Science.gov

Sample records for promotes pulmonary fibrosis

  1. Sirtuin 3 Deregulation Promotes Pulmonary Fibrosis.

    PubMed

    Sosulski, Meredith L; Gongora, Rafael; Feghali-Bostwick, Carol; Lasky, Joseph A; Sanchez, Cecilia G

    2016-08-13

    Oxidative stress leads to alveolar epithelial cell injury and fibroblast-myofibroblast differentiation (FMD), key events in the pathobiology of pulmonary fibrosis (PF). Sirtuin 3 (SIRT3) is a mitochondrial protein deacetylase regulator of antioxidant response and mitochondrial homeostasis. Here, we demonstrate reduced SIRT3 expression in the lungs of old mice compared to young mice, as well as in two murine models of PF. The analysis of the pattern of SIRT3 expression in the lungs of patients with PF revealed low SIRT3 staining within the fibrotic regions. We also demonstrated, using murine models of PF and human lung fibroblasts, that reduced SIRT3 expression in response to transforming growth factor beta 1 (TGFβ1) promotes acetylation (inactivation) of major oxidative stress response regulators, such as SOD2 and isocitrate dehydrogenase 2. Reduction of SIRT3 in human lung fibroblasts promoted FMD. By contrast, overexpression of SIRT3 attenuated TGFβ1-mediated FMD and significantly reduced the levels of SMAD family member 3 (SMAD3). Resveratrol induced SIRT3 expression and ameliorated acetylation changes induced by TGFβ1. We demonstrated that SIRT3-deficient mice are more susceptible to PF compared to control mice, and concomitantly exhibit enhanced SMAD3 expression. Collectively, these data define a SIRT3/TGFβ1 interaction during aging that may play a significant role in the pathobiology of PF.

  2. Pulmonary Fibrosis

    MedlinePlus

    Pulmonary fibrosis is a condition in which the tissue deep in your lungs becomes scarred over time. This tissue ... may not get enough oxygen. Causes of pulmonary fibrosis include environmental pollutants, some medicines, some connective tissue ...

  3. The role of circulating mesenchymal progenitor cells, fibrocytes, in promoting pulmonary fibrosis.

    PubMed

    Strieter, Robert M; Keeley, Ellen C; Burdick, Marie D; Mehrad, Borna

    2009-01-01

    The resident fibroblast has been traditionally viewed as the primary cell involved in promoting pulmonary fibrosis. However, contemporary findings now support the concept of a circulating cell (fibrocyte) that also contributes to pulmonary fibrosis. Fibrocytes are bone marrow-derived mesenchymal progenitor cells that express a variety of cell surface markers related to leukocytes, hematopoietic progenitor cells and fibroblasts. Fibrocytes are unique in that they are capable of differentiating into fibroblasts and myofibroblasts, as well as adipocytes. In this review, we present data supporting the critical role these cells play in the pathogenesis of pulmonary fibrosis.

  4. Idiopathic Pulmonary Fibrosis

    MedlinePlus

    ... the NHLBI on Twitter. What Is Idiopathic Pulmonary Fibrosis? Pulmonary fibrosis (PULL-mun-ary fi-BRO-sis) is a ... time. The formation of scar tissue is called fibrosis. As the lung tissue thickens, your lungs can' ...

  5. Bone Marrow CD11c+ Cell-Derived Amphiregulin Promotes Pulmonary Fibrosis

    PubMed Central

    Ding, Lin; Liu, Tianju; Wu, Zhe; Hu, Biao; Nakashima, Taku; Ullenbruch, Matthew; De Los Santos, Francina Gonzalez; Phan, Sem H.

    2016-01-01

    Amphiregulin (AREG), an epidermal growth factor receptor ligand, is implicated in tissue repair and fibrosis but its cellular source and role in regeneration vs. fibrosis remain unclear. In this study we hypothesize that AREG induced in bone marrow derived CD11c+ cells is essential for pulmonary fibrosis. Thus the objectives were to evaluate the importance and role of AREG in pulmonary fibrosis, identify the cellular source of AREG induction and analyze its regulation of fibroblast function and activation. The results showed that lung AREG expression was significantly induced in bleomycin-induced pulmonary fibrosis. AREG deficiency in knockout (KO) mice significantly diminished pulmonary fibrosis. Analysis of AREG expression in major lung cell types revealed induction in fibrotic lungs predominantly occurred in CD11c+ cells. Moreover depletion of bone marrow derived CD11c+ cells suppressed both induction of lung AREG expression and pulmonary fibrosis. Conversely, adoptive transfer of bone marrow-derived CD11c+ cells from BLM-treated donor mice exacerbated pulmonary fibrosis but not if the donor cells were made AREG-deficient prior to transfer. CD11c+ cell conditioned media or co-culture stimulated fibroblast proliferation, activation and myofibroblast differentiation in an AREG dependent manner. Furthermore recombinant AREG induced telomerase reverse transcriptase (TERT) which appeared to be essential for the proliferative effect. Finally AREG significantly enhanced fibroblast motility, which was associated with increased expression of α6 integrin. These findings suggested that induced AREG specifically in recruited bone marrow-derived CD11c+ cells promoted bleomycin induced pulmonary fibrosis by activation of fibroblast TERT dependent proliferation, motility and indirectly, myofibroblast differentiation. PMID:27206766

  6. Bone Marrow CD11c+ Cell-Derived Amphiregulin Promotes Pulmonary Fibrosis.

    PubMed

    Ding, Lin; Liu, Tianju; Wu, Zhe; Hu, Biao; Nakashima, Taku; Ullenbruch, Matthew; Gonzalez De Los Santos, Francina; Phan, Sem H

    2016-07-01

    Amphiregulin (AREG), an epidermal growth factor receptor ligand, is implicated in tissue repair and fibrosis, but its cellular source and role in regeneration versus fibrosis remain unclear. In this study, we hypothesize that AREG induced in bone marrow-derived CD11c(+) cells is essential for pulmonary fibrosis. Thus, the objectives were to evaluate the importance and role of AREG in pulmonary fibrosis, identify the cellular source of AREG induction, and analyze its regulation of fibroblast function and activation. The results showed that lung AREG expression was significantly induced in bleomycin-induced pulmonary fibrosis. AREG deficiency in knockout mice significantly diminished pulmonary fibrosis. Analysis of AREG expression in major lung cell types revealed induction in fibrotic lungs predominantly occurred in CD11c(+) cells. Moreover, depletion of bone marrow-derived CD11c(+) cells suppressed both induction of lung AREG expression and pulmonary fibrosis. Conversely, adoptive transfer of bone marrow-derived CD11c(+) cells from bleomycin-treated donor mice exacerbated pulmonary fibrosis, but not if the donor cells were made AREG deficient prior to transfer. CD11c(+) cell-conditioned media or coculture stimulated fibroblast proliferation, activation, and myofibroblast differentiation in an AREG-dependent manner. Furthermore, recombinant AREG induced telomerase reverse transcriptase, which appeared to be essential for the proliferative effect. Finally, AREG significantly enhanced fibroblast motility, which was associated with increased expression of α6 integrin. These findings suggested that induced AREG specifically in recruited bone marrow-derived CD11c(+) cells promoted bleomycin-induced pulmonary fibrosis by activation of fibroblast telomerase reverse transcriptase-dependent proliferation, motility, and indirectly, myofibroblast differentiation. Copyright © 2016 by The American Association of Immunologists, Inc.

  7. Astaxanthin prevents pulmonary fibrosis by promoting myofibroblast apoptosis dependent on Drp1-mediated mitochondrial fission

    PubMed Central

    Zhang, Jinjin; Xu, Pan; Wang, Youlei; Wang, Meirong; Li, Hongbo; Lin, Shengcui; Mao, Cuiping; Wang, Bingsi; Song, Xiaodong; Lv, Changjun

    2015-01-01

    Promotion of myofibroblast apoptosis is a potential therapeutic strategy for pulmonary fibrosis. This study investigated the antifibrotic effect of astaxanthin on the promotion of myofibroblast apoptosis based on dynamin-related protein-1 (Drp1)-mediated mitochondrial fission in vivo and in vitro. Results showed that astaxanthin can inhibit lung parenchymal distortion and collagen deposition, as well as promote myofibroblast apoptosis. Astaxanthin demonstrated pro-apoptotic function in myofibroblasts by contributing to mitochondrial fission, thereby leading to apoptosis by increasing the Drp1 expression and enhancing Drp1 translocation into the mitochondria. Two specific siRNAs were used to demonstrate that Drp1 is necessary to promote astaxanthin-induced mitochondrial fission and apoptosis in myofibroblasts. Drp1-associated genes, such as Bcl-2-associated X protein, cytochrome c, tumour suppressor gene p53 and p53-up-regulated modulator of apoptosis, were highly up-regulated in the astaxanthin group compared with those in the sham group. This study revealed that astaxanthin can prevent pulmonary fibrosis by promoting myofibroblast apoptosis through a Drp1-dependent molecular pathway. Furthermore, astaxanthin provides a potential therapeutic value in pulmonary fibrosis treatment. PMID:26119034

  8. Astaxanthin prevents pulmonary fibrosis by promoting myofibroblast apoptosis dependent on Drp1-mediated mitochondrial fission.

    PubMed

    Zhang, Jinjin; Xu, Pan; Wang, Youlei; Wang, Meirong; Li, Hongbo; Lin, Shengcui; Mao, Cuiping; Wang, Bingsi; Song, Xiaodong; Lv, Changjun

    2015-09-01

    Promotion of myofibroblast apoptosis is a potential therapeutic strategy for pulmonary fibrosis. This study investigated the antifibrotic effect of astaxanthin on the promotion of myofibroblast apoptosis based on dynamin-related protein-1 (Drp1)-mediated mitochondrial fission in vivo and in vitro. Results showed that astaxanthin can inhibit lung parenchymal distortion and collagen deposition, as well as promote myofibroblast apoptosis. Astaxanthin demonstrated pro-apoptotic function in myofibroblasts by contributing to mitochondrial fission, thereby leading to apoptosis by increasing the Drp1 expression and enhancing Drp1 translocation into the mitochondria. Two specific siRNAs were used to demonstrate that Drp1 is necessary to promote astaxanthin-induced mitochondrial fission and apoptosis in myofibroblasts. Drp1-associated genes, such as Bcl-2-associated X protein, cytochrome c, tumour suppressor gene p53 and p53-up-regulated modulator of apoptosis, were highly up-regulated in the astaxanthin group compared with those in the sham group. This study revealed that astaxanthin can prevent pulmonary fibrosis by promoting myofibroblast apoptosis through a Drp1-dependent molecular pathway. Furthermore, astaxanthin provides a potential therapeutic value in pulmonary fibrosis treatment.

  9. Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis

    PubMed Central

    Cao, Zhongwei; Lis, Raphael; Ginsberg, Michael; Chavez, Deebly; Shido, Koji; Rabbany, Sina Y.; Fong, Guo-Hua; Sakmar, Thomas P.; Rafii, Shahin; Ding, Bi-Sen

    2016-01-01

    Although the lung can undergo self-repair after injury, fibrosis in chronically injured or diseased lungs can occur at the expense of regeneration. Here we study how a hematopoietic-vascular niche regulates alveolar repair and lung fibrosis. Using intratracheal injection of bleomycin or hydrochloric acid in mice, we show that repetitive lung injury activates pulmonary capillary endothelial cells (PCECs) and perivascular macrophages, impeding alveolar repair and promoting fibrosis. Whereas the chemokine receptor CXCR7, expressed on PCECs, acts to prevent epithelial damage and ameliorate fibrosis after a single round of treatment with bleomycin or hydrochloric acid, repeated injury leads to suppression of CXCR7 expression and recruitment of vascular endothelial growth factor receptor 1 (VEGFR1)-expressing perivascular macrophages. This recruitment stimulates Wnt/β-catenin–dependent persistent upregulation of the Notch ligand Jagged1 (encoded by Jag1) in PCECs, which in turn stimulates exuberant Notch signaling in perivascular fibroblasts and enhances fibrosis. Administration of a CXCR7 agonist or PCEC-targeted Jag1 shRNA after lung injury promotes alveolar repair and reduces fibrosis. Thus, targeting of a maladaptbed hematopoietic-vascular niche, in which macrophages, PCECs and perivascular fibroblasts interact, may help to develop therapy to spur lung regeneration and alleviate fibrosis. PMID:26779814

  10. Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis.

    PubMed

    Cao, Zhongwei; Lis, Raphael; Ginsberg, Michael; Chavez, Deebly; Shido, Koji; Rabbany, Sina Y; Fong, Guo-Hua; Sakmar, Thomas P; Rafii, Shahin; Ding, Bi-Sen

    2016-02-01

    Although the lung can undergo self-repair after injury, fibrosis in chronically injured or diseased lungs can occur at the expense of regeneration. Here we study how a hematopoietic-vascular niche regulates alveolar repair and lung fibrosis. Using intratracheal injection of bleomycin or hydrochloric acid in mice, we show that repetitive lung injury activates pulmonary capillary endothelial cells (PCECs) and perivascular macrophages, impeding alveolar repair and promoting fibrosis. Whereas the chemokine receptor CXCR7, expressed on PCECs, acts to prevent epithelial damage and ameliorate fibrosis after a single round of treatment with bleomycin or hydrochloric acid, repeated injury leads to suppression of CXCR7 expression and recruitment of vascular endothelial growth factor receptor 1 (VEGFR1)-expressing perivascular macrophages. This recruitment stimulates Wnt/β-catenin-dependent persistent upregulation of the Notch ligand Jagged1 (encoded by Jag1) in PCECs, which in turn stimulates exuberant Notch signaling in perivascular fibroblasts and enhances fibrosis. Administration of a CXCR7 agonist or PCEC-targeted Jag1 shRNA after lung injury promotes alveolar repair and reduces fibrosis. Thus, targeting of a maladapted hematopoietic-vascular niche, in which macrophages, PCECs and perivascular fibroblasts interact, may help to develop therapy to spur lung regeneration and alleviate fibrosis.

  11. Nitrated fatty acids reverse pulmonary fibrosis by dedifferentiating myofibroblasts and promoting collagen uptake by alveolar macrophages.

    PubMed

    Reddy, Aravind T; Lakshmi, Sowmya P; Zhang, Yingze; Reddy, Raju C

    2014-12-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal disease, thought to be largely transforming growth factor β (TGFβ) driven, for which there is no effective therapy. We assessed the potential benefits in IPF of nitrated fatty acids (NFAs), which are unique endogenous agonists of peroxisome proliferator-activated receptor γ (PPARγ), a nuclear hormone receptor that exhibits wound-healing and antifibrotic properties potentially useful for IPF therapy. We found that pulmonary PPARγ is down-regulated in patients with IPF. In vitro, knockdown or knockout of PPARγ expression in isolated human and mouse lung fibroblasts induced a profibrotic phenotype, whereas treating human fibroblasts with NFAs up-regulated PPARγ and blocked TGFβ signaling and actions. NFAs also converted TGFβ to inactive monomers in cell-free solution, suggesting an additional mechanism through which they may inhibit TGFβ. In vivo, treating mice bearing experimental pulmonary fibrosis with NFAs reduced disease severity. Also, NFAs up-regulated the collagen-targeting factor milk fat globule-EGF factor 8 (MFG-E8), stimulated collagen uptake and degradation by alveolar macrophages, and promoted myofibroblast dedifferentiation. Moreover, treating mice with established pulmonary fibrosis using NFAs reversed their existing myofibroblast differentiation and collagen deposition. These findings raise the prospect of treating IPF with NFAs to halt and perhaps even reverse the progress of IPF. © FASEB.

  12. Familial Pulmonary Fibrosis

    MedlinePlus

    ... Patients & Visitors Giving For Professionals Treatment & Programs Health Information Doctors & Departments Research & Science Education & Training Home Conditions Familial Pulmonary Fibrosis Familial ...

  13. What Causes Idiopathic Pulmonary Fibrosis?

    MedlinePlus

    ... the NHLBI on Twitter. What Causes Idiopathic Pulmonary Fibrosis? Sometimes doctors can find out what is causing pulmonary fibrosis (lung scarring). For example, exposure to environmental pollutants ...

  14. Regulatory T Cells Promote β-Catenin–Mediated Epithelium-to-Mesenchyme Transition During Radiation-Induced Pulmonary Fibrosis

    SciTech Connect

    Xiong, Shanshan; Pan, Xiujie; Xu, Long; Yang, Zhihua; Guo, Renfeng; Gu, Yongqing; Li, Ruoxi; Wang, Qianjun; Xiao, Fengjun; Du, Li; Zhou, Pingkun; Zhu, Maoxiang

    2015-10-01

    Purpose: Radiation-induced pulmonary fibrosis results from thoracic radiation therapy and severely limits radiation therapy approaches. CD4{sup +}CD25{sup +}FoxP3{sup +} regulatory T cells (Tregs) as well as epithelium-to-mesenchyme transition (EMT) cells are involved in pulmonary fibrosis induced by multiple factors. However, the mechanisms of Tregs and EMT cells in irradiation-induced pulmonary fibrosis remain unclear. In the present study, we investigated the influence of Tregs on EMT in radiation-induced pulmonary fibrosis. Methods and Materials: Mice thoraxes were irradiated (20 Gy), and Tregs were depleted by intraperitoneal injection of a monoclonal anti-CD25 antibody 2 hours after irradiation and every 7 days thereafter. Mice were treated on days 3, 7, and 14 and 1, 3, and 6 months post irradiation. The effectiveness of Treg depletion was assayed via flow cytometry. EMT and β-catenin in lung tissues were detected by immunohistochemistry. Tregs isolated from murine spleens were cultured with mouse lung epithelial (MLE) 12 cells, and short interfering RNA (siRNA) knockdown of β-catenin in MLE 12 cells was used to explore the effects of Tregs on EMT and β-catenin via flow cytometry and Western blotting. Results: Anti-CD25 antibody treatment depleted Tregs efficiently, attenuated the process of radiation-induced pulmonary fibrosis, hindered EMT, and reduced β-catenin accumulation in lung epithelial cells in vivo. The coculture of Tregs with irradiated MLE 12 cells showed that Tregs could promote EMT in MLE 12 cells and that the effect of Tregs on EMT was partially abrogated by β-catenin knockdown in vitro. Conclusions: Tregs can promote EMT in accelerating radiation-induced pulmonary fibrosis. This process is partially mediated through β-catenin. Our study suggests a new mechanism for EMT, promoted by Tregs, that accelerates radiation-induced pulmonary fibrosis.

  15. Regulatory T Cells Promote β-Catenin--Mediated Epithelium-to-Mesenchyme Transition During Radiation-Induced Pulmonary Fibrosis.

    PubMed

    Xiong, Shanshan; Pan, Xiujie; Xu, Long; Yang, Zhihua; Guo, Renfeng; Gu, Yongqing; Li, Ruoxi; Wang, Qianjun; Xiao, Fengjun; Du, Li; Zhou, Pingkun; Zhu, Maoxiang

    2015-10-01

    Radiation-induced pulmonary fibrosis results from thoracic radiation therapy and severely limits radiation therapy approaches. CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) as well as epithelium-to-mesenchyme transition (EMT) cells are involved in pulmonary fibrosis induced by multiple factors. However, the mechanisms of Tregs and EMT cells in irradiation-induced pulmonary fibrosis remain unclear. In the present study, we investigated the influence of Tregs on EMT in radiation-induced pulmonary fibrosis. Mice thoraxes were irradiated (20 Gy), and Tregs were depleted by intraperitoneal injection of a monoclonal anti-CD25 antibody 2 hours after irradiation and every 7 days thereafter. Mice were treated on days 3, 7, and 14 and 1, 3, and 6 months post irradiation. The effectiveness of Treg depletion was assayed via flow cytometry. EMT and β-catenin in lung tissues were detected by immunohistochemistry. Tregs isolated from murine spleens were cultured with mouse lung epithelial (MLE) 12 cells, and short interfering RNA (siRNA) knockdown of β-catenin in MLE 12 cells was used to explore the effects of Tregs on EMT and β-catenin via flow cytometry and Western blotting. Anti-CD25 antibody treatment depleted Tregs efficiently, attenuated the process of radiation-induced pulmonary fibrosis, hindered EMT, and reduced β-catenin accumulation in lung epithelial cells in vivo. The coculture of Tregs with irradiated MLE 12 cells showed that Tregs could promote EMT in MLE 12 cells and that the effect of Tregs on EMT was partially abrogated by β-catenin knockdown in vitro. Tregs can promote EMT in accelerating radiation-induced pulmonary fibrosis. This process is partially mediated through β-catenin. Our study suggests a new mechanism for EMT, promoted by Tregs, that accelerates radiation-induced pulmonary fibrosis. Copyright © 2015. Published by Elsevier Inc.

  16. Pulmonary Fibrosis Foundation

    MedlinePlus

    ... to issue a television public service announcement (PSA). STARS PERFORM FOR SOLD-OUT AUDIENCE AT BROADWAY BELTS ... Patients The Pulmonary Fibrosis Foundation has a four-star rating from Charity Navigator and is a Better ...

  17. Oxidative Stress and Pulmonary Fibrosis

    PubMed Central

    Cheresh, Paul; Kim, Seok-Jo; Tulasiram, Sandhya; Kamp, David W.

    2012-01-01

    Oxidative stress is implicated as an important molecular mechanism underlying fibrosis in a variety of organs, including the lungs. However, the causal role of reactive oxygen species (ROS) released from environmental exposures and inflammatory / interstitial cells in mediating fibrosis as well as how best to target an imbalance in ROS production in patients with fibrosis are not firmly established. We focus on the role of ROS in pulmonary fibrosis and, where possible, highlight overlapping molecular pathways in other organs. The key origins of oxidative stress in pulmonary fibrosis (e.g. environmental toxins, mitochondria / NADPH oxidase of inflammatory and lung target cells, and depletion of antioxidant defenses) are reviewed. The role of alveolar epithelial cell (AEC) apoptosis by mitochondria- and p53-regulated death pathways are examined. We emphasize an emerging role for the endoplasmic reticulum (ER) in pulmonary fibrosis. After briefly summarizing how ROS trigger a DNA damage response, we concentrate on recent studies implicating a role for mitochondrial DNA (mtDNA) damage and repair mechanisms focusing on 8-oxoguanine DNA glycosylase (Ogg1) as well as crosstalk between ROS production, mtDNA damage, p53, Ogg1, and mitochondrial aconitase (ACO2). Finally, the association between ROS and TGF-β1-induced fibrosis is discussed. Novel insights into the molecular basis of ROS-induced pulmonary diseases and, in particular, lung epithelial cell death may promote the development of unique therapeutic targets for managing pulmonary fibrosis as well as fibrosis in other organs and tumors, and in aging; diseases for which effective management is lacking. PMID:23219955

  18. Amplification of TGFβ Induced ITGB6 Gene Transcription May Promote Pulmonary Fibrosis

    PubMed Central

    Tatler, Amanda L.; Goodwin, Amanda T.; Gbolahan, Olumide; Saini, Gauri; Porte, Joanne; John, Alison E.; Clifford, Rachel L.; Violette, Shelia M.; Weinreb, Paul H.; Parfrey, Helen; Wolters, Paul J.; Gauldie, Jack; Kolb, Martin; Jenkins, Gisli

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating, progressive disease with poor survival rates and limited treatment options. Upregulation of αvβ6 integrins within the alveolar epithelial cells is a characteristic feature of IPF and correlates with poor patient survival. The pro-fibrotic cytokine TGFβ1 can upregulate αvβ6 integrin expression but the molecular mechanisms driving this effect have not previously been elucidated. We confirm that stimulation with exogenous TGFβ1 increases expression of the integrin β6 subunit gene (ITGB6) and αvβ6 integrin cell surface expression in a time- and concentration-dependent manner. TGFβ1-induced ITGB6 expression occurs via transcriptional activation of the ITGB6 gene, but does not result from effects on ITGB6 mRNA stability. Basal expression of ITGB6 in, and αvβ6 integrins on, lung epithelial cells occurs via homeostatic αvβ6-mediated TGFβ1 activation in the absence of exogenous stimulation, and can be amplified by TGFβ1 activation. Fundamentally, we show for the first time that TGFβ1-induced ITGB6 expression occurs via canonical Smad signalling since dominant negative constructs directed against Smad3 and 4 inhibit ITGB6 transcriptional activity. Furthermore, disruption of a Smad binding site at -798 in the ITGB6 promoter abolishes TGFβ1-induced ITGB6 transcriptional activity. Using chromatin immunoprecipitation we demonstrate that TGFβ1 stimulation of lung epithelial cells results in direct binding of Smad3, and Smad4, to the ITGB6 gene promoter within this region. Finally, using an adenoviral TGFβ1 over-expression model of pulmonary fibrosis we demonstrate that Smad3 is crucial for TGFβ1-induced αvβ6 integrin expression within the alveolar epithelium in vivo. Together, these data confirm that a homeostatic, autocrine loop of αvβ6 integrin activated TGFβ1-induced ITGB6 gene expression regulates epithelial basal αvβ6 integrin expression, and demonstrates that this occurs via Smad

  19. Idiopathic pulmonary fibrosis.

    PubMed

    Xaubet, Antoni; Ancochea, Julio; Molina-Molina, María

    2017-02-23

    Idiopathic pulmonary fibrosis is a fibrosing interstitial pneumonia associated with the radiological and/or histological pattern of usual interstitial pneumonia. Its aetiology is unknown, but probably comprises the action of endogenous and exogenous micro-environmental factors in subjects with genetic predisposition. Its diagnosis is based on the presence of characteristic findings of high-resolution computed tomography scans and pulmonary biopsies in absence of interstitial lung diseases of other aetiologies. Its clinical evolution is variable, although the mean survival rate is 2-5 years as of its clinical presentation. Patients with idiopathic pulmonary fibrosis may present complications and comorbidities which modify the disease's clinical course and prognosis. In the mild-moderate disease, the treatment consists of the administration of anti-fibrotic drugs. In severe disease, the best therapeutic option is pulmonary transplantation. In this paper we review the diagnostic and therapeutic aspects of the disease.

  20. Upregulation of Steroidogenic Acute Regulatory Protein by Hypoxia Stimulates Aldosterone Synthesis in Pulmonary Artery Endothelial Cells to Promote Pulmonary Vascular Fibrosis

    PubMed Central

    Maron, Bradley A.; Oldham, William M.; Chan, Stephen Y.; Vargas, Sara O.; Arons, Elena; Zhang, Ying-Yi; Loscalzo, Joseph; Leopold, Jane A.

    2014-01-01

    Background The molecular mechanism(s) regulating hypoxia-induced vascular fibrosis are unresolved. Hyperaldosteronism correlates positively with vascular remodeling in pulmonary arterial hypertension (PAH), suggesting that aldosterone may contribute to the pulmonary vasculopathy of hypoxia. The hypoxia-sensitive transcription factors c-Fos/c-Jun regulate steroidogenic acute regulatory protein (StAR), which facilitates the rate-limiting step of aldosterone steroidogenesis. We hypothesized that c-Fos/c-Jun upregulation by hypoxia activates StAR-dependent aldosterone synthesis in human pulmonary artery endothelial cells (HPAECs) to promote vascular fibrosis in PAH. Methods and Results Patients with PAH, rats with Sugen/hypoxia-PAH, and mice exposed to chronic hypoxia expressed increased StAR in remodeled pulmonary arterioles, providing a basis for investigating hypoxia-StAR signaling in HPAECs. Hypoxia (2.0% FiO2) increased aldosterone levels selectively in HPAECs, which was confirmed by liquid chromatography-mass spectrometry. Increased aldosterone by hypoxia resulted from enhanced c-Fos/c-Jun binding to the proximal activator protein (AP-1) site of the StAR promoter in HPAECs, which increased StAR expression and activity. In HPAECs transfected with StAR-siRNA or treated with the AP-1 inhibitor, SR-11302, hypoxia failed to increase aldosterone, confirming that aldosterone biosynthesis required StAR activation by c-Fos/c-Jun. The functional consequences of aldosterone were confirmed by pharmacological inhibition of the mineralocorticoid receptor with spironolactone or eplerenone, which attenuated hypoxia-induced upregulation of the fibrogenic protein connective tissue growth factor and collagen III in vitro, and decreased pulmonary vascular fibrosis to improve pulmonary hypertension in Conclusions Our findings identify autonomous aldosterone synthesis in HPAECs due to hypoxia-mediated upregulation of StAR as a novel molecular mechanism that promotes pulmonary vascular

  1. [miR-21 promotes pulmonary fibrosis in rats via down-regulating the expression of ADAMTS-1].

    PubMed

    Liu, Lijing; Yin, Huiming; Huang, Minjiang; He, Jianbin; Yi, Gaozhong; Wang, Zaiyan; Qian, Hong

    2016-12-01

    higher than that in the control group; the levels of Col1 and Col3 mRNA and protein as well as serum P1CP and P3NP concentrations in miR-21 antagomir group were lower than those in the control group. Conclusion miR-21 promotes the progression of bleomycin-induced pulmonary fibrosis in rats. The mechanism is associated with downregulation of ADAMTS-1 expression and subsequent increase of pulmonary Col1 and Col3 contents.

  2. IL-21 Promotes Pulmonary Fibrosis through the Induction of Pro-fibrotic CD8+ T Cells

    PubMed Central

    Brodeur, Tia Y.; Robidoux, Tara E.; Weinstein, Jason S.; Craft, Joseph; Swain, Susan L.; Marshak-Rothstein, Ann

    2015-01-01

    Type 2 effector production of IL-13, a demonstrated requirement in models of fibrosis, is routinely ascribed to CD4+ Th2 cells. We now demonstrate a major role for CD8+ T cells in a murine model of sterile lung injury. These pulmonary CD8+ T cells differentiate into IL-13-producing Tc2 and play a major role in a bleomycin-induced model of fibrosis. Differentiation of these Tc2 cells in the lung requires IL-21, and bleomycin treated IL-21- and IL-21R-deficient mice develop inflammation but not fibrosis. Moreover, IL-21R-expressing CD8+ cells are sufficient to reconstitute the fibrotic response in the IL-21R-deficient mice. We further show that the combination of IL-4 and IL-21 skews naïve CD8+ T cells to produce IL-21, which in turn acts in an autocrine manner to support robust IL-13 production. Our data reveal a novel pathway involved in the onset and regulation of pulmonary fibrosis, and identify Tc2 cells as key mediators of fibrogenesis. PMID:26519529

  3. Depletion of Neutrophils Promotes the Resolution of Pulmonary Inflammation and Fibrosis in Mice Infected with Paracoccidioides brasiliensis

    PubMed Central

    Arango, Julián Camilo

    2016-01-01

    Chronic stages of paracoccidioidomycosis (PCM) are characterized by granulomatous lesions which promote the development of pulmonary fibrosis leading to the loss of respiratory function in 50% of patients; in addition, it has been observed that neutrophils predominate during these chronic stages of P. brasiliensis infection. The goal of this study was to evaluate the role of the neutrophil during the chronic stages of experimental pulmonary PCM and during the fibrosis development and tissue repair using a monoclonal specific to this phagocytic cell. Male BALB/c mice were inoculated intranasally with 1.5x106 P. brasiliensis yeast cells. A monoclonal antibody specific to neutrophils was administered at 4 weeks post-inoculation followed by doses every 48h during two weeks. Mice were sacrificed at 8 and 12 weeks post-inoculation to assess cellularity, fungal load, cytokine/chemokine levels, histopathological analysis, collagen and expression of genes related to fibrosis development. Depletion of neutrophils was associated with a significant decrease in the number of eosinophils, dendritic cells, B cells, CD4-T cells, MDSCs and Treg cells, fungal load and levels of most of the pro-inflammatory cytokines/chemokines evaluated, including IL-17, TNF-α and TGF-β1. Recovery of lung architecture was also associated with reduced levels of collagen, high expression of TGF-β3, matrix metalloproteinase (MMP)-12 and -14, and decreased expression of tissue inhibitor metalloproteinase (TIMP)-2, and MMP-8. Depletion of neutrophils might attenuate lung fibrosis and inflammation through down-regulating TGF-β1, TNF-α, IL-17, MMP-8 and TIMP-2. These results suggest that neutrophil could be considered as a therapeutic target in pulmonary fibrosis induced by P. brasiliensis. PMID:27690127

  4. [Idiopathic pulmonary fibrosis].

    PubMed

    Cottin, Vincent; Cordier, Jean-François

    2008-11-01

    Idiopathic pulmonary fibrosis is a chronic disorder characterized histopathologically by a pattern of usual interstitial pneumonia, with heterogeneous and mutilating interstitial fibrosis with foci of proliferating fibroblasts, honeycomb lung, and little if any inflammation. The diagnosis is based on a pluridisciplinary analysis of the clinical symptoms, the chest high-resolution computerized tomography features, and pathology on video-thoracoscopic lung biopsy when indicated. In half of the cases, the typical tomodensitometric pattern allows to make a confident diagnosis without a lung biopsy. The median survival is only about 3 years and is presently not improved by any treatment. Treatment with N-acetylcysteine (antioxydant) in association with corticosteroids and azathioprine may slightly reduce the rate of functional worsening. Clinical trials are in progress to improve the treatment of this still incurable disease.

  5. Cytokines and pulmonary fibrosis.

    PubMed

    Zhang, K; Phan, S H

    1996-01-01

    In the past several years, significant progress in many aspects of pulmonary fibrosis research has been made. Among them, the finding that a variety of cytokines play important roles in the complex process appears most intriguing. These cytokines include at least transforming growth factor-beta (TGF-beta), tumor necrosis factor-alpha (TNF-alpha), platelet-derived growth factor, fibroblast growth factors, (TGF-alpha), interleukin-1, monocyte chemoattractant protein-1 and macrophage inflammatory protein-1 alpha. These cytokines have been demonstrated to be produced at the sites of active fibrosis where they appear to be expressed by activated inflammatory cells, such as macrophages and eosinophils. More interestingly, other noninflammatory lung cells including mesenchymal cells, such as myofibroblasts, and epithelial cells, have been found to be significant sources as well, albeit in most instances at somewhat different time points than those by inflammatory cells. Study of the individual cytokines in vitro has revealed a variety of potential roles for these cytokines in the regulation of the fibrotic process in vivo, including chemoattractant, mitogenic activities for fibroblasts, stimulation of extracellular matrix and alpha-smooth muscle actin gene expression, alteration of the contractile phenotype of fibroblasts and regulation of diverse functions of lung inflammatory and epithelial cells which can further impact on the fibrotic process by autocrine and paracrine mechanisms. Of these cytokines, it appears that TGF-beta is probably the most important cytokine in terms of the direct stimulation of lung matrix expression which typifies fibrosis. Recently however, there is accumulating evidence to indicate that the situation is much more complex than any one single cytokine being solely responsible for the fibrotic response. The concept of complex lung cytokine networks, orchestrated by a few key cytokines, such as TNF-alpha, being responsible for this response has

  6. Endothelial HIF signaling regulates pulmonary fibrosis-associated pulmonary hypertension

    PubMed Central

    Carrick, Ryan P.; McConaha, Melinda E.; Jones, Brittany R.; Shay, Sheila D.; Moore, Christy S.; Blackwell, Thomas R.; Gladson, Santhi; Penner, Niki L.; Burman, Ankita; Tanjore, Harikrishna; Hemnes, Anna R.; Karwandyar, Ayub K.; Polosukhin, Vasiliy V.; Talati, Megha A.; Dong, Hui-Jia; Gleaves, Linda A.; Carrier, Erica J.; Gaskill, Christa; Scott, Edward W.; Majka, Susan M.; Fessel, Joshua P.; West, James D.; Blackwell, Timothy S.; Lawson, William E.

    2015-01-01

    Pulmonary hypertension (PH) complicating chronic parenchymal lung disease, such as idiopathic pulmonary fibrosis, results in significant morbidity and mortality. Since the hypoxia-inducible factor (HIF) signaling pathway is important for development of pulmonary hypertension in chronic hypoxia, we investigated whether HIF signaling in vascular endothelium regulates development of PH related to pulmonary fibrosis. We generated a transgenic model in which HIF is deleted within vascular endothelial cells and then exposed these mice to chronic intraperitoneal bleomycin to induce PH associated with lung fibrosis. Although no differences in the degree of fibrotic remodeling were observed, we found that endothelial HIF-deficient mice were protected against development of PH, including right ventricle and pulmonary vessel remodeling. Similarly, endothelial HIF-deficient mice were protected from PH after a 4-wk exposure to normobaric hypoxia. In vitro studies of pulmonary vascular endothelial cells isolated from the HIF-targeted mice and controls revealed that endothelial HIF signaling increases endothelial cell expression of connective tissue growth factor, enhances vascular permeability, and promotes pulmonary artery smooth muscle cell proliferation and wound healing ability, all of which have the potential to impact the development of PH in vivo. Taken together, these studies demonstrate that vascular endothelial cell HIF signaling is necessary for development of hypoxia and pulmonary fibrosis associated PH. As such, HIF and HIF-regulated targets represent a therapeutic target in these conditions. PMID:26637636

  7. Smoking and Idiopathic Pulmonary Fibrosis

    PubMed Central

    Oh, Chad K.; Murray, Lynne A.; Molfino, Nestor A.

    2012-01-01

    Idiopathic pulmonary fibrosis (IPF) is a disease of unknown etiology with considerable morbidity and mortality. Cigarette smoking is one of the most recognized risk factors for development of IPF. Furthermore, recent work suggests that smoking may have a detrimental effect on survival of patients with IPF. The mechanism by which smoking may contribute to the pathogenesis of IPF is largely unknown. However, accumulating evidence suggests that increased oxidative stress might promote disease progression in IPF patients who are current and former smokers. In this review, potential mechanisms by which cigarette smoking affects IPF, the effects of cigarette smoking on accelerated loss of lung function in patients with IPF, key genetic studies evaluating the potential candidate genes and gene-environment (smoking) interaction, diagnosis, and treatment with emphasis on recently closed and ongoing clinical trials are presented. PMID:22448328

  8. Mucin 5B promoter polymorphism is associated with idiopathic pulmonary fibrosis but not with development of lung fibrosis in systemic sclerosis or sarcoidosis.

    PubMed

    Stock, Carmel J; Sato, Hiroe; Fonseca, Carmen; Banya, Winston A S; Molyneaux, Philip L; Adamali, Huzaifa; Russell, Anne-Marie; Denton, Christopher P; Abraham, David J; Hansell, David M; Nicholson, Andrew G; Maher, Toby M; Wells, Athol U; Lindahl, Gisela E; Renzoni, Elisabetta A

    2013-05-01

    A polymorphism (rs35705950) 3 kb upstream of MUC5B, the gene encoding Mucin 5 subtype B, has been shown to be associated with familial and sporadic idiopathic pulmonary fibrosis (IPF). We set out to verify whether this variant is also a risk factor for fibrotic lung disease in other settings and to confirm the published findings in a UK Caucasian IPF population. Caucasian UK healthy controls (n=416) and patients with IPF (n=110), sarcoidosis (n=180) and systemic sclerosis (SSc) (n=440) were genotyped to test for association. The SSc and sarcoidosis cohorts were subdivided according to the presence or absence of fibrotic lung disease. To assess correlation with disease progression, time to decline in forced vital capacity and/or lung carbon monoxide transfer factor was used in the IPF and SSc groups, while a persistent decline at 4 years since baseline was evaluated in patients with sarcoidosis. A significant association of the MUC5B promoter single nucleotide polymorphism with IPF (p=2.04 × 10(-17); OR 4.90, 95% CI 3.42 to 7.03) was confirmed in this UK population. The MUC5B variant was not a risk factor for lung fibrosis in patients with SSc or sarcoidosis and did not predict more rapidly progressive lung disease in any of the groups. Rather, a trend for a longer time to decline in forced vital capacity was observed in patients with IPF. We confirm the MUC5B variant association with IPF. We did not observe an association with lung fibrosis in the context of SSc or sarcoidosis, potentially highlighting fundamental differences in genetic susceptibility, although the limited subgroup numbers do not allow a definitive exclusion of an association.

  9. Statins and Pulmonary Fibrosis

    PubMed Central

    Xu, Jin-Fu; Washko, George R.; Nakahira, Kiichi; Hatabu, Hiroto; Patel, Avignat S.; Fernandez, Isis E.; Nishino, Mizuki; Okajima, Yuka; Yamashiro, Tsuneo; Ross, James C.; San José Estépar, Raúl; Diaz, Alejandro A.; Li, Hui-Ping; Qu, Jie-Ming; Himes, Blanca E.; Come, Carolyn E.; D'Aco, Katherine; Martinez, Fernando J.; Han, MeiLan K.; Lynch, David A.; Crapo, James D.; Morse, Danielle; Ryter, Stefan W.; Silverman, Edwin K.; Rosas, Ivan O.; Choi, Augustine M. K.

    2012-01-01

    Rationale: The role of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) in the development or progression of interstitial lung disease (ILD) is controversial. Objectives: To evaluate the association between statin use and ILD. Methods: We used regression analyses to evaluate the association between statin use and interstitial lung abnormalities (ILA) in a large cohort of smokers from COPDGene. Next, we evaluated the effect of statin pretreatment on bleomycin-induced fibrosis in mice and explored the mechanism behind these observations in vitro. Measurements and Main Results: In COPDGene, 38% of subjects with ILA were taking statins compared with 27% of subjects without ILA. Statin use was positively associated in ILA (odds ratio, 1.60; 95% confidence interval, 1.03–2.50; P = 0.04) after adjustment for covariates including a history of high cholesterol or coronary artery disease. This association was modified by the hydrophilicity of statin and the age of the subject. Next, we demonstrate that statin administration aggravates lung injury and fibrosis in bleomycin-treated mice. Statin pretreatment enhances caspase-1–mediated immune responses in vivo and in vitro; the latter responses were abolished in bone marrow–derived macrophages isolated from Nlrp3−/− and Casp1−/− mice. Finally, we provide further insights by demonstrating that statins enhance NLRP3-inflammasome activation by increasing mitochondrial reactive oxygen species generation in macrophages. Conclusions: Statin use is associated with ILA among smokers in the COPDGene study and enhances bleomycin-induced lung inflammation and fibrosis in the mouse through a mechanism involving enhanced NLRP3-inflammasome activation. Our findings suggest that statins may influence the susceptibility to, or progression of, ILD. Clinical trial registered with www.clinicaltrials.gov (NCT 00608764). PMID:22246178

  10. Molecular Endotyping of Pulmonary Fibrosis.

    PubMed

    Goodwin, Amanda T; Jenkins, Gisli

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating and incurable progressive fibrotic lung condition associated with a significant disease burden. In recent years there has been an exponential increase in the number of preclinical and clinical studies performed in IPF. IPF is defined according to rigid diagnostic criteria; hence, a significant subset of patients with unclassifiable disease has been excluded from these studies. The traditional diagnostic classification of all progressive fibrotic lung diseases uses specific clinical, radiological, and histopathological features to define each condition. However, the considerable heterogeneity within each form of pulmonary fibrosis has raised the possibility of distinct pathophysiological mechanisms culminating in a common phenotype. Thus, the classification of fibrotic lung diseases according to the driving molecular mechanisms rather than specific user-defined histopathological and radiological features could improve several aspects of clinical care. Discoveries from basic science research have defined multiple complex molecular pathways involved in the pathogenesis of pulmonary fibrosis that may provide markers for the molecular endotyping of this disease. In addition, these molecular pathways have revealed potential therapeutic targets. Reclassifying progressive fibrotic lung diseases according to molecular endotypes may allow for more accurate assessment of prognosis and individualized treatment. Furthermore, recent developments that have been applied to a narrow group of patients with IPF may be applicable to those with other progressive fibrotic lung diseases. This review presents the latest developments from translational research in this area and explains how molecular endotyping could revolutionize the diagnosis, stratification, and treatment of pulmonary fibrosis.

  11. Novel therapeutic approaches for pulmonary fibrosis

    PubMed Central

    Datta, Arnab; Scotton, Chris J; Chambers, Rachel C

    2011-01-01

    Pulmonary fibrosis represents the end stage of a number of heterogeneous conditions and is, to a greater or lesser degree, the hallmark of the interstitial lung diseases. It is characterized by the excessive deposition of extracellular matrix proteins within the pulmonary interstitium leading to the obliteration of functional alveolar units and in many cases, respiratory failure. While a small number of interstitial lung diseases have known aetiologies, most are idiopathic in nature, and of these, idiopathic pulmonary fibrosis is the most common and carries with it an appalling prognosis – median survival from the time of diagnosis is less than 3 years. This reflects the lack of any effective therapy to modify the course of the disease, which in turn is indicative of our incomplete understanding of the pathogenesis of this condition. Current prevailing hypotheses focus on dysregulated epithelial–mesenchymal interactions promoting a cycle of continued epithelial cell injury and fibroblast activation leading to progressive fibrosis. However, it is likely that multiple abnormalities in a myriad of biological pathways affecting inflammation and wound repair – including matrix regulation, epithelial reconstitution, the coagulation cascade, neovascularization and antioxidant pathways – modulate this defective crosstalk and promote fibrogenesis. This review aims to offer a pathogenetic rationale behind current therapies, briefly outlining previous and ongoing clinical trials, but will focus on recent and exciting advancements in our understanding of the pathogenesis of idiopathic pulmonary fibrosis, which may ultimately lead to the development of novel and effective therapeutic interventions for this devastating condition. LINKED ARTICLES This article is part of a themed issue on Respiratory Pharmacology. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-1 PMID:21265830

  12. Lung fibrosis-associated soluble mediators and bronchoalveolar lavage from idiopathic pulmonary fibrosis patients promote the expression of fibrogenic factors in subepithelial lung myofibroblasts.

    PubMed

    Bouros, Evangelos; Filidou, Eirini; Arvanitidis, Konstantinos; Mikroulis, Dimitrios; Steiropoulos, Paschalis; Bamias, George; Bouros, Demosthenes; Kolios, George

    2017-10-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by infiltration of inflammatory cells, excessive collagen production and accumulation of myofibroblasts. We explored the possible role of subepithelial lung myofibroblasts (SELMs) in the development of fibrosis in IPF. SELMs, isolated from surgical specimens of healthy lung tissue, were cultured with pro-inflammatory factors or bronchoalveolar lavage fluid (BALF) from patients with IPF or idiopathic non-specific interstitial pneumonia (iNSIP) and their fibrotic activity was assessed. Stimulation of SELMs with pro-inflammatory factors induced a significant increase of Tissue Factor (TF) and Tumor necrosis factor-Like cytokine 1 A (TL1A) expression and collagen production in culture supernatants. Stimulation with BALF from IPF patients with mild to moderate, but not severe disease, and from iNSIP patients induced a significant increase of TF expression. BALF from all IPF patients induced a significant increase of TL1A expression and collagen production, while BALF from iNSIP patients induced a significant increase of TL1A, but not of collagen production. Interestingly, TGF-β1 and BALF from all IPF, but not iNSIP patients, induced a significant increase in SELMs migration. In conclusion, BALF from IPF patients induces fibrotic activity in lung myofibroblasts, similar to mediators associated with lung fibrosis, indicating a key role of SELMs in IPF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Idiopathic pulmonary fibrosis: evolving concepts.

    PubMed

    Ryu, Jay H; Moua, Teng; Daniels, Craig E; Hartman, Thomas E; Yi, Eunhee S; Utz, James P; Limper, Andrew H

    2014-08-01

    Idiopathic pulmonary fibrosis (IPF) occurs predominantly in middle-aged and older adults and accounts for 20% to 30% of interstitial lung diseases. It is usually progressive, resulting in respiratory failure and death. Diagnostic criteria for IPF have evolved over the years, and IPF is currently defined as a disease characterized by the histopathologic pattern of usual interstitial pneumonia occurring in the absence of an identifiable cause of lung injury. Understanding of the pathogenesis of IPF has shifted away from chronic inflammation and toward dysregulated fibroproliferative repair in response to alveolar epithelial injury. Idiopathic pulmonary fibrosis is likely a heterogeneous disorder caused by various interactions between genetic components and environmental exposures. High-resolution computed tomography can be diagnostic in the presence of typical findings such as bilateral reticular opacities associated with traction bronchiectasis/bronchiolectasis in a predominantly basal and subpleural distribution, along with subpleural honeycombing. In other circumstances, a surgical lung biopsy may be needed. The clinical course of IPF can be unpredictable and may be punctuated by acute deteriorations (acute exacerbation). Although progress continues in unraveling the mechanisms of IPF, effective therapy has remained elusive. Thus, clinicians and patients need to reach informed decisions regarding management options including lung transplant. The findings in this review were based on a literature search of PubMed using the search terms idiopathic pulmonary fibrosis and usual interstitial pneumonia, limited to human studies in the English language published from January 1, 2000, through December 31, 2013, and supplemented by key references published before the year 2000. Copyright © 2014 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  14. Combined Pulmonary Fibrosis and Emphysema Syndrome

    PubMed Central

    Rounds, Sharon I. S.

    2012-01-01

    There is increasing clinical, radiologic, and pathologic recognition of the coexistence of emphysema and pulmonary fibrosis in the same patient, resulting in a clinical syndrome known as combined pulmonary fibrosis and emphysema (CPFE) that is characterized by dyspnea, upper-lobe emphysema, lower-lobe fibrosis, and abnormalities of gas exchange. This syndrome frequently is complicated by pulmonary hypertension, acute lung injury, and lung cancer. The CPFE syndrome typically occurs in male smokers, and the mortality associated with this condition, especially if pulmonary hypertension is present, is significant. In this review, we explore the current state of the literature and discuss etiologic factors and clinical characteristics of the CPFE syndrome. PMID:22215830

  15. Epigenetics of Idiopathic Pulmonary Fibrosis

    PubMed Central

    Yang, Ivana V.; Schwartz, David A.

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a complex lung disease of unknown etiology. Development of IPF is influenced by both genetic and environmental factors. Recent work by our and other groups has identified strong genetic predisposition factors for the development of pulmonary fibrosis while cigarette smoke remains the most strongly associated environmental exposure risk factor. Gene expression profiling studies of IPF lung have taught us quite a bit about the biology of this fatal disease and those in peripheral blood have provided important biomarkers. However, epigenetic marks may be the missing link that connects the environmental exposure in genetically predisposed individuals to transcriptional changes associated with disease development. Moreover, epigenetic marks represent a promising therapeutic target for IPF. In this review, we will introduce the disease, summarize genetic and gene expression studies in IPF, discuss exposures relevant to IPF and known epigenetic changes associated with cigarette smoke exposure, and summarize epigenetic studies conducted so far in IPF. We will end by discussing limitations, challenges and future opportunities in this field. PMID:24746870

  16. Mast Cells: A Pivotal Role in Pulmonary Fibrosis

    PubMed Central

    Veerappan, Arul; O'Connor, Nathan J.; Brazin, Jacqueline; Reid, Alicia C.; Jung, Albert; McGee, David; Summers, Barbara; Branch-Elliman, Dascher; Stiles, Brendon; Worgall, Stefan; Kaner, Robert J.

    2013-01-01

    Pulmonary fibrosis is characterized by an inflammatory response that includes macrophages, neutrophils, lymphocytes, and mast cells. The purpose of this study was to evaluate whether mast cells play a role in initiating pulmonary fibrosis. Pulmonary fibrosis was induced with bleomycin in mast-cell-deficient WBB6F1-W/Wv (MCD) mice and their congenic controls (WBB6F1-+/+). Mast cell deficiency protected against bleomycin-induced pulmonary fibrosis, but protection was reversed with the re-introduction of mast cells to the lungs of MCD mice. Two mast cell mediators were identified as fibrogenic: histamine and renin, via angiotensin (ANG II). Both human and rat lung fibroblasts express the histamine H1 and ANG II AT1 receptor subtypes and when activated, they promote proliferation, transforming growth factor β1 secretion, and collagen synthesis. Mast cells appear to be critical to pulmonary fibrosis. Therapeutic blockade of mast cell degranulation and/or histamine and ANG II receptors should attenuate pulmonary fibrosis. PMID:23570576

  17. Combined Pulmonary Fibrosis and Emphysema Alters Physiology but Has Similar Mortality to Pulmonary Fibrosis Without Emphysema

    PubMed Central

    Rounds, Sharon

    2010-01-01

    Studies have described individuals with combined pulmonary fibrosis and emphysema (CPFE), with preserved lung volumes, significant reductions in gas exchange, and high prevalence of pulmonary hypertension. While physiologic changes in CPFE are well documented, there is little mortality data in the CPFE population compared to appropriate controls. A study was performed to determine the features and outcomes of a group of individuals with imaging and/or pathologic evidence of CPFE to determine if individuals with combined pulmonary fibrosis and emphysema have different features and survival than individuals with pulmonary fibrosis alone. We conducted a retrospective study at a Veterans Affairs Medical Center. Included in the study were individuals hospitalized over a 5-year period who were given a clinical diagnosis of pulmonary fibrosis. Individuals with confirmed imaging or pathologic evidence of pulmonary fibrosis were divided into a study group with concomitant emphysema (CPFE group, n = 20) and a control group without emphysema (isolated pulmonary fibrosis (PF) group, n = 24). The CPFE group, all current or former cigarette smokers, had significantly larger lung volumes, more expiratory airflow obstruction, and worse gas exchange than the isolated pulmonary fibrosis group. Mortality did not differ between the groups. Combined pulmonary fibrosis and emphysema results in unique physiologic features but no difference in survival compared with a group with pulmonary fibrosis alone. PMID:20614219

  18. Cough in idiopathic pulmonary fibrosis.

    PubMed

    van Manen, Mirjam J G; Birring, Surinder S; Vancheri, Carlo; Cottin, Vincent; Renzoni, Elisabetta A; Russell, Anne-Marie; Wijsenbeek, Marlies S

    2016-09-01

    Many patients with idiopathic pulmonary fibrosis (IPF) complain of chronic refractory cough. Chronic cough is a distressing and disabling symptom with a major impact on quality of life. During recent years, progress has been made in gaining insight into the pathogenesis of cough in IPF, which is most probably "multifactorial" and influenced by mechanical, biochemical and neurosensory changes, with an important role for comorbidities as well. Clinical trials of cough treatment in IPF are emerging, and cough is increasingly included as a secondary end-point in trials assessing new compounds for IPF. It is important that such studies include adequate end-points to assess cough both objectively and subjectively. This article summarises the latest insights into chronic cough in IPF. It describes the different theories regarding the pathophysiology of cough, reviews the different methods to assess cough and deals with recent and future developments in the treatment of cough in IPF.

  19. Epigenomics of idiopathic pulmonary fibrosis.

    PubMed

    Yang, Ivana V

    2012-04-01

    Idiopathic pulmonary fibrosis (IPF) is a complex lung disease of unknown etiology. Development of IPF is influenced by both genetic and environmental factors. Gene-expression profiling studies have taught us quite a bit about the biology of this fatal disease, but epigenetic marks may be the missing link that connects the environmental exposure in genetically predisposed individuals to transcriptome changes associated with the development of IPF. This review will begin with an introduction to the disease, followed by brief summaries of studies of gene expression in IPF and epigenetic marks associated with exposures relevant to IPF. The majority of the discussion will focus on epigenetic studies conducted so far in IPF, the limitations, challenges nd future directions in this field.

  20. Epigenomics of idiopathic pulmonary fibrosis

    PubMed Central

    Yang, Ivana V

    2012-01-01

    Idiopathic pulmonary fibrosis (IPF) is a complex lung disease of unknown etiology. Development of IPF is influenced by both genetic and environmental factors. Gene-expression profiling studies have taught us quite a bit about the biology of this fatal disease, but epigenetic marks may be the missing link that connects the environmental exposure in genetically predisposed individuals to transcriptome changes associated with the development of IPF. This review will begin with an introduction to the disease, followed by brief summaries of studies of gene expression in IPF and epigenetic marks associated with exposures relevant to IPF. The majority of the discussion will focus on epigenetic studies conducted so far in IPF, the limitations, challenges and future directions in this field. PMID:22449190

  1. Epidemiology of idiopathic pulmonary fibrosis

    PubMed Central

    Ley, Brett; Collard, Harold R

    2013-01-01

    Idiopathic pulmonary fibrosis is a chronic fibrotic lung disease of unknown cause that occurs in adults and has a poor prognosis. Its epidemiology has been difficult to study because of its rarity and evolution in diagnostic and coding practices. Though uncommon, it is likely underappreciated both in terms of its occurrence (ie, incidence, prevalence) and public health impact (ie, health care costs and resource utilization). Incidence and mortality appear to be on the rise, and prevalence is expected to increase with the aging population. Potential risk factors include occupational and environmental exposures, tobacco smoking, gastroesophageal reflux, and genetic factors. An accurate understanding of its epidemiology is important, especially as novel therapies are emerging. PMID:24348069

  2. Pathogenesis of idiopathic pulmonary fibrosis.

    PubMed

    Wolters, Paul J; Collard, Harold R; Jones, Kirk D

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a fibrosing interstitial lung disease associated with aging that is characterized by the histopathological pattern of usual interstitial pneumonia. Although an understanding of the pathogenesis of IPF is incomplete, recent advances delineating specific clinical and pathologic features of IPF have led to better definition of the molecular pathways that are pathologically activated in the disease. In this review we highlight several of these advances, with a focus on genetic predisposition to IPF and how genetic changes, which occur primarily in epithelial cells, lead to activation of profibrotic pathways in epithelial cells. We then discuss the pathologic changes within IPF fibroblasts and the extracellular matrix, and we conclude with a summary of how these profibrotic pathways may be interrelated.

  3. Pathogenesis of Idiopathic Pulmonary Fibrosis

    PubMed Central

    Wolters, Paul J.; Collard, Harold R.; Jones, Kirk D.

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a fibrosing interstitial lung disease associated with aging that is characterized by the histopathological pattern of usual interstitial pneumonia. Although an understanding of the pathogenesis of IPF is incomplete, recent advances delineating specific clinical and pathologic features of IPF have led to better definition of the molecular pathways that are pathologically activated in the disease. In this review we highlight several of these advances, with a focus on genetic predisposition to IPF and how genetic changes, which occur primarily in epithelial cells, lead to activation of profibrotic pathways in epithelial cells. We then discuss the pathologic changes within IPF fibroblasts and the extracellular matrix, and we conclude with a summary of how these profibrotic pathways may be interrelated. PMID:24050627

  4. Tissue remodelling in pulmonary fibrosis.

    PubMed

    Knudsen, Lars; Ruppert, Clemens; Ochs, Matthias

    2017-03-01

    Many lung diseases result in fibrotic remodelling. Fibrotic lung disorders can be divided into diseases with known and unknown aetiology. Among those with unknown aetiology, idiopathic pulmonary fibrosis (IPF) is a common diagnosis. Because of its progressive character leading to a rapid decline in lung function, it is a fatal disease with poor prognosis and limited therapeutic options. Thus, IPF has motivated many studies in the last few decades in order to increase our mechanistic understanding of the pathogenesis of the disease. The current concept suggests an ongoing injury of the alveolar epithelium, an impaired regeneration capacity, alveolar collapse and, finally, a fibroproliferative response. The origin of lung injury remains elusive but a diversity of factors, which will be discussed in this article, has been shown to be associated with IPF. Alveolar epithelial type II (AE2) cells play a key role in lung fibrosis and their crucial role for epithelial regeneration, stabilisation of alveoli and interaction with fibroblasts, all known to be responsible for collagen deposition, will be illustrated. Whereas mechanisms of collagen deposition and fibroproliferation are the focus of many studies in the field, the awareness of other mechanisms in this disease is currently limited to biochemical and imaging studies including quantitative assessments of lung structure in IPF and animal models assigning alveolar collapse and collapse induration crucial roles for the degradation of the lung resulting in de-aeration and loss of surface area. Dysfunctional AE2 cells, instable alveoli and mechanical stress trigger remodelling that consists of collapsed alveoli absorbed by fibrotic tissue (i.e., collapse induration).

  5. [Combined pulmonary fibrosis and emphysema syndrome].

    PubMed

    Alilović, Marija; Peroš-Golubićić, Tatjana; Tekavec Trkanjec, Jasna; Hećimović, Ana; Smojver-Ježek, Silvana

    2015-01-01

    CPFE-combined pulmonary fibrosis and emphysema is a new term for a syndrome whose main characteristic is fibrosis in lower pulmonary lobes with simultaneous emphysema in upper pulmonary lobes. CPFE patients have well preserved pulmonary test values for unexpectedly long period, but extremely lowered carbon monoxide diffusion capacity and significant arterial hypertension. All CPFE studies indicate that CPFE occurs predominately in older male population. Smoking is considered main cause in developing CPFE. Reduced survival rate is linked with arterial hypertension extent, and mortality rate is greater than that for patients with isolated pulmonary fibrosis or emphysema. This study is focused on characteristics of twelve CPFE patients. This paper describes cases of 12 patients with the syndrome of pulmonary fibrosis associated with emphysema. All patients were male, mean age of 68 years. At the certain period of life they all were smokers, but most of them were also exposed to air pollution due to their profession. Shortness of breath on exertion was present in all patients. All patients had neat pulmonary function tests with significantly reduced diffusing capacity for carbon mon- oxide (average 39%). Pulmonary arterial hypertension (PAH) averaged 56 mmHg (range 25-75 mmHg) was present in 75% of patients. Four patients died during the period of four months, of which three patients had PAH greater than 70 mmHg. The fourth patient died of lung cancer.

  6. Molecular and cellular mechanisms of pulmonary fibrosis

    PubMed Central

    2012-01-01

    Pulmonary fibrosis is a chronic lung disease characterized by excessive accumulation of extracellular matrix (ECM) and remodeling of the lung architecture. Idiopathic pulmonary fibrosis is considered the most common and severe form of the disease, with a median survival of approximately three years and no proven effective therapy. Despite the fact that effective treatments are absent and the precise mechanisms that drive fibrosis in most patients remain incompletely understood, an extensive body of scientific literature regarding pulmonary fibrosis has accumulated over the past 35 years. In this review, we discuss three broad areas which have been explored that may be responsible for the combination of altered lung fibroblasts, loss of alveolar epithelial cells, and excessive accumulation of ECM: inflammation and immune mechanisms, oxidative stress and oxidative signaling, and procoagulant mechanisms. We discuss each of these processes separately to facilitate clarity, but certainly significant interplay will occur amongst these pathways in patients with this disease. PMID:22824096

  7. "End-stage" pulmonary fibrosis in sarcoidosis.

    PubMed

    Teirstein, Alvin T; Morgenthau, Adam S

    2009-02-01

    Pulmonary fibrosis is an unusual "end stage" in patients with sarcoidosis. Fibrosis occurs in a minority of patients, and presents with a unique physiologic combination of airways dysfunction (obstruction) superimposed on the more common restrictive dysfunction. Imagin techniques are essential to the diagnosis, assessment and treatment of pulmonary fibrosis. Standard chest radiographs and CT scans may reveal streaks, bullae, cephalad retraction of the hilar areas, deviation of the trachea and tented diaphragm. Positive gallium and PET scans indicate residual reversible granulomatous disease and are important guides to therapy decisions. Treatment, usually with corticosteroids, is effective in those patients with positive scans, but fibrosis does not improve with any treatment. With severe functional impariment and patient disability, pulmonary hypertension and right heart failure may supervene for which the patient will require treatment. Oxygen, careful diuresis, sildenafil and bosentan may be salutary. These patients are candidates for lung transplantation.

  8. Alveolar epithelial disintegrity in pulmonary fibrosis

    PubMed Central

    de Andrade, Joao; Zhou, Yong; Luckhardt, Tracy

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by progressive decline in lung function, resulting in significant morbidity and mortality. Current concepts of the pathogenesis of IPF primarily center on dysregulated epithelial cell repair and altered epithelial-mesenchymal communication and extracellular matrix deposition following chronic exposure to cigarette smoke or environmental toxins. In recent years, increasing attention has been directed toward the role of the intercellular junctional complex in determining the specific properties of epithelia in pulmonary diseases. Additionally, recent genomewide association studies suggest that specific genetic variants predictive of epithelial cell dysfunction may confer susceptibility to the development of sporadic idiopathic pulmonary fibrosis. A number of genetic disorders linked to pulmonary fibrosis and familial interstitial pneumonias are associated with loss of epithelial integrity. However, the potential links between extrapulmonary clinical syndromes associated with defects in epithelial cells and the development of pulmonary fibrosis are not well understood. Here, we report a case of hereditary mucoepithelial dysplasia that presented with pulmonary fibrosis and emphysema on high-resolution computed tomography. This case illustrates a more generalizable concept of epithelial disintegrity in the development of fibrotic lung diseases, which is explored in greater detail in this review article. PMID:27233996

  9. Diffuse interstitial pulmonary fibrosis: pulmonary fibrosis in mice induced by treatment with butylated hydroxytoluene and oxygen

    SciTech Connect

    Haschek, W.M.; Brody, A.R.; Klein-Szanto, A.J.P.; Witschi, H.

    1981-12-01

    It is proposed that the pulmonary fibrosis induced in mice by treatment with BHT and oxygen is a good experimental model for human pulmonary fibrosis. The mechanism of synergistic and additive effects of various agents on pulmonary injury and the epithelial mesenchymal interactions occurring during the early and late phases of lung repair could be studied. This model could be used for study of the effects of various concentrations of oxygen on diffusely damaged lung and assessment of the efficacy of drugs in preventing or resolving excessive collagen accumulation in lung. In addition, the relationship between pulmonary fibrosis and emphysema could be studied.

  10. Hyaluronan synthase 2 regulates fibroblast senescence in pulmonary fibrosis

    PubMed Central

    Li, Yuejuan; Liang, Jiurong; Yang, Ting; Mena, Jessica Monterrosa; Huan, Caijuan; Xie, Ting; Kurkciyan, Adrianne; Liu, Ningshan; Jiang, Dianhua; Noble, Paul W.

    2016-01-01

    Dysregulated repair of lung injury often results in lung fibrosis characterized by unremitting deposition of matrix components including the glycosaminoglycan hyaluronan (HA). HA is mainly produced by hyaluronan synthases (HAS) in mesenchymal cells. We previously demonstrated that over-expression of HAS2 in mesenchymal cells in mice regulates the invasiveness of fibroblasts and promotes severe lung fibrosis. The mechanisms that control the resolution of lung fibrosis are unknown. We propose that a critical step in resolving fibrosis is the induction of senescence in fibrotic fibroblasts and hyaluronan synthase 2 may regulate this process. We found that fibrotic fibroblasts developed the characteristics of replicative senescence in culture and that HAS2 expression was dramatically down-regulated. Furthermore, down-regulation of HAS2 initiated and regulated fibroblast senescence through a p27-CDK2-SKP2 pathway. Deletion of HAS2 in mouse mesenchymal cells increased the cellular senescence of fibroblasts in bleomycin-induced mouse lung fibrosis in vivo. These data suggest that HAS2 may be a critical regulator of the fate of pulmonary fibrosis and we propose a model where over-expression of HAS2 promotes an invasive phenotype resulting in severe fibrosis and down-regulation of HAS2 promotes resolution. Targeting HAS2 to induce fibroblast senescence could be an attractive approach to resolve tissue fibrosis. PMID:26987798

  11. Hyaluronan synthase 2 regulates fibroblast senescence in pulmonary fibrosis.

    PubMed

    Li, Yuejuan; Liang, Jiurong; Yang, Ting; Monterrosa Mena, Jessica; Huan, Caijuan; Xie, Ting; Kurkciyan, Adrianne; Liu, Ningshan; Jiang, Dianhua; Noble, Paul W

    2016-09-01

    Dysregulated repair of lung injury often results in lung fibrosis characterized by unremitting deposition of matrix components including glycosaminoglycan hyaluronan (HA). HA is mainly produced by hyaluronan synthases (HAS) in mesenchymal cells. We previously demonstrated that over-expression of HAS2 in mesenchymal cells in mice regulates the invasiveness of fibroblasts and promotes severe lung fibrosis. The mechanisms that control the resolution of lung fibrosis are unknown. We propose that a critical step in resolving fibrosis is the induction of senescence in fibrotic fibroblasts and hyaluronan synthase 2 may regulate this process. We found that fibrotic fibroblasts developed the characteristics of replicative senescence in culture and that HAS2 expression was dramatically down-regulated. Furthermore, down-regulation of HAS2 initiated and regulated fibroblast senescence through a p27-CDK2-SKP2 pathway. Deletion of HAS2 in mouse mesenchymal cells increased the cellular senescence of fibroblasts in bleomycin-induced mouse lung fibrosis in vivo. These data suggest that HAS2 may be a critical regulator of the fate of pulmonary fibrosis and we propose a model where over-expression of HAS2 promotes an invasive phenotype resulting in severe fibrosis and down-regulation of HAS2 promotes resolution. Targeting HAS2 to induce fibroblast senescence could be an attractive approach to resolve tissue fibrosis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Cystic fibrosis pulmonary guidelines: treatment of pulmonary exacerbations.

    PubMed

    Flume, Patrick A; Mogayzel, Peter J; Robinson, Karen A; Goss, Christopher H; Rosenblatt, Randall L; Kuhn, Robert J; Marshall, Bruce C

    2009-11-01

    The natural history of cystic fibrosis lung disease is one of chronic progression with intermittent episodes of acute worsening of symptoms frequently called acute pulmonary exacerbations These exacerbations typically warrant medical intervention. It is important that appropriate therapies are recommended on the basis of available evidence of efficacy and safety. The Cystic Fibrosis Foundation therefore established a committee to define the key questions related to pulmonary exacerbations, review the clinical evidence using an evidence-based methodology, and provide recommendations to clinicians. It is hoped that these guidelines will be helpful to clinicians in the treatment of individuals with cystic fibrosis.

  13. [Diffuse pulmonary ossification associated with idiopathic pulmonary fibrosis].

    PubMed

    Fernández Crisosto, C A; Quercia Arias, O; Bustamante, N; Moreno, H; Uribe Echevarría, A

    2004-12-01

    Diffuse pulmonary ossification is a rare entity that presents with the formation of mature bone in the pulmonary parenchyma and is associated with diffuse and chronic lung disease, heart disease, or other system disorders. Diffuse pulmonary ossification is usually a postmortem finding by the pathologist. In the case we report, the diagnosis was established by open lung biopsy. The patient was a 79-year-old man with dyspnea, dry cough, and weight loss. He had been a smoker. A chest x-ray revealed reticulonodular bilateral pulmonary infiltrates. Computed tomography revealed interstitial disease predominantly in the septum with multiple cavitations that tended to form honeycomb patterns. Pleural thickening, retraction of the parenchyma, and bilateral fibrosis were also visible. A clinical diagnosis of interstitial fibrosis was established and the patient s course was unfavorable. An open lung biopsy was performed. The lung tissue specimens revealed zones with collapsed alveoli and others with emphysema, some of which produced secretion and erythrocytic extravasation. Interstitial vascular congestion was apparent; bronchioles presented mononuclear and some polymorphonuclear inflammatory infiltrates. Noteworthy was the presence of predominantly interstitial, multicentric foci of osseous trabeculae --some of which included adipose bone marrow. Diffuse pulmonary ossification is usually an incidental finding in autopsies of patients with a history of diffuse chronic pulmonary disease, but it is an unusual diagnosis in living patients. Diffuse pulmonary ossification is of no prognostic significance in pulmonary fibrosis. It is a marker of the chronicity and/or severity of the fibrosis.

  14. Pulmonary fibrosis: pathogenesis, etiology and regulation

    PubMed Central

    Wilson, MS; Wynn, TA

    2009-01-01

    Pulmonary fibrosis and architectural remodeling of tissues can severely disrupt lung function, often with fatal consequences. The etiology of pulmonary fibrotic diseases is varied, with an array of triggers including allergens, chemicals, radiation and environmental particles. However, the cause of one of the most common pulmonary fibrotic conditions, idiopathic pulmonary fibrosis (IPF), is still unclear. This review examines common mechanisms of pulmonary wound-healing responses following lung injury, and highlights the pathogenesis of some of the most widespread pulmonary fibrotic diseases. A three phase model of wound repair is reviewed that includes; (1) injury; (2) inflammation; and (3) repair. In most pulmonary fibrotic conditions dysregulation at one or more of these phases has been reported. Chronic inflammation can lead to an imbalance in the production of chemokines, cytokines, growth factors, and disrupt cellular recruitment. These changes coupled with excessive pro-fibrotic IL-13 and/or TGFβ1 production can turn a well-controlled healing response into a pathogenic fibrotic response. Endogenous regulatory mechanisms are discussed including novel areas of therapeutic intervention. Restoring homeostasis to these dysregulated healing responses, or simply neutralizing the key pro-fibrotic mediators may prevent or slow the progression of pulmonary fibrosis. PMID:19129758

  15. Managing comorbidities in idiopathic pulmonary fibrosis

    PubMed Central

    Fulton, Blair G; Ryerson, Christopher J

    2015-01-01

    Major risk factors for idiopathic pulmonary fibrosis (IPF) include older age and a history of smoking, which predispose to several pulmonary and extra-pulmonary diseases. IPF can be associated with additional comorbidities through other mechanisms as either a cause or a consequence of these diseases. We review the literature regarding the management of common pulmonary and extra-pulmonary comorbidities, including chronic obstructive pulmonary disease, lung cancer, pulmonary hypertension, venous thromboembolism, sleep-disordered breathing, gastroesophageal reflux disease, coronary artery disease, depression and anxiety, and deconditioning. Recent studies have provided some guidance on the management of these diseases in IPF; however, most treatment recommendations are extrapolated from studies of non-IPF patients. Additional studies are required to more accurately determine the clinical features of these comorbidities in patients with IPF and to evaluate conventional treatments and management strategies that are beneficial in non-IPF populations. PMID:26451121

  16. Bosentan for pulmonary hypertension secondary to idiopathic pulmonary fibrosis.

    PubMed

    Onda, Naomi; Tanaka, Yosuke; Hino, Mitsunori; Gemma, Akihiko

    2015-01-01

    Pulmonary hypertension is a poor prognostic factor in patients with interstitial lung disease. No established treatment exists for pulmonary hypertension secondary to interstitial pneumonia. We describe the case of an 81-year-old woman with idiopathic pulmonary fibrosis (IPF), who was admitted to our hospital due to aggravation of dyspnea and decreased oxygen saturation, as well as onset of orthopnea and rapidly progressing edema. The transthoracic echocardiography and right heart catheterization showed the mean pulmonary artery pressure was 39 mmHg and the mean pulmonary capillary wedge pressure was 9 mmHg. After various examinations, the diagnoses of pulmonary hypertension (PH) due to IPF and of congestive heart failure secondary to PH were established. Diuretic therapy was started, but the patient's condition showed poor improvement. Subsequent initiation of oral bosentan therapy led to improvement in symptoms and findings. At the follow-up assessment one year later her pulmonary function showed no significant changes and no apparent worsening of arterial blood gases, with evident improvement of PH, WHO functional class, maximum exercise tolerance on treadmill exercise testing, right heart catheterization, and transthoracic echocardiography. This report describes a case of successful treatment with bosentan for severe pulmonary hypertension in a patient with idiopathic pulmonary fibrosis. We also present a review of the literature on treatment of pulmonary hypertension in patients with chronic lung disease. Bosentan appears to be efficacious in some patients with pulmonary hypertension secondary to idiopathic interstitial pneumonitis.

  17. Is pirfenidone effective for idiopathic pulmonary fibrosis?

    PubMed

    Jeldres, Alejandro; Labarca, Gonzalo

    2017-01-17

    Idiopathic pulmonary fibrosis has an ominous prognosis and there are virtually no effective therapies. It has been suggested that pirfenidone, an antifibrotic agent, could change its course. Searching in Epistemonikos database, which is maintained by screening multiple databases, we identified 13 systematic reviews comprising nine trials addressing the question of this article, seven of which are randomized and whose results were analyzed in this summary. We combined the evidence using meta-analysis and generated a summary of findings following the GRADE approach. We concluded pirfenidone decreases disease progression and mortality in idiopathic pulmonary fibrosis. Although it is associated with frequent gastrointestinal and cutaneous adverse effects, these are generally not severe.

  18. miR-30a as Potential Therapeutics by Targeting TET1 through Regulation of Drp-1 Promoter Hydroxymethylation in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Zhang, Songzi; Liu, Huizhu; Liu, Yuxia; Zhang, Jie; Li, Hongbo; Liu, Weili; Cao, Guohong; Xv, Pan; Zhang, Jinjin; Lv, Changjun; Song, Xiaodong

    2017-01-01

    Several recent studies have indicated that miR-30a plays critical roles in various biological processes and diseases. However, the mechanism of miR-30a participation in idiopathic pulmonary fibrosis (IPF) regulation is ambiguous. Our previous study demonstrated that miR-30a may function as a novel therapeutic target for lung fibrosis by blocking mitochondrial fission, which is dependent on dynamin-related protein1 (Drp-1). However, the regulatory mechanism between miR-30a and Drp-1 is yet to be investigated. Additionally, whether miR-30a can act as a potential therapeutic has not been verified in vivo. In this study, the miR-30a expression in IPF patients was evaluated. Computational analysis and a dual-luciferase reporter assay system were used to identify the target gene of miR-30a, and cell transfection was utilized to confirm this relationship. Ten–eleven translocation 1 (TET1) was validated as a direct target of miR-30a, and miR-30a mimic and inhibitor transfection significantly reduced and increased the TET1 protein expression, respectively. Further experimentation verified that the TET1 siRNA interference could inhibit Drp-1 promoter hydroxymethylation. Finally, miR-30a agomir was designed and applied to identify and validate the therapeutic effect of miR-30a in vivo. Our study demonstrated that miR-30a could inhibit TET1 expression through base pairing with complementary sites in the 3′untranslated region to regulate Drp-1 promoter hydroxymethylation. Furthermore, miR-30a could act as a potential therapeutic target for IPF. PMID:28294974

  19. miR-30a as Potential Therapeutics by Targeting TET1 through Regulation of Drp-1 Promoter Hydroxymethylation in Idiopathic Pulmonary Fibrosis.

    PubMed

    Zhang, Songzi; Liu, Huizhu; Liu, Yuxia; Zhang, Jie; Li, Hongbo; Liu, Weili; Cao, Guohong; Xv, Pan; Zhang, Jinjin; Lv, Changjun; Song, Xiaodong

    2017-03-15

    Several recent studies have indicated that miR-30a plays critical roles in various biological processes and diseases. However, the mechanism of miR-30a participation in idiopathic pulmonary fibrosis (IPF) regulation is ambiguous. Our previous study demonstrated that miR-30a may function as a novel therapeutic target for lung fibrosis by blocking mitochondrial fission, which is dependent on dynamin-related protein1 (Drp-1). However, the regulatory mechanism between miR-30a and Drp-1 is yet to be investigated. Additionally, whether miR-30a can act as a potential therapeutic has not been verified in vivo. In this study, the miR-30a expression in IPF patients was evaluated. Computational analysis and a dual-luciferase reporter assay system were used to identify the target gene of miR-30a, and cell transfection was utilized to confirm this relationship. Ten-eleven translocation 1 (TET1) was validated as a direct target of miR-30a, and miR-30a mimic and inhibitor transfection significantly reduced and increased the TET1 protein expression, respectively. Further experimentation verified that the TET1 siRNA interference could inhibit Drp-1 promoter hydroxymethylation. Finally, miR-30a agomir was designed and applied to identify and validate the therapeutic effect of miR-30a in vivo. Our study demonstrated that miR-30a could inhibit TET1 expression through base pairing with complementary sites in the 3'untranslated region to regulate Drp-1 promoter hydroxymethylation. Furthermore, miR-30a could act as a potential therapeutic target for IPF.

  20. Yin Yang 1 Is a Novel Regulator of Pulmonary Fibrosis

    PubMed Central

    Lin, Xin; Sime, Patricia J.; Xu, Haodong; Williams, Marc A.; LaRussa, Larry; Georas, Steve N.; Guo, Jia

    2011-01-01

    Rationale: The differentiation of fibroblasts into myofibroblasts is a cardinal feature of idiopathic pulmonary fibrosis (IPF). The transcription factor Yin Yang 1 (YY1) plays a role in the proliferation and differentiation of diverse cell types, but its role in fibrotic lung diseases is not known. Objectives: To elucidate the mechanism by which YY1 regulates fibroblast differentiation and lung fibrosis. Methods: Lung fibroblasts were cultured with transforming growth factor (TGF)-β or tumor necrosis factor-α. Nuclear factor (NF)-κB, YY1, and α-smooth muscle actin (SMA) were determined in protein, mRNA, and promoter reporter level. Lung fibroblasts and lung fibrosis were assessed in a partial YY1-deficient mouse and a YY1f/f conditional knockout mouse after being exposed to silica or bleomycin. Measurements and Main Results: TGF-β and tumor necrosis factor-α up-regulated YY1 expression in lung fibroblasts. TGF-β–induced YY1 expression was dramatically decreased by an inhibitor of NF-κB, which blocked I-κB degradation. YY1 is significantly overexpressed in both human IPF and murine models of lung fibrosis, including in the aggregated pulmonary fibroblasts of fibrotic foci. Furthermore, the mechanism of fibrogenesis is that YY1 can up-regulate α-SMA expression in pulmonary fibroblasts. YY1-deficient (YY1+/−) mice were significantly protected from lung fibrosis, which was associated with attenuated α-SMA and collagen expression. Finally, decreasing YY1 expression through instilled adenovirus-cre in floxed-YY1f/f mice reduced lung fibrosis. Conclusions: YY1 is overexpressed in fibroblasts in both human IPF and murine models in a NF-κB–dependent manner, and YY1 regulates fibrogenesis at least in part by increasing α-SMA and collagen expression. Decreasing YY1 expression may provide a new therapeutic strategy for pulmonary fibrosis. PMID:21169469

  1. Genetics and Early Detection in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Putman, Rachel K.; Rosas, Ivan O.

    2014-01-01

    Genetic studies hold promise in helping to identify patients with early idiopathic pulmonary fibrosis (IPF). Recent studies using chest computed tomograms (CTs) in smokers and in the general population have demonstrated that imaging abnormalities suggestive of an early stage of pulmonary fibrosis are not uncommon and are associated with respiratory symptoms, physical examination abnormalities, and physiologic decrements expected, but less severe than those noted in patients with IPF. Similarly, recent genetic studies have demonstrated strong and replicable associations between a common promoter polymorphism in the mucin 5B gene (MUC5B) and both IPF and the presence of abnormal imaging findings in the general population. Despite these findings, it is important to note that the definition of early-stage IPF remains unclear, limited data exist to definitively connect abnormal imaging findings to IPF, and genetic studies assessing early-stage pulmonary fibrosis remain in their infancy. In this perspective we provide updated information on interstitial lung abnormalities and their connection to IPF. We summarize information on the genetics of pulmonary fibrosis by focusing on the recent genetic findings of MUC5B. Finally, we discuss the implications of these findings and suggest a roadmap for the use of genetics in the detection of early IPF. PMID:24547893

  2. Genetics and early detection in idiopathic pulmonary fibrosis.

    PubMed

    Putman, Rachel K; Rosas, Ivan O; Hunninghake, Gary M

    2014-04-01

    Genetic studies hold promise in helping to identify patients with early idiopathic pulmonary fibrosis (IPF). Recent studies using chest computed tomograms (CTs) in smokers and in the general population have demonstrated that imaging abnormalities suggestive of an early stage of pulmonary fibrosis are not uncommon and are associated with respiratory symptoms, physical examination abnormalities, and physiologic decrements expected, but less severe than those noted in patients with IPF. Similarly, recent genetic studies have demonstrated strong and replicable associations between a common promoter polymorphism in the mucin 5B gene (MUC5B) and both IPF and the presence of abnormal imaging findings in the general population. Despite these findings, it is important to note that the definition of early-stage IPF remains unclear, limited data exist to definitively connect abnormal imaging findings to IPF, and genetic studies assessing early-stage pulmonary fibrosis remain in their infancy. In this perspective we provide updated information on interstitial lung abnormalities and their connection to IPF. We summarize information on the genetics of pulmonary fibrosis by focusing on the recent genetic findings of MUC5B. Finally, we discuss the implications of these findings and suggest a roadmap for the use of genetics in the detection of early IPF.

  3. Matrix Remodeling in Pulmonary Fibrosis and Emphysema.

    PubMed

    Kulkarni, Tejaswini; O'Reilly, Philip; Antony, Veena B; Gaggar, Amit; Thannickal, Victor J

    2016-06-01

    Pulmonary fibrosis and emphysema are chronic lung diseases characterized by a progressive decline in lung function, resulting in significant morbidity and mortality. A hallmark of these diseases is recurrent or persistent alveolar epithelial injury, typically caused by common environmental exposures such as cigarette smoke. We propose that critical determinants of the outcome of the injury-repair processes that result in fibrosis versus emphysema are mesenchymal cell fate and associated extracellular matrix dynamics. In this review, we explore the concept that regulation of mesenchymal cells under the influence of soluble factors, in particular transforming growth factor-β1, and the extracellular matrix determine the divergent tissue remodeling responses seen in pulmonary fibrosis and emphysema.

  4. The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of pulmonary fibrosis.

    PubMed

    Strieter, Robert M; Keeley, Ellen C; Hughes, Molly A; Burdick, Marie D; Mehrad, Borna

    2009-11-01

    Pulmonary fibrosis is associated with a number of disorders that affect the lung. Although there are several cellular types that are involved in the pathogenesis pulmonary fibrosis, the resident lung fibroblast has been viewed traditionally as the primary cell involved in promoting the deposition of ECM that culminates in pulmonary fibrosis. However, recent findings demonstrate that a circulating cell (i.e., the fibrocyte) can contribute to the evolution of pulmonary fibrosis. Fibrocytes are bone marrow-derived mesenchymal progenitor cells that express a variety of cell-surface markers related to leukocytes, hematopoietic progenitor cells, and fibroblasts. Fibrocytes are unique in that they are capable of differentiating into fibroblasts and myofibroblasts, as well as adipocytes. In this review, we present data supporting the critical role these cells play in the pathogenesis of pulmonary fibrosis.

  5. Interstitial pulmonary fibrosis and progressive massive fibrosis related to smoking methamphetamine with talc as filler.

    PubMed

    Baylor, Peter A; Sobenes, Juan R; Vallyathan, Val

    2013-05-01

    We present a case of interstitial pulmonary fibrosis accompanied by radiographic evidence of progressive massive fibrosis in a patient who had a 15-20 year history of almost daily recreational inhalation of methamphetamine. Mineralogical analysis confirmed the presence of talc on biopsy of the area of progressive massive fibrosis. The coexistence of interstitial pulmonary fibrosis and progressive massive fibrosis suggests that prolonged recreational inhalation of methamphetamine that has been "cut" with talc can result in sufficient amount of talc being inhaled to result in interstitial pulmonary fibrosis and progressive massive fibrosis in the absence of other causes.

  6. Idiopathic Pulmonary Fibrosis: Diagnosis and Clinical Manifestations

    PubMed Central

    Nakamura, Yutaro; Suda, Takafumi

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a parenchymal lung disease characterized by progressive interstitial fibrosis. The clinical course of IPF can be unpredictable and may be punctuated by acute exacerbations. Although much progress is being made in unraveling the mechanisms underlying IPF, effective therapy for improving survival remains elusive. Longitudinal disease profiling, especially in terms of clinical manifestations in a large cohort of patients, should lead to proper management of the patients and development of new treatments for IPF. Appropriate multidisciplinary assessment in ongoing registries is required to achieve this. This review summarizes the current status of the diagnosis and clinical manifestations of IPF. PMID:27625576

  7. Exploring Animal Models That Resemble Idiopathic Pulmonary Fibrosis

    PubMed Central

    Tashiro, Jun; Rubio, Gustavo A.; Limper, Andrew H.; Williams, Kurt; Elliot, Sharon J.; Ninou, Ioanna; Aidinis, Vassilis; Tzouvelekis, Argyrios; Glassberg, Marilyn K.

    2017-01-01

    Large multicenter clinical trials have led to two recently approved drugs for patients with idiopathic pulmonary fibrosis (IPF); yet, both of these therapies only slow disease progression and do not provide a definitive cure. Traditionally, preclinical trials have utilized mouse models of bleomycin (BLM)-induced pulmonary fibrosis—though several limitations prevent direct translation to human IPF. Spontaneous pulmonary fibrosis occurs in other animal species, including dogs, horses, donkeys, and cats. While the fibrotic lungs of these animals share many characteristics with lungs of patients with IPF, current veterinary classifications of fibrotic lung disease are not entirely equivalent. Additional studies that profile these examples of spontaneous fibroses in animals for similarities to human IPF should prove useful for both human and animal investigators. In the meantime, studies of BLM-induced fibrosis in aged male mice remain the most clinically relevant model for preclinical study for human IPF. Addressing issues such as time course of treatment, animal size and characteristics, clinically irrelevant treatment endpoints, and reproducibility of therapeutic outcomes will improve the current status of preclinical studies. Elucidating the mechanisms responsible for the development of fibrosis and disrepair associated with aging through a collaborative approach between researchers will promote the development of models that more accurately represent the realm of interstitial lung diseases in humans. PMID:28804709

  8. Idiopathic Pulmonary Fibrosis: Treatment and Prognosis

    PubMed Central

    Fujimoto, Hajime; Kobayashi, Tetsu; Azuma, Arata

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with a prognosis that can be worse than for many cancers. The initial stages of the condition were thought to mainly involve chronic inflammation; therefore, corticosteroids and other drugs that have anti-inflammatory and immunosuppressive actions were used. However, recently, agents targeting persistent fibrosis resulting from aberrant repair of alveolar epithelial injury have been in the spotlight. There has also been an increase in the number of available antifibrotic treatment options, starting with pirfenidone and nintedanib. These drugs prevent deterioration but do not improve IPF. Therefore, nonpharmacologic approaches such as long-term oxygen therapy, pulmonary rehabilitation, and lung transplantation must be considered as additional treatment modalities. PMID:27980445

  9. [Hepatitis C virus and pulmonary fibrosis].

    PubMed

    Manganelli, Paolo; Salaffi, Fausto; Pesci, Alberto

    2002-05-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic inflammatory interstitial lung disease characterized by an accumulation of alveolar macrophages and neutrophils in the lower respiratory tract, parenchymal injury, and interstitial fibrosis. Although the etiology of IPF is unknown, it has been suggested that viral agents, among which hepatitis C virus (HCV), may be involved in inducing the disease. In patients with chronic hepatitis HCV+ and in those with mixed cryoglobulinemia HCV-associated, HCV may trigger a subclinical lymphocyte alveolitis. Furthermore, pulmonary fibrosis associated with a variety of rheumatic disorders has been reported in 8/300 patients with active chronic hepatitis HCV+. Bronchoalveolar lavage, carried out in 4/8 patients, showed an increased percentage of neutrophils in all of them and a mild increase of lymphocytes in 2 patients. Thoracoscopic lung biopsy was carried out in 2 patients and showed a desquamative interstitial pneumonia; in one case HCV-RNA was found in the pulmonary parenchyma. Although the above observations seem indicate a role for HCV in IFP, further studies are required to define its true importance in the etiopathogenesis of the interstitial lung disease.

  10. Triptolide Mitigates Radiation-Induced Pulmonary Fibrosis.

    PubMed

    Yang, Shanmin; Zhang, Mei; Chen, Chun; Cao, Yongbin; Tian, Yeping; Guo, Yangsong; Zhang, Bingrong; Wang, Xiaohui; Yin, Liangjie; Zhang, Zhenhuan; O'Dell, Walter; Okunieff, Paul; Zhang, Lurong

    2015-11-01

    Triptolide (TPL) may mitigate radiation-induced late pulmonary side effects through its inhibition of global pro-inflammatory cytokines. In this study, we evaluated the effect of TPL in C57BL/6 mice, the animals were exposed to radiation with vehicle (15 Gy), radiation with TPL (0.25 mg/kg i.v., twice weekly for 1, 2 and 3 months), radiation and celecoxib (CLX) (30 mg/kg) and sham irradiation. Cultured supernatant of irradiated RAW 264.7 and MLE-15 cells and lung lysate in different groups were enzyme-linked immunosorbent assays at 33 h. Respiratory rate, pulmonary compliance and pulmonary density were measured at 5 months in all groups. The groups exposed to radiation with vehicle and radiation with TPL exhibited significant differences in respiratory rate and pulmonary compliance (480 ± 75/min vs. 378 ± 76/min; 0.6 ± 0.1 ml/cm H2O/p kg vs. 0.9 ± 0.2 ml/cm H2O/p kg). Seventeen cytokines were significantly reduced in the lung lysate of the radiation exposure with TPL group at 5 months compared to that of the radiation with vehicle group, including profibrotic cytokines implicated in pulmonary fibrosis, such as IL-1β, TGF- β1 and IL-13. The radiation exposure with TPL mice exhibited a 41% reduction of pulmonary density and a 25% reduction of hydroxyproline in the lung, compared to that of radiation with vehicle mice. The trichrome-stained area of fibrotic foci and pathological scaling in sections of the mice treated with radiation and TPL mice were significantly less than those of the radiation with vehicle-treated group. In addition, the radiation with TPL-treated mice exhibited a trend of improved survival rate compared to that of the radiation with vehicle-treated mice at 5 months (83% vs. 53%). Three radiation-induced profibrotic cytokines in the radiation with vehicle-treated group were significantly reduced by TPL treatment, and this partly contributed to the trend of improved survival rate and pulmonary density and function and the decreased severity of

  11. Idiopathic pulmonary fibrosis misdiagnosed as sputum-negative pulmonary tuberculosis.

    PubMed

    Isah, Muhammad Danasabe; Abbas, Aminu; Abba, Abdullahi A; Umar, Mohammed

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF), also known as cryptogenic fibrosing alveolitis, is one of a spectrum of idiopathic interstitial pneumonia. IPF is an increasingly common condition which poses many diagnostic and therapeutic challenges leading to misdiagnosis and mismanagement. We presented a 55-year-old male textile trader who was initially managed as sputum-negative pulmonary tuberculosis before histology report. He presented to our clinic with Breathlessness and cough of 3 years and 2.5 years, respectively. He had commenced anti-tuberculosis two months before presentation without significant relief. General Physical examination and vital signs were essentially normal. SPO2 was 96% on room air. Chest Examination revealed end-inspiratory bi-basal velcro-like crackles. Other systemic examinations were normal. Radiological examination by way of chest X- ray and chest CT showed features suggestive of IPF. The patient also had open Lung biopsy for histology and spirometry which demonstrated restrictive ventilatory function pattern. A diagnosis of Interstitial lung disease probably Idiopathic Pulmonary Fibrosis was entertained. He was commenced on Tab prednisolone, Tab Rabeprazole, with minimal improvement. IPF have often been misdiagnosed and treated as pulmonary tuberculosis with unfavorable outcome.

  12. Genetic background of idiopathic pulmonary fibrosis.

    PubMed

    Santangelo, Simona; Scarlata, Simone; Zito, Anna; Chiurco, Domenica; Pedone, Claudio; Incalzi, Raffaele Antonelli

    2013-05-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease characterized by progressive fibrosing interstitial pneumonia. The histological pattern, which displays dense fibrosis with active areas of fibroblastic proliferation, suggests a pathogenetic role of aberrant response to healing of multiple microscopic, repeated alveolar epithelial injuries. Although the exact etiology of the disease is still under investigation, several studies suggest that a combination of genetic and environmental factors may play a causal role. The aim of this review is to describe the genetic background of IPF, reporting the latest advancements made possible by genomic techniques that allow a high-throughput analysis and the identification of target genes implicated in IPF. This information may help to clarify pivotal aspects on prognosis and diagnosis, and may help to identify potential targets for future therapies.

  13. Combined pulmonary fibrosis and emphysema (CPFE): an entity different from emphysema or pulmonary fibrosis alone

    PubMed Central

    Lin, Huijin

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) and idiopathic interstitial pneumonias (IIP), with different radiological, pathological, functional and prognostic characteristics, have been regarded as separate entities for a long time. However, there is an increasing recognition of the coexistence of emphysema and pulmonary fibrosis in individuals. The association was first described as a syndrome by Cottin in 2005, named “combined pulmonary fibrosis and emphysema (CPFE)”, which is characterized by exertional dyspnea, upper-lobe emphysema and lower-lobe fibrosis, preserved lung volume and severely diminished capacity of gas exchange. CPFE is frequently complicated by pulmonary hypertension, acute lung injury and lung cancer and prognosis of it is poor. Treatments for CPFE patients with severe pulmonary hypertension are less effective other than lung transplantation. However, CPFE has not yet attracted wide attention of clinicians and there is no research systematically contrasting the differences among CPFE, emphysema/COPD and IIP at the same time. The authors will review the existing knowledge of CPFE and compare them to either entity alone for the first time, with the purpose of improving the awareness of this syndrome and exploring novel effective therapeutic strategies in clinical practice. PMID:25973246

  14. Influenza-associated cystic fibrosis pulmonary exacerbations.

    PubMed

    Ortiz, Justin R; Neuzil, Kathleen M; Victor, John C; Wald, Anna; Aitken, Moira L; Goss, Christopher H

    2010-04-01

    Although cystic fibrosis (CF) is the most common inherited respiratory disease, the burden of influenza among individuals with CF is not well characterized. We used the CF Foundation Patient Registry to determine the relationship between pulmonary exacerbation incidence rate and influenza virus season from July 2003 through June 2007. The outcome of interest, pulmonary exacerbation, was defined as treatment of a respiratory illness with IV antibiotics. Each influenza season was defined as all months during which >/= 15% of laboratory tests for influenza virus were positive in the US influenza virologic surveillance system. We calculated incidence rates of pulmonary exacerbation during the influenza and summertime seasons as well as relative rates with 95% CIs. A multivariate regression model adjusted for demographic and clinical predictors. In 2003, the patient cohort size was 21,506 patients, and 7,727 patients experienced at least one pulmonary exacerbation. The overall pulmonary exacerbation incidence rate in the influenza season was 595.0 per 10,000 person-months compared with a summertime baseline of 549.6 per 10,000 person-months. The incidence rate ratio was 1.08 (95% CI: 1.06, 1.10). Multivariate analysis did not change our estimate of risk (adjusted odds ratio: 1.07; 95% CI: 1.05, 1.10). An estimated annual excess of 147.6 per 10,000 person-months or an excess 2.1% of total exacerbations occur during the influenza season. Our data demonstrate a substantial contribution of the influenza season to CF morbidity. Further studies to determine any causal link between influenza infection and CF pulmonary exacerbations are necessary.

  15. TRPV4 mediates myofibroblast differentiation and pulmonary fibrosis in mice

    PubMed Central

    Rahaman, Shaik O.; Grove, Lisa M.; Paruchuri, Sailaja; Southern, Brian D.; Abraham, Susamma; Niese, Kathryn A.; Scheraga, Rachel G.; Ghosh, Sudakshina; Thodeti, Charles K.; Zhang, David X.; Moran, Magdalene M.; Schilling, William P.; Tschumperlin, Daniel J.; Olman, Mitchell A.

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a fatal fibrotic lung disorder with no effective medical treatments available. The generation of myofibroblasts, which are critical for fibrogenesis, requires both a mechanical signal and activated TGF-β; however, it is not clear how fibroblasts sense and transmit the mechanical signal(s) that promote differentiation into myofibroblasts. As transient receptor potential vanilloid 4 (TRPV4) channels are activated in response to changes in plasma membrane stretch/matrix stiffness, we investigated whether TRPV4 contributes to generation of myofibroblasts and/or experimental lung fibrosis. We determined that TRPV4 activity is upregulated in lung fibroblasts derived from patients with IPF. Moreover, TRPV4-deficient mice were protected from fibrosis. Furthermore, genetic ablation or pharmacological inhibition of TRPV4 function abrogated myofibroblast differentiation, which was restored by TRPV4 reintroduction. TRPV4 channel activity was elevated when cells were plated on matrices of increasing stiffness or on fibrotic lung tissue, and matrix stiffness–dependent myofibroblast differentiation was reduced in response to TRVP4 inhibition. TRPV4 activity modulated TGF-β1–dependent actions in a SMAD-independent manner, enhanced actomyosin remodeling, and increased nuclear translocation of the α-SMA transcription coactivator (MRTF-A). Together, these data indicate that TRPV4 activity mediates pulmonary fibrogenesis and suggest that manipulation of TRPV4 channel activity has potential as a therapeutic approach for fibrotic diseases. PMID:25365224

  16. Benefits of Pulmonary Rehabilitation in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Swigris, Jeffrey J.; Fairclough, Diane L.; Morrison, Marianne; Make, Barry; Kozora, Elizabeth; Brown, Kevin K.; Wamboldt, Frederick S.

    2013-01-01

    BACKGROUND Information on the benefits of pulmonary rehabilitation (PR) in patients with idiopathic pulmonary fibrosis (IPF) is growing, but PR’s effects on certain important outcomes is lacking. METHODS We conducted a pilot study of PR in IPF and analyzed changes in functional capacity, fatigue, anxiety, depression, sleep, and health status from baseline to after completion of a standard, 6-week PR program. RESULTS Six-min walk distance improved a mean ± standard error 202 ± 135 feet (P = .01) from baseline. Fatigue Severity Scale score also improved significantly, declining an average 1.5 ± 0.5 points from baseline. There were trends toward improvement in anxiety, depression, and health status. CONCLUSIONS PR improves functional capacity and fatigue in patients with IPF. (ClinicalTrials.gov registration NCT00692796.) PMID:21333082

  17. Targeting Interleukin-13 with Tralokinumab Attenuates Lung Fibrosis and Epithelial Damage in a Humanized SCID Idiopathic Pulmonary Fibrosis Model

    PubMed Central

    Zhang, Huilan; Oak, Sameer R.; Coelho, Ana Lucia; Herath, Athula; Flaherty, Kevin R.; Lee, Joyce; Bell, Matt; Knight, Darryl A.; Martinez, Fernando J.; Sleeman, Matthew A.; Herzog, Erica L.; Hogaboam, Cory M.

    2014-01-01

    The aberrant fibrotic and repair responses in the lung are major hallmarks of idiopathic pulmonary fibrosis (IPF). Numerous antifibrotic strategies have been used in the clinic with limited success, raising the possibility that an effective therapeutic strategy in this disease must inhibit fibrosis and promote appropriate lung repair mechanisms. IL-13 represents an attractive target in IPF, but its disease association and mechanism of action remains unknown. In the present study, an overexpression of IL-13 and IL-13 pathway markers was associated with IPF, particularly a rapidly progressive form of this disease. Targeting IL-13 in a humanized experimental model of pulmonary fibrosis using tralokinumab (CAT354) was found to therapeutically block aberrant lung remodeling in this model. However, targeting IL-13 was also found to promote lung repair and to restore epithelial integrity. Thus, targeting IL-13 inhibits fibrotic processes and enhances repair processes in the lung. PMID:24325475

  18. Targeting interleukin-13 with tralokinumab attenuates lung fibrosis and epithelial damage in a humanized SCID idiopathic pulmonary fibrosis model.

    PubMed

    Murray, Lynne A; Zhang, Huilan; Oak, Sameer R; Coelho, Ana Lucia; Herath, Athula; Flaherty, Kevin R; Lee, Joyce; Bell, Matt; Knight, Darryl A; Martinez, Fernando J; Sleeman, Matthew A; Herzog, Erica L; Hogaboam, Cory M

    2014-05-01

    The aberrant fibrotic and repair responses in the lung are major hallmarks of idiopathic pulmonary fibrosis (IPF). Numerous antifibrotic strategies have been used in the clinic with limited success, raising the possibility that an effective therapeutic strategy in this disease must inhibit fibrosis and promote appropriate lung repair mechanisms. IL-13 represents an attractive target in IPF, but its disease association and mechanism of action remains unknown. In the present study, an overexpression of IL-13 and IL-13 pathway markers was associated with IPF, particularly a rapidly progressive form of this disease. Targeting IL-13 in a humanized experimental model of pulmonary fibrosis using tralokinumab (CAT354) was found to therapeutically block aberrant lung remodeling in this model. However, targeting IL-13 was also found to promote lung repair and to restore epithelial integrity. Thus, targeting IL-13 inhibits fibrotic processes and enhances repair processes in the lung.

  19. Exercise training in idiopathic pulmonary fibrosis.

    PubMed

    Vainshelboim, Baruch; Fox, Benjamin Daniel; Oliveira, Jose; Kramer, Mordechai Reuven

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic devastating interstitial lung disease associated with exercise intolerance, dyspnea, hypoxemia, diminished quality of life and poor prognosis. A growing body of evidence with respect to short-term effects of exercise training has demonstrated clinical benefits in IPF patients. A recent systematic review showed significant improvements in 6-min walking distance, peak aerobic capacity, reduced dyspnea and improved quality of life. However, aspects of training programs, maintenance and predictors of improvement and the impact on prognosis need to be further explored. The aim of this paper was to comprehensively review the existing scientific literature regarding exercise training in patients with IPF and identify important gaps that should be studied in the future.

  20. Acute Exacerbations of Idiopathic Pulmonary Fibrosis

    PubMed Central

    Collard, Harold R.; Moore, Bethany B.; Flaherty, Kevin R.; Brown, Kevin K.; Kaner, Robert J.; King, Talmadge E.; Lasky, Joseph A.; Loyd, James E.; Noth, Imre; Olman, Mitchell A.; Raghu, Ganesh; Roman, Jesse; Ryu, Jay H.; Zisman, David A.; Hunninghake, Gary W.; Colby, Thomas V.; Egan, Jim J.; Hansell, David M.; Johkoh, Takeshi; Kaminski, Naftali; Kim, Dong Soon; Kondoh, Yasuhiro; Lynch, David A.; Müller-Quernheim, Joachim; Myers, Jeffrey L.; Nicholson, Andrew G.; Selman, Moisés; Toews, Galen B.; Wells, Athol U.; Martinez, Fernando J.

    2007-01-01

    The natural history of idiopathic pulmonary fibrosis (IPF) has been characterized as a steady, predictable decline in lung function over time. Recent evidence suggests that some patients may experience a more precipitous course, with periods of relative stability followed by acute deteriorations in respiratory status. Many of these acute deteriorations are of unknown etiology and have been termed acute exacerbations of IPF. This perspective is the result of an international effort to summarize the current state of knowledge regarding acute exacerbations of IPF. Acute exacerbations of IPF are defined as acute, clinically significant deteriorations of unidentifiable cause in patients with underlying IPF. Proposed diagnostic criteria include subjective worsening over 30 days or less, new bilateral radiographic opacities, and the absence of infection or another identifiable etiology. The potential pathobiological roles of infection, disordered cell biology, coagulation, and genetics are discussed, and future research directions are proposed. PMID:17585107

  1. Molecular biomarkers in idiopathic pulmonary fibrosis

    PubMed Central

    Ley, Brett; Brown, Kevin K.

    2014-01-01

    Molecular biomarkers are highly desired in idiopathic pulmonary fibrosis (IPF), where they hold the potential to elucidate underlying disease mechanisms, accelerated drug development, and advance clinical management. Currently, there are no molecular biomarkers in widespread clinical use for IPF, and the search for potential markers remains in its infancy. Proposed core mechanisms in the pathogenesis of IPF for which candidate markers have been offered include alveolar epithelial cell dysfunction, immune dysregulation, and fibrogenesis. Useful markers reflect important pathological pathways, are practically and accurately measured, have undergone extensive validation, and are an improvement upon the current approach for their intended use. The successful development of useful molecular biomarkers is a central challenge for the future of translational research in IPF and will require collaborative efforts among those parties invested in advancing the care of patients with IPF. PMID:25260757

  2. Idiopathic pulmonary fibrosis: Early detection and referral

    PubMed Central

    Oldham, Justin M.; Noth, Imre

    2016-01-01

    Summary Idiopathic pulmonary fibrosis (IPF), a devastating progressive interstitial lung disease (ILD) with no known cause or cure, is the most common and deadly of the idiopathic interstitial pneumonias. With a median survival of 3–5 years following diagnosis, IPF is characterized by a progressive decline in lung function and quality of life in most patients. Vigilance among clinicians in recognizing IPF early in the disease course remains critical to properly caring for these patients, as this provides the widest range of management options. When IPF is suspected, a multidisciplinary evaluation (MDE) by a clinician, radiologist and pathologist with ILD expertise should occur, as this improves diagnostic agreement in both community and academic settings. When community MDE is not possible, or diagnostic doubt exists, referral to an ILD center should be considered. ILD center referral may also provide access specialized care, including clinical trials and lung transplantation, and should be considered for any patient with an established diagnosis of IPF. PMID:24746629

  3. Recent advances in understanding idiopathic pulmonary fibrosis

    PubMed Central

    Daccord, Cécile; Maher, Toby M.

    2016-01-01

    Despite major research efforts leading to the recent approval of pirfenidone and nintedanib, the dismal prognosis of idiopathic pulmonary fibrosis (IPF) remains unchanged. The elaboration of international diagnostic criteria and disease stratification models based on clinical, physiological, radiological, and histopathological features has improved the accuracy of IPF diagnosis and prediction of mortality risk. Nevertheless, given the marked heterogeneity in clinical phenotype and the considerable overlap of IPF with other fibrotic interstitial lung diseases (ILDs), about 10% of cases of pulmonary fibrosis remain unclassifiable. Moreover, currently available tools fail to detect early IPF, predict the highly variable course of the disease, and assess response to antifibrotic drugs. Recent advances in understanding the multiple interrelated pathogenic pathways underlying IPF have identified various molecular phenotypes resulting from complex interactions among genetic, epigenetic, transcriptional, post-transcriptional, metabolic, and environmental factors. These different disease endotypes appear to confer variable susceptibility to the condition, differing risks of rapid progression, and, possibly, altered responses to therapy. The development and validation of diagnostic and prognostic biomarkers are necessary to enable a more precise and earlier diagnosis of IPF and to improve prediction of future disease behaviour. The availability of approved antifibrotic therapies together with potential new drugs currently under evaluation also highlights the need for biomarkers able to predict and assess treatment responsiveness, thereby allowing individualised treatment based on risk of progression and drug response. This approach of disease stratification and personalised medicine is already used in the routine management of many cancers and provides a potential road map for guiding clinical care in IPF. PMID:27303645

  4. TLR9 Differentiates Rapid from Slowly Progressive Forms of Idiopathic Pulmonary Fibrosis

    PubMed Central

    Trujillo, Glenda; Meneghin, Alessia; Flaherty, Kevin R.; Sholl, Lynette M.; Myers, Jeffrey L.; Kazerooni, Ella A.; Gross, Barry H.; Oak, Sameer R.; Coelho, Ana Lucia; Evanoff, Holly; Day, Elizabeth; Toews, Galen B.; Joshi, Amrita D.; Schaller, Matthew A.; Waters, Beatrice; Jarai, Gabor; Westwick, John; Kunkel, Steve L.; Martinez, Fernando J.; Hogaboam, Cory M.

    2011-01-01

    Idiopathic pulmonary fibrosis is a generally progressive disorder with highly heterogeneous disease progression. The most common of the idiopathic interstitial pneumonias, idiopathic pulmonary fibrosis is characterized by a steady worsening of lung function and gas exchange cause by diffuse alveolar damage and severe fibrosis. We examined clinical features of patients with idiopathic pulmonary fibrosis to classify them as exhibiting rapid or slowly progressive over the first year of follow-up. We identified differences between the two groups in order to investigate the mechanism of rapid progression. Previous work from our laboratory has demonstrated that Toll-like receptor 9, a pathogen recognition receptor, promotes myofibroblast differentiation in lung fibroblasts cultured from biopsies of patients with idiopathic pulmonary fibrosis. Therefore, we hypothesized that TLR9 functions as both a sensor of pathogenic molecules and a profibrotic signal in rapidly progressive idiopathic pulmonary fibrosis. TLR9 was present at higher concentrations in surgical lung biopsies from rapidly progressive patients than in tissue from normal controls. Fibroblasts from rapid progressors were more responsive to the TLR9 agonist, CpG, than were fibroblasts from control patients. We used a humanized SCID mouse and demonstrated that there was increased fibrosis in murine lungs receiving human lung fibroblasts from rapid progressors than in mice receiving normal fibroblasts. This fibrosis was exacerbated by intranasal CpG challenges. Furthermore, CpG induced the differentiation of blood monocytes into fibrocytes and the epithelial-to-mesenchymal transition of A549 lung epithelial cells. These data suggest that TLR9 may drive the pathogenesis of rapidly progressive idiopathic pulmonary fibrosis and is a potential indicator of this subset of the disease. PMID:21068441

  5. Rupatadine Protects against Pulmonary Fibrosis by Attenuating PAF-Mediated Senescence in Rodents

    PubMed Central

    Lv, Xiao-xi; Wang, Xiao-xing; Li, Ke; Wang, Zi-yan; Li, Zhe; Lv, Qi; Fu, Xiao-ming; Hu, Zhuo-Wei

    2013-01-01

    A similar immune response is implicated in the pathogenesis of pulmonary fibrosis and allergic disorders. We investigated the potential therapeutic efficacy and mechanism of rupatadine, a dual antagonist of histamine and platelet-activation factor (PAF), in bleomycin- (BLM-) and silica-induced pulmonary fibrosis. The indicated dosages of rupatadine were administered in rodents with bleomycin or silica-induced pulmonary fibrosis. The tissue injury, fibrosis, inflammatory cells and cytokines, and lung function were examined to evaluate the therapeutic efficacy of rupatadine. The anti-fibrosis effect of rupatadine was compared with an H1 or PAF receptor antagonist, and efforts were made to reveal rupatadine’s anti-fibrotic mechanism. Rupatadine promoted the resolution of pulmonary inflammation and fibrosis in a dose-dependent manner, as indicated by the reductions in inflammation score, collagen deposition and epithelial-mesenchymal transformation, and infiltration or expression of inflammatory cells or cytokines in the fibrotic lung tissue. Thus, rupatadine treatment improved the declined lung function and significantly decreased animal death. Moreover, rupatadine was able not only to attenuate silica-induced silicosis but also to produce a superior therapeutic efficacy compared to pirfenidone, histamine H1 antagonist loratadine, or PAF antagonist CV-3988. The anti-fibrotic action of rupatadine might relate to its attenuation of BLM- or PAF-induced premature senescence because rupatadine treatment protected against the in vivo and in vitro activation of the p53/p21-dependent senescence pathway. Our studies indicate that rupatadine promotes the resolution of pulmonary inflammation and fibrosis by attenuating the PAF-mediated senescence response. Rupatadine holds promise as a novel drug to treat the devastating disease of pulmonary fibrosis. PMID:23869224

  6. [Regulation of airway stem cell proliferation in idiopathic pulmonary fibrosis].

    PubMed

    Yang, S X; Wu, Q; Sun, X; Li, X; Li, K; Xu, L; Li, Y; Zhang, Q Y; Zhang, Y C; Chen, H Y

    2016-09-01

    To investigate the effect of fibroblasts on regulating airway stem cell proliferation in idiopathic pulmonary fibrosis. Lung cell suspension was prepared from β-actin-GFP mice. Airway stem cells were obtained by fluorescence activated cell sorting and co-cultured with lung fibroblasts. The fibroblasts were treated with TGF-β inhibitor SB43142. The expression of growth factors FGF1/2 and the effect of FGF1/2 on stem cell proliferation were observed. The cloning efficiency of airway stem cells, when co-cultured with normal lung fibroblast cells for 8 days, was (3.5±1.1)%, while the cloning efficiency was reduced to (0.04±0.04)% when co-cultured with lung fibroblasts from idiopathic pulmonary fibrosis patients. The difference between the 2 groups was statistically significant(P=0.002 5). TGF-β receptor inhibitor SB431542 increased lung fibroblast growth factors FGF1/2 expression.FGF1 mRNA expression was increased to the experimental group 0.005 5 from 0.000 2 in the control group.FGF2 mRNA expression of the amount raised to the experimental group 0.000 15 from 0.000 8 in the control group.FGF1/2 promoted the growth of airway stem cells. After FGF1/2 was co-cultured with normal lung fibroblast cells for 8 days, the cloning efficiency of airway stem cells was (0.3±0.1)%. During the development of idiopathic pulmonary fibrosis, fibroblast secreted FGF1/2 regulate airway stem cell proliferation.

  7. Cystic fibrosis pulmonary guidelines: airway clearance therapies.

    PubMed

    Flume, Patrick A; Robinson, Karen A; O'Sullivan, Brian P; Finder, Jonathan D; Vender, Robert L; Willey-Courand, Donna-Beth; White, Terry B; Marshall, Bruce C

    2009-04-01

    Cystic fibrosis (CF) is a genetic disease characterized by dehydration of airway surface liquid and impaired mucociliary clearance. As a result, there is difficulty clearing pathogens from the lung, and patients experience chronic pulmonary infections and inflammation. Clearance of airway secretions has been a primary therapy for those with CF, and a variety of airway clearance therapies (ACTs) have been developed. Because ACTs are intrusive and require considerable time and effort, it is important that appropriate techniques are recommended on the basis of available evidence of efficacy and safety. Therefore, the Cystic Fibrosis Foundation established a committee to examine the clinical evidence for each therapy and provide guidance for their use. A systematic review was commissioned, which identified 7 unique reviews and 13 additional controlled trials that addressed one or more of the comparisons of interest and were deemed eligible for inclusion. Recommendations for use of the ACTs were made, balancing the quality of evidence and the potential harms and benefits. The committee determined that, although there is a paucity of controlled trials that assess the long-term effects of ACTs, the evidence quality overall for their use in CF is fair and the benefit is moderate. The committee recommends airway clearance be performed on a regular basis in all patients. There are no ACTs demonstrated to be superior to others, so the prescription of ACTs should be individualized. Aerobic exercise is recommended as an adjunctive therapy for airway clearance and for its additional benefits to overall health.

  8. Idiopathic pulmonary fibrosis: emerging concepts on pharmacotherapy.

    PubMed

    Thannickal, Victor J; Flaherty, Kevin R; Martinez, Fernando J; Lynch, Joseph P

    2004-08-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive, fibrosing disease of the distal air spaces of the lung of unknown aetiology. IPF is usually fatal with a median survival of < 3 years. There are currently no effective pharmacotherapeutic agents for the treatment of IPF. In this review, unifying concepts on the pathogenesis of IPF based on understanding of host responses to tissue injury are presented. These host responses involve tightly regulated and contextually orchestrated inflammatory and repair processes. Dysregulation of either of these processes can lead to pathological outcomes. Fibrosis results from an exaggerated or dysregulated repair process that proceeds 'uncontrolled' even after inflammatory responses have subsided. Disease heterogeneity may arise when inflammation and repair are in different (dys)regulatory phases, thus accounting for regional disparity. Usual interstitial pneumonia (UIP), the histopathological correlate of clinical IPF, represents a more fibrotic tissue reaction pattern and for which anti-inflammatory agents are ineffective. Emerging 'antifibrotic' drugs and strategies for UIP/IPF are discussed. The importance of accurately phenotyping a highly heterogeneous disease process that may require individualised and 'combined' therapies is emphasised.

  9. Amine oxidase activity regulates the development of pulmonary fibrosis.

    PubMed

    Marttila-Ichihara, Fumiko; Elima, Kati; Auvinen, Kaisa; Veres, Tibor Z; Rantakari, Pia; Weston, Christopher; Miyasaka, Masayuki; Adams, David; Jalkanen, Sirpa; Salmi, Marko

    2017-03-01

    In pulmonary fibrosis, an inflammatory reaction and differentiation of myofibroblasts culminate in pathologic deposition of collagen. Amine oxidase copper containing-3 (AOC3) is a cell-surface expressed oxidase that regulates leukocyte extravasation. Here we analyzed the potential role of AOC3 using gene-modified and inhibitor-treated mice in a bleomycin-induced pulmonary fibrosis model. Inflammation and fibrosis of lungs were assessed by histologic, flow cytometric, and quantitative PCR analysis. AOC3-deficient mice showed a 30-50% reduction in fibrosis, collagen synthesis, numbers of myofibroblasts, and accumulation of CD4(+) lymphocytes, NK T cells, macrophages, and type 2 innate lymphoid cells compared with wild-type control mice. AOC3 knock-in mice, which express a catalytically inactive form of AOC3, were also protected from lung fibrosis. In wild-type mice, a small-molecule AOC3 inhibitor treatment reduced leukocyte infiltration, myofibroblast differentiation, and fibrotic injury both in prophylactic and early therapeutic settings by about 50% but was unable to reverse the established fibrosis. AOC3 was also induced in myofibroblasts in human idiopathic pulmonary fibrosis. Thus, the oxidase activity of AOC3 contributes to the development of lung fibrosis mainly by regulating the accumulation of pathogenic leukocyte subtypes, which drive the fibrotic response.-Marttila-Ichihara, F., Elima, K., Auvinen, K., Veres, T. Z., Rantakari, P., Weston, C., Miyasaka, M., Adams, D., Jalkanen, S., Salmi, M. Amine oxidase activity regulates the development of pulmonary fibrosis.

  10. Lymphatics in lymphangioleiomyomatosis and idiopathic pulmonary fibrosis

    PubMed Central

    Glasgow, Connie G.; El-Chemaly, Souheil; Moss, Joel

    2013-01-01

    The primary function of the lymphatic system is absorbing and transporting macromolecules and immune cells to the general circulation, thereby regulating fluid, nutrient absorption and immune cell trafficking. Lymphangiogenesis plays an important role in tissue inflammation and tumour cell dissemination. Lymphatic involvement is seen in lymphangioleiomyomatosis (LAM) and idiopathic pulmonary fibrosis (IPF). LAM, a disease primarily affecting females, involves the lung (cystic destruction), kidney (angiomyolipoma) and axial lymphatics (adenopathy and lymphangioleiomyoma). LAM occurs sporadically or in association with tuberous sclerosis complex (TSC). Cystic lung destruction results from proliferation of LAM cells, which are abnormal smooth muscle-like cells with mutations in the TSC1 or TSC2 gene. Lymphatic abnormalities arise from infiltration of LAM cells into the lymphatic wall, leading to damage or obstruction of lymphatic vessels. Benign appearing LAM cells possess metastatic properties and are found in the blood and other body fluids. IPF is a progressive lung disease resulting from fibroblast proliferation and collagen deposition. Lymphangiogenesis is associated with pulmonary destruction and disease severity. A macrophage subset isolated from IPF bronchoalveolar lavage fluid (BALF) express lymphatic endothelial cell markers in vitro, in contrast to the same macrophage subset from normal BALF. Herein, we review lymphatic involvement in LAM and IPF. PMID:22941884

  11. Update on diagnosis and treatment of idiopathic pulmonary fibrosis

    PubMed Central

    Baddini-Martinez, José; Baldi, Bruno Guedes; da Costa, Cláudia Henrique; Jezler, Sérgio; Lima, Mariana Silva; Rufino, Rogério

    2015-01-01

    Idiopathic pulmonary fibrosis is a type of chronic fibrosing interstitial pneumonia, of unknown etiology, which is associated with a progressive decrease in pulmonary function and with high mortality rates. Interest in and knowledge of this disorder have grown substantially in recent years. In this review article, we broadly discuss distinct aspects related to the diagnosis and treatment of idiopathic pulmonary fibrosis. We list the current diagnostic criteria and describe the therapeutic approaches currently available, symptomatic treatments, the action of new drugs that are effective in slowing the decline in pulmonary function, and indications for lung transplantation. PMID:26578138

  12. Guidelines for the medical treatment of idiopathic pulmonary fibrosis.

    PubMed

    Xaubet, Antoni; Molina-Molina, María; Acosta, Orlando; Bollo, Elena; Castillo, Diego; Fernández-Fabrellas, Estrella; Rodríguez-Portal, José Antonio; Valenzuela, Claudia; Ancochea, Julio

    2017-05-01

    Idiopathic pulmonary fibrosis is defined as chronic fibrosing interstitial pneumonia limited to the lung, with poor prognosis. The incidence has been rising in recent years probably due to improved diagnostic methods and increased life expectancy. In 2013, the SEPAR guidelines for the diagnosis and treatment for idiopathic pulmonary fibrosis were published. Since then, clinical trials and meta-analyses have shown strong scientific evidence for the use of pirfenidone and nintedanib in the treatment of idiopathic pulmonary fibrosis. In 2015, the international consensus of 2011 was updated and new therapeutic recommendations were established, prompting us to update our recommendation for the medical treatment of idiopathic pulmonary fibrosis accordingly. Diagnostic aspects and non-pharmacological treatment will not be discussed as no relevant developments have emerged since the 2013 guidelines. Copyright © 2017 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Matrix Metalloproteinases as Therapeutic Targets for Idiopathic Pulmonary Fibrosis

    PubMed Central

    Craig, Vanessa J.; Zhang, Li; Hagood, James S.

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the pathogenesis of IPF based upon the results of clinical studies reporting elevated levels of MMPs (including MMP-1, MMP-7, MMP-8, and MMP-9) in IPF blood and/or lung samples. Surprisingly, studies of gene-targeted mice in murine models of pulmonary fibrosis (PF) have demonstrated that most MMPs promote (rather than inhibit) the development of PF and have identified diverse mechanisms involved. These mechanisms include MMPs: (1) promoting epithelial-to-mesenchymal transition (MMP-3 and MMP-7); (2) increasing lung levels or activity of profibrotic mediators or reducing lung levels of antifibrotic mediators (MMP-3, MMP-7, and MMP-8); (3) promoting abnormal epithelial cell migration and other aberrant repair processes (MMP-3 and MMP-9); (4) inducing the switching of lung macrophage phenotypes from M1 to M2 types (MMP-10 and MMP-28); and (5) promoting fibrocyte migration (MMP-8). Two MMPs, MMP-13 and MMP-19, have antifibrotic activities in murine models of PF, and two MMPs, MMP-1 and MMP-10, have the potential to limit fibrotic responses to injury. Herein, we review what is known about the contributions of MMPs and TIMPs to the pathogenesis of IPF and discuss their potential as therapeutic targets for IPF. PMID:26121236

  14. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis.

    PubMed

    Craig, Vanessa J; Zhang, Li; Hagood, James S; Owen, Caroline A

    2015-11-01

    Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the pathogenesis of IPF based upon the results of clinical studies reporting elevated levels of MMPs (including MMP-1, MMP-7, MMP-8, and MMP-9) in IPF blood and/or lung samples. Surprisingly, studies of gene-targeted mice in murine models of pulmonary fibrosis (PF) have demonstrated that most MMPs promote (rather than inhibit) the development of PF and have identified diverse mechanisms involved. These mechanisms include MMPs: (1) promoting epithelial-to-mesenchymal transition (MMP-3 and MMP-7); (2) increasing lung levels or activity of profibrotic mediators or reducing lung levels of antifibrotic mediators (MMP-3, MMP-7, and MMP-8); (3) promoting abnormal epithelial cell migration and other aberrant repair processes (MMP-3 and MMP-9); (4) inducing the switching of lung macrophage phenotypes from M1 to M2 types (MMP-10 and MMP-28); and (5) promoting fibrocyte migration (MMP-8). Two MMPs, MMP-13 and MMP-19, have antifibrotic activities in murine models of PF, and two MMPs, MMP-1 and MMP-10, have the potential to limit fibrotic responses to injury. Herein, we review what is known about the contributions of MMPs and TIMPs to the pathogenesis of IPF and discuss their potential as therapeutic targets for IPF.

  15. Practical management of Idiopathic Pulmonary Fibrosis.

    PubMed

    Kishaba, Tomoo

    2015-07-22

    Idiopathic Pulmonary Fibrosis (IPF) is relentless progressive interstitial lung disease (ILD) of unknown etiology. Main pathogenesis is aberrant recovery of epithelial injury and collagen deposition. Majority of IPF patients have been elderly men with smokers. However, there are important differential diagnosis such as fibrotic non-specific interstitial pneumonia (NSIP), Connective Tissue Disease (CTD) associated ILD, chronic hypersensitivity pneumonia (CHP). Clinical point of view, non-productive cough and progressive exertional dyspnea are main symptoms. In addition, scalene muscle hypertrophy, fine crackles and finger clubbing are key findings. Serum marker such as lactate deydrogenase (LDH), Krebs von den Lungeng-6 (KL-6) are sensitive for ILD detection and activity. Pulmonary function test and 6 minute walk test (6MWT) are quite meaningful physiological examination. Serial change of forced vital capacity 6MWT distance predict mortality of IPF. International IPF guideline published recently and highlighted on the importance of high resolution computed tomography (HRCT) findings. Key findings of IPF are honeycombing, traction bronchiectasis and subpleural reticular opacity. IPF is chronic progressive disease. Therefore, tracing disease behavior is crucial and unifying clinical, physiological, imaging information over time provide useful information for physicians.In management, many candidate agent failed to have positive result. Pirfenidone which is anti-fibrotic agent showed to slow the decline of vital capacity and prevent of acute exacerbation. Molecular agent such as nintedanib is promising agent for prevention of progression of IPF. In this review, we review the clinical information of IPF and IPF guideline. Lastly, we show the clinical algorithm of this devastated disease.

  16. The Role of Mitochondrial DNA in Mediating Alveolar Epithelial Cell Apoptosis and Pulmonary Fibrosis

    PubMed Central

    Kim, Seok-Jo; Cheresh, Paul; Jablonski, Renea P.; Williams, David B.; Kamp, David W.

    2015-01-01

    Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC) programmed cell death (apoptosis) that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF) and asbestosis (pulmonary fibrosis following asbestos exposure). The mammalian mitochondrial DNA (mtDNA) encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1) and mitochondrial aconitase (ACO-2) in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT) family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS)-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer. PMID:26370974

  17. Managing diagnostic procedures in idiopathic pulmonary fibrosis.

    PubMed

    Wells, Athol U

    2013-06-01

    Idiopathic pulmonary fibrosis (IPF), the most prevalent of the idiopathic interstitial pneumonias, is associated with a poor prognosis. An accurate diagnosis of IPF is essential for its optimal management. The 2011 American Thoracic Society (ATS)/European Respiratory Society (ERS)/Japanese Respiratory Society (JRS)/Latin American Thoracic Association (ALAT) recommendations on the diagnosis and management of IPF were developed from a systematic review of the published literature. High-resolution computed tomography (HRCT) scanning has a central role in the IPF diagnostic pathway, with formal designation of criteria for an HRCT pattern of usual interstitial pneumonia. In the correct clinical context, a usual interstitial pneumonia pattern on HRCT is indicative of a definite diagnosis of IPF and negates the need for a surgical lung biopsy. However, although the 2011 ATS/ERS/JRS/ALAT statement is a major advance, the application of the guideline recommendations by clinicians has identified limitations that should be addressed in future statements. Key problems include: 1) HRCT misdiagnosis, particularly by less experienced radiologists; 2) lack of management recommendations for the highly prevalent clinical scenarios of "probable" or "possible" IPF; 3) ongoing confusion concerning the diagnostic role of bronchoalveolar lavage; and 4) the lack of integration of clinical data in the designation of the diagnostic likelihood of IPF, including the treated course of disease. These issues become evident as the recommendations are applied and highlight the need for continued guideline adjustments.

  18. Mineralogical microanalysis of idiopathic pulmonary fibrosis

    SciTech Connect

    Monso, E.; Tura, J.M.; Marsal, M.; Morell, F.; Pujadas, J.; Morera, J. )

    1990-05-01

    A mineralogical analysis of lung tissue was conducted on 25 samples from patients who had been diagnosed as having idiopathic pulmonary fibrosis (IPF). Scanning electron microscopy (SEM) at low magnification and energy-dispersive x-ray analysis (EDXA) was used. In all samples, the surface silicon/sulfur (Si/S) ratio was calculated. The Si/S ratio for 25 samples of normal lung and 6 samples of pneumoconiotic lung was also determined (upper limit of normal Si/S ratio = 0.3). The difference between the Si/S ratio in the group with IPF and group with normal lung tissue was significantly significant (p less than .007, Wilcoxon test). Six of 12 patients with a previous diagnosis of IPF and a Si/S ratio greater than 0.3 had an exposure history that could imply inhalation of silica/silicates, and the correct diagnosis for these patients is most probably pneumoconiosis. The silica/silicate deposits detected in patients with IPF, and who had a ratio and no past exposure to dusts, could be either a cause or an effect of the disease.

  19. Idiopathic pulmonary fibrosis: current and future directions.

    PubMed

    Soo, E; Adamali, H; Edey, A J

    2017-01-21

    Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial pneumonia and is increasingly recognised. Prior to the advent of effective therapies, achieving an early diagnosis was arguably of little prognostic consequence given IPF was considered an untreatable and uniformly fatal disease. The advent of new drug treatments has given hope for the future and raised the profile of IPF. International management guidelines highlight the critical role of radiology as part of an interstitial lung disease multidisciplinary team approach in reaching an accurate and early diagnosis of IPF. The diagnostic criteria and levels of diagnostic confidence for the radio-pathological pattern associated with the clinical syndrome of IPF, usual interstitial pneumonia (UIP), appear seemingly straightforward; however, with increasing research and recognition of radiopathological interobserver variability, limitations of this classification model are becoming increasingly apparent. This review describes ancillary radiological features, comorbidities, and emerging new entities that potentially co-exist with IPF. Beyond diagnosis radiology is developing as a key prognostic tool to inform longitudinal patient evaluation. These diagnostic and prognostic clinical challenges and the future role of radiology in IPF are discussed.

  20. IRON HOMEOSTASIS DURING CYSTIC FIBROSIS PULMONARY EXACERBATION

    PubMed Central

    Gifford, Alex H.; Moulton, Lisa A.; Dorman, Dana B.; Olbina, Gordana; Westerman, Mark; Parker, H. Worth; Stanton, Bruce A.; O’Toole, George A.

    2012-01-01

    Hypoferremia is a marker of disease severity in cystic fibrosis (CF). The effect of systemic antibiotics on iron homeostasis during CF pulmonary exacerbation (CFPE) is unknown. Our central hypotheses were that, by the completion of treatment, serum iron would increase, serum concentrations of interleukin-6 (IL-6) and hepcidin-25, two mediators of hypoferremia, would decrease, and sputum iron would decrease. Methods: Blood and sputum samples were collected from 12 subjects with moderate-to-severe CF (median percent-predicted forced expiratory volume in one second (FEV1%) = 29%; median weight = 56 kg) within 24 hours of starting and completing a course of systemic antibiotics. Results: After treatment, subjects showed median FEV1% and body weight improvements of 4.5% and 2.0 kg, respectively (p <0.05). Median serum iron rose by 2.4 μmol/l (p <0.05), but 75% of patients remained hypoferremic. Median serum IL-6 and hepcidin-25 levels fell by 12.1 pg/ml and 37.5 ng/ml, respectively (p <0.05). Median serum erythropoietin (EPO) and hemoglobin levels were unaffected by treatment. We observed a trend toward lower sputum iron content after treatment. Conclusions: Hypoferremia is a salient characteristic of CFPE that improves with waning inflammation. Despite antibiotic treatment, many patients remain hypoferremic and anemic due to ineffective erythropoiesis. PMID:22883617

  1. Pirfenidone treatment of idiopathic pulmonary fibrosis

    PubMed Central

    Gan, Ye; Herzog, Erica L; Gomer, Richard H

    2011-01-01

    Idiopathic pulmonary fibrosis (IPF) is a discrete clinicopathologic entity defined by the presence of usual interstitial pneumonia on high-resolution CT scan and/or open lung biopsy and the absence of an alternate diagnosis or exposure explaining these findings. There are currently no FDA-approved therapies available to treat this disease, and the 5-year mortality is ∼80%. The pyridone derivative pirfenidone has been studied extensively as a possible therapeutic agent for use in this deadly disease. This review will present the unique clinical features and management issues encountered by physicians caring for IPF patients, including the poor response to conventional therapy. The biochemistry and preclinical efficacy of pirfenidone will be discussed along with a comprehensive review of the clinical efficacy, safety, and side effects and patient-centered foci such as quality of life and tolerability. It is hoped that this information will lend insight into the complex issues surrounding the use of pirfenidone in IPF and lead to further investigation of this agent as a possible therapy in this devastating disease. PMID:21339942

  2. Lung adenocarcinoma mimicking pulmonary fibrosis-a case report.

    PubMed

    Mehić, Bakir; Duranović Rayan, Lina; Bilalović, Nurija; Dohranović Tafro, Danina; Pilav, Ilijaz

    2016-09-13

    Lung cancer is usually presented with cough, dyspnea, pain and weight loss, which is overlapping with symptoms of other lung diseases such as pulmonary fibrosis. Pulmonary fibrosis shows characteristic reticular and nodular pattern, while lung cancers are mostly presented with infiltrative mass, thick-walled cavitations or a solitary nodule with spiculated borders. If the diagnosis is established based on clinical symptoms and CT findings, it would be a misapprehension. We report a case of lung adenocarcinoma whose symptoms as well as clinical images overlapped strongly with pulmonary fibrosis. The patient's non-productive cough, progressive dyspnea, restrictive pattern of pulmonary function test and CT scans (showing reticular interstitial opacities) were all indicative of pulmonary fibrosis. The patient underwent a treatment consisting of corticosteroids and antibiotics, to no avail. Histopathology of the lung showed that the patient suffered from mucinous adenocarcinoma. Albeit the immunohistochemical staining was not consistent with lung adenocarcinoma, tumor's morphological characteristics were consistent, and were used to make the definitive diagnosis. Given the fact that radiography cannot always make a clear-cut difference between pulmonary fibrosis and lung adenocarcinomas, and that clinical symptoms often overlap, histological examination should be considered as gold standard for diagnosis of lung adenocarcinoma.

  3. The significance of nanoparticles in particle-induced pulmonary fibrosis

    PubMed Central

    Byrne, James D; Baugh, John A

    2008-01-01

    Exposure to airborne nanoparticles contributes to many chronic pulmonary diseases. Nanoparticles, classified as anthropogenic and natural particles, and fibers of diameters less than 100 nm, have unrestricted access to most areas of the lung due to their size. Size relates to the deposition efficiency of the particle, with particles in the nano-range having the highest efficiencies. The deposition of nanoparticles in the lung can lead to chronic inflammation, epithelial injury, and further to pulmonary fibrosis. Cases of particle-induced pulmonary fibrosis, namely pneumoconiosis, are mostly occupationally influenced, and continue to be documented around the world. The tremendous growth of nanotechnology, however, has spurred fears of increased rates of pulmonary diseases, especially fibrosis. The severity of toxicological consequences warrants further examination of the effects of nanoparticles in humans, possible treatments and increased regulatory measures. PMID:18523535

  4. Madecassoside ameliorates bleomycin‐induced pulmonary fibrosis in mice through promoting the generation of hepatocyte growth factor via PPAR‐γ in colon

    PubMed Central

    Xia, Ying; Xia, Yu‐Feng; Lv, Qi; Yue, Meng‐Fan; Qiao, Si‐Miao; Yang, Yan

    2016-01-01

    Background and Purpose Madecassoside has potent anti‐pulmonary fibrosis (PF) effects when administered p.o., despite having extremely low oral bioavailability. Herein, we explored the mechanism of this anti‐PF effect with regard to gut hormones. Experimental Approach A PF model was established in mice by intratracheal instillation of bleomycin. Haematoxylin and eosin stain and Masson's trichrome stain were used to assess histological changes in the lung. Quantitative‐PCR and Western blot detected mRNA and protein levels, respectively, and cytokines were measured by ELISA. Small interfering RNA was used for gene‐silencing. EMSA was applied to detect DNA‐binding activity. Key Results Administration of madecassoside, p.o., but not its main metabolite madecassic acid, exhibited a direct anti‐PF effect in mice. However, i.p. madecassoside had no anti‐PF effect. Madecassoside increased the expression of hepatocyte growth factor (HGF) in colon tissues, and HGF receptor antagonists attenuated its anti‐PF effect. Madecassoside facilitated the secretion of HGF from colonic epithelial cells by activating the PPAR‐γ pathway, as shown by an up‐regulation of PPAR‐γ mRNA expression, nuclear translocation and DNA‐binding activity both in vitro and in vivo. Also GW9662, a selective PPAR‐γ antagonist, almost completely prevented the madecassoside‐induced increased expression of HGF and amelioration of PF. Conclusions and Implications The potent anti‐PF effects induced by p.o. madecassoside in mice are not mediated by its metabolites or itself after absorption into blood. Instead, madecassoside increases the activity of PPAR‐γ, which subsequently increases HGF expression in colonic epithelial cells. HGF then enters into the circulation and lung tissue to exert an anti‐PF effect. PMID:26750154

  5. FGF9 and FGF18 in idiopathic pulmonary fibrosis promote survival and migration and inhibit myofibroblast differentiation of human lung fibroblasts in vitro.

    PubMed

    Joannes, Audrey; Brayer, Stéphanie; Besnard, Valérie; Marchal-Sommé, Joëlle; Jaillet, Madeleine; Mordant, Pierre; Mal, Hervé; Borie, Raphael; Crestani, Bruno; Mailleux, Arnaud A

    2016-04-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by an accumulation of extracellular matrix proteins and fibroblasts in the distal airways. Key developmental lung signaling pathways are reactivated in IPF. For instance, fibroblast growth factor 9 (FGF9) and FGF18, involved in epithelial-mesenchymal interactions, are critical for lung development. We evaluated the expression of FGF9, FGF18, and FGF receptors (FGFRs) in lung tissue from controls and IPF patients and assessed their effect on proliferation, survival, migration, and differentiation of control and IPF human lung fibroblasts (HLFs). FGF9, FGF18, and all FGFRs were present in the remodeled alveolar epithelium close to the fibroblast foci in IPF lungs. FGFR3 was generally detected in fibroblast foci by immunohistochemistry. In vitro, HLFs mainly expressed mesenchyme-associated FGFR isoforms (FGFR1c and FGFR3c) and FGFR4. FGF9 did not affect fibroblast proliferation, whereas FGF18 inhibited cell growth in control fibroblasts. FGF9 and FGF18 decreased Fas-ligand-induced apoptosis in control but not in IPF fibroblasts. FGF9 prevented transforming growth factor β1-induced myofibroblast differentiation. FGF9 and FGF18 increased the migratory capacities of HLF, and FGF9 actively modulated matrix metalloproteinase activity. In addition, FGFR3 inhibition by small interfering RNA impacted p-ERK activation by FGF9 and FGF18 and their effects on differentiation and migration. These results identify FGF9 as an antiapoptotic and promigratory growth factor on HLF, maintaining fibroblasts in an undifferentiated state. The biological effects of FGF9 and FGF18 were partially driven by FGFR3. FGF18 was a less potent molecule. Both growth factors likely contribute to the fibrotic process in vivo.

  6. Madecassoside ameliorates bleomycin-induced pulmonary fibrosis in mice through promoting the generation of hepatocyte growth factor via PPAR-γ in colon.

    PubMed

    Xia, Ying; Xia, Yu-Feng; Lv, Qi; Yue, Meng-Fan; Qiao, Si-Miao; Yang, Yan; Wei, Zhi-Feng; Dai, Yue

    2016-04-01

    Madecassoside has potent anti-pulmonary fibrosis (PF) effects when administered p.o., despite having extremely low oral bioavailability. Herein, we explored the mechanism of this anti-PF effect with regard to gut hormones. A PF model was established in mice by intratracheal instillation of bleomycin. Haematoxylin and eosin stain and Masson's trichrome stain were used to assess histological changes in the lung. Quantitative-PCR and Western blot detected mRNA and protein levels, respectively, and cytokines were measured by ELISA. Small interfering RNA was used for gene-silencing. EMSA was applied to detect DNA-binding activity. Administration of madecassoside, p.o., but not its main metabolite madecassic acid, exhibited a direct anti-PF effect in mice. However, i.p. madecassoside had no anti-PF effect. Madecassoside increased the expression of hepatocyte growth factor (HGF) in colon tissues, and HGF receptor antagonists attenuated its anti-PF effect. Madecassoside facilitated the secretion of HGF from colonic epithelial cells by activating the PPAR-γ pathway, as shown by an up-regulation of PPAR-γ mRNA expression, nuclear translocation and DNA-binding activity both in vitro and in vivo. Also GW9662, a selective PPAR-γ antagonist, almost completely prevented the madecassoside-induced increased expression of HGF and amelioration of PF. The potent anti-PF effects induced by p.o. madecassoside in mice are not mediated by its metabolites or itself after absorption into blood. Instead, madecassoside increases the activity of PPAR-γ, which subsequently increases HGF expression in colonic epithelial cells. HGF then enters into the circulation and lung tissue to exert an anti-PF effect. © 2016 The British Pharmacological Society.

  7. Tumor necrosis factor superfamily 14 (LIGHT) controls thymic stromal lymphopoietin to drive pulmonary fibrosis.

    PubMed

    Herro, Rana; Da Silva Antunes, Ricardo; Aguilera, Amelia Roman; Tamada, Koji; Croft, Michael

    2015-09-01

    Pulmonary fibrosis is characterized by excessive accumulation of collagen and α-smooth muscle actin in the lung. The key molecules that promote these phenotypes are of clinical interest. Thymic stromal lymphopoietin (TSLP) has been found at high levels in patients with asthma and idiopathic pulmonary fibrosis, and TSLP has been proposed as a primary driver of lung fibrotic disease. We asked whether tumor necrosis factor superfamily protein 14 (TNFSF14) (aka LIGHT) controls TSLP production to initiate fibrosis. Expression of TSLP and initiation of pulmonary fibrosis induced by bleomycin were assessed in mice deficient in LIGHT. The ability of recombinant LIGHT, given intratracheally to naive mice, to promote TSLP and fibrosis was also determined. Genetic deletion of LIGHT abolished lung TSLP expression driven by bleomycin, accompanied by near-complete absence of accumulation of lung collagen and α-smooth muscle actin. Furthermore, recombinant LIGHT administered in vivo induced lung expression of TSLP in the absence of other inflammatory stimuli, and strikingly reproduced the primary features of bleomycin-driven disease in a TSLP-dependent manner. Blockade of LIGHT binding to either of its receptors, herpes virus entry mediator and lymphotoxin beta receptor, inhibited clinical symptoms of pulmonary fibrosis, and correspondingly both receptors were found on human bronchial epithelial cells, a primary source of TSLP. Moreover, LIGHT induced TSLP directly in human bronchial epithelial cells and synergized with IL-13 and TGF-β in vivo to promote TSLP in the lungs and drive fibrosis. These results show that LIGHT is a profibrogenic cytokine that may be a key driver of TSLP production during the initiation and development of lung fibrotic disease. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  8. Tumor necrosis factor superfamily 14 (LIGHT) controls TSLP to drive pulmonary fibrosis

    PubMed Central

    Herro, Rana; Da Silva Antunes, Ricardo; Aguilera, Amelia Roman; Tamada, Koji; Croft, Michael

    2015-01-01

    Background Pulmonary fibrosis is characterized by excessive accumulation of collagen and α-smooth muscle actin (aSMA) in the lung. The key molecules that promote these phenotypes are of clinical interest. Objectives TSLP has been found at high levels in patients with asthma and idiopathic pulmonary fibrosis, and TSLP has been proposed as a primary driver of lung fibrotic disease. We asked whether TNFSF14 (aka LIGHT) controls TSLP production to initiate fibrosis. Methods Expression of TSLP and initiation of pulmonary fibrosis induced by bleomycin were assessed in mice deficient in LIGHT. The ability of recombinant LIGHT, given intratracheally to naïve mice, to promote TSLP and fibrosis was also determined. Results Genetic deletion of LIGHT abolished lung TSLP expression driven by bleomycin, accompanied by near-complete absence of accumulation of lung collagen and aSMA. Furthermore, recombinant LIGHT administered in vivo induced lung expression of TSLP in the absence of other inflammatory stimuli, and strikingly reproduced the primary features of bleomycin-driven disease in a TSLP-dependent manner. Blockade of LIGHT binding to either of its receptors, HVEM and LTβR, inhibited clinical symptoms of pulmonary fibrosis, and correspondingly both receptors were found on human bronchial epithelial cells, a primary source of TSLP. Moreover, LIGHT induced TSLP directly in human bronchial epithelial cells and synergized with IL-13 and TGF-β in vivo to promote TSLP in the lungs and drive fibrosis. Conclusions These results show that LIGHT is a profibrogenic cytokine that may be a key driver of TSLP production during the initiation and development of lung fibrotic disease. PMID:25680454

  9. Challenges in pulmonary fibrosis · 2 : Bronchiolocentric fibrosis

    PubMed Central

    Cordier, Jean‐François

    2007-01-01

    Bronchiolocentric fibrosis is essentially represented by the pathological pattern of constrictive fibrotic bronchiolitis obliterans. The corresponding clinical condition (obliterative bronchiolitis) is characterised by dyspnoea, airflow obstruction at lung function testing and air trapping with characteristic mosaic features on expiratory high resolution CT scans. Bronchiolitis obliterans may result from many causes including acute diffuse bronchiolar damage after inhalation of toxic gases or fumes, alloimmune chronic processes after lung or haematopoietic stem cell transplantation, or connective tissue disease (especially rheumatoid arthritis). Airway‐centred interstitial fibrosis and bronchiolar metaplasia are other features of bronchiolocentric fibrosis. PMID:17600295

  10. Collagen polymorphism in idiopathic chronic pulmonary fibrosis.

    PubMed Central

    Seyer, J M; Hutcheson, E T; Kang, A H

    1976-01-01

    Collagens in normal human lung and in idiopathic chronic fibrosis were investigated in terms of their covalent structure and compared for possible alterations in the diseased state. Collagens were solubilized by limited digestion with pepsin under nondenaturing conditions, and after purification they, were fractionated into types I and III. Carboxymethylcellulose and agarose chromatography of both types I and III collagens, and amino acid and carbohydrate analyses of the resulting alpha-chains indicated that the alpha 1 (I), alpha 2, and alpha 1 (III) chains of normal human lung were identical with the human skin alpha-chains in all respects examined except that the normal lung chains contained higher levels of hydroxylysine. Examination of collagens obtained from the diseased lung revealed that the content of hydroxylysine of the alpha 1 (I) and the alpha 1 (III) chains appeared to be diminished as compared to the normal lung chains. The values, expressed as residues per 1,000 residues, are 7.1 and 8.3 for the alpha 1 (I) and the alpha 1 (III) chains, respectively, as compared to 10.0 and 11.1 for the alpha-chains from the normal tissue. The chromatographic properties and amino acid and carbohydrate composition of the alpha-chains from the diseased tissue were otherwise indistinguishable from those of normal lung. In addition, isolation and characterization of the CNBr peptides of alpha 1 (I), alpha 2 and alpha 1 (III) from the diseased lung revealed no significant differences from the CNBr peptides from other human tissues reported previously. Normal and diseased lungs were also digested with CNBr, and the resultant alpha 1 (I) and alpha 1 (III) peptides were separated chromatographically. The relative quantities of these peptides indicate that type III collagen constitutes 33% of the total collagen in normal human lung, with the remainder being type I, whereas in idiopathic chronic pulmonary fibrosis, the relative content of type III collagen is markedly

  11. Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis

    NASA Astrophysics Data System (ADS)

    Kaminski, Naftali; Allard, John D.; Pittet, Jean F.; Zuo, Fengrong; Griffiths, Mark J. D.; Morris, David; Huang, Xiaozhu; Sheppard, Dean; Heller, Renu A.

    2000-02-01

    The molecular mechanisms of pulmonary fibrosis are poorly understood. We have used oligonucleotide arrays to analyze the gene expression programs that underlie pulmonary fibrosis in response to bleomycin, a drug that causes lung inflammation and fibrosis, in two strains of susceptible mice (129 and C57BL/6). We then compared the gene expression patterns in these mice with 129 mice carrying a null mutation in the epithelial-restricted integrin 6 subunit (6/-), which develop inflammation but are protected from pulmonary fibrosis. Cluster analysis identified two distinct groups of genes involved in the inflammatory and fibrotic responses. Analysis of gene expression at multiple time points after bleomycin administration revealed sequential induction of subsets of genes that characterize each response. The availability of this comprehensive data set should accelerate the development of more effective strategies for intervention at the various stages in the development of fibrotic diseases of the lungs and other organs.

  12. Tumor necrosis factor-α accelerates the resolution of established pulmonary fibrosis in mice by targeting profibrotic lung macrophages.

    PubMed

    Redente, Elizabeth F; Keith, Rebecca C; Janssen, William; Henson, Peter M; Ortiz, Luis A; Downey, Gregory P; Bratton, Donna L; Riches, David W H

    2014-04-01

    Idiopathic pulmonary fibrosis (IPF) is a relentless, fibrotic parenchymal lung disease in which alternatively programmed macrophages produce profibrotic molecules that promote myofibroblast survival and collagen synthesis. Effective therapies to treat patients with IPF are lacking, and conventional therapy may be harmful. We tested the hypothesis that therapeutic lung delivery of the proinflammatory cytokine tumor necrosis factor (TNF)-α into wild-type fibrotic mice would reduce the profibrotic milieu and accelerate the resolution of established pulmonary fibrosis. Fibrosis was assessed in bleomycin-instilled wild-type and TNF-α(-/-) mice by measuring hydroxyproline levels, static compliance, and Masson's trichrome staining. Macrophage infiltration and programming status was assessed by flow cytometry of enzymatically digested lung and in situ immunostaining. Pulmonary delivery of TNF-α to wild-type mice with established pulmonary fibrosis was found to reduce their fibrotic burden, to improve lung function and architecture, and to reduce the number and programming status of profibrotic alternatively programmed macrophages. In contrast, fibrosis and alternative macrophage programming were prolonged in bleomycin-instilled TNF-α(-/-) mice. To address the role of the reduced numbers of alternatively programmed macrophages in the TNF-α-induced resolution of established pulmonary fibrosis, we conditionally depleted macrophages in MAFIA (MAcrophage Fas-Induced Apoptosis) mice. Conditional macrophage depletion phenocopied the resolution of established pulmonary fibrosis observed after therapeutic TNF-α delivery. Taken together, our results show for the first time that TNF-α is involved in the resolution of established pulmonary fibrosis via a mechanism involving reduced numbers and programming status of profibrotic macrophages. We speculate that pulmonary delivery of TNF-α or augmenting its signaling pathway represent a novel therapeutic strategy to resolve

  13. Tumor Necrosis Factor-α Accelerates the Resolution of Established Pulmonary Fibrosis in Mice by Targeting Profibrotic Lung Macrophages

    PubMed Central

    Redente, Elizabeth F.; Keith, Rebecca C.; Janssen, William; Henson, Peter M.; Ortiz, Luis A.; Downey, Gregory P.; Bratton, Donna L.

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a relentless, fibrotic parenchymal lung disease in which alternatively programmed macrophages produce profibrotic molecules that promote myofibroblast survival and collagen synthesis. Effective therapies to treat patients with IPF are lacking, and conventional therapy may be harmful. We tested the hypothesis that therapeutic lung delivery of the proinflammatory cytokine tumor necrosis factor (TNF)-α into wild-type fibrotic mice would reduce the profibrotic milieu and accelerate the resolution of established pulmonary fibrosis. Fibrosis was assessed in bleomycin-instilled wild-type and TNF-α−/− mice by measuring hydroxyproline levels, static compliance, and Masson’s trichrome staining. Macrophage infiltration and programming status was assessed by flow cytometry of enzymatically digested lung and in situ immunostaining. Pulmonary delivery of TNF-α to wild-type mice with established pulmonary fibrosis was found to reduce their fibrotic burden, to improve lung function and architecture, and to reduce the number and programming status of profibrotic alternatively programmed macrophages. In contrast, fibrosis and alternative macrophage programming were prolonged in bleomycin-instilled TNF-α−/− mice. To address the role of the reduced numbers of alternatively programmed macrophages in the TNF-α–induced resolution of established pulmonary fibrosis, we conditionally depleted macrophages in MAFIA (MAcrophage Fas-Induced Apoptosis) mice. Conditional macrophage depletion phenocopied the resolution of established pulmonary fibrosis observed after therapeutic TNF-α delivery. Taken together, our results show for the first time that TNF-α is involved in the resolution of established pulmonary fibrosis via a mechanism involving reduced numbers and programming status of profibrotic macrophages. We speculate that pulmonary delivery of TNF-α or augmenting its signaling pathway represent a novel therapeutic strategy to resolve

  14. Deregulation of selective autophagy during aging and pulmonary fibrosis: the role of TGFβ1.

    PubMed

    Sosulski, Meredith L; Gongora, Rafael; Danchuk, Svitlana; Dong, Chunmin; Luo, Fayong; Sanchez, Cecilia G

    2015-10-01

    Aging constitutes a significant risk factor for fibrosis, and idiopathic pulmonary fibrosis (IPF) is characteristically associated with advancing age. We propose that age-dependent defects in the quality of protein and cellular organelle catabolism may be causally related to pulmonary fibrosis. Our research found that autophagy diminished with corresponding elevated levels of oxidized proteins and lipofuscin in response to lung injury in old mice and middle-aged mice compared to younger animals. More importantly, older mice expose to lung injury are characterized by deficient autophagic response and reduced selective targeting of mitochondria for autophagy (mitophagy). Fibroblast to myofibroblast differentiation (FMD) is an important feature of pulmonary fibrosis in which the profibrotic cytokine TGFβ1 plays a pivotal role. Promotion of autophagy is necessary and sufficient to maintain normal lung fibroblasts' fate. On the contrary, FMD mediated by TGFβ1 is characterized by reduced autophagy flux, altered mitophagy, and defects in mitochondrial function. In accord with these findings, PINK1 expression appeared to be reduced in fibrotic lung tissue from bleomycin and a TGFβ1-adenoviral model of lung fibrosis. PINK1 expression is also reduced in the aging murine lung and biopsies from IPF patients compared to controls. Furthermore, deficient PINK1 promotes a profibrotic environment. Collectively, this study indicates that an age-related decline in autophagy and mitophagy responses to lung injury may contribute to the promotion and/or perpetuation of pulmonary fibrosis. We propose that promotion of autophagy and mitochondrial quality control may offer an intervention against age-related fibrotic diseases. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  15. Losartan attenuates paraquat-induced pulmonary fibrosis in rats.

    PubMed

    Guo, F; Sun, Y B; Su, L; Li, S; Liu, Z F; Li, J; Hu, X T; Li, J

    2015-05-01

    Paraquat (PQ) is one of the most widely used herbicides in the world and can cause pulmonary fibrosis in the cases with intoxication. Losartan, an angiotensin II type 1 receptor antagonist, has beneficial effects on the treatment of fibrosis. The aim of this study was to examine the effect of losartan on pulmonary fibrosis in PQ-intoxicated rats. Adult male Sprague Dawley rats (n = 32, 180-220 g) were randomly assigned to four groups: (i) control group; (ii) PQ group; (iii) PQ + losartan 7d group; and (iv) PQ + losartan 14d group. Losartan treatment (intragastrically (i.g.), 10 mg/kg) was performed for 7 and 14 days after a single i.g. dose of 40 mg/kg PQ. All rats were killed on the 16th day, and hematoxylin-eosin and Masson's trichrome staining were used to examine lung injury and fibrosis. The levels of hydroxyproline and transforming growth factor β1 (TGF-β1), matrix metallopeptidase 9 (Mmp9), and tissue inhibitor of metalloproteinase 1 (TIMP-1) messenger RNA (mRNA) expression and relative expression levels of collagen type I and III were also detected. PQ caused a significant increase in hydroxyproline content, mRNA expression of TGF-β1, Mmp9, and TIMP-1, and relative expression levels of collagen type I and III ( p < 0.05), while losartan significantly decreased the amount of hydroxyproline and downregulated TGF-β1, Mmp9, and TIMP-1 mRNA and collagen type I and III expressions ( p < 0.05). Histological examination of PQ-treated rats showed lung injury and widespread inflammatory cell infiltration in the alveolar space and pulmonary fibrosis, while losartan could markedly reduce such damage and prevent pulmonary fibrosis. The results of this study indicated that losartan could reduce lung damage and prevent pulmonary fibrosis induced by PQ.

  16. Telomere Shortening in Familial and Sporadic Pulmonary Fibrosis

    PubMed Central

    Cronkhite, Jennifer T.; Xing, Chao; Raghu, Ganesh; Chin, Kelly M.; Torres, Fernando; Rosenblatt, Randall L.; Garcia, Christine Kim

    2008-01-01

    Rationale: Heterozygous mutations in the coding regions of the telomerase genes, TERT and TERC, have been found in familial and sporadic cases of idiopathic interstitial pneumonia. All affected patients with mutations have short telomeres. Objectives: To test whether telomere shortening is a frequent mechanism underlying pulmonary fibrosis, we have characterized telomere lengths in subjects with familial or sporadic disease who do not have coding mutations in TERT or TERC. Methods: Using a modified Southern blot assay, the telomerase restriction fragment length method, and a quantitative polymerase chain reaction assay we have measured telomere lengths of genomic DNA isolated from circulating leukocytes from normal control subjects and subjects with pulmonary fibrosis. Measurements and Main Results: All affected patients with telomerase mutations, including case subjects heterozygous for newly reported mutations in TERT, have short telomere lengths. A significantly higher proportion of probands with familial pulmonary fibrosis (24%) and sporadic case subjects (23%) in which no coding mutation in TERT or TERC was found had telomere lengths less than the 10th percentile when compared with control subjects (P = 2.6 × 10−8). Pulmonary fibrosis affectation status was significantly associated with telomerase restriction fragment lengths, even after controlling for age, sex, and ethnicity (P = 6.1 × 10−11). Overall, 25% of sporadic cases and 37% of familial cases of pulmonary fibrosis had telomere lengths less than the 10th percentile. Conclusions: A significant fraction of individuals with pulmonary fibrosis have short telomere lengths that cannot be explained by coding mutations in telomerase. Telomere shortening of circulating leukocytes may be a marker for an increased predisposition toward the development of this age-associated disease. PMID:18635888

  17. A new model of progressive pulmonary fibrosis in rats

    SciTech Connect

    Last, J.A.; Gelzleichter, T.R.; Pinkerton, K.E.; Walker, R.M.; Witschi, H. )

    1993-08-01

    Sprague-Dawley rats were exposed for 6 h daily to 0.8 ppm of ozone and 14.4 ppm of nitrogen dioxide. Approximately 7 to 10 wk after the initiation of exposure, animals began to demonstrate respiratory insufficiency and severe weight loss. About half of the rats died between Days 55 and 78 of exposure; no overt ill effects were observed in animals exposed to filtered air, to ozone alone, or to nitrogen dioxide. Biochemical findings in animals exposed to ozone and nitrogen dioxide included increased lung content of DNA, protein, collagen, and elastin, which was about 300% higher than the control values. The collagen-specific crosslink hydroxy-pyridinium, a biomarker for mature collagen in the lung, was decreased by about 40%. These results are consistent with extensive breakdown and remodeling of the lung parenchyma and its associated vasculature. Histopathologic evaluation showed severe fibrosis, alveolar collapse, honeycombing, macrophage and mast cell accumulation, vascular smooth muscle hypertrophy, and other indications of severe progressive interstitial pulmonary fibrosis and end-stage lung disease. This unique animal model of progressive pulmonary fibrosis resembles the final stages of human idiopathic pulmonary fibrosis and should facilitate studying underlying mechanisms and potential therapy of progressive pulmonary fibrosis.

  18. Combined pulmonary fibrosis and emphysema in a welder.

    PubMed

    Roshan, R; Guptal, M; Kulshrestha, R; Menon, B; Chhabra, S K

    2012-03-01

    Combined pulmonary fibrosis and emphysema (CPFE) syndrome is an uncommon entity characterised by emphysema of the upper lobes and diffuse fibrosis of the lower lobes and carries a bad prognosis with the onset of pulmonary hypertension. Lung involvement due to exposures suffered by welders is generally considered benign though, rarely, a diffuse interstitial fibrotic disease has been reported. CPFE syndrome has however never been reported in welders. A 65-year-old man, welder by occupation and an ex-smoker, presented with progressive exertional dyspnoea associated with dry cough noticed for the last four months. On examination, there was mild tachypnea, clubbing and bilateral basal velcro crepitations on chest auscultation. Lung function test revealed mild mixed ventilatory impairment with severe diffusion defect. HRCT chest showed bilateral upper lobe emphysema and diffuse interstitial fibrosis in the lower lobes. Transbronchial lung biopsy revealed interstitial fibrosis, chronic inflammation and iron deposits. A diagnosis of combined pulmonary fibrosis with emphysema (CPFE) with interstitial pulmonary siderofibrosis (IPS) was established. A review of literature did not show any other report of a similar nature.

  19. Centrilobular emphysema combined with pulmonary fibrosis results in improved survival: a response.

    PubMed

    Cottin, Vincent; Cordier, Jean-François; Wells, Athol U

    2011-07-25

    Better survival in combined pulmonary fibrosis and emphysema than in lone pulmonary fibrosis: bias or reality? A response to Centrilobular emphysema combined with pulmonary fibrosis results in improved survival by Todd et al., Fibrogenesis & Tissue Repair 2011, 4:6.Please see related letter http://fibrogenesis.com/content/4/1/17.

  20. Cadherin-11 Regulation of Fibrosis through Modulation of Epithelial-to-Mesenchymal Transition: Implications for Pulmonary Fibrosis in Scleroderma

    DTIC Science & Technology

    2013-10-01

    bleomycin displayed a reduction in lung inflammation and pulmonary fibrosis . Scale bars: 200 mm (H&E), 100 mm (MT); n= 8 mice per group Progress...the process of EMT. This proposal builds on these recent observations and utilizes the IP bleomycin pulmonary fibrosis model. We hypothesize that...Cad11 regulates the EMT in AEC during the development of pulmonary fibrosis and that cadherin-11 is therapeutic target in the intraperitoneal bleomycin

  1. Severe pulmonary hypertension due to combined pulmonary fibrosis and emphysema: another cause of death among smokers

    PubMed Central

    Hirano, André Carramenha de Góes; Targueta, Eduardo Pelegrineti; Martines, João Augusto dos Santos; Andrade, Dafne; Lovisolo, Silvana Maria; Felipe-Silva, Aloisio

    2017-01-01

    In 2005, the combined pulmonary fibrosis and emphysema (CPFE) was first defined as a distinct entity, which comprised centrilobular or paraseptal emphysema in the upper pulmonary lobes, and fibrosis in the lower lobes accompanied by reduced diffused capacity of the lungs for carbon monoxide (DLCO). Recently, the fibrosis associated with the connective tissue disease was also included in the diagnosis of CPFE, although the exposure to tobacco, coal, welding, agrochemical compounds, and tire manufacturing are the most frequent causative agents. This entity characteristically presents reduced DLCO with preserved lung volumes and severe pulmonary hypertension, which is not observed in emphysema and fibrosis alone. We present the case of a 63-year-old woman with a history of heavy tobacco smoking abuse, who developed progressive dyspnea, severe pulmonary hypertension, and cor pulmonale over a 2-year period. She attended the emergency facility several times complaining of worsening dyspnea that was treated as decompensate chronic obstructive pulmonary disease (COPD). The imaging examination showed paraseptal emphysema in the upper pulmonary lobes and fibrosis in the middle and lower lobes. The echo Doppler cardiogram revealed the dilation of the right cardiac chambers and pulmonary hypertension, which was confirmed by pulmonary trunk artery pressure measurement by catheterization. During this period, she was progressively restricted to the minimal activities of daily life and dependent on caregivers. She was brought to the hospital neurologically obtunded, presenting anasarca, and respiratory failure, which led her to death. The autopsy showed signs of pulmonary hypertension and findings of fibrosis and emphysema in the histological examination of the lungs. The authors highlight the importance of the recognition of this entity in case of COPD associated with severe pulmonary hypertension of unknown cause. PMID:28740835

  2. Combined pulmonary fibrosis and emphysema: a distinct underrecognised entity.

    PubMed

    Cottin, V; Nunes, H; Brillet, P-Y; Delaval, P; Devouassoux, G; Tillie-Leblond, I; Israel-Biet, D; Court-Fortune, I; Valeyre, D; Cordier, J-F

    2005-10-01

    The syndrome resulting from combined pulmonary fibrosis and emphysema has not been comprehensively described. The current authors conducted a retrospective study of 61 patients with both emphysema of the upper zones and diffuse parenchymal lung disease with fibrosis of the lower zones of the lungs on chest computed tomography. Patients (all smokers) included 60 males and one female, with a mean age of 65 yrs. Dyspnoea on exertion was present in all patients. Basal crackles were found in 87% and finger clubbing in 43%. Pulmonary function tests were as follows (mean+/-sd): total lung capacity 88%+/-17, forced vital capacity (FVC) 88%+/-18, forced expiratory volume in one second (FEV1) 80%+/-21 (% predicted), FEV1/FVC 69%+/-13, carbon monoxide diffusion capacity of the lung 37%+/-16 (% predicted), carbon monoxide transfer coefficient 46%+/-19. Pulmonary hypertension was present in 47% of patients at diagnosis, and 55% during follow-up. Patients were followed for a mean of 2.1+/-2.8 yrs from diagnosis. Survival was 87.5% at 2 yrs and 54.6% at 5 yrs, with a median of 6.1 yrs. The presence of pulmonary hypertension at diagnosis was a critical determinant of prognosis. The authors hereby individualise the computer tomography-defined syndrome of combined pulmonary fibrosis and emphysema characterised by subnormal spirometry, severe impairment of gas exchange, high prevalence of pulmonary hypertension, and poor survival.

  3. Centrilobular emphysema combined with pulmonary fibrosis results in improved survival

    PubMed Central

    2011-01-01

    Background We hypothesized that, in patients with pulmonary fibrosis combined with emphysema, clinical characteristics and outcomes may differ from patients with pulmonary fibrosis without emphysema. We identified 102 patients who met established criteria for pulmonary fibrosis. The amount of emphysema (numerical score) and type of emphysema (centrilobular, paraseptal, or mixed) were characterized in each patient. Clinical characteristics, pulmonary function tests and patient survival were analysed. Results Based on the numerical emphysema score, patients were classified into those having no emphysema (n = 48), trivial emphysema (n = 26) or advanced emphysema (n = 28). Patients with advanced emphysema had a significantly higher amount of smoking in pack/years than patients with no emphysema or trivial emphysema (P < 0.0001). Median survival [1st, 3rd quartiles] of patients with advanced emphysema was 63 [36, 82] months compared to 29 [18, 49] months in patients without emphysema and 32 [19, 48] months in patients with trivial emphysema (P < 0.001). Median forced vital capacity (FVC) and total lung capacity (TLC) were higher in the advanced emphysema group compared to patients with no emphysema (P < 0.01 and P < 0.001, respectively), whereas median DLCO did not differ among groups and was overall low. Within the advanced emphysema group (n = 28), further characterization of the type of emphysema was performed and, within these subgroups of patients, survival was 75 [58, 85] months for patients with centrilobular emphysema, 75 [48, 85] months for patients with mixed centrilobular/paraseptal emphysema, and 24 [22, 35] months for patients with paraseptal emphysema (P < 0.01). Patients with advanced paraseptal emphysema had similar survival times to patients without emphysema. Conclusions Patients with pulmonary fibrosis combined with advanced centrilobular or mixed emphysema have an improved survival compared with patients with pulmonary fibrosis without emphysema

  4. Targeting the isoprenoid pathway to abrogate progression of pulmonary fibrosis

    PubMed Central

    Ryan, Alan J.; Shi, Lei; Glogauer, Michael; Neighbors, Jeffrey D.; Hohl, Raymond; Carter, A. Brent

    2015-01-01

    Fibrotic remodeling in lung injury is a major cause of morbidity. The mechanism that mediates the ongoing fibrosis is unclear, and there is no available treatment to abate the aberrant repair. Reactive oxygen species (ROS) have a critical role in inducing fibrosis by modulating extracellular matrix deposition. Specifically, mitochondrial hydrogen peroxide (H2O2) production by alveolar macrophages is directly linked to pulmonary fibrosis as inhibition of mitochondrial H2O2 attenuates the fibrotic response in mice. Prior studies indicate that the small GTP-binding protein, Rac1, directly mediates H2O2 generation in the mitochondrial intermembrane space. Geranylgeranylation of the C-terminal cysteine residue (Cys189) is required for the for Rac1 activation and mitochondrial import. We hypothesized that impairment of geranylgeranylation would limit mitochondrial oxidative stress, and, thus, abrogate progression of pulmonary fibrosis. By targeting the isoprenoid pathway with a novel agent, digeranyl bisphosphonate (DGBP), which impairs geranylgeranylation, we demonstrate that Rac1 mitochondrial import, mitochondrial oxidative stress, and progression of the fibrotic response to lung injury are significantly attenuated. These observations reveal that targeting the isoprenoid pathway to alter Rac1 geranylgeranylation halts the progression of pulmonary fibrosis after lung injury. PMID:25958207

  5. Emodin alleviates bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Guan, Ruijuan; Zhao, Xiaomei; Wang, Xia; Song, Nana; Guo, Yuhong; Yan, Xianxia; Jiang, Liping; Cheng, Wenjing; Shen, Linlin

    2016-11-16

    Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease with few treatment options and poor prognosis. Emodin, extracted from Chinese rhubarb, was found to be able to alleviate bleomycin (BLM)-induced pulmonary fibrosis, yet the underlying mechanism remains largely unknown. This study aimed to further investigate the effects of emodin on the inflammation and fibrosis of BLM-induced pulmonary fibrosis and the mechanism involved in rats. Our results showed that emodin improved pulmonary function, reduced weight loss and prevented death in BLM-treated rats. Emodin significantly relieved lung edema and fibrotic changes, decreased collagen deposition, and suppressed the infiltration of myofibroblasts [characterized by expression of α-smooth muscle actin (α-SMA)] and inflammatory cells (mainly macrophages and lymphocytes). Moreover, emodin reduced levels of TNF-α, IL-6, TGF-β1 and heat shock protein (HSP)-47 in the lungs of BLM-treated rats. In vitro, emodin profoundly inhibited TGF-β1-induced α-SMA, collagen IV and fibronectin expression in human embryo lung fibroblasts (HELFs). Emodin also inhibited TGF-β1-induced Smad2/3 and STAT3 activation, indicating that Smad2/3 and STAT3 inactivation mediates emodin-induced effects on TGF-β1-induced myofibroblast differentiation. These results suggest that emodin can exert its anti-fibrotic effect via suppression of TGF-β1 signaling and subsequently inhibition of inflammation, HSP-47 expression, myofibroblast differentiation and extracellular matrix (ECM) deposition.

  6. Gender-based differences in bleomycin-induced pulmonary fibrosis.

    PubMed

    Gharaee-Kermani, Mehrnaz; Hatano, Kazuo; Nozaki, Yasuhiro; Phan, Sem H

    2005-06-01

    The role of gender and sex hormones is unclear in host response to lung injury, inflammation, and fibrosis. To examine gender influence on pulmonary fibrosis, male and female rats were given endotracheal injections of either saline or bleomycin. Female rats showed higher mortality rates and more severe fibrosis than did male rats, as indicated by higher levels of lung collagen deposition and fibrogenic cytokine expression. To clarify the potential role of female sex hormones in lung fibrosis, female rats were ovariectomized and treated with either estradiol or vehicle plus endotracheal injections of either saline or bleomycin. The results showed diminished fibrosis in the ovariectomized, bleomycin-treated rats without hormone replacement. Estradiol replacement restored the fibrotic response to that of the intact female mice in terms of lung collagen deposition and cytokine expression, which was accompanied by higher plasma estradiol levels. Furthermore, fibroblasts from bleomycin-treated rats exhibited increased responsiveness to estradiol treatment, causing dose-dependent increases in procollagen 1 and transforming growth factor-beta1 mRNA expression relative to untreated controls. Taken together these findings suggest that female mice may have an exaggerated response to lung injury relative to male mice because of female sex hormones, which have direct fibrogenic activity on lung fibroblasts. This may provide a mechanism for a hormonally mediated intensification of pulmonary fibrosis.

  7. Combined pulmonary fibrosis and emphysema: an increasingly recognized condition* **

    PubMed Central

    Dias, Olívia Meira; Baldi, Bruno Guedes; Costa, André Nathan; Carvalho, Carlos Roberto Ribeiro

    2014-01-01

    Combined pulmonary fibrosis and emphysema (CPFE) has been increasingly recognized in the literature. Patients with CPFE are usually heavy smokers or former smokers with concomitant lower lobe fibrosis and upper lobe emphysema on chest HRCT scans. They commonly present with severe breathlessness and low DLCO, despite spirometry showing relatively preserved lung volumes. Moderate to severe pulmonary arterial hypertension is common in such patients, who are also at an increased risk of developing lung cancer. Unfortunately, there is currently no effective treatment for CPFE. In this review, we discuss the current knowledge of the pathogenesis, clinical characteristics, and prognostic factors of CPFE. Given that most of the published data on CPFE are based on retrospective analysis, more studies are needed in order to address the role of emphysema and its subtypes; the progression of fibrosis/emphysema and its correlation with inflammation; treatment options; and prognosis. PMID:25029654

  8. A novel telomerase activator suppresses lung damage in a murine model of idiopathic pulmonary fibrosis.

    PubMed

    Le Saux, Claude Jourdan; Davy, Philip; Brampton, Christopher; Ahuja, Seema S; Fauce, Steven; Shivshankar, Pooja; Nguyen, Hieu; Ramaseshan, Mahesh; Tressler, Robert; Pirot, Zhu; Harley, Calvin B; Allsopp, Richard

    2013-01-01

    The emergence of diseases associated with telomere dysfunction, including AIDS, aplastic anemia and pulmonary fibrosis, has bolstered interest in telomerase activators. We report identification of a new small molecule activator, GRN510, with activity ex vivo and in vivo. Using a novel mouse model, we tested the potential of GRN510 to limit fibrosis induced by bleomycin in mTERT heterozygous mice. Treatment with GRN510 at 10 mg/kg/day activated telomerase 2-4 fold both in hematopoietic progenitors ex vivo and in bone marrow and lung tissue in vivo, respectively. Telomerase activation was countered by co-treatment with Imetelstat (GRN163L), a potent telomerase inhibitor. In this model of bleomycin-induced fibrosis, treatment with GRN510 suppressed the development of fibrosis and accumulation of senescent cells in the lung via a mechanism dependent upon telomerase activation. Treatment of small airway epithelial cells (SAEC) or lung fibroblasts ex vivo with GRN510 revealed telomerase activating and replicative lifespan promoting effects only in the SAEC, suggesting that the mechanism accounting for the protective effects of GRN510 against induced lung fibrosis involves specific types of lung cells. Together, these results support the use of small molecule activators of telomerase in therapies to treat idiopathic pulmonary fibrosis.

  9. Vagotomy attenuates bleomycin-induced pulmonary fibrosis in mice

    PubMed Central

    Song, Nana; Liu, Jun; Shaheen, Saad; Du, Lei; Proctor, Mary; Roman, Jesse; Yu, Jerry

    2015-01-01

    The progression of pulmonary fibrosis (PF) entails a complex network of interactions between multiple classes of molecules and cells, which are closely related to the vagus nerve. Stimulation of the vagus nerve increases fibrogenic cytokines in humans, therefore, activation of the nerve may promote PF. The hypothesis was tested by comparing the extent and severity of fibrosis in lungs with and without vagal innervation in unilaterally vagotomized mice. The results show that in vagotomized lungs, there were less collagen staining, less severe fibrotic foci (subpleural, peri-vascular and peri-bronchiolar lesions) and destruction of alveolar architecture; decreased collagen deposition (denervated vs intact: COL1α1, 19.1 ± 2.2 vs 22.0 ± 2.6 ng/mg protein; COL1α2, 4.5 ± 0.3 vs 5.7 ± 0.5 ng/mg protein; p < 0.01, n = 21) and protein levels of transforming growth factor beta and interleukin 4; and fewer myofibroblast infiltration (denervated vs intact: 1.2 ± 0.2 vs 3.2 ± 0.6 cells/visual field; p < 0.05, n = 6) and M2 macrophages [though the infiltration of macrophages was increased (denervated vs intact: 112 ± 8 vs 76 ± 9 cells/visual field; p < 0.01, n = 6), the percentage of M2 macrophages was decreased (denervated vs intact: 31 ± 4 vs 57 ± 9%; p < 0.05, n = 5)]. It indicated that the vagus nerve may influence PF by enhancing fibrogenic factors and fibrogenic cells. PMID:26289670

  10. Lung-specific loss of α3 laminin worsens bleomycin-induced pulmonary fibrosis.

    PubMed

    Morales-Nebreda, Luisa I; Rogel, Micah R; Eisenberg, Jessica L; Hamill, Kevin J; Soberanes, Saul; Nigdelioglu, Recep; Chi, Monica; Cho, Takugo; Radigan, Kathryn A; Ridge, Karen M; Misharin, Alexander V; Woychek, Alex; Hopkinson, Susan; Perlman, Harris; Mutlu, Gokhan M; Pardo, Annie; Selman, Moises; Jones, Jonathan C R; Budinger, G R Scott

    2015-04-01

    Laminins are heterotrimeric proteins that are secreted by the alveolar epithelium into the basement membrane, and their expression is altered in extracellular matrices from patients with pulmonary fibrosis. In a small number of patients with pulmonary fibrosis, we found that the normal basement membrane distribution of the α3 laminin subunit was lost in fibrotic regions of the lung. To determine if these changes play a causal role in the development of fibrosis, we generated mice lacking the α3 laminin subunit specifically in the lung epithelium by crossing mice expressing Cre recombinase driven by the surfactant protein C promoter (SPC-Cre) with mice expressing floxed alleles encoding the α3 laminin gene (Lama3(fl/fl)). These mice exhibited no developmental abnormalities in the lungs up to 6 months of age, but, compared with control mice, had worsened mortality, increased inflammation, and increased fibrosis after the intratracheal administration of bleomycin. Similarly, the severity of fibrosis induced by an adenovirus encoding an active form of transforming growth factor-β was worse in mice deficient in α3 laminin in the lung. Taken together, our results suggest that the loss of α3 laminin in the lung epithelium does not affect lung development, but plays a causal role in the development of fibrosis in response to bleomycin or adenovirally delivered transforming growth factor-β. Thus, we speculate that the loss of the normal basement membrane organization of α3 laminin that we observe in fibrotic regions from the lungs of patients with pulmonary fibrosis contributes to their disease progression.

  11. Lung-Specific Loss of α3 Laminin Worsens Bleomycin-Induced Pulmonary Fibrosis

    PubMed Central

    Morales-Nebreda, Luisa I.; Rogel, Micah R.; Eisenberg, Jessica L.; Hamill, Kevin J.; Soberanes, Saul; Nigdelioglu, Recep; Chi, Monica; Cho, Takugo; Radigan, Kathryn A.; Ridge, Karen M.; Misharin, Alexander V.; Woychek, Alex; Hopkinson, Susan; Perlman, Harris; Mutlu, Gokhan M.; Pardo, Annie; Selman, Moises; Jones, Jonathan C. R.

    2015-01-01

    Laminins are heterotrimeric proteins that are secreted by the alveolar epithelium into the basement membrane, and their expression is altered in extracellular matrices from patients with pulmonary fibrosis. In a small number of patients with pulmonary fibrosis, we found that the normal basement membrane distribution of the α3 laminin subunit was lost in fibrotic regions of the lung. To determine if these changes play a causal role in the development of fibrosis, we generated mice lacking the α3 laminin subunit specifically in the lung epithelium by crossing mice expressing Cre recombinase driven by the surfactant protein C promoter (SPC-Cre) with mice expressing floxed alleles encoding the α3 laminin gene (Lama3fl/fl). These mice exhibited no developmental abnormalities in the lungs up to 6 months of age, but, compared with control mice, had worsened mortality, increased inflammation, and increased fibrosis after the intratracheal administration of bleomycin. Similarly, the severity of fibrosis induced by an adenovirus encoding an active form of transforming growth factor-β was worse in mice deficient in α3 laminin in the lung. Taken together, our results suggest that the loss of α3 laminin in the lung epithelium does not affect lung development, but plays a causal role in the development of fibrosis in response to bleomycin or adenovirally delivered transforming growth factor-β. Thus, we speculate that the loss of the normal basement membrane organization of α3 laminin that we observe in fibrotic regions from the lungs of patients with pulmonary fibrosis contributes to their disease progression. PMID:25188360

  12. Pulmonary fibrosis and emphysema: Is the emphysema type associated with the pattern of fibrosis?

    PubMed Central

    Oikonomou, Anastasia; Mintzopoulou, Paraskevi; Tzouvelekis, Argyris; Zezos, Petros; Zacharis, George; Koutsopoulos, Anastasios; Bouros, Demosthenes; Prassopoulos, Panos

    2015-01-01

    AIM: To investigate whether the predominant emphysema type is associated with the high resolution computed tomography (HRCT) pattern of fibrosis in combined pulmonary fibrosis and emphysema (CPFE). METHODS: Fifty-three smokers with upper lobe emphysema and lower lobe pulmonary fibrosis on - HRCT - were retrospectively evaluated. Patients were stratified into 3 groups according to the predominant type of emphysema: Centrilobular (CLE), paraseptal (PSE), CLE = PSE. Patients were also stratified into 3 other groups according to the predominant type of fibrosis on HRCT: Typical usual interstitial pneumonia (UIP), probable UIP and nonspecific interstitial pneumonia (NSIP). HRCTs were scored at 5 predetermined levels for the coarseness of fibrosis (Coarseness), extent of emphysema (emphysema), extent of interstitial lung disease (TotExtILD), extent of reticular pattern not otherwise specified (RetNOS), extent of ground glass opacity with traction bronchiectasis (extGGOBx), extent of pure ground glass opacity and extent of honeycombing. HRCT mean scores, pulmonary function tests, diffusion capacity (DLCO) and systolic pulmonary arterial pressure were compared among the groups. RESULTS: The predominant type of emphysema was strongly correlated with the predominant type of fibrosis. The centrilobular emphysema group exhibited a significantly higher extent of emphysema (P < 0.001) and a lower extent of interstitial lung disease (P < 0.002), reticular pattern not otherwise specified (P < 0.023), extent of ground glass opacity with traction bronchiectasis (P < 0.002), extent of honeycombing (P < 0.001) and coarseness of fibrosis (P < 0.001) than the paraseptal group. The NSIP group exhibited a significantly higher extent of emphysema (P < 0.05), total lung capacity (P < 0.01) and diffusion capacity (DLCO) (P < 0.05) than the typical UIP group. The typical UIP group exhibited a significantly higher extent of interstitial lung disease, extent of reticular pattern not otherwise

  13. Assessing idiopathic pulmonary fibrosis (IPF) with bronchoscopic OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hariri, Lida P.; Adams, David C.; Colby, Thomas V.; Tager, Andrew M.; Suter, Melissa J.

    2016-03-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal form of fibrotic lung disease, with a 3 year survival rate of 50%. Diagnostic certainty of IPF is essential to determine the most effective therapy for patients, but often requires surgery to resect lung tissue and look for microscopic honeycombing not seen on chest computed tomography (CT). Unfortunately, surgical lung resection has high risks of associated morbidity and mortality in this patient population. We aim to determine whether bronchoscopic optical coherence tomography (OCT) can serve as a novel, low-risk paradigm for in vivo IPF diagnosis without surgery or tissue removal. OCT provides rapid 3D visualization of large tissue volumes with microscopic resolutions well beyond the capabilities of CT. We have designed bronchoscopic OCT catheters to effectively and safely access the peripheral lung, and conducted in vivo peripheral lung imaging in patients, including those with pulmonary fibrosis. We utilized these OCT catheters to perform bronchoscopic imaging in lung tissue from patients with pulmonary fibrosis to determine if bronchoscopic OCT could successfully visualize features of IPF through the peripheral airways. OCT was able to visualize characteristic features of IPF through the airway, including microscopic honeycombing (< 1 mm diameter) not visible by CT, dense peripheral fibrosis, and spatial disease heterogeneity. These findings support the potential of bronchoscopic OCT as a minimally-invasive method for in vivo IPF diagnosis. However, future clinical studies are needed to validate these findings.

  14. Erdosteine prevents bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Sogut, Sadik; Ozyurt, Huseyin; Armutcu, Ferah; Kart, Levent; Iraz, Mustafa; Akyol, Omer; Ozen, Suleyman; Kaplan, Suleyman; Temel, Ismail; Yildirim, Zeki

    2004-06-28

    Oxidative stress plays an important role in the pathogenesis of idiopathic pulmonary fibrosis. Therefore, erdosteine, an antioxidant, is expected to have an inhibitor potential against the disease. Rats were given one dose of bleomycin in pulmonary fibrosis groups and saline in controls. The first dose of oral erdosteine (10 mg/kg/day) was given 2 days before the bleomycin injection to achieve the plateau level in blood and continued until killing. At day 14, fibrotic changes were evaluated, using Aschoft's criteria and lung hydroxyproline content. Bleomycin produced a fivefold increase in fibrosis score that was decreased by 87% by erdosteine (P>0.001) and almost twofold increases in hydroxyproline content which were completely prevented by erdosteine. Myeloperoxidase activities and MDA levels, which were significantly higher in the bleomycin group, were then significantly attenuated by erdosteine. These results revealed that oral erdosteine may prevent the development of acute pulmonary inflammation caused by bleomycin injection via the repression of neutrophil accumulation and lipid peroxidation, resulting in the inhibition of subsequent lung fibrosis.

  15. Physiological Profile and Limitations in Exercise in Idiopathic Pulmonary Fibrosis.

    PubMed

    Vainshelboim, Baruch; Oliveira, Jose; Fox, Benjamin Daniel; Adir, Yochai; Ollech, Jacob Eliezer; Kramer, Mordechai Reuven

    2016-01-01

    This study aimed to describe the physiological profile and limiting factors during exercise among patients with idiopathic pulmonary fibrosis. A descriptive study involving 34 patients with idiopathic pulmonary fibrosis (22 men) aged 68 ± 8 years was conducted. All patients completed a pulmonary function test, cardiopulmonary exercise test, Doppler echocardiography, 6-minute walk test, and modified Medical Research Council dyspnea evaluation. Approximately 38% of patients (range, 15%-71%) presented with coexisting comorbidities including pulmonary hypertension and emphysema. Modified Medical Research Council grades 0-2 and 3-4 were assigned to 68% and 32% of patients, respectively. Median values for forced vital capacity and diffusion capacity for carbon monoxide percent (%) predicted were 68 (95% CI, 63-76) and 51 (95% CI, 46-55), respectively. Left ventricular systolic function was normal. Aerobic capacity ((Equation is included in full-text article.)O2peak = 13.4 mL/kg/min [95% CI, 12.6-14.9]; 62% predicted [95% CI, 56-67]) was moderately reduced with the presence of abnormalities in pulmonary gas exchange and desaturation, circulatory impairments, inefficient ventilation, and skeletal muscle dysfunction. Functional capacity was normal (6-minute walk test distance = 505 m [95% CI, 435-522]; 99% predicted [95% CI, 91-108]). The physiological profile demonstrated the presence of comorbidities in approximately 38% of patients with idiopathic pulmonary fibrosis and a moderate level of dyspnea. Resting cardiopulmonary function showed moderate pulmonary restriction and severe impairments in diffusion capacity with normal left ventricular systolic function. Multifactorial limitations for a moderately diminished aerobic capacity were revealed during the cardiopulmonary exercise test, although functional capacity was normal. These results emphasize the significance of a meticulous evaluation, including the cardiopulmonary exercise test for an accurate exercise tolerance

  16. Targeting sphingosine kinase 1 attenuates bleomycin-induced pulmonary fibrosis.

    PubMed

    Huang, Long Shuang; Berdyshev, Evgeny; Mathew, Biji; Fu, Panfeng; Gorshkova, Irina A; He, Donghong; Ma, Wenli; Noth, Imre; Ma, Shwu-Fan; Pendyala, Srikanth; Reddy, Sekhar P; Zhou, Tong; Zhang, Wei; Garzon, Steven A; Garcia, Joe G N; Natarajan, Viswanathan

    2013-04-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease, wherein transforming growth factor β (TGF-β) and sphingosine-1-phosphate (S1P) contribute to the pathogenesis of fibrosis. However, the in vivo contribution of sphingosine kinase (SphK) in fibrotic processes has not been documented. Microarray analysis of blood mononuclear cells from patients with IPF and SphK1- or SphK2-knockdown mice and SphK inhibitor were used to assess the role of SphKs in fibrogenesis. The expression of SphK1/2 negatively correlated with lung function and survival in patients with IPF. Also, the expression of SphK1 was increased in lung tissues from patients with IPF and bleomycin-challenged mice. Knockdown of SphK1, but not SphK2, increased survival and resistance to pulmonary fibrosis in bleomycin-challenged mice. Administration of SphK inhibitor reduced bleomycin-induced mortality and pulmonary fibrosis in mice. Knockdown of SphK1 or treatment with SphK inhibitor attenuated S1P generation and TGF-β secretion in a bleomycin-induced lung fibrosis mouse model that was accompanied by reduced phosphorylation of Smad2 and MAPKs in lung tissue. In vitro, bleomycin-induced expression of SphK1 in lung fibroblast was found to be TGF-β dependent. Taken together, these data indicate that SphK1 plays a critical role in the pathology of lung fibrosis and is a novel therapeutic target.

  17. Smad3 signaling involved in pulmonary fibrosis and emphysema.

    PubMed

    Gauldie, Jack; Kolb, Martin; Ask, Kjetil; Martin, Gail; Bonniaud, Philippe; Warburton, David

    2006-11-01

    The incidence of finding evidence of both emphysema and pulmonary fibrosis in the same patient has received increased attention. Several investigators have found on biopsy the presence of emphysema of the upper zones and diffuse parenchymal disease with fibrosis of the lower zones of the lung, especially associated with current or previous heavy smokers. Believed previously to be two different disease mechanisms, there are now data to implicate some common pathways of cell and molecular activation leading to the different morphologic and physiologic outcomes. According to a current view, emphysema may originate from a protease/antiprotease imbalance, whereas a role for antiproteases has been proposed in the modulation of fibrosis. Overexpression of transforming growth factor beta (TGF-beta) in experimental rodent models leads to progressive pulmonary fibrosis, accompanied with marked up-regulation of protease inhibitors, such as tissue inhibitor of metalloproteinases (TIMP) and plasminogen activator inhibitor-1 (PAI-1) genes, along with excessive matrix accumulation. It may be that a "matrix degrading" pulmonary microenvironment, one in which metalloproteinase activities prevail, favors the development of emphysema, whereas a "matrix nondegrading" microenvironment, with enhanced presence of TIMPs, would lead to matrix accumulation and fibrosis. Surprisingly, although Smad3 null mice, deficient in TGF-beta signal transmission, are resistant to bleomycin- and TGF-beta-mediated fibrosis, they develop spontaneous age-related airspace enlargement, consistent with emphysema, with a lack of ability to repair tissue damage appropriately. A common element is tissue damage and repair, with TGF-beta and the Smad signaling pathway playing prominent molecular roles. Both changes can be followed in experimental models with noninvasive imaging and physiologic measurements.

  18. Assessing idiopathic pulmonary fibrosis (IPF) with bronchoscopic OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hariri, Lida P.; Adams, David C.; Colby, Thomas V.; Tager, Andrew M.; Suter, Melissa J.

    2016-03-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal form of fibrotic lung disease, with a significantly worse prognosis than other forms of pulmonary fibrosis (3-year survival rate of 50%). Distinguishing IPF from other fibrotic diseases is essential to patient care because it stratifies prognosis and therapeutic decision-making. However, making the diagnosis often requires invasive, high-risk surgical procedures to look for microscopic features not seen on chest CT, such as characteristic cystic honeycombing in the peripheral lung. Optical coherence tomography (OCT) provides rapid 3D visualization of large tissue volumes with microscopic resolutions well beyond the capabilities of CT. We aim to determine whether bronchoscopic OCT can provide a low-risk, non-surgical method for IPF diagnosis. We have developed bronchoscopic OCT catheters that access the peripheral lung and conducted in vivo peripheral lung imaging in patients, including those with pulmonary fibrosis. We also conducted bronchoscopic OCT in ex vivo lung from pulmonary fibrosis patients, including IPF, to determine if OCT could successfully visualize features of IPF through the peripheral airways. Our results demonstrate that OCT is able to visualize characteristic features of IPF through the airway, including microscopic honeycombing (< 1 mm diameter) not visible by CT, dense peripheral fibrosis, and spatial disease heterogeneity. We also found that OCT has potential to distinguish mimickers of IPF honeycombing, such as traction bronchiectasis and emphysema, from true honeycombing. These findings support the potential of bronchoscopic OCT as a minimally-invasive method for in vivo IPF diagnosis. However, future clinical studies are needed to validate these findings.

  19. Bilateral versus single lung transplant for idiopathic pulmonary fibrosis.

    PubMed

    Lehmann, Sven; Uhlemann, Madlen; Leontyev, Sergey; Seeburger, Joerg; Garbade, Jens; Merk, Denis R; Bittner, Hartmuth B; Mohr, Friedrich W

    2014-10-01

    It is unknown if uni- or bilateral lung transplant is best for treatment of usual idiopathic pulmonary fibrosis. We reviewed our single-center experience comparing both treatments. Between 2002 and 2011, one hundred thirty-eight patients at our institution underwent a lung transplant. Of these, 58 patients presented with idiopathic pulmonary fibrosis (56.9%) and were the focus of this study. Thirty-nine patients received a single lung transplant and 19 patients a bilateral sequential lung transplant. The mean patient age was 54 ± 10 years, and 69% were male. The intraoperative course was uneventful, save for 7 patients who needed extracorporeal membrane oxygenation support. Three patients had respiratory failure before the lung transplant that required mechanical ventilation and was supported by extracorporeal membrane oxygenation. Elevated pulmonary artery pressure > 40 mm Hg was identified as an independent predictor of early mortality by uni- and multivariate analysis (P = .01; OR 9.7). Using a Cox regression analysis, postoperative extracorporeal membrane oxyge-nation therapy (P = .01; OR 10.2) and the need for > 10 red blood cell concentrate during the first 72 hours after lung transplant (P = .01; OR 5.6) were independent predictors of long-term survival. Actuarial survival at 1 and 5 years was 65.6% and 55.3%, with no significant between-group differences (70.6% and 54.3%). Lung transplant is a safe and curative treatment for idiopathic pulmonary fibrosis. According to our results, unilateral lung transplant for idiopathic pulmonary fibrosis is an alternative to bilateral lung transplant and may affect the allocation process.

  20. Pulmonary fibrosis and exposure to steel welding fume.

    PubMed

    Cosgrove, M P

    2015-12-01

    Arc welders who have been exposed to high concentrations of steel welding fume for prolonged periods of time may develop pulmonary fibrosis but the nature of the fibrotic changes has been debated over the last 80 years without any clear international consensus. To characterize the nature of the pulmonary fibrosis that develops in response to steel welding fume exposure and to provide a working hypothesis that would explain the findings of the existing research, to provide a platform for future research and to inform future occupational and clinical management of welders with pulmonary effects from welding fume. Review of the world literature on pulmonary fibrosis and welding of steel in all languages using PubMed, with further secondary search of references in the articles found in the primary search. Google and Reference Manager were used as further confirmatory search tools. Only case series and case reports were found but these provided consistent evidence that the consequence of exposure to steel welding fume at high levels for a prolonged period of time is a type of pulmonary fibrosis similar to, and possibly the same as, respiratory bronchiolitis which eventually develops into desquamative interstitial pneumonia with ongoing exposure. Steel welding fume may cause an occupational respiratory bronchiolitis which may develop into de squamative interstitial pneumonia with ongoing exposure. This concept may explain the difficulties in interpreting the wider literature on welding fume and lung function at lower exposures and may also explain the increased risk of lung cancer in welders. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Perceptions, experiences and needs of patients with idiopathic pulmonary fibrosis

    PubMed Central

    Duck, Annette; Spencer, Lisa G; Bailey, Simon; Leonard, Colm; Ormes, Jennifer; Caress, Ann-Louise

    2015-01-01

    Aims To understand the perceptions, needs and experiences of patients with Idiopathic Pulmonary Fibrosis. Background Idiopathic pulmonary fibrosis is a progressive interstitial lung disease, with a mean life expectancy similar to some forms of cancer of 2–4 years from diagnosis. Unlike the cancer literature, which is rich with studies exploring the needs of their disease group, few publications exist on patient needs with this severe fibrotic lung disease. Design A Qualitative study which took place between 2007–2012. Methods Seventeen patients with a multidisciplinary team confirmed diagnosis of Idiopathic Pulmonary Fibrosis, with moderate to advanced disease severity and six of their informal carers were interviewed. An interview topic guide was developed by the researchers and service user group. The interviews were audio-recorded, semi-structured and took place at a regional respiratory and lung transplant centre in North West England. Interviews were transcribed verbatim and data analysed using Framework Analysis. Findings Three main themes were identified: ‘Struggling to get a diagnosis’; ‘Loss of the life I previously had’; and ‘Living with Idiopathic Pulmonary Fibrosis’. Patients reported struggling to get a diagnosis and coping with a life-limiting, rapidly progressive illness with no good treatment and few support structures. Conclusions There is an urgent need for a better understanding of the difficulties faced by people with Idiopathic Pulmonary Fibrosis and their carers. This can be used to develop better supportive care in the United Kingdom and ultimately improve the quality of life of these patients. PMID:25533573

  2. Extracellular adenosine levels are associated with the progression and exacerbation of pulmonary fibrosis

    PubMed Central

    Luo, Fayong; Le, Ngoc-Bao; Mills, Tingting; Chen, Ning-Yuan; Karmouty-Quintana, Harry; Molina, Jose G.; Davies, Jonathan; Philip, Kemly; Volcik, Kelly A.; Liu, Hong; Xia, Yang; Eltzschig, Holger K.; Blackburn, Michael R.

    2015-01-01

    Idiopathic pulmonary fibrosis is a devastating lung disease with limited treatment options. The signaling molecule adenosine is produced in response to injury and serves a protective role in early stages of injury and is detrimental during chronic stages of disease such as seen in lung conditions such as pulmonary fibrosis. Understanding the association of extracellular adenosine levels and the progression of pulmonary fibrosis is critical for designing adenosine based approaches to treat pulmonary fibrosis. The goal of this study was to use various models of experimental lung fibrosis to understand when adenosine levels are elevated during pulmonary fibrosis and whether these elevations were associated with disease progression and severity. To accomplish this, extracellular adenosine levels, defined as adenosine levels found in bronchioalveolar lavage fluid, were determined in mouse models of resolvable and progressive pulmonary fibrosis. We found that relative bronchioalveolar lavage fluid adenosine levels are progressively elevated in association with pulmonary fibrosis and that adenosine levels diminish in association with the resolution of lung fibrosis. In addition, treatment of these models with dipyridamole, an inhibitor of nucleoside transporters that potentiates extracellular adenosine levels, demonstrated that the resolution of lung fibrosis is blocked by the failure of adenosine levels to subside. Furthermore, exacerbating adenosine levels led to worse fibrosis in a progressive fibrosis model. Increased adenosine levels were associated with elevation of IL-6 and IL-17, which are important inflammatory cytokines in pulmonary fibrosis. These results demonstrate that extracellular adenosine levels are closely associated with the progression of experimental pulmonary fibrosis and that this signaling pathway may mediate fibrosis by regulating IL-6 and IL-17 production.—Luo, F., Le, N.-B., Mills, T., Chen, N.-Y., Karmouty-Quintana, H., Molina, J. G., Davies

  3. Eltgol Acutelly Improves Airway Clearance and Reduces Static Pulmonary Volumes in Adult Cystic Fibrosis Patients

    PubMed Central

    Guimarães, Fernando Silva; Lopes, Agnaldo José; Moço, Vanessa Joaquim Ribeiro; Cavalcanti de Souza, Felipe; Silveira de Menezes, Sara Lúcia

    2014-01-01

    Chest physical therapy techniques are essential in order to reduce the frequency of recurrent pulmonary infections that progressively affect lung function in cystic fibrosis patients. Recently, ELTGOL (L’Expiration Lente Totale Glotte Ouverte en décubitus Latéral) emerged as an inexpensive and easy to perform therapeutic option. The aim of this study was to compare the acute effects of ELTGOL and the Flutter valve in stable adult patients with cystic fibrosis. [Subjects and Methods] This was a randomized, crossover study with a sample of cystic fibrosis outpatients. The subjects underwent two protocols (Flutter Valve and ELTGOL interventions, referred to as ELTGOL and FLUTTER) in a randomized order with a one-week washout interval between them. The main outcomes were pulmonary function variables and expectorated sputum dry weight. [Results] ELTGOL cleared 0.34 g more of secretions than FLUTTER (95% CI 0.11 to 0.57). When comparing the physiological effects of ELTGOL and FLUTTER, the first was superior in improving airway resistance (−0.51 cmH2O/L/s; 95% CI −0.88 to −0.14) and airway conductance (0.016 L/s/cmH2O; 95% CI 0.008 to 0.023). [Conclusion] ELTGOL promoted higher secretion removal and improvement in airway resistance and conductance than the Flutter valve. These techniques were equivalent in reducing the pulmonary hyperinflation and air trapping in cystic fibrosis patients. PMID:25013273

  4. Eltgol acutelly improves airway clearance and reduces static pulmonary volumes in adult cystic fibrosis patients.

    PubMed

    Guimarães, Fernando Silva; Lopes, Agnaldo José; Moço, Vanessa Joaquim Ribeiro; Cavalcanti de Souza, Felipe; Silveira de Menezes, Sara Lúcia

    2014-06-01

    Chest physical therapy techniques are essential in order to reduce the frequency of recurrent pulmonary infections that progressively affect lung function in cystic fibrosis patients. Recently, ELTGOL (L'Expiration Lente Totale Glotte Ouverte en décubitus Latéral) emerged as an inexpensive and easy to perform therapeutic option. The aim of this study was to compare the acute effects of ELTGOL and the Flutter valve in stable adult patients with cystic fibrosis. [Subjects and Methods] This was a randomized, crossover study with a sample of cystic fibrosis outpatients. The subjects underwent two protocols (Flutter Valve and ELTGOL interventions, referred to as ELTGOL and FLUTTER) in a randomized order with a one-week washout interval between them. The main outcomes were pulmonary function variables and expectorated sputum dry weight. [Results] ELTGOL cleared 0.34 g more of secretions than FLUTTER (95% CI 0.11 to 0.57). When comparing the physiological effects of ELTGOL and FLUTTER, the first was superior in improving airway resistance (-0.51 cmH2O/L/s; 95% CI -0.88 to -0.14) and airway conductance (0.016 L/s/cmH2O; 95% CI 0.008 to 0.023). [Conclusion] ELTGOL promoted higher secretion removal and improvement in airway resistance and conductance than the Flutter valve. These techniques were equivalent in reducing the pulmonary hyperinflation and air trapping in cystic fibrosis patients.

  5. Pulmonary fibrosis is associated with an elevated risk of thromboembolic disease

    PubMed Central

    Sprunger, D.B.; Olson, A.L.; Huie, T.J.; Fernandez-Perez, E.R.; Fischer, A.; Solomon, J.J.; Brown, K.K.; Swigris, J.J.

    2013-01-01

    Recent epidemiological studies have suggested an increased risk of venous thromboembolism (VTE) in lung fibrosis. Large-scale epidemiological data regarding the risk of VTE in pulmonary fibrosis-associated mortality have not been published. Using data from the National Center for Health Statistics from 1988–2007, we determined the risk of VTE in decedents with pulmonary fibrosis in the USA. We analysed 46,450,489 records, of which 218,991 met our criteria for idiopathic pulmonary fibrosis. Among these, 3,815 (1.74%) records also contained a diagnostic code for VTE. The risk of VTE in pulmonary fibrosis decedents was 34% higher than in the background population, and 44% and 54% greater than among decedents with chronic obstructive pulmonary disease and lung cancer, respectively. Those with VTE and pulmonary fibrosis died at a younger age than those with pulmonary fibrosis alone (females: 74.3 versus 77.4 yrs (p<0.0001); males: 72.0 versus 74.4 yrs (p<0.0001)). Decedents with pulmonary fibrosis had a significantly greater risk of VTE. Those with VTE and pulmonary fibrosis died at a younger age than those with pulmonary fibrosis alone. These data suggest a link between a pro-fibrotic and a pro-coagulant state. PMID:21737559

  6. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis

    PubMed Central

    Bueno, Marta; Lai, Yen-Chun; Romero, Yair; Brands, Judith; St. Croix, Claudette M.; Kamga, Christelle; Corey, Catherine; Herazo-Maya, Jose D.; Sembrat, John; Lee, Janet S.; Duncan, Steve R.; Rojas, Mauricio; Shiva, Sruti; Chu, Charleen T.; Mora, Ana L.

    2014-01-01

    Although aging is a known risk factor for idiopathic pulmonary fibrosis (IPF), the pathogenic mechanisms that underlie the effects of advancing age remain largely unexplained. Some age-related neurodegenerative diseases have an etiology that is related to mitochondrial dysfunction. Here, we found that alveolar type II cells (AECIIs) in the lungs of IPF patients exhibit marked accumulation of dysmorphic and dysfunctional mitochondria. These mitochondrial abnormalities in AECIIs of IPF lungs were associated with upregulation of ER stress markers and were recapitulated in normal mice with advancing age in response to stimulation of ER stress. We found that impaired mitochondria in IPF and aging lungs were associated with low expression of PTEN-induced putative kinase 1 (PINK1). Knockdown of PINK1 expression in lung epithelial cells resulted in mitochondria depolarization and expression of profibrotic factors. Moreover, young PINK1-deficient mice developed similarly dysmorphic, dysfunctional mitochondria in the AECIIs and were vulnerable to apoptosis and development of lung fibrosis. Our data indicate that PINK1 deficiency results in swollen, dysfunctional mitochondria and defective mitophagy, and promotes fibrosis in the aging lung. PMID:25562319

  7. Invasive Pulmonary Fungal Infections in Cystic Fibrosis.

    PubMed

    Schwarz, Carsten; Brandt, Claudia; Whitaker, Paul; Sutharsan, Sivagurunathan; Skopnik, Heino; Gartner, Silvia; Smazny, Christina; Röhmel, Jobst F

    2017-09-01

    Invasive pulmonary mycosis is after allergic bronchopulmonary aspergillosis (ABPA) a frequent and severe complication of CF lung disease. Among CF caregivers, there is an insecurity when and how to treat infections of the lung parenchyma caused by different fungi in patients with CF. This case series provides a multicenter experience on diagnostic, manifestation, and treatment of non-ABPA cases of pulmonary. Non-ABPA cases of pulmonary mycoses in patients with CF have been collected from the CF Centers in Berlin, Essen, Worms, Frankfurt (Germany), Leeds (UK), and Barcelona (Spain). Non-ABPA was defined as total serum IgE level <500 kU/L. Scedosporium and Lomentospora species seem to be more virulent in patients with CF and have been successfully treated with triple antifungal drug regimens in several cases. Rare fungi including yeasts can have pathogenic potential in CF. In this series, antibiotic treatment failure was the main indicator for the initiation of antifungal treatment. For an early and effective treatment of pulmonary mycoses in CF, the identification of biomarkers and of risk factors beyond antibiotic treatment failure is crucial and urgently needed. Furthermore, treatment efficacy studies are necessary for the different causative agents of these infections.

  8. Precision Medicine: The New Frontier in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Brownell, Robert; Kaminski, Naftali; Woodruff, Prescott G.; Bradford, Williamson Z.; Richeldi, Luca; Martinez, Fernando J.

    2016-01-01

    Precision medicine is defined by the National Institute of Health’s Precision Medicine Initiative Working Group as an approach to disease treatment that takes into account individual variability in genes, environment, and lifestyle. There has been increased interest in applying the concept of precision medicine to idiopathic pulmonary fibrosis, in particular to search for genetic and molecular biomarker-based profiles (so called endotypes) that identify mechanistically distinct disease subgroups. The relevance of precision medicine to idiopathic pulmonary fibrosis is yet to be established, but we believe that it holds great promise to provide targeted and highly effective therapies to patients. In this manuscript, we describe the field’s nascent efforts in genetic/molecular endotype identification and how environmental and behavioral subgroups may also be relevant to disease management. PMID:26991475

  9. Precision Medicine: The New Frontier in Idiopathic Pulmonary Fibrosis.

    PubMed

    Brownell, Robert; Kaminski, Naftali; Woodruff, Prescott G; Bradford, Williamson Z; Richeldi, Luca; Martinez, Fernando J; Collard, Harold R

    2016-06-01

    Precision medicine is defined by the National Institute of Health's Precision Medicine Initiative Working Group as an approach to disease treatment that takes into account individual variability in genes, environment, and lifestyle. There has been increased interest in applying the concept of precision medicine to idiopathic pulmonary fibrosis, in particular to search for genetic and molecular biomarker-based profiles (so called endotypes) that identify mechanistically distinct disease subgroups. The relevance of precision medicine to idiopathic pulmonary fibrosis is yet to be established, but we believe that it holds great promise to provide targeted and highly effective therapies to patients. In this manuscript, we describe the field's nascent efforts in genetic/molecular endotype identification and how environmental and behavioral subgroups may also be relevant to disease management.

  10. The antifibrogenic potential of PPARgamma ligands in pulmonary fibrosis.

    PubMed

    Sime, Patricia J

    2008-02-01

    Pulmonary fibrosis is characterized by the accumulation of fibroblasts, myofibroblasts, collagen, and other extracellular matrix proteins in the interstitium of the lung, with subsequent scarring and destruction of the alveolar capillary interface. In some cases, pulmonary fibrosis is preceded by lung inflammation and can be treated with anti-inflammatory therapies. However, idiopathic pulmonary fibrosis is characterized by a relative paucity of underlying inflammation and currently has no effective treatment. There is increasing evidence that the transcription factor peroxisome proliferator-activated receptor (PPAR) gamma plays an important role in controlling cell differentiation and that PPARgamma ligands can modify inflammatory and fibrotic responses. Peroxisome proliferator-activated receptor gamma ligands, including the thiazolidinedione class of antidiabetic drugs and novel triterpenoid compounds derived from oleanic acid, inhibit TGF-beta-stimulated profibrotic differentiation of lung fibroblasts in vitro and reduce lung scarring in animal models of fibrosis. The mechanism of action of the PPARgamma ligands is under investigation but seems to involve both PPARgamma-dependent and PPARgamma-independent pathways. These in vitro and in vivo data highlight the potentially exciting role of PPARgamma ligands as novel therapies for fibrosis of the lung and other organ systems prone to scarring. Many of the synthetic PPARgamma ligands are orally active, and several are currently available and Food Drug Administration approved for use in therapy of type 2 diabetes. Further research is urgently required to more clearly elucidate the mechanism of action of these drugs and to develop more potent antifibrotic agents for patients with scarring diseases for whom there are currently few effective therapies.

  11. [Measurement of pulmonary inflammation in cystic fibrosis].

    PubMed

    Fayon, M; Chiron, R; Abely, M

    2008-06-01

    Lung inflammation is a pivotal phenomenon in the pathogenesis of cystic fibrosis. Inflammation can be measured and quantified within a research perspective, as well as in daily clinical practice. In this review paper, the "Inflammation Task Force" of the "Société Française de Mucoviscidose" has reviewed the literature regarding the various techniques currently available (bronchoalveolar lavage, sputum analysis, nasal wash and brushing, exhaled breath condensates, carbon monoxide and nitric oxide, and systemic measurements (plasma and urine)). The interpretation of all these determinations in children and adults is also discussed.

  12. Expression and mechanism of BRP-39 in bleomycin-induced pulmonary fibrosis in rat.

    PubMed

    Du, Chunxian; Yang, Yibing; Lin, Yuhui; Yang, Jiong

    2014-09-01

    The purpose of the study was to explore the effects of breast regression protein 39 (BRP-39) in bleomycin-induced pulmonary fibrosis and its mechanism in pulmonary fibrosis by studying change in BRP-39 to provide a novel direction for the treatment of idiopathic pulmonary fibrosis. SPF grade male C57BL/6 rats were randomly divided into three groups, including bleomycin group, bleomycin+ BRP-39 recombinant protein group and control group. HE and Masson staining were applied to test the change in lung tissue after being treated by BRP-39, ELISA was applied to test the expression of TGF-β1 in different groups, and Western blot was used to test the expression of BRP-39 in rat lung tissue. Expression of BRP-39 increased, the fibrosis was obvious, and lung tissue collagen increased in bleomycin-induced pulmonary fibrosis in rat lung tissue. Increasing BRP-39 protein level and intratracheal bleomycin medication to establish pulmonary fibrosis model can aggravate pulmonary fibrosis. Along with the increase in BRP-39 protein level, TGF-β1 expression level also increased in lung tissue. Western blot results showed the expression of BRP-39, and TGF-β1 had the same trend in different groups. BRP-39 has effects in bleomycin-induced rat pulmonary fibrosis. Change in BRP-39 can affect the process of bleomycin-induced pulmonary fibrosis. The mechanism of BRP-3 in pulmonary fibrosis may work by regulating TGF-β1.

  13. Idiopathic pulmonary fibrosis. A rare cause of scintigraphic ventilation-perfusion mismatch

    SciTech Connect

    Pochis, W.T.; Krasnow, A.Z.; Collier, B.D.; Mewissen, M.W.; Almagro, U.A.; Hellman, R.S.; Isitman, A.T. )

    1990-05-01

    A case of idiopathic pulmonary fibrosis with multiple areas of mismatch on ventilation-perfusion lung imaging in the absence of pulmonary embolism is presented. Idiopathic pulmonary fibrosis is one of the few nonembolic diseases producing a pulmonary ventilation-perfusion mismatch. In this condition, chest radiographs may not detect the full extent of disease, and xenon-133 ventilation imaging may be relatively insensitive to morbid changes in small airways. Thus, when examining patients with idiopathic pulmonary fibrosis, one should be aware that abnormal perfusion imaging patterns without matching ventilation abnormalities are not always due to embolism. In this setting, contrast pulmonary angiography is often needed for accurate differential diagnosis.

  14. Bone marrow–derived progenitor cells in pulmonary fibrosis

    PubMed Central

    Hashimoto, Naozumi; Jin, Hong; Liu, Tianju; Chensue, Stephen W.; Phan, Sem H.

    2004-01-01

    The origin of fibroblasts in pulmonary fibrosis is assumed to be intrapulmonary, but their extrapulmonary origin and especially derivation from bone marrow (BM) progenitor cells has not been ruled out. To examine this possibility directly, adult mice were durably engrafted with BM isolated from transgenic mice expressing enhanced GFP. Induction of pulmonary fibrosis in such chimera mice by endotracheal bleomycin (BLM) injection caused large numbers of GFP+ cells to appear in active fibrotic lesions, while only a few GFP+ cells could be identified in control lungs. Flow-cytometric analysis of lung cells confirmed the BLM-induced increase in GFP+ cells in chimera mice and revealed a significant increase in GFP+ cells that also express type I collagen. GFP+ lung fibroblasts isolated from chimera mice expressed collagen and telomerase reverse transcriptase but not α-smooth muscle actin. Treatment of isolated GFP+ fibroblasts with TGF-β failed to induce myofibroblast differentiation. Cultured lung fibroblasts expressed the chemokine receptors CXCR4 and CCR7 and responded chemotactically to their cognate ligands, stromal cell–derived factor-1α and secondary lymphoid chemokine, respectively. Thus the collagen-producing lung fibroblasts in pulmonary fibrosis can also be derived from BM progenitor cells. PMID:14722616

  15. Transtracheal aspiration in pulmonary infection in children with cystic fibrosis.

    PubMed

    Brook, I; Fink, R

    1983-01-01

    Six transtracheal aspirations (TTA) and expectorated sputum specimens were collected from four children suffering from cystic fibrosis who had pulmonary infection. Specimens obtained from both sites were cultured for aerobic bacteria and TTA aspirates were also cultured for anaerobes. Differences in bacteria isolated in TTA and sputum aspirates were present in all instances. Six isolates were recovered in both sites (three Pseudomonas aeruginosa, two Staphylococcus aureus and one Aspergillus flavus). Five aerobic isolates were recovered only in the expectorated sputum and not in TTA aspirations (two Klebsiella pneumoniae and one each of P. aeruginosa, Escherichia coli and Proteus mirabilis). Nine organisms were isolated only from the TTA (two each of Veillonella parvula and Alpha hemolytic streptococci, and one each of Bacteroides fragilis, B. melaninogenicus, Lactobacillus sp., Haemophilus influenzae and Gamma hemolytic streptococci). The recovery of anaerobic organisms from four of the six TTA specimens suggests a possible role for these organisms in the etiology of pulmonary infection in cystic fibrosis. We found TTA to be helpful in the bacterial diagnosis and management of pulmonary infections in cystic fibrosis.

  16. Clinical case: Differential diagnosis of idiopathic pulmonary fibrosis.

    PubMed

    Cordeiro, Carlos Robalo; Alfaro, Tiago M; Freitas, Sara

    2013-01-01

    The diagnosis of idiopathic pulmonary fibrosis can be quite challenging, even after careful clinical evaluation, imaging and pathological tests. This case report intends to demonstrate and discuss these difficulties, especially those concerning the differential diagnosis with chronic hypersensitivity pneumonitis. A 58-year-old white male presented with shortness of breath, dry cough, fatigue and weight loss for two months. He was a former smoker and had regular exposure to a parakeet and poultry. Physical examination revealed bilateral basal crackles and chest imaging showed subpleural cystic lesions and traction bronchiectasis with a right side and upper level predominance. Auto-antibodies and IgG immunoglobulins to parakeet and fungal proteins were negative. Lung function tests displayed moderate restriction, low diffusion capacity and resting hypoxaemia. Bronchoalveolar lavage showed increased lymphocytes (28%) and neutrophils (12%) and surgical lung biopsy was compatible with a pattern of usual interstitial pneumonia. According to the possibility of either idiopathic pulmonary fibrosis or chronic hypersensitivity pneumonitis, treatment included prednisolone, azathioprine, acetylcysteine and avoidance of contact with the parakeet, but there was an unfavorable response and the patient was subsequently referred for lung transplant. Chronic hypersensitivity pneumonitis and idiopathic pulmonary fibrosis can present with the same clinical and radiological manifestations In this case, despite careful evaluation, no definite diagnosis could be achieved.

  17. Bronchoalveolar lavage pepsin in acute exacerbation of idiopathic pulmonary fibrosis

    PubMed Central

    Lee, J.S.; Song, J.W.; Wolters, P.J.; Elicker, B.M.; King, T.E.; Kim, D.S.; Collard, H.R.

    2017-01-01

    Some patients with idiopathic pulmonary fibrosis experience acute exacerbations in their respiratory status leading to substantial morbidity and mortality. Occult aspiration of gastric contents has been proposed as one possible mechanism leading to these acute exacerbations. We sought to determine whether pepsin, amarker of gastric aspiration, is elevated in bronchoalveolar lavage fluid obtained from patients during acute exacerbation of idiopathic pulmonary fibrosis, compared with that obtained in stable disease. Lavage samples were obtained in a case–control study of well-characterised patients. Acute exacerbation was defined using standard criteria. Levels of lavage pepsin were compared in cases and controls, and were correlated with clinical features and disease course. 24 cases with acute exacerbations and 30 stable controls were identified. There were no significant differences in baseline demographics between the two groups. Pepsin level was an indicator of acute exacerbation status (p=0.04). On average, pepsin appeared higher in patients with acute exacerbations compared with stable controls. This difference was driven by a subgroup of eight patients (33%) with pepsin levels ≥70 ng·mL−1. Pepsin level was not an independent predictor of survival time. These results suggest occult aspiration may play a role in some cases of acute exacerbation of idiopathic pulmonary fibrosis. PMID:22183478

  18. Bone marrow-derived progenitor cells in pulmonary fibrosis.

    PubMed

    Hashimoto, Naozumi; Jin, Hong; Liu, Tianju; Chensue, Stephen W; Phan, Sem H

    2004-01-01

    The origin of fibroblasts in pulmonary fibrosis is assumed to be intrapulmonary, but their extrapulmonary origin and especially derivation from bone marrow (BM) progenitor cells has not been ruled out. To examine this possibility directly, adult mice were durably engrafted with BM isolated from transgenic mice expressing enhanced GFP. Induction of pulmonary fibrosis in such chimera mice by endotracheal bleomycin (BLM) injection caused large numbers of GFP(+) cells to appear in active fibrotic lesions, while only a few GFP(+) cells could be identified in control lungs. Flow-cytometric analysis of lung cells confirmed the BLM-induced increase in GFP(+) cells in chimera mice and revealed a significant increase in GFP(+) cells that also express type I collagen. GFP(+) lung fibroblasts isolated from chimera mice expressed collagen and telomerase reverse transcriptase but not alpha-smooth muscle actin. Treatment of isolated GFP(+) fibroblasts with TGF-beta failed to induce myofibroblast differentiation. Cultured lung fibroblasts expressed the chemokine receptors CXCR4 and CCR7 and responded chemotactically to their cognate ligands, stromal cell-derived factor-1 alpha and secondary lymphoid chemokine, respectively. Thus the collagen-producing lung fibroblasts in pulmonary fibrosis can also be derived from BM progenitor cells.

  19. Extracellular adenosine levels are associated with the progression and exacerbation of pulmonary fibrosis.

    PubMed

    Luo, Fayong; Le, Ngoc-Bao; Mills, Tingting; Chen, Ning-Yuan; Karmouty-Quintana, Harry; Molina, Jose G; Davies, Jonathan; Philip, Kemly; Volcik, Kelly A; Liu, Hong; Xia, Yang; Eltzschig, Holger K; Blackburn, Michael R

    2016-02-01

    Idiopathic pulmonary fibrosis is a devastating lung disease with limited treatment options. The signaling molecule adenosine is produced in response to injury and serves a protective role in early stages of injury and is detrimental during chronic stages of disease such as seen in lung conditions such as pulmonary fibrosis. Understanding the association of extracellular adenosine levels and the progression of pulmonary fibrosis is critical for designing adenosine based approaches to treat pulmonary fibrosis. The goal of this study was to use various models of experimental lung fibrosis to understand when adenosine levels are elevated during pulmonary fibrosis and whether these elevations were associated with disease progression and severity. To accomplish this, extracellular adenosine levels, defined as adenosine levels found in bronchioalveolar lavage fluid, were determined in mouse models of resolvable and progressive pulmonary fibrosis. We found that relative bronchioalveolar lavage fluid adenosine levels are progressively elevated in association with pulmonary fibrosis and that adenosine levels diminish in association with the resolution of lung fibrosis. In addition, treatment of these models with dipyridamole, an inhibitor of nucleoside transporters that potentiates extracellular adenosine levels, demonstrated that the resolution of lung fibrosis is blocked by the failure of adenosine levels to subside. Furthermore, exacerbating adenosine levels led to worse fibrosis in a progressive fibrosis model. Increased adenosine levels were associated with elevation of IL-6 and IL-17, which are important inflammatory cytokines in pulmonary fibrosis. These results demonstrate that extracellular adenosine levels are closely associated with the progression of experimental pulmonary fibrosis and that this signaling pathway may mediate fibrosis by regulating IL-6 and IL-17 production.

  20. Dornase Alfa for Non-Cystic Fibrosis Pediatric Pulmonary Atelectasis.

    PubMed

    Thornby, Krisy-Ann; Johnson, Ashley; Axtell, Samantha

    2014-08-01

    To review the literature evaluating the efficacy of dornase alfa for non-cystic fibrosis pediatric patients with pulmonary atelectasis. Articles were retrieved after a search of MEDLINE/PubMed (1946 to April 2014), and International Pharmaceutical Abstracts (1970-April 2014) was performed using the terms dornase alfa, recombinant human deoxyribonuclease, pulmonary, persistent, and atelectasis. Other relevant articles referenced from the MEDLINE search were also utilized. Data sources were limited to English language clinical trials and case studies including only children; 8 clinical trials and 12 case reports met the criteria. Dornase alfa is used as an off-label treatment option for pulmonary atelectasis because limited treatment modalities exist after conventional therapy has failed. We evaluated 8 clinical trials and 12 case reports involving this pediatric population with varying primary diagnoses. The majority of patients experienced improvement in atelectasis, suggesting benefit after receiving treatment with dornase alfa. However, the outcomes were possibly confounded by those receiving combination therapies, varying primary diagnoses, and varying end points evaluated. Dornase alfa was overall well tolerated, with only a few patients experiencing worsening atelectasis posttreatment. Dornase alfa may be considered as a therapeutic option in non-cystic fibrosis pediatric patients with pulmonary atelectasis, who require treatment intervention when conventional therapy is unsuccessful. © The Author(s) 2014.

  1. Autopsy confirmation of severe pulmonary interstitial fibrosis secondary to Munchausen syndrome presenting as cystic fibrosis.

    PubMed

    Croft, Philip R; Racz, Mark I; Bloch, John D; Palmer, Charles H

    2005-09-01

    Chronic factitious disorder with physical symptoms, or Munchausen syndrome, is a well-recognized but uncommonly diagnosed psychiatric condition characterized by the deliberate production of signs and symptoms of disease in order to receive medical attention. Clinical suspicion of this disease is rarely confirmed by autopsy, as the patients usually do not die as a consequence of feigning illness. Here we report the autopsy confirmation of a case of a suspected Munchausen syndrome patient who presented with a history of cystic fibrosis. Examination of the lungs demonstrated extensive severe interstitial fibrosis, and polariscopic examination revealed a large quantity of crystalline material throughout the tissue; X-ray diffraction identified the material as talc. Synopses of published cases of Munchausen syndrome presenting as cystic fibrosis, and cases of Munchausen syndrome with pulmonary talcosis are presented as part of the discussion.

  2. Occurrence of idiopathic pulmonary fibrosis during immunosuppressive treatment: a case report.

    PubMed

    Cerri, Stefania; Sgalla, Giacomo; Richeldi, Luca; Luppi, Fabrizio

    2016-05-25

    Immunosuppressive therapy has been-until the recent release of new guidelines on diagnosis and management-the recommended treatment for idiopathic pulmonary fibrosis. However, its efficacy in patients with idiopathic pulmonary fibrosis has always been a matter of debate. We report the occurrence of idiopathic pulmonary fibrosis in a white man receiving chronic immunosuppressive treatment following a heart transplant. This case report suggests that the immune mechanisms targeted by azathioprine and cyclosporine do not play a role in the pathogenesis of idiopathic pulmonary fibrosis.

  3. Fibrosis of Two: Epithelial Cell-Fibroblast Interactions in Pulmonary Fibrosis

    PubMed Central

    Sakai, Norihiko; Tager, Andrew M.

    2013-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive and ultimately fatal accumulation of fibroblasts and extracellular matrix in the lung that distorts its architecture and compromises its function. IPF is now thought to result from wound-healing processes that, although initiated to protect the host from injurious environmental stimuli, lead to pathological fibrosis due to these processes becoming aberrant or over-exuberant. Although the environmental stimuli that trigger IPF remain to be identified, recent evidence suggests that they initially injure the alveolar epithelium. Repetitive cycles of epithelial injury and resultant alveolar epithelial cell death provoke the migration, proliferation, activation and myofibroblast differentiation of fibroblasts, causing the accumulation of these cells and the extracellular matrix that they synthesize. In turn, these activated fibroblasts induce further alveolar epithelial cell injury and death, thereby creating a vicious cycle of pro-fibrotic epithelial cell-fibroblast interactions. Though other cell types certainly make important contributions, we focus here on the “pas de deux” (steps of two), or perhaps more appropriate to IPF pathogenesis, the “folie à deux” (madness of two) of epithelial cells and fibroblasts that drives the progression of pulmonary fibrosis. We describe the signaling molecules that mediate the interactions of these cell types in their “fibrosis of two”, including transforming growth factor-β, connective tissue growth factor, sonic hedgehog, prostaglandin E2, angiotensin II and reactive oxygen species. PMID:23499992

  4. Crocidolite-induced pulmonary fibrosis in mice

    SciTech Connect

    Bowden, D.H.; Adamson, I.Y.R.

    1986-03-05

    The responses of alveolar and bronchial cells to asbestos exposure were studied to relate the cytokinetic changes of injury and repair to the inflammatory process and subsequent fibroblast activity. Lesions were induced by intratracheal instillation of 1 mg crocidolite asbestos to mice which were killed up to 20 weeks; /sup 3/H thymidine was injected 1 hr before death. A rapid inflammatory response with elevated PMN and lysosomal enzyme release was largely over by 2 wks though an increase in alveolar macrophages (AM) was maintained. Within 48 hrs there was multifocal necrosis of bronchiolar epithelium, maximal at bifurcations where longer fibers tend to adhere. Subsequently, intralumenal exudates were overgrown by proliferating epithelial cells and were incorporated, with long fibers, into bronchiolar connective tissue where granulomas formed. Alveolar lesions were located in peribronchiolar air sacs where focal injury of Type 1 cells by short fibers was rapidly repaired by division of Type 2 cells. Most short fibers were cleared by AMs, only a few fibers reached the interstitium. After 2 wks the increase in labeling index was due to labeled peribronchial fibroblasts. Biochemically, collagen increased after 4 wks when fibrosis was seen in bronchiolar lumens and in peribronchiolar connective tissue with lesser amounts in the centrilobular alveolar interstitium. The results suggest that long fibers induce bronchiolar injury and a more severe fibrotic pattern similar to human asbestosis.

  5. Fibroblast Growth Factor 2 Is Required for Epithelial Recovery, but Not for Pulmonary Fibrosis, in Response to Bleomycin

    PubMed Central

    Guzy, Robert D.; Stoilov, Ivan; Elton, Timothy J.; Mecham, Robert P.

    2015-01-01

    The pathogenesis of pulmonary fibrosis involves lung epithelial injury and aberrant proliferation of fibroblasts, and results in progressive pulmonary scarring and declining lung function. In vitro, fibroblast growth factor (FGF) 2 promotes myofibroblast differentiation and proliferation in cooperation with the profibrotic growth factor, transforming growth factor-β1, but the in vivo requirement for FGF2 in the development of pulmonary fibrosis is not known. The bleomycin model of lung injury and pulmonary fibrosis was applied to Fgf2 knockout (Fgf2−/−) and littermate control mice. Weight loss, mortality, pulmonary fibrosis, and histology were analyzed after a single intranasal dose of bleomycin. Inflammation was evaluated in bronchoalveolar lavage (BAL) fluid, and epithelial barrier integrity was assessed by measuring BAL protein and Evans Blue dye permeability. Fgf2 is expressed in mouse and human lung epithelial and inflammatory cells, and, in response to bleomycin, Fgf2−/− mice have significantly increased mortality and weight loss. Analysis of BAL fluid and histology show that pulmonary fibrosis is unaltered, but Fgf2−/− mice fail to efficiently resolve inflammation, have increased BAL cellularity, and, importantly, deficient recovery of epithelial integrity. Fgf2−/− mice similarly have deficient recovery of club cell secretory protein+ bronchial epithelium in response to naphthalene. We conclude that FGF2 is not required for bleomycin-induced pulmonary fibrosis, but rather is essential for epithelial repair and maintaining epithelial integrity after bleomycin-induced lung injury in mice. These data identify that FGF2 acts as a protective growth factor after lung epithelial injury, and call into question the role of FGF2 as a profibrotic growth factor in vivo. PMID:24988442

  6. Fibroblast growth factor 2 is required for epithelial recovery, but not for pulmonary fibrosis, in response to bleomycin.

    PubMed

    Guzy, Robert D; Stoilov, Ivan; Elton, Timothy J; Mecham, Robert P; Ornitz, David M

    2015-01-01

    The pathogenesis of pulmonary fibrosis involves lung epithelial injury and aberrant proliferation of fibroblasts, and results in progressive pulmonary scarring and declining lung function. In vitro, fibroblast growth factor (FGF) 2 promotes myofibroblast differentiation and proliferation in cooperation with the profibrotic growth factor, transforming growth factor-β1, but the in vivo requirement for FGF2 in the development of pulmonary fibrosis is not known. The bleomycin model of lung injury and pulmonary fibrosis was applied to Fgf2 knockout (Fgf2(-/-)) and littermate control mice. Weight loss, mortality, pulmonary fibrosis, and histology were analyzed after a single intranasal dose of bleomycin. Inflammation was evaluated in bronchoalveolar lavage (BAL) fluid, and epithelial barrier integrity was assessed by measuring BAL protein and Evans Blue dye permeability. Fgf2 is expressed in mouse and human lung epithelial and inflammatory cells, and, in response to bleomycin, Fgf2(-/-) mice have significantly increased mortality and weight loss. Analysis of BAL fluid and histology show that pulmonary fibrosis is unaltered, but Fgf2(-/-) mice fail to efficiently resolve inflammation, have increased BAL cellularity, and, importantly, deficient recovery of epithelial integrity. Fgf2(-/-) mice similarly have deficient recovery of club cell secretory protein(+) bronchial epithelium in response to naphthalene. We conclude that FGF2 is not required for bleomycin-induced pulmonary fibrosis, but rather is essential for epithelial repair and maintaining epithelial integrity after bleomycin-induced lung injury in mice. These data identify that FGF2 acts as a protective growth factor after lung epithelial injury, and call into question the role of FGF2 as a profibrotic growth factor in vivo.

  7. Immunolocalization of SPARC, tenascin, and thrombospondin in pulmonary fibrosis.

    PubMed Central

    Kuhn, C.; Mason, R. J.

    1995-01-01

    Several biochemically unrelated multifunctional extracellular proteins, SPARC, thrombospondin 1, and tenascin-C (TN), have been grouped as antiadhesive glycoproteins because they inhibit the spreading of cells on extracellular matrix in vitro. Migration of fibroblasts and epithelial cells into the air spaces to organize inflammatory exudate is a feature common to several fibrosing lung diseases. We hypothesized that migration would be facilitated by loosening the adhesive interactions between cells and the pericellular matrix components of the alveolar wall and that one or more of the anti-adhesive glycoproteins could be involved. Immunohistochemistry was used to localize SPARC, TN, and thrombospondin 1 in biopsies of organizing pneumonia, idiopathic pulmonary fibrosis (nine cases of usual interstitial pneumonia, one of desquamative interstitial pneumonia), and control lungs. Each antigen had a distinctive distribution. Only TN was expressed in control lungs, where it strongly stained the basement membrane of large bronchi and weakly stained alveolar entrance rings and small veins. In organizing pneumonia, TN was heavily stained through the entire extracellular matrix of the Masson bodies. In idiopathic pulmonary fibrosis, TN was abundant in the fibroblast foci of active fibrosis but was also present in the basement membrane regions beneath the metaplastic epithelium lining honeycomb cysts. TN was abundant in the interstitium in desquamative interstitial pneumonia. SPARC was observed only intracellularly where it occurred in the fibroblasts of Masson bodies of organizing pneumonia and the fibroblast foci of usual interstitial pneumonia. In desquamative interstitial pneumonia, expression of SPARC was minimal, in rare interstitial fibroblasts. Thrombospondin 1 was found consistently in organizing pneumonia but only infrequently in idiopathic pulmonary fibrosis. In both, it was localized in the extracellular matrix immediately beneath reparative epithelium. These

  8. Pulmonary hypertension associated with chronic obstructive lung disease and idiopathic pulmonary fibrosis.

    PubMed

    Adir, Yochai; Harari, Sergio

    2014-09-01

    Severe pulmonary hypertension worsens the prognosis of patients with chronic obstructive pulmonary disease (COPD) or idiopathic pulmonary fibrosis (IPF). With the aim of better understanding the pathogenesis of this event and identifying the possible targets for therapeutic intervention, a great deal of clinical and translational research is now focused on this relevant field of medicine. Some studies that were published last year have helped to better define the clinical and physiological profiles of patients with COPD or IPF and severe pulmonary hypertension. The importance of pulmonary rehabilitation was confirmed, particularly in patients with pulmonary hypertension associated with IPF. Information on the use of drugs approved for the treatment of pulmonary arterial hypertension is still very limited, because of some limitations and selection biases in the studies' design. New strategies (i.e. the use of fasudil or sepiapterin in pulmonary hypertension associated with IPF) have been evaluated in animal models. Pulmonary hypertension in COPD or IPF may range from mild to severe. When pulmonary hypertension is more advanced, it can drive a poor outcome. Therefore, future studies should focus on this subset.

  9. Lung tissues in systemic sclerosis have gene expression patterns unique to pulmonary fibrosis and pulmonary hypertension

    PubMed Central

    Hsu, Eileen; Shi, Haiwen; Jordan, Rick M.; Lyons-Weiler, James; Pilewski, Joseph M.; Feghali-Bostwick, Carol A.

    2010-01-01

    Objective Pulmonary complications in systemic sclerosis (SSc), including pulmonary fibrosis (PF) and pulmonary arterial hypertension (PAH), are the leading cause of mortality. We compared the molecular fingerprint of SSc lung tissues and matching primary lung fibroblasts to those of normal donors, and patients with idiopathic pulmonary fibrosis (IPF) and idiopathic pulmonary arterial hypertension (IPAH). Methods Lung tissues were obtained from 33 patients with SSc who underwent lung transplantation. Tissues and cells from a subgroup of SSc patients with predominantly PF or PAH were compared to those from normal donors, patients with IPF, or IPAH. Microarray data was analyzed using Efficiency Analysis for determination of optimal data processing methods. Real time PCR and immunohistochemistry were used to confirm differential levels of mRNA and protein, respectively. Results We identified a consensus of 242 and 335 genes that were differentially expressed in lungs and primary fibroblasts, respectively. Enriched function groups in SSc-PF and IPF lungs included fibrosis, insulin-like growth factor signaling and caveolin-mediated endocytosis. Functional groups shared by SSc-PAH and IPAH lungs included antigen presentation, chemokine activity, and IL-17 signaling. Conclusion Using microarray analysis on carefully phenotyped SSc and comparator lung tissues, we demonstrated distinct molecular profiles in tissues and fibroblasts of patients with SSc-associated lung disease compared to idiopathic forms of lung disease. Unique molecular signatures were generated that are disease- (SSc) and phenotype- (PF vs PAH) specific. These signatures provide new insights into pathogenesis and potential therapeutic targets for SSc lung disease. PMID:21360508

  10. Pulmonary rehabilitation in idiopathic pulmonary fibrosis: A call for continued investigation☆

    PubMed Central

    Swigris, Jeffrey J.; Brown, Kevin K.; Make, Barry J.; Wamboldt, Frederick S.

    2013-01-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease that afflicts patients with relentlessly progressive shortness of breath [Joint Statement of the American Thoracic Society and the European Respiratory Society. Idiopathic pulmonary fibrosis: diagnosis and treatment. Am J Respir Crit Care Med 2000;161:646–641]. Despite nearly 30 years of intense investigation, effective therapy for IPF remains elusive; median survival rates have stubbornly remained less than five years from the time of diagnosis [Bjoraker JA, Ryu JH, Edwin MK, Meyers J, Tazelaar H, Schroeder D, et al. Prognostic significance of histopathologic subsets in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 1998;157:199–2032, Flaherty KR, Thwaite E, Kazerooni EA, Gross B, Toews GB, Colby TV, et al. Radiological versus histological diagnosis in UIP and NSIP: survival implications. Thorax 2003;58:143–483], and no medical therapy has been proved to be in any way effective for the treatment of this disease. Without medications that help IPF patients live longer, an important question to ask is whether there are interventions that might allow these people to live better—to be more active; to experience less dyspnea, less depression, less anxiety; to possess a greater sense of control over their disease; and to have better quality of life. Pulmonary rehabilitation helps to accomplish many of these goals in patients with chronic obstructive pulmonary disease, and emerging data suggest that it may do the same for patients with IPF. PMID:18848771

  11. Viruses in Idiopathic Pulmonary Fibrosis. Etiology and Exacerbation

    PubMed Central

    Moore, Thomas A.

    2015-01-01

    Viral infections are important contributors to exacerbation of asthma and chronic obstructive pulmonary disease; however, the role of viruses in the pathogenesis of idiopathic pulmonary fibrosis (IPF) is less clear. This likely reflects that fact that IPF acute exacerbations are defined clinically as “noninfectious,” and little attention has been paid to the outcomes of patients with IPF with diagnosed infections. However, accumulating evidence suggests that infections (both bacterial and viral) may influence disease outcomes either as exacerbating agents or initiators of disease. Support for a viral role in disease initiation comes from studies demonstrating the presence of herpesviral DNA and epithelial cell stress in the lungs of asymptomatic relatives at risk for developing familial IPF. In addition, the number of studies that can associate viral (especially herpesviral) signatures in the lung with the development of IPF is steadily growing, and activated leukocyte signatures in patients with IPF provide further support for infectious processes driving IPF progression. Animal modeling has been used to better understand how a gamma herpesvirus infection can modulate the pathogenesis of lung fibrosis and has demonstrated that preceding infections appear to reprogram lung epithelial cells during latency to produce profibrotic factors, making the lung more susceptible to subsequent fibrotic insult, whereas exacerbations of existing fibrosis, or infections in susceptible hosts, involve active viral replication and are influenced by antiviral therapy. In addition, there is new evidence that bacterial burden in the lungs of patients with IPF may predict a poor prognosis. PMID:26595738

  12. Combined pulmonary fibrosis and emphysema (CPFE): what radiologist should know.

    PubMed

    Ciccarese, Federica; Attinà, Domenico; Zompatori, Maurizio

    2016-07-01

    Combined pulmonary fibrosis and emphysema is a relatively newly defined entity, which has been deeply studied in the recent years. Despite the wide numbers of papers on this topic, there are still several open questions about pathogenesis, epidemiology, natural history and prognosis. The diagnosis could be assessed only after HRCT scan as functional tests often result in an underestimation of this syndrome. What radiologists need to know about this syndrome consists in the heterogeneity of appearances: emphysema is mainly paraseptal and fibrotic pattern could be variable, including the variant of airspace enlargement with fibrosis which needs to be differentiated from honeycombing. A special attention must be paid on complications which could worsen the prognosis, such as pulmonary hypertension and lung cancer. Further studies are needed to address if the type of fibrotic pattern as well as fibrosis CT index could be considered as prognostic factors. Thus, the role of radiologists in the management of these patients is crucial as it involves diagnosis, detection of complications and could possible concerns the identification of patients at higher risk.

  13. Hsp90 regulation of fibroblast activation in pulmonary fibrosis

    PubMed Central

    Sontake, Vishwaraj; Wang, Yunguan; Kasam, Rajesh K.; Sinner, Debora; Reddy, Geereddy B.; Naren, Anjaparavanda P.; McCormack, Francis X.; Jegga, Anil G.; Madala, Satish K.

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a severe fibrotic lung disease associated with fibroblast activation that includes excessive proliferation, tissue invasiveness, myofibroblast transformation, and extracellular matrix (ECM) production. To identify inhibitors that can attenuate fibroblast activation, we queried IPF gene signatures against a library of small-molecule-induced gene-expression profiles and identified Hsp90 inhibitors as potential therapeutic agents that can suppress fibroblast activation in IPF. Although Hsp90 is a molecular chaperone that regulates multiple processes involved in fibroblast activation, it has not been previously proposed as a molecular target in IPF. Here, we found elevated Hsp90 staining in lung biopsies of patients with IPF. Notably, fibroblasts isolated from fibrotic lesions showed heightened Hsp90 ATPase activity compared with normal fibroblasts. 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), a small-molecule inhibitor of Hsp90 ATPase activity, attenuated fibroblast activation and also TGF-β–driven effects on fibroblast to myofibroblast transformation. The loss of the Hsp90AB, but not the Hsp90AA isoform, resulted in reduced fibroblast proliferation, myofibroblast transformation, and ECM production. Finally, in vivo therapy with 17-AAG attenuated progression of established and ongoing fibrosis in a mouse model of pulmonary fibrosis, suggesting that targeting Hsp90 represents an effective strategy for the treatment of fibrotic lung disease. PMID:28239659

  14. Pulmonary fibrosis associated with psychotropic drug therapy: a case report

    PubMed Central

    2009-01-01

    Introduction Sertraline and Risperidone are commonly used psychotropic drugs. Sertraline has previously been associated with eosinopilic pneumonia. Neither drug is recognised as a cause of diffuse fibrotic lung disease. Our report represents the first such case. Case Presentation We describe the case of a 33 year old Asian male with chronic schizophrenia who had been treated for three years with sertraline and risperidone. He presented to hospital in respiratory failure following a six month history of progressive breathlessness. High resolution CT scan demonstrated diffuse pulmonary fibrosis admixed with patchy areas of consolidation. Because the aetiology of this man's diffuse parenchymal lung disease remained unclear a surgical lung biopsy was undertaken. Histological assessment disclosed widespread fibrosis with marked eosinophillic infiltration and associated organising pneumonia - features all highly suggestive of drug induced lung disease. Following withdrawal of both sertraline and risperidone and initiation of corticosteroid therapy the patient's respiratory failure resolved and three years later he remains well albeit limited by breathlessness on heavy exertion. Conclusion Drug induced lung disease can be rapidly progressive and if drug exposure continues may result in respiratory failure and death. Prompt recognition is critical as drug withdrawal may result in marked resolution of disease. This case highlights sertraline and risperidone as drugs that may, in susceptible individuals, cause diffuse pulmonary fibrosis. PMID:20062766

  15. Curcumin inhibition of bleomycin-induced pulmonary fibrosis in rats

    PubMed Central

    Punithavathi, Durairaj; Venkatesan, Narayanan; Babu, Mary

    2000-01-01

    Curcumin, an anti-inflammatory, antioxidant, was evaluated for its ability to suppress bleomycin (BLM)-induced pulmonary fibrosis in rats. A single intratracheal instillation of BLM (0.75 U 100−1 g, sacrificed 3, 5, 7, 14 and 28 days post-BLM) resulted in significant increases in total cell numbers, total protein, and angiotensin-converting enzyme (ACE), and alkaline phosphatase (AKP) activities in bronchoalveolar lavage fluid. Animals with fibrosis had a significant increase in lung hydroxyproline content. Alveolar macrophages from BLM-administered rats elaborated significant increases in tumour necrosis factor (TNF)-α release, and superoxide and nitric oxide production in culture medium. Interestingly, oral administration of curcumin (300 mg kg−1 10 days before and daily thereafter throughout the experimental time period) inhibited BLM-induced increases in total cell counts and biomarkers of inflammatory responses in BALF. In addition, curcumin significantly reduced the total lung hydroxyproline in BLM rats. Furthermore, curcumin remarkably suppressed the BLM-induced alveolar macrophage production of TNF-α, superoxide and nitric oxide. These findings suggest curcumin as a potent anti-inflammatory and anti-fibrotic agent against BLM-induced pulmonary fibrosis in rats. PMID:10991907

  16. Establishment of a mouse model for pulmonary inflammation and fibrosis by intratracheal instillation of polyhexamethyleneguanidine phosphate.

    PubMed

    Lee, Sang Jin; Park, Jong-Hwan; Lee, Jun-Young; Jeong, Yu-Jin; Song, Jeong Ah; Lee, Kyuhong; Kim, Dong-Jae

    2016-04-01

    Although several animal models have been developed to study human pulmonary fibrosis, lack of a perfect model has raised the need for various animal models of pulmonary fibrosis. In this study, we evaluated the pulmonary effect of polyhexamethyleneguanidine phosphate instillation into the lungs of mice to determine the potential of these mice as a murine model of pulmonary fibrosis. Intratracheal instillation of polyhexamethyleneguanidine phosphate induced severe lung inflammation manifested by the infiltration of mononuclear cells and neutrophils and increased production of IL-6, TNF-α, CCL2 and CXCL1. The lung inflammation gradually increased until 28 days after polyhexamethyleneguanidine phosphate exposure, and increases of collagen deposition and TGF-β production, which are indicators of pulmonary fibrosis, were seen. Our study showed that intratracheal instillation of polyhexamethyleneguanidine phosphate induces pulmonary inflammation and fibrosis in mice.

  17. Establishment of a mouse model for pulmonary inflammation and fibrosis by intratracheal instillation of polyhexamethyleneguanidine phosphate

    PubMed Central

    Lee, Sang Jin; Park, Jong-Hwan; Lee, Jun-Young; Jeong, Yu-Jin; Song, Jeong Ah; Lee, Kyuhong; Kim, Dong-Jae

    2016-01-01

    Although several animal models have been developed to study human pulmonary fibrosis, lack of a perfect model has raised the need for various animal models of pulmonary fibrosis. In this study, we evaluated the pulmonary effect of polyhexamethyleneguanidine phosphate instillation into the lungs of mice to determine the potential of these mice as a murine model of pulmonary fibrosis. Intratracheal instillation of polyhexamethyleneguanidine phosphate induced severe lung inflammation manifested by the infiltration of mononuclear cells and neutrophils and increased production of IL-6, TNF-α, CCL2 and CXCL1. The lung inflammation gradually increased until 28 days after polyhexamethyleneguanidine phosphate exposure, and increases of collagen deposition and TGF-β production, which are indicators of pulmonary fibrosis, were seen. Our study showed that intratracheal instillation of polyhexamethyleneguanidine phosphate induces pulmonary inflammation and fibrosis in mice. PMID:27182113

  18. The Pulmonary Fibrosis-Associated MUC5B Promoter Polymorphism Does Not Influence the Development of Interstitial Pneumonia in Systemic Sclerosis

    PubMed Central

    Steele, Mark P.; Fingerlin, Tasha E.; Hinchcliff, Monique E.; Murphy, Elissa; Podlusky, Sofia; Carns, Mary; Schwarz, Marvin; Varga, John; Schwartz, David A.

    2012-01-01

    Background: More than 80% of patients with systemic sclerosis (SSc) develop lung involvement, most commonly interstitial pneumonia (IP). We recently identified a common variant in the promoter region of MUC5B (rs35705950) that has a significant effect on the risk of developing both familial and sporadic forms of IP. We hypothesized that this MUC5B promoter polymorphism is also associated with IP in subjects with SSc. Methods: We examined the minor allele frequency of the MUC5B polymorphism among 231 subjects with SSc, 109 with IP, and 122 without IP. IP diagnosis was confirmed by HRCT imaging and defined as the presence of reticular infiltrates and/or honeycomb cysts. FVC and diffusing capacity of the lung for carbon monoxide (Dlco) were also assessed. Results: We found no association between IP and the MUC5B polymorphism among subjects with SSc (OR = 1.1, P = .80). The frequencies of the MUC5B polymorphism among subjects with SSc with IP (10.6%) and without IP (9.4%) were similar to the frequency observed in a population of unaffected control subjects (9.0%). In secondary analyses, we found the MUC5B polymorphism was not significantly associated with either FVC (P = .42) or Dlco (P = .06). No association with SSc-associated IP was found even when we used a more conservative definition of IP (FVC ≤ 70% and evidence of reticulations or honeycombing vs SSc FVC > 70% and no evidence of reticulation or honeycombing). Conclusions: Although SSc-associated IP is clinically, radiologically, and histologically similar to other forms of IP, it appears to have distinct genetic risk factors. This study highlights the genetic and phenotypic heterogeneity of IP in general. PMID:22576636

  19. Effects of leflunomide on inflamation and fibrosis in bleomycine induced pulmonary fibrosis in wistar albino rats.

    PubMed

    Kayhan, Servet; Guzel, Aygul; Duran, Latif; Tutuncu, Serife; Guzel, Ahmet; Gunaydın, Mithat; Salis, Osman; Okuyucu, Ali; Selcuk, Mustafa Yasin

    2013-10-01

    Pulmonary fibrosis is a rare and progressive lung disease with a high mortality rate. The treatment regimens still fail to recover the disease. Leflunomide (LEF) is an immunomodulatory agent with antiproliferative activity that is used for the treatment of rheumatoid arthritis. The purpose of the study is to investigate the potential therapeutic efficacy of LEF in bleomycin (BLM) induced pulmonary fibrosis. A total of 21 male, adult wistar albino rats were used. The animals were divided into three groups as control, BLM and BLM plus LEF groups (n=7). In BLM group, mice were treated with intratracheal instillation of BLM (2.5 U/kg). Control group received the same volume of saline instead of BLM. In LEF group, in addition to BLM, LEF (10 mg/kg, daily) was administrated by oral gavage. The effect of LEF on pulmonary inflammation and fibrosis was studied by measurements of serum clara cell protein-16 (CC-16), thiobarbituric acid reactive substance levels (TBARS), superoxide dismutase (SOD) and advanced oxidation protein products (AOPP) levels and lung tissue contents of IL-6, TNF-α and NF-κB by immunhistochemical examinations. LEF significantly increased the level of CC-16 and decreased the level of AOPP (P=0.042 and P=0.003 respectively). Lung tissue contents of IL-6, TNF-α and NF-κB significantly decreased in LEF group compared to BLM group by immunhistochemical examinations (P<0.001). LEF reduces oxidative stress factors, alveolar inflammation and attenuates lung injury and fibrosis.

  20. Effects of leflunomide on inflamation and fibrosis in bleomycine induced pulmonary fibrosis in wistar albino rats

    PubMed Central

    Guzel, Aygul; Duran, Latif; Tutuncu, Serife; Guzel, Ahmet; Gunaydın, Mithat; Salis, Osman; Okuyucu, Ali; Selcuk, Mustafa Yasin

    2013-01-01

    Purposes Pulmonary fibrosis is a rare and progressive lung disease with a high mortality rate. The treatment regimens still fail to recover the disease. Leflunomide (LEF) is an immunomodulatory agent with antiproliferative activity that is used for the treatment of rheumatoid arthritis. The purpose of the study is to investigate the potential therapeutic efficacy of LEF in bleomycin (BLM) induced pulmonary fibrosis. Methods A total of 21 male, adult wistar albino rats were used. The animals were divided into three groups as control, BLM and BLM plus LEF groups (n=7). In BLM group, mice were treated with intratracheal instillation of BLM (2.5 U/kg). Control group received the same volume of saline instead of BLM. In LEF group, in addition to BLM, LEF (10 mg/kg, daily) was administrated by oral gavage. The effect of LEF on pulmonary inflammation and fibrosis was studied by measurements of serum clara cell protein-16 (CC-16), thiobarbituric acid reactive substance levels (TBARS), superoxide dismutase (SOD) and advanced oxidation protein products (AOPP) levels and lung tissue contents of IL-6, TNF-α and NF-κB by immunhistochemical examinations. Results LEF significantly increased the level of CC-16 and decreased the level of AOPP (P=0.042 and P=0.003 respectively). Lung tissue contents of IL-6, TNF-α and NF-κB significantly decreased in LEF group compared to BLM group by immunhistochemical examinations (P<0.001). Conclusions LEF reduces oxidative stress factors, alveolar inflammation and attenuates lung injury and fibrosis. PMID:24255778

  1. Cadherin-11 Regulation of Fibrosis through Modulation of Epithelial-to-Mesenchymal Transition: Implications for Pulmonary Fibrosis in Scleroderma

    DTIC Science & Technology

    2016-05-01

    and skin of patients with systemic sclerosis. Subsequent studies have demonstrated that Cad11 is a critical mediator of lung and skin fibrosis using...pulmonary fibrosis and skin of patients with systemic sclerosis. Subsequent studies have demonstrated that Cad11 is a critical mediator of lung and... skin fibrosis using the intratracheal (IT) and subcutaneous bleomycin models. Preliminary studies suggest that Cad11 may regulate type 2 alveolar

  2. Pathogenesis pathways of idiopathic pulmonary fibrosis in bleomycin-induced lung injury model in mice.

    PubMed

    Shi, Keyun; Jiang, Jianzhong; Ma, Tieliang; Xie, Jing; Duan, Lirong; Chen, Ruhua; Song, Ping; Yu, Zhixin; Liu, Chao; Zhu, Qin; Zheng, Jinxu

    2014-01-01

    Our objective was to investigate the pathogenesis pathways of idiopathic pulmonary fibrosis (IPF). Bleomycin (BLM) induced animal models of experimental lung fibrosis were used. CHIP assay was executed to find the link between Smad3 and IL-31, and the expressions of TGF-β1, Smad3, IL-31 and STAT1 were detected to find whether they were similar with each other. We found that in the early injury or inflammation of the animal model, BLM promoted the development of inflammation, leading to severe pulmonary fibrosis. Then the expression of TGF-β1 and Smad3 increased. Activated Smad3 bound to the IL-31 promoter region, followed by the activation of JAK-STAT pathways. The inhibitor of TGF-β1 receptor decreased the IL-31 expression and knocking-down of IL-31 also decreased the STAT1 expression. We conclude that there is a pathway of pathogenesis in BLM-induced mouse model that involves the TGF-β, IL-31 and JAKs/STATs pathway.

  3. Effect of Pistacia lentiscus oil on experimental pulmonary fibrosis.

    PubMed

    Abidi, Anouar; Serairi Beji, Raja; Kourda, Nadia; Ennigrou, Samir; Ksouri, Riadh; Jameleddine, Saloua

    2016-07-01

    Background - Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterized by histopathological lesions in lung tissue. This is the most common and most severe idiopathic interstitial pneumonias. Current treatments are based on the combination of corticosteroids and immunosuppressants, but their effectiveness is still debated. Purpose of work - Testing the preventive effect of Pistacia Lentiscus oil, known for its antioxidant, anti-mutagenic and anti-proliferative effects, on a model of experimental lung fibrosis. Methods - Two groups of rats received an intratracheal injection of bleomycin (4.5 mg / kg). The first group, control (n = 20 rats), has received no treatment. The second group was treated with Pistacia Lentiscus oil (n = 20 rats) for 30 days before fibrosis induction, by daily gavage oil Pistacia Lentiscus oil (3,33ml / kg). This treatment was continued for 10 days. At the end of the experimental period, all rats were sacrificed and the lung tissue was examined histopathologically and immunostained for TGFβ. Results - The chromatographic profile oil Pistacia Lentiscus oil shows the dominance of two fatty acids that are linoleic acid and palmitic acid representing respectively 70.57 and 24.67%. Our results also show a decrease in the distribution of TGFβ both at the level of the inflammatory infiltrate and at the level of the pulmonary parenchyma histiocytes of rats treated with Pistacia Lentiscus oil compared with control rats. However, these changes are not accompanied by statistically significant changes of fibrosis score and inflammatory index. Conclusion - Our results are interesting to consider. Further studies using higher doses of Pistacia Lentiscus oil are important to conduct.

  4. Echocardiographic and Hemodynamic Predictors of Mortality in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Rivera-Lebron, Belinda N.; Forfia, Paul R.; Kreider, Maryl; Lee, James C.; Holmes, John H.

    2013-01-01

    Background: Idiopathic pulmonary fibrosis (IPF) can lead to the development of pulmonary hypertension, which is associated with an increased risk of death. In pulmonary arterial hypertension, survival is directly related to the capacity of the right ventricle to adapt to elevated pulmonary vascular load. The relative importance of right ventricular function in IPF is not well understood. Our objective was to evaluate right ventricular echocardiographic and hemodynamic predictors of mortality in a cohort of patients with IPF referred for lung transplant evaluation. Methods: We performed a retrospective cohort study of 135 patients who met 2011 American Thoracic Society/European Respiratory Society criteria for IPF and who were evaluated for lung transplantation at the Hospital of the University of Pennsylvania. Results: Right ventricle:left ventricle diameter ratio (hazard ratio [HR], 4.5; 95% CI, 1.7-11.9), moderate to severe right atrial and right ventricular dilation (HR, 2.9; 95% CI, 1.4-5.9; and HR, 2.7; 95% CI, 1.4-5.4, respectively) and right ventricular dysfunction (HR, 5.5; 95% CI, 2.6-11.5) were associated with an increased risk of death. Higher pulmonary vascular resistance was also associated with increased mortality (HR per 1 Wood unit, 1.3; 95% CI, 1.1-1.5). These risk factors were independent of age, sex, race, height, weight, FVC, and lung transplantation status. Other hemodynamic indices, such as mean pulmonary artery pressure and cardiac index, were not associated with outcome. Conclusions: Right-sided heart size and right ventricular dysfunction measured by echocardiography and higher pulmonary vascular resistance by invasive hemodynamic assessment predict mortality in patients with IPF evaluated for lung transplantation. PMID:23450321

  5. A translational preclinical model of interstitial pulmonary fibrosis and pulmonary hypertension: mechanistic pathways driving disease pathophysiology

    PubMed Central

    Jarman, Elizabeth R.; Khambata, Valerie S.; Yun Ye, Li; Cheung, Kenneth; Thomas, Matthew; Duggan, Nicholas; Jarai, Gabor

    2014-01-01

    Abstract Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease, in which a decline in patient prognosis is frequently associated with the onset of pulmonary hypertension (PH). Animal models exhibiting principle pathophysiological features of IPF and PH could provide greater insight into mechanistic pathways underlying disease progression and a means for evaluating novel therapeutic approaches for intervention. Here, we describe an in vivo disease model, in which animals develop progressive interstitial pulmonary fibrosis and associated PH, as defined by the presence of fibrotic foci adjacent to areas of alveolar injury and remodeling of the pulmonary vasculature. Associated changes in physiological parameters included a decline in lung function and increase in mean pulmonary arterial pressure (mPAP) >25 mmHg. The early fibrotic pathology is associated with a profibrogenic microenvironment, elevated levels of the matrix metalloproteases, MMP‐2, MMP‐7, and MMP‐12, TIMP‐1, the chemoattractant and mitogen, PDGF‐β, and the chemokines CCL2 and CXCL12, that are associated with the recruitment of macrophages, mast cells, and fibrocytes. Principle mechanistic pathways associated with disease pathogenesis are upregulated in the lungs and pulmonary arteries, with sustained increases in gene transcripts for the profibrotic mediator TGF‐β1 and components of the TGF‐β signaling pathway; PAI‐1, Nox‐4, and HIF‐1α. Therapeutic treatment with the ALK‐5/TGF‐β RI inhibitor SB‐525334 reversed established pulmonary fibrosis and associated vascular remodeling, leading to normalization in clinically translatable physiological parameters including lung function and hemodynamic measurements of mPAP. These studies highlight the application of this model in validating potential approaches for targeting common mechanistic pathways driving disease pathogenesis. PMID:25214520

  6. Epigenetic Regulation of Interleukin 6 by Histone Acetylation in Macrophages and Its Role in Paraquat-Induced Pulmonary Fibrosis

    PubMed Central

    Hu, Lingli; Yu, Yanfang; Huang, Huijie; Fan, Hanting; Hu, Li; Yin, Caiyong; Li, Kai; Fulton, David J. R.; Chen, Feng

    2017-01-01

    Overexpression of interleukin 6 (IL-6) has been proposed to contribute to pulmonary fibrosis and other fibrotic diseases. However, the regulatory mechanisms and the role of IL-6 in fibrosis remain poorly understood. Epigenetics refers to alterations of gene expression without changes in the DNA sequence. Alternation of chromatin accessibility by histone acetylation acts as a critical epigenetic mechanism to regulate various gene transcriptions. The goal of this study was to determine the impact of IL-6 in paraquat (PQ)-induced pulmonary fibrosis and to explore whether the epigenetic regulations may play a role in transcriptional regulation of IL-6. In PQ-treated lungs and macrophages, we found that the mRNA and protein expression of IL-6 was robustly increased in a time-dependent and a dose-dependent manner. Our data demonstrated that PQ-induced IL-6 expression in macrophages plays a central role in pulmonary fibrosis through enhanced epithelial-to-mesenchymal transition (EMT). IL-6 expression and its role to enhance PQ-induced pulmonary fibrosis were increased by histone deacetylase (HDAC) inhibition and prevented by histone acetyltransferase (HAT) inhibition. In addition, the ability of CRISPR-ON transcription activation system (CRISPR-ON) to promote transcription of IL-6 was enhanced by HDAC inhibitor and blocked by HAT inhibitor. Chromatin immunoprecipitation experiments revealed that HDAC inhibitor increased histones activation marks H3K4me3 and H3K9ac at IL-6 promoter regions. In conclusion, IL-6 functioning through EMT in PQ-induced pulmonary fibrosis was regulated dynamically by HDAC and HAT both in vitro and in vivo via epigenetically regulating chromatin accessibility. PMID:28194150

  7. Chymase: a multifunctional player in pulmonary hypertension associated with lung fibrosis.

    PubMed

    Kosanovic, Djuro; Luitel, Himal; Dahal, Bhola Kumar; Cornitescu, Teodora; Janssen, Wiebke; Danser, A H Jan; Garrelds, Ingrid M; De Mey, Jo G R; Fazzi, Gregorio; Schiffers, Paul; Iglarz, Marc; Fischli, Walter; Ghofrani, Hossein Ardeschir; Weissmann, Norbert; Grimminger, Friedrich; Seeger, Werner; Reiss, Irwin; Schermuly, Ralph Theo

    2015-10-01

    Limited literature sources implicate mast-cell mediator chymase in the pathologies of pulmonary hypertension and pulmonary fibrosis. However, there is no evidence on the contribution of chymase to the development of pulmonary hypertension associated with lung fibrosis, which is an important medical condition linked with increased mortality of patients who already suffer from a life-threatening interstitial lung disease.The aim of this study was to investigate the role of chymase in this particular pulmonary hypertension form, by using a bleomycin-induced pulmonary hypertension model.Chymase inhibition resulted in attenuation of pulmonary hypertension and pulmonary fibrosis, as evident from improved haemodynamics, decreased right ventricular remodelling/hypertrophy, pulmonary vascular remodelling and lung fibrosis. These beneficial effects were associated with a strong tendency of reduction in mast cell number and activity, and significantly diminished chymase expression levels. Mechanistically, chymase inhibition led to attenuation of transforming growth factor β1 and matrix-metalloproteinase-2 contents in the lungs. Furthermore, chymase inhibition prevented big endothelin-1-induced vasoconstriction of the pulmonary arteries.Therefore, chymase plays a role in the pathogenesis of pulmonary hypertension associated with pulmonary fibrosis and may represent a promising therapeutic target. In addition, this study may provide valuable insights on the contribution of chymase in the pulmonary hypertension context, in general, regardless of the pulmonary hypertension form.

  8. [Cystic fibrosis: how to use pulmonary function tests].

    PubMed

    Counil, F P; Karila, C; Le Bourgeois, M; Matecki, S; Lebras, M N; Couderc, L; Fajac, I; Reynaud-Gaubert, M; Bellet, M; Gauthier, R; Denjean, A

    2007-06-01

    Neonatal screening for cystic fibrosis (CF) leads to early dedicated specialist care for all patients. Pulmonary function tests (PFT) are mandatory for routine monitoring of CF patients. The aim of this article is to review the current guidelines for PFTs in CF, particularly the type of test, the age and the clinical status of the patient. The regular use of spirometry is generally accepted. Many other tests are used but their clinical value in the routine follow-up of CF patients remains to be established. Further efforts should be made to evaluate the value of PFTs in CF, particularly in very young children.

  9. Emodin ameliorates bleomycin-induced pulmonary fibrosis in rats by suppressing epithelial-mesenchymal transition and fibroblast activation

    PubMed Central

    Guan, Ruijuan; Wang, Xia; Zhao, Xiaomei; Song, Nana; Zhu, Jimin; Wang, Jijiang; Wang, Jin; Xia, Chunmei; Chen, Yonghua; Zhu, Danian; Shen, Linlin

    2016-01-01

    Aberrant activation of TGF-β1 is frequently encountered and promotes epithelial-mesenchymal transition (EMT) and fibroblast activation in pulmonary fibrosis. The present study investigated whether emodin mediates its effect via suppressing TGF-β1-induced EMT and fibroblast activation in bleomycin (BLM)-induced pulmonary fibrosis in rats. Here, we found that emodin induced apoptosis and inhibited cellular proliferation, migration and differentiation in TGF-β1-stimulated human embryonic lung fibroblasts (HELFs). Emodin suppressed TGF-β1-induced EMT in a dose- and time-dependent manner in alveolar epithelial A549 cells. Emodin also inhibited TGF-β1-induced Smad2, Smad3 and Erk1/2 activation, suggesting that Smad2/3 and Erk1/2 inactivation mediated the emodin-induced effects on TGF-β1-induced EMT. Additionally, we provided in vivo evidence suggesting that emodin apparently alleviated BLM-induced pulmonary fibrosis and improved pulmonary function by inhibiting TGF-β1 signaling and subsequently repressing EMT, fibroblast activation and extracellular matrix (ECM) deposition. Taken together, our data suggest that emodin mediates its effects mainly via inhibition of EMT and fibroblast activation and thus has a potential for the treatment of pulmonary fibrosis. PMID:27774992

  10. Surgical Outcomes of Lung Cancer Patients with Combined Pulmonary Fibrosis and Emphysema and Those with Idiopathic Pulmonary Fibrosis without Emphysema.

    PubMed

    Sato, Seijiro; Koike, Terumoto; Hashimoto, Takehisa; Ishikawa, Hiroyuki; Okada, Akira; Watanabe, Takehiro; Tsuchida, Masanori

    2016-08-23

    Combined pulmonary fibrosis and emphysema (CPFE) is a unique disorder. The aim of this study was to compare the surgical outcomes of lung cancer patients with CPFE and those with idiopathic pulmonary fibrosis (IPF) without emphysema. A total of 1548 patients who underwent surgery for primary lung cancer between January 2001 and December 2012 were retrospectively reviewed. Of the 1548 patients, 55 (3.6%) had CPFE on computed tomography (CT), and 45 (2.9%) had IPF without emphysema. The overall and disease-free 5-year survival rates for patients with CPFE were not significantly worse than those for patients with IPF without emphysema (24.9% vs. 36.8%, p = 0.814; 39.8% vs. 39.3%, p = 0.653, respectively). Overall, 21 (38.1%) patients with CPFE and nine patients (20.0%) with IPF without emphysema developed postoperative cardiopulmonary complications. Patients with CPFE had significantly more postoperative cardiopulmonary complications involving pulmonary air leakage for >6 days, hypoxemia, and arrhythmia than patients with IPF without emphysema (p = 0.048). There was no significant difference in survival after surgical treatment between CPFE patients and IPF patients without emphysema, but CPFE patients had significantly higher morbidity than IPF patients without emphysema.

  11. Elevated expression of NEU1 sialidase in idiopathic pulmonary fibrosis provokes pulmonary collagen deposition, lymphocytosis, and fibrosis.

    PubMed

    Luzina, Irina G; Lockatell, Virginia; Hyun, Sang W; Kopach, Pavel; Kang, Phillip H; Noor, Zahid; Liu, Anguo; Lillehoj, Erik P; Lee, Chunsik; Miranda-Ribera, Alba; Todd, Nevins W; Goldblum, Simeon E; Atamas, Sergei P

    2016-05-15

    Idiopathic pulmonary fibrosis (IPF) poses challenges to understanding its underlying cellular and molecular mechanisms and the development of better therapies. Previous studies suggest a pathophysiological role for neuraminidase 1 (NEU1), an enzyme that removes terminal sialic acid from glycoproteins. We observed increased NEU1 expression in epithelial and endothelial cells, as well as fibroblasts, in the lungs of patients with IPF compared with healthy control lungs. Recombinant adenovirus-mediated gene delivery of NEU1 to cultured primary human cells elicited profound changes in cellular phenotypes. Small airway epithelial cell migration was impaired in wounding assays, whereas, in pulmonary microvascular endothelial cells, NEU1 overexpression strongly impacted global gene expression, increased T cell adhesion to endothelial monolayers, and disrupted endothelial capillary-like tube formation. NEU1 overexpression in fibroblasts provoked increased levels of collagen types I and III, substantial changes in global gene expression, and accelerated degradation of matrix metalloproteinase-14. Intratracheal instillation of NEU1 encoding, but not control adenovirus, induced lymphocyte accumulation in bronchoalveolar lavage samples and lung tissues and elevations of pulmonary transforming growth factor-β and collagen. The lymphocytes were predominantly T cells, with CD8(+) cells exceeding CD4(+) cells by nearly twofold. These combined data indicate that elevated NEU1 expression alters functional activities of distinct lung cell types in vitro and recapitulates lymphocytic infiltration and collagen accumulation in vivo, consistent with mechanisms implicated in lung fibrosis.

  12. [Familial pulmonary fibrosis in 2 Mexican sisters with Hermansky-Pudlak syndrome].

    PubMed

    Zamora, Ana C; Alonso-Martínez, Delfino; Barrera, Lourdes; Mendoza, Felipe; Gaxiola, Miguel; Carrillo, Guillermo

    2009-08-01

    Hermansky-Pudlak syndrome is an autosomal recessive disorder commonly found in individuals of Puerto Rican ancestry. We present 2 cases of familial pulmonary fibrosis in 2 Mexican sisters with Hermansky-Pudlak syndrome. Pulmonary fibrosis was biopsy-proven in 1 of the patients. This report shows that Hermansky-Pudlak syndrome may occur in individuals of Mexican ancestry.

  13. Effect of sinus surgery on pulmonary function in patients with cystic fibrosis.

    PubMed

    Madonna, D; Isaacson, G; Rosenfeld, R M; Panitch, H

    1997-03-01

    The impact of sinus surgery on the pulmonary status of cystic fibrosis patients is unknown. This retrospective study reviewed the charts of the cystic fibrosis patients presenting to our institution's cystic fibrosis center with nasal obstruction, recurrent sinusitis, and nasal polyposis. This group subsequently underwent endoscopic ethmoidectomy and antrostomy. Fourteen of the 15 patients, ages 5-24 years, received preoperative and postoperative pulmonary function testing obtained by spirometry. The data were compiled and analyzed statistically. Our results suggested no significant improvement in the pulmonary function of cystic fibrosis patients after sinus surgery.

  14. [Pneumology. Treatment of idiopathic pulmonary fibrosis: hopes and disappointment].

    PubMed

    Rochat, T; Leuenberger, P

    2005-01-12

    Idiopathic pulmonary fibrosis (IPF) is now recognized as a separate nosological entity. Despite the progresses in understanding the basic mechanisms of the disease, its prognosis remains poor. The classical treatment combines prednisone with a cytotoxic agent. Interferon gamma has the in vitro capacity of inhibiting fibroblasts proliferation. A pilot study showed positive results, but a more recent randomized double blind trial was unable to demonstrate a clear benefit to the patients. On the other hand there are many evidences for an oxydant-antioxydant imbalance in the pathogenesis of IPF. In a human controlled study N-acetylcysteine (NAC) at high doses (1800 mg per day orally) improved the pulmonary function tests when given on top of a combined therapy with prednisone and azathioprine.

  15. Premature opening of the pulmonary valve in endomyocardial fibrosis.

    PubMed

    Okamoto, M; Amioka, H; Hashimoto, M; Shimamoto, H; Sakura, E; Yokote, Y; Yamagata, T; Tsuchioka, Y; Matsuura, H; Kajiyama, G

    1988-01-01

    Two-dimensional and Doppler echocardiographic findings in a 67-year-old man with endomyocardial fibrosis (EMF) are described. The two-dimensional echocardiogram showed typical features of EMF, right ventricular endomyocardial calcification, a thickened right ventricular wall, obliteration of the apex of the right ventricle and marked dilatation of the right atrium. In addition, premature opening of the pulmonary valve was observed during late diastole. The Doppler echocardiogram revealed forward flow from the right ventricle to the pulmonary artery, indicating the conduit state of the right ventricle. These findings were supported by cardiac catheterization and autopsy. Thus, two-dimensional and Doppler echocardiography are useful not only in making the diagnosis, but also in understanding the hemodynamic condition in EMF.

  16. ABCA3 mutations led to pulmonary fibrosis and emphysema with pulmonary hypertension in an 8-year-old girl.

    PubMed

    Ota, Chiharu; Kimura, Masato; Kure, Shigeo

    2016-06-01

    ABCA3 is highly expressed in alveolar epithelial type 2 cells and is associated with surfactant homeostasis. Patients with ABCA3 mutations develop various respiratory complications, such as fatal respiratory distress syndrome or interstitial lung disease. We describe a patient with pulmonary fibrosis and emphysema with pulmonary hypertension, associated with compound heterozygous mutations of the ABCA3 gene. This is the first report showing that mutations in the ABCA3 gene lead to pulmonary fibrosis and emphysema, including combined pulmonary fibrosis and emphysema, in childhood. Treatment with prostacyclin analogue, warfarin, and inhaled oxygen was effective to improve patient's hemodynamic condition as well as pulmonary fibrosis and emphysema. Pediatr Pulmonol. 2016;51:E21-E23. © 2016 Wiley Periodicals, Inc.

  17. The Chinese Herbal Medicine Formula mKG Suppresses Pulmonary Fibrosis of Mice Induced by Bleomycin.

    PubMed

    Gao, Ying; Yao, Li-Fu; Zhao, Yang; Wei, Li-Man; Guo, Peng; Yu, Meng; Cao, Bo; Li, Tan; Chen, Hong; Zou, Zhong-Mei

    2016-02-15

    Pulmonary fibrosis (PF) is a serious progressive lung disease and it originates from inflammation-induced parenchymal injury with excessive extracellular matrix deposition to result in the destruction of the normal lung architecture. Modified Kushen Gancao Formula (mKG), derived from traditional Chinese herbal medicine, has a prominent anti-inflammatory effect. The present study is to explore the inhibitory effects of mKG on bleomycin (BLM)-induced pulmonary fibrosis in mice. mKG significantly decreased pulmonary alveolitis, fibrosis scores, and interleukin-6 (IL-6), interleukin-17 (IL-17), transforming growth factor-β (TGF-β) and hydroxyproline (HYP) levels in lung tissue of mice compared with BLM treatment. It markedly alleviated the increase of HYP content in the lung tissues and pathologic changes of pulmonary fibrosis caused by BLM instillation. In conclusion, mKG has an anti-fibrotic effect and might be employed as a therapeutic candidate agent for attenuating pulmonary fibrosis.

  18. Acute Exacerbation of Idiopathic Pulmonary Fibrosis. An International Working Group Report.

    PubMed

    Collard, Harold R; Ryerson, Christopher J; Corte, Tamera J; Jenkins, Gisli; Kondoh, Yasuhiro; Lederer, David J; Lee, Joyce S; Maher, Toby M; Wells, Athol U; Antoniou, Katerina M; Behr, Juergen; Brown, Kevin K; Cottin, Vincent; Flaherty, Kevin R; Fukuoka, Junya; Hansell, David M; Johkoh, Takeshi; Kaminski, Naftali; Kim, Dong Soon; Kolb, Martin; Lynch, David A; Myers, Jeffrey L; Raghu, Ganesh; Richeldi, Luca; Taniguchi, Hiroyuki; Martinez, Fernando J

    2016-08-01

    Acute exacerbation of idiopathic pulmonary fibrosis has been defined as an acute, clinically significant, respiratory deterioration of unidentifiable cause. The objective of this international working group report on acute exacerbation of idiopathic pulmonary fibrosis was to provide a comprehensive update on the topic. A literature review was conducted to identify all relevant English text publications and abstracts. Evidence-based updates on the epidemiology, etiology, risk factors, prognosis, and management of acute exacerbations of idiopathic pulmonary fibrosis are provided. Finally, to better reflect the current state of knowledge and improve the feasibility of future research into its etiology and treatment, the working group proposes a new conceptual framework for acute respiratory deterioration in idiopathic pulmonary fibrosis and a revised definition and diagnostic criteria for acute exacerbation of idiopathic pulmonary fibrosis.

  19. The Lactate Dehydrogenase Inhibitor Gossypol Inhibits Radiation-Induced Pulmonary Fibrosis.

    PubMed

    Judge, Jennifer L; Lacy, Shannon H; Ku, Wei-Yao; Owens, Kristina M; Hernady, Eric; Thatcher, Thomas H; Williams, Jacqueline P; Phipps, Richard P; Sime, Patricia J; Kottmann, R Matthew

    2017-07-01

    Exposure of the lung to ionizing radiation that occurs in radiotherapy, as well as after accidental or intentional mass casualty incident can result in pulmonary fibrosis, which has few treatment options. Pulmonary fibrosis is characterized by an accumulation of extracellular matrix proteins that create scar tissue. Although the mechanisms leading to radiation-induced pulmonary fibrosis remain poorly understood, one frequent observation is the activation of the profibrotic cytokine transforming growth factor-beta (TGF-β). Our laboratory has shown that the metabolite lactate activates latent TGF-β by a reduction in extracellular pH. We recently demonstrated that lactate dehydrogenase-A (LDHA), the enzyme that produces lactate, is upregulated in patients with radiation-induced pulmonary fibrosis. Furthermore, genetic silencing of LDHA or pharmacologic inhibition using the LDHA inhibitor gossypol prevented radiation-induced extracellular matrix secretion in vitro through inhibition of TGF-β activation. In the current study, we hypothesized that LDHA inhibition in vivo prevents radiation-induced pulmonary fibrosis. To test this hypothesis, C57BL/6 mice received 5 Gy total-body irradiation plus 10 Gy thoracic irradiation from a (137)Cs source to induce pulmonary fibrosis. Starting at 4 weeks postirradiation, mice were treated with 5 mg/kg of the LDHA inhibitor gossypol or vehicle daily until sacrifice at 26 weeks postirradiation. Exposure to radiation resulted in pulmonary fibrosis, characterized by an increase in collagen content, fibrosis area, extracellular matrix gene expression and TGF-β activation. Irradiated mice treated with gossypol had significantly reduced fibrosis outcomes, including reduced collagen content in the lungs, reduced expression of active TGF-β, LDHA and the transcription factor hypoxia-inducible factor-1 alpha (HIF-1α). These findings suggest that inhibition of LDHA protects against radiation-induced pulmonary fibrosis, and may be a novel

  20. Protective roles of polysaccharides from Ganoderma lucidum on bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Chen, Jianhui; Shi, Yingying; He, Lian; Hao, Hairong; Wang, Baolan; Zheng, Yulong; Hu, Chengping

    2016-11-01

    The purpose of this paper was to investigate the protective effects of polysaccharides from (PGL) Ganoderma lucidum on bleomycin-induced pulmonary fibrosis in rats. Our study demonstrated that treatment with PGL of 100-300mg/kg for 28 days led to significant reduction in the pulmonary index, inflammatory cell infiltration and collagen deposition in rats with bleomycin-induced pulmonary fibrosis, which was associated with increased levels of glutathione, glutathione peroxidase, catalase and superoxide dismutase and decreased contents of malondialdehyde and hydroxyproline in the lung. These results indicated that PGL played a positive protective role in the pulmonary fibrosis and its possible mechanism was to improve lung antioxidant ability.

  1. Effects and mechanisms of pirfenidone, prednisone and acetylcysteine on pulmonary fibrosis in rat idiopathic pulmonary fibrosis models.

    PubMed

    Yu, Wencheng; Guo, Fang; Song, Xiaoxia

    2017-12-01

    Previous studies have reported that caveolin-1 (Cav-1) is associated with lung fibrosis. However, the role of Cav-1 expression in pirfenidone-treated idiopathic pulmonary fibrosis (IPF) is unknown. This study investigated Cav-1 expression in pirfenidone-treated IPF, and compared the effects of pirfenidone with acetylcysteine and prednisone on IPF. Rat IPF model was established by endotracheal injection of 5 mg/kg bleomycin A5 into the specific pathogen-free Wistar male rats. Pirfenidone (P, 100 mg/kg once daily), prednisone (H, 5 mg/kg once daily) and acetylcysteine (N, 4 mg/kg 3 times per day) were used to treat the rat model by intragastric administration for 45 consecutive days, respectively. The normal rats without IPF were used as the controls. After 15, 30 and 45 days of drug treatment, lung histopathology was assessed. The expression of Cav-1 was determined using real-time quantitative PCR and Western blot; the expression of tumour necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor (PDGF) was determined by enzyme-linked immunosorbent assay. After 15, 30 and 45 days of drug treatment, comparison of the three drug-treated groups with the model group showed significantly lower (p < 0.05) significance of airsacculitis and fibrosis scores of lung tissues, as well as expression of TGF-β1, TNF-α and PDGF, but the expression of Cav-1 was higher (p < 0.05). Compared with the N group, the fibrosis score was significantly lower and the protein expression of Cav-1 was significantly higher in the P group (p < 0.05). Additionally, the expression of Cav-1 was negatively correlated with the airsacculitis and fibrosis scores (r = -0.506, p < 0.01; r = -0.676, p < 0.01) as well as expression of TGF-β1, TNF-α and PDGF (r = -0.590, p < 0.01; r = -0.530, p < 0.01; r = -0.553, p < 0.01). Pirfenidone, prednisone and acetylcysteine can inhibit airsacculitis and

  2. The diagnosis of idiopathic pulmonary fibrosis: current and future approaches

    PubMed Central

    Martinez, Fernando J; Chisholm, Alison; Collard, Harold R; Flaherty, Kevin R; Myers, Jeffrey; Raghu, Ganesh; Walsh, Simon LF; White, Eric S; Richeldi, Luca

    2017-01-01

    With the recent development of two effective treatments for patients with idiopathic pulmonary fibrosis, an accurate diagnosis is crucial. The traditional approach to diagnosis emphasises the importance of thorough clinical and laboratory evaluations to exclude secondary causes of disease. High-resolution CT is a critical initial diagnostic test and acts as a tool to identify patients who should undergo surgical lung biopsy to secure a definitive histological diagnosis of usual interstitial pneumonia pattern. This diagnostic approach faces several challenges. Many patients with suspected idiopathic pulmonary fibrosis present with atypical high-resolution CT characteristics but are unfit for surgical lung biopsy, therefore preventing a confident diagnosis. The state of the art suggests an iterative, multidisciplinary process that incorporates available clinical, laboratory, imaging, and histological features. Recent research has explored genomic techniques to molecularly phenotype patients with interstitial lung disease. In the future, clinicians will probably use blood-specific or lung-specific molecular markers in combination with other clinical, physiological, and imaging features to enhance diagnostic efforts, refine prognostic recommendations, and influence the initial or subsequent treatment options. There is an urgent and increasing need for well designed, large, prospective studies measuring the effect of different diagnostic approaches. Ultimately, this will help to inform the development of guidelines and tailor clinical practice for the benefit of patients. PMID:27932290

  3. Multidisciplinary interobserver agreement in the diagnosis of idiopathic pulmonary fibrosis.

    PubMed

    Thomeer, M; Demedts, M; Behr, J; Buhl, R; Costabel, U; Flower, C D R; Verschakelen, J; Laurent, F; Nicholson, A G; Verbeken, E K; Capron, F; Sardina, M; Corvasce, G; Lankhorst, I

    2008-03-01

    The purpose of the present study was to evaluate the accuracy of the diagnosis of idiopathic pulmonary fibrosis (IPF) by respiratory physicians in six European countries, and to calculate the interobserver agreement between high-resolution computed tomography reviewers and histology reviewers in IPF diagnosis. The diagnosis of usual interstitial pneumonia (UIP) was assessed by a local investigator, following the American Thoracic Society/European Respiratory Society consensus statement, and confirmed when a minimum of two out of three expert reviewers from each expert panel agreed with the diagnosis. The level of agreement between readers within each expert panel was calculated by weighted kappa. The diagnosis of UIP was confirmed by the expert panels in 87.2% of cases. A total of 179 thoracic high-resolution computed tomography scans were independently reviewed, and an interobserver agreement of 0.40 was found. Open or thoracoscopic lung biopsy was performed in 97 patients, 82 of whom could be reviewed by the expert committee. The weighted kappa between histology readers was 0.30. It is concluded that, although the level of agreement between the readers within each panel was only fair to moderate, the overall accuracy of a clinical diagnosis of idiopathic pulmonary fibrosis in expert centres is good (87.2%).

  4. [Combined pulmonary fibrosis and emphysema associated with microscopic polyangiitis].

    PubMed

    M'Saad, S; Kammoun, K; Yangui, I; Fourati, H; Feki, W; Marouen, F; Daoud, E; Kammoun, S

    2016-05-01

    Combined pulmonary fibrosis and emphysema (CPFE) is a rare entity of unknown etiology. It usually occurs in the context of smoking and, less commonly, connective tissue disease. However, it has been rarely previously described in the context of vasculitis. We report a case of CPFE occurring in a 44-year-old man, who was a light smoker without any previous medical history. He presented with fever, chronic cough and breathlessness that progressively evolved to acute respiratory failure. At the initial evaluation, CT scan showed emphysema and patchy bilateral areas of ground-glass opacity. Three years later, the patient simultaneously developed a honeycomb fibrosis and a microscopic polyangiitis with renal involvement justifying the introduction of an immunosuppressive treatment in combination with high dose of systemic corticosteroids. After a stabilization period of 6years, the patient gradually developed chronic respiratory failure with moderate pulmonary hypertension requiring long-term oxygen therapy and nocturnal non-invasive ventilation. The association of microscopic polyangiitis to CFPE suggests that autoimmune diseases may have a common pathogenic role in the development of emphysematous and fibrotic lesions in CPFE. Copyright © 2015 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  5. Lung transplantation in telomerase mutation carriers with pulmonary fibrosis

    PubMed Central

    Silhan, Leann L.; Shah, Pali D.; Chambers, Daniel C.; Snyder, Laurie D.; Riise, Gerdt C.; Wagner, Christa L.; Hellström-Lindberg, Eva; Orens, Jonathan B.; Mewton, Juliette F.; Danoff, Sonye K.; Arcasoy, Murat O.; Armanios, Mary

    2014-01-01

    Lung transplantation is the only intervention that prolongs survival in idiopathic pulmonary fibrosis (IPF). Telomerase mutations are the most common identifiable genetic cause of IPF, and at times, the telomere defect manifests in extrapulmonary disease such as bone marrow failure. The relevance of this genetic diagnosis for lung transplant management has not been examined. We gathered an international series of telomerase mutation carriers who underwent lung transplant in the USA, Australia and Sweden. The median age at transplant was 52 years. Seven recipients are alive with a median follow-up of 1.9 years (range 6 months to 9 years); one died at 10 months. The most common complications were haematological, with recipients requiring platelet transfusion support (88%) and adjustment of immunosuppressives (100%). Four recipients (50%) required dialysis for tubular injury and calcineurin inhibitor toxicity. These complications occurred at significantly higher rates relative to historic series (p<0.0001). Our observations support the feasibility of lung transplantation in telomerase mutation carriers; however, severe post-transplant complications reflecting the syndromic nature of their disease appear to occur at higher rates. While these findings need to be expanded to other cohorts, caution should be exercised when approaching the transplant evaluation and management of this subset of pulmonary fibrosis patients. PMID:24833766

  6. Lung transplantation in telomerase mutation carriers with pulmonary fibrosis.

    PubMed

    Silhan, Leann L; Shah, Pali D; Chambers, Daniel C; Snyder, Laurie D; Riise, Gerdt C; Wagner, Christa L; Hellström-Lindberg, Eva; Orens, Jonathan B; Mewton, Juliette F; Danoff, Sonye K; Arcasoy, Murat O; Armanios, Mary

    2014-07-01

    Lung transplantation is the only intervention that prolongs survival in idiopathic pulmonary fibrosis (IPF). Telomerase mutations are the most common identifiable genetic cause of IPF, and at times, the telomere defect manifests in extrapulmonary disease such as bone marrow failure. The relevance of this genetic diagnosis for lung transplant management has not been examined. We gathered an international series of telomerase mutation carriers who underwent lung transplant in the U.S.A., Australia and Sweden. The median age at transplant was 52 years. Seven recipients are alive with a median follow-up of 1.9 years (range 6 months to 9 years); one died at 10 months. The most common complications were haematological, with recipients requiring platelet transfusion support (88%) and adjustment of immunosuppressives (100%). Four recipients (50%) required dialysis for tubular injury and calcineurin inhibitor toxicity. These complications occurred at significantly higher rates relative to historic series (p<0.0001). Our observations support the feasibility of lung transplantation in telomerase mutation carriers; however, severe post-transplant complications reflecting the syndromic nature of their disease appear to occur at higher rates. While these findings need to be expanded to other cohorts, caution should be exercised when approaching the transplant evaluation and management of this subset of pulmonary fibrosis patients. © ERS 2014.

  7. Regulation of pulmonary fibrosis by chemokine receptor CXCR3

    PubMed Central

    Jiang, Dianhua; Liang, Jiurong; Hodge, Jennifer; Lu, Bao; Zhu, Zhou; Yu, Shuang; Fan, Juan; Gao, Yunfei; Yin, Zhinan; Homer, Robert; Gerard, Craig; Noble, Paul W.

    2004-01-01

    CXC chemokine receptor 3 (CXCR3) is the receptor for the IFN-γ–inducible C-X-C chemokines MIG/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11. CXCR3 is expressed on activated immune cells and proliferating endothelial cells. The role of CXCR3 in fibroproliferation has not been investigated. We examined the role of CXCR3 in pulmonary injury and repair in vivo. CXCR3-deficient mice demonstrated increased mortality with progressive interstitial fibrosis relative to WT mice. Increased fibrosis occurred without increased inflammatory cell recruitment. CXCR3 deficiency resulted in both a reduced early burst of IFN-γ production and decreased expression of CXCL10 after lung injury. We identified a relative deficiency in lung NK cells in the unchallenged CXCR3-deficient lung and demonstrated production of IFN-γ by WT lung NK cells in vivo following lung injury. The fibrotic phenotype in the CXCR3-deficient mice was significantly reversed following administration of exogenous IFN-γ or restoration of endogenous IFN-γ production by adoptive transfer of WT lymph node and spleen cells. Finally, pretreatment of WT mice with IFN-γ–neutralizing Ab’s enhanced fibrosis following lung injury. These data demonstrate a nonredundant role for CXCR3 in limiting tissue fibroproliferation and suggest that this effect may be mediated, in part, by the innate production of IFN-γ following lung injury. PMID:15254596

  8. Investigational approaches to therapies for idiopathic pulmonary fibrosis

    PubMed Central

    Gomer, Richard H.; Lupher, Mark L.

    2010-01-01

    Importance of the field In fibrosing diseases, scar tissue begins to replace normal tissue, causing tissue dysfunction. For instance, in lung fibrosis, foci of what resembles scar tissue form in the lungs, impeding the ability of patients to breath. These conditions represent a significant source of morbidity and mortality. More than 150,000 people in the US have some form of fibrotic lung disease, and the five-year mortality rate for these diseases can be as high as 80%. Despite this large unmet medical need, there are no FDA-approved therapies. Although our understanding of the causes and the biology of fibrosing diseases remains relatively poor, we have made impressive advances in identifying the major cell populations and many biochemical mediators that can drive this process. As a result, novel therapeutics are being developed based upon these discoveries. Areas covered in this review This review examines the experimental therapies currently under investigation as of late 2009 for a major class of lung fibrosis called idiopathic pulmonary fibrosis (IPF). What the reader will gain The reader will gain an overview of current experimental therapies for IPF. Take home message With the recent approval of Pirfenidone in Japan for use in IPF, and a rich pipeline of experimental therapies in various stages of clinical development, the future looks bright for new treatment options. PMID:20443753

  9. Serum Amyloid P Therapeutically Attenuates Murine Bleomycin-Induced Pulmonary Fibrosis via Its Effects on Macrophages

    PubMed Central

    Murray, Lynne A.; Rosada, Rogerio; Moreira, Ana Paula; Joshi, Amrita; Kramer, Michael S.; Hesson, David P.; Argentieri, Rochelle L.; Mathai, Susan; Gulati, Mridu; Herzog, Erica L.; Hogaboam, Cory M.

    2010-01-01

    Macrophages promote tissue remodeling but few mechanisms exist to modulate their activity during tissue fibrosis. Serum amyloid P (SAP), a member of the pentraxin family of proteins, signals through Fcγ receptors which are known to affect macrophage activation. We determined that IPF/UIP patients have increased protein levels of several alternatively activated pro-fibrotic (M2) macrophage-associated proteins in the lung and monocytes from these patients show skewing towards an M2 macrophage phenotype. SAP therapeutically inhibits established bleomycin-induced pulmonary fibrosis, when administered systemically or locally to the lungs. The reduction in aberrant collagen deposition was associated with a reduction in M2 macrophages in the lung and increased IP10/CXCL10. These data highlight the role of macrophages in fibrotic lung disease, and demonstrate a therapeutic action of SAP on macrophages which may extend to many fibrotic indications caused by over-exuberant pro-fibrotic macrophage responses. PMID:20300636

  10. Alteration of Aging-dependent MicroRNAs in Idiopathic Pulmonary Fibrosis (IPF)

    PubMed Central

    Nho, Richard Seonghun

    2015-01-01

    Idiopathic Pulmonary Fibrosis (IPF) is the most severe fibrotic lung disease and characterized by the accumulation of (myo)fibroblasts and collagen within the alveolar wall resulting in obliteration of the gas-exchange surface. Although the detailed pathogenesis is not understood, recent studies have found that several microRNAs (miRNAs) are associated with the progression of lung diseases including IPF. IPF is an age-associated disease and, accordingly, frequently found in an aged population. In this review, the functional roles of miRNAs that are deregulated in IPF progression are discussed together with how aging affects the miRNA signature, altering the fibroblast phenotype and promoting lung fibrosis. Finally, the possibility of targeting miRNAs as a therapeutic approach for the treatment of IPF is discussed. PMID:26303294

  11. Metformin Reduces Bleomycin-induced Pulmonary Fibrosis in Mice.

    PubMed

    Choi, Sun Mi; Jang, An Hee; Kim, Hyojin; Lee, Kyu Hwa; Kim, Young Whan

    2016-09-01

    Metformin has anti-inflammatory and anti-fibrotic effects. We investigated whether metformin has an inhibitory effect on bleomycin (BLM)-induced pulmonary fibrosis in a murine model. A total of 62 mice were divided into 5 groups: control, metformin (100 mg/kg), BLM, and BLM with metformin (50 mg/kg or 100 mg/kg). Metformin was administered to the mice orally once a day from day 1. We sacrificed half of the mice on day 10 and collected the bronchoalveolar lavage fluid (BALF) from their left lungs. The remaining mice were sacrificed and analyzed on day 21. The right lungs were harvested for histological analyses. The messenger RNA (mRNA) levels of epithelial-mesenchymal transition markers were determined via analysis of the harvested lungs on day 21. The mice treated with BLM and metformin (50 mg/kg or 100 mg/kg) showed significantly lower levels of inflammatory cells in the BALF compared with the BLM-only mice on days 10 and 21. The histological examination revealed that the metformin treatment led to a greater reduction in inflammation than the treatment with BLM alone. The mRNA levels of collagen, collagen-1, procollagen, fibronectin, and transforming growth factor-β in the metformin-treated mice were lower than those in the BLM-only mice on day 21, although statistical significance was observed only in the case of procollagen due to the small number of live mice in the BLM-only group. Additionally, treatment with metformin reduced fibrosis to a greater extent than treatment with BLM alone. Metformin suppresses the inflammatory and fibrotic processes of BLM-induced pulmonary fibrosis in a murine model.

  12. Nintedanib: evidence for its therapeutic potential in idiopathic pulmonary fibrosis

    PubMed Central

    Inomata, Minoru; Nishioka, Yasuhiko; Azuma, Arata

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease with poor prognosis. The molecular mechanisms involved in the progression of IPF are not fully understood; however, the platelet-derived growth factor (PDGF)/PDGF receptor pathway is thought to play a critical role in fibrogenesis of the lungs. Other growth factors, including fibroblast growth factor and vascular endothelial growth factor, are also thought to contribute to the pathogenesis of pulmonary fibrosis. Nintedanib is an inhibitor of multiple tyrosine kinases, including receptors for PDGF, fibroblast growth factor, and vascular endothelial growth factor. In the Phase II TOMORROW trial, treatment with 150 mg of nintedanib twice daily showed a trend to slow the decline in lung function and significantly decrease acute exacerbations in patients with IPF, while showing an acceptable safety profile. The Phase III INPULSIS trials demonstrated a significant decrease in the annual rate of decline in forced vital capacity in IPF patients treated with 150 mg nintedanib twice daily. In the INPULSIS-2 trial, the time to the first acute exacerbation significantly increased in IPF patients who were treated with 150 mg of nintedanib twice daily. Pirfenidone, another antifibrotic drug, was shown to limit the decline in pulmonary function in patients with IPF in the ASCEND trial. Combination therapy with nintedanib and pirfenidone is anticipated, although further evaluation of its long-term safety is needed. There is limited evidence for the safety of the combination therapy although a Phase II trial conducted in Japan demonstrated that combination therapy with nintedanib and pirfenidone was tolerable for 1 month. Available antifibrotic agents (ie, pirfenidone and N-acetylcysteine) have limited efficacy as single therapies for IPF; therefore, further study of combination therapy with antifibrotic agents is needed. PMID:26346347

  13. Nintedanib: evidence for its therapeutic potential in idiopathic pulmonary fibrosis.

    PubMed

    Inomata, Minoru; Nishioka, Yasuhiko; Azuma, Arata

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease with poor prognosis. The molecular mechanisms involved in the progression of IPF are not fully understood; however, the platelet-derived growth factor (PDGF)/PDGF receptor pathway is thought to play a critical role in fibrogenesis of the lungs. Other growth factors, including fibroblast growth factor and vascular endothelial growth factor, are also thought to contribute to the pathogenesis of pulmonary fibrosis. Nintedanib is an inhibitor of multiple tyrosine kinases, including receptors for PDGF, fibroblast growth factor, and vascular endothelial growth factor. In the Phase II TOMORROW trial, treatment with 150 mg of nintedanib twice daily showed a trend to slow the decline in lung function and significantly decrease acute exacerbations in patients with IPF, while showing an acceptable safety profile. The Phase III INPULSIS trials demonstrated a significant decrease in the annual rate of decline in forced vital capacity in IPF patients treated with 150 mg nintedanib twice daily. In the INPULSIS-2 trial, the time to the first acute exacerbation significantly increased in IPF patients who were treated with 150 mg of nintedanib twice daily. Pirfenidone, another antifibrotic drug, was shown to limit the decline in pulmonary function in patients with IPF in the ASCEND trial. Combination therapy with nintedanib and pirfenidone is anticipated, although further evaluation of its long-term safety is needed. There is limited evidence for the safety of the combination therapy although a Phase II trial conducted in Japan demonstrated that combination therapy with nintedanib and pirfenidone was tolerable for 1 month. Available antifibrotic agents (ie, pirfenidone and N-acetylcysteine) have limited efficacy as single therapies for IPF; therefore, further study of combination therapy with antifibrotic agents is needed.

  14. Intrapulmonary concentration of levofloxacin in patients with idiopathic pulmonary fibrosis.

    PubMed

    Huang, Hui; Wang, Yanxun; Jiang, Chunguo; Lang, Liwei; Wang, Hongyun; Chen, Yong; Zhao, Yang; Xu, Zuojun

    2014-06-01

    Patients with idiopathic pulmonary fibrosis (IPF) have significantly impaired pulmonary diffusion, which may affect the pulmonary concentration of many drugs, including antibiotics. In this study, we compared the difference in pulmonary levofloxacin (LVFX) concentration between patients with normal lung function and IPF. The IPF group included 10 patients with a proven diagnosis of IPF and a diffusing capacity for carbon monoxide ranging from 40% to 70% of predicted values. The control group included 10 patients with normal pulmonary function. Blood and bronchoalveolar lavage fluid (BALF) were taken at 3-3.5 h after fasting. LVFX (500 mg) was administered orally. LVFX concentrations in the serum and BALF were determined using HPLC-MS/MC. The level of LVFX in alveolar epithelial lining fluid (ELF) was calculated using the following formula: LVFX ELF = LVFX BALF × (Urea serum/Urea BALF). No significant differences in age, body weight, height, and calculated creatinine clearance and BALF retrieval rate were observed between groups. LVFX serum concentrations in the IPF and control groups were (5.97 ± 1.28) μg/ml and (6.84 ± 3.43) μg/ml, respectively (P = 0.4727). ELF concentration of LVFX in the control group was (27.81 ± 21.36) μg/ml, while the concentration in the IPF group was (10.17 ± 2.46) μg/ml, less than half of that in the controls (P = 0.0058). The intrapulmonary concentration of LVFX in IPF patients was lower than those with normal lung function. Notably, however, the ELF LVFX concentration following 500 mg once-daily exceeded the MIC90 of common respiratory pathogens. Excellent antibacterial efficacy of LVFX can be expected for IPF patients in the treatment of respiratory tract infections.

  15. Vaccinia vaccine–based immunotherapy arrests and reverses established pulmonary fibrosis

    PubMed Central

    Collins, Samuel L.; Chan-Li, Yee; Oh, MinHee; Vigeland, Christine L.; Mitzner, Wayne; Powell, Jonathan D.; Horton, Maureen R.

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a fatal disease without any cure. Both human disease and animal models demonstrate dysregulated wound healing and unregulated fibrogenesis in a background of low-grade chronic T lymphocyte infiltration. Tissue-resident memory T cells (Trm) are emerging as important regulators of the immune microenvironment in response to pathogens, and we hypothesized that they might play a role in regulating the unremitting inflammation that promotes lung fibrosis. Herein, we demonstrate that lung-directed immunotherapy, in the form of i.n. vaccination, induces an antifibrotic T cell response capable of arresting and reversing lung fibrosis. In mice with established lung fibrosis, lung-specific T cell responses were able to reverse established pathology — as measured by decreased lung collagen, fibrocytes, and histologic injury — and improve physiologic function. Mechanistically, we demonstrate that this effect is mediated by vaccine-induced lung Trm. These data not only have implications for the development of immunotherapeutic regimens to treat IPF, but also suggest a role for targeting tissue-resident memory T cells to treat other tissue-specific inflammatory/autoimmune disorders. PMID:27158671

  16. Association between MUC5B polymorphism and susceptibility and severity of idiopathic pulmonary fibrosis

    PubMed Central

    Jiang, Haiming; Hu, Yejia; Shang, Li; Li, Yuzhu; Yang, Lihua; Chen, Yuguo

    2015-01-01

    Objectives: Idiopathic pulmonary fibrosis (IPF) is a group of lung diseases that cause irreversible architectural distortion and impair gas, and finally progressive pulmonary functional decline and death, in which the common variant in the promoter region of the mucin 5B (MUC5B) gene may be involved. The present study aims to investigate whether variants within the MUC5B gene rs35705950 contributed to IPF susceptibility and severity in Chinese Han Population. Methods: A total of 187 patients diagnosed with IPF and 250 healthy controls were enrolled in this study. All subjects were genotyped for MUV5B SNP rs35705950. The demographic, comorbidity, clinical and functional data were recorded. Results: The rs35705950 of MUC5B were found significantly associated with increased risk of IPF susceptibility. One way ANOVA analysis found that there was a significant decreased FVC (P < 0.0001) and DLco (P < 0.0001) in correction with the minor allele of the SNP rs35705950. In the 5 years’ follow-up, the carriers of the minor allele T increased mortality (P = 0.0294). Conclusion: This study demonstrated that the MUC5B polymorphism rs35705950 is associated with increased risk of idiopathic pulmonary fibrosis susceptibility, severity, and the decreased overall survival. PMID:26823827

  17. Loss of Matrix Metalloproteinase-13 Attenuates Murine Radiation-Induced Pulmonary Fibrosis

    SciTech Connect

    Flechsig, Paul; Hartenstein, Bettina; Teurich, Sybille; Dadrich, Monika; Hauser, Kai; Abdollahi, Amir; Groene, Hermann-Josef; Angel, Peter; Huber, Peter E.

    2010-06-01

    Purpose: Pulmonary fibrosis is a disorder of the lungs with limited treatment options. Matrix metalloproteinases (MMPs) constitute a family of proteases that degrade extracellular matrix with roles in fibrosis. Here we studied the role of MMP13 in a radiation-induced lung fibrosis model using a MMP13 knockout mouse. Methods and Materials: We investigated the role of MMP13 in lung fibrosis by investigating the effects of MMP13 deficiency in C57Bl/6 mice after 20-Gy thoracic irradiation (6-MV Linac). The morphologic results in histology were correlated with qualitative and quantitative results of volume computed tomography (VCT), magnetic resonance imaging (MRI), and clinical outcome. Results: We found that MMP13 deficient mice developed less pulmonary fibrosis than their wildtype counterparts, showed attenuated acute pulmonary inflammation (days after irradiation), and a reduction of inflammation during the later fibrogenic phase (5-6 months after irradiation). The reduced fibrosis in MMP13 deficient mice was evident in histology with reduced thickening of alveolar septi and reduced remodeling of the lung architecture in good correlation with reduced features of lung fibrosis in qualitative and quantitative VCT and MRI studies. The partial resistance of MMP13-deficient mice to fibrosis was associated with a tendency towards a prolonged mouse survival. Conclusions: Our data indicate that MMP13 has a role in the development of radiation-induced pulmonary fibrosis. Further, our findings suggest that MMP13 constitutes a potential drug target to attenuate radiation-induced lung fibrosis.

  18. Macrophage Responses to Epithelial Dysfunction Promote Lung Fibrosis in Aging

    DTIC Science & Technology

    2016-10-01

    tissue-resident macrophages or bone marrow -derived macrophages that prevent or promote fibrosis, respectively so they can be targeted for prevention or...guide therapy and factors released from tissue-resident macrophages or bone marrow -derived macrophages that prevent or promote fibrosis...aging? Subtask 1: Generate cohorts of shielded bone marrow chimeric mice. Dr. Misharin will perform the procedure, Drs. Chen and Soberanes will

  19. Deficiency of developmental endothelial locus-1 (Del-1) aggravates bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Kang, Yoon-Young; Kim, Dong-Young; Lee, Seung-Hwan; Choi, Eun Young

    2014-03-07

    Pulmonary fibrosis is a lung disease wherein lung parenchyma is gradually and irreversibly replaced with collagen. The molecular pathogenesis of pulmonary fibrosis is not fully understood and the only effective treatment available is lung transplantation. To test if Del-1, an endogenous anti-inflammatory molecule, may be implicated in the development of pulmonary fibrosis, we induced pulmonary fibrosis in wild type (WT) and Del-1(-/-) mice by intratracheal administration of bleomycin. Del-1 expression in the lung was decreased in the WT mice treated with bleomycin compared to control mice. In addition, bleomycin-induced pulmonary fibrosis increased collagen deposition and TGF-β production in the lung of Del-1(-/-) mice. Finally, Del-1(-/-) mice treated with bleomycin displayed higher weight loss and greater mortality than did WT mice identically treated. These findings suggest that Del-1 may negatively regulate development of pulmonary fibrosis. Further delineation of a role for Del-1 in the development of pulmonary fibrosis will broaden our understanding of the molecular pathogenesis of this disease and hopefully help develop potential therapeutics.

  20. Protection from Radiation-Induced Pulmonary Fibrosis by Peripheral Targeting of Cannabinoid Receptor-1.

    PubMed

    Bronova, Irina; Smith, Brett; Aydogan, Bulent; Weichselbaum, Ralph R; Vemuri, Kiran; Erdelyi, Katalin; Makriyannis, Alex; Pacher, Pal; Berdyshev, Evgeny V

    2015-10-01

    Radiation-induced pulmonary fibrosis (RIF) is a severe complication of thoracic radiotherapy that limits its dose, intensity, and duration. The contribution of the endocannabinoid signaling system in pulmonary fibrogenesis is not known. Using a well-established mouse model of RIF, we assessed the involvement of cannabinoid receptor-1 (CB1) in the onset and progression of pulmonary fibrosis. Female C57BL/6 mice and CB1 knockout mice generated on C57BL/6 background received 20 Gy (2 Gy/min) single-dose thoracic irradiation that resulted in pulmonary fibrosis and animal death within 15 to 18 weeks. Some C57BL/6 animals received the CB1 peripherally restricted antagonist AM6545 at 1 mg/kg intraperitoneally three times per week. Animal survival and parameters of pulmonary inflammation and fibrosis were evaluated. Thoracic irradiation (20 Gy) was associated with marked pulmonary inflammation and fibrosis in mice and high mortality within 15 to 18 weeks after exposure. Genetic deletion or pharmacological inhibition of CB1 receptors with a peripheral CB1 antagonist AM6545 markedly attenuated or delayed the lung inflammation and fibrosis and increased animal survival. Our results show that CB1 signaling plays a key pathological role in the development of radiation-induced pulmonary inflammation and fibrosis, and peripherally restricted CB1 antagonists may represent a novel therapeutic approach against this devastating complication of radiotherapy/irradiation.

  1. Efficacy of N-Acetylcysteine in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Sun, Tong; Liu, Jing; Zhao, De Wei

    2016-01-01

    Abstract There are a number of conflicting reports describing the clinical outcomes of using N-acetylcysteine for the treatment of idiopathic pulmonary fibrosis. We have, therefore, performed a meta-analysis to evaluate the efficacy of N-acetylcysteine, compared with control, for the treatment of idiopathic pulmonary fibrosis. Original controlled clinical trials evaluating the efficacy of N-acetylcysteine for the treatment of idiopathic pulmonary fibrosis were included in the analysis. Searches for relevant articles were carried out in July 2014 by 2 independent researchers using PubMed, Embase, Cochrane Central, and Google Scholar. Change in forced vital capacity, change in percentage of predicted vital capacity, change in percentage of predicted carbon monoxide diffusing capacity, changes in 6 minutes walking test distance, rate of adverse events, and rate of death were expressed as outcomes using RevMan 5.0.1. Five trials, with a total of 564 patients, were included in this meta-analysis. The meta-analysis showed that the control group had significant decreases in percentage of predicted vital capacity (standardized mean difference [SMD] = 0.37; 95% confidence interval [CI]: 0.13 to −0.62; P = 0.003) and 6 minutes walking test distance (SMD = 0.25; 95% CI: 0.02–0.48; P = 0.04). There were no statistically significant differences in forced vital capacity (SMD = 0.07; 95% CI: −0.13–0.27; P = 0.52), percentage of predicted carbon monoxide diffusing capacity (SMD = 0.12; 95% CI: −0.06–0.30; P = 0.18), rates of adverse events (odd ratio = 4.50; 95% CI: 0.19–106.41; P = 0.35), or death rates (odd ratio = 1.79; 95% CI: 0.3–5.12; P = 0.28) between the N-acetylcysteine group and the control group. N-Acetylcysteine was found to have a significant effect only on decreases in percentage of predicted vital capacity and 6 minutes walking test distance. N-acetylcysteine showed no beneficial effect on changes

  2. Mesenchymal Stromal Cells in Animal Bleomycin Pulmonary Fibrosis Models: A Systematic Review.

    PubMed

    Srour, Nadim; Thébaud, Bernard

    2015-12-01

    Idiopathic pulmonary fibrosis is an inexorably progressive lung disease with few available treatments. New therapeutic options are needed. Stem cells have generated much enthusiasm for the treatment of several conditions, including lung diseases. Human trials of mesenchymal stromal cell (MSC) therapy for pulmonary fibrosis are under way. To shed light on the potential usefulness of MSCs for human disease, we aimed to systematically review the preclinical literature to determine if MSCs are beneficial in animal bleomycin pulmonary fibrosis models. The MEDLINE and Embase databases were searched for original studies of stem cell therapy in animal bleomycin models of pulmonary fibrosis. Studies using embryonic stem cells or induced pluripotent stem cells were excluded. Seventeen studies were selected, all of which used MSCs in rodents. MSC therapy led to an improvement in bleomycin-induced lung collagen deposition in animal lungs and in the pulmonary fibrosis Ashcroft score in most studies. MSC therapy improved histopathology in almost all studies in which it was evaluated qualitatively. Furthermore, MSC therapy was found to improve 14-day survival in animals with bleomycin-induced pulmonary fibrosis. Bronchoalveolar lavage total and neutrophil counts, as well as transforming growth factor-β levels, were also reduced by MSCs. MSCs are beneficial in rodent bleomycin pulmonary fibrosis models. Since most studies examined the initial inflammatory phase rather than the chronic fibrotic phase, preclinical data offer better support for human trials of MSCs in acute exacerbations of pulmonary fibrosis rather than the chronic phase of the disease. There has been increased interest in mesenchymal stromal cell therapy for lung diseases. A few small clinical trials are under way in idiopathic pulmonary fibrosis. Preclinical evidence was assessed in a systematic review, as is often done for clinical studies. The existing studies offer better support for efficacy in the initial

  3. Morphologic and molecular study of lung cancers associated with idiopathic pulmonary fibrosis and other pulmonary fibroses.

    PubMed

    Guyard, Alice; Danel, Claire; Théou-Anton, Nathalie; Debray, Marie-Pierre; Gibault, Laure; Mordant, Pierre; Castier, Yves; Crestani, Bruno; Zalcman, Gérard; Blons, Hélène; Cazes, Aurélie

    2017-06-15

    Primitive lung cancers developed on lung fibroses are both diagnostic and therapeutic challenges. Their incidence may increase with new more efficient lung fibrosis treatments. Our aim was to describe a cohort of lung cancers associated with idiopathic pulmonary fibrosis (IPF) and other lung fibrotic disorders (non-IPF), and to characterize their molecular alterations using immunohistochemistry and next-generation sequencing (NGS). Thirty-one cancer samples were collected from 2001 to 2016 in two French reference centers for pulmonary fibrosis - 18 for IPF group and 13 for non-IPF group. NGS was performed using an ampliseq panel to analyze hotspots and targeted regions in 22 cancer-associated genes. ALK, ROS1 and PD-L1 expressions were assessed by immunohistochemistry. Squamous cell carcinoma was the most frequent histologic subtype in the IPF group (44%), adenocarcinoma was the most frequent subtype in the non-IPF group (62%). Forty-one mutations in 13 genes and one EGFR amplification were identified in 25 samples. Two samples had no mutation in the selected panel. Mutations were identified in TP53 (n = 20), MET (n = 4), BRAF (n = 3), FGFR3, PIK3CA, PTEN, STK11 (n = 2), SMAD4, CTNNB1, DDR2, ERBB4, FBXW7 and KRAS (n = 1) genes. No ALK and ROS1 expressions were identified. PD-L1 was expressed in 10 cases (62%) with only one (6%) case >50%. This extensive characterization of lung fibrosis-associated cancers evidenced molecular alterations which could represent either potential therapeutic targets either clues to the pathophysiology of these particular tumors. These findings support the relevance of large molecular characterization of every lung fibrosis-associated cancer.

  4. Rapamycin Prevents Transforming Growth Factor-α–Induced Pulmonary Fibrosis

    PubMed Central

    Korfhagen, Thomas R.; Le Cras, Timothy D.; Davidson, Cynthia R.; Schmidt, Stephanie M.; Ikegami, Machiko; Whitsett, Jeffrey A.; Hardie, William D.

    2009-01-01

    Transforming growth factor (TGF)-α is a ligand for the epidermal growth factor receptor (EGFR). EGFR activation is associated with fibroproliferative processes in human lung disease and animal models of pulmonary fibrosis. Overexpression of TGF-α in transgenic mice causes progressive and severe pulmonary fibrosis; however, the intracellular signaling pathways downstream of EGFR mediating this response are unknown. Using a doxycycline-regulatable transgenic mouse model of lung-specific TGF-α expression, we observed increased PCNA protein and phosphorylation of Akt and p70S6K in whole lung homogenates in association with induction of TGF-α. Induction in the lung of TGF-α caused progressive pulmonary fibrosis over a 7-week period. Daily administration of rapamycin prevented accumulation of total lung collagen, weight loss, and changes in pulmonary mechanics. Treatment of mice with rapamycin 4 weeks after the induction of TGF-α prevented additional weight loss, increases in total collagen, and changes in pulmonary mechanics. Rapamycin prevented further increases in established pulmonary fibrosis induced by EGFR activation. This study demonstrates that mammalian target of rapamycin (mTOR) is a major effector of EGFR-induced pulmonary fibrosis, providing support for further studies to determine the role of mTOR in the pathogenesis and treatment of pulmonary fibrosis. PMID:19244201

  5. Comorbid Conditions in Idiopathic Pulmonary Fibrosis: Recognition and Management

    PubMed Central

    Oldham, Justin M.; Collard, Harold R.

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF), a fibrosing interstitial pneumonia of unknown etiology, primarily affects older adults and leads to a progressive decline in lung function and quality of life. With a median survival of 3–5 years, IPF is the most common and deadly of the idiopathic interstitial pneumonias. Despite the poor survivorship, there exists substantial variation in disease progression, making accurate prognostication difficult. Lung transplantation remains the sole curative intervention in IPF, but two anti-fibrotic therapies were recently shown to slow pulmonary function decline and are now approved for the treatment of IPF in many countries around the world. While the approval of these therapies represents an important first step in combatting of this devastating disease, a comprehensive approach to diagnosing and treating patients with IPF remains critically important. Included in this comprehensive assessment is the recognition and appropriate management of comorbid conditions. Though IPF is characterized by single organ involvement, many comorbid conditions occur within other organ systems. Common cardiovascular processes include coronary artery disease and pulmonary hypertension (PH), while gastroesophageal reflux and hiatal hernia are the most commonly encountered gastrointestinal disorders. Hematologic abnormalities appear to place patients with IPF at increased risk of venous thromboembolism, while diabetes mellitus (DM) and hypothyroidism are prevalent metabolic disorders. Several pulmonary comorbidities have also been linked to IPF, and include emphysema, lung cancer, and obstructive sleep apnea. While the treatment of some comorbid conditions, such as CAD, DM, and hypothyroidism is recommended irrespective of IPF, the benefit of treating others, such as gastroesophageal reflux and PH, remains unclear. In this review, we highlight common comorbid conditions encountered in IPF, discuss disease-specific diagnostic modalities, and review the

  6. Comorbid Conditions in Idiopathic Pulmonary Fibrosis: Recognition and Management.

    PubMed

    Oldham, Justin M; Collard, Harold R

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF), a fibrosing interstitial pneumonia of unknown etiology, primarily affects older adults and leads to a progressive decline in lung function and quality of life. With a median survival of 3-5 years, IPF is the most common and deadly of the idiopathic interstitial pneumonias. Despite the poor survivorship, there exists substantial variation in disease progression, making accurate prognostication difficult. Lung transplantation remains the sole curative intervention in IPF, but two anti-fibrotic therapies were recently shown to slow pulmonary function decline and are now approved for the treatment of IPF in many countries around the world. While the approval of these therapies represents an important first step in combatting of this devastating disease, a comprehensive approach to diagnosing and treating patients with IPF remains critically important. Included in this comprehensive assessment is the recognition and appropriate management of comorbid conditions. Though IPF is characterized by single organ involvement, many comorbid conditions occur within other organ systems. Common cardiovascular processes include coronary artery disease and pulmonary hypertension (PH), while gastroesophageal reflux and hiatal hernia are the most commonly encountered gastrointestinal disorders. Hematologic abnormalities appear to place patients with IPF at increased risk of venous thromboembolism, while diabetes mellitus (DM) and hypothyroidism are prevalent metabolic disorders. Several pulmonary comorbidities have also been linked to IPF, and include emphysema, lung cancer, and obstructive sleep apnea. While the treatment of some comorbid conditions, such as CAD, DM, and hypothyroidism is recommended irrespective of IPF, the benefit of treating others, such as gastroesophageal reflux and PH, remains unclear. In this review, we highlight common comorbid conditions encountered in IPF, discuss disease-specific diagnostic modalities, and review the

  7. [The role of oxygen radicals in bleomycin-induced pulmonary fibrosis].

    PubMed

    Wang, X Z

    1992-06-01

    A model of pulmonary fibrosis in rat has been developed using intratracheal administration of bleomycin (BLM) A5 (5mg/kg). Histopathologic features and total lung collagen were studied. We found that type I pneumocytes detached, basement membrane denuded and endothelia edema were the earliest changes in BLM induced pulmonary fibrosis. Serum MDA (an index of lipid peroxidation) level in rats receiving intratracheal bleomycin were increased at earlier time after bleomycin administration. Meanwhile, MDA level in the lung homogenate was elevated too. Our results indicated that the injured type I pneumocytes and endothelia caused by oxygen radicles are the fundamental damages in bleomycin-induced pulmonary fibrosis.

  8. Idiopathic pulmonary fibrosis in a Christmas Island nuclear test veteran

    PubMed Central

    Parfrey, H; Babar, J; Fiddler, CA; Chilvers, ER

    2010-01-01

    We describe the case of a 71-year-old man with idiopathic pulmonary fibrosis (usual interstitial pneumonia (UIP) pattern) diagnosed on clinical, radiological and lung function criteria, in accordance with the American Thoracic Society/European Respiratory Society consensus criteria (2000), who had been in close proximity to three atmospheric nuclear bomb blasts during military service in 1957. He does not have clubbing and clinically and radiologically his lung disease is stable. He also has bladder carcinoma and carotid arteriosclerosis, both recognised consequences of radiation injury. This is the first reported case of UIP in a nuclear test veteran. Awareness of this potential association is important given the current attempts of the British Nuclear Test Veterans Association to gain compensation for claimed injuries. PMID:22797205

  9. Combined Pulmonary Fibrosis and Emphysema Preceding Lupus Pleuritis.

    PubMed

    Kamiya, Yosuke; Toyoshima, Mikio; Akiyama, Norimichi; Suda, Takafumi

    2016-01-01

    An 83-year-old man, who was a former smoker, with anti-ribonucleoprotein (RNP) antibody-positive combined pulmonary fibrosis and emphysema presented with a cough and dyspnea. A chest radiograph showed bilateral pleural effusions. His laboratory data showed proteinuria and elevated levels of anti-nuclear antibodies, anti-double strand DNA antibodies, and CA125, with decreased serum complement levels. Thoracentesis showed an exudative pleural effusion with an increased lymphocyte count and elevated CA125 levels. A thoracoscopic biopsy specimen showed proliferation of CA125-positive mesothelial cells. Systemic lupus erythematosus was diagnosed. His symptoms and pleural effusion resolved after the initiation of systemic corticosteroid therapy. The detection of anti-RNP antibody and CA125 levels are helpful in the diagnosis of lupus pleuritis.

  10. Idiopathic pulmonary fibrosis in infants: good prognosis with conservative management.

    PubMed

    Hacking, D; Smyth, R; Shaw, N; Kokia, G; Carty, H; Heaf, D

    2000-08-01

    Pulmonary interstitial fibrosis in children is a disease of unknown aetiology, usually associated with a poor prognosis. In this case series we describe 11 children presenting over a 10 year period, managed conservatively and associated with a good prognosis. In six, symptoms were present from birth and 10 had symptoms at or before 3 months. Diagnosis was made using chest computed tomography and percutaneous lung biopsy. All patients were treated with oral prednisolone. In five no steroid response was noted. One patient responded to hydroxychloroquine. Home oxygen was required in five patients. At follow up all patients are alive at a median age of 6 years (range 1 to 12 years). The two recently diagnosed children have significant symptoms, seven have dyspnoea on exercise, and two are symptom free. The good prognosis seen in these patients is different to previous case reports, indicating a greater than 50% mortality.

  11. Eosinophil alveolitis in two patients with idiopathic pulmonary fibrosis.

    PubMed

    Brix, Ninna; Rasmussen, Finn; Poletti, Venerino; Bendstrup, Elisabeth

    2016-01-01

    Bronchoalveolar lavage fluid (BALF) in patients with idiopathic pulmonary fibrosis (IPF) is typically characterized by a neutrophil inflammatory pattern and to a lesser extent (<25%) a mild eosinophil alveolitis. We here present two patients with a definite usual interstitial pneumonia (UIP) pattern on high-resolution computed tomography of the thorax (HRCT) which demonstrated unusually high eosinophil counts in the BALF (40% and 51%). Based on HRCT, lack of response to steroids and the disease course they were both diagnosed as IPF after a multidisciplinary team discussion. This report discusses the diagnostic and etiological considerations of a coexisting UIP pattern and an eosinophil alveolitis. We conclude that these cases illustrate that high level BALF eosinophilia (40-50%) may occur among patients with IPF.

  12. Idiopathic Pulmonary Fibrosis and Myasthenia Gravis: An Unusual Association

    PubMed Central

    Chogtu, Bharti; Malik, Daliparty Vasudev

    2016-01-01

    Idiopathic Pulmonary Fibrosis (IPF) is a chronic fibrosing lung condition with high morbidity and mortality, accounting for about 25% of the cases of interstitial lung diseases. It usually has a progressive course resulting in death due to respiratory failure. Myasthenia Gravis (MG) is an autoimmune neuromuscular disease, caused by antibody mediated activity against acetylcholine receptor at the neuromuscular junction. It is characterized by fluctuating muscle weakness and fatigue. Extensive literature search did not reveal any case report of an association between these two conditions. Here we present a case of a patient with IPF who also developed MG. The diagnosis of IPF was based on High Resolution Computed Tomography (HRCT) of the lung and that of MG was based on clinical criteria and electrophysiological testing. The case was successfully managed. PMID:27190866

  13. Efficacy and safety of pirfenidone for idiopathic pulmonary fibrosis.

    PubMed

    Takeda, Yoshito; Tsujino, Kazuyuki; Kijima, Takashi; Kumanogoh, Atsushi

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating chronic fibrotic lung disease. Although the precise cause of the disease is still unknown, recent studies have shown that the pathogenesis of pulmonary fibrosis involves multiple mechanisms, with abnormal behavior of alveolar epithelial cells considered a primary event. Pirfenidone is a multifunctional, orally available small molecule with anti-fibrotic, anti-inflammatory, and antioxidative activities, and has been shown to be a modulator of cytokines and growth factors, including TGF-β1, TNF-α, bFGF, IFN-γ, IL-1β, and IL-18 in animal models. Although its precise mechanism of action is not currently clear, pirfenidone is considered to exert inhibitory effects on multiple pathways involved in the pathogenesis of IPF. Two randomized placebo-controlled clinical trials in Japan demonstrated that pirfenidone significantly reduced the rate of decline of vital capacity in IPF patients. A Phase III study showed a significant increase in progression-free survival of patients in pirfenidone-treated groups compared to the placebo group. These results paved the way for the approval of pirfenidone for the treatment of IPF patients in Japan in 2008. The promising results of the Phase II study in Japan led to a larger international Phase III trial (CAPACITY). Subsequently, pirfenidone has also been approved in the European Union, South Korea, and Canada to date. Pirfenidone treatment is generally tolerated. Major adverse events are gastrointestinal symptoms, including decreased appetite, abdominal discomfort and nausea, photosensitivity, and fatigue, but many of these are mild and manageable. Clinical experience has shown that reduction in pirfenidone dose and the supportive use of gastrointestinal drugs are effective ways to manage these symptoms. Thus, pirfenidone treatment provides a means of intervention in the clinical course of IPF, and is a promising candidate for improving patient prognosis. For future development

  14. A controlled trial of sildenafil in advanced idiopathic pulmonary fibrosis.

    PubMed

    Zisman, David A; Schwarz, Marvin; Anstrom, Kevin J; Collard, Harold R; Flaherty, Kevin R; Hunninghake, Gary W

    2010-08-12

    Sildenafil, a phosphodiesterase-5 inhibitor, may preferentially improve blood flow to well-ventilated regions of the lung in patients with advanced idiopathic pulmonary fibrosis, which could result in improvements in gas exchange. We tested the hypothesis that treatment with sildenafil would improve walk distance, dyspnea, and quality of life in patients with advanced idiopathic pulmonary fibrosis, defined as a carbon monoxide diffusion capacity of less than 35% of the predicted value. We conducted a double-blind, randomized, placebo-controlled trial of sildenafil in two periods. The first period consisted of 12 weeks of a double-blind comparison between sildenafil and a placebo control. The primary outcome was the proportion of patients with an increase in the 6-minute walk distance of 20% or more. Key secondary outcomes included changes in oxygenation, degree of dyspnea, and quality of life. The second period was a 12-week open-label evaluation involving all patients receiving sildenafil. A total of 180 patients were enrolled in the study. The difference in the primary outcome was not significant, with 9 of 89 patients (10%) in the sildenafil group and 6 of 91 (7%) in the placebo group having an improvement of 20% or more in the 6-minute walk distance (P=0.39). There were small but significant differences in arterial oxygenation, carbon monoxide diffusion capacity, degree of dyspnea, and quality of life favoring the sildenafil group. Serious adverse events were similar in the two study groups. This study did not show a benefit for sildenafil for the primary outcome. The presence of some positive secondary outcomes creates clinical equipoise for further research. (Funded by the National Heart, Lung, and Blood Institute and others; ClinicalTrials.gov number, NCT00517933.)

  15. Angiotensinogen gene G-6A polymorphism influences idiopathic pulmonary fibrosis disease progression

    PubMed Central

    Molina-Molina, M.; Xaubet, A.; Li, X.; Abdul-Hafez, A.; Friderici, K.; Jernigan, K.; Fu, W.; Ding, Q.; Pereda, J.; Serrano-Mollar, A.; Casanova, A.; Rodríguez-Becerra, E.; Morell, F.; Ancochea, J.; Picado, C.; Uhal, B.D.

    2012-01-01

    Angiotensin II is a growth factor that plays a key role in the physiopathology of idiopathic pulmonary fibrosis (IPF). A nucleotide substitution of an adenine instead of a guanine (G-6A) in the proximal promoter region of angiotensinogen (AGT), the precursor of angiotensin II, has been associated with an increased gene transcription rate. In order to investigate whether the G-6A polymorphism of the AGT gene is associated with IPF development, severity and progression, the present study utilised a case–control study design and genotyped G-6A in 219 patients with IPF and 224 control subjects. The distribution of G-6A genotypes and alleles did not significantly differ between cases and controls. The G-6A polymorphism of the AGT gene was not associated with disease severity at diagnosis. The presence of the A allele was strongly associated with increased alveolar arterial oxygen tension difference during follow-up, after controlling for the confounding factors. Higher alveolar arterial oxygen tension changes over time were observed in patients with the AA genotype (0.37 ± 0.7 mmHg (0.049 ± 0.093 kPa) per month) compared to GA genotype (0.12 ± 1 mmHg (0.016 ± 0.133 kPa) per month) and GG genotype (0.2 ± 0.6 mmHg (0.027 ± 0.080 kPa) per month). G-6A polymorphism of the angiotensinogen gene is associated with idiopathic pulmonary fibrosis progression but not with disease predisposition. This polymorphism could have a predictive significance in idiopathic pulmonary fibrosis patients. PMID:18508830

  16. Nintedanib (OFEV) in the treatment of idiopathic pulmonary fibrosis.

    PubMed

    Fukihara, Jun; Kondoh, Yasuhiro

    2016-12-01

    Nintedanib is a new anti-fibrosis agent that is an intracellular tyrosine kinase inhibitor targeting platelet derived growth factor receptor, fibroblast growth factor receptor and vascular endothelial growth factor receptor. Although nintedanib is attracting much attention as a new treatment option for patients with idiopathic pulmonary fibrosis (IPF), the clinical evidence is limited mainly to the results from the dose-deciding phase II TOMORROW trial and phase III INPULSIS trials, which evaluated efficacy and safety of nintedanib for patients with IPF, prespecified subgroup analyses, pooled analyses and meta-analyses derived from those trials. Areas covered: In this document, we mainly reviewed reports on working mechanisms of nintedanib, and efficacy and safety of nintedanib for patients with IPF. The literature search was undertaken using Pub Med. Expert commentary: It is unknown whether the efficacy of nintedanib in patients enrolled in the clinical trials will be the same for the entire spectrum of patients, including patients unfit for the clinical trials due to age, severity, timing of IPF diagnosis or diagnosis of interstitial pneumonias other than IPF. Sufficient consideration should be given when selecting candidates for nintedanib in the real world.

  17. Lung cancer in patients with idiopathic pulmonary fibrosis.

    PubMed

    Karampitsakos, Theodoros; Tzilas, Vasilios; Tringidou, Rodoula; Steiropoulos, Paschalis; Aidinis, Vasilis; Papiris, Spyros A; Bouros, Demosthenes; Tzouvelekis, Argyris

    2017-08-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic lung disease of unknown etiology. With a gradually increasing worldwide prevalence and a mortality rate exceeding that of many cancers, IPF diagnosis and management are critically important and require a comprehensive multidisciplinary approach. This approach also involves assessment of comorbid conditions, such as lung cancer, that exerts a dramatic impact on disease survival. Emerging evidence suggests that progressive lung scarring in the context of IPF represents a risk factor for lung carcinogenesis. Both disease entities present with major similarities in terms of pathogenetic pathways, as well as potential causative factors, such as smoking and viral infections. Besides disease pathogenesis, anti-cancer agents, including nintedanib, have been successfully applied in the treatment of patients with IPF while an oncologic approach with a cocktail of several pleiotropic anti-fibrotic agents is currently in the therapeutic pipeline of IPF. Nevertheless, epidemiologic association between IPF and lung cancer does not prove causality. Currently there is significant lack of knowledge supporting a direct association between lung fibrosis and cancer reflecting to disappointing therapeutic algorithms. An optimal therapeutic strategy for patients with both IPF and lung cancer represents an amenable need. This review article synthesizes the current state of knowledge regarding pathogenetic commonalities between IPF and lung cancer and focuses on clinical and therapeutic data that involve both disease entities. Copyright © 2017. Published by Elsevier Ltd.

  18. Genotype-phenotype correlation for pulmonary function in cystic fibrosis

    PubMed Central

    de Gracia, J; Mata, F; Alvarez, A; Casals, T; Gatner, S; Vendrell, M; de la Rosa, D; Guarner, L; Hermosilla, E

    2005-01-01

    Background: Since the CFTR gene was cloned, more than 1000 mutations have been identified. To date, a clear relationship has not been established between genotype and the progression of lung damage. A study was undertaken of the relationship between genotype, progression of lung disease, and survival in adult patients with cystic fibrosis (CF). Methods: A prospective cohort of adult patients with CF and two CFTR mutations followed up in an adult cystic fibrosis unit was analysed. Patients were classified according to functional effects of classes of CFTR mutations and were grouped based on the CFTR molecular position on the epithelial cell surface (I–II/I–II, I–II/III–V). Spirometric values, progression of lung disease, probability of survival, and clinical characteristics were analysed between groups. Results: Seventy four patients were included in the study. Patients with genotype I–II/I–II had significantly lower current spirometric values (p<0.001), greater loss of pulmonary function (p<0.04), a higher proportion of end-stage lung disease (p<0.001), a higher risk of suffering from moderate to severe lung disease (odds ratio 7.12 (95% CI 1.3 to 40.5)) and a lower probability of survival than patients with genotype I–II/III, I–II/IV and I–II/V (p<0.001). Conclusions: The presence of class I or II mutations on both chromosomes is associated with worse respiratory disease and a lower probability of survival. PMID:15994263

  19. Determinants of pulmonary fibrosis and lipidosis in the silica model.

    PubMed

    Heppleston, A G

    1986-12-01

    The conditions which might favour development of the fibrotic or the lipid component of the pulmonary reaction to inhaled quartz were examined in rats. Smaller particle size and freedom from surface contamination by amorphous silica or iron oxide, status of the animals whether specific pathogen-free or conventional, and the resistance of cell membranes to damage appeared to bear on fibrogenesis. Increased membrane stability by treatment with polyvinylpyridine-N-oxide abolished not only the fibrosis but also the response of type II cells and hence lipidosis. The rate and intensity of quartz deposition may also affect the response, a low concentration inhaled over a long period favouring nodulation. No other manipulations, environmental or pharmacological, succeeded in inhibiting lipidosis to the benefit of fibrosis. Guinea pigs, however, behaved differently, their reaction being characterized by massive alveolar accumulation of dust-bearing macrophages and type II cell hyperplasia but not by lipidosis. The species variation is unexplained but macrophage predominance may represent a phase that later transforms to lipidosis. The experimental findings may have implications for forms of pneumoconiosis other than silicosis.

  20. Hiatal hernia on thoracic computed tomography in pulmonary fibrosis.

    PubMed

    Tossier, Céline; Dupin, Clairelyne; Plantier, Laurent; Leger, Julie; Flament, Thomas; Favelle, Olivier; Lecomte, Thierry; Diot, Patrice; Marchand-Adam, Sylvain

    2016-09-01

    Gastro-oesophageal reflux has long been suspected of implication in the genesis and progression of idiopathic pulmonary fibrosis (IPF). We hypothesised that hiatal hernia may be more frequent in IPF than in other interstitial lung disease (ILD), and that hiatal hernia may be associated with more severe clinical characteristics in IPF.We retrospectively compared the prevalence of hiatal hernia on computed tomographic (CT) scans in 79 patients with IPF and 103 patients with other ILD (17 scleroderma, 54 other connective tissue diseases and 32 chronic hypersensitivity pneumonitis). In the IPF group, we compared the clinical, biological, functional, CT scan characteristics and mortality of patients with hiatal hernia (n=42) and without hiatal hernia (n=37).The prevalence of hiatal hernia on CT scan at IPF diagnosis was 53%, similar to ILD associated with scleroderma, but significantly higher than in the two other ILD groups. The size of the hiatal hernia was not linked to either fibrosis CT scan scores, or reduction in lung function in any group. Mortality from respiratory causes was significantly higher among IPF patients with hiatal hernia than among those without hiatal hernia (p=0.009).Hiatal hernia might have a specific role in IPF genesis, possibly due to pathological gastro-oesophageal reflux.

  1. Molecular targets in pulmonary fibrosis: the myofibroblast in focus.

    PubMed

    Scotton, Chris J; Chambers, Rachel C

    2007-10-01

    Idiopathic pulmonary fibrosis (IPF) is one of a group of interstitial lung diseases that are characterized by excessive matrix deposition and destruction of the normal lung architecture. Long-term survival of IPF patients is poor, with a 5-year survival rate of only 20%. Despite a lack of evidence-based benefit, IPF has historically been treated with corticosteroids and/or cytotoxic agents such as prednisone. Given the poor efficacy of these drugs, novel therapeutic strategies are required for the management of IPF. This demands a better understanding of the molecular mechanisms underlying the pathogenesis and progression of this disease. The primary effector cell in fibrosis is the myofibroblast; these cells are highly synthetic for collagen, have a contractile phenotype, and are characterized by the presence of alpha-smooth muscle actin stress fibers. They may be derived by activation/proliferation of resident lung fibroblasts, epithelial-mesenchymal differentiation, or recruitment of circulating fibroblastic stem cells (fibrocytes). From a therapeutic viewpoint, interfering with the pathways that lead to myofibroblast expansion should be of considerable benefit in the treatment of IPF. This review will highlight some of the key molecules involved in this process and the clinical trials that have ensued.

  2. Inhibition of pulmonary fibrosis in mice by CXCL10 requires glycosaminoglycan binding and syndecan-4

    PubMed Central

    Jiang, Dianhua; Liang, Jiurong; Campanella, Gabriele S.; Guo, Rishu; Yu, Shuang; Xie, Ting; Liu, Ningshan; Jung, Yoosun; Homer, Robert; Meltzer, Eric B.; Li, Yuejuan; Tager, Andrew M.; Goetinck, Paul F.; Luster, Andrew D.; Noble, Paul W.

    2010-01-01

    Pulmonary fibrosis is a progressive, dysregulated response to injury culminating in compromised lung function due to excess extracellular matrix production. The heparan sulfate proteoglycan syndecan-4 is important in mediating fibroblast-matrix interactions, but its role in pulmonary fibrosis has not been explored. To investigate this issue, we used intratracheal instillation of bleomycin as a model of acute lung injury and fibrosis. We found that bleomycin treatment increased syndecan-4 expression. Moreover, we observed a marked decrease in neutrophil recruitment and an increase in both myofibroblast recruitment and interstitial fibrosis in bleomycin-treated syndecan-4–null (Sdc4–/–) mice. Subsequently, we identified a direct interaction between CXCL10, an antifibrotic chemokine, and syndecan-4 that inhibited primary lung fibroblast migration during fibrosis; mutation of the heparin-binding domain, but not the CXCR3 domain, of CXCL10 diminished this effect. Similarly, migration of fibroblasts from patients with pulmonary fibrosis was inhibited in the presence of CXCL10 protein defective in CXCR3 binding. Furthermore, administration of recombinant CXCL10 protein inhibited fibrosis in WT mice, but not in Sdc4–/– mice. Collectively, these data suggest that the direct interaction of syndecan-4 and CXCL10 in the lung interstitial compartment serves to inhibit fibroblast recruitment and subsequent fibrosis. Thus, administration of CXCL10 protein defective in CXCR3 binding may represent a novel therapy for pulmonary fibrosis. PMID:20484822

  3. Idiopathic Pulmonary Fibrosis: The Association between the Adaptive Multiple Features Method and Fibrosis Outcomes.

    PubMed

    Salisbury, Margaret L; Lynch, David A; van Beek, Edwin J R; Kazerooni, Ella A; Guo, Junfeng; Xia, Meng; Murray, Susan; Anstrom, Kevin J; Yow, Eric; Martinez, Fernando J; Hoffman, Eric A; Flaherty, Kevin R

    2017-04-01

    Adaptive multiple features method (AMFM) lung texture analysis software recognizes high-resolution computed tomography (HRCT) patterns. To evaluate AMFM and visual quantification of HRCT patterns and their relationship with disease progression in idiopathic pulmonary fibrosis. Patients with idiopathic pulmonary fibrosis in a clinical trial of prednisone, azathioprine, and N-acetylcysteine underwent HRCT at study start and finish. Proportion of lung occupied by ground glass, ground glass-reticular (GGR), honeycombing, emphysema, and normal lung densities were measured by AMFM and three radiologists, documenting baseline disease extent and postbaseline change. Disease progression includes composite mortality, hospitalization, and 10% FVC decline. Agreement between visual and AMFM measurements was moderate for GGR (Pearson's correlation r = 0.60, P < 0.0001; mean difference = -0.03 with 95% limits of agreement of -0.19 to 0.14). Baseline extent of GGR was independently associated with disease progression when adjusting for baseline Gender-Age-Physiology stage and smoking status (hazard ratio per 10% visual GGR increase = 1.98, 95% confidence interval [CI] = 1.20-3.28, P = 0.008; and hazard ratio per 10% AMFM GGR increase = 1.36, 95% CI = 1.01-1.84, P = 0.04). Postbaseline visual and AMFM GGR trajectories were correlated with postbaseline FVC trajectory (r = -0.30, 95% CI = -0.46 to -0.11, P = 0.002; and r = -0.25, 95% CI = -0.42 to -0.06, P = 0.01, respectively). More extensive baseline visual and AMFM fibrosis (as measured by GGR densities) is independently associated with elevated hazard for disease progression. Postbaseline change in AMFM-measured and visually measured GGR densities are modestly correlated with change in FVC. AMFM-measured fibrosis is an automated adjunct to existing prognostic markers and may allow for study enrichment with subjects at increased disease progression risk.

  4. Carbon monoxide-bound hemoglobin-vesicles for the treatment of bleomycin-induced pulmonary fibrosis.

    PubMed

    Nagao, Saori; Taguchi, Kazuaki; Sakai, Hiromi; Tanaka, Ryota; Horinouchi, Hirohisa; Watanabe, Hiroshi; Kobayashi, Koichi; Otagiri, Masaki; Maruyama, Toru

    2014-08-01

    Carbon monoxide (CO) has potent anti-inflammatory and anti-oxidant effects. We report herein on the preparation of a nanotechnology-based CO donor, CO-bound hemoglobin-vesicles (CO-HbV). We hypothesized that CO-HbV could have a therapeutic effect on idiopathic pulmonary fibrosis (IPF), an incurable lung fibrosis, that is thought to involve inflammation and the production of reactive oxygen species (ROS). Pulmonary fibril formation and respiratory function were quantitatively evaluated by measuring hydroxyproline levels and forced vital capacity, respectively, using a bleomycin-induced pulmonary fibrosis mice model. CO-HbV suppressed the progression of pulmonary fibril formation and improved respiratory function compared to saline and HbV. The suppressive effect of CO-HbV on pulmonary fibrosis can be attributed to a decrease in ROS generation by inflammatory cells, NADPH oxidase 4 and the production of inflammatory cells, cytokines and transforming growth factor-β in the lung. This is the first demonstration of the inhibitory effect of CO-HbV on the progression of pulmonary fibrosis via the anti-oxidative and anti-inflammatory effects of CO in the bleomycin-induced pulmonary fibrosis mice model. CO-HbV has the potential for use in the treatment of, not only IPF, but also a variety of other ROS and inflammation-related disorders.

  5. Familial idiopathic pulmonary fibrosis. Evidence of lung inflammation in unaffected family members

    SciTech Connect

    Bitterman, P.B.; Rennard, S.I.; Keogh, B.A.; Wewers, M.D.; Adelberg, S.; Crystal, R.G.

    1986-05-22

    We evaluated 17 clinically unaffected members of three families with an autosomal dominant form of idiopathic pulmonary fibrosis for evidence of alveolar inflammation. Each person in the study was examined by gallium-67 scanning for a general estimate of pulmonary inflammation, and by bronchoalveolar lavage for characterization of the types of recovered cells and their state of activation. Eight of the 17 subjects had evidence of alveolar inflammation on the lavage studies. Supporting data included increased numbers of neutrophils and activated macrophages that released one or more neutrophil chemoattractants, and growth factors for lung fibroblasts--findings similar to those observed in patients with overt idiopathic pulmonary fibrosis. Four of these eight also had a positive gallium scan; in all the other clinically unaffected subjects the scan was normal. During a follow-up of two to four years in seven of the eight subjects who had evidence of inflammation, no clinical evidence of pulmonary fibrosis has appeared. These results indicate that alveolar inflammation occurs in approximately half the clinically unaffected family members at risk of inheriting autosomal dominant idiopathic pulmonary fibrosis. Whether these persons with evidence of pulmonary inflammation but no fibrosis will proceed to have clinically evident pulmonary fibrosis is not yet known.

  6. MLN4924 protects against bleomycin-induced pulmonary fibrosis by inhibiting the early inflammatory process

    PubMed Central

    Deng, Qi; Zhang, Jiaojiao; Gao, Yaqun; She, Xiaofei; Wang, Yunchao; Wang, Yilin; Ge, Xin

    2017-01-01

    Pulmonary fibrosis is a complex pathological process characterized by massive destruction of the structure of lung tissues and aggravated pulmonary function impairment. The underlying mechanisms of pulmonary fibrosis are incompletely understood and therefore limited treatment options are available currently. Here, we report that MLN4924, an NEDD8 activation enzyme (NAE) activity-inhibiting molecule, blocks the maintenance and progression of established pulmonary fibrosis. We found that MLN4924 acts against bleomycin-induced pulmonary fibrosis mainly at the early inflammatory stage. Pharmacologically targeting the neddylation of Cullin-Ring E3 ligase (CRL) by MLN4924, significantly abrogated NF-κB responses, suppressed MAPK activity, and reduced secretion of TNF-α-elicited pro-inflammatory cytokines and MCP1-induced chemokines. MLN4924 inhibited pro-inflammatory responses while maintaining or increasing the production of the anti-inflammatory mediators such as anti-inflammatory interleukins (ILs) following bleomycin administration, which is closely correlated to its blocking NF-κB-mediated signaling. Consistently, our studies identified MLN4924 as a promising therapeutic drug for pulmonary fibrosis and suggested a potential role of MLN4924 that fine tunes the MAPK signaling pathway controlling the inflammatory reactions at the early stages of pulmonary fibrosis. In addition, our findings may broaden the potential practical application of MLN4924 as an effective therapeutic strategy against other inflammation-associated diseases. PMID:28469786

  7. Pulmonary Hypertension Associated with Idiopathic Pulmonary Fibrosis: Current and Future Perspectives

    PubMed Central

    Collum, Scott D.; Amione-Guerra, Javier; Cruz-Solbes, Ana S.; DiFrancesco, Amara; Hernandez, Adriana M.; Hanmandlu, Ankit; Youker, Keith; Guha, Ashrith

    2017-01-01

    Pulmonary hypertension (PH) is commonly present in patients with chronic lung diseases such as Chronic Obstructive Pulmonary Disease (COPD) or Idiopathic Pulmonary Fibrosis (IPF) where it is classified as Group III PH by the World Health Organization (WHO). PH has been identified to be present in as much as 40% of patients with COPD or IPF and it is considered as one of the principal predictors of mortality in patients with COPD or IPF. However, despite the prevalence and fatal consequences of PH in the setting of chronic lung diseases, there are limited therapies available for patients with Group III PH, with lung transplantation remaining as the most viable option. This highlights our need to enhance our understanding of the molecular mechanisms that lead to the development of Group III PH. In this review we have chosen to focus on the current understating of PH in IPF, we will revisit the main mediators that have been shown to play a role in the development of the disease. We will also discuss the experimental models available to study PH associated with lung fibrosis and address the role of the right ventricle in IPF. Finally we will summarize the current available treatment options for Group III PH outside of lung transplantation. PMID:28286407

  8. Induction of pulmonary fibrosis by cerium oxide nanoparticles

    SciTech Connect

    Ma, Jane Y.; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Scabilloni, James; Ma, Joseph K.; Castranova, Vincent

    2012-08-01

    Cerium compounds have been used as a diesel engine catalyst to lower the mass of diesel exhaust particles, but are emitted as cerium oxide (CeO{sub 2}) nanoparticles in the diesel exhaust. In a previous study, we have demonstrated a wide range of CeO{sub 2}-induced lung responses including sustained pulmonary inflammation and cellular signaling that could lead to pulmonary fibrosis. In this study, we investigated the fibrogenic responses induced by CeO{sub 2} in a rat model at various time points up to 84 days post-exposure. Male Sprague Dawley rats were exposed to CeO{sub 2} by a single intratracheal instillation. Alveolar macrophages (AM) were isolated by bronchial alveolar lavage (BAL). AM-mediated cellular responses, osteopontin (OPN) and transform growth factor (TGF)-β1 in the fibrotic process were investigated. The results showed that CeO{sub 2} exposure significantly increased fibrotic cytokine TGF-β1 and OPN production by AM above controls. The collagen degradation enzymes, matrix metalloproteinase (MMP)-2 and -9 and the tissue inhibitor of MMP were markedly increased in the BAL fluid at 1 day- and subsequently declined at 28 days after exposure, but remained much higher than the controls. CeO{sub 2} induced elevated phospholipids in BAL fluid and increased hydroxyproline content in lung tissue in a dose- and time-dependent manner. Immunohistochemical analysis showed MMP-2, MMP-9 and MMP-10 expressions in fibrotic regions. Morphological analysis noted increased collagen fibers in the lungs exposed to a single dose of 3.5 mg/kg CeO{sub 2} and euthanized at 28 days post-exposure. Collectively, our studies show that CeO{sub 2} induced fibrotic lung injury in rats, suggesting it may cause potential health effects. -- Highlights: ► Cerium oxide exposure significantly affected the following parameters in the lung. ► Induced fibrotic cytokine OPN and TGF-β1 production and phospholipidosis. ► Caused imbalance of the MMP-9/ TIMP-1 ratio that favors fibrosis

  9. Histological analysis of vasculopathy associated with pulmonary hypertension in combined pulmonary fibrosis and emphysema: comparison with idiopathic pulmonary fibrosis or emphysema alone.

    PubMed

    Awano, Nobuyasu; Inomata, Minoru; Ikushima, Soichiro; Yamada, Daisuke; Hotta, Masatoshi; Tsukuda, Shunji; Kumasaka, Toshio; Takemura, Tamiko; Eishi, Yoshinobu

    2017-05-01

    To evaluate pulmonary vasculopathy in an autopsy series of patients with combined pulmonary fibrosis and emphysema (CPFE), and compare these findings with those of patients with idiopathic pulmonary fibrosis (IPF) alone and emphysema alone. We retrospectively analysed the clinical, radiological and pathological features of 26 patients with CPFE, 11 with IPF, and 23 with emphysema. We evaluated pulmonary vascular, venous-venular and arteriolar tissue changes in the fibrotic, emphysematous and relatively unaffected (preserved) areas by using the Heath-Edwards scoring system. We found moderate-to-severe vasculopathy in the CPFE group, but no significant differences in the fibrotic and emphysematous areas among the three groups. However, in the preserved area, the grading was significantly different among the three groups (P < 0.001), and vasculopathy in the CPFE group was the most severe. Although venous-venular and arteriolar changes in almost all fibrotic and emphysematous areas in the three groups showed no significant differences, there were significant differences in venous-venular (P = 0.004) and arteriolar (P < 0.001) changes in the preserved area among the three groups, which were most prevalent in the CPFE group. In the CPFE group, venous-venular changes and vasculopathy by Heath-Edwards grading were highest in the fibrotic area and lowest in the preserved area. These results imply that pulmonary vasculopathy in patients with CPFE could occur in the whole lung tissue. This may explain the tendency for it to lead to the development of pulmonary hypertension in CPFE cases. © 2016 John Wiley & Sons Ltd.

  10. Thromboxane and prostacyclin (epoprostenol) during exercise in diffuse pulmonary fibrosis.

    PubMed

    Risk, C; Rie, M; Peterson, M; Kong, D; Woods, B; Watkins, W D

    1982-11-27

    Plasma thromboxane A2, a vasoconstrictor, and plasma prostacyclin (epoprostenol), a vasodilator, were assessed by double-antibody radioimmunological assay of their respective stable circulating metabolites, thromboxane B2 (TxB2) and 6-ketoprostaglandin F1 alpha, in 9 patients with severe diffuse pulmonary fibrosis (DPF), who were known to become hypo-oxaemic during exercise, and in 9 healthy volunteers. In the 7 patients with the most severe DPF, mean arterial PO2 fell from 68 mm Hg at rest to 51 mm Hg at peak aerobic exercise, and mean TxB2 increased to twice the value at rest. The 9 controls remained oxygen saturated throughout exercise; their mean TxB2 did not change during aerobic exercise, but during anaerobic exercise increased to twice the value at rest, and increased further during recovery. There were no significant changes in 6-keto-prostaglandin F1 alpha in either group. The selective release of TxB2 during aerobic exercise in hypo-oxaemic patients suggests that thromboxane mediates hypoxic pulmonary vasoconstriction. Its release in normal man during anaerobic exercise may reflect a more general response to the metabolic changes of tissue hypoxia.

  11. Workshop on Idiopathic Pulmonary Fibrosis in Older Adults

    PubMed Central

    Castriotta, Richard J.; Eldadah, Basil A.; Foster, W. Michael; Halter, Jeffrey B.; Hazzard, William R.; Kiley, James P.; King, Talmadge E.; Horne, Frances McFarland; Nayfield, Susan G.; Reynolds, Herbert Y.; Schmader, Kenneth E.; Toews, Galen B.

    2010-01-01

    Idiopathic pulmonary fibrosis (IPF), a heterogeneous disease with respect to clinical presentation and rates of progression, disproportionately affects older adults. The diagnosis of IPF is descriptive, based on clinical, radiologic, and histopathologic examination, and definitive diagnosis is hampered by poor interobserver agreement and lack of a consensus definition. There are no effective treatments. Cellular, molecular, genetic, and environmental risk factors have been identified for IPF, but the initiating event and the characteristics of preclinical stages are not known. IPF is predominantly a disease of older adults, and the processes underlying normal aging might significantly influence the development of IPF. Yet, the biology of aging and the principles of medical care for this population have been typically ignored in basic, translational, or clinical IPF research. In August 2009, the Association of Specialty Professors, in collaboration with the American College of Chest Physicians, the American Geriatrics Society, the National Institute on Aging, and the National Heart, Lung, and Blood Institute, held a workshop, summarized herein, to review what is known, to identify research gaps at the interface of aging and IPF, and to suggest priority areas for future research. Efforts to answer the questions identified will require the integration of geriatrics, gerontology, and pulmonary research, but these efforts have great potential to improve care for patients with IPF. PMID:20822991

  12. Candidate genes of idiopathic pulmonary fibrosis: current evidence and research

    PubMed Central

    Zhou, Wei; Wang, Yaping

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a group of common and lethal forms of idiopathic interstitial pulmonary disease. IPF is characterized by a progressive decline in lung function with a median survival of 2–3 years after diagnosis. Although the pathogenesis of the disease remains unknown, genetic predisposition could play a causal role in IPF. A set of genes have been identified as candidate genes of IPF in the past 20 years. However, the recent technological advances that allow for the analysis of millions of polymorphisms in different subjects have deepened the understanding of the genetic complexity of IPF susceptibility. Genome-wide association studies and whole-genome sequencing continue to reveal the genetic loci associated with IPF risk. In this review, we describe candidate genes on the basis of their functions and aim to gain a better understanding of the genetic basis of IPF. The discovered candidate genes may help to clarify pivotal aspects in the diagnosis, prognosis, and therapies of IPF. PMID:26893575

  13. Patient-reported outcomes in idiopathic pulmonary fibrosis research.

    PubMed

    Swigris, Jeffrey J; Fairclough, Diane

    2012-08-01

    Patient-reported outcomes (PROs) include questionnaires or surveys that ask patients for their perceptions about things like symptoms they are experiencing or quality of life. For incurable, morbid, life-shortening conditions like idiopathic pulmonary fibrosis (IPF), PROs are particularly germane: They elucidate for clinicians and researchers what it is like for patients to live with such a disease, and they may detect important treatment effects not captured by other metrics (eg, pulmonary physiology). However, a relative paucity of research on PROs in IPF has left significant knowledge gaps in this area and contributed to the timidity investigators have about using PROs as prominent outcomes in IPF drug trials. Additional research on existing instruments is needed to establish or bolster their basic psychometric properties in IPF. When PROs are used as end points in therapeutic trials, analyzing PRO response data can be challenging, but these challenges can be overcome with a transparent, thoughtful, and sophisticated statistical approach. In this article, we discuss some of the basics of PRO assessment, existing knowledge gaps in IPF-related PRO research, and the potential usefulness of using PROs in IPF trials and conclude by offering specific recommendations for an approach to analyzing repeated-measures PRO data from IPF trials.

  14. Prevention of Bleomycin-Induced Pulmonary Inflammation and Fibrosis in Mice by Paeonol

    PubMed Central

    Liu, Meng-Han; Lin, An-Hsuan; Ko, Hsin-Kuo; Perng, Diahn-Warng; Lee, Tzong-Shyuan; Kou, Yu Ru

    2017-01-01

    Pulmonary fibrosis is a severe and progressive disease that is characterized by an abnormal deposition of extracellular matrix, such as collagens. The pathogenesis of this disease may be initiated by oxidative damage of lung epithelial cells by fibrogenic stimuli, leading to lung inflammation, which in turn promotes various lung fibrotic responses. The profibrogenic effect of transforming growth factor-β1 (TGF-β1) on lung fibroblasts is crucial for the pathogenesis of this disease. Paeonol, the main phenolic compound present in the Chinese herb Paeonia suffruticosa, has antioxidant and anti-inflammatory properties. However, whether paeonol has therapeutic effects against pulmonary fibrosis remains unclear. Using a murine model, we showed that 21 days after the insult, intratracheal bleomycin caused pulmonary inflammation and fibrosis, as evidenced by lung histopathological manifestations and increase in various indices. The inflammatory indices included an increase in total cell count, differential cell count, and total protein concentration in bronchoalveolar lavage fluid. The fibrotic indices included an increase in lung levels of TGF-β1, total collagen, type 1α1 collagen (COL1A1), and α-smooth muscle actin (α-SMA; a marker of myofibroblasts). Bleomycin also was found to cause an increase in oxidative stress as reflected by increased levels of malondialdehyde and 4-hydroxynonenal in the lungs. Importantly, all these pathophysiological events were suppressed by daily treatment with paeonol. Using human lung fibroblasts, we further demonstrated that exposure of human lung fibroblasts to TGF-β1 increased productions of α-SMA and COL1A1, both of which were inhibited by inhibitors of Jun N-terminal kinase (JNK), p38, and Smad3. JNK and p38 are two subfamily members of mitogen-activated protein kinases (MAPKs), whereas Smad3 is a transcription factor. TGF-β1 exposure also increased the phosphorylation of JNK, p38, and Smad3 prior to the induction of α-SMA and

  15. Incidence, Prevalence, and Clinical Course of Idiopathic Pulmonary Fibrosis

    PubMed Central

    Daniels, Craig E.; Schroeder, Darrell R.; St. Sauver, Jennifer; Hartman, Thomas E.; Bartholmai, Brian J.; Yi, Eunhee S.; Ryu, Jay H.

    2010-01-01

    Background: Limited data exist regarding the population-based epidemiology of idiopathic pulmonary fibrosis (IPF). The objective of the study was to describe the trends in the incidence, prevalence, and clinical course of IPF in the community. Methods: We conducted a population-based study of adult patients with IPF in Olmsted County, Minnesota, from 1997 to 2005. Two methods were used to identify IPF cases, as defined by the 2002 American Thoracic Society/European Respiratory Society consensus statement: (1) usual interstitial pneumonia (UIP) on a surgical lung biopsy specimen or a definite UIP pattern on a high-resolution CT image (narrow criteria) and (2) UIP on a surgical lung biopsy specimen or a definite or possible UIP pattern on CT image (broad criteria). Results: Of 596 patients screened for the possibility of pulmonary disease or pulmonary fibrosis over 9 years of follow-up, 47 cases had IPF. Of these, 24 met the narrow criteria. The age- and sex-adjusted incidence was 8.8/100,000 and 17.4/100,000 person-years, for narrow and broad criteria, respectively. The age-adjusted incidence was higher in men than in women, and among patients aged 70-79 years. During the study period, the incidence of IPF decreased (P < .001). On December 31, 2005, the age- and sex-adjusted prevalence was 27.9/100,000 and 63/100,000 persons by narrow and broad criteria, respectively. Thirty-seven patients experienced a total of 53 respiratory exacerbations (26 IPF related, 27 non-IPF related), and 34 (72%) patients died. The primary cause of death was IPF related in 16 (47%) patients. Median survival for narrow-criteria and broad-criteria incidence cases was 3.5 and 4.4 years, respectively. Conclusions: The incidence of IPF in Olmsted County decreased over the study period. Nonprimary IPF respiratory exacerbations are as frequent as primary IPF respiratory exacerbations and an important cause of death. PMID:19749005

  16. Body Composition and Pulmonary Function in Cystic Fibrosis

    PubMed Central

    Sheikh, Saba; Zemel, Babette S.; Stallings, Virginia A.; Rubenstein, Ronald C.; Kelly, Andrea

    2014-01-01

    Background: Lower body mass index (BMI) is associated with worse pulmonary function in cystic fibrosis (CF). Hypothesis: lean body mass (LBM) is more strongly associated with pulmonary function than BMI is. Methods: Anthropometrics, body composition by dual x-ray absorptiometry, and pulmonary function were determined in pancreatic insufficient CF (PI-CF) youth. Sex and age-adjusted Z-scores (BMI-Z, LBMI-Z, FMI-Z) were generated for CF and controls. (1) Associations of BMI-Z with LBMI-Z and FMI-Z and (2) age-adjusted associations of BMI-Z, LBMI-Z, and FMI-Z with FEV1%-predicted were tested. Results: Two hundred eight PI-CF subjects had lower BMI-Z, LBMI-Z, and FMI-Z compared to 390 controls. BMI-Z was associated with lower LBMI-Z (p < 0.0001) in PI-CF. In females, LBMI-Z and BMI-Z were positively associated with FEV1%-predicted; this relationship did not persist for FMI-Z after adjustment for LBMI-Z. In males, only LBMI-Z and BMI-Z were associated with FEV1%-predicted. Conclusion: In PI-CF youth, deficits in LBM were apparent. At lower BMI percentiles, BMI may not accurately depict LBM in PI-CF. In under-nourished PI-CF youth, this preservation of FM in preference to LBM is relevant since LBMI-Z, but not FMI-Z, is positively associated with FEV1%-predicted. Lean body mass index is more strongly associated with lung function compared to BMI, especially in the under-nourished child and adolescent with PI-CF. PMID:24783186

  17. Pulmonary Fibrosis in Response to Environmental Cues and Molecular Targets Involved in Its Pathogenesis

    PubMed Central

    Yoshida, Toshinori; Ohnuma, Aya; Horiuchi, Haruka; Harada, Takanori

    2011-01-01

    Chronic lung injury resulting from a variety of different causes is frequently associated with the develop ment of pulmonary fibrosis in humans. Although the etiology of pulmonary fibrosis is generally unknown, several sources of evidence support the hypothesis that a number of environmental and occupational agents play an etiologic role in the pathogenesis of this disease. The agents discussed in this review include beryllium, nylon flock, textile printing aerosols, polyvinyl chloride and didecyldimethylammonium chloride. The authors also describe a variety of animal models, including genetically modified mice, in order to investigate the molecular mechanism of pulmonary fibrosis, focusing on chemokine receptors, regulatory T cells and transforming growth factor-β and bone morphogenetic protein signaling. Overall, we propose the concept of toxicological pulmonary fibrosis as a lung disease induced in response to environmental cues. PMID:22272040

  18. Determinants of 6-minute walk distance in patients with idiopathic pulmonary fibrosis undergoing lung transplant evaluation

    PubMed Central

    Rivera-Lebron, Belinda N.; Kreider, Maryl; Lee, James; Kawut, Steven M.

    2016-01-01

    Abstract Little is known about the physiologic determinants of 6-minute walk distance in idiopathic pulmonary fibrosis. We investigated the demographic, pulmonary function, echocardiographic, and hemodynamic determinants of 6-minute walk distance in patients with idiopathic pulmonary fibrosis evaluated for lung transplantation. We performed a cross-sectional analysis of 130 patients with idiopathic pulmonary fibrosis who completed a lung transplantation evaluation at the Hospital of the University of Pennsylvania between 2005 and 2010. Multivariable linear regression analysis was used to generate an explanatory model for 6-minute walk distance. After adjustment for age, sex, race, height, and weight, the presence of right ventricular dilation was associated with a decrease of 50.9 m (95% confidence interval [CI], 8.4–93.3) in 6-minute walk distance (P=0.02). For each 200-mL reduction in forced vital capacity, the walk distance decreased by 15.0 m (95% CI, 9.0–21.1; P<0.001). For every increase of 1 Wood unit in pulmonary vascular resistance, the walk distance decreased by 17.3 m (95% CI, 5.1–29.5; P=0.006). Six-minute walk distance in idiopathic pulmonary fibrosis depends in part on circulatory impairment and the degree of restrictive lung disease. Future trials that target right ventricular morphology, pulmonary vascular resistance, and forced vital capacity may potentially improve exercise capacity in patients with idiopathic pulmonary fibrosis. PMID:27076905

  19. Determinants of 6-minute walk distance in patients with idiopathic pulmonary fibrosis undergoing lung transplant evaluation.

    PubMed

    Porteous, Mary K; Rivera-Lebron, Belinda N; Kreider, Maryl; Lee, James; Kawut, Steven M

    2016-03-01

    Little is known about the physiologic determinants of 6-minute walk distance in idiopathic pulmonary fibrosis. We investigated the demographic, pulmonary function, echocardiographic, and hemodynamic determinants of 6-minute walk distance in patients with idiopathic pulmonary fibrosis evaluated for lung transplantation. We performed a cross-sectional analysis of 130 patients with idiopathic pulmonary fibrosis who completed a lung transplantation evaluation at the Hospital of the University of Pennsylvania between 2005 and 2010. Multivariable linear regression analysis was used to generate an explanatory model for 6-minute walk distance. After adjustment for age, sex, race, height, and weight, the presence of right ventricular dilation was associated with a decrease of 50.9 m (95% confidence interval [CI], 8.4-93.3) in 6-minute walk distance ([Formula: see text]). For each 200-mL reduction in forced vital capacity, the walk distance decreased by 15.0 m (95% CI, 9.0-21.1; [Formula: see text]). For every increase of 1 Wood unit in pulmonary vascular resistance, the walk distance decreased by 17.3 m (95% CI, 5.1-29.5; [Formula: see text]). Six-minute walk distance in idiopathic pulmonary fibrosis depends in part on circulatory impairment and the degree of restrictive lung disease. Future trials that target right ventricular morphology, pulmonary vascular resistance, and forced vital capacity may potentially improve exercise capacity in patients with idiopathic pulmonary fibrosis.

  20. [Normal lung volumes in patients with idiopathic pulmonary fibrosis and emphysema].

    PubMed

    Casas, Juan Pablo; Abbona, Horacio; Robles, Adriana; López, Ana María

    2008-01-01

    Pulmonary function tests in idiopathic pulmonary fibrosis characteristically show a restrictive pattern, resulting from reduction of pulmonary compliance due to diffuse fibrosis. Conversely, an obstructive pattern with hyperinflation results in emphysema by loss of elastic recoil, expiratory collapse of the peripheral airways and air trapping. Previous reports suggest that when both diseases coexist, pulmonary volumes are compensated and a smaller than expected reduction or even normal lung volumes can be found. We report 4 male patients of 64, 60, 73 and 70 years, all with heavy cigarette smoking history and progressive breathlessness. Three of them had severe limitation in their quality of life. All four showed advanced lung interstitial involvement, at high resolution CT scan, fibrotic changes predominantly in the subpleural areas of lower lung fields and concomitant emphysema in the upper lobes. Emphysema and pulmonary fibrosis was confirmed by open lung biopsy in one patient. The four patients showed normal spirometry and lung volumes with severe compromise of gas exchange and poor exercise tolerance evaluated by 6 minute walk test. Severe pulmonary arterial hypertension was also confirmed in three patients. Normal lung volumes does not exclude diagnosis of idiopathic pulmonary fibrosis in patients with concomitant emphysema. The relatively preserved lung volumes may underestimate the severity of idiopathic pulmonary fibrosis and attenuate its effects on lung function parameters.

  1. Paracrine Functions of Fibrocytes to Promote Lung Fibrosis

    PubMed Central

    Kleaveland, Kathryn R.; Moore, Bethany B.; Kim, Kevin K.

    2014-01-01

    Fibrocytes derive from the bone marrow and are found in the circulation. They can be recruited to sites of injury and contribute to repair/remodeling. In vitro evidence suggests that fibrocytes may differentiate into fibroblasts to promote lung fibrosis. However, in vivo evidence for this is sparse. This review summarizes recent literature which may suggest that fibrocytes function to promote fibrosis via paracrine actions. In this way, secretion of growth factors, proteases and matricellular proteins may strongly influence the actions of resident epithelial and mesenchymal cells to promote repair and resolution or to tip the scale towards pathologic remodeling. PMID:24451025

  2. Penetration of Ciprofloxacin and Amikacin into the Alveolar Epithelial Lining Fluid of Rats with Pulmonary Fibrosis.

    PubMed

    Ni, Wentao; Yang, Deqing; Mei, Hekun; Zhao, Jin; Liang, Beibei; Bai, Nan; Chai, Dong; Cui, Junchang; Wang, Rui; Liu, Youning

    2017-04-01

    We determined the concentration-time profiles of ciprofloxacin and amikacin in serum and alveolar epithelial lining fluid (ELF) of rats with or without pulmonary fibrosis and investigated the effect of pulmonary fibrosis on the capacity for penetration of antimicrobials into the ELF of rats. Pulmonary fibrosis was induced in rats with a single intratracheal instillation of bleomycin. After intravenous injection of ciprofloxacin or amikacin, blood and bronchoalveolar lavage fluid samples were collected. Urea concentrations in serum and lavage fluid were determined using an enzymatic assay. Ciprofloxacin and amikacin concentrations were determined by high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry, respectively. The mean ratio of ELF to plasma concentrations of ciprofloxacin at each time point in the normal group did not significantly differ from that in the pulmonary fibrosis group. However, the ratio of the ciprofloxacin area under the concentration-time curve from 0 to 24 h (AUC0-24) in ELF to the AUC0-24 in plasma was 1.02 in the normal group and 0.76 in the pulmonary fibrosis group. The mean ELF-to-plasma concentration ratios of amikacin at each time point in the normal group were higher than those in the pulmonary fibrosis group, reaching a statistically significant difference at 1, 2, and 4 h. The ratio of the AUC0-24 in ELF to the AUC0-24 in plasma was 0.49 in the normal group and 0.27 in the pulmonary fibrosis group. In conclusion, pulmonary fibrosis can influence the penetration of antimicrobials into the ELF of rats and may have a marked effect on the penetration of amikacin than that of ciprofloxacin. Copyright © 2017 American Society for Microbiology.

  3. Innate immunity dictates cytokine polarization relevant to the development of pulmonary fibrosis

    PubMed Central

    Strieter, Robert M.; Keane, Michael P.

    2004-01-01

    New data support the importance of the innate immune response in the resolution or progression of pulmonary fibrosis. The presence of CXC chemokine receptor 3–expressing cells, specifically pulmonary NK cells, is necessary to produce IFN-γ. This is critical in the polarization of the immune response to injury toward a favorable Th1 response and resolution. In contrast, a Th2 response is associated with progressive fibrosis. PMID:15254582

  4. The calpain inhibitor calpeptin prevents bleomycin-induced pulmonary fibrosis in mice

    PubMed Central

    Tabata, C; Tabata, R; Nakano, T

    2010-01-01

    Pulmonary fibrosis is characterized by progressive worsening of pulmonary function leading to a high incidence of death. Currently, however, there has been little progress in therapeutic strategies for pulmonary fibrosis. There have been several reports on cytokines being associated with lung fibrosis, including interleukin (IL)-6 and transforming growth factor (TGF)-β1. We reported recently that two substances (ATRA and thalidomide) have preventive effects on pulmonary fibrosis by inhibiting IL-6-dependent proliferation and TGF-β1-dependent transdifferentiation of lung fibroblasts. Rheumatoid arthritis is a chronic autoimmune disorder, and its pathogenesis is also characterized by an association with several cytokines. It has been reported that calpain, a calcium-dependent intracellular cysteine protease, plays an important role in the progression of rheumatoid arthritis. In this study, we examined the preventive effect of Calpeptin, a calpain inhibitor, on bleomycin-induced pulmonary fibrosis. We performed histological examinations and quantitative measurements of IL-6, TGF-β1, collagen type Iα1 and angiopoietin-1 in bleomycin-treated mouse lung tissues with or without the administration of Calpeptin. Calpeptin histologically ameliorated bleomycin-induced pulmonary fibrosis in mice. Calpeptin decreased the expression of IL-6, TGF-β1, angiopoietin-1 and collagen type Iα1 mRNA in mouse lung tissues. In vitro studies disclosed that Calpeptin reduced (i) production of IL-6, TGF-β1, angiopoietin-1 and collagen synthesis from lung fibroblasts; and (ii) both IL-6-dependent proliferation and angiopoietin-1-dependent migration of the cells, which could be the mechanism underlying the preventive effect of Calpeptin on pulmonary fibrosis. These data suggest the clinical use of Calpeptin for the prevention of pulmonary fibrosis. PMID:20846163

  5. The Effects of Aerosolized STAT1 Antisense Oligodeoxynucleotides on Rat Pulmonary Fibrosis

    PubMed Central

    Wang, Wenjun; Liao, Bin; Zeng, Ming; Zhu, Chen; Fan, Xianming

    2009-01-01

    Previous study showed that aerosolized signal transducer and activator of transcription-1 (STAT1) antisense oligodeoxynucleotide (ASON) inhibited the expression of STAT1 and ICAM-1 mRNA and protein in alveolar macrophages (AMs) and decreased the concentrations of TGF-β, PDGF and TNF-α in bronchioalveolar lavage fluid (BALF) in bleomycin (BLM)-induced rat pulmonary fibrosis. Administration of STAT1 ASON ameliorated alveolitis in rat pulmonary fibrosis. However, further investigations are needed to determine whether there is an effect from administration of STAT1 ASON on fibrosis. This study investigated the effect of aerosolized STAT1 ASON on the expressions of inflammatory mediators, hydroxyproline and type I and type III collagen mRNA in BLM-induced rat pulmonary fibrosis. The results showed that STAT1 ASON applied by aerosolization could ameliorate alveolitis and fibrosis, inhibit the expressions of inflammatory mediators, decrease the content of hydroxyproline, and suppress the expressions of type I and type III collagen mRNA in lung tissue in BLM-induced rat pulmonary fibrosis. These results suggest that aerosolized STAT1 ASON might be considered as a promising new strategy in the treatment of pulmonary fibrosis. PMID:19254480

  6. The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis.

    PubMed

    Venkataraman, Thiagarajan; Frieman, Matthew B

    2017-07-01

    Many survivors of the 2003 outbreak of severe acute respiratory syndrome (SARS) developed residual pulmonary fibrosis with increased severity seen in older patients. Autopsies of patients that died from SARS also showed fibrosis to varying extents. Pulmonary fibrosis can be occasionally seen as a consequence to several respiratory viral infections but is much more common after a SARS coronavirus (SARS-CoV) infection. Given the threat of future outbreaks of severe coronavirus disease, including Middle East respiratory syndrome (MERS), it is important to understand the mechanisms responsible for pulmonary fibrosis, so as to support the development of therapeutic countermeasures and mitigate sequelae of infection. In this article, we summarize pulmonary fibrotic changes observed after a SARS-CoV infection, discuss the extent to which other respiratory viruses induce fibrosis, describe available animal models to study the development of SARS-CoV induced fibrosis and review evidence that pulmonary fibrosis is caused by a hyperactive host response to lung injury mediated by epidermal growth factor receptor (EGFR) signaling. We summarize work from our group and others indicating that inhibiting EGFR signaling may prevent an excessive fibrotic response to SARS-CoV and other respiratory viral infections and propose directions for future research. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Xiao, Jun; Meng, Xiao-Ming; Huang, Xiao R; Chung, Arthur Ck; Feng, Yu-Lin; Hui, David Sc; Yu, Cheuk-Man; Sung, Joseph Jy; Lan, Hui Y

    2012-06-01

    Loss of microRNA-29 (miR-29) is known to be a mechanism of transforming growth factor-β (TGF-β)-mediated pulmonary fibrosis, but the therapeutic implication of miR-29 for pulmonary fibrosis remains unexplored. The present study investigated whether miR-29 had therapeutic potential for lung disease induced by bleomycin in mice. In addition, the signaling mechanisms that regulated miR-29 expression were investigated in vivo and in vitro. We found that miR-29 was a downstream target gene of Smad3 and negatively regulated by TGF-β/Smad signaling in fibrosis. This was evidenced by the findings that mice or pulmonary fibroblasts null for Smad3 were protected against bleomycin or TGF-β1-induced loss of miR-29 along with fibrosis in vivo and in vitro. Interestingly, overexpression of miR-29 could in turn negatively regulated TGF-β and connective tissue growth factor (CTGF) expression and Smad3 signaling. Therefore, Sleeping Beauty (SB)-mediated miR-29 gene transfer into normal and diseased lung tissues was capable of preventing and treating pulmonary fibrosis including inflammatory macrophage infiltration induced by bleomycin in mice. In conclusion, miR-29 is negatively regulated by TGF-β/Smad3 and has a therapeutic potential for pulmonary fibrosis. SB-mediated miR-29 gene therapy is a non-invasive therapeutic strategy for lung disease associated with fibrosis.

  8. miR-29 Inhibits Bleomycin-induced Pulmonary Fibrosis in Mice

    PubMed Central

    Xiao, Jun; Meng, Xiao-Ming; Huang, Xiao R; Chung, Arthur CK; Feng, Yu-Lin; Hui, David SC; Yu, Cheuk-Man; Sung, Joseph JY; Lan, Hui Y

    2012-01-01

    Loss of microRNA-29 (miR-29) is known to be a mechanism of transforming growth factor-β (TGF-β)-mediated pulmonary fibrosis, but the therapeutic implication of miR-29 for pulmonary fibrosis remains unexplored. The present study investigated whether miR-29 had therapeutic potential for lung disease induced by bleomycin in mice. In addition, the signaling mechanisms that regulated miR-29 expression were investigated in vivo and in vitro. We found that miR-29 was a downstream target gene of Smad3 and negatively regulated by TGF-β/Smad signaling in fibrosis. This was evidenced by the findings that mice or pulmonary fibroblasts null for Smad3 were protected against bleomycin or TGF-β1-induced loss of miR-29 along with fibrosis in vivo and in vitro. Interestingly, overexpression of miR-29 could in turn negatively regulated TGF-β and connective tissue growth factor (CTGF) expression and Smad3 signaling. Therefore, Sleeping Beauty (SB)-mediated miR-29 gene transfer into normal and diseased lung tissues was capable of preventing and treating pulmonary fibrosis including inflammatory macrophage infiltration induced by bleomycin in mice. In conclusion, miR-29 is negatively regulated by TGF-β/Smad3 and has a therapeutic potential for pulmonary fibrosis. SB-mediated miR-29 gene therapy is a non-invasive therapeutic strategy for lung disease associated with fibrosis. PMID:22395530

  9. Self-Efficacy, Pulmonary Function, Perceived Health and Global Quality of Life of Cystic Fibrosis Patients

    ERIC Educational Resources Information Center

    Wahl, Astrid K.; Rustoen ,Tone; Hanestad, Berit R.; Gjengedal, Eva; Moum, Torbjorn

    2005-01-01

    This study examined the extent that pulmonary function is related to perceived health status and global quality of life in adults suffering from cystic fibrosis, and the extent that self-efficacy modifies these relationships. Our sample comprised 86 adults (48% female; mean age, 29 years; age range, 18-54 years) with cystic fibrosis, recruited…

  10. Self-Efficacy, Pulmonary Function, Perceived Health and Global Quality of Life of Cystic Fibrosis Patients

    ERIC Educational Resources Information Center

    Wahl, Astrid K.; Rustoen ,Tone; Hanestad, Berit R.; Gjengedal, Eva; Moum, Torbjorn

    2005-01-01

    This study examined the extent that pulmonary function is related to perceived health status and global quality of life in adults suffering from cystic fibrosis, and the extent that self-efficacy modifies these relationships. Our sample comprised 86 adults (48% female; mean age, 29 years; age range, 18-54 years) with cystic fibrosis, recruited…

  11. Novelty in treatment of pulmonary fibrosis: pulmonary hypertension drugs and others.

    PubMed

    Correale, Michele; Totaro, Antonio; Lacedonia, Donato; Montrone, Deodata; Di Biase, Matteo; Barbaro Foschino, Maria Pia; Brunetti, Natale Daniele

    2013-09-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic condition of unknown etiology with deteriorating respiratory function leading to respiratory failure. Corticosteroids, alone or in combination with immunosuppressive drugs such as azathioprine, colchicine, and cyclophosphamide, have been used with limited success. Interferon-gamma-1b showed a significant improvement in pulmonary function only in one study. Pirfenidone, cyclosporine and acetylcysteine may also be of benefit but data from studies are limited. Novel drugs, mainly antifibrotic, anticytokine and immunoregulatory, are currently being investigated in various trial phases. Endothelin receptor antagonists have been shown to have possible beneficial effects in early stages of IPF. However, most recently, the so-called triple combination therapy, anticoagulation therapy and endothelin receptor antagonists, especially ambrisentan, are either harmful or ineffective in IPF and are not recommended. We report a brief review on the present and possible future therapeutic options in IPF.

  12. Genomic phenotype of non-cultured pulmonary fibroblasts in idiopathic pulmonary fibrosis.

    PubMed

    Emblom-Callahan, Margaret C; Chhina, Mantej K; Shlobin, Oksana A; Ahmad, Shahzad; Reese, Erika S; Iyer, Eswar P R; Cox, Daniel N; Brenner, Renee; Burton, Nelson A; Grant, Geraldine M; Nathan, Steven D

    2010-09-01

    Activated fibroblasts are the central effector cells of the progressive fibrotic process in idiopathic pulmonary fibrosis (IPF). Characterizing the genomic phenotype of isolated fibroblasts is essential to understanding IPF pathogenesis. Comparing the genomic phenotype of non-cultured pulmonary fibroblasts from advanced IPF patients' and normal lungs revealed novel genes, biological processes and concomitant pathways previously unreported in IPF fibroblasts. We demonstrate altered expression in proteasomal constituents, ubiquitination-mediators, Wnt, apoptosis and vitamin metabolic pathways and cell cycle regulators, suggestive of loss of cellular homeostasis. Specifically, FBXO32, CXCL14, BDKRB1 and NMNAT1 were up-regulated, while RARA and CDKN2D were down-regulated. Paradoxically, pro-apoptotic inducers TNFSF10, BAX and CASP6 were also found to be increased. This comprehensive description of altered gene expression in isolated IPF fibroblasts underscores the complex biological processes characteristic of IPF and may provide a foundation for future research into this devastating disease.

  13. NFATc3 and VIP in Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease

    PubMed Central

    Szema, Anthony M.; Forsyth, Edward; Ying, Benjamin; Hamidi, Sayyed A.; Chen, John J.; Hwang, Sonya; Li, Jonathan C.; Sabatini Dwyer, Debra; Ramiro-Diaz, Juan M.; Giermakowska, Wieslawa; Gonzalez Bosc, Laura V.

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) are both debilitating lung diseases which can lead to hypoxemia and pulmonary hypertension (PH). Nuclear Factor of Activated T-cells (NFAT) is a transcription factor implicated in the etiology of vascular remodeling in hypoxic PH. We have previously shown that mice lacking the ability to generate Vasoactive Intestinal Peptide (VIP) develop spontaneous PH, pulmonary arterial remodeling and lung inflammation. Inhibition of NFAT attenuated PH in these mice suggesting a connection between NFAT and VIP. To test the hypotheses that: 1) VIP inhibits NFAT isoform c3 (NFATc3) activity in pulmonary vascular smooth muscle cells; 2) lung NFATc3 activation is associated with disease severity in IPF and COPD patients, and 3) VIP and NFATc3 expression correlate in lung tissue from IPF and COPD patients. NFAT activity was determined in isolated pulmonary arteries from NFAT-luciferase reporter mice. The % of nuclei with NFAT nuclear accumulation was determined in primary human pulmonary artery smooth muscle cell (PASMC) cultures; in lung airway epithelia and smooth muscle and pulmonary endothelia and smooth muscle from IPF and COPD patients; and in PASMC from mouse lung sections by fluorescence microscopy. Both NFAT and VIP mRNA levels were measured in lungs from IPF and COPD patients. Empirical strategies applied to test hypotheses regarding VIP, NFATc3 expression and activity, and disease type and severity. This study shows a significant negative correlation between NFAT isoform c3 protein expression levels in PASMC, activity of NFATc3 in pulmonary endothelial cells, expression and activity of NFATc3 in bronchial epithelial cells and lung function in IPF patients, supporting the concept that NFATc3 is activated in the early stages of IPF. We further show that there is a significant positive correlation between NFATc3 mRNA expression and VIP RNA expression only in lungs from IPF patients. In

  14. NFATc3 and VIP in Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease.

    PubMed

    Szema, Anthony M; Forsyth, Edward; Ying, Benjamin; Hamidi, Sayyed A; Chen, John J; Hwang, Sonya; Li, Jonathan C; Sabatini Dwyer, Debra; Ramiro-Diaz, Juan M; Giermakowska, Wieslawa; Gonzalez Bosc, Laura V

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) are both debilitating lung diseases which can lead to hypoxemia and pulmonary hypertension (PH). Nuclear Factor of Activated T-cells (NFAT) is a transcription factor implicated in the etiology of vascular remodeling in hypoxic PH. We have previously shown that mice lacking the ability to generate Vasoactive Intestinal Peptide (VIP) develop spontaneous PH, pulmonary arterial remodeling and lung inflammation. Inhibition of NFAT attenuated PH in these mice suggesting a connection between NFAT and VIP. To test the hypotheses that: 1) VIP inhibits NFAT isoform c3 (NFATc3) activity in pulmonary vascular smooth muscle cells; 2) lung NFATc3 activation is associated with disease severity in IPF and COPD patients, and 3) VIP and NFATc3 expression correlate in lung tissue from IPF and COPD patients. NFAT activity was determined in isolated pulmonary arteries from NFAT-luciferase reporter mice. The % of nuclei with NFAT nuclear accumulation was determined in primary human pulmonary artery smooth muscle cell (PASMC) cultures; in lung airway epithelia and smooth muscle and pulmonary endothelia and smooth muscle from IPF and COPD patients; and in PASMC from mouse lung sections by fluorescence microscopy. Both NFAT and VIP mRNA levels were measured in lungs from IPF and COPD patients. Empirical strategies applied to test hypotheses regarding VIP, NFATc3 expression and activity, and disease type and severity. This study shows a significant negative correlation between NFAT isoform c3 protein expression levels in PASMC, activity of NFATc3 in pulmonary endothelial cells, expression and activity of NFATc3 in bronchial epithelial cells and lung function in IPF patients, supporting the concept that NFATc3 is activated in the early stages of IPF. We further show that there is a significant positive correlation between NFATc3 mRNA expression and VIP RNA expression only in lungs from IPF patients. In

  15. A neutrophil elastase inhibitor prevents bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Takemasa, Akihiro; Ishii, Yoshiki; Fukuda, Takeshi

    2012-12-01

    Neutrophil elastase plays pivotal roles in the pathogenesis of pulmonary fibrosis. The neutrophil elastase inhibitor, sivelestat, could alleviate pulmonary fibrosis; however, the antifibrotic mechanisms have not yet been clarified. We examined the antifibrotic mechanisms, mainly focusing on a key fibrotic cytokine, transforming growth factor (TGF)-β1, in this study. To elucidate the antifibrotic mechanisms of sivelestat, we examined a murine model of bleomycin-induced early-stage pulmonary fibrosis. After intratracheal instillation of bleomycin, sivelestat was administered intraperitoneally once a day for 7 or 14 days. Bronchoalveolar lavage fluid and lung samples were examined on day 7 or day 14 after bleomycin instillation. In the bleomycin-induced early-stage pulmonary fibrosis model, the neutrophil elastase level was increased in the lungs. Sivelestat significantly inhibited the increase in lung collagen content, fibrotic changes, the numbers of total cells (including macrophages, neutrophils and lymphocytes), the levels of the active form of TGF-β1 and phospho-Smad2 in bleomycin-induced early-stage pulmonary fibrosis. The total TGF-β1 levels and relative changes of TGF-β1 mRNA expression, however, were not decreased significantly by sivelestat. These results suggest that sivelestat alleviated bleomycin-induced pulmonary fibrosis via inhibition of both TGF-β activation and inflammatory cell recruitment in the lung.

  16. Nitric oxide mediates bleomycin-induced angiogenesis and pulmonary fibrosis via regulation of VEGF.

    PubMed

    Iyer, Anand Krishnan V; Ramesh, Vani; Castro, Carlos A; Kaushik, Vivek; Kulkarni, Yogesh M; Wright, Clayton A; Venkatadri, Rajkumar; Rojanasakul, Yon; Azad, Neelam

    2015-11-01

    Pulmonary fibrosis is a progressive lung disease hallmarked by increased fibroblast proliferation, amplified levels of extracellular matrix deposition and increased angiogenesis. Although dysregulation of angiogenic mediators has been implicated in pulmonary fibrosis, the specific rate-limiting angiogenic markers involved and their role in the progression of pulmonary fibrosis remains unclear. We demonstrate that bleomycin treatment induces angiogenesis, and inhibition of the central angiogenic mediator VEGF using anti-VEGF antibody CBO-P11 significantly attenuates bleomycin-induced pulmonary fibrosis in vivo. Bleomycin-induced nitric oxide (NO) was observed to be the key upstream regulator of VEGF via the PI3k/Akt pathway. VEGF regulated other important angiogenic proteins including PAI-1 and IL-8 in response to bleomycin exposure. Inhibition of NO and VEGF activity significantly mitigated bleomycin-induced angiogenic and fibrogenic responses. NO and VEGF are key mediators of bleomycin-induced pulmonary fibrosis, and could serve as important targets against this debilitating disease. Overall, our data suggests an important role for angiogenic mediators in the pathogenesis of bleomycin-induced pulmonary fibrosis.

  17. Nitric Oxide Mediates Bleomycin-Induced Angiogenesis and Pulmonary Fibrosis via Regulation of VEGF

    PubMed Central

    Iyer, Anand Krishnan V.; Ramesh, Vani; Castro, Carlos A.; Kaushik, Vivek; Kulkarni, Yogesh M.; Wright, Clayton A.; Venkatadri, Rajkumar; Rojanasakul, Yon; Azad, Neelam

    2015-01-01

    Pulmonary fibrosis is a progressive lung disease hallmarked by increased fibroblast proliferation, amplified levels of extracellular matrix deposition and increased angiogenesis. Although dysregulation of angiogenic mediators has been implicated in pulmonary fibrosis, the specific rate-limiting angiogenic markers involved and their role in the progression of pulmonary fibrosis remains unclear. We demonstrate that bleomycin treatment induces angiogenesis, and inhibition of the central angiogenic mediator VEGF using anti-VEGF antibody CBO-P11 significantly attenuates bleomycin-induced pulmonary fibrosis in vivo. Bleomycin-induced nitric oxide (NO) was observed to be the key upstream regulator of VEGF via the PI3k/Akt pathway. VEGF regulated other important angiogenic proteins including PAI-1 and IL-8 in response to bleomycin exposure. Inhibition of NO and VEGF activity significantly mitigated bleomycin-induced angiogenic and fibrogenic responses. NO and VEGF are key mediators of bleomycin-induced pulmonary fibrosis, and could serve as important targets against this debilitating disease. Overall, our data suggests an important role for angiogenic mediators in the pathogenesis of bleomycin-induced pulmonary fibrosis. PMID:25919965

  18. Influence of Pulmonary Hypertension on Patients With Idiopathic Pulmonary Fibrosis Awaiting Lung Transplantation.

    PubMed

    Hayes, Don; Black, Sylvester M; Tobias, Joseph D; Kirkby, Stephen; Mansour, Heidi M; Whitson, Bryan A

    2016-01-01

    The influence of varying levels of pulmonary hypertension (PH) on survival in idiopathic pulmonary fibrosis is not well defined. The United Network for Organ Sharing database was queried from 2005 to 2013 to identify first-time lung transplant candidates listed for lung transplantation who were tracked from waitlist entry date until death or censoring to determine the influence of PH on patients with advanced lung disease. Using data for right heart catheterization measurements, mild PH was defined as mean pulmonary artery pressure of 25 mm Hg or more, and severe as 35 mm Hg or more. Of 6,657 idiopathic pulmonary fibrosis patients, 6,651 were used for univariate analysis, 6,126 for Kaplan-Meier survival function, 6,013 for multivariate Cox models, and 5,186 (mild PH) and 2,014 (severe PH) for propensity score matching, respectively. Univariate Cox proportional hazards analysis found significant differences in survival for mild PH (hazard ratio [HR] 1.689, 95% confidence interval [CI]: 1.434 to 1.988, p < 0.001) and severe PH (HR 2.068, 95% CI: 1.715 to 2.493, p < 0.001). Further assessment by multivariate Cox models identified significant risk for death for mild PH (HR 1.433, 95% CI: 1.203 to 1.706, p < 0.001) and severe PH (HR 1.597, 95% CI: 1.308 to 1.949, p < 0.001). Propensity score matching confirmed the risk for death for mild PH (HR 1.530, 95% CI: 1.189 to 1.969, p = 0.001) and severe PH (HR 2.103, 95% CI: 1.436 to 3.078, p < 0.001). The manifestation of PH, even with mild severity, is associated with significantly increased risk for death among patients with idiopathic pulmonary fibrosis awaiting lung transplantation, so referral should be considered early in the disease course. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Predicting Pulmonary Fibrosis Disease Course From Past Trends in Pulmonary Function

    PubMed Central

    Schmidt, Shelley L.; Tayob, Nabihah; Han, Meilan K.; Zappala, Christopher; Kervitsky, Dolly; Murray, Susan; Wells, Athol U.; Martinez, Fernando J.

    2014-01-01

    Background: The clinical course of idiopathic pulmonary fibrosis (IPF) is characterized by progressive decline in lung function and eventual mortality. We sought to determine if future declines in pulmonary function, mortality, or both can be predicted from prior trends in pulmonary function tests (PFTs). Methods: Data from 1981 to 2008 on 4,431 PFTs and mortality were analyzed from 734 subjects with IPF. The Kaplan-Meier method was used for mortality analyses. Mixed models were used to describe longitudinal pulmonary function dynamics, since PFTs were observed at varying time points from baseline. Results: During the first year of follow-up, 135 subjects (73%) had stable FVC while 50 subjects (37%) showed a decline in FVC. During months 12 to 24 (1-2 years after diagnosis), a stable FVC occurred with the same frequency among both subjects whose FVC had declined during year 1 and whose FVC had remained stable (84.0% and 80.7%, respectively; P = .59). Among subjects alive at the end of year 1, those with a stable FVC were more likely to be alive at the end of year 2 than those whose FVC declined (hazard ratio [HR], 0.91 [95% CI, 0.87-0.94] and HR, 0.71 [95% CI, 0.62-0.78], respectively). Conclusions: PFT decline predicts early mortality, but not future declines in physiology, regardless of time since diagnosis. PMID:24231810

  20. Update on therapeutic management of idiopathic pulmonary fibrosis

    PubMed Central

    Tzouvelekis, Argyris; Bonella, Francesco; Spagnolo, Paolo

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive diffuse parenchymal lung disease of unknown origin, with a mortality rate exceeding that of many cancers. The diagnostic process is complex and relies on the clinician integrating clinical, laboratory, radiological, and histological data. In the last decade, major advances in our understanding of the pathogenesis of IPF have shifted the paradigm from a primarily inflammatory process evolving to fibrosis to a condition driven by aberrant wound healing following alveolar epithelial cell injury that results in scarring of the lung, architectural distortion, and irreversible loss of function. Improved understanding of disease pathogenesis has led to the identification of several therapeutic targets and the design of high-quality clinical trials evaluating novel compounds. However, the results of these studies have been mostly disappointing, probably due to the plethora of mediators, growth factors, and signaling pathways involved in the fibrotic process. Most recently, pirfenidone and nintedanib, two compounds with pleiotropic anti-fibrotic properties, have been proven effective in reducing functional decline and disease progression in IPF. This is a major breakthrough. Nevertheless, we still have a long way to go. In fact, neither pirfenidone nor nintedanib is a cure for IPF, and most patients continue to progress despite treatment. As such, comprehensive care of patients with IPF, including management of concomitant conditions and physical debility, as well as timely referral for lung transplantation, remains essential. Several agents with a high potential are currently being tested, and many more are ready for clinical trials. Their completion is critical for achieving the ultimate goal of curing patients with IPF. PMID:25767391

  1. Cadherin-11 Regulation of Fibrosis through Modulation of Epithelial-to-Mesenchymal Transition: Implications for Pulmonary Fibrosis in Scleroderma

    DTIC Science & Technology

    2015-10-01

    SUPPLEMENTARY NOTES 14. ABSTRACT Systemic sclerosis is a potentially devastating multisystem disorder characterized inflammation and autoimmunity...expression is increased in fibrotic tissues from lungs of patients with idiopathic pulmonary fibrosis and skin of patients with systemic sclerosis...mouse (red) Cad-11 Figure 3. Serum cadherin-11 levels are increased in certain autoantibody subsets of systemic sclerosis using a commercial

  2. Hepatocyte Growth Factor Is Required for Mesenchymal Stromal Cell Protection Against Bleomycin-Induced Pulmonary Fibrosis

    PubMed Central

    Cahill, Emer F.; Kennelly, Helen; Carty, Fiona; Mahon, Bernard P.

    2016-01-01

    The incidence of idiopathic pulmonary fibrosis is on the rise and existing treatments have failed to halt or reverse disease progression. Mesenchymal stromal cells (MSCs) have potent cytoprotective effects, can promote tissue repair, and have demonstrated efficacy in a range of fibrotic lung diseases; however, the exact mechanisms of action remain to be elucidated. Chemical antagonists and short hairpin RNA knockdown were used to identify the mechanisms of action used by MSCs in promoting wound healing, proliferation, and inhibiting apoptosis. Using the bleomycin induced fibrosis model, the protective effects of early or late MSC administration were examined. The role for hepatocyte growth factor (HGF) in MSC protection against bleomycin lung injury was examined using HGF knockdown MSC. Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling assay was performed on ex vivo lung sections to examine the effects of MSC on apoptosis. MSC conditioned media (CM) enhanced wound closure and inhibited apoptosis of pulmonary cells in vitro. HGF was required for MSC CM enhancement of epithelial cell proliferation and inhibition of apoptosis. In contrast, MSC required COX-2 for CM to inhibit fibroblast proliferation. In a murine model, early administration of MSC protected against bleomycin induced lung fibrosis and correlated with reduced levels of the proinflammatory cytokine interleukin-1β, reduced levels of apoptosis, and significantly increased levels of HGF. These protective effects were in part mediated by MSC derived HGF as HGF knockdown MSC were unable to protect against fibrosis in vivo. These findings delineate the mechanisms of MSC protection in a preclinical model of fibrotic lung disease. Significance The mechanisms used by mesenchymal stromal cells (MSCs) in mediating protective effects in chronic models of lung disease are not understood and remain to be elucidated. These findings from in vitro studies highlight an important role for the MSC

  3. Peptidylarginine deiminase 4 promotes age-related organ fibrosis

    PubMed Central

    Erpenbeck, Luise; Savchenko, Alexander; Hayashi, Hideki; Cherpokova, Deya; Gallant, Maureen; Mauler, Maximilian; Cifuni, Stephen M.

    2017-01-01

    Aging promotes inflammation, a process contributing to fibrosis and decline in organ function. The release of neutrophil extracellular traps (NETs [NETosis]), orchestrated by peptidylarginine deiminase 4 (PAD4), damages organs in acute inflammatory models. We determined that NETosis is more prevalent in aged mice and investigated the role of PAD4/NETs in age-related organ fibrosis. Reduction in fibrosis was seen in the hearts and lungs of aged PAD4−/− mice compared with wild-type (WT) mice. An increase in left ventricular interstitial collagen deposition and a decline in systolic and diastolic function were present only in WT mice, and not in PAD4−/− mice. In an experimental model of cardiac fibrosis, cardiac pressure overload induced NETosis and significant platelet recruitment in WT but not PAD4−/− myocardium. DNase 1 was given to assess the effects of extracellular chromatin. PAD4 deficiency or DNase 1 similarly protected hearts from fibrosis. We propose a role for NETs in cardiac fibrosis and conclude that PAD4 regulates age-related organ fibrosis and dysfunction. PMID:28031479

  4. Mechanical induction of cough in Idiopathic Pulmonary Fibrosis

    PubMed Central

    2011-01-01

    Background Patients with idiopathic pulmonary fibrosis (IPF) frequently develop a dry, irritating cough which often proves refractory to anti-tussive therapies. The precise pathogenetic mechanisms responsible for this cough are unknown. We hypothesised that changes in nerves modulating mechanical sensitivity in areas of interstitial fibrosis might lead to enhanced cough response to mechanical stimulation of the chest in IPF. Methods We studied 27 non-smoking subjects with IPF (63% male), mean (SD) age 71.7 (7) years and 30 healthy non-smokers. Quality of life (Leicester Cough Questionnaire), cough symptom scores and cough severity scores (visual analog scales) were recorded. Percussion stimulation was applied over the posterior lung base, upper anterior chest and manubrium sternum at sequential frequencies (20 Hertz (Hz), 40 Hz and 60 Hz) for up to 60 seconds and repeated twice at two minute intervals. The number of subjects achieving two and five-cough responses, total cough counts and cough latency were recorded. In separate experiments, the effect of mechanical stimulation on the pattern of breathing was determined in eight IPF subjects and five control subjects. Results In patients with IPF, we demonstrated strong correlations between subjective cough measurements, particularly the cough symptom score and Leicester Cough Questionnaire (r = -0.86; p < 0.001). Mechanical percussion induced a true cough reflex in 23/27 (85%) IPF subjects, but only 5/30 (17%) controls (p < 0.001). More patients with IPF reached the two-cough response at a lower frequency (20 Hz) posteriorly than at other positions. Highest mean cough totals were seen with stimulation at or above 40 Hz. Mechanical stimulation had no effect on respiratory rate but increased tidal volume in four (50%) subjects with IPF, particularly at higher frequencies. It was associated with increased urge to cough followed by a true cough reflex. Conclusions This study demonstrates that patients with IPF show

  5. Fibrinolytic system related to pulmonary arterial pressure and lung function of patients with idiopathic pulmonary fibrosis.

    PubMed

    Ban, Chengjun; Wang, Tongde; Zhang, Shu; Xin, Ping; Liang, Lirong; Wang, Chen; Dai, Huaping

    2017-09-01

    To investigate urokinase-(uPA) and tissue-type (tPA) plasminogen activator and plasminogen activator inhibitor type-1 (PAI-1) levels in patients with idiopathic pulmonary fibrosis (IPF) and to determine the relationship between fibrinolytic system and pulmonary arterial pressure and pulmonary function. Seventy-nine patients with IPF were included. Bronchoalveolar lavage fluid (BALF) and blood samples were collected. The concentrations of tPA, uPA and PAI-1 were measured using enzyme-linked immunosorbent assay. Doppler echocardiography was used to detect tricuspid regurgitation pressure gradient (TRPG) to estimate pulmonary arterial pressure. BALF tPA elevated (P < 0.005), circulatory PAI-1 decreased (P = 0.05) and the ratio of uPA and PAI-1 decreased (P = 0.01) in BALF in IPF patients with pulmonary hypertension (PH) compared to those without PH. Positive linear correlations were found: BALF tPA and TRPG (r = 0.558, P = 0.013); the predicted percentage of diffusion capacity of lung for carbon monoxide adjustments for alveolar volume and BALF uPA (r = 0.319, P = 0.035). Negative linear correlations were as follows: BALF PAI-1 and the predicted percentage of VCmax (r = -0.325, P = 0.020), or total lung capacity (r = -0.312, P = 0.033); circulatory PAI-1 and TRPG (r = -0.697, P = 0.003). The change of alveolar fibrolytic system in IPF, especially the uPA reduction and the PAI-1elevation, contributes to the deterioration of lung function. During the lung injury initiating fibrosis, tPA and PAI-1 might be leaked out of the pulmonary capillaries into alveoli, resulting in their elevation in alveoli and reduction in circulation, and finally contributing to the development of PH in IPF. © 2015 John Wiley & Sons Ltd.

  6. The Mitochondrial Cardiolipin Remodeling Enzyme Lysocardiolipin Acyltransferase Is a Novel Target in Pulmonary Fibrosis

    PubMed Central

    Huang, Long Shuang; Mathew, Biji; Zhao, Yutong; Noth, Imre; Reddy, Sekhar P.; Harijith, Anantha; Usatyuk, Peter V.; Berdyshev, Evgeny V.; Kaminski, Naftali; Zhou, Tong; Zhang, Wei; Zhang, Yanmin; Rehman, Jalees; Kotha, Sainath R.; Gurney, Travis O.; Parinandi, Narasimham L.; Lussier, Yves A.; Garcia, Joe G. N.

    2014-01-01

    Rationale: Lysocardiolipin acyltransferase (LYCAT), a cardiolipin-remodeling enzyme regulating the 18:2 linoleic acid pattern of mammalian mitochondrial cardiolipin, is necessary for maintaining normal mitochondrial function and vascular development. We hypothesized that modulation of LYCAT expression in lung epithelium regulates development of pulmonary fibrosis. Objectives: To define a role for LYCAT in human and murine models of pulmonary fibrosis. Methods: We analyzed the correlation of LYCAT expression in peripheral blood mononuclear cells (PBMCs) with the outcomes of pulmonary functions and overall survival, and used the murine models to establish the role of LYCAT in fibrogenesis. We studied the LYCAT action on cardiolipin remodeling, mitochondrial reactive oxygen species generation, and apoptosis of alveolar epithelial cells under bleomycin challenge. Measurements and Main Results: LYCAT expression was significantly altered in PBMCs and lung tissues from patients with idiopathic pulmonary fibrosis (IPF), which was confirmed in two preclinical murine models of IPF, bleomycin- and radiation-induced pulmonary fibrosis. LYCAT mRNA expression in PBMCs directly and significantly correlated with carbon monoxide diffusion capacity, pulmonary function outcomes, and overall survival. In both bleomycin- and radiation-induced pulmonary fibrosis murine models, hLYCAT overexpression reduced several indices of lung fibrosis, whereas down-regulation of native LYCAT expression by siRNA accentuated fibrogenesis. In vitro studies demonstrated that LYCAT modulated bleomycin-induced cardiolipin remodeling, mitochondrial membrane potential, reactive oxygen species generation, and apoptosis of alveolar epithelial cells, potential mechanisms of LYCAT-mediated lung protection. Conclusions: This study is the first to identify modulation of LYCAT expression in fibrotic lungs and offers a novel therapeutic approach for ameliorating lung inflammation and pulmonary fibrosis. PMID

  7. Severity classification for idiopathic pulmonary fibrosis by using fuzzy logic

    PubMed Central

    Lopes, Agnaldo José; Capone, Domenico; Mogami, Roberto; Lanzillotti, Regina Serrão; de Melo, Pedro Lopes; Jansen, José Manoel

    2011-01-01

    OBJECTIVE: To set out a severity classification for idiopathic pulmonary fibrosis (IPF) based on the interaction of pulmonary function parameters with high resolution computed tomography (CT) findings. INTRODUCTION: Despite the contribution of functional and radiological methods in the study of IPF, there are few classification proposals for the disease based on these examinations. METHODS: A cross-sectional study was carried out, in which 41 non-smoking patients with IPF were evaluated. The following high resolution CT findings were quantified using a semi-quantitative scoring system: reticular abnormality, honeycombing and ground-glass opacity. The functional variables were measured by spirometry, forced oscillation technique, helium dilution method, as well as the single-breath method of diffusing capacity of carbon monoxide. With the interaction between functional indexes and high resolution CT scores through fuzzy logic, a classification for IPF has been built. RESULTS: Out of 41 patients studied, 26 were male and 15 female, with a mean age of 70.8 years. Volume measurements were the variables which showed the best interaction with the disease extension on high resolution CT, while the forced vital capacity showed the lowest estimative errors in comparison to total lung capacity. A classification for IPF was suggested based on the 95% confidence interval of the forced vital capacity %: mild group (≥92.7); moderately mild (76.9–92.6); moderate (64.3–76.8%); moderately severe (47.1–64.2); severe (24.3–47.0); and very severe (<24.3). CONCLUSION: Through fuzzy logic, an IPF classification was built based on forced vital capacity measurement with a simple practical application. PMID:21808868

  8. Dynamic patient counseling: a novel concept in idiopathic pulmonary fibrosis.

    PubMed

    Brown, A Whitney; Shlobin, Oksana A; Weir, Nargues; Albano, Maria C; Ahmad, Shahzad; Smith, Mary; Leslie, Kevin; Nathan, Steven D

    2012-10-01

    The characteristics of long-term survivors with idiopathic pulmonary fibrosis (IPF) have never been fully elucidated. We sought to illustrate the attenuated mortality and describe the characteristics of patients with IPF who survived at least 5 years beyond their initial presentation. Patients with IPF evaluated between 1997 and 2006 were identified through the clinic database. Patients who survived beyond 5 years from the time of their evaluation were compared with those who died or underwent lung transplantation within 5 years. Survival analyses were performed from the time of initial evaluation and contingent on annualized survival thereafter. Eighty-seven patients who survived at least 5 years formed the comparator group to whom other patients were contrasted. These patients had a higher BMI, FVC % predicted, FEV1 % predicted, total lung capacity % predicted, and diffusing capacity of lung for carbon monoxide % predicted, but a lower FEV1/FVC ratio and lower mean pulmonary artery pressures. More than one-half of these patients had moderate or severe disease at the time of presentation. Our annualized contingent survival analyses revealed a progressively increasing median survival dependent on the duration of the disease. Although we were able to demonstrate differences in our 5-year survivors, rather than being a distinct group, these patients appear to exist within a continuum of improving survival dependent on prior disease duration. This progressively improving time-dependent prognosis mandates the serial reevaluation of an individual patient’s projected outcomes. The implementation of dynamic counseling is an important concept in more accurately predicting life expectancy for patients with IPF who are frequently haunted by the prospects of a dismal survival.

  9. Induction of pulmonary fibrosis by cerium oxide nanoparticles

    PubMed Central

    Ma, Jane Y.; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Scabilloni, James; Ma, Joseph K.; Castranova, Vincent

    2015-01-01

    Cerium compounds have been used as a diesel engine catalyst to lower the mass of diesel exhaust particles, but are emitted as cerium oxide (CeO2) nanoparticles in the diesel exhaust. In a previous study, we have demonstrated a wide range of CeO2-induced lung responses including sustained pulmonary inflammation and cellular signaling that could lead to pulmonary fibrosis. In this study, we investigated the fibrogenic responses induced by CeO2 in a rat model at various time points up to 84 days post-exposure. Male Sprague Dawley rats were exposed to CeO2 by a single intratracheal instillation. Alveolar macrophages (AM) were isolated by bronchial alveolar lavage (BAL). AM-mediated cellular responses, osteopontin (OPN) and transform growth factor (TGF)-β1 in the fibrotic process were investigated. The results showed that CeO2 exposure significantly increased fibrotic cytokine TGF-β1 and OPN production by AM above controls. The collagen degradation enzymes, matrix metalloproteinase (MMP)-2 and -9 and the tissue inhibitor of MMP were markedly increased in the BAL fluid at 1 day- and subsequently declined at 28 days after exposure, but remained much higher than the controls. CeO2 induced elevated phospholipids in BAL fluid and increased hydroxyproline content in lung tissue in a dose- and time-dependent manner. Immunohistochemical analysis showed MMP-2, MMP-9 and MMP-10 expressions in fibrotic regions. Morphological analysis noted increased collagen fibers in the lungs exposed to a single dose of 3.5 mg/kg CeO2 and euthanized at 28 days post-exposure. Collectively, our studies show that CeO2 induced fibrotic lung injury in rats, suggesting it may cause potential health effects. PMID:22613087

  10. Obstructive Sleep Apnea Is Common in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Lancaster, Lisa H.; Mason, Wendi R.; Parnell, James A.; Rice, Todd W.; Loyd, James E.; Milstone, Aaron P.; Collard, Harold R.; Malow, Beth A.

    2009-01-01

    Background: From 1984 to 2006, studies of sleep in patients with interstitial lung disease revealed disturbed sleep, frequent nocturnal desaturations, nocturnal cough, and obstructive sleep apnea (OSA). Our goal was to analyze OSA in an outpatient population of stable patients with idiopathic pulmonary fibrosis (IPF). Methods: Patients with IPF who had been followed up in the Vanderbilt Pulmonary Clinic were asked to participate. All patients were given a diagnosis of IPF by the 2000 American Thoracic Society consensus statement criteria. Subjects completed an Epworth sleepiness scale (ESS) questionnaire and a sleep apnea scale of sleep disorders questionnaire (SA-SDQ) before undergoing nocturnal polysomnography (NPSG). OSA was defined as an apnea-hypopnea index (AHI) of > 5 events per hour. Results: Fifty subjects enrolled and completed a NPSG. The mean age was 64.9 years, and the mean BMI was 32.3. OSA was diagnosed in 88% of subjects. Ten subjects (20%) had mild OSA (AHI, 5 to 15 events per hour), and 34 subjects (68%) had moderate-to-severe OSA (AHI, > 15 events per hour). Only 6 subjects (12%) had a normal AHI. One patient was asymptomatic as determined by ESS and SA-SDQ, but had an AHI of 24 events per hour. The sensitivity of the ESS was 75% with a specificity of 15%, whereas the SA-SDQ had a sensitivity of 88% with a specificity of 50%. BMI did not correlate strongly with AHI (r = 0.30; p = 0.05). Conclusions: OSA is prevalent in patients with IPF and may be underrecognized by primary care providers and specialists. Neither ESS nor SA-SDQ alone or in combination was a strong screening tool. Given the high prevalence found in our sample, formal sleep evaluation and polysomnography should be considered in patients with IPF. PMID:19567497

  11. Macrophage bone morphogenic protein receptor 2 depletion in idiopathic pulmonary fibrosis and Group III pulmonary hypertension.

    PubMed

    Chen, Ning-Yuan; D Collum, Scott; Luo, Fayong; Weng, Tingting; Le, Thuy-Trahn; M Hernandez, Adriana; Philip, Kemly; Molina, Jose G; Garcia-Morales, Luis J; Cao, Yanna; Ko, Tien C; Amione-Guerra, Javier; Al-Jabbari, Odeaa; Bunge, Raquel R; Youker, Keith; Bruckner, Brian A; Hamid, Rizwan; Davies, Jonathan; Sinha, Neeraj; Karmouty-Quintana, Harry

    2016-08-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease of unknown etiology. The development of pulmonary hypertension (PH) is considered the single most significant predictor of mortality in patients with chronic lung diseases. The processes that govern the progression and development of fibroproliferative and vascular lesions in IPF are not fully understood. Using human lung explant samples from patients with IPF with or without a diagnosis of PH as well as normal control tissue, we report reduced BMPR2 expression in patients with IPF or IPF+PH. These changes were consistent with dampened P-SMAD 1/5/8 and elevated P-SMAD 2/3, demonstrating reduced BMPR2 signaling and elevated TGF-β activity in IPF. In the bleomycin (BLM) model of lung fibrosis and PH, we also report decreased BMPR2 expression compared with control animals that correlated with vascular remodeling and PH. We show that genetic abrogation or pharmacological inhibition of interleukin-6 leads to diminished markers of fibrosis and PH consistent with elevated levels of BMPR2 and reduced levels of a collection of microRNAs (miRs) that are able to degrade BMPR2. We also demonstrate that isolated bone marrow-derived macrophages from BLM-exposed mice show reduced BMPR2 levels upon exposure with IL6 or the IL6+IL6R complex that are consistent with immunohistochemistry showing reduced BMPR2 in CD206 expressing macrophages from lung sections from IPF and IPF+PH patients. In conclusion, our data suggest that depletion of BMPR2 mediated by a collection of miRs induced by IL6 and subsequent STAT3 phosphorylation as a novel mechanism participating to fibroproliferative and vascular injuries in IPF. Copyright © 2016 the American Physiological Society.

  12. Chronic pulmonary interstitial fibrosis in a blue-fronted Amazon parrot (Amazona aestiva aestiva).

    PubMed

    Amann, Olga; Kik, Marja J L; Passon-Vastenburg, Maartje H A C; Westerhof, Ineke; Lumeij, Johannes T; Schoemaker, Nico J

    2007-03-01

    A 30-yr-old blue-fronted Amazon parrot (Amazon aestiva aestiva) was presented to the clinic with a history of sneezing more often during the last 2 mo. Physical examination revealed only a mild nasal discharge. Complete hematologic and plasma biochemical examination showed no abnormalities. Computerized tomography (CT) of the complete bird showed generalized lung alterations consistent with lung fibrosis. Two lung biopsies were taken. The results of the histologic examination of the biopsies confirmed the tentative CT diagnosis of pulmonary interstitial fibrosis. To our knowledge this is the first reported case of chronic pulmonary interstitial fibrosis diagnosed by means of a lung biopsy in an avian species. The histologic characteristics are discussed and compared with those of human idiopathic pulmonary fibrosis.

  13. Idiopathic pulmonary fibrosis in infants: good prognosis with conservative management

    PubMed Central

    Hacking, D.; Smyth, R.; Shaw, N.; Kokia, G.; Carty, H.; Heaf, D.

    2000-01-01

    BACKGROUND—Pulmonary interstitial fibrosis in children is a disease of unknown aetiology, usually associated with a poor prognosis.
METHODS—In this case series we describe 11 children presenting over a 10 year period, managed conservatively and associated with a good prognosis.
RESULTS—In six, symptoms were present from birth and 10 had symptoms at or before 3 months. Diagnosis was made using chest computed tomography and percutaneous lung biopsy. All patients were treated with oral prednisolone. In five no steroid response was noted. One patient responded to hydroxychloroquine. Home oxygen was required in five patients. At follow up all patients are alive at a median age of 6 years (range 1 to 12 years). The two recently diagnosed children have significant symptoms, seven have dyspnoea on exercise, and two are symptom free.
CONCLUSION—The good prognosis seen in these patients is different to previous case reports, indicating a greater than 50% mortality.

 PMID:10906025

  14. MicroRNA regulatory networks in idiopathic pulmonary fibrosis.

    PubMed

    Pandit, Kusum V; Milosevic, Jadranka

    2015-04-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fatal scarring lung disease of unknown etiology, characterized by changes in microRNA expression. Activation of transforming growth factor (TGF-β) is a key event in the development of IPF. Recent reports have also identified epigenetic modification as an important player in the pathogenesis of IPF. In this review, we summarize the main results of studies that address the role of microRNAs in IPF and highlight the synergistic actions of these microRNAs in regulating TGF-β, the primary fibrogenic mediator. We outline epigenetic regulation of microRNAs by methylation. Functional studies identify microRNAs that alter proliferative and migratory properties of fibroblasts, and induce phenotypic changes in epithelial cells consistent with epithelial-mesenchymal transition. Though these studies were performed in isolation, we identify multiple co-operative actions after assembling the results into a network. Construction of such networks will help identify disease-propelling hubs that can be targeted for therapeutic purposes.

  15. UK asbestos imports and mortality due to idiopathic pulmonary fibrosis.

    PubMed

    Barber, C M; Wiggans, R E; Young, C; Fishwick, D

    2016-03-01

    Previous studies have demonstrated that the rising mortality due to mesothelioma and asbestosis can be predicted from historic asbestos usage. Mortality due to idiopathic pulmonary fibrosis (IPF) is also rising, without any apparent explanation. To compare mortality due to these conditions and examine the relationship between mortality and national asbestos imports. Mortality data for IPF and asbestosis in England and Wales were available from the Office for National Statistics. Data for mesothelioma deaths in England and Wales and historic UK asbestos import data were available from the Health & Safety Executive. The numbers of annual deaths due to each condition were plotted separately by gender, against UK asbestos imports 48 years earlier. Linear regression models were constructed. For mesothelioma and IPF, there was a significant linear relationship between the number of male and female deaths each year and historic UK asbestos imports. For asbestosis mortality, a similar relationship was found for male but not female deaths. The annual numbers of deaths due to asbestosis in both sexes were lower than for IPF and mesothelioma. The strength of the association between IPF mortality and historic asbestos imports was similar to that seen in an established asbestos-related disease, i.e. mesothelioma. This finding could in part be explained by diagnostic difficulties in separating asbestosis from IPF and highlights the need for a more accurate method of assessing lifetime occupational asbestos exposure. © Crown copyright 2015.

  16. UK asbestos imports and mortality due to idiopathic pulmonary fibrosis

    PubMed Central

    Wiggans, R. E.; Young, C.; Fishwick, D.

    2016-01-01

    Background Previous studies have demonstrated that the rising mortality due to mesothelioma and asbestosis can be predicted from historic asbestos usage. Mortality due to idiopathic pulmonary fibrosis (IPF) is also rising, without any apparent explanation. Aims To compare mortality due to these conditions and examine the relationship between mortality and national asbestos imports. Methods Mortality data for IPF and asbestosis in England and Wales were available from the Office for National Statistics. Data for mesothelioma deaths in England and Wales and historic UK asbestos import data were available from the Health & Safety Executive. The numbers of annual deaths due to each condition were plotted separately by gender, against UK asbestos imports 48 years earlier. Linear regression models were constructed. Results For mesothelioma and IPF, there was a significant linear relationship between the number of male and female deaths each year and historic UK asbestos imports. For asbestosis mortality, a similar relationship was found for male but not female deaths. The annual numbers of deaths due to asbestosis in both sexes were lower than for IPF and mesothelioma. Conclusions The strength of the association between IPF mortality and historic asbestos imports was similar to that seen in an established asbestos-related disease, i.e. mesothelioma. This finding could in part be explained by diagnostic difficulties in separating asbestosis from IPF and highlights the need for a more accurate method of assessing lifetime occupational asbestos exposure. PMID:26511746

  17. Oxygen free radicals in pulmonary fibrosis. Final report

    SciTech Connect

    Shatos, M.A.; Mossman, B.T.

    1989-04-17

    Studies conducted in the areas of lung cells, asbestos and oxygen free radicals were summarized. The research resulted in considerable experience in lung cell culture development, the processing of an antisera to the antioxidant enzymes superoxide-dismutase (SOD) and glutathione-peroxidase, and the completion of several studies which indicate that asbestos-induced injury to lung cells in vitro and in vivo may be mediated by oxygen free radicals. Studies related to the development of the antiserum to SOD demonstrated the involvement of active oxygen species as mediators of injury by long asbestos fibers to the cells of the respiratory tract. Other studies demonstrated the unsuccessful phagocytosis of long fibers of asbestos coupled with the generation of oxygen free radicals which might explain the increased pathogenic potential of long fibers in asbestos associated diseases of the respiratory tract. Studies were also reviewed which focused on the possible role of oxygen free radicals on asbestos associated injury in normal lung fibroblasts, a target cell in pulmonary fibrosis. Studies were conducted which resulted in the confirmation of the importance of active oxygen species in asbestos-related lung injury and suggested the possible future use of a novel therapeutic approach to clinical asbestosis.

  18. Pirfenidone: a review of its use in idiopathic pulmonary fibrosis.

    PubMed

    Kim, Esther S; Keating, Gillian M

    2015-02-01

    Pirfenidone (Esbriet®) is an orally administered, synthetic, pyridone compound that is approved for the treatment of adults with mild to moderate idiopathic pulmonary fibrosis (IPF) in the EU, and for the treatment of IPF in the USA. This article summarizes pharmacological, efficacy and tolerability data relevant to the use of pirfenidone in these indications. In the randomized, double-blind, placebo-controlled, multinational CAPACITY trials in patients with mild to moderate IPF, a significant reduction in the rate of decline in forced vital capacity (FVC) was seen with pirfenidone versus placebo in study 004 but not in study 006. Pirfenidone also reduced the rate of decline in FVC to a significantly greater extent than placebo in the randomized, double-blind, multinational ASCEND trial in this patient population. In addition, pirfenidone showed a significant treatment effect on the 6-min walking test distance and progression-free survival in the ASCEND trial and in a pooled analysis of the CAPACITY trials. Pirfenidone had a manageable tolerability profile in all three studies. Gastrointestinal and skin-related events (e.g. nausea, rash, photosensitivity reaction), which were the most commonly occurring treatment-emergent adverse events, were generally mild to moderate in severity. In addition, a prespecified mortality analysis across all three studies demonstrated a significant reduction in IPF-related and all-cause mortality with pirfenidone. In conclusion, oral pirfenidone is a valuable agent for use in patients with IPF.

  19. Pirfenidone for the treatment of idiopathic pulmonary fibrosis.

    PubMed

    Poletti, Venerino; Ravaglia, Claudia; Tomassetti, Sara

    2014-10-01

    Pirfenidone is an orally administered drug with anti-fibrotic, anti-inflammatory and anti-oxidant properties. The efficacy of pirfenidone is supported by a number of Phase III trials as well as a Cochrane meta-analysis and tolerability data are also provided by clinical trials and a long-term extension phase of these studies. These trials led to the approval of pirfenidone for the treatment of idiopathic pulmonary fibrosis (IPF) in Japan in 2008 and in Europe in 2011 and it is now indicated for treatment of patients with mild-to-moderate IPF. The primary endpoint of these studies has usually been the change in percentage predicted forced vital capacity from baseline; there has been no improvement in respiratory symptoms and/or quality of life measurements and/or decrease in mortality. Clinical and basic research studies are needed to expand our knowledge, understanding the final role of pirfenidone in the treatment of IPF and also identifing genetic factors that influence the effectiveness of this treatment.

  20. Immune Inflammation and Disease Progression in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Balestro, Elisabetta; Calabrese, Fiorella; Turato, Graziella; Lunardi, Francesca; Bazzan, Erica; Marulli, Giuseppe; Biondini, Davide; Rossi, Emanuela; Sanduzzi, Alessandro; Rea, Federico; Rigobello, Chiara; Gregori, Dario; Baraldo, Simonetta; Spagnolo, Paolo

    2016-01-01

    The clinical course in idiopathic pulmonary fibrosis (IPF) is highly heterogeneous, with some patients having a slow progression and others an accelerated clinical and functional decline. This study aims to clinically characterize the type of progression in IPF and to investigate the pathological basis that might account for the observed differences in disease behavior. Clinical and functional data were analyzed in 73 IPF patients, followed long-time as candidates for lung transplantation. The forced vital capacity (FVC) change/year (< or ≥10% predicted) was used to define “slow” or “rapid” disease progression. Pathological abnormalities were quantified in the explanted lung of 41 out of 73 patients undergoing lung transplantation. At diagnosis, slow progressors (n = 48) showed longer duration of symptoms and lower FVC than rapid progressors (n = 25). Eleven slow and 3 rapid progressors developed an acute exacerbation (AE) during follow-up. Quantitative lung pathology showed a severe innate and adaptive inflammatory infiltrate in rapid progressors, markedly increased compared to slow progressors and similar to that observed in patients experiencing AE. The extent of inflammation was correlated with the yearly FVC decline (r = 0.52, p = 0.005). In conclusion an innate and adaptive inflammation appears to be a prominent feature in the lung of patients with IPF and could contribute to determining of the rate of disease progression. PMID:27159038

  1. Sleep and respiratory sleep disorders in idiopathic pulmonary fibrosis.

    PubMed

    Milioli, Giulia; Bosi, Marcello; Poletti, Venerino; Tomassetti, Sara; Grassi, Andrea; Riccardi, Silvia; Terzano, Mario Giovanni; Parrino, Liborio

    2016-04-01

    Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease (ILD) characterized by inflammation and progressive scarring of the lung parenchyma. IPF profoundly affects the quality of life (QoL) and fatigue is a frequently disabling symptom. The cause of fatigue is not well understood but patients with IPF often report extremely poor sleep quality and sleep-related breathing disorders (SRBD) that correlate with QoL. IPF patients present alterations in sleep architecture, including decreased sleep efficiency, slow wave sleep and rapid eye movement (REM) sleep, and increased sleep fragmentation. Moreover, sleep related hypoventilation during the vulnerable REM sleep period and obstructive sleep apnea-hypopnea syndrome (OSAHS) are frequent, but remain usually underdiagnosed. These SRBD in IPF are associated with alterations of the sleep structure, reduction of QoL and increased risk of mortality. In the absence of an effective therapy for IPF, optimizing the QoL could become the primary therapeutic goal. In this perspective the diagnosis and treatment of SRBD could significantly improve the QoL of IPF patients.

  2. Immune Inflammation and Disease Progression in Idiopathic Pulmonary Fibrosis.

    PubMed

    Balestro, Elisabetta; Calabrese, Fiorella; Turato, Graziella; Lunardi, Francesca; Bazzan, Erica; Marulli, Giuseppe; Biondini, Davide; Rossi, Emanuela; Sanduzzi, Alessandro; Rea, Federico; Rigobello, Chiara; Gregori, Dario; Baraldo, Simonetta; Spagnolo, Paolo; Cosio, Manuel G; Saetta, Marina

    2016-01-01

    The clinical course in idiopathic pulmonary fibrosis (IPF) is highly heterogeneous, with some patients having a slow progression and others an accelerated clinical and functional decline. This study aims to clinically characterize the type of progression in IPF and to investigate the pathological basis that might account for the observed differences in disease behavior. Clinical and functional data were analyzed in 73 IPF patients, followed long-time as candidates for lung transplantation. The forced vital capacity (FVC) change/year (< or ≥10% predicted) was used to define "slow" or "rapid" disease progression. Pathological abnormalities were quantified in the explanted lung of 41 out of 73 patients undergoing lung transplantation. At diagnosis, slow progressors (n = 48) showed longer duration of symptoms and lower FVC than rapid progressors (n = 25). Eleven slow and 3 rapid progressors developed an acute exacerbation (AE) during follow-up. Quantitative lung pathology showed a severe innate and adaptive inflammatory infiltrate in rapid progressors, markedly increased compared to slow progressors and similar to that observed in patients experiencing AE. The extent of inflammation was correlated with the yearly FVC decline (r = 0.52, p = 0.005). In conclusion an innate and adaptive inflammation appears to be a prominent feature in the lung of patients with IPF and could contribute to determining of the rate of disease progression.

  3. Home monitoring improves endpoint efficiency in idiopathic pulmonary fibrosis.

    PubMed

    Johannson, Kerri A; Vittinghoff, Eric; Morisset, Julie; Lee, Joyce S; Balmes, John R; Collard, Harold R

    2017-07-01

    The objective of this study was to investigate the reliability, feasibility and analytical impact of home-based measurement of forced vital capacity (FVC) and dyspnoea as clinical endpoints in idiopathic pulmonary fibrosis (IPF).Patients with IPF performed weekly home-based assessment of FVC and dyspnoea using a mobile hand-held spirometer and self-administered dyspnoea questionnaires. Weekly variability in FVC and dyspnoea was estimated, and sample sizes were simulated for a hypothetical 24-week clinical trial using either traditional office-based interval measurement or mobile weekly assessment.In total, 25 patients were enrolled. Mean adherence to weekly assessments over 24 weeks was greater than 90%. Compared with change assessment using baseline and 24-week measurements only, weekly assessment of FVC resulted in enhanced precision and power. For example, a hypothetical 24-week clinical trial with FVC as the primary endpoint would require 951 patients using weekly home spirometry compared with 3840 patients using office spirometry measures at weeks 1 and 24 only. The ability of repeated measures to reduce clinical trial sample size was influenced by the correlation structure of the data.Home monitoring can improve the precision of endpoint assessments, allowing for greater efficiency in clinical trials of therapeutics for IPF. Copyright ©ERS 2017.

  4. The clinical and immunologic features of pulmonary fibrosis in sarcoidosis

    PubMed Central

    PATTERSON, KAREN C.; HOGARTH, KYLE; HUSAIN, ALIYA N.; SPERLING, ANNE I.; NIEWOLD, TIMOTHY B.

    2014-01-01

    Sarcoidosis is a multisystem, granulomatous disease that most often affects the lungs. The clinical course is highly variable; many patients undergo spontaneous remission, but up to a third of patients progresses to a chronic disease course. The development of pulmonary fibrosis (PF) in a subset of patients with chronic disease has a negative impact on morbidity and mortality. While sarcoidosis-associated PF can be progressive, it is often referred to as “burnt out” disease, a designation reflecting inactive granulomatous inflammation. The immune mechanisms of sarcoidosis-associated PF are not well understood. It is not clear if fibrotic processes are active from the onset of sarcoidosis in predisposed individuals, or whether a profibrotic state develops as a response to ongoing inflammation. Transforming growth factor β (TGF-β) is an important profibrotic cytokine, and in sarcoidosis, distinct genotypes of TGF-β have been identified in those with PF. The overall cytokine profile in sarcoidosis-associated PF has not been well characterized, although a transition from a T helper 1 to a T helper 2 signature has been proposed. Macrophages have important regulatory interactions with fibroblasts, and the role of alveolar macrophages in sarcoidosis-associated PF is a compelling target for further study. Elucidating the natural history of sarcoidosis-associated PF will inform our understanding of the fundamental derangements, and will enhance prognostication and the development of therapeutic strategies. PMID:22683422

  5. Severe idiopathic pulmonary fibrosis: what can be done?

    PubMed

    Caminati, Antonella; Cassandro, Roberto; Torre, Olga; Harari, Sergio

    2017-09-30

    Idiopathic pulmonary fibrosis (IPF) remains a challenging disease to manage. Two drugs are now available that can slow disease progression in patients with mild-to-moderate IPF. This means that early diagnosis is mandatory, because there are no proven effective therapies for severe IPF. This lack of proven therapies may be at least partially due to the fact that severe IPF patients are usually not enrolled in randomised, prospective, multicentre, international trials. Clinical observation experiences and preliminary results of long-term, open-label extensions of clinical trials suggest that both pirfenidone and nintedanib may also slow or decrease progression in patients with severe IPF. However, data are sparse and obtained from a relatively small number of patients. Lung transplantation should be taken into account early and discussed with patients, when indicated. Rehabilitative strategies are important and effective supportive therapies. The needs of patients with severe IPF are similar to those of patients with an advanced neoplastic disease. Palliative care and psychological support play an important role in the relief of symptoms of anxiety and depression. Accordingly, these therapeutic approaches should start early in IPF patients. Copyright ©ERS 2017.

  6. Self-Eating: Friend or Foe? The Emerging Role of Autophagy in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Margaritopoulos, George A.; Tsitoura, Eliza; Tzanakis, Nikos; Spandidos, Demetrios A.; Siafakas, Nikos M.; Sourvinos, George; Antoniou, Katerina M.

    2013-01-01

    Idiopathic pulmonary fibrosis is the most common and severe form of idiopathic interstitial pneumonias. Despite an exponential increase in our understanding of potentially important mediators and mechanisms, the pathogenesis remains elusive, and little therapeutic progress has been made in the last few years. Mortality in 3–5 years is still 50%. Autophagy, a highly conserved homeostatic mechanism necessary for cell survival, has been recently implicated in the pathogenesis of pulmonary disorders. In this paper we aim to highlight some key issues regarding the process of autophagy and its possible association with the pathogenesis of idiopathic pulmonary fibrosis. PMID:23691501

  7. Preventive effects of vitamin D treatment on bleomycin-induced pulmonary fibrosis

    PubMed Central

    Zhang, Zongmei; Yu, Xiaoting; Fang, Xia; Liang, Aibin; Yu, Zhang; Gu, Pan; Zeng, Yu; He, Jian; Zhu, Hailong; Li, Shuai; Fan, Desheng; Han, Fei; Zhang, Lanjing; Yi, Xianghua

    2015-01-01

    Patients with pulmonary fibrosis often have low vitamin D levels, the effects of which are largely unknown. We here report that early vitamin D supplementation significantly reduced the severity of pulmonary fibrosis and inflammatory cell accumulationin in the bleomycin-induced pulmonary fibrosis mouse model on supplementary days 14, 21 and 28 (P < 0.001). Vitamin D supplementation also prevented some ultrastructural changes in response to bleomycin administration, including basement membrane thickening, interstitial fibrin deposition and microvilli flattening or disappearance on days 14, 21 and 28, and lamellar body swelling or vacuolation on days 21 and 28. The bleomycin group had rising hydroxyproline level on days 14, 21 and 28, whereas the vitamin D treatment group showed consistently lower hydroxyproline level but still higher than that of the control group (P < 0.001). Our immunohistochemistry and densitometry analyses showed less staining for α-smooth muscle actin, a myofibroblast marker, in the vitamin D group compared to the bleomycin group (P < 0.001). Thus, vitamin D treatment could prevent bleomycin-induced pulmonary fibrosis by delaying or suppressing ultrastructural changes, as well as attenuating hydroxyproline accumulation and inhibiting myofibroblastic proliferation. These data further our understanding of the roles of vitamin D in pulmonary fibrogenesis and in the treatment of pulmonary fibrosis. PMID:26627341

  8. Rapamycin protects against paraquat-induced pulmonary fibrosis: Activation of Nrf2 signaling pathway.

    PubMed

    Xu, Yiheng; Tai, Wenlin; Qu, Xiaoyuan; Wu, Wenjuan; Li, ZhenKun; Deng, Shuhao; Vongphouttha, Chanthasone; Dong, Zhaoxing

    2017-08-19

    Paraquat (PQ) is a widely used herbicide indeveloping countries worldwide, and pulmonary fibrosis is one of the most typical features of PQ poisoning. The molecular mechanism of PQ toxicity especially how to treat PQ-induced pulmonary fibrosis is still largely unknown. In animal model of pulmonary fibrosis, we used HE staining, western blotting assay and Real-time PCR assay to analyze the effects of rapamycin on the PQ-induced epithelial mesenchymal transition (EMT). We found that PQ induced the pulmonary fibrosis using HE staining and Masson's staining, and up-regulated the activity of HYP and the mRNA expressions of Collagen I and III (COL-1and COL-3) in pulmonary tissues. We also found that rapamycin down-regulated the mesenchymal cell marker Vimentin and up-regulated the epithelial cell marker E-cadherin both in mRNA and protein levels compared with PQ group. And the EMT associated transcription factor Snail was decreased by rapamycin treatment compared with PQ group. And PQ decreased the Nrf2 expression both in mRNA and protein levels, and rapamycin inhibited these effects of PQ. SFN, a activator of Nrf2, could inhibit the EMT and the expression of Snail. And knockdowon of Nrf2 could abolish the inhibitory effects of rapamycin of PQ-induced EMT. In conclusion, rapamycin protects against paraquat-induced pulmonary fibrosis by activation of Nrf2 signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Extracellular superoxide dismutase increased the therapeutic potential of human mesenchymal stromal cells in radiation pulmonary fibrosis.

    PubMed

    Wei, Li; Zhang, Jing; Yang, Zai-Liang; You, Hua

    2017-05-01

    Pulmonary fibrosis induced by irradiation is a significant problem of radiotherapy in cancer patients. Extracellular superoxide dismutase (SOD3) is found to be predominantly and highly expressed in the extracellular matrix of lung and plays a pivotal role against oxidative damage. Early administration of mesenchymal stromal cells (MSCs) has been demonstrated to reduce fibrosis of damaged lung. However, injection of MSCs at a later stage would be involved in fibrosis development. The present study aimed to determine whether injection of human umbilical cord-derived MSCs (UC-MSCs) over-expressing SOD3 at the established fibrosis stage would have beneficial effects in a mice model of radiation pulmonary fibrosis. Herein, pulmonary fibrosis in mice was induced using Cobalt-60 ((60)Co) irradiator with 20 Gy, followed by intravenous injection of UC-MSCs, transduced or not to express SOD3 at 2 h (early delivery) and 60 day (late delivery) post-irradiation, respectively. Our results demonstrated that the early administration of UC-MSCs could attenuate the microscopic damage, reduce collagen deposition, inhibit (myo)fibroblast proliferation, reduce inflammatory cell infiltration, protect alveolar type II (AE2) cell injury, prevent oxidative stress and increase antioxidant status, and reduce pro-fibrotic cytokine level in serum. Furthermore, the early treatment with SOD3-infected UC-MSCs resulted in better improvement. However, we failed to observe the therapeutic effects of UC-MSCs, transduced to express SOD3, during established fibrosis. Altogether, our results demonstrated that the early treatment with UC-MSCs alone significantly reduced radiation pulmonary fibrosis in mice through paracrine effects, with further improvement by administration of SOD3-infected UC-MSCs, suggesting that SOD3-infected UC-MSCs may be a potential cell-based gene therapy to treat clinical radiation pulmonary fibrosis. Copyright © 2017 International Society for Cellular Therapy. Published by

  10. Inhibition of Myocardin-Related Transcription Factor/Serum Response Factor Signaling Decreases Lung Fibrosis and Promotes Mesenchymal Cell Apoptosis

    PubMed Central

    Sisson, Thomas H.; Ajayi, Iyabode O.; Subbotina, Natalya; Dodi, Amos E.; Rodansky, Eva S.; Chibucos, Lauren N.; Kim, Kevin K.; Keshamouni, Venkateshwar G.; White, Eric S.; Zhou, Yong; Higgins, Peter D.R.; Larsen, Scott D.; Neubig, Richard R.; Horowitz, Jeffrey C.

    2016-01-01

    Myofibroblasts are crucial to the pathogenesis of tissue fibrosis. Their formation of stress fibers results in the release of myocardin-related transcription factor (MRTF), a transcriptional coactivator of serum response factor (SRF). MRTF-A (Mkl1)-deficient mice are protected from lung fibrosis. We hypothesized that the SRF/MRTF pathway inhibitor CCG-203971 would modulate myofibroblast function in vitro and limit lung fibrosis in vivo. Normal and idiopathic pulmonary fibrosis lung fibroblasts were treated with/without CCG-203971 (N-[4-chlorophenyl]-1-[3-(2-furanyl)benzoyl]-3-piperidine carboxamide) and/or Fas-activating antibody in the presence/absence of transforming growth factor (TGF)-β1, and apoptosis was assessed. In vivo studies examined the effect of therapeutically administered CCG-203971 on lung fibrosis in two distinct murine models of fibrosis induced by bleomycin or targeted type II alveolar epithelial injury. In vitro, CCG-203971 prevented nuclear localization of MRTF-A; increased the apoptotic susceptibility of normal and idiopathic pulmonary fibrosis fibroblasts; blocked TGF-β1–induced myofibroblast differentiation; and inhibited TGF-β1–induced expression of fibronectin, X-linked inhibitor of apoptosis, and plasminogen activator inhibitor-1. TGF-β1 did not protect fibroblasts or myofibroblasts from apoptosis in the presence of CCG-203971. In vivo, CCG-203971 significantly reduced lung collagen content in both murine models while decreasing alveolar plasminogen activator inhibitor-1 and promoting myofibroblast apoptosis. These data support a central role of the SRF/MRTF pathway in the pathobiology of lung fibrosis and suggest that its inhibition can help resolve lung fibrosis by promoting fibroblast apoptosis. PMID:25681733

  11. Syndecan-2 Attenuates Radiation-induced Pulmonary Fibrosis and Inhibits Fibroblast Activation by Regulating PI3K/Akt/ROCK Pathway via CD148.

    PubMed

    Tsoyi, Konstantin; Chu, Sarah G; Patino-Jaramillo, Nasly G; Wilder, Julie; Villalba, Julian; Doyle-Eisele, Melanie; McDonald, Jacob; Liu, Xiaoli; El-Chemaly, Souheil; Perrella, Mark A; Rosas, Ivan O

    2017-09-08

    Radiation-induced pulmonary fibrosis is a severe complication of patients treated with thoracic irradiation. We have previously shown that syndecan-2 reduces fibrosis by exerting alveolar epithelial cytoprotective effects. Here, we investigate whether syndecan-2 attenuates radiation-induced pulmonary fibrosis by inhibiting fibroblast activation. C57BL/6 wild type (WT) mice and transgenic (TG) mice that overexpress human syndecan-2 in alveolar macrophages were exposed to 14 Gy whole thoracic radiation. Twenty-four weeks after irradiation, lungs were collected for histological, protein and mRNA evaluation of pulmonary fibrosis, profibrotic gene expression and alpha-smooth muscle actin (α-SMA) expression. Mouse lung fibroblasts were activated with TGF-β1 in the presence or absence of syndecan-2. Cell proliferation, migration and gel contraction were assessed at different time points. Irradiation resulted in significantly increased mortality and pulmonary fibrosis in WT mice that was associated with elevated lung expression of transforming growth factor-beta1 (TGF-β1) downstream target genes and cell death compared to irradiated syndecan-2 TG mice. In mouse lung fibroblasts, syndecan-2 inhibited α-SMA expression, cell contraction, proliferation and migration induced by TGF-β1. Syndecan-2 attenuated PI3K/Akt/ROCK signaling and serum response factor (SRF) binding to the α-SMA promoter. Syndecan-2 attenuates pulmonary fibrosis in mice exposed to radiation and inhibits TGF-β1-induced fibroblast-myofibroblast differentiation, migration and proliferation by downregulating PI3K/Akt/ROCK signaling and blocking SRF binding to the α-SMA promoter via CD148. These findings suggest that syndecan-2 has potential as an antifibrotic therapy in radiation-induced lung fibrosis.

  12. Idiopathic pulmonary fibrosis: can cell mediated immunity markers predict clinical outcome?

    PubMed Central

    Meliconi, R; Lalli, E; Borzì, R M; Sturani, C; Galavotti, V; Gunella, G; Miniero, R; Facchini, A; Gasbarrini, G

    1990-01-01

    Most of the cells found in lung parenchyma in patients with idiopathic pulmonary fibrosis are activated T lymphocytes and macrophages. The serum levels of three markers of cell mediated immunity were measured in 20 patients with idiopathic pulmonary fibrosis, in 20 normal subjects and in 12 patients with sarcoidosis to evaluate their clinical and prognostic significance in idiopathic pulmonary fibrosis. The three markers were: soluble CD8 (from activated suppressor-cytotoxic lymphocytes), soluble interleukin (IL)-2 receptors (from activated T cells and macrophages), and neopterin (from activated macrophages). Patients with idiopathic pulmonary fibrosis had higher levels of all three markers than the control subjects. Soluble IL-2 receptor and neopterin tended to be lower (though not significantly) in patients with idiopathic pulmonary fibrosis than in those with sarcoidosis, whereas soluble CD8 was similar in the two groups of patients. No correlation was found between soluble IL-2 receptors or soluble CD8 and the clinical, radiological, and physiological measures of disease activity or with clinical outcome (after a mean follow up of 23 months). Tumour necrosis factor levels were also determined. Only 30% of patients with idiopathic pulmonary fibrosis or sarcoidosis had detectable circulating tumour necrosis factor; these patients had a lower percentage of bronchoalveolar lavage fluid neutrophils in their lavage fluid. Tumour necrosis factor levels did not correlate with clinical measures of severity or outcome. Thus our data support the hypothesis that cell mediated alveolitis occurs in idiopathic pulmonary fibrosis. They do not, however, provide evidence to support the use of these markers of cell mediated immunity to monitor the clinical course in these patients. PMID:2118691

  13. Kallistatin protects against bleomycin-induced idiopathic pulmonary fibrosis by inhibiting angiogenesis and inflammation

    PubMed Central

    Huang, Xiaoping; Wang, Xiao; Xie, Xiaolan; Zeng, Shulan; Li, Zhaofa; Xu, Xianxiang; Yang, Huiyong; Qiu, Fei; Lin, Junsheng; Diao, Yong

    2017-01-01

    Aberrant angiogenesis and vascular remodeling are the main features of idiopathic pulmonary fibrosis. Kallistatin is an anti-angiogenic peptide with known effects on endothelial cells. This study aimed to demonstrate that kallistatin has beneficial effects on bleomycin (BLM)-induced pulmonary fibrosis in a rat model by inhibiting angiogenesis. Twenty-five rats were randomly divided into five experimental groups: (A) Saline only (SA)-as the negative control, (B) BLM only (BLM)-as the model group, (C) BLM and 0.1 mg/kg kallistatin (L-Kal), (D) BLM and 0.5 mg/kg kallistatin (M-Kal), and (E) BLM and 2.5 mg/kg kallistatin (H-Kal). Fibrillar collagen was quantified by Masson’s trichrome and hematoxylin-eosin staining. Transforming growth factor-β1 (TGF-β1), α-smooth-muscle-actin (α-SMA) and microvascular density (MVD) were measured by immunohistochemistry. Vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor (VEGFR), and tumor necrosis factor-α (TNF-α) were assayed by Western immunoblotting or ELISA. Daily administration of kallistatin attenuated fibrosis in BLM-induced pulmonary fibrosis, as shown by histology. During inflammation from BLM-induced pulmonary fibrosis, kallistatin reduced the number of inflammatory cells infiltrating the bronchoalveolar lavage fluid. Kallistatin also inhibited VEGF expression and phosphorylation of VEGFR2 (Flk-1). In vitro, kallistatin blocked tube formation by inhibiting Flk-1 and GSK-3β phosphorylation. The results demonstrated that continuous administration of kallistatin attenuated BLM-induced pulmonary fibrosis and improved survival of BLM rats. Reducing pulmonary fibrosis was achieved by partial inhibition of pulmonary inflammation and angiogenesis. PMID:28386328

  14. Inhibition of Transglutaminase 2, a Novel Target for Pulmonary Fibrosis, by Two Small Electrophilic Molecules

    PubMed Central

    Olsen, Keith C.; Epa, Amali P.; Kulkarni, Ajit A.; Kottmann, R. Matthew; McCarthy, Claire E.; Johnson, Gail V.; Thatcher, Thomas H.; Phipps, Richard P.

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by progressive fibrotic destruction of normal lung architecture. Due to a lack of effective treatment options, new treatment approaches are needed. We previously identified transglutaminase (TG)2, a multifunctional protein expressed by human lung fibroblasts (HLFs), as a positive driver of fibrosis. TG2 catalyzes crosslinking of extracellular matrix proteins, enhances cell binding to fibronectin and integrin, and promotes fibronectin expression. We investigated whether the small electrophilic molecules 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) and 15-deoxy-delta-12,14-prostaglandin J2 (15d-PGJ2) inhibit the expression and profibrotic functions of TG2. CDDO and 15d-PGJ2 reduced expression of TG2 mRNA and protein in primary HLFs from control donors and donors with IPF. CDDO and 15d-PGJ2 also decreased the in vitro profibrotic effector functions of HLFs including collagen gel contraction and cell migration. The decrease in TG2 expression did not occur through activation of the peroxisome proliferator activated receptor γ or generation of reactive oxidative species. CDDO and 15d-PGJ2 inhibited the extracellular signal–regulated kinase pathway, resulting in the suppression of TG2 expression. This is the first study to show that small electrophilic compounds inhibit the expression and profibrotic effector functions of TG2, a key promoter of fibrosis. These studies identify new and important antifibrotic activities of these two small molecules, which could lead to new treatments for fibrotic lung disease. PMID:24175906

  15. Inhibition of transglutaminase 2, a novel target for pulmonary fibrosis, by two small electrophilic molecules.

    PubMed

    Olsen, Keith C; Epa, Amali P; Kulkarni, Ajit A; Kottmann, R Matthew; McCarthy, Claire E; Johnson, Gail V; Thatcher, Thomas H; Phipps, Richard P; Sime, Patricia J

    2014-04-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by progressive fibrotic destruction of normal lung architecture. Due to a lack of effective treatment options, new treatment approaches are needed. We previously identified transglutaminase (TG)2, a multifunctional protein expressed by human lung fibroblasts (HLFs), as a positive driver of fibrosis. TG2 catalyzes crosslinking of extracellular matrix proteins, enhances cell binding to fibronectin and integrin, and promotes fibronectin expression. We investigated whether the small electrophilic molecules 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) and 15-deoxy-delta-12,14-prostaglandin J2 (15d-PGJ2) inhibit the expression and profibrotic functions of TG2. CDDO and 15d-PGJ2 reduced expression of TG2 mRNA and protein in primary HLFs from control donors and donors with IPF. CDDO and 15d-PGJ2 also decreased the in vitro profibrotic effector functions of HLFs including collagen gel contraction and cell migration. The decrease in TG2 expression did not occur through activation of the peroxisome proliferator activated receptor γ or generation of reactive oxidative species. CDDO and 15d-PGJ2 inhibited the extracellular signal-regulated kinase pathway, resulting in the suppression of TG2 expression. This is the first study to show that small electrophilic compounds inhibit the expression and profibrotic effector functions of TG2, a key promoter of fibrosis. These studies identify new and important antifibrotic activities of these two small molecules, which could lead to new treatments for fibrotic lung disease.

  16. Computational Modeling Predicts Simultaneous Targeting of Fibroblasts and Epithelial Cells Is Necessary for Treatment of Pulmonary Fibrosis

    PubMed Central

    Warsinske, Hayley C.; Wheaton, Amanda K.; Kim, Kevin K.; Linderman, Jennifer J.; Moore, Bethany B.; Kirschner, Denise E.

    2016-01-01

    Pulmonary fibrosis is pathologic remodeling of lung tissue that can result in difficulty breathing, reduced quality of life, and a poor prognosis for patients. Fibrosis occurs as a result of insult to lung tissue, though mechanisms of this response are not well-characterized. The disease is driven in part by dysregulation of fibroblast proliferation and differentiation into myofibroblast cells, as well as pro-fibrotic mediator-driven epithelial cell apoptosis. The most well-characterized pro-fibrotic mediator associated with pulmonary fibrosis is TGF-β1. Excessive synthesis of, and sensitivity to, pro-fibrotic mediators as well as insufficient production of and sensitivity to anti-fibrotic mediators has been credited with enabling fibroblast accumulation. Available treatments neither halt nor reverse lung damage. In this study we have two aims: to identify molecular and cellular scale mechanisms driving fibroblast proliferation and differentiation as well as epithelial cell survival in the context of fibrosis, and to predict therapeutic targets and strategies. We combine in vitro studies with a multi-scale hybrid agent-based computational model that describes fibroblasts and epithelial cells in co-culture. Within this model TGF-β1 represents a pro-fibrotic mediator and we include detailed dynamics of TGF-β1 receptor ligand signaling in fibroblasts. PGE2 represents an anti-fibrotic mediator. Using uncertainty and sensitivity analysis we identify TGF-β1 synthesis, TGF-β1 activation, and PGE2 synthesis among the key mechanisms contributing to fibrotic outcomes. We further demonstrate that intervention strategies combining potential therapeutics targeting both fibroblast regulation and epithelial cell survival can promote healthy tissue repair better than individual strategies. Combinations of existing drugs and compounds may provide significant improvements to the current standard of care for pulmonary fibrosis. Thus, a two-hit therapeutic intervention strategy

  17. Computational modeling predicts simultaneous targeting of fibroblasts and epithelial cells is necessary for treatment of pulmonary fibrosis

    SciTech Connect

    Warsinske, Hayley C.; Wheaton, Amanda K.; Kim, Kevin K.; Linderman, Jennifer J.; Moore, Bethany B.; Kirschner, Denise E.

    2016-06-23

    Pulmonary fibrosis is pathologic remodeling of lung tissue that can result in difficulty breathing, reduced quality of life, and a poor prognosis for patients. Fibrosis occurs as a result of insult to lung tissue, though mechanisms of this response are not well-characterized. The disease is driven in part by dysregulation of fibroblast proliferation and differentiation into myofibroblast cells, as well as pro-fibrotic mediator-driven epithelial cell apoptosis. The most well-characterized pro-fibrotic mediator associated with pulmonary fibrosis is TGF-β1. Excessive synthesis of, and sensitivity to, pro-fibrotic mediators as well as insufficient production of and sensitivity to anti-fibrotic mediators has been credited with enabling fibroblast accumulation. Available treatments neither halt nor reverse lung damage. In this study we have two aims: to identify molecular and cellular scale mechanisms driving fibroblast proliferation and differentiation as well as epithelial cell survival in the context of fibrosis, and to predict therapeutic targets and strategies. We combine in vitro studies with a multi-scale hybrid agent-based computational model that describes fibroblasts and epithelial cells in co-culture. Within this model TGF-β1 represents a pro-fibrotic mediator and we include detailed dynamics of TGFβ1 receptor ligand signaling in fibroblasts. PGE2 represents an anti-fibrotic mediator. Using uncertainty and sensitivity analysis we identify TGF-β1 synthesis, TGF-β1 activation, and PGE2 synthesis among the key mechanisms contributing to fibrotic outcomes. We further demonstrate that intervention strategies combining potential therapeutics targeting both fibroblast regulation and epithelial cell survival can promote healthy tissue repair better than individual strategies. Combinations of existing drugs and compounds may provide significant improvements to the current standard of care for pulmonary fibrosis. In conclusion, a two

  18. Computational modeling predicts simultaneous targeting of fibroblasts and epithelial cells is necessary for treatment of pulmonary fibrosis

    DOE PAGES

    Warsinske, Hayley C.; Wheaton, Amanda K.; Kim, Kevin K.; ...

    2016-06-23

    Pulmonary fibrosis is pathologic remodeling of lung tissue that can result in difficulty breathing, reduced quality of life, and a poor prognosis for patients. Fibrosis occurs as a result of insult to lung tissue, though mechanisms of this response are not well-characterized. The disease is driven in part by dysregulation of fibroblast proliferation and differentiation into myofibroblast cells, as well as pro-fibrotic mediator-driven epithelial cell apoptosis. The most well-characterized pro-fibrotic mediator associated with pulmonary fibrosis is TGF-β1. Excessive synthesis of, and sensitivity to, pro-fibrotic mediators as well as insufficient production of and sensitivity to anti-fibrotic mediators has been credited withmore » enabling fibroblast accumulation. Available treatments neither halt nor reverse lung damage. In this study we have two aims: to identify molecular and cellular scale mechanisms driving fibroblast proliferation and differentiation as well as epithelial cell survival in the context of fibrosis, and to predict therapeutic targets and strategies. We combine in vitro studies with a multi-scale hybrid agent-based computational model that describes fibroblasts and epithelial cells in co-culture. Within this model TGF-β1 represents a pro-fibrotic mediator and we include detailed dynamics of TGFβ1 receptor ligand signaling in fibroblasts. PGE2 represents an anti-fibrotic mediator. Using uncertainty and sensitivity analysis we identify TGF-β1 synthesis, TGF-β1 activation, and PGE2 synthesis among the key mechanisms contributing to fibrotic outcomes. We further demonstrate that intervention strategies combining potential therapeutics targeting both fibroblast regulation and epithelial cell survival can promote healthy tissue repair better than individual strategies. Combinations of existing drugs and compounds may provide significant improvements to the current standard of care for pulmonary fibrosis. In conclusion, a two-hit therapeutic

  19. Rheumatoid Arthritis-Associated Interstitial Lung Disease and Idiopathic Pulmonary Fibrosis: Shared Mechanistic and Phenotypic Traits Suggest Overlapping Disease Mechanisms.

    PubMed

    Paulin, Francisco; Doyle, Tracy J; Fletcher, Elaine A; Ascherman, Dana P; Rosas, Ivan O

    2015-01-01

    The prevalence of clinically evident interstitial lung disease in patients with rheumatoid arthritis is approximately 10%. An additional 33% of undiagnosed patients have interstitial lung abnormalities that can be detected with high-resolution computed tomography. Rheumatoid arthritis-interstitial lung disease patients have three times the risk of death compared to those with rheumatoid arthritis occurring in the absence of interstitial lung disease, and the mortality related to interstitial lung disease is rising. Rheumatoid arthritis-interstitial lung disease is most commonly classified as the usual interstitial pneumonia pattern, overlapping mechanistically and phenotypically with idiopathic pulmonary fibrosis, but can occur in a non-usual interstitial pneumonia pattern, mainly nonspecific interstitial pneumonia. Based on this, we propose two possible pathways to explain the coexistence of rheumatoid arthritis and interstitial lung disease: (i) Rheumatoid arthritis-interstitial lung disease with a non-usual interstitial pneumonia pattern may come about when an immune response against citrullinated peptides taking place in another site (e.g. the joints) subsequently affects the lungs; (ii) Rheumatoid arthritis-interstitial lung disease with a usual interstitial pneumonia pattern may represent a disease process in which idiopathic pulmonary fibrosis-like pathology triggers an immune response against citrullinated proteins that promotes articular disease indicative of rheumatoid arthritis. More studies focused on elucidating the basic mechanisms leading to different sub-phenotypes of rheumatoid arthritis-interstitial lung disease and the overlap with idiopathic pulmonary fibrosis are necessary to improve our understanding of the disease process and to define new therapeutic targets.

  20. Comparative study of two models of combined pulmonary fibrosis and emphysema in mice.

    PubMed

    Zhang, Wan-Guang; Wu, Si-Si; He, Li; Yang, Qun; Feng, Yi-Kuan; Chen, Yue-Tao; Zhen, Guo-Hua; Xu, Yong-Jian; Zhang, Zhen-Xiang; Zhao, Jian-Ping; Zhang, Hui-Lan

    2017-04-01

    Combined pulmonary fibrosis and emphysema (CPFE) is an "umbrella term" encompassing emphysema and pulmonary fibrosis, but its pathogenesis is not known. We established two models of CPFE in mice using tracheal instillation with bleomycin (BLM) or murine gammaherpesvirus 68 (MHV-68). Experimental mice were divided randomly into four groups: A (normal control, n=6), B (emphysema, n=6), C (emphysema+MHV-68, n=24), D (emphysema+BLM, n=6). Group C was subdivided into four groups: C1 (sacrificed on day 367, 7 days after tracheal instillation of MHV-68); C2 (day 374; 14days); C3 (day 381; 21days); C4 (day 388; 28days). Conspicuous emphysema and interstitial fibrosis were observed in BLM and MHV-68 CPFE mouse models. However, BLM induced diffuse pulmonary interstitial fibrosis with severely diffuse pulmonary inflammation; MHV-68 induced relatively modest inflammation and fibrosis, and the inflammation and fibrosis were not diffuse, but instead around bronchioles. Inflammation and fibrosis were detectable in the day-7 subgroup and reached a peak in the day-28 subgroup in the emphysema + MHV-68 group. Levels of macrophage chemoattractant protein-1, macrophage inflammatory protein-1α, interleukin-13, and transforming growth factor-β1 in bronchoalveolar lavage fluid were increased significantly in both models. Percentage of apoptotic type-2 lung epithelial cells was significantly higher; however, all four types of cytokine and number of macrophages were significantly lower in the emphysema+MHV-68 group compared with the emphysema +BLM group. The different changes in pathology between BLM and MHV-68 mice models demonstrated different pathology subtypes of CPFE: macrophage infiltration and apoptosis of type-II lung epithelial cells increased with increasing pathology score for pulmonary fibrosis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Toll-like receptor 4 promotes fibrosis in bleomycin-induced lung injury in mice.

    PubMed

    Li, X X; Jiang, D Y; Huang, X X; Guo, S L; Yuan, W; Dai, H P

    2015-12-21

    The specific role of Toll-like receptor 4 (TLR4) in bleomycin-induced lung fibrosis of mice, a model of human idiopathic pulmonary fibrosis, has not been characterized. We injected bleomycin intratracheally into TLR4 knockout (TLR4(-/-)) and wild-type (WT) mice. Twenty-one days after injection, mice were sacrificed and their lungs were harvested for pathological, hydroxyproline, mRNA expression, and collagen I analyses. Body weight changes and mortality were observed. Light microscopy showed that lung fibrosis was minimal in TLR4(-/-) compared to that in WT mice on day 21 after bleomycin instillation. The Ashcroft score was significantly lower in TLR4(-/-) than in WT mice (3.667 ± 0.730 vs 4.945 ± 0.880, P < 0.05). Hydroxyproline content was significantly lower in TLR4(-/-) than in WT mice on day 21 after bleomycin injection (0.281 ± 0.022 vs 0.371 ± 0.047, P < 0.05). Compared to WT mice, bleomycin-treated TLR4(-/-) mice expressed significantly lower type I collagen mRNA levels (mesenchymal marker; 11.069 ± 2.627 vs 4.589 ± 1.440, P < 0.05). Collagen I was significantly lower in TLR4(-/-) than in WT mice (0.838 ± 0.352 vs 2.427 ± 0.551, P < 0.05). Bleomycin-treated TLR4(-/-) mice had a significantly lower mortality rate on day 21 than WT mice (33 vs 75%, P < 0.05). Body weight reduction was lower in TLR4(-/-) mice than in WT mice; this difference was not statistically significant (-3.735 ± 5.276 vs -6.698 ± 3.218, P > 0.05). Thus, bleomycin-induced pulmonary fibrosis is TLR4-dependent and TLR4 promoted fibrosis in bleomycin-challenged mice.

  2. B cell activating factor is central to bleomycin- and IL-17-mediated experimental pulmonary fibrosis.

    PubMed

    François, Antoine; Gombault, Aurélie; Villeret, Bérengère; Alsaleh, Ghada; Fanny, Manoussa; Gasse, Paméla; Adam, Sylvain Marchand; Crestani, Bruno; Sibilia, Jean; Schneider, Pascal; Bahram, Seiamak; Quesniaux, Valérie; Ryffel, Bernhard; Wachsmann, Dominique; Gottenberg, Jacques-Eric; Couillin, Isabelle

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive devastating, yet untreatable fibrotic disease of unknown origin. We investigated the contribution of the B-cell activating factor (BAFF), a TNF family member recently implicated in the regulation of pathogenic IL-17-producing cells in autoimmune diseases. The contribution of BAFF was assessed in a murine model of lung fibrosis induced by airway administered bleomycin. We show that murine BAFF levels were strongly increased in the bronchoalveolar space and lungs after bleomycin exposure. We identified Gr1(+) neutrophils as an important source of BAFF upon BLM-induced lung inflammation and fibrosis. Genetic ablation of BAFF or BAFF neutralization by a soluble receptor significantly attenuated pulmonary fibrosis and IL-1β levels. We further demonstrate that bleomycin-induced BAFF expression and lung fibrosis were IL-1β and IL-17A dependent. BAFF was required for rIL-17A-induced lung fibrosis and augmented IL-17A production by CD3(+) T cells from murine fibrotic lungs ex vivo. Finally we report elevated levels of BAFF in bronchoalveolar lavages from IPF patients. Our data therefore support a role for BAFF in the establishment of pulmonary fibrosis and a crosstalk between IL-1β, BAFF and IL-17A.

  3. MiR-338* targeting smoothened to inhibit pulmonary fibrosis by epithelial-mesenchymal transition

    PubMed Central

    Zhuang, Yi; Dai, Jinghong; Wang, Yongsheng; Zhang, Huan; Li, Xinxiu; Wang, Chunli; Cao, Mengshu; Liu, Yin; Ding, Jingjing; Cai, Hourong; Zhang, Deping; Wang, Yaping

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease involving pulmonary injury associated with tissue repair, dysfunction and fibrosis. Recent studies indicate that some microRNAs (miRNAs) may play critical roles in the pathogenesis of pulmonary fibrosis. In this study, we aim to investigate whether miR-338* (miR-338-5p), which has been found to be associated with tumor progression, is associated with pathological process of pulmonary fibrosis. Balb/c mice were treated with bleomycin (BLM) to establish IPF models. Targtscan was used to predict the downstream target of miR-338*. Morphological changes were observed with light microscope and epithelial to mesenchymal transition (EMT) markers were detected by western blot. The expression of miR-338* or downstream target SMO was analyzed by real-time quantitative RT-PCR, northern blot or western blot. MiR-338* was down-regulated in the lung tissue from mice with bleomycin-induced pulmonary fibrosis. The smoothened (SMO) is a direct target of miR-338*, and knocking-down the expression of SMO could partially rescue the fibrotic phenotype of TGF-β-induced NuLi-1 cells. Over-expression of SMO led to the fibrotic phenotype of NuLi-1 cells even without TGF-β treatment. These findings showed that the over-expression of SMO contributed to the fibrotic phenotype of NuLi-1 cells by affecting the epithelial-to-mesenchymal transition (EMT) procedure. Furthermore, in vivo, lentivirus-mediated over-expression of miR-338* can alleviate lung fibrosis induced by bleomycin in mice. In conclusion, our results suggest that miR-338* can target SMO to reduce the EMT procedure and thus postpone the development of pulmonary fibrosis. PMID:27508042

  4. Transcription Factor ets-2 Plays an Important Role in the Pathogenesis of Pulmonary Fibrosis

    PubMed Central

    Baran, Christopher P.; Fischer, Sara N.; Nuovo, Gerard J.; Kabbout, Mohamed N.; Hitchcock, Charles L.; Bringardner, Benjamin D.; McMaken, Sara; Newland, Christie A.; Cantemir-Stone, Carmen Z.; Phillips, Gary S.; Ostrowski, Michael C.

    2011-01-01

    Ets-2 is a ubiquitous transcription factor activated after phosphorylation at threonine-72. Previous studies highlighted the importance of phosphorylated ets-2 in lung inflammation and extracellular matrix remodeling, two pathways involved in pulmonary fibrosis. We hypothesized that phosphorylated ets-2 played an important role in pulmonary fibrosis, and we sought to determine the role of ets-2 in its pathogenesis. We challenged ets-2 (A72/A72) transgenic mice (harboring a mutated form of ets-2 at phosphorylation site threonine-72) and ets-2 (wild-type/wild-type [WT/WT]) control mice with sequential intraperitoneal injections of bleomycin, followed by quantitative measurements of lung fibrosis and inflammation and primary cell in vitro assays. Concentrations of phosphorylated ets-2 were detected via the single and dual immunohistochemical staining of murine lungs and lung sections from patients with idiopathic pulmonary fibrosis. Ets-2 (A72/A72) mice were protected from bleomycin-induced pulmonary fibrosis, compared with ets-2 (WT/WT) mice. This protection was characterized by decreased lung pathological abnormalities and the fibrotic gene expression of Type I collagen, Type III collagen, α–smooth muscle actin, and connective tissue growth factor. Immunohistochemical staining of lung sections from bleomycin-treated ets-2 (WT/WT) mice and from patients with idiopathic pulmonary fibrosis demonstrated increased staining of phosphorylated ets-2 that colocalized with Type I collagen expression and to fibroblastic foci. Lastly, primary lung fibroblasts from ets-2 (A72/A72) mice exhibited decreased expression of Type I collagen in response to stimulation with TGF-β, compared with fibroblasts from ets-2 (WT/WT) mice. These data indicate the importance of phosphorylated ets-2 in the pathogenesis of pulmonary fibrosis through the expression of Type I collagen and (myo)fibroblast activation. PMID:21562315

  5. Herpes Virus Infection Is Associated with Vascular Remodeling and Pulmonary Hypertension in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Calabrese, Fiorella; Kipar, Anja; Lunardi, Francesca; Balestro, Elisabetta; Perissinotto, Egle; Rossi, Emanuela; Nannini, Nazarena; Marulli, Giuseppe; Stewart, James P.; Rea, Federico

    2013-01-01

    Background Pulmonary hypertension (PH) represents an important complication of idiopathic pulmonary fibrosis (IPF) with a negative impact on patient survival. Herpes viruses are thought to play an etiological role in the development and/or progression of IPF. The influence of viruses on PH associated with IPF is unknown. We aimed to investigate the influence of viruses in IPF patients focusing on aspects related to PH. A laboratory mouse model of gamma-herpesvirus (MHV-68) induced pulmonary fibrosis was also assessed. Methods Lung tissue samples from 55 IPF patients and 41 controls were studied by molecular analysis to detect various viral genomes. Viral molecular data obtained were correlated with mean pulmonary arterial pressure (mPAP) and arterial remodelling. Different clinical and morphological variables were studied by univariate and multivariate analyses at time of transplant and in the early post-transplant period. The same lung tissue analyses were performed in MHV-68 infected mice. Results A higher frequency of virus positive cases was found in IPF patients than in controls (p = 0.0003) and only herpes virus genomes were detected. Viral cases showed higher mPAP (p = 0.01), poorer performance in the six minute walking test (6MWT; p = 0.002) and higher frequency of primary graft (PGD) dysfunction after lung transplant (p = 0.02). Increased arterial thickening, particularly of the intimal layer (p = 0.002 and p = 0.004) and higher TGF-β expression (p = 0.002) were demonstrated in viral cases. The remodelled vessels showed increased vessel cell proliferation (Ki-67 positive cells) in the proximity to metaplastic epithelial cells and macrophages. Viral infection was associated with higher mPAP (p = 0.03), poorer performance in the 6MWT (p = 0.008) and PGD (p = 0.02) after adjusting for other covariates/intermediate factors. In MHV-68 infected mice, morphological features were similar to those of patients. Conclusion

  6. Salvianolic Acid B Attenuates Experimental Pulmonary Fibrosis through Inhibition of the TGF-β Signaling Pathway

    PubMed Central

    Liu, Qingmei; Chu, Haiyan; Ma, Yanyun; Wu, Ting; Qian, Feng; Ren, Xian; Tu, Wenzhen; Zhou, Xiaodong; Jin, Li; Wu, Wenyu; Wang, Jiucun

    2016-01-01

    Pulmonary fibrosis is a progressive and fatal disorder. In our previous study, we found that the Yiqihuoxue formula (YQHX), a prescription of Traditional Chinese Medicine, had a curative effect on scleroderma, a typical fibrotic disease. The aim of this study was to determine the key ingredient mediating the therapeutic effects of YQHX and to examine its effect on pulmonary fibrosis, including its mechanism. Luciferase reporter assays showed that the most important anti-fibrotic component of the YQHX was Salviae miltiorrhiza (SM). Experiments performed using a bleomycin-instilled mouse model of pulmonary fibrosis showed that Salvianolic acid B (SAB), the major ingredient of SM, had strong anti-inflammatory and anti-fibrotic effects through its inhibition of inflammatory cell infiltration, alveolar structure disruption, and collagen deposition. Furthermore, SAB suppressed TGF-β-induced myofibroblastic differentiation of MRC-5 fibroblasts and TGF-β-mediated epithelial-to-mesenchymal transition of A549 cells by inhibiting both Smad-dependent signaling and the Smad-independent MAPK pathway. Taken together, our results suggest that SM is the key anti-fibrotic component of the YQHX and that SAB, the major ingredient of SM, alleviates experimental pulmonary fibrosis both in vivo and in vitro by inhibiting the TGF-β signaling pathway. Together, these results suggest that SAB potently inhibits pulmonary fibrosis. PMID:27278104

  7. Protocol for a mixed-methods study of supplemental oxygen in pulmonary fibrosis.

    PubMed

    Belkin, Amanda; Fier, Kaitlin; Albright, Karen; Baird, Susan; Crowe, Brenda; Eres, Linda; Korn, Marjorie; Maginn, Leslie; McCormick, Mark; Root, Elisabeth D; Vierzba, Thomas; Wamboldt, Frederick S; Swigris, Jeffrey J

    2014-11-01

    Little is known about whether or how supplemental oxygen affects patients with pulmonary fibrosis. A mixed-methods study is described. Patients with pulmonary fibrosis, informal caregivers of pulmonary fibrosis patients and practitioners who prescribe supplemental oxygen will be interviewed to gather data on perceptions of how supplemental oxygen impacts patients. In addition, three hundred pulmonary fibrosis patients who do not use daytime supplemental oxygen will be recruited to participate in a longitudinal, pre-/post- study in which patient-reported outcome (PRO) and activity data will be collected at baseline, immediately before daytime supplemental oxygen is initiated, and then once and again 9-12 months later. Activity data will be collected using accelerometers and portable GPS data recorders. The primary outcome is change in dyspnea from before to one month after supplemental oxygen is initiated. Secondary outcomes include scores from PROs to assess cough, fatigue and quality of life as well as the activity data. In exploratory analyses, we will use longitudinal data analytic techniques to assess the trajectories of outcomes over time while controlling for potentially influential variables. Throughout the study and at its completion, results will be posted on the website for our research program (the Participation Program for Pulmonary Fibrosis or P3F) at http://www.pulmonaryfibrosisresearch.org.

  8. Salvianolic Acid B Attenuates Experimental Pulmonary Fibrosis through Inhibition of the TGF-β Signaling Pathway.

    PubMed

    Liu, Qingmei; Chu, Haiyan; Ma, Yanyun; Wu, Ting; Qian, Feng; Ren, Xian; Tu, Wenzhen; Zhou, Xiaodong; Jin, Li; Wu, Wenyu; Wang, Jiucun

    2016-06-09

    Pulmonary fibrosis is a progressive and fatal disorder. In our previous study, we found that the Yiqihuoxue formula (YQHX), a prescription of Traditional Chinese Medicine, had a curative effect on scleroderma, a typical fibrotic disease. The aim of this study was to determine the key ingredient mediating the therapeutic effects of YQHX and to examine its effect on pulmonary fibrosis, including its mechanism. Luciferase reporter assays showed that the most important anti-fibrotic component of the YQHX was Salviae miltiorrhiza (SM). Experiments performed using a bleomycin-instilled mouse model of pulmonary fibrosis showed that Salvianolic acid B (SAB), the major ingredient of SM, had strong anti-inflammatory and anti-fibrotic effects through its inhibition of inflammatory cell infiltration, alveolar structure disruption, and collagen deposition. Furthermore, SAB suppressed TGF-β-induced myofibroblastic differentiation of MRC-5 fibroblasts and TGF-β-mediated epithelial-to-mesenchymal transition of A549 cells by inhibiting both Smad-dependent signaling and the Smad-independent MAPK pathway. Taken together, our results suggest that SM is the key anti-fibrotic component of the YQHX and that SAB, the major ingredient of SM, alleviates experimental pulmonary fibrosis both in vivo and in vitro by inhibiting the TGF-β signaling pathway. Together, these results suggest that SAB potently inhibits pulmonary fibrosis.

  9. Amelioration of Bleomycin-induced Pulmonary Fibrosis of Rats by an Aldose Reductase Inhibitor, Epalrestat

    PubMed Central

    Shen, Yuanyuan; Lu, Yining; Yang, Jieren

    2015-01-01

    Aldose reductase (AR) is known to play a crucial role in the mediation of diabetic and cardiovascular complications. Recently, several studies have demonstrated that allergen-induced airway remodeling and ovalbumin-induced asthma is mediated by AR. Epalrestat is an aldose reductase inhibitor that is currently available for the treatment of diabetic neuropathy. Whether AR is involved in pathogenesis of pulmonary fibrosis and whether epalrestat attenuates pulmonary fibrosis remains unknown. Pulmonary fibrosis was induced by intratracheal instillation of bleomycin (5 mg/kg) in rats. Primary pulmonary fibroblasts were cultured to investigate the proliferation by BrdU incorporation method and flow cytometry. The expression of AR, TGF-β1, α-SMA and collagen I was analyzed by immunohistochemisty, real-time PCR or western blot. In vivo, epalrestat treatment significantly ameliorated the bleomycin-mediated histological fibrosis alterations and blocked collagen deposition concomitantly with reversing bleomycin-induced expression up-regulation of TGF-β1, AR, α-SMA and collagen I (both mRNA and protein). In vitro, epalrestat remarkably attenuated proliferation of pulmonary fibroblasts and expression of α-SMA and collagen I induced by TGF-β1, and this inhibitory effect of epalrestat was accompanied by inhibiting AR expression. Knockdown of AR gene expression reversed TGF-β1-induced proliferation of fibroblasts, up-regulation of α-SMA and collagen I expression. These findings suggest that AR plays an important role in bleomycin-induced pulmonary fibrosis, and epalrestat inhibited the progression of bleomycin-induced pulmonary fibrosis is mediated via inhibiting of AR expression. PMID:26330752

  10. Informal caregivers experience of supplemental oxygen in pulmonary fibrosis.

    PubMed

    Graney, Bridget A; Wamboldt, Frederick S; Baird, Susan; Churney, Tara; Fier, Kaitlin; Korn, Marjorie; McCormick, Mark; Vierzba, Thomas; Swigris, Jeffrey J

    2017-07-01

    Patients prescribed supplemental oxygen (O2) therapy face challenges as they adjust to being constantly "tethered" to an oxygen delivery device. Informal caregivers (ICs) of patients with pulmonary fibrosis (PF) face their own, often overlooked hardships when O2 is brought into their home and added to their lives. Our aim was to understand the multiple effects of supplemental oxygen therapy on ICs of patients with PF. We conducted single, semi-structured telephone interviews with twenty ICs of patients with PF who were using O2 for at least 8 months. We performed a qualitative, content analysis based in grounded theory to examine data across subjects. ICs initially reacted to O2 with trepidation and sadness as they came to recognize the changes it would cause in the lives of their patient-loved one (PLO). ICs recognized both beneficial and negative effects of O2 on their PLOs. ICs also realized that O2 created significant changes in their own lives, including introducing new roles and responsibilities for them, altering their home environments and significantly impacting their relationships with their PLOs. Although O2 was a tangible and constant reminder of disease progression, over time ICs were able to adapt and accept their new lives with O2. ICs of patients with PF experience many life changes when their PLO is prescribed O2. Having O2 prescribers anticipate and recognize these challenges provides an opportunity to give support and guidance to ICs of PF patients who require O2 in the hopes of limiting the negative impact of O2 on their lives. Clinicaltrials.gov , registration number NCT01961362 . Registered 9 October 2013.

  11. The Idiopathic Pulmonary Fibrosis Clinical Research Network (IPFnet)

    PubMed Central

    de Andrade, Joao; Schwarz, Marvin; Collard, Harold R.; Gentry-Bumpass, Tedryl; Colby, Thomas; Lynch, David; Schwarz, M.; Zisman, D. A.; Hunninghake, G.; Chapman, J.; Olman, M.; Lubell, S.; Morrison, L. D.; Steele, M. P.; Haram, T.; Roman, J.; Perez, R.; Perez, T.; Ryu, J. H.; Utz, J. P.; Limper, A. H.; Daniels, C. E.; Meiras, K.; Walsh, S.; Brown, K. K.; Schwarz, M.; Bair, C.; Kervitsky, D.; Lasky, J. A.; Ditta, S.; deAndrade, J.; Thannickal, V. J.; Stewart, M.; Zisman, D. A.; Lynch, J.; Calahan, E.; Lopez, P.; King, T. E.; Collard, H. R.; Golden, J. A.; Wolters, P. J.; Jeffrey, R.; Noth, I.; Hogarth, D. K.; Sandbo, N.; Strek, M. E.; White, S. R.; Brown, C.; Garic, I.; Maleckar, S.; Martinez, F. J.; Flaherty, K. R.; Han, M.; Moore, B.; Toews, G. B.; Dahlgren, D.; Raghu, G.; Hayes, J.; Snyder, M.; Loyd, J. E.; Lancaster, L.; Lawson, W.; Greer, R.; Mason, W.; Kaner, R. J.; Monroy, V.; Wang, M.; Lynch, D. A.; Colby, T.; Anstrom, K. J.; Becker, R. C.; Eisenstein, E. L.; MacIntyre, N. R.; Morrison, L. D; Rochon, J.; Steele, M. P.; Sundy, J. S.; Davidson-Ray, L.; Dignacco, P.; Edwards, R.; Anderson, R.; Beci, R.; Calvert, S.; Cain, K.; Gentry-Bumpass, T.; Hill, D.; Ingham, M.; Kagan, E.; Kaur, J.; Matti, C.; McClelland, J.; Meredith, A.; Nguyen, T.; Pesarchick, J.; Roberts, R. S.; Tate, W.; Thomas, T.; Walker, J.; Whelan, D.; Winsor, J.; Yang, Q.; Yow, E.; Reynolds, H. Y.; Tian, X.; Kiley, J.; Noth, I.; Olman, M.; Schwarz, M.; Toews, G. B.; Hunninghake, G.; Culver, D. A.; Chapman, J.; Olman, M.; Lubell, S.; Wehrmann, R.; Morrison, L. D.; Steele, M. P.; Haram, T.; Kidd, R.; Kallay, M.; Lyda, E.; Ryu, J. H.; Utz, J. P.; Limper, A. H.; Daniels, C. E.; Meiras, K.; Walsh, S.; Sahn, S.; O’Banner, N.; Stokes, F.; Brown, K. K.; Bair, C.; Kervitsky, D.; Ettinger, N. A.; Merli, S.; de Andrade, J.; Thannickal, V. J.; Stewart, M.; Belperio, J.; Lynch, J. P.; Calahan, E.; Lopez, P.; King, T. E.; Collard, H. R.; Golden, J.; Wolters, P.; Eller, A.; Noth, I.; Hogarth, D. K.; Sandbo, N.; Strek, M. E.; Maleckar, S.; Rahimova, G.; Sardin, L.; Roman, J.; Perez, R.; Perez, T.; Glassberg, M.; Simonet, E.; Martinez, F. J.; Baumann, K.; Chan, K.; Chughtai, A.; Gross, B.; Flaherty, K. R.; Han, M. L.; Hyzy, R.; Kazerooni, E.; Moore, B.; Myers, J.; Toews, G. B.; White, E.; Dahlgren, D.; Rossman, M.; Kreider, M.; Le, K.; Fitzgerald, J.; Glazer, C.; Scholand, M. B.; Brewster, L.; Johnson, A.; Raghu, G.; Berry-Bell, P.; Snydsman, A.; Loyd, J. E.; Lancaster, L.; Lawson, W.; Greer, R.; Kinser, K.; Richardson, R.; Mason, W.; Kaner, R. J.; Bandong, K.; Antin-Ozerkis, D.; Holm, C.; Estrom, J.; Lynch, D. A.; Colby, T.; Anstrom, K. J.; Eisenstein, E. L.; Sundy, J. S.; Davidson-Ray, L.; Dignacco, P.; Edwards, R.; Beci, R.; Calvert, S.; Gentry-Bumpass, T.; Hill, D.; Hofmann, P. V.; Hwang, K.; Kaur, J.; Matti, C.; Meredith, A.; Pesarchick, J.; Ramey, S.; Roberts, R. S.; Sharlow, A.; Winsor, J.; Yang, Q.; Yow, E.; Weinmann, G. G.; Reynolds, H.; Schmetter, B.; Tian, X.; Kiley, J.; Martinez, F. J.; Raghu, G.; Schwarz, M.; Toews, G. B.; Zibrak, J.; Demersky, A.; Vey, M.; Rosas, I. O.; Debrosse, P.; Culver, D. A.; Chapman, J.; Olman, M.; Lubell, S.; Wehrmann, R.; Morrison, L. D.; Steele, M. P.; Haram, T.; Kidd, R.; Kallay, M.; Lyda, E.; Ryu, J. H.; Utz, J. P.; Limper, A. H.; Daniels, C. E.; Meiras, K.; Walsh, S.; Sahn, S.; O’Banner, N.; Stokes, F.; Padilla, M.; Berhanu, G.; Brown, K. K.; Bair, C.; Kervitsky, D.; Ettinger, N. A.; Merli, S.; Criner, G. J.; Swift, I. Q.; Satti, A.; Cordova, F.; Patel, N.; West, K.; Jones, G.; Lasky, J. A.; Ditta, S.; de Andrade, J.; Thannickal, V. J.; Stewart, M.; Belperio, J.; Lynch, J. P.; Calahan, E.; Lopez, P.; King, T. E.; Collard, H. R.; Golden, J.; Wolters, P.; Eller, A.; Noth, I.; Hogarth, D. K.; Sandbo, N.; Strek, M. E.; Maleckar, S.; Rahimova, G.; Sardin, L.; Roman, J.; Perez, R.; Perez, T.; Glassberg, M.; Simonet, E.; Martinez, F. J.; Baumann, K.; Chan, K.; Chughtai, A.; Gross, B.; Flaherty, K. R.; Han, M. L.; Hyzy, R.; Kazerooni, E.; Moore, B.; Myers, J.; Toews, G. B.; White, E.; Dahlgren, D.; Rossman, M.; Kreider, M.; Le, K.; Fitzgerald, J.; Glazer, C.; Scholand, M. B.; Brewster, L.; Johnson, A.; Raghu, G.; Berry-Bell, P.; Snydsman, A.; Loyd, J. E.; Lancaster, L.; Lawson, W.; Greer, R.; Mason, W.; Kaner, R. J.; Bandong, K.; Antin-Ozerkis, D.; Holm, C.; Estrom, J.; Lynch, D. A.; Colby, T.; Anstrom, K. J.; Becker, R. C.; Eisenstein, E. L.; Sundy, J. S.; Davidson-Ray, L.; Dignacco, P.; Edwards, R.; Beci, R.; Calvert, S.; Cain, K.; Gentry-Bumpass, T.; Hill, D.; Huang, K.; Kaur, J.; Matti, C.; Meredith, A.; Pesarchick, J.; Ramey, S.; Roberts, R. S.; Sharlow, A.; Winsor, J.; Yow, E.; Weinmann, G. G.; Reynolds, H.; Schmetter, B.; Tian, X.; Kiley, J.

    2015-01-01

    BACKGROUND: The National Heart, Lung, and Blood Institute-sponsored IPF Clinical Research Network (IPFnet) studies enrolled subjects with idiopathic pulmonary fibrosis (IPF) to evaluate drug therapies in treatment trials. An adjudication committee (AC) provided a structured review of cases in which there was uncertainty or disagreement regarding diagnosis or clinical event classification. This article describes the diagnosis and adjudication processes. METHODS: The diagnostic process was based on review of clinical data and high-resolution CT scans with central review of lung biopsies when available. The AC worked closely with the data coordinating center to obtain clinical, radiologic, and histologic data and to communicate with the clinical centers. The AC used a multidisciplinary discussion model with four clinicians, one radiologist, and one pathologist to adjudicate diagnosis and outcome measures. RESULTS: The IPFnet trials screened 1,015 subjects; of these, 23 cases required review by the AC to establish eligibility. The most common diagnosis for exclusion was suspected chronic hypersensitivity pneumonitis. The AC reviewed 88 suspected acute exacerbations (AExs), 93 nonelective hospitalizations, and 16 cases of bleeding. Determination of AEx presented practical challenges to adjudicators, as necessary clinical data were often not collected, particularly when subjects were evaluated outside of the primary study site. CONCLUSIONS: The IPFnet diagnostic process was generally efficient, but a multidisciplinary adjudication committee was critical to assure correct phenotype for study enrollment. The AC was key in adjudicating all adverse outcomes in two IPFnet studies terminated early because of safety issues. Future clinical trials in IPF should consider logistical and cost issues as they incorporate AExs and hospitalizations as outcome measures. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT00517933, NCT00650091, NCT00957242; URL: www.clinicaltrials.gov PMID

  12. Disease severity staging system for idiopathic pulmonary fibrosis in Japan.

    PubMed

    Kondoh, Yasuhiro; Taniguchi, Hiroyuki; Kataoka, Kensuke; Furukawa, Taiki; Ando, Masahiko; Murotani, Kenta; Mishima, Michiaki; Inoue, Yoshikazu; Ogura, Takashi; Bando, Masashi; Hagiwara, Koichi; Suda, Takafumi; Chiba, Hirofumi; Takahashi, Hiroki; Sugiyama, Yukihiko; Homma, Sakae

    2017-08-08

    In Japan, the classification of disease severity of idiopathic pulmonary fibrosis (IPF) (J-system) has been used in making decisions on medical care subsidies. The present J-system consists of arterial partial pressure of oxygen (PaO2 ) and exercise desaturation in stages of I-IV. It provides a good prognostic classification in stages III and IV, but not in stages I and II. Therefore, we propose a revised system to improve discriminative ability in stages I and II. We compared the revised J-system with the present J-system using Cox proportional hazards model to predict mortality rate. We also evaluated the recently proposed GAP (Gender, Age and Physiology) system in comparison to both J-systems. Two-hundred and fifteen IPF patients were studied retrospectively. A univariate model showed that the present and revised J-systems and a modified GAP system were all significant prognostic factors. The C-statistic for discriminating prognosis was higher in the revised J-system than the modified GAP system and the present J-system (0.677, 0.652 and 0.659, respectively). The C-statistics of these models produced from the 10 000 bootstrap samples were similar to those of the original models, suggesting good internal validation (0.665 (95% CI: 0.621-0.705), 0.645 (0.600-0.686) and 0.659 (0.616-0.700), respectively). Multivariate analysis revealed that the revised J-system (P = 0.0038) and the modified GAP system (P = 0.0029) were independent prognostic factors. The revised J-system can provide a better mortality prediction than the present one. Both the revised J-system and the modified GAP system are independent and valuable tools for prognostication and clinical management for IPF. © 2017 Asian Pacific Society of Respirology.

  13. Pirfenidone treatment in idiopathic pulmonary fibrosis: nationwide Danish results

    PubMed Central

    Salih, Goran Nadir; Shaker, Saher Burhan; Madsen, Helle Dall; Bendstrup, Elisabeth

    2016-01-01

    Background Pirfenidone was approved by the European Medicines Agency and introduced in most European countries in 2011 for treatment of idiopathic pulmonary fibrosis (IPF). Objective To describe the national Danish experiences of pirfenidone treatment for IPF during 30 months with respect to target population, safety, adherence to the treatment and effect analysis in a well-characterised IPF population in a real-life setting. Methods Retrospective data collection from medical records of all patients in Denmark with IPF from 2011 to 2014. Data included baseline demographics, high-resolution computed tomography (HRCT), histopathology, forced vital capacity (FVC) and 6-min walk test (6MWT). Longitudinal data on FVC, walk test, adherence to the treatment and vital status were also collected. Results Pirfenidone treatment was initiated in 113 patients. Mean age was 69.6±8.1 years (±SD), and 71% were male. Definite IPF diagnosis required thoracoscopic lung biopsy in 45 patients (39.8%). The remaining 68 cases had a definite (64 patients) or possible usual interstitial pneumonia (four patients) pattern on HRCT. Patients were followed for 0.1–33.8 months (median 9.4 months). Fifty-one patients (45.2%) needed dose adjustment, 18 (16%) patients discontinued therapy and 13 patients (11.5%) died. The annual mean decline in FVC was 164 ml (SE 33.2). The decline in 6MWT was 18.2 m (SE 11.2). Nausea (44.2%), fatigue (38.9%) and skin reactions (32.7%) were frequent adverse events. Conclusion Patients with IPF treated with pirfenidone experienced tolerable adverse events. Patients were maintained on treatment due to a careful follow-up and dose adjustment programme. The annual decline in physiological parameters and mortality rate was comparable to previous randomised controlled trials. PMID:27616539

  14. Assessing exertional dyspnea in patients with idiopathic pulmonary fibrosis.

    PubMed

    Swigris, Jeffrey J; Streiner, David L; Brown, Kevin K; Belkin, Amanda; Green, Kathy E; Wamboldt, Frederick S

    2014-01-01

    Dyspnea is a hallmark symptom of idiopathic pulmonary fibrosis (IPF), and dyspnea induced physical activity limitation is a prominent driver of quality of life impairment among IPF patients. We examined response data for the 21 physical activity items (the first 21 of 24) from the University of California San Diego Shortness of Breath Questionnaire (UCSD) collected at baseline in a recently conducted IPF trial. We used Rasch analysis and hypothesis testing with conventional statistical methodology to achieve three objectives: 1) to examine the items to identify the one characteristic that distinguishes one from another; 2) to asses these items for their ability to measure dyspnea severity in IPF; 3) to use the items to develop a dyspnea ruler. The sample comprised 178 subjects. The 21 items fit the Rasch model. There was very strong correlation between Rasch item severity and their metabolic equivalents (METS) values (r = -0.86, p < 0.0001). With the sample stratified on scores from the 21 items, there were significant between group differences in FVC%, DLCO% and distance walked during the six-minute walk test. The dyspnea ruler can be used to put dyspnea levels in a more easily understood clinical context. The first 21 items from the UCSD compose a unidimensional dyspnea-with-activity scale and are both sensibly ordered and distinguished from each other by their METS values. These 21 items can be used confidently to formulate clinically-relevant inferences about IPF patients and should be considered for use as a meaningful endpoint in IPF research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Pirfenidone Reduces Respiratory-related Hospitalizations in Idiopathic Pulmonary Fibrosis.

    PubMed

    Ley, Brett; Swigris, Jeffrey; Day, Bann-Mo; Stauffer, John L; Raimundo, Karina; Chou, Willis; Collard, Harold R

    2017-05-04

    Respiratory-related hospitalizations in patients with idiopathic pulmonary fibrosis (IPF) are more frequent than acute IPF exacerbations and are associated with poor outcomes. To compare the risk of non-elective hospitalization by type (all-cause, respiratory-related, non-respiratory related) and death after hospitalization for pirfenidone versus placebo over 52 weeks from three phase 3 IPF clinical trials. Individual patient data was pooled from three phase 3 randomized, placebo-controlled studies of pirfenidone for IPF (CAPACITY and ASCEND) including all patients randomized to pirfenidone 2403 mg/day (n=623) or placebo (n=624). Risk of hospitalization over 52 weeks was compared using standard time-to-event methods. Among those hospitalized, risk of death post-hospitalization was compared with adjustment for treatment group propensity. A total of 1,247 patients (692 from CAPACITY and 555 from ASCEND) were included in the pooled analysis. Pirfenidone was associated with lower risk of respiratory-related hospitalization compared to placebo (7% vs 12%, HR 0.52, 95% CI 0.36-0.77, p-value=0.001), but not all-cause (HR 0.91, 95% CI 0.70-1.19, p-value=0.53) or non-respiratory related hospitalization (HR 1.32, 95% CI 0.92-1.88, p-value=0.145). Among those hospitalized for any reason, treatment with pirfenidone was associated with lower risk of death after hospitalization in the propensity score adjusted analysis (HR 0.56, 95% CI 0.32-0.99, p-value=0.047). In a pooled analysis of three phase 3 IPF clinical trials, patients receiving pirfenidone had a lower risk of non-elective respiratory-related hospitalization over 1 year. Among those hospitalized for any reason, pirfenidone was associated with a lower risk of death following hospital admission.

  16. Stem cell therapy for idiopathic pulmonary fibrosis: a protocol proposal

    PubMed Central

    2011-01-01

    Background Idiopathic pulmonary fibrosis represents a lethal form of progressive fibrotic lung disorder with gradually increasing incidence worldwide. Despite intense research efforts its pathogenesis is still elusive and controversial reflecting in the current disappointing status regarding its treatment. Patients and Methods: We report the first protocol proposal of a prospective, unicentric, non-randomized, phase Ib clinical trial to study the safety and tolerability of the adipose-derived stem cells (ADSCs) stromal vascular fraction (SVF) as a therapeutic agent in IPF. After careful patient selection based on functional criteria (forced vital capacity-FVC > 50%, diffuse lung capacity for carbon monoxide-DLCO > 35% of the predicted values) all eligible subjects will be subjected to lipoaspiration resulting in the isolation of approximately 100- 500 gr of adipose tissue. After preparation, isolation and labelling ADSCs-SVF will be endobronchially infused to both lower lobes of the fibrotic lungs. Procedure will be repeated thrice at monthly intervals. Primary end-point represent safety and tolerability data, while exploratory secondary end-points include assessment of clinical functional and radiological status. Results: Preliminary results recently presented in the form of an abstract seem promising and tantalizing since there were no cases of clinically significant allergic reactions, infections, disease acute exacerbations or ectopic tissue formation. In addition 6 months follow-up data revealed a marginal improvement at 6-minute walking distance and forced vital capacity. Conclusions Adipose tissue represents an abundant, safe, ethically uncontested and potentially beneficial source of stem cells for patients with IPF. Larger multicenter phase II and III placebo-controlled clinical trials are sorely needed in order to prove efficacy. However, pilot safety studies are of major importance and represent the first hamper that should be overcome to establish a

  17. Matrix metalloproteinase-10: a novel biomarker for idiopathic pulmonary fibrosis.

    PubMed

    Sokai, Akihiko; Handa, Tomohiro; Tanizawa, Kiminobu; Oga, Toru; Uno, Kazuko; Tsuruyama, Tatsuaki; Kubo, Takeshi; Ikezoe, Kohei; Nakatsuka, Yoshinari; Tanimura, Kazuya; Muro, Shigeo; Hirai, Toyohiro; Nagai, Sonoko; Chin, Kazuo; Mishima, Michiaki

    2015-09-29

    Matrix metalloproteinases (MMPs) are believed to be involved in the pathogenesis of idiopathic pulmonary fibrosis (IPF), and MMP-7 has been described as a useful biomarker for IPF. However, little is known regarding the significance of MMP-10 as a biomarker for IPF. This observational cohort study included 57 patients with IPF. Serum MMPs were comprehensively measured in all patients, and the relationships between these markers and both disease severity and prognosis were evaluated. Bronchoalveolar lavage fluid (BALF) MMP-7 and -10 levels were measured in 19 patients to investigate the correlation between these markers and their corresponding serum values. Immunohistochemical staining for MMP-10 was also performed in IPF lung tissue. Serum MMP-7 and -10 levels correlated significantly with both the percentage of predicted forced vital capacity (ρ = -0.31, p = 0.02 and ρ = -0.34, p < 0.01, respectively) and the percentage of predicted diffusing capacity of the lung for carbon monoxide (ρ = -0.32, p = 0.02 and ρ = -0.43, p < 0.01, respectively). BALF MMP-7 and -10 levels correlated with their corresponding serum concentrations. Only serum MMP-10 predicted clinical deterioration within 6 months and overall survival. In IPF lungs, the expression of MMP-10 was enhanced and localized to the alveolar epithelial cells, macrophages, and peripheral bronchiolar epithelial cells. MMP-10 may be a novel biomarker reflecting both disease severity and prognosis in patients with IPF.

  18. Screening for Helicobacter pylori in Idiopathic Pulmonary Fibrosis Lung Biopsies.

    PubMed

    Kreuter, Michael; Kirsten, Detlef; Bahmer, Thomas; Penzel, Roland; Claussen, Martin; Ehlers-Tenenbaum, Svenja; Muley, Thomas; Palmowski, Karin; Eichinger, Monika; Leider, Marta; Herth, Felix J F; Rabe, Klaus F; Bittmann, Iris; Warth, Arne

    2016-01-01

    Increasing evidence suggests a role of gastro-oesophageal reflux (GER) in idiopathic pulmonary fibrosis (IPF) pathogenesis. Recently, an association between serum Helicobacter pylori (HP) antibody positivity and more severe disease was described, but HP has not been directly analysed in lung tissue so far. To investigate the presence of HP in the lung tissue of IPF patients. Two tertiary interstitial lung disease care centre databases were screened for available lung biopsy material from IPF patients. Clinical and radiological data, including presence of GER and antiacid medication, were evaluated. HP-specific PCR was carried out on the IPF lung biopsy specimens. A total of 39 IPF patients were included, of whom 85% were male. The patients' median age was 66 years, their vital capacity was 79% predicted, and their diffusing capacity for carbon monoxide was 53% predicted. In all, 82% of the lung biopsies were surgical and 18% transbronchial. Comorbidities were GER disease in 23% (n = 9), sleep apnoea in 13% (n = 5) and hiatal hernia in 38% of the cases (n = 15). Proton pump inhibitors were prescribed at the time of biopsy in 21% of the cases (n = 9). After a median follow-up of 25 months (range 6-69), there were 1 death, 1 lung transplantation and 8 acute exacerbations without relevant differences between the GER and non-GER subgroups. HP DNA was not detected in any of the lung tissue samples. The fact that no HP DNA was detected in the lung tissues calls into question the proposed relevance of HP to the direct pathogenesis of IPF. © 2015 S. Karger AG, Basel.

  19. Membrane type-matrix metalloproteinases in idiopathic pulmonary fibrosis.

    PubMed

    García-Alvarez, Jorge; Ramirez, Remedios; Sampieri, Clara L; Nuttall, Robert K; Edwards, Dylan R; Selman, Moises; Pardo, Annie

    2006-03-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by fibroblast expansion and extracellular matrix accumulation. Some secreted matrix metalloproteinases (MMPs) as MMP2 are highly upregulated in IPF lungs. Membrane-type (MT)-MMPs participate in the activation of pro-MMP2. However, they have not been examined in IPF. Type I transmembrane MT-MMPs, MT1, MT2, MT3, and MT5-MMP were analyzed by real-time PCR and immunohistochemistry in IPF and normal lungs. MMP-2 was also immunolocalized and evaluated by gelatin zymography in BAL fluids. Additionally, the MT-MMPs were examined by real time PCR in lung fibroblasts stimulated with TGF-beta1 and IFN-gamma. MT1-MMP, was the most highly expressed followed by MT2- and MT5-MMP, and by a moderate expression of MT3-MMP. Regarding their localization, MT1- and MT2-MMPs were found in alveolar epithelial cells, MT3-MMP in fibroblasts from fibroblastic foci and alveolar epithelial cells and MT5-MMP in basal bronchiolar epithelial cells and in areas of squamous metaplasia. MMP2 was localized in alveolar and basal bronchiolar epithelial cells and fibroblasts, and increased active enzyme was observed in BAL fluids. In lung fibroblasts, TGF-beta1 induced a strong upregulation of MT3-MMP, both at the gene and protein level. This effect was blocked by genistein, a protein tyrosin kinase inhibitor and partially repressed by SB203580 a p38 MAP kinase inhibitor. IFN-gamma had no effect. MT-MMPs are expressed in IPF, in the same cell types as MMP2. Mostly by different types of epithelial cells a pivotal component in the aberrant remodeling of the lung microenvironment. Interestingly MT3-MMP that was found in fibroblastic foci was upregulated in vitro by TGF-beta1 a potent profibrotic mediator.

  20. Vibration response imaging in idiopathic pulmonary fibrosis: a pilot study.

    PubMed

    Liu, Qing-Xia; Guan, Wei-Jie; Xie, Yan-Qing; An, Jia-Ying; Jiang, Mei; Zhu, Zheng; Guo, E; Yu, Xin-Xin; Liu, Wen-Ting; Gao, Yi; Zheng, Jin-Ping

    2014-07-01

    Vibration response imaging (VRI) is a novel imaging technique and little is known about its characteristics and diagnostic value in idiopathic pulmonary fibrosis (IPF). The aim of this study was to investigate the features of VRI in subjects with IPF. We enrolled 23 subjects with IPF (42-74 y old) and 28 healthy subjects (42-72 y old). Subjects with IPF were diagnosed by lung biopsy and underwent VRI, spirometry, lung diffusion testing, and chest x-ray or computed tomography, which entailed assessment of the value of VRI indices. The total VRI score correlated statistically with single-breath carbon monoxide diffusing capacity percent predicted (r = -0.30, P = .04), but not with FVC percent predicted, FEV1 percent predicted, and FEV1/FVC (r = -0.27, -0.22, and 0.19; all P > .05). Compared with healthy subjects (17.9%), 20 subjects with IPF (86.96%, P < .01) presented with significantly increased crackles. The difference in quality lung data in all lung regions was unremarkable (all P > .05), except for the upper right and lower left lobes (P < .05). Overall, VRI parameters yielded acceptable assay sensitivity and specificity. Maximum energy frame was characterized by the highest diagnostic value (sensitivity, 1.00; specificity, 0.82), followed by presence of abundant crackles (sensitivity, 0.70; specificity, 0.96). Total VRI score was not a sensitive indicator of IPF, owing to low assay sensitivity (0.70) and specificity (0.64). VRI may be helpful to discriminate between IPF subjects and healthy individuals. Maximum energy frame and abundant crackles might serve as a diagnostic tool for IPF. Copyright © 2014 by Daedalus Enterprises.

  1. Role of Sonic Hedgehog in idiopathic pulmonary fibrosis.

    PubMed

    Bolaños, Alfredo Lozano; Milla, Criselda Mendoza; Lira, José Cisneros; Ramírez, Remedios; Checa, Marco; Barrera, Lourdes; García-Alvarez, Jorge; Carbajal, Verónica; Becerril, Carina; Gaxiola, Miguel; Pardo, Annie; Selman, Moisés

    2012-12-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal disease of unknown etiology and uncertain pathogenic mechanisms. Recent studies indicate that the pathogenesis of the disease may involve the abnormal expression of certain developmental pathways. Here we evaluated the expression of Sonic Hedgehog (SHH), Patched-1, Smoothened, and transcription factors glioma-associated oncogene homolog (GLI)1 and GLI2 by RT-PCR, as well as their localization in IPF and normal lungs by immunohistochemistry. The effects of SHH on fibroblast proliferation, migration, collagen and fibronectin production, and apoptosis were analyzed by WST-1, Boyden chamber chemotaxis, RT-PCR, Sircol, and annexin V-propidium iodide binding assays, respectively. Our results showed that all the main components of the Sonic signaling pathway were overexpressed in IPF lungs. With the exception of Smoothened, they were also upregulated in IPF fibroblasts. SHH and GLI2 localized to epithelial cells, whereas Patched-1, Smoothened, and GLI1 were observed mainly in fibroblasts and inflammatory cells. No staining was detected in normal lungs. Recombinant SHH increased fibroblast proliferation (P < 0.05), collagen synthesis, (2.5 ± 0.2 vs. 4.5 ± 1.0 μg of collagen/ml; P < 0.05), fibronectin expression (2-3-fold over control), and migration (190.3 ± 12.4% over control, P < 0.05). No effect was observed on α-smooth muscle actin expression. SHH protected lung fibroblasts from TNF-α/IFN-γ/Fas-induced apoptosis (14.5 ± 3.2% vs. 37.3 ± 7.2%, P < 0.0001). This protection was accompanied by modifications in several apoptosis-related proteins, including increased expression of X-linked inhibitor of apoptosis. These findings indicate that the SHH pathway is activated in IPF lungs and that SHH may contribute to IPF pathogenesis by increasing the proliferation, migration, extracellular matrix production, and survival of fibroblasts.

  2. Desmoplakin Variants Are Associated with Idiopathic Pulmonary Fibrosis

    PubMed Central

    Pedersen, Brent S.; Smith, Keith; Russell, Pamela; Schwarz, Marvin I.; Brown, Kevin K.; Steele, Mark P.; Loyd, James E.; Crapo, James D.; Silverman, Edwin K.; Nickerson, Deborah; Fingerlin, Tasha E.; Yang, Ivana V.; Schwartz, David A.

    2016-01-01

    Rationale: Sequence variation, methylation differences, and transcriptional changes in desmoplakin (DSP) have been observed in patients with idiopathic pulmonary fibrosis (IPF). Objectives: To identify novel variants in DSP associated with IPF and to characterize the relationship of these IPF sequence variants with DSP gene expression in human lung. Methods: A chromosome 6 locus (7,370,061–7,606,946) was sequenced in 230 subjects with IPF and 228 control subjects. Validation genotyping of disease-associated variants was conducted in 936 subjects with IPF and 936 control subjects. DSP gene expression was measured in lung tissue from 334 subjects with IPF and 201 control subjects. Measurements and Main Results: We identified 23 sequence variants in the chromosome 6 locus associated with IPF. Genotyping of selected variants in our validation cohort revealed that noncoding intron 1 variant rs2744371 (odds ratio = 0.77, 95% confidence interval [CI] = 0.66–0.91, P = 0.002) is protective for IPF, and a previously described IPF-associated intron 5 variant (rs2076295) is associated with increased risk of IPF (odds ratio = 1.36, 95% CI = 1.19–1.56, P < 0.001) after controlling for sex and age. DSP expression is 2.3-fold increased (95% CI = 1.91–2.71) in IPF lung tissue (P < 0.0001). Only the minor allele at rs2076295 is associated with decreased DSP expression (P = 0.001). Staining of fibrotic and normal human lung tissue localized DSP to airway epithelia. Conclusions: Sequence variants in DSP are associated with IPF, and rs2076295 genotype is associated with differential expression of DSP in the lung. DSP expression is increased in IPF lung and concentrated in the airway epithelia, suggesting a potential role for DSP in the pathogenesis of IPF. PMID:26669357

  3. Epidemiology of Idiopathic Pulmonary Fibrosis in Northern Italy.

    PubMed

    Harari, Sergio; Madotto, Fabiana; Caminati, Antonella; Conti, Sara; Cesana, Giancarlo

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is the most common and severe form of idiopathic interstitial pneumonia. Despite its clinical relevance, few studies have examined the epidemiology of IPF and temporal variation in disease incidence and prevalence. Aim of the study was to investigate the prevalence, incidence and trends of IPF in Lombardy, a region with nearly 10 million inhabitants, during 2005-2010. For the identification of IPF patients, we used healthcare administrative databases of Lombardy Healthcare System and adopted three algorithms: generic, broad and narrow case definition (GCD, BCD, NCD). IPF cases were identified according to diagnoses reported in inpatient and outpatient claims occurred during 2000-2010. We estimated age- and sex-adjusted annual prevalence and incidence rates from 2005 to 2010, thus allowing for a 5-year washout period. The mean annual incidence rate was estimated at 2.3 and 5.3 per 100,000 person-years using NCD and GCD, respectively. IPF incidence was higher among males, and increased with age. Trend remained stable over the years. The estimated annual prevalence rate was 35.5, 22.4, and 12.6 per 100,000 person-years using GCD, BCD and NCD, respectively, and increased with age. Moreover, we observed a positive trend over the years. Using BCD and NCD, prevalence was higher among males. The results of this study, which is one of the largest population-based survey ever conducted according to strict criteria, indicated that prevalence of IPF increased across the years while incidence remained stable, thus suggesting that survival with IPF has improved.

  4. Fibroblast-specific expression of AC6 enhances beta-adrenergic and prostacyclin signaling and blunts bleomycin-induced pulmonary fibrosis.

    PubMed

    Liu, Xiaoqiu; Li, Fengying; Sun, Shu Qiang; Thangavel, Muthusamy; Kaminsky, Joseph; Balazs, Louisa; Ostrom, Rennolds S

    2010-06-01

    Pulmonary fibroblasts regulate extracellular matrix production and degradation and are critical in maintenance of lung structure, function, and repair, but they also play a central role in lung fibrosis. cAMP-elevating agents inhibit cytokine- and growth factor-stimulated myofibroblast differentiation and collagen synthesis in pulmonary fibroblasts. In the present study, we overexpressed adenylyl cyclase 6 (AC6) in pulmonary fibroblasts and measured cAMP production and collagen synthesis. AC6 overexpression enhanced cAMP production and the inhibition of collagen synthesis mediated by isoproterenol and beraprost, but not the responses to butaprost or PGE(2). To examine if increased AC6 expression would impact the development of fibrosis in an animal model, we generated transgenic mice that overexpress AC6 under a fibroblast-specific promoter, FTS1. Lung fibrosis was induced in FTS1-AC6(+/-) mice and littermate controls by intratracheal instillation of saline or bleomycin. Wild-type mice treated with bleomycin showed extensive peribronchial and interstitial fibrosis and collagen deposition. By contrast, FTS1-AC6(+/-) mice displayed decreased fibrotic development, lymphocyte infiltration (as determined by pathological scoring), and lung collagen content. Thus, AC6 overexpression inhibits fibrogenesis in the lung by reducing pulmonary fibroblast-mediated collagen synthesis and myofibroblast differentiation. Because AC6 overexpression does not lead to enhanced basal or PGE(2)-stimulated levels of cAMP, we conclude that endogenous catecholamines or prostacyclin is produced during bleomycin-induced lung fibrosis and that these signals have antifibrotic potential.

  5. Therapeutic benefits of young, but not old, adipose-derived mesenchymal stem cells in a chronic mouse model of bleomycin-induced pulmonary fibrosis.

    PubMed

    Tashiro, Jun; Elliot, Sharon J; Gerth, David J; Xia, Xiaomei; Pereira-Simon, Simone; Choi, Rhea; Catanuto, Paola; Shahzeidi, Shahriar; Toonkel, Rebecca L; Shah, Rahil H; El Salem, Fadi; Glassberg, Marilyn K

    2015-12-01

    The observation that pulmonary inflammatory lesions and bleomycin (BLM)-induced pulmonary fibrosis spontaneously resolve in young mice, whereas remaining irreversible in aged mice suggests that impairment of pulmonary regeneration and repair is associated with aging. Because mesenchymal stem cells (MSCs) may promote repair after injury, we postulated that differences in MSCs from aged mice may underlie postinjury fibrosis in aging. The potential for young-donor MSCs to inhibit BLM-induced pulmonary fibrosis in aged male mice (>22 months) has not been studied. Adipose-derived MSCs (ASCs) from young (4 months) and old (22 months) male mice were infused 1 day after intratracheal BLM administration. At 21-day sacrifice, aged BLM mice demonstrated lung fibrosis by Ashcroft score, collagen content, and α(v)-integrin messenger RNA (mRNA) expression. Lung tissue from aged BLM mice receiving young ASCs exhibited decreased fibrosis, matrix metalloproteinase (MMP)-2 activity, oxidative stress, and markers of apoptosis vs BLM controls. Lung mRNA expression of tumor necrosis factor-alpha was also decreased in aged BLM mice receiving young-donor ASCs vs BLM controls. In contrast, old-donor ASC treatment in aged BLM mice did not reduce fibrosis and related markers. On examination of the cells, young-donor ASCs had decreased mRNA expression of MMP-2, insulin-like growth factor (IGF) receptor, and protein kinase B (AKT) activation compared with old-donor ASCs. These results show that the BLM-induced pulmonary fibrosis in aged mice could be blocked by young-donor ASCs and that the mechanisms involve changes in collagen turnover and markers of inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. PGD2-CRTH2 Pathway Promotes Tubulointerstitial Fibrosis

    PubMed Central

    Yan, Xiaoxiang; Nagata, Nanae; Aritake, Kosuke; Katsumata, Yoshinori; Matsuhashi, Tomohiro; Nakamura, Masataka; Hirai, Hiroyuki; Urade, Yoshihiro; Asano, Koichiro; Kubo, Masato; Utsunomiya, Yasunori; Hosoya, Tatsuo; Fukuda, Keiichi; Sano, Motoaki

    2012-01-01

    Urinary excretion of lipocalin-type PGD2 synthase (L-PGDS), which converts PG H2 to PGD2, increases in early diabetic nephropathy. In addition, L-PGDS expression in the tubular epithelium increases in adriamycin-induced nephropathy, suggesting that locally produced L-PGDS may promote the development of CKD. In this study, we found that L-PGDS–derived PGD2 contributes to the progression of renal fibrosis via CRTH2-mediated activation of Th2 lymphocytes. In a mouse model, the tubular epithelium synthesized L-PGDS de novo after unilateral ureteral obstruction (UUO). L-PGDS-knockout mice and CRTH2-knockout mice both exhibited less renal fibrosis, reduced infiltration of Th2 lymphocytes into the cortex, and decreased production of the Th2 cytokines IL-4 and IL-13. Furthermore, oral administration of a CRTH2 antagonist, beginning 3 days after UUO, suppressed the progression of renal fibrosis. Ablation of IL-4 and IL-13 also ameliorated renal fibrosis in the UUO kidney. Taken together, these data suggest that blocking the activation of CRTH2 by PGD2 might be a strategy to slow the progression of renal fibrosis in CKD. PMID:22997255

  7. Radiation induced pulmonary fibrosis as a model of progressive fibrosis: Contributions of DNA damage, inflammatory response and cellular senescence genes.

    PubMed

    Beach, Tyler A; Johnston, Carl J; Groves, Angela M; Williams, Jacqueline P; Finkelstein, Jacob N

    2017-04-01

    Purpose/Aim of Study: Studies of pulmonary fibrosis (PF) have resulted in DNA damage, inflammatory response, and cellular senescence being widely hypothesized to play a role in the progression of the disease. Utilizing these aforementioned terms, genomics databases were interrogated along with the term, "pulmonary fibrosis," to identify genes common among all 4 search terms. Findings were compared to data derived from a model of radiation-induced progressive pulmonary fibrosis (RIPF) to verify that these genes are similarly expressed, supporting the use of radiation as a model for diseases involving PF, such as human idiopathic pulmonary fibrosis (IPF). In an established model of RIPF, C57BL/6J mice were exposed to 12.5 Gy thorax irradiation and sacrificed at 24 hours, 1, 4, 12, and 32 weeks following exposure, and lung tissue was compared to age-matched controls by RNA sequencing. Of 176 PF associated gene transcripts identified by database interrogation, 146 (>82%) were present in our experimental model, throughout the progression of RIPF. Analysis revealed that nearly 85% of PF gene transcripts were associated with at least 1 other search term. Furthermore, of 22 genes common to all four terms, 16 were present experimentally in RIPF. This illustrates the validity of RIPF as a model of progressive PF/IPF based on the numbers of transcripts reported in both literature and observed experimentally. Well characterized genes and proteins are implicated in this model, supporting the hypotheses that DNA damage, inflammatory response and cellular senescence are associated with the pathogenesis of PF.

  8. [Functional respiratory evolution in two patients with emphysema and pulmonary fibrosis].

    PubMed

    Arce, Santiago C; Molinari, Luciana; De Vito, Eduardo L

    2009-01-01

    Combined pulmonary fibrosis and emphysema (CPFE) is a frequently under-diagnosed condition. Isolated pulmonary function tests (PFT) can give rise to misinterpretations. We have found no reports on these patients' spirometric progression. We describe two cases of CPFE, showing long-term functional evolution to have a more accurate understanding of current spirometric values. The most relevant findings are: 1) spirometry with discrete functional alterations in the presence of a marked dyspnea and the need, in one patient, for chronic oxygen therapy; and 2) functional evolution reflecting "pseudonormalisation" of the initial obstructive spirometric pattern, possibly as a result of fibrosis development. A mild obstructive defect in a patient with chronic airflow limitation and marked impairment of his/her clinical status and functional class should alert on the possibility of associated pulmonary fibrosis. A computed tomography (CT) and previous PFTs will allow a better understanding of this condition.

  9. Protocatechuic aldehyde ameliorates experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway

    SciTech Connect

    Zhang, Liang Ji, Yunxia Kang, Zechun Lv, Changjun Jiang, Wanglin

    2015-02-15

    An abnormal high mobility group box 1 (HMGB1) activation and a decrease in receptor for advanced glycation end-product (RAGE) play a key role in the pathogenesis of pulmonary fibrosis. Protocatechuic aldehyde (PA) is a naturally occurring compound, which is extracted from the degradation of phenolic acids. However, whether PA has anti-fibrotic functions is unknown. In this study, the effects of PA on the transforming growth factor-β1 (TGF-β1)-mediated epithelial–mesenchymal transition (EMT) in A549 cells, on the apoptosis of human type I alveolar epithelial cells (AT I), on the proliferation of human lung fibroblasts (HLF-1) in vitro, and on bleomycin (BLM)-induced pulmonary fibrosis in vivo were investigated. PA treatment resulted in a reduction of EMT in A549 cells with a decrease in vimentin and HMGB, an increase of E-cadherin and RAGE, a reduction of HLF-1 proliferation with a decrease of fibroblast growth factor 2 (FGF-2) and platelet-derived growth factor (PDGF). Apoptosis of AT I was attenuated with an increase of RAGE. PA ameliorated BLM-induced pulmonary fibrosis in rats with a reduction of histopathological scores and collagen deposition, and a lower FGF-2, PDGF, α-smooth muscle actin (α-SMA) and HMGB1 expression, whereas higher RAGE was found in BLM-instilled lungs. Through the decrease of HGMB1 and the regulation of RAGE, PA reversed the EMT, inhibited HLF-1 proliferation as well as reduced apoptosis in AT I, and prevented pulmonary fibrosis in vivo. Collectively, our results demonstrate that PA prevents experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway. - Highlights: • PA prevents EMT, reduces the apoptosis of AT1 in vitro. • PA decreases proliferation of HLF-1, reduces PDGF and FGF expression in vitro. • PA prevents experimental pulmonary fibrosis by modulating the HMGB1/RAGE pathway.

  10. Combined itraconazole-pentoxifylline treatment promptly reduces lung fibrosis induced by chronic pulmonary paracoccidioidomycosis in mice.

    PubMed

    Naranjo, Tonny W; Lopera, Damaris E; Diaz-Granados, Lucy R; Duque, Jhon J; Restrepo, Angela M; Cano, Luz E

    2011-02-01

    Fibrosis is a severe and progressive sequel of many pulmonary diseases, has no effective therapy at present and, consequently, represents a serious health problem. In Latin America, chronic pulmonary paracoccidioidomycosis (PCM) is one of the most important, prevalent and systemic fungal diseases that allows the development of lung fibrosis, with the additional disadvantage that this sequel may appear even after an apparently successful course of antifungal therapy. In this study, was propose the pentoxifylline as complementary treatment in the pulmonary PCM due to its immunomodulatory and anti-fibrotic properties demonstrated in vitro and in vivo in liver, skin and lung. Our objective was to investigate the possible beneficial effects that a combined antifungal (Itraconazole) and immunomodulatory (Pentoxifylline) therapy would have in the development of fibrosis in a model of experimental chronic pulmonary PCM in an attempt to simulate the naturally occurring events in human patients. Two different times post-infection (PI) were chosen for starting therapy, an "early time" (4 weeks PI) when fibrosis was still absent and a "late time" (8 weeks PI) when the fibrotic process had started. Infected mice received the treatments via gavage and were sacrificed during or upon termination of treatment; their lungs were then removed and processed for immunological and histopathologic studies in order to assess severity of fibrosis. When pulmonary paracoccidioidomycosis had evolved and reached an advanced stage of disease before treatment began (as normally occurs in many human patients when first diagnosed), the combined therapy (itraconazole plus pentoxifylline) resulted in a significantly more rapid reduction of granulomatous inflammation and pulmonary fibrosis, when compared with the results of classical antifungal therapy using itraconazole alone.

  11. Effect of Emphysema Extent on Serial Lung Function in Patients with Idiopathic Pulmonary Fibrosis.

    PubMed

    Cottin, Vincent; Hansell, David M; Sverzellati, Nicola; Weycker, Derek; Antoniou, Katerina M; Atwood, Mark; Oster, Gerry; Kirchgaessler, Klaus-Uwe; Collard, Harold R; Wells, Athol U

    2017-06-28

    Rationale Patients with idiopathic pulmonary fibrosis and emphysema may have artificially preserved lung volumes. Objectives This post-hoc analysis investigated the relationship between baseline emphysema and fibrosis extents, and pulmonary function changes over 48 weeks. Methods Data were pooled from two Phase III, randomized, double-blind, placebo-controlled trials of interferon γ-1b in idiopathic pulmonary fibrosis (GIPF-001 [NCT00047645]; GIPF-007 [NCT00075998]). Patients with Week 48 data, baseline high-resolution computed tomography images and forced expiratory volume in 1 second/forced vital capacity ratios <0.8 or >0.9 (<0.7 or >0.9 in GIPF-007) and randomly selected patients with ratios 0.8-0.9 and 0.7-0.8 were included. Changes from baseline in pulmonary function at Week 48 were analyzed by emphysema extent. The relationship between emphysema and fibrosis extents and pulmonary function changes was assessed using multivariate linear regression. Measurements and Main Results Emphysema was identified in 38% of patients. A negative correlation was observed between fibrosis and emphysema extents (r = -0.232; P < 0.001). In quartile analysis, patients with the greatest emphysema extent (28%-65%) showed the smallest forced vital capacity decline, with a difference of 3.32% at Week 48 versus patients with no emphysema (P = 0.047). In multivariate analyses, emphysema extent ≥15% was associated with significantly reduced forced vital capacity decline over 48 weeks versus no emphysema/emphysema <15%. No such association was observed for carbon monoxide diffusing capacity or composite physiologic index. Conclusions Forced vital capacity measurements may not be appropriate to monitor disease progression in patients with idiopathic pulmonary fibrosis and emphysema extent ≥15%. Clinical trial registration available at www.clinicaltrials.gov, IDs NCT00047645 and NCT00075998.

  12. Nitric oxide exerts protective effects against bleomycin-induced pulmonary fibrosis in mice

    PubMed Central

    2014-01-01

    Background Increased expression of nitric oxide synthase (NOS) and an increase in plasma nitrite plus nitrate (NOx) have been reported in patients with pulmonary fibrosis, suggesting that nitric oxide (NO) plays an important role in its development. However, the roles of the entire NO and NOS system in the pathogenesis of pulmonary fibrosis still remain to be fully elucidated. The aim of the present study is to clarify the roles of NO and the NOS system in pulmonary fibrosis by using the mice lacking all three NOS isoforms. Methods Wild-type, single NOS knockout and triple NOS knockout (n/i/eNOS−/−) mice were administered bleomycin (BLM) intraperitoneally at a dose of 8.0 mg/kg/day for 10 consecutive days. Two weeks after the end of the procedure, the fibrotic and inflammatory changes of the lung were evaluated. In addition, we evaluated the effects of long-term treatment with isosorbide dinitrate, a NO donor, on the n/i/eNOS−/− mice with BLM-induced pulmonary fibrosis. Results The histopathological findings, collagen content and the total cell number in bronchoalveolar lavage fluid were the most severe/highest in the n/i/eNOS−/− mice. Long-term treatment with the supplemental NO donor in n/i/eNOS−/− mice significantly prevented the progression of the histopathological findings and the increase of the collagen content in the lungs. Conclusions These results provide the first direct evidence that a lack of all three NOS isoforms led to a deterioration of pulmonary fibrosis in a BLM-treated murine model. We speculate that the entire endogenous NO and NOS system plays an important protective role in the pathogenesis of pulmonary fibrosis. PMID:25092105

  13. Therapeutic Targeting of CC Ligand 21 or CC Chemokine Receptor 7 Abrogates Pulmonary Fibrosis Induced by the Adoptive Transfer of Human Pulmonary Fibroblasts to Immunodeficient Mice

    PubMed Central

    Pierce, Elizabeth M.; Carpenter, Kristin; Jakubzick, Claudia; Kunkel, Steven L.; Flaherty, Kevin R.; Martinez, Fernando J.; Hogaboam, Cory M.

    2007-01-01

    Idiopathic interstitial pneumonias (IIPs) are a collection of pulmonary fibrotic diseases of unknown etiopathogenesis. CC chemokine receptor 7 (CCR7) is expressed in IIP biopsies and primary fibroblast lines, but its role in pulmonary fibrosis was not previously examined. To study the in vivo role of CCR7 in a novel model of pulmonary fibrosis, 1.0 × 106 primary fibroblasts grown from idiopathic pulmonary fibrosis/usual interstitial pneumonia, nonspecific interstitial pneumonia, or histologically normal biopsies were injected intravenously into C.B-17 severe combined immunodeficiency (SCID)/beige (bg) mice. At days 35 and 63 after idiopathic pulmonary fibrosis/usual interstitial pneumonia fibroblast injection, patchy interstitial fibrosis and increased hydroxyproline were present in the lungs of immunodeficient mice. Adoptively transferred nonspecific interstitial pneumonia fibroblasts caused a more diffuse interstitial fibrosis and increased hydroxyproline levels at both times, but injected normal human fibroblasts did not induce interstitial remodeling changes in C.B-17SCID/bg mice. Systemic therapeutic immunoneutralization of either human CCR7 or CC ligand 21, its ligand, significantly attenuated the pulmonary fibrosis in groups of C.B-17SCID/bg mice that received either type of IIP fibroblasts. Thus, the present study demonstrates that pulmonary fibrosis is initiated by the intravenous introduction of primary human fibroblast lines into immunodeficient mice, and this fibrotic response is dependent on the interaction between CC ligand 21 and CCR7. PMID:17392156

  14. Experimental Induction of Pulmonary Fibrosis in Horses with the Gammaherpesvirus Equine Herpesvirus 5

    PubMed Central

    Williams, Kurt J.; Robinson, N. Edward; Lim, Ailam; Brandenberger, Christina; Maes, Roger; Behan, Ashley; Bolin, Steven R.

    2013-01-01

    Gammaherpesviruses (γHV) are implicated in the pathogenesis of pulmonary fibrosis in humans and murine models of lung fibrosis, however there is little direct experimental evidence that such viruses induce lung fibrosis in the natural host. The equine γHV EHV 5 is associated with equine multinodular pulmonary fibrosis (EMPF), a progressive fibrosing lung disease in its natural host, the horse. Experimental reproduction of EMPF has not been attempted to date. We hypothesized that inoculation of EHV 5 isolated from cases of EMPF into the lungs of clinically normal horses would induce lung fibrosis similar to EMPF. Neutralizing antibody titers were measured in the horses before and after inoculation with EHV 5. PCR and virus isolation was used to detect EHV 5 in antemortem blood and BAL samples, and in tissues collected postmortem. Nodular pulmonary fibrosis and induction of myofibroblasts occurred in EHV 5 inoculated horses. Mean lung collagen in EHV 5 inoculated horses (80 µg/mg) was significantly increased compared to control horses (26 µg/mg) (p < 0.5), as was interstitial collagen (32.6% ± 1.2% vs 23% ± 1.4%) (mean ± SEM; p < 0.001). Virus was difficult to detect in infected horses throughout the experiment, although EHV 5 antigen was detected in the lung by immunohistochemistry. We conclude that the γHV EHV 5 can induce lung fibrosis in the horse, and hypothesize that induction of fibrosis occurs while the virus is latent within the lung. This is the first example of a γHV inducing lung fibrosis in the natural host. PMID:24147074

  15. Experimental induction of pulmonary fibrosis in horses with the gammaherpesvirus equine herpesvirus 5.

    PubMed

    Williams, Kurt J; Robinson, N Edward; Lim, Ailam; Brandenberger, Christina; Maes, Roger; Behan, Ashley; Bolin, Steven R

    2013-01-01

    Gammaherpesviruses (γHV) are implicated in the pathogenesis of pulmonary fibrosis in humans and murine models of lung fibrosis, however there is little direct experimental evidence that such viruses induce lung fibrosis in the natural host. The equine γHV EHV 5 is associated with equine multinodular pulmonary fibrosis (EMPF), a progressive fibrosing lung disease in its natural host, the horse. Experimental reproduction of EMPF has not been attempted to date. We hypothesized that inoculation of EHV 5 isolated from cases of EMPF into the lungs of clinically normal horses would induce lung fibrosis similar to EMPF. Neutralizing antibody titers were measured in the horses before and after inoculation with EHV 5. PCR and virus isolation was used to detect EHV 5 in antemortem blood and BAL samples, and in tissues collected postmortem. Nodular pulmonary fibrosis and induction of myofibroblasts occurred in EHV 5 inoculated horses. Mean lung collagen in EHV 5 inoculated horses (80 µg/mg) was significantly increased compared to control horses (26 µg/mg) (p < 0.5), as was interstitial collagen (32.6% ± 1.2% vs 23% ± 1.4%) (mean ± SEM; p < 0.001). Virus was difficult to detect in infected horses throughout the experiment, although EHV 5 antigen was detected in the lung by immunohistochemistry. We conclude that the γHV EHV 5 can induce lung fibrosis in the horse, and hypothesize that induction of fibrosis occurs while the virus is latent within the lung. This is the first example of a γHV inducing lung fibrosis in the natural host.

  16. Association of growth and nutritional parameters with pulmonary function in cystic fibrosis: a literature review

    PubMed Central

    Mauch, Renan Marrichi; Kmit, Arthur Henrique Pezzo; Marson, Fernando Augusto de Lima; Levy, Carlos Emilio; Barros-Filho, Antonio de Azevedo; Ribeiro, José Dirceu

    2016-01-01

    Abstract Objective: To review the literature addressing the relationship of growth and nutritional parameters with pulmonary function in pediatric patients with cystic fibrosis. Data source: A collection of articles published in the last 15 years in English, Portuguese and Spanish was made by research in electronic databases - PubMed, Cochrane, Medline, Lilacs and Scielo - using the keywords cystic fibrosis, growth, nutrition, pulmonary function in varied combinations. Articles that addressed the long term association of growth and nutritional parameters, with an emphasis on growth, with pulmonary disease in cystic fibrosis, were included, and we excluded those that addressing only the relationship between nutritional parameters and cystic fibrosis and those in which the aim was to describe the disease. Data synthesis: Seven studies were included, with a total of 12,455 patients. Six studies reported relationship between growth parameters and lung function, including one study addressing the association of growth parameters, solely, with lung function, and all the seven studies reported relationship between nutritional parameters and lung function. Conclusions: The review suggests that the severity of the lung disease, determined by spirometry, is associated with body growth and nutritional status in cystic fibrosis. Thus, the intervention in these parameters can lead to the better prognosis and life expectancy for cystic fibrosis patients. PMID:27181343

  17. Description and validation of a scoring system for tomosynthesis in pulmonary cystic fibrosis.

    PubMed

    Vult von Steyern, Kristina; Björkman-Burtscher, Isabella M; Höglund, Peter; Bozovic, Gracijela; Wiklund, Marie; Geijer, Mats

    2012-12-01

    To design and validate a scoring system for tomosynthesis (digital tomography) in pulmonary cystic fibrosis. A scoring system dedicated to tomosynthesis in pulmonary cystic fibrosis was designed. Three radiologists independently scored 88 pairs of radiographs and tomosynthesis examinations of the chest in 60 patients with cystic fibrosis and 7 oncology patients. Radiographs were scored according to the Brasfield scoring system and tomosynthesis examinations were scored using the new scoring system. Observer agreements for the tomosynthesis score were almost perfect for the total score with square-weighted kappa >0.90, and generally substantial to almost perfect for subscores. Correlation between the tomosynthesis score and the Brasfield score was good for the three observers (Kendall's rank correlation tau 0.68, 0.77 and 0.78). Tomosynthesis was generally scored higher as a percentage of the maximum score. Observer agreements for the total score for Brasfield score were almost perfect (square-weighted kappa 0.80, 0.81 and 0.85). The tomosynthesis scoring system seems robust and correlates well with the Brasfield score. Compared with radiography, tomosynthesis is more sensitive to cystic fibrosis changes, especially bronchiectasis and mucus plugging, and the new tomosynthesis scoring system offers the possibility of more detailed and accurate scoring of disease severity. Tomosynthesis is more sensitive than conventional radiography for pulmonary cystic fibrosis changes. The radiation dose from chest tomosynthesis is low compared with computed tomography. Tomosynthesis may become useful in the regular follow-up of patients with cystic fibrosis.

  18. Association of growth and nutritional parameters with pulmonary function in cystic fibrosis: a literature review.

    PubMed

    Mauch, Renan Marrichi; Kmit, Arthur Henrique Pezzo; Marson, Fernando Augusto de Lima; Levy, Carlos Emilio; Barros-Filho, Antonio de Azevedo; Ribeiro, José Dirceu

    2016-12-01

    To review the literature addressing the relationship of growth and nutritional parameters with pulmonary function in pediatric patients with cystic fibrosis. A collection of articles published in the last 15 years in English, Portuguese and Spanish was made by research in electronic databases - PubMed, Cochrane, Medline, Lilacs and Scielo - using the keywords cystic fibrosis, growth, nutrition, pulmonary function in varied combinations. Articles that addressed the long term association of growth and nutritional parameters, with an emphasis on growth, with pulmonary disease in cystic fibrosis, were included, and we excluded those that addressing only the relationship between nutritional parameters and cystic fibrosis and those in which the aim was to describe the disease. Seven studies were included, with a total of 12,455 patients. Six studies reported relationship between growth parameters and lung function, including one study addressing the association of growth parameters, solely, with lung function, and all the seven studies reported relationship between nutritional parameters and lung function. The review suggests that the severity of the lung disease, determined by spirometry, is associated with body growth and nutritional status in cystic fibrosis. Thus, the intervention in these parameters can lead to the better prognosis and life expectancy for cystic fibrosis patients. Copyright © 2016 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  19. Mesenchymal deficiency of Notch1 attenuates bleomycin-induced pulmonary fibrosis.

    PubMed

    Hu, Biao; Wu, Zhe; Bai, David; Liu, Tianju; Ullenbruch, Matthew R; Phan, Sem H

    2015-11-01

    Notch signaling pathway is involved in the regulation of cell fate, differentiation, proliferation, and apoptosis in development and disease. Previous studies suggest the importance of Notch1 in myofibroblast differentiation in lung alveogenesis and fibrosis. However, direct in vivo evidence of Notch1-mediated myofibroblast differentiation is lacking. In this study, we examined the effects of conditional mesenchymal-specific deletion of Notch1 on pulmonary fibrosis. Crossing of mice bearing the floxed Notch1 gene with α2(I) collagen enhancer-Cre-ER(T)-bearing mice successfully generated progeny with a conditional knockout (CKO) of Notch1 in collagen I-expressing (mesenchymal) cells on treatment with tamoxifen (Notch1 CKO). Because Notch signaling is known to be activated in the bleomycin model of pulmonary fibrosis, control and Notch1 CKO mice were analyzed for their responses to bleomycin treatment. The results showed significant attenuation of pulmonary fibrosis in CKO relative to control mice, as examined by collagen deposition, myofibroblast differentiation, and histopathology. However, there were no significant differences in inflammatory or immune cell influx between bleomycin-treated CKO and control mouse lungs. Analysis of isolated lung fibroblasts confirmed absence of Notch1 expression in cells from CKO mice, which contained fewer myofibroblasts and significantly diminished collagen I expression relative to those from control mice. These findings revealed an essential role for Notch1-mediated myofibroblast differentiation in the pathogenesis of pulmonary fibrosis.

  20. Contribution of Fetal, but Not Adult, Pulmonary Mesothelium to Mesenchymal Lineages in Lung Homeostasis and Fibrosis.

    PubMed

    von Gise, Alexander; Stevens, Sean M; Honor, Leah B; Oh, Jin Hee; Gao, Chi; Zhou, Bin; Pu, William T

    2016-02-01

    The lung is enveloped by a layer of specialized epithelium, the pulmonary mesothelium. In other organs, mesothelial cells undergo epithelial-mesenchymal transition and contribute to organ stromal cells. The contribution of pulmonary mesothelial cells (PMCs) to the developing lung has been evaluated with differing conclusions. PMCs have also been indirectly implicated in lung fibrosis in the progressive, fatal lung disease idiopathic pulmonary fibrosis. We used fetal or postnatal genetic pulse labeling of PMCs to assess their fate in murine development, normal lung homeostasis, and models of pulmonary fibrosis. We found that most fetal PMC-derived mesenchymal cells (PMCDCs) expressed markers of pericytes and fibroblasts, only a small minority expressed smooth muscle markers, and none expressed endothelial cell markers. Postnatal PMCs did not contribute to lung mesenchyme during normal lung homeostasis or in models of lung fibrosis. However, fetal PMCDCs were abundant and actively proliferating within fibrotic regions in lung fibrosis models, suggesting that they actively participate in the fibrotic process. These data clarify the role of fetal and postnatal PMCDCs in lung development and disease.

  1. MiR-338* suppresses fibrotic pathogenesis in pulmonary fibrosis through targeting LPA1

    PubMed Central

    Zhuang, Yi; Dai, Jinghong; Wang, Yongsheng; Zhang, Huan; Li, Xinxiu; Wang, Chunli; Cao, Mengshu; Liu, Yin; Cai, Hourong; Zhang, Deping; Wang, Yaping

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease involving pulmonary injury associated with tissue repair, dysfunction and fibrosis. MicroRNAs (miRNAs), as gene regulators, are assumed to regulate about one third of genes and thus play important roles in cellular functions including proliferation, growth, differentiation and apoptosis. Recent studies have indicated that some miRNAs may play critical roles in the pathogenesis of pulmonary fibrosis. In this study, we found that miR-338*(miR-338-5p), which has been found to be associated with tumor progression, was down-regulated in fibroblasts and TGF-β-induced lung fibrotic tissues. Over-expression of miR-338* can partly prevent the fibrotic process induced by TGF-β. Moreover, LPA1 was proven to be a downstream target of miR-338*. Lentivirus-mediated over-expression of miR-338* can alleviate lung fibrosis induced by bleomycin in mice. Taken together, our results suggest that miR-338* attenuates the pathogenesis of pulmonary fibrosis through targeting LPA1. Thus, miR-338* can be a potential therapeutic target for the treatment of IPF. PMID:27508041

  2. mTOR Overactivation and Compromised Autophagy in the Pathogenesis of Pulmonary Fibrosis

    PubMed Central

    Gui, Yao-Song; Wang, Lianmei; Tian, Xinlun; Li, Xue; Ma, Aiping; Zhou, Weixun; Zeng, Ni; Zhang, Ji; Cai, Baiqiang; Zhang, Hongbing; Chen, Jing-Yu; Xu, Kai-Feng

    2015-01-01

    The mammalian target of rapamycin (mTOR) signaling pathway in pulmonary fibrosis was investigated in cell and animal models. mTOR overactivation in alveolar epithelial cells (AECs) was achieved in the conditional and inducible Tsc1 knock-down mice SPC-rtTA/TetO-Cre/Tsc1fx/+ (STT). Doxycycline caused Tsc1 knock-down and consequently mTOR activation in AECs for the STT mice. Mice treated with bleomycin exhibited increased mortality and pulmonary fibrosis compared with control mice. In wild-type C57BL/6J mice, pretreatment with rapamycin attenuated the bleomycin-mediated mortality and fibrosis. Rapamycin-mediated mouse survival benefit was inhibited by chloroquine, an autophagy inhibitor. Autophagosomes were decreased in the lungs after bleomycin exposure. Rapamycin induced the production of autophagosomes and diminished p62. We concluded that mTOR overactivation in AECs and compromised autophagy in the lungs are involved in the pathogenesis of pulmonary fibrosis. The suppression of mTOR and enhancement of autophagy may be used for treatment of pulmonary fibrosis. PMID:26382847

  3. Atomized paclitaxel liposome inhalation treatment of bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Zhou, Y; Zhu, W P; Cai, X J; Chen, M

    2016-04-07

    We sought to determine the efficacy of atomized paclitaxel liposome inhalation treatment of pulmonary fibrosis in a bleomycin-induced rat model. Forty male Sprague-Dawley rats were randomly divided into four groups: healthy control, pulmonary fibrosis without treatment, paclitaxel liposome inhalation-treated, and intravenous paclitaxel liposome-treated. Fibrosis was induced by bleomycin injection. A total of 20 mg/kg paclitaxel liposome was administered by inhalation every other day for a total of 10 doses. The intravenous group received 5 mg/kg paclitaxel liposome on days 1, 7, 14, and 21. We observed the general condition, weight change, survival index, and pathological changes in the lung tissue of the rats. Quantitative analysis of collagen types I and III and transforming growth factor (TGF)-β1 expression in the lungs was also performed. The paclitaxel liposome inhalation and intravenous delivery methods improved survival index and pulmonary fibrosis Ashcroft score, and decreased the thickness of the alveolar interval. No obvious difference was found between the two groups. Compared with the untreated group, paclitaxel liposome inhalation and intravenous injection significantly reduced the levels of collagen types I and III and TGF-β1 expression equally. In conclusion, atomized paclitaxel liposome inhalation protects against severe pulmonary fibrosis in a bleomycin-induced rat model. This delivery method has less systemic side effects and increased safety over intravenous injection.

  4. Effects of buthionine sulfoximine on the development of ozone-induced pulmonary fibrosis

    SciTech Connect

    Sun, J.D.; Pickrell, J.A.; Harkema, J.R.; McLaughlin, S.I.; Hahn, F.F.; Henderson, R.F.

    1988-10-01

    The capacity of reduced glutathione (GSH) to protect lung tissue against ozone-induced pulmonary fibrosis was investigated. Male B6C3F1 mice were exposed to 0, 0.2, 0.5, and 1.0 ppm ozone for 23 hr/day for 14 days. During exposures and/or for a period of 90 days after exposures, subgroups of mice at each exposure level were given drinking water containing 30 mM L-buthionine-S,R-sulfoximine (BSO) to lower in vivo levels of GSH. These BSO treatments reduced blood glutamylcysteine synthetase (GCS) activity (regulatory enzyme for GSH biosynthesis) and lung nonprotein sulfhydryl (NPSH) levels in nonexposed animals by approximately half. In contrast, ozone exposures increased blood GCS activity and lung NPSH levels in a concentration-dependent manner, with smaller increases in the BSO-treated mice. Immediately after exposures, an ozone-related inflammatory response was seen in lungs, but no histopathological signs of developing fibrosis were evident. Ninety days later, mice exposed to 1 ppm ozone and not treated with BSO had modest evidence of pulmonary fibrosis. Mice exposed to 1 ppm ozone and treated with BSO during this post-exposure period (regardless of BSO treatment during exposures) showed histopathological evidence of exacerbated pulmonary fibrosis, compared to similarly exposed mice not treated with BSO postexposure. These results indicated that interference with the body's normal defense mechanisms against oxidant damage, including suppression of GSH biosynthesis, exacerbates the subsequent development of pulmonary fibrosis.

  5. Endothelial injury and repair in radiation-induced pulmonary fibrosis

    SciTech Connect

    Adamson, I.Y.; Bowden, D.H.

    1983-08-01

    Cytokinetic relationships between endothelial cells and fibroblasts during lung injury and repair in mice have been studied in a morphologic, autoradiographic, and biochemical study following whole body irradiation. After 650 rads, endothelial injury accompanied by interstitial edema was seen between weeks 1 and 2. The cell labeling curve had two components: predominant endothelial labeling to 3 weeks, then a smaller rise in DNA synthesis in interstitial cells. There was focal fibrosis but little change in total hydroxyproline to 20 weeks. After 1000 rads, cell injury, still confined to the endothelium, was more severe and lasted up to 6 weeks. Increased DNA synthesis occurred in the endothelium between Weeks 2 and 8 and in interstitial cells from Week 3 to 16, when total hydroxyproline was significantly elevated and many fibrotic areas were seen in the lung. The results indicate that acute endothelial injury may be rapidly repaired with little fibroblastic stimulation, whereas severe or prolonged injury with delayed regeneration disturbs endothelial-mesenchymal relationships. This may be a key factor in promoting fibroblast proliferation and the deposition of collagen.

  6. Do all patients with idiopathic pulmonary fibrosis warrant a trial of therapeutic intervention? A pro-con perspective.

    PubMed

    Moodley, Yuben; Corte, Tamera; Richeldi, Luca; King, Talmadge E

    2015-04-01

    Idiopathic pulmonary fibrosis (IPF) is an incurable condition that is characterized by progressive pulmonary fibrosis, architectural distortion of the lung and loss of gas exchange units. Until recently, there was no effective treatment for this condition. However, there were two landmark trials published earlier this year, which have changed the management of this condition. Pirfenidone (Assessment of Pirfenidone to Confirm Efficacy and Safety in Idiopathic Pulmonary Fibrosis trial) and nintedanib (Efficacy and Safety of Nintedanib in Idiopathic Pulmonary Fibrosis-1 and -2 trials) have both demonstrated positive outcomes in patients with IPF. In this perspective, we critically discuss the role of these agents in IPF and in the broader pulmonary fibrosis population. © 2015 Asian Pacific Society of Respirology.

  7. [Gastroesophageal reflux, pulmonary and gastric function in patients with cystic fibrosis. Results of a randomized trial].

    PubMed

    Escobar Castro, H; Perdomo Giraldi, M; Gimeno Benítez, R; Máiz Carro, L; Suárez Cortina, L

    1996-01-01

    We studied ten patients with Cystic fibrosis. The purposes of this study were to investigate the presence of gastroesophageal reflux and establish the probable association between gastroesophageal reflux and pulmonary and gastric involvement. All 10 patients underwent 24-hour esophageal pH recording, spirometry and gastric function. Abnormal reflux index was found in all these patients. Lung function was pathologic in the 3 older children. There were no relationship between the severity of the gastroesophageal reflux and the degree of pulmonary damage. No patient has gastric acid hypersecretion. Eight of 10 patients had steatorrhea. Our findings confirm the high frequence of gastroesophageal reflux in cystic fibrosis.

  8. Calcitonin gene-related peptide down-regulates bleomycin-induced pulmonary fibrosis.

    PubMed

    Li, Xian-Wei; Li, Xiao-Hui; Du, Jie; Li, Dai; Li, Yuan-Jian; Hu, Chang-Ping

    2016-12-01

    We have found that eIF3a plays an important role in bleomycin-induced pulmonary fibrosis, and up-regulation of eIF3a induced by TGF-β1 is mediated via the ERK1/2 pathway. Whether ERK1/2 - eIF3a signal pathway is involved in calcitonin gene-related peptide (CGRP)-mediated pathogenesis of bleomycin-induced pulmonary fibrosis remains unknown. Pulmonary fibrosis was induced by intratracheal instillation of bleomycin (5 mg/kg) in rats. Primary pulmonary fibroblasts were cultured to investigate the proliferation by BrdU incorporation method and flow cytometry. Sensory CGRP depletion by capsaicin exacerbated bleomycin-induced pulmonary fibrosis in rats, as shown by a significant disturbed alveolar structure, marked thickening of the interalveolar septa and dense interstitial infiltration by inflammatory cells and fibroblasts, accompanied with increased expression of TGF-β1, eIF3a, phosphorylated ERK1/2, α-SMA, collagen I, and collagen III. Exogenous application of CGRP significantly inhibited TGF-β1-induced proliferation and differentiation of pulmonary fibroblasts concomitantly with decreased expression of eIF3a, phosphorylated ERK1/2, α-SMA, collagen I, and collagen III. These effects of CGRP were abolished in the presence of CGRP8-37. These results suggest that endogenous CGRP is related to the development of pulmonary fibrosis induced by bleomycin, and the inhibitory effect of CGRP on proliferation of lung fibroblasts involves the ERK1/2 - eIF3a signaling pathway.

  9. Differentiation of radiation fibrosis from recurrent pulmonary neoplasm by magnetic resonance imaging

    SciTech Connect

    Glazer, H.S.; Levitt, R.G.; Lee, J.K.T.; Emami, B.; Gronemeyer, S.; Murphy, W.A.

    1984-10-01

    Recent reports have shown the value of magnetic resonance imaging (MRI) in demonstrating normal and abnormal mediastinal and hilar anatomy. The potential role of MRI in evaluating patients who have undergone prior chest irradiation for pulmonary neoplasm has not been emphasized. The MRI appearance of mediastinal fibrosis after treatment of a patient with Hodgkin disease has been illustrated. Although plain chest radiographs and CT can demonstrate radiation-induced changes within the thorax, it is often difficult to distinguish radiation fibrosis from residual tumor. The authors report a case in which MRI differentiated fibrosis from recurrent tumor, thus confirming both the conventional radiographic and CT suspicions of recurrent neoplasm.

  10. Pulmonary fibrosis in asbestos insulation workers with lung cancer: a radiological and histopathological evaluation.

    PubMed Central

    Kipen, H M; Lilis, R; Suzuki, Y; Valciukas, J A; Selikoff, I J

    1987-01-01

    This study was undertaken to determine the relation between radiographic and histological manifestations of pulmonary asbestosis (interstitial fibrosis) in insulation workers who had died of lung cancer. Of 450 confirmed deaths from lung cancer a chest radiograph suitable for determining evidence of pneumoconiosis was obtained in 219. Of these cases, 138 also had a tissue specimen submitted that was suitable for histological study to determine the extent of histological fibrosis. There was a significant albeit limited correlation between the radiographic and histological findings (r = 0.27, p less than 0.0013). All 138 cases had histological evidence of parenchymal fibrosis; in 25 (18%), however, there was no radiographic evidence of parenchymal fibrosis. In 10 cases (7%) both parenchymal and pleural disease were undetectable on the radiograph. Thus a negative chest radiograph does not exclude the presence of interstitial fibrosis (asbestosis) in a substantial proportion of insulation workers previously exposed to asbestos who develop lung cancer. PMID:3814551

  11. Suppression of Expression of Heat Shock Protein 70 by Gefitinib and Its Contribution to Pulmonary Fibrosis

    PubMed Central

    Namba, Takushi; Tanaka, Ken-Ichiro; Hoshino, Tatsuya; Azuma, Arata; Mizushima, Tohru

    2011-01-01

    Drug-induced interstitial lung disease (ILD), particularly pulmonary fibrosis, is of serious clinical concern. Gefitinib, a tyrosine kinase inhibitor of the epidermal growth factor receptor (EGFR), is beneficial as a drug for treating non-small cell lung cancer; however, this drug induces ILD and the molecular mechanisms underpinning this condition remain unclear. We recently reported that expression of heat shock protein 70 (HSP70) protects against bleomycin-induced pulmonary fibrosis, an animal model of pulmonary fibrosis. In this study, we have examined the effects of drugs known to induce ILD clinically on the expression of HSP70 in cultured lung epithelial cells and have found that gefitinib has a suppressive effect. Results of a luciferase reporter assay, pulse-labelling analysis of protein and experiments using an inhibitor of translation or transcription suggest that gefitinib suppresses the expression of HSP70 at the level of translation. Furthermore, the results of experiments with siRNA for Dicer1, an enzyme responsible for synthesis of microRNA, and real-time RT-PCR analysis suggest that some microRNAs are involved in the gefitinib-induced translational inhibition of HSP70. Mutations in the EGFR affect the concentration of gefitinib required for suppressing the expression of HSP70. These results suggest that gefitinib suppresses the translation of HSP70 through an EGFR- and microRNA-mediated mechanism. In vivo, while oral administration of gefitinib suppressed the pulmonary expression of HSP70 and exacerbated bleomycin-induced pulmonary fibrosis in wild-type mice, these effects were not as distinct in transgenic mice expressing HSP70. Furthermore, oral co-administration of geranylgeranylacetone (GGA), an inducer of HSP70, suppressed gefitinib-induced exacerbation of bleomycin-induced pulmonary fibrosis. Taken together, these findings suggest that gefitinib-induced exacerbation of bleomycin-induced pulmonary fibrosis is mediated by suppression of

  12. Elastase modifies bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Trajano, Larissa Alexsandra Silva Neto; Trajano, Eduardo Tavares Lima; Lanzetti, Manuella; Mendonça, Morena Scopel Amorim; Guilherme, Rafael Freitas; Figueiredo, Rodrigo Tinoco; Benjamim, Cláudia Farias; Valenca, Samuel Santos; Costa, Andréa Monte Alto; Porto, Luís Cristóvão

    2016-04-01

    Pulmonary fibrosis (PF) is characterized by excessive accumulation of collagen in the lungs. Emphysema is characterized by loss of the extracellular matrix (ECM) and alveolar enlargement. We studied the co-participation of elastase-induced mild emphysema in bleomycin-induced PF in mice by analyzing oxidative stress, inflammation and lung histology. C57BL/6 mice were divided into four groups: control; bleomycin (0.1U/mouse); elastase (using porcine pancreatic elastase (PPE)+bleomycin (3U/mouse 14 days before 0.1U/mouse of bleomycin; PPE+B); elastase (3U/mouse). Mice were humanely sacrificed 7, 14 and 21 days after treatment with bleomycin or vehicle. PF was observed 14 days and 21 days after bleomycin treatment but was observed after 14 days only in the PPE+B group. In the PPE+B group at 21 days, we observed many alveoli and alveolar septa with few PF areas. We also observed marked and progressive increases of collagens 7, 14 and 21 days after bleomycin treatment whereas, in the PPE+B group, collagen deposition was observed only at 14 days. There was a reduction in activities of the antioxidant enzymes superoxide dismutase (p<0.05), catalase (p<0.01) and glutathione peroxidase (p<0.01) parallel with an increase in nitrite (p<0.01) 21 days after bleomycin treatment compared with the control group. These endpoints were also reduced (p<0.05, p<0.05 and p<0.01, respectively) and increased (p<0.01) in the PPE+B group at 21 days compared with the control group. Interleukin (IL)-1β expression was upregulated (p<0.01) whereas IL-6 was downregulated (p<0.05) in the PPE+B group at 21 days compared with the control group. PF and emphysema did not coexist in our model of lung disease and despite increased levels of oxidative stress and inflammatory markers after combined stimulus (elastase and bleomycin) overall histology was improved to that of the nearest control group.

  13. Pulmonary outcome prediction (POP) tools for cystic fibrosis patients.

    PubMed

    VanDevanter, Donald R; Wagener, Jeffrey S; Pasta, David J; Elkin, Eric; Jacobs, Joan R; Morgan, Wayne J; Konstan, Michael W

    2010-12-01

    Loss of lung function in patients with cystic fibrosis (CF) is associated with increased mortality and varies between individuals and over time. Predicting this decline could improve patient management. To develop simple pulmonary outcome prediction (POP) tools to estimate lung function at age 6 in patients aged 2-5 years (POP(2-5)) and lung function change over a 4-year period in patients aged 6-17 years (POP(6-17)). Analyses were conducted using patients from the Epidemiologic Study of CF (ESCF). To be included in any analysis, patients had to have 1 year of clinical history recorded in ESCF prior to a clinically stable routine Index Clinic Visit (ICV). In addition to this criterion, for the POP(2-5) tool patients had to be between 2 and 5 years old at ICV and have a second clinically stable visit with spirometric measures at age 6. For the POP(6-17) tool, patients had to be between the ages of 6 and 17 years old at an ICV that included spirometric measures and had to have a second clinically stable visit with spirometric measures from 3 to 5 years after ICV. All patients enrolled in ESCF who met these inclusion criteria were studied. POP(2-5) and POP(6-17) populations were further divided into development groups (with ICV before January 1, 1998) and validation groups (with ICV after that date). Development groups were used to model forced expiratory volume in 1 sec (FEV(1)) percent predicted at age 6 years (for POP(2-5)) and annualized FEV(1) % predicted change from ICV to the second visit (for POP(6-17)) by multivariable linear regression using age, sex, weight-for-age percentile, cough, sputum production, clubbing, crackles, wheeze, sinusitis, number of exacerbations requiring intravenous antibiotics in the past year, elevated liver enzymes, pancreatic enzyme use, and respiratory tract culture status, plus height-for-age percentile (POP(2-5)) and index FEV(1) (POP(6-17)). Integer-based POP(2-5) and POP(6-17) tools created from selected variables were

  14. Smoking-related emphysema is associated with idiopathic pulmonary fibrosis and rheumatoid lung.

    PubMed

    Antoniou, Katerina M; Walsh, Simon L; Hansell, David M; Rubens, Michael R; Marten, Katharina; Tennant, Rachel; Hansel, Trevor; Desai, Sujal R; Siafakas, Nikolaos M; du Bois, Roland M; Wells, Athol U

    2013-11-01

    A combined pulmonary fibrosis/emphysema syndrome has been proposed, but the basis for this syndrome is currently uncertain. The aim was to evaluate the prevalence of emphysema in idiopathic pulmonary fibrosis (IPF) and rheumatoid lung (rheumatoid arthritis-interstitial lung disease (RA-ILD)), and to compare the morphological features of lung fibrosis between smokers and non-smokers. Using high-resolution computed tomography, the prevalence of emphysema and the pack-year smoking histories associated with emphysema were compared between current/ex-smokers with IPF (n = 186) or RA-ILD (n = 46), and non-chronic obstructive pulmonary disease (COPD) controls (n = 103) and COPD controls (n = 34). The coarseness of fibrosis was compared between smokers and non-smokers. Emphysema, present in 66/186 (35%) patients with IPF and 22/46 (48%) smokers with RA-ILD, was associated with lower pack-year smoking histories than in control groups (P < 0.05 for all comparisons). The presence of emphysema in IPF was positively linked to the pack-year smoking history (odds ratio 1.04, 95% confidence interval (CI) 1.02-1.06, P < 0.0005). In IPF, fibrosis was coarser in smokers than in non-smokers on univariate and multivariate analysis (P < 0.01 for all comparisons). In RA-ILD, fibrosis was coarser in patients with emphysema but did not differ significantly between smokers and non-smokers. In IPF and RA-ILD, a high prevalence of concurrent emphysema, in association with low pack-year smoking histories, and an association between coarser pulmonary fibrosis and a history of smoking in IPF together provide support for possible pathogenetic linkage to smoking in both diseases. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  15. Inhibitory effect of emodin on bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Chen, Xiao-Hong; Sun, Ren-Shan; Hu, Jian-Ming; Mo, Zi-Yao; Yang, Zi-Feng; Jin, Guang-Yao; Guan, Wen-Da; Zhong, Nan-Shan

    2009-02-01

    1. Currently, there is no satisfactory treatment for pulmonary fibrosis. Emodin, a component in Chinese herbs, has been shown to have an antifibrotic effect on pancreatic fibrosis and liver fibrosis. In the present study, we tested the hypothesis that emodin may attenuate the development of pulmonary fibrosis. 2. Mice were randomly divided into five groups (n = 16 in each). One group was a control group; the remaining four groups were treated with intratracheal instillation of 3 mg/kg bleomycin (BLM). The following day, emodin (5, 10 or 20 mg/kg per day, p.o.) treatment was started for three of the BLM-treated groups and was continued for 21 days. The fourth BLM-treated group (and the control group) received daily 0.5% sodium carboxymethyl cellulose (placebo) by gavage over the same period. 3. Bleomycin challenge provoked severe pulmonary fibrosis, with marked increases in fibrosis fraction, hydroxyproline content and myeloperoxidase activity in lung tissue. Emodin treatment (10 and 20 mg/kg per day, p.o.) attenuated all these biochemical indices, as well as histopathological alterations induced by BLM. Furthermore, in mice injected with BLM, elevated levels of transforming growth factor-beta1, interleukin (IL)-4 and IL-13 were found in bronchoalveolar lavage fluid. These increases were significantly inhibited by 10 and 20 mg/kg per day emodin. 4. In cell culture, exposure of cells to 6.25, 12.5, 25 or 50 micromol/L emodin for 24 h decreased fibroblast proliferation. Treatment of cells with the same concentrations of emodin for 72 h decreased collagen production by fibroblasts. In addition, emodin (6.25, 12.5, 25 or 50 micromol/L) inhibited the steady state expression of alpha1 (I) procollagen and alpha2 (I) procollagen mRNA in a dose-dependent manner. 5. The results of the present study suggest that emodin may be effective in the treatment of pulmonary fibrosis.

  16. Pulmonary fibrosis in workers exposed to non-asbestiform tremolite asbestos minerals.

    PubMed

    Yang, Hsiao-Yu; Shie, Ruei-Hao; Chen, Pau-Chung

    2013-01-01

    Studies of the health effects of non-asbestiform asbestos minerals remain inconclusive. Nephrite is a type of non-asbestiform tremolite mineral. We assessed the risk for pulmonary fibrosis in workers who process nephrite. A cross-sectional study that included 344 stone workers and their families was undertaken in Taiwan in 2010. The diagnostic criteria for pulmonary fibrosis included (1) radiographic fibrosis profusion of 1/1 or greater and (2) audible lung crackles confirmed by physician. The nephrite samples were analyzed using polarized light and transmission electron microscopy combined with selected-area electron diffraction and energy-dispersive x-ray spectroscopy. After excluding 16 subjects with histories of tuberculosis or previous employment in metal casting and welding, as well as 23 family members who had not worked in the stone industry, we analyzed 305 subjects. Processing nephrite increased the risk for pulmonary fibrosis (odds ratio = 2.8 [95% confidence interval = 1.0-9.9] and unchanged after adjustment for age and smoking). Bulk sample analyses showed that the nephrite is a tremolite mineral composed of both asbestiform and non-asbestiform components. The cat's-eye nephrite had the highest asbestiform fibrous content, and the average length and aspect ratio of elongated mineral particles were the highest of all the nephrite types. Compared with workers processing other types of nephrite, workers processing cat's-eye nephrite had the highest risk for pulmonary fibrosis. Processing non-asbestiform tremolite mineral may increase the risk for pulmonary fibrosis. Medical monitoring is warranted for workers with such exposure.

  17. Protective role of andrographolide in bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Zhu, Tao; Zhang, Wei; Xiao, Min; Chen, Hongying; Jin, Hong

    2013-12-03

    Idiopathic pulmonary fibrosis (IPF) is a chronic devastating disease with poor prognosis. Multiple pathological processes, including inflammation, epithelial mesenchymal transition (EMT), apoptosis, and oxidative stress, are involved in the pathogenesis of IPF. Recent findings suggested that nuclear factor-κB (NF-κB) is constitutively activated in IPF and acts as a central regulator in the pathogenesis of IPF. The aim of our study was to reveal the value of andrographolide on bleomycin-induced inflammation and fibrosis in mice. The indicated dosages of andrographolide were administered in mice with bleomycin-induced pulmonary fibrosis. On day 21, cell counts of total cells, macrophages, neutrophils and lymphocytes, alone with TNF-α in bronchoalveolar lavage fluid (BALF) were measured. HE staining and Masson's trichrome (MT) staining were used to observe the histological alterations of lungs. The Ashcroft score and hydroxyproline content of lungs were also measured. TGF-β1 and α-SMA mRNA and protein were analyzed. Activation of NF-κB was determined by western blotting and electrophoretic mobility shift assay (EMSA). On day 21 after bleomycin stimulation, andrographolide dose-dependently inhibited the inflammatory cells and TNF-α in BALF. Meanwhile, our data demonstrated that the Ashcroft score and hydroxyproline content of the bleomycin-stimulated lung were reduced by andrographolide administration. Furthermore, andrographloide suppressed TGF-β1 and α-SMA mRNA and protein expression in bleomycin-induced pulmonary fibrosis. Meanwhile, andrographolide significantly dose-dependently inhibited the ratio of phospho-NF-κB p65/total NF-κB p65 and NF-κB p65 DNA binding activities. Our findings indicate that andrographolide compromised bleomycin-induced pulmonary inflammation and fibrosis possibly through inactivation of NF-κB. Andrographolide holds promise as a novel drug to treat the devastating disease of pulmonary fibrosis.

  18. The role of all-trans retinoic acid in bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Dong, Zhaoxing; Tai, Wenlin; Yang, Yanni; Zhang, Tao; Li, Yongxia; Chai, Yanling; Zhong, Hong; Zou, Hua; Wang, Dianhua

    2012-03-01

    Much evidence suggests that immune imbalance in the lung plays a crucial role in the development of pulmonary fibrosis. Recently, all-trans retinoic acid (ATRA) shifting the regulatory T/T-helper 17 (Treg/Th17) profile had been proven in some diseases. However, to date, the effect of ARTA of pulmonary fibrosis has not been examined from this aspect. The objective of this study was to study the effect of ATRA on bleomycin-induced pulmonary fibrosis in mice and its possible mechanism. Pulmonary fibrosis was induced in C57BL/6 male mice by intratracheal instillation of bleomycin (5 mg.kg(-1)), which were randomly divided into control, bleomycin, and ATRA groups. Five mice in each group were sacrificed on day 28 after intratracheal instillation. Hemotoxylin and eosin (H&E) and Masson staining were used for pathological examination, and hydroxyproline in lung tissue was measured. Interleukin (IL)-17A protein expression was observed in lung with immunohistochemistry. The expression of IL-17A, IL-10, IL-6, and transforming growth factor (TGF)-β mRNAs were detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Th17 and Treg expression in spleen lymphocytes were measured by flow cytometry. H&E and masson staining and expression of hydroxyproline showed that ATRA significantly alleviated lung fibrosis than in the bleomycin group. The expression of IL-17A, IL-10, IL-6, and TGF-β mRNAs were higher in the bleomycin group than in the normal group. ATRA can decrease these cytokines except for IL-10. CD4+CD25+ Treg cell ratio in the bleomycin group was significantly lower than normal, but CD4+IL-17+ T cells was higher; ARTA reversed this kind of expression. ATRA may ease the bleomycin-induced pulmonary fibrosis by inhibiting the expression of IL-6 and TGF-β, shifting the Treg/Th17 ratio and reducing the secretion of IL-17A.

  19. Simvastatin impairs the induction of pulmonary fibrosis caused by a western style diet: a preliminary study

    PubMed Central

    Kruzliak, Peter; Hare, David L; Zvonicek, Vaclav; Klimas, Jan; Zulli, Anthony

    2015-01-01

    The role of an atherogenic diet in causing pulmonary fibrosis has received little attention and simvastatin has been shown to reduce pulmonary fibrosis in animal models. To determine if an atherogenic diet can induce pulmonary fibrosis and whether simvastatin treatment is beneficial by up-regulating heat shock protein 70 and 90. New Zealand white rabbits (n = 15) were divided: Group 1 (control); Group 2 (MC) received a normal rabbit diet with 1% methionine plus 0.5% cholesterol (atherogenic diet). Group 3 received the same diet as the MC group plus 5 mg/kg/day simvastatin orally (MCS). After 4 weeks, the lungs were collected and analysed. Picrosirus red staining of lung interstitial collagen content showed that the atherogenic diet increased fibrosis 2.9-fold (P < 0.05), bronchiole adventitial collagen was increased 2.3-fold (P < 0.05) and bronchiole epithelium was increased 34-fold (P < 0.05), and simvastatin treatment severely reduced this effect (P < 0.05). Western blot analysis showed that the atherogenic diet significantly reduced lung Hsp70 protein by 22% (P < 0.05) and Hsp90 protein by 18% (P < 0.05) and simvastatin treatment did not affect this result. However, aortic hyper-responsiveness to vasoconstrictors (angiotensin II and phenylephrine) were markedly reduced by simvastatin treatment. We report that an atherogenic diet stimulates pulmonary fibrosis and reduces lung Hsp70/Hsp90 protein concentration. Simvastatin impairs this by mechanisms unrelated to Hsp70/Hsp90, but possibly a reduction in angiotensin II receptor or alpha adrenergic receptor pathways. These results could have implications in idiopathic pulmonary fibrosis. PMID:26304628

  20. Lung Cancer in Patients With Combined Pulmonary Fibrosis and Emphysema and Idiopathic Pulmonary Fibrosis. A Descriptive Study in a Spanish Series.

    PubMed

    Portillo, Karina; Perez-Rodas, Nancy; García-Olivé, Ignasi; Guasch-Arriaga, Ignasi; Centeno, Carmen; Serra, Pere; Becker-Lejuez, Caroline; Sanz-Santos, José; Andreo García, Felip; Ruiz-Manzano, Juan

    2017-06-01

    Information on the association of lung cancer (LC) and combined pulmonary fibrosis and emphysema (CPFE) is limited and derived almost exclusively from series in Asian populations. The main objective of the study was to assess the impact of LC on survival in CPFE patients and in patients with idiopathic pulmonary fibrosis (IPF). A retrospective study was performed with data from patients with CFPE and IPF diagnosed in our hospital over a period of 5 years. Sixty-six patients were included, 29 with CPFE and 37 with IPF. Nine had a diagnosis of LC (6 with CPFE and 3 with IPF). Six patients (67%) received palliative treatment even though 3 of them were diagnosed atstage i-ii. Overall mortality did not differ significantly between groups; however, in patients with LC, survival was significantly lower compared to those without LC (P=.044). The most frequent cause of death was respiratory failure secondary to pulmonary fibrosis exacerbation (44%). In a multivariate analysis, the odds ratio of death among patients with LC compared to patients without LC was 6.20 (P=.037, 95% confidence interval: 1.11 to 34.48). Lung cancer reduces survival in both entities. The diagnostic and therapeutic management of LC is hampered by the increased risk of complications after any treatment modality, even after palliative treatment. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Impact of a CXCL12/CXCR4 Antagonist in Bleomycin (BLM) Induced Pulmonary Fibrosis and Carbon Tetrachloride (CCl4) Induced Hepatic Fibrosis in Mice

    PubMed Central

    Chow, Leola N.; Schreiner, Petra; Ng, Betina Y. Y.; Lo, Bernard; Hughes, Michael R.; Scott, R. Wilder; Gusti, Vionarica; Lecour, Samantha; Simonson, Eric; Manisali, Irina; Barta, Ingrid; McNagny, Kelly M.; Crawford, Jason; Webb, Murray; Underhill, T. Michael

    2016-01-01

    Modulation of chemokine CXCL12 and its receptor CXCR4 has been implicated in attenuation of bleomycin (BLM)-induced pulmonary fibrosis and carbon tetrachloride (CCl4)-induced hepatic injury. In pulmonary fibrosis, published reports suggest that collagen production in the injured lung is derived from fibrocytes recruited from the circulation in response to release of pulmonary CXCL12. Conversely, in hepatic fibrosis, resident hepatic stellate cells (HSC), the key cell type in progression of fibrosis, upregulate CXCR4 expression in response to activation. Further, CXCL12 induces HSC proliferation and subsequent production of collagen I. In the current study, we evaluated AMD070, an orally bioavailable inhibitor of CXCL12/CXCR4 in alleviating BLM-induced pulmonary and CCl4-induced hepatic fibrosis in mice. Similar to other CXCR4 antagonists, treatment with AMD070 significantly increased leukocyte mobilization. However, in these two models of fibrosis, AMD070 had a negligible impact on extracellular matrix deposition. Interestingly, our results indicated that CXCL12/CXCR4 signaling has a role in improving mortality associated with BLM induced pulmonary injury, likely through dampening an early inflammatory response and/or vascular leakage. Together, these findings indicate that the CXCL12-CXCR4 signaling axis is not an effective target for reducing fibrosis. PMID:26998906

  2. Impact of a CXCL12/CXCR4 Antagonist in Bleomycin (BLM) Induced Pulmonary Fibrosis and Carbon Tetrachloride (CCl4) Induced Hepatic Fibrosis in Mice.

    PubMed

    Chow, Leola N; Schreiner, Petra; Ng, Betina Y Y; Lo, Bernard; Hughes, Michael R; Scott, R Wilder; Gusti, Vionarica; Lecour, Samantha; Simonson, Eric; Manisali, Irina; Barta, Ingrid; McNagny, Kelly M; Crawford, Jason; Webb, Murray; Underhill, T Michael

    2016-01-01

    Modulation of chemokine CXCL12 and its receptor CXCR4 has been implicated in attenuation of bleomycin (BLM)-induced pulmonary fibrosis and carbon tetrachloride (CCl4)-induced hepatic injury. In pulmonary fibrosis, published reports suggest that collagen production in the injured lung is derived from fibrocytes recruited from the circulation in response to release of pulmonary CXCL12. Conversely, in hepatic fibrosis, resident hepatic stellate cells (HSC), the key cell type in progression of fibrosis, upregulate CXCR4 expression in response to activation. Further, CXCL12 induces HSC proliferation and subsequent production of collagen I. In the current study, we evaluated AMD070, an orally bioavailable inhibitor of CXCL12/CXCR4 in alleviating BLM-induced pulmonary and CCl4-induced hepatic fibrosis in mice. Similar to other CXCR4 antagonists, treatment with AMD070 significantly increased leukocyte mobilization. However, in these two models of fibrosis, AMD070 had a negligible impact on extracellular matrix deposition. Interestingly, our results indicated that CXCL12/CXCR4 signaling has a role in improving mortality associated with BLM induced pulmonary injury, likely through dampening an early inflammatory response and/or vascular leakage. Together, these findings indicate that the CXCL12-CXCR4 signaling axis is not an effective target for reducing fibrosis.

  3. Quantitative CT analysis of honeycombing area in idiopathic pulmonary fibrosis: Correlations with pulmonary function tests.

    PubMed

    Nakagawa, Hiroaki; Nagatani, Yukihiro; Takahashi, Masashi; Ogawa, Emiko; Tho, Nguyen Van; Ryujin, Yasushi; Nagao, Taishi; Nakano, Yasutaka

    2016-01-01

    The 2011 official statement of idiopathic pulmonary fibrosis (IPF) mentions that the extent of honeycombing and the worsening of fibrosis on high-resolution computed tomography (HRCT) in IPF are associated with the increased risk of mortality. However, there are few reports about the quantitative computed tomography (CT) analysis of honeycombing area. In this study, we first proposed a computer-aided method for quantitative CT analysis of honeycombing area in patients with IPF. We then evaluated the correlations between honeycombing area measured by the proposed method with that estimated by radiologists or with parameters of PFTs. Chest HRCTs and pulmonary function tests (PFTs) of 36 IPF patients, who were diagnosed using HRCT alone, were retrospectively evaluated. Two thoracic radiologists independently estimated the honeycombing area as Identified Area (IA) and the percentage of honeycombing area to total lung area as Percent Area (PA) on 3 axial CT slices for each patient. We also developed a computer-aided method to measure the honeycombing area on CT images of those patients. The total honeycombing area as CT honeycombing area (HA) and the percentage of honeycombing area to total lung area as CT %honeycombing area (%HA) were derived from the computer-aided method for each patient. HA derived from three CT slices was significantly correlated with IA (ρ=0.65 for Radiologist 1 and ρ=0.68 for Radiologist 2). %HA derived from three CT slices was also significantly correlated with PA (ρ=0.68 for Radiologist 1 and ρ=0.70 for Radiologist 2). HA and %HA derived from all CT slices were significantly correlated with FVC (%pred.), DLCO (%pred.), and the composite physiologic index (CPI) (HA: ρ=-0.43, ρ=-0.56, ρ=0.63 and %HA: ρ=-0.60, ρ=-0.49, ρ=0.69, respectively). The honeycombing area measured by the proposed computer-aided method was correlated with that estimated by expert radiologists and with parameters of PFTs. This quantitative CT analysis of

  4. Idiopathic Pulmonary Fibrosis: Data-driven Textural Analysis of Extent of Fibrosis at Baseline and 15-Month Follow-up.

    PubMed

    Humphries, Stephen M; Yagihashi, Kunihiro; Huckleberry, Jason; Rho, Byung-Hak; Schroeder, Joyce D; Strand, Matthew; Schwarz, Marvin I; Flaherty, Kevin R; Kazerooni, Ella A; van Beek, Edwin J R; Lynch, David A

    2017-10-01

    Purpose To evaluate associations between pulmonary function and both quantitative analysis and visual assessment of thin-section computed tomography (CT) images at baseline and at 15-month follow-up in subjects with idiopathic pulmonary fibrosis (IPF). Materials and Methods This retrospective analysis of preexisting anonymized data, collected prospectively between 2007 and 2013 in a HIPAA-compliant study, was exempt from additional institutional review board approval. The extent of lung fibrosis at baseline inspiratory chest CT in 280 subjects enrolled in the IPF Network was evaluated. Visual analysis was performed by using a semiquantitative scoring system. Computer-based quantitative analysis included CT histogram-based measurements and a data-driven textural analysis (DTA). Follow-up CT images in 72 of these subjects were also analyzed. Univariate comparisons were performed by using Spearman rank correlation. Multivariate and longitudinal analyses were performed by using a linear mixed model approach, in which models were compared by using asymptotic χ(2) tests. Results At baseline, all CT-derived measures showed moderate significant correlation (P < .001) with pulmonary function. At follow-up CT, changes in DTA scores showed significant correlation with changes in both forced vital capacity percentage predicted (ρ = -0.41, P < .001) and diffusing capacity for carbon monoxide percentage predicted (ρ = -0.40, P < .001). Asymptotic χ(2) tests showed that inclusion of DTA score significantly improved fit of both baseline and longitudinal linear mixed models in the prediction of pulmonary function (P < .001 for both). Conclusion When compared with semiquantitative visual assessment and CT histogram-based measurements, DTA score provides additional information that can be used to predict diminished function. Automatic quantification of lung fibrosis at CT yields an index of severity that correlates with visual assessment and functional change in subjects with IPF

  5. A novel segmental challenge model for bleomycin-induced pulmonary fibrosis in sheep.

    PubMed

    Organ, Louise; Bacci, Barbara; Koumoundouros, Emmanuel; Barcham, Garry; Kimpton, Wayne; Nowell, Cameron J; Samuel, Chrishan; Snibson, Ken

    2015-04-01

    Idiopathic Pulmonary fibrosis (IPF) is a fatal respiratory disease, characterized by a progressive fibrosis and worsening lung function. While the outcomes of recent clinical trials have resulted in therapies to slow the progression of the disease, there is still a need to develop alternative therapies, which are able to prevent fibrosis. This study uses a segmental lung infusion of bleomycin (BLM) to investigate pulmonary fibrosis in a physiologically relevant large animal species. Two separate lung segments in eight sheep received two fortnightly challenges of either 3U or 30U BLM per segment, and a third segment received saline (control). Lung function was assessed using a wedged-bronchoscope procedure. Bronchoalveolar lavage fluid and lung tissue were assessed for inflammation, fibrosis and collagen content two weeks after the final dose of BLM. Instillation of both BLM doses resulted in prominent fibrosis in the treated lobes. More diffuse fibrosis and loss of alveolar airspace was observed in high-dose BLM-treated segments, while multifocal fibrosis was seen in low-dose BLM-treated segments. Extensive and disorganised collagen deposition occurred in the BLM-treated lobes, compared to controls. Significant loss of lung compliance was also observed in the BLM-treated lobes, which did not occur in controls. Fibrosis comparable to IPF was induced into isolated lung segments, without compromising the respiratory functioning of the animal. This model may have potential for investigating novel therapies for IPF by allowing direct comparison of multiple treatments with internal controls, and sampling and drug delivery that are clinically relevant.

  6. Calcium-binding protein S100A4 confers mesenchymal progenitor cell fibrogenicity in idiopathic pulmonary fibrosis

    PubMed Central

    Xia, Hong; Gilbertsen, Adam; Herrera, Jeremy; Racila, Emilian; Peterson, Mark; Griffin, Timothy; Benyumov, Alexey; Yang, Libang; Bitterman, Peter B.; Henke, Craig A.

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease with a prevalence of 1 million persons worldwide. The fibrosis spreads from affected alveoli into contiguous alveoli and leads to death by asphyxiation. We previously discovered that the IPF lung harbors fibrogenic mesenchymal progenitor cells (MPCs) that serve as a cell of origin for disease-mediating myofibroblasts. In a prior genomewide transcriptional analysis, we found that IPF MPCs displayed increased expression of S100 calcium-binding A4 (S100A4), a protein linked to cancer cell proliferation and invasiveness. Here, we have examined whether S100A4 mediates MPC fibrogenicity. Ex vivo analysis revealed that IPF MPCs had increased levels of nuclear S100A4, which interacts with L-isoaspartyl methyltransferase to promote p53 degradation and MPC self-renewal. In vivo, injection of human IPF MPCs converted a self-limited bleomycin-induced mouse model of lung fibrosis to a model of persistent fibrosis in an S100A4-dependent manner. S100A4 gain of function was sufficient to confer fibrotic properties to non-IPF MPCs. In IPF tissue, fibroblastic foci contained cells expressing Ki67 and the MPC markers SSEA4 and S100A4. The expression colocalized in an interface region between myofibroblasts in the focus core and normal alveolar structures, defining this region as an active fibrotic front. Our findings indicate that IPF MPCs are intrinsically fibrogenic and that S100A4 confers MPCs with fibrogenicity. PMID:28530639

  7. The increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells

    PubMed Central

    2013-01-01

    Background The excess and persistent accumulation of fibroblasts due to aberrant tissue repair results in fibrotic diseases such as idiopathic pulmonary fibrosis. Recent reports have revealed significant changes in microRNAs during idiopathic pulmonary fibrosis and evidence in support of a role for microRNAs in myofibroblast differentiation and the epithelial-mesenchymal transition in the context of fibrosis. It has been reported that microRNA-21 is up-regulated in myofibroblasts during fibrosis and promotes transforming growth factor-beta signaling by inhibiting Smad7. However, expression changes in microRNA-21 and the role of microRNA-21 in epithelial-mesenchymal transition during lung fibrosis have not yet been defined. Methods Lungs from saline- or bleomycin-treated C57BL/6 J mice and lung specimens from patients with idiopathic pulmonary fibrosis were analyzed. Enzymatic digestions were performed to isolate single lung cells. Lung epithelial cells were isolated by flow cytometric cell sorting. The expression of microRNA-21 was analyzed using both quantitative PCR and in situ hybridization. To induce epithelial-mesenchymal transition in culture, isolated mouse lung alveolar type II cells were cultured on fibronectin-coated chamber slides in the presence of transforming growth factor-β, thus generating conditions that enhance epithelial-mesenchymal transition. To investigate the role of microRNA-21 in epithelial-mesenchymal transition, we transfected cells with a microRNA-21 inhibitor. Total RNA was isolated from the freshly isolated and cultured cells. MicroRNA-21, as well as mRNAs of genes that are markers of alveolar epithelial or mesenchymal cell differentiation, were quantified using quantitative PCR. Results The lung epithelial cells isolated from the bleomycin-induced lung fibrosis model system had decreased expression of epithelial marker genes, whereas the expression of mesenchymal marker genes was increased. MicroRNA-21 was significantly upregulated

  8. Role of eukaryotic translation initiation factor 3a in bleomycin-induced pulmonary fibrosis.

    PubMed

    Li, Xian-Wei; Wu, Yue-Han; Li, Xiao-Hui; Li, Dai; Du, Jie; Hu, Chang-Ping; Li, Yuan-Jian

    2015-02-15

    Eukaryotic translation initiation factor 3a (eIF3a) is a multifunctional protein and plays an important role in regulation of cellular function including proliferation and differentiation. In the present study, we tested the function of eIF3a in pulmonary fibrosis. Pulmonary fibrosis was induced by intratracheal instillation of bleomycin (5mg/kg) in rats. Primary pulmonary fibroblasts were cultured for proliferation investigation by BrdU incorporation method and flow cytometry. The expression/level of eIF3a, TGF-β1, ERK1/2 and α-SMA were analyzed by ELISA, real-time PCR or western blot. Results showed that the expression of eIF3a was obviously increased in lungs of pulmonary fibrosis rats accompanied by up-regulation of α-SMA and collagens. In cultured pulmonary fibroblasts, application of exogenous TGF-β1 induced cell proliferation and differentiation concomitantly with up-regulation of eIF3a expression and ERK1/2 phosphorylation. The effects of TGF-β1-induced proliferation of fibroblasts and up-regulation of α-SMA were abolished by eIF3a siRNA. TGF-β1-induced eIF3a expression was reversed in the presence of PD98059, an inhibitor of ERK1/2. These findings suggest that eIF3a plays an important role in bleomycin-induced pulmonary fibrosis by regulating pulmonary fibroblasts׳ function, and up-regulation of eIF3a induced by TGF-β1 is mediated via the ERK1/2 pathway.

  9. Anti-profibrotic effects of artesunate on bleomycin-induced pulmonary fibrosis in Sprague Dawley rats.

    PubMed

    Wang, Changming; Xuan, Xiuping; Yao, Wenmin; Huang, Guojin; Jin, Junfei

    2015-07-01

    The present study aimed to determine whether artesunate has beneficial effects on bleomycin-induced pulmonary fibrosis in rats and to examine the possible mechanisms underlying these effects. All experiments were performed with male Sprague Dawley rats weighing 180-250 g. Animals were randomly divided into four experimental groups that were administered either saline alone, artesunate alone, bleomycin alone or bleomycin + artesunate. Lung histopathology was investigated by hematoxylin and eosin staining and Masson staining. Lung profibrotic molecules were analyzed by reverse transcription polymerase chain reaction, immunoblotting and immunohistochemistry. In rats treated with artesunate, pulmonary fibrosis induced by bleomycin was significantly reduced. Administration of artesunate significantly improved bleomycin-induced morphological alterations. Profibrotic molecules, including transforming growth factor-β1, Smad3, heat shock protein 47, α-smooth muscle actin and collagen type I were also reduced by artesunate. These findings suggest that artesunate improves bleomycin-induced pulmonary fibrosis pathology in rats possibly by inhibiting profibrotic molecules associated with pulmonary fibrosis.

  10. IDENTIFICATION AND CHARACTERIZATION OF AN IDIOPATHIC PULMONARY FIBROSIS-LIKE CONDITION IN CATS

    EPA Science Inventory

    Interstitial lung diseases are a heterogeneous group of disorders due to a variety of causes. In veterinary medicine, those with a prominent fibrotic component of unknown etiology are often called idiopathic pulmonary fibrosis (IPF). In human medicine, this term is reserved for ...

  11. Pulmonary interstitial fibrosis with evidence of aflatoxin B1 in lung tissue

    SciTech Connect

    Dvorackova, I.; Pichova, V.

    1986-01-01

    Three cases of pulmonary interstitial fibrosis, two in agricultural workers and one in a textile worker, are reported. In lung samples of all three patients the presence of aflatoxin B1 was demonstrated by radioimmunoassay (RIA). A possible occupational risk of aflatoxin exposure via the respiratory tract is suggested.

  12. Prostaglandin D2 Attenuates Bleomycin-Induced Lung Inflammation and Pulmonary Fibrosis

    PubMed Central

    Omori, Keisuke; Nakamura, Tatsuro; Maehara, Toko; Aritake, Kosuke; Urade, Yoshihiro; Murata, Takahisa

    2016-01-01

    Pulmonary fibrosis is a progressive and fatal lung disease with limited therapeutic options. Although it is well known that lipid mediator prostaglandins are involved in the development of pulmonary fibrosis, the role of prostaglandin D2 (PGD2) remains unknown. Here, we investigated whether genetic disruption of hematopoietic PGD synthase (H-PGDS) affects the bleomycin-induced lung inflammation and pulmonary fibrosis in mouse. Compared with H-PGDS naïve (WT) mice, H-PGDS-deficient mice (H-PGDS-/-) represented increased collagen deposition in lungs 14 days after the bleomycin injection. The enhanced fibrotic response was accompanied by an increased mRNA expression of inflammatory mediators, including tumor necrosis factor-α, monocyte chemoattractant protein-1, and cyclooxygenase-2 on day 3. H-PGDS deficiency also increased vascular permeability on day 3 and infiltration of neutrophils and macrophages in lungs on day 3 and 7. Immunostaining showed that the neutrophils and macrophages expressed H-PGDS, and its mRNA expression was increased on day 3and 7 in WT lungs. These observations suggest that H-PGDS-derived PGD2 plays a protective role in bleomycin-induced lung inflammation and pulmonary fibrosis. PMID:27992456

  13. IDENTIFICATION AND CHARACTERIZATION OF AN IDIOPATHIC PULMONARY FIBROSIS-LIKE CONDITION IN CATS

    EPA Science Inventory

    Interstitial lung diseases are a heterogeneous group of disorders due to a variety of causes. In veterinary medicine, those with a prominent fibrotic component of unknown etiology are often called idiopathic pulmonary fibrosis (IPF). In human medicine, this term is reserved for ...

  14. A rare case of cor pulmonale secondary to idiopathic pulmonary fibrosis in Nigeria.

    PubMed

    Anakwue, Raphael Chinedu; Chijioke, Chioli Paschal; Iloanusi, Nneka Ifeyinwa

    2011-06-29

    Idiopathic pulmonary fibrosis (IPF) is a rarely reported disease in Nigeria. Cor pulmonale, one of the complications of this type of diffuse parenchymal lung disease is even rarer. The authors present a Nigerian patient with IPF with a classical high-resolution CT features, managed in our centre together with associated problems.

  15. Mechanisms of carbon nanotube-induced pulmonary fibrosis: a physicochemical characteristic perspective.

    PubMed

    Duke, Katherine S; Bonner, James C

    2017-10-06

    Carbon nanotubes (CNTs) are engineered nanomaterials (ENMs) with numerous beneficial applications. However, they could pose a risk to human health from occupational or consumer exposures. Rodent models demonstrate that exposure to CNTs via inhalation, instillation, or aspiration results in pulmonary fibrosis. The severity of the fibrogenic response is determined by various physicochemical properties of the nanomaterial such as residual metal catalyst content, rigidity, length, aggregation status, or surface charge. CNTs are also increasingly functionalized post-synthesis with organic or inorganic agents to modify or enhance surface properties. The mechanisms of CNT-induced fibrosis involve oxidative stress, innate immune responses of macrophages, cytokine and growth factor production, epithelial cell injury and death, expansion of the pulmonary myofibroblast population, and consequent extracellular matrix accumulation. A comprehensive understanding of how physicochemical properties affect the fibrogenic potential of various types of CNTs should be considered in combination with genetic variability and gain or loss of function of specific genes encoding secreted cytokines, enzymes, or intracellular cell signaling molecules. Here, we cover the current state of the literature on mechanisms of CNT-exposed pulmonary fibrosis in rodent models with a focus on physicochemical characteristics as principal drivers of the mechanisms leading to pulmonary fibrosis. For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  16. Acute exacerbation of idiopathic pulmonary fibrosis associated with air pollution exposure.

    PubMed

    Johannson, Kerri A; Vittinghoff, Eric; Lee, Kiyoung; Balmes, John R; Ji, Wonjun; Kaplan, Gilaad G; Kim, Dong Soon; Collard, Harold R

    2014-04-01

    Acute exacerbations of idiopathic pulmonary fibrosis are associated with high mortality and are of unknown cause. The effect of air pollution on exacerbations of interstitial lung disease is unknown. This study aims to define the association of air pollution exposure with acute exacerbation of idiopathic pulmonary fibrosis. Patients with idiopathic pulmonary fibrosis and corresponding air pollution data were identified from a longitudinal cohort. Air pollution exposures were assigned to each patient for ozone, nitrogen dioxide, particulate matter, sulfur dioxide and carbon monoxide based on geo-coded residential addresses. Cox proportional hazards models were used to estimate the association of air pollution exposures and acute exacerbations. Acute exacerbation was significantly associated with antecedent 6-week increases in mean level, maximum level and number of exceedances above accepted standards of ozone (hazard ratio (HR) 1.57, 95% CI 1.09-2.24; HR 1.42, 95% CI 1.11-1.82; and HR 1.51, 95% CI 1.17-1.94, respectively) and nitrogen dioxide (HR 1.41, 95% CI 1.04-1.91; HR 1.27, 95% CI 1.01-1.59; and HR 1.20, 95% CI 1.10-1.31, respectively). Increased ozone and nitrogen dioxide exposure over the preceding 6 weeks was associated with an increased risk of acute exacerbation of idiopathic pulmonary fibrosis, suggesting that air pollution may contribute to the development of this clinically meaningful event.

  17. A familial history of pulmonary fibrosis in patients with chronic hypersensitivity pneumonitis.

    PubMed

    Okamoto, Tsukasa; Miyazaki, Yasunari; Tomita, Makoto; Tamaoka, Meiyo; Inase, Naohiko

    2013-01-01

    Hypersensitivity pneumonitis (HP) is an immunologically mediated lung disease induced by the inhalation of a variety of antigens. Patients with chronic HP often have a family history of pulmonary fibrosis. This strongly suggests that both genetic and environmental factors play an important role in the pathogenesis of chronic HP. We aimed to investigate the epidemiology and clinical features of chronic HP patients with a family history of pulmonary fibrosis. We retrospectively reviewed the clinical information of 114 cases diagnosed with chronic HP with insidious onset between 1992 and 2009. Twenty cases (17.5%) were identified as having a family history of pulmonary fibrosis. All of these patients had lived apart from their afflicted relatives for at least several decades. The familial cases were younger than the nonfamilial cases at onset (57.5 ± 9.6 vs. 64.0 ± 7.0 years old, p = 0.008). The predicted vital capacity percentage and partial pressure of oxygen in arterial blood gas were significantly higher in the familial cases. There were no differences between the 2 groups in gender, smoking history, bronchoalveolar lavage fluid profile, radiologic findings or other clinical features. We found a familial clustering in patients with chronic HP. Various factors including genetic susceptibility to pulmonary fibrosis and environmental factors may contribute to the development of familial chronic HP. Copyright © 2012 S. Karger AG, Basel.

  18. Understanding and optimizing health-related quality of life and physical functional capacity in idiopathic pulmonary fibrosis

    PubMed Central

    Olson, Amy L; Brown, Kevin K; Swigris, Jeffrey J

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive pulmonary disease characterized by the insidious onset of shortness of breath due to parenchymal scarring. As IPF progresses, breathlessness worsens, physical functional capacity declines, and health-related quality of life (HRQL) – the impact of health or disease on a person’s satisfaction with their overall station in life – deteriorates. These two inextricably linked variables – breathlessness and physical functional capacity – are strong drivers of HRQL. With the emergence of new and prospective therapies for IPF, it is more important than ever to be able to accurately and reliably assess how IPF patients feel and function. Doing so will promote the development of novel interventions to target impairments in these areas and ensure that the field is capable of assessing the effect of therapeutics interventions on these critically important patient-centered outcomes. PMID:27274328

  19. Effects of sildenafil on pulmonary hypertension and exercise tolerance in severe cystic fibrosis-related lung disease.

    PubMed

    Montgomery, Gregory S; Sagel, Scott D; Taylor, Amy L; Abman, Steven H

    2006-04-01

    Cystic fibrosis (CF) patients with advanced lung disease are at risk for developing pulmonary vascular disease and pulmonary hypertension, characterized by progressive exercise intolerance beyond the exercise-limiting effects of airways disease in CF. We report on a patient with severe CF lung disease who experienced clinically significant improvements in exercise tolerance and pulmonary hypertension without changing lung function during sildenafil therapy.

  20. A case of acute exacerbation of idiopathic pulmonary fibrosis after proton beam therapy for non-small cell lung cancer.

    PubMed

    Nagano, Tatsuya; Kotani, Yoshikazu; Fujii, Osamu; Demizu, Yusuke; Niwa, Yasue; Ohno, Yoshiharu; Nishio, Wataru; Itoh, Tomoo; Murakami, Masao; Nishimura, Yoshihiro

    2012-10-01

    There have been no reports describing acute exacerbations of idiopathic pulmonary fibrosis after particle radiotherapy for non-small cell lung cancer. The present study describes the case of a 76-year-old Japanese man with squamous cell carcinoma of the lung that relapsed in the left upper lobe 1 year after right upper lobectomy. He had been treated with oral prednisolone 20 mg/day every 2 days for idiopathic pulmonary fibrosis, and the relapsed lung cancer was treated by proton beam therapy, which was expected to cause the least adverse effects on the idiopathic pulmonary fibrosis. Fifteen days after the initiation of proton beam therapy, the idiopathic pulmonary fibrosis exacerbated, centered on the left upper lobe, for which intensive steroid therapy was given. About 3 months later, the acute exacerbation of idiopathic pulmonary fibrosis had improved, and the relapsed lung cancer became undetectable. Clinicians should be aware that an acute exacerbation of idiopathic pulmonary fibrosis may occur even in proton beam therapy, although proton beam therapy appears to be an effective treatment option for patients with idiopathic pulmonary fibrosis.

  1. Severity of lung fibrosis affects early surgical outcomes of lung cancer among patients with combined pulmonary fibrosis and emphysema.

    PubMed

    Mimae, Takahiro; Suzuki, Kenji; Tsuboi, Masahiro; Ikeda, Norihiko; Takamochi, Kazuya; Aokage, Keiju; Shimada, Yoshihisa; Miyata, Yoshihiro; Okada, Morihito

    2016-07-01

    Combined pulmonary fibrosis and emphysema (CPFE) is defined as upper lobe emphysema and lower lobe fibrosis, which are representative lung disorders that increase the prevalence of lung cancer. This unique disorder may affect the morbidity and mortality during the early period after surgery. The present study aimed to identify which clinicopathological features significantly affect early surgical outcomes after lung resection in nonsmall cell lung cancer (NSCLC) patients and in those with CPFE.We retrospectively assessed 2295 patients with NSCLC and found that 151 (6.6%) had CPFE. All were surgically treated between January 2008 and December 2010 at 4 institutions.The postoperative complication rates for patients with and without CPFE were 39% and 17%, respectively. The 90-day mortality rates were higher among patients with than without CPFE (7.9% vs 1%). Acute exacerbation of interstitial pneumonia was the main cause of death among 12 patients with CPFE who died within 90 days after surgery. Multivariate logistic regression analysis selected CPFE, gender, age, and clinical stage as independent predictive factors for postoperative complications, and CPFE, clinical stage, and sex for 90-day mortality. The severity of lung fibrosis on preoperative CT images was an independent predictive factor for 90-day mortality among patients with CPFE.The key predictive factor for postoperative mortality and complications of lung resection for NSCLC was CPFE. The severity of lung fibrosis was the principal predictor of early outcomes after lung surgery among patients with CPFE and NSCLC.

  2. Ultramicronized palmitoylethanolamide (PEA-um(®)) in the treatment of idiopathic pulmonary fibrosis.

    PubMed

    Di Paola, Rosanna; Impellizzeri, Daniela; Fusco, Roberta; Cordaro, Marika; Siracusa, Rosalba; Crupi, Rosalia; Esposito, Emanuela; Cuzzocrea, Salvatore

    2016-09-01

    Pulmonary fibrosis is a chronic condition characterized by progressive scarring of lung parenchyma. The aim of this study was to examine the effects of an ultramicronized preparation of palmitoylethanolamide (PEA-um(®)), an endogenous fatty acid amide, in mice subjected to idiopathic pulmonary fibrosis. Idiopathic pulmonary fibrosis was induced in male mice by a single intratracheal administration of saline with bleomycin sulphate (1mg/kg body weight) in a volume of 100μL. PEA-um(®) was injected intraperitoneally at 1, 3 or 10mg/kg 1h after bleomycin instillation and daily thereafter. Animals were sacrificed after 7 and 21days by pentobarbitone overdose. One cohort of mice was sacrificed after seven days of bleomycin administration, followed by bronchoalveloar lavage and determination of myeloperoxidase activity, lung edema and histopathology features. In the 21-day cohort, mortality was assessed daily, and surviving mice were sacrificed followed by the above analyses together with immunohistochemical localization of CD8, tumor necrosis factor-α, CD4, interleukin-1β, transforming growth factor-β, inducible nitric oxide synthase and basic fibroblast growth factor. Compared to bleomycin-treated mice, animals that received also PEA-um(®) (3 or 10mg/kg) had significantly decreased weight loss, mortality, inflammation, lung damage at the histological level, and lung fibrosis at 7 and 21days. PEA-um(®) (1mg/kg) did not significantly inhibit the inflammation response and lung fibrosis. This study demonstrates that PEA-um(®) (3 and 10mg/kg) reduces the extent of lung inflammation in a mouse model of idiopathic pulmonary fibrosis.

  3. ROS-induced endothelial stress contributes to pulmonary fibrosis through pericytes and Wnt signaling.

    PubMed

    Andersson-Sjöland, Annika; Karlsson, Jenny C; Rydell-Törmänen, Kristina

    2016-02-01

    Pulmonary fibrosis is a grave diagnosis with insidious progression, generally considered as a consequence of aberrant epithelial wound healing and excessive scarring. This process is commonly modeled in animals by local bleomycin administration, resulting in peribronchial inflammation and subsequent fibrosis. We have previously described initiation and early development of distal pulmonary fibrosis following repeated subcutaneous bleomycin injections (systemic administration). The aim of this study was to identify mechanisms for the development of pulmonary fibrosis, which we hypothesize is related to endothelial stress and activation. Bleomycin was administered subcutaneously 3 times/week during 0.33-4w, and parenchymal alterations were studied. In addition, we used microvascular endothelial cells to investigate effects of bleomycin in vitro. Our results confirmed that systemic administration of bleomycin exerts oxidative stress indicated by an increase in Sod1 at 0.33, 1, and 4w (P<0.05). Endothelial cells were activated (increased CD106 expression) from 1w and onwards (P<0.05), and p21 expression was increased 2-3 times throughout the study (P<0.05) as were the number of β-catenin-positive nuclei (P<0.001). Wnt3a was increased at 0.33, 1, and 4w (P<0.01) and Wnt5a from 1w and onwards (P<0.001). The present study suggests that bleomycin-induced reactive oxygen species (ROS) causes DNA stress affecting the endothelial niche, initiating repair processes including Wnt signaling. The repeated systemic administrations disrupt a normally fine-tuned balance in the Wnt signaling. In addition, pericyte differentiation was affected, which may have significant effects on fibrosis due to their ability to differentiate into myofibroblasts. We conclude that the endothelial niche may have an important role in the development of pulmonary fibrosis and warrants further investigations.

  4. Predicting Life Expectancy for Pirfenidone in Idiopathic Pulmonary Fibrosis.

    PubMed

    Fisher, Mark; Nathan, Steven D; Hill, Christian; Marshall, Jade; Dejonckheere, Fred; Thuresson, Per-Olof; Maher, Toby M

    2017-03-01

    Conducting an adequately powered survival study in idiopathic pulmonary fibrosis (IPF) is challenging due to the rare nature of the disease and the need for extended follow-up. Consequently, registration trials of IPF treatments have not been designed to estimate long-term survival. To predict life expectancy for patients with IPF receiving pirfenidone versus best supportive care (BSC) in a population that met the inclusion criteria of patients enrolled in the ASCEND and CAPACITY trials. Kaplan-Meier survival data for pirfenidone and BSC were obtained from randomized controlled clinical studies (CAPACITY, ASCEND), an open-label extension study (RECAP), and the Inova Fairfax Hospital database. Data from the Inova registry were matched to the inclusion criteria of the CAPACITY and ASCEND trials. Life expectancy was estimated by the area under the curve of parametric survival distributions fit to the Kaplan-Meier data. Mean (95% confidence interval) life expectancy was calculated as 8.72 (7.65-10.15) years with pirfenidone and 6.24 (5.38-7.18) years with BSC. Therefore, pirfenidone improved life expectancy by 2.47 (1.26-4.17) years compared with BSC. In addition, treatment with pirfenidone recuperated 25% of the expected years of life lost due to IPF. Sensitivity analyses found that results were sensitive to the choice of parametric survival distribution, and alternative piecewise and parametric approaches. This analysis suggests that this population of patients with IPF has an improved life expectancy if treated with pirfenidone compared with BSC. This study was funded by InterMune International AG, a wholly owned Roche subsidiary since 2014. Fisher was previously employed by InterMune UK, a wholly owned Roche subsidiary, until July 2015. He is currently employed by FIECON, which has received funding from F. Hoffmann-La Roche for consulting services. Nathan has received consulting fees from Roche-Genentech and Boehringer Ingelheim. He is also on the speakers' bureau

  5. [Huge aspergilloma developed within a zone of scleroderma-related pulmonary fibrosis].

    PubMed

    Rakotoson, J L; Vololontiana, H M D; Raherison, R E; Andrianasolo, R L; Rakotomizao, J R; Rakotoharivelo, H; Rajaoarifetra, J; Randria, M J D; Rapelanoro, R F; Andrianarisoa, A C F; Rajaona, H R

    2012-02-01

    In pulmonary aspergilloma, Aspergillus colonizes and proliferates as a saprophyte in deterged cavities deprived of local defense. Although pulmonary tuberculosis constitutes the one well-know predisposing factor, other causes can create favorable conditions. We describe a first published case of a huge aspergilloma which developed within a zone of pulmonary fibrosis secondary to systemic scleroderma. The patient was a 58-year-old woman in poor general health who experienced repeated episodes of hemoptysis and dyspnea. Physical examination disclosed sclerodactyly, generalized cutaneous sclerosis and Raynaud's phenomenon. There was no clinical history of pulmonary tuberculosis or bronchectasis. Aspergillosis serology was positive. Broncho-alveolar liquid was positive for Aspergillus fumigatus at direct examination and after culture. Immunological assessment confirmed scleroderma. The chest computed tomography scan showed a huge oblong-shaped opacity in the upper left lobe which had developed within a zone of pulmonary fibrosis. Medical management was instituted. The clinical course was marked by repeating hemoptysis and the stability of pulmonary lesions after two years. Management of scleroderma-related pulmonary aspergiloma remains difficult and complicated. Prognosis depends on the course of both conditions, scleroderma and aspergillosis. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  6. The antifibrotic effects and mechanisms of microRNA-26a action in idiopathic pulmonary fibrosis.

    PubMed

    Liang, Haihai; Xu, Chaoqian; Pan, Zhenwei; Zhang, Ying; Xu, Zhidan; Chen, Yingzhun; Li, Tianyu; Li, Xuelian; Liu, Ying; Huangfu, Longtao; Lu, Ying; Zhang, Zhihua; Yang, Baofeng; Gitau, Samuel; Lu, Yanjie; Shan, Hongli; Du, Zhimin

    2014-06-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and high-lethality fibrotic lung disease characterized by excessive fibroblast proliferation, extracellular matrix accumulation, and, ultimately, loss of lung function. Although dysregulation of some microRNAs (miRs) has been shown to play important roles in the pathophysiological processes of IPF, the role of miRs in fibrotic lung diseases is not well understood. In this study, we found downregulation of miR-26a in the lungs of mice with experimental pulmonary fibrosis and in IPF, which resulted in posttranscriptional derepression of connective tissue growth factor (CTGF), and induced collagen production. More importantly, inhibition of miR-26a in the lungs caused pulmonary fibrosis in vivo, whereas overexpression of miR-26a repressed transforming growth factor (TGF)-β1-induced fibrogenesis in MRC-5 cells and attenuated experimental pulmonary fibrosis in mice. Our study showed that miR-26a was downregulated by TGF-β1-mediated phosphorylation of Smad3. Moreover, miR-26a inhibited the nuclear translocation of p-Smad3 through directly targeting Smad4, which determines the nuclear translocation of p-Smad2/Smad3. Taken together, our experiments demonstrated the antifibrotic effects of miR-26a in fibrotic lung diseases and suggested a new strategy for the prevention and treatment of IPF using miR-26a. The current study also uncovered a novel positive feedback loop between miR-26a and p-Smad3, which is involved in pulmonary fibrosis.

  7. Intrinsic defence capacity and therapeutic potential of natriuretic peptides in pulmonary hypertension associated with lung fibrosis

    PubMed Central

    Baliga, R S; Scotton, C J; Trinder, S L; Chambers, R C; MacAllister, R J; Hobbs, A J

    2014-01-01

    BACKGROUND AND PURPOSE Idiopathic pulmonary fibrosis (IPF) is a progressive fibro-proliferative disorder refractory to current therapy commonly complicated by the development of pulmonary hypertension (PH); the associated morbidity and mortality are substantial. Natriuretic peptides possess vasodilator and anti-fibrotic actions, and pharmacological augmentation of their bioactivity ameliorates renal and myocardial fibrosis. Here, we investigated whether natriuretic peptides possess an intrinsic cytoprotective function preventing the development of pulmonary fibrosis and associated PH, and whether therapeutics targeting natriuretic peptide signalling demonstrate efficacy in this life-threatening disorder. EXPERIMENTAL APPROACH Pulmonary haemodynamics, right ventricular function and markers of lung fibrosis were determined in wild-type (WT) and natriuretic peptide receptor (NPR)-A knockout (KO) mice exposed to bleomycin (1 mg·kg−1). Human myofibroblast differentiation was studied in vitro. KEY RESULTS Exacerbated cardiac, vascular and fibrotic pathology was observed in NPR-A KO animals, compared with WT mice, exposed to bleomycin. Treatment with a drug combination that raised circulating natriuretic peptide levels (ecadotril) and potentiated natriuretic peptide-dependent signalling (sildenafil) reduced indices of disease progression, whether administered prophylactically or to animals with established lung disease. This positive pharmacodynamic effect was diminished in NPR-A KO mice. Atrial natriuretic peptide and sildenafil synergistically reduced TGFβ-induced human myofibroblast differentiation, a key driver of remodelling in IPF patients. CONCLUSIONS AND IMPLICATIONS These data highlight an endogenous host-defence capacity of natriuretic peptides in lung fibrosis and PH. A combination of ecadotril and sildenafil reversed the pulmonary haemodynamic aberrations and remodelling that characterize the disease, advocating therapeutic manipulation of natriuretic

  8. Inhibitory effects of alkaline extract of Citrus reticulata on pulmonary fibrosis.

    PubMed

    Zhou, Xian-Mei; Wen, Gao-Yan; Zhao, Yang; Liu, Yu-Mei; Li, Jian-Xin

    2013-03-07

    The pericarp of Citrus reticulata possesses medical functions of regulating Qi and expelling phlegm, and has been clinically used for the treatment of lung related diseases in traditional Chinese medicine for a long time. Our previous research revealed that Citrus reticulata exhibited inhibitory effects on pulmonary fibrosis; however, its active principles are still unclear. To investigate the inhibitory effects on pulmonary fibrosis of alkaline extract from ethanol extract of Citrus reticulata and clarify its possible mechanism. The citrus alkaline extract (CAE) was prepared from ethanol extract of Citrus reticulata and MRC-5 cells were used for the evaluation of inhibitory activity in vitro. CAE was further orally administrated to bleomycin (BLM)-induced pulmonary fibrosis rats. The rat body weight, hydroxyproline levels in serum and lung, pathological changes of lung, as well as mRNA and protein expressions of matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1) and tumor necrosis factor-α (TNF-α) in rat lung tissues were analyzed. CAE dose-dependently inhibited the proliferation of MRC-5 cells, and the LDH assay clearly revealed that the inhibitory activity of CAE was not due to its cytotoxicity. CAE treatment significantly increased rat weight gain, ameliorated alveolitis and pulmonary fibrosis degree, and lowered hydroxyproline contents in both serum and lung tissues. RT-PCR and western blot revealed that mRNA and protein expressions of MMP-9 were significantly elevated, while mRNA and protein levels of TIMP-1 and TNF-α were markedly decreased in lung tissues of CAE treated rats. The results collectively demonstrated that CAE possessed an inhibitory activity on the proliferation of MRC-5 and a preventive effect on BLM-induced pulmonary fibrosis in rats. The preliminary mechanisms of the effects may be through upregulation of MMP-9 expression and inhibition of the expressions of TNF-α and TIMP-1. Copyright © 2013 Elsevier

  9. Role of inflammation in the lung disease of systemic sclerosis: comparison with idiopathic pulmonary fibrosis.

    PubMed

    Owens, G R; Paradis, I L; Gryzan, S; Medsger, T A; Follansbee, W P; Klein, H A; Dauber, J H

    1986-03-01

    Alveolar inflammation is thought to underlie the development of pulmonary fibrosis in several forms of diffuse lung disease including the connective tissue diseases. The relationship between inflammation and the clinical manifestations of systemic sclerosis (scleroderma), such as skin and lung involvement, is less clear. We therefore evaluated 14 never-smoking patients with systemic sclerosis with pulmonary involvement by bronchoalveolar lavage (BAL) and compared the results with those found in eight nonsmoking patients with idiopathic pulmonary fibrosis (IPF) and eight normal subjects. The patients with scleroderma also underwent gallium citrate Ga 67 scanning. We found that patients with scleroderma and pulmonary involvement have alveolitis that appears to wane with time. In addition, patients with systemic sclerosis have a cellular profile in lavage fluid that appears to differ from that of patients with IPF. Finally, we found a significant correlation between BAL cellular recovery and the single-breath carbon monoxide diffusing capacity in patients with systemic sclerosis but not in patients with IPF. We conclude that inflammation may play an important role in the pathogenesis of the pulmonary disease of scleroderma and that different mechanisms may lead to fibrosis in IPF and scleroderma.

  10. Viral infection and aging as cofactors for the development of pulmonary fibrosis

    PubMed Central

    Naik, Payal K; Moore, Bethany B

    2011-01-01

    Idiopathic pulmonary fibrosis (IPF) is a disease of unknown origin and progression that primarily affects older adults. Accumulating clinical and experimental evidence suggests that viral infections may play a role, either as agents that predispose the lung to fibrosis or exacerbate existing fibrosis. In particular, herpesviruses have been linked with IPF. This article summarizes the evidence for and against viral cofactors in IPF pathogenesis. In addition, we review mechanistic studies in animal models that highlight the fibrotic potential of viral infection, and explore the different mechanisms that might be responsible. We also review early evidence to suggest that the aged lung may be particularly susceptible to viral-induced fibrosis and make recommendations for future research directions. PMID:21128751

  11. Sequential occurrence of combined pulmonary fibrosis and emphysema syndrome in a non-smoker female patient.

    PubMed

    Gupta, Pawan; Dash, Devijyoti; Mittal, Richa; Chhabra, Sunil K

    2017-05-01

    The combined pulmonary fibrosis and emphysema (CPFE) syndrome is a unique and an under-recognized disorder characterized by emphysema in the upper lobes and interstitial fibrosis in the lower lobes of the lung. It occurs predominantly in males and almost exclusively in smokers. This rare combination of a restrictive and an obstructive mechanical defect carries a poorer prognosis than either of the two components. We present a case of CPFE syndrome in a non-smoker female patient who developed lower lobe emphysema subsequent to development of interstitial fibrosis. The case was remarkable for the extreme rarity of several presenting features, namely, a lower lobe occurrence of emphysema subsequent to pre-existent interstitial fibrosis, female gender and absence of a history of smoking. © 2015 John Wiley & Sons Ltd.

  12. The pathogenesis of bleomycin-induced lung injury in animals and its applicability to human idiopathic pulmonary fibrosis.

    PubMed

    Williamson, James D; Sadofsky, Laura R; Hart, Simon P

    2015-03-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown etiology, for which there is no curative pharmacological therapy. Bleomycin, an anti-neoplastic agent that causes lung fibrosis in human patients has been used extensively in rodent models to mimic IPF. In this review, we compare the pathogenesis and histological features of human IPF and bleomycin-induced pulmonary fibrosis (BPF) induced in rodents by intratracheal delivery. We discuss the current understanding of IPF and BPF disease development, from the contribution of alveolar epithelial cells and inflammation to the role of fibroblasts and cytokines, and draw conclusions about what we have learned from the intratracheal bleomycin model of lung fibrosis.

  13. A prostacyclin analogue, iloprost, protects from bleomycin-induced pulmonary fibrosis in mice

    PubMed Central

    2010-01-01

    Background Metabolites of arachidonic acid such as prostacyclin (PGI2) have been shown to participate in the pathogenesis of pulmonary fibrosis by inhibiting the expression of pro-inflammatory and pro-fibrotic mediators. In this investigation, we examined whether iloprost, a stable PGI2 analogue, could prevent bleomycin-induced pulmonary inflammation and fibrosis in a mouse model. Methods Mice received a single intratracheal injection of bleomycin with or without intraperitoneal iloprost. Pulmonary inflammation and fibrosis were analysed by histological evaluation, cellular composition of bronchoalveolar lavage (BAL) fluid, and hydroxyproline content. Lung mechanics were measured. We also analysed the expression of inflammatory mediators in BAL fluid and lung tissue. Results Administration of iloprost significantly improved survival rate and reduced weight loss in the mice induced by bleomycin. The severe inflammatory response and fibrotic changes were significantly attenuated in the mice treated with iloprost as shown by reduction in infiltration of inflammatory cells into the airways and pulmonary parenchyma, diminution in interstitial collagen deposition, and lung hydroxyproline content. Iloprost significantly improved lung static compliance and tissue elastance. It increased the expression of IFNγ and CXCL10 in lung tissue measured by RT-PCR and their levels in BAL fluid as measured by ELISA. Levels of TNFα, IL-6 and TGFβ1 were lowered by iloprost. Conclusions Iloprost prevents bleomycin-induced pulmonary fibrosis, possibly by upregulating antifibrotic mediators (IFNγ and CXCL10) and downregulating pro-inflammatory and pro-fibrotic cytokines (TNFα, IL-6, and TGFβ1). Prostacyclin may represent a novel pharmacological agent for treating pulmonary fibrotic diseases. PMID:20302663

  14. Pulmonary Rehabilitation

    MedlinePlus

    ... Topics Bronchitis COPD Cystic Fibrosis Idiopathic Pulmonary Fibrosis Sarcoidosis Send a link to NHLBI to someone by ... people who have COPD (chronic obstructive pulmonary disease), sarcoidosis (sar-koy-DOE-sis), idiopathic pulmonary fibrosis , or ...

  15. The distribution of immunomodulatory cells in the lungs of patients with idiopathic pulmonary fibrosis.

    PubMed

    Nuovo, Gerard J; Hagood, James S; Magro, Cynthia M; Chin, Nena; Kapil, Rubina; Davis, Luke; Marsh, Clay B; Folcik, Virginia A

    2012-03-01

    We have characterized the immune system involvement in the disease processes of idiopathic pulmonary fibrosis in novel ways. To do so, we analyzed lung tissue from 21 cases of idiopathic pulmonary fibrosis and 21 (non-fibrotic, non-cancerous) controls for immune cell and inflammation-related markers. The immunohistochemical analysis of the tissue was grouped by patterns of severity in disease pathology. There were significantly greater numbers of CD68(+) and CD80(+) cells and significantly fewer CD3(+), CD4(+), and CD45RO(+) cells in areas of relatively (histologically) normal lung in biopsy samples from idiopathic pulmonary fibrosis patients compared with controls. In zones of active disease, characterized by epithelial cell regeneration and fibrosis, there were significantly more cells expressing CD4, CD8, CD20, CD68, CD80, chemokine receptor 6 (CCR6), S100, IL-17, tumor necrosis factor-α, and retinoic acid-related orphan receptors compared with histologically normal lung areas from idiopathic pulmonary fibrosis patients. Inflammation was implicated in these active regions by the cells that expressed retinoid orphan receptor-α, -β, and -γ, CCR6, and IL-17. The regenerating epithelial cells predominantly expressed these pro-inflammatory molecules, as evidenced by co-expression analyses with epithelial cytokeratins. Macrophages in pseudo-alveoli and CD3(+) T cells in the fibrotic interstitium also expressed IL-17. Co-expression of IL-17 with retinoid orphan receptors and epithelial cytoskeletal proteins, CD68, and CD3 in epithelial cells, macrophages, and T-cells, respectively, confirmed the production of IL-17 by these cell types. There was little staining for forkhead box p3, CD56, or CD34 in any idiopathic pulmonary fibrosis lung regions. The fibrotic regions had fewer immune cells overall. In summary, our study shows participation of innate and adaptive mononuclear cells in active-disease regions of idiopathic pulmonary fibrosis lung, where the regenerating

  16. The distribution of immunomodulatory cells in the lungs of patients with idiopathic pulmonary fibrosis

    PubMed Central

    Nuovo, Gerard J.; Hagood, James S.; Magro, Cynthia M.; Chin, Nena; Kapil, Rubina; Davis, Luke; Marsh, Clay B.; Folcik, Virginia A.

    2011-01-01

    We have characterized the immune system involvement in the disease processes of idiopathic pulmonary fibrosis in novel ways. To do so, we analyzed lung tissue from 21 cases of idiopathic pulmonary fibrosis and 21 (non-fibrotic, non-cancerous) controls for immune cell and inflammation-related markers. The immunohistochemical analysis of the tissue was grouped by patterns of severity in disease pathology. There were significantly greater numbers of CD68+ and CD80+ cells, and significantly fewer CD3+, CD4+, and CD45RO+ cells in areas of relatively (histologically) normal lung in biopsies from idiopathic pulmonary fibrosis patients compared to controls. In zones of active disease, characterized by epithelial cell regeneration and fibrosis, there were significantly more cells expressing CD4, CD8, CD20, CD68, CD80, CCR6, S100, IL-17, tumor necrosis factor-α, and retinoic acid-related orphan receptors compared to histologically normal lung areas from idiopathic pulmonary fibrosis patients. Inflammation was implicated in these active regions by the cells that expressed retinoid orphan receptor-α, -β, and -γ, CCR6, and IL-17. The regenerating epithelial cells predominantly expressed these pro-inflammatory molecules, as evidenced by co-expression analyses with epithelial cytokeratins. Macrophages in pseudo-alveoli and CD3+ T cells in the fibrotic interstitium also expressed IL-17. Co-expression of IL-17 with retinoid orphan receptors, and epithelial cytoskeletal proteins, CD68, and CD3 in epithelial cells, macrophages, and T-cells, respectively, confirmed the production of IL-17 by these cell types. There was little staining for Foxp3, CD56, or CD34 in any idiopathic pulmonary fibrosis lung regions. The fibrotic regions had fewer immune cells overall. In summary, our study shows participation of innate and adaptive mononuclear cells in active-disease regions of idiopathic pulmonary fibrosis lung, where the regenerating epithelial cells appear to propagate inflammation

  17. Danger-associated molecular patterns and danger signals in idiopathic pulmonary fibrosis.

    PubMed

    Ellson, Christian D; Dunmore, Rebecca; Hogaboam, Cory M; Sleeman, Matthew A; Murray, Lynne A

    2014-08-01

    The chronic debilitating lung disease, idiopathic pulmonary fibrosis (IPF), is characterized by a progressive decline in lung function, with a median mortality rate of 2-3 years after diagnosis. IPF is a disease of unknown cause and progression, and multiple pathways have been demonstrated to be activated in the lungs of these patients. A recent genome-wide association study of more than 1,000 patients with IPF identified genes linked to host defense, cell-cell adhesion, and DNA repair being altered due to fibrosis (Fingerlin, et al. Nat Genet 2013;45:613-620). Further emerging data suggest that the respiratory system may not be a truly sterile environment, and it exhibits an altered microbiome during fibrotic disease (Molyneaux and Maher. Eur Respir Rev 2013;22:376-381). These altered host defense mechanisms might explain the increased susceptibility of patients with IPF to microbial- and viral-induced exacerbations. Moreover, chronic epithelial injury and apoptosis are key features in IPF, which might be mediated, in part, by both pathogen-associated (PA) and danger-associated molecular patterns (MPs). Emerging data indicate that both PAMPs and danger-associated MPs contribute to apoptosis, but not necessarily in a manner that allows for the removal of dying cells, without further exacerbating inflammation. In contrast, both types of MPs drive cellular necrosis, leading to an exacerbation of lung injury and/or infection as the debris promotes a proinflammatory response. Thus, this Review focuses on the impact of MPs resulting from infection-driven apoptosis and necrosis during chronic fibrotic lung disease.

  18. The chemokine, CCL3, and its receptor, CCR1, mediate thoracic radiation-induced pulmonary fibrosis.

    PubMed

    Yang, Xuebin; Walton, William; Cook, Donald N; Hua, Xiaoyang; Tilley, Stephen; Haskell, Christopher A; Horuk, Richard; Blackstock, A William; Kirby, Suzanne L

    2011-07-01

    Patients receiving thoracic radiation often develop pulmonary injury and fibrosis. Currently, there are no effective measures to prevent or treat these conditions. We tested whether blockade of the chemokine, CC chemokine ligand (CCL) 3, and its receptors, CC chemokine receptor (CCR) 1 and CCR5, can prevent radiation-induced lung inflammation and fibrosis. C57BL/6J mice received thoracic radiation, and the interaction of CCL3 with CCR1 or CCR5 was blocked using genetic techniques, or by pharmacologic intervention. Lung inflammation was assessed by histochemical staining of lung tissue and by flow cytometry. Fibrosis was measured by hydroxyproline assays and collagen staining, and lung function was studied by invasive procedures. Irradiated mice lacking CCL3 or its receptor, CCR1, did not develop the lung inflammation, fibrosis, and decline in lung function seen in irradiated wild-type mice. Pharmacologic treatment of wild-type mice with a small molecule inhibitor of CCR1 also prevented lung inflammation and fibrosis. By contrast, mice lacking CCR5 were not protected from radiation-induced injury and fibrosis. The selective interaction of CCL3 with its receptor, CCR1, is critical for radiation-induced lung inflammation and fibrosis, and these conditions can be largely prevented by a small molecule inhibitor of CCR1.

  19. Mycobacterium chimaera pulmonary infection complicating cystic fibrosis: a case report.

    PubMed

    Cohen-Bacrie, Stéphan; David, Marion; Stremler, Nathalie; Dubus, Jean-Christophe; Rolain, Jean-Marc; Drancourt, Michel

    2011-09-22

    Mycobacterium chimaera is a recently described species within the Mycobacterium avium complex. Its pathogenicity in respiratory tract infection remains disputed. It has never been isolated during cystic fibrosis respiratory tract infection. An 11-year-old boy of Asian ethnicity who was born on Réunion Island presented to our hospital with cystic fibrosis after a decline in his respiratory function over the course of seven years. We found that the decline in his respiratory function was correlated with the persistent presence of a Mycobacterium avium complex organism further identified as M. chimaera. Using sequencing-based methods of identification, we observed that M. chimaera organisms contributed equally to respiratory tract infections in patients with cystic fibrosis when compared with M. avium subsp. hominissuis isolates. We believe that M. chimaera should be regarded as an emerging opportunistic respiratory pathogen in patients with cystic fibrosis, including young children, and that its detection warrants long-lasting appropriate anti-mycobacterial treatment to eradicate it.

  20. Mycobacterium chimaera pulmonary infection complicating cystic fibrosis: a case report

    PubMed Central

    2011-01-01

    Background Mycobacterium chimaera is a recently described species within the Mycobacterium avium complex. Its pathogenicity in respiratory tract infection remains disputed. It has never been isolated during cystic fibrosis respiratory tract infection. Case presentation An 11-year-old boy of Asian ethnicity who was born on Réunion Island presented to our hospital with cystic fibrosis after a decline in his respiratory function over the course of seven years. We found that the decline in his respiratory function was correlated with the persistent presence of a Mycobacterium avium complex organism further identified as M. chimaera. Conclusion Using sequencing-based methods of identification, we observed that M. chimaera organisms contributed equally to respiratory tract infections in patients with cystic fibrosis when compared with M. avium subsp. hominissuis isolates. We believe that M. chimaera should be regarded as an emerging opportunistic respiratory pathogen in patients with cystic fibrosis, including young children, and that its detection warrants long-lasting appropriate anti-mycobacterial treatment to eradicate it. PMID:21939536

  1. Metformin attenuates gefitinib-induced exacerbation of pulmonary fibrosis by inhibition of TGF-β signaling pathway.

    PubMed

    Li, Li; Huang, Wenting; Li, Kunlin; Zhang, Kejun; Lin, Caiyu; Han, Rui; Lu, Conghua; Wang, Yubo; Chen, Hengyi; Sun, Fenfen; He, Yong

    2015-12-22

    Interstitial lung disease (ILD) is a serious side-effect of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) treatment. Therefore, it is necessary to study underlying mechanisms for the development of pulmonary fibrosis induced by EGFR-TKI and potential approaches to attenuate it. Metformin is a well-established and widely prescribed oral hypoglycemic drug, and has gained attention for its potential anticancer effects. Recent reports have also demonstrated its role in inhibiting epithelial-mesenchymal transition and fibrosis. However, it is unknown whether metformin attenuates EGFR-TKI-induced pulmonary fibrosis. The effect of metformin on EGFR-TKI-induced exacerbation of pulmonary fibrosis was examined in vitro and in vivo using MTT, Ki67 incorporation assay, flow cytometry, immunostaining, Western blot analysis, and a bleomycin-induced pulmonary fibrosis rat model. We found that in lung HFL-1 fibroblast cells, TGF-β or conditioned medium from TKI-treated lung cancer PC-9 cells or conditioned medium from TKI-resistant PC-9GR cells, induced significant fibrosis, as shown by increased expression of Collegen1a1 and α-actin, while metformin inhibited expression of fibrosis markers. Moreover, metformin decreased activation of TGF-β signaling as shown by decreased expression of pSMAD2 and pSMAD3. In vivo, oral administration of gefitinib exacerbated bleomycin-induced pulmonary fibrosis in rats, as demonstrated by HE staining and Masson staining. Significantly, oral co-administration of metformin suppressed exacerbation of bleomycin-induced pulmonary fibrosis by gefitinib. We have shown that metformin attenuates gefitinib-induced exacerbation of TGF-β or bleomycin-induced pulmonary fibrosis. These observations indicate metformin may be combined with EGFR-TKI to treat NSCLC patients.

  2. Prostaglandin F(2alpha) receptor signaling facilitates bleomycin-induced pulmonary fibrosis independently of transforming growth factor-beta.

    PubMed

    Oga, Toru; Matsuoka, Toshiyuki; Yao, Chengcan; Nonomura, Kimiko; Kitaoka, Shiho; Sakata, Daiji; Kita, Yoshihiro; Tanizawa, Kiminobu; Taguchi, Yoshio; Chin, Kazuo; Mishima, Michiaki; Shimizu, Takao; Narumiya, Shuh

    2009-12-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by fibroblast proliferation and excess deposition of collagen and other extracellular matrix (ECM) proteins, which lead to distorted lung architecture and function. Given that anti-inflammatory or immunosuppressive therapy currently used for IPF does not improve disease progression therapies targeted to blocking the mechanisms of fibrogenesis are needed. Although transforming growth factor-beta (TGF-beta) functions are crucial in fibrosis, antagonizing this pathway in bleomycin-induced pulmonary fibrosis, an animal model of IPF, does not prevent fibrosis completely, indicating an additional pathway also has a key role in fibrogenesis. Given that the loss of cytosolic phospholipase A(2) (cPLA(2)) suppresses bleomycin-induced pulmonary fibrosis, we examined the roles of prostaglandins using mice lacking each prostoaglandin receptor. Here we show that loss of prostaglandin F (PGF) receptor (FP) selectively attenuates pulmonary fibrosis while maintaining similar levels of alveolar inflammation and TGF-beta stimulation as compared to wild-type (WT) mice, and that FP deficiency and inhibition of TGF-beta signaling additively decrease fibrosis. Furthermore, PGF(2alpha) is abundant in bronchoalveolar lavage fluid (BALF) of subjects with IPF and stimulates proliferation and collagen production of lung fibroblasts via FP, independently of TGF-beta. These findings show that PGF(2alpha)-FP signaling facilitates pulmonary fibrosis independently of TGF-beta and suggests this signaling pathway as a therapeutic target for IPF.

  3. Low-dose paclitaxel ameliorates pulmonary fibrosis by suppressing TGF-β1/Smad3 pathway via miR-140 upregulation.

    PubMed

    Wang, Congjie; Song, Xiaodong; Li, Youjie; Han, Fang; Gao, Shuyan; Wang, Xiaozhi; Xie, Shuyang; Lv, Changj