk, and may be utilized as a valuable diagnostic biomarker for HNSCC.

  7. Short-term fish reproduction assays with methyl tertiary butyl ether with zebrafish and fathead minnow: Implications for evaluation of potential for endocrine activity.

    PubMed

    Mihaich, Ellen; Erler, Steffen; Le Blanc, Gerald; Gallagher, Sean

    2015-09-01

    The authors report on short-term fish reproduction assays in zebrafish and fathead minnow conducted to examine the potential for methyl tertiary butyl ether (MTBE) to cause effects on the endocrine system. Both studies were performed under good laboratory practice and in accordance with Organisation for Economic Co-operation and Development and US Environmental Protection Agency test guidelines. The results of the first study demonstrated that exposure to a high test concentration (147 mg/L) of MTBE impaired reproductive output of female zebrafish, evident by a reduction in fecundity. Based on the endpoints evaluated in the present study however, there was no supporting evidence to indicate that this effect was caused by disruption of or interaction with the endocrine system. In the second study, fathead minnows exposed to a wider but lower range of test concentrations showed no effects on any reproductive parameter of male or female fish, at the maximum recommended testing concentration of 100 mg/L (62 mg/L measured). The results of these 2 guideline studies indicate that MTBE does not interact with the hypothalamic-pituitary-gonadal axis of zebrafish or fathead minnow.

  8. Interrupted E2F1-miR-34c-SCF negative feedback loop by hyper-methylation promotes colorectal cancer cell proliferation

    PubMed Central

    Yang, Shu; Wu, Bo; Sun, Haimei; Ji, Fengqing; Sun, Tingyi; Zhao, Yan; Zhou, Deshan

    2015-01-01

    Tumour suppressor miR-34c deficiency resulted from hyper-methylation in its promoter is believed to be one of the main causes of colorectal cancer (CRC). Till date, miR-34c has been validated as a direct target of p53; but previous evidence suggested other transcription factor(s) must be involved in miR-34c transcription. In the present study, we in the first place identified a core promoter region (−1118 to −883 bp) of pre-miR-34c which was embedded within a hyper-methylated CpG island. Secondly, E2F1 promoted miR-34c transcription by physical interaction with the miR-34c promoter at site −897 to −889 bp. The transcriptional activating effect of E2F1 on miR-34c was in a p53 independent manner but profoundly promoted in the presence of p53 with exposure to 5-aza-2′-deoxycytidine (DAC). Thirdly, stem cell factor (SCF), a miR-34c target, was specifically reduced upon an introduction of E2F1 which lead to suppression of CRC cell proliferation. The E2F1-suppressed cell proliferation was partially abrogated by additional miR-34c inhibitor, indicating that the anti-proliferation effect of E2F1 was probably through activating miR-34c-SCF axis. Finally, SCF/KIT signalling increased E2F1 production by reducing its proteosomal degradation dependent on PI3K/Akt-GSK3β pathway. In conclusion, our results suggested the existence of E2F1-miR-34c-SCF negative feedback loop which was interrupted by the hyper-methylation of miR-34c promoter in CRC cells and increased cell proliferation. PMID:26704889

  9. Novel cell lines isolated from mouse embryonic stem cells exhibiting de novo methylation of the E-cadherin promoter.

    PubMed

    Hawkins, Kate; Keramari, Maria; Soncin, Francesca; Segal, Joe M; Mohamet, Lisa; Miazga, Natalie; Ritson, Sarah; Bobola, Nicoletta; Merry, Catherine L R; Ward, Christopher M

    2014-11-01

    Mouse embryonic stem cells (mESCs) and epiblast stem cells represent the naïve and primed pluripotent states, respectively. These cells self-renew via distinct signaling pathways and can transition between the two states in the presence of appropriate growth factors. Manipulation of signaling pathways has therefore allowed the isolation of novel pluripotent cell types such as Fibroblast growth factor, Activin and BIO-derived stem cells and IESCs. However, the effect of cell seeding density on pluripotency remains unexplored. In this study, we have examined whether mESCs can epigenetically regulate E-cadherin to enter a primed-like state in response to low cell seeding density. We show that low density seeding in the absence of leukaemia inhibitory factor (LIF) induces decreased apoptosis and maintenance of pluripotency via Activin/Nodal, concomitant with loss of E-cadherin, Signal transducer and activator of transcription phosphorylation, and chimera-forming ability. These cells, E-cadherin negative proliferating stem cells (ENPSCs) can be reverted to a naïve phenotype by addition of LIF or forced E-cadherin expression. However, prolonged culture of ENPSCs without LIF leads to methylation of the E-cadherin promoter (ENPSC(M)), which cannot be reversed by LIF supplementation, and increased histone H3K27 and decreased H3K4 trimethylation. Transcript analysis of ENPSC(M) revealed a primed-like phenotype and their differentiation leads to enrichment of neuroectoderm cells. The generation of ENPSCs is similar to tumorigenesis as ENPSCs exhibit transcript alterations associated with neoplasia, hyperplasia, carcinoma, and metastasis. We therefore describe a novel cell model to elucidate the role of E-cadherin in pluripotency and to investigate epigenetic regulation of this gene during mESC differentiation and tumor metastasis.

  10. Promotion of N-methyl-N-nitrosourea-induced thyroid tumors by iodine deficiency in F344/NCr rats.

    PubMed

    Ohshima, M; Ward, J M

    1984-07-01

    Six-week-old male F344 rats were each given an injection once iv of N-methyl-N-nitrosourea [(MNU) CAS: 684-93-5] at a dose of 41.2 mg/kg body weight. Two weeks later, groups of rats were placed on iodine-deficient (ID) or iodine-adequate (IA) diets and then sacrificed at 20 and 33 weeks. Other groups received ID or IA diets without MNU. For localizing thyroid-stimulating hormone (TSH) and prolactin, sections of pituitary glands were stained by the avidin-biotin-peroxidase complex technique with the use of anti-rat TSH or prolactin antibody. At 20 weeks, rats receiving MNU and ID diets had a 100% incidence of diffuse follicular goiter and multiple follicular adenomas of the thyroid. Focal proliferative thyroid follicular lesions including focal hyperplasias and adenomas per square centimeter of thyroid gland were significantly increased in rats given MNU and ID diets in comparison with rats given MNU and IA diets. At 33 weeks, all MNU rats on ID diets had a significantly increased incidence of thyroid carcinoma of the follicular or papillary types and diffuse pituitary thyrotroph hyperplasia, hypertrophy, and vacuolar degeneration. Rats fed ID diets without MNU had diffuse follicular goiter but no tumors at any time period. MNU given alone in rats fed IA diets induced a 10% incidence of single thyroid adenomas at 20 weeks and 70% at 33 weeks and a 10% incidence of thyroid carcinoma at 33 weeks. Tumors induced in other organs by MNU were not affected by the ID diets. Thus this experiment provided evidence that ID diets are potent promoters of thyroid tumors in this system, but the ID diet itself without carcinogen was not carcinogenic under the conditions of the study.

  11. Epigenetic modification of TLR4 promotes activation of NF-κB by regulating methyl-CpG-binding domain protein 2 and Sp1 in gastric cancer

    PubMed Central

    Oh, Byung Moo; Lee, Heesoo; Uhm, Tae Gi; Min, Jeong-Ki; Park, Young-Jun; Yoon, Suk Ran; Kim, Bo-Yeon; Kim, Jong Wan; Choe, Yong-Kyung; Lee, Hee Gu

    2016-01-01

    Toll-like receptor 4 (TLR4) is important in promoting the immune response in various cancers. Recently, TLR4 is highly expressed in a stage-dependent manner in gastric cancer, but the regulatory mechanism of TLR4 expression has been not elucidated it. Here, we investigated the mechanism underlying regulation of TLR4 expression through promoter methylation and histone modification between transcriptional regulation and silencing of the TLR4 gene in gastric cancer cells. Chromatin immunoprecipitation was carried out to screen for factors related to TLR4 methylation such as MeCP2, HDAC1, and Sp1 on the TLR4 promoter. Moreover, DNA methyltransferase inhibitor 5-aza-deoxycytidine (5-aza-dC) induced demethylation of the TLR4 promoter and increased H3K4 trimethylation and Sp1 binding to reactivate silenced TLR4. In contrast, although the silence of TLR4 activated H3K9 trimethylation and MeCP2 complex, combined treatment with TLR4 agonist and 5-aza-dC upregulated H3K4 trimethylation and activated with transcription factors as Sp1 and NF-κB. This study demonstrates that recruitment of the MeCP2/HDAC1 repressor complex increases the low levels of TLR4 expression through epigenetic modification of DNA and histones on the TLR4 promoter, but Sp1 activates TLR4 high expression by hypomethylation and NF-κB signaling in gastric cancer cells. PMID:26675260

  12. DNA methylation in an engineered heart tissue model of cardiac hypertrophy: common signatures and effects of DNA methylation inhibitors.

    PubMed

    Stenzig, Justus; Hirt, Marc N; Löser, Alexandra; Bartholdt, Lena M; Hensel, Jan-Tobias; Werner, Tessa R; Riemenschneider, Mona; Indenbirken, Daniela; Guenther, Thomas; Müller, Christian; Hübner, Norbert; Stoll, Monika; Eschenhagen, Thomas

    2016-01-01

    DNA methylation affects transcriptional regulation and constitutes a drug target in cancer biology. In cardiac hypertrophy, DNA methylation may control the fetal gene program. We therefore investigated DNA methylation signatures and their dynamics in an in vitro model of cardiac hypertrophy based on engineered heart tissue (EHT). We exposed EHTs from neonatal rat cardiomyocytes to a 12-fold increased afterload (AE) or to phenylephrine (PE 20 µM) and compared DNA methylation signatures to control EHT by pull-down assay and DNA methylation microarray. A 7-day intervention sufficed to induce contractile dysfunction and significantly decrease promoter methylation of hypertrophy-associated upregulated genes such as Nppa (encoding ANP) and Acta1 (α-skeletal actin) in both intervention groups. To evaluate whether pathological consequences of AE are affected by inhibiting de novo DNA methylation we applied AE in the absence and presence of DNA methyltransferase (DNMT) inhibitors: 5-aza-2'-deoxycytidine (aza, 100 µM, nucleosidic inhibitor), RG108 (60 µM, non-nucleosidic) or methylene disalicylic acid (MDSA, 25 µM, non-nucleosidic). Aza had no effect on EHT function, but RG108 and MDSA partially prevented the detrimental consequences of AE on force, contraction and relaxation velocity. RG108 reduced AE-induced Atp2a2 (SERCA2a) promoter methylation. The results provide evidence for dynamic DNA methylation in cardiac hypertrophy and warrant further investigation of the potential of DNA methylation in the treatment of cardiac hypertrophy.

  13. The regulation of TIM-3 transcription in T cells involves c-Jun binding but not CpG methylation at the TIM-3 promoter.

    PubMed

    Yun, Su Jin; Jun, Ka-Jung; Komori, Kuniharu; Lee, Mi Jin; Kwon, Myung-Hee; Chwae, Yong-Joon; Kim, Kyongmin; Shin, Ho-Joon; Park, Sun

    2016-07-01

    Tim-3 is an immunomodulatory protein that is expressed constitutively on monocytes but is induced in activated T cells. The mechanisms involved in the regulation of TIM-3 transcription are poorly understood. In the present study, we investigated whether methylation of the TIM-3 promoter is involved in regulatingTIM-3 transcription in T cells, and identified a transcription factor that regulates TIM-3 transcription by associating with the TIM-3 minimal promoter region. Pyrosequencing of the TIM-3 promoter up to -1440bp revealed 11 hypermethylated CpG sites and 4 hypomethylated CpG sites in human CD4(+) T cells as well as in CD11b(+) cells. Dimethylation of histone H3 lysine 4 (H3K4), a mark of transcriptional activation, was predominantly found in the proximal TIM-3 promoter -954 to -34bp region, whereas trimethylation of H3K9 and H3K27, which are markers of transcriptional suppression, were mostly observed in the distal promoter -1549 to -1048bp region in human CD4(+) T cells and CD11b(+) cells. However, no change in the methylation status of CpG sites and the histone H3 in the TIM-3 promoter was found during induction of TIM-3 transcription in T cells. Finally, AP-1 involvement in TIM-3 transcription was shown in relation with the TIM-3 minimal promoter -146 to +144bp region. The present study defines the minimal TIM-3 promoter region and demonstrates its interaction with c-Jun during TIM-3 transcription in CD4(+) T cells.

  14. Characteristics of fads2 gene expression and putative promoter in European sea bass (Dicentrarchus labrax): comparison with salmonid species and analysis of CpG methylation.

    PubMed

    Geay, Florian; Zambonino-Infante, José; Reinhardt, Richard; Kuhl, Heiner; Santigosa, Ester; Cahu, Chantal; Mazurais, David

    2012-03-01

    Marine fish species exhibit low capacity to biosynthesise highly unsaturated fatty acid (HUFA) in comparison to strict freshwater and anadromous species. It is admitted that the Delta(6) desaturase (FADS2) is a key enzyme in the HUFA biosynthetic pathway. We investigated by quantitative PCR the relative amounts of FADS2 mRNA in European sea bass (Dicentrarchus labrax) in comparison with a salmonid species, the rainbow trout (Oncorhynchus mykiss L.). The analysis of the expression data was performed regarding the difference of the characteristics of a critical fragment of the fads2 gene promoter between sea bass and Atlantic salmon. The lower level of fads2 gene expression observed in sea bass suggested that fads2 gene putative promoter, which exhibited an E-box like Sterol Regulatory Element (SRE) site but lacked a Sp1 site, is less active in this marine species. The cytosine methylation of CpG sites in the putative promoter region including E-box like SRE and NF-Y binding sites of sea bass fads2 gene was also investigated following a nutritional conditioning of larvae. However, no significant difference of CpG methylation could be found for any of the 28 CpGs analysed between larvae fed diet with high or low HUFA contents. In conclusion, the present data revealed lower constitutive expression of the fads2 gene possibly related to different characteristics of gene promoter in sea bass in comparison with salmonid species, and indicated that long-term conditioning of fads2 gene expression did not influence the methylation of the gene promoter at potential SRE binding site.

  15. Body Mass Index in Pregnancy Does Not Affect Peroxisome Proliferator-activated Receptor Gamma Promoter Region (−359 to −260) Methylation in the Neonate

    PubMed Central

    Casamadrid, VRE; Amaya, CA; Mendieta, ZH

    2016-01-01

    Background: Obesity in pregnancy can contribute to epigenetic changes. Aim: To assess whether body mass index (BMI) in pregnancy is associated with changes in the methylation of the peroxisome proliferator-activated receptor γ (PPAR) promoter region (-359 to - 260) in maternal and neonatal leukocytes. Subjects and Methods: In this matched, cohort study 41 pregnant women were allocated into two groups: (a) Normal weight (n = 21) and (b) overweight (n = 20). DNA was extracted from maternal and neonatal leukocytes (4000-10,000 cells) in MagNA Pure (Roche) using MagNA Pure LC DNA Isolation Kit 1 (Roche, Germany). Treatment of DNA (2 μg) was performed with sodium bisulfite (EZ DNA Methylation-Direct™ Kit; Zymo Research). Real-time quantitative polymerase chain reaction (qPCR) was performed in a LightCycler 2.0 (Roche) using the SYBR® Advantage® qPCR Premix Kit (Clontech). The primers used for PPARγ coactivator (PPARG) M3 were 5’- aagacggtttggtcgatc-3’ (forward), and5’- cgaaaaaaaatccgaaatttaa-3’ (reverse) and those for PPARG unmethylated were: 5’-gggaagatggtttggttgatt-3’ (forward) and 5’- ttccaaaaaaaaatccaaaatttaa-3’ (reverse). Intergroup differences were calculated using the Mann-Whitney U-test, and intragroup differences, with the Wilcoxon test (IBM SPSS Statistics for Windows, Version 19.0. Armonk, NY: IBM Corp.). Results: Significant differences were found in BMI, pregestational weight, and postdelivery weight between groups but not in the methylation status of the PPARγ promoter region (-359 to - 260). Conclusion: The PPARγ promoter region (-359 to - 260) in peripheral leukocytes is unlikely to get an obesity-induced methylation in pregnancy. PMID:27144075

  16. Maternal and post-weaning high-fat, high-sucrose diet modulates glucose homeostasis and hypothalamic POMC promoter methylation in mouse offspring.

    PubMed

    Zheng, Jia; Xiao, Xinhua; Zhang, Qian; Yu, Miao; Xu, Jianping; Wang, Zhixin; Qi, Cuijuan; Wang, Tong

    2015-10-01

    Substantial evidence demonstrated that maternal dietary nutrients can significantly determine the susceptibility to developing metabolic disorders in the offspring. Therefore, we aimed to investigate the later-life effects of maternal and postweaning diets interaction on epigenetic modification of the central nervous system in the offspring. We examined the effects of dams fed a high-fat, high-sucrose (FS) diet during pregnancy and lactation and weaned to FS diet continuously until 32 weeks of age. Then, DNA methylation and gene expressions of hypothalamic proopiomelanocortin (POMC) and melanocortin receptor 4 (MC4R) were determined in the offspring. Offspring of FS diet had heavier body weight, impaired glucose tolerance, decreased insulin sensitivity and higher serum leptin level at 32-week age (p < 0.05). The expression of POMC and MC4R genes were significantly increased in offspring exposed to FS diet during gestation, lactation and into 32-week age (p < 0.05). Consistently, hypomethylation of POMC promoter in the hypothalamus occurred in the FS diet offspring (p < 0.05), compared with the C group. However, no methylation was detected of MC4R promoter in both the two groups. Furthermore, POMC-specific methylation (%) was negatively associated with glucose response to a glucose load (r = -0.273, p = 0.039). Maternal and post-weaning high-fat diet predisposes the offspring for obesity, glucose intolerance and insulin resistance in later life. Our findings can advance our thinking around the DNA methylation status of the promoter of the POMC and MC4R genes between long-term high-fat, high-sucrose diet and glucose homeostasis in mouse.

  17. Selection of drugs to test the specificity of the Tg.AC assay by screening for induction of the gadd153 promoter in vitro.

    PubMed

    Thompson, Karol L; Sistare, Frank D

    2003-08-01

    Short-term assays for carcinogenicity testing of chemicals that use transgenic mice designed to have altered expression of genes mechanistically relevant to carcinogenesis are attractive alternatives to two-year dosing studies in rodents. The models that have been the received the greatest level of performance evaluation include p53(+/-), rasH2, Xpa/p53(+/-), and Tg.AC mice. For use of these models in a regulatory setting to evaluate the carcinogenic potential of pharmaceuticals, it is important to establish an assurance of assay specificity and positive predictivity based on studies using drugs with a wide spectrum of pharmacologic activity. For this purpose, 99 noncarcinogenic drugs were prioritized based on their activity in an in vitro induction assay correlative with a positive response in the Tg.AC assay (induction of the gadd153 promoter in HepG2 cells). Activities in two assays less predictive of Tg.AC activity (induction of c-fos and zeta-globin gene promoters) were also measured. Nine percent of the screened drugs induced the gadd153 promoter by at least fourfold. Several criteria were used to select candidates for subsequent in vivo testing in the Tg.AC assay: (1) sufficient drug solubility in appropriate skin paint vehicles to elicit systemic toxicity, (2) the level of induction of the gadd153 promoter by the drug, (3) the in vitro potency of the drug, and (4) the cost of the drug required for a 6-month study. Based on these criteria, amiloride, dipyridamole, and pyrimethamine were selected from 99 rodent noncarcinogens in a drug database for testing the specificity of the Tg.AC assay.

  18. Association between aberrant APC promoter methylation and breast cancer pathogenesis: a meta-analysis of 35 observational studies

    PubMed Central

    Zhou, Dan; Tang, Weiwei; Wang, Wenyi; Pan, Xiaoyan

    2016-01-01

    Background. Adenomatous polyposis coli (APC) is widely known as an antagonist of the Wnt signaling pathway via the inactivation of β-catenin. An increasing number of studies have reported that APC methylation contributes to the predisposition to breast cancer (BC). However, recent studies have yielded conflicting results. Methods. Herein, we systematically carried out a meta-analysis to assess the correlation between APC methylation and BC risk. Based on searches of the Cochrane Library, PubMed, Web of Science and Embase databases, the odds ratio (OR) with 95% confidence interval (CI) values were pooled and summarized. Results. A total of 31 articles involving 35 observational studies with 2,483 cases and 1,218 controls met the inclusion criteria. The results demonstrated that the frequency of APC methylation was significantly higher in BC cases than controls under a random effect model (OR = 8.92, 95% CI [5.12–15.52]). Subgroup analysis further confirmed the reliable results, regardless of the sample types detected, methylation detection methods applied and different regions included. Interestingly, our results also showed that the frequency of APC methylation was significantly lower in early-stage BC patients than late-stage ones (OR = 0.62, 95% CI [0.42–0.93]). Conclusion. APC methylation might play an indispensable role in the pathogenesis of BC and could be regarded as a potential biomarker for the diagnosis of BC. PMID:27478702

  19. Infection assays in Arabidopsis reveal candidate effectors from the poplar rust fungus that promote susceptibility to bacteria and oomycete pathogens.

    PubMed

    Germain, Hugo; Joly, David L; Mireault, Caroline; Plourde, Mélodie B; Letanneur, Claire; Stewart, Donald; Morency, Marie-Josée; Petre, Benjamin; Duplessis, Sébastien; Séguin, Armand

    2016-11-21

    Fungi of the Pucciniales order cause rust diseases which, altogether, affect thousands of plant species worldwide and pose a major threat to several crops. How rust effectors-virulence proteins delivered into infected tissues to modulate host functions-contribute to pathogen virulence remains poorly understood. Melampsora larici-populina is a devastating and widespread rust pathogen of poplar, and its genome encodes 1184 identified small secreted proteins that could potentially act as effectors. Here, following specific criteria, we selected 16 candidate effector proteins and characterized their virulence activities and subcellular localizations in the leaf cells of Arabidopsis thaliana. Infection assays using bacterial (Pseudomonas syringae) and oomycete (Hyaloperonospora arabidopsidis) pathogens revealed subsets of candidate effectors that enhanced or decreased pathogen leaf colonization. Confocal imaging of green fluorescent protein-tagged candidate effectors constitutively expressed in stable transgenic plants revealed that some protein fusions specifically accumulate in nuclei, chloroplasts, plasmodesmata and punctate cytosolic structures. Altogether, our analysis suggests that rust fungal candidate effectors target distinct cellular components in host cells to promote parasitic growth.

  20. Methylation of Exons 1D, 1F, and 1H of the Glucocorticoid Receptor Gene Promoter and Exposure to Adversity in Pre-School Aged Children

    PubMed Central

    Tyrka, Audrey R.; Parade, Stephanie H.; Eslinger, Nicole M.; Marsit, Carmen J.; Lesseur, Corina; Armstrong, David A.; Philip, Noah S.; Josefson, Brittney; Seifer, Ronald

    2016-01-01

    Epigenetic modifications to the genome are a key mechanism involved in the biological encoding of experience. Animal studies and a growing body of literature in humans have shown that early adversity is linked to methylation of the gene for the glucocorticoid receptor (GR) which is a key regulator of the hypothalamic-pituitary-adrenal (HPA) axis as well as a broad range of physiological systems including metabolic and immune function. One hundred eighty-four families participated, including n=74 with child welfare documentation of moderate-severe maltreatment in the past six months. Children ranged in age from 3 to 5 years, and were racially and ethnically diverse. Structured record review and interviews in the home were used to assess a history of maltreatment, other traumas, and contextual life stressors, and a composite variable assessed the number exposures to these adversities. Methylation of regions 1D, 1F, and 1H of the GR gene was measured via sodium bisulfite pyrosequencing. The composite measure of adversity was positively correlated with methylation at exons 1D and 1F in the promoter of NR3C1. Individual stress measures were significantly associated with a several CpG sites in these regions. GR gene methylation may be a mechanism of the bio-behavioral effects of adverse exposures in young children. PMID:25997773

  1. Transcriptional silencing of the Wnt-antagonist DKK1 by promoter methylation is associated with enhanced Wnt signaling in advanced multiple myeloma.

    PubMed

    Kocemba, Kinga A; Groen, Richard W J; van Andel, Harmen; Kersten, Marie José; Mahtouk, Karène; Spaargaren, Marcel; Pals, Steven T

    2012-01-01

    The Wnt/β-catenin pathway plays a crucial role in the pathogenesis of various human cancers. In multiple myeloma (MM), aberrant auto-and/or paracrine activation of canonical Wnt signaling promotes proliferation and dissemination, while overexpression of the Wnt inhibitor Dickkopf1 (DKK1) by MM cells contributes to osteolytic bone disease by inhibiting osteoblast differentiation. Since DKK1 itself is a target of TCF/β-catenin mediated transcription, these findings suggest that DKK1 is part of a negative feedback loop in MM and may act as a tumor suppressor. In line with this hypothesis, we show here that DKK1 expression is low or undetectable in a subset of patients with advanced MM as well as in MM cell lines. This absence of DKK1 is correlated with enhanced Wnt pathway activation, evidenced by nuclear accumulation of β-catenin, which in turn can be antagonized by restoring DKK1 expression. Analysis of the DKK1 promoter revealed CpG island methylation in several MM cell lines as well as in MM cells from patients with advanced MM. Moreover, demethylation of the DKK1 promoter restores DKK1 expression, which results in inhibition of β-catenin/TCF-mediated gene transcription in MM lines. Taken together, our data identify aberrant methylation of the DKK1 promoter as a cause of DKK1 silencing in advanced stage MM, which may play an important role in the progression of MM by unleashing Wnt signaling.

  2. DNA methylation of SPARC and chronic low back pain

    PubMed Central

    2011-01-01

    Background The extracellular matrix protein SPARC (Secreted Protein, Acidic, Rich in Cysteine) has been linked to degeneration of the intervertebral discs and chronic low back pain (LBP). In humans, SPARC protein expression is decreased as a function of age and disc degeneration. In mice, inactivation of the SPARC gene results in the development of accelerated age-dependent disc degeneration concurrent with age-dependent behavioral signs of chronic LBP. DNA methylation is the covalent modification of DNA by addition of methyl moieties to cytosines in DNA. DNA methylation plays an important role in programming of gene expression, including in the dynamic regulation of changes in gene expression in response to aging and environmental signals. We tested the hypothesis that DNA methylation down-regulates SPARC expression in chronic LBP in pre-clinical models and in patients with chronic LBP. Results Our data shows that aging mice develop anatomical and behavioral signs of disc degeneration and back pain, decreased SPARC expression and increased methylation of the SPARC promoter. In parallel, we show that human subjects with back pain exhibit signs of disc degeneration and increased methylation of the SPARC promoter. Methylation of either the human or mouse SPARC promoter silences its activity in transient transfection assays. Conclusions This study provides the first evidence that DNA methylation of a single gene plays a role in chronic pain in humans and animal models. This has important implications for understanding the mechanisms involved in chronic pain and for pain therapy. PMID:21867537

  3. p53 inhibits the expression of p125 and the methylation of POLD1 gene promoter by downregulating the Sp1-induced DNMT1 activities in breast cancer

    PubMed Central

    Zhang, Liang; Yang, Weiping; Zhu, Xiao; Wei, Changyuan

    2016-01-01

    p125 is one of four subunits of human DNA polymerases – DNA Pol δ as well as one of p53 target protein encoded by POLD1. However, the function and significance of p125 and the role that p53 plays in regulating p125 expression are not fully understood in breast cancer. Tissue sections of human breast cancer obtained from 70 patients whose median age was 47.6 years (range: 38–69 years) with stage II–III breast cancer were studied with normal breast tissue from the same patients and two human breast cell lines (MCF-7 and MCF-10A). p53 expression levels were reduced, while p125 protein expression was increased in human breast cancer tissues and cell line detected by Western blot and quantitative reverse transcriptase-polymerase chain reaction. The methylation level of the POLD1 gene promoter was greater in breast cancer tissues and cells when compared with normal tissues and cells. In MCF-7 cell model, p53 overexpression caused a decrease in the level of p125 protein, while the methylation level of the p125 gene promoter was also inhibited by p53 overexpression. To further investigate the regulating mechanism of p53 on p125 expression, our study focused on DNA methyltransferase 1 (DNMT1) and transcription factor Sp1. Both DNMT1 and Sp1 protein expression were reduced when p53 was overexpressed in MCF-7 cells. The Sp1 binding site appears to be important for DNMT1 gene transcription; Sp1 and p53 can bind together, which means that DNMT1 gene expression may be downregulated by p53 through binding to Sp1. Because DNMT1 methylation level of the p125 gene promoter can affect p125 gene transcription, we propose that p53 may indirectly regulate p125 gene promoter expression through the control of DNMT1 gene transcription. In conclusion, the data from this preliminary study have shown that p53 inhibits the methylation of p125 gene promoter by downregulating the activities of Sp1 and DNMT1 in breast cancer. PMID:27022290

  4. Leptin and TNF-alpha promoter methylation levels measured by MSP could predict the response to a low-calorie diet.

    PubMed

    Cordero, Paul; Campion, Javier; Milagro, Fermin I; Goyenechea, Estibaliz; Steemburgo, Thais; Javierre, Biola M; Martinez, J Alfredo

    2011-09-01

    Obesity-associated adipose tissue enlargement is characterized by an enhanced proinflammatory status and an elevated secretion of adipokines such as leptin and cytokines such as tumor necrosis factor (TNF)-alpha. Among the different mechanisms that could underlie the interindividual differences in obesity, epigenetic regulation of gene expression has emerged as a potentially important determinant. Therefore, 27 obese women (age, 32-50 years; baseline body mass index, 34.4 ± 4.2 kg/m(2)) were prescribed an 8-week low-calorie diet, and epigenetic marks were assessed. Baseline and endpoint anthropometric parameters were measured, and blood samples were drawn. Genomic DNA and RNA from adipose tissue biopsies were isolated before and after the dietary intervention. Leptin and TNF-alpha promoter methylation were measured by MSP after bisulfite treatment, and gene expression was also analyzed. Obese women with a successful weight loss (≥5% of initial body weight, n=21) improved the lipid profile and fat mass percentage (-12%, p<0.05). Both systolic (-5%, p<0.05) and diastolic (-8%, p<0.01) blood pressures significantly decreased. At baseline, women with better response to the dietary intervention showed lower promoter methylation levels of leptin (-47%, p<0.05) and TNF-alpha (-39%, p=0.071) than the non-responder group (n=6), while no differences were found between responder and non-responder group in leptin and TNF-alpha gene expression analysis. These data suggest that leptin and TNF-alpha methylation levels could be used as epigenetic biomarkers concerning the response to a low-calorie diet. Indeed, methylation profile could help to predict the susceptibility to weight loss as well as some comorbidities such as hypertension or type 2 diabetes.

  5. DNA methylation profiling of the fibrinogen gene landscape in human cells and during mouse and zebrafish development.

    PubMed

    Vorjohann, Silja; Pitetti, Jean-Luc; Nef, Serge; Gonelle-Gispert, Carmen; Buhler, Leo; Fish, Richard J; Neerman-Arbez, Marguerite

    2013-01-01

    The fibrinogen genes FGA, FGB and FGG show coordinated expression in hepatocytes. Understanding the underlying transcriptional regulation may elucidate how their tissue-specific expression is maintained and explain the high variability in fibrinogen blood levels. DNA methylation of CpG-poor gene promoters is dynamic with low methylation correlating with tissue-specific gene expression but its direct effect on gene regulation as well as implications of non-promoter CpG methylation are not clear. Here we compared methylation of CpG sites throughout the fibrinogen gene cluster in human cells and mouse and zebrafish tissues. We observed low DNA methylation of the CpG-poor fibrinogen promoters and of additional regulatory elements (the liver enhancers CNC12 and PFE2) in fibrinogen-expressing samples. In a gene reporter assay, CpG-methylation in the FGA promoter reduced promoter activity, suggesting a repressive function for DNA methylation in the fibrinogen locus. In mouse and zebrafish livers we measured reductions in DNA methylation around fibrinogen genes during development that were preceded by increased fibrinogen expression and tri-methylation of Histone3 lysine4 (H3K4me3) in fibrinogen promoters. Our data support a model where changes in hepatic transcription factor expression and histone modification provide the switch for increased fibrinogen gene expression in the developing liver which is followed by reduction of CpG methylation.

  6. Hepatic global DNA and peroxisome proliferator-activated receptor alpha promoter methylation are altered in peripartal dairy cows fed rumen-protected methionine.

    PubMed

    Osorio, J S; Jacometo, C B; Zhou, Z; Luchini, D; Cardoso, F C; Loor, J J

    2016-01-01

    The availability of Met in metabolizable protein (MP) of a wide range of diets for dairy cows is low. During late pregnancy and early lactation, in particular, suboptimal Met in MP limits its use for mammary and liver metabolism and also for the synthesis of S-adenosylmethionine, which is essential for many biological processes, including DNA methylation. The latter is an epigenetic modification involved in the regulation of gene expression, hence, tissue function. Thirty-nine Holstein cows were fed throughout the peripartal period (-21 d to 30 d in milk) a basal control (CON) diet (n=14) with no Met supplementation, CON plus MetaSmart (MS; Adisseo NA, Alpharetta, GA; n=12), or CON plus Smartamine M (SM; Adisseo NA; n=13). The total mixed ration dry matter for the close-up and lactation diets was measured weekly, then the Met supplements were adjusted daily and top-dressed over the total mixed ration at a rate of 0.19 (MS) or 0.07% (SM) on a dry matter basis. Liver tissue was collected on -10, 7, and 21 d for global DNA and peroxisome proliferator-activated receptor alpha (PPARα) promoter region-specific methylation. Several PPARα target and putative target genes associated with carnitine synthesis and uptake, fatty acid metabolism, hepatokines, and carbohydrate metabolism were also studied. Data were analyzed using PROC MIXED of SAS (SAS Institute Inc., Cary, NC) with the preplanned contrast CON versus SM + MS. Global hepatic DNA methylation on d 21 postpartum was lower in Met-supplemented cows than CON. However, of 2 primers used encompassing 4 to 12 CpG sites in the promoter region of bovine PPARA, greater methylation occurred in the region encompassing -1,538 to -1,418 from the transcription start site in cows supplemented with Met. Overall expression of PPARA was greater in Met-supplemented cows than CON. Concomitantly, PPARA-target genes, such as ANGPTL4, FGF21, and PCK1, were also upregulated overall by Met supplementation. The upregulation of PPAR

  7. DACT2 silencing by promoter CpG methylation disrupts its regulation of epithelial-to-mesenchymal transition and cytoskeleton reorganization in breast cancer cells

    PubMed Central

    Xiang, Tingxiu; Fan, Yichao; Li, Chunhong; Li, Lili; Ying, Ying; Mu, Junhao; Peng, Weiyan; Feng, Yixiao; Oberst, Michael; Kelly, Kathleen; Ren, Guosheng; Tao, Qian

    2016-01-01

    Wnt signaling plays an important role in breast carcinogenesis. DAPPER2 (DACT2) functions as an inhibitor of canonical Wnt signaling and plays distinct roles in different cell contexts, with its role in breast tumorigenesis unclear. We investigated DACT2 expression in breast cancer cell lines and primary tumors, as well as its functions and molecular mechanisms. Results showed that DACT2 expression was silenced in 9/9 of cell lines. Promoter CpG methylation of DACT2 was detected in 89% (8/9) of cell lines, as well as in 73% (107/147) of primary tumors, but only in 20% (1/5) of surgical margin tissues and in none of normal breast tissues. Demethylation of BT549 and T47D cell lines with 5-aza-2'-deoxycytidine restored DACT2 expression along with promoter demethylation, suggesting that its downregulation in breast cancer is dependent on promoter methylation. Furthermore, ectopic expression of DACT2 induced breast cell apoptosis in vitro, and further inhibited breast tumor cell proliferation, migration and EMT, through antagonizing Wnt/β-catenin and Akt/GSK-3 signaling. Thus, these results demonstrate that DACT2 functions as a tumor suppressor for breast cancer but was frequently disrupted epigenetically in this cancer. PMID:27708215

  8. Detection of antistaphylococcal and toxic compounds by biological assay systems developed with a reporter Staphylococcus aureus strain harboring a heat inducible promoter - lacZ transcriptional fusion.

    PubMed

    Chanda, Palas Kumar; Ganguly, Tridib; Das, Malabika; Lee, Chia Yen; Luong, Thanh T; Sau, Subrata

    2007-11-30

    Previously it was reported that promoter of groES-groEL operon of Staphylococcus aureus is induced by various cell-wall active antibiotics. In order to exploit the above promoter for identifying novel antistaphylococcal drugs, we have cloned the promoter containing region (P(g)) of groES-groEL operon of S. aureus Newman and found that the above promoter is induced by sublethal concentrations of many antibiotics including cell-wall active antibiotics. A reporter S. aureus RN4220 strain (designated SAU006) was constructed by inserting the P(g)-lacZ transcriptional fusion into its chromosome. Agarose-based assay developed with SAU006 shows that P(g) in single-copy is also induced distinctly by different classes of antibiotics. Data indicate that ciprofloxacin, rifampicin, ampicillin, and cephalothin are strong inducers, whereas, tetracycline, streptomycin and vancomycin induce the above promoter weakly. Sublethal concentrations of ciprofloxacin and ampicilin even have induced P(g) efficiently in microtiter plate grown SAU006. Additional studies show for the first time that above promoter is also induced weakly by arsenate salt and hydrogen peroxide. Taken together, we suggest that our simple and sensitive assay systems with SAU006 could be utilized for screening and detecting not only novel antistaphylococcal compounds but also different toxic chemicals.

  9. Effects on specific promoter DNA methylation in zebrafish embryos and larvae following benzo[a]pyrene exposure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Benzo[a]pyrene (BaP) is an established reproductive and developmental toxicant. BaP exposure in humans and animals has been linked to infertility and multigenerational health consequences. DNA methylation is the most studied epigenetic mechanism that regulates gene expression, and mapping of methyla...

  10. Inactivation of the WNT5A Alternative Promoter B Is Associated with DNA Methylation and Histone Modification in Osteosarcoma Cell Lines U2OS and SaOS-2.

    PubMed

    Vaidya, Himani; Rumph, Candie; Katula, Karen S

    2016-01-01

    WNT5A is a secreted ligand involved in Wnt pathway signaling and has a role in cell movement and differentiation. Altered WNT5A expression is associated with various cancers, although in most studies the focus has been on only one of the known WNT5A isoforms. In this study, we analyzed expression from two of the major WNT5A promoters, termed promoter A and promoter B, in normal human osteoblasts, SaOS-2 and U2OS osteosarcoma cell lines, and osteosarcoma tumor tissue. We found that both promoters A and B are active in normal osteoblasts with nearly 11-fold more promoter B than A transcripts. Promoter B but not promoter A transcripts are decreased or nearly undetectable in the SaOS-2 and U2OS cell lines and osteosarcoma tumor tissues. Transient transfection of promoter A and promoter B reporter constructs confirmed that SaOS-2 cells have the necessary factors to transcribe both promoters. Bisulfite sequencing analysis revealed that three CpG enriched regions upstream of the promoter B exon 1βare highly methylated in both SaOS-2 and U2OS cells. The CpG island sub-region R6 located in promoter B exon 1β was approximately 51% methylated in SaOS-2 and 25% methylated in U2OS. Region 3 was approximately 28% methylated in normal osteoblasts, whereas the others were unmethylated. Promoter B was re-activated by treatment of SaOS-2 cells with 1 μM 5-azacytidine, which was associated with only a small insignificant change in methylation of sub-region R6. ChIP analysis of U2OS and SaOS-2 cells indicated that the promoter B region is less enriched in the active histone mark H3K4me3, in comparison to promoter A and that there is increased enrichment of the repressive mark H3K27me3 in association with the promoter B genomic region in the cell line SaOS-2. These findings show that epigenetic inactivation of the WNT5A promoter B involves both DNA methylation and histone modifications and suggest that differential expression of the WNT5A alternative promoters A and B is a

  11. The Arabidopsis gibberellin methyl transferase 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato.

    PubMed

    Nir, Ido; Moshelion, Menachem; Weiss, David

    2014-01-01

    Previous studies have shown that reduced gibberellin (GA) level or signal promotes plant tolerance to environmental stresses, including drought, but the underlying mechanism is not yet clear. Here we studied the effects of reduced levels of active GAs on tomato (Solanum lycopersicum) plant tolerance to drought as well as the mechanism responsible for these effects. To reduce the levels of active GAs, we generated transgenic tomato overexpressing the Arabidopsis thaliana GA METHYL TRANSFERASE 1 (AtGAMT1) gene. AtGAMT1 encodes an enzyme that catalyses the methylation of active GAs to generate inactive GA methyl esters. Tomato plants overexpressing AtGAMT1 exhibited typical GA-deficiency phenotypes and increased tolerance to drought stress. GA application to the transgenic plants restored normal growth and sensitivity to drought. The transgenic plants maintained high leaf water status under drought conditions, because of reduced whole-plant transpiration. The reduced transpiration can be attributed to reduced stomatal conductance. GAMT1 overexpression inhibited the expansion of leaf-epidermal cells, leading to the formation of smaller stomata with reduced stomatal pores. It is possible that under drought conditions, plants with reduced GA activity and therefore, reduced transpiration, will suffer less from leaf desiccation, thereby maintaining higher capabilities and recovery rates.

  12. Promotion

    PubMed Central

    Alam, Hasan B.

    2013-01-01

    This article gives an overview of the promotion process in an academic medical center. A description of different promotional tracks, tenure and endowed chairs, and the process of submitting an application is provided. Finally, some practical advice about developing skills and attributes that can help with academic growth and promotion is dispensed. PMID:24436683

  13. Methyl jasmonate promotes the transient reduction of the levels of 2-Cys peroxiredoxin in Ricinus communis plants.

    PubMed

    dos Santos Soares, Alexandra Martins; de Souza, Thiago Freitas; de Souza Domingues, Sarah Jane; Jacinto, Tânia; Tavares Machado, Olga Lima

    2004-06-01

    Jasmonates are signaling molecules that play a key role in the regulation of metabolic processes, reproduction and defense against insects and pathogens. This study investigated the effects of methyl jasmonate on the protein pattern of Ricinus communis plants and the activity of guaiacol peroxidase, an antioxidant enzyme. Methyl jasmonate treatment caused a transient reduction in guaiacol peroxidase activity. A similar response was observed for the levels of 2-Cys peroxiredoxin protein. Moreover, the levels of the small and large chains of Rubisco were also reduced. The transient reduction of the levels and activity of antioxidant enzymes could account for the increase in the levels of H2O2, an important signaling molecule in plant defense.

  14. Frequent silencing of the candidate tumor suppressor TRIM58 by promoter methylation in early-stage lung adenocarcinoma.

    PubMed

    Kajiura, Koichiro; Masuda, Kiyoshi; Naruto, Takuya; Kohmoto, Tomohiro; Watabnabe, Miki; Tsuboi, Mitsuhiro; Takizawa, Hiromitsu; Kondo, Kazuya; Tangoku, Akira; Imoto, Issei

    2017-01-10

    In this study, we aimed to identify novel drivers that would be epigenetically altered through aberrant methylation in early-stage lung adenocarcinoma (LADC), regardless of the presence or absence of tobacco smoking-induced epigenetic field defects. Through genome-wide screening for aberrantly methylated CpG islands (CGIs) in 12 clinically uniform, stage-I LADC cases affecting six non-smokers and six smokers, we identified candidate tumor-suppressor genes (TSGs) inactivated by hypermethylation. Through systematic expression analyses of those candidates in panels of additional tumor samples and cell lines treated or not treated with 5-aza-deoxycitidine followed by validation analyses of cancer-specific silencing by CGI hypermethylation using a public database, we identified TRIM58 as the most prominent candidate for TSG. TRIM58 was robustly silenced by hypermethylation even in early-stage primary LADC, and the restoration of TRIM58 expression in LADC cell lines inhibited cell growth in vitro and in vivo in anchorage-dependent and -independent manners. Our findings suggest that aberrant inactivation of TRIM58 consequent to CGI hypermethylation might stimulate the early carcinogenesis of LADC regardless of smoking status; furthermore, TRIM58 methylation might be a possible early diagnostic and epigenetic therapeutic target in LADC.

  15. Recurrent patterns of DNA methylation in the ZNF154, CASP8, and VHL promoters across a wide spectrum of human solid epithelial tumors and cancer cell lines

    PubMed Central

    Sánchez-Vega, Francisco; Gotea, Valer; Petrykowska, Hanna M; Margolin, Gennady; Krivak, Thomas C; DeLoia, Julie A; Bell, Daphne W; Elnitski, Laura

    2013-01-01

    The study of aberrant DNA methylation in cancer holds the key to the discovery of novel biological markers for diagnostics and can help to delineate important mechanisms of disease. We have identified 12 loci that are differentially methylated in serous ovarian cancers and endometrioid ovarian and endometrial cancers with respect to normal control samples. The strongest signal showed hypermethylation in tumors at a CpG island within the ZNF154 promoter. We show that hypermethylation of this locus is recurrent across solid human epithelial tumor samples for 15 of 16 distinct cancer types from TCGA. Furthermore, ZNF154 hypermethylation is strikingly present across a diverse panel of ENCODE cell lines, but only in those derived from tumor cells. By extending our analysis from the Illumina 27K Infinium platform to the 450K platform, to sequencing of PCR amplicons from bisulfite treated DNA, we demonstrate that hypermethylation extends across the breadth of the ZNF154 CpG island. We have also identified recurrent hypomethylation in two genomic regions associated with CASP8 and VHL. These three genes exhibit significant negative correlation between methylation and gene expression across many cancer types, as well as patterns of DNaseI hypersensitivity and histone marks that reflect different chromatin accessibility in cancer vs. normal cell lines. Our findings emphasize hypermethylation of ZNF154 as a biological marker of relevance for tumor identification. Epigenetic modifications affecting the promoters of ZNF154, CASP8, and VHL are shared across a vast array of tumor types and may therefore be important for understanding the genomic landscape of cancer. PMID:24149212

  16. Strict de novo methylation of the 35S enhancer sequence in gentian.

    PubMed

    Mishiba, Kei-ichiro; Yamasaki, Satoshi; Nakatsuka, Takashi; Abe, Yoshiko; Daimon, Hiroyuki; Oda, Masayuki; Nishihara, Masahiro

    2010-03-23

    A novel transgene silencing phenomenon was found in the ornamental plant, gentian (Gentiana triflora x G. scabra), in which the introduced Cauliflower mosaic virus (CaMV) 35S promoter region was strictly methylated, irrespective of the transgene copy number and integrated loci. Transgenic tobacco having the same vector did not show the silencing behavior. Not only unmodified, but also modified 35S promoters containing a 35S enhancer sequence were found to be highly methylated in the single copy transgenic gentian lines. The 35S core promoter (-90)-introduced transgenic lines showed a small degree of methylation, implying that the 35S enhancer sequence was involved in the methylation machinery. The rigorous silencing phenomenon enabled us to analyze methylation in a number of the transgenic lines in parallel, which led to the discovery of a consensus target region for de novo methylation, which comprised an asymmetric cytosine (CpHpH; H is A, C or T) sequence. Consequently, distinct footprints of de novo methylation were detected in each (modified) 35S promoter sequence, and the enhancer region (-148 to -85) was identified as a crucial target for de novo methylation. Electrophoretic mobility shift assay (EMSA) showed that complexes formed in gentian nuclear extract with the -149 to -124 and -107 to -83 region probes were distinct from those of tobacco nuclear extracts, suggesting that the complexes might contribute to de novo methylation. Our results provide insights into the phenomenon of sequence- and species- specific gene silencing in higher plants.

  17. Lack of Correlation between Aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 Protein Expression and Promoter Methylation in Squamous Cell Carcinoma Accompanying Candida albicans-Induced Inflammation

    PubMed Central

    Terayama, Yui; Matsuura, Tetsuro; Ozaki, Kiyokazu

    2016-01-01

    Hyperplastic candidiasis is characterized by thickening of the mucosal epithelia with Candida albicans infection with occasional progression to squamous cell carcinoma (SCC). C. albicans is a critical factor in tumor development; however, the oncogenic mechanism is unclear. We have previously produced an animal model for hyperplastic candidiasis in the rat forestomach. In the present study, we invest