Science.gov

Sample records for promoter tissue specificity

  1. Tissue Specific Promoters in Colorectal Cancer

    PubMed Central

    Rama, A. R.; Aguilera, A.; Melguizo, C.; Caba, O.; Prados, J.

    2015-01-01

    Colorectal carcinoma is the third most prevalent cancer in the world. In the most advanced stages, the use of chemotherapy induces a poor response and is usually accompanied by other tissue damage. Significant progress based on suicide gene therapy has demonstrated that it may potentiate the classical cytotoxic effects in colorectal cancer. The inconvenience still rests with the targeting and the specificity efficiency. The main target of gene therapy is to achieve an effective vehicle to hand over therapeutic genes safely into specific cells. One possibility is the use of tumor-specific promoters overexpressed in cancers. They could induce a specific expression of therapeutic genes in a given tumor, increasing their localized activity. Several promoters have been assayed into direct suicide genes to cancer cells. This review discusses the current status of specific tumor-promoters and their great potential in colorectal carcinoma treatment. PMID:26648599

  2. Sex and Tissue Specificity of Peg3 Promoters

    PubMed Central

    Perera, Bambarendage P. U.; Kim, Joomyeong

    2016-01-01

    The expression of mouse Peg3 (Paternally expressed gene 3) is driven by 4 promoters, including its main and three alternative promoters. The sexual, temporal and spatial specificity of these promoters was characterized in the current study. According to the results, the main promoter displays ubiquitous expression patterns throughout different stages and tissues. In contrast, the expression of Peg3 driven by the alternative promoter U2 was detected mainly in muscle and skin, but not in brain, starting from the late embryonic stage, revealing its tissue and stage specificity. The expression levels of both the main and U2 promoters are also sexually biased: the levels in females start higher but become lower than those in males during early postnatal stages. As an imprinted locus, the paternal alleles of these promoters are active whereas the maternal alleles are silent. Interestingly, deletion of the repressed maternal allele of the main promoter has an unusual effect on the opposite paternal allele, causing the up-regulation of both the main and U2 promoters. Overall, the promoters of Peg3 derive sexually biased and tissue-specific expression patterns. PMID:27711129

  3. Tissue-specific expression and promoter analyses of the human tissue kallikrein gene in transgenic mice.

    PubMed Central

    Xiong, W; Wang, J; Chao, L; Chao, J

    1997-01-01

    The expression of the tissue kallikrein gene is tissue-specific and exhibits a complex pattern of transcriptional and post-translational regulation. Information concerning the mechanism of its tissue-specific expression has been limited owing to the lack of suitable cell lines for the expression study. We approached this problem by introducing human tissue kallikrein gene constructs into mouse embryos, creating transgenic lines carrying its coding sequence with varying lengths of the promoter region. One construct (PHK) contained 801 bp in the 5'-flanking region and two deletion constructs contained either 302 bp (D300) or 202 bp (D200) of the promoter region. The expression of human tissue kallikrein in these transgenic mice was monitored by Northern blot, reverse transcriptase-PCR followed by Southern blot, and radioimmunoassay. In all three lines, human tissue kallikrein was expressed predominantly in the pancreas and at lower levels in other tissues, including salivary gland, kidney and spleen. This pattern was similar to that of tissue kallikrein expression in human tissues. The D300 line has higher levels of transgene expression than the D200 and PHK lines. The results indicate that the 202 bp segment immediately upstream of the translation starting site is sufficient to direct a tissue-specific expression pattern of the human tissue kallikrein gene, and that regulatory elements might exist between -801 and -202. PMID:9224635

  4. Complex extracellular matrices promote tissue-specific stem cell differentiation.

    PubMed

    Philp, Deborah; Chen, Silvia S; Fitzgerald, Wendy; Orenstein, Jan; Margolis, Leonid; Kleinman, Hynda K

    2005-02-01

    Most cells in tissues contact an extracellular matrix on at least one surface. These complex mixtures of interacting proteins provide structural support and biological signals that regulate cell differentiation and may be important for stem cell differentiation. In this study, we have grown a rhesus monkey embryonic stem cell line in the presence of various extracellular matrix components in monolayer, in a NASA-developed rotating wall vessel bioreactor in vitro, and subcutaneously in vivo. We find that individual components of the extracellular matrix, such as laminin-1 or collagen I, do not influence the growth or morphology of the cells. In contrast, a basement membrane extract, Matrigel, containing multiple extracellular matrix components, induces the cells within 4 days to form immature glandular- and tubular-like structures, many of which contain a lumen with polarized epithelium and microvilli. Such structures were seen in vitro when the cells were grown in the bioreactor and when the cells were injected into mice. These tubular- and glandular-like structures were polarized epithelia based on immunostaining for laminin and cytokeratin. The cell aggregates and tumors also contained additional mixed populations of cells, including mesenchymal cells and neuronal cells, based on immunostaining with vimentin and neuronal markers. An extract of cartilage, containing multiple cartilage matrix components, promoted chondrogenesis in vivo where alcian blue-stained cartilage nodules could be observed. Some of these nodules stained with von Kossa, indicating that they had formed calcified cartilage. We conclude that extracellular matrices can promote the differentiation of embryonic stem cells into differentiated cells and structures that are similar to the tissue from which the matrix is derived. Such preprogramming of cell differentiation with extracellular matrices may be useful in targeting stem cells to repair specific damaged organs.

  5. Evaluation of a novel promoter from Populus trichocarpa for mature xylem tissue specific gene delivery.

    PubMed

    Nguyen, Van Phap; Cho, Jin-Seong; Choi, Young-Im; Lee, Sang-Won; Han, Kyung-Hwan; Ko, Jae-Heung

    2016-07-01

    Wood (i.e., secondary xylem) is an important raw material for many industrial applications. Mature xylem (MX) tissue-specific genetic modification offers an effective means to improve the chemical and physical properties of the wood. Here, we describe a promoter that drives strong gene expression in a MX tissue-specific manner. Using whole-transcriptome genechip analyses of different tissue types of poplar, we identified five candidate genes that had strong expression in the MX tissue. The putative promoter sequences of the five MX-specific genes were evaluated for their promoter activity in both transgenic Arabidopsis and poplar. Among them, we found the promoter of Potri.013G007900.1 (called the PtrMX3 promoter) had the strongest activity in MX and thus was further characterized. In the stem and root tissues of transgenic Arabidopsis plants, the PtrMX3 promoter activity was found exclusively in MX tissue. MX-specific activity of the promoter was reproduced in the stem tissue of transgenic poplar plants. The PtrMX3 promoter activity was not influenced by abiotic stresses or exogenously applied growth regulators, indicating the PtrMX3 promoter is bona fide MX tissue-specific. Our study provides a strong MX-specific promoter for MX-specific modifications of woody biomass.

  6. Tissue-specific activity of the pro-opiomelanocortin gene promoter

    SciTech Connect

    Jeannotte, L.; Trifiro, M.A.; Plante, R.K.; Chamberland, M.; Drouin, J.

    1987-11-01

    The pro-opiomelanocortin (POMC) gene is specifically expressed in corticotroph cells of the anterior pituitary. To define the POMC promoter sequences responsible for tissue-specific expression, we assessed POMC promoter activity by gene transfer into POMC-expressing pituitary tumor cells (AtT-20) and fibroblast L cells. The rat POMC promoter was only efficiently utilized and correctly transcribed in AtT-20 cells. 5'-End deletion analysis revealed two promoter regions for activity in AtT-20 cells. When tested by fusion to a heterologuous promoter, DNA fragments corresponding to both regions exhibited tissue-specific activity, suggesting the presence of at least two tissue-specific DNA sequence elements within the promoter. In summary, POMC promoter sequences from -480 to -34 base pairs appear sufficient to mimic the specificity of anterior pituitary expression.

  7. DNA entropy reveals a significant difference in complexity between housekeeping and tissue specific gene promoters.

    PubMed

    Thomas, David; Finan, Chris; Newport, Melanie J; Jones, Susan

    2015-10-01

    The complexity of DNA can be quantified using estimates of entropy. Variation in DNA complexity is expected between the promoters of genes with different transcriptional mechanisms; namely housekeeping (HK) and tissue specific (TS). The former are transcribed constitutively to maintain general cellular functions, and the latter are transcribed in restricted tissue and cells types for specific molecular events. It is known that promoter features in the human genome are related to tissue specificity, but this has been difficult to quantify on a genomic scale. If entropy effectively quantifies DNA complexity, calculating the entropies of HK and TS gene promoters as profiles may reveal significant differences. Entropy profiles were calculated for a total dataset of 12,003 human gene promoters and for 501 housekeeping (HK) and 587 tissue specific (TS) human gene promoters. The mean profiles show the TS promoters have a significantly lower entropy (p<2.2e-16) than HK gene promoters. The entropy distributions for the 3 datasets show that promoter entropies could be used to identify novel HK genes. Functional features comprise DNA sequence patterns that are non-random and hence they have lower entropies. The lower entropy of TS gene promoters can be explained by a higher density of positive and negative regulatory elements, required for genes with complex spatial and temporary expression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Analysis of tissue-specific region in sericin 1 gene promoter of Bombyx mori

    SciTech Connect

    Liu Yan; Yu Lian; Guo Xiuyang; Guo Tingqing; Wang Shengpeng; Lu Changde . E-mail: cdlu@sibs.ac.cn

    2006-03-31

    The gene encoding sericin 1 (Ser1) of silkworm (Bombyx mori) is specifically expressed in the middle silk gland cells. To identify element involved in this transcription-dependent spatial restriction, truncation of the 5' terminal from the sericin 1 (Ser1) promoter is studied in vivo. A 209 bp DNA sequence upstream of the transcriptional start site (-586 to -378) is found to be responsible for promoting tissue-specific transcription. Analysis of this 209 bp region by overlapping deletion studies showed that a 25 bp region (-500 to -476) suppresses the ectopic expression of the Ser1 promoter. An unknown factor abundant in fat body nuclear extracts is shown to bind to this 25 bp fragment. These results suggest that this 25 bp region and the unknown factor are necessary for determining the tissue-specificity of the Ser1 promoter.

  9. Novel strong tissue specific promoter for gene expression in human germ cells

    PubMed Central

    2010-01-01

    Background Tissue specific promoters may be utilized for a variety of applications, including programmed gene expression in cell types, tissues and organs of interest, for developing different cell culture models or for use in gene therapy. We report a novel, tissue-specific promoter that was identified and engineered from the native upstream regulatory region of the human gene NDUFV1 containing an endogenous retroviral sequence. Results Among seven established human cell lines and five primary cultures, this modified NDUFV1 upstream sequence (mNUS) was active only in human undifferentiated germ-derived cells (lines Tera-1 and EP2102), where it demonstrated high promoter activity (~twice greater than that of the SV40 early promoter, and comparable to the routinely used cytomegaloviral promoter). To investigate the potential applicability of the mNUS promoter for biotechnological needs, a construct carrying a recombinant cytosine deaminase (RCD) suicide gene under the control of mNUS was tested in cell lines of different tissue origin. High cytotoxic effect of RCD with a cell-death rate ~60% was observed only in germ-derived cells (Tera-1), whereas no effect was seen in a somatic, kidney-derived control cell line (HEK293). In further experiments, we tested mNUS-driven expression of a hyperactive Sleeping Beauty transposase (SB100X). The mNUS-SB100X construct mediated stable transgene insertions exclusively in germ-derived cells, thereby providing further evidence of tissue-specificity of the mNUS promoter. Conclusions We conclude that mNUS may be used as an efficient promoter for tissue-specific gene expression in human germ-derived cells in many applications. Our data also suggest that the 91 bp-long sequence located exactly upstream NDUFV1 transcriptional start site plays a crucial role in the activity of this gene promoter in vitro in the majority of tested cell types (10/12), and an important role - in the rest two cell lines. PMID:20716342

  10. Taproot promoters cause tissue specific gene expression within the storage root of sugar beet.

    PubMed

    Oltmanns, Heiko; Kloos, Dorothee U; Briess, Waltraud; Pflugmacher, Maike; Stahl, Dietmar J; Hehl, Reinhard

    2006-08-01

    The storage root (taproot) of sugar beet (Beta vulgaris L.) originates from hypocotyl and primary root and contains many different tissues such as central xylem, primary and secondary cambium, secondary xylem and phloem, and parenchyma. It was the aim of this work to characterize the promoters of three taproot-expressed genes with respect to their tissue specificity. To investigate this, promoters for the genes Tlp, His1-r, and Mll were cloned from sugar beet, linked to reporter genes and transformed into sugar beet and tobacco. Reporter gene expression analysis in transgenic sugar beet plants revealed that all three promoters are active in the storage root. Expression in storage root tissues is either restricted to the vascular zone (Tlp, His1-r) or is observed in the whole organ (Mll). The Mll gene is highly organ specific throughout different developmental stages of the sugar beet. In tobacco, the Tlp and Mll promoters drive reporter gene expression preferentially in hypocotyl and roots. The properties of the Mll promoter may be advantageous for the modification of sucrose metabolism in storage roots.

  11. Tissue- and stratum-specific expression of the human involucrin promoter in transgenic mice.

    PubMed Central

    Carroll, J M; Albers, K M; Garlick, J A; Harrington, R; Taichman, L B

    1993-01-01

    Involucrin is a marker of keratinocyte terminal differentiation and is expressed only in the suprabasal layers of stratified squamous epithelium. In a previous study with various cell types in culture, we noted that expression of the putative human involucrin promoter was keratinocyte specific. To determine if this promoter is sufficient to direct expression to the suprabasal cells of stratified squamous epithelia in vivo, we have now generated transgenic mouse lines harboring the involucrin promoter sequences linked to a beta-galactosidase reporter gene. In the resulting lines, beta-galactosidase was expressed in the suprabasal compartment of stratified squamous epithelia and in hair follicles in a tissue-specific manner. In the palate, distinct vertical stacks of beta-galactosidase-expressing cells were present, suggesting movement of clonally derived cells through the epithelium. The involucrin gene has a single intron upstream of the translational start site, and removal of this intron did not affect tissue- or stratum-specific expression. These results show that the 3.7-kb involucrin upstream sequences contain all the information necessary for a high level of tissue- and stratum-specific expression. Images Fig. 2 Fig. 3 Fig. 4 PMID:8234288

  12. Tissue-specific and glucose-responsive expression of the pancreatic derived factor (PANDER) promoter.

    PubMed

    Burkhardt, Brant R; Yang, Michael C; Robert, Claudia E; Greene, Scott R; McFadden, K Kelly; Yang, Jichun; Wu, Jianmei; Gao, Zhiyong; Wolf, Bryan A

    2005-09-25

    Pancreatic derived factor (PANDER) is a recently identified cytokine-like protein that is dominantly expressed in the islets of Langerhans of the pancreas. To investigate the mechanism of tissue-specific regulation of PANDER, we identified and characterized the promoter region. The transcriptional start site was identified 520 bp upstream of the translational start codon by 5'-RLM-RACE. Computer algorithms identified several islet-associated and glucose-responsive binding motifs that included A and E boxes, hepatocyte nuclear factors 1 and 4, Oct-1, and signal transducer and activator of transcription 3, and 5. Reporter gene analysis revealed cell type-specific PANDER promoter expression in islet and liver-derived cell lines. Levels of PANDER mRNA were directly concordant to the observed cell type-specific PANDER promoter gene expression. The minimal element was mapped to the 5'-UTR and located between +200 and +491 relative to the transcriptional start site and imparted maximal gene expression. In addition, several putative glucose-responsive binding sites were further functionally characterized to reveal critical regulatory elements of PANDER. The PANDER promoter was demonstrated to be glucose-responsive in a dose-dependent manner in murine insulinoma beta-TC3 cells and primary murine islets, but unresponsive in glucagon-secreting alpha-TC3 cells. Our findings revealed that the 5'-UTR of PANDER contains the minimal element for gene expression and imparts both tissue-specificity and glucose-responsiveness. The regulation of PANDER gene expression mimics that of insulin and suggests a potential biological function of PANDER involved in metabolic homeostasis.

  13. Characterization of a novel rice metallothionein gene promoter: its tissue specificity and heavy metal responsiveness.

    PubMed

    Dong, Chun-Juan; Wang, Yun; Yu, Shi-Shi; Liu, Jin-Yuan

    2010-10-01

    The rice (Oryza sativa L.) metallothionein gene OsMT-I-4b has previously been identified as a type I MT gene. To elucidate the regulatory mechanism involved in its tissue specificity and abiotic induction, we isolated a 1 730 bp fragment of the OsMT-I-4b promoter region. Histochemical β-glucuronidase (GUS) staining indicated a precise spacial and temporal expression pattern in transgenic Arabidopsis. Higher GUS activity was detected in the roots and the buds of flower stigmas, and relatively lower GUS staining in the shoots was restricted to the trichomes and hydathodes of leaves. No activity was observed in the stems and seeds. Additionally, in the root of transgenic plants, the promoter activity was highly upregulated by various environmental signals, such as abscisic acid, drought, dark, and heavy metals including Cu²(+) , Zn²(+) , Pb²(+) and Al³(+) . Slight induction was observed in transgenic seedlings under salinity stress, or when treated with Co²(+) and Cd²(+) . Promoter analysis of 5'-deletions revealed that the region -583/-1 was sufficient to drive strong GUS expression in the roots but not in the shoots. Furthermore, deletion analysis indicated important promoter regions containing different metal-responsive cis-elements that were responsible for responding to different heavy metals. Collectively, these findings provided important insight into the transcriptional regulation mechanisms of the OsMT-I-4b promoter, and the results also gave us some implications for the potential application of this promoter in plant genetic engineering.

  14. Evaluation of four phloem-specific promoters in vegetative tissues of transgenic citrus plants.

    PubMed

    Dutt, M; Ananthakrishnan, G; Jaromin, M K; Brlansky, R H; Grosser, J W

    2012-01-01

    'Mexican' lime (Citrus aurantifolia Swingle) was transformed with constructs that contained chimeric promoter-gus gene fusions of phloem-specific rolC promoter of Agrobacterium rhizogenes, Arabidopsis thaliana sucrose-H(+) symporter (AtSUC2) gene promoter of Arabidopsis thaliana, rice tungro bacilliform virus (RTBV) promoter and sucrose synthase l (RSs1) gene promoter of Oryza sativa (rice). Histochemical β-glucuronidase (GUS) analysis revealed vascular-specific expression of the GUS protein in citrus. The RTBV promoter was the most efficient promoter in this study while the RSs1 promoter could drive low levels of gus gene expression in citrus. These results were further validated by reverse transcription real-time polymerase chain reaction and northern blotting. Southern blot analysis confirmed stable transgene integration, which ranged from a single insertion to four copies per genome. The use of phloem-specific promoters in citrus will allow targeted transgene expression of antibacterial constructs designed to battle huanglongbing disease (HLB or citrus greening disease), associated with a phloem-limited Gram-negative bacterium.

  15. Mining tissue-specific contigs from peanut (Arachis hypogaea L.) for promoter cloning by deep transcriptome sequencing.

    PubMed

    Geng, Lili; Duan, Xiaohong; Liang, Chun; Shu, Changlong; Song, Fuping; Zhang, Jie

    2014-10-01

    Peanut (Arachis hypogaea L.), one of the most important oil legumes in the world, is heavily damaged by white grubs. Tissue-specific promoters are needed to incorporate insect resistance genes into peanut by genetic transformation to control the subterranean pests. Transcriptome sequencing is the most effective way to analyze differential gene expression in this non-model species and contribute to promoter cloning. The transcriptomes of the roots, seeds and leaves of peanut were sequenced using Illumina technology. A simple digital expression profile was established based on number of transcripts per million clean tags (TPM) from different tissues. Subsequently, 584 root-specific candidate transcript assembly contigs (TACs) and 316 seed-specific candidate TACs were identified. Among these candidate TACs, 55.3% were root-specific and 64.6% were seed-specific by semi-quantitative RT-PCR analysis. Moreover, the consistency of semi-quantitative RT-PCR with the simple digital expression profile was correlated with the length and TPM value of TACs. The results of gene ontology showed that some root-specific TACs are involved in stress resistance and respond to auxin stimulus, whereas, seed-specific candidate TACs are involved in embryo development, lipid storage and long-chain fatty acid biosynthesis. One root-specific promoter was cloned and characterized. We developed a high-yield screening system in peanut by establishing a simple digital expression profile based on Illumina sequencing. The feasible and rapid method presented by this study can be used for other non-model crops to explore tissue-specific or spatially specific promoters. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Manipulation of lignin composition in plants using a tissue-specific promoter

    DOEpatents

    Chapple, Clinton C. S.

    2003-08-26

    The present invention relates to methods and materials in the field of molecular biology, the manipulation of the phenylpropanoid pathway and the regulation of proteins synthesis through plant genetic engineering. More particularly, the invention relates to the introduction of a foreign nucleotide sequence into a plant genome, wherein the introduction of the nucleotide sequence effects an increase in the syringyl content of the plant's lignin. In one specific aspect, the invention relates to methods for modifying the plant lignin composition in a plant cell by the introduction there into of a foreign nucleotide sequence comprising at issue specific plant promoter sequence and a sequence encoding an active ferulate-5-hydroxylase (F5H) enzyme. Plant transformants harboring an inventive promoter-F5H construct demonstrate increased levels of syringyl monomer residues in their lignin, rendering the polymer more readily delignified and, thereby, rendering the plant more readily pulped or digested.

  17. Serotonin transporter gene promoter methylation in peripheral cells in healthy adults: Neural correlates and tissue specificity.

    PubMed

    Ismaylova, Elmira; Di Sante, Jessica; Szyf, Moshe; Nemoda, Zsofia; Yu, Wei-Jo; Pomares, Florence B; Turecki, Gustavo; Gobbi, Gabriella; Vitaro, Frank; Tremblay, Richard E; Booij, Linda

    2017-10-01

    Early adversity can influence gene expression via epigenetic mechanisms, including DNA methylation. Peripheral tissues are essential in psychiatric epigenetics, as methylation generally cannot be assessed in the living human brain. Several magnetic resonance imaging (MRI) studies show associations of peripheral serotonin transporter gene (SLC6A4) methylation with function and/or structure of frontal-limbic circuits and brain's resting-state. Commonly used samples are derived from blood, saliva or buccal cells. However, little is known regarding which peripheral tissue is most strongly associated with human brain processes. The aim of the current study was to compare the extent of the association between peripheral SLC6A4 promoter methylation and frontal-limbic function, structure and resting-state in healthy individuals across peripheral tissues. Forty healthy prospectively-followed adults underwent anatomical, resting-state and functional MRI. Saliva-, blood- and buccal-derived DNA methylation was assessed by pyrosequencing. Blood-derived SLC6A4 methylation was positively associated with superior frontal gray matter (GM) volume and with right lateral parietal area (RLP)-frontal pole regional resting-state functional connectivity (rsFC). Saliva-derived SLC6A4 methylation was positively associated with superior frontal GM volume. Buccal-derived SLC6A4 methylation was positively associated with superior and inferior frontal and anterior cingulate cortical (ACC) GM volumes, and with RLP-ACC, frontal pole and medial prefrontal regional rsFC. Current results confirmed the relevance of peripheral methylation for frontal-limbic processes in humans. Buccal cells may be the most sensitive cell type when studying SLC6A4 promoter methylation and its associated risk for neural vulnerability and resilience for psychopathologies in which serotonin is implicated. These data should be further validated in clinical populations. Copyright © 2017 Elsevier B.V. and ECNP. All rights

  18. Tissue culture specificity of the tobacco ASA2 promoter driving hpt as a selectable marker for soybean transformation selection.

    PubMed

    Zernova, Olga; Zhong, Wei; Zhang, Xing-Hai; Widholm, Jack

    2008-11-01

    This study was carried out to determine if the tobacco anthranilate synthase ASA2 2.3 kb promoter drives tissue culture specific expression and if it is strong enough to drive hpt (hygromycin phosphotransferase) gene expression at a level sufficient to allow selection of transformed soybean embryogenic culture lines. A number of transformed cell lines were selected showing that the promoter was strong enough. Northern blot analysis of plant tissues did not detect hpt mRNA in the untransformed control or in the ASA2-hpt plants except in developing seeds while hpt mRNA was detected in all tissues of the CaMV35S-hpt positive control line plants. However, when the more sensitive RT-PCR assay was used all tissues of the ASA2-hpt plants except roots and mature seeds were found to contain detectable hpt mRNA. Embryogenic tissue cultures initiated from the ASA2-hpt plants contained hpt mRNA detectable by both northern and RT-PCR analysis and the cultures were hygromycin resistant. Friable callus initiated from leaves of ASA2-hpt plants did in some cases contain hpt mRNA that was only barely detectable by northern hybridization even though the callus was very hygromycin resistant. Thus the ASA2 promoter is strong enough to drive sufficient hpt expression in soybean embryogenic cultures for hygromycin selection and only very low levels of expression were found in most plant tissues with none in mature seeds.

  19. Construction and Analysis of an Adipose Tissue-Specific and Methylation-Sensitive Promoter of Leptin Gene.

    PubMed

    Zhang, Qinkai; Xu, Denggao; Zhang, Min; Dong, Xiao; Dong, Huansheng; Pan, Qingjie

    2016-11-01

    DNA methylation plays a very important role in the regulation of gene expression. Under general situations, methylation in a gene promoter region is frequently accompanied by transcriptional suppression, and those genes that are highly methylated display the phenomenon of low expression. In contrast, those genes whose methylation level is low display the phenomenon of active expression. In this study, we conducted DNA methylation analysis on the CpG sites within the promoter regions of five adipose tissue-specific transcriptional factors-Adiponectin, Chemerin, Leptin, Smaf-1, and Vaspin-and examined their messenger RNA (mRNA) expression levels in different mouse tissues. We also performed analyses on the correlation between the DNA methylation levels of these genes and their mRNA expression levels in these tissues. The correlation coefficient for Leptin was the highest, and it displayed a high expression in an adipose tissue-specific manner. Thus, we cloned the regulatory region of Leptin gene and incorporated its promoter into the eukaryotic expression vector pEGFP-N1 and constructed a recombinant plasmid named pEGFP-N1-(p-Lep). This recombinant plasmid was first verified by DNA sequencing and then transfected into mouse pre-adipocytes via electroporation. Measurement of the activity of luciferase (reporter) indicated that p-Lep was capable of driving the expression of the reporter gene. This study has paved a solid basis for subsequent studies on generating transgenic animals.

  20. Functional analysis of the buckwheat metallothionein promoter: tissue specificity pattern and up-regulation under complex stress stimuli.

    PubMed

    Bratić, Ana M; Majić, Dragana B; Samardzić, Jelena T; Maksimović, Vesna R

    2009-06-01

    To shed light on expression regulation of the metallothionein gene from buckwheat (FeMT3), functional promoter analysis was performed with a complete 5' regulatory region and two deletion variants, employing stably transformed tobacco plants. Histochemical GUS assay of transgenic tobacco lines showed the strongest signals in vascular elements of leaves and in pollen grains, while somewhat weaker staining was observed in the roots of mature plants. This tissue specificity pattern implies a possible function of buckwheat MT3 in those tissues. Quantitative GUS assay showed strong up-regulation of all three promoter constructs (proportional to the length of the regulatory region) in leaves submerged in liquid MS medium containing sucrose, after a prolonged time period. This represented a complex stress situation composed of several synergistically related stress stimuli. These findings suggest complex transcriptional regulation of FeMT3, requiring interactions among a number of different factors.

  1. Combinatorial control of suicide gene expression by tissue-specific promoter and microRNA regulation for cancer therapy.

    PubMed

    Wu, Chunxiao; Lin, Jiakai; Hong, Michelle; Choudhury, Yukti; Balani, Poonam; Leung, Doreen; Dang, Lam H; Zhao, Ying; Zeng, Jieming; Wang, Shu

    2009-12-01

    Transcriptional targeting using a tissue-specific cellular promoter is proving to be a powerful means for restricting transgene expression in targeted tissues. In the context of cancer suicide gene therapy, this approach may lead to cytotoxic effects in both cancer and nontarget normal cells. Considering microRNA (miRNA) function in post-transcriptional regulation of gene expression, we have developed a viral vector platform combining cellular promoter-based transcriptional targeting with miRNA regulation for a glioma suicide gene therapy in the mouse brain. The therapy employed, in a single baculoviral vector, a glial fibrillary acidic protein (GFAP) gene promoter and the repeated target sequences of three miRNAs that are enriched in astrocytes but downregulated in glioblastoma cells to control the expression of the herpes simplex virus thymidine kinase (HSVtk) gene. This resulted in significantly improved in vivo selectivity over the use of a control vector without miRNA regulation, enabling effective elimination of human glioma xenografts while producing negligible toxic effects on normal astrocytes. Thus, incorporating miRNA regulation into a transcriptional targeting vector adds an extra layer of security to prevent off-target transgene expression and should be useful for the development of gene delivery vectors with high targeting specificity for cancer therapy.

  2. Human dipeptidyl peptidase IV gene promoter: tissue-specific regulation from a TATA-less GC-rich sequence characteristic of a housekeeping gene promoter.

    PubMed Central

    Böhm, S K; Gum, J R; Erickson, R H; Hicks, J W; Kim, Y S

    1995-01-01

    The dipeptidyl peptidase IV gene encodes a plasma-membrane exopeptidase that is highly expressed in small intestine, lung and kidney. In order to better understand the mechanisms responsible for this tissue-specific expression we cloned, sequenced and functionally characterized the 5'-flanking region of the human dipeptidyl peptidase IV gene. The first 500 bases of the 5'-flanking sequence constituted an unmethylated CpG island, contained several Sp1-binding sites and lacked a consensus TATA box, all characteristics of gene promoters lacking tissue-specific expression. RNase-protection analysis using both small intestinal and Caco2 cell RNA indicated that the dipeptidyl peptidase IV transcript was initiated from no fewer than six major and 12 minor start sites. The 5'-flanking sequence also exhibited functional promoter activity in transient transfection experiments. Here, various lengths of the sequence were cloned upstream of a luciferase gene and introduced into cultured cells using lipofectin. A region located between bases -150 and -109 relative to the start of translation was found to be important for high-level promoter activity in both Caco2 and HepG2 cells. Moreover, Caco2 cells and HepG2 cells, which express high levels of dipeptidyl peptidase IV activity, exhibited much higher normalized luciferase activity after transfection than did 3T3, Jurkat or COS-7 cells, which have low enzyme levels. Sodium butyrate was found to increase both enzyme activity and normalized luciferase in HepG2 cells. Thus the dipeptidyl peptidase IV promoter possesses the ability to initiate transcription in a tissue-specific fashion in spite of having the sequence characteristics of a housekeeping gene promoter. Images Figure 3 Figure 5 Figure 6 PMID:7487939

  3. Regulation of tissue-specific expression of alternative peripheral myelin protein-22 (PMP22) gene transcripts by two promoters

    SciTech Connect

    Patel, P.I.; Schoener-Scott, R.; Lupski, J.R.

    1994-09-01

    Mutations affecting the peripheral myelin protein-22 (PMP22) gene have been shown to be associated with inherited peripheral neuropathies. We have cloned and characterized the human PMP22 gene which spans approximately 40 kilobases and contains four coding exons. Towards developing gene therapy regimens for the associated peripheral neuropathies, we have initiated detailed analysis of the 5{prime} flanking region of the PMP22 gene and identified two alternatively transcribed, but untranslated exons. Mapping of separate PMP22 mRNA transcription initiation sites to each of these exons indicates that PMP22 expression is regulated by two alternatively used promoters. Both putative promoter sequences demonstrated the ability to drive expression of reporter genes in transfection experiments. Furthermore, the structure of the 5{prime} portion of the PMP22 gene appears to be identical in rat and human, supporting the biological significance of the observed arrangement of regulatory regions. The relative expression of the alternative PMP22 transcripts is tissue-specific and high levels of the exon 1A-containing transcript are tightly coupled to myelin formation. In contrast, exon 1B-containing transcripts are predominant in non-neural tissues and in growth-arrested primary fibroblasts. The observed regulation of the PMP22 by a complex molecular mechanism is consistent with the proposed dual role of PMP22 in neural and non-neural tissue.

  4. Targeted expression of suicide gene by tissue-specific promoter and microRNA regulation for cancer gene therapy.

    PubMed

    Danda, Ravikanth; Krishnan, Gopinath; Ganapathy, Kalaivani; Krishnan, Uma Maheswari; Vikas, Khetan; Elchuri, Sailaja; Chatterjee, Nivedita; Krishnakumar, Subramanian

    2013-01-01

    In order to realise the full potential of cancer suicide gene therapy that allows the precise expression of suicide gene in cancer cells, we used a tissue specific Epithelial cell adhesion molecule (EpCAM) promoter (EGP-2) that directs transgene Herpes simplex virus-thymidine kinase (HSV-TK) expression preferentially in EpCAM over expressing cancer cells. EpCAM levels are considerably higher in retinoblastoma (RB), a childhood eye cancer with limited expression in normal cells. Use of miRNA regulation, adjacent to the use of the tissue-specific promoter, would provide the second layer of control to the transgene expression only in the tumor cells while sparing the normal cells. To test this hypothesis we cloned let-7b miRNA targets in the 3'UTR region of HSV-TK suicide gene driven by EpCAM promoter because let-7 family miRNAs, including let-7b, were found to be down regulated in the RB tumors and cell lines. We used EpCAM over expressing and let-7 down regulated RB cell lines Y79, WERI-Rb1 (EpCAM (+ve)/let-7b(down-regulated)), EpCAM down regulated, let-7 over expressing normal retinal Müller glial cell line MIO-M1(EpCAM (-ve)/let-7b(up-regulated)), and EpCAM up regulated, let-7b up-regulated normal thyroid cell line N-Thy-Ori-3.1(EpCAM (+ve)/let-7b(up-regulated)) in the study. The cell proliferation was measured by MTT assay, apoptosis was measured by probing cleaved Caspase3, EpCAM and TK expression were quantified by Western blot. Our results showed that the EGP2-promoter HSV-TK (EGP2-TK) construct with 2 or 4 copies of let-7b miRNA targets expressed TK gene only in Y79, WERI-Rb-1, while the TK gene did not express in MIO-M1. In summary, we have developed a tissue-specific, miRNA-regulated dual control vector, which selectively expresses the suicide gene in EpCAM over expressing cells.

  5. Notch3 Activation Promotes Invasive Glioma Formation in a Tissue Site-Specific Manner

    PubMed Central

    Pierfelice, Tarran J.; Schreck, Karisa C.; Dang, Louis; Asnaghi, Laura; Gaiano, Nicholas; Eberhart, Charles G.

    2010-01-01

    While Notch signaling has been widely implicated in neoplastic growth, direct evidence for in vivo initiation of neoplasia by the pathway in murine models has been limited to tumors of lymphoid, breast, and choroid plexus cells. To examine tumorigenic potential in the eye and brain, we injected retroviruses encoding activated forms of Notch1, Notch2, or Notch3 into embryonic mice. Interestingly, the majority of animals infected with active Notch3 developed proliferative lesions comprised of pigmented ocular choroid cells, retinal and optic nerve glia, and lens epithelium. Notch3-induced lesions in the choroid, retina, and optic nerve were capable of invading adjacent tissues, suggesting that they were malignant tumors. While Notch3 activation induced choroidal tumors in up to 67% of eyes, Notch1 or Notch2 activation never resulted in such tumors. Active forms of Notch1 and Notch2 did generate a few small proliferative glial nodules in the retina and optic nerve, while Notch3 was ten-fold more efficient at generating growths, many of which were large invasive gliomas. Expression of active Notch1/Notch3 chimeric receptors implicated the RAM (RBPjk-association molecule) and transactivation domains (TAD) of Notch3 in generating choroidal and glial tumors, respectively. In contrast to our findings in the optic nerve and retina, introduction of active Notch receptors, including Notch3, into the brain never caused glial tumors. Our results highlight the differential ability of Notch receptor paralogs to initiate malignant tumor formation, and suggest that glial precursors of the optic nerve, but not the brain, are susceptible to transformation by Notch3. PMID:21245095

  6. Tissue-specific expression of the human aromatase cytochrome P-450 gene by alternative use of multiple exons 1 and promoters, and switching of tissue-specific exons 1 in carcinogenesis.

    PubMed Central

    Harada, N; Utsumi, T; Takagi, Y

    1993-01-01

    Extensive screening of aromatase cDNA was carried out in cDNA libraries from various human tissues. The DNA sequences of all the isolated cDNA clones were identical in the region encoded by exons 2-10 of the aromatase gene. However, tissue-specific sequences, which were classified into four groups, were observed in the 5' portions of the clones corresponding to the region encoded by exon 1. All of them were also found in clones isolated from a human genomic library and mapped between exons 1 and 2 of the human aromatase gene reported previously, suggesting the presence of multiple exons 1 and promoters in the gene. Reverse transcription-PCR analyses of aromatase mRNAs in various tissues revealed that aromatase transcripts are tissue-specifically spliced by alternative use of multiple exons 1, although minor forms of the transcripts were also present in each tissue. Aromatase mRNA is spliced from 10 exons in most tissues, but from 9 exons in the prostate and from 10 or 11 exons in the placenta. This suggests that tissue-specific regulation of the aromatase gene in various tissues may be explained by alternative use of multiple exons 1 flanked with tissue-specific promoters. The alternative use of multiple exons 1 for liver transcripts was found to change developmentally. Furthermore, switch from an adipose-specific exon 1 to another type of exon 1 was observed in aromatase transcripts of adipose tissues of three of five breast cancer patients. Images Fig. 3 Fig. 4 PMID:8248245

  7. A novel strategy to enhance mesenchymal stem cell migration capacity and promote tissue repair in an injury specific fashion.

    PubMed

    Xinaris, C; Morigi, M; Benedetti, V; Imberti, B; Fabricio, A S; Squarcina, E; Benigni, A; Gagliardini, E; Remuzzi, G

    2013-01-01

    Mesenchymal stem cells (MSCs) of bone marrow origin appear to be an attractive candidate for cell-based therapies. However, the major barrier to the effective implementation of MSC-based therapies is the lack of specific homing of exogenously infused cells and overall the inability to drive them to the diseased or damaged tissue. In order to circumvent these limitations, we developed a preconditioning strategy to optimize MSC migration efficiency and potentiate their beneficial effect at the site of injury. Initially, we screened different molecules by using an in vitro injury-migration setting, and subsequently, we evaluated the effectiveness of the different strategies in mice with acute kidney injury (AKI). Our results showed that preconditioning of MSCs with IGF-1 before infusion improved cell migration capacity and restored normal renal function after AKI. The present study demonstrates that promoting migration of MSCs could increase their therapeutic potential and indicates a new therapeutic paradigm for organ repair.

  8. Tissue Specificity of the Kaposi's Sarcoma-Associated Herpesvirus Latent Nuclear Antigen (LANA/orf73) Promoter in Transgenic Mice

    PubMed Central

    Jeong, Joseph H.; Hines-Boykin, Rebecca; Ash, John D.; Dittmer, Dirk P.

    2002-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) is a human-oncogenic herpesvirus. Cells from KSHV-associated tumors, such as Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL), are of endothelial and B-cell origin, respectively. KSHV persists indefinitely in these cell lineages during latent infection. Indeed, cellular latency is a hallmark of all herpesviruses that is intimately linked to their pathogenesis. We previously characterized the promoter for the KSHV latency-associated nuclear antigen LANA/orf73. LANA is required for latent episome maintenance and has also been implicated in oncogenesis. Hence, regulation of LANA expression is critical to KSHV persistence. We find that a region extending to bp −1299 upstream of the LANA transcription start site is able to drive lacZ-reporter gene expression in several lines of transgenic mice. In agreement with KSHV's natural tropism, we detected reporter gene expression in CD19-positive B cells but not in CD3-positive T cells. We also detected expression in the kidney and, at a lower level, in the liver. In contrast to KS tumors, transgene expression was localized to kidney tubular epithelium rather than vascular endothelial cells. This suggests that our promoter fragment contains all cis-regulatory elements sufficient for B-cell specificity but not those required for endothelial specificity. Alternatively, while the trans-acting factors required for LANA expression in B cells are evolutionarily conserved, those that regulate endothelial cell-specific expression are unique to humans. Our in vivo studies address a conundrum in KSHV biology: in culture, KSHV is able to infect a variety of cell types indiscriminately, while in healthy latent carriers KSHV is found in B lymphocytes. The transgenic-mouse experiments reported here suggest that tissue-restricted LANA gene expression could explain B-cell-specific viral persistence. PMID:12368345

  9. Specific collagen XVIII isoforms promote adipose tissue accrual via mechanisms determining adipocyte number and affect fat deposition.

    PubMed

    Aikio, Mari; Elamaa, Harri; Vicente, David; Izzi, Valerio; Kaur, Inderjeet; Seppinen, Lotta; Speedy, Helen E; Kaminska, Dorota; Kuusisto, Sanna; Sormunen, Raija; Heljasvaara, Ritva; Jones, Emma L; Muilu, Mikko; Jauhiainen, Matti; Pihlajamäki, Jussi; Savolainen, Markku J; Shoulders, Carol C; Pihlajaniemi, Taina

    2014-07-29

    Collagen XVIII is an evolutionary conserved ubiquitously expressed basement membrane proteoglycan produced in three isoforms via two promoters (P). Here, we assess the function of the N-terminal, domain of unknown function/frizzled-like sequences unique to medium/long collagen XVIII by creating P-specific null mice. P2-null mice, which only produce short collagen XVIII, developed reduced bulk-adiposity, hepatic steatosis, and hypertriglyceridemia. These abnormalities did not develop in P1-null mice, which produce medium/long collagen XVIII. White adipose tissue samples from P2-null mice contain larger reserves of a cell population enriched in early adipocyte progenitors; however, their embryonic fibroblasts had ∼ 50% lower adipocyte differentiation potential. Differentiating 3T3-L1 fibroblasts into mature adipocytes produced striking increases in P2 gene-products and dramatic falls in P1-transcribed mRNA, whereas Wnt3a-induced dedifferentiation of mature adipocytes produced reciprocal changes in P1 and P2 transcript levels. P2-derived gene-products containing frizzled-like sequences bound the potent adipogenic inhibitor, Wnt10b, in vitro. Previously, we have shown that these same sequences bind Wnt3a, inhibiting Wnt3a-mediated signaling. P2-transcript levels in visceral fat were positively correlated with serum free fatty acid levels, suggesting that collagen α1 (XVIII) expression contributes to regulation of adipose tissue metabolism in visceral obesity. Medium/long collagen XVIII is deposited in the Space of Disse, and interaction between hepatic apolipoprotein E and this proteoglycan is lost in P2-null mice. These results describe a previously unidentified extracellular matrix-directed mechanism contributing to the control of the multistep adipogenic program that determines the number of precursors committing to adipocyte differentiation, the maintenance of the differentiated state, and the physiological consequences of its impairment on ectopic fat

  10. The maize regulatory gene B-Peru contains a DNA rearrangement that specifies tissue-specific expression through both positive and negative promoter elements.

    PubMed Central

    Selinger, D A; Lisch, D; Chandler, V L

    1998-01-01

    The B-Peru allele of the maize b regulatory gene is unusual relative to most b alleles in that it is expressed in the aleurone layer of the seed. It is also expressed in a subset of plant vegetative tissues. Transgenic maize plants containing the B-Peru gene with the first 710 bases of upstream sequence conferred the same levels of aleurone expression as nontransgenic B-Peru plants, but no pigment was made in vegetative tissues. Transient transformation assays in aleurone tissue localized the aleurone-specific promoter to the first 176 bases of the B-Peru upstream region and identified two critically important regions within this fragment. Mutation of either region alone reduced expression greater than fivefold. Surprisingly, the double mutation actually increased expression to twice the native promoter level. Our results suggest that these two critical sequences, which lie close together in the promoter, may form a negative regulatory element. Several lines of evidence suggest that the B-Peru promoter arose through the translocation of an existing aleurone-specific promoter to the b locus. Immediately upstream of the aleurone-specific promoter elements and in the opposite orientation to the b coding sequence is a pseudogene sequence with strong similarity to a known class of proteins. Our findings that novel aleurone-specific promoter sequences of the B-Peru transcription factor are found adjacent to part of another gene in a small insertion are quite unexpected and have interesting evolutionary implications. PMID:9611220

  11. Identification of the avian RBP7 gene as a new adipose-specific gene and RBP7 promoter-driven GFP expression in adipose tissue of transgenic quail.

    PubMed

    Ahn, Jinsoo; Shin, Sangsu; Suh, Yeunsu; Park, Ju Yeon; Hwang, Seongsoo; Lee, Kichoon

    2015-01-01

    The discovery of an increasing number of new adipose-specific genes has significantly contributed to our understanding of adipose tissue biology and the etiology of obesity and its related diseases. In the present study, comparison of gene expression profiles among various tissues was performed by analysis of chicken microarray data, leading to identification of RBP7 as a novel adipose-specific gene in chicken. Adipose-specific expression of RBP7 in the avian species was further confirmed at the protein and mRNA levels. Examination of the transcription factor binding sites within the chicken RBP7 promoter by Matinspector software revealed potential binding sites for adipogenic transcription factors. This led to the hypothesis that the RBP7 promoter can be utilized to overexpress a transgene in adipose tissue in order to further investigate the function of a transgene in adipose tissue. Several lines of transgenic quail containing a green fluorescent protein (GFP) gene under the control of the RBP7 promoter were generated using lentivirus-mediated gene transfer. The GFP expression in transgenic quail was specific to adipose tissue and increased after adipocyte differentiation. This expression pattern was consistent with endogenous RBP7 expression, suggesting the RBP7 promoter is sufficient to overexpress a gene of interest in adipose tissue at later developmental stages. These findings will lead to the establishment of a novel RBP7 promoter cassette which can be utilized for overexpressing genes of interest in adipose tissue in vivo to study the function of genes in adipose tissue development and lipid metabolism.

  12. Human cytomegalovirus (HCMV) immediate-early enhancer/promoter specificity during embryogenesis defines target tissues of congenital HCMV infection.

    PubMed Central

    Koedood, M; Fichtel, A; Meier, P; Mitchell, P J

    1995-01-01

    Congenital human cytomegalovirus (HCMV) infection is a common cause of deafness and neurological disabilities. Many aspects of this prenatal infection, including which cell types are infected and how infection proceeds, are poorly understood. Transcription of HCMV immediate-early (IE) genes is required for expression of all other HCMV genes and is dependent on host cell transcription factors. Cell type-specific differences in levels of IE transcription are believed to underlie differences in infection permissivity. However, DNA transfection experiments have paradoxically suggested that the HCMV major IE enhancer/promoter is a broadly active transcriptional element with little cell type specificity. In contrast, we show here that expression of a lacZ gene driven by the HCMV major IE enhancer/promoter -524 to +13 segment is restricted in transgenic mouse embryos to sites that correlate with known sites of congenital HCMV infection in human fetuses. This finding suggests that the IE enhancer/promoter is a major determinant of HCMV infection sites in humans and that transcription factors responsible for its regulation are cell type-specifically conserved between humans and mice. The lacZ expression patterns of these transgenic embryos yield insight into congenital HCMV pathogenesis by providing a spatiotemporal map of the sets of vascular, neural, and epithelial cells that are likely targets of infection. These transgenic mice may constitute a useful model system for investigating IE enhancer/promoter regulation in vivo and for identifying factors that modulate active and latent HCMV infections in humans. PMID:7884867

  13. Tissue Specific Electrochemical Fingerprinting

    PubMed Central

    Sobrova, Pavlina; Vyslouzilova, Lenka; Stepankova, Olga; Ryvolova, Marketa; Anyz, Jiri; Trnkova, Libuse; Adam, Vojtech; Hubalek, Jaromir; Kizek, Rene

    2012-01-01

    Background Proteomics and metalloproteomics are rapidly developing interdisciplinary fields providing enormous amounts of data to be classified, evaluated and interpreted. Approaches offered by bioinformatics and also by biostatistical data analysis and treatment are therefore of extreme interest. Numerous methods are now available as commercial or open source tools for data processing and modelling ready to support the analysis of various datasets. The analysis of scientific data remains a big challenge, because each new task sets its specific requirements and constraints that call for the design of a targeted data pre-processing approach. Methodology/Principal Findings This study proposes a mathematical approach for evaluating and classifying datasets obtained by electrochemical analysis of metallothionein in rat 9 tissues (brain, heart, kidney, eye, spleen, gonad, blood, liver and femoral muscle). Tissue extracts were heated and then analysed using the differential pulse voltammetry Brdicka reaction. The voltammograms were subsequently processed. Classification models were designed making separate use of two groups of attributes, namely attributes describing local extremes, and derived attributes resulting from the level = 5 wavelet transform. Conclusions/Significance On the basis of our results, we were able to construct a decision tree that makes it possible to distinguish among electrochemical analysis data resulting from measurements of all the considered tissues. In other words, we found a way to classify an unknown rat tissue based on electrochemical analysis of the metallothionein in this tissue. PMID:23185396

  14. Promoter Complexity and Tissue-Specific Expression of Stress Response Components in Mytilus galloprovincialis, a Sessile Marine Invertebrate Species

    PubMed Central

    Pantzartzi, Chrysa; Drosopoulou, Elena; Yiangou, Minas; Drozdov, Ignat; Tsoka, Sophia; Ouzounis, Christos A.; Scouras, Zacharias G.

    2010-01-01

    The mechanisms of stress tolerance in sessile animals, such as molluscs, can offer fundamental insights into the adaptation of organisms for a wide range of environmental challenges. One of the best studied processes at the molecular level relevant to stress tolerance is the heat shock response in the genus Mytilus. We focus on the upstream region of Mytilus galloprovincialis Hsp90 genes and their structural and functional associations, using comparative genomics and network inference. Sequence comparison of this region provides novel evidence that the transcription of Hsp90 is regulated via a dense region of transcription factor binding sites, also containing a region with similarity to the Gamera family of LINE-like repetitive sequences and a genus-specific element of unknown function. Furthermore, we infer a set of gene networks from tissue-specific expression data, and specifically extract an Hsp class-associated network, with 174 genes and 2,226 associations, exhibiting a complex pattern of expression across multiple tissue types. Our results (i) suggest that the heat shock response in the genus Mytilus is regulated by an unexpectedly complex upstream region, and (ii) provide new directions for the use of the heat shock process as a biosensor system for environmental monitoring. PMID:20628614

  15. In vivo stage- and tissue-specific DNA-protein interactions at the D. melanogaster alcohol dehydrogenase distal promoter and adult enhancer.

    PubMed Central

    Jackson, J R; Benyajati, C

    1992-01-01

    We performed a high resolution analysis of the chromatin structure within the regions required for distal transcription of the Drosophila melanogaster alcohol dehydrogenase gene (Adh). Using dimethyl sulfate, DNase I, and micrococcal nuclease as structural probes, and comparing chromatin structure in tissues isolated from several developmental stages, we have identified several sites of stage- and tissue-specific DNA-protein interactions that correlate with distal transcription initiation. Most were within previously identified cis-acting elements and/or in vitro protein binding sites of the adult enhancer (AAE) and distal promoter, including the TATA box. We also detected a novel stage-specific DNA-protein interaction at the Adf-2a binding site where a non-histone protein was bound to the DNA on the surface of a positioned nucleosome previously identified between the distal promoter and adult enhancer. In addition to footprints, we have also revealed stage- and tissue-specific DNA helix deformations between many of the non-histone protein binding sites. These helix distortions suggest there are interactions among the adjacently bound proteins that result in bending or kinking of the intervening DNA. The distal promoter and AAE have an accessible chromatin conformation in fat body prior to the third larval instar and many of the regulatory proteins that bind in these regions are also available before distal transcription begins. Nevertheless, the timing of DNA-protein interactions in the distal promoter and AAE suggest these proteins do not bind individually or assemble progressively as they and their binding sites become available. Instead, there appears to be a coordinated assembly of a large cooperative complex of proteins interacting with the distal promoter, the positioned nucleosome, the enhancer of the distal promoter (the AAE), and each other. Images PMID:1437559

  16. Tissue-specific and ubiquitous factors binding next to the glucocorticoid receptor modulate transcription from the mouse mammary tumor virus promoter.

    PubMed Central

    Cavin, C; Buetti, E

    1995-01-01

    Steroid hormones complexed with their receptors play an essential role in the regulation of mouse mammary tumor virus (MMTV) transcription. However, the need for additional tissue-specific regulatory factors is suggested by the lack of virus expression in liver, in which glucocorticoid receptors are highly abundant, and by the tissue-specific transcription of reporter genes linked to an MMTV long terminal repeat in transgenic mice. In this study, we characterized two distal-region regulatory elements, DRa and DRc, which, together with the distal glucocorticoid receptor binding site (DRb), increased transcription from the MMTV promoter in permissive cells. This was demonstrated by transfection of these sequences (DRa, DRb, and DRc) in different combinations with the natural MMTV promoter in mouse fibroblasts and mammary epithelial cells, followed by quantitative S1 nuclease mapping of the transcripts. We further showed by DNase I footprinting, methylation interference, and gel retardation assays with various nuclear extracts from permissive or nonpermissive tissues and cell lines that the factors binding to the DRa site are distinct and tissue-specific whereas those binding to DRc are ubiquitous. PMID:7745724

  17. Specificity of expression of the GUS reporter gene (uidA) driven by the tobacco ASA2 promoter in soybean plants and tissue cultures.

    PubMed

    Inaba, Yoshimi; Zhong, Wei Qun; Zhang, Xing-Hai; Widholm, Jack M

    2007-07-01

    Twelve independent lines were transformed by particle bombardment of soybean embryogenic suspension cultures with the tobacco anthranilate synthase (ASA2) promoter driving the uidA (beta-glucuronidase, GUS) reporter gene. ASA2 appears to be expressed in a tissue culture specific manner in tobacco (Song H-S, Brotherton JE, Gonzales RA, Widholm JM. Tissue culture specific expression of a naturally occurring tobacco feedback-insensitive anthranilate synthase. Plant Physiol 1998;117:533-43). The transgenic lines also contained the hygromycin phosphotransferase (hpt) gene and were selected using hygromycin. All the selected cultures or the embryos that were induced from these cultures expressed GUS measured histochemically. However, no histochemical GUS expression could be found in leaves, stems, roots, pods and root nodules of the plants formed from the embryos and their progeny. Pollen from some of the plants and immature and mature seeds and embryogenic cultures initiated from immature cotyledons did show GUS activity. Quantitative 4-methylumbelliferyl-glucuronide (MUG) assays of the GUS activity in various tissues showed that all with observable histochemical GUS activity contained easily measurable activities and leaves and stems that showed no observable histochemical GUS staining did contain very low but measurable MUG activity above that of the untransformed control but orders of magnitude lower than the constitutive 35S-uidA controls used. Low but clearly above background levels of boiling sensitive GUS activity could be observed in the untransformed control immature seeds and embryogenic cultures using the MUG assay. Thus in soybean the ASA2 promoter drives readily observable GUS expression in tissue cultures, pollen and seeds, with only extremely low levels seen in vegetative tissues of the plants. The ASA2 driven expression seen in mature seed was, however, much lower than that seen with the constitutive 35S promoter; less than 2% in seed coats and less than

  18. Tissue-, sex- and age-specific DNA methylation of rat glucocorticoid receptor gene promoter and insulin like growth factor 2 imprinting control region.

    PubMed

    Agba, Ogechukwu Brenda; Lausser, Ludwig; Huse, Klaus; Bergmeier, Christoph; Jahn, Niels; Groth, Marco; Bens, Martin; Sahm, Arne; Gall, Maria; Witte, Otto W; Kestler, Hans A; Schwab, Matthias; Platzer, Matthias

    2017-09-15

    Tissue-, sex- and age-specific epigenetic modifications such as DNA methylation are largely unknown. Changes in DNA methylation of the glucocorticoid receptor gene (NR3C1) and imprinting control region (ICR) of IGF2 and H19 genes during the lifespan are particularly interesting since these genes are susceptible to epigenetic modifications by prenatal stress or malnutrition. They are important regulators of development and aging. Methylation changes of NR3C1 affect glucocorticoid receptor expression, which is associated with stress sensitivity and stress-related diseases predominantly occurring during aging. Methylation changes of IGF2/H19 affect growth trajectory and nutrient use with risk of metabolic syndrome. Using a locus-specific approach, we characterized DNA methylation patterns of different Nr3c1 promoters and Igf2/H19 ICR in seven tissues of rats at 3, 9 and 24 months of age. We found a complex pattern of locus-, tissue-, sex- and age-specific DNA methylation. Tissue-specific methylation was most prominent at the shores of the Nr3c1 CpG island (CGI). Sex-specific differences in methylation peaked at 9 months. During aging, Nr3c1 predominantly displayed hypomethylation mainly in females and at shores, whereas hypermethylation occurred within the CGI. Igf2/H19 ICR exhibited age-related hypomethylation occurring mainly in males. Methylation patterns of Nr3c1 in the skin correlated with those in the cortex, hippocampus and hypothalamus. Skin may serve as proxy for methylation changes in central parts of the hypothalamic-pituitary-adrenal axis and hence for vulnerability to stress- and age-associated diseases. Thus, we provide in-depth insight into the complex DNA methylation changes of rat Nr3c1 and Igf2/H19 during aging that are tissue- and sex-specific. Copyright © 2017, Physiological Genomics.

  19. Tissue specificity and developmental pattern of amorpha-4,11-diene synthase (ADS) proved by ADS promoter-driven GUS expression in the heterologous plant, Arabidopsis thaliana.

    PubMed

    Kim, Soon-Hee; Chang, Yung-Jin; Kim, Soo-Un

    2008-02-01

    Amorpha-4,11-diene synthase (ADS) of Artemisia annua L. is a sesquiterpene cyclase that catalyzes the conversion of farnesyl diphosphate into amorpha-4,11-diene in the biosynthesis of the antimalarial artemisinin. To explore the mechanisms regulating the tissue-specific and developmental distributions of ADS, a full ADS promoter was generated using PCR, and fused to GUS for introduction into Arabidopsis thaliana. ADSpro::GUS fusion transcripts were organ-specific, mainly present in the anthers and trichomes of the green tissues of the juvenile leaves. This result was consistent with the ADS transcription pattern observed in A. annua as examined by RT-PCR. To determine the subcellular localization of ADS, an open reading frame (ORF) of ADS was fused to the green fluorescent protein (smGFP) gene and introduced into the A. thaliana protoplasts. GFP fluorescence was located exclusively in the cytosol, an indication that ADS is a cytosol-localized protein.

  20. Gene Electrotransfer of Plasmid with Tissue Specific Promoter Encoding shRNA against Endoglin Exerts Antitumor Efficacy against Murine TS/A Tumors by Vascular Targeted Effects

    PubMed Central

    Stimac, Monika; Dolinsek, Tanja; Lampreht, Ursa; Cemazar, Maja; Sersa, Gregor

    2015-01-01

    Vascular targeted therapies, targeting specific endothelial cell markers, are promising approaches for the treatment of cancer. One of the targets is endoglin, transforming growth factor-β (TGF-β) co-receptor, which mediates proliferation, differentiation and migration of endothelial cells forming neovasculature. However, its specific, safe and long-lasting targeting remains the challenge. Therefore, in our study we evaluated the transfection efficacy, vascular targeted effects and therapeutic potential of the plasmid silencing endoglin with the tissue specific promoter, specific for endothelial cells marker endothelin-1 (ET) (TS plasmid), in comparison to the plasmid with constitutive promoter (CON plasmid), in vitro and in vivo. Tissue specificity of TS plasmid was demonstrated in vitro on several cell lines, and its antiangiogenic efficacy was demonstrated by reducing tube formation of 2H11 endothelial cells. In vivo, on a murine mammary TS/A tumor model, we demonstrated good antitumor effect of gene electrotransfer (GET) of either of both plasmids in treatment of smaller tumors still in avascular phase of growth, as well as on bigger tumors, already well vascularized. In support to the observations on predominantly vascular targeted effects of endoglin, histological analysis has demonstrated an increase in necrosis and a decrease in the number of blood vessels in therapeutic groups. A significant antitumor effect was observed in tumors in avascular and vascular phase of growth, possibly due to both, the antiangiogenic and the vascular disrupting effect. Furthermore, the study indicates on the potential use of TS plasmid in cancer gene therapy since the same efficacy as of CON plasmid was determined. PMID:25909447

  1. TIM3+FOXP3+ regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer

    PubMed Central

    Sakuishi, Kaori; Ngiow, Shin Foong; Sullivan, Jenna M.; Teng, Michele W. L.; Kuchroo, Vijay K.; Smyth, Mark J.; Anderson, Ana C.

    2013-01-01

    T-cell immunoglobulin mucin 3 (TIM3) is an inhibitory molecule that has emerged as a key regulator of dysfunctional or exhausted CD8+ T cells arising in chronic diseases such as cancer. In addition to exhausted CD8+ T cells, highly suppressive regulatory T cells (Tregs) represent a significant barrier against the induction of antitumor immunity. We have found that the majority of intratumoral FOXP3+ Tregs express TIM3. TIM3+ Tregs co-express PD-1, are highly suppressive and comprise a specialized subset of tissue Tregs that are rarely observed in the peripheral tissues or blood of tumor-bearing mice. The co-blockade of the TIM3 and PD-1 signaling pathways in vivo results in the downregulation of molecules associated with TIM3+ Treg suppressor functions. This suggests that the potent clinical efficacy of co-blocking TIM3 and PD-1 signal transduction cascades likely stems from the reversal of T-cell exhaustion combined with the inhibition of regulatory T-cell function in tumor tissues. Interestingly, we find that TIM3+ Tregs accumulate in the tumor tissue prior to the appearance of exhausted CD8+ T cells, and that the depletion of Tregs at this stage interferes with the development of the exhausted phenotype by CD8+ T cells. Collectively, our data indicate that TIM3 marks highly suppressive tissue-resident Tregs that play an important role in shaping the antitumor immune response in situ, increasing the value of TIM3-targeting therapeutic strategies against cancer. PMID:23734331

  2. Drug-regulatable cancer cell death induced by BID under control of the tissue-specific, lung cancer-targeted TTS promoter system.

    PubMed

    Fukazawa, Takuya; Maeda, Yutaka; Matsuoka, Junji; Tanaka, Noriaki; Tanaka, Hirotoshi; Durbin, Mary L; Naomoto, Yoshio

    2009-10-15

    Gene therapy and virotherapy are among the approaches currently being used to treat lung cancer. The success of cancer gene therapy depends on treatments where different types of tumors can be selectively targeted and destroyed without affecting normal cells and tissue. Previously, we described a promoter system (TTS) that we designed that is specifically targeted to lung cancer cells but which does not affect other types of cells including stem cells. In our study, we have enhanced the utility of the TTS system by inserting the pro-apoptotic gene BH3 domain interacting death agonist (Bid) into the TTS promoter system (TTS/Bid) to create a drug regulatable lung cancer-specific gene therapy. A recombinant adenoviral vector was used to introduce TTS/Bid (Ad-TTS/Bid) into lung cancer cells. BID expression and apoptosis occurred in A549 pulmonary adenocarcinoma cells but little Bid expression or apoptosis occurred in MCF7 breast cancer cells or in normal human lung fibroblasts. The use of cisplatin enhanced the processing of full length BID to t-BID which significantly increased lung cancer-specific cell death. In in vivo experiments, intraperitonal injection of cisplatin enhanced the antitumor effects of the vector in a lung cancer xeno-graft mouse model. Moreover, dexamethasone effectively suppressed exogenous BID expression and the antitumor effect of Ad-TTS/Bid both in vitro and in vivo. Here, we describe the efficacy of the use of cisplatin and dexamethasone with the anti lung cancer promoter system (Ad-TTS/Bid) for a safe and effective gene therapy against advanced lung cancer.

  3. Composing a Tumor Specific Bacterial Promoter

    PubMed Central

    Deyneko, Igor V.; Kasnitz, Nadine; Leschner, Sara; Weiss, Siegfried

    2016-01-01

    Systemically applied Salmonella enterica spp. have been shown to invade and colonize neoplastic tissues where it retards the growth of many tumors. This offers the possibility to use the bacteria as a vehicle for the tumor specific delivery of therapeutic molecules. Specificity of such delivery is solely depending on promoter sequences that control the production of a target molecule. We have established the functional structure of bacterial promoters that are transcriptionally active exclusively in tumor tissues after systemic application. We observed that the specific transcriptional activation is accomplished by a combination of a weak basal promoter and a strong FNR binding site. This represents a minimal set of control elements required for such activation. In natural promoters, additional DNA remodeling elements are found that alter the level of transcription quantitatively. Inefficiency of the basal promoter ensures the absence of transcription outside tumors. As a proof of concept, we compiled an artificial promoter sequence from individual motifs representing FNR and basal promoter and showed specific activation in a tumor microenvironment. Our results open possibilities for the generation of promoters with an adjusted level of expression of target proteins in particular for applications in bacterial tumor therapy. PMID:27171245

  4. TUMORAL TISSUE SPECIFIC PROMOTER HYPERMETHYLATION OF DISTINCT TUMOR SUPPRESSOR GENES IN A CASE WITH NONSMALL CELL LUNG CARCINOMA: A CASE REPORT

    PubMed Central

    Arslan, Sulhattin; Dogan, Tamer; Koksal, Binnur; Yildirim, Malik Ejder; Gumus, Cesur; Elagoz, Sahenda; Akkurt, Ibrahim; Ozdemir, Oztürk

    2008-01-01

    SUMMARY Objective: Non-small cell lung carcinoma is an aggressive phenomenon and the epigenetical alterations of some tumor supressor genes have been reported for the different tumor types. Case Presentation: It is presented a case report concerning a 43 years old male with NSCLC on the lower segment of the right lung. The patient underwent a diag-nostic excisional thin-needle biopsy and after the histological confirmation. We examined the promoter methylation status of some distinct tumor supressor genes in tumoral and blood tissues of the case after sodium bisulfite conversion and DNA amplification with methylation specific multiplex PCR technique. Both tissues were also searched for G to A transitions in codons 12 and 13 of the K-ras proto-oncogene. Results: Tumor specimen showed fully methyl pattern profiles for the SFRP2, p16, DAPK1 and partially hyper-methylated profile for the p53 and MGMT genes in this case with non-small lung carci-noma. Blood speicemen showed normal hypomethylated profiles for all studied TS genes. The K-ras proto-oncogene was in normal structure both in blood and tumoral spiecemens that examined. Conclusion: Results indicate that genes exhibit tumor suppressor activi-ties in blood, but exhibit epigenetic inactivation in carcinoma cell. These findings strongly support the hypothesis that epigenetic mechanisms may play an important role in the non-small cell lung carcinogenesis in human. PMID:21264081

  5. Creation of Bt rice expressing a fusion protein of Cry1Ac and Cry1I-like using a green tissue-specific promoter.

    PubMed

    Yang, Yong-Yi; Mei, Feng; Zhang, Wei; Shen, Zhicheng; Fang, Jun

    2014-08-01

    The insecticidal genes from Bacillus thuringiensis Berliner (Bt) have long been successfully used for development of insect-resistant rice. However, commercial planting of Bt rice has been delayed by the concern over food safety, although no scientific evidence is ever found to justify the concern. To address this safety concern, we developed a transgenic insect-resistant rice line using a green tissue promoter to minimize the Bt protein expression in the rice seeds. The Bt protein expressed in the rice was a fusion protein of two different Bt toxins, Cry1Ac and Cry1I-like protein. The fusion of the two toxins may be helpful to delay the development of insect resistance to Bt rice. Laboratory and field bioassays demonstrated that the transgenic rice plants created by this study were highly active against the rice leaf folder Cnaphalocrocis medinalis (Guenée) and the striped stem borer Chilo suppressalis (Walker). Western analysis indicated that the fusion protein was specifically expressed in green tissues but not in seeds. Therefore, the transgenic rice created in this study should be useful to mitigate the food safety concern and to delay the development of insect resistance.

  6. Green-tissue-specific, C(4)-PEPC-promoter-driven expression of Cry1Ab makes transgenic potato plants resistant to tuber moth (Phthorimaea operculella, Zeller).

    PubMed

    Ghasimi Hagh, Ziba; Rahnama, Hassan; Panahandeh, Jaber; Baghban Kohneh Rouz, Bahram; Arab Jafari, Khoda Morad; Mahna, Nasser; Mahna, Naser

    2009-12-01

    An important strategy for obtaining a safer transgenic plant may be the use of a spatial- or tissue-specific promoter, instead of a constitutive one. In this study, we have used a light-inducible maize PEPC promoter to regulate the cry1Ab gene, aiming to produce transgenic potatoes that are resistant to potato tuber moth (PTM) (Phthorimaea operculella, Zeller). Out of 60 regenerated lines having normal phenotypes, 55 lines were PCR-positive for both the cry1Ab and nptII genes. Southern analysis on three selected putative transgenic lines revealed that they have only a single intact copy of the cry1Ab gene. An investigation of the Cry1Ab protein in the leaves and light-exposed (LE) tubers of the transgenic lines demonstrated the presence of the protein in the foliage and green tubers but not in the light-not exposed (LNE) tubers. A bioassay analysis of excised leaves of nine randomly selected lines showed that eight lines had 100% PTM larval mortality. Confirming results were obtained in six selected lines using the whole plant bioassay in the greenhouse. LE transgenic tubers also exhibited 100% larval mortality; however, the levels of damage to the LNE transgenic tubers were high and statistically the same as those incurred by the non-transgenic ones. Based on the results, we believe that this spatial expression of Cry1Ab using the light-inducible PEPC promoter can control PTM infestation in the field and significantly reduce pollution transmission to storage potatoes.

  7. CCN Family 2/Connective Tissue Growth Factor (CCN2/CTGF) Promotes Osteoclastogenesis via Induction of and Interaction with Dendritic Cell–Specific Transmembrane Protein (DC-STAMP)

    PubMed Central

    Nishida, Takashi; Emura, Kenji; Kubota, Satoshi; Lyons, Karen M; Takigawa, Masaharu

    2013-01-01

    CCN family 2/connective tissue growth factor (CCN2/CTGF) promotes endochondral ossification. However, the role of CCN2 in the replacement of hypertrophic cartilage with bone is still unclear. The phenotype of Ccn2 null mice, having an expanded hypertrophic zone, indicates that the resorption of the cartilage extracellular matrix is impaired therein. Therefore, we analyzed the role of CCN2 in osteoclastogenesis because cartilage extracellular matrix is resorbed mainly by osteoclasts during endochondral ossification. Expression of the Ccn2 gene was upregulated in mouse macrophage cell line RAW264.7 on day 6 after treatment of glutathione S transferase (GST) fusion mouse receptor activator of NF-κB ligand (GST-RANKL), and a combination of recombinant CCN2 (rCCN2) and GST-RANKL significantly enhanced tartrate-resistant acid phosphatase (TRACP)–positive multinucleated cell formation compared with GST-RANKL alone. Therefore, we suspected the involvement of CCN2 in cell-cell fusion during osteoclastogenesis. To clarify the mechanism, we performed real-time PCR analysis of gene expression, coimmunoprecipitation analysis, and solid-phase binding assay of CCN2 and dendritic cell–specific transmembrane protein (DC-STAMP), which is involved in cell-cell fusion. The results showed that CCN2 induced and interacted with DC-STAMP. Furthermore, GST-RANKL–induced osteoclastogenesis was impaired in fetal liver cells from Ccn2 null mice, and the impaired osteoclast formation was rescued by the addition of exogenous rCCN2 or the forced expression of DC-STAMP by a retroviral vector. These results suggest that CCN2 expressed during osteoclastogenesis promotes osteoclast formation via induction of and interaction with DC-STAMP. PMID:20721934

  8. An Intergenic Region Shared by At4g35985 and At4g35987 in Arabidopsis thaliana Is a Tissue Specific and Stress Inducible Bidirectional Promoter Analyzed in Transgenic Arabidopsis and Tobacco Plants

    PubMed Central

    Banerjee, Joydeep; Sahoo, Dipak Kumar; Dey, Nrisingha; Houtz, Robert L.; Maiti, Indu Bhushan

    2013-01-01

    On chromosome 4 in the Arabidopsis genome, two neighboring genes (calmodulin methyl transferase At4g35987 and senescence associated gene At4g35985) are located in a head-to-head divergent orientation sharing a putative bidirectional promoter. This 1258 bp intergenic region contains a number of environmental stress responsive and tissue specific cis-regulatory elements. Transcript analysis of At4g35985 and At4g35987 genes by quantitative real time PCR showed tissue specific and stress inducible expression profiles. We tested the bidirectional promoter-function of the intergenic region shared by the divergent genes At4g35985 and At4g35987 using two reporter genes (GFP and GUS) in both orientations in transient tobacco protoplast and Agro-infiltration assays, as well as in stably transformed transgenic Arabidopsis and tobacco plants. In transient assays with GFP and GUS reporter genes the At4g35985 promoter (P85) showed stronger expression (about 3.5 fold) compared to the At4g35987 promoter (P87). The tissue specific as well as stress responsive functional nature of the bidirectional promoter was evaluated in independent transgenic Arabidopsis and tobacco lines. Expression of P85 activity was detected in the midrib of leaves, leaf trichomes, apical meristemic regions, throughout the root, lateral roots and flowers. The expression of P87 was observed in leaf-tip, hydathodes, apical meristem, root tips, emerging lateral root tips, root stele region and in floral tissues. The bidirectional promoter in both orientations shows differential up-regulation (2.5 to 3 fold) under salt stress. Use of such regulatory elements of bidirectional promoters showing spatial and stress inducible promoter-functions in heterologous system might be an important tool for plant biotechnology and gene stacking applications. PMID:24260266

  9. Identification of brain-derived neurotrophic factor promoter regions mediating tissue-specific, axotomy-, and neuronal activity-induced expression in transgenic mice

    PubMed Central

    1995-01-01

    The structure of rat brain-derived neurotrophic factor (BDNF) gene is complex; four 5' exons are linked to separate promoters and one 3' exon is encoding the BDNF protein. To analyze the relative importance of the regulatory regions in vivo, we have generated transgenic mice with six different promoter constructs of the BDNF gene fused to the chloramphenicol acetyl transferase reporter gene. High level and neuronal expression of the reporter gene, that in many respects recapitulated BDNF gene expression, was achieved by using 9 kb of genomic sequences covering the promoter regions that lie adjacent to each other in the genome (promoters I and II and promoters III and IV, respectively) and by including sequences of BDNF intron-exon splice junctions and 3' untranslated region in the constructs. The genomic regions responsible for the in vivo upregulation of BDNF expression in the axotomized sciatic nerve and in the brain after kainic acid-induced seizures and KCl-induced spreading depression were mapped. These data show that regulation of the different aspects of BDNF expression is controlled by different regions in vivo, and they suggest that these promoter constructs may be useful for targeted expression of heterologous genes to specific regions of the central and peripheral nervous systems in an inducible manner. PMID:7822414

  10. cis-acting DNA regulatory elements, including the retinoic acid response element, are required for tissue specific laminin B1 promoter/lacZ expression in transgenic mice.

    PubMed

    Sharif, K A; Li, C; Gudas, L J

    2001-05-01

    The LAMB1 gene encodes the laminin beta1 subunit of laminin, an extracellular matrix protein. Using several transgenic mouse lines containing various lengths of the LAMB1 promoter driving lacZ reporter gene expression, regions of LAMB1 promoter that contain cis-acting DNA regulatory element(s) have been identified. The 3.9LAMB1betagal transgene is expressed in various tissues during development. LAMB1 transgene expression is observed in a selective set of nephrons of the neonatal and adult kidneys. The cis-acting DNA regulatory elements responsible for LAMB1 transgene expression in ovaries and in juvenile kidneys are present between -'1.4 and -0.7 kb relative to the transcription start site, while those of adult kidneys are located between -2.5 and -1.4 kb. The LAMB1 transgene is also expressed in the epididymis of 1 week old transgenic mice. Mutation of the retinoic acid response element (RARE) in the context of the 3.9LAMB1betagal transgene results in loss of LAMB1 transgene expression in all tissues. Thus, sequences between -2.5 and -0.7 kb plus the RARE are required for appropriate expression of the LAMB1 transgene in mice.

  11. Transgenic Bt cotton driven by the green tissue-specific promoter shows strong toxicity to lepidopteran pests and lower Bt toxin accumulation in seeds.

    PubMed

    Wang, Qing; Zhu, Yi; Sun, Lin; Li, Lebin; Jin, Shuangxia; Zhang, Xianlong

    2016-02-01

    A promoter of the PNZIP (Pharbitis nil leucine zipper) gene (1.459 kb) was cloned from Pharbitis nil and fused to the GUS (β-glucuronidase) and Bacillus thuringiensis endotoxin (Cry9C) genes. Several transgenic PNZIP::GUS and PNZIP::Cry9C cotton lines were developed by Agrobacterium-mediated transformation. Strong GUS staining was detected in the green tissues of the transgenic PNZIP::GUS cotton plants. In contrast, GUS staining in the reproductive structures such as petals, anther, and immature seeds of PNZIP::GUS cotton was very faint. Two transgenic PNZIP::Cry9C lines and one transgenic cauliflower mosaic virus (CaMV) 35S::Cry9C line were selected for enzyme-linked immunosorbent assay (ELISA) and insect bioassays. Expression of the Cry9C protein in the 35S::Cry9C line maintained a high level in most tissues ranging from 24.6 to 45.5 μg g(-1) fresh weight. In green tissues such as the leaves, boll rinds, and bracts of the PNZIP::Cry9C line, the Cry9C protein accumulated up to 50.2, 39.7, and 48.3 μg g(-1) fresh weight respectively. In contrast, seeds of the PNZIP::Cry9C line (PZ1.3) accumulated only 0.26 μg g(-1) fresh weight of the Cry9C protein, which was 100 times lower than that recorded for the seeds of the CaMV 35S::Cry9C line. The insect bioassay showed that the transgenic PNZIP::Cry9C cotton plant exhibited strong resistance to both the cotton bollworm and the pink bollworm. The PNZIP promoter could effectively drive Bt toxin expression in green tissues of cotton and lower accumulated levels of the Bt protein in seeds. These features should allay public concerns about the safety of transgenic foods. We propose the future utility of PNZIP as an economical, environmentally friendly promoter in cotton biotechnology.

  12. Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation, and tumor induction in transgenic mice

    SciTech Connect

    Andres, A.C.; Schoenenberger, C.A.; Groner, B.; Henninghausen, L.; LeMeur, M.; Gelinger, P.

    1987-03-01

    The activated human Ha-ras oncogene was subjected to the control of the promoter region of the murine whey acidic protein (Wap) gene, which is expressed in mammary epithelial cells in response to lactogenic hormones. The Wap-ras gene was stably introduced into the mouse germ line of five transgenic mice (one male and four females). Wap-ras expression was observed in the mammary glands of lactating females in two lines derived from female founders. The tissue-directed and hormone-dependent Wap expression was conferred on the Ha-ras oncogene. The signals governing Wap expression are located within 2.5 kilobases of 5' flanking sequence. The other two lines derived from female founders did not express the chimeric gene. In the line derived from the male founder the Wap-ras gene is integrated into the Y chromosome. Expression was found in the salivary gland of male animals only. After a long latency, Wap-ras-expressing mice developed tumors. The tumors arose in tissues expressing Wap-ras - i.e., mammary or salivary glands. Compared to the corresponding nonmalignant tissues, Wap-ras expression was enhanced in the tumors.

  13. Development of leaffolder resistant transgenic rice expressing cry2AX1 gene driven by green tissue-specific rbcS promoter.

    PubMed

    Manikandan, R; Balakrishnan, N; Sudhakar, D; Udayasuriyan, V

    2016-03-01

    The insecticidal cry genes of Bacillus thuringiensis (Bt) have been successfully used for development of insect resistant transgenic rice plants. In this study, a novel cry2AX1 gene consisting a sequence of cry2Aa and cry2Ac gene driven by rice rbcS promoter was introduced into a rice cultivar, ASD16. Among 27 putative rice transformants, 20 plants were found to be positive for cry2AX1 gene. The expression of Cry2AX1 protein in transgenic rice plants ranged from 5.95 to 122.40 ng/g of fresh leaf tissue. Stable integration of the transgene was confirmed in putative transformants of rice by Southern blot hybridization analysis. Insect bioassay on T0 transgenic rice plants against rice leaffolder (Cnaphalocrosis medinalis) recorded larval mortality up to 83.33%. Stable inheritance and expression of cry2AX1 gene in T1 progenies was demonstrated using Southern and ELISA. The detached leaf bit bioassay with selected T1 plants showed 83.33-90.00% mortality against C. medinalis. The whole plant bioassay for T1 plants with rice leaffolder showed significant level of resistance even at a lower level of Cry2AX1 expression varying from 131 to 158 ng/g fresh leaf tissue during tillering stage.

  14. KRAS, BRAF oncogene mutations and tissue specific promoter hypermethylation of tumor suppressor SFRP2, DAPK1, MGMT, HIC1 and p16 genes in colorectal cancer patients.

    PubMed

    Bagci, Binnur; Sari, Musa; Karadayi, Kursat; Turan, Mustafa; Ozdemir, Ozturk; Bagci, Gokhan

    2016-06-24

    Colorectal cancer is a serious disease that causes significant morbidity and mortality in developed countries. Genetic changes, such as mutations in proto-oncogenes and DNA repair genes, and loss of function in the tumor suppressor genes cause colorectal cancer development. Abnormal DNA methylation is also known to play a crucial role in colorectal carcinogenesis. In this study, frequencies of KRAS and BRAF mutations, promoter hypermethylation profiles of SFRP2, DAPK1, MGMT, HIC1 and p16 genes, and possible associations between hypermethylation of these genes and KRAS and BRAF mutations were aimed to find out. Ninety three colorectal cancer tissues and 14 normal colon mucosas were included in the study. Common twelve KRAS gene mutation were investigated with using reverse-hybridization strip assay method. BRAF V600E mutations were investigated with RFLP method. Hypermethylation status of five tumor suppressor genes were detected by using reverse-hybridization strip assay method after bisulfite modification of DNA. KRAS and BRAF mutation frequencies were determined as 54.84% and 12.9%, respectively. Promoter hypermethylation frequencies of tumor suppressor genes SFRP2, DAPK1, MGMT, HIC1 and p16 were determined as 66.7%, 45.2%, 40.9%, 40.9% and 15.1%, respectively. Statistically significant associations were found between BRAF mutation and SFRP2 and p16 tumor suppressor genes hypermethylation (SFRP2; p= 0.005, p16; p= 0.016). Compared to rectum, SFRP2 (p= 0.017) and MGMT (p= 0.013) genes have statistically significantly higher promoter hypermethylation in colon. Results of the current study have confirmed that KRAS mutations and SFRP2 hypermethylation can be used as genetic markers in colorectal cancer.

  15. Regulation of PURA gene transcription by three promoters generating distinctly spliced 5-prime leaders: a novel means of fine control over tissue specificity and viral signals

    PubMed Central

    2010-01-01

    Background Purα is an evolutionarily conserved cellular protein participating in processes of DNA replication, transcription, and RNA transport; all involving binding to nucleic acids and altering conformation and physical positioning. The distinct but related roles of Purα suggest a need for expression regulated differently depending on intracellular and external signals. Results Here we report that human PURA (hPURA) transcription is regulated from three distinct and widely-separated transcription start sites (TSS). Each of these TSS is strongly homologous to a similar site in mouse chromosomal DNA. Transcripts from TSS I and II are characterized by the presence of large and overlapping 5'-UTR introns terminated at the same splice receptor site. Transfection of lung carcinoma cells with wild-type or mutated hPURA 5' upstream sequences identifies different regulatory elements. TSS III, located within 80 bp of the translational start codon, is upregulated by E2F1, CAAT and NF-Y binding elements. Transcription at TSS II is downregulated through the presence of adjacent consensus binding elements for interferon regulatory factors (IRFs). Chromatin immunoprecipitation reveals that IRF-3 protein binds hPURA promoter sequences at TSS II in vivo. By co-transfecting hPURA reporter plasmids with expression plasmids for IRF proteins we demonstrate that several IRFs, including IRF-3, down-regulate PURA transcription. Infection of NIH 3T3 cells with mouse cytomegalovirus results in a rapid decrease in levels of mPURA mRNA and Purα protein. The viral infection alters the degree of splicing of the 5'-UTR introns of TSS II transcripts. Conclusions Results provide evidence for a novel mechanism of transcriptional control by multiple promoters used differently in various tissues and cells. Viral infection alters not only the use of PURA promoters but also the generation of different non-coding RNAs from 5'-UTRs of the resulting transcripts. PMID:21062477

  16. Exonic sequences are required for elicitor and light activation of a plant defense gene, but promoter sequences are sufficient for tissue specific expression.

    PubMed Central

    Douglas, C J; Hauffe, K D; Ites-Morales, M E; Ellard, M; Paszkowski, U; Hahlbrock, K; Dangl, J L

    1991-01-01

    The parsley 4CL-1 gene encodes 4-coumarate:CoA ligase, a key enzyme of general phenylpropanoid metabolism. As well as being transcriptionally activated by such stresses as pathogen infection, UV-irradiation, and wounding, expression of 4CL-1 is developmentally regulated. In this paper we present evidence that 4CL-1 cis-acting elements which control stress-induced and developmental expression are physically separated. The ability of a series of 4CL gene constructions to respond to elicitor and light in stably or transiently transformed parsley cells was tested. While inducible expression was observed from all templates in which the 4CL-1 structural gene was fused to the 4CL-1 promoter, fusions of the promoter to the GUS reporter gene were completely unresponsive. The element(s) required for responsiveness appear to be exonic, since 4CL-1 introns and 3' flanking DNA had no effect on inducibility. Furthermore, this unconventional regulatory mode operates in transgenic tobacco plants, where we show that a 4CL-1 promoter fragment specifies correct cell-specific expression when fused to GUS yet is unresponsive to elicitor and light. Images PMID:2050114

  17. Tissue-specific alternative promoters regulate the expression of the two sarco/endoplasmic reticulum Ca-ATPase isoforms from Artemia franciscana.

    PubMed

    Escalante, R; Sastre, L

    1995-10-01

    The sarco/endoplasmic reticulum Ca-ATPase gene from Artemia franciscana is transcribed into two mRNAs of 4.5 and 5.2 kb that code for protein isoforms differing at their carboxyl terminus. Northern blot assays and anchored polymerase chain reaction (PCR) experiments have shown that these two mRNAs also differ at the initial part of their 5' untranslated region. The 5.2-kb mRNA-specific 5' untranslated region is present as an independent exon whose transcription is regulated by a promoter different from the one previously described that regulates the expression of the 4.5-kb mRNA. The nucleotide sequence of the 5.2-kb mRNA promoter and the transcription initiation site have been determined. These results suggest that the expression of the two protein isoforms is regulated in A. franciscana at the transcription initiation step, in contrast with the vertebrates sarco/endoplasmic reticulum Ca-ATPase genes 1 and 2 which have unique promoters for transcription of the two isoforms encoded by each gene.

  18. Rice oxalate oxidase gene driven by green tissue-specific promoter increases tolerance to sheath blight pathogen (Rhizoctonia solani) in transgenic rice.

    PubMed

    Molla, Kutubuddin A; Karmakar, Subhasis; Chanda, Palas K; Ghosh, Satabdi; Sarkar, Sailendra N; Datta, Swapan K; Datta, Karabi

    2013-12-01

    Rice sheath blight, caused by the necrotrophic fungus Rhizoctonia solani, is one of the most devastating and intractable diseases of rice, leading to a significant reduction in rice productivity worldwide. In this article, in order to examine sheath blight resistance, we report the generation of transgenic rice lines overexpressing the rice oxalate oxidase 4 (Osoxo4) gene in a green tissue-specific manner which breaks down oxalic acid (OA), the pathogenesis factor secreted by R. solani. Transgenic plants showed higher enzyme activity of oxalate oxidase (OxO) than nontransgenic control plants, which was visualized by histochemical assays and sodium dodecylsulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Transgenic rice leaves were more tolerant than control rice leaves to exogenous OA. Transgenic plants showed a higher level of expression of other defence-related genes in response to pathogen infection. More importantly, transgenic plants exhibited significantly enhanced durable resistance to R. solani. The overexpression of Osoxo4 in rice did not show any detrimental phenotypic or agronomic effect. Our findings indicate that rice OxO can be utilized effectively in plant genetic manipulation for sheath blight resistance, and possibly for resistance to other diseases caused by necrotrophic fungi, especially those that secrete OA. This is the first report of the expression of defence genes in rice in a green tissue-specific manner for sheath blight resistance.

  19. Expression of mRNA encoding the macrophage colony-stimulating factor receptor (c-fms) is controlled by a constitutive promoter and tissue-specific transcription elongation.

    PubMed Central

    Yue, X; Favot, P; Dunn, T L; Cassady, A I; Hume, D A

    1993-01-01

    The gene encoding the receptor for macrophage colony-stimulating factor 1 (CSF-1), the c-fms protooncogene, is selectively expressed in immature and mature mononuclear phagocytes and trophoblasts. Exon 1 is expressed only in trophoblasts. Isolation and sequencing of genomic DNA flanking exon 2 of the murine c-fms gene revealed a TATA-less promoter with significant homology to human c-fms. Reverse transcriptase primer extension analysis using exon 2 primers identified multiple clustered transcription initiation sites. Their position was confirmed by RNase protection. The same primer extension products were detected in equal abundance from macrophage or nonmacrophage sources of RNA. c-fms mRNA is acutely down-regulated in primary macrophages by CSF-1, bacterial lipopolysaccharide (LPS), and phorbol myristate acetate (PMA). Each of these agents reduced the abundance of c-fms RNA detectable by primer extension using an exon 3 primer without altering the abundance of presumptive short c-fms transcripts detected with exon 2 primers. Primer extension analysis with an intron 2 primer detected products at greater abundance in nonmacrophages. Templates detected with the intronic primer were induced in macrophages by LPS, PMA, and CSF-1, suggesting that each of the agents caused a shift from full-length c-fms mRNA production to production of unspliced, truncated transcripts. The c-fms promoter functioned constitutively in the RAW264 macrophage cell line, the B-cell line MOPC.31C, and several nonhematopoietic cell lines. Macrophage-specific expression and responsiveness to selective repression by LPS and PMA was achieved by the incorporation of intron 2 into the c-fms promoter-reporter construct. The results suggest that expression of the c-fms gene in macrophages is controlled by sequences in intron 2 that act by regulating transcription elongation. Images PMID:8497248

  20. Transgenic analysis of sugar beet xyloglucan endo-transglucosylase/hydrolase Bv-XTH1 and Bv-XTH2 promoters reveals overlapping tissue-specific and wound-inducible expression profiles.

    PubMed

    Dimmer, Emily; Roden, Laura; Cai, Daguang; Kingsnorth, Crawford; Mutasa-Göttgens, Effie

    2004-03-01

    The identification and analysis of tissue-specific gene regulatory elements will improve our knowledge of the molecular mechanisms that control the growth and development of different plant tissues and offer potentially useful tools for the genetic engineering of plants. A polymerase chain reaction (PCR)-based 5'-genome walk from sequences of an isolated sugar beet xyloglucan endo-transglucosylase hydrolase (XTH) gene led to the isolation of two independent upstream fragments. They were 1332 and 2163 base pairs upstream of the XTH ATG start site, respectively. In vivo transgenic assays in sugar beet hairy roots and Arabidopsis thaliana revealed that both fragments had promoter function and, in A. thaliana, directed expression in vascular tissues within the root, leaves and petals. Promoter activity was also observed in the leaf trichomes and within rapidly expanding stem internodes. Expression driven by both promoters was found to be wound inducible. Overall, the spatial and temporal expression pattern of these promoters suggested that the corresponding Bv-XTH genes (designated Bv-XTH1 and Bv-XTH2) may be involved in secondary cell wall formation. This work provides new insights on molecular mechanisms that could be exploited for the genetic engineering of sugar beet crops.

  1. Identification of tissue-specific targeting peptide

    NASA Astrophysics Data System (ADS)

    Jung, Eunkyoung; Lee, Nam Kyung; Kang, Sang-Kee; Choi, Seung-Hoon; Kim, Daejin; Park, Kisoo; Choi, Kihang; Choi, Yun-Jaie; Jung, Dong Hyun

    2012-11-01

    Using phage display technique, we identified tissue-targeting peptide sets that recognize specific tissues (bone-marrow dendritic cell, kidney, liver, lung, spleen and visceral adipose tissue). In order to rapidly evaluate tissue-specific targeting peptides, we performed machine learning studies for predicting the tissue-specific targeting activity of peptides on the basis of peptide sequence information using four machine learning models and isolated the groups of peptides capable of mediating selective targeting to specific tissues. As a representative liver-specific targeting sequence, the peptide "DKNLQLH" was selected by the sequence similarity analysis. This peptide has a high degree of homology with protein ligands which can interact with corresponding membrane counterparts. We anticipate that our models will be applicable to the prediction of tissue-specific targeting peptides which can recognize the endothelial markers of target tissues.

  2. Tissue-specific spatial organization of genomes.

    PubMed

    Parada, Luis A; McQueen, Philip G; Misteli, Tom

    2004-01-01

    Genomes are organized in vivo in the form of chromosomes. Each chromosome occupies a distinct nuclear subvolume in the form of a chromosome territory. The spatial positioning of chromosomes within the interphase nucleus is often nonrandom. It is unclear whether the nonrandom spatial arrangement of chromosomes is conserved among tissues or whether spatial genome organization is tissue-specific. Using two-dimensional and three-dimensional fluorescence in situ hybridization we have carried out a systematic analysis of the spatial positioning of a subset of mouse chromosomes in several tissues. We show that chromosomes exhibit tissue-specific organization. Chromosomes are distributed tissue-specifically with respect to their position relative to the center of the nucleus and also relative to each other. Subsets of chromosomes form distinct types of spatial clusters in different tissues and the relative distance between chromosome pairs varies among tissues. Consistent with the notion that nonrandom spatial proximity is functionally relevant in determining the outcome of chromosome translocation events, we find a correlation between tissue-specific spatial proximity and tissue-specific translocation prevalence. Our results demonstrate that the spatial organization of genomes is tissue-specific and point to a role for tissue-specific spatial genome organization in the formation of recurrent chromosome arrangements among tissues.

  3. Epoxyeicosanoids promote organ and tissue regeneration.

    PubMed

    Panigrahy, Dipak; Kalish, Brian T; Huang, Sui; Bielenberg, Diane R; Le, Hau D; Yang, Jun; Edin, Matthew L; Lee, Craig R; Benny, Ofra; Mudge, Dayna K; Butterfield, Catherine E; Mammoto, Akiko; Mammoto, Tadanori; Inceoglu, Bora; Jenkins, Roger L; Simpson, Mary A; Akino, Tomoshige; Lih, Fred B; Tomer, Kenneth B; Ingber, Donald E; Hammock, Bruce D; Falck, John R; Manthati, Vijaya L; Kaipainen, Arja; D'Amore, Patricia A; Puder, Mark; Zeldin, Darryl C; Kieran, Mark W

    2013-08-13

    Epoxyeicosatrienoic acids (EETs), lipid mediators produced by cytochrome P450 epoxygenases, regulate inflammation, angiogenesis, and vascular tone. Despite pleiotropic effects on cells, the role of these epoxyeicosanoids in normal organ and tissue regeneration remains unknown. EETs are produced predominantly in the endothelium. Normal organ and tissue regeneration require an active paracrine role of the microvascular endothelium, which in turn depends on angiogenic growth factors. Thus, we hypothesize that endothelial cells stimulate organ and tissue regeneration via production of bioactive EETs. To determine whether endothelial-derived EETs affect physiologic tissue growth in vivo, we used genetic and pharmacological tools to manipulate endogenous EET levels. We show that endothelial-derived EETs play a critical role in accelerating tissue growth in vivo, including liver regeneration, kidney compensatory growth, lung compensatory growth, wound healing, corneal neovascularization, and retinal vascularization. Administration of synthetic EETs recapitulated these results, whereas lowering EET levels, either genetically or pharmacologically, delayed tissue regeneration, demonstrating that pharmacological modulation of EETs can affect normal organ and tissue growth. We also show that soluble epoxide hydrolase inhibitors, which elevate endogenous EET levels, promote liver and lung regeneration. Thus, our observations indicate a central role for EETs in organ and tissue regeneration and their contribution to tissue homeostasis.

  4. Targeted gene expression without a tissue-specific promoter: creating mosaic embryos using laser-induced single-cell heat shock

    NASA Technical Reports Server (NTRS)

    Halfon, M. S.; Kose, H.; Chiba, A.; Keshishian, H.

    1997-01-01

    We have developed a method to target gene expression in the Drosophila embryo to a specific cell without having a promoter that directs expression in that particular cell. Using a digitally enhanced imaging system to identify single cells within the living embryo, we apply a heat shock to each cell individually by using a laser microbeam. A 1- to 2-min laser treatment is sufficient to induce a heat-shock response but is not lethal to the heat-shocked cells. Induction of heat shock was measured in a variety of cell types, including neurons and somatic muscles, by the expression of beta-galactosidase from an hsp26-lacZ reporter construct or by expression of a UAS target gene after induction of hsGAL4. We discuss the applicability of this technique to ectopic gene expression studies, lineage tracing, gene inactivation studies, and studies of cells in vitro. Laser heat shock is a versatile technique that can be adapted for use in a variety of research organisms and is useful for any studies in which it is desirable to express a given gene in only a distinct cell or clone of cells, either transiently or constitutively, at a time point of choice.

  5. Repressor-mediated tissue-specific gene expression in plants

    DOEpatents

    Meagher, Richard B.; Balish, Rebecca S.; Tehryung, Kim; McKinney, Elizabeth C.

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  6. Methylation status of a single CpG locus 3 bases upstream of TATA-box of receptor activator of nuclear factor-kappaB ligand (RANKL) gene promoter modulates cell- and tissue-specific RANKL expression and osteoclastogenesis.

    PubMed

    Kitazawa, Riko; Kitazawa, Sohei

    2007-01-01

    Receptor activator of nuclear factor-kappaB ligand (RANKL) expression is tissue specific and limited to certain subsets of T-lymphocytes and stromal/osteoblastic cells. Even among osteoblasts, RANKL is expressed on about 20% of osteoblasts of the normal mouse. To clarify the mechanism of population-specific RANKL expression, we analyzed the effect of CpG methylation on its transcription, mRNA and protein expression as well as on osteoclastogenesis. Subpopulations of ST2 cells were used: P9, which expresses RANKL and supports osteoclastogenesis, and P16, which does not. By sodium bisulfite mapping, the rate of CpG methylation of the -65/+350 region, especially of CpG locus no. 1 three bases upstream of the TATA-box, was higher in P16 than in P9 ST2 cells. ChIP and gel shift assay showed that methylated CpG locus no. 1 was a target of MeCP2 binding that, in turn, blocked the binding of the TATA-box binding protein to the TATA-box. In vitro methylation by SssI of the promoter construct reduced its transcriptional activity at the steady state and its response to 1alpha,25(OH)2 vitamin D3. Conversely, treatment with DNA methylase inhibitor, 5-aza-2'-deoxycytidine, significantly restored RANKL expression and osteoclastogenesis in P16 cells. Except for primary cultured osteoblasts, CpG locus no. 1 was frequently methylated in various normal mouse tissues. We propose that the methylation status of the CpG locus three bases upstream of the TATA-box modulates the control of cell- and tissue-specific expression of RANKL gene and osteoclastogenesis. The heterogeneity of stromal/ osteoblastic cells in response to bone-resorbing stimuli may be attributed, in part, to the methylation status of the RANKL gene promoter.

  7. Tissue Specificity of Human Disease Module

    PubMed Central

    Kitsak, Maksim; Sharma, Amitabh; Menche, Jörg; Guney, Emre; Ghiassian, Susan Dina; Loscalzo, Joseph; Barabási, Albert-László

    2016-01-01

    Genes carrying mutations associated with genetic diseases are present in all human cells; yet, clinical manifestations of genetic diseases are usually highly tissue-specific. Although some disease genes are expressed only in selected tissues, the expression patterns of disease genes alone cannot explain the observed tissue specificity of human diseases. Here we hypothesize that for a disease to manifest itself in a particular tissue, a whole functional subnetwork of genes (disease module) needs to be expressed in that tissue. Driven by this hypothesis, we conducted a systematic study of the expression patterns of disease genes within the human interactome. We find that genes expressed in a specific tissue tend to be localized in the same neighborhood of the interactome. By contrast, genes expressed in different tissues are segregated in distinct network neighborhoods. Most important, we show that it is the integrity and the completeness of the expression of the disease module that determines disease manifestation in selected tissues. This approach allows us to construct a disease-tissue network that confirms known and predicts unexpected disease-tissue associations. PMID:27748412

  8. Tissue-specific circadian clocks in plants.

    PubMed

    Endo, Motomu

    2016-02-01

    Circadian clocks affect a large proportion of differentially expressed genes in many organisms. Tissue-specific hierarchies in circadian networks in mammals have been contentiously debated, whereas little attention has been devoted to the concept in plants, owing to technical difficulties. Recently, several studies have demonstrated tissue-specific circadian clocks and their coupling in plants, suggesting that plants possess a hierarchical network of circadian clocks. The following review summarizes recent studies describing the tissue-specific functions and properties of these circadian clocks and discusses the network structure and potential messengers that might share temporal information on such a network.

  9. The KRAB Zinc Finger Protein RSL1 Regulates Sex- and Tissue-Specific Promoter Methylation and Dynamic Hormone-Responsive Chromatin Configuration

    PubMed Central

    Krebs, Christopher J.; Schultz, David C.

    2012-01-01

    Over 400 Krüppel-associated box zinc finger proteins (KRAB-ZFPs) are encoded in mammalian genomes. While KRAB-ZFPs strongly repress transcription in vitro, little is known about their biological function or gene targets in vivo. Regulator of sex limitation 1 (Rsl1), one of the first KRAB-Zfp genes assigned a physiological role, accentuates sex-biased liver gene expression, most dramatically for mouse sex-limited protein (Slp), which provides an in vivo reporter of KRAB-ZFP function. Slp is induced in males in the liver and kidney by growth hormone (GH) and androgen, respectively. In the liver but not kidney, the Rsl1 genotype correlates with methylation of a CpG dinucleotide in the Slp promoter that is demethylated at puberty. RSL1 binds 2 kb upstream of the Slp promoter, both in vitro and in vivo, within an enhancer containing response elements for STAT5b. Chromatin immunoprecipitation (ChIP) assays demonstrate that RSL1 recruits KAP1/TRIM28, the corepressor for KRAB action in vitro, to this enhancer. Slp induction requires rapid cycling of STAT5b in chromatin. Remarkably, RSL1 simultaneously binds adjacent to STAT5b with a reciprocal binding pattern that limits hormonal response. These experiments demonstrate a surprisingly dynamic interplay between a hormonal activator, STAT5b, and a KRAB-ZFP repressor and provide unique insights into KRAB-ZFP epigenetic mechanisms. PMID:22801370

  10. Predicting tissue specific transcription factor binding sites

    PubMed Central

    2013-01-01

    Background Studies of gene regulation often utilize genome-wide predictions of transcription factor (TF) binding sites. Most existing prediction methods are based on sequence information alone, ignoring biological contexts such as developmental stages and tissue types. Experimental methods to study in vivo binding, including ChIP-chip and ChIP-seq, can only study one transcription factor in a single cell type and under a specific condition in each experiment, and therefore cannot scale to determine the full set of regulatory interactions in mammalian transcriptional regulatory networks. Results We developed a new computational approach, PIPES, for predicting tissue-specific TF binding. PIPES integrates in vitro protein binding microarrays (PBMs), sequence conservation and tissue-specific epigenetic (DNase I hypersensitivity) information. We demonstrate that PIPES improves over existing methods on distinguishing between in vivo bound and unbound sequences using ChIP-seq data for 11 mouse TFs. In addition, our predictions are in good agreement with current knowledge of tissue-specific TF regulation. Conclusions We provide a systematic map of computationally predicted tissue-specific binding targets for 284 mouse TFs across 55 tissue/cell types. Such comprehensive resource is useful for researchers studying gene regulation. PMID:24238150

  11. Bovine prolactin elevates hTF expression directed by a tissue-specific goat β-casein promoter through prolactin receptor-mediated STAT5a activation.

    PubMed

    Jiang, Shizhong; Ren, Zhaorui; Xie, Fei; Yan, Jingbin; Huang, Shuzhen; Zeng, Yitao

    2012-11-01

    Prolactin promotes the expression of exogenous human transferrin gene in the milk of transgenic mice. To elucidate this, a recombinant plasmid of bovine prolactin plus human transferrin vector was co-transfected into cultured murine mammary gland epithelial cells. Prolactin-receptor antagonist and shRNA corresponding to prolactin-receptor mRNA were added into the cell culture mixture to investigate the relations between prolactin-receptor and human transferrin expression after bovine prolactin inducement. Levels of human transferrin in the supernatants were increased under the presentation of bovine prolactin (from 1,076 ± 115 to 1,886 ± 114 pg/ml). With the treatment of prolactin-receptor antagonist or shRNA, human transferrin in cells was declined (1,886 ± 113 vs. 1,233 ± 85 pg/ml or 1,114 ± 75 pg/ml, respectively). An inverse correlation was found between the dosage of prolactin-receptor antagonist and expression level of human transferrin. Real-time qRT-PCR analysis showed that the relative level of signal transducer and activator of transcription 5a (STAT5a) transcript in transfected cells correlated with expression levels of human transferrin in the supernatant of the same cells. Bovine prolactin thus improved the expression of human transferrin through such a possible mechanism that bovine prolactin activated STAT5a transcription expression via combined with prolactin-receptor and suggest a potential utility of the bovine prolactin for efficient expression of valuable pharmaceutical proteins in mammary glands of transgenic animals.

  12. TERT promoter mutations in soft tissue sarcomas.

    PubMed

    Campanella, Nathália C; Penna, Valter; Abrahão-Machado, Lucas Faria; Cruvinel-Carloni, Adriana; Ribeiro, Guilherme; Soares, Paula; Scapulatempo-Neto, Cristovam; Reis, Rui M

    2016-02-28

    Oncogenic hotspot mutations in the promoter region of the TERT gene have been identified in several cancer types as being associated with a worse outcome. Additionally, a polymorphism (rs2853669) in the TERT promoter region was reported to modify the survival of TERT-mutated patients. Our aim is to determine the frequency of c.-124 C>T and c.-146 C>T TERT mutations and to genotype the rs2853669 polymorphism in a series of 68 soft tissue sarcomas (STS) comprising 22 histological subtypes. PCR was performed, followed by direct sequencing of a fragment of TERT containing the hotspots and the rs2853669. We found TERT mutations in 4/68 (5.9%) STSs including 1 pleomorphic liposarcoma (1/1), 1 dedifferentiated liposarcoma (1/1) and 2 myxoid liposarcomas (2/9). The variant C allele of rs2853669 was found in 54.8% (34/62) of all STSs and in 75% (3/4) of TERT-mutated cases. TERT mutations were associated with younger age, and the C allele of the rs2853669 was associated with high histological grade (2 and 3). No association was found between TERT mutation status or rs2853669 genotype and patient prognosis. We showed that TERT promoter mutation is not a recurrent event in STS and is present in particular histological subtypes.

  13. Alternative Polyadenylation Directs Tissue-Specific miRNA Targeting in Caenorhabditis elegans Somatic Tissues

    PubMed Central

    Blazie, Stephen M.; Geissel, Heather C.; Wilky, Henry; Joshi, Rajan; Newbern, Jason; Mangone, Marco

    2017-01-01

    mRNA expression dynamics promote and maintain the identity of somatic tissues in living organisms; however, their impact in post-transcriptional gene regulation in these processes is not fully understood. Here, we applied the PAT-Seq approach to systematically isolate, sequence, and map tissue-specific mRNA from five highly studied Caenorhabditis elegans somatic tissues: GABAergic and NMDA neurons, arcade and intestinal valve cells, seam cells, and hypodermal tissues, and studied their mRNA expression dynamics. The integration of these datasets with previously profiled transcriptomes of intestine, pharynx, and body muscle tissues, precisely assigns tissue-specific expression dynamics for 60% of all annotated C. elegans protein-coding genes, providing an important resource for the scientific community. The mapping of 15,956 unique high-quality tissue-specific polyA sites in all eight somatic tissues reveals extensive tissue-specific 3′untranslated region (3′UTR) isoform switching through alternative polyadenylation (APA) . Almost all ubiquitously transcribed genes use APA and harbor miRNA targets in their 3′UTRs, which are commonly lost in a tissue-specific manner, suggesting widespread usage of post-transcriptional gene regulation modulated through APA to fine tune tissue-specific protein expression. Within this pool, the human disease gene C. elegans orthologs rack-1 and tct-1 use APA to switch to shorter 3′UTR isoforms in order to evade miRNA regulation in the body muscle tissue, resulting in increased protein expression needed for proper body muscle function. Our results highlight a major positive regulatory role for APA, allowing genes to counteract miRNA regulation on a tissue-specific basis. PMID:28348061

  14. Alternative Polyadenylation Directs Tissue-Specific miRNA Targeting in Caenorhabditis elegans Somatic Tissues.

    PubMed

    Blazie, Stephen M; Geissel, Heather C; Wilky, Henry; Joshi, Rajan; Newbern, Jason; Mangone, Marco

    2017-06-01

    mRNA expression dynamics promote and maintain the identity of somatic tissues in living organisms; however, their impact in post-transcriptional gene regulation in these processes is not fully understood. Here, we applied the PAT-Seq approach to systematically isolate, sequence, and map tissue-specific mRNA from five highly studied Caenorhabditis elegans somatic tissues: GABAergic and NMDA neurons, arcade and intestinal valve cells, seam cells, and hypodermal tissues, and studied their mRNA expression dynamics. The integration of these datasets with previously profiled transcriptomes of intestine, pharynx, and body muscle tissues, precisely assigns tissue-specific expression dynamics for 60% of all annotated C. elegans protein-coding genes, providing an important resource for the scientific community. The mapping of 15,956 unique high-quality tissue-specific polyA sites in all eight somatic tissues reveals extensive tissue-specific 3'untranslated region (3'UTR) isoform switching through alternative polyadenylation (APA) . Almost all ubiquitously transcribed genes use APA and harbor miRNA targets in their 3'UTRs, which are commonly lost in a tissue-specific manner, suggesting widespread usage of post-transcriptional gene regulation modulated through APA to fine tune tissue-specific protein expression. Within this pool, the human disease gene C. elegans orthologs rack-1 and tct-1 use APA to switch to shorter 3'UTR isoforms in order to evade miRNA regulation in the body muscle tissue, resulting in increased protein expression needed for proper body muscle function. Our results highlight a major positive regulatory role for APA, allowing genes to counteract miRNA regulation on a tissue-specific basis. Copyright © 2017 Blazie et al.

  15. A tissue-specific scaffold for tissue engineering-based ureteral reconstruction.

    PubMed

    Xu, Yongde; Fu, Weijun; Wang, Zhongxin; Li, Gang; Zhang, Xu

    2015-01-01

    Terminally differentiated somatic cells can rapidly change phenotypes when they are isolated from their native tissue and cultured in vitro. This problem may become a barrier to tissue engineering-based organ reconstruction, which utilizes somatic cells. The present study was designed to validate the feasibility of maintaining the urothelial cell phenotype in a tissue-specific ureteral scaffold. The tissue-specific scaffold was fabricated by blending poly (L-lactic acid) (PLLA) and ureteral extracellular matrix (UECM) using electrostatic spinning technology. PLLA was used to enhance the mechanical properties, and UECM was used to mimic the natural components of the ureter. Primary urothelial cells (UCs), derived from ureteral mucosa, were seeded onto the tissue-specific scaffold to assess cell adhesion, proliferation and phenotypes at designated time points. The results showed that UCs in the tissue-specific scaffold exhibited better proliferation compared to cells in pure PLLA or a PLLA-small intestinal submucosa (PLLA-SIS) scaffold (p<0.05). At different time points, the expression of a UC-specific marker (UroplakinⅢ) in the tissue-specific scaffold was significantly higher than its expression in pure PLLA or a PLLA-SIS scaffold (p<0.05). Therefore, the tissue-specific scaffold appears to be an ideal substrate for promoting UC survival and phenotype maintenance.

  16. Tissue-specific prediction of directly regulated genes

    PubMed Central

    McLeay, Robert C.; Leat, Chris J.; Bailey, Timothy L.

    2011-01-01

    Direct binding by a transcription factor (TF) to the proximal promoter of a gene is a strong evidence that the TF regulates the gene. Assaying the genome-wide binding of every TF in every cell type and condition is currently impractical. Histone modifications correlate with tissue/cell/condition-specific (‘tissue specific’) TF binding, so histone ChIP-seq data can be combined with traditional position weight matrix (PWM) methods to make tissue-specific predictions of TF–promoter interactions. Results: We use supervised learning to train a naïve Bayes predictor of TF–promoter binding. The predictor's features are the histone modification levels and a PWM-based score for the promoter. Training and testing uses sets of promoters labeled using TF ChIP-seq data, and we use cross-validation on 23 such datasets to measure the accuracy. A PWM+histone naïve Bayes predictor using a single histone modification (H3K4me3) is substantially more accurate than a PWM score or a conservation-based score (phylogenetic motif model). The naïve Bayes predictor is more accurate (on average) at all sensitivity levels, and makes only half as many false positive predictions at sensitivity levels from 10% to 80%. On average, it correctly predicts 80% of bound promoters at a false positive rate of 20%. Accuracy does not diminish when we test the predictor in a different cell type (and species) from training. Accuracy is barely diminished even when we train the predictor without using TF ChIP-seq data. Availability: Our tissue-specific predictor of promoters bound by a TF is called Dr Gene and is available at http://bioinformatics.org.au/drgene. Contact: t.bailey@imb.uq.edu.au Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21724591

  17. Adipose tissue, obesity and adipokines: role in cancer promotion.

    PubMed

    Booth, Andrea; Magnuson, Aaron; Fouts, Josephine; Foster, Michelle

    2015-01-01

    Adipose tissue is a complex organ with endocrine, metabolic and immune regulatory roles. Adipose depots have been characterized to release several adipocytokines that work locally in an autocrine and paracrine fashion or peripherally in an endocrine fashion. Adipocyte hypertrophy and excessive adipose tissue accumulation, as occurs during obesity, dysregulates the microenvironment within adipose depots and systemically alters peripheral tissue metabolism. The term "adiposopathy" is used to describe this promotion of pathogenic adipocytes and associated adipose - elated disorders. Numerous epidemiological studies confirm an association between obesity and various cancer forms. Proposed mechanisms that link obesity/adiposity to high cancer risk and mortality include, but are not limited to, obesity-related insulin resistance, hyperinsulinemia, sustained hyperglycemia, glucose intolerance, oxidative stress, inflammation and/or adipocktokine production. Several epidemiological studies have demonstrated a relationship between specific circulating adipocytokines and cancer risk. The aim of this review is to define the function, in normal weight and obesity states, of well-characterized and novel adipokines including leptin, adiponectin, apelin, visfatin, resistin, chemerin, omentin, nesfatin and vaspin and summarize the data that relates their dysfunction, whether associated or direct effects, to specific cancer outcomes. Overall research suggests most adipokines promote cancer cell progression via enhancement of cell proliferation and migration, inflammation and anti-apoptosis pathways, which subsequently can prompt cancer metastasis. Further research and longitudinal studies are needed to define the specific independent and additive roles of adipokines in cancer progression and reoccurrence.

  18. Tissue Engineering Strategies for Promoting Vascularized Bone Regeneration

    PubMed Central

    Almubarak, Sarah; Nethercott, Hubert; Freeberg, Marie; Beaudon, Caroline; Jha, Amit; Jackson, Wesley; Marcucio, Ralph; Miclau, Theodore; Healy, Kevin; Bahney, Chelsea

    2016-01-01

    This review focuses on current tissue engineering strategies for promoting vascularized bone regeneration. We review the role of angiogenic growth factors in promoting vascularized bone regeneration and discuss the different therapeutic strategies for controlled/sustained growth factor delivery. Next, we address the therapeutic uses of stem cells in vascularized bone regeneration. Specifically, this review addresses the concept of co-culture using osteogenic and vasculogenic stem cells, and how adipose derived stem cells compare to bone marrow derived mesenchymal stem cells in the promotion of angiogenesis. We conclude this review with a discussion of a novel approach to bone regeneration through a cartilage intermediate, and discuss why it has the potential to be more effective than traditional bone grafting methods. PMID:26608518

  19. Mechanotherapy: how physical therapists' prescription of exercise promotes tissue repair.

    PubMed

    Khan, K M; Scott, A

    2009-04-01

    Mechanotransduction is the physiological process where cells sense and respond to mechanical loads. This paper reclaims the term "mechanotherapy" and presents the current scientific knowledge underpinning how load may be used therapeutically to stimulate tissue repair and remodelling in tendon, muscle, cartilage and bone. The purpose of this short article is to answer a frequently asked question "How precisely does exercise promote tissue healing?" This is a fundamental question for clinicians who prescribe exercise for tendinopathies, muscle tears, non-inflammatory arthropathies and even controlled loading after fractures. High-quality randomised controlled trials and systematic reviews show that various forms of exercise or movement prescription benefit patients with a wide range of musculoskeletal problems.1(-)4 But what happens at the tissue level to promote repair and remodelling of tendon, muscle, articular cartilage and bone? The one-word answer is "mechanotransduction", but rather than finishing there and limiting this paper to 95 words, we provide a short illustrated introduction to this remarkable, ubiquitous, non-neural, physiological process. We also re-introduce the term "mechanotherapy" to distinguish therapeutics (exercise prescription specifically to treat injuries) from the homeostatic role of mechanotransduction. Strictly speaking, mechanotransduction maintains normal musculoskeletal structures in the absence of injury. After first outlining the process of mechanotransduction, we provide well-known clinical therapeutic examples of mechanotherapy-turning movement into tissue healing.

  20. A seed coat-specific promoter for canola.

    PubMed

    El-Mezawy, Aliaa; Wu, Limin; Shah, Saleh

    2009-12-01

    The canola industry generates more than $11 billion of yearly income to the Canadian economy. One problem of meal quality is the dark polyphenolic pigments that accumulate in the seed coat. Seed coat-specific promoters are a pre-requisite to regulate the genes involved in seed coat development and metabolism. The beta-glucuronidase (GUS) reporter gene was used to test an Arabidopsis promoter in developing and mature seeds of canola (Brassica napus). The promoter tested is the regulatory region of the laccase gene (AtLAC15) from Arabidopsis thaliana. The AtLAC15 promoter::GUS construct was inserted into canola double haploid line DH12075 using Agrobacterium-mediated transformation. Southern blot analysis using a 536 bp GUS probe showed variation among the transformed plants in the T-DNA copy numbers and the position of the insertion in their genomes. Histochemical assay of the GUS enzyme in different tissues (roots, leaves, stem, pollen grains, flowers, siliques, embryos and seed coats) showed ascending GUS activity only in the seed coat from 10 days after pollination (DAP) to the fully mature stage (35 DAP). GUS stain was observed in the mucilage cell layer, in the outer integument layer of the seed coat but not in the inner integument. The AtLAC15 promoter exhibited a specificity and expression level that is useful as a seed coat-specific promoter for canola.

  1. Tissue-specific promoter usage and diverse splicing variants of found in neurons, an ancestral Hu/ELAV-like RNA-binding protein gene of insects, in the direct-developing insect Gryllus bimaculatus.

    PubMed

    Watanabe, T; Aonuma, H

    2014-02-01

    Hu/ELAV-like RNA-binding proteins (RBPs) are involved in the post-transcriptional regulation of RNA metabolism including splicing, transport, translational control and turnover. The Hu/ELAV-like RBP genes are predominantly expressed in neurons, and are therefore used as common neuronal markers in many animals. Although the expression patterns and functions of the Hu/ELAV-like RBP genes have been extensively studied in the model insect Drosophila melanogaster, little is known in basal direct-developing insects. In the present study, we performed an identification and expression analysis of the found in neurons (fne) gene, an ancestral insect Hu/ELAV-like RBP gene, in the cricket Gryllus bimaculatus. Contrary to expectation that the Gryllus fne transcript would be predominantly expressed in the nervous system, expression analysis revealed that the Gryllus fne gene is expressed broadly. In addition, we discovered that alternative promoter usage directs tissue-specific and embryonic stage-dependent regulation of fne expression, and that alternative splicing contributes to the generation of diverse sets of fne transcripts. Our data provide novel insights into the evolutionary diversification of the Hu/ELAV-like RBP gene family in insects. © 2013 The Royal Entomological Society.

  2. Promoter-specific effects of metformin on aromatase transcript expression.

    PubMed

    Samarajeewa, Nirukshi U; Ham, Seungmin; Yang, Fangyuan; Simpson, Evan R; Brown, Kristy A

    2011-07-01

    Phase III aromatase inhibitors (AIs) are proving successful in the treatment of hormone-dependent postmenopausal breast cancer. Side-effects associated with total body aromatase inhibition have prompted new research into the development of breast-specific AIs. The identification of tissue- and disease-specific usage of aromatase promoters has made the inhibition of aromatase at the transcriptional level an interesting approach. We have previously demonstrated that AMPK-activating drugs, including metformin, were potent inhibitors of aromatase expression in primary human breast adipose stromal cells (hASCs). This study examines the promoter-specific effects of metformin on inhibiting aromatase expression in hASCs. Tumour-associated promoters PII/PI.3 were activated using forskolin (FSK)/phorbol ester (PMA), whereas normal adipose associated promoter PI.4 was activated using dexamethasone (DEX)/tumour necrosis factor-α (TNFα). Results demonstrate that metformin significantly decreased the FSK/PMA-, but not the DEX/TNFα-mediated expression of total aromatase at concentrations of 10, 20, and 50 μM (P ≤ 0.05). Using PCR to amplify promoter-specific transcripts of aromatase, it appears that the inhibition of the FSK/PMA-mediated expression of aromatase is due to decreases in PII/PI.3-specific transcripts, whereas no effect of metformin is observed on any promoter-specific transcript, including PI.4, in DEX/TNFα-treated hASCs. This report therefore supports the hypothesis that metformin would act as a breast-specific inhibitor of aromatase expression in the context of postmenopausal breast cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Ribosomopathies: Global process, tissue specific defects

    PubMed Central

    Yelick, Pamela C; Trainor, Paul A

    2015-01-01

    Disruptions in ribosomal biogenesis would be expected to have global and in fact lethal effects on a developing organism. However, mutations in ribosomal protein genes have been shown in to exhibit tissue specific defects. This seemingly contradictory finding - that globally expressed genes thought to play fundamental housekeeping functions can in fact exhibit tissue and cell type specific functions ‐ provides new insight into roles for ribosomes, the protein translational machinery of the cell, in regulating normal development and disease. Furthermore it illustrates the surprisingly dynamic nature of processes regulating cell type specific protein translation. In this review, we discuss our current knowledge of a variety of ribosomal protein mutations associated with human disease, and models to better understand the molecular mechanisms associated with each. We use specific examples to emphasize both the similarities and differences between the effects of various human ribosomal protein mutations. Finally, we discuss areas of future study that are needed to further our understanding of the role of ribosome biogenesis in normal development, and possible approaches that can be used to treat debilitating ribosomopathy diseases. PMID:26442198

  4. Ribosomopathies: Global process, tissue specific defects.

    PubMed

    Yelick, Pamela C; Trainor, Paul A

    2015-01-01

    Disruptions in ribosomal biogenesis would be expected to have global and in fact lethal effects on a developing organism. However, mutations in ribosomal protein genes have been shown in to exhibit tissue specific defects. This seemingly contradictory finding - that globally expressed genes thought to play fundamental housekeeping functions can in fact exhibit tissue and cell type specific functions - provides new insight into roles for ribosomes, the protein translational machinery of the cell, in regulating normal development and disease. Furthermore it illustrates the surprisingly dynamic nature of processes regulating cell type specific protein translation. In this review, we discuss our current knowledge of a variety of ribosomal protein mutations associated with human disease, and models to better understand the molecular mechanisms associated with each. We use specific examples to emphasize both the similarities and differences between the effects of various human ribosomal protein mutations. Finally, we discuss areas of future study that are needed to further our understanding of the role of ribosome biogenesis in normal development, and possible approaches that can be used to treat debilitating ribosomopathy diseases.

  5. Analysis of methylation microarray for tissue specific detection.

    PubMed

    Muangsub, Tachapol; Samsuwan, Jarunya; Tongyoo, Pumipat; Kitkumthorn, Nakarin; Mutirangura, Apiwat

    2014-12-10

    The role of human DNA methylation has been extensively studied in genomic imprinting, X-inactivation, and disease. However, studies of tissue-specific methylation remain limited. In this study, we use bioinformatics methods to analyze methylation data and reveal loci that are exclusively methylated or unmethylated in individual tissues. We collect 39 previously published DNA methylation profiles using an Illumina® HumanMethylation 27 BeadChip Kit containing 22 common tissues and involving 27,578 CpG loci across the human genome. We found 86 positions of tissue specific methylation CpG (TSM) that encompass 34 hypermethylated TSMs (31 genes) and 52 hypomethylated TSMs (47 genes). Tissues were found to contain 1 to 25 TSM loci, with the majority in the liver (25), testis (18), and brain (16). Fewer TSM loci were found in the muscle (8), ovary (7), adrenal gland (3), pancreas (2-4), kidney, spleen, and stomach (1 each). TSMs are predominantly located 0-300 base pairs in the 3' direction after the transcription start site. Similar to known promoters of methylation, hypermethylated TSM genes suppress transcription, while hypomethylated TSMs allow gene transcription. The majority of hypermethylated TSM genes encode membrane proteins and receptors, while hypomethylated TSM genes primarily encode signal peptides and tissue-specific proteins. In summary, the database of TSM loci produced herein is useful for the selection of tissue-specific DNA markers as diagnostic tools, as well as for the further study of the mechanisms and roles of TSM. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. SAGA function in tissue-specific gene expression

    PubMed Central

    Weake, Vikki M.; Workman, Jerry L.

    2012-01-01

    The SAGA transcription co-activator plays multiple roles in regulating transcription due to the presence of functionally independent modules of subunits within the complex. We have recently identified a role for the ubiquitin protease activity of SAGA in regulating tissue-specific gene expression in Drosophila. Here, we discuss the modular nature of SAGA and the different mechanisms through which SAGA is recruited to target promoters. We propose that the genes sensitive to loss of the ubiquitin protease activity of SAGA share functional characteristics that require de-ubiquitination of ubH2B for full activation. We hypothesize that de-ubiquitination of ubH2B by SAGA destabilizes promoter nucleosomes, thus enhancing recruitment of Pol II to weak promoters. In addition, SAGA-mediated de-ubiquitination of ubH2B may facilitate binding of factors that are important for the transition of paused Pol II into transcription elongation. PMID:22196215

  7. KSHV Rta Promoter Specification and Viral Reactivation

    PubMed Central

    Guito, Jonathan; Lukac, David M.

    2011-01-01

    Viruses are obligate intracellular pathogens whose biological success depends upon replication and packaging of viral genomes, and transmission of progeny viruses to new hosts. The biological success of herpesviruses is enhanced by their ability to reproduce their genomes without producing progeny viruses or killing the host cells, a process called latency. Latency permits a herpesvirus to remain undetected in its animal host for decades while maintaining the potential to reactivate, or switch, to a productive life cycle when host conditions are conducive to generating viral progeny. Direct interactions between many host and viral molecules are implicated in controlling herpesviral reactivation, suggesting complex biological networks that control the decision. One viral protein that is necessary and sufficient to switch latent Kaposi’s sarcoma-associated herpesvirus (KSHV) into the lytic infection cycle is called K-Rta. K-Rta is a transcriptional activator that specifies promoters by binding DNA directly and interacting with cellular proteins. Among these cellular proteins, binding of K-Rta to RBP-Jk is essential for viral reactivation. In contrast to the canonical model for Notch signaling, RBP-Jk is not uniformly and constitutively bound to the latent KSHV genome, but rather is recruited to DNA by interactions with K-Rta. Stimulation of RBP-Jk DNA binding requires high affinity binding of Rta to repetitive and palindromic “CANT DNA repeats” in promoters, and formation of ternary complexes with RBP-Jk. However, while K-Rta expression is necessary for initiating KSHV reactivation, K-Rta’s role as the switch is inefficient. Many factors modulate K-Rta’s function, suggesting that KSHV reactivation can be significantly regulated post-Rta expression and challenging the notion that herpesviral reactivation is bistable. This review analyzes rapidly evolving research on KSHV K-Rta to consider the role of K-Rta promoter specification in regulating the progression

  8. Laminin mediates tissue-specific gene expression in mammary epithelia

    PubMed Central

    1995-01-01

    Tissue-specific gene expression in mammary epithelium is dependent on the extracellular matrix as well as hormones. There is good evidence that the basement membrane provides signals for regulating beta-casein expression, and that integrins are involved in this process. Here, we demonstrate that in the presence of lactogenic hormones, laminin can direct expression of the beta-casein gene. Mouse mammary epithelial cells plated on gels of native laminin or laminin-entactin undergo functional differentiation. On tissue culture plastic, mammary cells respond to soluble basement membrane or purified laminin, but not other extracellular matrix components, by synthesizing beta-casein. In mammary cells transfected with chloramphenicol acetyl transferase reporter constructs, laminin activates transcription from the beta- casein promoter through a specific enhancer element. The inductive effect of laminin on casein expression was specifically blocked by the E3 fragment of the carboxy terminal region of the alpha 1 chain of laminin, by antisera raised against the E3 fragment, and by a peptide corresponding to a sequence within this region. Our results demonstrate that laminin can direct tissue-specific gene expression in epithelial cells through its globular domain. PMID:7730398

  9. Laminin Mediates Tissue-specific Gene Expression in Mammary Epithelia

    SciTech Connect

    Streuli, Charles H; Schmidhauser, Christian; Bailey, Nina; Yurchenco, Peter; Skubitz, Amy P. N.; Roskelley, Calvin; Bissell, Mina J

    1995-04-01

    Tissue-specific gene expression in mammary epithelium is dependent on the extracellular matrix as well as hormones. There is good evidence that the basement membrane provides signals for regulating beta-casein expression, and that integrins are involved in this process. Here, we demonstrate that in the presence of lactogenic hormones, laminin can direct expression of the beta-casein gene. Mouse mammary epithelial cells plated on gels of native laminin or laminin-entactin undergo functional differentiation. On tissue culture plastic, mammary cells respond to soluble basement membrane or purified laminin, but not other extracellular matrix components, by synthesizing beta-casein. In mammary cells transfected with chloramphenicol acetyl transferase reporter constructs, laminin activates transcription from the beta-casein promoter through a specific enhancer element. The inductive effect of laminin on casein expression was specifically blocked by the E3 fragment of the carboxy terminal region of the alpha 1 chain of laminin, by antisera raised against the E3 fragment, and by a peptide corresponding to a sequence within this region. Our results demonstrate that laminin can direct tissue-specific gene expression in epithelial cells through its globular domain.

  10. Tissue-specific splicing mutation in acute intermittent porphyria

    SciTech Connect

    Grandchamp, B.; Picat, C. ); Mignotte, V.; Romeo, P.H.; Goossens, M. ); Wilson, J.H.P.; Sandkuyl, L. ); Te Velde, K. ); Nordmann, Y. )

    1989-01-01

    An inherited deficiency of porphobilinogen deaminase in humans is responsible for the autosomal dominant disease acute intermittent porphyria. Different classes of mutations have been described at the protein level suggesting that this is a heterogeneous disease. It was previously demonstrated that porphobilinogen deaminase is encoded by two distinct mRNA species expressed in a tissue-specific manner. Analysis of the genomic sequences indicated that these two mRNAs are transcribed from two promoters and only differ in their first exon. The first mutation identified in the human porphobilinogen deaminase gene is a single-base substitution (G {yields} A) in the canonical 5{prime} splice donor site of intron 1. This mutation leads to a particular subtype of acute intermittent porphyria characterized by the restriction of the enzymatic defect to nonerythropoietic tissues. Hybridization analysis using olignonucleotide probes after in vitro amplification of genomic DNA offers another possibility of detecting asymptomatic carriers of the mutation in affected families.

  11. Nuclear membrane diversity: underlying tissue-specific pathologies in disease?

    PubMed Central

    Worman, Howard J.; Schirmer, Eric C.

    2015-01-01

    Human ‘laminopathy’ diseases result from mutations in genes encoding nuclear lamins or nuclear envelope (NE) transmembrane proteins (NETs). These diseases present a seeming paradox: the mutated proteins are widely expressed yet pathology is limited to specific tissues. New findings suggest tissue-specific pathologies arise because these widely expressed proteins act in various complexes that include tissue-specific components. Diverse mechanisms to achieve NE tissue-specificity include tissue-specific regulation of the expression, mRNA splicing, signaling, NE-localization and interactions of potentially hundreds of tissue-specific NETs. New findings suggest these NETs underlie tissue-specific NE roles in cytoskeletal mechanics, cell-cycle regulation, signaling, gene expression and genome organization. This view of the NE as ‘specialized’ in each cell type is important to understand the tissue-specific pathology of NE-linked diseases. PMID:26115475

  12. Nuclear membrane diversity: underlying tissue-specific pathologies in disease?

    PubMed

    Worman, Howard J; Schirmer, Eric C

    2015-06-01

    Human 'laminopathy' diseases result from mutations in genes encoding nuclear lamins or nuclear envelope (NE) transmembrane proteins (NETs). These diseases present a seeming paradox: the mutated proteins are widely expressed yet pathology is limited to specific tissues. New findings suggest tissue-specific pathologies arise because these widely expressed proteins act in various complexes that include tissue-specific components. Diverse mechanisms to achieve NE tissue-specificity include tissue-specific regulation of the expression, mRNA splicing, signaling, NE-localization and interactions of potentially hundreds of tissue-specific NETs. New findings suggest these NETs underlie tissue-specific NE roles in cytoskeletal mechanics, cell-cycle regulation, signaling, gene expression and genome organization. This view of the NE as 'specialized' in each cell type is important to understand the tissue-specific pathology of NE-linked diseases.

  13. Cell type-specific interactions of transcription factors with a housekeeping promoter in vivo.

    PubMed Central

    Stapleton, G; Somma, M P; Lavia, P

    1993-01-01

    Mammalian housekeeping promoters represent a class of regulatory elements different from those of tissues-specific genes, lacking a TATA box and associated with CG-rich DNA. We have compared the organization of the housekeeping Htf9 promoter in different cell types by genomic footprinting. The sites of in vivo occupancy clearly reflected local combinations of tissue-specific and ubiquitous binding factors. The flexibility of the Htf9 promoter in acting as the target of cell-specific combinations of factors may ensure ubiquitous expression of the Htf9-associated genes. Images PMID:8389443

  14. Specific binding of phorbol ester tumor promoters

    PubMed Central

    Driedger, Paul E.; Blumberg, Peter M.

    1980-01-01

    [20-3H]Phorbol 12,13-dibutyrate bound to particulate preparations from chicken embryo fibroblasts in a specific, saturable, reversible fashion. Equilibrium binding occurred with a Kd of 25 nM; this value is very close to the 50% effective dose (ED50), 50 nM, previously determined for the biological response (induction of fibronectin loss) in growing chicken embryo fibroblasts. At saturation, 1.4 pmol of [20-3H]phorbol 12,13-dibutyrate was bound per mg of protein (approximately 7 × 104 molecules per cell). Binding was inhibited by phorbol 12-myristate 13-acetate (Ki = 2 nM), mezerein (Ki = 180 nM), phorbol 12,13-dibenzoate (Ki = 180 nM), phorbol 12,13-diacetate (Ki = 1.7 μM), phorbol 12,13,20-triacetate (Ki = 39 μM), and phorbol 13-acetate (Ki = 120 μM). The measured Ki values are all within a factor of 3.5 of the ED50 values of these derivatives for inducing loss of fibronectin in intact cells. Binding was not inhibited by the inactive compounds phorbol (10 μg/ml) and 4α-phorbol 12,13-didecanoate (10 μg/ml) or by the inflammatory but nonpromoting phorbol-related diterpene esters resiniferatoxin (100 ng/ml) and 12-deoxyphorbol 13-isobutyrate 20-acetate (100 ng/ml). These data suggest that biological responses to the phorbol esters in chicken embryo fibroblasts are mediated by this binding activity and that the binding activity corresponds to the phorbol ester target in mouse skin involved in tumor promotion. Binding was not inhibited by the nonphorbol promoters anthralin (1 μM), phenol (1 mM), iodoacetic acid (1.7 μM), and cantharidin (75 μM), or by epidermal growth factor (100 ng/ml), dexamethasone acetate (2 μM), retinoic acid (10 μM), or prostaglandin E2 (1 μM). These agents thus appear to act at a target distinct from that of the phorbol esters. PMID:6965793

  15. Genome-wide mapping of RNA Pol-II promoter usage in mouse tissues by ChIP-seq.

    PubMed

    Sun, Hao; Wu, Jiejun; Wickramasinghe, Priyankara; Pal, Sharmistha; Gupta, Ravi; Bhattacharyya, Anirban; Agosto-Perez, Francisco J; Showe, Louise C; Huang, Tim H-M; Davuluri, Ramana V

    2011-01-01

    Alternative promoters that are differentially used in various cellular contexts and tissue types add to the transcriptional complexity in mammalian genome. Identification of alternative promoters and the annotation of their activity in different tissues is one of the major challenges in understanding the transcriptional regulation of the mammalian genes and their isoforms. To determine the use of alternative promoters in different tissues, we performed ChIP-seq experiments using antibody against RNA Pol-II, in five adult mouse tissues (brain, liver, lung, spleen and kidney). Our analysis identified 38 639 Pol-II promoters, including 12 270 novel promoters, for both protein coding and non-coding mouse genes. Of these, 6384 promoters are tissue specific which are CpG poor and we find that only 34% of the novel promoters are located in CpG-rich regions, suggesting that novel promoters are mostly tissue specific. By identifying the Pol-II bound promoter(s) of each annotated gene in a given tissue, we found that 37% of the protein coding genes use alternative promoters in the five mouse tissues. The promoter annotations and ChIP-seq data presented here will aid ongoing efforts of characterizing gene regulatory regions in mammalian genomes.

  16. The reconstruction and analysis of tissue specific human metabolic networks.

    PubMed

    Hao, Tong; Ma, Hong-Wu; Zhao, Xue-Ming; Goryanin, Igor

    2012-02-01

    Human tissues have distinct biological functions. Many proteins/enzymes are known to be expressed only in specific tissues and therefore the metabolic networks in various tissues are different. Though high quality global human metabolic networks and metabolic networks for certain tissues such as liver have already been studied, a systematic study of tissue specific metabolic networks for all main tissues is still missing. In this work, we reconstruct the tissue specific metabolic networks for 15 main tissues in human based on the previously reconstructed Edinburgh Human Metabolic Network (EHMN). The tissue information is firstly obtained for enzymes from Human Protein Reference Database (HPRD) and UniprotKB databases and transfers to reactions through the enzyme-reaction relationships in EHMN. As our knowledge of tissue distribution of proteins is still very limited, we replenish the tissue information of the metabolic network based on network connectivity analysis and thorough examination of the literature. Finally, about 80% of proteins and reactions in EHMN are determined to be in at least one of the 15 tissues. To validate the quality of the tissue specific network, the brain specific metabolic network is taken as an example for functional module analysis and the results reveal that the function of the brain metabolic network is closely related with its function as the centre of the human nervous system. The tissue specific human metabolic networks are available at .

  17. GUS expression driven by constitutive and vascular specific promoters in citrus hybrid US-802

    USDA-ARS?s Scientific Manuscript database

    Transgenic solutions are being widely explored to develop huanglongbing (HLB) resistance in citrus, and a critical component of the transgenic construct is the promoter, which determines tissue specificity and level of target gene expression. This study compares the characteristics of five promoters...

  18. GUS reporter gene expression from Beta vulgaris root-specific promoters

    USDA-ARS?s Scientific Manuscript database

    To develop transgenic sugar beet with specialized agronomic traits for insect and disease tolerance and enhanced sugar accumulation and storage, a larger arsenal of constitutive, tissue-specific and temporal promoters is required. In the present study, a series of sugar beet promoters were tested f...

  19. Highly specific expression of luciferase gene in lungs of naive nude mice directed by prostate-specific antigen promoter

    SciTech Connect

    Li Hongwei; Li Jinzhong; Helm, Gregory A.; Pan Dongfeng . E-mail: Dongfeng_pan@yahoo.com

    2005-09-09

    PSA promoter has been demonstrated the utility for tissue-specific toxic gene therapy in prostate cancer models. Characterization of foreign gene overexpression in normal animals elicited by PSA promoter should help evaluate therapy safety. Here we constructed an adenovirus vector (AdPSA-Luc), containing firefly luciferase gene under the control of the 5837 bp long prostate-specific antigen promoter. A charge coupled device video camera was used to non-invasively image expression of firefly luciferase in nude mice on days 3, 7, 11 after injection of 2 x 10{sup 9} PFU of AdPSA-Luc virus via tail vein. The result showed highly specific expression of the luciferase gene in lungs of mice from day 7. The finding indicates the potential limitations of the suicide gene therapy of prostate cancer based on selectivity of PSA promoter. By contrary, it has encouraging implications for further development of vectors via PSA promoter to enable gene therapy for pulmonary diseases.

  20. Isolation and functional characterization of two novel seed-specific promoters from sunflower (Helianthus annuus L.).

    PubMed

    Zavallo, Diego; Lopez Bilbao, Marisa; Hopp, H Esteban; Heinz, Ruth

    2010-03-01

    The promoter region of two sunflower (Helianthus annuus L. HA89 genotype) seed specifically expressed genes, coding for an oleate desaturase (HaFAD2-1) and a lipid transfer protein (HaAP10), were cloned and in silico characterized. The isolated fragments are 867 and 964 bp long, respectively, and contain several seed-specific motifs, such as AACA motif, ACGT element, E-Boxes, SEF binding sites and GCN4 motif. Functional analysis of these promoters in transgenic Arabidopsis plants was investigated after fusing them with the beta-glucuronidase (GUS) reporter gene. None of the promoters triggered GUS activity in any vegetative tissue, with the exception of early seedling cotyledons. HaFAD2-1 and HaAP10 promoters were tested along seed development from globular stage to mature seeds. GUS staining was restricted to embryonic tissue and quantitative fluorometric assays showed high activity values at the later stages of development. In this work we demonstrate that HaFAD2-1 promoter is as strong as 35S promoter even though it is a tissue-specific promoter and its activity derived just from the embryo, thus confirming that it can be considered a strong highly specific seed promoter useful for biotechnology applications.

  1. TERT promoter mutations are rare in bone and soft tissue sarcomas of Japanese patients.

    PubMed

    Saito, Tsuyoshi; Akaike, Keisuke; Kurisaki-Arakawa, Aiko; Toda-Ishii, Midori; Mukaihara, Kenta; Suehara, Yoshiyuki; Takagi, Tatsuya; Kaneko, Kazuo; Yao, Takashi

    2016-01-01

    Recurrent hot-spot mutations in the telomerase reverse transcriptase (TERT) promoter have been reported in various types of tumor. In several tumor types, TERT promoter mutations are associated with poor clinical outcomes. TERT promoter mutations are reported to be rare in soft tissue tumors, with the exception of myxoid liposarcoma (MLS). Our previous study reported that TERT promoter mutations occurred in a subset of solitary fibrous tumors (SFTs) and were associated with adverse clinical outcomes in Japanese individuals. The site-specific frequency (e.g. central nervous or soft tissue origin) of TERT promoter mutations in our SFT cases appeared to be different from previously reported values in a European population. These findings prompted the present study to elucidate the potential role of ethnic background in the different frequencies of TERT promoter mutations in bone and soft tissue sarcomas. In the present study, TERT promoter mutations were examined in 180 cases of bone and soft tissue sarcomas. TERT promoter region mutations were identified in 10 cases [5 SFTs, 3 MLSs, 1 undifferentiated pleomorphic sarcoma (UPS) and 1 malignant granular cell tumor]. All mutations were C228T. The frequencies of TERT promoter mutation in MLS and UPS were 23.1 (3/13) and 5% (1/20), respectively. Only 1/5 patients with TERT-mutated tumors experienced local recurrence or distant metastasis. The present study revealed the first case of a malignant granular cell tumor with a TERT promoter mutation and revealed that the frequency of TERT promoter mutations in MLSs of Japanese patients is lower compared with that reported in German patients, providing evidence of a possible ethnic difference in the frequency of TERT promoter mutations.

  2. DNA methylation signatures of the AIRE promoter in thymic epithelial cells, thymomas and normal tissues.

    PubMed

    Kont, Vivian; Murumägi, Astrid; Tykocinski, Lars-Oliver; Kinkel, Sarah A; Webster, Kylie E; Kisand, Kai; Tserel, Liina; Pihlap, Maire; Ströbel, Philipp; Scott, Hamish S; Marx, Alexander; Kyewski, Bruno; Peterson, Pärt

    2011-12-01

    Mutations in the AIRE gene cause autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), which is associated with autoimmunity towards several peripheral organs. The AIRE protein is almost exclusively expressed in medullary thymic epithelial cells (mTEC) and CpG methylation in the promoter of the AIRE gene has been suggested to control its tissue-specific expression pattern. We found that in human AIRE-positive medullary and AIRE-negative cortical epithelium, the AIRE promoter is hypomethylated, whereas in thymocytes, the promoter had high level of CpG methylation. Likewise, in mouse mTECs the AIRE promoter was uniformly hypomethylated. In the same vein, the AIRE promoter was hypomethylated in AIRE-negative thymic epithelial tumors (thymomas) and in several peripheral tissues. Our data are compatible with the notion that promoter hypomethylation is necessary but not sufficient for tissue-specific regulation of the AIRE gene. In contrast, a positive correlation between AIRE expression and histone H3 lysine 4 trimethylation, an active chromatin mark, was found in the AIRE promoter in human and mouse TECs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Aire deficiency promotes TRP-1-specific immune rejection of melanoma.

    PubMed

    Zhu, Meng-Lei; Nagavalli, Anil; Su, Maureen A

    2013-04-01

    The thymic transcription factor autoimmune regulator (Aire) prevents autoimmunity in part by promoting expression of tissue-specific self-antigens, which include many cancer antigens. For example, AIRE-deficient patients are predisposed to vitiligo, an autoimmune disease of melanocytes that is often triggered by efficacious immunotherapies against melanoma. Therefore, we hypothesized that Aire deficiency in mice may elevate immune responses to cancer and provide insights into how such responses might be triggered. In this study, we show that Aire deficiency decreases thymic expression of TRP-1 (TYRP1), which is a self-antigen in melanocytes and a cancer antigen in melanomas. Aire deficiency resulted in defective negative selection of TRP-1-specific T cells without affecting thymic numbers of regulatory T cells. Aire-deficient mice displayed elevated T-cell immune responses that were associated with suppression of melanoma outgrowth. Furthermore, transplantation of Aire-deficient thymic stroma was sufficient to confer more effective immune rejection of melanoma in an otherwise Aire wild-type host. Together, our work showed how Aire deficiency can enhance immune responses against melanoma and how manipulating TRP-1-specific T-cell negative selection may offer a logical strategy to enhance immune rejection of melanoma. ©2013 AACR.

  4. Aire deficiency promotes TRP-1 specific immune rejection of melanoma

    PubMed Central

    Zhu, Meng-Lei; Nagavalli, Anil; Su, Maureen A.

    2013-01-01

    The thymic transcription factor AIRE prevents autoimmunity in part by promoting expression of tissue-specific self-antigens, which include many cancer antigens. For example, AIRE-deficient patients are predisposed to vitiligo, an autoimmune disease of melanocytes that is often triggered by efficacious immunotherapies against melanoma. Therefore, we hypothesized that Aire deficiency in mice may elevate immune responses to cancer and provide insights into how such responses might be triggered. In this study, we show that Aire deficiency decreases thymic expression of TRP-1 (TYRP1), which is a self-antigen in melanocytes and a cancer antigen in melanomas. Aire deficiency resulted in defective negative selection of TRP-1 specific T cells without affecting thymic numbers of regulatory T cells. Aire deficient mice displayed elevated T cell immune responses that were associated with suppression of melanoma outgrowth. Further, transplantation of Aire-deficient thymic stroma was sufficient to confer more effective immune rejection of melanoma in an otherwise Aire wildtype host. Together, our work showed how Aire deficiency can enhance immune responses against melanoma, and how manipulating TRP-1 specific T cell negative selection may offer a logical strategy to enhance immune rejection of melanoma. PMID:23370329

  5. Global Patterns of Tissue-Specific Alternative Polyadenylation in Drosophila

    PubMed Central

    Smibert, Peter; Miura, Pedro; Westholm, Jakub O.; Shenker, Sol; May, Gemma; Duff, Michael O.; Zhang, Dayu; Eads, Brian D.; Carlson, Joe; Brown, James B.; Eisman, Robert C.; Andrews, Justen; Kaufman, Thomas; Cherbas, Peter; Celniker, Susan E.; Graveley, Brenton R.; Lai, Eric C.

    2012-01-01

    SUMMARY We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA) in Drosophila melanogaster by using >1 billion reads of stranded mRNA-seq across a variety of dissected tissues. Beyond demonstrating that a majority of fly transcripts are subject to APA, we observed broad trends for 3′ untranslated region (UTR) shortening in the testis and lengthening in the central nervous system (CNS); the latter included hundreds of unannotated extensions ranging up to 18 kb. Extensive northern analyses validated the accumulation of full-length neural extended transcripts, and in situ hybridization indicated their spatial restriction to the CNS. Genes encoding RNA binding proteins (RBPs) and transcription factors were preferentially subject to 3′ UTR extensions. Motif analysis indicated enrichment of miRNA and RBP sites in the neural extensions, and their termini were enriched in canonical cis elements that promote cleavage and polyadenylation. Altogether, we reveal broad tissue-specific patterns of APA in Drosophila and transcripts with unprecedented 3′ UTR length in the nervous system. PMID:22685694

  6. Tissue specificity in the nuclear envelope supports its functional complexity.

    PubMed

    de Las Heras, Jose I; Meinke, Peter; Batrakou, Dzmitry G; Srsen, Vlastimil; Zuleger, Nikolaj; Kerr, Alastair Rw; Schirmer, Eric C

    2013-01-01

    Nuclear envelope links to inherited disease gave the conundrum of how mutations in near-ubiquitous proteins can yield many distinct pathologies, each focused in different tissues. One conundrum-resolving hypothesis is that tissue-specific partner proteins mediate these pathologies. Such partner proteins may have now been identified with recent proteome studies determining nuclear envelope composition in different tissues. These studies revealed that the majority of the total nuclear envelope proteins are tissue restricted in their expression. Moreover, functions have been found for a number these tissue-restricted nuclear envelope proteins that fit with mechanisms proposed to explain how the nuclear envelope could mediate disease, including defects in mechanical stability, cell cycle regulation, signaling, genome organization, gene expression, nucleocytoplasmic transport, and differentiation. The wide range of functions to which these proteins contribute is consistent with not only their involvement in tissue-specific nuclear envelope disease pathologies, but also tissue evolution.

  7. Tissue specificity in the nuclear envelope supports its functional complexity

    PubMed Central

    de las Heras, Jose I; Meinke, Peter; Batrakou, Dzmitry G; Srsen, Vlastimil; Zuleger, Nikolaj; Kerr, Alastair RW; Schirmer, Eric C

    2013-01-01

    Nuclear envelope links to inherited disease gave the conundrum of how mutations in near-ubiquitous proteins can yield many distinct pathologies, each focused in different tissues. One conundrum-resolving hypothesis is that tissue-specific partner proteins mediate these pathologies. Such partner proteins may have now been identified with recent proteome studies determining nuclear envelope composition in different tissues. These studies revealed that the majority of the total nuclear envelope proteins are tissue restricted in their expression. Moreover, functions have been found for a number these tissue-restricted nuclear envelope proteins that fit with mechanisms proposed to explain how the nuclear envelope could mediate disease, including defects in mechanical stability, cell cycle regulation, signaling, genome organization, gene expression, nucleocytoplasmic transport, and differentiation. The wide range of functions to which these proteins contribute is consistent with not only their involvement in tissue-specific nuclear envelope disease pathologies, but also tissue evolution. PMID:24213376

  8. Association of 5-hydroxymethylation and 5-methylation of DNA cytosine with tissue-specific gene expression

    PubMed Central

    Ponnaluri, V. K. Chaithanya; Ehrlich, Kenneth C.; Zhang, Guoqiang; Lacey, Michelle; Johnston, Douglas; Pradhan, Sriharsa; Ehrlich, Melanie

    2017-01-01

    ABSTRACT Differentially methylated or hydroxymethylated regions (DMRs) in mammalian DNA are often associated with tissue-specific gene expression but the functional relationships are still being unraveled. To elucidate these relationships, we studied 16 human genes containing myogenic DMRs by analyzing profiles of their epigenetics and transcription and quantitatively assaying 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) at specific sites in these genes in skeletal muscle (SkM), myoblasts, heart, brain, and diverse other samples. Although most human promoters have little or no methylation regardless of expression, more than half of the genes that we chose to study—owing to their myogenic DMRs—overlapped tissue-specific alternative or cryptic promoters displaying corresponding tissue-specific differences in histone modifications. The 5mC levels in myoblast DMRs were significantly associated with 5hmC levels in SkM at the same site. Hypermethylated myogenic DMRs within CDH15, a muscle- and cerebellum-specific cell adhesion gene, and PITX3, a homeobox gene, were used for transfection in reporter gene constructs. These intragenic DMRs had bidirectional tissue-specific promoter activity that was silenced by in vivo-like methylation. The CDH15 DMR, which was previously associated with an imprinted maternal germline DMR in mice, had especially strong promoter activity in myogenic host cells. These findings are consistent with the controversial hypothesis that intragenic DNA methylation can facilitate transcription and is not just a passive consequence of it. Our results support varied roles for tissue-specific 5mC- or 5hmC-enrichment in suppressing inappropriate gene expression from cryptic or alternative promoters and in increasing the plasticity of gene expression required for development and rapid responses to tissue stress or damage. PMID:27911668

  9. A specific sucrose phosphatase from plant tissues

    PubMed Central

    Hawker, J. S.; Hatch, M. D.

    1966-01-01

    1. A phosphatase that hydrolyses sucrose phosphate (phosphorylated at the 6-position of fructose) was isolated from sugar-cane stem and carrot roots. With partially purified preparations fructose 6-phosphate, glucose 6-phosphate, fructose 1-phosphate, glucose 1-phosphate and fructose 1,6-diphosphate are hydrolysed at between 0 and 2% of the rate for sucrose phosphate. 2. The activity of the enzyme is increased fourfold by the addition of Mg2+ ions and inhibited by EDTA, fluoride, inorganic phosphate, pyrophosphate, Ca2+ and Mn2+ ions. Sucrose (50mm) reduces activity by 60%. 3. The enzyme exhibits maximum activity between pH6·4 and 6·7. The Michaelis constant for sucrose phosphate is between 0·13 and 0·17mm. 4. At least some of the specific phosphatase is associated with particles having the sedimentation properties of mitochondria. 5. A similar phosphatase appears to be present in several other plant species. PMID:4290548

  10. Specific white matter tissue microstructure changes associated with obesity.

    PubMed

    Kullmann, Stephanie; Callaghan, Martina F; Heni, Martin; Weiskopf, Nikolaus; Scheffler, Klaus; Häring, Hans-Ulrich; Fritsche, Andreas; Veit, Ralf; Preissl, Hubert

    2016-01-15

    Obesity-related structural brain alterations point to a consistent reduction in gray matter with increasing body mass index (BMI) but changes in white matter have proven to be more complex and less conclusive. Hence, more recently diffusion tensor imaging (DTI) has been employed to investigate microstructural changes in white matter structure. Altogether, these studies have mostly shown a loss of white matter integrity with obesity-related factors in several brain regions. However, the variety of these obesity-related factors, including inflammation and dyslipidemia, resulted in competing influences on the DTI indices. To increase the specificity of DTI results, we explored specific brain tissue properties by combining DTI with quantitative multi-parameter mapping in lean, overweight and obese young adults. By means of multi-parameter mapping, white matter structures showed differences in MRI parameters consistent with reduced myelin, increased water and altered iron content with increasing BMI in the superior longitudinal fasciculus, anterior thalamic radiation, internal capsule and corpus callosum. BMI-related changes in DTI parameters revealed mainly alterations in mean and axial diffusivity with increasing BMI in the corticospinal tract, anterior thalamic radiation and superior longitudinal fasciculus. These alterations, including mainly fiber tracts linking limbic structures with prefrontal regions, could potentially promote accelerated aging in obese individuals leading to an increased risk for cognitive decline. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Specific white matter tissue microstructure changes associated with obesity

    PubMed Central

    Kullmann, Stephanie; Callaghan, Martina F.; Heni, Martin; Weiskopf, Nikolaus; Scheffler, Klaus; Häring, Hans-Ulrich; Fritsche, Andreas; Veit, Ralf; Preissl, Hubert

    2016-01-01

    Obesity-related structural brain alterations point to a consistent reduction in gray matter with increasing body mass index (BMI) but changes in white matter have proven to be more complex and less conclusive. Hence, more recently diffusion tensor imaging (DTI) has been employed to investigate microstructural changes in white matter structure. Altogether, these studies have mostly shown a loss of white matter integrity with obesity-related factors in several brain regions. However, the variety of these obesity-related factors, including inflammation and dyslipidemia, resulted in competing influences on the DTI indices. To increase the specificity of DTI results, we explored specific brain tissue properties by combining DTI with quantitative multi-parameter mapping in lean, overweight and obese young adults. By means of multi-parameter mapping, white matter structures showed differences in MRI parameters consistent with reduced myelin, increased water and altered iron content with increasing BMI in the superior longitudinal fasciculus, anterior thalamic radiation, internal capsule and corpus callosum. BMI-related changes in DTI parameters revealed mainly alterations in mean and axial diffusivity with increasing BMI in the corticospinal tract, anterior thalamic radiation and superior longitudinal fasciculus. These alterations, including mainly fiber tracts linking limbic structures with prefrontal regions, could potentially promote accelerated aging in obese individuals leading to an increased risk for cognitive decline. PMID:26458514

  12. Promoting tissue regeneration by modulating the immune system.

    PubMed

    Julier, Ziad; Park, Anthony J; Briquez, Priscilla S; Martino, Mikaël M

    2017-01-22

    The immune system plays a central role in tissue repair and regeneration. Indeed, the immune response to tissue injury is crucial in determining the speed and the outcome of the healing process, including the extent of scarring and the restoration of organ function. Therefore, controlling immune components via biomaterials and drug delivery systems is becoming an attractive approach in regenerative medicine, since therapies based on stem cells and growth factors have not yet proven to be broadly effective in the clinic. To integrate the immune system into regenerative strategies, one of the first challenges is to understand the precise functions of the different immune components during the tissue healing process. While remarkable progress has been made, the immune mechanisms involved are still elusive, and there is indication for both negative and positive roles depending on the tissue type or organ and life stage. It is well recognized that the innate immune response comprising danger signals, neutrophils and macrophages modulates tissue healing. In addition, it is becoming evident that the adaptive immune response, in particular T cell subset activities, plays a critical role. In this review, we first present an overview of the basic immune mechanisms involved in tissue repair and regeneration. Then, we highlight various approaches based on biomaterials and drug delivery systems that aim at modulating these mechanisms to limit fibrosis and promote regeneration. We propose that the next generation of regenerative therapies may evolve from typical biomaterial-, stem cell-, or growth factor-centric approaches to an immune-centric approach.

  13. Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro

    PubMed Central

    2012-01-01

    Background Obesity is associated with prostate cancer aggressiveness and mortality. The contribution of periprostatic adipose tissue, which is often infiltrated by malignant cells, to cancer progression is largely unknown. Thus, this study aimed to determine if periprostatic adipose tissue is linked with aggressive tumor biology in prostate cancer. Methods Supernatants of whole adipose tissue (explants) or stromal vascular fraction (SVF) from paired fat samples of periprostatic (PP) and pre-peritoneal visceral (VIS) anatomic origin from different donors were prepared and analyzed for matrix metalloproteinases (MMPs) 2 and 9 activity. The effects of those conditioned media (CM) on growth and migration of hormone-refractory (PC-3) and hormone-sensitive (LNCaP) prostate cancer cells were measured. Results We show here that PP adipose tissue of overweight men has higher MMP9 activity in comparison with normal subjects. The observed increased activities of both MMP2 and MMP9 in PP whole adipose tissue explants, likely reveal the contribution of adipocytes plus stromal-vascular fraction (SVF) as opposed to SVF alone. MMP2 activity was higher for PP when compared to VIS adipose tissue. When PC-3 cells were stimulated with CM from PP adipose tissue explants, increased proliferative and migratory capacities were observed, but not in the presence of SVF. Conversely, when LNCaP cells were stimulated with PP explants CM, we found enhanced motility despite the inhibition of proliferation, whereas CM derived from SVF increased both cell proliferation and motility. Explants culture and using adipose tissue of PP origin are most effective in promoting proliferation and migration of PC-3 cells, as respectively compared with SVF culture and using adipose tissue of VIS origin. In LNCaP cells, while explants CM cause increased migration compared to SVF, the use of PP adipose tissue to generate CM result in the increase of both cellular proliferation and migration. Conclusions Our

  14. Human uroporphyrinogen-III synthase: genomic organization, alternative promoters, and erythroid-specific expression.

    PubMed

    Aizencang, G; Solis, C; Bishop, D F; Warner, C; Desnick, R J

    2000-12-01

    Uroporphyrinogen-III (URO) synthase is the heme biosynthetic enzyme defective in congenital erythropoietic porphyria. The approximately 34-kb human URO-synthase gene (UROS) was isolated, and its organization and tissue-specific expression were determined. The gene had two promoters that generated housekeeping and erythroid-specific transcripts with unique 5'-untranslated sequences (exons 1 and 2A) followed by nine common coding exons (2B to 10). Expression arrays revealed that the housekeeping transcript was present in all tissues, while the erythroid transcript was only in erythropoietic tissues. The housekeeping promoter lacked TATA and SP1 sites, consistent with the observed low level expression in most cells, whereas the erythroid promoter contained GATA1 and NF-E2 sites for erythroid specificity. Luciferase reporter assays demonstrated that the housekeeping promoter was active in both erythroid K562 and HeLa cells, while the erythroid promoter was active only in erythroid cells and its activity was increased during hemin-induced erythroid differentiation. Thus, human URO-synthase expression is regulated during erythropoiesis by an erythroid-specific alternative promoter.

  15. A novel tissue model for angiogenesis: evaluation of inhibitors or promoters in tissue level

    NASA Astrophysics Data System (ADS)

    Dai, Bingling; Zhang, Yanmin; Zhan, Yingzhuan; Zhang, Dongdong; Wang, Nan; He, Langchong

    2014-01-01

    A novel tissue model for angiogenesis (TMA) is established for effective evaluation of angiogenesis inhibitors or promoters in vitro. Lung tissues were cultured in fibrinogen ``sandwich'' structure which resembled the formation of neovessels in vivo. The cells and capillary-like structures grew from the lung tissues were identified as endothelial cells and neovessels. Both immunohistochemisty and western blot results indicated that autocrine VEGF bound to the KDR and induced KDR autophosphorylation that could induce the proliferation of endothelial cells and their migration as well as the formation of microvessels on the lung tissue edge. With addition of the TMA, the murine VEGF and cultured medium produced by A549 tumor cells apparently promoted the increase of neovessels. Sorafenib as a tumor angiogenesis inhibitor and Tongxinluo as an angiogenesis promoter were both used to evaluate the TMA performance and they exhibited a good effect on neovessels in the TMA. The model established imitated angiogenesis in vivo and could well serve as an effective method in evaluating the angiogenesis inhibitors or promoters, and could also be practical for screening small molecules that affect blood vessel formation.

  16. Scaffolding in tissue engineering: general approaches and tissue-specific considerations

    PubMed Central

    Leong, K. W.

    2008-01-01

    Scaffolds represent important components for tissue engineering. However, researchers often encounter an enormous variety of choices when selecting scaffolds for tissue engineering. This paper aims to review the functions of scaffolds and the major scaffolding approaches as important guidelines for selecting scaffolds and discuss the tissue-specific considerations for scaffolding, using intervertebral disc as an example. PMID:19005702

  17. Scaffolding in tissue engineering: general approaches and tissue-specific considerations.

    PubMed

    Chan, B P; Leong, K W

    2008-12-01

    Scaffolds represent important components for tissue engineering. However, researchers often encounter an enormous variety of choices when selecting scaffolds for tissue engineering. This paper aims to review the functions of scaffolds and the major scaffolding approaches as important guidelines for selecting scaffolds and discuss the tissue-specific considerations for scaffolding, using intervertebral disc as an example.

  18. Goat uromodulin promoter directs kidney-specific expression of GFP gene in transgenic mice

    PubMed Central

    Huang, Yue-Jin; Chretien, Nathalie; Bilodeau, Annie S; Zhou, Jiang Feng; Lazaris, Anthoula; Karatzas, Costas N

    2005-01-01

    Background Uromodulin is the most abundant protein found in the urine of mammals. In an effort to utilize the uromodulin promoter in order to target recombinant proteins in the urine of transgenic animals we have cloned a goat uromodulin gene promoter fragment (GUM promoter) and used it to drive expression of GFP in the kidney of transgenic mice. Results The GUM-GFP cassette was constructed and transgenic mice were generated in order to study the promoter's tissue specificity, the GFP kidney specific expression and its subcellular distribution. Tissues collected from three GUM-GFP transgenic mouse lines, and analyzed for the presence of GFP by Western blotting and fluorescence confirmed that the GUM promoter drove expression of GFP specifically in the kidney. More specifically, by using immuno-histochemistry analysis of kidney sections, we demonstrated that GFP expression was co-localized, with endogenous uromodulin protein, in the epithelial cells of the thick ascending limbs (TAL) of Henle's loop and the early distal convoluted tubule in the kidney. Conclusion The goat uromodulin promoter is capable of driving recombinant protein expression in the kidney of transgenic mice. The goat promoter fragment cloned may be a useful tool in targeting proteins or oncogenes in the kidney of mammals. PMID:15823198

  19. A compact unc45b‐promoter drives muscle‐specific expression in zebrafish and mouse

    PubMed Central

    Rudeck, Steven; Etard, Christelle; Khan, Muzamil M.; Rottbauer, Wolfgang; Rudolf, Rüdiger; Strähle, Uwe

    2016-01-01

    Summary: Gene therapeutic approaches to cure genetic diseases require tools to express the rescuing gene exclusively within the affected tissues. Viruses are often chosen as gene transfer vehicles but they have limited capacity for genetic information to be carried and transduced. In addition, to avoid off‐target effects the therapeutic gene should be driven by a tissue‐specific promoter in order to ensure expression in the target organs, tissues, or cell populations. The larger the promoter, the less space will be left for the respective gene. Thus, there is a need for small but tissue‐specific promoters. Here, we describe a compact unc45b promoter fragment of 195 bp that retains the ability to drive gene expression exclusively in skeletal and cardiac muscle in zebrafish and mouse. Remarkably, the described unc45b promoter fragment not only drives muscle‐specific expression but presents heat‐shock inducibility, allowing a temporal and spatial quantity control of (trans)gene expression. Here, we demonstrate that the transgenic expression of the smyd1b gene driven by the unc45b promoter fragment is able to rescue the embryonically lethal heart and skeletal muscle defects in smyd1b‐deficient flatline mutant zebrafish. Our findings demonstrate that the described muscle‐specific unc45b promoter fragment might be a valuable tool for the development of genetic therapies in patients suffering from myopathies. genesis 54:431–438, 2016. © 2016 The Authors. Genesis Published by Wiley Periodicals, Inc. PMID:27295336

  20. Dissecting Target Toxic Tissue and Tissue Specific Responses of Irinotecan in Rats Using Metabolomics Approach

    PubMed Central

    Yao, Yiran; Zhang, Pei; Wang, Jing; Chen, Jiaqing; Wang, Yong; Huang, Yin; Zhang, Zunjian; Xu, Fengguo

    2017-01-01

    As an anticancer agent, irinotecan (CPT-11) has been widely applied in clinical, especially in the treatment of colorectal cancer. However, its clinical use has long been limited by the side effects and potential tissue toxicity. To discriminate the target toxic tissues and dissect the specific response of target tissues after CPT-11 administration in rats, untargeted metabolomic study was conducted. First, differential metabolites between CPT-11 treated group and control group in each tissue were screened out. Then, based on fold changes of these differential metabolites, principal component analysis and hierarchical cluster analysis were performed to visualize the degree and specificity of the influences of CPT-11 on the metabolic profiles of nine tissues. Using this step-wise method, ileum, jejunum, and liver were finally recognized as target toxic tissues. Furthermore, tissue specific responses of liver, ileum, and jejunum to CPT-11 were dissected and specific differential metabolites were screened out. Perturbations in Krebs cycle, amino acid, purine and bile acid metabolism were observed in target toxic tissues. In conclusion, our study put forward a new approach to dissect target toxic tissues and tissue specific responses of CPT-11 using metabolomics. PMID:28344557

  1. Aminopeptidase P Mediated Targeting for Breast Tissue Specific Conjugate Delivery.

    PubMed

    Cordova, Antoinette; Woodrick, Jordan; Grindrod, Scott; Zhang, Li; Saygideger-Kont, Yasemin; Wang, Kan; DeVito, Stephen; Daniele, Stefano G; Paige, Mikell; Brown, Milton L

    2016-09-21

    Cytotoxic chemotherapies are used to treat breast cancer, but are limited by systemic toxicity. The key to addressing this important issue is the development of a nontoxic, tissue selective, and molecular specific delivery system. In order to potentially increase the therapeutic index of clinical reagents, we designed an Aminopeptidase P (APaseP) targeting tissue-specific construct conjugated to a homing peptide for selective binding to human breast-derived cancer cells. Homing peptides are short amino acid sequences derived from phage display libraries that have the unique property of localizing to specific organs. Our molecular construct allows for tissue-specific drug delivery, by binding to APaseP in the vascular endothelium. The breast homing peptide evaluated in our studies is a cyclic nine-amino-acid peptide with the sequence CPGPEGAGC, referred to as PEGA. We show by confocal microscopy that the PEGA peptide and similar peptide conjugates distribute to human breast tissue xenograft specifically and evaluate the interaction with the membrane-bound proline-specific APaseP (KD = 723 ± 3 nM) by binding studies. To achieve intracellular breast cancer cell delivery, the incorporation of the Tat sequence, a cell-penetrating motif derived from HIV, was conjugated with the fluorescently labeled PEGA peptide sequence. Ultimately, tissue specific peptides and their conjugates can enhance drug delivery and treatment by their ability to discriminate between tissue types. Tissue specific conjugates as we have designed may be valuable tools for drug delivery and visualization, including the potential to treat breast cancer, while simultaneously minimizing systemic toxicity.

  2. Norwalk Virus–specific Binding to Oyster Digestive Tissues

    PubMed Central

    Loisy, Fabienne; Atmar, Robert L.; Hutson, Anne M.; Estes, Mary K.; Ruvoën-Clouet, Nathalie; Pommepuy, Monique; Le Pendu, Jacques

    2006-01-01

    The primary pathogens related to shellfishborne gastroenteritis outbreaks are noroviruses. These viruses show persistence in oysters, which suggests an active mechanism of virus concentration. We investigated whether Norwalk virus or viruslike particles bind specifically to oyster tissues after bioaccumulation or addition to tissue sections. Since noroviruses attach to carbohydrates of the histo-blood group family, tests using immunohistochemical analysis were performed to evaluate specific binding of virus or viruslike particles to oyster tissues through these ligands. Viral particles bind specifically to digestive ducts (midgut, main and secondary ducts, and tubules) by carbohydrate structures with a terminal N-acetylgalactosamine residue in an α linkage (same binding site used for recognition of human histo-blood group antigens). These data show that the oyster can selectively concentrate a human pathogen and that conventional depuration will not eliminate noroviruses from oyster tissue. PMID:16707048

  3. A novel endosperm transfer cell-containing region-specific gene and its promoter in rice.

    PubMed

    Kuwano, Mio; Masumura, Takehiro; Yoshida, Kaoru T

    2011-05-01

    The endosperm of cereal grains is an important resource for both food and feed. It contains three major types of tissue: starchy endosperm, the aleurone layer, and transfer cells. To improve grain quality and quantity using molecular methods, control of transgene expression directed by distinct temporal and spatial promoter activity is necessary. To identify aleurone layer-specific and/or transfer cell-specific promoters in rice, microarray analyses were performed, comparing the aleurone layer containing transfer cells and the other reproductive and vegetative tissues. After confirmation by RT-PCR analysis, we identified two putative aleurone layer and/or transfer cell-specific genes, AL1 and AL2. The promoter regions of these genes and β-glucuronidase (GUS) fusion constructs were stably transformed into rice. The GUS expression patterns indicated that the AL1 promoter was active exclusively in the dorsal aleurone layer adjacent to the main vascular bundle. In rice, transfer cells are differentiated in this region. Therefore, the promoter of the AL1 gene exhibits transfer cell-containing region-specific activity. The AL1 gene encodes a putative anthranilate N-hydroxycinnamoyl/benzoyltransferase. The promoter of this gene will be useful for enhancing uptake of nutrients from the mother cells and protecting filial seeds from pathogen attack.

  4. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink.

    PubMed

    Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony

    2016-04-21

    Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types.

  5. Adipose Tissue Derived Stem Cells Promote Prostate Tumor Growth

    PubMed Central

    Prantl, Lukas; Muehlberg, Fabian; Navone, Nora M.; Song, Yao-Hua; Vykoukal, Jody; Logothetis, Christopher J.; Alt, Eckhard U.

    2016-01-01

    BACKGROUND Recent evidence indicates that cancer stem cells play an important role in tumor initiation and maintenance. Additionally, the effect of tissue-resident stem cells located in the surrounding healthy tissue on tumor progression has been demonstrated. While most knowledge has been derived from studies of breast cancer cells, little is known regarding the influence of tissue resident stem cells on the tumor biology of prostate cancer. METHODS Twenty male athymic Swiss nu/nu mice (age: 6–8 weeks) were randomized into two treatment groups: 1) subcutaneous injection of 106 MDA PCa 118b human prostate cancer cells into the upper back or 2) subcutaneous injection of 106 MDA PCa 118b cells mixed directly with 105 GFP-labeled human adipose tissue-derived stem cells (hASCs). Tumor growth and volumes over the ensuing 3 weeks were assessed using calipers and micro-computed tomography. Immunohistochemistry was performed to identify engrafted hASCs in tumor sections. RESULTS At 3 weeks after injection, the mean tumor volume in the MDA PCa 118b/hASC co-injection group (1019.95 ± 73.49 mm3) was significantly higher than that in the MDA PCa 118b-only group (308.70 ± 21.06 mm3). Engrafted hASCs exhibited the nuclear marker of proliferation Ki67 and expressed markers for endothelial differentiation, indicating their engraftment in tumor vessels. CONCLUSION Our study revealed for the first time that ASCs subcutaneously co-injected with prostate cancer cells engraft and promote tumor progression. Further evaluation of the cross-talk between tumor and local tissue-resident stem cells may lead to new strategies for prostate cancer therapy. PMID:20564322

  6. Tissue-specific regulation of chromatin insulator function.

    PubMed

    Matzat, Leah H; Dale, Ryan K; Moshkovich, Nellie; Lei, Elissa P

    2012-01-01

    Chromatin insulators organize the genome into distinct transcriptional domains and contribute to cell type-specific chromatin organization. However, factors regulating tissue-specific insulator function have not yet been discovered. Here we identify the RNA recognition motif-containing protein Shep as a direct interactor of two individual components of the gypsy insulator complex in Drosophila. Mutation of shep improves gypsy-dependent enhancer blocking, indicating a role as a negative regulator of insulator activity. Unlike ubiquitously expressed core gypsy insulator proteins, Shep is highly expressed in the central nervous system (CNS) with lower expression in other tissues. We developed a novel, quantitative tissue-specific barrier assay to demonstrate that Shep functions as a negative regulator of insulator activity in the CNS but not in muscle tissue. Additionally, mutation of shep alters insulator complex nuclear localization in the CNS but has no effect in other tissues. Consistent with negative regulatory activity, ChIP-seq analysis of Shep in a CNS-derived cell line indicates substantial genome-wide colocalization with a single gypsy insulator component but limited overlap with intact insulator complexes. Taken together, these data reveal a novel, tissue-specific mode of regulation of a chromatin insulator.

  7. Tissue-Specific Regulation of Chromatin Insulator Function

    PubMed Central

    Matzat, Leah H.; Dale, Ryan K.; Moshkovich, Nellie; Lei, Elissa P.

    2012-01-01

    Chromatin insulators organize the genome into distinct transcriptional domains and contribute to cell type–specific chromatin organization. However, factors regulating tissue-specific insulator function have not yet been discovered. Here we identify the RNA recognition motif-containing protein Shep as a direct interactor of two individual components of the gypsy insulator complex in Drosophila. Mutation of shep improves gypsy-dependent enhancer blocking, indicating a role as a negative regulator of insulator activity. Unlike ubiquitously expressed core gypsy insulator proteins, Shep is highly expressed in the central nervous system (CNS) with lower expression in other tissues. We developed a novel, quantitative tissue-specific barrier assay to demonstrate that Shep functions as a negative regulator of insulator activity in the CNS but not in muscle tissue. Additionally, mutation of shep alters insulator complex nuclear localization in the CNS but has no effect in other tissues. Consistent with negative regulatory activity, ChIP–seq analysis of Shep in a CNS-derived cell line indicates substantial genome-wide colocalization with a single gypsy insulator component but limited overlap with intact insulator complexes. Taken together, these data reveal a novel, tissue-specific mode of regulation of a chromatin insulator. PMID:23209434

  8. Macrotopographic closure promotes tissue growth and osteogenesis in vitro.

    PubMed

    Juignet, Laura; Charbonnier, Baptiste; Dumas, Virginie; Bouleftour, Wafa; Thomas, Mireille; Laurent, Coralie; Vico, Laurence; Douard, Nathalie; Marchat, David; Malaval, Luc

    2017-04-15

    While the impact of substrate topographies at nano- and microscale on bone cell behavior has been particularly well documented, very few studies have analyzed the role of substrate closure at a tissular level. Moreover, these have focused on matrix deposition rather than on osteoblastic differentiation. In the present work, mouse calvaria cells were grown for 15days on hydroxyapatite (HA) ceramics textured with three different macrogrooves shapes ((**)100µm): 1 sine and 2 triangle waveforms. We found that macrotopography favors cell attachment, and that bone-like tissue growth and organization are promoted by a tight "closure angle" of the substrate geometry. Interestingly, while Flat HA controls showed little marker expression at the end of the culture, cells grown on macrogrooves, and in particular the most closed (triangle waveform with a 517µm spatial period) showed a fast time-course of osteoblast differentiation, reaching high levels of gene and protein expression of osteocalcin and sclerostin, a marker of osteocytes. Many in vitro studies have been conducted on topography at nano and microscale, fewer have focused on the influence of macrotopography on osteoblasts. Ceramics with a controlled architecture were obtained throught a 3D printing process and used to assess osteoblast behavior. Biocompatible, they allowed the long-terme survival of osteoblast cells and the laying of an important bone matrix. V-shaped grooves were found to accelerates osteoblast differentiation and promote bone-like tissue deposition and maturation (osteocyte formation), proportionately to angle closure. Such macrostructures are attractive for the design of innovative implants for bone tissue engineering and in vitro models of osteogenesis. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Tissue specific DNA methylation in normal human breast epithelium and in breast cancer.

    PubMed

    Avraham, Ayelet; Cho, Sean Soonweng; Uhlmann, Ronit; Polak, Mia Leonov; Sandbank, Judith; Karni, Tami; Pappo, Itzhak; Halperin, Ruvit; Vaknin, Zvi; Sella, Avishay; Sukumar, Saraswati; Evron, Ella

    2014-01-01

    Cancer is a heterogeneous and tissue-specific disease. Thus, the tissue of origin reflects on the natural history of the disease and dictates the therapeutic approach. It is suggested that tissue differentiation, mediated mostly by epigenetic modifications, could guide tissue-specific susceptibility and protective mechanisms against cancer. Here we studied breast specific methylation in purified normal epithelium and its reflection in breast cancers. We established genome wide methylation profiles of various normal epithelial tissues and identified 110 genes that were differentially methylated in normal breast epithelium. A number of these genes also showed methylation alterations in breast cancers. We elaborated on one of them, TRIM29 (ATDC), and showed that its promoter was hypo-methylated in normal breast epithelium and heavily methylated in other normal epithelial tissues. Moreover, in breast carcinomas methylation increased and expression decreased whereas the reverse was noted for multiple other carcinomas. Interestingly, TRIM29 regulation in breast tumors clustered according to the PAM50 classification. Thus, it was repressed in the estrogen receptor positive tumors, particularly in the more proliferative luminal B subtype. This goes in line with previous reports indicating tumor suppressive activity of TRIM29 in estrogen receptor positive luminal breast cells in contrast to oncogenic function in pancreatic and lung cancers. Overall, these findings emphasize the linkage between breast specific epigenetic regulation and tissue specificity of cancer.

  10. Alternative promoters of Peg3 with maternal specificity

    PubMed Central

    Perera, Bambarendage P. U.; Kim, Joomyeong

    2016-01-01

    Peg3 (paternally expressed gene 3) is an imprinted gene localized within an evolutionarily conserved 500-kb domain in human chromosome 19q13.4 and mouse proximal chromosome 7. In the current study, we have identified three alternative promoters for mouse Peg3 and one alternative promoter for human PEG3. These alternative promoters are localized within the 200-kb upstream region of human and mouse PEG3, which is well conserved and thus predicted to harbor several cis-regulatory elements for the PEG3 domain. In the mouse, two of these alternative promoters drive maternal-specific expression of Peg3 specifically in the hypothalamus of the adult brain, while the remaining third promoter drives bi-allelic expression of Peg3 with a paternal bias only in the neonatal-stage brain. In human, an alternative transcript is also detected at relatively very low levels in adult brain and placenta. Overall, the identification of alternative promoters in both mouse and human models suggests that these alternative promoters may be functionally selected features for the PEG3 imprinted domain during mammalian evolution. PMID:27075691

  11. Regulatory mechanisms for specification and patterning of plant vascular tissues.

    PubMed

    Caño-Delgado, Ana; Lee, Ji-Young; Demura, Taku

    2010-01-01

    Plant vascular tissues, the conduits of water, nutrients, and small molecules, play important roles in plant growth and development. Vascular tissues have allowed plants to successfully adapt to various environmental conditions since they evolved 450 Mya. The majority of plant biomass, an important source of renewable energy, comes from the xylem of the vascular tissues. Efforts have been made to identify the underlying mechanisms of cell specification and patterning of plant vascular tissues and their proliferation. The formation of the plant vascular system is a complex process that integrates signaling and gene regulation at transcriptional and posttranscriptional levels. Recently, a wealth of molecular genetic studies and the advent of cell biology and genomic tools have enabled important progress toward understanding its underlying mechanisms. Here, we provide a comprehensive review of the cell and developmental processes of plant vascular tissue and resources recently available for studying them that will enable the discovery of new ways to develop sustainable energy using plant biomass.

  12. Tissue-specific ceruloplasmin gene expression in the mammary gland.

    PubMed Central

    Jaeger, J L; Shimizu, N; Gitlin, J D

    1991-01-01

    Using a ceruloplasmin cDNA clone in RNA blot analysis, a single 3.7 kb ceruloplasmin-specific transcript was detected in rat mammary gland tissue from pregnant and lactating animals. Ceruloplasmin gene expression in the mammary gland was tissue-specific, with no evidence of expression in brain, heart or other extrahepatic tissues. Ceruloplasmin mRNA was also detected in mammary gland tissue from male, virgin female and non-pregnant/multiparous animals, and the abundance of ceruloplasmin-specific transcripts in virgin female rats was independent of their stage of oestrus. In virgin female mammary gland the content of ceruloplasmin mRNA was 20% of that in hepatic tissue from these animals and approx. 2-3-fold greater than that found in mammary gland tissue of pregnant or lactating animals. Development studies revealed ceruloplasmin gene expression in male and female mammary gland by only 2 weeks of age, prior to the onset of puberty. Biosynthetic studies indicated that the ceruloplasmin mRNA in mammary gland tissue was translated into a 132 kDa protein qualitatively similar to that synthesized in liver. By in situ hybridization, ceruloplasmin gene expression was localized to the epithelium lining the mammary gland alveolar ducts, without evidence of expression in the surrounding mesenchyme. Ceruloplasmin gene expression was also detected in a human breast adenocarcinoma cell line and in biopsy tissue from women with invasive ductal carcinoma. Taken together, these data indicate that the mammary gland is a prominent site of extrahepatic ceruloplasmin gene expression and add to the evidence that ceruloplasmin biosynthesis is associated with growth and differentiation in non-hepatic tissues. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:1764031

  13. Tissue-specific sparse deconvolution for brain CT perfusion.

    PubMed

    Fang, Ruogu; Jiang, Haodi; Huang, Junzhou

    2015-12-01

    Enhancing perfusion maps in low-dose computed tomography perfusion (CTP) for cerebrovascular disease diagnosis is a challenging task, especially for low-contrast tissue categories where infarct core and ischemic penumbra usually occur. Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting the complementary information from the high-dose perfusion maps to restore the low-dose using a joint spatio-temporal model. However the low-contrast tissue classes where infarct core and ischemic penumbra are likely to occur in cerebral perfusion CT tend to be over-smoothed, leading to loss of essential biomarkers. In this paper, we propose a tissue-specific sparse deconvolution approach to preserve the subtle perfusion information in the low-contrast tissue classes. We first build tissue-specific dictionaries from segmentations of high-dose perfusion maps using online dictionary learning, and then perform deconvolution-based hemodynamic parameters estimation for block-wise tissue segments on the low-dose CTP data. Extensive validation on clinical datasets of patients with cerebrovascular disease demonstrates the superior performance of our proposed method compared to state-of-art, and potentially improve diagnostic accuracy by increasing the differentiation between normal and ischemic tissues in the brain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Oscillator networks with tissue-specific circadian clocks in plants.

    PubMed

    Inoue, Keisuke; Araki, Takashi; Endo, Motomu

    2017-09-08

    Many organisms rely on circadian clocks to synchronize their biological processes with the 24-h rotation of the earth. In mammals, the circadian clock consists of a central clock in the suprachiasmatic nucleus and peripheral clocks in other tissues. The central clock is tightly coupled to synchronize rhythmicity and can organize peripheral clocks through neural and hormonal signals. In contrast to mammals, it has long been assumed that the circadian clocks in each plant cell is able to be entrained by external light, and they are only weakly coupled to each other. Recently, however, several reports have demonstrated that plants have unique oscillator networks with tissue-specific circadian clocks. Here, we introduce our current view regarding tissue-specific properties and oscillator networks of plant circadian clocks. Accumulating evidence suggests that plants have multiple oscillators, which show distinct properties and reside in different tissues. A direct tissue-isolation technique and micrografting have clearly demonstrated that plants have hierarchical oscillator networks consisting of multiple tissue-specific clocks. Copyright © 2017. Published by Elsevier Ltd.

  15. A mono-allelic bivalent chromatin domain controls tissue-specific imprinting at Grb10.

    PubMed

    Sanz, Lionel A; Chamberlain, Stormy; Sabourin, Jean-Charles; Henckel, Amandine; Magnuson, Terry; Hugnot, Jean-Philippe; Feil, Robert; Arnaud, Philippe

    2008-10-08

    Genomic imprinting is a developmental mechanism that mediates parent-of-origin-specific expression in a subset of genes. How the tissue specificity of imprinted gene expression is controlled remains poorly understood. As a model to address this question, we studied Grb10, a gene that displays brain-specific expression from the paternal chromosome. Here, we show in the mouse that the paternal promoter region is marked by allelic bivalent chromatin enriched in both H3K4me2 and H3K27me3, from early embryonic stages onwards. This is maintained in all somatic tissues, but brain. The bivalent domain is resolved upon neural commitment, during the developmental window in which paternal expression is activated. Our data indicate that bivalent chromatin, in combination with neuronal factors, controls the paternal expression of Grb10 in brain. This finding highlights a novel mechanism to control tissue-specific imprinting.

  16. Predicting Tissue-Specific Enhancers in the Human Genome

    SciTech Connect

    Pennacchio, Len A.; Loots, Gabriela G.; Nobrega, Marcelo A.; Ovcharenko, Ivan

    2006-07-01

    Determining how transcriptional regulatory signals areencoded in vertebrate genomes is essential for understanding the originsof multi-cellular complexity; yet the genetic code of vertebrate generegulation remains poorly understood. In an attempt to elucidate thiscode, we synergistically combined genome-wide gene expression profiling,vertebrate genome comparisons, and transcription factor binding siteanalysis to define sequence signatures characteristic of candidatetissue-specific enhancers in the human genome. We applied this strategyto microarray-based gene expression profiles from 79 human tissues andidentified 7,187 candidate enhancers that defined their flanking geneexpression, the majority of which were located outside of knownpromoters. We cross-validated this method for its ability to de novopredict tissue-specific gene expression and confirmed its reliability in57 of the 79 available human tissues, with an average precision inenhancer recognition ranging from 32 percent to 63 percent, and asensitivity of 47 percent. We used the sequence signatures identified bythis approach to assign tissue-specific predictions to ~;328,000human-mouse conserved noncoding elements in the human genome. Byoverlapping these genome-wide predictions with a large in vivo dataset ofenhancers validated in transgenic mice, we confirmed our results with a28 percent sensitivity and 50 percent precision. These results indicatethe power of combining complementary genomic datasets as an initialcomputational foray into the global view of tissue-specific generegulation in vertebrates.

  17. Comparative RNA-Seq analysis reveals pervasive tissue-specific alternative polyadenylation in Caenorhabditis elegans intestine and muscles.

    PubMed

    Blazie, Stephen M; Babb, Cody; Wilky, Henry; Rawls, Alan; Park, Jin G; Mangone, Marco

    2015-01-20

    Tissue-specific RNA plasticity broadly impacts the development, tissue identity and adaptability of all organisms, but changes in composition, expression levels and its impact on gene regulation in different somatic tissues are largely unknown. Here we developed a new method, polyA-tagging and sequencing (PAT-Seq) to isolate high-quality tissue-specific mRNA from Caenorhabditis elegans intestine, pharynx and body muscle tissues and study changes in their tissue-specific transcriptomes and 3'UTRomes. We have identified thousands of novel genes and isoforms differentially expressed between these three tissues. The intestine transcriptome is expansive, expressing over 30% of C. elegans mRNAs, while muscle transcriptomes are smaller but contain characteristic unique gene signatures. Active promoter regions in all three tissues reveal both known and novel enriched tissue-specific elements, along with putative transcription factors, suggesting novel tissue-specific modes of transcription initiation. We have precisely mapped approximately 20,000 tissue-specific polyadenylation sites and discovered that about 30% of transcripts in somatic cells use alternative polyadenylation in a tissue-specific manner, with their 3'UTR isoforms significantly enriched with microRNA targets. For the first time, PAT-Seq allowed us to directly study tissue specific gene expression changes in an in vivo setting and compare these changes between three somatic tissues from the same organism at single-base resolution within the same experiment. We pinpoint precise tissue-specific transcriptome rearrangements and for the first time link tissue-specific alternative polyadenylation to miRNA regulation, suggesting novel and unexplored tissue-specific post-transcriptional regulatory networks in somatic cells.

  18. An alternative splicing program promotes adipose tissue thermogenesis

    PubMed Central

    Vernia, Santiago; Edwards, Yvonne JK; Han, Myoung Sook; Cavanagh-Kyros, Julie; Barrett, Tamera; Kim, Jason K; Davis, Roger J

    2016-01-01

    Alternative pre-mRNA splicing expands the complexity of the transcriptome and controls isoform-specific gene expression. Whether alternative splicing contributes to metabolic regulation is largely unknown. Here we investigated the contribution of alternative splicing to the development of diet-induced obesity. We found that obesity-induced changes in adipocyte gene expression include alternative pre-mRNA splicing. Bioinformatics analysis associated part of this alternative splicing program with sequence specific NOVA splicing factors. This conclusion was confirmed by studies of mice with NOVA deficiency in adipocytes. Phenotypic analysis of the NOVA-deficient mice demonstrated increased adipose tissue thermogenesis and improved glycemia. We show that NOVA proteins mediate a splicing program that suppresses adipose tissue thermogenesis. Together, these data provide quantitative analysis of gene expression at exon-level resolution in obesity and identify a novel mechanism that contributes to the regulation of adipose tissue function and the maintenance of normal glycemia. DOI: http://dx.doi.org/10.7554/eLife.17672.001 PMID:27635635

  19. Gene expression analysis distinguishes tissue specific and gender related functions among adult Ascaris suum tissues

    PubMed Central

    Wang, Zhengyuan; Gao, Xin; Martin, John; Yin, Yong; Abubucker, Sahar; Rash, Amy C.; Li, Ben-Wen; Nash, Bill; Hallsworth-Pepin, Kym; Jasmer, Douglas P.; Mitreva, Makedonka

    2013-01-01

    Over a billion people are infected by Ascaris spp. intestinal parasites. To clarify functional differences among tissues of adult A. suum, we compared gene expression by various tissues of these worms by expression microarray methods.. The A. suum genome was sequenced and assembled to allow generation of microarray elements. Expression of over 40,000 60-mer elements was investigated in a variety of tissues from both male and female adult worms. Nearly 50 percent of the elements for which signal was detected exhibited differential expression among different tissues. The unique profile of transcripts identified for each tissue clarified functional distinctions among tissues, such as chitin binding in the ovary and peptidase activity in the intestines. Interestingly, hundreds of gender-specific elements were characterized in multiple non-reproductive tissues of female or male worms, with most prominence of gender differences in intestinal tissue. A. suum genes from the same family were frequently expressed differently among tissues. Transcript abundance for genes specific to A. suum, by comparison to Caenorhabditis elegans, varied to a greater extent among tissues than for genes conserved between A. suum and C. elegans. Analysis using C. elegans protein interaction data identified functional modules conserved between these two nematodes, resulting in identification of functional predictions of essential subnetworks of protein interactions and how these networks may vary among nematode tissues. A notable finding was very high module similarity between adult reproductive tissues and intestine. Our results provide the most comprehensive assessment of gene expression among tissues of a parasitic nematode to date. PMID:23572074

  20. Characterization and promoter activity of chromoplast specific carotenoid associated gene (CHRC) from Oncidium Gower Ramsey.

    PubMed

    Chiou, Chung-Yi; Wu, Keqiang; Yeh, Kai-Wun

    2008-10-01

    Tissue-specific promoters are required for plant molecular breeding to drive a target gene in the appropriate location in plants. A chromoplast-specific, carotenoid-associated gene (OgCHRC) and its promoter (Pchrc) were isolated from Oncidium orchid and characterized. Northern blot analysis revealed that OgCHRC is specifically expressed in flowers, not in roots and leaves. Transient expression assay of Pchrc by bombardment transformation confirmed its differential expression pattern in floral tissues of different horticulture plants and cell-type location in conical papillate cells of adaxial epidermis of flower. These results suggest that Pchrc could serve as a useful tool in ornamental plant biotechnology to modify flower color.

  1. Acetylation of Cavin-1 Promotes Lipolysis in White Adipose Tissue.

    PubMed

    Zhou, Shui-Rong; Guo, Liang; Wang, Xu; Liu, Yang; Peng, Wan-Qiu; Liu, Yuan; Wei, Xiang-Bo; Dou, Xin; Ding, Meng; Lei, Qun-Ying; Qian, Shu-Wen; Li, Xi; Tang, Qi-Qun

    2017-08-15

    White adipose tissue (WAT) serves as a reversible energy storage depot in the form of lipids in response to nutritional status. Cavin-1, an essential component in the biogenesis of caveolae, is a positive regulator of lipolysis in adipocytes. However, molecular mechanisms of cavin-1 in the modulation of lipolysis remain poorly understood. Here, we showed that cavin-1 was acetylated at lysines 291, 293, and 298 (3K), which were under nutritional regulation in WAT. We further identified GCN5 as the acetyltransferase and Sirt1 as the deacetylase of cavin-1. Acetylation-mimetic 3Q mutants of cavin-1 augmented fat mobilization in 3T3-L1 adipocytes and zebrafish. Mechanistically, acetylated cavin-1 preferentially interacted with hormone-sensitive lipase and recruited it to the caveolae, thereby promoting lipolysis. Our findings shed light on the essential role of cavin-1 in regulating lipolysis in an acetylation-dependent manner in WAT. Copyright © 2017 American Society for Microbiology.

  2. Tissue-specific gene targeting by the multiprotein mammalian DREAM complex.

    PubMed

    Flowers, Stephen; Beck, George R; Moran, Elizabeth

    2011-08-12

    The mammalian DP, RB-like, E2F, and MuvB-like proteins (DREAM) complex, whose key components include p130 and E2F4, plays a fundamental role in repression of cell cycle-specific genes during growth arrest. Mammalian DREAM is well conserved with Drosophila and Caenorhabditis elegans complexes that repress pivotal developmental genes, but the mammalian complex has been thought to exist only in quiescent cells and not to be linked with development. However, new findings here identify tissue-specific promoters repressed by DREAM in proliferating precursors, revealing a new connection between control of growth arrest and terminal differentiation. Mechanistically, tissue-specific promoter occupation by DREAM is dependent on the integrity of a repressor form of the SWI/SNF chromatin-remodeling complex.

  3. Identification and characterization of three novel hemocyte-specific promoters in silkworm Bombyx mori.

    PubMed

    Zhang, Kui; Yu, Shuang; Su, Jingjing; Xu, Man; Tan, Peng; Zhang, Yajun; Xiang, Zhonghuai; Cui, Hongjuan

    2015-05-22

    Insect hemocytes play essential roles in the metabolism, metamorphosis and immunity, which are closely related events of growth and development. Here, four novel hemocyte-specific genes were obtained and conformed in our study, namely, Bmintβ2, Bmintβ3, BmCatO, and BmSw04862, respectively. Subsequently, their promoter sequences were cloned, and their activity in hemocytes, fat body, and silk gland were analyzed using recombinant AcNPV vector system in vivo. Our results showed that Bmintβ2, Bmintβ3, and BmCatO were hemocyte-specific promoters in the silkworm, Bombyx mori. Interestingly, Bmintβ2, and Bmintβ3 promoter regions were both located in their first intron. Further analysis of a series of BmCatO promoter truncations showed that a 254 bp region could function as a promoter element in the tissue-specificity expression. In summary, the results of this study revealed that we have identified three hemocyte-specific promoters in silkworm that will not only great significance for better understanding of hemocyte-specific gene, but also has potential applications in insect hematopoiesis and innate immunity research.

  4. Tissue-specific transcriptomics in the field cricket Teleogryllus oceanicus.

    PubMed

    Bailey, Nathan W; Veltsos, Paris; Tan, Yew-Foon; Millar, A Harvey; Ritchie, Michael G; Simmons, Leigh W

    2013-02-01

    Field crickets (family Gryllidae) frequently are used in studies of behavioral genetics, sexual selection, and sexual conflict, but there have been no studies of transcriptomic differences among different tissue types. We evaluated transcriptome variation among testis, accessory gland, and the remaining whole-body preparations from males of the field cricket, Teleogryllus oceanicus. Non-normalized cDNA libraries from each tissue were sequenced on the Roche 454 platform, and a master assembly was constructed using testis, accessory gland, and whole-body preparations. A total of 940,200 reads were assembled into 41,962 contigs, to which 36,856 singletons (reads not assembled into a contig) were added to provide a total of 78,818 sequences used in annotation analysis. A total of 59,072 sequences (75%) were unique to one of the three tissues. Testis tissue had the greatest proportion of tissue-specific sequences (62.6%), followed by general body (56.43%) and accessory gland tissue (44.16%). We tested the hypothesis that tissues expressing gene products expected to evolve rapidly as a result of sexual selection--testis and accessory gland--would yield a smaller proportion of BLASTx matches to homologous genes in the model organism Drosophila melanogaster compared with whole-body tissue. Uniquely expressed sequences in both testis and accessory gland showed a significantly lower rate of matching to annotated D. melanogaster genes compared with those from general body tissue. These results correspond with empirical evidence that genes expressed in testis and accessory gland tissue are rapidly evolving targets of selection.

  5. Tissue-Specific Transcriptomics in the Field Cricket Teleogryllus oceanicus

    PubMed Central

    Bailey, Nathan W.; Veltsos, Paris; Tan, Yew-Foon; Millar, A. Harvey; Ritchie, Michael G.; Simmons, Leigh W.

    2013-01-01

    Field crickets (family Gryllidae) frequently are used in studies of behavioral genetics, sexual selection, and sexual conflict, but there have been no studies of transcriptomic differences among different tissue types. We evaluated transcriptome variation among testis, accessory gland, and the remaining whole-body preparations from males of the field cricket, Teleogryllus oceanicus. Non-normalized cDNA libraries from each tissue were sequenced on the Roche 454 platform, and a master assembly was constructed using testis, accessory gland, and whole-body preparations. A total of 940,200 reads were assembled into 41,962 contigs, to which 36,856 singletons (reads not assembled into a contig) were added to provide a total of 78,818 sequences used in annotation analysis. A total of 59,072 sequences (75%) were unique to one of the three tissues. Testis tissue had the greatest proportion of tissue-specific sequences (62.6%), followed by general body (56.43%) and accessory gland tissue (44.16%). We tested the hypothesis that tissues expressing gene products expected to evolve rapidly as a result of sexual selection—testis and accessory gland—would yield a smaller proportion of BLASTx matches to homologous genes in the model organism Drosophila melanogaster compared with whole-body tissue. Uniquely expressed sequences in both testis and accessory gland showed a significantly lower rate of matching to annotated D. melanogaster genes compared with those from general body tissue. These results correspond with empirical evidence that genes expressed in testis and accessory gland tissue are rapidly evolving targets of selection. PMID:23390599

  6. MGMT promoter methylation in serum and cerebrospinal fluid as a tumor-specific biomarker of glioma.

    PubMed

    Wang, Zheng; Jiang, Wei; Wang, Yahong; Guo, Yang; Cong, Zheng; DU, Fangfang; Song, Bin

    2015-07-01

    O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation is a conventional technique to predict the prognosis or individualized treatment of glioma in tumor tissue following surgery or biopsy. However, the technique cannot be applied in those glioma patients with concomitant neurological dysfunctions or advanced age. The present study aimed to find a new minimally invasive and efficient alternative method for the detection of MGMT promoter methylation. The expression of MGMT promoter methylation was assessed in peripheral blood and cerebrospinal fluid (CSF), and compared to the corresponding tumor tissue from glioma patients. The 89 patients in the study [32 World Health Organization (WHO) grade II, 19 WHO grade III and 38 WHO grade IV) were pathologically-diagnosed glioma and received radiation therapy following sample collection. The resected glioma tumor tissue (89), corresponding serum (89) and CSF (78) samples were collected for the detection of MGMT promoter methylation using methylation-specific polymerase chain reaction. The sensitivity and specificity of detecting MGMT promoter methylation in CSF and serum were compared. Among the tumor tissue samples, 51/89 (57.3%) showed MGMT promoter methylation. The specificity of the detection in the CSF and serum samples reached 100%. The sensitivity of MGMT promoter methylation detection in CSF and serum were 26/40 (65.0%) and 19/51 (37.3%), respectively (P<0.05). In the WHO II, III and IV subgroups, the sensitivities of MGMT promoter methylation detection using CSF were 8/12 (66.7%), 11/18 (61.1%) and 7/10 (70.0%), respectively, which were significantly higher than the sensitivities using serum (7/21, 33.3%; 7/19, 36.8%; and 5/11, 45.5%, respectively P<0.05). Among patients with residual postoperative tumors, the sensitivities of detecting MGMT promoter methylation using CSF and serum were 18/25 (72.0%) and 10/24 (41.7%), respectively, both of which were significantly higher than the corresponding

  7. Tissue-Autonomous Promotion of Palisade Cell Development by Phototropin 2 in Arabidopsis[W

    PubMed Central

    Kozuka, Toshiaki; Kong, Sam-Geun; Doi, Michio; Shimazaki, Ken-ichiro; Nagatani, Akira

    2011-01-01

    Light is an important environmental information source that plants use to modify their growth and development. Palisade parenchyma cells in leaves develop cylindrical shapes in response to blue light; however, the photosensory mechanism for this response has not been elucidated. In this study, we analyzed the palisade cell response in phototropin-deficient mutants. First, we found that two different light-sensing mechanisms contributed to the response in different proportions depending on the light intensity. One response observed under lower intensities of blue light was mediated exclusively by a blue light photoreceptor, phototropin 2 (PHOT2). Another response was elicited under higher intensities of light in a phototropin-independent manner. To determine the tissue in which PHOT2 perceives the light stimulus to regulate the response, green fluorescent protein (GFP)–tagged PHOT2 (P2G) was expressed under the control of tissue-specific promoters in the phot1 phot2 mutant background. The results revealed that the expression of P2G in the mesophyll, but not in the epidermis, promoted palisade cell development. Furthermore, a constitutively active C-terminal kinase fragment of PHOT2 fused to GFP (P2CG) promoted the development of cylindrical palisade cells in the proper direction without the directional cue provided by light. Hence, in response to blue light, PHOT2 promotes the development of cylindrical palisade cells along a predetermined axis in a tissue-autonomous manner. PMID:21972260

  8. Tissue-autonomous promotion of palisade cell development by phototropin 2 in Arabidopsis.

    PubMed

    Kozuka, Toshiaki; Kong, Sam-Geun; Doi, Michio; Shimazaki, Ken-ichiro; Nagatani, Akira

    2011-10-01

    Light is an important environmental information source that plants use to modify their growth and development. Palisade parenchyma cells in leaves develop cylindrical shapes in response to blue light; however, the photosensory mechanism for this response has not been elucidated. In this study, we analyzed the palisade cell response in phototropin-deficient mutants. First, we found that two different light-sensing mechanisms contributed to the response in different proportions depending on the light intensity. One response observed under lower intensities of blue light was mediated exclusively by a blue light photoreceptor, phototropin 2 (PHOT2). Another response was elicited under higher intensities of light in a phototropin-independent manner. To determine the tissue in which PHOT2 perceives the light stimulus to regulate the response, green fluorescent protein (GFP)-tagged PHOT2 (P2G) was expressed under the control of tissue-specific promoters in the phot1 phot2 mutant background. The results revealed that the expression of P2G in the mesophyll, but not in the epidermis, promoted palisade cell development. Furthermore, a constitutively active C-terminal kinase fragment of PHOT2 fused to GFP (P2CG) promoted the development of cylindrical palisade cells in the proper direction without the directional cue provided by light. Hence, in response to blue light, PHOT2 promotes the development of cylindrical palisade cells along a predetermined axis in a tissue-autonomous manner.

  9. Uniform accumulation of recombinant miraculin protein in transgenic tomato fruit using a fruit-ripening-specific E8 promoter.

    PubMed

    Hirai, Tadayoshi; Kim, You-Wang; Kato, Kazuhisa; Hiwasa-Tanase, Kyoko; Ezura, Hiroshi

    2011-12-01

    The E8 promoter, a tomato fruit-ripening-specific promoter, and the CaMV 35S promoter, a constitutive promoter, were used to express the miraculin gene encoding the taste-modifying protein in tomato. The accumulation of miraculin protein and mRNA was compared among transgenic tomatoes expressing the miraculin gene driven by these promoters. Recombinant miraculin protein predominantly accumulated in transgenic tomato lines using the E8 promoter (E8-MIR) only at the red fruit stage. The accumulations were almost uniform among all fruit tissues. When the 35S promoter (35S-MIR) was used, miraculin accumulation in the exocarp was much higher than in other tissues, indicating that the miraculin accumulation pattern can be regulated by using different types of promoters. We also discuss the potential of the E8-MIR lines for practical use.

  10. Strength, Stability, and cis-Motifs of In silico Identified Phloem-Specific Promoters in Brassica juncea (L.)

    PubMed Central

    Koramutla, Murali Krishna; Bhatt, Deepa; Negi, Manisha; Venkatachalam, Perumal; Jain, Pradeep K.; Bhattacharya, Ramcharan

    2016-01-01

    Aphids, a hemipteran group of insects pose a serious threat to many of the major crop species including Brassica oilseeds. Transgenic strategies for developing aphid-resistant plant types necessitate phloem-bound expression of the insecticidal genes. A few known phloem-specific promoters, in spite of tissue-specific activity fail to confer high level gene-expression. Here, we identified seven orthologues of phloem-specific promoters in B. juncea (Indian mustard), and experimentally validated their strength of expression in phloem exudates. Significant cis-motifs, globally occurring in phloem-specific promoters showed variable distribution frequencies in these putative phloem-specific promoters of B. juncea. In RT-qPCR based gene-expression study promoter of Glutamine synthetase 3A (GS3A) showed multifold higher activity compared to others, across the different growth stages of B. juncea plants. A statistical method employing four softwares was devised for rapidly analysing stability of the promoter-activities across the plant developmental stages. Different statistical softwares ranked these B. juncea promoters differently in terms of their stability in promoter-activity. Nevertheless, the consensus in output empirically suggested consistency in promoter-activity of the six B. juncea phloem- specific promoters including GS3A. The study identified suitable endogenous promoters for high level and consistent gene-expression in B. juncea phloem exudate. The study also demonstrated a rapid method of assessing species-specific strength and stability in expression of the endogenous promoters. PMID:27148290

  11. Tissue specific regulation of lipogenesis by thyroid hormone

    SciTech Connect

    Blennemann, B.; Freake, H. )

    1990-02-26

    Thyroid hormone stimulates long chain fatty acid synthesis in rat liver by increasing the amounts of key lipogenic enzymes. Sparse and conflicting data exist concerning its action on this pathway in other tissues. The authors recently showed that, in contrast to liver, hypothyroidism stimulates lipogenesis in brown adipose tissue and have now systematically examined the effects of thyroid state on fatty acid synthesis in other rat tissues. Lipogenesis was assessed by tritiated water incorporation. Euthyroid hepatic fatty acid synthesis (16.6um H/g/h) was reduced to 30% in hypothyroid rats and increased 3 fold in hyperthyroidism. Lipogenesis was detected in euthyroid kidney and heart and these levels were also stimulated by thyroid hormone treatment. Brown adipose tissue was unique in showing increased lipogenesis in the hypothyroid state. Hyperthyroid levels were not different from euthyroid. Effects in white adipose tissue were small and inconsistent. Brain, skin and lung were all lipogenically active, but did not respond to changes in thyroid state. Low but detectable levels of fatty acid synthesis were measured in muscle, which also were non-responsive. A wide spectrum of responses to thyroid hormone are seen in different rat tissues and thus the pathway of long chain fatty acid synthesis would appear to be an excellent model for examining the tissue specific regulation of gene expression by thyroid hormone.

  12. FOXO1 expression in keratinocytes promotes connective tissue healing

    PubMed Central

    Zhang, Chenying; Lim, Jason; Liu, Jian; Ponugoti, Bhaskar; Alsadun, Sarah; Tian, Chen; Vafa, Rameen; Graves, Dana T.

    2017-01-01

    Wound healing is complex and highly orchestrated. It is well appreciated that leukocytes, particularly macrophages, are essential for inducing the formation of new connective tissue, which requires the generation of signals that stimulate mesenchymal stem cells (MSC), myofibroblasts and fibroblasts. A key role for keratinocytes in this complex process has yet to be established. To this end, we investigated possible involvement of keratinocytes in connective tissue healing. By lineage-specific deletion of the forkhead box-O 1 (FOXO1) transcription factor, we demonstrate for the first time that keratinocytes regulate proliferation of fibroblasts and MSCs, formation of myofibroblasts and production of collagen matrix in wound healing. This stimulation is mediated by a FOXO1 induced TGFβ1/CTGF axis. The results provide direct evidence that epithelial cells play a key role in stimulating connective tissue healing through a FOXO1-dependent mechanism. Thus, FOXO1 and keratinocytes may be an important therapeutic target where healing is deficient or compromised by a fibrotic outcome. PMID:28220813

  13. Reconstruction of Tissue-Specific Metabolic Networks Using CORDA

    PubMed Central

    Schultz, André; Qutub, Amina A.

    2016-01-01

    Human metabolism involves thousands of reactions and metabolites. To interpret this complexity, computational modeling becomes an essential experimental tool. One of the most popular techniques to study human metabolism as a whole is genome scale modeling. A key challenge to applying genome scale modeling is identifying critical metabolic reactions across diverse human tissues. Here we introduce a novel algorithm called Cost Optimization Reaction Dependency Assessment (CORDA) to build genome scale models in a tissue-specific manner. CORDA performs more efficiently computationally, shows better agreement to experimental data, and displays better model functionality and capacity when compared to previous algorithms. CORDA also returns reaction associations that can greatly assist in any manual curation to be performed following the automated reconstruction process. Using CORDA, we developed a library of 76 healthy and 20 cancer tissue-specific reconstructions. These reconstructions identified which metabolic pathways are shared across diverse human tissues. Moreover, we identified changes in reactions and pathways that are differentially included and present different capacity profiles in cancer compared to healthy tissues, including up-regulation of folate metabolism, the down-regulation of thiamine metabolism, and tight regulation of oxidative phosphorylation. PMID:26942765

  14. Promoter-specific co-activation by Drosophila Mastermind

    PubMed Central

    Caudy, Michael A.

    2008-01-01

    Mastermind (Mam) is a co-activator protein of binary complexes consisting of Suppressor of Hairless (Su(H)) and Notch Intracellular Domain (NICD) proteins assembled on cis-regulatory regions of target genes activated by Notch signaling. Current evidence indicates that Mastermind is necessary and sufficient for the formation of a functional Su(H)/NICD/Mam ternary complex on at least one specific architecture of Su(H) binding sites, called the SPS element (Su(H) Paired Sites). However, using transcription assays with a combination of native and synthetic Notch target gene promoters in Drosophila cultured cells, we show here that co-activation of Su(H)/NICD complexes on SPS elements by Mam is promoter-specific. Our novel results suggest this promoter specificity is mediated by additional unknown cis-regulatory elements present in the native promoters that are required for the recruitment of Mam and formation of functional Su(H)/NICD/Mam complexes on SPS elements. Together, the findings in this study suggest Mam is not always necessary and sufficient for co-activation of binary Su(H)/NICD complexes on SPS elements. PMID:18930034

  15. Tissue-Specific Effects of Esophageal Extracellular Matrix

    PubMed Central

    Keane, Timothy J.; DeWard, Aaron; Londono, Ricardo; Saldin, Lindsey T.; Castleton, Arthur A.; Carey, Lisa; Nieponice, Alejandro; Lagasse, Eric

    2015-01-01

    Biologic scaffolds composed of extracellular matrix (ECM) have been used to facilitate repair or remodeling of numerous tissues, including the esophagus. The theoretically ideal scaffold for tissue repair is the ECM derived from the particular tissue to be treated, that is, site-specific or homologous ECM. The preference or potential advantage for the use of site-specific ECM remains unknown in the esophageal location. The objective of the present study was to characterize the in vitro cellular response and in vivo host response to a homologous esophageal ECM (eECM) versus nonhomologous ECMs derived from small intestinal submucosa and urinary bladder. The in vitro response of esophageal stem cells was characterized by migration, proliferation, and three-dimensional (3D) organoid formation assays. The in vivo remodeling response was evaluated in a rat model of esophageal mucosal resection. Results of the study showed that the eECM retains favorable tissue-specific characteristics that enhance the migration of esophageal stem cells and supports the formation of 3D organoids to a greater extent than heterologous ECMs. Implantation of eECM facilitates the remodeling of esophageal mucosa following mucosal resection, but no distinct advantage versus heterologous ECM could be identified. PMID:26192009

  16. Tissue-Specific Effects of Esophageal Extracellular Matrix.

    PubMed

    Keane, Timothy J; DeWard, Aaron; Londono, Ricardo; Saldin, Lindsey T; Castleton, Arthur A; Carey, Lisa; Nieponice, Alejandro; Lagasse, Eric; Badylak, Stephen F

    2015-09-01

    Biologic scaffolds composed of extracellular matrix (ECM) have been used to facilitate repair or remodeling of numerous tissues, including the esophagus. The theoretically ideal scaffold for tissue repair is the ECM derived from the particular tissue to be treated, that is, site-specific or homologous ECM. The preference or potential advantage for the use of site-specific ECM remains unknown in the esophageal location. The objective of the present study was to characterize the in vitro cellular response and in vivo host response to a homologous esophageal ECM (eECM) versus nonhomologous ECMs derived from small intestinal submucosa and urinary bladder. The in vitro response of esophageal stem cells was characterized by migration, proliferation, and three-dimensional (3D) organoid formation assays. The in vivo remodeling response was evaluated in a rat model of esophageal mucosal resection. Results of the study showed that the eECM retains favorable tissue-specific characteristics that enhance the migration of esophageal stem cells and supports the formation of 3D organoids to a greater extent than heterologous ECMs. Implantation of eECM facilitates the remodeling of esophageal mucosa following mucosal resection, but no distinct advantage versus heterologous ECM could be identified.

  17. Human omental and subcutaneous adipose tissue exhibit specific lipidomic signatures.

    PubMed

    Jové, Mariona; Moreno-Navarrete, José María; Pamplona, Reinald; Ricart, Wifredo; Portero-Otín, Manuel; Fernández-Real, José Manuel

    2014-03-01

    Despite their differential effects on human metabolic pathophysiology, the differences in omental and subcutaneous lipidomes are largely unknown. To explore this field, liquid chromatography coupled with mass spectrometry was used for lipidome analyses of adipose tissue samples (visceral and subcutaneous) selected from a group of obese subjects (n=38). Transcriptomics and in vitro studies in adipocytes were used to confirm the pathways affected by location. The analyses revealed the existence of obesity-related specific lipidome signatures in each of these locations, attributed to selective enrichment of specific triglycerides, glycerophospholipids, and sphingolipids, because these were not observed in adipose tissues from nonobese individuals. The changes were compatible with subcutaneous enrichment in pathways involved in adipogenesis, triacylglyceride synthesis, and lipid droplet formation, as well as increased α-oxidation. Marked differences between omental and subcutaneous depots in obese individuals were seen in the association of lipid species with metabolic traits (body mass index and insulin sensitivity). Targeted studies also revealed increased cholesterol (Δ56%) and cholesterol epoxide (Δ34%) concentrations in omental adipose tissue. In view of the effects of cholesterol epoxide, which induced enhanced expression of adipocyte differentiation and α-oxidation genes in human omental adipocytes, a novel role for cholesterol epoxide as a signaling molecule for differentiation is proposed. In summary, in obesity, adipose tissue exhibits a location-specific differential lipid profile that may contribute to explaining part of its distinct pathogenic role.

  18. Tissue-specific insulin signaling, metabolic syndrome and cardiovascular disease

    PubMed Central

    Rask-Madsen, Christian; Kahn, C. Ronald

    2012-01-01

    Summary Impaired insulin signaling is central to the development of the metabolic syndrome and can promote cardiovascular disease indirectly through development of abnormal glucose and lipid metabolism, hypertension and a proinflammatory state. However, insulin action directly on vascular endothelium, atherosclerotic plaque macrophages, and in the heart, kidney, and retina has now been described, and impaired insulin signaling in these locations can alter progression of cardiovascular disease in the metabolic syndrome and affect development of microvascular complications of diabetes. Recent advances in our understanding of the complex pathophysiology of insulin’s effects on vascular tissues offer new opportunities for preventing these cardiovascular disorders. PMID:22895666

  19. Aryl hydrocarbon hydroxylase tissue-specific activities: evidence for baseline levels in mammalian tissues

    SciTech Connect

    Uziel, M.; Griffin, G.D.; Walsh, P.J.

    1985-01-01

    The tissue-specific activities of arylhydrocarbon hydroxylase benzo(a)pyrene (AHH(BaP)) in human, mouse, rat, and hamster tissues have been reviewed. Three categories of AHH activities are defined: baseline values from tissues that have been protected from adventitious exposures to AHH inducers; background levels from tissues where there have been no overt measures to protect against exposure; and induced levels resulting from overt exposure to chemical inducers. Evidence that the baseline category exists is derived from the observations that an upper limit of AHH tissue-specific activity of about 1.5 nmol/h x g tissue occurs in human placenta, human foreskin, lymphocyte, and epitheliod and fibroblastoid cell lines; mouse lung and liver; rat fetal liver, and noninducible rat cell lines from lung, liver, embryo kidney, and adrenals; and hamster kidney. The collected values for nonexposed tissues range from 0.02 nmol/h x g to values less than 1.5 nmol/h x g. The most consistent observation of this type was from human placental material from nonsmoking mothers. Animals raised under standard laboratory conditions without special dietary precautions show background AHH activities that range from 2 nmol/h x g to 200 nmol/h x g in portal of entry tissues such as liver, lung, and intestines. Almost all tissue samples showed induced AHH levels of up to 500 nmol/h x g when those tissues were overtly exposed to substances containing chemical inducers of AHH. Measurements of placental AHH from smoking mothers showed that more than 95% of those samples had AHH values exceeding 2.5 nmol/h x g.

  20. Regulating expression of cell and tissue-specific genes by modifying transcription

    SciTech Connect

    Beachy, Roger N; Dai, Shunhong

    2010-06-14

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Rice bZIP transcription factors RF2a, RF2b and RLP1 play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV), through their interactions with the Box II essential cis element located in the promoter (Dai et al., 2006., Dai et al., 2004., Yin et al., 1997). RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. It is equally as important to recognize that these proteins control plant development by regulating differentiation and/or function of the vascular tissues. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins will not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants. We have proposed characterize the function domains of RF2a, RF2b and RLP1 and explore the biological function of the transcription repressor RLP1.

  1. Lineage-specific splicing of a brain-enriched alternative exon promotes glioblastoma progression

    PubMed Central

    Ferrarese, Roberto; Harsh, Griffith R.; Yadav, Ajay K.; Bug, Eva; Maticzka, Daniel; Reichardt, Wilfried; Dombrowski, Stephen M.; Miller, Tyler E.; Masilamani, Anie P.; Dai, Fangping; Kim, Hyunsoo; Hadler, Michael; Scholtens, Denise M.; Yu, Irene L.Y.; Beck, Jürgen; Srinivasasainagendra, Vinodh; Costa, Fabrizio; Baxan, Nicoleta; Pfeifer, Dietmar; von Elverfeldt, Dominik; Backofen, Rolf; Weyerbrock, Astrid; Duarte, Christine W.; He, Xiaolin; Prinz, Marco; Chandler, James P.; Vogel, Hannes; Chakravarti, Arnab; Rich, Jeremy N.; Carro, Maria S.; Bredel, Markus

    2014-01-01

    Tissue-specific alternative splicing is critical for the emergence of tissue identity during development, yet the role of this process in malignant transformation is undefined. Tissue-specific splicing involves evolutionarily conserved, alternative exons that represent only a minority of the total alternative exons identified. Many of these conserved exons have functional features that influence signaling pathways to profound biological effect. Here, we determined that lineage-specific splicing of a brain-enriched cassette exon in the membrane-binding tumor suppressor annexin A7 (ANXA7) diminishes endosomal targeting of the EGFR oncoprotein, consequently enhancing EGFR signaling during brain tumor progression. ANXA7 exon splicing was mediated by the ribonucleoprotein PTBP1, which is normally repressed during neuronal development. PTBP1 was highly expressed in glioblastomas due to loss of a brain-enriched microRNA (miR-124) and to PTBP1 amplification. The alternative ANXA7 splicing trait was present in precursor cells, suggesting that glioblastoma cells inherit the trait from a potential tumor-initiating ancestor and that these cells exploit this trait through accumulation of mutations that enhance EGFR signaling. Our data illustrate that lineage-specific splicing of a tissue-regulated alternative exon in a constituent of an oncogenic pathway eliminates tumor suppressor functions and promotes glioblastoma progression. This paradigm may offer a general model as to how tissue-specific regulatory mechanisms can reprogram normal developmental processes into oncogenic ones. PMID:24865424

  2. Tissue-specific cell wall hydration in sugarcane stalks.

    PubMed

    Maziero, Priscila; Jong, Jennifer; Mendes, Fernanda M; Gonçalves, Adilson R; Eder, Michaela; Driemeier, Carlos

    2013-06-19

    Plant cell walls contain water, especially under biological and wet processing conditions. The present work characterizes this water in tissues of sugarcane stalks. Environmental scanning electron microscopy shows tissue deformation upon drying. Dynamic vapor sorption determines the equilibrium and kinetics of moisture uptake. Thermoporometry by differential scanning calorimetry quantifies water in nanoscale pores. Results show that cell walls from top internodes of stalks are more deformable, slightly more sorptive to moisture, and substantially more porous. These differences of top internode are attributed to less lignified walls, which is confirmed by lower infrared spectral signal from aromatics. Furthermore, cell wall nanoscale porosity, an architectural and not directly compositional characteristic, is shown to be tissue-specific. Nanoscale porosities are ranked as follows: pith parenchyma > pith vascular bundles > rind. This ranking coincides with wall reactivity and digestibility in grasses, suggesting that nanoscale porosity is a major determinant of wall recalcitrance.

  3. 5'-heterogeneity of glucocorticoid receptor messenger RNA is tissue specific: differential regulation of variant transcripts by early-life events.

    PubMed

    McCormick, J A; Lyons, V; Jacobson, M D; Noble, J; Diorio, J; Nyirenda, M; Weaver, S; Ester, W; Yau, J L; Meaney, M J; Seckl, J R; Chapman, K E

    2000-04-01

    Glucocorticoid receptor (GR) gene expression is regulated in a complex tissue-specific manner, notably by early-life environmental events that program tissue GR levels. We have identified and characterized several new rat GR mRNAs. All encode a common protein, but differ in their 5'-leader sequences as a consequence of alternate splicing of, potentially, 11 different exon 1 sequences. Most are located in a 3-kb CpG island, upstream of exon 2, that exhibits substantial promoter activity in transfected cells. Ribonuclease (RNase) protection analysis demonstrated significant levels of six alternate exons 1 in vivo in rat, with differences between liver, hippocampus, and thymus reflecting tissue-specific differences in promoter activity. Two of the alternate exons 1 (exons 1(6) and 1(10)) were expressed in all tissues examined, together present in 77-87% of total GR mRNA. The remaining GR transcripts contained tissue-specific alternate first exons. Importantly, tissue-specific first exon usage was altered by perinatal environmental manipulations. Postnatal handling, which permanently increases GR in the hippocampus, causing attenuation of stress responses, selectively elevated GR mRNA containing the hippocampus-specific exon 1(7). Prenatal glucocorticoid exposure, which increases hepatic GR expression and produces adult hyperglycemia, decreased the proportion of hepatic GR mRNA containing the predominant exon 1(10), suggesting an increase in a minor exon 1 variant. Such tissue specificity of promoter usage allows differential GR regulation and programming.

  4. Tissue-specific mRNA expression profiling in grape berry tissues

    PubMed Central

    Grimplet, Jerome; Deluc, Laurent G; Tillett, Richard L; Wheatley, Matthew D; Schlauch, Karen A; Cramer, Grant R; Cushman, John C

    2007-01-01

    Background Berries of grape (Vitis vinifera) contain three major tissue types (skin, pulp and seed) all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin) and mesocarp (pulp), not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater) differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell wall function and

  5. Promoter-specific expression and imprint status of marsupial IGF2.

    PubMed

    Stringer, Jessica M; Suzuki, Shunsuke; Pask, Andrew J; Shaw, Geoff; Renfree, Marilyn B

    2012-01-01

    In mice and humans, IGF2 has multiple promoters to maintain its complex tissue- and developmental stage-specific imprinting and expression. IGF2 is also imprinted in marsupials, but little is known about its promoter region. In this study, three IGF2 transcripts were isolated from placental and liver samples of the tammar wallaby, Macropus eugenii. Each transcript contained a unique 5' untranslated region, orthologous to the non-coding exons derived from promoters P1-P3 in the human and mouse IGF2 locus. The expression of tammar IGF2 was predominantly from the P2 promoter, similar to humans. Expression of IGF2 was higher in pouch young than in the adult and imprinting was highly tissue and developmental-stage specific. Interestingly, while IGF2 was expressed throughout the placenta, imprinting seemed to be restricted to the vascular, trilaminar region. In addition, IGF2 was monoallelically expressed in the adult mammary gland while in the liver it switched from monoalleleic expression in the pouch young to biallelic in the adult. These data suggest a complex mode of IGF2 regulation in marsupials as seen in eutherian mammals. The conservation of the IGF2 promoters suggests they originated before the divergence of marsupials and eutherians, and have been selectively maintained for at least 160 million years.

  6. Promoter-Specific Expression and Imprint Status of Marsupial IGF2

    PubMed Central

    Stringer, Jessica M.; Suzuki, Shunsuke; Pask, Andrew J.; Shaw, Geoff; Renfree, Marilyn B.

    2012-01-01

    In mice and humans, IGF2 has multiple promoters to maintain its complex tissue- and developmental stage-specific imprinting and expression. IGF2 is also imprinted in marsupials, but little is known about its promoter region. In this study, three IGF2 transcripts were isolated from placental and liver samples of the tammar wallaby, Macropus eugenii. Each transcript contained a unique 5' untranslated region, orthologous to the non-coding exons derived from promoters P1–P3 in the human and mouse IGF2 locus. The expression of tammar IGF2 was predominantly from the P2 promoter, similar to humans. Expression of IGF2 was higher in pouch young than in the adult and imprinting was highly tissue and developmental-stage specific. Interestingly, while IGF2 was expressed throughout the placenta, imprinting seemed to be restricted to the vascular, trilaminar region. In addition, IGF2 was monoallelically expressed in the adult mammary gland while in the liver it switched from monoalleleic expression in the pouch young to biallelic in the adult. These data suggest a complex mode of IGF2 regulation in marsupials as seen in eutherian mammals. The conservation of the IGF2 promoters suggests they originated before the divergence of marsupials and eutherians, and have been selectively maintained for at least 160 million years. PMID:22848567

  7. Tissue-specific patterns of allelically-skewed DNA methylation

    PubMed Central

    Marzi, Sarah J.; Meaburn, Emma L.; Dempster, Emma L.; Lunnon, Katie; Paya-Cano, Jose L.; Smith, Rebecca G.; Volta, Manuela; Troakes, Claire; Schalkwyk, Leonard C.; Mill, Jonathan

    2016-01-01

    ABSTRACT While DNA methylation is usually thought to be symmetrical across both alleles, there are some notable exceptions. Genomic imprinting and X chromosome inactivation are two well-studied sources of allele-specific methylation (ASM), but recent research has indicated a more complex pattern in which genotypic variation can be associated with allelically-skewed DNA methylation in cis. Given the known heterogeneity of DNA methylation across tissues and cell types we explored inter- and intra-individual variation in ASM across several regions of the human brain and whole blood from multiple individuals. Consistent with previous studies, we find widespread ASM with > 4% of the ∼220,000 loci interrogated showing evidence of allelically-skewed DNA methylation. We identify ASM flanking known imprinted regions, and show that ASM sites are enriched in DNase I hypersensitivity sites and often located in an extended genomic context of intermediate DNA methylation. We also detect examples of genotype-driven ASM, some of which are tissue-specific. These findings contribute to our understanding of the nature of differential DNA methylation across tissues and have important implications for genetic studies of complex disease. As a resource to the community, ASM patterns across each of the tissues studied are available in a searchable online database: http://epigenetics.essex.ac.uk/ASMBrainBlood. PMID:26786711

  8. Tissue-specific patterns of allelically-skewed DNA methylation.

    PubMed

    Marzi, Sarah J; Meaburn, Emma L; Dempster, Emma L; Lunnon, Katie; Paya-Cano, Jose L; Smith, Rebecca G; Volta, Manuela; Troakes, Claire; Schalkwyk, Leonard C; Mill, Jonathan

    2016-01-01

    While DNA methylation is usually thought to be symmetrical across both alleles, there are some notable exceptions. Genomic imprinting and X chromosome inactivation are two well-studied sources of allele-specific methylation (ASM), but recent research has indicated a more complex pattern in which genotypic variation can be associated with allelically-skewed DNA methylation in cis. Given the known heterogeneity of DNA methylation across tissues and cell types we explored inter- and intra-individual variation in ASM across several regions of the human brain and whole blood from multiple individuals. Consistent with previous studies, we find widespread ASM with > 4% of the ∼220,000 loci interrogated showing evidence of allelically-skewed DNA methylation. We identify ASM flanking known imprinted regions, and show that ASM sites are enriched in DNase I hypersensitivity sites and often located in an extended genomic context of intermediate DNA methylation. We also detect examples of genotype-driven ASM, some of which are tissue-specific. These findings contribute to our understanding of the nature of differential DNA methylation across tissues and have important implications for genetic studies of complex disease. As a resource to the community, ASM patterns across each of the tissues studied are available in a searchable online database: http://epigenetics.essex.ac.uk/ASMBrainBlood.

  9. Aging promotes neoplastic disease through effects on the tissue microenvironment

    PubMed Central

    Doratiotto, Silvia; Sini, Marcella; Fanti, Maura; Cadoni, Erika; Serra, Monica; Laconi, Ezio

    2016-01-01

    A better understanding of the complex relationship between aging and cancer will provide important tools for the prevention and treatment of neoplasia. In these studies, the hypothesis was tested that aging may fuel carcinogenesis via alterations imposed in the tissue microenvironment. Preneoplastic hepatocytes isolated from liver nodules were orthotopically injected into either young or old syngeneic rats and their fate was followed over time using the dipeptidyl-peptidase type IV (DPPIV) system to track donor-derived-cells. At 3 months post-Tx, the mean size of donor-derived clusters was 11±3 cells in young vs. 42±8 in old recipients. At 8 months post-Tx, no visible lesion were detected in any of 21 young recipients, while 17/18 animals transplanted at old age displayed hepatic nodules, including 7 large tumors. All tumors expressed the DPPIV marker enzyme, indicating that they originated from transplanted cells. Expression of senescence-associated β-galactosidase was common in liver of 18-month old animals, while it was a rare finding in young controls. Finally, both mRNA and IL6 protein were found to be increased in the liver of aged rats compared to young controls. These results are interpreted to indicate that the microenvironment of the aged liver promotes the growth of pre-neoplastic hepatocytes. PMID:27929382

  10. Positive and negative elements regulate a melanocyte-specific promoter.

    PubMed Central

    Lowings, P; Yavuzer, U; Goding, C R

    1992-01-01

    Melanocytes are specialized cells residing in the hair follicles, the eye, and the basal layer of the human epidermis whose primary function is the production of the pigment melanin, giving rise to skin, hair, and eye color. Melanogenesis, a process unique to melanocytes that involves the processing of tyrosine by a number of melanocyte-specific enzymes, including tyrosinase and tyrosinase-related protein 1 (TRP-1), occurs only after differentiation from the melanocyte precursor, the melanoblast. In humans, melanogenesis is inducible by UV irradiation, with melanin being transferred from the melanocyte in the epidermis to the surrounding keratinocytes as protection from UV-induced damage. Excessive exposure to UV, however, is the primary cause of malignant melanoma, an increasingly common and highly aggressive disease. As an initial approach to understanding the regulation of melanocyte differentiation and melanocyte-specific transcription, we have isolated the gene encoding TRP-1 and examined the cis- and trans-acting factors required for cell-type-specific expression. We find that the TRP-1 promoter comprises both positive and negative regulatory elements which confer efficient expression in a TRP-1-expressing, pigmented melanoma cell line but not in NIH 3T3 or JEG3 cells and that a minimal promoter extending between -44 and +107 is sufficient for cell-type-specific expression. Assays for DNA-protein interactions coupled with extensive mutagenesis identified three factors, whose binding correlated with the function of two positive and one negative regulatory element. One of these factors, termed M-box-binding factor 1, binds to an 11-bp motif, the M box, which acts as a positive regulatory element both in TRP-1-expressing and -nonexpressing cell lines, despite being entirely conserved between the melanocyte-specific tyrosinase and TRP-1 promoters. The possible mechanisms underlying melanocyte-specific gene expression are discussed. Images PMID:1321344

  11. Tissue-Specific Protein Expression in Plant Mitochondria.

    PubMed Central

    Conley, C. A.; Hanson, M. R.

    1994-01-01

    Although the physiological role of plant mitochondria is thought to vary in different tissues at progressive stages of development, there has been little documentation that the complement of mitochondrial proteins is altered in different plant organs. Because the phenomenon of cytoplasmic male sterility suggests an unusual function for mitochondria in floral buds, we examined the tissue-specific expression of mitochondrial proteins in petunia buds at several stages of development, using both fertile and cytoplasmic male sterile plants. On tissue prints of cryostat-sectioned buds, antibodies recognizing subunit A of the mitochondrial ATPase (ATPA) localized very differently from antibodies recognizing subunit II of the cytochrome oxidase (COXII), which indicated that mitochondria in the same tissue could differentially express mitochondrially encoded proteins. The petunia cytoplasmic male sterility-associated fused (pcf) gene encodes a protein that colocalized with ATPA and the nuclear-encoded mitochondrial alternative oxidase (AOA) in sporogenous tissues, where little COXII protein was found. These overlapping and differential localization patterns may provide clues to the molecular mechanism of cytoplasmic male sterility. PMID:12244222

  12. Tissue-specific regulation of flowering by photoreceptors.

    PubMed

    Endo, Motomu; Araki, Takashi; Nagatani, Akira

    2016-02-01

    Plants use various kinds of environmental signals to adjust the timing of the transition from the vegetative to reproductive phase (flowering). Since flowering at the appropriate time is crucial for plant reproductive strategy, several kinds of photoreceptors are deployed to sense environmental light conditions. In this review, we will update our current understanding of light signaling pathways in flowering regulation, especially, in which tissue do photoreceptors regulate flowering in response to light quality and photoperiod. Since light signaling is also integrated into other flowering pathways, we also introduce recent progress on how photoreceptors are involved in tissue-specific thermosensation and the gibberellin pathway. Finally, we discuss the importance of cell-type-specific analyses for future plant studies.

  13. Tissue-specific regulatory circuits reveal variable modular perturbations across complex diseases

    PubMed Central

    Marbach, Daniel; Lamparter, David; Quon, Gerald; Kellis, Manolis; Kutalik, Zoltán; Bergmann, Sven

    2016-01-01

    Mapping the molecular circuits that are perturbed by genetic variants underlying complex traits and diseases remains a great challenge. We present a comprehensive resource of 394 cell type and tissue-specific gene regulatory networks for human, each specifying the genome-wide connectivity between transcription factors, enhancers, promoters and genes. Integration with 37 genome-wide association studies (GWASs) shows that disease-associated genetic variants — including variants that do not reach genome-wide significance — often perturb regulatory modules that are highly specific to disease-relevant cell types or tissues. Our resource opens the door to systematic analysis of regulatory programs across hundreds of human cell types and tissues. PMID:26950747

  14. Host Tissue and Glycan Binding Specificities of Avian Viral Attachment Proteins Using Novel Avian Tissue Microarrays

    PubMed Central

    Ambepitiya Wickramasinghe, Iresha N.; de Vries, Robert P.; Eggert, Amber M.; Wandee, Nantaporn; de Haan, Cornelis A. M.; Gröne, Andrea; Verheije, Monique H.

    2015-01-01

    The initial interaction between viral attachment proteins and the host cell is a critical determinant for the susceptibility of a host for a particular virus. To increase our understanding of avian pathogens and the susceptibility of poultry species, we developed novel avian tissue microarrays (TMAs). Tissue binding profiles of avian viral attachment proteins were studied by performing histochemistry on multi-species TMA, comprising of selected tissues from ten avian species, and single-species TMAs, grouping organ systems of each species together. The attachment pattern of the hemagglutinin protein was in line with the reported tropism of influenza virus H5N1, confirming the validity of TMAs in profiling the initial virus-host interaction. The previously believed chicken-specific coronavirus (CoV) M41 spike (S1) protein displayed a broad attachment pattern to respiratory tissues of various avian species, albeit with lower affinity than hemagglutinin, suggesting that other avian species might be susceptible for chicken CoV. When comparing tissue-specific binding patterns of various avian coronaviral S1 proteins on the single-species TMAs, chicken and partridge CoV S1 had predominant affinity for the trachea, while pigeon CoV S1 showed marked preference for lung of their respective hosts. Binding of all coronaviral S1 proteins was dependent on sialic acids; however, while chicken CoV S1 preferred sialic acids type I lactosamine (Gal(1-3)GlcNAc) over type II (Gal(1-4)GlcNAc), the fine glycan specificities of pigeon and partridge CoVs were different, as chicken CoV S1-specific sialylglycopolymers could not block their binding to tissues. Taken together, TMAs provide a novel platform in the field of infectious diseases to allow identification of binding specificities of viral attachment proteins and are helpful to gain insight into the susceptibility of host and organ for avian pathogens. PMID:26035584

  15. A novel, tissue-specific, Drosophila homeobox gene.

    PubMed Central

    Barad, M; Jack, T; Chadwick, R; McGinnis, W

    1988-01-01

    The homeobox gene family of Drosophila appears to control a variety of position-specific patterning decisions during embryonic and imaginal development. Most of these patterning decisions determine groups of cells on the anterior-posterior axis of the Drosophila germ band. We have isolated a novel homeobox gene from Drosophila, designated H2.0. H2.0 has the most diverged homeobox so far characterized in metazoa, and, in contrast to all previously isolated homeobox genes, H2.0 exhibits a tissue-specific pattern of expression. The cells that accumulate transcripts for this novel gene correspond to the visceral musculature and its anlagen. Images PMID:2901348

  16. Controlled release strategies for modulating immune responses to promote tissue regeneration.

    PubMed

    Dumont, Courtney M; Park, Jonghyuck; Shea, Lonnie D

    2015-12-10

    Advances in the field of tissue engineering have enhanced the potential of regenerative medicine, yet the efficacy of these strategies remains incomplete, and is limited by the innate and adaptive immune responses. The immune response associated with injury or disease combined with that mounted to biomaterials, transplanted cells, proteins, and gene therapies vectors can contribute to the inability to fully restore tissue function. Blocking immune responses such as with anti-inflammatory or immunosuppressive agents are either ineffective, as the immune response contributes significantly to regeneration, or have significant side effects. This review describes targeted strategies to modulate the immune response in order to limit tissue damage following injury, promote an anti-inflammatory environment that leads to regeneration, and induce antigen (Ag)-specific tolerance that can target degenerative diseases that destroy tissues and promote engraftment of transplanted cells. Focusing on targeted immuno-modulation, we describe local delivery techniques to sites of inflammation as well as systemic approaches that preferentially target subsets of immune populations.

  17. Post-transcription initiation function of the ubiquitous SAGA complex in tissue-specific gene activation

    PubMed Central

    Weake, Vikki M.; Dyer, Jamie O.; Seidel, Christopher; Box, Andrew; Swanson, Selene K.; Peak, Allison; Florens, Laurence; Washburn, Michael P.; Abmayr, Susan M.; Workman, Jerry L.

    2011-01-01

    The Spt–Ada–Gcn5–acetyltransferase (SAGA) complex was discovered from Saccharomyces cerevisiae and has been well characterized as an important transcriptional coactivator that interacts both with sequence-specific transcription factors and the TATA-binding protein TBP. SAGA contains a histone acetyltransferase and a ubiquitin protease. In metazoans, SAGA is essential for development, yet little is known about the function of SAGA in differentiating tissue. We analyzed the composition, interacting proteins, and genomic distribution of SAGA in muscle and neuronal tissue of late stage Drosophila melanogaster embryos. The subunit composition of SAGA was the same in each tissue; however, SAGA was associated with considerably more transcription factors in muscle compared with neurons. Consistent with this finding, SAGA was found to occupy more genes specifically in muscle than in neurons. Strikingly, SAGA occupancy was not limited to enhancers and promoters but primarily colocalized with RNA polymerase II within transcribed sequences. SAGA binding peaks at the site of RNA polymerase pausing at the 5′ end of transcribed sequences. In addition, many tissue-specific SAGA-bound genes required its ubiquitin protease activity for full expression. These data indicate that in metazoans SAGA plays a prominent post-transcription initiation role in tissue-specific gene expression. PMID:21764853

  18. Computational Identification of Tissue-Specific Splicing Regulatory Elements in Human Genes from RNA-Seq Data

    PubMed Central

    Badr, Eman; ElHefnawi, Mahmoud; Heath, Lenwood S.

    2016-01-01

    Alternative splicing is a vital process for regulating gene expression and promoting proteomic diversity. It plays a key role in tissue-specific expressed genes. This specificity is mainly regulated by splicing factors that bind to specific sequences called splicing regulatory elements (SREs). Here, we report a genome-wide analysis to study alternative splicing on multiple tissues, including brain, heart, liver, and muscle. We propose a pipeline to identify differential exons across tissues and hence tissue-specific SREs. In our pipeline, we utilize the DEXSeq package along with our previously reported algorithms. Utilizing the publicly available RNA-Seq data set from the Human BodyMap project, we identified 28,100 differentially used exons across the four tissues. We identified tissue-specific exonic splicing enhancers that overlap with various previously published experimental and computational databases. A complicated exonic enhancer regulatory network was revealed, where multiple exonic enhancers were found across multiple tissues while some were found only in specific tissues. Putative combinatorial exonic enhancers and silencers were discovered as well, which may be responsible for exon inclusion or exclusion across tissues. Some of the exonic enhancers are found to be co-occurring with multiple exonic silencers and vice versa, which demonstrates a complicated relationship between tissue-specific exonic enhancers and silencers. PMID:27861625

  19. Computational Identification of Tissue-Specific Splicing Regulatory Elements in Human Genes from RNA-Seq Data.

    PubMed

    Badr, Eman; ElHefnawi, Mahmoud; Heath, Lenwood S

    2016-01-01

    Alternative splicing is a vital process for regulating gene expression and promoting proteomic diversity. It plays a key role in tissue-specific expressed genes. This specificity is mainly regulated by splicing factors that bind to specific sequences called splicing regulatory elements (SREs). Here, we report a genome-wide analysis to study alternative splicing on multiple tissues, including brain, heart, liver, and muscle. We propose a pipeline to identify differential exons across tissues and hence tissue-specific SREs. In our pipeline, we utilize the DEXSeq package along with our previously reported algorithms. Utilizing the publicly available RNA-Seq data set from the Human BodyMap project, we identified 28,100 differentially used exons across the four tissues. We identified tissue-specific exonic splicing enhancers that overlap with various previously published experimental and computational databases. A complicated exonic enhancer regulatory network was revealed, where multiple exonic enhancers were found across multiple tissues while some were found only in specific tissues. Putative combinatorial exonic enhancers and silencers were discovered as well, which may be responsible for exon inclusion or exclusion across tissues. Some of the exonic enhancers are found to be co-occurring with multiple exonic silencers and vice versa, which demonstrates a complicated relationship between tissue-specific exonic enhancers and silencers.

  20. Specific Neuropilins Expression in Alveolar Macrophages among Tissue-Specific Macrophages

    PubMed Central

    Aung, Naing Ye; Ohe, Rintaro; Meng, Hongxue; Kabasawa, Takanobu; Yang, Suran; Kato, Tomoya; Yamakawa, Mitsunori

    2016-01-01

    In the immune system, neuropilins (NRPs), including NRP-1 and NRP-2, are expressed in thymocytes, dendritic cells, regulatory T cells and macrophages. Their functions on immune cells around the neoplastic cells vary into pro-angiogenesis, tumor progression and anti-angiogenesis according to their ligands. Even though NRPs expression on malignant tumors and immune system has studied, a PubMed-based literature query did not yield any articles describing NRPs expression on tissue-specific macrophages. The aims of this study were (i) to detect NRPs expression on tissue-specific macrophages in the brain, liver, spleen, lymph node and lung; (ii) to observe NRPs expression in classes of macrophages, including alveolar macrophages (AMs), bronchial macrophages (BMs), interstitial macrophages (IMs), intravascular macrophages (IVMs) and macrophage subsets (M1, M2 and Mox) in lung; and (iii) to detect the co-expression of NRPs and dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) in AMs. Both NRPs were specifically detected in AMs among tissue-specific macrophages by immunohistochemistry (IHC). NRPs mRNA expression levels were characterized in normal lung by reverse transcriptase polymerase chain reaction (RT-PCR) and in situ-polymerase chain reaction (in situ-PCR). The expression of both NRPs was detected in AMs, BMs and IVMs by IHC. The frequency of NRPs+ AMs in lung tissue adjacent to the cancer margin was significantly higher than the frequencies in inflamed and normal lung tissue. Double and triple IHC demonstrated that NRPs are expressed on all macrophage subsets in lung. Double IHC showed co-expression of DC-SIGN and NRPs in AMs. This study demonstrated for the first time the specific expression of both NRPs in AMs among tissue-specific macrophages and their expression on M1, M2 and Mox macrophages. Furthermore, the possible origin of AMs from blood monocytes could be suggested from a co-expression of NRPs and DC-SIGN. PMID:26900851

  1. The RNA Export Factor, Nxt1, Is Required for Tissue Specific Transcriptional Regulation

    PubMed Central

    Jiang, Jianqiao; White-Cooper, Helen

    2013-01-01

    The highly conserved, Nxf/Nxt (TAP/p15) RNA nuclear export pathway is important for export of most mRNAs from the nucleus, by interacting with mRNAs and promoting their passage through nuclear pores. Nxt1 is essential for viability; using a partial loss of function allele, we reveal a role for this gene in tissue specific transcription. We show that many Drosophila melanogaster testis-specific mRNAs require Nxt1 for their accumulation. The transcripts that require Nxt1 also depend on a testis-specific transcription complex, tMAC. We show that loss of Nxt1 leads to reduced transcription of tMAC targets. A reporter transcript from a tMAC-dependent promoter is under-expressed in Nxt1 mutants, however the same transcript accumulates in mutants if driven by a tMAC-independent promoter. Thus, in Drosophila primary spermatocytes, the transcription factor used to activate expression of a transcript, rather than the RNA sequence itself or the core transcription machinery, determines whether this expression requires Nxt1. We additionally find that transcripts from intron-less genes are more sensitive to loss of Nxt1 function than those from intron-containing genes and propose a mechanism in which transcript processing feeds back to increase activity of a tissue specific transcription complex. PMID:23754955

  2. Light-regulated and cell-specific methylation of the maize PEPC promoter

    PubMed Central

    Tolley, Ben J.; Woodfield, Helen; Wanchana, Samart; Bruskiewich, Richard; Hibberd, Julian M.

    2012-01-01

    The molecular mechanisms governing PEPC expression in maize remain to be fully defined. Differential methylation of a region in the PEPC promoter has been shown to correlate with transcript accumulation, however, to date, investigations into the role of DNA methylation in maize PEPC expression have relied on the use of methylation-sensitive restriction enzymes. Bisulphite sequencing was used here to provide a single-base resolution methylation map of the maize PEPC promoter. It is shown that four cytosine residues in the PEPC promoter are heavily methylated in maize root tissue. In leaves, de-methylation of these cytosines is dependent on illumination and is coincident with elevated PEPC expression. Furthermore, light-regulated de-methylation of these cytosines occurs only in mesophyll cells. No methylation was discovered in the 0.6 kb promoter required for mesophyll-specific expression indicating that cytosine methylation is not required to direct the cell-specificity of PEPC expression. This raises interesting questions regarding the function of the cell-specific cytosine de-methylation observed in the upstream region of the PEPC promoter. PMID:22143916

  3. Site-specific methylation of the rat prolactin and growth hormone promoters correlates with gene expression.

    PubMed Central

    Ngô, V; Gourdji, D; Laverrière, J N

    1996-01-01

    The methylation patterns of the rat prolactin (rPRL) (positions -440 to -20) and growth hormone (rGH) (positions -360 to -110) promoters were analyzed by bisulfite genomic sequencing. Two normal tissues, the anterior pituitary and the liver, and three rat pituitary GH3 cell lines that differ considerably in their abilities to express both genes were tested. High levels of rPRL gene expression were correlated with hypomethylation of the CpG dinucleotides located at positions -277 and -97, near or within positive cis-acting regulatory elements. For the nine CpG sites analyzed in the rGH promoter, an overall hypomethylation-expression coupling was also observed for the anterior pituitary, the liver, and two of the cell lines. The effect of DNA methylation was tested by measuring the transient expression of the chloramphenicol acetyltransferase reporter gene driven by a regionally methylated rPRL promoter. CpG methylation resulted in a decrease in the activity of the rPRL promoter which was proportional to the number of modified CpG sites. The extent of the inhibition was also found to be dependent on the position of methylated sites. Taken together, these data suggest that site-specific methylation may modulate the action of transcription factors that dictate the tissue-specific expression of the rPRL and rGH genes in vivo. PMID:8668139

  4. Tissue-specifically regulated site-specific excision of selectable marker genes in bivalent insecticidal, genetically-modified rice.

    PubMed

    Hu, Zhan; Ding, Xuezhi; Hu, Shengbiao; Sun, Yunjun; Xia, Liqiu

    2013-12-01

    Marker-free, genetically-modified rice was created by the tissue-specifically regulated Cre/loxP system, in which the Cre recombinase gene and hygromycin phosphotransferase gene (hpt) were flanked by two directly oriented loxP sites. Cre expression was activated by the tissue-specific promoter OsMADS45 in flower or napin in seed, resulting in simultaneous excision of the recombinase and marker genes. Segregation of T1 progeny was performed to select recombined plants. The excision was confirmed by PCR, Southern blot and sequence analyses indicating that efficiency varied from 10 to 53 % for OsMADS45 and from 12 to 36 % for napin. The expression of cry1Ac and vip3A was detected by RT-PCR analysis in marker-free transgenic rice. These results suggested that our tissue-specifically regulated Cre/loxP system could auto-excise marker genes from transgenic rice and alleviate public concerns about the security of GM crops.

  5. Regulating expressin of cell and tissue-specific genes by modifying transcription

    SciTech Connect

    Beachy, R N; Dai, Shunhong

    2009-12-15

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Our research supported by this program has led to the identification of rice bZIP transcription factors RF2a, RF2b and RLP1 that play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV) through their interactions with the Box II essential cis element located in the promoter. RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants and to improve biofuel feedstock.

  6. Tissue specific response to DNA damage: C. elegans as role model.

    PubMed

    Lans, Hannes; Vermeulen, Wim

    2015-08-01

    The various symptoms associated with hereditary defects in the DNA damage response (DDR), which range from developmental and neurological abnormalities and immunodeficiency to tissue-specific cancers and accelerated aging, suggest that DNA damage affects tissues differently. Mechanistic DDR studies are, however, mostly performed in vitro, in unicellular model systems or cultured cells, precluding a clear and comprehensive view of the DNA damage response of multicellular organisms. Studies performed in intact, multicellular animals models suggest that DDR can vary according to the type, proliferation and differentiation status of a cell. The nematode Caenorhabditis elegans has become an important DDR model and appears to be especially well suited to understand in vivo tissue-specific responses to DNA damage as well as the impact of DNA damage on development, reproduction and health of an entire multicellular organism. C. elegans germ cells are highly sensitive to DNA damage induction and respond via classical, evolutionary conserved DDR pathways aimed at efficient and error-free maintenance of the entire genome. Somatic tissues, however, respond differently to DNA damage and prioritize DDR mechanisms that promote growth and function. In this mini-review, we describe tissue-specific differences in DDR mechanisms that have been uncovered utilizing C. elegans as role model. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Translatome analyses capture of opposing tissue-specific brassinosteroid signals orchestrating root meristem differentiation.

    PubMed

    Vragović, Kristina; Sela, Ayala; Friedlander-Shani, Lilach; Fridman, Yulia; Hacham, Yael; Holland, Neta; Bartom, Elizabeth; Mockler, Todd C; Savaldi-Goldstein, Sigal

    2015-01-20

    The mechanisms ensuring balanced growth remain a critical question in developmental biology. In plants, this balance relies on spatiotemporal integration of hormonal signaling pathways, but the understanding of the precise contribution of each hormone is just beginning to take form. Brassinosteroid (BR) hormone is shown here to have opposing effects on root meristem size, depending on its site of action. BR is demonstrated to both delay and promote onset of stem cell daughter differentiation, when acting in the outer tissue of the root meristem, the epidermis, and the innermost tissue, the stele, respectively. To understand the molecular basis of this phenomenon, a comprehensive spatiotemporal translatome mapping of Arabidopsis roots was performed. Analyses of wild type and mutants featuring different distributions of BR revealed autonomous, tissue-specific gene responses to BR, implying its contrasting tissue-dependent impact on growth. BR-induced genes were primarily detected in epidermal cells of the basal meristem zone and were enriched by auxin-related genes. In contrast, repressed BR genes prevailed in the stele of the apical meristem zone. Furthermore, auxin was found to mediate the growth-promoting impact of BR signaling originating in the epidermis, whereas BR signaling in the stele buffered this effect. We propose that context-specific BR activity and responses are oppositely interpreted at the organ level, ensuring coherent growth.

  8. Metabolic, anabolic, and mitogenic insulin responses: A tissue-specific perspective for insulin receptor activators.

    PubMed

    Bedinger, Daniel H; Adams, Sean H

    2015-11-05

    Insulin acts as the major regulator of the fasting-to-fed metabolic transition by altering substrate metabolism, promoting energy storage, and helping activate protein synthesis. In addition to its glucoregulatory and other metabolic properties, insulin can also act as a growth factor. The metabolic and mitogenic responses to insulin are regulated by divergent post-receptor signaling mechanisms downstream from the activated insulin receptor (IR). However, the anabolic and growth-promoting properties of insulin require tissue-specific inter-relationships between the two pathways, and the nature and scope of insulin-regulated processes vary greatly across tissues. Understanding the nuances of this interplay between metabolic and growth-regulating properties of insulin would have important implications for development of novel insulin and IR modulator therapies that stimulate insulin receptor activation in both pathway- and tissue-specific manners. This review will provide a unique perspective focusing on the roles of "metabolic" and "mitogenic" actions of insulin signaling in various tissues, and how these networks should be considered when evaluating selective pharmacologic approaches to prevent or treat metabolic disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Cellular Mechanisms of Tissue Fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis

    PubMed Central

    2013-01-01

    Fibrosis is a pathological scarring process that leads to destruction of organ architecture and impairment of organ function. Chronic loss of organ function in most organs, including bone marrow, heart, intestine, kidney, liver, lung, and skin, is associated with fibrosis, contributing to an estimated one third of natural deaths worldwide. Effective therapies to prevent or to even reverse existing fibrotic lesions are not yet available in any organ. There is hope that an understanding of common fibrosis pathways will lead to development of antifibrotic therapies that are effective in all of these tissues in the future. Here we review common and organ-specific pathways of tissue fibrosis. PMID:23255577

  10. Two tobacco AP1-like gene promoters with highly specific, tightly regulated and uniquely expressed activity during floral transition, initiation and development

    USDA-ARS?s Scientific Manuscript database

    Biotech engineering of agronomic traits requires an array of highly specific and tightly regulated promoters in flower or other tissues. In this study, we isolated and characterized two tobacco AP1-like promoters (termed NtAP1La and NtAP1Lb1) in transgenic plants using GUS reporter and tissue-speci...

  11. Tissue-specific insulin signaling mediates female sexual attractiveness.

    PubMed

    Fedina, Tatyana Y; Arbuthnott, Devin; Rundle, Howard D; Promislow, Daniel E L; Pletcher, Scott D

    2017-08-01

    Individuals choose their mates so as to maximize reproductive success, and one important component of this choice is assessment of traits reflecting mate quality. Little is known about why specific traits are used for mate quality assessment nor about how they reflect it. We have previously shown that global manipulation of insulin signaling, a nutrient-sensing pathway governing investment in survival versus reproduction, affects female sexual attractiveness in the fruit fly, Drosophila melanogaster. Here we demonstrate that these effects on attractiveness derive from insulin signaling in the fat body and ovarian follicle cells, whose signals are integrated by pheromone-producing cells called oenocytes. Functional ovaries were required for global insulin signaling effects on attractiveness, and manipulations of insulin signaling specifically in late follicle cells recapitulated effects of global manipulations. Interestingly, modulation of insulin signaling in the fat body produced opposite effects on attractiveness, suggesting a competitive relationship with the ovary. Furthermore, all investigated tissue-specific insulin signaling manipulations that changed attractiveness also changed fecundity in the corresponding direction, pointing to insulin pathway activity as a reliable link between fecundity and attractiveness cues. The cues themselves, cuticular hydrocarbons, responded distinctly to fat body and follicle cell manipulations, indicating independent readouts of the pathway activity from these two tissues. Thus, here we describe a system in which female attractiveness results from an apparent connection between attractiveness cues and an organismal state of high fecundity, both of which are created by lowered insulin signaling in the fat body and increased insulin signaling in late follicle cells.

  12. Cell type-specific properties and environment shape tissue specificity of cancer genes

    PubMed Central

    Schaefer, Martin H.; Serrano, Luis

    2016-01-01

    One of the biggest mysteries in cancer research remains why mutations in certain genes cause cancer only at specific sites in the human body. The poor correlation between the expression level of a cancer gene and the tissues in which it causes malignant transformations raises the question of which factors determine the tissue-specific effects of a mutation. Here, we explore why some cancer genes are associated only with few different cancer types (i.e., are specific), while others are found mutated in a large number of different types of cancer (i.e., are general). We do so by contrasting cellular functions of specific-cancer genes with those of general ones to identify properties that determine where in the body a gene mutation is causing malignant transformations. We identified different groups of cancer genes that did not behave as expected (i.e., DNA repair genes being tissue specific, immune response genes showing a bimodal specificity function or strong association of generally expressed genes to particular cancers). Analysis of these three groups demonstrates the importance of environmental impact for understanding why certain cancer genes are only involved in the development of some cancer types but are rarely found mutated in other types of cancer. PMID:26856619

  13. Imprinting on chromosome 20: tissue-specific imprinting and imprinting mutations in the GNAS locus.

    PubMed

    Kelsey, Gavin

    2010-08-15

    The GNAS locus on chromosome 20q13.11 is the archetypal complex imprinted locus. It comprises a bewildering array of alternative transcripts determined by differentially imprinted promoters which encode distinct proteins. It also provides the classic example of tissue-specific imprinted gene expression, in which the canonical GNAS transcript coding for Gsalpha is expressed predominantly from the maternal allele in a set of seemingly unrelated tissues. Functionally, this rather obscure imprinting is nevertheless of considerable clinical significance, as it dictates the nature of the disease caused by inactivating mutations in Gsalpha, with end organ hormone resistance specifically on maternal transmission (pseudohypoparathyroidism type 1a, PHP1a). In addition, there is a bona fide imprinting disorder, PHP1b, which is caused specifically by DNA methylation defects in the differentially methylated regions (DMRs) that determine tissue-specific monoallelic expression of GNAS. Although the genetic defect in PHP1a and the disrupted imprinting in PHP1b both essentially result in profound reduction of Gsalpha activity in tissues with monoallelic GNAS expression, and despite a growing awareness of the overlap in these two conditions, there are important pathophysiological differences between the two whose basis is not fully understood. PHP1b is one of the only imprinted gene syndromes in which cis-acting mutations have been discovered that disrupt methylation of germline-derived imprint marks; such imprinting mutations in GNAS are helping to provide important new insights into the mechanisms of imprinting establishment generally.

  14. Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity.

    PubMed

    Keller, Maria; Hopp, Lydia; Liu, Xuanshi; Wohland, Tobias; Rohde, Kerstin; Cancello, Raffaella; Klös, Matthias; Bacos, Karl; Kern, Matthias; Eichelmann, Fabian; Dietrich, Arne; Schön, Michael R; Gärtner, Daniel; Lohmann, Tobias; Dreßler, Miriam; Stumvoll, Michael; Kovacs, Peter; DiBlasio, Anna-Maria; Ling, Charlotte; Binder, Hans; Blüher, Matthias; Böttcher, Yvonne

    2017-01-01

    DNA methylation plays an important role in obesity and related metabolic complications. We examined genome-wide DNA promoter methylation along with mRNA profiles in paired samples of human subcutaneous adipose tissue (SAT) and omental visceral adipose tissue (OVAT) from non-obese vs. obese individuals. We identified negatively correlated methylation and expression of several obesity-associated genes in our discovery dataset and in silico replicated ETV6 in two independent cohorts. Further, we identified six adipose tissue depot-specific genes (HAND2, HOXC6, PPARG, SORBS2, CD36, and CLDN1). The effects were further supported in additional independent cohorts. Our top hits might play a role in adipogenesis and differentiation, obesity, lipid metabolism, and adipose tissue expandability. Finally, we show that in vitro methylation of SORBS2 directly represses gene expression. Taken together, our data show distinct tissue specific epigenetic alterations which associate with obesity.

  15. Tissue Specificity of Decellularized Rhesus Monkey Kidney and Lung Scaffolds

    PubMed Central

    Nakayama, Karina H.; Lee, C. Chang I.; Batchelder, Cynthia A.; Tarantal, Alice F.

    2013-01-01

    Initial steps in establishing an optimal strategy for functional bioengineered tissues is generation of three-dimensional constructs containing cells with the appropriate organization and phenotype. To effectively utilize rhesus monkey decellularized kidney scaffolds, these studies evaluated two key parameters: (1) residual scaffold components after decellularization including proteomics analysis, and (2) the use of undifferentiated human embryonic stem cells (hESCs) for recellularization in order to explore cellular differentiation in a tissue-specific manner. Sections of kidney and lung were selected for a comparative evaluation because of their similar pattern of organogenesis. Proteomics analysis revealed the presence of growth factors and antimicrobial proteins as well as stress proteins and complement components. Immunohistochemistry of recellularized kidney scaffolds showed the generation of Cytokeratin+ epithelial tubule phenotypes throughout the scaffold that demonstrated a statistically significant increase in expression of kidney-associated genes compared to baseline hESC gene expression. Recellularization of lung scaffolds showed that cells lined the alveolar spaces and demonstrated statistically significant upregulation of key lung-associated genes. However, overall expression of kidney and lung-associated markers was not statistically different when the kidney and lung recellularized scaffolds were compared. These results suggest that decellularized scaffolds have an intrinsic spatial ability to influence hESC differentiation by physically shaping cells into tissue-appropriate structures and phenotypes, and that additional approaches may be needed to ensure consistent recellularization throughout the matrix. PMID:23717553

  16. Tissue-specific gene expression in medullary thyroid carcinoma cells employing calcitonin regulatory elements and AAV vectors.

    PubMed

    Jiang, S; Altmann, A; Grimm, D; Kleinschmidt, J A; Schilling, T; Germann, C; Haberkorn, U

    2001-07-01

    Calcitonin (CT), the major secretory product of the C cell, is also expressed in C-cell-derived neoplasia. To investigate the role of the CT gene regulatory sequence in tissue-specific gene expression, the genes coding for the herpes simplex virus thymidine kinase (HSVtk) and for the enhanced green fluorescent protein (EGFP) regulated by the CT promoter (rAAV/CT266tkneo), the CT promoter/enhancer element (rAAV/CTenhtkneo), or the cytomegalovirus (CMV) promoter (rAAV/CMVtkneo) were transduced by recombinant adenoassociated viral (AAV) vectors into the medullary thyroid carcinoma (MTC) cell lines TT and hMTC and into HeLa cells as controls. In TT cell lines and hMTC cell lines transiently infected by the rAAV/CT266tkneo viruses, a significant increase in (3)H ganciclovir uptake was observed. Upon ganciclovir treatment, TT cells infected by rAAV/CT266tkneo revealed a significant growth inhibition, which was less tissue-specific because HeLa cells were also affected by these particles (74.5%). In contrast, a minor but more tissue-specific growth inhibition (33.6%) was observed for TT cells after transient infection with the rAAV/CTenhtkneo particles. Employing EGFP controlled by CMV promoter and the individual CT regulatory sequences for transduction by rAAV particles, similar results were obtained indicating that both the CT promoter and enhancer element are required for tissue-specific gene expression in MTC.

  17. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice

    PubMed Central

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  18. Tissue-Specific Glycosylation at the Glycopeptide Level.

    PubMed

    Medzihradszky, Katalin F; Kaasik, Krista; Chalkley, Robert J

    2015-08-01

    This manuscript describes the enrichment and mass spectrometric analysis of intact glycopeptides from mouse liver, which yielded site-specific N- and O-glycosylation data for ∼ 130 proteins. Incorporation of different sialic acid variants in both N- and O-linked glycans was observed, and the importance of using both collisional activation and electron transfer dissociation for glycopeptide analysis was illustrated. The N-glycan structures of predicted lysosomal, endoplasmic reticulum (ER), secreted and transmembrane proteins were compared. The data suggest that protein N-glycosylation differs depending on cellular location. The glycosylation patterns of several mouse liver and mouse brain glycopeptides were compared. Tissue-specific differences in glycosylation were observed between sites within the same protein: Some sites displayed a similar spectrum of glycan structures in both tissues, whereas for others no overlap was observed. We present comparative brain/liver glycosylation data on 50 N-glycosylation sites from 34 proteins and 13 O-glycosylation sites from seven proteins.

  19. A hierarchy of ECM-mediated signalling tissue-specific gene expression regulates tissue-specific gene expression

    SciTech Connect

    Roskelley, Calvin D; Srebrow, Anabella; Bissell, Mina J

    1995-10-07

    A dynamic and reciprocal flow of information between cells and the extracellular matrix contributes significantly to the regulation of form and function in developing systems. Signals generated by the extracellular matrix do not act in isolation. Instead, they are processed within the context of global signalling hierarchies whose constituent inputs and outputs are constantly modulated by all the factors present in the cell's surrounding microenvironment. This is particularly evident in the mammary gland, where the construction and subsequent destruction of such a hierarchy regulates changes in tissue-specific gene expression, morphogenesis and apoptosis during each developmental cycle of pregnancy, lactation and involution.

  20. Tissue-Specific Expression of Estrogen Receptor 1 Is Regulated by DNA Methylation in a T-DMR.

    PubMed

    Maekawa, Ryo; Sato, Shun; Okada, Maki; Lee, Lifa; Tamura, Isao; Jozaki, Kosuke; Kajimura, Takuya; Asada, Hiromi; Yamagata, Yoshiaki; Tamura, Hiroshi; Yamamoto, Shigeru; Sugino, Norihiro

    2016-03-01

    The mechanism controlling tissue-specific expression of estrogen receptor 1 (ESR1) is unclear. In other genes, DNA methylation of a region called the tissue-dependent and differentially methylated region (T-DMR) has been associated with tissue-specific gene expression. This study investigated whether human ESR1 has a T-DMR and whether DNA methylation of the T-DMR regulates its expression. ESR1 expression was tissue-specific, being high in the endometrium and mammary gland and low/nil in the placenta and skin. Therefore, DNA methylation profiles of the promoter of ESR1 were analyzed in these tissues and in breast cancer tissues. In all of the normal tissues, the proximal promoter regions were unmethylated. On the other hand, the distal regions (T-DMR) were unmethylated in the endometrium and mammary gland, but were moderately methylated and hypermethylated in the placenta and skin, respectively. T-DMR-methylated reporter assay was performed to examine whether DNA methylation at the T-DMR suppresses ESR1 transcription. T-DMR, but not the promoter region, had transcriptional activities and DNA methylation of the T-DMR suppressed ESR1 transcription. Early growth response protein 1 was shown to be a possible transcription factor to bind the T-DMR and up-regulate ESR1 expression. ESR1 has several upstream exons, and each upstream exon, Exon-A/Exon-B/Exon-C, had its own T-DMR. In some breast cancer cases and breast cancer cell lines, ESR1 expression was not regulated by DNA methylation at T-DMR as it is in normal tissues. In conclusion, ESR1 has a T-DMR. DNA methylation status at the T-DMR is involved in tissue-specific ESR1 expression in normal tissues but not always in breast cancer.

  1. Caries management pathways preserve dental tissues and promote oral health.

    PubMed

    Ismail, Amid I; Tellez, Marisol; Pitts, Nigel B; Ekstrand, Kim R; Ricketts, David; Longbottom, Christopher; Eggertsson, Hafsteinn; Deery, Christopher; Fisher, Julian; Young, Douglas A; Featherstone, John D B; Evans, Wendell; Zeller, Gregory G; Zero, Domenick; Martignon, Stefania; Fontana, Margherita; Zandona, Andrea

    2013-02-01

    In May 2012, cariologists, dentists, representatives of dental organizations, manufacturers, and third party payers from several countries, met in Philadelphia, Pennsylvania, to define a common mission; goals and strategic approaches for caries management in the 21th century. The workshop started with an address by Mr. Stanley Bergman, CEO of Henry Schein Inc. which focused on the imperative for change in academia, clinical practice, and public health. For decades, new scientific evidence on caries and how it should be managed have been discussed among experts in the field. However, there has been some limited change, except in some Scandinavian countries, in the models of caries management and reimbursement which have been heavily skewed toward 'drilling and filling'. There is no overall agreement on a caries' case definition or on when to surgically intervene. The participants in the workshop defined a new mission for all caries management approaches, both conventional and new. The mission of each system should be to preserve the tooth structure, and restore only when necessary. This mission marks a pivotal line for judging when to surgically intervene and when to arrest or remineralize early noncavitated lesions. Even when restorative care is necessary, the removal of hard tissues should be lesion-focused and aim to preserve, as much as possible, sound tooth structure. Continuing management of the etiological factors of caries and the use of science-based preventive regimens also will be required to prevent recurrence and re-restoration. These changes have been debated for over a decade. The Caries Management Pathways includes all systems and philosophies, conventional and new, of caries management that can be used or modified to achieve the new mission. The choice of which system to use to achieve the mission of caries management is left to the users and should be based on the science supporting each approach or philosophy, experience, utility, and ease of use

  2. Tissue-specific exosome biomarkers for noninvasively monitoring immunologic rejection of transplanted tissue

    PubMed Central

    Korutla, Laxminarayana; Habertheuer, Andreas; Yu, Ming; Rostami, Susan; Yuan, Chao-Xing; Reddy, Sanjana; Korutla, Varun; Koeberlein, Brigitte; Trofe-Clark, Jennifer; Rickels, Michael R.; Naji, Ali

    2017-01-01

    In transplantation, there is a critical need for noninvasive biomarker platforms for monitoring immunologic rejection. We hypothesized that transplanted tissues release donor-specific exosomes into recipient circulation and that the quantitation and profiling of donor intra-exosomal cargoes may constitute a biomarker platform for monitoring rejection. Here, we have tested this hypothesis in a human-into-mouse xenogeneic islet transplant model and validated the concept in clinical settings of islet and renal transplantation. In the xenogeneic model, we quantified islet transplant exosomes in recipient blood over long-term follow-up using anti-HLA antibody, which was detectable only in xenoislet recipients of human islets. Transplant islet exosomes were purified using anti-HLA antibody–conjugated beads, and their cargoes contained the islet endocrine hormone markers insulin, glucagon, and somatostatin. Rejection led to a marked decrease in transplant islet exosome signal along with distinct changes in exosomal microRNA and proteomic profiles prior to appearance of hyperglycemia. In the clinical settings of islet and renal transplantation, donor exosomes with respective tissue specificity for islet β cells and renal epithelial cells were reliably characterized in recipient plasma over follow-up periods of up to 5 years. Collectively, these findings demonstrate the biomarker potential of transplant exosome characterization for providing a noninvasive window into the conditional state of transplant tissue. PMID:28319051

  3. Tissue-specific exosome biomarkers for noninvasively monitoring immunologic rejection of transplanted tissue.

    PubMed

    Vallabhajosyula, Prashanth; Korutla, Laxminarayana; Habertheuer, Andreas; Yu, Ming; Rostami, Susan; Yuan, Chao-Xing; Reddy, Sanjana; Liu, Chengyang; Korutla, Varun; Koeberlein, Brigitte; Trofe-Clark, Jennifer; Rickels, Michael R; Naji, Ali

    2017-04-03

    In transplantation, there is a critical need for noninvasive biomarker platforms for monitoring immunologic rejection. We hypothesized that transplanted tissues release donor-specific exosomes into recipient circulation and that the quantitation and profiling of donor intra-exosomal cargoes may constitute a biomarker platform for monitoring rejection. Here, we have tested this hypothesis in a human-into-mouse xenogeneic islet transplant model and validated the concept in clinical settings of islet and renal transplantation. In the xenogeneic model, we quantified islet transplant exosomes in recipient blood over long-term follow-up using anti-HLA antibody, which was detectable only in xenoislet recipients of human islets. Transplant islet exosomes were purified using anti-HLA antibody-conjugated beads, and their cargoes contained the islet endocrine hormone markers insulin, glucagon, and somatostatin. Rejection led to a marked decrease in transplant islet exosome signal along with distinct changes in exosomal microRNA and proteomic profiles prior to appearance of hyperglycemia. In the clinical settings of islet and renal transplantation, donor exosomes with respective tissue specificity for islet β cells and renal epithelial cells were reliably characterized in recipient plasma over follow-up periods of up to 5 years. Collectively, these findings demonstrate the biomarker potential of transplant exosome characterization for providing a noninvasive window into the conditional state of transplant tissue.

  4. Comparative Analysis of Human Tissue Interactomes Reveals Factors Leading to Tissue-Specific Manifestation of Hereditary Diseases

    PubMed Central

    Barshir, Ruth; Shwartz, Omer; Smoly, Ilan Y.; Yeger-Lotem, Esti

    2014-01-01

    An open question in human genetics is what underlies the tissue-specific manifestation of hereditary diseases, which are caused by genomic aberrations that are present in cells across the human body. Here we analyzed this phenomenon for over 300 hereditary diseases by using comparative network analysis. We created an extensive resource of protein expression and interactions in 16 main human tissues, by integrating recent data of gene and protein expression across tissues with data of protein-protein interactions (PPIs). The resulting tissue interaction networks (interactomes) shared a large fraction of their proteins and PPIs, and only a small fraction of them were tissue-specific. Applying this resource to hereditary diseases, we first show that most of the disease-causing genes are widely expressed across tissues, yet, enigmatically, cause disease phenotypes in few tissues only. Upon testing for factors that could lead to tissue-specific vulnerability, we find that disease-causing genes tend to have elevated transcript levels and increased number of tissue-specific PPIs in their disease tissues compared to unaffected tissues. We demonstrate through several examples that these tissue-specific PPIs can highlight disease mechanisms, and thus, owing to their small number, provide a powerful filter for interrogating disease etiologies. As two thirds of the hereditary diseases are associated with these factors, comparative tissue analysis offers a meaningful and efficient framework for enhancing the understanding of the molecular basis of hereditary diseases. PMID:24921629

  5. A comprehensive promoter landscape identifies a novel promoter for CD133 in restricted tissues, cancers, and stem cells

    PubMed Central

    Sompallae, Ramakrishna; Hofmann, Oliver; Maher, Christopher A.; Gedye, Craig; Behren, Andreas; Vitezic, Morana; Daub, Carsten O.; Devalle, Sylvie; Caballero, Otavia L.; Carninci, Piero; Hayashizaki, Yoshihide; Lawlor, Elizabeth R.; Cebon, Jonathan; Hide, Winston

    2013-01-01

    PROM1 is the gene encoding prominin-1 or CD133, an important cell surface marker for the isolation of both normal and cancer stem cells. PROM1 transcripts initiate at a range of transcription start sites (TSS) associated with distinct tissue and cancer expression profiles. Using high resolution Cap Analysis of Gene Expression (CAGE) sequencing we characterize TSS utilization across a broad range of normal and developmental tissues. We identify a novel proximal promoter (P6) within CD133+ melanoma cell lines and stem cells. Additional exon array sampling finds P6 to be active in populations enriched for mesenchyme, neural stem cells and within CD133+ enriched Ewing sarcomas. The P6 promoter is enriched with respect to previously characterized PROM1 promoters for a HMGI/Y (HMGA1) family transcription factor binding site motif and exhibits different epigenetic modifications relative to the canonical promoter region of PROM1. PMID:24194746

  6. Tissue-specific extravasation of albumin-bound Evans blue in hypothermic and rewarmed rats.

    PubMed

    Matthew, Candace B; Sils, Ingrid V; Bastille, Amy M

    2002-03-01

    The effects of hypothermia and rewarming on endothelial integrity were examined in intestines, kidney, heart, gastrocnemius muscle, liver, spleen, and brain by measuring albumin-bound Evans blue loss from the vasculature. Ten groups of twelve rats, normothermic with no pentobarbital, normothermic sampled at 2, 3, or 4 h after pentobarbital, hypothermic to 20, 25, or 30 degrees C, and rewarmed from 20, 25, or 30 degrees C, were cooled in copper coils through which water circulated. Hypothermic rats were cooled to the desired core temperature and maintained there for 1 h; rewarmed rats were cooled to the same core temperatures, maintained there for 1 h, and then rewarmed. Following Evans blue administration, animals were euthanized with methoxyflurane, tissues removed, and Evans blue extracted. Because hypothermia and rewarming significantly decrease blood flow, organ-specific flow rates for hypothermic and rewarmed tissues were used to predict extravasation. Hypothermia decreased extravasation in tissues with continuous endothelium (brain, muscle) and increased it in tissues with discontinuous endothelium (liver, lung, spleen). All tissues exhibited significant (p < 0.05) differences from normothermic controls. These differences are attributed to a combination of anesthesia, flow, and (or) change in endothelial permeability, suggesting that appropriate choice of organ and temperature would facilitate testing pharmacological means of promoting return to normal perfusion.

  7. Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana.

    PubMed

    Lyons, Rebecca; Stiller, Jiri; Powell, Jonathan; Rusu, Anca; Manners, John M; Kazan, Kemal

    2015-01-01

    Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant.

  8. Fusarium oxysporum Triggers Tissue-Specific Transcriptional Reprogramming in Arabidopsis thaliana

    PubMed Central

    Lyons, Rebecca; Stiller, Jiri; Powell, Jonathan; Rusu, Anca; Manners, John M.; Kazan, Kemal

    2015-01-01

    Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant. PMID:25849296

  9. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance

    PubMed Central

    Soroosh, Pejman; Doherty, Taylor A.; Duan, Wei; Mehta, Amit Kumar; Choi, Heonsik; Adams, Yan Fei; Mikulski, Zbigniew; Khorram, Naseem; Rosenthal, Peter; Broide, David H.

    2013-01-01

    Airway tolerance is the usual outcome of inhalation of harmless antigens. Although T cell deletion and anergy are likely components of tolerogenic mechanisms in the lung, increasing evidence indicates that antigen-specific regulatory T cells (inducible Treg cells [iTreg cells]) that express Foxp3 are also critical. Several lung antigen-presenting cells have been suggested to contribute to tolerance, including alveolar macrophages (MØs), classical dendritic cells (DCs), and plasmacytoid DCs, but whether these possess the attributes required to directly promote the development of Foxp3+ iTreg cells is unclear. Here, we show that lung-resident tissue MØs coexpress TGF-β and retinal dehydrogenases (RALDH1 and RALDH 2) under steady-state conditions and that their sampling of harmless airborne antigen and presentation to antigen-specific CD4 T cells resulted in the generation of Foxp3+ Treg cells. Treg cell induction in this model depended on both TGF-β and retinoic acid. Transfer of the antigen-pulsed tissue MØs into the airways correspondingly prevented the development of asthmatic lung inflammation upon subsequent challenge with antigen. Moreover, exposure of lung tissue MØs to allergens suppressed their ability to generate iTreg cells coincident with blocking airway tolerance. Suppression of Treg cell generation required proteases and TLR-mediated signals. Therefore, lung-resident tissue MØs have regulatory functions, and strategies to target these cells might hold promise for prevention or treatment of allergic asthma. PMID:23547101

  10. Modified High-Molecular-Weight Hyaluronan Promotes Allergen-Specific Immune Tolerance.

    PubMed

    Gebe, John A; Yadava, Koshika; Ruppert, Shannon M; Marshall, Payton; Hill, Paul; Falk, Ben A; Sweere, Johanna M; Han, Hongwei; Kaber, Gernot; Medina, Carlos; Mikecz, Katalin; Ziegler, Steven F; Balaji, Swathi; Keswani, Sundeep G; Perez, Vinicio A de Jesus; Butte, Manish J; Nadeau, Kari; Altemeier, William A; Fanger, Neil; Bollyky, Paul L

    2017-01-01

    The extracellular matrix in asthmatic lungs contains abundant low-molecular-weight hyaluronan, and this is known to promote antigen presentation and allergic responses. Conversely, high-molecular-weight hyaluronan (HMW-HA), typical of uninflamed tissues, is known to suppress inflammation. We investigated whether HMW-HA can be adapted to promote tolerance to airway allergens. HMW-HA was thiolated to prevent its catabolism and was tethered to allergens via thiol linkages. This platform, which we call "XHA," delivers antigenic payloads in the context of antiinflammatory costimulation. Allergen/XHA was administered intranasally to mice that had been sensitized previously to these allergens. XHA prevents allergic airway inflammation in mice sensitized previously to either ovalbumin or cockroach proteins. Allergen/XHA treatment reduced inflammatory cell counts, airway hyperresponsiveness, allergen-specific IgE, and T helper type 2 cell cytokine production in comparison with allergen alone. These effects were allergen specific and IL-10 dependent. They were durable for weeks after the last challenge, providing a substantial advantage over the current desensitization protocols. Mechanistically, XHA promoted CD44-dependent inhibition of nuclear factor-κB signaling, diminished dendritic cell maturation, and reduced the induction of allergen-specific CD4 T-helper responses. XHA and other potential strategies that target CD44 are promising alternatives for the treatment of asthma and allergic sinusitis.

  11. A transgenic approach to control hemipteran insects by expressing insecticidal genes under phloem-specific promoters

    PubMed Central

    Javaid, Shaista; Amin, Imran; Jander, Georg; Mukhtar, Zahid; Saeed, Nasir A.; Mansoor, Shahid

    2016-01-01

    The first generation transgenic crops used strong constitutive promoters for transgene expression. However, tissue-specific expression is desirable for more precise targeting of transgenes. Moreover, piercing/sucking insects, which are generally resistant to insecticidal Bacillus thuringiensis (Bt) proteins, have emerged as a major pests since the introduction of transgenic crops expressing these toxins. Phloem-specific promoters isolated from Banana bunchy top virus (BBTV) were used for the expression of two insecticidal proteins, Hadronyche versuta (Blue Mountains funnel-web spider) neurotoxin (Hvt) and onion leaf lectin, in tobacco (Nicotiana tabacum). Here we demonstrate that transgenic plants expressing Hvt alone or in combination with onion leaf lectin are resistant to Phenacoccus solenopsis (cotton mealybug), Myzus persicae (green peach aphids) and Bemisia tabaci (silver leaf whitefly). The expression of both proteins under different phloem-specific promoters resulted in close to 100% mortality and provided more rapid protection than Hvt alone. Our results suggest the employment of the Hvt and onion leaf lectin transgenic constructs at the commercial level will reduce the use of chemical pesticides for control of hemipteran insect pests. PMID:27708374

  12. Structural organization and tissue-specific expression of the gene encoding rat cysteine dioxygenase.

    PubMed

    Tsuboyama, N; Hosokawa, Y; Totani, M; Oka, J; Matsumoto, A; Koide, T; Kodama, H

    1996-11-28

    Cysteine dioxygenase (CDO) is a key enzyme involved in the metabolism of L-cysteine. Genomic clones containing the 5'-flanking sequence of the rat CDO gene were isolated and characterized. The CDO gene spanned about 15 kb, and comprised 5 exons. All boundaries between the exons and introns matched the GT/AG rule. The major transcription start point (tsp) was A at 213 bp upstream from the ATG codon. The 5'-flanking region contained a TATA-box-like sequence and putative cis-acting regulatory elements. The 3' end of CDO was polyadenylated at several sites. Northern blots of RNA from rat tissues revealed the highest CDO mRNA level in the liver. Significant levels were observed in the kidney, lung and brain, implying tissue-specific differences in CDO promoter function.

  13. Developmental and tissue-specific expression of prosaposin mRNA in murine tissues.

    PubMed Central

    Sun, Y.; Witte, D. P.; Grabowski, G. A.

    1994-01-01

    Prosaposin is a multifunctional locus in humans and mice that encodes in tandem and in the same reading frame four glycoprotein activators, or saposins, of lysosomal hydrolases. These ubiquitously expressed glycoproteins and the precursor, prosaposin, have been proposed to function in glycosphingolipid catabolic pathways and glycolipid transport. To characterize the temporal and spatial expression of the prosaposin locus, prenatal and postnatal mouse tissues were screened by in situ hybridization with a mouse antisense riboprobe for prosaposin. Prenatally, prosaposin mRNA was expressed differentially in the placenta and prominently in the decidua basalis and capsularis where expression was gestational age dependent. No other region of high-level expression was detectable in the prenatal mouse. In comparison, high-level differential expression of prosaposin was clearly evident postnatally in a variety of organs, including secretory epithelial cells of the choroid plexus, ependymal lining, upper trachea, esophagus, cortical tubules of the kidney, sertoli cells of the testes and epididymis. Discrete localization of prosaposin mRNA expression was also found in neurons of the cerebral cortex, cerebellar cortex, and lateral columns of the spinal cord as well as in hepatocytes of the mature liver. Very high levels of expression were found in specialized tissues including the Harderian glands and macrophages of lymph nodes, lungs, splenic tissue, and thymus. These studies indicate that the expression of the prosaposin locus, a presumed "housekeeping" gene, is under tissue- and cell-specific differential control. The spatial organization of expression suggests a role for this locus in the expression of glycosphingolipid-storage diseases. Images Figure 2 PMID:7992842

  14. HNF1alpha is involved in tissue-specific regulation of CFTR gene expression.

    PubMed Central

    Mouchel, Nathalie; Henstra, Sytse A; McCarthy, Victoria A; Williams, Sarah H; Phylactides, Marios; Harris, Ann

    2004-01-01

    The CFTR (cystic fibrosis transmembrane conductance regulator) gene shows a complex pattern of expression with tissue-specific and temporal regulation. However, the genetic elements and transcription factors that control CFTR expression are largely unidentified. The CFTR promoter does not confer tissue specificity on gene expression, suggesting that there are regulatory elements outside the upstream region. Analysis of potential regulatory elements defined as DNase 1-hypersensitive sites within introns of the gene revealed multiple predicted binding sites for the HNF1alpha (hepatocyte nuclear factor 1alpha) transcription factor. HNF1alpha, which is expressed in many of the same epithelial cell types as CFTR and shows similar differentiation-dependent changes in gene expression, bound to these sites in vitro. Overexpression of heterologous HNF1alpha augmented CFTR transcription in vivo. In contrast, antisense inhibition of HNF1 alpha transcription decreased the CFTR mRNA levels. Hnf1 alpha knockout mice showed lower levels of CFTR mRNA in their small intestine in comparison with wild-type mice. This is the first report of a transcription factor, which confers tissue specificity on the expression of this important disease-associated gene. PMID:14656222

  15. Development of vascular tissue and stress inducible hybrid-synthetic promoters through dof-1 motifs rearrangement.

    PubMed

    Ranjan, Rajiv; Dey, Nrisingha

    2012-07-01

    A Caulimovirus-based hybrid-promoter, EFCFS, was derived by fusing the distal region (-227 to -54, FUAS) of Figwort mosaic virus full-length transcript promoter (F20) with the core promoter (-151 to +12, FS3CP) domain of Figwort mosaic virus sub-genomic transcript promoter (FS3). The hybrid-promoter (EFCFS) showed enhanced activity compared to the CaMV35S, F20 and FS3 promoters; while it showed equivalent activity with that of the CAMV35S(2) promoter in both transient protoplast (Nicotiana tabacum cv. Xanthi Brad) and transgenic plants (Nicotiana tabacum; Samsun NN). Further, we have engineered the EFCFS promoter sequence by inserting additional copies of the stress-inducible 'AAAG' cis-motif (Dof-1) to generate a set of three hybrid-synthetic promoters namely; EFCFS-HS-1, EFCFS-HS-2 and EFCFS-HS-3-containing 10, 11 and 13 'AAAG' motif, respectively. Transgenic plants expressing these hybrid synthetic promoters coupled to the GUS reporter were developed and their transcriptional activities were compared with F20, FS3, 35S and 35S(2) promoters, respectively. The relative levels of uidA-mRNA accumulation in transgenic plants driven by above promoters individually were compared by qRT-PCR. Localization of GUS reporter activity in plant tissue was assayed by histochemical approach. CLSM-based study revealed that hybrid-synthetic promoters namely; EFCFS-HS-1, EFCFS-HS-2 and EFCFS-HS-3 showed enhanced activity in vascular tissue compared to the CaMV35S promoter. In the presence of abiotic stress elicitors, salicylic acid and jasmonic acid, the EFCFS-HS-1 promoters showed enhanced activity compared to the 35S promoter. Newly derived hybrid-synthetic promoter/s with enhanced activity and stress inducibility could become efficient tools for advancement of plant biotechnology.

  16. An Arabidopsis Tissue-Specific RNAi Method for Studying Genes Essential to Mitosis

    PubMed Central

    Burgos-Rivera, Brunilís; Dawe, R. Kelly

    2012-01-01

    A large fraction of the genes in plants can be considered essential in the sense that when absent the plant fails to develop past the first few cell divisions. The fact that angiosperms pass through a haploid gametophyte stage can make it challenging to propagate such mutants even in the heterozygous condition. Here we describe a tissue-specific RNAi method that allows us to visualize cell division phenotypes in petals, which are large dispensable organs. Portions of the APETALA (AP3) and PISTILLATA (PI) promoters confer early petal-specific expression. We show that when either promoter is used to drive the expression of a beta-glucuronidase (GUS) RNAi transgene in plants uniformly expressing GUS, GUS expression is knocked down specifically in petals. We further tested the system by targeting the essential kinetochore protein CENPC and two different components of the Spindle Assembly Checkpoint (MAD2 and BUBR1). Plant lines expressing petal-specific RNAi hairpins targeting these genes exhibited an array of petal phenotypes. Cytological analyses of the affected flower buds confirmed that CENPC knockdown causes cell cycle arrest but provided no evidence that either MAD2 or BUBR1 are required for mitosis (although both genes are required for petal growth by this assay). A key benefit of the petal-specific RNAi method is that the phenotypes are not expressed in the lineages leading to germ cells, and the phenotypes are faithfully transmitted for at least four generations despite their pronounced effects on growth. PMID:23236491

  17. Prognostic Value of PLAGL1-Specific CpG Site Methylation in Soft-Tissue Sarcomas

    PubMed Central

    Peille, Anne-Lise; Brouste, Veronique; Kauffmann, Audrey; Lagarde, Pauline; Le Morvan, Valerie; Coindre, Jean-Michel; Chibon, Frederic; Bresson-Bepoldin, Laurence

    2013-01-01

    Soft tissue sarcomas (STS) are rare, complex tumors with a poor prognosis. The identification of new prognostic biomarkers is needed to improve patient management. Our aim was to determine the methylation status of the 118 CpG sites in the PLAGL1 tumor-suppressor gene P1 CpG island promoter and study the potential prognostic impact of PLAGL1 promoter methylation CpG sites in STS. Training cohorts constituted of 28 undifferentiated sarcomas (US) and 35 leiomyosarcomas (LMS) were studied. PLAGL1 mRNA expression was investigated by microarray analysis and validated by RT-qPCR. Pyrosequencing was used to analyze quantitative methylation of the PLAGL1 promoter. Associations between global promoter or specific CpG site methylation and mRNA expression were evaluated using Pearson’s product moment correlation coefficient. Cox univariate and multivariate proportional hazard models were used to assess the predictive power of CpG site methylation status. Sixteen CpG sites associated with PLAGL1 mRNA expression were identified in US and 6 in LMS. Statistical analyses revealed an association between CpG107 methylation status and both overall and metastasis-free survival in US, which was confirmed in a validation cohort of 37 US. The exhaustive study of P1 PLAGL1 promoter methylation identified a specific CpG site methylation correlated with mRNA expression, which was predictive for both metastasis-free and overall survival and may constitute the first US-specific biomarker. Such a biomarker may be relevant for identifying patients likely to derive greater benefit from treatment. PMID:24260468

  18. Tissue specificity of the hormonal response in sex accessory tissues is associated with nuclear matrix protein patterns.

    PubMed

    Getzenberg, R H; Coffey, D S

    1990-09-01

    The DNA of interphase nuclei have very specific three-dimensional organizations that are different in different cell types, and it is possible that this varying DNA organization is responsible for the tissue specificity of gene expression. The nuclear matrix organizes the three-dimensional structure of the DNA and is believed to be involved in the control of gene expression. This study compares the nuclear structural proteins between two sex accessory tissues in the same animal responding to the same androgen stimulation by the differential expression of major tissue-specific secretory proteins. We demonstrate here that the nuclear matrix is tissue specific in the rat ventral prostate and seminal vesicle, and undergoes characteristic alterations in its protein composition upon androgen withdrawal. Three types of nuclear matrix proteins were observed: 1) nuclear matrix proteins that are different and tissue specific in the rat ventral prostate and seminal vesicle, 2) a set of nuclear matrix proteins that either appear or disappear upon androgen withdrawal, and 3) a set of proteins that are common to both the ventral prostate and seminal vesicle and do not change with the hormonal state of the animal. Since the nuclear matrix is known to bind androgen receptors in a tissue- and steroid-specific manner, we propose that the tissue specificity of the nuclear matrix arranges the DNA in a unique conformation, which may be involved in the specific interaction of transcription factors with DNA sequences, resulting in tissue-specific patterns of secretory protein expression.

  19. Acellular biological tissues containing inherent glycosaminoglycans for loading basic fibroblast growth factor promote angiogenesis and tissue regeneration.

    PubMed

    Lai, Po-Hong; Chang, Yen; Chen, Sung-Ching; Wang, Chung-Chi; Liang, Huang-Chien; Chang, Wei-Chun; Sung, Hsing-Wen

    2006-09-01

    It was found in our previous study that acellular tissues derived from bovine pericardia consist primarily of insoluble collagen, elastin, and tightly bound glycosaminoglycans (GAGs). It is speculated that the inherent GAGs in acellular tissues may serve as a reservoir for loading basic fibroblast growth factor (bFGF) and promote angiogenesis and tissue regeneration. This study was therefore designed to investigate effects of the content of GAGs in acellular bovine pericardia on the binding of bFGF and its release profile in vitro while its stimulation in angiogenesis and tissue regeneration in vivo were evaluated subcutaneously in a rat model. To control the content of GAGs, acellular tissues were treated additionally with hyaluronidase for 1 (Hase-D1), 3 (Hase-D3), or 5 days (Hase-D5). The in vitro results indicated that a higher content of GAGs in the acellular tissue resulted in an increase in bFGF binding and in a more gradual and sustained release of the growth factor. The in vivo results obtained at 1 week postoperatively showed that the density and the depth of neo-vessels infiltrated into the acellular tissue loaded with bFGF (acellular/bFGF) were significantly greater than the other test samples. At 1 month postoperatively, vascularized neo-connective tissues were found to fill the pores within each test sample, particularly for the acellular/bFGF tissue. These results suggested that the sustained release of bFGF from the acellular/ bFGF tissue continued to be effective in enhancing angiogenesis and generation of new tissues. In conclusion, the inherent GAGs present in acellular tissues may be used for binding and sustained release of bFGF to enhance angiogenesis and tissue regeneration.

  20. Finasteride treatment alters tissue specific androgen receptor expression in prostate tissues.

    PubMed

    Bauman, Tyler M; Sehgal, Priyanka D; Johnson, Karen A; Pier, Thomas; Bruskewitz, Reginald C; Ricke, William A; Huang, Wei

    2014-06-01

    Normal and pathologic growth of the prostate is dependent on the synthesis of dihydrotestosterone (DHT) from testosterone by 5α-reductase. Finasteride is a selective inhibitor of 5α-reductase 2, one isozyme of 5α-reductase found in abundance in the human prostate. The objective of this study was to investigate the effects of finasteride on androgen receptor expression and tissue morphology in human benign prostatic hyperplasia specimens. Patients undergoing transurethral resection of the prostate and either treated or not treated with finasteride between 2004 and 2010 at the University of Wisconsin-Hospital were retrospectively identified using an institutional database. Prostate specimens from each patient were triple-stained for androgen receptor, prostate-specific antigen, and basal marker cytokeratin 5. Morphometric analysis was performed using the multispectral imaging, and results were compared between groups of finasteride treated and non-treated patients. Epithelial androgen receptor but not stromal androgen receptor expression was significantly lower in patients treated with finasteride than in non-treated patients. Androgen receptor-regulated prostate-specific antigen was not significantly decreased in finasteride-treated patients. Significant luminal epithelial atrophy and basal cell hyperplasia were prevalent in finasteride treated patients. Epithelial androgen receptor expression was highly correlated to the level of luminal epithelial atrophy. In this study, finasteride decreased the expression of epithelial androgen receptor in a tissue specific manner. The correlation between epithelial androgen receptor and the extent of luminal epithelial atrophy suggests that epithelial androgen receptor may be directly regulating the atrophic effects observed with finasteride treatment. © 2014 Wiley Periodicals, Inc.

  1. Finasteride Treatment Alters Tissue Specific Androgen Receptor Expression in Prostate Tissues

    PubMed Central

    Bauman, Tyler M.; Sehgal, Priyanka D.; Johnson, Karen A.; Pier, Thomas; Bruskewitz, Reginald C.; Ricke, William A.; Huang, Wei

    2014-01-01

    BACKGROUND Normal and pathologic growth of the prostate is dependent on the synthesis of dihydrotestosterone (DHT) from testosterone by 5α-reductase. Finasteride is a selective inhibitor of 5α-reductase 2, one isozyme of 5α-reductase found in abundance in the human prostate. The objective of this study was to investigate the effects of finasteride on androgen receptor expression and tissue morphology in human benign prostatic hyperplasia specimens. METHODS Patients undergoing transurethral resection of the prostate and either treated or not treated with finasteride between 2004 and 2010 at the University of Wisconsin-Hospital were retrospectively identified using an institutional database. Prostate specimens from each patient were triple-stained for androgen receptor, prostate-specific antigen, and basal marker cytokeratin 5. Morphometric analysis was performed using the multispectral imaging, and results were compared between groups of finasteride treated and non-treated patients. RESULTS Epithelial androgen receptor but not stromal androgen receptor expression was significantly lower in patients treated with finasteride than in non-treated patients. Androgen receptor-regulated prostate-specific antigen was not significantly decreased in finasteride-treated patients. Significant luminal epithelial atrophy and basal cell hyperplasia were prevalent in finasteride treated patients. Epithelial androgen receptor expression was highly correlated to the level of luminal epithelial atrophy. CONCLUSIONS In this study, finasteride decreased the expression of epithelial androgen receptor in a tissue specific manner. The correlation between epithelial androgen receptor and the extent of luminal epithelial atrophy suggests that epithelial androgen receptor may be directly regulating the atrophic effects observed with finasteride treatment. PMID:24789081

  2. The Tissue-Specific Expression of a Tobacco Phytochrome B Gene.

    PubMed Central

    Adam, E.; Kozma-Bognar, L.; Kolar, C.; Schafer, E.; Nagy, F.

    1996-01-01

    We have isolated a genomic clone from Nicotiana tabacum, designated Nt-PHYB-1, encoding a type-II, "green tissue" phytochrome apoprotein. Recombinant genes, consisting of the 3319-bp promoter of the Nt-PHYB-1 gene (including the entire 5[prime] untranslated sequence but not the ATG) or its deletion derivatives and the bacterial [beta]-glucuronidase reporter gene, were constructed and transferred into tobacco. The expression patterns and levels of the endogenous Nt-PHYB-1, as well as those of the transgenes, were determined by RNase protection assays and by [beta]-glucuronidase histochemical staining. We show that (a) the PHYB-1 gene has three transcription start sites, (b) the abundance of the three PHYB-1-specific mRNAs is different, and that (c) it is not regulated by light. However, we do demonstrate that transcription of the endogenous PHYB-1 gene and that of the recombinant genes exhibit a well-defined organ and tissue specificity. This tobacco PHYB gene is relatively highly expressed in leaf, stem, and different floral organs but not in root. Deletion analysis of the Nt-PHYB-1 promoter indicates that a 382-bp region, located between -1472 and -1089, is required for high-level expression of this gene. PMID:12226242

  3. Tissue-specific effector functions of innate lymphoid cells

    PubMed Central

    Björkström, Niklas K; Kekäläinen, Eliisa; Mjösberg, Jenny

    2013-01-01

    Innate lymphoid cells (ILCs) is the collective term for a group of related innate lymphocytes, including natural killer (NK) cells and the more recently discovered non-NK ILCs, which all lack rearranged antigen receptors such as those expressed by T and B cells. Similar to NK cells, the newly discovered ILCs depend on the transcription factor Id2 and the common γ-chain of the interleukin-2 receptor for development. However, in contrast to NK cells, non-NK ILCs also require interleukin-7. In addition to the cytotoxic functions of NK cells, assuring protection against tumour development and viruses, new data indicate that ILCs contribute to a wide range of homeostatic and pathophysiological conditions in various organs via specialized cytokine production capabilities. Here we summarize current knowledge on ILCs with a particular emphasis on their tissue-specific effector functions, in the gut, liver, lungs and uterus. When possible, we try to highlight the role that these cells play in humans. PMID:23489335

  4. Tissue-specific posttranslational modification allows functional targeting of thyrotropin.

    PubMed

    Ikegami, Keisuke; Liao, Xiao-Hui; Hoshino, Yuta; Ono, Hiroko; Ota, Wataru; Ito, Yuka; Nishiwaki-Ohkawa, Taeko; Sato, Chihiro; Kitajima, Ken; Iigo, Masayuki; Shigeyoshi, Yasufumi; Yamada, Masanobu; Murata, Yoshiharu; Refetoff, Samuel; Yoshimura, Takashi

    2014-11-06

    Thyroid-stimulating hormone (TSH; thyrotropin) is a glycoprotein secreted from the pituitary gland. Pars distalis-derived TSH (PD-TSH) stimulates the thyroid gland to produce thyroid hormones (THs), whereas pars tuberalis-derived TSH (PT-TSH) acts on the hypothalamus to regulate seasonal physiology and behavior. However, it had not been clear how these two TSHs avoid functional crosstalk. Here, we show that this regulation is mediated by tissue-specific glycosylation. Although PT-TSH is released into the circulation, it does not stimulate the thyroid gland. PD-TSH is known to have sulfated biantennary N-glycans, and sulfated TSH is rapidly metabolized in the liver. In contrast, PT-TSH has sialylated multibranched N-glycans; in the circulation, it forms the macro-TSH complex with immunoglobulin or albumin, resulting in the loss of its bioactivity. Glycosylation is fundamental to a wide range of biological processes. This report demonstrates its involvement in preventing functional crosstalk of signaling molecules in the body.

  5. Tissue-specific actions of FXR in metabolism and cancer.

    PubMed

    Gadaleta, Raffaella Maria; Cariello, Marica; Sabbà, Carlo; Moschetta, Antonio

    2015-01-01

    The nuclear Farnesoid X Receptor (FXR) is a transcription factor critically involved in metabolic homeostasis in the gut-liver axis. FXR activity is mediated by hormonal and dietary signals and driven by bile acids (BAs), which are the natural FXR ligands. Given the great physiological importance in BA homeostasis, as well as in the regulation of glucose and lipid metabolism, FXR plays a pivotal role in the pathogenesis of a wide range of disease of the liver, biliary tract and intestine, including hepatic and colorectal cancer. In the last years several studies have shown the relative FXR tissue-specific importance, highlighting synergism and additive effects in the liver and intestine. Gain- and loss-of-FXR-function mouse models have been generated in order to identify the biological processes and the molecular FXR targets. Taking advantage of the knowledge on the structure-activity relationship of BAs for FXR, semi-synthetic and synthetic molecules have been generated to obtain more selective and powerful FXR activators than BAs. This article is part of a Special Issue entitled: Linking transcription to physiology in lipodomics. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. A C++ framework for creating tissue specific segmentation-pipelines

    NASA Astrophysics Data System (ADS)

    Pfeifer, Bernhard; Hanser, Friedrich; Seger, Michael; Hintermueller, Christoph; Modre-Osprian, Robert; Fischer, Gerald; Muehlthaler, Hannes; Trieb, Thomas; Tilg, Bernhard

    2005-04-01

    For a clinical application of the inverse problem of electrocardiography, a flexible and fast generation of a patient's volume conductor model is essential. The volume conductor model includes compartments like chest, lungs, ventricles, atria and the associated blood masses. It is a challenging task to create an automatic or semi-automatic segmentation procedure for each compartment. For the extraction of the lungs, as one example, a region growing algorithm can be used, to extract the blood masses of the ventricles Active Appearance Models may succeed, and to construct the atrial myocardium a multiplicity of operations are necessary. These examples illustrate that there is no common method that will succeed for all compartments like a least common denominator. Another problem is the automatization of combining different methods and the origination of a segmentation pipeline in order to extract a compartment and, accordingly, the desired model - in our case the complete volume conductor model for estimating the spread of electrical excitation in the patient's heart. On account of this, we developed a C++ framework and a special application with the goal of creating tissue-specific segmentation pipelines. The C++ framework uses different standard frameworks like DCMTK for handling medical images (http://dicom.offis.de/dcmtk.php.en), ITK (http://www.itk.org/) for some segmentation methods, and Qt (http://www.trolltech.com/) for creating user interfaces. Our Medical Segmentation Toolkit (MST) enables to combine different segmentation techniques for each compartment. In addition, the framework enables to create user-defined compartment pipelines.

  7. MOLECULAR CONSTITUTION OF BREAST BUT NOT OTHER REPRODUCTIVE TISSUES IS RICH IN GROWTH PROMOTING MOLECULES

    PubMed Central

    Poola, Indira; Abraham, Jessy; Marshalleck, Josephine J.; Yue, Qingqi; Fu, Sidney W.; Viswanath, Lokesh; Sharma, Nikhil; Hill, Russel; DeWitty, Robert L.; Bonney, George

    2009-01-01

    In the current study we tested if highest incidence of benign as well as cancer growths in breast tissue is due to constitutive molecular composition of this tissue. To delineate the molecular basis, we compared the expression of nine functional gene modules (total 578 genes) that regulate major positive growth and negative inhibitory signals in normal breast with two other reproductive tissues, ovary and uterus. We present data to demonstrate that breast tissues constitutively have very highly elevated levels of several growth promoting molecules and diminished levels of inhibitory molecules which may, in part, contribute for highest incidence of tumor growths in this tissue. PMID:19698714

  8. 17β-Estradiol suppresses visceral adipogenesis and activates brown adipose tissue-specific gene expression.

    PubMed

    Al-Qahtani, Saad Misfer; Bryzgalova, Galyna; Valladolid-Acebes, Ismael; Korach-André, Marion; Dahlman-Wright, Karin; Efendić, Suad; Berggren, Per-Olof; Portwood, Neil

    2017-01-01

    Both functional ovaries and estrogen replacement therapy (ERT) reduce the risk of type 2 diabetes (T2D). Understanding the mechanisms underlying the antidiabetic effects of 17β-estradiol (E2) may permit the development of a molecular targeting strategy for the treatment of metabolic disease. This study examines how the promotion of insulin sensitivity and weight loss by E2 treatment in high-fat-diet (HFD)-fed mice involve several anti-adipogenic processes in the visceral adipose tissue. Magnetic resonance imaging (MRI) revealed specific reductions in visceral adipose tissue volume in HFD+E2 mice, compared with HFD mice. This loss of adiposity was associated with diminished visceral adipocyte size and reductions in expression of lipogenic genes, adipokines and of the nuclear receptor nr2c2/tr4. Meanwhile, expression levels of adipose triglyceride lipase/pnpla2 and leptin receptor were increased. As mRNA levels of stat3, a transcription factor involved in brown adipose tissue differentiation, were also increased in visceral adipose, the expression of other brown adipose-specific markers was assessed. Both expression and immunohistochemical staining of ucp-1 were increased, and mRNA levels of dio-2, and of adrβ3, a regulator of ucp-1 expression during the thermogenic response, were increased. Furthermore, expression of cpt-1b, a brown adipose-specific gene involved in fatty acid utilization, was also increased. Methylation studies demonstrated that the methylation status of both dio-2 and adrβ3 was significantly reduced. These results show that improved glycemic control and weight loss due to E2 involve anti-adipogenic mechanisms which include suppressed lipogenesis and augmented fatty acid utilization, and in addition, the activation of brown adipose tissue-specific gene expression in association with E2-dependent epigenetic modifications in these genes.

  9. Gender-specific reproductive tissue in ratites and Tyrannosaurus rex.

    PubMed

    Schweitzer, Mary H; Wittmeyer, Jennifer L; Horner, John R

    2005-06-03

    Unambiguous indicators of gender in dinosaurs are usually lost during fossilization, along with other aspects of soft tissue anatomy. We report the presence of endosteally derived bone tissues lining the interior marrow cavities of portions of Tyrannosaurus rex (Museum of the Rockies specimen number 1125) hindlimb elements, and we hypothesize that these tissues are homologous to specialized avian tissues known as medullary bone. Because medullary bone is unique to female birds, its discovery in extinct dinosaurs solidifies the link between dinosaurs and birds, suggests similar reproductive strategies, and provides an objective means of gender differentiation in dinosaurs.

  10. Biomimetic integrin-specific surfaces to direct osteoblastic function and tissue healing

    NASA Astrophysics Data System (ADS)

    Petrie, Timothy Andrew

    Current orthopedic implant technologies used suffer from slow rates of osseointegration, short lifetime, and lack of mechanical integrity as a result of poorly controlled cell-surface interactions. Recent biologically-inspired surface strategies (biomimetic) have focused on mimicking the biofunctionality of the extracellular matrix (ECM) by using short, adhesive oligopeptides, such as arginine-glycine-aspartic acid (RGD) present in numerous ECM components. However, these strategies have yielded mixed results in vivo and marginal bone healing responses. The central goal of this dissertation project was to engineer bioactive surfaces that specifically target integrin receptors important for osteogenic functions in order to improve bone tissue repair. In order to create integrin-specific interfaces, integrin-specific ligands reconstituting the fibronectin (FN) secondary/tertiary structure were first engineered and functionalized on material surfaces using several robust presentation schemes. We demonstrated that FN-mimetic-functionalized surfaces that directed alpha 5beta1 binding enhanced osteoblast and stromal cell integrin binding and adhesion, osteogenic signaling, and osteoblastic differentiation compared to various other RGD-based ligand-functionalized surfaces. Next, we investigated the effect of integrin-specific biointerfaces to modulate bone healing in a rat tibia implant bone model. We demonstrated, using a robust polymer brush system, that bioactive coatings on titanium implants that conferred high alpha5beta1 integrin specificity in vitro enhanced bone formation and implant integration in vivo. Moreover, we showed that integrin specificity can be engineered using different immobilization schemes, including clinically-relevant ligand dip-coating, and promote the same robust in vivo effect. Furthermore, we investigate the synergistic roles of integrin specificity and ligand clustering on cell response by engineering biointerfaces presenting trimeric and

  11. Testis-specific TAF homologs collaborate to control a tissue-specific transcription program.

    PubMed

    Hiller, Mark; Chen, Xin; Pringle, M Jodeane; Suchorolski, Martin; Sancak, Yasemin; Viswanathan, Sridhar; Bolival, Benjamin; Lin, Ting-Yi; Marino, Susan; Fuller, Margaret T

    2004-11-01

    Alternate forms of the PolII transcription initiation machinery have been proposed to play a role in selective activation of cell-type-specific gene expression programs during cellular differentiation. The cannonball (can) gene of Drosophila encodes a homolog of a TBP-associated factor (dTAF5) protein expressed only in spermatocytes, where it is required for normal transcription of genes required for spermatid differentiation. We show that Drosophila primary spermatocytes also express four additional tissue-specific TAFs: nht (homolog of dTAF4), mia (homolog of dTAF6), sa (homolog of dTAF8) and rye (homolog of dTAF12). Mutations in nht, mia and sa have similar effects in primary spermatocytes on transcription of several target genes involved in spermatid differentiation, and cause the same phenotypes as mutations in can, blocking both meiotic cell cycle progression and spermatid differentiation. The nht, mia, sa and rye proteins contain histone fold domain dimerization motifs. The nht and rye proteins interact structurally when co-expressed in bacteria, similarly to their generally expressed homologs TAF4 and TAF12, which heterodimerize. Strikingly, the structural interaction is tissue specific: nht did not interact with dTAF12 and dTAF4 did not interact with rye in a bacterial co-expression assay. We propose that the products of the five Drosophila genes encoding testis TAF homologs collaborate in an alternative TAF-containing protein complex to regulate a testis-specific gene expression program in primary spermatocytes required for terminal differentiation of male germ cells.

  12. Regeneration of soft tissues is promoted by MMP1 treatment after digit amputation in mice.

    PubMed

    Mu, Xiaodong; Bellayr, Ian; Pan, Haiying; Choi, Yohan; Li, Yong

    2013-01-01

    The ratio of matrix metalloproteinases (MMPs) to the tissue inhibitors of metalloproteinases (TIMPs) in wounded tissues strictly control the protease activity of MMPs, and therefore regulate the progress of wound closure, tissue regeneration and scar formation. Some amphibians (i.e. axolotl/newt) demonstrate complete regeneration of missing or wounded digits and even limbs; MMPs play a critical role during amphibian regeneration. Conversely, mammalian wound healing re-establishes tissue integrity, but at the expense of scar tissue formation. The differences between amphibian regeneration and mammalian wound healing can be attributed to the greater ratio of MMPs to TIMPs in amphibian tissue. Previous studies have demonstrated the ability of MMP1 to effectively promote skeletal muscle regeneration by favoring extracellular matrix (ECM) remodeling to enhance cell proliferation and migration. In this study, MMP1 was administered to the digits amputated at the mid-second phalanx of adult mice to observe its effect on digit regeneration. Results indicated that the regeneration of soft tissue and the rate of wound closure were significantly improved by MMP1 administration, but the elongation of the skeletal tissue was insignificantly affected. During digit regeneration, more mutipotent progenitor cells, capillary vasculature and neuromuscular-related tissues were observed in MMP1 treated tissues; moreover, there was less fibrotic tissue formed in treated digits. In summary, MMP1 was found to be effective in promoting wound healing in amputated digits of adult mice.

  13. Pattern Specification and Immune Response Transcriptional Signatures of Pericardial and Subcutaneous Adipose Tissue

    PubMed Central

    Lau, Frank H.; Deo, Rahul C.; Mowrer, Gregory; Caplin, Joshua; Ahfeldt, Tim; Kaplan, Adam; Ptaszek, Leon; Walker, Jennifer D.; Rosengard, Bruce R.; Cowan, Chad A.

    2011-01-01

    Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality in the United States. Recent studies suggest that pericardial adipose tissue (PCAT) secretes inflammatory factors that contribute to the development of CVD. To better characterize the role of PCAT in the pathogenesis of disease, we performed a large-scale unbiased analysis of the transcriptional differences between PCAT and subcutaneous adipose tissue, analysing 53 microarrays across 19 individuals. As it was unknown whether PCAT-secreted factors are produced by adipocytes or cells in the supporting stromal fraction, we also sought to identify differentially expressed genes in isolated pericardial adipocytes vs. isolated subcutaneous adipocytes. Using microarray analysis, we found that: 1) pericardial adipose tissue and isolated pericardial adipocytes both overexpress atherosclerosis-promoting chemokines and 2) pericardial and subcutaneous fat depots, as well as isolated pericardial adipocytes and subcutaneous adipocytes, express specific patterns of homeobox genes. In contrast, a core set of lipid processing genes showed no significant overlap with differentially expressed transcripts. These depot-specific homeobox signatures and transcriptional profiles strongly suggest different functional roles for the pericardial and subcutaneous adipose depots. Further characterization of these inter-depot differences should be a research priority. PMID:22022522

  14. Pattern specification and immune response transcriptional signatures of pericardial and subcutaneous adipose tissue.

    PubMed

    Lau, Frank H; Deo, Rahul C; Mowrer, Gregory; Caplin, Joshua; Ahfeldt, Tim; Kaplan, Adam; Ptaszek, Leon; Walker, Jennifer D; Rosengard, Bruce R; Cowan, Chad A

    2011-01-01

    Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality in the United States. Recent studies suggest that pericardial adipose tissue (PCAT) secretes inflammatory factors that contribute to the development of CVD. To better characterize the role of PCAT in the pathogenesis of disease, we performed a large-scale unbiased analysis of the transcriptional differences between PCAT and subcutaneous adipose tissue, analysing 53 microarrays across 19 individuals. As it was unknown whether PCAT-secreted factors are produced by adipocytes or cells in the supporting stromal fraction, we also sought to identify differentially expressed genes in isolated pericardial adipocytes vs. isolated subcutaneous adipocytes. Using microarray analysis, we found that: 1) pericardial adipose tissue and isolated pericardial adipocytes both overexpress atherosclerosis-promoting chemokines and 2) pericardial and subcutaneous fat depots, as well as isolated pericardial adipocytes and subcutaneous adipocytes, express specific patterns of homeobox genes. In contrast, a core set of lipid processing genes showed no significant overlap with differentially expressed transcripts. These depot-specific homeobox signatures and transcriptional profiles strongly suggest different functional roles for the pericardial and subcutaneous adipose depots. Further characterization of these inter-depot differences should be a research priority.

  15. Tissue-specific expressed antibody variable gene repertoires.

    PubMed

    Briney, Bryan S; Willis, Jordan R; Finn, Jessica A; McKinney, Brett A; Crowe, James E

    2014-01-01

    Recent developments in genetic technologies allow deep analysis of the sequence diversity of immune repertoires, but little work has been reported on the architecture of immune repertoires in mucosal tissues. Antibodies are the key to prevention of infections at the mucosal surface, but it is currently unclear whether the B cell repertoire at mucosal surfaces reflects the dominant antibodies found in the systemic compartment or whether mucosal tissues harbor unique repertoires. We examined the expressed antibody variable gene repertoires from 10 different human tissues using RNA samples derived from a large number of individuals. The results revealed that mucosal tissues such as stomach, intestine and lung possess unique antibody gene repertoires that differed substantially from those found in lymphoid tissues or peripheral blood. Mutation frequency analysis of mucosal tissue repertoires revealed that they were highly mutated, with little evidence for the presence of naïve B cells, in contrast to blood. Mucosal tissue repertoires possessed longer heavy chain complementarity determining region 3 loops than lymphoid tissue repertoires. We also noted a large increase in frequency of both insertions and deletions in the small intestine antibody repertoire. These data suggest that mucosal immune repertoires are distinct in many ways from the systemic compartment.

  16. Apoptotic Cells Activate the “Phoenix Rising” Pathway to Promote Wound Healing and Tissue Regeneration

    PubMed Central

    Li, Fang; Huang, Qian; Chen, Jiang; Peng, Yuanlin; Roop, Dennis; Bedford, Joel S; Li, Chuan-Yuan

    2010-01-01

    The ability to regenerate damaged tissues is a common characteristic of multicellular organisms. We report a role for apoptotic cell death in promoting wound healing and tissue regeneration in mice. Apoptotic cells released growth signals that stimulated the proliferation of progenitor or stem cells. Key players in this process were caspases 3 and 7, proteases activated during the execution phase of apoptosis that contribute to cell death. Mice lacking either of these caspases were deficient in skin wound healing and in liver regeneration. Prostaglandin E2, a promoter of stem or progenitor cell proliferation and tissue regeneration, acted downstream of the caspases. We propose to call the pathway by which executioner caspases in apoptotic cells promote wound healing and tissue regeneration in multicellular organisms the “Phoenix Rising” pathway. PMID:20179271

  17. Scrapie-Specific Pathology of Sheep Lymphoid Tissues

    PubMed Central

    McGovern, Gillian; Jeffrey, Martin

    2007-01-01

    Transmissible spongiform encephalopathies (TSEs) or prion diseases often result in accumulation of disease-associated PrP (PrPd) in the lymphoreticular system (LRS), specifically in association with follicular dendritic cells (FDCs) and tingible body macrophages (TBMs) of secondary follicles. We studied the effects of sheep scrapie on lymphoid tissue in tonsils and lymph nodes by light and electron microscopy. FDCs of sheep were grouped according to morphology as immature, mature or regressing. Scrapie was associated with FDC dendrite hypertrophy and electron dense deposit or vesicles. PrPd was located using immunogold labelling at the plasmalemma of FDC dendrites and, infrequently, mature B cells. Abnormal electron dense deposits surrounding FDC dendrites were identified as immunoglobulins suggesting that excess immune complexes are retained and are indicative of an FDC dysfunction. Within scrapie-affected lymph nodes, macrophages outside the follicle and a proportion of germinal centre TBMs accumulated PrPd within endosomes and lysosomes. In addition, TBMs showed PrPd in association with the cell membrane, non-coated pits and vesicles, and also with discrete, large and random endoplasmic reticulum networks, which co-localised with ubiquitin. These observations suggest that PrPd is internalised via the caveolin-mediated pathway, and causes an abnormal disease-related alteration in endoplasmic reticulum structure. In contrast to current dogma, this study shows that sheep scrapie is associated with cytopathology of germinal centres, which we attribute to abnormal antigen complex trapping by FDCs and abnormal endocytic events in TBMs. The nature of the sub-cellular changes in FDCs and TBMs differs from those of scrapie infected neurones and glial cells suggesting that different PrPd/cell membrane interactions occur in different cell types. PMID:18074028

  18. Role of tissue exposure and DNA lesions for organ-specific effects of carcinogenic trans-4-acetylaminostilbene in rats.

    PubMed Central

    Neumann, H G

    1983-01-01

    trans-4-Acetylaminostilbene is acutely toxic to the glandular stomach and produces sebaceous gland tumors in rats quite specifically. Metabolism, tissue exposure to reactive metabolites, DNA binding and persistence of DNA lesions are implicated in tissue susceptibility, but nothing indicates that one of these parameters determines the biological effect. All tissues are exposed to reactive metabolites, liver as a nontarget tissue ranking highest. DNA binding in this tissue, however, is not irrelevant to tumor formation, but rather indicates the presence of initiating lesions. They can be amplified by partial hepatectomy and/or promoters, such as phenobarbital, DDT and diethylstilbestrol. Liver tumors are formed in high yields with these treatments, and mammary tumors also occur. trans-4-Acetylaminostilbene is therefore considered to be an incomplete carcinogen in these tissues and may initiate cells in other tissues as well. Apparently it lacks promoting properties which are supposed to be unrelated to reactive metabolites. It is concluded that DNA lesions do not reflect tissue risk, but rather secondary effects ultimately determine where the process of tumor formation starts and how fast it develops. PMID:6832097

  19. Specific and non-specific folate binding protein in normal and malignant human tissues

    PubMed Central

    Corrocher, R.; De Sandre, G.; Ambrosetti, A.; Pachor, M. L.; Bambara, L. M.; Hoffbrand, A. V.

    1978-01-01

    Binding of tritiated folic acid by supernatants prepared from extracts of normal and leukaemic leucocytes, normal mucosa, and malignant tumours from different parts of the gastrointestinal tract has been measured using Sephadex-gel filtration and albumin-coated charcoal techniques. Non-specific binding (measured by Sephadex G-75 gel filtration) was almost invariably greater than specific binding measured by albumin-coated charcoal separation of bound and unbound folate. In nine normal leucocyte extracts, binding measured by Sephadex G-75 filtration ranged from 1·3 to 18·2 (mean 8·2) pg/mg protein and by albumin-coated charcoal from 1·0 to 14·8 (mean 6·7) pg/mg protein. Raised specific binding was found in the extracts from leucocytes of eight of 14 patients with chronic granulocytic leukaemia, in four substantially so (389, 121, 108, 59·7 pg/mg protein), but was only marginally increased in one of eight cases of acute myeloid leukaemia and in two of five cases of chronic lymphocytic leukaemia. Binding was normal in the extracts of all three cases of acute lymphoblastic leukaemia tested. Among the tissues of the gastrointestinal tract binding was greatest by the duodenal mucosa and liver. Extracts of carcinoma of the stomach and colon bound greater amounts of 3H-folic acid than the corresponding normal mucosal extracts but the differences were not large. Sephadex G-200 gel chromatography showed more than one binding peak in the extracts of liver and duodenum but only one peak in the other tissues of the gastrointestinal tract, and only one peak, of molecular weight either about 50 000 or over 200 000, in the leucocyte extracts. PMID:670421

  20. On the prospect of patient-specific biomechanics without patient-specific properties of tissues

    PubMed Central

    Miller, Karol; Lu, Jia

    2013-01-01

    This paper presents main theses of two keynote lectures delivered at Euromech Colloquium “Advanced experimental approaches and inverse problems in tissue biomechanics” held in Saint Etienne in June 2012. We are witnessing an advent of patient-specific biomechanics that will bring in the future personalized treatments to sufferers all over the world. It is the current task of biomechanists to devise methods for clinically-relevant patient-specific modeling. One of the obstacles standing before the biomechanics community is the difficulty in obtaining patient-specific properties of tissues to be used in biomechanical models. We postulate that focusing on reformulating computational mechanics problems in such a way that the results are weakly sensitive to the variation in mechanical properties of simulated continua is more likely to bear fruit in near future. We consider two types of problems: i) displacement-zero traction problems whose solutions in displacements are weakly sensitive to mechanical properties of the considered continuum; and ii) problems that are approximately statically determinate and therefore their solutions in stresses are also weakly sensitive to mechanical properties of constituents. We demonstrate that the kinematically loaded biomechanical models of the first type are applicable in the field of image-guided surgery where the current, intraoperative configuration of a soft organ is of critical importance. We show that sac-like membranes, which are prototypes of many thin-walled biological organs, are approximately statically determinate and therefore useful solutions for wall stress can be obtained without the knowledge of the wall's properties. We demonstrate the clinical applicability and effectiveness of the proposed methods using examples from modeling neurosurgery and intracranial aneurysms. PMID:23491073

  1. Nattokinase-promoted tissue plasminogen activator release from human cells.

    PubMed

    Yatagai, Chieko; Maruyama, Masugi; Kawahara, Tomoko; Sumi, Hiroyuki

    2008-01-01

    When heated to a temperature of 70 degrees C or higher, the strong fibrinolytic activity of nattokinase in a solution was deactivated. Similar results were observed in the case of using Suc-Ala-Ala-Pro-Phe-pNA and H-D-Val-Leu-Lys-pNA, which are synthetic substrates of nattokinase. In the current study, tests were conducted on the indirect fibrinolytic effects of the substances containing nattokinase that had been deactivated through heating at 121 degrees C for 15 min. Bacillus subtilis natto culture solutions made from three types of bacteria strain were heat-treated and deactivated, and it was found that these culture solutions had the ability to generate tissue plasminogen activators (tPA) from vascular endothelial cells and HeLa cells at certain concentration levels. For example, it was found that the addition of heat-treated culture solution of the Naruse strain (undiluted solution) raises the tPA activity of HeLa cells to about 20 times that of the control. Under the same conditions, tPA activity was raised to a level about 5 times higher for human vascular endothelial cells (HUVEC), and to a level about 24 times higher for nattokinase sold on the market. No change in cell count was observed for HeLa cells and HUVEC in the culture solution at these concentrations, and the level of activity was found to vary with concentration.

  2. Pollen- and anther-specific chi promoters from petunia: tandem promoter regulation of the chiA gene.

    PubMed Central

    van Tunen, A J; Mur, L A; Brouns, G S; Rienstra, J D; Koes, R E; Mol, J N

    1990-01-01

    We have analyzed the spatial and temporal activities of chalcone flavanone isomerase (chi) A and B gene promoters from petunia. To study the tandem promoter regulation of chiA, various chiA promoter fragments were fused with the beta-glucuronidase (GUS) reporter gene. Analysis of transgenic plants containing these chimeric genes provided definitive proof that the chiA coding region is regulated by two distinct promoters (designated PA1 and PA2). We also showed that both promoters can function independently and that the chiA PA1 promoter is expressed in limb (epidermal and parenchyma cells), tube (inner epidermal and parenchyma cells), seed (seed coat, endosperm, and embryo), sepal, leaf, and stem. The use of chiA and chiB promoters in the regulation of anther- and pollen-specific gene expression has been studied. By analyzing transgenic plants containing chimeric genes consisting of chiA and B promoter fragments and the GUS reporter gene, we were able to identify a 0.44-kilobase chiA PA2 promoter fragment that drives pollen-specific gene expression and a 1.75-kilobase chiB PB promoter fragment that confers anther-specific (pollen and tapetum cells) expression to the GUS gene. PMID:2152165

  3. Connective tissue growth factor is expressed in bone marrow stromal cells and promotes interleukin-7-dependent B lymphopoiesis

    PubMed Central

    Cheung, Laurence C.; Strickland, Deborah H.; Howlett, Meegan; Ford, Jette; Charles, Adrian K.; Lyons, Karen M.; Brigstock, David R.; Goldschmeding, Roel; Cole, Catherine H.; Alexander, Warren S.; Kees, Ursula R.

    2014-01-01

    Hematopoiesis occurs in a complex bone marrow microenvironment in which bone marrow stromal cells provide critical support to the process through direct cell contact and indirectly through the secretion of cytokines and growth factors. We report that connective tissue growth factor (Ctgf, also known as Ccn2) is highly expressed in murine bone marrow stromal cells. In contrast, connective tissue growth factor is barely detectable in unfractionated adult bone marrow cells. While connective tissue growth factor has been implicated in hematopoietic malignancies, and is known to play critical roles in skeletogenesis and regulation of bone marrow stromal cells, its role in hematopoiesis has not been described. Here we demonstrate that the absence of connective tissue growth factor in mice results in impaired hematopoiesis. Using a chimeric fetal liver transplantation model, we show that absence of connective tissue growth factor has an impact on B-cell development, in particular from pro-B to more mature stages, which is linked to a requirement for connective tissue growth factor in bone marrow stromal cells. Using in vitro culture systems, we demonstrate that connective tissue growth factor potentiates B-cell proliferation and promotes pro-B to pre-B differentiation in the presence of interleukin-7. This study provides a better understanding of the functions of connective tissue growth factor within the bone marrow, showing the dual regulatory role of the growth factor in skeletogenesis and in stage-specific B lymphopoiesis. PMID:24727816

  4. Immune modulation by MANF promotes tissue repair and regenerative success in the retina.

    PubMed

    Neves, Joana; Zhu, Jie; Sousa-Victor, Pedro; Konjikusic, Mia; Riley, Rebeccah; Chew, Shereen; Qi, Yanyan; Jasper, Heinrich; Lamba, Deepak A

    2016-07-01

    Regenerative therapies are limited by unfavorable environments in aging and diseased tissues. A promising strategy to improve success is to balance inflammatory and anti-inflammatory signals and enhance endogenous tissue repair mechanisms. Here, we identified a conserved immune modulatory mechanism that governs the interaction between damaged retinal cells and immune cells to promote tissue repair. In damaged retina of flies and mice, platelet-derived growth factor (PDGF)-like signaling induced mesencephalic astrocyte-derived neurotrophic factor (MANF) in innate immune cells. MANF promoted alternative activation of innate immune cells, enhanced neuroprotection and tissue repair, and improved the success of photoreceptor replacement therapies. Thus, immune modulation is required during tissue repair and regeneration. This approach may improve the efficacy of stem-cell-based regenerative therapies.

  5. Group A Streptococcus intranasal infection promotes CNS infiltration by streptococcal-specific Th17 cells

    PubMed Central

    Dileepan, Thamotharampillai; Smith, Erica D.; Knowland, Daniel; Hsu, Martin; Platt, Maryann; Bittner-Eddy, Peter; Cohen, Brenda; Southern, Peter; Latimer, Elizabeth; Harley, Earl; Agalliu, Dritan; Cleary, P. Patrick

    2015-01-01

    Group A streptococcal (GAS) infection induces the production of Abs that cross-react with host neuronal proteins, and these anti-GAS mimetic Abs are associated with autoimmune diseases of the CNS. However, the mechanisms that allow these Abs to cross the blood-brain barrier (BBB) and induce neuropathology remain unresolved. We have previously shown that GAS infection in mouse models induces a robust Th17 response in nasal-associated lymphoid tissue (NALT). Here, we identified GAS-specific Th17 cells in tonsils of humans naturally exposed to GAS, prompting us to explore whether GAS-specific CD4+ T cells home to mouse brains following i.n. infection. Intranasal challenge of repeatedly GAS-inoculated mice promoted migration of GAS-specific Th17 cells from NALT into the brain, BBB breakdown, serum IgG deposition, microglial activation, and loss of excitatory synaptic proteins under conditions in which no viable bacteria were detected in CNS tissue. CD4+ T cells were predominantly located in the olfactory bulb (OB) and in other brain regions that receive direct input from the OB. Together, these findings provide insight into the immunopathology of neuropsychiatric complications that are associated with GAS infections and suggest that crosstalk between the CNS and cellular immunity may be a general mechanism by which infectious agents exacerbate symptoms associated with other CNS autoimmune disorders. PMID:26657857

  6. Sequence- and Structure-Based Analysis of Tissue-Specific Phosphorylation Sites

    PubMed Central

    Karabulut, Nermin Pinar; Frishman, Dmitrij

    2016-01-01

    Phosphorylation is the most widespread and well studied reversible posttranslational modification. Discovering tissue-specific preferences of phosphorylation sites is important as phosphorylation plays a role in regulating almost every cellular activity and disease state. Here we present a comprehensive analysis of global and tissue-specific sequence and structure properties of phosphorylation sites utilizing recent proteomics data. We identified tissue-specific motifs in both sequence and spatial environments of phosphorylation sites. Target site preferences of kinases across tissues indicate that, while many kinases mediate phosphorylation in all tissues, there are also kinases that exhibit more tissue-specific preferences which, notably, are not caused by tissue-specific kinase expression. We also demonstrate that many metabolic pathways are differentially regulated by phosphorylation in different tissues. PMID:27332813

  7. Tissue Discrimination by Uncorrected Autofluorescence Spectra: A Proof-of-Principle Study for Tissue-Specific Laser Surgery

    PubMed Central

    Stelzle, Florian; Knipfer, Christian; Adler, Werner; Rohde, Maximilian; Oetter, Nicolai; Nkenke, Emeka; Schmidt, Michael; Tangermann-Gerk, Katja

    2013-01-01

    Laser surgery provides a number of advantages over conventional surgery. However, it implies large risks for sensitive tissue structures due to its characteristic non-tissue-specific ablation. The present study investigates the discrimination of nine different ex vivo tissue types by using uncorrected (raw) autofluorescence spectra for the development of a remote feedback control system for tissue-selective laser surgery. Autofluorescence spectra (excitation wavelength 377 ± 50 nm) were measured from nine different ex vivo tissue types, obtained from 15 domestic pig cadavers. For data analysis, a wavelength range between 450 nm and 650 nm was investigated. Principal Component Analysis (PCA) and Quadratic Discriminant Analysis (QDA) were used to discriminate the tissue types. ROC analysis showed that PCA, followed by QDA, could differentiate all investigated tissue types with AUC results between 1.00 and 0.97. Sensitivity reached values between 93% and 100% and specificity values between 94% and 100%. This ex vivo study shows a high differentiation potential for physiological tissue types when performing autofluorescence spectroscopy followed by PCA and QDA. The uncorrected autofluorescence spectra are suitable for reliable tissue discrimination and have a high potential to meet the challenges necessary for an optical feedback system for tissue-specific laser surgery. PMID:24152930

  8. Genome-wide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues

    PubMed Central

    Guo, Zhiyun; Maki, Miranda; Ding, Ruofan; Yang, Yalan; zhang, Bao; Xiong, Lili

    2014-01-01

    Tissue-specific miRNAs (TS miRNA) specifically expressed in particular tissues play an important role in tissue identity, differentiation and function. However, transcription factor (TF) and TS miRNA regulatory networks across multiple tissues have not been systematically studied. Here, we manually extracted 116 TS miRNAs and systematically investigated the regulatory network of TF-TS miRNA in 12 human tissues. We identified 2,347 TF-TS miRNA regulatory relations and revealed that most TF binding sites tend to enrich close to the transcription start site of TS miRNAs. Furthermore, we found TS miRNAs were regulated widely by non-tissue specific TFs and the tissue-specific expression level of TF have a close relationship with TF-genes regulation. Finally, we describe TSmiR (http://bioeng.swjtu.edu.cn/TSmiR), a novel and web-searchable database that houses interaction maps of TF-TS miRNA in 12 tissues. Taken together, these observations provide a new suggestion to better understand the regulatory network and mechanisms of TF-TS miRNAs underlying different tissues. PMID:24889152

  9. Tissue-Specificity of Gene Expression Diverges Slowly between Orthologs, and Rapidly between Paralogs

    PubMed Central

    2016-01-01

    The ortholog conjecture implies that functional similarity between orthologous genes is higher than between paralogs. It has been supported using levels of expression and Gene Ontology term analysis, although the evidence was rather weak and there were also conflicting reports. In this study on 12 species we provide strong evidence of high conservation in tissue-specificity between orthologs, in contrast to low conservation between within-species paralogs. This allows us to shed a new light on the evolution of gene expression patterns. While there have been several studies of the correlation of expression between species, little is known about the evolution of tissue-specificity itself. Ortholog tissue-specificity is strongly conserved between all tetrapod species, with the lowest Pearson correlation between mouse and frog at r = 0.66. Tissue-specificity correlation decreases strongly with divergence time. Paralogs in human show much lower conservation, even for recent Primate-specific paralogs. When both paralogs from ancient whole genome duplication tissue-specific paralogs are tissue-specific, it is often to different tissues, while other tissue-specific paralogs are mostly specific to the same tissue. The same patterns are observed using human or mouse as focal species, and are robust to choices of datasets and of thresholds. Our results support the following model of evolution: in the absence of duplication, tissue-specificity evolves slowly, and tissue-specific genes do not change their main tissue of expression; after small-scale duplication the less expressed paralog loses the ancestral specificity, leading to an immediate difference between paralogs; over time, both paralogs become more broadly expressed, but remain poorly correlated. Finally, there is a small number of paralog pairs which stay tissue-specific with the same main tissue of expression, for at least 300 million years. PMID:28030541

  10. Subchronic sleep restriction causes tissue-specific insulin resistance.

    PubMed

    Rao, Madhu N; Neylan, Thomas C; Grunfeld, Carl; Mulligan, Kathleen; Schambelan, Morris; Schwarz, Jean-Marc

    2015-04-01

    Short sleep duration is associated with an increased risk of type 2 diabetes. Subchronic sleep restriction (SR) causes insulin resistance, but the mechanisms and roles of specific tissues are unclear. The purpose of this article was to determine whether subchronic SR altered (1) hepatic insulin sensitivity, (2) peripheral insulin sensitivity, and (3) substrate utilization. This was a randomized crossover study in which 14 subjects underwent 2 admissions separated by a washout period. Each admission had 2 acclimatization nights followed by 5 nights of either SR (4 hours time in bed) or normal sleep (8 hours time in bed). MAIN OUTCOME MEASURE/METHODS: Insulin sensitivity (measured by hyperinsulinemic-euglycemic clamp) and hepatic insulin sensitivity (measured by stable isotope techniques) were measured. In addition, we assayed stress hormone (24-hour urine free cortisol, metanephrine, and normetanephrine), nonesterified fatty acid (NEFA), and β-hydroxybutyrate (β-OH butyrate) levels. Resting energy expenditure (REE) and respiratory quotient (RQ) were measured by indirect calorimetry. Compared to normal sleep, whole-body insulin sensitivity decreased by 25% (P = .008) with SR and peripheral insulin sensitivity decreased by 29% (P = .003). Whereas hepatic insulin sensitivity (endogenous glucose production) did not change significantly, percent gluconeogenesis increased (P = .03). Stress hormones increased modestly (cortisol by 21%, P = .04; metanephrine by 8%, P = .014; normetanephrine by 18%, P = .002). Fasting NEFA and β-OH butyrate levels increased substantially (62% and 55%, respectively). REE did not change (P = 0.98), but RQ decreased (0.81 ± .02 vs 0.75 ± 0.02, P = .045). Subchronic SR causes unique metabolic disturbances characterized by peripheral, but not hepatic, insulin resistance; this was associated with a robust increase in fasting NEFA levels (indicative of increased lipolysis), decreased RQ, and increased β-OH butyrate levels (indicative of whole

  11. Tissue specific and androgen-regulated expression of human prostate-specific transglutaminase.

    PubMed Central

    Dubbink, H J; Verkaik, N S; Faber, P W; Trapman, J; Schröder, F H; Romijn, J C

    1996-01-01

    Transglutaminases (TGases) are calcium-dependent enzymes catalysing the post-translational cross-linking of proteins. In the prostate at least two TGases are present, the ubiquitously expressed tissue-type TGase (TGC), and a prostate-restricted TGase (TGP). This paper deals with the molecular cloning and characterization of the cDNA encoding the human prostate TGase (hTGP). For this purpose we have screened a human prostate cDNA library with a probe from the active-site region of TGC. The largest isolated cDNA contained an open reading frame encoding a protein of 684 amino acids with a predicted molecular mass of 77 kDa as confirmed by in vitro transcription-translation and subsequent SDS/PAGE. The hTGP gene was tissue-specifically expressed in the prostate, yielding an mRNA of approx. 3.5 kb. Furthermore, a 3-fold androgen-induced upregulation of hTGP mRNA expression has been demonstrated in the recently developed human prostate cancer cell line, PC346C. Other well established human prostate cancer cell lines, LNCaP and PC-3, showed no detectable hTGP mRNA expression on a Northern bolt. The gene coding for prostate TGase was assigned to chromosome 3. PMID:8645175

  12. Promoter methylation in the PTCH gene in cervical epithelial cancer and ovarian cancer tissue as studied by eight novel Pyrosequencing® assays.

    PubMed

    Löf-Öhlin, Zarah M; Levanat, Sonja; Sabol, Maja; Sorbe, Bengt; Nilsson, Torbjörn K

    2011-03-01

    DNA methylation status in the CpG sites of promoter regions in cancer-related genes, such as PTCH, has traditionally been investigated using either dye-terminator sequencing or methylation-specific PCR. We aimed to study the PTCH gene promoter methylation in gynecological cancers, with a method that gives a quantitative measure of the methylation status of the promoter region of the studied gene, and for this purpose, we designed novel Pyrosequencing-based assays. Bisulfite-treated genomic DNA (bsDNA) was amplified by standard PCR and applied to novel Pyrosequencing® assays, in order to measure the methylated fraction (%) at each CpG site of the PTCH gene promoter. We analyzed 22 squamous cell cervical cancer tissue specimens (11 with good and 11 with poor outcomes after radiotherapy) and 5 ovarian cancer tissue specimens matched with 5 normal ovarian tissue specimens. Six optimized PCR protocols which generated 8 Pyrosequencing assays covering 63 CpG sites in the promoter regions 1 and 2 as well as the previously unanalyzed promoter region 3 in the PTCH gene were developed. The 27 tumor tissue specimens and 5 normal tissues did not show any methylation within any of the 63 CpG sites. Our data suggest that methylation of the PTCH promoter is not a high-prevalence feature of squamous cell cervical cancer or ovarian cancer, but Pyrosequencing assays are a good method for studying promoter methylation.

  13. The promoter of the CD11b gene directs myeloid-specific and developmentally regulated expression.

    PubMed Central

    Shelley, C S; Arnaout, M A

    1991-01-01

    Human CD11b/CD18 (complement receptor type 3) is a member of the beta 2 integrin subfamily which also includes the heterodimers CD11a/CD18 and CD11c/CD18. The CD11 molecules and the common CD18 are the products of different genes that exhibit distinct though overlapping patterns of tissue- and developmental-specific expression. Whereas expression of CD11b and CD11c is almost exclusively restricted to cells of the myeloid lineage, that of CD11a and CD18 is panleukocytic. To begin to understand the mechanisms by which expression of these gene products is restricted to leukocytes and leukocyte subpopulations and to elucidate the mechanisms by which their expression is coordinated, we have cloned and characterized the promoter region of the CD11b gene. A single transcription initiation site has been identified and the region extending 242 base pairs upstream and 71 base pairs downstream of this site has been shown to be sufficient to direct tissue-, cell-, and development-specific expression in vitro, which mimics that of the CD11b gene in vivo. Within this region there are potential binding sites for transcription factors known to be involved in hematopoietic-specific and phorbol ester-inducible gene expression. Further analysis of this region of the CD11b gene and comparison with the promoters of the CD11a, CD11c, and CD18 genes should lead to significant insights into the molecular mechanisms by which these genes are regulated during hematopoietic development and upon activation. Images PMID:1683702

  14. ELF5 isoform expression is tissue-specific and significantly altered in cancer.

    PubMed

    Piggin, Catherine L; Roden, Daniel L; Gallego-Ortega, David; Lee, Heather J; Oakes, Samantha R; Ormandy, Christopher J

    2016-01-07

    E74-like factor 5 (ELF5) is an epithelial-specific member of the E26 transforming sequence (ETS) transcription factor family and a critical regulator of cell fate in the placenta, pulmonary bronchi, and milk-producing alveoli of the mammary gland. ELF5 also plays key roles in malignancy, particularly in basal-like and endocrine-resistant forms of breast cancer. Almost all genes undergo alternative transcription or splicing, which increases the diversity of protein structure and function. Although ELF5 has multiple isoforms, this has not been considered in previous studies of ELF5 function. RNA-sequencing data for 6757 samples from The Cancer Genome Atlas were analyzed to characterize ELF5 isoform expression in multiple normal tissues and cancers. Extensive in vitro analysis of ELF5 isoforms, including a 116-gene quantitative polymerase chain reaction panel, was performed in breast cancer cell lines. ELF5 isoform expression was found to be tissue-specific due to alternative promoter use but altered in multiple cancer types. The normal breast expressed one main isoform, while in breast cancer there were subtype-specific alterations in expression. Expression of other ETS factors was also significantly altered in breast cancer, with the basal-like subtype demonstrating a distinct ETS expression profile. In vitro inducible expression of the full-length isoforms 1 and 2, as well as isoform 3 (lacking the Pointed domain) had similar phenotypic and transcriptional effects. Alternative promoter use, conferring differential regulatory responses, is the main mechanism governing ELF5 action rather than differential transcriptional activity of the isoforms. This understanding of expression and function at the isoform level is a vital first step in realizing the potential of transcription factors such as ELF5 as prognostic markers or therapeutic targets in cancer.

  15. Association of NDRG1 gene promoter methylation with reduced NDRG1 expression in gastric cancer cells and tissue specimens.

    PubMed

    Chang, Xiaojing; Zhang, Shuanglong; Ma, Jinguo; Li, Zhenhua; Zhi, Yu; Chen, Jing; Lu, Yao; Dai, Dongqiu

    2013-05-01

    NDRG1 (N-myc downstream-regulated gene 1) plays a role in cell differentiation and suppression of tumor metastasis. This study aims to determine the expression of NDRG1 mRNA and protein in gastric cancer cell lines and tissue specimens and then assess the possible cause of its aberrant expression. Six gastric cancer cell lines and 20 pairs of normal and gastric cancer tissue samples were used to assess NDRG1 expression using Real-time PCR and Western blot. High-resolution melting analysis (HRM) and methylation-specific PCR (MSP) were performed to detect gene mutation and methylation, respectively, in cell lines and tissues samples. Expression of NDRG1 mRNA and protein was downregulated in gastric cancer cell lines and tissues. Specifically, expression of NDRG1 mRNA and protein was lower in all six gastric cancer cell lines than that of normal gastric cells, while 15 out of 20 cases of gastric cancer tissues had the reduced levels of NDRG1 mRNA and protein. HRM data showed that there was no mutation in NDRG1 gene, but MSP data showed high levels of NDRG1 gene promoter methylation in the CpG islands in both cell lines and tissue samples. Moreover, treatment with the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine upregulated NDRG1 expression in gastric cancer HGC27 cells, but not in the histone deacetylase inhibitor trichostatin A-treated HGC27 cells. In conclusion, this study has shown that expression of NDRG1 mRNA and protein was reduced in gastric cancer cell lines and tissues, which is due to methylation of NDRG1 gene promoter. Further study will unearth the clinical significance of the reduced NDRG1 protein in gastric cancer.

  16. Tissue transglutaminase 2 inhibition promotes cell death and chemosensitivity in glioblastomas.

    PubMed

    Yuan, Liya; Choi, Kihang; Khosla, Chaitan; Zheng, Xiao; Higashikubo, Ryuji; Chicoine, Michael R; Rich, Keith M

    2005-09-01

    Tissue transglutaminase 2 belongs to a family of transglutaminase proteins that confers mechanical resistance from proteolysis and stabilizes proteins. Transglutaminase 2 promotes transamidation between glutamine and lysine residues with the formation of covalent linkages between proteins. Transglutaminase 2 also interacts and forms complexes with proteins important in extracellular matrix organization and cellular adhesion. We have identified the novel finding that treatment of glioblastoma cells with transglutaminase 2 inhibitors promotes cell death and enhances sensitivity to chemotherapy. Treatment with either the competitive transglutaminase 2 inhibitor, monodansylcadaverine, or with highly specific small-molecule transglutaminase 2 inhibitors, KCA075 or KCC009, results in induction of apoptosis in glioblastoma cells. Treatment with these transglutaminase 2 inhibitors resulted in markedly decreased levels of the prosurvival protein, phosphorylated Akt, and its downstream targets. These changes promote a proapoptotic profile with altered levels of multiple intracellular proteins that determine cell survival. These changes include decreased levels of the antiapoptotic proteins, survivin, phosphorylated Bad, and phosphorylated glycogen synthetase kinase 3beta (GSK-3beta), and increased levels of the proapoptotic BH3-only protein, Bim. In vivo studies with s.c. murine DBT glioblastoma tumors treated with transglutaminase 2 inhibitors combined with the chemotherapeutic agent, N-N'-bis (2-chloroethyl)-N-nitrosourea (BCNU), decreased tumor size based on weight by 50% compared with those treated with BCNU alone. Groups treated with transglutaminase 2 inhibitors showed an increased incidence of apoptosis determined with deoxynucleotidyl transferase-mediated biotin nick-end labeling staining. These studies identify inhibition of transglutaminase 2 as a potential target to enhance cell death and chemosensitivity in glioblastomas.

  17. Tissue-specific transcriptome profiling of the citrus fruit epidermis and subepidermis using laser capture microdissection

    PubMed Central

    Matas, Antonio J.; Agustí, Javier; Tadeo, Francisco R.; Talón, Manuel; Rose, Jocelyn K. C.

    2010-01-01

    Most studies of the biochemical and regulatory pathways that are associated with, and control, fruit expansion and ripening are based on homogenized bulk tissues, and do not take into consideration the multiplicity of different cell types from which the analytes, be they transcripts, proteins or metabolites, are extracted. Consequently, potentially valuable spatial information is lost and the lower abundance cellular components that are expressed only in certain cell types can be diluted below the level of detection. In this study, laser microdissection (LMD) was used to isolate epidermal and subepidermal cells from green, expanding Citrus clementina fruit and their transcriptomes were compared using a 20k citrus cDNA microarray and quantitative real-time PCR. The results show striking differences in gene expression profiles between the two cell types, revealing specific metabolic pathways that can be related to their respective organelle composition and cell wall specialization. Microscopy provided additional evidence of tissue specialization that could be associated with the transcript profiles with distinct differences in organelle and metabolite accumulation. Subepidermis predominant genes are primarily involved in photosynthesis- and energy-related processes, as well as cell wall biosynthesis and restructuring. By contrast, the most epidermis predominant genes are related to the biosynthesis of the cuticle, flavonoids, and defence responses. Furthermore, the epidermis transcript profile showed a high proportion of genes with no known function, supporting the original hypothesis that analysis at the tissue/cell specific levels can promote gene discovery and lead to a better understanding of the specialized contribution of each tissue to fruit physiology. PMID:20519339

  18. Tissue-specific and differentiation-specific expression of a human K14 keratin gene in transgenic mice

    SciTech Connect

    Vassar, R.; Rosenberg, M.; Tyner, A.; Fuchs, E. ); Ross, S. )

    1989-03-01

    A construct containing {approx}2,500 base pairs (bp) of 5{prime} upstream and {approx}700 bp of 3{prime} downstream sequence was used to drive the expression of an intronless human K14 gene in vitro and in vivo. To track the expression of the gene, a small sequence encoding the antigenic portion of neuropeptide substance P was inserted in frame 5{prime} to the TGA translation stop codon of the gene. Surprisingly, this gene was expressed promiscuously in a wide variety of cultured cells transiently transfected with the construct. In contrast, when introduced into the germ line of transgenic mice, the construct was expressed in a fashion analogous to the endogenous K14 gene--namely, in the basal layer of stratified squamous epithelia. The results suggest that some regulatory mechanism is overridden as a consequence of transient transfection but that sequences that can control proper K14 expression are present in the construct. The appropriate tissue-specific and differentiation-specific expression of K14{center dot}P in transgenic mice is an important first step in characterizing a promoter that could be employed to drive the foreign expression of drug-related genes in the epidermis of skin grafts.

  19. Lineage-specific dynamic and pre-established enhancer-promoter contacts cooperate in terminal differentiation.

    PubMed

    Rubin, Adam J; Barajas, Brook C; Furlan-Magaril, Mayra; Lopez-Pajares, Vanessa; Mumbach, Maxwell R; Howard, Imani; Kim, Daniel S; Boxer, Lisa D; Cairns, Jonathan; Spivakov, Mikhail; Wingett, Steven W; Shi, Minyi; Zhao, Zhixin; Greenleaf, William J; Kundaje, Anshul; Snyder, Michael; Chang, Howard Y; Fraser, Peter; Khavari, Paul A

    2017-10-01

    Chromosome conformation is an important feature of metazoan gene regulation; however, enhancer-promoter contact remodeling during cellular differentiation remains poorly understood. To address this, genome-wide promoter capture Hi-C (CHi-C) was performed during epidermal differentiation. Two classes of enhancer-promoter contacts associated with differentiation-induced genes were identified. The first class ('gained') increased in contact strength during differentiation in concert with enhancer acquisition of the H3K27ac activation mark. The second class ('stable') were pre-established in undifferentiated cells, with enhancers constitutively marked by H3K27ac. The stable class was associated with the canonical conformation regulator cohesin, whereas the gained class was not, implying distinct mechanisms of contact formation and regulation. Analysis of stable enhancers identified a new, essential role for a constitutively expressed, lineage-restricted ETS-family transcription factor, EHF, in epidermal differentiation. Furthermore, neither class of contacts was observed in pluripotent cells, suggesting that lineage-specific chromatin structure is established in tissue progenitor cells and is further remodeled in terminal differentiation.

  20. Preventing tissue fibrosis by local biomaterials interfacing of specific cryptic extracellular matrix information

    NASA Astrophysics Data System (ADS)

    Horejs, Christine-Maria; St-Pierre, Jean-Philippe; Ojala, Juha R. M.; Steele, Joseph A. M.; da Silva, Patricia Barros; Rynne-Vidal, Angela; Maynard, Stephanie A.; Hansel, Catherine S.; Rodríguez-Fernández, Clara; Mazo, Manuel M.; You, Amanda Y. F.; Wang, Alex J.; von Erlach, Thomas; Tryggvason, Karl; López-Cabrera, Manuel; Stevens, Molly M.

    2017-06-01

    Matrix metalloproteinases (MMPs) contribute to the breakdown of tissue structures such as the basement membrane, promoting tissue fibrosis. Here we developed an electrospun membrane biofunctionalized with a fragment of the laminin β1-chain to modulate the expression of MMP2 in this context. We demonstrate that interfacing of the β1-fragment with the mesothelium of the peritoneal membrane via a biomaterial abrogates the release of active MMP2 in response to transforming growth factor β1 and rescues tissue integrity ex vivo and in vivo in a mouse model of peritoneal fibrosis. Importantly, our data demonstrate that the membrane inhibits MMP2 expression. Changes in the expression of epithelial-to-mesenchymal transition (EMT)-related molecules further point towards a contribution of the modulation of EMT. Biomaterial-based presentation of regulatory basement membrane signals directly addresses limitations of current therapeutic approaches by enabling a localized and specific method to counteract MMP2 release applicable to a broad range of therapeutic targets.

  1. The Circadian Clock That Controls Gene Expression in Arabidopsis Is Tissue Specific1

    PubMed Central

    Thain, Simon C.; Murtas, Giovanni; Lynn, James R.; McGrath, Robert. B.; Millar, Andrew J.

    2002-01-01

    The expression of CHALCONE SYNTHASE (CHS) expression is an important control step in the biosynthesis of flavonoids, which are major photoprotectants in plants. CHS transcription is regulated by endogenous programs and in response to environmental signals. Luciferase reporter gene fusions showed that the CHS promoter is controlled by the circadian clock both in roots and in aerial organs of transgenic Arabidopsis plants. The period of rhythmic CHS expression differs from the previously described rhythm of chlorophyll a/b-binding protein (CAB) gene expression, indicating that CHS is controlled by a distinct circadian clock. The difference in period is maintained in the wild-type Arabidopsis accessions tested and in the de-etiolated 1 and timing of CAB expression 1 mutants. These clock-affecting mutations alter the rhythms of both CAB and CHS markers, indicating that a similar (if not identical) circadian clock mechanism controls these rhythms. The distinct tissue distribution of CAB and CHS expression suggests that the properties of the circadian clock differ among plant tissues. Several animal organs also exhibit heterogeneous circadian properties in culture but are believed to be synchronized in vivo. The fact that differing periods are manifest in intact plants supports our proposal that spatially separated copies of the plant circadian clock are at most weakly coupled, if not functionally independent. This autonomy has apparently permitted tissue-specific specialization of circadian timing. PMID:12226490

  2. Preventing tissue fibrosis by local biomaterials interfacing of specific cryptic extracellular matrix information

    PubMed Central

    Horejs, Christine-Maria; St-Pierre, Jean-Philippe; Ojala, Juha R. M.; Steele, Joseph A. M.; da Silva, Patricia Barros; Rynne-Vidal, Angela; Maynard, Stephanie A.; Hansel, Catherine S.; Rodríguez-Fernández, Clara; Mazo, Manuel M.; You, Amanda Y. F.; Wang, Alex J.; von Erlach, Thomas; Tryggvason, Karl; López-Cabrera, Manuel; Stevens, Molly M.

    2017-01-01

    Matrix metalloproteinases (MMPs) contribute to the breakdown of tissue structures such as the basement membrane, promoting tissue fibrosis. Here we developed an electrospun membrane biofunctionalized with a fragment of the laminin β1-chain to modulate the expression of MMP2 in this context. We demonstrate that interfacing of the β1-fragment with the mesothelium of the peritoneal membrane via a biomaterial abrogates the release of active MMP2 in response to transforming growth factor β1 and rescues tissue integrity ex vivo and in vivo in a mouse model of peritoneal fibrosis. Importantly, our data demonstrate that the membrane inhibits MMP2 expression. Changes in the expression of epithelial-to-mesenchymal transition (EMT)-related molecules further point towards a contribution of the modulation of EMT. Biomaterial-based presentation of regulatory basement membrane signals directly addresses limitations of current therapeutic approaches by enabling a localized and specific method to counteract MMP2 release applicable to a broad range of therapeutic targets. PMID:28593951

  3. Negative regulation in correct tissue-specific expression of mouse mammary tumor virus in transgenic mice.

    PubMed Central

    Ross, S R; Hsu, C L; Choi, Y; Mok, E; Dudley, J P

    1990-01-01

    Mouse mammary tumor virus (MMTV) is an endogenous murine retrovirus that is expressed in the epithelial cells of the mammary and salivary glands, lungs, kidneys, and seminal vesicles and in the lymphoid cells of the spleen and thymus. Several studies have shown that the long terminal repeat (LTR) of this virus can direct the expression of reporter genes to the same tissues in transgenic mice. To determine whether multiple regulatory elements within the LTR are involved in this tissue-specific expression, we have established lines of transgenic mice containing transgenes that have deletions in the MMTV LTR. Deletions of all LTR sequences upstream of -364 or of LTR sequences from -165 to -665 both result in the expression of linked reporter genes such as the simian virus 40 early region or the bacterial enzyme chloramphenicol acetyltransferase in novel sites, such as the heart, brain, and skeletal muscle; expression of endogenous MMTV and transgenes containing the full-length LTR is not detected in these organs. Negative regulation appears to involve more than one region, since deletion of sequences between either -201 and -471 or -201 and -344, as well as sequences upstream of -364, results in inappropriate expression in heart, brain, and skeletal muscle. Therefore, a negative regulatory element(s) in the MMTV LTR can suppress transcription from the viral promoter in several different organs. This represents the first example of generalized negative regulatory elements that act in many different tissues in transgenic mice to prevent inappropriate expression of a gene. Images PMID:1700274

  4. Tissue-specific implications of mitochondrial alterations in aging

    PubMed Central

    Liu, Danhui; Li, Hongzhi; Lu, Jianxin; Bai, Yidong

    2016-01-01

    Aging is a multifactorial process during which physiological alterations occur in all tissues. A decline in mitochondrial function plays an important role in the process of aging and in aging-associated diseases. The mitochondrial genome encodes 13 essential subunits of protein complexes belonging to the oxidative phosphorylation system, while most of the mitochondria-related genes are encoded by the nuclear genome. Coordination between the nucleus and mitochondria is crucial for the regulation of mitochondrial biogenesis and function. In this review, we will discuss aging-related mitochondrial dysfunction in various tissues and its implication in aging-related diseases and the aging process. PMID:23277028

  5. Regulation of gene expression in the protozoan parasite Entamoeba invadens: identification of core promoter elements and promoters with stage-specific expression patterns.

    PubMed

    Manna, Dipak; Ehrenkaufer, Gretchen M; Singh, Upinder

    2014-10-01

    Developmental switching between life-cycle stages is a common feature among many pathogenic organisms. Entamoeba histolytica is an important human pathogen and is a leading parasitic cause of death globally. During its life cycle, Entamoeba converts between cysts (essential for disease transmission) and trophozoites (responsible for tissue invasion). Despite being central to its biology, the triggers that are involved in the developmental pathways of this parasite are not well understood. In order to define the transcriptional network associated with stage conversion we used Entamoeba invadens which serves as a model system for Entamoeba developmental biology, and performed RNA sequencing at different developmental time points. In this study RNA-Seq data was utilised to define basal transcriptional control elements as well as to identify promoters which regulate stage-specific gene expression patterns. We discovered that the 5' and 3' untranslated regions of E. invadens genes are short, a median of 20 nucleotides (nt) and 26 nt respectively. Bioinformatics analysis of DNA sequences proximate to the start and stop codons identified two conserved motifs: (i) E. invadens Core Promoter Motif - GAAC-Like (EiCPM-GL) (GAACTACAAA), and (ii) E. invadens 3'-U-Rich Motif (Ei3'-URM) (TTTGTT) in the 5' and 3' flanking regions, respectively. Electrophoretic mobility shift assays demonstrated that both motifs specifically bind nuclear protein(s) from E. invadens trophozoites. Additionally, we identified select genes with stage-specific expression patterns and analysed the ability of each gene promoter to drive a luciferase reporter gene during the developmental cycle. This approach confirmed three trophozoite-specific, four encystation-specific and two excystation-specific promoters. This work lays the framework for use of stage-specific promoters to express proteins of interest in a particular life-cycle stage, adding to the molecular toolbox for genetic manipulation of E

  6. Regulation of gene expression in the protozoan parasite Entamoeba invadens identification of core promoter elements and promoters with stage-specific expression patterns

    PubMed Central

    Manna, Dipak; Ehrenkaufer, Gretchen M.; Singh, Upinder

    2014-01-01

    Developmental switching between life-cycle stages is a common feature among many pathogenic organisms. Entamoeba histolytica is an important human pathogen and is a leading parasitic cause of death globally. During its life cycle, Entamoeba converts between cysts (essential for disease transmission) and trophozoites (responsible for tissue invasion). Despite being central to its biology, the triggers that are involved in the developmental pathways of this parasite are not well understood. In order to define the transcriptional network associated with stage conversion we used Entamoeba invadens which serves as a model system for Entamoeba developmental biology, and performed RNA sequencing at different developmental time points . In this study RNA-Seq data was utilized to define basal transcriptional control elements as well as to identify promoters which regulate stage-specific gene expression patterns. We discovered that the 5’ and 3’ untranslated regions of E. invadens genes are short, a median of 20 nucleotides (nt) and 26 nt respectively. Bioinformatics analysis of DNA sequences proximate to the start and stop codons identified two conserved motifs: (i) E. invadens Core Promoter Motif - GAAC-Like (EiCPM-GL) (GAACTACAAA), and (ii) E. invadens 3’- U-Rich Motif (Ei3’-URM) (TTTGTT) in the 5’ and 3’ flanking regions, respectively. Electrophoretic mobility shift assays demonstrated that both motifs specifically bind nuclear protein(s) from E. invadens trophozoites. Additionally, we identified select genes with stage-specific expression patterns and analyzed the ability of each gene promoter to drive a luciferase reporter gene during the developmental cycle. This approach confirmed three trophozoite-specific, four encystation-specific and two excystation-specific promoters. This work lays the framework for use of stage-specific promoters to express proteins of interest in a particular life-cycle stage, adding to the molecular toolbox for genetic

  7. Macro- to microscale strain transfer in fibrous tissues is heterogeneous and tissue-specific.

    PubMed

    Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Smith, Lachlan J; Mauck, Robert L; Elliott, Dawn M

    2013-08-06

    Mechanical deformation applied at the joint or tissue level is transmitted through the macroscale extracellular matrix to the microscale local matrix, where it is transduced to cells within these tissues and modulates tissue growth, maintenance, and repair. The objective of this study was to investigate how applied tissue strain is transferred through the local matrix to the cell and nucleus in meniscus, tendon, and the annulus fibrosus, as well as in stem cell-seeded scaffolds engineered to reproduce the organized microstructure of these native tissues. To carry out this study, we developed a custom confocal microscope-mounted tensile testing device and simultaneously monitored strain across multiple length scales. Results showed that mean strain was heterogeneous and significantly attenuated, but coordinated, at the local matrix level in native tissues (35-70% strain attenuation). Conversely, freshly seeded scaffolds exhibited very direct and uniform strain transfer from the tissue to the local matrix level (15-25% strain attenuation). In addition, strain transfer from local matrix to cells and nuclei was dependent on fiber orientation and tissue type. Histological analysis suggested that different domains exist within these fibrous tissues, with most of the tissue being fibrous, characterized by an aligned collagen structure and elongated cells, and other regions being proteoglycan (PG)-rich, characterized by a dense accumulation of PGs and rounder cells. In meniscus, the observed heterogeneity in strain transfer correlated strongly with cellular morphology, where rounder cells located in PG-rich microdomains were shielded from deformation, while elongated cells in fibrous microdomains deformed readily. Collectively, these findings suggest that different tissues utilize distinct strain-attenuating mechanisms according to their unique structure and cellular phenotype, and these differences likely alter the local biologic response of such tissues and constructs in

  8. Temporal and tissue-specific regulation of a Brassica napus stearoyl-acyl carrier protein desaturase gene.

    PubMed Central

    Slocombe, S P; Piffanelli, P; Fairbairn, D; Bowra, S; Hatzopoulos, P; Tsiantis, M; Murphy, D J

    1994-01-01

    The nucleotide sequence of a Brassica napus stearoyl-acyl carrier protein desaturase gene (Bn10) is presented. This gene is one member of a family of four closely related genes expressed in oilseed rape. The expression of the promoter of this gene in transgenic tobacco was found to be temporally regulated in the developing seed tissues. However, the promoter was also particularly active in other oleogenic tissues such as the tapetum and pollen grains. This raises the interesting question of whether seed-expressed lipid synthesis genes are regulated by separate tissue-specific determinants or by a single factor common to all oleogenic tissues. Parts of the plants undergoing rapid development such as the components of immature flowers and seedlings also exhibited high levels of promoter activity. These tissues are likely to have an elevated requirement for membrane lipid synthesis. Stearoyl-acyl carrier protein desaturase transcript levels have previously been shown to be temporally regulated in the B. napus embryo (S.P. Slocombe, I. Cummins, R.P. Jarvis, D.J. Murphy [1992] Plant Mol Biol 20: 151-155). Evidence is presented demonstrating the induction of desaturase mRNA by abscisic acid in the embryo. PMID:8016261

  9. Identifying and functionally characterizing tissue-specific and ubiquitously expressed human lncRNAs

    PubMed Central

    Lu, Jianping; Chen, Hong; Ding, Na; Wang, Guangjuan; Xu, Juan; Li, Xia

    2016-01-01

    Recent advances in transcriptome sequencing have made it possible to distinguish ubiquitously expressed long non-coding RNAs (UE lncRNAs) from tissue-specific lncRNAs (TS lncRNAs), thereby providing clues to their cellular functions. Here, we assembled and functionally characterized a consensus lncRNA transcriptome by curating hundreds of RNA-seq datasets across normal human tissues from 16 independent studies. In total, 1,184 UE and 2,583 TS lncRNAs were identified. These different lncRNA populations had several distinct features. Specifically, UE lncRNAs were associated with genomic compaction and highly conserved exons and promoter regions. We found that UE lncRNAs are regulated at the transcriptional level (with especially strong regulation of enhancers) and are associated with epigenetic modifications and post-transcriptional regulation. Based on these observations we propose a novel way to predict the functions of UE and TS lncRNAs through analysis of their genomic location and similarities in epigenetic modifications. Our characterization of UE and TS lncRNAs may provide a foundation for lncRNA genomics and the delineation of complex disease mechanisms. PMID:26760768

  10. Transposon-mediated transgenesis, transgenic rescue, and tissue-specific gene expression in rodents and rabbits

    PubMed Central

    Katter, Katharina; Geurts, Aron M.; Hoffmann, Orsolya; Mátés, Lajos; Landa, Vladimir; Hiripi, László; Moreno, Carol; Lazar, Jozef; Bashir, Sanum; Zidek, Vaclav; Popova, Elena; Jerchow, Boris; Becker, Katja; Devaraj, Anantharam; Walter, Ingrid; Grzybowksi, Michael; Corbett, Molly; Filho, Artur Rangel; Hodges, Matthew R.; Bader, Michael; Ivics, Zoltán; Jacob, Howard J.; Pravenec, Michal; Bősze, Zsuzsanna; Rülicke, Thomas; Izsvák, Zsuzsanna

    2013-01-01

    Germline transgenesis is an important procedure for functional investigation of biological pathways, as well as for animal biotechnology. We have established a simple, nonviral protocol in three important biomedical model organisms frequently used in physiological studies. The protocol is based on the hyperactive Sleeping Beauty transposon system, SB100X, which reproducibly promoted generation of transgenic founders at frequencies of 50–64, 14–72, and 15% in mice, rats, and rabbits, respectively. The SB100X-mediated transgene integrations are less prone to genetic mosaicism and gene silencing as compared to either the classical pronuclear injection or to lentivirus-mediated transgenesis. The method was successfully applied to a variety of transgenes and animal models, and can be used to generate founders with single-copy integrations. The transposon vector also allows the generation of transgenic lines with tissue-specific expression patterns specified by promoter elements of choice, exemplified by a rat reporter strain useful for tracking serotonergic neurons. As a proof of principle, we rescued an inborn genetic defect in the fawn-hooded hypertensive rat by SB100X transgenesis. A side-by-side comparison of the SB100X- and piggyBac-based protocols revealed that the two systems are complementary, offering new opportunities in genome manipulation.—Katter, K., Geurts, A. M., Hoffmann, O., Mátés, L., Landa,V., Hiripi, L., Moreno, C., Lazar, J., Bashir, S., Zidek, V., Popova, E., Jerchow, B., Becker, K., Devaraj, A., Walter, I., Grzybowksi, M., Corbett, M., Rangel Filho, A., Hodges, M. R., Bader, M., Ivics, Z., Jacob, H. J., Pravenec, M., Bősze, Z., Rülicke, T., Izsvák, Z. Transposon-mediated transgenesis, transgenic rescue, and tissue-specific gene expression in rodents and rabbits. PMID:23195032

  11. A gene-type-specific enhancer regulates the carbamyl phosphate synthetase I promoter by cooperating with the proximal GAG activating element.

    PubMed Central

    Goping, I S; Lamontagne, S; Shore, G C; Nguyen, M

    1995-01-01

    The rat carbamyl phosphate synthetase I gene is expressed in two cell types: hepatocytes and epithelial cells of the intestinal mucosa. The proximal promoter contains a single activating element, GAG, two repressor elements (sites I and III) and an anti-repressor element (site II). Although these elements together exhibit the potential for complex regulation, they are unable to confer tissue-specific promoter activity. Here we have identified a cell-type-specific enhancer that lies 10 kilobases upstream of the promoter. Unexpectedly, the enhancer also functioned in a gene-type-specific manner. The enhancer stimulated promoter activity exclusively through the proximal GAG element. Abrogation of GAG, either directly by mutation of GAG or indirectly by sites I and III repressors, abolished enhancer activation. Conversely, activation of the heterologous thymidine kinase promoter by the enhancer required the introduction of GAG. The requirement for GAG, therefore, functions to constrain the enhancer to a specific target promoter. PMID:7784176

  12. Tissue Specific and Hormonal Regulation of Gene Expression

    DTIC Science & Technology

    1998-07-01

    inserted consisted of 3 Ag luciferase reporter plasmid and salmon sperm DNA upstream of the promoter. This plasmid contains 5’-BamHI and 3’-XhoI to...Endocrinology. Saunders, Philadel- and characterization of a 3’,5’-cyclic adenosine monophosphate- phia, pp 1049-1078 responsive element in the human...method for the detection of f-ga- cyclic adenosine monophosphate-responsive element in the rat cor- lactosidase in transfected mammalian cells

  13. The function of vestigial in Drosophila wing development: how are tissue-specific responses to signalling pathways specified?

    PubMed

    de Celis, J F

    1999-07-01

    The activities of conserved signal transduction pathways are central to the development of Drosophila wings, legs, and eyes. Yet, all these structures have characteristic morphologies, suggesting that additional factors provide organ-specific information. One excellent candidate for such a function is Vestigial, which activity promotes the formation of wings. The biochemical function of Vestigial is unknown, however, since no homologies with other proteins have been identified. Two recent reports show that Vestigial interacts with the transcription factor Scalloped, forming an active complex that binds to specific DNA sequences and regulates gene expression in cooperation with several signalling pathways. These results illustrate how tissue-specific transcription factors cooperate with general signalling pathways to regulate gene expression in a tissue-specific manner.

  14. Differential tissue-specific protein markers of vaginal carcinoma

    PubMed Central

    Hellman, K; Alaiya, A A; Becker, S; Lomnytska, M; Schedvins, K; Steinberg, W; Hellström, A-C; Andersson, S; Hellman, U; Auer, G

    2009-01-01

    The objective was to identify proteins differentially expressed in vaginal cancer to elucidate relevant cancer-related proteins. A total of 16 fresh-frozen tissue biopsies, consisting of 5 biopsies from normal vaginal epithelium, 6 from primary vaginal carcinomas and 5 from primary cervical carcinomas, were analysed using two-dimensional gel electrophoresis (2-DE) and MALDI-TOF mass spectrometry. Of the 43 proteins identified with significant alterations in protein expression between non-tumourous and tumourous tissue, 26 were upregulated and 17 were downregulated. Some were similarly altered in vaginal and cervical carcinoma, including cytoskeletal proteins, tumour suppressor proteins, oncoproteins implicated in apoptosis and proteins in the ubiquitin–proteasome pathway. Three proteins were uniquely altered in vaginal carcinoma (DDX48, erbB3-binding protein and biliverdin reductase) and five in cervical carcinoma (peroxiredoxin 2, annexin A2, sarcomeric tropomyosin kappa, human ribonuclease inhibitor and prolyl-4-hydrolase beta). The identified proteins imply involvement of multiple different cellular pathways in the carcinogenesis of vaginal carcinoma. Similar protein alterations were found between vaginal and cervical carcinoma suggesting common tumourigenesis. However, the expression level of some of these proteins markedly differs among the three tissue specimens indicating that they might be useful molecular markers. PMID:19367286

  15. Epigenomic footprints across 111 reference epigenomes reveal tissue-specific epigenetic regulation of lincRNAs.

    PubMed

    Amin, Viren; Harris, R Alan; Onuchic, Vitor; Jackson, Andrew R; Charnecki, Tim; Paithankar, Sameer; Lakshmi Subramanian, Sai; Riehle, Kevin; Coarfa, Cristian; Milosavljevic, Aleksandar

    2015-02-18

    Tissue-specific expression of lincRNAs suggests developmental and cell-type-specific functions, yet tissue specificity was established for only a small fraction of lincRNAs. Here, by analysing 111 reference epigenomes from the NIH Roadmap Epigenomics project, we determine tissue-specific epigenetic regulation for 3,753 (69% examined) lincRNAs, with 54% active in one of the 14 cell/tissue clusters and an additional 15% in two or three clusters. A larger fraction of lincRNA TSSs is marked in a tissue-specific manner by H3K4me1 than by H3K4me3. The tissue-specific lincRNAs are strongly linked to tissue-specific pathways and undergo distinct chromatin state transitions during cellular differentiation. Polycomb-regulated lincRNAs reside in the bivalent state in embryonic stem cells and many of them undergo H3K27me3-mediated silencing at early stages of differentiation. The exquisitely tissue-specific epigenetic regulation of lincRNAs and the assignment of a majority of them to specific tissue types will inform future studies of this newly discovered class of genes.

  16. A proximal tissue-specific module and a distal negative regulatory module control apolipoprotein(a) gene transcription.

    PubMed Central

    Negi, Sarita; Singh, Saurabh K; Pati, Nirupma; Handa, Vikas; Chauhan, Ruchi; Pati, Uttam

    2004-01-01

    The apo(a) [apolipoprotein(a)] gene is responsible for variations in plasma lipoprotein(a), high levels of which are a risk factor for atherosclerosis and myocardial infarction. The apo(a) promoter stimulates the expression of reporter genes in HepG2 cells, but not in HeLa cells. In the present study, we demonstrate that the 1.4 kb apo(a) promoter comprises two composite regulatory regions: a distal negative regulatory module (positions -1432 to -716) and a proximal tissue-specific module (-716 to -616). The distal negative regulatory module contains two strong negative regulatory regions [polymorphic PNR (pentanucleotide repeat region) and NREbeta (negative regulatory element beta)], which sandwich the postive regulatory region PREbeta (positive regulatory element beta). The PNR was shown to bind to transcription factors in a tissue-specific manner, whereas the ubiquitous transcription factors hepatocyte nuclear factor 3alpha and GATA binding protein 4 bound to NREbeta to repress gene transcription. The proximal tissue-specific module contains two regulatory elements: an activating region (PREalpha) that activates transcription in HepG2 cells, and NREalpha, which is responsible for repressing the apo(a) gene in HeLa cells. NREalpha binds to a HeLa-specific repressor. These multiple regulatory elements might work co-operatively to finely regulate apo(a) gene expression. Although the tissue-specific module is required for apo(a) gene activation and repression in a tissue-specific manner, the combinatorial interplay of the distal and proximal regulators might define the complex pathway(s) of apo(a) gene regulation. PMID:14680477

  17. Isolation and partial characterization of a root-specific promoter for stacking multiple traits into cassava (Manihot esculenta CRANTZ).

    PubMed

    Gbadegesin, M A; Beeching, J R

    2011-06-07

    Cassava can be cultivated on impoverished soils with minimum inputs, and its storage roots are a staple food for millions in Africa. However, these roots are low in bioavailable nutrients and in protein content, contain cyanogenic glycosides, and suffer from a very short post-harvest shelf-life, and the plant is susceptible to viral and bacterial diseases prevalent in Africa. The demand for improvement of cassava with respect to these traits comes from both farmers and national agricultural institutions. Genetic improvement of cassava cultivars by molecular biology techniques requires the availability of appropriate genes, a system to introduce these genes into cassava, and the use of suitable gene promoters. Cassava root-specific promoter for auxin-repressed protein was isolated using the gene walking approach, starting with a cDNA sequence. In silico analysis of promoter sequences revealed putative cis-acting regulatory elements, including root-specific elements, which may be required for gene expression in vascular tissues. Research on the activities of this promoter is continuing, with the development of plant expression cassettes for transformation into major African elite lines and farmers' preferred cassava cultivars to enable testing of tissue-specific expression patterns in the field.

  18. Glycosaminoglycan binding by Borrelia burgdorferi adhesin BBK32 specifically and uniquely promotes joint colonization

    PubMed Central

    Lin, Yi-Pin; Chen, Qiang; Ritchie, Jennifer A.; Dufour, Nicholas P.; Fischer, Joshua R.; Coburn, Jenifer; Leong, John M.

    2014-01-01

    SUMMARY Microbial pathogens that colonize multiple tissues commonly produce adhesive surface proteins that mediate attachment to cells and/or extracellular matrix in target organs. Many of these ‘adhesins’ bind to multiple ligands, complicating efforts to understand the role of each ligand-binding activity. Borrelia burgdorferi, the causative agent of Lyme disease, produces BBK32, first identified as a fibronectin-binding adhesin that promotes skin and joint colonization. BBK32 also binds to glycosaminoglycan (GAG), which, like fibronectin is ubiquitously present on cell surfaces. To determine which binding activity is relevant for BBK32-promoted infectivity, we generated a panel of BBK32 truncation and internal deletion mutants, and identified variants specifically defective for binding to either fibronectin or GAG. These variants promoted bacterial attachment to different mammalian cell types in vitro, suggesting that fibronectin and GAG binding may play distinct roles during infection. Intravenous inoculation of mice with a high-passage non-infectious B. burgdorferi strain that produced wild type BBK32 or BBK32 mutants defective for GAG or fibronectin binding, revealed that only GAG-binding activity was required for significant localization to joints at 60 minutes post-infection. An otherwise infectious B. burgdorferi strain producing BBK32 specifically deficient in fibronectin binding was fully capable of both skin and joint colonization in the murine model, whereas a strain producing BBK32 selectively attenuated for GAG binding colonized the inoculation site but not knee or tibiotarsus joints. Thus, the BBK32 fibronectin- and GAG-binding activities are separable in vivo, and BBK32-mediated GAG binding, but not fibronectin binding, contributes to joint colonization. PMID:25486989

  19. Loss of NAPRT1 expression by tumor-specific promoter methylation provides a novel predictive biomarker for NAMPT inhibitors.

    PubMed

    Shames, David S; Elkins, Kristi; Walter, Kimberly; Holcomb, Thomas; Du, Pan; Mohl, Dane; Xiao, Yang; Pham, Thinh; Haverty, Peter M; Liederer, Bianca; Liang, Xiaorong; Yauch, Robert L; O'Brien, Thomas; Bourgon, Richard; Koeppen, Hartmut; Belmont, Lisa D

    2013-12-15

    We sought to identify predictive biomarkers for a novel nicotinamide phosphoribosyltransferase (NAMPT) inhibitor. We use a NAMPT inhibitor, GNE-617, to evaluate nicotinic acid rescue status in a panel of more than 400 cancer cell lines. Using correlative analysis and RNA interference (RNAi), we identify a specific biomarker for nicotinic acid rescue status. We next determine the mechanism of regulation of expression of the biomarker. Finally, we develop immunohistochemical (IHC) and DNA methylation assays and evaluate cancer tissue for prevalence of the biomarker across indications. Nicotinate phosphoribosyltransferase (NAPRT1) is necessary for nicotinic acid rescue and its expression is the major determinant of rescue status. We demonstrate that NAPRT1 promoter methylation accounts for NAPRT1 deficiency in cancer cells, and NAPRT1 methylation is predictive of rescue status in cancer cell lines. Bisulfite next-generation sequencing mapping of the NAPRT1 promoter identified tumor-specific sites of NAPRT1 DNA methylation and enabled the development of a quantitative methylation-specific PCR (QMSP) assay suitable for use on archival formalin-fixed paraffin-embedded tumor tissue. Tumor-specific promoter hypermethylation of NAPRT1 inactivates one of two NAD salvage pathways, resulting in synthetic lethality with the coadministration of a NAMPT inhibitor. NAPRT1 expression is lost due to promoter hypermethylation in most cancer types evaluated at frequencies ranging from 5% to 65%. NAPRT1-specific immunohistochemical or DNA methylation assays can be used on archival formalin paraffin-embedded cancer tissue to identify patients likely to benefit from coadministration of a Nampt inhibitor and nicotinic acid. ©2013 AACR.

  20. Chronic social isolation is associated with metabolic gene expression changes specific to mammary adipose tissue

    PubMed Central

    Volden, Paul A.; Wonder, Erin L.; Skor, Maxwell N.; Carmean, Christopher M.; Patel, Feenalie N.; Ye, Honggang; Kocherginsky, Masha; McClintock, Martha K.; Brady, Matthew J.; Conzen, Suzanne D.

    2013-01-01

    Chronic social isolation is linked to increased mammary tumor growth in rodent models of breast cancer. In the C3(1)/SV40 T-antigen FVB/N (TAg) mouse model of “triple-negative” breast cancer, the heightened stress response elicited by social isolation has been associated with increased expression of metabolic genes in the mammary gland before invasive tumors develop (i.e. during the in situ carcinoma stage). To further understand the mechanisms underlying how accelerated mammary tumor growth is associated with social isolation, we separated the mammary gland adipose tissue from adjacent ductal epithelial cells and analyzed individual cell types for changes in metabolic gene expression. Specifically, increased expression of the key metabolic genes Acaca, Hk2 and Acly was found in the adipocyte, rather than the epithelial fraction. Surprisingly, metabolic gene expression was not significantly increased in visceral adipose depots of socially isolated female mice. As expected, increased metabolic gene expression in the mammary adipocytes of socially isolated mice coincided with increased glucose metabolism, lipid synthesis, and leptin secretion from this adipose depot. Furthermore, application of media that had been cultured with isolated mouse mammary adipose tissue (conditioned media) resulted in increased proliferation of mammary cancer cells relative to group-housed conditioned media. These results suggest that exposure to a chronic stressor (social isolation) results in specific metabolic reprogramming in mammary gland adipocytes that in turn contributes to increased proliferation of adjacent pre-invasive malignant epithelial cells. Metabolites and/or tumor growth-promoting proteins secreted from adipose tissue could identify biomarkers and/or targets for preventive intervention in breast cancer. PMID:23780289

  1. Is nonhomogeneous expression of tissue mast cells or allergen specific IgEs bound to tissue mast cells possible?

    PubMed Central

    Bahçecioğlu, Sakine Nazik

    2017-01-01

    Skin prick tests (SPTs) are widely used to demonstrate an IgE-mediated hypersensitivity reaction to a specific allergen. However, local allergic conditions cannot be diagnosed with SPTs. Local specific IgE production was only presented before in mucosal tissues. We present a patient with house dust mite sensitization that had variable SPTs results in different body regions. PMID:28765824

  2. Is nonhomogeneous expression of tissue mast cells or allergen specific IgEs bound to tissue mast cells possible?

    PubMed

    Türk, Murat; Bahçecioğlu, Sakine Nazik; Yılmaz, İnsu

    2017-07-01

    Skin prick tests (SPTs) are widely used to demonstrate an IgE-mediated hypersensitivity reaction to a specific allergen. However, local allergic conditions cannot be diagnosed with SPTs. Local specific IgE production was only presented before in mucosal tissues. We present a patient with house dust mite sensitization that had variable SPTs results in different body regions.

  3. Tissue-Specific Effects of Vitamin E Supplementation

    PubMed Central

    Jansen, Eugene; Viezeliene, Dale; Beekhof, Piet; Gremmer, Eric; Ivanov, Leonid

    2016-01-01

    A multivitamin and mineral supplementation study of 6 weeks was conducted with male and female mice. The control group received a standard dose of vitamins and minerals of 1× the Recommended Daily Intake (RDI), whereas a second group received 3× RDI. A third group received a high dose of vitamin E (25× RDI), close to the upper limit of toxicity (UL), but still recommended and considered to be harmless and beneficial. The high dose of vitamin E caused a number of beneficial, but also adverse effects. Different biomarkers of tissue toxicity, oxidative stress related processes and inflammation were determined. These biomarkers did not change in plasma and erythrocytes to a large extent. In the liver of male mice, some beneficial effects were observed by a lower concentration of several biomarkers of inflammation. However, in the kidney of male mice, a number of biomarkers increased substantially with the higher dose of vitamin E, indicating tissue toxicity and an increased level of inflammation. Since this dose of vitamin E, which is lower than the UL, cause some adverse effects, even after a short exposure period, further studies are required to reconsider the UL for vitamin E. PMID:27447613

  4. Gcsf-Chr19 promotes neutrophil migration to damaged tissue through blood vessels in zebrafish.

    PubMed

    Galdames, Jorge A; Zuñiga-Traslaviña, Constanza; Reyes, Ariel E; Feijóo, Carmen G

    2014-07-01

    G-CSF is an essential cytokine that regulates proliferation and differentiation of granulocytes from hematopoietic stem and progenitor cells. In mammals G-CSF has been identified as a key factor that promotes the release of neutrophils from the bone marrow into the blood circulation. In silico analysis indicates that zebrafish has two gcsf genes, gcsf-chr12 in chromosome 12 and gcsf-chr19 in chromosome 19. Gcsf-Chr12 participates in emergency myelopoiesis, but, in contrast to its mammalian orthologue, is not involved in neutrophil migration toward damaged tissue. In turn, the function of Gcsf-Chr19 has not been examined yet. In this study, we analyzed the role of Gcsf-Chr19 in regulating neutrophil migration toward the wound. Our results indicated that during the first h after caudal fin transection, neutrophils migrate from the hematopoietic tissue toward the injury, using the extracellular matrix as a substrate. Later, between 3 and 4 h postdamage, the recruitment mainly occurs through the bloodstream, and only a few neutrophils still use the extracellular matrix to migrate. During this process, the transcriptional levels of gcsf-chr19 are considerably increased, reaching a peak 1 h postdamage. The knockdown of Gcsf-chr19 indicated that the percentage of neutrophils that reach the wound decreased after the first h postinjury, suggesting that the knockdown specifically affects neutrophils that travel to the wound through blood vessels. Together, our data provide novel information about the regulation of neutrophil migration in zebrafish, positioning Gcsf-Chr19 as a key signal during the course of an inflammatory process triggered by severe damage. Copyright © 2014 by The American Association of Immunologists, Inc.

  5. A major role of insulin in promoting obesity-associated adipose tissue inflammation

    PubMed Central

    Pedersen, David J.; Guilherme, Adilson; Danai, Laura V.; Heyda, Lauren; Matevossian, Anouch; Cohen, Jessica; Nicoloro, Sarah M.; Straubhaar, Juerg; Noh, Hye Lim; Jung, DaeYoung; Kim, Jason K.; Czech, Michael P.

    2015-01-01

    Objective Adipose tissue (AT) inflammation is associated with systemic insulin resistance and hyperinsulinemia in obese rodents and humans. A longstanding concept is that hyperinsulinemia may promote systemic insulin resistance through downregulation of its receptor on target tissues. Here we tested the novel hypothesis that insulin also impairs systemic insulin sensitivity by specifically enhancing adipose inflammation. Methods Circulating insulin levels were reduced by about 50% in diet-induced and genetically obese mice by treatments with diazoxide or streptozotocin, respectively. We then examined AT crown-like structures, macrophage markers and pro-inflammatory cytokine expression in AT. AT lipogenesis and systemic insulin sensitivity was also monitored. Conversely, insulin was infused into lean mice to determine its affects on the above parameters. Results Lowering circulating insulin levels in obese mice by streptozotocin treatment decreased macrophage content in AT, enhancing insulin stimulated Akt phosphorylation and de novo lipogenesis (DNL). Moreover, responsiveness of blood glucose levels to injected insulin was improved by streptozotocin and diazoxide treatments of obese mice without changes in body weight. Remarkably, even in lean mice, infusion of insulin under constant euglycemic conditions stimulated expression of cytokines in AT. Consistent with these findings, insulin treatment of 3T3-L1 adipocytes caused a 10-fold increase in CCL2 mRNA levels within 6 h, which was blocked by the ERK inhibitor PD98059. Conclusion Taken together, these results indicate that obesity-associated hyperinsulinemia unexpectedly drives AT inflammation in obese mice, which in turn contributes to factors that suppress insulin-stimulated adipocyte DNL and systemic insulin sensitivity. PMID:26137438

  6. Regulation of the Fruit-Specific PEP Carboxylase SlPPC2 Promoter at Early Stages of Tomato Fruit Development

    PubMed Central

    Guillet, Carine; Aboul-Soud, Mourad A. M.; Le Menn, Aline; Viron, Nicolas; Pribat, Anne; Germain, Véronique; Just, Daniel; Baldet, Pierre; Rousselle, Patrick; Lemaire-Chamley, Martine; Rothan, Christophe

    2012-01-01

    The SlPPC2 phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) gene from tomato (Solanum lycopersicum) is differentially and specifically expressed in expanding tissues of developing tomato fruit. We recently showed that a 1966 bp DNA fragment located upstream of the ATG codon of the SlPPC2 gene (GenBank AJ313434) confers appropriate fruit-specificity in transgenic tomato. In this study, we further investigated the regulation of the SlPPC2 promoter gene by analysing the SlPPC2 cis-regulating region fused to either the firefly luciferase (LUC) or the β-glucuronidase (GUS) reporter gene, using stable genetic transformation and biolistic transient expression assays in the fruit. Biolistic analyses of 5′ SlPPC2 promoter deletions fused to LUC in fruits at the 8th day after anthesis revealed that positive regulatory regions are mostly located in the distal region of the promoter. In addition, a 5′ UTR leader intron present in the 1966 bp fragment contributes to the proper temporal regulation of LUC activity during fruit development. Interestingly, the SlPPC2 promoter responds to hormones (ethylene) and metabolites (sugars) regulating fruit growth and metabolism. When tested by transient expression assays, the chimeric promoter:LUC fusion constructs allowed gene expression in both fruit and leaf, suggesting that integration into the chromatin is required for fruit-specificity. These results clearly demonstrate that SlPPC2 gene is under tight transcriptional regulation in the developing fruit and that its promoter can be employed to drive transgene expression specifically during the cell expansion stage of tomato fruit. Taken together, the SlPPC2 promoter offers great potential as a candidate for driving transgene expression specifically in developing tomato fruit from various tomato cultivars. PMID:22615815

  7. Activity and Accumulation of Cell Division-Promoting Phenolics in Tobacco Tissue Cultures 1

    PubMed Central

    Teutonico, Rita A.; Dudley, Matthew W.; Orr, John D.; Lynn, David G.; Binns, Andrew N.

    1991-01-01

    Dehydrodiconiferyl alcohol glucosides (DCGs) are derivatives of the phenylpropanoid pathway that have been isolated from Catharansus roseus L. (Vinca rosea) crown gall tumors. Fractions containing purified DCGs have been shown previously to promote the growth of cytokinin-requiring tissues of tobacco in the absence of exogenous cytokinins. In this study, we utilized synthetic DCG isomers to confirm the cell division-promoting activity of DCG isomers A and B and show that they neither promote shoot meristem initiation on Nicotiana tabacum L., cv Havana 425, leaf explants nor induce betacyanin synthesis in amaranth seedlings. Analysis of cultured tobacco pith tissue demonstrated that DCG accumulation was stimulated by cytokinin treatment and correlated with cytokinin-induced cell division. Thus, the accumulation of metabolites that could replace cytokinin in cell division bioassays is stimulated by cytokinins. These data support the model that DCGs are a component of a cytokinin-mediated regulatory circuit controlling cell division. ImagesFigure 2 PMID:16668384

  8. Factors promoting increased rate of tissue regeneration: the zebrafish fin as a tool for examining tissue engineering design concepts.

    PubMed

    Boominathan, Vijay P; Ferreira, Tracie L

    2012-12-01

    Student interest in topics of tissue engineering is increasing exponentially as the number of universities offering programs in bioengineering are on the rise. Bioengineering encompasses all of the STEM categories: Science, Technology, Engineering, and Math. Inquiry-based learning is one of the most effective techniques for promoting student learning and has been demonstrated to have a high impact on learning outcomes. We have designed program outcomes for our bioengineering program that require tiered activities to develop problem solving skills, peer evaluation techniques, and promote team work. While it is ideal to allow students to ask unique questions and design their own experiments, this can be difficult for instructors to have reagents and supplies available for a variety of activities. Zebrafish can be easily housed, and multiple variables can be tested on a large enough group to provide statistical value, lending them well to inquiry-based learning modules. We have designed a laboratory activity that takes observation of fin regeneration to the next level: analyzing conditions that may impact regeneration. Tissue engineers seek to define the optimum conditions to grow tissue for replacement parts. The field of tissue engineering is likely to benefit from understanding natural mechanisms of regeneration and the factors that influence the rate of regeneration. We have outlined the results of varying temperature on fin regeneration and propose other inquiry modules such as the role of pH in fin regeneration. Furthermore, we have provided useful tools for developing critical thinking and peer review of research ideas, assessment guidelines, and grading rubrics for the activities associated with this exercise.

  9. Factors Promoting Increased Rate of Tissue Regeneration: The Zebrafish Fin as a Tool for Examining Tissue Engineering Design Concepts

    PubMed Central

    Boominathan, Vijay P.

    2012-01-01

    Abstract Student interest in topics of tissue engineering is increasing exponentially as the number of universities offering programs in bioengineering are on the rise. Bioengineering encompasses all of the STEM categories: Science, Technology, Engineering, and Math. Inquiry-based learning is one of the most effective techniques for promoting student learning and has been demonstrated to have a high impact on learning outcomes. We have designed program outcomes for our bioengineering program that require tiered activities to develop problem solving skills, peer evaluation techniques, and promote team work. While it is ideal to allow students to ask unique questions and design their own experiments, this can be difficult for instructors to have reagents and supplies available for a variety of activities. Zebrafish can be easily housed, and multiple variables can be tested on a large enough group to provide statistical value, lending them well to inquiry-based learning modules. We have designed a laboratory activity that takes observation of fin regeneration to the next level: analyzing conditions that may impact regeneration. Tissue engineers seek to define the optimum conditions to grow tissue for replacement parts. The field of tissue engineering is likely to benefit from understanding natural mechanisms of regeneration and the factors that influence the rate of regeneration. We have outlined the results of varying temperature on fin regeneration and propose other inquiry modules such as the role of pH in fin regeneration. Furthermore, we have provided useful tools for developing critical thinking and peer review of research ideas, assessment guidelines, and grading rubrics for the activities associated with this exercise. PMID:23244692

  10. GSH2 promoter methylation in pancreatic cancer analyzed by quantitative methylation-specific polymerase chain reaction

    PubMed Central

    GAO, FEI; HUANG, HAO-JIE; GAO, JUN; LI, ZHAO-SHEN; MA, SHU-REN

    2015-01-01

    Tumor suppressor gene silencing via promoter hypermethylation is an important event in pancreatic cancer pathogenesis. Aberrant DNA hypermethylation events are highly tumor specific, and may provide a diagnostic tool for pancreatic cancer patients. The objective of the current study was to identify novel methylation-related genes that may potentially be used to establish novel therapeutic and diagnostic strategies against pancreatic cancer. The methylation status of the GS homeobox 2 (GSH2) gene was analyzed using the sodium bisulfite sequencing method. The GSH2 methylation ratio was examined in primary carcinomas and corresponding normal tissues derived from 47 patients with pancreatic cancer, using quantitative methylation-specific polymerase chain reaction. Methylation ratios were found to be associated with the patient's clinicopathological features. GSH2 gene methylation was detected in 26 (55.3%) of the 47 pancreatic cancer patients, indicating that it occurs frequently in pancreatic cancer. A significant association with methylation was observed for tumor-node-metastasis stage (P=0.031). GSH2 may be a novel methylation-sensitive tumor suppressor gene in pancreatic cancer and may be a tumor-specific biomarker of the disease. PMID:26171036

  11. Measurement of temperature-dependent specific heat of biological tissues.

    PubMed

    Haemmerich, Dieter; Schutt, David J; dos Santos, Icaro; Webster, John G; Mahvi, David M

    2005-02-01

    We measured specific heat directly by heating a sample uniformly between two electrodes by an electric generator. We minimized heat loss by styrofoam insulation. We measured temperature from multiple thermocouples at temperatures from 25 degrees C to 80 degrees C while heating the sample, and corrected for heat loss. We confirm method accuracy with a 2.5% agar-0.4% saline physical model and obtain specific heat of 4121+/-89 J (kg K)(-1), with an average error of 3.1%.

  12. Tissue- and Time-Specific Expression of Otherwise Identical tRNA Genes

    PubMed Central

    Adir, Idan; Dahan, Orna; Broday, Limor; Pilpel, Yitzhak; Rechavi, Oded

    2016-01-01

    Codon usage bias affects protein translation because tRNAs that recognize synonymous codons differ in their abundance. Although the current dogma states that tRNA expression is exclusively regulated by intrinsic control elements (A- and B-box sequences), we revealed, using a reporter that monitors the levels of individual tRNA genes in Caenorhabditis elegans, that eight tryptophan tRNA genes, 100% identical in sequence, are expressed in different tissues and change their expression dynamically. Furthermore, the expression levels of the sup-7 tRNA gene at day 6 were found to predict the animal’s lifespan. We discovered that the expression of tRNAs that reside within introns of protein-coding genes is affected by the host gene’s promoter. Pairing between specific Pol II genes and the tRNAs that are contained in their introns is most likely adaptive, since a genome-wide analysis revealed that the presence of specific intronic tRNAs within specific orthologous genes is conserved across Caenorhabditis species. PMID:27560950

  13. Platelet subpopulation bearing leukocyte specific antigen and tissue factor.

    PubMed

    Gabbasov, Z A; Saburova, O S; Antonova, O A; Golubeva, N V; Khaspekova, S G; Shustova, O N; Zyuryaev, I T; Ruda, M Ya; Mazurov, A V

    2016-11-01

    Platelets bearing leukocyte antigen CD45 were identified in the blood of patients with myocardial infarction (MI) and healthy donors by flow cytofluorimetry. Part of these platelets contained tissue factor (TF)-primary initiator of blood clotting. The number of CD45(+) and CD45(+)/TF(+) platelets in MI patients at the first day was comparable with their level in healthy donors, but was increased at 8-12 days after MI onset. At that time in some patients the amount of CD45(+) and CD45(+)/TF(+) platelets reached 5-6 and 2-3% of their total number. It is assumed that CD45(+)/TF(+) platelets could be formed as a result of platelet interaction with leukocytes or leukocyte produced membrane microparticles.

  14. Development of an oncolytic Herpes Simplex Virus using a tumor-specific HIF-responsive promoter

    PubMed Central

    Longo, Sharon L.; Griffith, Christopher; Glass, Aaron; Shillitoe, Edward J.; Post, Dawn E.

    2010-01-01

    We exploited the differential activation of hypoxia-inducible factor (HIF)-dependent gene expression in tumors versus normal tissue for the design of a targeted oncolytic Herpes simplex virus type-1 (HSV-1). A gene that is essential for viral replication, ICP4, was placed under the regulation of a HIF-responsive promoter and then introduced into the thymidine kinase locus (UL23) of HSV d120 which contains partial deletions in the two endogenous ICP4 genes. Recombinant HIF-HSV were isolated and their derivation from d120 was verified by expression of a truncated, nonfunctional form of ICP4 protein. Disruption of the UL23 locus was confirmed by loss of thymidine kinase expression and resistance to acyclovir. Unexpectedly, HIF-HSV expressed ICP4 and induced tumor cell lysis at similar levels under normoxia and hypoxia. The lack of HIF-dependent ICP4 transgene expression by HIF-HSV was due to two factors that have not previously been reported- reversion of the ICP4 gene region to its wild-type configuration and increased HIF-transcriptional activity under normoxia when cells were infected with any strain of HSV-1. The findings that an oncolytic HSV-1 is genetically unstable and can activate a tumor-related promoter in a non-specific manner have important implications for any proposed use of this virus in cancer therapy. PMID:20930860

  15. Promoter-Specific Expression and Genomic Structure of IgLON Family Genes in Mouse

    PubMed Central

    Vanaveski, Taavi; Singh, Katyayani; Narvik, Jane; Eskla, Kattri-Liis; Visnapuu, Tanel; Heinla, Indrek; Jayaram, Mohan; Innos, Jürgen; Lilleväli, Kersti; Philips, Mari-Anne; Vasar, Eero

    2017-01-01

    IgLON family is composed of five genes: Lsamp, Ntm, Opcml, Negr1, and Iglon5; encoding for five highly homologous neural adhesion proteins that regulate neurite outgrowth and synapse formation. In the current study we performed in silico analysis revealing that Ntm and Opcml display similar genomic structure as previously reported for Lsamp, characterized by two alternative promotors 1a and 1b. Negr1 and Iglon5 transcripts have uniform 5′ region, suggesting single promoter. Iglon5, the recently characterized family member, shares high level of conservation and structural qualities characteristic to IgLON family such as N-terminal signal peptide, three Ig domains, and GPI anchor binding site. By using custom 5′-isoform-specific TaqMan gene-expression assay, we demonstrated heterogeneous expression of IgLON transcripts in different areas of mouse brain and several-fold lower expression in selected tissues outside central nervous system. As an example, the expression of IgLON transcripts in urogenital and reproductive system is in line with repeated reports of urogenital tumors accompanied by mutations in IgLON genes. Considering the high levels of intra-family homology shared by IgLONs, we investigated potential compensatory effects at the level of IgLON isoforms in the brains of mice deficient of one or two family members. We found that the lack of IgLONs is not compensated by a systematic quantitative increase of the other family members. On the contrary, the expression of Ntm 1a transcript and NEGR1 protein was significantly reduced in the frontal cortex of Lsamp-deficient mice suggesting that the expression patterns within IgLON family are balanced coherently. The actions of individual IgLONs, however, can be antagonistic as demonstrated by differential expression of Syp in deletion mutants of IgLONs. In conclusion, we show that the genomic twin-promoter structure has impact on both anatomical distribution and intra-family interactions of IgLON family members

  16. Allelic imbalance identifies novel tissue specific cis-regulatory variation for human UGT2B15

    PubMed Central

    Sun, Chang; Southard, Catherine; Witonsky, David B.; Olopade, Olufunmilayo I.; Di Rienzo, Anna

    2010-01-01

    Allelic imbalance (AI) is a powerful tool to identify cis-regulatory variation for gene expression. UGT2B15 is an important enzyme involved in the metabolism of multiple endobiotics and xenobiotics. In this study, we measured the relative expression of two alleles at this gene by using SNP rs1902023:G>T. An excess of the G over the T allele was consistently observed in liver (P<0.001), but not in breast (P=0.06) samples, suggesting that SNPs in strong linkage disequilibrium with G253T regulate UGT2B15 expression in liver. Seven such SNPs were identified by resequencing the promoter and exon 1, which define two distinct haplotypes. Reporter gene assays confirmed that one haplotype displayed ~20% higher promoter activity compared to the other major haplotype in liver HepG2 (P<0.001), but not in breast MCF-7 (P=0.540) cells. Reporter gene assays with additional constructs pointed to rs34010522:G>T and rs35513228:C>T as the cis-regulatory variants; both SNPs were also evaluated in LNCaP and Caco-2 cells. By ChIP, we showed that the transcription factor Nrf2 binds to the region spanning rs34010522:G>T in all four cell lines. Our results provide a good example for how AI can be used to identify cis-regulatory variation and gain insights into the tissue specific regulation of gene expression. PMID:19847790

  17. Site-Specific Dance: Promoting Social Awareness in Choreography

    ERIC Educational Resources Information Center

    MacBean, Arianne

    2004-01-01

    Site-specific dance, which is often defined as dance that occurs outside of the conventional theater space, challenges choreographers to look at, listen to, feel, and think about the space in which the dance is performed. It also asks audiences to be active participants in the performance experience. The dances have to be informed by the space and…

  18. Promoting Social Communication in a Child with Specific Language Impairment

    ERIC Educational Resources Information Center

    O'Handley, Roderick D.; Radley, Keith C.; Lum, John D. K.

    2016-01-01

    Social difficulties represent a major area of concern in children with specific language impairment (SLI). Social skills interventions targeting communication or language skills of children with SLI have been generally ineffective. The current study tested the efficacy of a social skills intervention consisting of multiple behavioral interventions…

  19. Promoting Social Communication in a Child with Specific Language Impairment

    ERIC Educational Resources Information Center

    O'Handley, Roderick D.; Radley, Keith C.; Lum, John D. K.

    2016-01-01

    Social difficulties represent a major area of concern in children with specific language impairment (SLI). Social skills interventions targeting communication or language skills of children with SLI have been generally ineffective. The current study tested the efficacy of a social skills intervention consisting of multiple behavioral interventions…

  20. Site-Specific Dance: Promoting Social Awareness in Choreography

    ERIC Educational Resources Information Center

    MacBean, Arianne

    2004-01-01

    Site-specific dance, which is often defined as dance that occurs outside of the conventional theater space, challenges choreographers to look at, listen to, feel, and think about the space in which the dance is performed. It also asks audiences to be active participants in the performance experience. The dances have to be informed by the space and…

  1. A Novel CpG Island Set Identifies Tissue-Specific Methylation at Developmental Gene Loci

    PubMed Central

    Illingworth, Robert; Kerr, Alastair; DeSousa, Dina; Jørgensen, Helle; Ellis, Peter; Stalker, Jim; Jackson, David; Clee, Chris; Plumb, Robert; Rogers, Jane; Humphray, Sean; Cox, Tony; Langford, Cordelia; Bird, Adrian

    2008-01-01

    CpG islands (CGIs) are dense clusters of CpG sequences that punctuate the CpG-deficient human genome and associate with many gene promoters. As CGIs also differ from bulk chromosomal DNA by their frequent lack of cytosine methylation, we devised a CGI enrichment method based on nonmethylated CpG affinity chromatography. The resulting library was sequenced to define a novel human blood CGI set that includes many that are not detected by current algorithms. Approximately half of CGIs were associated with annotated gene transcription start sites, the remainder being intra- or intergenic. Using an array representing over 17,000 CGIs, we established that 6%–8% of CGIs are methylated in genomic DNA of human blood, brain, muscle, and spleen. Inter- and intragenic CGIs are preferentially susceptible to methylation. CGIs showing tissue-specific methylation were overrepresented at numerous genetic loci that are essential for development, including HOX and PAX family members. The findings enable a comprehensive analysis of the roles played by CGI methylation in normal and diseased human tissues. PMID:18232738

  2. A novel CpG island set identifies tissue-specific methylation at developmental gene loci.

    PubMed

    Illingworth, Robert; Kerr, Alastair; Desousa, Dina; Jørgensen, Helle; Ellis, Peter; Stalker, Jim; Jackson, David; Clee, Chris; Plumb, Robert; Rogers, Jane; Humphray, Sean; Cox, Tony; Langford, Cordelia; Bird, Adrian

    2008-01-01

    CpG islands (CGIs) are dense clusters of CpG sequences that punctuate the CpG-deficient human genome and associate with many gene promoters. As CGIs also differ from bulk chromosomal DNA by their frequent lack of cytosine methylation, we devised a CGI enrichment method based on nonmethylated CpG affinity chromatography. The resulting library was sequenced to define a novel human blood CGI set that includes many that are not detected by current algorithms. Approximately half of CGIs were associated with annotated gene transcription start sites, the remainder being intra- or intergenic. Using an array representing over 17,000 CGIs, we established that 6%-8% of CGIs are methylated in genomic DNA of human blood, brain, muscle, and spleen. Inter- and intragenic CGIs are preferentially susceptible to methylation. CGIs showing tissue-specific methylation were overrepresented at numerous genetic loci that are essential for development, including HOX and PAX family members. The findings enable a comprehensive analysis of the roles played by CGI methylation in normal and diseased human tissues.

  3. Intermittent fasting results in tissue-specific changes in bioenergetics and redox state.

    PubMed

    Chausse, Bruno; Vieira-Lara, Marcel A; Sanchez, Angélica B; Medeiros, Marisa H G; Kowaltowski, Alicia J

    2015-01-01

    Intermittent fasting (IF) is a dietary intervention often used as an alternative to caloric restriction (CR) and characterized by 24 hour cycles alternating ad libitum feeding and fasting. Although the consequences of CR are well studied, the effects of IF on redox status are not. Here, we address the effects of IF on redox state markers in different tissues in order to uncover how changes in feeding frequency alter redox balance in rats. IF rats displayed lower body mass due to decreased energy conversion efficiency. Livers in IF rats presented increased mitochondrial respiratory capacity and enhanced levels of protein carbonyls. Surprisingly, IF animals also presented an increase in oxidative damage in the brain that was not related to changes in mitochondrial bioenergetics. Conversely, IF promoted a substantial protection against oxidative damage in the heart. No difference in mitochondrial bioenergetics or redox homeostasis was observed in skeletal muscles of IF animals. Overall, IF affects redox balance in a tissue-specific manner, leading to redox imbalance in the liver and brain and protection against oxidative damage in the heart.

  4. Intermittent Fasting Results in Tissue-Specific Changes in Bioenergetics and Redox State

    PubMed Central

    Chausse, Bruno; Vieira-Lara, Marcel A.; Sanchez, Angélica B.; Medeiros, Marisa H. G.; Kowaltowski, Alicia J.

    2015-01-01

    Intermittent fasting (IF) is a dietary intervention often used as an alternative to caloric restriction (CR) and characterized by 24 hour cycles alternating ad libitum feeding and fasting. Although the consequences of CR are well studied, the effects of IF on redox status are not. Here, we address the effects of IF on redox state markers in different tissues in order to uncover how changes in feeding frequency alter redox balance in rats. IF rats displayed lower body mass due to decreased energy conversion efficiency. Livers in IF rats presented increased mitochondrial respiratory capacity and enhanced levels of protein carbonyls. Surprisingly, IF animals also presented an increase in oxidative damage in the brain that was not related to changes in mitochondrial bioenergetics. Conversely, IF promoted a substantial protection against oxidative damage in the heart. No difference in mitochondrial bioenergetics or redox homeostasis was observed in skeletal muscles of IF animals. Overall, IF affects redox balance in a tissue-specific manner, leading to redox imbalance in the liver and brain and protection against oxidative damage in the heart. PMID:25749501

  5. Tissue-Specific Expression and Posttranslational Modification of Histone H3 Variants

    PubMed Central

    Garcia, Benjamin A.; Thomas, C. Eric; Kelleher, Neil L.; Mizzen, Craig A.

    2008-01-01

    Analyses of histone H3 from ten rat tissues using a Middle Down proteomics platform revealed tissue-specific differences in their expression and global PTM abundance. ESI/FTMS with electron capture dissociation showed that, in general, these proteins were hypomodified in heart, liver and testes. H3.3 was hypermodified compared to H3.2 in some, but not all tissues. In addition, a novel rat testes-specific H3 protein was identified with this approach. PMID:18700791

  6. Identification of a seed coat-specific promoter fragment from the Arabidopsis MUCILAGE-MODIFIED4 gene.

    PubMed

    Dean, Gillian H; Jin, Zhaoqing; Shi, Lin; Esfandiari, Elahe; McGee, Robert; Nabata, Kylie; Lee, Tiffany; Kunst, Ljerka; Western, Tamara L; Haughn, George W

    2017-07-20

    The Arabidopsis seed coat-specific promoter fragment described is an important tool for basic and applied research in Brassicaceae species. During differentiation, the epidermal cells of the Arabidopsis seed coat produce and secrete large quantities of mucilage. On hydration of mature seeds, this mucilage becomes easily accessible as it is extruded to form a tightly attached halo at the seed surface. Mucilage is composed mainly of pectin, and also contains the key cell wall components cellulose, hemicellulose, and proteins, making it a valuable model for studying numerous aspects of cell wall biology. Seed coat-specific promoters are an important tool that can be used to assess the effects of expressing biosynthetic enzymes and diverse cell wall-modifying proteins on mucilage structure and function. Additionally, they can be used for production of easily accessible recombinant proteins of commercial interest. The MUCILAGE-MODIFIED4 (MUM4) gene is expressed in a wide variety of plant tissues and is strongly up-regulated in the seed coat during mucilage synthesis, implying the presence of a seed coat-specific region in its promoter. Promoter deletion analysis facilitated isolation of a 308 base pair sequence (MUM4 0.3Pro ) that directs reporter gene expression in the seed coat cells of both Arabidopsis and Camelina sativa, and is regulated by the same transcription factor cascade as endogenous MUM4. Therefore, MUM4 0.3Pro is a promoter fragment that serves as a new tool for seed coat biology research.

  7. The differentiation of oral soft- and hard tissues using laser induced breakdown spectroscopy - a prospect for tissue specific laser surgery.

    PubMed

    Rohde, Maximilian; Mehari, Fanuel; Klämpfl, Florian; Adler, Werner; Neukam, Friedrich-Wilhelm; Schmidt, Michael; Stelzle, Florian

    2017-10-01

    Compared to conventional techniques, Laser surgery procedures provide a number of advantages, but may be associated with an increased risk of iatrogenic damage to important anatomical structures. The type of tissue ablated in the focus spot is unknown. Laser-Induced Breakdown-Spectroscopy (LIBS) has the potential to gain information about the type of material that is being ablated by the laser beam. This may form the basis for tissue selective laser surgery. In the present study, 7 different porcine tissues (cortical and cancellous bone, nerve, mucosa, enamel, dentine and pulp) from 6 animals were analyzed for their qualitative and semiquantitative molecular composition using LIBS. The so gathered data was used to first differentiate between the soft- and hard-tissues using a Calcium-Carbon emission based classifier. The tissues were then further classified using emission-ratio based analysis, principal component analysis (PCA) and linear discriminant analysis (LDA). The relatively higher concentration of Calcium in the hard tissues allows for an accurate first differentiation of soft- and hard tissues (100% sensitivity and specificity). The ratio based statistical differentiation approach yields results in the range from 65% (enamel-dentine pair) to 100% (nerve-pulp, cancellous bone-dentine, cancellous bone-enamel pairs) sensitivity and specificity. Experimental LIBS measuring setup. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. cell type–specific gene expression differences in complex tissues

    PubMed Central

    Shen-Orr, Shai S; Tibshirani, Robert; Khatri, Purvesh; Bodian, Dale L; Staedtler, Frank; Perry, Nicholas M; Hastie, Trevor; Sarwal, Minnie M; Davis, Mark M; Butte, Atul J

    2013-01-01

    We describe cell type–specific significance analysis of microarrays (cssam) for analyzing differential gene expression for each cell type in a biological sample from microarray data and relative cell-type frequencies. first, we validated cssam with predesigned mixtures and then applied it to whole-blood gene expression datasets from stable post-transplant kidney transplant recipients and those experiencing acute transplant rejection, which revealed hundreds of differentially expressed genes that were otherwise undetectable. PMID:20208531

  9. Cloning, expression, and regulation of tissue-specific genes in Drosophila

    SciTech Connect

    Korochkin, L.I.

    1995-08-01

    The family of esterase genes was studied in various Drosophilia species. These genes are classified as tissue-specific and housekeeping ones. The expression of tissue-specific esterases in the male reproductive system of Drosophilia species from the virilis and melanogaster groups was thoroughly examined. Modifier genes controlling activity level, time of synthesis, and distribution in cells of the tissue-specific esterase isozyme from the ejaculatory bulb were revealed. The structural gene coding of this enzyme was isolated, cloned, and sequenced. This gene was shown to be similar in different Drosophilia species; the transcriptional level of tissue specificity of this gene was determined. The possibility of transformating the tissue-specific gene into a housekeeping one was demonstrated. In different Drosophilia species, this gene can be expressed in different parts of the reproductive system. In transgenic males carrying the gene of another species, the foreign gene is expressed as in the donor. 68 refs., 11 figs.

  10. Tumor specific mutations in TERT promoter and CTNNB1 gene in hepatitis B and hepatitis C related hepatocellular carcinoma.

    PubMed

    Pezzuto, Francesca; Izzo, Francesco; Buonaguro, Luigi; Annunziata, Clorinda; Tatangelo, Fabiana; Botti, Gerardo; Buonaguro, Franco M; Tornesello, Maria Lina

    2016-08-23

    Recurrent somatic mutations in the promoter region of telomerase reverse transcriptase (TERT) gene and in the exon 3 of CTNNB1 gene have been recognized as common events in hepatocellular carcinoma (HCC) with variable frequencies depending on etiology and geographical region. We have analyzed TERT promoter and CTNNB1 gene mutations in 122 cases of hepatitis B (HBV) and hepatitis C (HCV) related HCCs, in 7 cases of cholangiocarcinoma (CC) and hepatocholangiocarcinoma (HCC-CC) as well as in autologous cirrhotic tissues. Overall, 50.4% and 26% of HCC as well as 14.3% and none of CC and HCC-CC were mutated in TERT promoter and in CTNNB1 exon 3, respectively. TERT and CTNNB1 mutations were found more frequently in HCV related (53.6% and 26.4%, respectively) than HBV related (41.7% and 16.7%, respectively) HCCs and coexisted in 57.6% of CTNNB1 mutated tumors. Mutations in TERT and CTNNB1 were not associated with the functional promoter polymorphism rs2853669. No mutations were detected in the 129 non-HCC cirrhotic tissues. In conclusion, mutations in TERT promoter and in CTNNB1 gene represent specific cancer signatures in the pathogenesis of viral related HCC and could be promising early biomarkers as well as targets for tailored therapies.

  11. Tumor specific mutations in TERT promoter and CTNNB1 gene in hepatitis B and hepatitis C related hepatocellular carcinoma

    PubMed Central

    Pezzuto, Francesca; Izzo, Francesco; Buonaguro, Luigi; Annunziata, Clorinda; Tatangelo, Fabiana; Botti, Gerardo; Buonaguro, Franco M.; Tornesello, Maria Lina

    2016-01-01

    Recurrent somatic mutations in the promoter region of telomerase reverse transcriptase (TERT) gene and in the exon 3 of CTNNB1 gene have been recognized as common events in hepatocellular carcinoma (HCC) with variable frequencies depending on etiology and geographical region. We have analyzed TERT promoter and CTNNB1 gene mutations in 122 cases of hepatitis B (HBV) and hepatitis C (HCV) related HCCs, in 7 cases of cholangiocarcinoma (CC) and hepatocholangiocarcinoma (HCC-CC) as well as in autologous cirrhotic tissues. Overall, 50.4% and 26% of HCC as well as 14.3% and none of CC and HCC-CC were mutated in TERT promoter and in CTNNB1 exon 3, respectively. TERT and CTNNB1 mutations were found more frequently in HCV related (53.6% and 26.4%, respectively) than HBV related (41.7% and 16.7%, respectively) HCCs and coexisted in 57.6% of CTNNB1 mutated tumors. Mutations in TERT and CTNNB1 were not associated with the functional promoter polymorphism rs2853669. No mutations were detected in the 129 non-HCC cirrhotic tissues. In conclusion, mutations in TERT promoter and in CTNNB1 gene represent specific cancer signatures in the pathogenesis of viral related HCC and could be promising early biomarkers as well as targets for tailored therapies. PMID:27276713

  12. Tissue-specific accelerated aging in nucleotide excision repair deficiency

    PubMed Central

    Niedernhofer, Laura J.

    2008-01-01

    Nucleotide excision repair (NER) is a multi-step DNA repair mechanism that removes helix-distorting modified nucleotides from the genome. NER is divided into two subpathways depending on the location of DNA damage in the genome and how it is first detected. Global genome NER identifies and repairs DNA lesions throughout the genome. This subpathway of NER primarily protects against the accumulation of mutations in the genome. Transcription-coupled (TC) NER rapidly repairs lesions in the transcribed strand of DNA that block transcription by RNA polymerase II. TC-NER prevents cell death in response to stalled transcription. Defects in NER cause three distinct human diseases: xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Each of these syndromes is characterized by premature onset of pathologies that overlap with those associated with old age in humans. This reveals the contribution of DNA damage to multiple age-related diseases. Tissues affected include the skin, eye, bone marrow, nervous system and endocrine axis. This review emphasizes accelerated aging associated with xeroderma pigmentosum and discusses the cause of these pathologies, either mutation accumulation or cell death as a consequence of failure to repair DNA damage. PMID:18538374

  13. Tissue-specific sequence and structural environments of lysine acetylation sites.

    PubMed

    Karabulut, Nermin Pinar; Frishman, Dmitrij

    2015-07-01

    Lysine acetylation is a widespread reversible post-translational modification that regulates a broad spectrum of biological activities across various cellular compartments, cell types, tissues, and disease states. While compartment-specific trends in lysine acetylation have recently been investigated, its tissue-specific preferences remain unexplored. Here we present a comprehensive tissue-based analysis of sequence and structural features of lysine acetylation sites (LASs) based on the recent experimental data of Lundby et al. (2012). We show that acetylated substrates are characterized by tissue-specific motifs both in linear amino acid sequence and in spatial environments. We further demonstrate that the general tendency of LASs to reside in ordered regions and, specifically, in α-helices, is also subject to tissue specific variation. In line with previous findings we show that LASs are generally more evolutionarily conserved than non-LASs, especially in proteins with known function and in structurally regular regions. On the other hand, as revealed by metabolic pathway analysis, LASs have diverse cellular functions in different tissues and are frequently associated with tissue-specific protein domains. These findings may imply the existence of tissue-specific lysine acetyltransferases (KATs) and lysine deacetylases (KDACs). Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Targeting gene expression to specific cells of kidney tubules in vivo, using adenoviral promoter fragments

    PubMed Central

    Watanabe, Sumiyo; Ogasawara, Toru; Tamura, Yoshifuru; Saito, Taku; Ikeda, Toshiyuki; Suzuki, Nobuchika; Shimosawa, Tatsuo; Shibata, Shigeru; Chung, Ung-il; Nangaku, Masaomi; Uchida, Shunya

    2017-01-01

    Although techniques for cell-specific gene expression via viral transfer have advanced, many challenges (e.g., viral vector design, transduction of genes into specific target cells) still remain. We investigated a novel, simple methodology for using adenovirus transfer to target specific cells of the kidney tubules for the expression of exogenous proteins. We selected genes encoding sodium-dependent phosphate transporter type 2a (NPT2a) in the proximal tubule, sodium-potassium-2-chloride cotransporter (NKCC2) in the thick ascending limb of Henle (TALH), and aquaporin 2 (AQP2) in the collecting duct. The promoters of the three genes were linked to a GFP-coding fragment, the final constructs were then incorporated into an adenovirus vector, and this was then used to generate gene-manipulated viruses. After flushing circulating blood, viruses were directly injected into the renal arteries of rats and were allowed to site-specifically expression in tubule cells, and rats were then euthanized to obtain kidney tissues for immunohistochemistry. Double staining with adenovirus-derived EGFP and endogenous proteins were examined to verify orthotopic expression, i.e. “adenovirus driven NPT2a-EGFP and endogenous NHE3 protein”, “adenovirus driven NKCC2-EGFP and endogenous NKCC2 protein” and “adenovirus driven AQP2-EGFP and endogenous AQP2 protein”. Owing to a lack of finding good working anti-NPT2a antibody, an antibody against a different protein (sodium-hydrogen exchanger 3 or NHE3) that is also specifically expressed in the proximal tubule was used. Kidney structures were well-preserved, and other organ tissues did not show EGFP staining. Our gene transfer method is easier than using genetically engineered animals, and it confers the advantage of allowing the manipulation of gene transfer after birth. This is the first method to successfully target gene expression to specific cells in the kidney tubules. This study may serve as the first step for safe and

  15. Targeting gene expression to specific cells of kidney tubules in vivo, using adenoviral promoter fragments.

    PubMed

    Watanabe, Sumiyo; Ogasawara, Toru; Tamura, Yoshifuru; Saito, Taku; Ikeda, Toshiyuki; Suzuki, Nobuchika; Shimosawa, Tatsuo; Shibata, Shigeru; Chung, Ung-Il; Nangaku, Masaomi; Uchida, Shunya

    2017-01-01

    Although techniques for cell-specific gene expression via viral transfer have advanced, many challenges (e.g., viral vector design, transduction of genes into specific target cells) still remain. We investigated a novel, simple methodology for using adenovirus transfer to target specific cells of the kidney tubules for the expression of exogenous proteins. We selected genes encoding sodium-dependent phosphate transporter type 2a (NPT2a) in the proximal tubule, sodium-potassium-2-chloride cotransporter (NKCC2) in the thick ascending limb of Henle (TALH), and aquaporin 2 (AQP2) in the collecting duct. The promoters of the three genes were linked to a GFP-coding fragment, the final constructs were then incorporated into an adenovirus vector, and this was then used to generate gene-manipulated viruses. After flushing circulating blood, viruses were directly injected into the renal arteries of rats and were allowed to site-specifically expression in tubule cells, and rats were then euthanized to obtain kidney tissues for immunohistochemistry. Double staining with adenovirus-derived EGFP and endogenous proteins were examined to verify orthotopic expression, i.e. "adenovirus driven NPT2a-EGFP and endogenous NHE3 protein", "adenovirus driven NKCC2-EGFP and endogenous NKCC2 protein" and "adenovirus driven AQP2-EGFP and endogenous AQP2 protein". Owing to a lack of finding good working anti-NPT2a antibody, an antibody against a different protein (sodium-hydrogen exchanger 3 or NHE3) that is also specifically expressed in the proximal tubule was used. Kidney structures were well-preserved, and other organ tissues did not show EGFP staining. Our gene transfer method is easier than using genetically engineered animals, and it confers the advantage of allowing the manipulation of gene transfer after birth. This is the first method to successfully target gene expression to specific cells in the kidney tubules. This study may serve as the first step for safe and effective gene

  16. Functional Enhancers As Master Regulators of Tissue-Specific Gene Regulation and Cancer Development

    PubMed Central

    Ko, Je Yeong; Oh, Sumin; Yoo, Kyung Hyun

    2017-01-01

    Tissue-specific transcription is critical for normal development, and abnormalities causing undesirable gene expression may lead to diseases such as cancer. Such highly organized transcription is controlled by enhancers with specific DNA sequences recognized by transcription factors. Enhancers are associated with chromatin modifications that are distinct epigenetic features in a tissue-specific manner. Recently, super-enhancers comprising enhancer clusters co-occupied by lineage-specific factors have been identified in diverse cell types such as adipocytes, hair follicle stem cells, and mammary epithelial cells. In addition, noncoding RNAs, named eRNAs, are synthesized at super-enhancer regions before their target genes are transcribed. Many functional studies revealed that super-enhancers and eRNAs are essential for the regulation of tissue-specific gene expression. In this review, we summarize recent findings concerning enhancer function in tissue-specific gene regulation and cancer development. PMID:28359147

  17. Specific replication origins promote DNA amplification in fission yeast.

    PubMed

    Kiang, Lee; Heichinger, Christian; Watt, Stephen; Bähler, Jürg; Nurse, Paul

    2010-09-15

    To ensure equal replication of the genome in every eukaryotic cell cycle, replication origins fire only once each S phase and do not fire after passive replication. Failure in these controls can lead to local amplification, contributing to genome instability and the development of cancer. To identify features of replication origins important for such amplification, we have investigated origin firing and local genome amplification in the presence of excess helicase loaders Cdc18 and Cdt1 in fission yeast. We find that S phase controls are attenuated and coordination of origin firing is lost, resulting in local amplification. Specific origins are necessary for amplification but act only within a permissive chromosomal context. Origins associated with amplification are highly AT-rich, fire efficiently and early during mitotic S phase, and are located in large intergenic regions. We propose that these features predispose replication origins to re-fire within a single S phase, or to remain active after passive replication.

  18. Schnurri regulates hemocyte function to promote tissue recovery after DNA damage

    PubMed Central

    Kelsey, Ellen Miriam; Luo, Xi; Brückner, Katja; Jasper, Heinrich

    2012-01-01

    Tissue recovery after injury requires coordinated regulation of cell repair and apoptosis, removal of dead cells and regeneration. A critical step in this process is the recruitment of blood cells that mediate local inflammatory and immune responses, promoting tissue recovery. Here we identify a new role for the transcriptional regulator Schnurri (Shn) in the recovery of UV-damaged Drosophila retina. Using an experimental paradigm that allows precise quantification of tissue recovery after a defined dose of UV, we find that Shn activity in the retina is required to limit tissue damage. This function of Shn relies on its transcriptional induction of the PDGF-related growth factor Pvf1, which signals to tissue-associated hemocytes. We show that the Pvf1 receptor PVR acts in hemocytes to induce a macrophage-like morphology and that this is required to limit tissue loss after irradiation. Our results identify a new Shn-regulated paracrine signaling interaction between damaged retinal cells and hemocytes that ensures recovery and homeostasis of the challenged tissue. PMID:22275438

  19. RBFOX2 is an important regulator of mesenchymal tissue-specific splicing in both normal and cancer tissues.

    PubMed

    Venables, Julian P; Brosseau, Jean-Philippe; Gadea, Gilles; Klinck, Roscoe; Prinos, Panagiotis; Beaulieu, Jean-François; Lapointe, Elvy; Durand, Mathieu; Thibault, Philippe; Tremblay, Karine; Rousset, François; Tazi, Jamal; Abou Elela, Sherif; Chabot, Benoit

    2013-01-01

    Alternative splicing provides a critical and flexible layer of regulation intervening in many biological processes to regulate the diversity of proteins and impact cell phenotype. To identify alternative splicing differences that distinguish epithelial from mesenchymal tissues, we have investigated hundreds of cassette exons using a high-throughput reverse transcription-PCR (RT-PCR) platform. Extensive changes in splicing were noted between epithelial and mesenchymal tissues in both human colon and ovarian tissues, with many changes from mostly one splice variant to predominantly the other. Remarkably, many of the splicing differences that distinguish normal mesenchymal from normal epithelial tissues matched those that differentiate normal ovarian tissues from ovarian cancer. Furthermore, because splicing profiling could classify cancer cell lines according to their epithelial/mesenchymal characteristics, we used these cancer cell lines to identify regulators for these specific splicing signatures. By knocking down 78 potential splicing factors in five cell lines, we provide an extensive view of the complex regulatory landscape associated with the epithelial and mesenchymal states, thus revealing that RBFOX2 is an important driver of mesenchymal tissue-specific splicing.

  20. RBFOX2 Is an Important Regulator of Mesenchymal Tissue-Specific Splicing in both Normal and Cancer Tissues

    PubMed Central

    Venables, Julian P.; Brosseau, Jean-Philippe; Gadea, Gilles; Klinck, Roscoe; Prinos, Panagiotis; Beaulieu, Jean-François; Lapointe, Elvy; Durand, Mathieu; Thibault, Philippe; Tremblay, Karine; Rousset, François; Tazi, Jamal; Abou Elela, Sherif

    2013-01-01

    Alternative splicing provides a critical and flexible layer of regulation intervening in many biological processes to regulate the diversity of proteins and impact cell phenotype. To identify alternative splicing differences that distinguish epithelial from mesenchymal tissues, we have investigated hundreds of cassette exons using a high-throughput reverse transcription-PCR (RT-PCR) platform. Extensive changes in splicing were noted between epithelial and mesenchymal tissues in both human colon and ovarian tissues, with many changes from mostly one splice variant to predominantly the other. Remarkably, many of the splicing differences that distinguish normal mesenchymal from normal epithelial tissues matched those that differentiate normal ovarian tissues from ovarian cancer. Furthermore, because splicing profiling could classify cancer cell lines according to their epithelial/mesenchymal characteristics, we used these cancer cell lines to identify regulators for these specific splicing signatures. By knocking down 78 potential splicing factors in five cell lines, we provide an extensive view of the complex regulatory landscape associated with the epithelial and mesenchymal states, thus revealing that RBFOX2 is an important driver of mesenchymal tissue-specific splicing. PMID:23149937

  1. Distal cis-regulatory elements are required for tissue-specific expression of enamelin (Enam)

    PubMed Central

    Hu, Yuanyuan; Papagerakis, Petros; Ye, Ling; Feng, Jerry Q.; Simmer, James P.; Hu, Jan C-C.

    2009-01-01

    Enamel formation is orchestrated by the sequential expression of genes encoding enamel matrix proteins; however, the mechanisms sustaining the spatio–temporal order of gene transcription during amelogenesis are poorly understood. The aim of this study was to characterize the cis-regulatory sequences necessary for normal expression of enamelin (Enam). Several enamelin transcription regulatory regions, showing high sequence homology among species, were identified. DNA constructs containing 5.2 or 3.9 kb regions upstream of the enamelin translation initiation site were linked to a LacZ reporter and used to generate transgenic mice. Only the 5.2-Enam–LacZ construct was sufficient to recapitulate the endogenous pattern of enamelin tooth-specific expression. The 3.9-Enam–LacZ transgenic lines showed no expression in dental cells, but ectopic β-galactosidase activity was detected in osteoblasts. Potential transcription factor-binding sites were identified that may be important in controlling enamelin basal promoter activity and in conferring enamelin tissue-specific expression. Our study provides new insights into regulatory mechanisms governing enamelin expression. PMID:18353004

  2. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish

    PubMed Central

    Ablain, Julien; Durand, Ellen M.; Yang, Song; Zhou, Yi; Zon, Leonard I.

    2015-01-01

    Summary CRISPR/Cas9 technology of genome editing has greatly facilitated the targeted inactivation of genes in vitro and in vivo in a wide range of organisms. In zebrafish it allows the rapid generation of knock-out lines by simply injecting a guide RNA (gRNA) and Cas9 mRNA into one-cell stage embryos. Here, we report a simple and scalable CRISPR-based vector system for tissue-specific gene inactivation in zebrafish. As proof of principle, we used our vector with the gata1 promoter driving Cas9 expression to silence the urod gene, implicated in heme biosynthesis, specifically in the erythrocytic lineage. Urod targeting yielded red fluorescent erythrocytes in zebrafish embryos, recapitulating the phenotype observed in the yquem mutant. While F0 embryos displayed mosaic gene disruption, the phenotype appeared very penetrant in stable F1 fish. This vector system constitutes a unique tool to spatially control gene knock-out and greatly broadens the scope of loss-of-function studies in zebrafish. PMID:25752963

  3. Genome-wide de Novo Prediction of Proximal and Distal Tissue-Specific Enhancers

    SciTech Connect

    Loots, G G; Ovcharenko, I V

    2005-11-03

    Determining how transcriptional regulatory networks are encoded in the human genome is essential for understanding how cellular processes are directed. Here, we present a novel approach for systematically predicting tissue specific regulatory elements (REs) that blends genome-wide expression profiling, vertebrate genome comparisons, and pattern analysis of transcription factor binding sites. This analysis yields 4,670 candidate REs in the human genome with distinct tissue specificities, the majority of which reside far away from transcription start sites. We identify key transcription factors (TFs) for 34 distinct tissues and demonstrate that tissue-specific gene expression relies on multiple regulatory pathways employing similar, but different cohorts of interacting TFs. The methods and results we describe provide a global view of tissue specific gene regulation in humans, and propose a strategy for deciphering the transcriptional regulatory code in eukaryotes.

  4. Whole-genome bisulfite sequencing maps from multiple human tissues reveal novel CpG islands associated with tissue-specific regulation

    PubMed Central

    Mendizabal, Isabel; Yi, Soojin V.

    2016-01-01

    CpG islands (CGIs) are one of the most widely studied regulatory features of the human genome, with critical roles in development and disease. Despite such significance and the original epigenetic definition, currently used CGI sets are typically predicted from DNA sequence characteristics. Although CGIs are deeply implicated in practical analyses of DNA methylation, recent studies have shown that such computational annotations suffer from inaccuracies. Here we used whole-genome bisulfite sequencing from 10 diverse human tissues to identify a comprehensive, experimentally obtained, single-base resolution CGI catalog. In addition to the unparalleled annotation precision, our method is free from potential bias due to arbitrary sequence features or probe affinity differences. In addition to clarifying substantial false positives in the widely used University of California Santa Cruz (UCSC) annotations, our study identifies numerous novel epigenetic loci. In particular, we reveal significant impact of transposable elements on the epigenetic regulatory landscape of the human genome and demonstrate ubiquitous presence of transcription initiation at CGIs, including alternative promoters in gene bodies and non-coding RNAs in intergenic regions. Moreover, coordinated DNA methylation and chromatin modifications mark tissue-specific enhancers at novel CGIs. Enrichment of specific transcription factor binding from ChIP-seq supports mechanistic roles of CGIs on the regulation of tissue-specific transcription. The new CGI catalog provides a comprehensive and integrated list of genomic hotspots of epigenetic regulation. PMID:26512062

  5. Reproductive Organ and Vascular Specific Promoter of the Rice Plasma Membrane Ca2+ATPase Mediates Environmental Stress Responses in Plants

    PubMed Central

    Huda, Kazi Md. Kamrul; Banu, Mst. Sufara Akhter; Pathi, Krishna Mohan; Tuteja, Narendra

    2013-01-01

    Background Plasma membrane Ca2+ATPase is a transport protein in the plasma membrane of cells and helps in removal of calcium (Ca2+) from the cell, hence regulating Ca2+ level within cells. Though plant Ca2+ATPases have been shown to be involved in plant stress responses but their promoter regions have not been well studied. Results The 1478 bp promoter sequence of rice plasma membrane Ca2+ATPase contains cis-acting elements responsive to stresses and plant hormones. To identify the functional region, serial deletions of the promoter were fused with the GUS sequence and four constructs were obtained. These were differentially activated under NaCl, PEG cold, methyl viologen, abscisic acid and methyl jasmonate treatments. We demonstrated that the rice plasma membrane Ca2+ATPase promoter is responsible for vascular-specific and multiple stress-inducible gene expression. Only full-length promoter showed specific GUS expression under stress conditions in floral parts. High GUS activity was observed in roots with all the promoter constructs. The −1478 to −886 bp flanking region responded well upon treatment with salt and drought. Only the full-length promoter presented cold-induced GUS expression in leaves, while in shoots slight expression was observed for −1210 and −886 bp flanking region. The −1210 bp deletion significantly responded to exogenous methyl viologen and abscisic acid induction. The −1210 and −886 bp flanking region resulted in increased GUS activity in leaves under methyl jasmonate treatments, whereas in shoots the −886 bp and −519 bp deletion gave higher expression. Salicylic acid failed to induce GUS activities in leaves for all the constructs. Conclusions The rice plasma membrane Ca2+ATPase promoter is a reproductive organ-specific as well as vascular-specific. This promoter contains drought, salt, cold, methyl viologen, abscisic acid and methyl jasmonate related cis-elements, which regulated gene expression. Overall, the tissue-specificity

  6. Tissue Specific Expression Levels of Apoptosis Involved Genes Have Correlations with Codon and Amino Acid Usage

    PubMed Central

    Sadeghi, Iman; Salavaty, Abbas; Nasiri, Habib

    2016-01-01

    Different mechanisms, including transcriptional and post transcriptional processes, regulate tissue specific expression of genes. In this study, we report differences in gene/protein compositional features between apoptosis involved genes selectively expressed in human tissues. We found some correlations between codon/amino acid usage and tissue specific expression level of genes. The findings can be significant for understanding the translational selection on these features. The selection may play an important role in the differentiation of human tissues and can be considered for future studies in diagnosis of some diseases such as cancer. PMID:28154517

  7. Cone-Specific Promoters for Gene Therapy of Achromatopsia and Other Retinal Diseases.

    PubMed

    Ye, Guo-Jie; Budzynski, Ewa; Sonnentag, Peter; Nork, T Michael; Sheibani, Nader; Gurel, Zafer; Boye, Sanford L; Peterson, James J; Boye, Shannon E; Hauswirth, William W; Chulay, Jeffrey D

    2016-01-01

    Adeno-associated viral (AAV) vectors containing cone-specific promoters have rescued cone photoreceptor function in mouse and dog models of achromatopsia, but cone-specific promoters have not been optimized for use in primates. Using AAV vectors administered by subretinal injection, we evaluated a series of promoters based on the human L-opsin promoter, or a chimeric human cone transducin promoter, for their ability to drive gene expression of green fluorescent protein (GFP) in mice and nonhuman primates. Each of these promoters directed high-level GFP expression in mouse photoreceptors. In primates, subretinal injection of an AAV-GFP vector containing a 1.7-kb L-opsin promoter (PR1.7) achieved strong and specific GFP expression in all cone photoreceptors and was more efficient than a vector containing the 2.1-kb L-opsin promoter that was used in AAV vectors that rescued cone function in mouse and dog models of achromatopsia. A chimeric cone transducin promoter that directed strong GFP expression in mouse and dog cone photoreceptors was unable to drive GFP expression in primate cones. An AAV vector expressing a human CNGB3 gene driven by the PR1.7 promoter rescued cone function in the mouse model of achromatopsia. These results have informed the design of an AAV vector for treatment of patients with achromatopsia.

  8. Cone specific promoter for use in gene therapy of retinal degenerative diseases.

    PubMed

    Dyka, Frank M; Boye, Sanford L; Ryals, Renee C; Chiodo, Vince A; Boye, Shannon E; Hauswirth, William W

    2014-01-01

    Achromatopsia (ACHM) is caused by a progressive loss of cone photoreceptors leading to color blindness and poor visual acuity. Animal studies and human clinical trials have shown that gene replacement therapy with adeno-associate virus (AAV) is a viable treatment option for this disease. Although there have been successful attempts to optimize capsid proteins for increased specificity, it is simpler to restrict expression via the use of cell type-specific promoters. To target cone photoreceptors, a chimeric promoter consisting of an enhancer element of interphotoreceptor retinoid-binding protein promoter and a minimal sequence of the human transducin alpha-subunit promoter (IRBPe/GNAT2) was created. Additionally, a synthetic transducin alpha-subunit promoter (synGNAT2/GNAT2) containing conserved sequence blocks located downstream of the transcriptional start was created. The strength and specificity of these promoters were evaluated in murine retina by immunohistochemistry. The results showed that the chimeric, (IRBPe/GNAT2) promoter is more efficient and specific than the synthetic, synGNAT2/GNAT2 promoter. Additionally, IRBPe/GNAT2-mediated expression was found in all cone subtypes and it was improved over existing promoters currently used for gene therapy of achromatopsia.

  9. Cone Specific Promoter for Use in Gene Therapy of Retinal Degenerative Diseases

    PubMed Central

    Dyka, Frank M.; Boye, Sanford L.; Ryals, Renee C.; Chiodo, Vince A.; Boye, Shannon E.; Hauswirth, William W.

    2015-01-01

    Achromatopsia (ACHM) is caused by a progressive loss of cone photoreceptors leading to color blindness and poor visual acuity. Animal studies and human clinical trials have shown that gene replacement therapy with adeno-associate virus (AAV) is a viable treatment option for this disease. Although there have been successful attempts to optimize capsid proteins for increased specificity, it is simpler to restrict expression via the use of cell type-specific promoters. To target cone photoreceptors, a chimeric promoter consisting of an enhancer element of inter-photoreceptor retinoid-binding protein promoter and a minimal sequence of the human transducin alpha-subunit promoter (IRBPe/GNAT2) was created. Additionally, a synthetic transducin alpha-subunit promoter (synGNAT2/GNAT2) containing conserved sequence blocks located downstream of the transcriptional start was created. The strength and specificity of these promoters were evaluated in murine retina by immunohistochemistry. The results showed that the chimeric, (IRBPe/GNAT2) promoter is more efficient and specific than the synthetic, synGNAT2/GNAT2 promoter. Additionally, IRBPe/GNAT2-mediated expression was found in all cone subtypes and it was improved over existing promoters currently used for gene therapy of achromatopsia. PMID:24664760

  10. Developmental regulation of transcription by a tissue-specific TAF homolog

    PubMed Central

    Hiller, Mark A.; Lin, Ting-Yi; Wood, Cricket; Fuller, Margaret T.

    2001-01-01

    Alternate forms of the general transcription machinery have been described in several tissues or cell types. However, the role of tissue-specific TBP-associated factors (TAFIIs) and other tissue-specific transcription components in regulating differential gene expression during development was not clear. Here we show that the cannonball gene of Drosophila encodes a cell type-specific homolog of a more ubiquitously expressed component of the general transcription factor TFIID. cannonball is required in vivo for high level transcription of a set of stage- and tissue-specific target genes during male gametogenesis. Regulation of transcription by cannonball is absolutely required for spermatogenesis, as null mutations block meiotic cell cycle progression and result in a complete failure of spermatid differentiation. Our results demonstrate that cell type-specific TAFIIs play an important role in developmental regulation of gene expression. PMID:11316795

  11. Developmental regulation of transcription by a tissue-specific TAF homolog.

    PubMed

    Hiller, M A; Lin, T Y; Wood, C; Fuller, M T

    2001-04-15

    Alternate forms of the general transcription machinery have been described in several tissues or cell types. However, the role of tissue-specific TBP-associated factors (TAF(II)s) and other tissue-specific transcription components in regulating differential gene expression during development was not clear. Here we show that the cannonball gene of Drosophila encodes a cell type-specific homolog of a more ubiquitously expressed component of the general transcription factor TFIID. cannonball is required in vivo for high level transcription of a set of stage- and tissue-specific target genes during male gametogenesis. Regulation of transcription by cannonball is absolutely required for spermatogenesis, as null mutations block meiotic cell cycle progression and result in a complete failure of spermatid differentiation. Our results demonstrate that cell type-specific TAF(II)s play an important role in developmental regulation of gene expression.

  12. Acute Sleep Loss Induces Tissue-Specific Epigenetic and Transcriptional Alterations to Circadian Clock Genes in Men.

    PubMed

    Cedernaes, Jonathan; Osler, Megan E; Voisin, Sarah; Broman, Jan-Erik; Vogel, Heike; Dickson, Suzanne L; Zierath, Juleen R; Schiöth, Helgi B; Benedict, Christian

    2015-09-01

    Shift workers are at increased risk of metabolic morbidities. Clock genes are known to regulate metabolic processes in peripheral tissues, eg, glucose oxidation. This study aimed to investigate how clock genes are affected at the epigenetic and transcriptional level in peripheral human tissues following acute total sleep deprivation (TSD), mimicking shift work with extended wakefulness. In a randomized, two-period, two-condition, crossover clinical study, 15 healthy men underwent two experimental sessions: x sleep (2230-0700 h) and overnight wakefulness. On the subsequent morning, serum cortisol was measured, followed by skeletal muscle and subcutaneous adipose tissue biopsies for DNA methylation and gene expression analyses of core clock genes (BMAL1, CLOCK, CRY1, PER1). Finally, baseline and 2-h post-oral glucose load plasma glucose concentrations were determined. In adipose tissue, acute sleep deprivation vs sleep increased methylation in the promoter of CRY1 (+4%; P = .026) and in two promoter-interacting enhancer regions of PER1 (+15%; P = .036; +9%; P = .026). In skeletal muscle, TSD vs sleep decreased gene expression of BMAL1 (-18%; P = .033) and CRY1 (-22%; P = .047). Concentrations of serum cortisol, which can reset peripheral tissue clocks, were decreased (2449 ± 932 vs 3178 ± 723 nmol/L; P = .039), whereas postprandial plasma glucose concentrations were elevated after TSD (7.77 ± 1.63 vs 6.59 ± 1.32 mmol/L; P = .011). Our findings demonstrate that a single night of wakefulness can alter the epigenetic and transcriptional profile of core circadian clock genes in key metabolic tissues. Tissue-specific clock alterations could explain why shift work may disrupt metabolic integrity as observed herein.

  13. An atlas of tissue-specific conserved coexpression for functional annotation and disease gene prediction.

    PubMed

    Piro, Rosario Michael; Ala, Ugo; Molineris, Ivan; Grassi, Elena; Bracco, Chiara; Perego, Gian Paolo; Provero, Paolo; Di Cunto, Ferdinando

    2011-11-01

    Gene coexpression relationships that are phylogenetically conserved between human and mouse have been shown to provide important clues about gene function that can be efficiently used to identify promising candidate genes for human hereditary disorders. In the past, such approaches have considered mostly generic gene expression profiles that cover multiple tissues and organs. The individual genes of multicellular organisms, however, can participate in different transcriptional programs, operating at scales as different as single-cell types, tissues, organs, body regions or the entire organism. Therefore, systematic analysis of tissue-specific coexpression could be, in principle, a very powerful strategy to dissect those functional relationships among genes that emerge only in particular tissues or organs. In this report, we show that, in fact, conserved coexpression as determined from tissue-specific and condition-specific data sets can predict many functional relationships that are not detected by analyzing heterogeneous microarray data sets. More importantly, we find that, when combined with disease networks, the simultaneous use of both generic (multi-tissue) and tissue-specific conserved coexpression allows a more efficient prediction of human disease genes than the use of generic conserved coexpression alone. Using this strategy, we were able to identify high-probability candidates for 238 orphan disease loci. We provide proof of concept that this combined use of generic and tissue-specific conserved coexpression can be very useful to prioritize the mutational candidates obtained from deep-sequencing projects, even in the case of genetic disorders as heterogeneous as XLMR.

  14. Hyperhomocysteinemia promotes insulin resistance by inducing endoplasmic reticulum stress in adipose tissue.

    PubMed

    Li, Yang; Zhang, Heng; Jiang, Changtao; Xu, Mingjiang; Pang, Yanli; Feng, Juan; Xiang, Xinxin; Kong, Wei; Xu, Guoheng; Li, Yin; Wang, Xian

    2013-04-05

    Type 2 diabetes is a chronic inflammatory metabolic disease, the key point being insulin resistance. Endoplasmic reticulum (ER) stress plays a critical role in the pathogenesis of type 2 diabetes. Previously, we found that hyperhomocysteinemia (HHcy) induced insulin resistance in adipose tissue. Here, we hypothesized that HHcy induces ER stress, which in turn promotes insulin resistance. In the present study, the direct effect of Hcy on adipose ER stress was investigated by the use of primary rat adipocytes in vitro and mice with HHcy in vivo. The mechanism and the effect of G protein-coupled receptor 120 (GPR120) were also investigated. We found that phosphorylation or expression of variant ER stress markers was elevated in adipose tissue of HHcy mice. HHcy activated c-Jun N-terminal kinase (JNK), the downstream signal of ER stress in adipose tissue, and activated JNK participated in insulin resistance by inhibiting Akt activation. Furthermore, JNK activated c-Jun and p65, which in turn triggered the transcription of proinflammatory cytokines. Both in vivo and in vitro assays revealed that Hcy-promoted macrophage infiltration aggravated ER stress in adipose tissue. Chemical chaperones PBA and TUDCA could reverse Hcy-induced inflammation and restore insulin-stimulated glucose uptake and Akt activation. Activation of GPR120 reversed Hcy-induced JNK activation and prevented inflammation but not ER stress. Therefore, HHcy inhibited insulin sensitivity in adipose tissue by inducing ER stress, activating JNK to promote proinflammatory cytokine production and facilitating macrophage infiltration. These findings reveal a new mechanism of HHcy in the pathogenesis of insulin resistance.

  15. Human eyelid adipose tissue-derived Schwann cells promote regeneration of a transected sciatic nerve

    PubMed Central

    Wang, Gangyang; Cao, Lingling; Wang, Yang; Hua, Yingqi; Cai, Zhengdong; Chen, Jun; Chen, Lulu; Jin, Yuqing; Niu, Lina; Shen, Hua; Lu, Yan; Shen, Zunli

    2017-01-01

    Schwann cells (SCs) can promote the regeneration of injured peripheral nerves while the clinical application is limited by donor site complications and the inability to generate an ample amount of cells. In this study, we have isolated human eyelid adipose-derived Schwann cells (hE-SCs) from human eyelid adipose tissue and identified the cell phenotype and function. Using immunofluorescence and H & E staining, we detected subtle nerve fibers and SCs in human eyelid adipose tissue. Immunofluorescence staining indicated that hE-SCs expressed glial markers, such as S100, p75NTR GFAP, Sox10 and Krox20. To explore whether hE-SCs promote the regeneration of injured peripheral nerves in vivo, a Balb/c-nu mice model was used in the study, and mice were randomly assigned to five groups: Matrigel; hE-SCs/P0; hE-SCs/P2; hE-FLCs/P2; and Autograft. After 12 weeks, functional and histological assessments of the regenerated nerves showed that sciatic nerve defect was more effectively repaired in the hE-SCs/P2 group which achieved 66.1 ± 6.5% purity, than the other three groups and recovered to similar level to the Autograft group. These results indicated that hE-SCs can promote the regeneration of injured peripheral nerve and the abundant, easily accessible supply of adipose tissue might be a promising source of SCs for peripheral nerve repair. PMID:28256528

  16. Identification of species- and tissue-specific proteins using proteomic strategy

    NASA Astrophysics Data System (ADS)

    Chernukha, I. M.; Vostrikova, N. L.; Kovalev, L. I.; Shishkin, S. S.; Kovaleva, M. A.; Manukhin, Y. S.

    2017-09-01

    Proteomic technologies have proven to be very effective for detecting biochemical changes in meat products, such as changes in tissue- and species-specific proteins. In the tissues of cattle, pig, horse and camel M. longissimus dorsi both tissue- and species specific proteins were detected using two dimensional electrophoresis. Species-specific isoforms of several muscle proteins were also identified. The identified and described proteins of cattle, pig, horse and camel skeletal muscles (including mass spectra of the tryptic peptides) were added to the national free access database “Muscle organ proteomics”. This research has enabled the development of new highly sensitive technologies for meat product quality control against food fraud.

  17. Novel disease-specific promoters for use in gene therapy for Parkinson's disease.

    PubMed

    Wettergren, Erika Elgstrand; Gussing, Fredrik; Quintino, Luis; Lundberg, Cecilia

    2012-11-14

    Gene therapy is a promising therapeutic tool for Parkinson's disease (PD), but there is a lack of evaluated cell specific promoters that are relevant for the disease. We have chosen PD relevant promoter candidates for gene therapy vectors based on either previous studies; Drd1a, Drd2 and pDyn, or from a microarray study on parkinsonian patients; ACE, DNAJC3, GALNS, MAP1a and RNF25. These candidates have been evaluated in rat striatum to determine their suitability for use in cell specific vectors. The promoters had a neuronal specificity of 91-100%. The efficiency of the promoters was variable, but RNF25, DNAJC3 and MAP1a were comparable to widely used ubiquitous promoters. MAP1a was also affected by dopamine depletion.

  18. Dissection of the erythroid-specific transcriptional promoter used by the gene encoding aminolevulinic acid dehydratase (ALAD)

    SciTech Connect

    Bishop, T.R.; Schaffer, T.; Pien, B.

    1994-09-01

    The gene encoding delta-aminolevulinate dehydratase (ALAD), the second enzyme of the heme biosynthetic pathway, exists as a single gene in most mammalian genomes and we have sequenced over 12 kb from overlapping lambda clones containing the murine ALAD gene. The gene has a dual promoter driving expression of two different first exons; exon1A is expressed in all tissues and exon1B only in erythroid cells, where heme production is induced to exceptionally high levels for hemoglobin synthesis. Erythroid-specific expression of the ALAD gene is presumably accomplished by using the exon1B promoter which we hypothesize is responsive to erythroid-specific transcriptional activators. In order to test this, we have used gel mobility shift assays and DNase footprint analyses to dissect and identify the critical upstream regulatory elements. Nuclear extracts, prepared from murine erythroleukemia cells (MELC), human chronic myelogenous leukemia cell line (K562) and human fibroblast cell line (HeLa), were used as sources of proteins to analyze DNA binding sites in the ALAD erythroid-specific promoter from -307 to +1. In this region, there are three potential GATA1 sites, two CACCC boxes, a CCAAT box and a GGTGG box. NF-E2 sites were explored by using in vitro translation products of cloned p18 and p45, the two heterologous components of NF-E2, and successfully gel-shifted a 29 bp double-stranded oligo found at 2.6 kb in front of the ALAD gene. Thus, the ALAD gene utilizes both a housekeeping and a tissue-specific promoter.

  19. VEGF expression in mesenchymal stem cells promotes bone formation of tissue-engineered bones.

    PubMed

    Liu, Boling; Li, Xihai; Liang, Guiqing; Liu, Xianxiang

    2011-01-01

    The purpose of this study was to investigate the in vivo vascularization and bone formation activity of tissue-engineered bone constructed using bone marrow mesenchymal stem cells (MSCs) transfected with vascular endothelial growth factor (VEGF). The expression of VEGF165 in rat bone marrow MSCs was confirmed using RT-PCR and immunohistochemistry. The MSCs were cultured together with nano-hydroxyapatite/collagen (NHAC) to form tissue-engineered bone. Untransfected MSCs were used as controls. The mice were sacrificed, and the bone xenografts were analyzed using immunohistochemistry and quantified for the degree of vascularization and new bone formation. Based on our results, expression of the VEGF165 gene was detected using RT-PCR and immunohistochemistry following transfection and 4 weeks of selection. The co-cultured NHAC- and VEGF-transfected MSCs had significantly higher alkaline phosphatase (AP) activity compared to the controls (P<0.05). In the mice that received the tissue-engineered bone xenografts, clumps of cartilage cells, irregular bone-like tissue and microvessels were observed. The growth of these structures progressed with time. In the control mice, however, only small amounts of bone-like and fibrotic tissue were observed. The differences between the control and experimental groups were statistically significant (P<0.05). In conclusion, VEGF165‑transfected bone marrow MSCs promotes vascularization of tissue-engineered bone and ectopic osteogenesis.

  20. Sinusoidal electromagnetic fields promote bone formation and inhibit bone resorption in rat femoral tissues in vitro.

    PubMed

    Zhou, Jian; Ma, Xiao-Ni; Gao, Yu-Hai; Yan, Juan-Li; Shi, Wen-Gui; Xian, Cory J; Chen, Ke-Ming

    2016-01-01

    Effects of sinusoidal electromagnetic fields (SEMFs) on bone metabolism have not yet been well defined. The present study investigated SEMF effects on bone formation and resorption in rat femur bone tissues in vitro. Cultured femur diaphyseal (cortical bone) and metaphyseal (trabecular bone) tissues were treated with 50 Hz 1.8 mT SEMFs 1.5 h per day for up to 12 days and treatment effects on bone formation and resorption markers and associated gene expression were examined. Treatment with SEMFs caused a significant increase in alkaline phosphatase (ALP) activity and inhibited the tartrate-resistant acid phosphatase (TRACP) activity in the femoral diaphyseal or metaphyseal tissues. SEMFs also significantly increased levels of mRNA expression of osterix (OSX), insulin-like growth factor (IGF-1) and ALP in the bone tissues. SEMF treatment decreased glucose content and increased lactic acid contents in the culture conditioned medium. In addition, treatment with SEMFs decreased mRNA expression levels of bone resorption-related genes TRACP, macrophage colony stimulating factor (M-CSF) and cathepsin K (CTSK) in the cultured bone tissues. In conclusion, the current study demonstrated that treatment with 1.8 mT SEMFs at 1.5 h per day promoted bone formation, increased metabolism and inhibited resorption in both metaphyseal and diaphyseal bone tissues in vitro.

  1. Tissue-specific expression of mast cell granule serine proteinases and their role in inflammation in the lung and gut

    PubMed Central

    Miller, Hugh R P; Pemberton, Alan D

    2002-01-01

    Serine proteinases with trypsin-like (tryptase) and chymotrypsin-like (chymase) properties are major constituents of mast cell granules. Several tetrameric tryptases with differing specificities have been characterized in humans, but only a single chymase. In other species there are larger families of chymases with distinct and narrow proteolytic specificities. Expression of chymases and tryptases varies between tissues. Human pulmonary and gastrointestinal mast cells express chymase at lower levels than tryptase, whereas rodent and ruminant gastrointestinal mast cells express uniquely mucosa-specific chymases. Local and systemic release of chymases and tryptases can be quantified by immunoassay, providing highly specific markers of mast cell activation. The expression and constitutive extracellular secretion of the mucosa-specific chymase, mouse mast cell proteinase-1 (mMCP-1), is regulated by transforming growth factor-β1 (TGF-β1) in vitro, but it is not clear how the differential expression of chymases and tryptases is regulated in other species. Few native inhibitors have been identified for tryptases but the tetramers dissociate into inactive subunits in the absence of heparin. Chymases are variably inhibited by plasma proteinase inhibitors and by secretory leucocyte protease inhibitor (SLPI) that is expressed in the airways. Tryptases and chymases promote vascular permeability via indirect and possibly direct mechanisms. They contribute to tissue remodelling through selective proteolysis of matrix proteins and through activation of proteinase-activated receptors and of matrix metalloproteinases. Chymase may modulate vascular tissues through its ability to process angiotensin-I to angiotensin-II. Mucosa-specific chymases promote epithelial permeability and are involved in the immune expulsion of intestinal nematodes. Importantly, granule proteinases released extracellularly contribute to the recruitment of inflammatory cells and may thus be involved in

  2. Microbiota depletion promotes browning of white adipose tissue and reduces obesity.

    PubMed

    Suárez-Zamorano, Nicolas; Fabbiano, Salvatore; Chevalier, Claire; Stojanović, Ozren; Colin, Didier J; Stevanović, Ana; Veyrat-Durebex, Christelle; Tarallo, Valentina; Rigo, Dorothée; Germain, Stéphane; Ilievska, Miroslava; Montet, Xavier; Seimbille, Yann; Hapfelmeier, Siegfried; Trajkovski, Mirko

    2015-12-01

    Brown adipose tissue (BAT) promotes a lean and healthy phenotype and improves insulin sensitivity. In response to cold or exercise, brown fat cells also emerge in the white adipose tissue (WAT; also known as beige cells), a process known as browning. Here we show that the development of functional beige fat in the inguinal subcutaneous adipose tissue (ingSAT) and perigonadal visceral adipose tissue (pgVAT) is promoted by the depletion of microbiota either by means of antibiotic treatment or in germ-free mice. This leads to improved glucose tolerance and insulin sensitivity and decreased white fat and adipocyte size in lean mice, obese leptin-deficient (ob/ob) mice and high-fat diet (HFD)-fed mice. Such metabolic improvements are mediated by eosinophil infiltration, enhanced type 2 cytokine signaling and M2 macrophage polarization in the subcutaneous white fat depots of microbiota-depleted animals. The metabolic phenotype and the browning of the subcutaneous fat are impaired by the suppression of type 2 cytokine signaling, and they are reversed by recolonization of the antibiotic-treated or germ-free mice with microbes. These results provide insight into the microbiota-fat signaling axis and beige-fat development in health and metabolic disease.

  3. Effects of ingesting supplements designed to promote lean tissue accretion on body composition during resistance training.

    PubMed

    Kreider, R B; Klesges, R; Harmon, K; Grindstaff, P; Ramsey, L; Bullen, D; Wood, L; Li, Y; Almada, A

    1996-09-01

    This study examined the effects of ingesting nutritional supplements designed to promote lean tissue accretion on body composition alterations during resistance training. Twenty-eight resistance-trained males blindly supplemented their diets with maltodextrin (M), Gainers Fuel 1000 (GF), or Phosphagain (P). No significant differences were observed in absolute or relative total body water among groups. Energy intake and body weight significantly increased in all groups combined throughout the study with no group or interaction differences observed. Dual energy x-ray absorptiometry-determined body mass significantly increased in each group throughout the study with significantly greater gains observed in the GF and P groups. Lean tissue mass (excluding bone) gain was significantly greater in the P group, while fat mass and percent body fat were significantly increased in the GF group. Results indicate that total body weight significantly increased in each group and that P supplementation resulted in significantly greater gains in lean tissue mass during resistance training.

  4. Connective tissue growth factor promotes articular damage by increased osteoclastogenesis in patients with rheumatoid arthritis

    PubMed Central

    2009-01-01

    Introduction A protein analysis using a mass spectrometry indicated that there are serum proteins showing significant quantitative changes after the administration of infliximab. Among them, connective tissue growth factor (CTGF) seems to be related to the pathogenesis of rheumatoid arthritis (RA). Therefore, this study was conducted to investigate how CTGF is associated with the disease progression of RA. Methods Serum samples were collected from RA patients in active or inactive disease stages, and before or after treatments with infliximab. CTGF production was evaluated by ELISA, RT-PCR, indirect immunofluorescence microscopy, and immunoblotting. Osteoclastogenesis was evaluated using tartrate-resistant acid phosphatase (TRAP) staining, a bone resorption assay and osteoclasts specific catalytic enzymes productions. Results The serum concentrations of CTGF in RA were greater than in normal healthy controls and disease controls. Interestingly, those were significantly higher in active RA patients compared to inactive RA patients. Furthermore, the CTGF levels significantly were decreased by infliximab concomitant with the disease amelioration. In addition, tumour necrosis factor (TNF)α can induce the CTGF production from synovial fibroblasts even though TNFα can oppositely inhibit the production of CTGF from chondrocytes. CTGF promoted the induction of the quantitative and qualitative activities of osteoclasts in combination with M-CSF and receptor activator of NF-κB ligand (RANKL). In addition, we newly found integrin αVβ3 on the osteoclasts as a CTGF receptor. Conclusions These results indicate that aberrant CTGF production induced by TNFα plays a central role for the abnormal osteoclastic activation in RA patients. Restoration of aberrant CTGF production may contribute to the inhibition of articular destruction in infliximab treatment. PMID:19922639

  5. CanScript, an 18-Base pair DNA sequence, boosts tumor cell-specific promoter activity

    PubMed Central

    Huang, Yu-Hung; Cozzitorto, Joseph A; Richards, Nathan G; Eltoukhy, Ahmed A; Yeo, Charles J; Langer, Robert; Anderson, Daniel G; Brody, Jonathan R

    2010-01-01

    Gene therapy protocols for the treatment of cancer often employ gene promoter sequences that are known to be overexpressed in specific tumor cell types relative to normal cells. These promoters, while specific, are often weakly active. It would be desirable to increase the activity of such promoters, while at the same time retain specificity, so that the therapeutic gene is more robustly expressed. Using a luciferase reporter DNA construct in both in vitro cell transfection assays and in vivo mouse tumor models, we have determined that in the absence of any other DNA sequence, a previously identified 18-base pair enhancer sequence called CanScript, lying upstream of the MSLN gene, has ∼25% of the promoter activity of CAG, a very strong non-specific promoter/enhancer, in tumor cells in which MSLN is highly expressed. Furthermore, tandem repeat copies of CanScript enhance transcription in a dose-dependent manner and, when coupled with promoter sequences that are active in tumor cells, increase promoter activity. These findings suggest that the incorporation of CanScript into gene constructs may have application in enhancing activity of promoters used in cancer-targeting gene therapy strategies, thereby improving therapeutic efficacy. PMID:20798601

  6. Localization of Legionella pneumophila in Tissue Using FITC-Conjugated Specific Antibody and a Background Stain

    DTIC Science & Technology

    1982-05-01

    Legionnaires ’ disease in tissue. N Engi J Med 1977; Manual of Clinical Microbiology. Third edition. Edited by EH 297:1218-1220 Lennette, A Balows, WJ Hausler...Pathologits P6 i U. S. A. Localization of Legionella pneumophila in Tissue Using FITC- Conjuga ted Specific Antibody and a Background Stain BARBARA S. LOWRY...kIstitute of Infectmau meth W.: Localization of Legieaelle jimewnophsila Ii, tissue Disease . Fort Detrick, Frederick, MAryland using FIT71C-coujugated

  7. Porcine Tissue-Specific Regulatory Networks Derived from Meta-Analysis of the Transcriptome

    PubMed Central

    Pérez-Montarelo, Dafne; Hudson, Nicholas J.; Fernández, Ana I.; Ramayo-Caldas, Yuliaxis; Dalrymple, Brian P.; Reverter, Antonio

    2012-01-01

    The processes that drive tissue identity and differentiation remain unclear for most tissue types. So are the gene networks and transcription factors (TF) responsible for the differential structure and function of each particular tissue, and this is particularly true for non model species with incomplete genomic resources. To better understand the regulation of genes responsible for tissue identity in pigs, we have inferred regulatory networks from a meta-analysis of 20 gene expression studies spanning 480 Porcine Affymetrix chips for 134 experimental conditions on 27 distinct tissues. We developed a mixed-model normalization approach with a covariance structure that accommodated the disparity in the origin of the individual studies, and obtained the normalized expression of 12,320 genes across the 27 tissues. Using this resource, we constructed a network, based on the co-expression patterns of 1,072 TF and 1,232 tissue specific genes. The resulting network is consistent with the known biology of tissue development. Within the network, genes clustered by tissue and tissues clustered by site of embryonic origin. These clusters were significantly enriched for genes annotated in key relevant biological processes and confirm gene functions and interactions from the literature. We implemented a Regulatory Impact Factor (RIF) metric to identify the key regulators in skeletal muscle and tissues from the central nervous systems. The normalization of the meta-analysis, the inference of the gene co-expression network and the RIF metric, operated synergistically towards a successful search for tissue-specific regulators. Novel among these findings are evidence suggesting a novel key role of ERCC3 as a muscle regulator. Together, our results recapitulate the known biology behind tissue specificity and provide new valuable insights in a less studied but valuable model species. PMID:23049964

  8. Differential Promoter Methylation and Histone Modification Contribute to the Brain Specific Expression of the Mouse Mbu-1 Gene

    PubMed Central

    Kim, Byungtak; Kang, Seongeun; Kim, Sun Jung

    2012-01-01

    Mbu-1 (Csrnp-3) is a mouse gene that was identified in our previous study as showing highly restricted expression to the central nervous system. In this study, to elucidate the regulatory mechanism for tissue specificity of the gene, epigenetic approaches that identify the profiles of CpG methylation, as well as histone modifications at the promoter region were conducted. Methylation-specific PCR revealed that the CpG sites in brain tissues from embryo to adult stages showed virtually no methylation (0.052–0.67%). Lung (9.0%) and pancreas (3.0%) also showed lower levels. Other tissues such as liver, kidney, and heart showed much higher methylation levels ranging from approximately 39–93%. Treatment of 5-aza-2′-deoxycytidine (5-Aza-dC) significantly decreased promoter methylation, reactivating Mbu-1 expression in NG108-15 and Neuro-2a neuronal cells. Chromatin immunoprecipitation assay revealed that 5-Aza-dC decreased levels of acetylated H3K9 and methylated H3K4, and increased methylated H3K9. This result indicates that CpG methylation converses with histone modifications in an opposing sense of regulating Mbu-1 expression. PMID:23076708

  9. Tissue-specific transcription of the cardiac myosin light-chain 2 gene is regulated by an upstream repressor element.

    PubMed

    Shen, R A; Goswami, S K; Mascareno, E; Kumar, A; Siddiqui, M A

    1991-03-01

    Physiological expression of the cardiac muscle myosin light-chain 2 (MLC-2) gene in chickens is restricted to cardiac muscle tissue only, at least during the late embryonic to adult stages of development. The mechanism by which cardiac MLC-2 gene expression is repressed in differentiated noncardiac muscle tissues is unknown. Using sequential 5'-deletion mutants of the cardiac MLC-2 promoter introduced into primary skeletal muscle cells in culture, we have demonstrated that a 89-bp region, designated the cardiac-specific sequence (CSS), is essential for repression of cardiac MLC-2 expression in skeletal muscle. Removal of the CSS sequence alone allows transcription in skeletal muscle cells without affecting the transcriptional activity of the promoter in cardiac muscle cells. DNase I footprinting and gel shift assays indicate that protein binding to sequences in the CSS domain occurs readily in nuclear extracts obtained from skeletal muscle but not in extracts isolated under identical conditions from cardiac muscle. Thus, it appears that a negative regulatory mechanism accounts for the lack of expression of the cardiac MLC-2 gene in skeletal muscle and that the CSS element and its binding proteins are important functional components of the regulatory apparatus which ensures the developmental program for cardiac tissue-specific gene expression.

  10. Tissue-specific transcription of the cardiac myosin light-chain 2 gene is regulated by an upstream repressor element.

    PubMed Central

    Shen, R A; Goswami, S K; Mascareno, E; Kumar, A; Siddiqui, M A

    1991-01-01

    Physiological expression of the cardiac muscle myosin light-chain 2 (MLC-2) gene in chickens is restricted to cardiac muscle tissue only, at least during the late embryonic to adult stages of development. The mechanism by which cardiac MLC-2 gene expression is repressed in differentiated noncardiac muscle tissues is unknown. Using sequential 5'-deletion mutants of the cardiac MLC-2 promoter introduced into primary skeletal muscle cells in culture, we have demonstrated that a 89-bp region, designated the cardiac-specific sequence (CSS), is essential for repression of cardiac MLC-2 expression in skeletal muscle. Removal of the CSS sequence alone allows transcription in skeletal muscle cells without affecting the transcriptional activity of the promoter in cardiac muscle cells. DNase I footprinting and gel shift assays indicate that protein binding to sequences in the CSS domain occurs readily in nuclear extracts obtained from skeletal muscle but not in extracts isolated under identical conditions from cardiac muscle. Thus, it appears that a negative regulatory mechanism accounts for the lack of expression of the cardiac MLC-2 gene in skeletal muscle and that the CSS element and its binding proteins are important functional components of the regulatory apparatus which ensures the developmental program for cardiac tissue-specific gene expression. Images PMID:1996116

  11. Responsiveness of genes to manipulation of transcription factors in ES cells is associated with histone modifications and tissue specificity

    PubMed Central

    2011-01-01

    Background In addition to determining static states of gene expression (high vs. low), it is important to characterize their dynamic status. For example, genes with H3K27me3 chromatin marks are not only suppressed but also poised for activation. However, the responsiveness of genes to perturbations has never been studied systematically. To distinguish gene responses to specific factors from responsiveness in general, it is necessary to analyze gene expression profiles of cells responding to a large variety of disturbances, and such databases did not exist before. Results We estimated the responsiveness of all genes in mouse ES cells using our recently published database on expression change after controlled induction of 53 transcription factors (TFs) and other genes. Responsive genes (N = 4746), which were readily upregulated or downregulated depending on the kind of perturbation, mostly have regulatory functions and a propensity to become tissue-specific upon differentiation. Tissue-specific expression was evaluated on the basis of published (GNF) and our new data for 15 organs and tissues. Non-responsive genes (N = 9562), which did not change their expression much following any perturbation, were enriched in housekeeping functions. We found that TF-responsiveness in ES cells is the best predictor known for tissue-specificity in gene expression. Among genes with CpG islands, high responsiveness is associated with H3K27me3 chromatin marks, and low responsiveness is associated with H3K36me3 chromatin, stronger tri-methylation of H3K4, binding of E2F1, and GABP binding motifs in promoters. Conclusions We thus propose the responsiveness of expression to perturbations as a new way to define the dynamic status of genes, which brings new insights into mechanisms of regulation of gene expression and tissue specificity. PMID:21306619

  12. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    SciTech Connect

    Kurayoshi, Kenta; Ozono, Eiko; Iwanaga, Ritsuko; Bradford, Andrew P.; Komori, Hideyuki; Ohtani, Kiyoshi

    2014-07-18

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  13. Understanding multicellular function and disease with human tissue-specific networks

    PubMed Central

    Greene, Casey S.; Krishnan, Arjun; Wong, Aaron K.; Ricciotti, Emanuela; Zelaya, Rene A.; Himmelstein, Daniel S.; Zhang, Ran; Hartmann, Boris M.; Zaslavsky, Elena; Sealfon, Stuart C.; Chasman, Daniel I.; FitzGerald, Garret A.; Dolinski, Kara; Grosser, Tilo; Troyanskaya, Olga G.

    2016-01-01

    Tissue and cell-type identity lie at the core of human physiology and disease. Understanding the genetic underpinnings of complex tissues and individual cell lineages is crucial for developing improved diagnostics and therapeutics. We present genome-wide functional interaction networks for 144 human tissues and cell types developed using a data-driven Bayesian methodology that integrates thousands of diverse experiments spanning tissue and disease states. Tissue-specific networks predict lineage-specific responses to perturbation, reveal genes’ changing functional roles across tissues, and illuminate disease-disease relationships. We introduce NetWAS, which combines genes with nominally significant GWAS p-values and tissue-specific networks to identify disease-gene associations more accurately than GWAS alone. Our webserver, GIANT, provides an interface to human tissue networks through multi-gene queries, network visualization, analysis tools including NetWAS, and downloadable networks. GIANT enables systematic exploration of the landscape of interacting genes that shape specialized cellular functions across more than one hundred human tissues and cell types. PMID:25915600

  14. Tissue-specific Regulation of Porcine Prolactin Receptor Expression by Estrogen, Progesterone and Prolactin

    USDA-ARS?s Scientific Manuscript database

    Prolactin (PRL) acts through its receptor (PRLR) via both endocrine and local paracrine/autocrine pathways to regulate biological processes including reproduction and lactation. We analyzed the tissue and stage of gestation-specific regulation of PRL and PRLR expression in various tissues of pigs. ...

  15. The stearoyl-acyl-carrier-protein desaturase promoter (Des) from oil palm confers fruit-specific GUS expression in transgenic tomato.

    PubMed

    Saed Taha, Rima; Ismail, Ismanizan; Zainal, Zamri; Abdullah, Siti Nor Akmar

    2012-09-01

    The stearoyl-acyl-carrier-protein (ACP) desaturase is a plastid-localized enzyme that catalyzes the conversion of stearoyl-ACP to oleoyl-ACP and plays an important role in the determination of the properties of the majority of cellular glycerolipids. Functional characterization of the fatty acid desaturase genes and their specific promoters is a prerequisite for altering the composition of unsaturated fatty acids of palm oil by genetic engineering. In this paper, the specificity and strength of the oil palm stearoyl-ACP desaturase gene promoter (Des) was evaluated in transgenic tomato plants. Transcriptional fusions between 5' deletions of the Des promoter (Des1-4) and the β-glucuronidase (GUS) reporter gene were generated and their expression analyzed in different tissues of stably transformed tomato plants. Histochemical analysis of the Des promoter deletion series revealed that GUS gene expression was confined to the tomato fruits. No expression was detected in vegetative tissues of the transgenic plants. The highest levels of GUS activity was observed in different tissues of ripe red fruits (vascular tissue, septa, endocarp, mesocarp and columella) and in seeds, which harbored the promoter region located between -590 and +10. A comparison of the promoter-deletion constructs showed that the Des4 promoter deletion (314bp) produced a markedly low level of GUS expression in fruits and seeds. Fluorometric analysis of the GUS activity revealed a 4-fold increase in the activity of the full-length Des promoter compared to the CaMV35S promoter. RNA-hybridization analyses provided additional evidence of increased GUS expression in fruits driven by a Des fragment. Taken together, these results demonstrate the potential of the Des promoter as a tool for the genetic engineering of oil palms and other species, including dicots, in improving the quality and nutritional value of the fruits.

  16. Transgenic characterization of two testis-specific promoters in the silkworm, Bombyx mori.

    PubMed

    Xu, J; Bi, H; Chen, R; Aslam, A F M; Li, Z; Ling, L; Zeng, B; Huang, Y; Tan, A

    2015-04-01

    Sex-specific regulatory elements are key components for developing insect genetic sexing systems. The current insect genetic sexing system mainly uses a female-specific modification system whereas little success was reported on male-specific genetic modification. In the silkworm Bombyx mori, a lepidopteran model insect with economic importance, a transgene-based, female-specific lethality system has been established based on sex-specific alternative splicing factors and a female-specific promoter BmVgp (vitellogenin promoter) has been identified. However, no male-specific regulatory elements have yet been identified. Here we report the transgenic identification of two promoters that drive reporter gene expression in a testis-specific manner in B. mori. Putative promoter sequences from the B. mori Radial spoke head 1 gene (BmR1) and beta-tubulin 4 gene (Bmβ4) were introduced using piggybac-based germline transformation. In transgenic silkworms, expression of the reporter gene enhanced green fluorescent protein (EGFP) directed by either BmR1 promoter (BmR1p) or Bmβ4p showed precisely testis-specific manners from the larval to adult stage. Furthermore, EGFP expression of these two transgenic lines showed different localization in the testis, indicating that BmR1p or Bmβ4p might be used as distinct regulatory elements in directing testis-specific gene expression. Identification of these testis-specific promoters not only contributes to a better understanding of testis-specific gene function in insects, but also has potential applications in sterile insect techniques for pest management.

  17. An Alternative Promoter of the Human Neuronal Nitric Oxide Synthase Gene Is Expressed Specifically in Leydig Cells

    PubMed Central

    Wang, Yang; Newton, Derek C.; Miller, Tricia L.; Teichert, Anouk-Martine; Phillips, M. James; Davidoff, Michail S.; Marsden, Philip A.

    2002-01-01

    Neuronal nitric oxide synthase (nNOS) plays a modulatory role in the biology of a variety of neuroendocrine tissues and is especially relevant to gonadal function. We have previously reported the cloning and characterization of a variant of the nNOS protein, termed testis nNOS (TnNOS), the mRNA for which was restricted in expression to male gonadal tissues. To examine the cell-specificity of the testis-specific NOS regulatory regions we defined patterns of β-galactosidase expression of an insertional transgene in which the reporter gene lacZ was under the transcriptional control of the human TnNOS promoter. β-galactosidase activity was detected exclusively in the interstitial cells of the testis in transgenic mice. These cells also evidenced positive staining for nNOS protein and were identified as androgen-producing Leydig cells by staining with the Leydig cell marker, P450scc. Expression of the promoter was absent in cells of the seminiferous tubules, specifically germline cells of different stages and Sertoli cells. In contrast to the male gonad, β-galactosidase activity was not detected in ovaries of adult female mice. Activity was also not evident in organs known to express full-length nNOS, such as skeletal muscle, kidney, or cerebellum. The same pattern of β-galactosidase staining was observed in independent transgenic founders and was distinct from that observed for an endothelial NOS promoter/reporter transgene. In the testis of male adult eNOS promoter-reporter transgenic mice, β-galactosidase activity was expressed only in endothelial cells of large- and medium-sized arterial blood vessels. Transcriptional activity of the human TnNOS promoter could not be detected in a variety of cell types, including Leydig cells, using episomal promoter-reporter constructs suggesting that a nuclear environment and higher order genomic complexity are required for appropriate promoter function. The restricted expression pattern of an nNOS variant in Leydig cells of

  18. The matrix attachment region-binding protein SATB1 participates in negative regulation of tissue-specific gene expression.

    PubMed Central

    Liu, J; Bramblett, D; Zhu, Q; Lozano, M; Kobayashi, R; Ross, S R; Dudley, J P

    1997-01-01

    The nuclear matrix has been implicated in several cellular processes, including DNA replication, transcription, and RNA processing. In particular, transcriptional regulation is believed to be accomplished by binding of chromatin loops to the nuclear matrix and by the concentration of specific transcription factors near these matrix attachment regions (MARs). A number of MAR-binding proteins have been identified, but few have been directly linked to tissue-specific transcription. Recently, we have identified two cellular protein complexes (NBP and UBP) that bind to a region of the mouse mammary tumor virus (MMTV) long terminal repeat (LTR) previously shown to contain at least two negative regulatory elements (NREs) termed the promoter-proximal and promoter-distal NREs. These NREs are absent from MMTV strains that cause T-cell lymphomas instead of mammary carcinomas. We show here that NBP binds to a 22-bp sequence containing an imperfect inverted repeat in the promoter-proximal NRE. Previous data showed that a mutation (p924) within the inverted repeat elevated basal transcription from the MMTV promoter and destabilized the binding of NBP, but not UBP, to the proximal NRE. By using conventional and affinity methods to purify NBP from rat thymic nuclear extracts, we obtained a single major protein of 115 kDa that was identified by protease digestion and partial sequencing analysis as the nuclear matrix-binding protein special AT-rich sequence-binding protein 1 (SATB1). Antibody ablation, distamycin inhibition of binding, renaturation and competition experiments, and tissue distribution data all confirmed that the NBP complex contained SATB1. Similar types of experiments were used to show that the UBP complex contained the homeodomain protein Cux/CDP that binds the MAR of the intronic heavy-chain immunoglobulin enhancer. By using the p924 mutation within the MMTV LTR upstream of the chloramphenicol acetyltransferase gene, we generated two strains of transgenic mice

  19. Emulating Native Periosteum Cell Population and Subsequent Paracrine Factor Production To Promote Tissue Engineered Periosteum-Mediated Allograft Healing

    PubMed Central

    Hoffman, Michael D.

    2015-01-01

    Emulating autograft healing within the context of decellularized bone allografts has immediate clinical applications in the treatment of critical-sized bone defects. The periosteum, a thin, osteogenic tissue that surrounds bone, houses a heterogeneous population of stem cells and osteoprogenitors. There is evidence that periosteum-cell derived paracrine factors, specifically vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2), orchestrate autograft healing through host cell recruitment and subsequent tissue elaboration. In previous work, we demonstrated that the use of poly(ethylene glycol) (PEG) hydrogels as a tissue engineered (T.E.) periosteum to localize mesenchymal stem cells (MSCs) to the surface of decellularized bone enhances allograft healing and integration. Herein, we utilize a mixed population of 50:50 MSCs and osteoprogenitor cells to better mimic native periosteum cell population and paracrine factor production to further promote allograft healing. This mixed cell population was localized to the surface of decellularized allografts within degradable hydrogels and shown to expedite allograft healing. Specifically, bone callus formation and biomechanical graft-host integration are increased as compared to unmodified allografts. These results demonstrate the dual importance of periosteum-mediated paracrine factors orchestrating host cell recruitment as well as new bone formation while developing clinically translatable strategies for allograft healing and integration. PMID:25818449

  20. Emulating native periosteum cell population and subsequent paracrine factor production to promote tissue engineered periosteum-mediated allograft healing.

    PubMed

    Hoffman, Michael D; Benoit, Danielle S W

    2015-06-01

    Emulating autograft healing within the context of decellularized bone allografts has immediate clinical applications in the treatment of critical-sized bone defects. The periosteum, a thin, osteogenic tissue that surrounds bone, houses a heterogenous population of stem cells and osteoprogenitors. There is evidence that periosteum-cell derived paracrine factors, specifically vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2), orchestrate autograft healing through host cell recruitment and subsequent tissue elaboration. In previous work, we demonstrated that the use of poly(ethylene glycol) (PEG) hydrogels as a tissue engineered (T.E.) periosteum to localize mesenchymal stem cells (MSCs) to the surface of decellularized bone enhances allograft healing and integration. Herein, we utilize a mixed population of 50:50 MSCs and osteoprogenitor cells to better mimic native periosteum cell population and paracrine factor production to further promote allograft healing. This mixed cell population was localized to the surface of decellularized allografts within degradable hydrogels and shown to expedite allograft healing. Specifically, bone callus formation and biomechanical graft-host integration are increased as compared to unmodified allografts. These results demonstrate the dual importance of periosteum-mediated paracrine factors orchestrating host cell recruitment as well as new bone formation while developing clinically translatable strategies for allograft healing and integration.

  1. Tissue-specific pioneer factors associate with androgen receptor cistromes and transcription programs

    PubMed Central

    Pihlajamaa, Päivi; Sahu, Biswajyoti; Lyly, Lauri; Aittomäki, Viljami; Hautaniemi, Sampsa; Jänne, Olli A

    2014-01-01

    Androgen receptor (AR) binds male sex steroids and mediates physiological androgen actions in target tissues. ChIP-seq analyses of AR-binding events in murine prostate, kidney and epididymis show that in vivo AR cistromes and their respective androgen-dependent transcription programs are highly tissue specific mediating distinct biological pathways. This high order of tissue specificity is achieved by the use of exclusive collaborating factors in the three androgen-responsive tissues. We find two novel collaborating factors for AR signaling in vivo—Hnf4α (hepatocyte nuclear factor 4α) in mouse kidney and AP-2α (activating enhancer binding protein 2α) in mouse epididymis—that define tissue-specific AR recruitment. In mouse prostate, FoxA1 serves for the same purpose. FoxA1, Hnf4α and AP-2α motifs are over-represented within unique AR-binding loci, and the cistromes of these factors show substantial overlap with AR-binding events distinct to each tissue type. These licensing or pioneering factors are constitutively bound to chromatin and guide AR to specific genomic loci upon hormone exposure. Collectively, liganded receptor and its DNA-response elements are required but not sufficient for establishment of tissue-specific transcription programs. PMID:24451200

  2. Mapping the mouse Allelome reveals tissue-specific regulation of allelic expression

    PubMed Central

    Andergassen, Daniel; Dotter, Christoph P; Wenzel, Daniel; Sigl, Verena; Bammer, Philipp C; Muckenhuber, Markus; Mayer, Daniela; Kulinski, Tomasz M; Theussl, Hans-Christian; Penninger, Josef M; Bock, Christoph; Barlow, Denise P; Pauler, Florian M; Hudson, Quanah J

    2017-01-01

    To determine the dynamics of allelic-specific expression during mouse development, we analyzed RNA-seq data from 23 F1 tissues from different developmental stages, including 19 female tissues allowing X chromosome inactivation (XCI) escapers to also be detected. We demonstrate that allelic expression arising from genetic or epigenetic differences is highly tissue-specific. We find that tissue-specific strain-biased gene expression may be regulated by tissue-specific enhancers or by post-transcriptional differences in stability between the alleles. We also find that escape from X-inactivation is tissue-specific, with leg muscle showing an unexpectedly high rate of XCI escapers. By surveying a range of tissues during development, and performing extensive validation, we are able to provide a high confidence list of mouse imprinted genes including 18 novel genes. This shows that cluster size varies dynamically during development and can be substantially larger than previously thought, with the Igf2r cluster extending over 10 Mb in placenta. DOI: http://dx.doi.org/10.7554/eLife.25125.001 PMID:28806168

  3. Mapping the mouse Allelome reveals tissue-specific regulation of allelic expression.

    PubMed

    Andergassen, Daniel; Dotter, Christoph P; Wenzel, Daniel; Sigl, Verena; Bammer, Philipp C; Muckenhuber, Markus; Mayer, Daniela; Kulinski, Tomasz M; Theussl, Hans-Christian; Penninger, Josef M; Bock, Christoph; Barlow, Denise P; Pauler, Florian M; Hudson, Quanah J

    2017-08-14

    To determine the dynamics of allelic-specific expression during mouse development, we analyzed RNA-seq data from 23 F1 tissues from different developmental stages, including 19 female tissues allowing X chromosome inactivation (XCI) escapers to also be detected. We demonstrate that allelic expression arising from genetic or epigenetic differences is highly tissue-specific. We find that tissue-specific strain-biased gene expression may be regulated by tissue-specific enhancers or by post-transcriptional differences in stability between the alleles. We also find that escape from X-inactivation is tissue-specific, with leg muscle showing an unexpectedly high rate of XCI escapers. By surveying a range of tissues during development, and performing extensive validation, we are able to provide a high confidence list of mouse imprinted genes including 18 novel genes. This shows that cluster size varies dynamically during development and can be substantially larger than previously thought, with the Igf2r cluster extending over 10 Mb in placenta.

  4. Rapid ablation of dental hard tissue using promoter-assisted pulsed Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Frederickson, Christopher J.; Lu, Quiang; Hayes, Donald J.; Wallace, David B.; Grove, Michael E.; Bell, Brent A.; Motamedi, Massoud; Rastegar, Sohi; Wright, C. G.; Arcoria, Charles J.

    1997-05-01

    Nd:YAG lasers have been used previously for selective removal of various material from teeth. To permit ablation of healthy enamel with the Nd:YAG laser, we have adopted a strategy in which micro-drops of photoabsorptive 'promoters' are placed on the enamel to enhance absorption of individual laser pulses. Ink-jet technology dispenses the micro-drops with micron- and millisecond-scale precision. Various promoters using drug and cosmetic dyes, indocyanine green, or carbon-black pigments have been studied. Typical ablation parameters are 1.064 micrometers ; 20-180 mJ per pulse; 100 microsecond(s) ; 10-30 pulses/sec; 0.2-2.0 nl drops. Recent results from the program include: (1) For a variety of promoters, a monotonic relationship obtains between absorption coefficient at 1.064 micrometers and the efficiency of ablation of enamel. (2) With different promoter volumes, the efficiency of ablation rises, plateaus, then falls with increasing volume. (3) At drilling rates of 30 pulses/sec, ablation efficiency approaches rates of 0.1 mm3/sec. LM and SEM observations show a glassy 'pebbled' crater surface indicative of hydroxyapatite that has cooled, condensed, and solidified on the crater walls. Together these results favor the view that a micro-drop promoter-assisted Nd:YAG drill can five clinically useful ablations hard dental tissue.

  5. Diet-derived polyphenol metabolite enterolactone is a tissue-specific estrogen receptor activator.

    PubMed

    Penttinen, Pauliina; Jaehrling, Jan; Damdimopoulos, Anastasios E; Inzunza, José; Lemmen, Josephine G; van der Saag, Paul; Pettersson, Katarina; Gauglitz, Günter; Mäkelä, Sari; Pongratz, Ingemar

    2007-10-01

    Numerous dietary compounds can modify gene expression by binding to the members of the nuclear receptor superfamily of transcription factors. For example, dietary polyphenols, such as soy isoflavones genistein and daidzein, modulate the activity of the estrogen receptors (ERs)-alpha and ERbeta. An additional class of dietary polyphenols that modulate cellular signaling pathways are lignans, compounds that are common constituents of Western diets. In this study, we show that a metabolite of dietary lignans, enterolactone, at physiological concentrations, activates ER-mediated transcription in vitro with preference for ERalpha. The effects of enterolactone are mediated by the ER ligand binding domain and are susceptible to antiestrogen treatment. Furthermore, the affinity of enterolactone toward ERalpha, measured by a novel ligand binding assay, is augmented in cell culture conditions. Moreover, our results demonstrate for the first time that enterolactone has estrogenic activity in vivo. In transgenic estrogen-sensitive reporter mice, enterolactone induces tissue-specific estrogen-responsive reporter gene expression as well as promotes uterine stromal edema and expression of estrogen-responsive endogenous genes (CyclinD1 and Ki67). Taken together, our data show that enterolactone is a selective ER agonist inducing ER-mediated transcription both in vitro in different cell lines and in vivo in the mouse uterus.

  6. Tissue-specific expression and dynamic organization of SR splicing factors in Arabidopsis.

    PubMed

    Fang, Yuda; Hearn, Stephen; Spector, David L

    2004-06-01

    The organization of the pre-mRNA splicing machinery has been extensively studied in mammalian and yeast cells and far less is known in living plant cells and different cell types of an intact organism. Here, we report on the expression, organization, and dynamics of pre-mRNA splicing factors (SR33, SR1/atSRp34, and atSRp30) under control of their endogenous promoters in Arabidopsis. Distinct tissue-specific expression patterns were observed, and differences in the distribution of these proteins within nuclei of different cell types were identified. These factors localized in a cell type-dependent speckled pattern as well as being diffusely distributed throughout the nucleoplasm. Electron microscopic analysis has revealed that these speckles correspond to interchromatin granule clusters. Time-lapse microscopy revealed that speckles move within a constrained nuclear space, and their organization is altered during the cell cycle. Fluorescence recovery after photobleaching analysis revealed a rapid exchange rate of splicing factors in nuclear speckles. The dynamic organization of plant speckles is closely related to the transcriptional activity of the cells. The organization and dynamic behavior of speckles in Arabidopsis cell nuclei provides significant insight into understanding the functional compartmentalization of the nucleus and its relationship to chromatin organization within various cell types of a single organism.

  7. α-MSH and Foxc2 promote fatty acid oxidation through C/EBPβ negative transcription in mice adipose tissue.

    PubMed

    Gan, Lu; Liu, Zhenjiang; Chen, Yizhe; Dan Luo; Feng, Fei; Liu, Guannv; Sun, Chao

    2016-11-07

    Alpha melanocyte stimulating hormone (α-MSH) and Forkhead box C2 protein (Foxc2) enhance lipolysis in multiple tissues. However, their relationship in adipose fatty acid oxidation (FAO) remains unclear. Here, we demonstrated that α-MSH and Foxc2 increased palmitate oxidation to CO2 in white (WAT) and brown adipose tissue (BAT). C/EBPβ expression was reduced by α-MSH and Foxc2. FFA level was elevated by α-MSH and pc-Foxc2 treatment along with increased FAO in white and brown adipocytes. The expression of FAO key enzymes, medium-chain acyl-CoA dehydrogenase (MCAD) and long-chain acyl-CoA dehydrogenase (LCAD) were increased in α-MSH and pc-Foxc2 group. Combination of α-MSH and Foxc2 treatment synergistically promoted FAO through increasing the activity of CPT-1 and phosphorylation of ACC. We found C/EBPβ bind to MC5R and Foxc2 promoter regions and inhibited FAO. cAMP level was increased by α-MSH and Foxc2 individually treated or combined treatment. Furthermore, cAMP/PKA pathway-specific inhibitor (H89) blocked the FAO, despite in α-MSH and Foxc2 both added group. While forskolin, the cAMP agonist, promoted FAO and enhanced the effect of α-MSH and Foxc2. Collectively, α-MSH and Foxc2 mutual promote FAO in WAT and BAT via cAMP/PKA signal pathway. And C/EBPβ as a transcription suppressor inhibits α-MSH and Foxc2 expression and FAO.

  8. α-MSH and Foxc2 promote fatty acid oxidation through C/EBPβ negative transcription in mice adipose tissue

    PubMed Central

    Gan, Lu; Liu, Zhenjiang; Chen, Yizhe; Dan Luo; Feng, Fei; Liu, Guannv; Sun, Chao

    2016-01-01

    Alpha melanocyte stimulating hormone (α-MSH) and Forkhead box C2 protein (Foxc2) enhance lipolysis in multiple tissues. However, their relationship in adipose fatty acid oxidation (FAO) remains unclear. Here, we demonstrated that α-MSH and Foxc2 increased palmitate oxidation to CO2 in white (WAT) and brown adipose tissue (BAT). C/EBPβ expression was reduced by α-MSH and Foxc2. FFA level was elevated by α-MSH and pc-Foxc2 treatment along with increased FAO in white and brown adipocytes. The expression of FAO key enzymes, medium-chain acyl-CoA dehydrogenase (MCAD) and long-chain acyl-CoA dehydrogenase (LCAD) were increased in α-MSH and pc-Foxc2 group. Combination of α-MSH and Foxc2 treatment synergistically promoted FAO through increasing the activity of CPT-1 and phosphorylation of ACC. We found C/EBPβ bind to MC5R and Foxc2 promoter regions and inhibited FAO. cAMP level was increased by α-MSH and Foxc2 individually treated or combined treatment. Furthermore, cAMP/PKA pathway-specific inhibitor (H89) blocked the FAO, despite in α-MSH and Foxc2 both added group. While forskolin, the cAMP agonist, promoted FAO and enhanced the effect of α-MSH and Foxc2. Collectively, α-MSH and Foxc2 mutual promote FAO in WAT and BAT via cAMP/PKA signal pathway. And C/EBPβ as a transcription suppressor inhibits α-MSH and Foxc2 expression and FAO. PMID:27819350

  9. Prolactin Promotes Adipose Tissue Fitness and Insulin Sensitivity in Obese Males.

    PubMed

    Ruiz-Herrera, Xarubet; de Los Ríos, Ericka A; Díaz, Juan M; Lerma-Alvarado, Ricardo M; Martínez de la Escalera, Lucía; López-Barrera, Fernando; Lemini, María; Arnold, Edith; Martínez de la Escalera, Gonzalo; Clapp, Carmen; Macotela, Yazmín

    2017-01-01

    Excessive accumulation of body fat triggers insulin resistance and features of the metabolic syndrome. Recently, evidence has accumulated that obesity, type 2 diabetes, and metabolic syndrome are associated with reduced levels of serum prolactin (PRL) in humans and rodents, raising the question of whether low PRL levels contribute to metabolic dysfunction. Here, we have addressed this question by investigating the role of PRL in insulin sensitivity and adipose tissue fitness in obese rodents and humans. In diet-induced obese rats, treatment with PRL delivered via osmotic mini-pumps, improved insulin sensitivity, prevented adipocyte hypertrophy, and reduced inflammatory cytokine expression in visceral fat. PRL also induced increased expression of Pparg and Xbp1s in visceral adipose tissue and elevated circulating adiponectin levels. Conversely, PRL receptor null mice challenged with a high-fat diet developed greater insulin resistance, glucose intolerance, and increased adipocyte hypertrophy compared with wild-type mice. In humans, serum PRL values correlated positively with systemic adiponectin levels and were reduced in insulin-resistant patients. Furthermore, PRL circulating levels and PRL produced by adipose tissue correlated directly with the expression of PPARG, ADIPOQ, and GLUT4 in human visceral and sc adipose tissue. Thus, PRL, acting through its cognate receptors, promotes healthy adipose tissue function and systemic insulin sensitivity. Increasing the levels of PRL in the circulation may have therapeutic potential against obesity-induced metabolic diseases. Copyright © 2017 by the Endocrine Society.

  10. Effects of Adeno-Associated Virus Serotype and Tissue-Specific Expression on Circulating Biomarkers of Propionic Acidemia

    PubMed Central

    Guenzel, Adam J.; Hillestad, Matthew L.; Matern, Dietrich

    2014-01-01

    Abstract Propionic acidemia (PA) is an autosomal recessive inborn error of metabolism caused by deficiency of propionyl-CoA carboxylase (PCC). This enzyme is composed of six PCCA and six PCCB subunits and mediates a critical step in catabolism of odd chain fatty acids and certain amino acids. Current treatment options for PA are limited to stringent dietary restriction of protein consumption and some patients undergo elective liver transplantation. We previously generated a hypomorphic model of PA, designated Pcca−/−(A138T), with 2% of wild-type enzyme activity that mimics many aspects of the human disease. In this study, we used the differing tissue tropisms of adeno-associated virus (AAV) to probe the ability of liver or muscle-directed gene therapy to treat systemic aspects of this disease that affects many cell types. Systemic therapy with muscle-biased AAV1, liver-biased AAV8, and broadly tropic AAVrh10 mediated significant biochemical corrections in circulating propionylcarnitine (C3) and methyl citrate by all vectors. The innate tissue bias of AAV1 and AAV8 gene expression was made more specific by the use of muscle-specific muscle creatine kinase (specifically MCK6) and hepatocyte-specific transthyretin (TTR) promoters, respectively. Under these targeted conditions, both vectors mediated significant long-term correction of circulating metabolites, demonstrating that correction of muscle and likely other tissue types in addition to liver is necessary to fully correct pathology caused by PA. Liver-specific AAV8-TTR-PCCA mediated better correction than AAV1-MCK-PCCA. These data suggest that targeted gene therapy may be a viable alternative to liver transplantation for PA. They also demonstrate the effects of tissue-specific and broad gene therapy on a cell autonomous systemic genetic disease. PMID:25046265

  11. Regulation of transcription of the adenovirus EII promoter by gene products: Absence of sequence specificity

    SciTech Connect

    Kingston, R.E.; Kaufman, R.J.; Sharp, P.A.

    1984-10-01

    During adenovirus infection, the EII promoter is positively regulated by products of the EIa region. The authors have studied this regulation by fusing a DNA segment containing the adenovirus EII promoter to a dihydrofolate reductase cDNA segment. Expression of this hybrid gene is stimulated in trans when cell lines containing an integrated copy are either transfected with plasmids carrying the EIa region or infected with adenovirus. This suggests that EIa activity regulates transcription of the EII promoter in the absence of other viral proteins and that this stimulation can occur when the EII promoter is organized in cellular chromatin. Transcription from the EII promoter is initiated at two sites in cell lines lacking EIa activity. Introduction of the EIa region preferentially stimulated transcription from one of these two sites. A sensitive, stable cotransfection assay was used to test for specific EII sequences required for stimulation. EIa activity stimulates all mutaant promoters; the most extensive deletion retained only 18 base pairs of sequences upstream of the initiation site. They suggest that regulation of a promoter by the EIa region does not depend on the presence of a set of specific sequences, but instead reflects a characteristic of promoters that have been exogenously introduced into cells. Insertion of the 72-base-pair repeat of simian-virus 40 in cis enhances transcription from the EII promoter. The stimulatory effects of EIa activity and of the simian virus 40 sequence are additive and appear to differ mechanistically.

  12. Human miR223 promoter as a novel myelo-specific promoter for chronic granulomatous disease gene therapy.

    PubMed

    Brendel, Christian; Hänseler, Walther; Wohlgensinger, Vital; Bianchi, Matteo; Tokmak, Serap; Chen-Wichmann, Linping; Kuzmenko, Elena; Cesarovic, Nikola; Nicholls, Flora; Reichenbach, Janine; Seger, Reinhard; Grez, Manuel; Siler, Ulrich

    2013-06-01

    Targeting transgene expression to specific hematopoietic cell lineages could contribute to the safety of retroviral vectors in gene therapeutic applications. Chronic granulomatous disease (CGD), a defect of phagocytic cells, can be managed by gene therapy, using retroviral vectors with targeted expression to myeloid cells. In this context, we analyzed the myelospecificity of the human miR223 promoter, which is known to be strongly upregulated during myeloid differentiation, to drive myeloid-restricted expression of p47(phox) and gp91(phox) in mouse models of CGD and in primary patient-derived cells. The miR223 promoter restricted the expression of p47(phox), gp91(phox), and green fluorescent protein (GFP) within self-inactivating (SIN) gamma- and lentiviral vectors to granulocytes and macrophages, with only marginal expression in lymphocytes or hematopoietic stem and progenitor cells. Furthermore, gene transfer into primary CD34+ cells derived from a p47(phox) patient followed by ex vivo differentiation to neutrophils resulted in restoration of Escherichia coli killing activity by miR223 promoter-mediated p47(phox) expression. These results indicate that the miR223 promoter as an internal promoter within SIN gene therapy vectors is able to efficiently correct the CGD phenotype with negligible activity in hematopoietic progenitors, thereby limiting the risk of insertional oncogenesis and development of clonal dominance.

  13. Studies on mechanism of action of anti-tumor-promoting agents: their specificity in two-stage promotion.

    PubMed Central

    Slaga, T J; Klein-Szanto, A J; Fischer, S M; Weeks, C E; Nelson, K; Major, S

    1980-01-01

    The effects of fluocinolone acetonide (FA), retinoic acid (RA), and tosylphenylalanine chloromethyl ketone (TPCK) on two-stage promotion after 7,12-dimethylbenz[a]-anthracene (DMBA) initiation in female Sencar mice were investigated. The two-stage promotion protocol was achieved by twice weekly applications of 2 microgram of 12-O-tetradecanoylphorbol 13-acetate (TPA) for 2 weeks (stage I) followed by twice weekly applications of mezerein for 18 weeks (stage II). Separately stage I and II do not cause any tumors to develop after DMBA initiation. FA was found to be a potent inhibitor of stages I and II but to a greater degree for stage I than for stage II. RA was ineffective in stage I but was a potent inhibitor of stage II; TPCK specifically inhibited stage I but not stage II. FA and TPCK effectively counteract the appearance of the dark basal keratinocytes, whereas RA has no effect. These results provide additional evidence for the importance of dark basal keratinocytes in stage I of promotion and indicate that most of the other biochemical and morphological responses normally associated with promotion (such as polyamines) are actually associated with stage II of promotion. PMID:6769125

  14. Correlating Molecular Character of NIR Imaging Agents with Tissue-Specific Uptake

    PubMed Central

    Owens, Eric A.; Hyun, Hoon; Tawney, Joseph G.; Choi, Hak Soo; Henary, Maged

    2015-01-01

    Near-infrared (NIR) fluorescent contrast agents are emerging in optical imaging as sensitive, cost-effective, and nonharmful alternatives to current agents that emit harmful ionizing radiation. Developing spectrally distinct NIR fluorophores to visualize sensitive vital tissues to selectively avoid them during surgical resection of diseased tissue is of great significance. Herein, we report the synthetic variation of pentamethine cyanine fluorophores with modifications of physicochemical properties toward prompting tissue-specific uptake into sensitive tissues (i.e., endocrine glands). Tissue-specific targeting and biodistribution studies revealed localization of contrast agents in the adrenal and pituitary glands, pancreas, and lymph nodes with dependence on molecular characteristics. Incorporation of hydrophobic heterocyclic rings, alkyl groups, and halogens allowed a fine-tuning capability to the hydrophobic character and dipole moment for observing perturbation in biological activity in response to minor structural alterations. These NIR contrast agents have potential for clinical translation for intraoperative imaging in the delineation of delicate glands. PMID:25923454

  15. Human cancers overexpress genes that are specific to a variety of normal human tissues

    PubMed Central

    Lotem, Joseph; Netanely, Dvir; Domany, Eytan; Sachs, Leo

    2005-01-01

    We have analyzed gene expression data from three different kinds of samples: normal human tissues, human cancer cell lines, and leukemic cells from lymphoid and myeloid leukemia pediatric patients. We have searched for genes that are overexpressed in human cancer and also show specific patterns of tissue-dependent expression in normal tissues. Using the expression data of the normal tissues, we identified 4,346 genes with a high variability of expression and clustered these genes according to their relative expression level. Of 91 stable clusters obtained, 24 clusters included genes preferentially expressed either only in hematopoietic tissues or in hematopoietic and one to two other tissues; 28 clusters included genes preferentially expressed in various nonhematopoietic tissues such as neuronal, testis, liver, kidney, muscle, lung, pancreas, and placenta. Analysis of the expression levels of these two groups of genes in the human cancer cell lines and leukemias identified genes that were highly expressed in cancer cells but not in their normal counterparts and, thus, were overexpressed in the cancers. The different cancer cell lines and leukemias varied in the number and identity of these overexpressed genes. The results indicate that many genes that are overexpressed in human cancer cells are specific to a variety of normal tissues, including normal tissues other than those from which the cancer originated. It is suggested that this general property of cancer cells plays a major role in determining the behavior of the cancers, including their metastatic potential. PMID:16339305

  16. Acute Hypercortisolemia Exerts Depot-Specific Effects on Abdominal and Femoral Adipose Tissue Function.

    PubMed

    Manolopoulos, Konstantinos N; O'Reilly, Michael W; Bujalska, Iwona J; Tomlinson, Jeremy W; Arlt, Wiebke

    2017-04-01

    Glucocorticoids have pleiotropic metabolic functions, and acute glucocorticoid excess affects fatty acid metabolism, increasing systemic lipolysis. Whether glucocorticoids exert adipose tissue depot-specific effects remains unclear. To provide an in vivo assessment of femoral and abdominal adipose tissue responses to acute glucocorticoid administration. Nine healthy male volunteers were studied on two occasions, after a hydrocortisone infusion (0.2 mg/kg/min for 14 hours) and a saline infusion, respectively, given in randomized double-blind order. The subjects were studied in the fasting state and after a 75-g glucose drink with an in vivo assessment of femoral adipose tissue blood flow (ATBF) using radioactive xenon washout and of lipolysis and glucose uptake using the arteriovenous difference technique. In a separate study (same infusion design), eight additional healthy male subjects underwent assessment of fasting abdominal ATBF and lipolysis only. Lipolysis was assessed as the net release of nonesterified fatty acids (NEFAs) from femoral and abdominal subcutaneous adipose tissue. Acute hypercortisolemia significantly increased basal and postprandial ATBF in femoral adipose tissue, but the femoral net NEFA release did not change. In abdominal adipose tissue, hypercortisolemia induced substantial increases in basal ATBF and NEFA release. Acute hypercortisolemia induces differential lipolysis and ATBF responses in abdominal and femoral adipose tissue, suggesting depot-specific glucocorticoid effects. Abdominal, but not femoral, adipose tissue contributes to the hypercortisolemia-induced systemic NEFA increase, with likely contributions from other adipose tissue sources and intravascular triglyceride hydrolysis.

  17. Active tissue-specific DNA demethylation conferred by somatic cell nuclei in stable heterokaryons

    PubMed Central

    Zhang, Fan; Pomerantz, Jason H.; Sen, George; Palermo, Adam T.; Blau, Helen M.

    2007-01-01

    DNA methylation is among the most stable epigenetic marks, ensuring tissue-specific gene expression in a heritable manner throughout development. Here we report that differentiated mesodermal somatic cells can confer tissue-specific changes in DNA methylation on epidermal progenitor cells after fusion in stable multinucleate heterokaryons. Myogenic factors alter regulatory regions of genes in keratinocyte cell nuclei, demethylating and activating a muscle-specific gene and methylating and silencing a keratinocyte-specific gene. Because these changes occur in the absence of DNA replication or cell division, they are mediated by an active mechanism. Thus, the capacity to transfer epigenetic changes to other nuclei is not limited to embryonic stem cells and oocytes but is also a property of highly specialized mammalian somatic cells. These results suggest the possibility of directing the reprogramming of readily available postnatal human progenitor cells toward specific tissue cell types. PMID:17360535

  18. Core promoter specificities of the Sp1 and VP16 transcriptional activation domains.

    PubMed Central

    Emami, K H; Navarre, W W; Smale, S T

    1995-01-01

    The core promoter compositions of mammalian protein-coding genes are highly variable; some contain TATA boxes, some contain initiator (Inr) elements, and others contain both or neither of these basal elements. The underlying reason for this heterogeneity remains a mystery, as recent studies have suggested that TATA-containing and Inr-containing core promoters direct transcription initiation by similar mechanisms and respond similarly to a wide variety of upstream activators. To analyze in greater detail the influence of core promoter structure on transcriptional activation, we compared activation by GAL4-VP16 and Sp1 through synthetic core promoters containing a TATA box, an Inr, or both TATA and Inr. Striking differences were found between the two activators, most notably in the relative strengths of the TATA/Inr and Inr core promoters: the TATA/Inr promoter was much stronger than the Inr promoter when transcription was activated by GAL4-VP16, but the strengths of the two promoters were more comparable when transcription was activated by Sp1. To define the domains of Sp1 responsible for efficient activation through an Inr, several Sp1 deletion mutants were tested as GAL4 fusion proteins. The results reveal that the glutamine-rich activation domains, which previously were found to interact with Drosophila TAF110, preferentially stimulate Inr-containing core promoters. In contrast, efficient activation through TATA appears to require additional domains of Sp1. These results demonstrate that activation domains differ in their abilities to function with specific core promoters, suggesting that the core promoter structure found in a given gene may reflect a preference of the regulators of that gene. Furthermore, the core promoter preference of an activation domain may be related to a specific mechanism of action, which may provide a functional criterion for grouping activation domains into distinct classes. PMID:7565743

  19. Microbiota depletion promotes browning of white adipose tissue and reduces obesity

    PubMed Central

    Chevalier, Claire; Stojanović, Ozren; Colin, Didier J.; Stevanović, Ana; Veyrat-Durebex, Christelle; Tarallo, Valentina; Rigo, Dorothée; Germain, Stéphane; Ilievska, Miroslava; Montet, Xavier; Seimbille, Yann; Hapfelmeier, Siegfried; Trajkovski, Mirko

    2015-01-01

    Brown adipose tissue (BAT) promotes a lean and healthy phenotype and improves insulin sensitivity1. In response to cold or exercise brown fat cells also emerge in the white adipose tissue (named beige cells), a process known as browning2,3,4. Here, we show that the development of functional beige fat is promoted by microbiota depletion either by antibiotic treatment or in germ-free mice within the inguinal subcutaneous and perigonadal visceral adipose tissues (ingSAT and pgVAT, respectively). This leads to improved glucose tolerance, insulin sensitivity and decreased white fat and adipocyte size in lean mice and obese leptin-deficient (ob/ob) and high fat diet (HFD)-fed mice. These metabolic improvements are mediated by eosinophil infiltration and enhanced type 2 cytokine signaling and M2 macrophage polarization in the subcutaneous white fat depots of microbiota-depleted animals. The metabolic phenotype and the browning of the subcutaneous fat are impaired by suppression of the type 2 signaling and are reversed by recolonization of the antibiotic-treated, or the germ-free mice with microbes. These results provide insight into microbiota-fat signaling axis and beige fat development in health and metabolic disease. PMID:26569380

  20. Pioneer factor interactions and unmethylated CpG dinucleotides mark silent tissue-specific enhancers in embryonic stem cells.

    PubMed

    Xu, Jian; Pope, Scott D; Jazirehi, Ali R; Attema, Joanne L; Papathanasiou, Peter; Watts, Jason A; Zaret, Kenneth S; Weissman, Irving L; Smale, Stephen T

    2007-07-24

    Recent studies have suggested that, in ES cells, inactive genes encoding early developmental regulators possess bivalent histone modification domains and are therefore poised for activation. However, bivalent domains were not observed at typical tissue-specific genes. Here, we show that windows of unmethylated CpG dinucleotides and putative pioneer factor interactions mark enhancers for at least some tissue-specific genes in ES cells. The unmethylated windows expand in cells that express the gene and contract, disappear, or remain unchanged in nonexpressing tissues. However, in ES cells, they do not always coincide with common histone modifications. Genomic footprinting and chromatin immunoprecipitation demonstrated that transcription factor binding underlies the unmethylated windows at enhancers for the Ptcra and Alb1 genes. After stable integration of premethylated Ptcra enhancer constructs into the ES cell genome, the unmethylated windows readily appeared. In contrast, the premethylated constructs remained fully methylated and silent after introduction into Ptcra-expressing thymocytes. These findings provide initial functional support for a model in which pioneer factor interactions in ES cells promote the assembly of a chromatin structure that is permissive for subsequent activation, and in which differentiated tissues lack the machinery required for gene activation when these ES cell marks are absent. The enhancer marks may therefore represent important features of the pluripotent state.

  1. Comparative Transcriptome Analysis Reveals Substantial Tissue Specificity in Human Aortic Valve

    PubMed Central

    Wang, Jun; Wang, Ying; Gu, Weidong; Ni, Buqing; Sun, Haoliang; Yu, Tong; Gu, Wanjun; Chen, Liang; Shao, Yongfeng

    2016-01-01

    RNA sequencing (RNA-seq) has revolutionary roles in transcriptome identification and quantification of different types of tissues and cells in many organisms. Although numerous RNA-seq data derived from many types of human tissues and cell lines, little is known on the transcriptome repertoire of human aortic valve. In this study, we sequenced the total RNA prepared from two calcified human aortic valves and reported the whole transcriptome of human aortic valve. Integrating RNA-seq data of 13 human tissues from Human Body Map 2 Project, we constructed a transcriptome repertoire of human tissues, including 19,505 protein-coding genes and 4,948 long intergenic noncoding RNAs (lincRNAs). Among them, 263 lincRNAs were identified as novel noncoding transcripts in our data. By comparing transcriptome data among different human tissues, we observed substantial tissue specificity of RNA transcripts, both protein-coding genes and lincRNAs, in human aortic valve. Further analysis revealed that aortic valve-specific lincRNAs were more likely to be recently derived from repetitive elements in the primate lineage, but were less likely to be conserved at the nucleotide level. Expression profiling analysis showed significant lower expression levels of aortic valve-specific protein-coding genes and lincRNA genes, when compared with genes that were universally expressed in various tissues. Isoform-level expression analysis also showed that a majority of mRNA genes had a major isoform expressed in the human aortic valve. To our knowledge, this is the first comparative transcriptome analysis between human aortic valve and other human tissues. Our results are helpful to understand the transcriptome diversity of human tissues and the underlying mechanisms that drive tissue specificity of protein-coding genes and lincRNAs in human aortic valve. PMID:27493474

  2. Tissue-Specific Effects of Loss of Estrogen during Menopause and Aging

    PubMed Central

    Wend, Korinna; Wend, Peter; Krum, Susan A.

    2012-01-01

    The roles of estrogens have been best studied in the breast, breast cancers, and in the female reproductive tract. However, estrogens have important functions in almost every tissue in the body. Recent clinical trials such as the Women’s Health Initiative have highlighted both the importance of estrogens and how little we know about the molecular mechanism of estrogens in these other tissues. In this review, we illustrate the diverse functions of estrogens in the bone, adipose tissue, skin, hair, brain, skeletal muscle and cardiovascular system, and how the loss of estrogens during aging affects these tissues. Early transcriptional targets of estrogen are reviewed in each tissue. We also describe the tissue-specific effects of selective estrogen receptor modulators (SERMs) used for the treatment of breast cancers and postmenopausal symptoms. PMID:22654856

  3. Concise Review: Tissue-Specific Microvascular Endothelial Cells Derived from Human Pluripotent Stem Cells

    PubMed Central

    Wilson, Hannah K.; Canfield, Scott G.; Shusta, Eric V.; Palecek, Sean P.

    2014-01-01

    Accumulating evidence suggests that endothelial cells (ECs) display significant heterogeneity across tissue types, playing an important role in tissue regeneration and homeostasis. Recent work demonstrating the derivation of tissue-specific microvascular endothelial cells (TS-MVECs) from human pluripotent stem cells (hPSCs) has ignited the potential to generate tissue-specific models which may be applied to regenerative medicine and in vitro modeling applications. Here we review techniques by which hPSC-derived TS-MVECs have been made to date and discuss how current hPSC-EC differentiation protocols may be directed towards tissue-specific fates. We begin by discussing the nature of EC tissue specificity in vivo and review general hPSC-EC differentiation protocols generated over the last decade. Finally, we describe how specificity can be integrated into hPSC-EC protocols to generate hPSC-derived TS-MVECs in vitro, including EC and parenchymal cell co-culture, directed differentiation, and direct reprogramming strategies. PMID:25070152

  4. Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis.

    PubMed Central

    Thoma, S; Hecht, U; Kippers, A; Botella, J; De Vries, S; Somerville, C

    1994-01-01

    Nonspecific lipid transfer proteins (LTPs) from plants are characterized by their ability to stimulate phospholipid transfer between membranes in vitro. However, because these proteins are generally located outside of the plasma membrane, it is unlikely that they have a similar role in vivo. As a step toward identifying the function of these proteins, one of several LTP genes from Arabidoposis has been cloned and the expression pattern of the gene has been examined by analysis of the tissue specificity of beta-glucuronidase (GUS) activity in transgenic plants containing LTP promoter-GUS fusions and by in situ mRNA localization. The LTP1 promoter was active early in development in protoderm cells of embryos, vascular tissues, lignified tips of cotyledons, shoot meristem, and stipules. In adult plants, the gene was expressed in epidermal cells of young leaves and the stem. In flowers, expression was observed in the epidermis of all developing influorescence and flower organ primordia, the epidermis of the siliques and the outer ovule wall, the stigma, petal tips, and floral nectaries of mature flowers, and the petal/sepal abscission zone of mature siliques. The presence of GUS activity in guard cells, lateral roots, pollen grains, leaf vascular tissue, and internal cells of stipules and nectaries was not confirmed by in situ hybridizations, supporting previous observations that suggest that the reporter gene is subject to artifactual expression. These results are consistent with a role for the LTP1 gene product in some aspect of secretion or deposition of lipophilic substances in the cell walls of expanding epidermal cells and certain secretory tissues. The LTP1 promoter region contained sequences homologous to putative regulatory elements of genes in the phenylpropanoid biosynthetic pathway, suggesting that the expression of the LTP1 gene may be regulated by the same or similar mechanisms as genes in the phenylpropanoid pathway. PMID:8029357

  5. Follistatin Targets Distinct Pathways To Promote Brown Adipocyte Characteristics in Brown and White Adipose Tissues.

    PubMed

    Singh, Rajan; Braga, Melissa; Reddy, Srinivasa T; Lee, Se-Jin; Parveen, Meher; Grijalva, Victor; Vergnes, Laurent; Pervin, Shehla

    2017-05-01

    We previously demonstrated that Fst expression is highest in brown adipose tissue (BAT) and skeletal muscle, but is also present at substantial levels in epididymal and subcutaneous white adipose tissues (WATs). Fst promotes mouse brown preadipocyte differentiation and promotes browning during differentiation of mouse embryonic fibroblasts. Fst-transgenic (Fst-Tg) mice show substantial increases in circulating Fst levels and increased brown adipose mass. BAT of Fst-Tg mice had increased expression of brown adipose-associated markers including uncoupling protein 1 (UCP1), PRDM16, PGC-1α, and Glut4. WATs from Fst-Tg mice show upregulation of brown/beige adipose markers and significantly increased levels of phosphorylated p38 MAPK/ERK1/2 proteins compared with the wild-type (WT) mice. Pharmacological inhibition of pp38 MAPK/pERK1/2 pathway of recombinant mouse Fst (rFst) treated differentiating 3T3-L1 cells led to significant blockade of Fst-induced UCP1 protein expression. On the other hand, BAT from Fst-Tg mice or differentiating mouse BAT cells treated with rFst show dramatic increase in Myf5 protein levels as well as upregulation of Zic1 and Lhx8 gene expression. Myf5 levels were significantly downregulated in Fst knock-out embryos and small inhibitory RNA-mediated inhibition of Myf5 led to significant inhibition of UCP1, Lhx8, and Zic1 gene expression and significant blockade of Fst-induced induction of UCP1 protein expression in mouse BAT cells. Both interscapular BAT and WAT tissues from Fst-Tg mice display enhanced response to CL316,243 treatment and decreased expression of pSmad3 compared with the WT mice. Therefore, our results indicate that Fst promotes brown adipocyte characteristics in both WAT and BAT depots in vivo through distinct mechanisms. Copyright © 2017 Endocrine Society.

  6. Variability in the routing of dietary proteins and lipids to consumer tissues influences tissue-specific isotopic discrimination.

    PubMed

    Wolf, Nathan; Newsome, Seth D; Peters, Jacob; Fogel, Marilyn L

    2015-08-15

    The eco-physiological mechanisms that govern the incorporation and routing of macronutrients from dietary sources into consumer tissues determine the efficacy of stable isotope analysis (SIA) for studying animal foraging ecology. We document how changes in the relative amounts of dietary proteins and lipids affect the metabolic routing of these macronutrients and the consequent effects on tissue-specific discrimination factors in domestic mice using SIA. We also examine the effects of dietary macromolecular content on a commonly used methodological approach: lipid extraction of potential food sources. We used carbon ((13) C) and nitrogen ((15) N) isotopes to examine the routing of carbon from dietary proteins and lipids that were used by mice to biosynthesize hair, blood, muscle, and liver. Growing mice were fed one of four diet treatments in which the total dietary content of C4 -based lipids (δ(13) C = -14.5‰) and C(3) -based proteins (δ(13) C = -27‰) varied inversely between 5% and 40%. The δ(13) C values of mouse tissues increased by approximately 2-6‰ with increasing dietary lipid content. The difference in δ(13) C values between mouse tissues and bulk diet ranged from 0.1 ± 1.5‰ to 2.3 ± 0.6‰ for all diet treatments. The mean (±SD) difference between the δ(13) C values of mouse tissues and dietary protein varied systematically among tissues and ranged from 3.1 ± 0.1‰ to 4.5 ± 0.6‰ for low fat diets and from 5.4 ± 0.4‰ to 10.5 ± 7.3‰ for high fat diets. Mice used some fraction of their dietary lipid carbon to synthesize tissue proteins, suggesting flexibility in the routing of dietary macromolecules to consumer tissues based on dietary macromolecular availability. Consequently, all constituent dietary macromolecules, not just protein, should be considered when determining the relationship between diets and consumer tissues using SIA. In addition, in cases where animals consume diets with high lipid contents, non lipid

  7. Transplanted embryonic spinal tissue promotes severed sciatic nerve regeneration in rats.

    PubMed

    Xiong, Ge; Ozaki, Noriyuki; Sugiura, Yasuo

    2009-07-01

    The effects of transplanted embryonic spinal tissue on host motor nerve regeneration and target muscle reinervation were investigated in severed sciatic nerves of rats. The electromyogram (EMG) responses and number of motor end plates (MEP) in target muscles, number of nerve axons, and retrogradely labeled motor neurons were examined in transplantation-, anastomosis without transplantation-, and naïve groups of the animals. The EMG patterns of the transplantation group returned to nearly normal at the 8th week, but those of the anastomosis group did not. MEP counts in the transplantation group were significantly higher than in the anastomosis group. The myelinated axon counts and myelin sheath thickness in the transplantation group were significantly higher than those in the anastomosis group. The number of retrogradely labeled motor neurons was significantly higher in the transplantation group. We conclude that transplanted embryonic spinal tissue can promote both host motor nerve regeneration and target muscle reinnervation.

  8. Different promoter affinities account for specificity in MYC-dependent gene regulation

    PubMed Central

    Lorenzin, Francesca; Benary, Uwe; Baluapuri, Apoorva; Walz, Susanne; Jung, Lisa Anna; von Eyss, Björn; Kisker, Caroline; Wolf, Jana; Eilers, Martin; Wolf, Elmar

    2016-01-01

    Enhanced expression of the MYC transcription factor is observed in the majority of tumors. Two seemingly conflicting models have been proposed for its function: one proposes that MYC enhances expression of all genes, while the other model suggests gene-specific regulation. Here, we have explored the hypothesis that specific gene expression profiles arise since promoters differ in affinity for MYC and high-affinity promoters are fully occupied by physiological levels of MYC. We determined cellular MYC levels and used RNA- and ChIP-sequencing to correlate promoter occupancy with gene expression at different concentrations of MYC. Mathematical modeling showed that binding affinities for interactions of MYC with DNA and with core promoter-bound factors, such as WDR5, are sufficient to explain promoter occupancies observed in vivo. Importantly, promoter affinity stratifies different biological processes that are regulated by MYC, explaining why tumor-specific MYC levels induce specific gene expression programs and alter defined biological properties of cells. DOI: http://dx.doi.org/10.7554/eLife.15161.001 PMID:27460974

  9. Induced somatic sector analysis of cellulose synthase (CesA) promoter regions in woody stem tissues.

    PubMed

    Creux, Nicky M; Bossinger, Gerd; Myburg, Alexander A; Spokevicius, Antanas V

    2013-03-01

    The increasing focus on plantation forestry as a renewable source of cellulosic biomass has emphasized the need for tools to study the unique biology of woody genera such as Eucalyptus, Populus and Pinus. The domestication of these woody crops is hampered by long generation times, and breeders are now looking to molecular approaches such as marker-assisted breeding and genetic modification to accelerate tree improvement. Much of what is known about genes involved in the growth and development of plants has come from studies of herbaceous models such as Arabidopsis and rice. However, transferring this information to woody plants often proves difficult, especially for genes expressed in woody stems. Here we report the use of induced somatic sector analysis (ISSA) for characterization of promoter expression patterns directly in the stems of Populus and Eucalyptus trees. As a case study, we used previously characterized primary and secondary cell wall-related cellulose synthase (CesA) promoters cloned from Eucalyptus grandis. We show that ISSA can be used to elucidate the phloem and xylem expression patterns of the CesA genes in Eucalyptus and Populus stems and also show that the staining patterns differ in Eucalyptus and Populus stems. These findings show that ISSA is an efficient approach to investigate promoter function in the developmental context of woody plant tissues and raise questions about the suitability of heterologous promoters for genetic manipulation in plant species.

  10. Adipocyte-specific Hypoxia-inducible gene 2 promotes fat deposition and diet-induced insulin resistance.

    PubMed

    DiStefano, Marina T; Roth Flach, Rachel J; Senol-Cosar, Ozlem; Danai, Laura V; Virbasius, Joseph V; Nicoloro, Sarah M; Straubhaar, Juerg; Dagdeviren, Sezin; Wabitsch, Martin; Gupta, Olga T; Kim, Jason K; Czech, Michael P

    2016-12-01

    Adipose tissue relies on lipid droplet (LD) proteins in its role as a lipid-storing endocrine organ that controls whole body metabolism. Hypoxia-inducible Gene 2 (Hig2) is a recently identified LD-associated protein in hepatocytes that promotes hepatic lipid storage, but its role in the adipocyte had not been investigated. Here we tested the hypothesis that Hig2 localization to LDs in adipocytes promotes adipose tissue lipid deposition and systemic glucose homeostasis. White and brown adipocyte-deficient (Hig2(fl/fl) × Adiponection cre+) and selective brown/beige adipocyte-deficient (Hig2(fl/fl) × Ucp1 cre+) mice were generated to investigate the role of Hig2 in adipose depots. Additionally, we used multiple housing temperatures to investigate the role of active brown/beige adipocytes in this process. Hig2 localized to LDs in SGBS cells, a human adipocyte cell strain. Mice with adipocyte-specific Hig2 deficiency in all adipose depots demonstrated reduced visceral adipose tissue weight and increased glucose tolerance. This metabolic effect could be attributed to brown/beige adipocyte-specific Hig2 deficiency since Hig2(fl/fl) × Ucp1 cre+ mice displayed the same phenotype. Furthermore, when adipocyte-deficient Hig2 mice were moved to thermoneutral conditions in which non-shivering thermogenesis is deactivated, these improvements were abrogated and glucose intolerance ensued. Adipocyte-specific Hig2 deficient animals displayed no detectable changes in adipocyte lipolysis or energy expenditure, suggesting that Hig2 may not mediate these metabolic effects by restraining lipolysis in adipocytes. We conclude that Hig2 localizes to LDs in adipocytes, promoting adipose tissue lipid deposition and that its selective deficiency in active brown/beige adipose tissue mediates improved glucose tolerance at 23 °C. Reversal of this phenotype at thermoneutrality in the absence of detectable changes in energy expenditure, adipose mass, or liver triglyceride suggests that

  11. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors

    PubMed Central

    Butler, Jason M.; Kobayashi, Hideki; Rafii, Shahin

    2010-01-01

    The precise mechanisms whereby anti-angiogenesis therapy blocks tumour growth or causes vascular toxicity are unknown. We propose that endothelial cells establish a vascular niche that promotes tumour growth and tissue repair not only by delivering nutrients and O2 but also through an ‘angiocrine’ mechanism by producing stem and progenitor cell-active trophogens. Identification of endothelial-derived instructive angiocrine factors will allow direct tumour targeting, while diminishing the unwanted side effects associated with the use of anti-angiogenic agents. PMID:20094048

  12. Comprehensive Tissue-Specific Transcriptome Analysis Reveals Distinct Regulatory Programs during Early Tomato Fruit Development.

    PubMed

    Pattison, Richard J; Csukasi, Fabiana; Zheng, Yi; Fei, Zhangjun; van der Knaap, Esther; Catalá, Carmen

    2015-08-01

    Fruit formation and early development involve a range of physiological and morphological transformations of the various constituent tissues of the ovary. These developmental changes vary considerably according to tissue type, but molecular analyses at an organ-wide level inevitably obscure many tissue-specific phenomena. We used laser-capture microdissection coupled to high-throughput RNA sequencing to analyze the transcriptome of ovaries and fruit tissues of the wild tomato species Solanum pimpinellifolium. This laser-capture microdissection-high-throughput RNA sequencing approach allowed quantitative global profiling of gene expression at previously unobtainable levels of spatial resolution, revealing numerous contrasting transcriptome profiles and uncovering rare and cell type-specific transcripts. Coexpressed gene clusters linked specific tissues and stages to major transcriptional changes underlying the ovary-to-fruit transition and provided evidence of regulatory modules related to cell division, photosynthesis, and auxin transport in internal fruit tissues, together with parallel specialization of the pericarp transcriptome in stress responses and secondary metabolism. Analysis of transcription factor expression and regulatory motifs indicated putative gene regulatory modules that may regulate the development of different tissues and hormonal processes. Major alterations in the expression of hormone metabolic and signaling components illustrate the complex hormonal control underpinning fruit formation, with intricate spatiotemporal variations suggesting separate regulatory programs.

  13. Tissue-Specific Venom Composition and Differential Gene Expression in Sea Anemones

    PubMed Central

    Macrander, Jason; Broe, Michael; Daly, Marymegan

    2016-01-01

    Cnidarians represent one of the few groups of venomous animals that lack a centralized venom transmission system. Instead, they are equipped with stinging capsules collectively known as nematocysts. Nematocysts vary in abundance and type across different tissues; however, the venom composition in most species remains unknown. Depending on the tissue type, the venom composition in sea anemones may be vital for predation, defense, or digestion. Using a tissue-specific RNA-seq approach, we characterize the venom assemblage in the tentacles, mesenterial filaments, and column for three species of sea anemone (Anemonia sulcata, Heteractis crispa, and Megalactis griffithsi). These taxa vary with regard to inferred venom potency, symbiont abundance, and nematocyst diversity. We show that there is significant variation in abundance of toxin-like genes across tissues and species. Although the cumulative toxin abundance for the column was consistently the lowest, contributions to the overall toxin assemblage varied considerably among tissues for different toxin types. Our gene ontology (GO) analyses also show sharp contrasts between conserved GO groups emerging from whole transcriptome analysis and tissue-specific expression among GO groups in our differential expression analysis. This study provides a framework for future characterization of tissue-specific venom and other functionally important genes in this lineage of simple bodied animals. PMID:27389690

  14. Identification of a 94-bp GC-rich element in the smooth muscle myosin heavy-chain promoter controlling vascular smooth muscle cell-specific gene expression.

    PubMed

    Deindl, Elisabeth; Middeler, Guido; Müller, Oliver J; Selbert, Stefan; Schlenke, Peter; Marienfeld, Uta; Thirion, Christian; Katus, Hugo A; Franz, Wolfgang M

    2006-01-01

    The previously described rabbit 2.3-kilobase smooth muscle myosin heavy-chain (SMHCwt) promoter targets gene expression in transgenic animals to vascular smooth muscle cells (SMCs), including coronary arteries. Therefore, SMHCwt is thought to provide a promising tool for human gene therapy. In the present study, we examined tissue specificity and expression levels of wild-type and mutated SMHC promoters within the system of high-capacity adenoviral (hcAd) vectors. SMHCwt and a series of SMHC promoter deletion mutants, a triple promoter as well as a cytomegalovirus-SMHC hybrid promoter driving the enhanced green fluorescence protein (EGFP) reporter gene were transiently transfected into aortic SMCs. Fluorescence intensity was measured by flow cytometric analysis. Consecutively, hcAd vectors were constructed with the SMHCwt and the mutant promoter with the highest fluorescence activity. Levels of EGFP expression were determined after transduction of SMCs derived from human coronary arteries. For analysis of tissue specificity, embryonic stem (ES) cell-derived SMCs (ESdSMHCs) and cardiomyocytes (ESdCMs) were used. In comparison with SMHCwt, only the SMHCdel94 mutant lacking a 94-bp GC-rich element revealed a 1.5-fold increased fluorescence activity. Transduction of primary SMCs of human coronary arteries with hcAd vectors confirmed an increased EGFP expression driven by the SMHCdel94 promoter. In ES-cell-derived embryoid bodies, SMHCwt was exclusively active in transduced ESdSMCs. In contrast, expression of SMHCdel94 was also found in ESdCMs and other nontarget cells of the embryoid body. The tissue-specific rabbit SMHCwt promoter seems to be suitable for adenoviral gene transfer in SMCs of human coronary arteries and deletion of a 94-bp negative cis-acting GC-rich element results in loss of specificity.

  15. Dynamic myosin activation promotes collective morphology and migration by locally balancing oppositional forces from surrounding tissue.

    PubMed

    Aranjuez, George; Burtscher, Ashley; Sawant, Ketki; Majumder, Pralay; McDonald, Jocelyn A

    2016-06-15

    Migrating cells need to overcome physical constraints from the local microenvironment to navigate their way through tissues. Cells that move collectively have the additional challenge of negotiating complex environments in vivo while maintaining cohesion of the group as a whole. The mechanisms by which collectives maintain a migratory morphology while resisting physical constraints from the surrounding tissue are poorly understood. Drosophila border cells represent a genetic model of collective migration within a cell-dense tissue. Border cells move as a cohesive group of 6-10 cells, traversing a network of large germ line-derived nurse cells within the ovary. Here we show that the border cell cluster is compact and round throughout their entire migration, a shape that is maintained despite the mechanical pressure imposed by the surrounding nurse cells. Nonmuscle myosin II (Myo-II) activity at the cluster periphery becomes elevated in response to increased constriction by nurse cells. Furthermore, the distinctive border cell collective morphology requires highly dynamic and localized enrichment of Myo-II. Thus, activated Myo-II promotes cortical tension at the outer edge of the migrating border cell cluster to resist compressive forces from nurse cells. We propose that dynamic actomyosin tension at the periphery of collectives facilitates their movement through restrictive tissues.

  16. Dynamic myosin activation promotes collective morphology and migration by locally balancing oppositional forces from surrounding tissue

    PubMed Central

    Aranjuez, George; Burtscher, Ashley; Sawant, Ketki; Majumder, Pralay; McDonald, Jocelyn A.

    2016-01-01

    Migrating cells need to overcome physical constraints from the local microenvironment to navigate their way through tissues. Cells that move collectively have the additional challenge of negotiating complex environments in vivo while maintaining cohesion of the group as a whole. The mechanisms by which collectives maintain a migratory morphology while resisting physical constraints from the surrounding tissue are poorly understood. Drosophila border cells represent a genetic model of collective migration within a cell-dense tissue. Border cells move as a cohesive group of 6−10 cells, traversing a network of large germ line–derived nurse cells within the ovary. Here we show that the border cell cluster is compact and round throughout their entire migration, a shape that is maintained despite the mechanical pressure imposed by the surrounding nurse cells. Nonmuscle myosin II (Myo-II) activity at the cluster periphery becomes elevated in response to increased constriction by nurse cells. Furthermore, the distinctive border cell collective morphology requires highly dynamic and localized enrichment of Myo-II. Thus, activated Myo-II promotes cortical tension at the outer edge of the migrating border cell cluster to resist compressive forces from nurse cells. We propose that dynamic actomyosin tension at the periphery of collectives facilitates their movement through restrictive tissues. PMID:27122602

  17. Fenretinide promotes functional recovery and tissue protection after spinal cord contusion injury in mice.

    PubMed

    López-Vales, Rubèn; Redensek, Adriana; Skinner, Thomas A A; Rathore, Khizr I; Ghasemlou, Nader; Wojewodka, Gabriella; DeSanctis, Juan; Radzioch, Danuta; David, Samuel

    2010-03-03

    The inflammatory response is thought to contribute to secondary damage after spinal cord injury (SCI). Polyunsaturated fatty acids (PUFAs) play an important role in the onset and resolution of inflammation. Arachidonic acid (AA), an omega-6 PUFA, contributes to the initiation of inflammatory responses, whereas docosahexaenoic acid (DHA), an omega-3 PUFA, has antiinflammatory effects. Therefore, decreasing AA and increasing DHA levels after SCI might be expected to attenuate inflammation after SCI and promote tissue protection and functional recovery. We show here that daily oral administration of fenretinide after spinal cord contusion injury led to a significant decrease in AA and an increase in DHA levels in plasma and injured spinal cord tissue. This was accompanied by a significant reduction in tissue damage and improvement in locomotor recovery. Fenretinide also reduced the expression of proinflammatory genes and the levels of oxidative stress markers after SCI. In addition, in vitro studies demonstrated that fenretinide reduced TNF-alpha (tumor necrosis factor-alpha) expression by reactive microglia. These results demonstrate that fenretinide treatment after SCI can reduce inflammation and tissue damage in the spinal cord and improve locomotor recovery. These beneficial effects may be mediated via the ability of fenretinide to modulate PUFA homeostasis. Since fenretinide is currently in clinical trials for the treatment of cancers, this drug might be a good candidate for the treatment of acute SCI in humans.

  18. Active specific immunotherapy using the immune reaction of a low-dose irradiated tumor tissue. [Mice

    SciTech Connect

    Ogawa, Y.; Imanaka, K.; Ashida, C.; Takashima, H.; Imajo, Y.; Kimura, S.

    1983-04-01

    Active specific immunotherapy using the immune reaction of a low-dose irradiated tumor tissue was studied on the transplanted MM46 tumor of female C3H/He mice after radiotherapy. MM46 tumor cells were inoculated into the right hind paws of mice. On the 5th day, irradiation with the dose irradiated tumor tissue (2000 rad on the fifth day), were injected into the left hind paws of the tumor-bearing mice. Effectiveness of this active specific immunotherapy against tumor was evaluated by the regression of tumor and survival rate of mice. Tumor was markedly regressed and survival rate was significantly increased by the active specific immunitherapy.

  19. Tissue-specific autophagy responses to aging and stress in C. elegans

    PubMed Central

    Chapin, Hannah C.; Okada, Megan; Merz, Alexey J.; Miller, Dana L.

    2015-01-01

    Cellular function relies on a balance between protein synthesis and breakdown. Macromolecular breakdown through autophagy is broadly required for cellular and tissue development, function, and recovery from stress. While Caenorhabditis elegans is frequently used to explore cellular responses to development and stress, the most common assays for autophagy in this system lack tissue-level resolution. Different tissues within an organism have unique functional characteristics and likely vary in their reliance on autophagy under different conditions. To generate a tissue-specific map of autophagy in C. elegans we used a dual fluorescent protein (dFP) tag that releases monomeric fluorescent protein (mFP) upon arrival at the lysosome. Tissue-specific expression of dFP::LGG-1 revealed autophagic flux in all tissues, but mFP accumulation was most dramatic in the intestine. We also observed variable responses to stress: starvation increased autophagic mFP release in all tissues, whereas anoxia primarily increased intestinal autophagic flux. We observed autophagic flux with tagged LGG-1, LGG-2, and two autophagic cargo reporters: a soluble cytoplasmic protein, and mitochondrial TOMM-7. Finally, an increase in mFP in older worms was consistent with an age-dependent shift in proteostasis. These novel measures of autophagic flux in C. elegans reveal heterogeneity in autophagic response across tissues during stress and aging. PMID:26142908

  20. Tissue-specific autophagy responses to aging and stress in C. elegans.

    PubMed

    Chapin, Hannah C; Okada, Megan; Merz, Alexey J; Miller, Dana L

    2015-06-01

    Cellular function relies on a balance between protein synthesis and breakdown. Macromolecular breakdown through autophagy is broadly required for cellular and tissue development, function, and recovery from stress. While Caenorhabditis elegans is frequently used to explore cellular responses to development and stress, the most common assays for autophagy in this system lack tissue-level resolution. Different tissues within an organism have unique functional characteristics and likely vary in their reliance on autophagy under different conditions. To generate a tissue-specific map of autophagy in C. elegans we used a dual fluorescent protein (dFP) tag that releases monomeric fluorescent protein (mFP) upon arrival at the lysosome. Tissue-specific expression of dFP::LGG-1 revealed autophagic flux in all tissues, but mFP accumulation was most dramatic in the intestine. We also observed variable responses to stress: starvation increased autophagic mFP release in all tissues, whereas anoxia primarily increased intestinal autophagic flux. We observed autophagic flux with tagged LGG-1, LGG-2, and two autophagic cargo reporters: a soluble cytoplasmic protein, and mitochondrial TOMM-7. Finally, an increase in mFP in older worms was consistent with an age-dependent shift in proteostasis. These novel measures of autophagic flux in C. elegans reveal heterogeneity in autophagic response across tissues during stress and aging.

  1. Murine retroviral but not human cellular promoters induce in vivo erythroid-specific deregulation that can be partially prevented by insulators.

    PubMed

    Robert-Richard, Elodie; Richard, Emmanuel; Malik, Punam; Ged, Cécile; de Verneuil, Hubert; Moreau-Gaudry, François

    2007-01-01

    We are developing lentiviral vectors for gene therapy of red blood cell disorders that co-express a transgene in an erythroid-specific manner and the O(6)-methylguanine-DNA-methyltransferase (MGMT) selective gene in a constitutive way. We report that transduction of murine hematopoietic stem cells (HSCs) with a human phosphoglycerate kinase promoter-based vector at low multiplicity of infection (MOI) does not result in a selective in vivo expansion in the presence of alkylating agents. In contrast, by replacing this cellular promoter with the powerful retroviral-derived myeloproliferative sarcoma virus enhancer, negative control region-deleted, dl587rev primer-binding site substituted promoter, the vector allowed efficient chemoprotection of transduced HSCs at low MOI. However, this promoter interacted with the erythroid HS40/ankyrin enhancer/promoter driving green fluorescent protein, leading to an unexpected loss of erythroid specificity. A partial restoration of tissue-specific expression was obtained by interposition of insulator sequences between the expression units. Alternatively, we found that the strong human cellular elongation factor1-alpha promoter allows similar chemoprotection but without any deregulation of the erythroid-specific promoter in the absence of insulators. These data demonstrate that the level of in vivo deregulation induced by a promoter is not correlated with its transcriptional activity.

  2. 25-Hydroxycholesterol promotes fibroblast-mediated tissue remodeling through NF-κB dependent pathway

    SciTech Connect

    Ichikawa, Tomohiro; Sugiura, Hisatoshi; Koarai, Akira; Kikuchi, Takashi; Hiramatsu, Masataka; Kawabata, Hiroki; Akamatsu, Keiichiro; Hirano, Tsunahiko; Nakanishi, Masanori; Matsunaga, Kazuto; Minakata, Yoshiaki; Ichinose, Masakazu

    2013-05-01

    Abnormal structural alterations termed remodeling, including fibrosis and alveolar wall destruction, are important features of the pathophysiology of chronic airway diseases such as chronic obstructive pulmonary disease (COPD) and asthma. 25-hydroxycholesterol (25-HC) is enzymatically produced by cholesterol 25-hydorxylase (CH25H) in macrophages and is reported to be involved in the formation of arteriosclerosis. We previously demonstrated that the expression of CH25H and production of 25HC were increased in the lungs of COPD. However, the role of 25-HC in lung tissue remodeling is unknown. In this study, we investigated the effect of 25-HC on fibroblast-mediated tissue remodeling using human fetal lung fibroblasts (HFL-1) in vitro. 25-HC significantly augmented α-smooth muscle actin (SMA) (P<0.001) and collagen I (P<0.001) expression in HFL-1. 25-HC also significantly enhanced the release and activation of matrix metallaoproteinase (MMP)-2 (P<0.001) and MMP-9 (P<0.001) without any significant effect on the production of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. 25-HC stimulated transforming growth factor (TGF)-β{sub 1} production (P<0.01) and a neutralizing anti-TGF-β antibody restored these 25-HC-augmented pro-fibrotic responses. 25-HC significantly promoted the translocation of nuclear factor (NF)-κB p65 into the nuclei (P<0.01), but not phospholylated-c-jun, a complex of activator protein-1. Pharmacological inhibition of NF-κB restored the 25-HC-augmented pro-fibrotic responses and TGF-β{sub 1} release. These results suggest that 25-HC could contribute to fibroblast-mediated lung tissue remodeling by promoting myofibroblast differentiation and the excessive release of extracellular matrix protein and MMPs via an NF-κB-TGF-β dependent pathway.

  3. Molecular analysis of fiber type-specific expression of murine myostatin promoter.

    PubMed

    Salerno, Mônica Senna; Thomas, Mark; Forbes, Davanea; Watson, Trevor; Kambadur, Ravi; Sharma, Mridula

    2004-10-01

    Myostatin is a negative regulator of muscle growth, and absence of the functional myostatin protein leads to the heavy muscle phenotype in both mouse and cattle. Although the role of myostatin in controlling muscle mass is established, little is known of the mechanisms regulating the expression of the myostatin gene. In this study, we have characterized the murine myostatin promoter in vivo. Various constructs of the murine myostatin promoter were injected into the quadriceps muscle of mice, and the reporter luciferase activity was analyzed. The results indicate that of the seven E-boxes present in the 2.5-kb fragment of the murine myostatin promoter, the E5 E-box plays an important role in the regulation of promoter activity in vivo. Furthermore, the in vitro studies demonstrated that MyoD preferentially binds and upregulates the murine myostatin promoter activity. We also analyzed the activity of the bovine and murine promoters in murine skeletal muscle and showed that, despite displaying comparable levels of activity in murine myoblast cultures, bovine myostatin promoter activity is much weaker than murine myostatin promoter in mice. Finally, we demonstrate that in vivo, the 2.5-kb region of the murine myostatin promoter is sufficient to drive the activity of the reporter gene in a fiber type-specific manner.

  4. A Minimal Set of Tissue-Specific Hypomethylated CpGs Constitute Epigenetic Signatures of Developmental Programming

    PubMed Central

    Pagadala, Vijayakanth; Kittur, Jaya; Staffa, Nickolas G.; Peddada, Shyamal D.; Isganaitis, Elvira; Patti, Mary Elizabeth; Birnbaumer, Lutz

    2013-01-01

    Background Cell specific states of the chromatin are programmed during mammalian development. Dynamic DNA methylation across the developing embryo guides a program of repression, switching off genes in most cell types. Thus, the majority of the tissue specific differentially methylated sites (TS-DMS) must be un-methylated CpGs. Methodology and Principal Findings Comparison of expanded Methyl Sensitive Cut Counting data (eMSCC) among four tissues (liver, testes, brain and kidney) from three C57BL/6J mice, identified 138,052 differentially methylated sites of which 23,270 contain CpGs un-methylated in only one tissue (TS-DMS). Most of these CpGs were located in intergenic regions, outside of promoters, CpG islands or their shores, and up to 20% of them overlapped reported active enhancers. Indeed, tissue-specific enhancers were up to 30 fold enriched in TS-DMS. Testis showed the highest number of TS-DMS, but paradoxically their associated genes do not appear to be specific to the germ cell functions, but rather are involved in organism development. In the other tissues the differentially methylated genes are associated with tissue-specific physiological or anatomical functions. The identified sets of TS-DMS quantify epigenetic distances between tissues, generated during development. We applied this concept to measure the extent of reprogramming in the liver of mice exposed to in utero or early postnatal nutritional stress. Different protocols of food restriction reprogrammed the liver methylome in different but reproducible ways. Conclusion and Significance Thus, each identified set of differentially methylated sites constituted an epigenetic signature that traced the developmental programing or the early nutritional reprogramming of each exposed mouse. We propose that our approach has the potential to outline a number of disease-associated epigenetic states. The composition of differentially methylated CpGs may vary with each situation, behaving as a composite

  5. Tissue-specific NETs alter genome organization and regulation even in a heterologous system

    PubMed Central

    de las Heras, Jose I.; Batrakou, Dzmitry G.

    2017-01-01

    ABSTRACT Different cell types exhibit distinct patterns of 3D genome organization that correlate with changes in gene expression in tissue and differentiation systems. Several tissue-specific nuclear envelope transmembrane proteins (NETs) have been found to influence the spatial positioning of genes and chromosomes that normally occurs during tissue differentiation. Here we study 3 such NETs: NET29, NET39, and NET47, which are expressed preferentially in fat, muscle and liver, respectively. We found that even when exogenously expressed in a heterologous system they can specify particular genome organization patterns and alter gene expression. Each NET affected largely different subsets of genes. Notably, the liver-specific NET47 upregulated many genes in HT1080 fibroblast cells that are normally upregulated in hepatogenesis, showing that tissue-specific NETs can favor expression patterns associated with the tissue where the NET is normally expressed. Similarly, global profiling of peripheral chromatin after exogenous expression of these NETs using lamin B1 DamID revealed that each NET affected the nuclear positioning of distinct sets of genomic regions with a significant tissue-specific component. Thus NET influences on genome organization can contribute to gene expression changes associated with differentiation even in the absence of other factors and overt cellular differentiation changes. PMID:28045568

  6. Biokinetics of radiolabeled monoclonal antibodies in heterotransplanted nude rats: Evaluation of corrected specific tissue uptake

    SciTech Connect

    Ingvar, C.; Norrgren, K.; Strand, S.E.; Brodin, T.; Joensson, P.E.S.; Sjoegren, H.O. )

    1989-07-01

    A tumor model is presented to study the biokinetics and localization of radiolabeled monoclonal antibodies (MAb) in the nude rat (Rowett RNu/RNu) heterotransplanted with human melanoma metastases. The nude rat is larger, less sensitive, and lives longer than the nude mouse. It is, therefore, well suited for in vivo studies of tumor localization with radiolabeled monoclonal antibodies. The tumor-to-host weight ratio was closer to the human situation for the nude rat than for the mouse, and quantitative imaging could be performed with a parallel hole collimator. We followed the antibody biokinetics for as long as 8 days, with repeated blood sampling and imaging. Specific uptake of MAb was higher in tumor tissue than in all other tissues except blood. Initial high uptake was also recorded in the bone marrow. The lymph glands showed a slow uptake of specific and control antibody. A simple in vitro correction procedure is described to calculate the corrected specific tissue uptake (STUcorr) that takes the blood activity into account. Thus it was shown that 80% of the tissue uptake in the dissected liver at 30 hr was due to labeled antibodies circulating in the blood. The specific tissue uptake ratio of antibodies 96.5 and OKT3 (nonspecific control) was unity for all other organs except for tumor tissue, where the ratio was greater than two and even higher when correction for blood content of labeled antibody was made.

  7. Illuminating a plant's tissue-specific metabolic diversity using computational metabolomics and information theory.

    PubMed

    Li, Dapeng; Heiling, Sven; Baldwin, Ian T; Gaquerel, Emmanuel

    2016-11-22

    Secondary metabolite diversity is considered an important fitness determinant for plants' biotic and abiotic interactions in nature. This diversity can be examined in two dimensions. The first one considers metabolite diversity across plant species. A second way of looking at this diversity is by considering the tissue-specific localization of pathways underlying secondary metabolism within a plant. Although these cross-tissue metabolite variations are increasingly regarded as important readouts of tissue-level gene function and regulatory processes, they have rarely been comprehensively explored by nontargeted metabolomics. As such, important questions have remained superficially addressed. For instance, which tissues exhibit prevalent signatures of metabolic specialization? Reciprocally, which metabolites contribute most to this tissue specialization in contrast to those metabolites exhibiting housekeeping characteristics? Here, we explore tissue-level metabolic specialization in Nicotiana attenuata, an ecological model with rich secondary metabolism, by combining tissue-wide nontargeted mass spectral data acquisition, information theory analysis, and tandem MS (MS/MS) molecular networks. This analysis was conducted for two different methanolic extracts of 14 tissues and deconvoluted 895 nonredundant MS/MS spectra. Using information theory analysis, anthers were found to harbor the most specialized metabolome, and most unique metabolites of anthers and other tissues were annotated through MS/MS molecular networks. Tissue-metabolite association maps were used to predict tissue-specific gene functions. Predictions for the function of two UDP-glycosyltransferases in flavonoid metabolism were confirmed by virus-induced gene silencing. The present workflow allows biologists to amortize the vast amount of data produced by modern MS instrumentation in their quest to understand gene function.

  8. A new method to determine tissue specific tissue factor thrombomodulin activities: endotoxin and particulate air pollution induced disbalance

    PubMed Central

    Frederix, Kim; Kooter, Ingeborg M; van Oerle, René; Fens, Diane; Hamulyak, Karly; Gerlofs-Nijland, Miriam E; ten Cate, Hugo; Spronk, Henri MH

    2008-01-01

    Background Increase in tissue factor (TF) and loss in thrombomodulin (TM) antigen levels has been described in various inflammatory disorders. The functional consequences of such changes in antigen concentrations in the coagulation balance are, however, not known. This study was designed to assess the consequences of inflammation-driven organ specific functional properties of the procoagulant response. Methods Tissue specific procoagulant activity was assessed by adding tissue homogenate to normal human pool plasma and recording of the thrombin generation curve. The new technique was subsequently applied on two inflammation driven animal models: 1) mouse lipopolysaccharide (LPS) induced endotoxemia and 2) spontaneously hypertensive rats exposed to environmental air pollution (particulate matter (PM). Results Addition of lung tissue from untreated animals to human plasma suppressed the endogenous thrombin potential (ETP) (175 ± 61 vs. 1437 ± 112 nM.min for control). This inhibitory effect was due to TM, because a) it was absent in protein C deficient plasma and b) lungs from TMpro/pro mice allowed full thrombin generation (ETP: 1686 ± 209 nM.min). The inhibitory effect of TM was lost after LPS administration to mice, which induced TF activity in lungs of C57Bl/6 mice as well as increased the ETP (941 ± 523 vs. 194 ± 159 nM.min for control). Another pro-inflammatory stimulus, PM dose-dependently increased TF in the lungs of spontaneously hypertensive rats at 4 and 48 hours after PM exposure. The ETP increased up to 48 hours at the highest concentration of PM (1441 ± 289 nM.min vs. saline: 164 ± 64 nM.min, p < 0.0001), suggesting a concentration- and time dependent reduction in TM activity. Conclusion Inflammation associated procoagulant effects in tissues are dependent on variations in activity of the TF-TM balance. The application of these novel organ specific functional assays is a useful tool to monitor inflammation-driven shifts in the coagulation balance

  9. Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism

    PubMed Central

    Jerby, Livnat; Shlomi, Tomer; Ruppin, Eytan

    2010-01-01

    The computational study of human metabolism has been advanced with the advent of the first generic (non-tissue specific) stoichiometric model of human metabolism. In this study, we present a new algorithm for rapid reconstruction of tissue-specific genome-scale models of human metabolism. The algorithm generates a tissue-specific model from the generic human model by integrating a variety of tissue-specific molecular data sources, including literature-based knowledge, transcriptomic, proteomic, metabolomic and phenotypic data. Applying the algorithm, we constructed the first genome-scale stoichiometric model of hepatic metabolism. The model is verified using standard cross-validation procedures, and through its ability to carry out hepatic metabolic functions. The model's flux predictions correlate with flux measurements across a variety of hormonal and dietary conditions, and improve upon the predictive performance obtained using the original, generic human model (prediction accuracy of 0.67 versus 0.46). Finally, the model better predicts biomarker changes in genetic metabolic disorders than the generic human model (accuracy of 0.67 versus 0.59). The approach presented can be used to construct other human tissue-specific models, and be applied to other organisms. PMID:20823844

  10. Isolation and characterization of an endosperm-specific promoter from wheat (Triticum aestivum L.).

    PubMed

    Song, Fei; Cui, Cui-Ju; Chen, Ling; Sun, Yang-Liu; Wang, Fei-Fei; Hussain, Javeed; Li, Yin; Wang, Chen; Wang, Cheng; Chen, Ming-Jie; Wang, Yue-Sheng; Yang, Guang-Xiao; He, Guang-Yuan

    2012-01-01

    Genes coding for avenin-like proteins (ALP) represent a new family of wheat storage protein genes. To find a wheat endosperm-specific promoter, a 1644-bp fragment upstream of the ALP type-B gene (GenBank accession number JN622144) was isolated. The important promoter elements of the ALP type-B gene were ascertained through sequence analysis which revealed that this fragment contains the TATA and CAAT boxes, which are important elements in gene expression. A prolamin box containing an endosperm motif and a GCN4-like motif (GLM) is present at about 300 bp upstream of the translation start site. The promoter sequence has two ESP-like elements and one of them is followed by an RY motif with the nucleotides CATG overlapping. The RY motif is considered the core functional sequence in a promoter. In an attempt to confirm the promoter activity, a series of 5'-deletions of the promoter were fused with the beta-glucuronidase (GUS) gene, and the constructs were stably introduced into tobacco plants. GUS staining confirmed that the AVL type-B promoter is an endosperm-specific promoter in tobacco seeds. Quantitative analysis of GUS expression in transgenic plants showed that even the shortest 5'-deletion, i.e. a 290-bp promoter sequence within the prolamin box, was sufficient to drive GUS expression in the endosperm. The highest expression level was found in transgenic plants containing the 5'-deletion vector construct pALP-8. This suggests that the ESP-like element overlapping with the RY motif may play a crucial role in the regulatory function of the promoter.

  11. Delta DNMT3B variants regulate DNA methylation in a promoter-specific manner.

    PubMed

    Wang, Jie; Bhutani, Manisha; Pathak, Ashutosh K; Lang, Wenhua; Ren, Hening; Jelinek, Jaroslav; He, Rong; Shen, Lanlan; Issa, Jean-Pierre; Mao, Li

    2007-11-15

    DNA methyltransferase 3B (DNMT3B) is critical in de novo DNA methylation during development and tumorigenesis. We recently reported the identification of a DNMT3B subfamily, DeltaDNMT3B, which contains at least seven variants, resulting from alternative pre-mRNA splicing. DeltaDNMT3Bs are the predominant expression forms of DNMT3B in human lung cancer. A strong correlation was observed between the promoter methylation of RASSF1A gene but not p16 gene (both frequently inactivated by promoter methylation in lung cancer) and expression of DeltaDNMT3B4 in primary lung cancer, suggesting a role of DeltaDNMT3B in regulating promoter-specific methylation of common tumor suppressor genes in tumorigenesis. In this report, we provide first experimental evidence showing a direct involvement of DeltaDNMT3B4 in regulating RASSF1A promoter methylation in human lung cancer cells. Knockdown of DeltaDNMT3B4 expression by small interfering RNA resulted in a rapid demethylation of RASSF1A promoter and reexpression of RASSF1A mRNA but had no effect on p16 promoter in the lung cancer cells. Conversely, normal bronchial epithelial cells with stably transfected DeltaDNMT3B4 gained an increased DNA methylation in RASSF1A promoter but not p16 promoter. We conclude that promoter DNA methylation can be differentially regulated and DeltaDNMT3Bs are involved in regulation of such promoter-specific de novo DNA methylation.

  12. Systems Biology of Tissue-Specific Response to Anaplasma phagocytophilum Reveals Differentiated Apoptosis in the Tick Vector Ixodes scapularis

    PubMed Central

    Ayllón, Nieves; Villar, Margarita; Galindo, Ruth C.; Kocan, Katherine M.; Šíma, Radek; López, Juan A.; Vázquez, Jesús; Alberdi, Pilar; Cabezas-Cruz, Alejandro; Kopáček, Petr; de la Fuente, José

    2015-01-01

    Anaplasma phagocytophilum is an emerging pathogen that causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects cell function in both vertebrate host and the tick vector, Ixodes scapularis. Global tissue-specific response and apoptosis signaling pathways were characterized in I. scapularis nymphs and adult female midguts and salivary glands infected with A. phagocytophilum using a systems biology approach combining transcriptomics and proteomics. Apoptosis was selected for pathway-focused analysis due to its role in bacterial infection of tick cells. The results showed tissue-specific differences in tick response to infection and revealed differentiated regulation of apoptosis pathways. The impact of bacterial infection was more pronounced in tick nymphs and midguts than in salivary glands, probably reflecting bacterial developmental cycle. All apoptosis pathways described in other organisms were identified in I. scapularis, except for the absence of the Perforin ortholog. Functional characterization using RNA interference showed that Porin knockdown significantly increases tick colonization by A. phagocytophilum. Infection with A. phagocytophilum produced complex tissue-specific alterations in transcript and protein levels. In tick nymphs, the results suggested a possible effect of bacterial infection on the inhibition of tick immune response. In tick midguts, the results suggested that A. phagocytophilum infection inhibited cell apoptosis to facilitate and establish infection through up-regulation of the JAK/STAT pathway. Bacterial infection inhibited the intrinsic apoptosis pathway in tick salivary glands by down-regulating Porin expression that resulted in the inhibition of Cytochrome c release as the anti-apoptotic mechanism to facilitate bacterial infection. However, tick salivary glands may promote apoptosis to limit bacterial infection through induction of the extrinsic apoptosis pathway. These dynamic changes in response to A

  13. In search of the determinants of enhancer-promoter interaction specificity.

    PubMed

    van Arensbergen, Joris; van Steensel, Bas; Bussemaker, Harmen J

    2014-11-01

    Although it was originally believed that enhancers activate only the nearest promoter, recent global analyses enabled by high-throughput technology suggest that the network of enhancer-promoter interactions is far more complex. The mechanisms that determine the specificity of enhancer-promoter interactions are still poorly understood, but they are thought to include biochemical compatibility, constraints imposed by the three-dimensional architecture of chromosomes, insulator elements, and possibly the effects of local chromatin composition. In this review, we assess the current insights into these determinants, and highlight the functional genomic approaches that will lead the way towards better mechanistic understanding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Structural basis for promoter specificity switching of RNA polymerase by a phage factor.

    PubMed

    Tagami, Shunsuke; Sekine, Shun-ichi; Minakhin, Leonid; Esyunina, Daria; Akasaka, Ryogo; Shirouzu, Mikako; Kulbachinskiy, Andrey; Severinov, Konstantin; Yokoyama, Shigeyuki

    2014-03-01

    Transcription of DNA to RNA by DNA-dependent RNA polymerase (RNAP) is the first step of gene expression and a major regulation point. Bacteriophages hijack their host's transcription machinery and direct it to serve their needs. The gp39 protein encoded by Thermus thermophilus phage P23-45 binds the host's RNAP and inhibits transcription initiation from its major "-10/-35" class promoters. Phage promoters belonging to the minor "extended -10" class are minimally inhibited. We report the crystal structure of the T. thermophilus RNAP holoenzyme complexed with gp39, which explains the mechanism for RNAP promoter specificity switching. gp39 simultaneously binds to the RNAP β-flap domain and the C-terminal domain of the σ subunit (region 4 of the σ subunit [σ4]), thus relocating the β-flap tip and σ4. The ~45 Å displacement of σ4 is incompatible with its binding to the -35 promoter consensus element, thus accounting for the inhibition of transcription from -10/-35 class promoters. In contrast, this conformational change is compatible with the recognition of extended -10 class promoters. These results provide the structural bases for the conformational modulation of the host's RNAP promoter specificity to switch gene expression toward supporting phage development for gp39 and, potentially, other phage proteins, such as T4 AsiA.

  15. Discrete promoter elements affect specific properties of RNA polymerase II transcription complexes

    PubMed Central

    Steinke, John W.; Kopytek, Stephan J.; Peterson, David O.

    2000-01-01

    The frequency of transcription initiation at specific RNA polymerase II promoters is, in many cases, related to the ability of the promoter to recruit the transcription machinery to a specific site. However, there may also be functional differences in the properties of assembled transcription complexes that are promoter-specific or regulator-dependent and affect their activity. Transcription complexes formed on variants of the adenovirus major late (AdML) promoter were found to differ in several ways. Mutations in the initiator element increased the sarkosyl sensitivity of the rate of elongation and decreased the rate of early steps in initiation as revealed by a sarkosyl challenge assay that exploited the resistance of RNA synthesis to high concentrations of sarkosyl after formation of one or two phospho­diester bonds. Similar, but clearly distinct, effects were also observed after deletion of the binding site for upstream stimulatory factor from the AdML promoter. In contrast, deletion of binding sites for nuclear factor 1 and Oct-1, as well as mutations in the recognition sequence for initiation site binding protein, were without apparent effect on transcription complexes on templates containing the mouse mammary tumor virus promoter. PMID:10908329

  16. Discrete promoter elements affect specific properties of RNA polymerase II transcription complexes.

    PubMed

    Steinke, J W; Kopytek, S J; Peterson, D O

    2000-07-15

    The frequency of transcription initiation at specific RNA polymerase II promoters is, in many cases, related to the ability of the promoter to recruit the transcription machinery to a specific site. However, there may also be functional differences in the properties of assembled transcription complexes that are promoter-specific or regulator-dependent and affect their activity. Transcription complexes formed on variants of the adenovirus major late (AdML) promoter were found to differ in several ways. Mutations in the initiator element increased the sarkosyl sensitivity of the rate of elongation and decreased the rate of early steps in initiation as revealed by a sarkosyl challenge assay that exploited the resistance of RNA synthesis to high concentrations of sarkosyl after formation of one or two phospho-diester bonds. Similar, but clearly distinct, effects were also observed after deletion of the binding site for upstream stimulatory factor from the AdML promoter. In contrast, deletion of binding sites for nuclear factor 1 and Oct-1, as well as mutations in the recognition sequence for initiation site binding protein, were without apparent effect on transcription complexes on templates containing the mouse mammary tumor virus promoter.

  17. Enhancer-core-promoter specificity separates developmental and housekeeping gene regulation.

    PubMed

    Zabidi, Muhammad A; Arnold, Cosmas D; Schernhuber, Katharina; Pagani, Michaela; Rath, Martina; Frank, Olga; Stark, Alexander

    2015-02-26

    Gene transcription in animals involves the assembly of RNA polymerase II at core promoters and its cell-type-specific activation by enhancers that can be located more distally. However, how ubiquitous expression of housekeeping genes is achieved has been less clear. In particular, it is unknown whether ubiquitously active enhancers exist and how developmental and housekeeping gene regulation is separated. An attractive hypothesis is that different core promoters might exhibit an intrinsic specificity to certain enhancers. This is conceivable, as various core promoter sequence elements are differentially distributed between genes of different functions, including elements that are predominantly found at either developmentally regulated or at housekeeping genes. Here we show that thousands of enhancers in Drosophila melanogaster S2 and ovarian somatic cells (OSCs) exhibit a marked specificity to one of two core promoters--one derived from a ubiquitously expressed ribosomal protein gene and another from a developmentally regulated transcription factor--and confirm the existence of these two classes for five additional core promoters from genes with diverse functions. Housekeeping enhancers are active across the two cell types, while developmental enhancers exhibit strong cell-type specificity. Both enhancer classes differ in their genomic distribution, the functions of neighbouring genes, and the core promoter elements of these neighbouring genes. In addition, we identify two transcription factors--Dref and Trl--that bind and activate housekeeping versus developmental enhancers, respectively. Our results provide evidence for a sequence-encoded enhancer-core-promoter specificity that separates developmental and housekeeping gene regulatory programs for thousands of enhancers and their target genes across the entire genome.

  18. Illuminating a plant’s tissue-specific metabolic diversity using computational metabolomics and information theory

    PubMed Central

    Li, Dapeng; Heiling, Sven; Baldwin, Ian T.

    2016-01-01

    Secondary metabolite diversity is considered an important fitness determinant for plants’ biotic and abiotic interactions in nature. This diversity can be examined in two dimensions. The first one considers metabolite diversity across plant species. A second way of looking at this diversity is by considering the tissue-specific localization of pathways underlying secondary metabolism within a plant. Although these cross-tissue metabolite variations are increasingly regarded as important readouts of tissue-level gene function and regulatory processes, they have rarely been comprehensively explored by nontargeted metabolomics. As such, important questions have remained superficially addressed. For instance, which tissues exhibit prevalent signatures of metabolic specialization? Reciprocally, which metabolites contribute most to this tissue specialization in contrast to those metabolites exhibiting housekeeping characteristics? Here, we explore tissue-level metabolic specialization in Nicotiana attenuata, an ecological model with rich secondary metabolism, by combining tissue-wide nontargeted mass spectral data acquisition, information theory analysis, and tandem MS (MS/MS) molecular networks. This analysis was conducted for two different methanolic extracts of 14 tissues and deconvoluted 895 nonredundant MS/MS spectra. Using information theory analysis, anthers were found to harbor the most specialized metabolome, and most unique metabolites of anthers and other tissues were annotated through MS/MS molecular networks. Tissue–metabolite association maps were used to predict tissue-specific gene functions. Predictions for the function of two UDP-glycosyltransferases in flavonoid metabolism were confirmed by virus-induced gene silencing. The present workflow allows biologists to amortize the vast amount of data produced by modern MS instrumentation in their quest to understand gene function. PMID:27821729

  19. RXRα and LXR activate two promoters in placenta- and tumor-specific expression of PLAC1

    PubMed Central

    Chen, Yaohui; Moradin, Adi; Schlessinger, David; Nagaraja, Ramaiah

    2011-01-01

    PLAC1 expression, first characterized as restricted to developing placenta among normal tissues, is also found in a wide range of tumors and transformed cell lines. To understand the basis for its unusual expression profile, we have analyzed the gene structure and its mode of transcription. We find that the gene has a hitherto unique feature, with two promoters, P1 and P2, separated by 105 kb. P2 has been described before. Here we define P1 and show that it and P2 are activated by RXRα in conjunction with LXRα or LXRβ. In placenta, P2 is the preferred promoter, whereas various tumor cell lines tend to express predominantly either one or the other promoter. Furthermore, when each promoter is fused to a luciferase reporter gene and transfected into cancer cell lines, the promoter corresponding to the more active endogenous promoter is preferentially transcribed. Joint expression of activating nuclear receptors can partially account for the restricted expression of PLAC1 in placenta, and may be co-opted for preferential P1 or P2 PLAC1 expression in various tumor cells. PMID:21937108

  20. Promoter Architecture and Sex-Specific Gene Expression in Daphnia pulex

    PubMed Central

    Raborn, R. Taylor; Spitze, Ken; Brendel, Volker P.; Lynch, Michael

    2016-01-01

    Large-scale transcription start site (TSS) profiling produces a high-resolution, quantitative picture of transcription initiation and core promoter locations within a genome. However, application of TSS profiling to date has largely been restricted to a small set of prominent model systems. We sought to characterize the cis-regulatory landscape of the water flea Daphnia pulex, an emerging model arthropod that reproduces both asexually (via parthenogenesis) and sexually (via meiosis). We performed Cap Analysis of Gene Expression (CAGE) with RNA isolated from D. pulex within three developmental states: sexual females, asexual females, and males. Identified TSSs were utilized to generate a “Daphnia Promoter Atlas,” i.e., a catalog of active promoters across the surveyed states. Analysis of the distribution of promoters revealed evidence for widespread alternative promoter usage in D. pulex, in addition to a prominent fraction of compactly-arranged promoters in divergent orientations. We carried out de novo motif discovery using CAGE-defined TSSs and identified eight candidate core promoter motifs; this collection includes canonical promoter elements (e.g., TATA and Initiator) in addition to others lacking obvious orthologs. A comparison of promoter activities found evidence for considerable state-specific differential gene expression between states. Our work represents the first global definition of transcription initiation and promoter architecture in crustaceans. The Daphnia Promoter Atlas presented here provides a valuable resource for comparative study of cis-regulatory regions in metazoans, as well as for investigations into the circuitries that underpin meiosis and parthenogenesis. PMID:27585846

  1. Promoter Architecture and Sex-Specific Gene Expression in Daphnia pulex.

    PubMed

    Raborn, R Taylor; Spitze, Ken; Brendel, Volker P; Lynch, Michael

    2016-10-01

    Large-scale transcription start site (TSS) profiling produces a high-resolution, quantitative picture of transcription initiation and core promoter locations within a genome. However, application of TSS profiling to date has largely been restricted to a small set of prominent model systems. We sought to characterize the cis-regulatory landscape of the water flea Daphnia pulex, an emerging model arthropod that reproduces both asexually (via parthenogenesis) and sexually (via meiosis). We performed Cap Analysis of Gene Expression (CAGE) with RNA isolated from D. pulex within three developmental states: sexual females, asexual females, and males. Identified TSSs were utilized to generate a "Daphnia Promoter Atlas," i.e., a catalog of active promoters across the surveyed states. Analysis of the distribution of promoters revealed evidence for widespread alternative promoter usage in D. pulex, in addition to a prominent fraction of compactly-arranged promoters in divergent orientations. We carried out de novo motif discovery using CAGE-defined TSSs and identified eight candidate core promoter motifs; this collection includes canonical promoter elements (e.g., TATA and Initiator) in addition to others lacking obvious orthologs. A comparison of promoter activities found evidence for considerable state-specific differential gene expression between states. Our work represents the first global definition of transcription initiation and promoter architecture in crustaceans. The Daphnia Promoter Atlas presented here provides a valuable resource for comparative study of cis-regulatory regions in metazoans, as well as for investigations into the circuitries that underpin meiosis and parthenogenesis. Copyright © 2016 by the Genetics Society of America.

  2. Identification of tissue-specific cell death using methylation patterns of circulating DNA.

    PubMed

    Lehmann-Werman, Roni; Neiman, Daniel; Zemmour, Hai; Moss, Joshua; Magenheim, Judith; Vaknin-Dembinsky, Adi; Rubertsson, Sten; Nellgård, Bengt; Blennow, Kaj; Zetterberg, Henrik; Spalding, Kirsty; Haller, Michael J; Wasserfall, Clive H; Schatz, Desmond A; Greenbaum, Carla J; Dorrell, Craig; Grompe, Markus; Zick, Aviad; Hubert, Ayala; Maoz, Myriam; Fendrich, Volker; Bartsch, Detlef K; Golan, Talia; Ben Sasson, Shmuel A; Zamir, Gideon; Razin, Aharon; Cedar, Howard; Shapiro, A M James; Glaser, Benjamin; Shemer, Ruth; Dor, Yuval

    2016-03-29

    Minimally invasive detection of cell death could prove an invaluable resource in many physiologic and pathologic situations. Cell-free circulating DNA (cfDNA) released from dying cells is emerging as a diagnostic tool for monitoring cancer dynamics and graft failure. However, existing methods rely on differences in DNA sequences in source tissues, so that cell death cannot be identified in tissues with a normal genome. We developed a method of detecting tissue-specific cell death in humans based on tissue-specific methylation patterns in cfDNA. We interrogated tissue-specific methylome databases to identify cell type-specific DNA methylation signatures and developed a method to detect these signatures in mixed DNA samples. We isolated cfDNA from plasma or serum of donors, treated the cfDNA with bisulfite, PCR-amplified the cfDNA, and sequenced it to quantify cfDNA carrying the methylation markers of the cell type of interest. Pancreatic β-cell DNA was identified in the circulation of patients with recently diagnosed type-1 diabetes and islet-graft recipients; oligodendrocyte DNA was identified in patients with relapsing multiple sclerosis; neuronal/glial DNA was identified in patients after traumatic brain injury or cardiac arrest; and exocrine pancreas DNA was identified in patients with pancreatic cancer or pancreatitis. This proof-of-concept study demonstrates that the tissue origins of cfDNA and thus the rate of death of specific cell types can be determined in humans. The approach can be adapted to identify cfDNA derived from any cell type in the body, offering a minimally invasive window for diagnosing and monitoring a broad spectrum of human pathologies as well as providing a better understanding of normal tissue dynamics.

  3. Identification of tissue-specific cell death using methylation patterns of circulating DNA

    PubMed Central

    Lehmann-Werman, Roni; Neiman, Daniel; Zemmour, Hai; Moss, Joshua; Magenheim, Judith; Vaknin-Dembinsky, Adi; Rubertsson, Sten; Nellgård, Bengt; Blennow, Kaj; Zetterberg, Henrik; Spalding, Kirsty; Haller, Michael J.; Wasserfall, Clive H.; Schatz, Desmond A.; Greenbaum, Carla J.; Dorrell, Craig; Grompe, Markus; Zick, Aviad; Hubert, Ayala; Maoz, Myriam; Fendrich, Volker; Bartsch, Detlef K.; Golan, Talia; Ben Sasson, Shmuel A.; Zamir, Gideon; Razin, Aharon; Cedar, Howard; Shapiro, A. M. James; Glaser, Benjamin; Shemer, Ruth; Dor, Yuval

    2016-01-01

    Minimally invasive detection of cell death could prove an invaluable resource in many physiologic and pathologic situations. Cell-free circulating DNA (cfDNA) released from dying cells is emerging as a diagnostic tool for monitoring cancer dynamics and graft failure. However, existing methods rely on differences in DNA sequences in source tissues, so that cell death cannot be identified in tissues with a normal genome. We developed a method of detecting tissue-specific cell death in humans based on tissue-specific methylation patterns in cfDNA. We interrogated tissue-specific methylome databases to identify cell type-specific DNA methylation signatures and developed a method to detect these signatures in mixed DNA samples. We isolated cfDNA from plasma or serum of donors, treated the cfDNA with bisulfite, PCR-amplified the cfDNA, and sequenced it to quantify cfDNA carrying the methylation markers of the cell type of interest. Pancreatic β-cell DNA was identified in the circulation of patients with recently diagnosed type-1 diabetes and islet-graft recipients; oligodendrocyte DNA was identified in patients with relapsing multiple sclerosis; neuronal/glial DNA was identified in patients after traumatic brain injury or cardiac arrest; and exocrine pancreas DNA was identified in patients with pancreatic cancer or pancreatitis. This proof-of-concept study demonstrates that the tissue origins of cfDNA and thus the rate of death of specific cell types can be determined in humans. The approach can be adapted to identify cfDNA derived from any cell type in the body, offering a minimally invasive window for diagnosing and monitoring a broad spectrum of human pathologies as well as providing a better understanding of normal tissue dynamics. PMID:26976580

  4. Tissue Non-Specific Genes and Pathways Associated with Diabetes: An Expression Meta-Analysis.

    PubMed

    Mei, Hao; Li, Lianna; Liu, Shijian; Jiang, Fan; Griswold, Michael; Mosley, Thomas

    2017-01-21

    We performed expression studies to identify tissue non-specific genes and pathways of diabetes by meta-analysis. We searched curated datasets of the Gene Expression Omnibus (GEO) database and identified 13 and five expression studies of diabetes and insulin responses at various tissues, respectively. We tested differential gene expression by empirical Bayes-based linear method and investigated gene set expression association by knowledge-based enrichment analysis. Meta-analysis by different methods was applied to identify tissue non-specific genes and gene sets. We also proposed pathway mapping analysis to infer functions of the identified gene sets, and correlation and independent analysis to evaluate expression association profile of genes and gene sets between studies and tissues. Our analysis showed that PGRMC1 and HADH genes were significant over diabetes studies, while IRS1 and MPST genes were significant over insulin response studies, and joint analysis showed that HADH and MPST genes were significant over all combined data sets. The pathway analysis identified six significant gene sets over all studies. The KEGG pathway mapping indicated that the significant gene sets are related to diabetes pathogenesis. The results also presented that 12.8% and 59.0% pairwise studies had significantly correlated expression association for genes and gene sets, respectively; moreover, 12.8% pairwise studies had independent expression association for genes, but no studies were observed significantly different for expression association of gene sets. Our analysis indicated that there are both tissue specific and non-specific genes and pathways associated with diabetes pathogenesis. Compared to the gene expression, pathway association tends to be tissue non-specific, and a common pathway influencing diabetes development is activated through different genes at different tissues.

  5. Tissue Non-Specific Genes and Pathways Associated with Diabetes: An Expression Meta-Analysis

    PubMed Central

    Mei, Hao; Li, Lianna; Liu, Shijian; Jiang, Fan; Griswold, Michael; Mosley, Thomas

    2017-01-01

    We performed expression studies to identify tissue non-specific genes and pathways of diabetes by meta-analysis. We searched curated datasets of the Gene Expression Omnibus (GEO) database and identified 13 and five expression studies of diabetes and insulin responses at various tissues, respectively. We tested differential gene expression by empirical Bayes-based linear method and investigated gene set expression association by knowledge-based enrichment analysis. Meta-analysis by different methods was applied to identify tissue non-specific genes and gene sets. We also proposed pathway mapping analysis to infer functions of the identified gene sets, and correlation and independent analysis to evaluate expression association profile of genes and gene sets between studies and tissues. Our analysis showed that PGRMC1 and HADH genes were significant over diabetes studies, while IRS1 and MPST genes were significant over insulin response studies, and joint analysis showed that HADH and MPST genes were significant over all combined data sets. The pathway analysis identified six significant gene sets over all studies. The KEGG pathway mapping indicated that the significant gene sets are related to diabetes pathogenesis. The results also presented that 12.8% and 59.0% pairwise studies had significantly correlated expression association for genes and gene sets, respectively; moreover, 12.8% pairwise studies had independent expression association for genes, but no studies were observed significantly different for expression association of gene sets. Our analysis indicated that there are both tissue specific and non-specific genes and pathways associated with diabetes pathogenesis. Compared to the gene expression, pathway association tends to be tissue non-specific, and a common pathway influencing diabetes development is activated through different genes at different tissues. PMID:28117714

  6. The role of the endocrine system in feeding-induced tissue-specific circadian entrainment.

    PubMed

    Sato, Miho; Murakami, Mariko; Node, Koichi; Matsumura, Ritsuko; Akashi, Makoto

    2014-07-24

    The circadian clock is entrained to environmental cycles by external cue-mediated phase adjustment. Although the light input pathway has been well defined, the mechanism of feeding-induced phase resetting remains unclear. The tissue-specific sensitivity of peripheral entrainment to feeding suggests the involvement of multiple pathways, including humoral and neuronal signals. Previous in vitro studies with cultured cells indicate that endocrine factors may function as entrainment cues for peripheral clocks. However, blood-borne factors that are well characterized in actual feeding-induced resetting have yet to be identified. Here, we report that insulin may be involved in feeding-induced tissue-type-dependent entrainment in vivo. In ex vivo culture experiments, insulin-induced phase shift in peripheral clocks was dependent on tissue type, which was consistent with tissue-specific insulin sensitivity, and peripheral entrainment in insulin-sensitive tissues involved PI3K- and MAPK-mediated signaling pathways. These results suggest that insulin may be an immediate early factor in feeding-mediated tissue-specific entrainment. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Identification and evolutionary analysis of tissue-specific isoforms of mitochondrial complex I subunit NDUFV3.

    PubMed

    Guerrero-Castillo, Sergio; Cabrera-Orefice, Alfredo; Huynen, Martijn A; Arnold, Susanne

    2017-03-01

    Mitochondrial complex I is the largest respiratory chain complex. Despite the enormous progress made studying its structure and function in recent years, potential regulatory roles of its accessory subunits remained largely unresolved. Complex I gene NDUFV3, which occurs in metazoa, contains an extra exon that is only present in vertebrates and thereby evolutionary even younger than the rest of the gene. Alternative splicing of this extra exon gives rise to a short NDUFV3-S and a long NDUFV3-L protein isoform. Complexome profiling revealed that the two NDUFV3 isoforms are constituents of the multi-subunit complex I. Further mass spectrometric analyses of complex I from different murine and bovine tissues showed a tissue-specific expression pattern of NDUFV3-S and NDUFV3-L. Hence, NDUFV3-S was identified as the only isoform in heart and skeletal muscle, whereas in liver, brain, and lung NDUFV3-L was expressed as the dominant isoform, together with NDUFV3-S present in all tissues analyzed. Thus, we identified NDUFV3 as the first out of 30 accessory subunits of complex I present in vertebrate- and tissue-specific isoforms. Interestingly, the tissue-specific expression pattern of NDUFV3-S and NDUFV3-L isoforms was paralleled by changes in kinetic parameters, especially the substrate affinity of complex I. This may indicate a regulatory role of the NDUFV3 isoforms in different vertebrate tissues.

  8. Development of Plant Gene Vectors for Tissue-Specific Expression Using GFP as a Reporter Gene

    NASA Technical Reports Server (NTRS)

    Jackson, Jacquelyn; Egnin, Marceline; Xue, Qi-Han; Prakash, C. S.

    1997-01-01

    Reporter genes are widely employed in plant molecular biology research to analyze gene expression and to identify promoters. Gus (UidA) is currently the most popular reporter gene but its detection requires a destructive assay. The use of jellyfish green fluorescent protein (GFP) gene from Aequorea Victoria holds promise for noninvasive detection of in vivo gene expression. To study how various plant promoters are expressed in sweet potato (Ipomoea batatas), we are transcriptionally fusing the intron-modified (mGFP) or synthetic (modified for codon-usage) GFP coding regions to these promoters: double cauliflower mosaic virus 35S (CaMV 35S) with AMV translational enhancer, ubiquitin7-intron-ubiquitin coding region (ubi7-intron-UQ) and sporaminA. A few of these vectors have been constructed and introduced into E. coli DH5a and Agrobacterium tumefaciens EHA105. Transient expression studies are underway using protoplast-electroporation and particle bombardment of leaf tissues.

  9. Development of Plant Gene Vectors for Tissue-Specific Expression Using GFP as a Reporter Gene

    NASA Technical Reports Server (NTRS)

    Jackson, Jacquelyn; Egnin, Marceline; Xue, Qi-Han; Prakash, C. S.

    1997-01-01

    Reporter genes are widely employed in plant molecular biology research to analyze gene expression and to identify promoters. Gus (UidA) is currently the most popular reporter gene but its detection requires a destructive assay. The use of jellyfish green fluorescent protein (GFP) gene from Aequorea Victoria holds promise for noninvasive detection of in vivo gene expression. To study how various plant promoters are expressed in sweet potato (Ipomoea batatas), we are transcriptionally fusing the intron-modified (mGFP) or synthetic (modified for codon-usage) GFP coding regions to these promoters: double cauliflower mosaic virus 35S (CaMV 35S) with AMV translational enhancer, ubiquitin7-intron-ubiquitin coding region (ubi7-intron-UQ) and sporaminA. A few of these vectors have been constructed and introduced into E. coli DH5a and Agrobacterium tumefaciens EHA105. Transient expression studies are underway using protoplast-electroporation and particle bombardment of leaf tissues.

  10. Expression Profile and Tissue-Specific Distribution of the Receptor-Interacting Protein 3 in BALB/c Mice.

    PubMed

    Wang, Qingnan; Yu, Meng; Zhang, Kaizhao; Liu, Jianxin; Tao, Pan; Ge, Shikun; Ning, Zhangyong

    2016-08-01

    RIP3, a member of receptor-interacting protein family, is serine/threonine kinase that contributes to necrosis and promotes systematic inflammation. However, detailed information of the expression pattern and tissue distribution in BALB/c mice, a commonly used laboratory animal model, is still unavailable. Here, we provided the basic data of expression profile and histologic distribution of RIP3 in tissues of BALB/c mice. Rip3 mRNA expression levels and tissue distribution were detected by real-time quantitative PCR and immunohistochemical detection, respectively. Rip3 mRNA expression showed the highest level in the spleen and duodenum, while with the lowest level in brain. Immunohistochemical detection revealed this protein located in different type cells in different tissues. What's more, the obvious positive staining in nuclear was detected in liver cells and neurons in cerebral cortex of the brain, while cells in other organs, including heart, spleen, lung, kidney, stomach, duodenum and trachea, showed strong positive mainly in cytoplasm. The results will help us to further understand the site-specific functions of RIP3 in necrosis and inflammatory responses.

  11. Adipose tissue-specific inactivation of the retinoblastoma protein protects against diabesity because of increased energy expenditure

    PubMed Central

    Dali-Youcef, Nassim; Mataki, Chikage; Coste, Agnès; Messaddeq, Nadia; Giroud, Sylvain; Blanc, Stéphane; Koehl, Christian; Champy, Marie-France; Chambon, Pierre; Fajas, Lluis; Metzger, Daniel; Schoonjans, Kristina; Auwerx, Johan

    2007-01-01

    The role of the tumor suppressor retinoblastoma protein (pRb) has been firmly established in the control of cell cycle, apoptosis, and differentiation. Recently, it was demonstrated that lack of pRb promotes a switch from white to brown adipocyte differentiation in vitro. We used the Cre-Lox system to specifically inactivate pRb in adult adipose tissue. Under a high-fat diet, pRb-deficient (pRbad−/−) mice failed to gain weight because of increased energy expenditure. This protection against weight gain was caused by the activation of mitochondrial activity in white and brown fat as evidenced by histologic, electron microscopic, and gene expression studies. Moreover, pRb−/− mouse embryonic fibroblasts displayed higher proliferation and apoptosis rates than pRb+/+ mouse embryonic fibroblasts, which could contribute to the altered white adipose tissue morphology. Taken together, our data support a direct role of pRb in adipocyte cell fate determination in vivo and suggest that pRb could serve as a potential therapeutic target to trigger mitochondrial activation in white adipose tissue and brown adipose tissue, favoring an increase in energ